WorldWideScience

Sample records for her2 monoclonal antibody

  1. Production and Characterization of Anti-Her2 Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    A.S. Tabatabaei-Panah

    2008-01-01

    Full Text Available Objective: Breast cancer is the most common cancer among women in the world.Early diagnosis of this cancer is a key element for its treatment. One of the approachesfor diagnosis of breast cancer is detection of its tumour-associated markers. Hence,Her2 has been the main focus of the researches in the field.Materials and Methods: For diagnosis of Her2 overexpression, monoclonalantibodies (mAb reacting against Her2 were produced in this study. For thispurpose, two peptides from extracellular domain of Her2 were selected and themAbs reacting against them were produced by hybrodoma technology. Reactivityof these antibodies were then evaluated in different immunological assays includingELISA, Immunoflurescence (IF, western blot (WB and immunoprecipitation (IP.Results: Total of 5 clones were produced from two separate fusions, and antibodyisotyping revealed that all clones were IgM. These mAbs showed appropriatereactivities in the following assays: ELISA, immunofluresence by staining of breastcancer cell line (SKBR3, WB and IP by detecting the 185 KD band of Her2.Conclusion: In conclusion, it seems that the mAbs are useful diagnostic tools fordetection of Her2 expression in patients with breast cancer.

  2. Generation of HER2 monoclonal antibodies using epitopes of a rabbit polyclonal antibody.

    Science.gov (United States)

    Hu, Francis Jingxin; Uhlen, Mathias; Rockberg, Johan

    2014-01-25

    One of the issues in using polyclonal antibodies is the limited amount of reagent available from an immunisation, leading to batch-to-batch variation and difficulties in obtaining the same antibody performance when the same antigen is re-immunised into several separate animals. This led to the development of hybridoma technology allowing, at least theoretically, for an unlimited production of a specific binder. Nevertheless, polyclonal antibodies are widely used in research and diagnostics and there exists a need for robust methods to convert a polyclonal antibody with good binding performance into a renewable monoclonal with identical or similar binding specificity. Here we have used precise information regarding the functional recognition sequence (epitope) of a rabbit polyclonal antibody with attractive binding characteristics as the basis for generation of a renewable mouse monoclonal antibody. First, the original protein fragment antigen was used for immunisation and generation of mouse hybridoma, without obtaining binders to the same epitope region. Instead a peptide designed using the functional epitope and structural information was synthesised and used for hybridoma production. Several of the monoclonal antibodies generated were found to have similar binding characteristics to those of the original polyclonal antibody. These monoclonal antibodies detected native HER2 on cell lines and were also able to stain HER2 in immunohistochemistry using xenografted mice, as well as human normal and cancer tissues.

  3. Novel anti-HER2 monoclonal antibodies: synergy and antagonism with tumor necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Ceran Ceyhan

    2012-10-01

    Full Text Available Abstract Background One-third of breast cancers display amplifications of the ERBB2 gene encoding the HER2 kinase receptor. Trastuzumab, a humanized antibody directed against an epitope on subdomain IV of the extracellular domain of HER2 is used for therapy of HER2-overexpressing mammary tumors. However, many tumors are either natively resistant or acquire resistance against Trastuzumab. Antibodies directed to different epitopes on the extracellular domain of HER2 are promising candidates for replacement or combinatorial therapy. For example, Pertuzumab that binds to subdomain II of HER2 extracellular domain and inhibits receptor dimerization is under clinical trial. Alternative antibodies directed to novel HER2 epitopes may serve as additional tools for breast cancer therapy. Our aim was to generate novel anti-HER2 monoclonal antibodies inhibiting the growth of breast cancer cells, either alone or in combination with tumor necrosis factor-α (TNF-α. Methods Mice were immunized against SK-BR-3 cells and recombinant HER2 extracellular domain protein to produce monoclonal antibodies. Anti-HER2 antibodies were characterized with breast cancer cell lines using immunofluorescence, flow cytometry, immunoprecipitation, western blot techniques. Antibody epitopes were localized using plasmids encoding recombinant HER2 protein variants. Antibodies, either alone or in combination with TNF-α, were tested for their effects on breast cancer cell proliferation. Results We produced five new anti-HER2 monoclonal antibodies, all directed against conformational epitope or epitopes restricted to the native form of the extracellular domain. When tested alone, some antibodies inhibited modestly but significantly the growth of SK-BR-3, BT-474 and MDA-MB-361 cells displaying ERBB2 amplification. They had no detectable effect on MCF-7 and T47D cells lacking ERBB2 amplification. When tested in combination with TNF-α, antibodies acted synergistically on SK-BR-3 cells

  4. Efficacy of HER2-targeted therapy in metastatic breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Dorte L; Kümler, Iben; Palshof, Jesper Andreas;

    2013-01-01

    Therapies targeting the human epidermal growth factor receptor (HER) 2 are effective in metastatic breast cancer (MBC). We review the efficacy of HER2-directed therapies, focussing on monoclonal antibodies and tyrosine kinase inhibitors targeting HER2 that have been tested in phase II-III studies...... to those obtained for capecitabine plus lapatinib (48%), continuing trastuzumab in combination with capecitabine (48%), pertuzumab plus trastuzumab (24%), and neratinib (24%). Strategies combining multiple HER2-directed therapies might yield additive or synergistic effects and lead to improved outcome...

  5. HER2-targeted therapy in breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Dorte Lisbet; Andersson, Michael; Kamby, Claus

    2008-01-01

    There is strong clinical evidence that trastuzumab, a monoclonal antibody targeting the human epidermal growth factor receptor (HER) two tyrosine kinase receptor, is an important component of first-line treatment of patients with HER2-positive metastatic breast cancer. In particular the combination...... with taxanes and vinorelbine has been established. In the preoperative setting inclusion of trastuzumab has significantly increased the pathological complete response rate. Results from large phase III trials evaluating adjuvant therapy in HER2-positive early breast cancer indicate that the addition...... of trastuzumab to chemotherapy improves disease-free and overall survival. The use of lapatinib, a dual tyrosine kinase inhibitor of both HER1 and HER2, in combination with capecitabine in the second-line treatment of HER2-positive patients with metastatic breast cancer previously treated with trastuzumab has...

  6. H2Mab-77 is a Sensitive and Specific Anti-HER2 Monoclonal Antibody Against Breast Cancer.

    Science.gov (United States)

    Itai, Shunsuke; Fujii, Yuki; Kaneko, Mika K; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Chang, Yao-Wen; Handa, Saori; Takahashi, Maki; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari

    2017-08-01

    Human epidermal growth factor receptor 2 (HER2) plays a critical role in the progression of breast cancers, and HER2 overexpression is associated with poor clinical outcomes. Trastuzumab is an anti-HER2 humanized antibody that leads to significant survival benefits in patients with HER2-positive metastatic breast cancers. In this study, we developed novel anti-HER2 monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. Initially, we expressed the full length or ectodomain of HER2 in LN229 glioblastoma cells and then immunized mice with ectodomain of HER2 or LN229/HER2, and performed the first screening by enzyme-linked immunosorbent assays using ectodomain of HER2. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical analyses (fourth screening). Among 100 mAb clones, only three mAbs reacted with HER2 in Western blot, and clone H2Mab-77 (IgG1, kappa) was selected. Finally, immunohistochemical analyses with H2Mab-77 showed sensitive and specific reactions against breast cancer cells, warranting the use of H2Mab-77 to detect HER2 in pathological analyses of breast cancers.

  7. anticorpo monoclonal her2

    OpenAIRE

    Silva, Ana; Soares, Mariana; Guedes, Cátia

    2005-01-01

    Actualmente as terapêuticas tradicionais para neoplasias com grande invasão tecidular, não são suficientes, optando-se cada vez mais por estratégias de imunoterapia, dependente, claro, das características do tumor e do próprio sistema imunitário. A imunoterapia com anticorpos monoclonais, mais especificamente o Trastuzumab, dirigido para a neoplasia metastizada da mama, cujos tumores primários apresentam amplificação do HER2/neu tem apresentado grande eficácia, proporcionando uma melhoria ...

  8. Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin nanoparticles.

    Science.gov (United States)

    Kouchakzadeh, Hasan; Shojaosadati, Seyed Abbas; Tahmasebi, Fathollah; Shokri, Fazel

    2013-04-15

    Human serum albumin (HSA) nanoparticles represent an attractive strategy for active targeting of therapeutics into tumor cells due to the presence of superficial functional groups. HER2 is highly expressed in a significant proportion of cancers and monoclonal antibodies (mAbs) directed against HER2 hold great promise for effective therapy. Herein, covalent coupling of a novel mAb (1F2) directed against the extracellular domain of HER2 to the surface of HSA nanoparticles was evaluated to obtain nanoparticles with highest cellular uptake. HER2 reactivity of 1F2-conjugated nanoparticles produced under different conditions was screened by an indirect ELISA and flow cytometry techniques. Monoclonal antibody thiolation with 100-fold molar excess of 2-iminothiolane and the ratio of 10:1 for the thiolated 1F2 (μg) to PEGylated nanoparticles (mg), were optimum for the attachment process. Under this condition, 23±4% of 1F2 was conjugated to nanoparticles. The flow cytometry results show that 1F2-modified nanoparticles interact with nearly all HER2 receptors on the surface of BT474 cells. In addition, no cellular uptake was observed on MCF7 cells. In vitro analyses showed no significant cytotoxicity of produced system against BT474 cells. Therefore, 1F2-attached HSA nanoparticles represent a potential delivery system for targeted transport of therapeutic agents into HER2-positive tumor cells.

  9. Generation and charaterization of HER2 anti-idiotypic monoclonal antibody%HER2抗独特型单克隆抗体的制备和初步研究

    Institute of Scientific and Technical Information of China (English)

    薛洋; 张星; 赵锋; 师建国

    2012-01-01

    Objective: To generate and characterize the HER2 anti - idiotypic monoclonal antibody, with the aim of further investigating the vaccine of breast cancer. Methods: To use the human HER2 protein to immunize rabbit for generating rabbit - anti - human HER2 antibodies, and immunize Balb/c mice with these rabbit - anti - human HER2 antibodies, the HER2 anti - idiotypic monoclonal antibody was generated by hybridoma technique. Results: ELISA results showed that the obtained rabbit anti - HER2 antibodies coald specific combine with the HER2 pro-teins , and the OD values had a positive linear relationship with the concentration of HER2. Through immunizing mice with rabbit anti - HER2 antibodies we obtained a stable hybridoma 1F5 that secreted HER2 anti - idiotypic mono-clonal antibodies, the antibodies could specifiely bind with rabbit anti HER2 polyclonal antibodies, and competitive with HER2. The anti - serum of 1F5 immunized rabbits could specific bind with HER2. The antibody subtype was IgG3 ,and the titer of the least concentrated ascites was 1:1. 02 × 10 . Conclusion: The anti - idiotypic monoclonal antibody 1F5 belongs to Ab2β, and IgG3 antibody, and confirmed that the 1F5 anti -idiotypic antibody is one mim-icking human HER2. 1F5 may be an anti - idiotypic monoclonal antibody vaccine of the breast cancer.%目的:研制HER2抗独特型单克隆抗体,为进一步深入研究乳腺癌抗独特型抗体疫苗奠定基础.方法:用人HER2蛋白免疫家兔,获得特异性兔抗HER2抗体.再用兔抗HER2抗体免疫Balb/c小鼠,采用杂交瘤技术制备HER2抗独特型单克隆抗体.并筛选出β型HER2抗独特型单克隆抗体.结果:ELISA检测结果表明,获得的兔抗HER2抗体能特异性地与HER2蛋白结合,其OD值随HER2的浓度呈正线性关系.用兔抗HER2抗体免疫小鼠获得一株稳定分泌HER2抗独特型单克隆抗体的杂交瘤细胞1F5,其分泌的单克隆抗体能特异性的和兔抗HER2多克隆抗体结合,并与HER2

  10. High concordance of SP3 rabbit monoclonal antibody with FISH to evaluate HER2 in breast carcinoma.

    Science.gov (United States)

    Wludarski, Sheila C L; Bacchi, Carlos E

    2008-10-01

    HER2 gene amplification or HER2 protein overexpression predicts a more aggressive clinical course in breast cancer, with a worse response to hormonal therapy, and determines eligibility for the use of the anti-HER2 antibody trastuzumab. For these reasons, the diagnostic assays that determine HER2 status in breast carcinoma have become increasingly important. Our goal was to evaluate the concordance, sensitivity, and specificity of a rabbit monoclonal antibody directed to the extracellular domain of the HER2 receptor (SP3) and compare it with fluorescence in situ hybridization and HercepTest in 179 invasive breast carcinomas. We found that SP3 was in agreement with fluorescence in situ hybridization results in 94.6% of cases. HercepTest and fluorescence in situ hybridization results were in agreement in 95.1% of the cases. Only 4.3% (4/93) of the cases that scored 0/1+ by SP3 were amplified by fluorescence in situ hybridization, and 8.3% (3/36) of cases that scored 3+ were not amplified by fluorescence in situ hybridization. Comparing SP3 with HercepTest, we observed that HercepTest demonstrated higher sensitivity (100.0% vs. 89.0%) but SP3 demonstrated higher specificity (97.0% vs. 89.0%). An important advantage of SP3 (in comparison with HercepTest) is its higher discrimination power (72.1% vs. 34.1%). For these reasons, this antibody could be helpful in the determination of HER2 status in a routine basis.

  11. Affinity Maturation of Monoclonal Antibody 1E11 by Targeted Randomization in CDR3 Regions Optimizes Therapeutic Antibody Targeting of HER2-Positive Gastric Cancer.

    Science.gov (United States)

    Ko, Bong-Kook; Choi, Soyoung; Cui, Lei Guang; Lee, Young-Ha; Hwang, In-Sik; Kim, Kyu-Tae; Shim, Hyunbo; Lee, Jong-Seo

    2015-01-01

    Anti-HER2 murine monoclonal antibody 1E11 has strong and synergistic anti-tumor activity in HER2-overexpressing gastric cancer cells when used in combination with trastuzumab. We presently optimized this antibody for human therapeutics. First, the complementarity determining regions (CDRs) of the murine antibody were grafted onto human germline immunoglobulin variable genes. No difference in affinity and biological activity was observed between chimeric 1E11 (ch1E11) and humanized 1E11 (hz1E11). Next, affinity maturation of hz1E11 was performed by the randomization of CDR-L3 and H3 residues followed by stringent biopanning selection. Milder selection pressure favored the selection of more diverse clones, whereas higher selection stringency resulted in the convergence of the panning output to a smaller number of clones with improved affinity. Clone 1A12 had four amino acid substitutions in CDR-L3, and showed a 10-fold increase in affinity compared to the parental clone and increased potency in an in vitro anti-proliferative activity assay with HER2-overepxressing gastric cancer cells. Clone 1A12 inhibited tumor growth of NCI-N87 xenograft model with similar efficacy to trastuzumab alone, and the combination treatment of 1A12 and trastuzumab completely removed the established tumors. These results suggest that humanized and affinity matured monoclonal antibody 1A12 is a highly optimized molecule for future therapeutic development against HER2-positive tumors.

  12. Cytotoxic effect of the immunotoxin constructed of the ribosome-inactivating protein curcin and the monoclonal antibody against Her2 receptor on tumor cells.

    Science.gov (United States)

    Jaramillo-Quintero, Lidia Patricia; Contis Montes de Oca, Arturo; Romero Rojas, Andrés; Rojas-Hernández, Saúl; Campos-Rodríguez, Rafael; Martínez-Ayala, Alma Leticia

    2015-01-01

    The toxicity of the curcin on cancer cells allows to consider this protein as the toxic component of an immunotoxin directed to Her2, which is associated with cancer. Reductive amination was proposed to conjugate curcin and an anti-Her2; the binding was tested using Polyacrylamide gel electrophoresis, western blot, and immunocytochemistry. The in vitro cytotoxicity of curcin and the immunotoxin was assessed on breast cancer cell lines SK-BR-3 (Her2(+)) and MDA-MB-231 (Her2(-)). IC50 values for curcin were 15.5 ± 8.3 and 18.6 ± 2.4 μg/mL, respectively, statistically equivalent (p SK-BR-3 and 147.6 ± 2.5 μg/mL for MDA-MB-231. These values showed that the immunotoxin was seven times more toxic to the SK-BR-3 than curcin and eight times less toxic to the MDA-MB-231. The immunotoxin composed of curcin and an antibody against Her2 and constructed by reductive amination could be a therapeutic candidate against Her2(+) cancer.

  13. A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2-expressing tumor cells.

    Science.gov (United States)

    Li, Aifen; Xing, Jieyu; Li, Li; Zhou, Changhua; Dong, Bin; He, Ping; Li, Qing; Wang, Zhong

    2016-12-01

    Her2, which is frequently overexpressed in breast cancer, is one of the most studied tumor-associated antigens for cancer therapy. Anti-HER2 monoclonal antibody, trastuzumab, has achieved significant clinical benefits in metastatic breast cancer. In this study, we describe a novel bispecific antibody Her2-S-Fab targeting Her2 by linking a single domain anti-CD16 VHH to the trastuzumab Fab. The Her2-S-Fab antibody can be efficiently expressed and purified from Escherichia coli, and drive potent cancer cell killing in HER2-overexpressing cancer cells. In xenograft model, the Her2-S-Fab suppresses tumor growth in the presence of human immune cells. Our results suggest that the bispecific Her2-S-Fab may provide a valid alternative to Her2 positive cancer therapy.

  14. 甲醇-山梨醇混合碳源诱导提高抗HER2抗体在糖基工程毕赤酵母中的表达%Co-Feeding Strategy of Methanol and Sorbitol to Improve Produc-tion of Anti-HER2 Monoclonal Antibody in Glycoengineered Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    高爱荣; 刘波; 唱韶红; 巩新; 徐敏锐; 徐威; 吴军

    2013-01-01

    Objective: In this work, a study of the fermentation technique of engineered antibodies in glycosyl-ation engineered yeast using anti-HER2 monoclonal antibody(mAb) as model was presented. Methods: The opti-mal methanol induction concentration was confirmed by flask trial. The antigen binding affinity of anti-HER2 mAb was tested with the high HER2 expression breast cancer cell line SK-BR-3. The methanol/sorbitol co-feeding in-duction strategy for antibody production was carried out in a 5 L bioreactor on the basis of flask experiment. The medium was collected and subjected to purification with cation exchange chromatography. The molecular weight was analyzed by reducing and non-reducing SDS-PAGE. The antibody was identified by Western blotting and the purity was determined by Lowry method. Results: The highest expression level of anti-HER2 antibody was in-duced by 0.5% methanol in flask culture. Expressed antibody can bind to antigen on the cell surface of the SK-BR-3. The production of antibody in methanol/sorbitol co-feeding fermentation reached about 0.6 g/L, which was about ten times than in flask culture. The molecular weight of antibody was 1.5×105 in non-reducing SDS- PAGE which demonstrates that light chain and heavy chain could be assembled the right antibody structure. The final concentration of the antibody was 0.365 g/L after one step purification by cation exchange chromatography. Conclu-sion: Using the co-feeding strategy in 5 L bioreactor, the production of antibody expressed in glycoengineering Pi-chia pastoris was improved and this will be reference for a platform of large-scale antibody fermentation.%目的::以抗HER2抗体为模型,研究抗体在糖基工程酵母菌中的表达及工程菌发酵技术。方法:首先通过摇瓶试验分析诱导用甲醇浓度对抗体表达的影响,并用高表达HER2的SK-BR-3细胞分析抗HER2抗体的抗原结合活性。以此为基础,在5 L发酵罐中研究甲醇-山梨醇混合碳源流加诱导对抗HER

  15. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  16. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  17. Monoclonal antibody "gold rush".

    Science.gov (United States)

    Maggon, Krishan

    2007-01-01

    The market, sales and regulatory approval of new human medicines, during the past few years, indicates increasing number and share of new biologics and emergence of new multibillion dollar molecules. The global sale of monoclonal antibodies in 2006 were $20.6 billion. Remicade had annual sales gain of $1 billion during the past 3 years and five brands had similar increase in 2006. Rituxan with 2006 sales of $4.7 billion was the best selling monoclonal antibody and biological product and the 6th among the top selling medicinal brand. It may be the first biologic and monoclonal antibody to reach $10 billion annual sales in the near future. The strong demand from cancer and arthritis patients has surpassed almost all commercial market research reports and sales forecast. Seven monoclonal antibody brands in 2006 had sales exceeding $1 billion. Humanized or fully human monoclonal antibodies with low immunogenicity, enhanced antigen binding and reduced cellular toxicity provide better clinical efficacy. The higher technical and clinical success rate, overcoming of technical hurdles in large scale manufacturing, low cost of market entry and IND filing, use of fully human and humanized monoclonal antibodies has attracted funds and resources towards R&D. Review of industry research pipeline and sales data during the past 3 years indicate a real paradigm shift in industrial R&D from pharmaceutical to biologics and monoclonal antibodies. The antibody bandwagon has been joined by 200 companies with hundreds of new projects and targets and has attracted billions of dollars in R&D investment, acquisitions and licensing deals leading to the current Monoclonal Antibody Gold Rush.

  18. Arg9 facilitates the translocation and downstream signal inhibition of an anti-HER2 single chain antibody

    Directory of Open Access Journals (Sweden)

    Hu Yi

    2012-07-01

    Full Text Available Abstract Background HER2 plays a critical role in the pathogenesis of many cancers and is linked to poor prognosis or cancer metastases. Monoclonal antibodies, such as Herceptin against HER2-overexpressing cancers, have showed satisfactory clinical therapeutic effect. However, they have difficulty to surmount obstacles to enter cells or blood–brain barrier. Results In this study, a cell-penetrating peptide Arg9 was linked to the C-terminus of anti-HER2 single chain antibody (MIL5scFv. Flow cytometry, confocal microscopy and electron microscopy analysis all revealed that Arg9 peptide facilitated the penetration of MIL5scFv into HER2-negative cell line NIH3T3 and orientate in mitochondria. More interestingly, Western blot assay showed the potential enhanced bioactivity of MIL5scFv-Arg9 in HER2+ cell line SKOV3, indicating that Arg9 could help large molecules (e.g. antibody to penetrate into cells and therefore enhance its anti-neoplastic function. Conclusions Our work represented an attractive by preliminary strategy to enhance the therapeutic effect of existing antibodies by entering cells easier, or more desirable, surmounting the physical barriers, especially in hard-to-reach cancers such as brain metastases cases.

  19. Heterogeneity of monoclonal antibodies.

    Science.gov (United States)

    Liu, Hongcheng; Gaza-Bulseco, Georgeen; Faldu, Dinesh; Chumsae, Chris; Sun, Joanne

    2008-07-01

    Heterogeneity of monoclonal antibodies is common due to the various modifications introduced over the lifespan of the molecules from the point of synthesis to the point of complete clearance from the subjects. The vast number of modifications presents great challenge to the thorough characterization of the molecules. This article reviews the current knowledge of enzymatic and nonenzymatic modifications of monoclonal antibodies including the common ones such as incomplete disulfide bond formation, glycosylation, N-terminal pyroglutamine cyclization, C-terminal lysine processing, deamidation, isomerization, and oxidation, and less common ones such as modification of the N-terminal amino acids by maleuric acid and amidation of the C-terminal amino acid. In addition, noncovalent associations with other molecules, conformational diversity and aggregation of monoclonal antibodies are also discussed. Through a complete understanding of the heterogeneity of monoclonal antibodies, strategies can be employed to better identify the potential modifications and thoroughly characterize the molecules.

  20. Preparation and Characterization of {sup 177}Lu Labeled Antibody against Tyrosine Kinase Receptor Her2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So-Young; Hong, Young-Don; Choi, Sun-Ju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    The tyrosine kinase receptor Her2, also known in humans as erbB2, is a member of the epidermal growth factor receptor (EGFR or erbB1) family. The Her2 is highly expressed in many cancer types and over expressed in approximately 30% of all primary breast cancer. Overexpression of Her2 is associated with a poor prognosis. Her2 is a suitable target because it involves an extracellular domain that can be targeted by antibodies produced by B cells. Based on these advantages, we tried to prepare the {sup 177}Lu labeled Her2 antibody. This radioimmunoconjugate could act by not only blocking the Her2 signalling pathway using antibody but also killing the tumour cell using {beta} energy of {sup 177}Lu.

  1. ON THE NOTION OF SYNERGY OF MONOCLONAL ANTIBODIES AS DRUGS

    Directory of Open Access Journals (Sweden)

    Michael Sela

    2013-08-01

    Full Text Available History of developing synergy between monoclonal antibodies, anti-tumor activity of monoclonal antibodies against tyrosine-kinases receptors EGFR/ErbB-1 and HER2/ErbB-2 as well as growth factor VEGF in various combinations are considered in the article. There were proposed hypotheses about potential molecular mechanisms underlay synergy between monoclonal antibodies (for homo- and hetero combinations of antibodies appropriately specific for antigenic determinants on the same or different receptors. Future trends in researches necessary to deeper understanding causes of this phenomenon and perspectives for practical application of monoclonal antibodies acted synergistically as immunotherapeutic drugs for human tumors treatment are reviewed.

  2. Targeting breast cancer stem cells with HER2-specific antibodies and natural killer cells.

    Science.gov (United States)

    Diessner, Joachim; Bruttel, Valentin; Becker, Kathrin; Pawlik, Miriam; Stein, Roland; Häusler, Sebastian; Dietl, Johannes; Wischhusen, Jörg; Hönig, Arnd

    2013-01-01

    Breast cancer is the most common cancer among women worldwide. Every year, nearly 1.4 million new cases of breast cancer are diagnosed, and about 450.000 women die of the disease. Approximately 15-25% of breast cancer cases exhibit increased quantities of the trans-membrane receptor tyrosine kinase human epidermal growth factor receptor 2 (HER2) on the tumor cell surface. Previous studies showed that blockade of this HER2 proto-oncogene with the antibody trastuzumab substantially improved the overall survival of patients with this aggressive type of breast cancer. Recruitment of natural killer (NK) cells and subsequent induction of antibody-dependent cell-mediated cytotoxicity (ADCC) contributed to this beneficial effect. We hypothesized that antibody binding to HER2-positive breast cancer cells and thus ADCC might be further improved by synergistically applying two different HER2-specific antibodies, trastuzumab and pertuzumab. We found that tumor cell killing via ADCC was increased when the combination of trastuzumab, pertuzumab, and NK cells was applied to HER2-positive breast cancer cells, as compared to the extent of ADCC induced by a single antibody. Furthermore, a subset of CD44(high)CD24(low)HER2(low) cells, which possessed characteristics of cancer stem cells, could be targeted more efficiently by the combination of two HER2-specific antibodies compared to the efficiency of one antibody. These in vitro results demonstrated the immunotherapeutic benefit achieved by the combined application of trastuzumab and pertuzumab. These findings are consistent with the positive results of the clinical studies, CLEOPATRA and NEOSPHERE, conducted with patients that had HER2-positive breast cancer. Compared to a single antibody treatment, the combined application of trastuzumab and pertuzumab showed a stronger ADCC effect and improved the targeting of breast cancer stem cells.

  3. Monoclonal antibodies in myeloma

    DEFF Research Database (Denmark)

    Sondergeld, P.; van de Donk, N. W. C. J.; Richardson, P. G.;

    2015-01-01

    The development of monoclonal antibodies (mAbs) for the treatment of disease goes back to the vision of Paul Ehrlich in the late 19th century; however, the first successful treatment with a mAb was not until 1982, in a lymphoma patient. In multiple myeloma, mAbs are a very recent and exciting add...

  4. BRCAA1 antibody- and Her2 antibody-conjugated amphiphilic polymer engineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer

    Science.gov (United States)

    Li, Chao; Ji, Yang; Wang, Can; Liang, Shujing; Pan, Fei; Zhang, Chunlei; Chen, Feng; Fu, Hualin; Wang, Kan; Cui, Daxiang

    2014-05-01

    Successful development of safe and highly effective nanoprobes for targeted imaging of in vivo early gastric cancer is a great challenge. Herein, we choose the CdSe/ZnS (core-shell) quantum dots (QDs) as prototypical materials, synthesized one kind of a new amphiphilic polymer including dentate-like alkyl chains and multiple carboxyl groups, and then used the prepared amphiphilic polymer to modify QDs. The resultant amphiphilic polymer engineered QDs (PQDs) were conjugated with BRCAA1 and Her2 monoclonal antibody, and prepared BRCAA1 antibody- and Her2 antibody-conjugated QDs were used for in vitro MGC803 cell labeling and in vivo targeted imaging of gastric cancer cells. Results showed that the PQDs exhibited good water solubility, strong photoluminescence (PL) intensity, and good biocompatibility. BRCAA1 antibody- and Her2 antibody-conjugated QD nanoprobes successfully realized targeted imaging of in vivo gastric cancer MGC803 cells. In conclusion, BRCAA1 antibody- and Her2 antibody-conjugated PQDs have great potential in applications such as single cell labeling and in vivo tracking, and targeted imaging and therapeutic effects' evaluation of in vivo early gastric cancer cells in the near future.

  5. Development and Characterization of a Humanized Anti-HER2 Antibody HuA21 with Potent Anti-Tumor Properties in Breast Cancer Cells.

    Science.gov (United States)

    Li, Ruilin; Hu, Siyi; Chang, Yan; Zhang, Zhihui; Zha, Zhao; Huang, Hui; Shen, Guodong; Liu, Jing; Song, Lihua; Wei, Wei

    2016-04-15

    Human epidermal growth factor receptor 2 (HER2) is one of the most studied tumor-associated antigens for cancer immunotherapy. An engineered anti-HER-2 chimeric A21 antibody (chA21) is a chimeric antibody targeted to subdomain I of the HER2 extracellular domain. Here, we report the anti-tumor activity of the novel engineered monoclonal antibody humanized chA21 (HuA21) that targets HER2 on the basis of chA21, and we describe the underlying mechanisms. Our results reveal that HuA21 markedly inhibits the proliferation and migration of HER2-overexpressing breast cancer cells and causes enhanced antibody-dependent cell-mediated cytotoxicity potency against HER2-overexpressing tumor cells. In particular, HuA21, but not trastuzumab (Tra), markedly suppresses growth and enhances the internalization of the antibody in Tra-resistant BT-474 breast cancer cells. These characteristics are highly associated with the intrinsic ability of HuA21 to down-regulate HER2 activation and inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) signaling pathways. Furthermore, the combination of HuA21 with Tra synergistically enhances the anti-tumor effects in vitro and in vivo and inhibits HER2 activation and the ERK1/2 and Akt signaling pathways. Altogether, our results suggest that HuA21 may represent a unique anti-HER2 antibody with potential as a therapeutic candidate alone or in combination with other anti-HER2 reagents in cancer therapy.

  6. Development and Characterization of a Humanized Anti-HER2 Antibody HuA21 with Potent Anti-Tumor Properties in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruilin Li

    2016-04-01

    Full Text Available Human epidermal growth factor receptor 2 (HER2 is one of the most studied tumor-associated antigens for cancer immunotherapy. An engineered anti-HER-2 chimeric A21 antibody (chA21 is a chimeric antibody targeted to subdomain I of the HER2 extracellular domain. Here, we report the anti-tumor activity of the novel engineered monoclonal antibody humanized chA21 (HuA21 that targets HER2 on the basis of chA21, and we describe the underlying mechanisms. Our results reveal that HuA21 markedly inhibits the proliferation and migration of HER2-overexpressing breast cancer cells and causes enhanced antibody-dependent cell-mediated cytotoxicity potency against HER2-overexpressing tumor cells. In particular, HuA21, but not trastuzumab (Tra, markedly suppresses growth and enhances the internalization of the antibody in Tra-resistant BT-474 breast cancer cells. These characteristics are highly associated with the intrinsic ability of HuA21 to down-regulate HER2 activation and inhibit the extracellular signal-regulated kinase 1/2 (ERK1/2 and protein kinase B (Akt signaling pathways. Furthermore, the combination of HuA21 with Tra synergistically enhances the anti-tumor effects in vitro and in vivo and inhibits HER2 activation and the ERK1/2 and Akt signaling pathways. Altogether, our results suggest that HuA21 may represent a unique anti-HER2 antibody with potential as a therapeutic candidate alone or in combination with other anti-HER2 reagents in cancer therapy.

  7. Quantification and imaging of HER2 protein using nanocrystals conjugated with single-domain antibodies

    Science.gov (United States)

    Glukhov, S.; Berestovoy, M.; Chames, P.; Baty, D.; Nabiev, I.; Sukhanova, A.

    2017-01-01

    This study dealt with quantification and imaging of human epidermal growth factor receptor 2 (HER2), an important prognostic marker for cancer diagnosis and treatment, using specific quantum-dot-based conjugates. Fluorescent inorganic nanocrystals or quantum dots (QDs) are extremely highly resistant to photobleaching and have a high emission quantum yield and a continuous range of emission spectra, from the ultraviolet to the infrared regions. Ultrasmall nanoprobes consisting of highly affine anti-HER2 single-domain antibodies (sdAbs or "nanobodies") conjugated with QDs in a strictly oriented manner have been designed. QDs with a fluorescence peak maxima at wavelengths of 562 nm, 569 nm, 570 nm or in the near-infrared region were used. Here, we present our results of ISA quantification of HER2 protein, in situ imaging of HER2 protein on the surface of HER2-positive SK-BR-3 cells in immunohistochemical experiments, and counting of stained with anti-HER2 conjugates HER2-positive SK-BR-3 cells in their mixture with unstained cells of the same culture in flow cytometry experiments. The data demonstrate that the anti-HER2 QD-sdAb conjugates obtained are highly specific and sensitive and could be used in numerous applications for advanced integrated diagnosis.

  8. Designing HER2 vaccines.

    Science.gov (United States)

    Foy, Teresa M; Fanger, Gary R; Hand, Susan; Gerard, Catherine; Bruck, Claudine; Cheever, Martin A

    2002-06-01

    HER2/neu is a compelling cancer vaccine candidate because it is overexpressed on some cancer cells relative to normal tissues, it is known to be immunogenic in both animal models and in humans, and it is already known to be targetable by the antibody component of the immune system in the form of monoclonal antibody therapy with trastuzumab. Vaccines offer the theoretical advantage of being able to elicit T-cell responses in addition to antibody responses. HER2 vaccines have been shown to provide benefit in animal models and to be immunogenic in humans. However, the optimal vaccine formulation is not yet known and the therapeutic efficacy of the vaccines in humans has not yet been evaluated. HER2 vaccine approaches currently being tested include peptide-based, DNA plasmid-based, and protein-based vaccines. Our group has developed and started testing a protein-based vaccine composed of both the extracellular domain of HER2 and the carboxyl terminal autophosphorylation portion of the intracellular domain. The extracellular domain was retained to provide for antibody targeting. The kinase domain of the intracellular domain was excluded because of its high degree of homology to other human kinases. The carboxyl terminal autophosphorylation domain was retained because it is the most unique and possibly most immunogenic portion of the HER2 molecule with the least homology to other members of the HER family. The vaccine, termed dHER2, is immunogenic in mice and primates. In animal models it can elicit CD8 and CD4 T-cell responses as well as antibody responses that suppress the growth of HER2-positive cancer cells in vitro and in vivo. Vaccine trials are contemplated in patients with breast cancer that will determine whether the vaccine construct is similarly immunogenic in humans.

  9. Long term disease-free survival and T cell and antibody responses in women with high-risk Her2+ breast cancer following vaccination against Her2

    Directory of Open Access Journals (Sweden)

    Anders Carey

    2007-09-01

    Full Text Available Abstract Background The HER2-inhibiting antibody trastuzumab, in combination with chemotherapy, significantly improves survival of women with resected, HER2-overexpressing breast cancers, but is associated with toxicities including a risk of cardiomyopathy. Additionally, the beneficial effect of trastuzumab is expected to decrease once the drug is discontinued. We proposed to address these concerns by using cancer vaccines to stimulate HER2 intracellular domain (ICD-specific T cell and antibody responses. Methods Subjects with stage II (≥ 6 +LN, III, or stage IV breast cancerwith > 50% HER2 overexpressing tumor cells who were disease-free after surgery and adjuvant therapy were eligible. Vaccines consisted of immature, cultured DC (n = 3, mature cultured DC (n = 3, or mature Flt3-ligand mobilized peripheral blood DC (n = 1 loaded with ICD, or tetanus toxoid, keyhole limpet hemocyanin or CMV peptide as controls, and were administered intradermally/subcutaneously four times at 3 week intervals. ICD-specific T cell and antibody responses were measured. Cardiac function was determined by MUGA or ECHO; long term disease status was obtained from patient contact. Results All seven patients successfully underwent DC generation and five received all 4 immunizations. There were no toxicities greater than grade 1 or ejection fraction decrements below normal. Delayed-type hypersensitivity (DTH reactions at the injection site occurred in 6/7 patients and HER2 specificity was detected by cytokine flow cytometry or ELISPOT in 5 patients. At more than 5 years of follow-up, 6/7 had detectable anti-ICD antibodies. One patient experienced a pulmonary recurrence at 4 years from their study immunizations. This recurrence was resected and they are without evidence of disease. All patients are alive and disease-free at 4.6–6.7 years of follow-up. Conclusion Although this was a small pilot study, the well-tolerated nature of the vaccines, the lack of cardiac

  10. Rabbit antibodies for hormone receptors and HER2 evaluation in breast cancer Anticorpos de coelho para avaliação de receptores hormonais e HER2 em câncer de mama

    Directory of Open Access Journals (Sweden)

    Rafael Malagoli Rocha

    2009-01-01

    Full Text Available BACKGROUND: Novel rabbit monoclonal antibodies (RabMab for estrogen (ER, progesterone (PR receptors and HER2 evaluation by immunohistochemistry have recently been commercially released. We compared the RabMab anti-ER, anti-PR and anti-HER2 to mouse monoclonal antibodies (Mab using tissue microarrays (TMA of breast carcinomas. METHODS: Two TMA containing breast carcinomas were built. Sections were immunostained using anti-ER and anti-PR, Mab and RabMab. The sections stained for ER and PR were evaluated considering positive those tumors in which more than 1% of the tumor cell nuclei stained moderate or strong. For HER2, the immunostained sections were evaluated using the ASCO/CAP guidelines for HER2. Chromogenic in situ hybridization (CISH was used as the gold standard for HER2 evaluation. CISH was evaluated using the Zymed HER2 CISH interpretation guidelines. RESULTS: RabMab against ER have similar staining patterns compared to the 6F11 (Mab, but stronger than 1D5 (Mab from three different suppliers. The RabMab against PR provide stronger and sharper immunohistochemical signals compared to Mab. The detection of HER2 protein overexpression was more prevalent with the polyclonal antibodies and RabMab than with the Mab. These were more specific than the RabMab, which were more sensitive when compared to CISH. CONCLUSION: The novel RabMab against ER and PR showed higher intensity of staining than the Mab. The RabMab against HER2 is more sensitive than Mab, however, Mab presented more specificity than RabMab when compared to CISH for HER2 evaluation of breast carcinomas.OBJETIVOS: Novos anticorpos monoclonais de coelho (RabMab para a avaliação imuno-histoquímica de receptores de estrógeno (RE, progesterona (RP e HER2 foram lançados comercialmente. Comparamos os RabMab anti-RE, anti-RP e anti-HER2 com os anticorpos monoclonais de camundongo (Mab utilizando tissue microarrays (TMA de carcinomas de mama. MÉTODOS: Foram construídos dois TMAs de

  11. Fragmentation of monoclonal antibodies

    Science.gov (United States)

    Vlasak, Josef

    2011-01-01

    Fragmentation is a degradation pathway ubiquitously observed in proteins despite the remarkable stability of peptide bond; proteins differ only by how much and where cleavage occurs. The goal of this review is to summarize reports regarding the non-enzymatic fragmentation of the peptide backbone of monoclonal antibodies (mAbs). The sites in the polypeptide chain susceptible to fragmentation are determined by a multitude of factors. Insights are provided on the intimate chemical mechanisms that can make some bonds prone to cleavage due to the presence of specific side-chains. In addition to primary structure, the secondary, tertiary and quaternary structures have a significant impact in modulating the distribution of cleavage sites by altering local flexibility, accessibility to solvent or bringing in close proximity side chains that are remote in sequence. This review focuses on cleavage sites observed in the constant regions of mAbs, with special emphasis on hinge fragmentation. The mechanisms responsible for backbone cleavage are strongly dependent on pH and can be catalyzed by metals or radicals. The distribution of cleavage sites are different under acidic compared to basic conditions, with fragmentation rates exhibiting a minimum in the pH range 5–6; therefore, the overall fragmentation pattern observed for a mAb is a complex result of structural and solvent conditions. A critical review of the techniques used to monitor fragmentation is also presented; usually a compromise has to be made between a highly sensitive method with good fragment separation and the capability to identify the cleavage site. The effect of fragmentation on the function of a mAb must be evaluated on a case-by-case basis depending on whether cleavage sites are observed in the variable or constant regions, and on the mechanism of action of the molecule. PMID:21487244

  12. Correlation and comparison of immunohistochemistry for HER2/neu, using the antibody SP3 and chromogenic in situ hybridization in breast carcinomas samples

    Directory of Open Access Journals (Sweden)

    Franciele F. Wolf

    2015-12-01

    Full Text Available ABSTRACT Introduction: Advances in the field of molecular biology have provided the differentiation of molecular subtypes of breast tumors, providing better prognosis and important tools for the treatment of patients with breast cancer. Among these subtypes, the changes in the human epidermal growth factor receptor 2 gene (HER2/neu, increase its copy number and generating HER2 protein amplification. Studies show that patients with breast cancer HER2/neu amplified tend to relapse earlier and have shorter survival time, the monoclonal antibody Trastuzumab is the therapy indicated. The eligibility of patients for therapy is initially made by the immunohistochemistry (IHC technique, which evaluates the expression level of the HER2 protein. After this evaluation, the cases with equivocal diagnosis (score 2+, are referred to a more accurate technique, the chromogenic in situ hybridization (CISH. Objective: To analyze the sensitivity and specificity of the antibody SP3, and determine their level of agreement with the CISH technique. Material and methods: Retrospective study in the database of the anatomy-pathology laboratory, in CISH tests reports for HER2/neu. Conclusion: The results revealed that clone SP3 showed 100% specificity and 92% sensitivity. IHC reveals variability in its results; however, it is known that the technique is an important tool in the daily routine of laboratories, contributing to the initial screening of patients with breast cancer, which later showed satisfactory results when compared with the CISH technique.

  13. Construction and selection of human Fab antibody phage display library of extracellular domain of HER 2%人源性抗HER2胞外段Fab噬菌体抗体库的构建及筛选

    Institute of Scientific and Technical Information of China (English)

    张为家; 刘孝荣; 李官成; 贺智敏

    2011-01-01

    .The humanized Fab phage antibody library against HEF2 ECD was constructed by infection of helper phage VCSM13.The libraries were enrich after panned three cycles by purification protein of recombinant HER2 ECD.Then random clones were tested by ELISA to select the positive ones, which were furher identified their antigen binding acticities by Western blot, and the strongest binding to HER2 ECD clone was sequenced.RESULTS: The Fab phage antibody library with 2.5 × 107 volume was constructed and four positive clones which specifically recognized the HER2 ECD were isolated and further demonstrated by Western blot.Sequence analysis of the positivest clone showed that the variable heavy domains(VH) and variable light domains(VL) were highly homologous with the human embryonal Ig heavy chain V region sequences and kappa light chain sequences, respectively.CONCLUSION: A fully humanized Fab phage antibody library is successfully constructed and specific antibodies against HER2 ECD are obtained, which provides an experimental foundation for new humanized anti-HER2 ECD monoclonal antibodies.

  14. Antibody responses against NY-ESO-1 and HER2 antigens in patients vaccinated with combinations of cholesteryl pullulan (CHP)-NY-ESO-1 and CHP-HER2 with OK-432.

    Science.gov (United States)

    Aoki, Masatoshi; Ueda, Shugo; Nishikawa, Hiroyoshi; Kitano, Shigehisa; Hirayama, Michiko; Ikeda, Hiroaki; Toyoda, Hideki; Tanaka, Kyosuke; Kanai, Michiyuki; Takabayashi, Arimichi; Imai, Hiroshi; Shiraishi, Taizo; Sato, Eiichi; Wada, Hisashi; Nakayama, Eiichi; Takei, Yoshiyuki; Katayama, Naoyuki; Shiku, Hiroshi; Kageyama, Shinichi

    2009-11-16

    Combination vaccines of the NY-ESO-1 protein complexed with cholesteryl pullulan (CHP), CHP-NY-ESO-1, and the truncated 146HER2 protein with CHP, CHP-HER2, were subcutaneously administered with the immuno-adjuvant OK-432 to eight esophageal cancer patients. Vaccination was well-tolerated. NY-ESO-1- and HER2-specific antibody responses were analyzed using the patients' sera and samples from previous single CHP-NY-ESO-1 or CHP-HER2 vaccine trial. The responses to NY-ESO-1 in the combination vaccine study were comparable to the single vaccine. For responses to HER2, there were fewer antibody responses in the combination vaccines. Although there were marked individual variations in the antibody responses to the NY-ESO-1 and HER2 antigens, the reaction patterns to these antigens were comparable within each patient. Antibodies to OK-432 were not augmented. Protein cancer vaccines targeting multiple antigens are feasible.

  15. Uses of monoclonal antibody 8H9

    Science.gov (United States)

    Cheung, Nai-Kong V.

    2013-04-09

    This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.

  16. Detection of Campylobacter species using monoclonal antibodies

    Science.gov (United States)

    Young, Colin R.; Lee, Alice; Stanker, Larry H.

    1999-01-01

    A panel of species specific monoclonal antibodies were raised to Campylobacter coli, Campylobacter jejuni and Campylobacter lari. The isotypes, and cross-reactivity profiles of each monoclonal antibody against an extensive panel of micro- organisms, were determined.

  17. A monoclonal antibody against leptin.

    Science.gov (United States)

    Mahmoudian, Jafar; Jeddi-Tehrani, Mahmood; Bayat, Ali Ahmad; Mahmoudi, Ahmad Reza; Vojgani, Yasaman; Tavangar, Banafsheh; Hadavi, Reza; Zarei, Saeed

    2012-10-01

    Leptin is an important protein that regulates energy storage and homeostasis in humans and animals. Leptin deficiency results in various abnormalities such as diabetes, obesity, and infertility. Producing a high affinity monoclonal antibody against human leptin provides an important tool to monitor and trace leptin function in different biological fluids. In this study, recombinant human leptin was conjugated to KLH and injected into mice. After immunization, mouse myeloma SP2/0 cells were fused with murine splenocytes followed by selection of antibody-producing hybridoma cells. After screening of different hybridoma colonies by ELISA, a high affinity antibody was selected and purified by affinity chromatography. The affinity constant of the antibody was measured by ELISA. Western blot, immunocytochemistry, and flow cytometry experiments were used to characterize the antibody. The anti-leptin antibody had a high affinity (around 1.13 × 10(-9) M) for its antigen. The saturation of the antibody with leptin (20 moles leptin per 1 mole antibody) in Western blot analysis proved that the antibody had specific binding to its antigen. Immunocytochemistry and flow cytometry on JEG-3 (human placental choriocarcinoma cell) cells revealed that the anti-leptin antibody recognized intracellular leptin. In conclusion, we report here the production and characterization of a murine anti-leptin antibody with high affinity for human leptin.

  18. Effects of an Engineered Anti-HER2 Antibody chA21 on Invasion of Human Ovarian Carcinoma Cell In Vitro

    Institute of Scientific and Technical Information of China (English)

    Yi Gao; Qiang Wu; Zheng-sheng Wu; Gui-hong Zhang; An-Li Zhang

    2011-01-01

    Objective: HER-2 plays an important role in the development and progression of ovarian carcinoma. A number of monoclonal antibodies (MAbs) and engineered antibody fragments (such as scFvs) against the subdomain Ⅱ or Ⅳ of HER-2 extracellular domain (ECD) have been developed. We investigated the effect of chA21, an engineered anti-HER-2 antibody that bind primarily to subdomain I, on ovarian carcinoma cell invasion in vitro, and explored its possible mechanisms. Methods: Growth inhibition of SK-OV-3 cells was assessed using a Methyl thiazolyl tetrazolium (MTT) assay. The invasion ability of SK-OV-3 was determined by a Transwell invasion assay. The expression of matrix metalloproteinase-2 (MMP-2) and its tissue inhibitors (TIMP-2) was detected by immunocytochemical staining, and the expression of p38 and the phosphorylation of p38 were assayed by both immunocytochemistry and Western blot. Results: After treatment with chA21, the invasion of human ovarian cancer SK-OV-3 cells was inhibited in doseand time-dependent manners. Simultaneously the expression of p38, phospho-p38, MMP-2 and the MMP-2/TIMP-2 ratio decreased, while TIMP-2 expression increased. Additionally, the decrease in phospho-p38 was much greater than that of p38. Conclusion: chA21 may inhibit SK-OV-3 cell invasion via the signal transduction pathway involving MMP-2,TIMP-2, p38 and the activation of p38MAPK.

  19. Phase I clinical trial of HER2-specific immunotherapy with concomitant HER2 kinase inhibtion

    Directory of Open Access Journals (Sweden)

    Hamilton Erika

    2012-02-01

    Full Text Available Abstract Background Patients with HER2-overexpressing metastatic breast cancer, despite initially benefiting from the monoclonal antibody trastuzumab and the EGFR/HER2 tyrosine kinase inhibitor lapatinib, will eventually have progressive disease. HER2-based vaccines induce polyclonal antibody responses against HER2 that demonstrate enhanced anti-tumor activity when combined with lapatinib in murine models. We wished to test the clinical safety, immunogenicity, and activity of a HER2-based cancer vaccine, when combined with lapatinib. Methods We immunized women (n = 12 with metastatic, trastuzumab-refractory, HER2-overexpressing breast cancer with dHER2, a recombinant protein consisting of extracellular domain (ECD and a portion of the intracellular domain (ICD of HER2 combined with the adjuvant AS15, containing MPL, QS21, CpG and liposome. Lapatinib (1250 mg/day was administered concurrently. Peripheral blood antibody and T cell responses were measured. Results This regimen was well tolerated, with no cardiotoxicity. Anti-HER2-specific antibody was induced in all patients whereas HER2-specific T cells were detected in one patient. Preliminary analyses of patient serum demonstrated downstream signaling inhibition in HER2 expressing tumor cells. The median time to progression was 55 days, with the majority of patients progressing prior to induction of peak anti-HER2 immune responses; however, 300-day overall survival was 92% (95% CI: 77-100%. Conclusions dHER2 combined with lapatinib was safe and immunogenic with promising long term survival in those with HER2-overexpressing breast cancers refractory to trastuzumab. Further studies to define the anticancer activity of the antibodies induced by HER2 vaccines along with lapatinib are underway. Trial registry ClinicalTrials.gov NCT00952692

  20. Advances in monoclonal antibody application in myocarditis

    Institute of Scientific and Technical Information of China (English)

    Li-na HAN; Shuang HE; Yu-tang WANG; Li-ming YANG; Si-yu LIU; Ting ZHANG

    2013-01-01

    Monoclonal antibodies have become a part of daily preparation technologies in many laboratories.Attempts have been made to apply monoclonal antibodies to open a new train of thought for clinical treatments of autoimmune diseases,inflammatory diseases,cancer,and other immune-associated diseases.This paper is a prospective review to anticipate that monoclonal antibody application in the treatment of myocarditis,an inflammatory disease of the heart,could be a novel approach in the future.In order to better understand the current state of the art in monoclonal antibody techniques and advance applications in myocarditis,we,through a significant amount of literature research both domestic and abroad,developed a systematic elaboration of monoclonal antibodies,pathogenesis of myocarditis,and application of monoclonal antibodies in myocarditis.This paper presents review of the literature of some therapeutic aspects of monoclonal antibodies in myocarditis and dilated cardiomyopathy to demonstrate the advance of monoclonal antibody application in myocarditis and a strong anticipation that monoclonal antibody application may supply an effective therapeutic approach to relieve the severity of myocarditis in the future.Under conventional therapy,myocarditis is typically associated with congestive heart failure as a progressive outcome,indicating the need for alternative therapeutic strategies to improve long-term results.Reviewing some therapeutic aspects of monoclonal antibodies in myocarditis,we recently found that monoclonal antibodies with high purity and strong specificity can accurately act on target and achieve definite progress in the treatment of viral myocarditis in rat model and may meet the need above.However,several issues remain.The technology on howto make a higher homologous and weak immunogenic humanized or human source antibody and the treatment mechanism of monoclonal antibodies may provide solutions for these open issues.If we are to further stimulate

  1. Is the skin a sanctuary for breast cancer cells during treatment with anti-HER2 antibodies?

    Science.gov (United States)

    Graziano, Vincenzo; Scognamiglio, Maria Teresa; Zilli, Marinella; Giampietro, Jamara; Vici, Patrizia; Natoli, Clara; Grassadonia, Antonino

    2015-01-01

    The occurrence of skin metastases is a common event in patients affected by advanced breast cancer, usually associated with systemic disease progression. Here we describe 2 cases of diffuse cutaneous metastases from HER2-overexpressing breast cancer occurring despite a dramatic response in liver and bone, respectively, during treatment with anti-HER2 antibodies Trastuzumab and Pertuzumab. We discuss the reasons for this discrepancy and suggest a possible implication of impaired immune response in the skin. Future research should provide strategies to overcome the induction of immune privilege in the skin in order to avoid discontinuation of effective treatments.

  2. Retargeting T cells for HER2-positive tumor killing by a bispecific Fv-Fc antibody.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available To exploit the biological and pharmacological properties of immunoglobulin constant domain Fc fragment and increase the killing efficacy of T cells, a single chain variable fragment specific to CD3 was fused with Fcab (Fc antigen binding, a mutant Fc fragment with specificity against Human epidermal growth factor receptor 2 (HER2 developed by F-star. The bispecific fusion named as FcabCD3 was expressed by transient transfection in HEK-293T cells and purified by affinity chromatography. Specific cytolytic activity of retargeted T cells to kill HER2 positive SKBR3 cell line was evaluated in vitro. FcabCD3 was able to retarget T cells to kill both Herceptin insensitive Colo205-luc cell line and HER2 low expression MDA-MB-231-luc cell line. Furthermore, FcabCD3 was effective in eliminating the Colo205 tumor established on BALB/c nu/nu mice.

  3. Pharmacokinetics interactions of monoclonal antibodies.

    Science.gov (United States)

    Ferri, Nicola; Bellosta, Stefano; Baldessin, Ludovico; Boccia, Donatella; Racagni, Giorgi; Corsini, Alberto

    2016-09-01

    The clearance of therapeutic monoclonal antibodies (mAbs) typically does not involve cytochrome P450 (CYP450)-mediated metabolism or interaction with cell membrane transporters, therefore the pharmacokinetics interactions of mAbs and small molecule drugs are limited. However, a drug may affect the clearance of mAbs through the modulation of immune response (e.g., methotrexate reduces the clearance of infliximab, adalimumab, and golimumab, possibly due to methotrexate's inhibitory effect on the formation of antibodies against the mAbs). In addition, mAbs that are cytokine modulators may modify the metabolism of drugs through their effects on P450 enzymes expression. For example, cytokine modulators such as tocilizumab (anti-IL-6 receptor antibody) may reverse the "inhibitory" effect of IL-6 on CYP substrates, resulting in a "normalization" of CYP activities. Finally, a drug may alter the clearance of mAbs by either increasing or reducing the levels of expression of targets of mAbs on the cell surface. For instance, statins and fibrates induce PCSK9 expression and therefore increase cellular uptake and clearance of alirocumab and evolocumab, anti-PCSK9 antibodies. In the present review, we will provide an overview on the pharmacokinetics properties of mAbs as related to the most relevant examples of mAbs-small molecule drug interaction.

  4. Production and Screening of Monoclonal Peptide Antibodies.

    Science.gov (United States)

    Trier, Nicole Hartwig; Mortensen, Anne; Schiolborg, Annette; Friis, Tina

    2015-01-01

    Hybridoma technology is a remarkable and indispensable tool for generating high-quality monoclonal antibodies. Hybridoma-derived monoclonal antibodies not only serve as powerful research and diagnostic reagents, but have also emerged as the most rapidly expanding class of therapeutic biologicals. In this chapter, an overview of hybridoma technology and the laboratory procedures used routinely for hybridoma production and antibody screening are presented, including characterization of peptide antibodies.

  5. Monoclonal antibodies in chronic lymphocytic leukemia.

    Science.gov (United States)

    Ferrajoli, Alessandra; Faderl, Stefan; Keating, Michael J

    2006-09-01

    Multiple options are now available for the treatment of chronic lymphocytic leukemia. Over the last 10 years, monoclonal antibodies have become an integral part of the management of this disease. Alemtuzumab has received approval for use in patients with fludarabine-refractory chronic lymphocytic leukemia. Rituximab has been investigated extensively in chronic lymphocytic leukemia both as a single agent and in combination with chemotherapy and other monoclonal antibodies. Epratuzumab and lumiliximab are newer monoclonal antibodies in the early phase of clinical development. This article will review the monoclonal antibodies more commonly used to treat chronic lymphocytic leukemia, the results obtained with monoclonal antibodies as single agents and in combination with chemotherapy, and other biological agents and newer compounds undergoing clinical trials.

  6. The use of combinations of monoclonal antibodies in clinical oncology.

    Science.gov (United States)

    Henricks, Linda M; Schellens, Jan H M; Huitema, Alwin D R; Beijnen, Jos H

    2015-12-01

    Treatment with monoclonal antibodies is becoming increasingly important in clinical oncology. These antibodies specifically inhibit signaling pathways in tumor growth and/or induce immunological responses against tumor cells. By combining monoclonal antibodies several pathways may be targeted simultaneously, potentially leading to additive or synergistic effects. Theoretically, antibodies are very suitable for use in combination therapy, because of limited overlapping toxicity and lack of pharmacokinetic interactions. In this article an overview is given of preclinical and clinical data on twenty-five different combinations of antibodies in oncology. Some of these combinations have proven clinical benefit, for example the combination of trastuzumab and pertuzumab in HER2-positive breast cancer, which exemplifies an additive or synergistic effect on antitumor activity in clinical studies and the combination of nivolumab and ipilimumab, which results in significant increases in progression-free and overall survival in patients with advanced melanoma. However, other combinations may lead to unfavorable results, such as bevacizumab with cetuximab or panitumumab in advanced colorectal cancer. These combinations result in shorter progression-free survival and increased toxicity compared to therapy with a single antibody. In summary, the different published studies showed widely varying results, depending on the combination of antibodies, indication and patient population. More preclinical and clinical studies are necessary to unravel the mechanisms behind synergistic or antagonistic effects of combining monoclonal antibodies. Most research on combination therapies is still in an early stage, but it is expected that for several tumor types the use of combination therapy of antibodies will become standard of care in the near future.

  7. Synthesis and Characterization of Anti-HER2 Antibody Conjugated CdSe/CdZnS Quantum Dots for Fluorescence Imaging of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Takashi Jin

    2009-11-01

    Full Text Available The early detection of HER2 (human epidermal growth factor receptor 2 status in breast cancer patients is very important for the effective implementation of anti-HER2 antibody therapy. Recently, HER2 detections using antibody conjugated quantum dots (QDs have attracted much attention. QDs are a new class of fluorescent materials that have superior properties such as high brightness, high resistance to photo-bleaching, and multi-colored emission by a single-light source excitation. In this study, we synthesized three types of anti-HER2 antibody conjugated QDs (HER2Ab-QDs using different coupling agents (EDC/sulfo-NHS, iminothiolane/sulfo-SMCC, and sulfo-SMCC. As water-soluble QDs for the conjugation of antibody, we used glutathione coated CdSe/CdZnS QDs (GSH-QDs with fluorescence quantum yields of 0.23~0.39 in aqueous solution. Dispersibility, hydrodynamic size, and apparent molecular weights of the GSH-QDs and HER2Ab-QDs were characterized by using dynamic light scattering, fluorescence correlation spectroscopy, atomic force microscope, and size-exclusion HPLC. Fluorescence imaging of HER2 overexpressing cells (KPL-4 human breast cancer cell line was performed by using HER2Ab-QDs as fluorescent probes. We found that the HER2Ab-QD prepared by using SMCC coupling with partially reduced antibody is a most effective probe for the detection of HER2 expression in KPL-4 cells. We have also studied the size dependency of HER2Ab-QDs (with green, orange, and red emission on the fluorescence image of KPL-4 cells.

  8. Polyclonal and monoclonal antibodies in clinic.

    Science.gov (United States)

    Wootla, Bharath; Denic, Aleksandar; Rodriguez, Moses

    2014-01-01

    Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic.

  9. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance.

    Science.gov (United States)

    Takegawa, Naoki; Nonagase, Yoshikane; Yonesaka, Kimio; Sakai, Kazuko; Maenishi, Osamu; Ogitani, Yusuke; Tamura, Takao; Nishio, Kazuto; Nakagawa, Kazuhiko; Tsurutani, Junji

    2017-10-15

    Anti-HER2 therapies are beneficial for patients with HER2-positive breast or gastric cancer. T-DM1 is a HER2-targeting antibody-drug conjugate (ADC) comprising the antibody trastuzumab, a linker, and the tubulin inhibitor DM1. Although effective in treating advanced breast cancer, all patients eventually develop T-DM1 resistance. DS-8201a is a new ADC incorporating an anti-HER2 antibody, a newly developed, enzymatically cleavable peptide linker, and a novel, potent, exatecan-derivative topoisomerase I inhibitor (DXd). DS-8201a has a drug-to-antibody-ratio (DAR) of 8, which is higher than that of T-DM1 (3.5). Owing to these unique characteristics and unlike T-DM1, DS-8201a is effective against cancers with low-HER2 expression. In the present work, T-DM1-resistant cells (N87-TDMR), established using the HER2-positive gastric cancer line NCI-N87 and continuous T-DM1 exposure, were shown to be susceptible to DS-8201a. The ATP-binding cassette (ABC) transporters ABCC2 and ABCG2 were upregulated in N87-TDMR cells, but HER2 overexpression was retained. Furthermore, inhibition of ABCC2 and ABCG2 by MK571 restored T-DM1 sensitivity. Therefore, resistance to T-DM1 is caused by efflux of its payload DM1, due to aberrant expression of ABC transporters. In contrast to DM1, DXd payload of DS-8201a inhibited the growth of N87-TDMR cells in vitro. This suggests that either DXd may be a poor substrate of ABCC2 and ABCG2 in comparison to DM1, or the high DAR of DS-8201a relative to T-DM1 compensates for increased efflux. Notably, N87-TDMR xenograft tumor growth was prevented by DS-8201a. In conclusion, the efficacy of DS-8201a as a treatment for patients with T-DM1-resistant breast or gastric cancer merits investigation. © 2017 UICC.

  10. Monoclonal antibodies reactive with hairy cell leukemia

    NARCIS (Netherlands)

    Visser, L; Shaw, A; Slupsky, J; Vos, H; Poppema, S

    Monoclonal antibodies reactive with hairy cell leukemia were developed to aid in the diagnosis of this subtype of B cell chronic lymphocytic leukemia and to gain better insight into the origin of hairy cells. Three antibodies were found to be of value in the diagnosis of hairy cell leukemia.

  11. Monoclonal Antibody Therapy for Advanced Neuroblastoma

    Science.gov (United States)

    NCI is sponsoring two clinical trials of a monoclonal antibody called ch14.18, in combination with other drugs, to see if the antibody may be helpful for children or young adults (up to age 21) with relapsed or refractory neuroblastoma.

  12. Monoclonal antibodies reactive with hairy cell leukemia

    NARCIS (Netherlands)

    Visser, L; Shaw, A; Slupsky, J; Vos, H; Poppema, S

    1989-01-01

    Monoclonal antibodies reactive with hairy cell leukemia were developed to aid in the diagnosis of this subtype of B cell chronic lymphocytic leukemia and to gain better insight into the origin of hairy cells. Three antibodies were found to be of value in the diagnosis of hairy cell leukemia. Antibod

  13. Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63

    DEFF Research Database (Denmark)

    de Goeij, Bart E.C.G.; Vink, Tom; Ten Napel, Hendrik

    2016-01-01

    essential. For many cell surface proteins and carbohydrate structures on tumor cells, however, the magnitude of these processes is insufficient to allow for an effective ADC approach. We hypothesized that we could overcome this limitation by enhancing lysosomal ADC delivery via a bispecific antibody (bs......Antibody-drug conjugates (ADC) are designed to be stable in circulation and to release potent cytotoxic drugs intracellularly following antigen-specific binding, uptake, and degradation in tumor cells. Efficient internalization and routing to lysosomes where proteolysis can take place is therefore......Ab) approach, in which one binding domain would provide tumor specificity, whereas the other binding domain would facilitate targeting to the lysosomal compartment. We therefore designed a bsAb in which one binding arm specifically targeted CD63, a protein that is described to shuttle between the plasma...

  14. Bio-distribution and toxicity assessment of intravenously injected anti-HER2 antibody conjugated CdSe/ZnS quantum dots in Wistar rats

    Directory of Open Access Journals (Sweden)

    Dhermendra K Tiwari

    2011-02-01

    Full Text Available Dhermendra K Tiwari1, Takashi Jin2, Jitendra Behari11School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India; 2WPI-Immunology Frontier Research Center, Osaka University, Osaka, JapanAbstract: Anti-HER2 antibody conjugated with quantum dots (anti-HER2ab-QDs is a very recent fluorescent nanoprobe for HER2+ve breast cancer imaging. In this study we investigated in-vivo toxicity of anti-HER2ab conjugated CdSe/ZnS QDs in Wistar rats. For toxicity evaluation of injected QDs sample, body weight, organ coefficient, complete blood count (CBC, biochemistry panel assay (AST, ALT, ALP, and GGTP, comet assay, reactive oxygen species, histology, and apoptosis were determined. Wistar rat (8–10 weeks old were randomly divided into 4 treatment groups (n = 6. CBC and biochemistry panel assay showed nonsignificant changes in the anti-HER2ab-QDs treated group but these changes were significant (P < 0.05 in QDs treated group. No tissue damage, inflammation, lesions, and QDs deposition were found in histology and TEM images of the anti-HER2ab-QDs treated group. Apoptosis in liver and kidney was not found in the anti-HER2ab-QDs treated group. Animals treated with nonconjugated QDs showed comet formation and apoptosis. Cadmium deposition was confirmed in the QDs treated group compared with the anti-HER2ab-QDs treated group. The QDs concentration (500 nM used for this study is suitable for in-vivo imaging. The combine data of this study support the biocompatibility of anti-HER2ab-QDs for breast cancer imaging, suggesting that the antibody coating assists in controlling any possible adverse effect of quantum dots.Keywords: cancer bioimaging, HER2, anti-HER2 antibody, quantum dots, comet assay

  15. Whole-body imaging of HER2/neu-overexpressing tumors using scFv-antibody conjugated quantum dots

    Science.gov (United States)

    Balalaeva, Irina V.; Zdobnova, Tatiana A.; Brilkina, Anna A.; Krutova, Irina M.; Stremovskiy, Oleg A.; Lebedenko, Elena N.; Vodeneev, Vladimir V.; Turchin, Ilya V.; Deyev, Sergey M.

    2010-02-01

    Semiconductor quantum dots (QDs) are widely used in different fields of bioscience and biotechnology due to their unique optical properties. QDs can be used as fluorescent markers for optical detection and monitoring of deeply located tumors in vivo after specific labeling achieved by conjugating of QDs with targeting molecules. In this work the possibilities of intravital tumor labeling with QDs and subsequent in vivo tumor imaging were estimated. The experiments were run on immunodeficient nu/nu mice bearing human breast carcinoma SKBR-3, overexpressing surface protein HER2/neu. We used quantum dots Qdot 705 ITK (Invitrogen, USA) linked to anti-HER2/neu 4D5 scFv antibody. Antibody scFv fragments as a targeting agent for directed delivery of fluorophores possess significant advantages over full-size antibodies due to their small size, lower cross-reactivity and immunogenicity. QDs were bound to 4D5 scFv by barnase-barstar system (bn-bst) analogous to the streptavidin-biotidin system. Whole-body images were obtained using diffuse fluorescence tomography (DFT) setup with low-frequency modulation and transilluminative configuration of scanning, created at the Institute of Applied Physics of RAS, Russia). DFT-results were confirmed ex vivo by confocal microscopy. We report the results of in vivo whole-body tumor imaging with QDs complexes as contrasting agents. Intravital images of QDs-labeled tumors were obtained using specific tumor cells targeting and fluorescence transilluminative imaging method, while "passive" QD-labeling failed to mark effectively the tumor.

  16. Production of Monoclonal Antibody against Human Nestin.

    Science.gov (United States)

    Hadavi, Reza; Zarnani, Amir Hassan; Ahmadvand, Negah; Mahmoudi, Ahmad Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Sadeghi, Mohammad-Reza; Soltanghoraee, Haleh; Akhondi, Mohammad Mehdi; Tarahomi, Majid; Jeddi-Tehrani, Mahmood; Rabbani, Hodjattallah

    2010-04-01

    We have employed a peptide-based antibody generation protocol for producing antibody against human nestin. Using a 12-mer synthetic peptide from repetitive region of human nestin protein devoid of any N- or O-glyco-sylation sequences, we generated a mouse monoclonal antibody capable of recognizing human, mouse, bovine, and rat nestin. A wide variety of nestin proteins ranging from 140-250 kDa was detected by this antibody. This antibody is highly specific and functional in applications such as ELISA, flow cytometry, immunocytochemistry, and Western blot assays.

  17. Validation of a Fully Automated HER2 Staining Kit in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Cathy B. Moelans

    2010-01-01

    Full Text Available Background: Testing for HER2 amplification and/or overexpression is currently routine practice to guide Herceptin therapy in invasive breast cancer. At present, HER2 status is most commonly assessed by immunohistochemistry (IHC. Standardization of HER2 IHC assays is of utmost clinical and economical importance. At present, HER2 IHC is most commonly performed with the HercepTest which contains a polyclonal antibody and applies a manual staining procedure. Analytical variability in HER2 IHC testing could be diminished by a fully automatic staining system with a monoclonal antibody.

  18. Testing for HER2 in Breast Cancer: A Continuing Evolution

    Directory of Open Access Journals (Sweden)

    Sejal Shah

    2011-01-01

    Full Text Available Human epidermal growth factor receptor 2 (HER2 is an important prognostic and predictive factor in breast cancer. HER2 is overexpressed in approximately 15%–20% of invasive breast carcinomas and is associated with earlier recurrence, shortened disease free survival, and poor prognosis. Trastuzumab (Herceptin a “humanized” monoclonal antibody targets the extracellular domain of HER2 and is widely used in the management of HER2 positive breast cancers. Accurate assessment of HER2 is thus critical in the management of breast cancer. The aim of this paper is to present a comprehensive review of HER2 with reference to its discovery and biology, clinical significance, prognostic value, targeted therapy, current and new testing modalities, and the interpretation guidelines and pitfalls.

  19. HER2 testing in gastric cancer.

    Science.gov (United States)

    Albarello, Luca; Pecciarini, Lorenza; Doglioni, Claudio

    2011-01-01

    Molecular therapies targeting HER2 are part of the established drug armamentarium in breast carcinoma. Now the ToGA trial, an international multicenter phase III clinical study, involving 24 countries globally, has shown that the anti-HER2 humanized monoclonal antibody Trastuzumab is effective in prolonging survival in HER2-positive carcinoma of the stomach and the gastroesophageal junction (GEJ). Similarly to breast carcinoma, >20% of gastric cancers show HER2 overexpression and/or amplification, and this percentage increases to 33% in GEJ tumors. Thus, as in breast carcinoma, pathologists are now asked to evaluate HER2 status in gastric carcinoma samples. As validated in the ToGA trial, the HER2 testing criteria that must be used in evaluating both gastric carcinoma biopsies and surgical specimens significantly differ from those routinely applied in breast carcinoma. The main variations with regard to the pattern of reactivity in HER2-expressing cells are as follows: the completeness of membrane staining is not a "conditio sine qua non" and the number of stained cells necessary to consider a case as positive is different. We must also take note of the much more frequent heterogeneity of HER2 positivity in gastric cancer compared with breast carcinoma and the less stringent correlation between HER2 amplification and protein overexpression that is observed in gastric carcinoma, where more than 20% of cases may carry HER2 amplification, although of low level, without HER2 expression. In these patients, in the ToGA trial, there was no apparent benefit from adding Trastuzumab to chemotherapy: for this reason the European Medicines Agency, while approving usage of Trastuzumab for metastatic adenocarcinoma treatment, indicated HER2 testing by immunohistochemistry as first evaluation assay, followed by fluorescence in situ hybridization in 2+ equivocal cases. HER2 testing in gastric carcinoma is a new field, opening several opportunities: for patients with gastric cancer

  20. Monoclonal antibody technologies and rapid detection assays

    Science.gov (United States)

    Novel methodologies and screening strategies will be outlined on the use of hybridoma technology for the selection of antigen specific monoclonal antibodies. The development of immunoassays used for diagnostic detection of prions and bacterial toxins will be discussed and examples provided demonstr...

  1. Inhibitory Effect of Anti-HER-2 Anti-CD3 Bi-specific Antibody on the Growth of Gastric Carcinoma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To evaluate the effect of anti-HER-2 × anti-CD3 bi-specific antibody (BsAb) on the growth of HER-2/neu-expressing human gastric carcinoma in vitro and in vivo, an MTT assay was carried out to test the inhibitive rates of herceptin, anti-CD3 and BsAb antibodies on SGC-7901 gastric carcinoma cells. Immunocytochemistry methods were used to test the HER-2 level of SGC-7901. Nude mice models were employed to test the effect of HER-2 CD3 BsAb combined with effector cells( peripheral blood lymphatic cells of healthy human beings) on the growth of tumors in animals. Compared with that of the untreated control group, the tumor cell growth rates in vitro and in vivo will both be significantly inhibited when treated with effector cells combined with anti-CD3 McAb, herceptin or HER2 CD3 BsAb (p <0. 05), and the growth inhibition is the most remarkable in the group treated with HER2 CD3 BsAb combined with effector cells. The growth of tumor xenografts will also be significantly inhibited in the group treated with HER2CD3 BsAb combined with effector cells when compared with that in the group treated with anti-CD3 McAb or the group treated with herceptin combined with effector cells(p < 0. 05). We can conclude that HER-2/neu is possibly a useful target for immunotherapy of gastric carcinoma, and anti-HER2 × anti-CD3 BsAb has evident anti-tumor efficacy both, in vitro and in vivo.

  2. Monoclonal antibodies to Treponema Pallidum.

    NARCIS (Netherlands)

    H.J.M. van de Donk; J.D.A. van Embden; M.F. van Olderen; A.D.M.E. Osterhaus (Albert); J.C. de Jong (Jan)

    1984-01-01

    textabstractThree successive fusions of mouse myeloma cells and spleen lymphocytes of a mouse immunized with Treponema Pallidum resulted in one hybridoma producing anti T. pallidum antibodies for each fusion. The mice were immunized with live pallidum cells respectively 1, 3 and 5 months before fusi

  3. Pan-HER-An antibody mixture targeting EGFR, HER2 and HER3 abrogates preformed and ligand-induced EGFR homo- and heterodimers.

    Science.gov (United States)

    Ellebaek, Sofie; Brix, Susanne; Grandal, Michael; Lantto, Johan; Horak, Ivan D; Kragh, Michael; Poulsen, Thomas Tuxen

    2016-11-01

    The human epidermal growth factor receptor (HER)-family is involved in development of many epithelial cancers. Therefore, HER-family members constitute important targets for anti-cancer therapeutics such as monoclonal antibodies (mAbs). A limitation to the success of single HER-targeting mAbs is development of acquired resistance through mechanisms such as alterted receptor dimerization patterns and dependencies. Pan-HER is a mixture of six mAbs simultaneously targeting epidermal growth factor receptor (EGFR), HER2 and HER3 with two mAbs against each receptor. Pan-HER has previously demonstrated broader efficacy than targeting single or dual receptor combinations also in resistant settings. In light of this broad efficacy, we decided to investigate the effect of Pan-HER compared with single HER-targeting with single and dual mAbs on HER-family cross-talk and dimerization focusing on EGFR. The effect of Pan-HER on cell proliferation and HER-family receptor degradation was superior to treatment with single mAbs targeting either single receptor, and similar to targeting a single receptor with two non-overlapping antibodies. Furthermore, changes in EGFR-dimerization patterns after treatment with Pan-HER were investigated by in situ proximity ligation assay and co-immunoprecipitation, demonstrating that Pan-HER and the EGFR-targeting mAb mixture efficiently down-regulate basal EGFR homo- and heterodimerization in two tested cell lines, whereas single mAbs had limited effects. Pan-HER and the EGFR-targeting mAb mixture also blocked EGF-binding and thereby ligand-induced changes in EGFR-dimerization levels. These results suggest that Pan-HER reduces the cellular capability to switch HER-dependency and dimerization pattern in response to treatment and thus hold promise for future clinical development of Pan-HER in resistant settings.

  4. Human Monoclonal Antibodies as a Countermeasure Against Botulinum Toxins

    Science.gov (United States)

    2012-11-30

    REPORT Human monoclonal antibodies as a countermeasure against Botulinum toxins 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: In this report, we...Prescribed by ANSI Std. Z39.18 - 31-Aug-2012 Human monoclonal antibodies as a countermeasure against Botulinum toxins Report Title ABSTRACT In this report...DTRA Final Report: Human monoclonal antibodies as a countermeasure against Botulinum toxins   Page 1 of 22 DTRA Final Report: Human monoclonal

  5. Monoclonal Antibodies to Plant Growth Regulators

    Science.gov (United States)

    Eberle, Joachim; Arnscheidt, Angelika; Klix, Dieter; Weiler, Elmar W.

    1986-01-01

    Four high affinity monoclonal antibodies, which recognize two plant growth regulators from the cytokinin group, namely trans-zeatin riboside and dihydrozeatin riboside and their derivatives are reported. Six hybridomas were produced from three independent fusions of Balb/c spleen cells with P3-NS1-Ag 4-1 (abbreviated NS1) or X63-Ag 8.653 (X63) myeloma cells. The mice had been hyperimmunized with zeatin riboside-bovine serum albumin conjugate or dihydrozeatin riboside-bovine serum albumin conjugate for 3 months. The hybridomas secrete antibodies of the IgG 1 or IgG 2b subclass and allow the detection of femtomole amounts of the free cytokinins, their ribosides, and ribotides in plant extracts. The use of these monoclonals in radio- and enzyme-linked immunosorbent assay is also discussed. PMID:16664848

  6. Recent developments in monoclonal antibody radiolabeling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.; Mease, R.C.

    1989-01-01

    Monoclonal antibodies (MAbs) have shown the potential to serve as selective carriers of radionuclides to specific in vivo antigens. Accordingly, there has been an intense surge of research activity in an effort to develop and evaluate MAb-based radiopharmaceuticals for tumor imaging (radioimmunoscintigraphy) and therapy (radioimmunotherapy), as well as for diagnosing nonmalignant diseases. A number of problems have recently been identified, related to the MAbs themselves and to radiolabeling techniques, that comprise both the selectivity and the specificity of the in vivo distribution of radiolabeled MAbs. This paper will address some of these issues and primarily discuss recent developments in the techniques for radiolabeling monoclonal antibodies that may help resolve problems related to the poor in vivo stability of the radiolabel and may thus produce improved biodistribution. Even though many issues are identical with therapeutic radionuclides, the discussion will focus mainly on radioimmunoscintigraphic labels. 78 refs., 6 tabs.

  7. HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Rameshwer; Thomas, Thommey P; Desai, Ankur M; Kotlyar, Alina; Park, Steve J; Baker, James R Jr [Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, 9220 MSRB III, Box 0648, Ann Arbor, MI 48109 (United States)], E-mail: rameshwe@umich.edu, E-mail: jbakerjr@med.umich.edu

    2008-07-23

    Herceptin, a humanized monoclonal antibody that binds to human growth factor receptor-2 (HER2), was covalently attached to a fifth-generation (G5) polyamidoamine dendrimer containing the cytotoxic drug methotrexate. The specific binding and internalization of this conjugate labeled with FITC was clearly demonstrated in cell lines overexpressing HER2 by flow cytometry as well as confocal microscopic analysis. In addition, binding and uptake of antibody conjugated dendrimers was completely blocked by excess non-conjugated herceptin. The dendrimer conjugate was also shown to inhibit the dihydrofolate reductase with similar activity to methotrexate. Co-localization experiments with lysotracker red indicate that antibody conjugate, although internalized efficiently into cells, has an unusually long residence time in the lysosome. Somewhat lower cytotoxicity of the conjugate in comparison to free methotrexate was attributed to the slow release of methotrexate from the conjugate and its long retention in the lysosomal pocket.

  8. Assay for the specificity of monoclonal antibodies in crossed immunoelectrophoresis

    DEFF Research Database (Denmark)

    Skjødt, K; Schou, C; Koch, C

    1984-01-01

    A method is described based on crossed immunoelectrophoresis of a complex antigen mixture in agarose gel followed by incubation of the gel with the monoclonal antibody. The bound monoclonal antibody is detected by the use of a secondary enzyme-labelled antibody. Using this technique we have been...... I molecules. In other experiments using the same technique we demonstrated the reaction of a monoclonal antibody specific for chicken Ig light chains. Udgivelsesdato: 1984-Aug-3...

  9. Therapeutic monoclonal antibody for Sporotrichosis

    Directory of Open Access Journals (Sweden)

    Sandro eAlmeida

    2012-11-01

    Full Text Available Sporotrichosis is a chronic subcutaneous mycosis that affects either humans or animals and occurs worldwide. This subcutaneous mycosis had been attributed to a single etiological agent, Sporothrix schenckii. S. schenckii exhibits a considerable genetic variability, where recently, was suggesting that this taxon consists of a complex of species. Sporotrichosis is caused by traumatic inoculation of the fungus, which is a ubiquitous environmental saprophyte that can be isolated from soil and plant debris. The infection is limited to the cutaneous forms but, recently, occurrences of more severe clinical forms of this mycosis were described, especially among immunocompromized individuals. The immunological mechanisms involved in prevention and control of sporotrichosis are still not very well understood. Some works suggest that cell-mediated immunity plays an important role in protecting the host against S. schenckii. In contrast, the role of the humoral immune response in protection against this fungus have not been studied in detail. In a previous study, we showed that antigens secreted by S. schenckii induce a specific humoral response in infected animals, mainly against the 70-kDa molecules, indicating a possible participation of specific antibodies to this molecule in infection control. In an other work of the our group, we produced a mAb against a 70-kDa glycoprotein of S. schenckii in order to better understand the effect of passive immunization of mice infected with S. schenckii. Results showed a significant reduction in the number of CFU in organs of mice when the mAb was injected before and during S. schenckii infection. Similar results were observed when T-cell deficient mice were used. Drugs of choice in the treatment of sporothrichosis require long periods and frequently relapses are observed, mainly in immunocompromized patients. The strong protection induced by mAb against a 70-kDa glycoprotein makes it a strong candidate for a

  10. Dual blockade of HER2 in HER2-overexpressing tumor cells does not completely eliminate HER3 function

    Science.gov (United States)

    Garrett, Joan T.; Sutton, Cammie R.; Kuba, María Gabriela; Cook, Rebecca S .; Arteaga, Carlos L.

    2012-01-01

    Purpose Dual blockade of HER2 with trastuzumab with lapatinib or with pertuzumab is a superior treatment approach compared to single agent HER2 inhibitors. However, many HER2-overexpressing breast cancers still escape from this combinatorial approach. Inhibition of HER2 and downstream phosphatidylinositol-3 kinase (PI3K)/AKT causes a transcriptional and post-translational upregulation of HER3 which, in turn, counteracts the antitumor action of the HER2-directed therapies. We hypothesized that suppression of HER3 would synergize with dual blockade of HER2 in breast cancer cells sensitive and refractory to HER2 antagonists. Experimental Design Inhibition of HER2/HER3 in HER2+ breast cancer cell lines was evaluated by western blot. We analyzed drug-induced apoptosis and 2- and 3-dimensional growth in vitro. Growth inhibition of PI3K was examined in vivo in xenografts treated with combinations of trastuzumab, lapatinib, and the HER3 neutralizing monoclonal antibody U3-1287. Results Treatment with U3-1287 blocked the upregulation of total and phosphorylated HER3 that followed treatment with lapatinib and trastuzumab and, in turn, enhanced the anti-tumor action of the combination against trastuzumab-sensitive and -resistant cells. Mice bearing HER2+ xenografts treated with lapatinib, trastuzumab, and U3-1287 exhibited fewer recurrences and better survival compared to mice treated with lapatinib and trastuzumab. Conclusions Dual blockade of HER2 with trastuzumab and lapatinib does not eliminate the compensatory upregulation of HER3. Therapeutic inhibitors of HER3 should be considered as part of multi-drug combinations aimed at completely and rapidly disabling the HER2 network in HER2-overexpressing breast cancers. PMID:23224399

  11. Aggregates in monoclonal antibody manufacturing processes.

    Science.gov (United States)

    Vázquez-Rey, María; Lang, Dietmar A

    2011-07-01

    Monoclonal antibodies have proved to be a highly successful class of therapeutic products. Large-scale manufacturing of pharmaceutical antibodies is a complex activity that requires considerable effort in both process and analytical development. If a therapeutic protein cannot be stabilized adequately, it will lose partially or totally its therapeutic properties or even cause immunogenic reactions thus potentially further endangering the patients' health. The phenomenon of protein aggregation is a common issue that compromises the quality, safety, and efficacy of antibodies and can happen at different steps of the manufacturing process, including fermentation, purification, final formulation, and storage. Aggregate levels in drug substance and final drug product are a key factor when assessing quality attributes of the molecule, since aggregation might impact biological activity of the biopharmaceutical. In this review it is analyzed how aggregates are formed during monoclonal antibody industrial production, why they have to be removed and the manufacturing process steps that are designed to either minimize or remove aggregates in the final product. Copyright © 2011 Wiley Periodicals, Inc.

  12. Specific antibodies and sensitive immunoassays for the human epidermal growth factor receptors (HER2, HER3, and HER4).

    Science.gov (United States)

    Broughton, Marianne Nordlund; Westgaard, Arne; Paus, Elisabeth; Øijordsbakken, Miriam; Henanger, Karoline J; Naume, Bjørn; Bjøro, Trine

    2017-06-01

    The use of trastuzumab in patients with breast cancer that overexpresses human epidermal growth factor receptor 2 has significantly improved treatment outcomes. However, a substantial proportion of this patient group still experiences progression of the disease after receiving the drug. Evaluation of the changes in expression of the human epidermal growth factor receptors could be of interest. Monoclonal antibodies against the extracellular domain of the human growth factor receptors, 2, 3, and 4, have been raised, and specific and sensitive immunoassays have been established. Sera from healthy individuals (Nordic Reference Interval Project and Database) were analyzed in the human epidermal growth factor receptor 2 assay (N = 805) and the human epidermal growth factor receptor 3 and 4 assays (N = 114), and reference limits were calculated. In addition, sera from 208 individual patients with breast cancer were tested in all three assays. Finally, the human epidermal growth factor receptor 2 assay was compared with a chemiluminescent immunoassay for serum human epidermal growth factor receptor 2/neu. Reference values were as follows: human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, human epidermal growth factor receptor 4, human epidermal growth factor receptor 2 and human epidermal growth factor receptor 3 serum levels between the patients with tissue human epidermal growth factor receptor 2-positive and tissue human epidermal growth factor receptor 2-negative ( p = 0.0026, p = 0.000011) tumors, but not in the serum levels of human epidermal growth factor receptor 4 ( p = 0.054). There was good agreement between the in-house human epidermal growth factor receptor 2 assay and the chemiluminescent immunoassay. Our new specific antibodies for all the three human epidermal growth factor receptors may prove valuable in the development of novel anti-human epidermal growth factor receptor targeted therapies with

  13. Orientation and density control of bispecific anti-HER2 antibody on functionalized carbon nanotubes for amplifying effective binding reactivity to cancer cells

    Science.gov (United States)

    Kim, Hye-In; Hwang, Dobeen; Jeon, Su-Ji; Lee, Sangyeop; Park, Jung Hyun; Yim, Dabin; Yang, Jin-Kyoung; Kang, Homan; Choo, Jaebum; Lee, Yoon-Sik; Chung, Junho; Kim, Jong-Ho

    2015-03-01

    Nanomaterial bioconjugates have gained unabated interest in the field of sensing, imaging and therapy. As a conjugation process significantly affects the biological functions of proteins, it is crucial to attach them to nanomaterials with control over their orientation and the nanomaterial-to-protein ratio in order to amplify the binding efficiency of nanomaterial bioconjugates to targets. Here, we describe a targeting nanomaterial platform utilizing carbon nanotubes functionalized with a cotinine-modified dextran polymer and a bispecific anti-HER2 × cotinine tandem antibody. This new approach provides an effective control over antibody orientation and density on the surface of carbon nanotubes through site-specific binding between the anti-cotinine domain of the bispecific tandem antibody and the cotinine group of the functionalized carbon nanotubes. The developed synthetic carbon nanotube/bispecific tandem antibody conjugates (denoted as SNAs) show an effective binding affinity against HER2 that is three orders of magnitude higher than that of the carbon nanotubes bearing a randomly conjugated tandem antibody prepared by carbodiimide chemistry. As the density of a tandem antibody on SNAs increases, their effective binding affinity to HER2 increases as well. SNAs exhibit strong resonance Raman signals for signal transduction, and are successfully applied to the selective detection of HER2-overexpressing cancer cells.Nanomaterial bioconjugates have gained unabated interest in the field of sensing, imaging and therapy. As a conjugation process significantly affects the biological functions of proteins, it is crucial to attach them to nanomaterials with control over their orientation and the nanomaterial-to-protein ratio in order to amplify the binding efficiency of nanomaterial bioconjugates to targets. Here, we describe a targeting nanomaterial platform utilizing carbon nanotubes functionalized with a cotinine-modified dextran polymer and a bispecific anti-HER2

  14. Emerging monoclonal antibodies against Clostridium difficile infection.

    Science.gov (United States)

    Péchiné, Séverine; Janoir, Claire; Collignon, Anne

    2017-04-01

    Clostridium difficile infections are characterized by a high recurrence rate despite antibiotic treatments and there is an urgent need to develop new treatments such as fecal transplantation and immonotherapy. Besides active immunotherapy with vaccines, passive immunotherapy has shown promise, especially with monoclonal antibodies. Areas covered: Herein, the authors review the different assays performed with monoclonal antibodies against C. difficile toxins and surface proteins to treat or prevent primary or recurrent episodes of C. difficile infection in animal models and in clinical trials as well. Notably, the authors lay emphasis on the phase III clinical trial (MODIFY II), which allowed bezlotoxumab to be approved by the Food and Drug Administration and the European Medicines Agency. They also review new strategies for producing single domain antibodies and nanobodies against C. difficile and new approaches to deliver them in the digestive tract. Expert opinion: Only two human Mabs against TcdA and TcdB have been tested alone or in combination in clinical trials. However, many animal model studies have provided rationale for the use of Mabs and nanobodies in C. difficile infection and pave the way for further clinical investigation.

  15. Anaphylaxis to chemotherapy and monoclonal antibodies.

    Science.gov (United States)

    Castells, Mariana C

    2015-05-01

    Hypersensitivity reactions are increasingly prevalent, although underrecognized and underreported. Platins induce immunoglobulin E-mediated sensitization; taxenes and some monoclonal antibodies can induce reactions at first exposure. Severe hypersensitivity can preclude first-line therapy. Tryptase level at the time of a reaction is a useful diagnostic tool. Skin testing provides a specific diagnosis. Newer tests are promising diagnostic tools to help identify patients at risk before first exposure. Safe management includes rapid drug desensitization. This review provides information regarding the scope of hypersensitivity and anaphylactic reactions induced by chemotherapy and biological drugs, as well as diagnosis, management, and treatment options.

  16. The Role of Monoclonal Antibodies in the Management of Leukemia

    Science.gov (United States)

    Al-Ameri, Ali; Cherry, Mohamad; Al-Kali, Aref; Ferrajoli, Alessandra

    2010-01-01

    This article will review the monoclonal antibodies more commonly used in leukemias. In the last three decades, scientists have made considerable progress understanding the structure and the functions of various surface antigens, such as CD20, CD33. The introduction of rituximab, an anti CD20 monoclonal antibody, had a great impact in the treatment of lymphoproliferative disorders. Gemtuzumab, an anti CD 33 conjugated monoclonal antibody has activity in acute mylegenous leukemia (AML). As this field is undergoing a rapid growth, the years will see an increasing use of monoclonal antibodies in hematological malignancies.

  17. The Role of Monoclonal Antibodies in the Management of Leukemia

    Directory of Open Access Journals (Sweden)

    Mohamad Cherry

    2010-10-01

    Full Text Available This article will review the monoclonal antibodies more commonly used in leukemias. In the last three decades, scientists have made considerable progress understanding the structure and the functions of various surface antigens, such as CD20, CD33. The introduction of rituximab, an anti CD20 monoclonal antibody, had a great impact in the treatment of lymphoproliferative disorders. Gemtuzumab, an anti CD 33 conjugated monoclonal antibody has activity in acute mylegenous leukemia (AML. As this field is undergoing a rapid growth, the years will see an increasing use of monoclonal antibodies in hematological malignancies.

  18. HER2 testing in gastric and gastroesophageal adenocarcinomas.

    Science.gov (United States)

    Vakiani, Efsevia

    2015-05-01

    The human epidermal growth factor receptor 2 (HER2) is overexpressed in 10% to 35% of gastric and gastroesophageal junction (GEJ) adenocarcinomas. In 2010, the phase III Trastuzumab for Gastric Cancer (ToGA) trial showed that addition of the anti-HER2 monoclonal antibody trastuzumab to chemotherapy significantly improved survival of patients with advanced or metastatic tumors that were positive for HER2 overexpression. As a result, HER2 testing is now recommended for all patients with advanced or metastatic disease, although there is still some debate as to the optimal methods of assessment. HER2 expression in gastric and GEJ tumors shows several differences compared with breast tumors and, for this reason, the proposed criteria for scoring HER2 expression in biopsies and resections of gastric and GEJ carcinomas differ from those used in breast carcinomas. This review discusses what is currently known about the patterns of HER2 expression in gastric and GEJ adenocarcinomas, summarizes the findings of the ToGA trial and its clinical implications, and provides an overview of the recommended guidelines for the most accurate evaluation of HER2 status in gastric and GEJ cancer.

  19. Induction and characterization of monoclonal anti-idiotypic antibodies reactive with idiotopes of canine parvovirus neutralizing monoclonal antibodies.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); J. van Es (Johan); G.A. Drost; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1991-01-01

    textabstractMonoclonal anti-idiotypic (anti-Id) antibodies (Ab2) were generated against idiotypes (Id) of canine parvovirus (CPV) specific monoclonal antibodies (MoAbs). The binding of most of these anti-Id antibodies to their corresponding Id could be inhibited by antigen, thus classifying these an

  20. Monoclonal antibody disulfide reduction during manufacturing

    Science.gov (United States)

    Hutterer, Katariina M.; Hong, Robert W.; Lull, Jonathon; Zhao, Xiaoyang; Wang, Tian; Pei, Rex; Le, M. Eleanor; Borisov, Oleg; Piper, Rob; Liu, Yaoqing Diana; Petty, Krista; Apostol, Izydor; Flynn, Gregory C.

    2013-01-01

    Manufacturing-induced disulfide reduction has recently been reported for monoclonal human immunoglobulin gamma (IgG) antibodies, a widely used modality in the biopharmaceutical industry. This effect has been tied to components of the intracellular thioredoxin reduction system that are released upon cell breakage. Here, we describe the effect of process parameters and intrinsic molecule properties on the extent of reduction. Material taken from cell cultures at the end of production displayed large variations in the extent of antibody reduction between different products, including no reduction, when subjected to the same reduction-promoting harvest conditions. Additionally, in a reconstituted model in which process variables could be isolated from product properties, we found that antibody reduction was dependent on the cell line (clone) and cell culture process. A bench-scale model using a thioredoxin/thioredoxin reductase regeneration system revealed that reduction susceptibility depended on not only antibody class but also light chain type; the model further demonstrates that the trend in reducibility was identical to DTT reduction sensitivity following the order IgG1λ > IgG1κ > IgG2λ > IgG2κ. Thus, both product attributes and process parameters contribute to the extent of antibody reduction during production. PMID:23751615

  1. Tumor targeting using anti-her2 immunoliposomes.

    Science.gov (United States)

    Park, J W; Kirpotin, D B; Hong, K; Shalaby, R; Shao, Y; Nielsen, U B; Marks, J D; Papahadjopoulos, D; Benz, C C

    2001-07-06

    We have generated anti-HER2 (ErbB2) immunoliposomes (ILs), consisting of long circulating liposomes linked to anti-HER2 monoclonal antibody (MAb) fragments, to provide targeted drug delivery to HER2-overexpressing cells. Immunoliposomes were constructed using a modular strategy in which components were optimized for internalization and intracellular drug delivery. Parameters included choice of antibody construct, antibody density, antibody conjugation procedure, and choice of liposome construct. Anti-HER2 immunoliposomes bound efficiently to and internalized in HER2-overexpressing cells in vitro as determined by fluorescence microscopy, electron microscopy, and quantitative analysis of fluorescent probe delivery. Delivery via ILs in HER2-overexpressing cells yielded drug uptake that was up to 700-fold greater than with non-targeted sterically stabilized liposomes. In vivo, anti-HER2 ILs showed extremely long circulation as stable constructs in normal adult rats after a single i.v. dose, with pharmacokinetics that were indistinguishable from sterically stabilized liposomes. Repeat administrations revealed no increase in clearance, further confirming that ILs retain the long circulation and non-immunogenicity of sterically stabilized liposomes. In five different HER2-overexpressing xenograft models, anti-HER2 ILs loaded with doxorubicin (dox) showed potent anticancer activity, including tumor inhibition, regressions, and cures (pathologic complete responses). ILs were significantly superior vs. all other treatment conditions tested: free dox, liposomal dox, free MAb (trastuzumab), and combinations of dox+MAb or liposomal dox+MAb. For example, ILs produced significantly superior antitumor effects vs. non-targeted liposomes (P values from experiments). In a non-HER2-overexpressing xenograft model (MCF7), ILs and non-targeted liposomal dox produced equivalent antitumor effects. Detailed studies of tumor localization indicated a novel mechanism of drug delivery for anti-HER

  2. Effect of kinase inhibitors on the therapeutic properties of monoclonal antibodies.

    Science.gov (United States)

    Duong, Minh Ngoc; Matera, Eva-Laure; Mathé, Doriane; Evesque, Anne; Valsesia-Wittmann, Sandrine; Clémenceau, Béatrice; Dumontet, Charles

    2015-01-01

    Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated.

  3. Generation of monoclonal antibodies to native active human glycosyltransferases

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene Bech; Bennett, Eric Paul; Clausen, Henrik;

    2013-01-01

    using monoclonal antibodies therefore provides an excellent strategy to analyze the glycosylation process in cells. A major drawback has been difficulties in generating antibodies to glycosyltransferases and validating their specificities. Here we describe a simple strategy for generating...

  4. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    Directory of Open Access Journals (Sweden)

    Chen H

    2013-10-01

    Full Text Available Hongwei Chen,1,* Liya Wang,1,2,* Qiqi Yu,1,2 Weiping Qian,3 Diana Tiwari,1 Hong Yi,4 Andrew Y Wang,5 Jing Huang,1,2 Lily Yang,3 Hui Mao1,2 1Department of Radiology and Imaging Sciences, 2Center for Systems Imaging, 3Department of Surgery, Emory University School of Medicine, 4Robert Apkarian Electron Microscopy Core, Emory University, Atlanta, GA, 5Ocean NanoTech LLC, Springdale, AK, USA *These authors contributed equally to this work Abstract: Antifouling magnetic iron oxide nanoparticles (IONPs coated with block copolymer poly(ethylene oxide-block-poly(γ-methacryloxypropyltrimethoxysilane (PEO-b-PγMPS were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv of antibody against epidermal growth factor receptor (ScFvEGFR to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs. The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs

  5. A monoclonal antibody toolkit for C. elegans.

    Directory of Open Access Journals (Sweden)

    Gayla Hadwiger

    Full Text Available BACKGROUND: Antibodies are critical tools in many avenues of biological research. Though antibodies can be produced in the research laboratory setting, most research labs working with vertebrates avail themselves of the wide array of commercially available reagents. By contrast, few such reagents are available for work with model organisms. METHODOLOGY/PRINCIPAL FINDINGS: We report the production of monoclonal antibodies directed against a wide range of proteins that label specific subcellular and cellular components, and macromolecular complexes. Antibodies were made to synaptobrevin (SNB-1, a component of synaptic vesicles; to Rim (UNC-10, a protein localized to synaptic active zones; to transforming acidic coiled-coil protein (TAC-1, a component of centrosomes; to CENP-C (HCP-4, which in worms labels the entire length of their holocentric chromosomes; to ORC2 (ORC-2, a subunit of the DNA origin replication complex; to the nucleolar phosphoprotein NOPP140 (DAO-5; to the nuclear envelope protein lamin (LMN-1; to EHD1 (RME-1 a marker for recycling endosomes; to caveolin (CAV-1, a marker for caveolae; to the cytochrome P450 (CYP-33E1, a resident of the endoplasmic reticulum; to beta-1,3-glucuronyltransferase (SQV-8 that labels the Golgi; to a chaperonin (HSP-60 targeted to mitochondria; to LAMP (LMP-1, a resident protein of lysosomes; to the alpha subunit of the 20S subcomplex (PAS-7 of the 26S proteasome; to dynamin (DYN-1 and to the alpha-subunit of the adaptor complex 2 (APA-2 as markers for sites of clathrin-mediated endocytosis; to the MAGUK, protein disks large (DLG-1 and cadherin (HMR-1, both of which label adherens junctions; to a cytoskeletal linker of the ezrin-radixin-moesin family (ERM-1, which localized to apical membranes; to an ERBIN family protein (LET-413 which localizes to the basolateral membrane of epithelial cells and to an adhesion molecule (SAX-7 which localizes to the plasma membrane at cell-cell contacts. In addition to

  6. Immunochemical Characterization of Anti-Acetylcholinesterase Inhibitory Monoclonal Antibodies

    Science.gov (United States)

    1993-01-01

    formation. This conformation was first proposed using studies with monoclonal antibodies against a synthetic peptide mimicking the sequence of the...distinct antigenic determinants on dengue -2 virus using monoclonal antibodies, Am. J. Trop. Med. Hyg., 31 (1982) 548-555. 7 D. De la Hoz, B.P. Doctor

  7. Monoclonal Antibodies Specific for Hippurate Hydrolase of Campylobacter jejuni

    OpenAIRE

    Steele, Marina; Gyles, Carlton; Chan, Voon Loong; Odumeru, Joseph

    2002-01-01

    Eleven monoclonal antibodies raised against recombinant Campylobacter jejuni hippurate hydrolase were tested for binding to lysates from 19 C. jejuni strains, 12 other Campylobacter strains, and 21 non-Campylobacter strains. Several monoclonal antibodies bound to C. jejuni but not to other Campylobacter species and may be useful in a species-specific immunoassay.

  8. Development of paclitaxel-loaded liposomal systems with anti-her2 ...

    African Journals Online (AJOL)

    Purpose: To develop liposome formulations containing monoclonal antibody ... Keywords: Cancer, Anti-her2 antibody, Liposome, Paclitaxel, Targeted therapy, Cell culture .... Experiments were carried out in triplicates. .... High-energy input such as elevated production .... Themed Section: Vector Design And Drug Delivery.

  9. Improved in vivo anti-tumor effects of IgA-Her2 antibodies through half-life extension and serum exposure enhancement by FcRn targeting.

    Science.gov (United States)

    Meyer, Saskia; Nederend, Maaike; Jansen, J H Marco; Reiding, Karli R; Jacobino, Shamir R; Meeldijk, Jan; Bovenschen, Niels; Wuhrer, Manfred; Valerius, Thomas; Ubink, Ruud; Boross, Peter; Rouwendal, Gerard; Leusen, Jeanette H W

    2016-01-01

    Antibody therapy is a validated treatment approach for several malignancies. All currently clinically applied therapeutic antibodies (Abs) are of the IgG isotype. However, not all patients respond to this therapy and relapses can occur. IgA represents an alternative isotype for antibody therapy that engages FcαRI expressing myeloid effector cells, such as neutrophils and monocytes. IgA Abs have been shown to effectively kill tumor cells both in vitro and in vivo. However, due to the short half-life of IgA Abs in mice, daily injections are required to reach an effect comparable to IgG Abs. The relatively long half-life of IgG Abs and serum albumin arises from their capability of interacting with the neonatal Fc receptor (FcRn). As IgA Abs lack a binding site for FcRn, we generated IgA Abs with the variable regions of the Her2-specific Ab trastuzumab and attached an albumin-binding domain (ABD) to the heavy or light chain (HCABD/LCABD) to extend their serum half-life. These modified Abs were able to bind albumin from different species in vitro. Furthermore, tumor cell lysis of IgA-Her2-LCABD Abs in vitro was similar to unmodified IgA-Her2 Abs. Pharmacokinetic studies in mice revealed that the serum exposure and half-life of the modified IgA-Her2 Abs was extended. In a xenograft mouse model, the modified IgA1 Abs exhibited a slightly, but significantly, improved anti-tumor response compared to the unmodified Ab. In conclusion, empowering IgA Abs with albumin-binding capacity results in in vitro and in vivo functional Abs with an enhanced exposure and prolonged half-life.

  10. Development of syngeneic monoclonal anti-idiotype antibodies to mouse monoclonal anti-asialoglycoprotein receptor antibody.

    Directory of Open Access Journals (Sweden)

    Hirai M

    2002-06-01

    Full Text Available Anti-idiotype antibodies (Ab2 play an important role in the homeostasis of immune responses and are related to the development and the disease activity of certain autoimmune diseases. The asialoglycoprotein receptor (ASGPR is considered one of the target antigens in the pathogenesis of autoimmune chronic active hepatitis (AIH. We previously developed a mouse monoclonal antibody (clone 8D7 which recognizes rat and human ASGPR. In this study, to help investigate the anti-ASGPR antibody-anti-idiotype antibody network in patients with AIH, we developed a syngeneic mouse monoclonal Ab2 to the 8D7 anti-ASGPR antibody (Ab1. One clone, designated as 3C8, tested positive for specific reactivity to 8D7-Ab1 and did not bind to other irrelevant immunoglobulins. By competitive inhibition assays, the binding of 8D7-Ab1 to liver membrane extracts, i.e., the crude antigen preparation, was inhibited by 3C8-Ab2 in a dose-dependent manner, and the binding of 8D7-Ab1 to 3C8-Ab2 was inhibited by the liver membrane extracts. In the immunohistochemical analysis, 3C8-Ab2 blocked the specific staining of sinusoidal margins of rat hepatocytes by 8D7-Ab1. These results suggest that 3C8 anti-idiotype antibody recognizes the specific idiotypic determinants within the antigen-binding site of 8D7-Ab1.

  11. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells

    Directory of Open Access Journals (Sweden)

    Mitra Somenath

    2009-10-01

    Full Text Available Abstract Background Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. Methods The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1 staining. Results Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. Conclusion We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs

  12. Monoclonal antibodies based on hybridoma technology.

    Science.gov (United States)

    Yagami, Hisanori; Kato, Hiroshi; Tsumoto, Kanta; Tomita, Masahiro

    2013-03-01

    Based on the size and scope of the present global market for medicine, monoclonal antibodies (mAbs) have a very promising future, with applications for cancers through autoimmune ailments to infectious disease. Since mAbs recognize only their target antigens and not other unrelated proteins, pinpoint medical treatment is possible. Global demand is dramatically expanding. Hybridoma technology, which allows production of mAbs directed against antigens of interest is therefore privileged. However, there are some pivotal points for further development to generate therapeutic antibodies. One is selective generation of human mAbs. Employment of transgenic mice producing human antibodies would overcome this problem. Another focus is recognition sites and conformational epitopes in antigens may be just as important as linear epitopes, especially when membrane proteins such as receptors are targeted. Recognition of intact structures is of critical importance for medical purposes. In this review, we describe patent related information for therapeutic mAbs based on hybridoma technology and also discuss new advances in hybridoma technology that facilitate selective production of stereospecific mAbs.

  13. Monoclonal Antibodies Against Xenopus Greatwall Kinase

    Science.gov (United States)

    Wang, Ling; Fisher, Laura A.; Wahl, James K.

    2011-01-01

    Mitosis is known to be regulated by protein kinases, including MPF, Plk1, Aurora kinases, and so on, which become active in M-phase and phosphorylate a wide range of substrates to control multiple aspects of mitotic entry, progression, and exit. Mechanistic investigations of these kinases not only provide key insights into cell cycle regulation, but also hold great promise for cancer therapy. Recent studies, largely in Xenopus, characterized a new mitotic kinase named Greatwall (Gwl) that plays essential roles in both mitotic entry and maintenance. In this study, we generated a panel of mouse monoclonal antibodies (MAbs) specific for Xenopus Gwl and characterized these antibodies for their utility in immunoblotting, immunoprecipitation, and immunodepletion in Xenopus egg extracts. Importantly, we generated an MAb that is capable of neutralizing endogenous Gwl. The addition of this antibody into M-phase extracts results in loss of mitotic phosphorylation of Gwl, Plk1, and Cdk1 substrates. These results illustrate a new tool to study loss-of-function of Gwl, and support its essential role in mitosis. Finally, we demonstrated the usefulness of the MAb against human Gwl/MASTL. PMID:22008075

  14. HER2 Dimerization Inhibitor Pertuzumab - Mode of Action and Clinical Data in Breast Cancer.

    Science.gov (United States)

    Harbeck, Nadia; Beckmann, Matthias W; Rody, Achim; Schneeweiss, Andreas; Müller, Volkmar; Fehm, Tanja; Marschner, Norbert; Gluz, Oleg; Schrader, Iris; Heinrich, Georg; Untch, Michael; Jackisch, Christian

    2013-03-01

    The humanized monoclonal antibody pertuzumab prevents the dimerization of HER2 with other HER receptors, in particular the pairing of the most potent signaling heterodimer HER2/HER3, thus providing a potent strategy for dual HER2 inhibition. It binds to the extracellular domain of HER2 at a different epitope than trastuzumab. Pertuzumab and trastuzumab act in a complementary fashion and provide a more complete blockade of HER2-mediated signal transduction than either agent alone. Phase II studies demonstrated that pertuzumab was generally well tolerated as a single agent or in combination with trastuzumab and/or cytotoxic agents, and implied an improved clinical efficacy of the combination of pertuzumab and trastuzumab in early and advanced HER2-positive breast cancer. Results of the pivotal phase III study CLEOPATRA in patients with HER2-positive metastatic breast cancer demonstrated that the addition of pertuzumab to first-line combination therapy with docetaxel and trastuzumab significantly prolonged progression-free and overall survival without increasing cardiac toxicity. Currently, the combination of both antibodies is being explored in the palliative setting as well as in the treatment of early HER2-positive breast cancer. Dual HER2 inhibition with the HER2 dimerization inhibitor pertuzumab and trastuzumab may change clinical practice in HER2-positive first-line metastatic breast cancer treatment.

  15. Targeting HER2 amplifications in gastric cancer

    Directory of Open Access Journals (Sweden)

    Ung L

    2014-01-01

    Full Text Available Lawson Ung, Terence C Chua, Neil D Merrett Department of Surgery, South Western Sydney Upper GI Surgical Unit, Bankstown Hospital, University of Western Sydney, Sydney, NSW, Australia Abstract: While multimodality treatments, including neoadjuvant and adjuvant chemotherapy or chemoradiation, have become the global standard of care in patients with locally advanced and metastatic gastric cancers (GCs, long-term outcomes for patients remain poor. This reflects the aggressive tumor biology of GCs and occult nature of the disease, often presenting in its advanced stages, as well as the challenges of developing effective targeted therapy to treat this disease. The Trastuzumab for Gastric Cancer trial demonstrates that the addition of human epidermal growth factor 2 (HER2 monoclonal antibody trastuzumab to standard chemotherapy regimen consisting of 5-fluorouracil (5-FU or capecitabine with cisplatin results in significant improvement in overall and progression-free survival. Although questions remain regarding the best methods by which to determine HER2 mutation positivity and amplification, through immunohistochemistry or in situ hybridization, and whether trastuzumab is effective for locally advanced, nonmetastatic GC in an adjuvant setting, the trial has led to a surge of clinical trials investigating the potential role of other HER2- and non-HER2-targeted therapies to improve patient outcomes. This review will discuss our current understanding of GC pathogenesis, current available treatments, and the potential impact that targeting HER2 amplifications may have in our efforts to individualize and optimize cancer care in GC individuals. Keywords: Personalized cancer therapy, surgical oncology, gastrectomy, adjuvant treatment, targeted therapies

  16. A Strategy for Screening Monoclonal Antibodies for Arabidopsis Flowers

    Science.gov (United States)

    Shi, Qian; Zhou, Lian; Wang, Yingxiang; Ma, Hong

    2017-01-01

    The flower is one of the most complex structures of angiosperms and is essential for sexual reproduction. Current studies using molecular genetic tools have made great advances in understanding flower development. Due to the lack of available antibodies, studies investigating the localization of proteins required for flower development have been restricted to use commercial antibodies against known antigens such as GFP, YFP, and FLAG. Thus, knowledge about cellular structures in the floral organs is limited due to the scarcity of antibodies that can label cellular components. To generate monoclonal antibodies that can facilitate molecular studies of the flower, we constructed a library of monoclonal antibodies against antigenic proteins from Arabidopsis inflorescences and identified 61 monoclonal antibodies. Twenty-four of these monoclonal antibodies displayed a unique band in a western blot assay in at least one of the examined tissues. Distinct cellular distribution patterns of epitopes were detected by these 24 antibodies by immunofluorescence microscopy in a flower section. Subsequently, a combination of immunoprecipitation and mass spectrometry analysis identified potential targets for three of these antibodies. These results provide evidence for the generation of an antibody library using the total plant proteins as antigens. Using this method, the present study identified 61 monoclonal antibodies and 24 of them were efficiently detecting epitopes in both western blot experiments and immunofluorescence microscopy. These antibodies can be applied as informative cellular markers to study the biological mechanisms underlying floral development in plants. PMID:28293248

  17. A Conjugate Based on Anti-HER2 Diaffibody and Auristatin E Targets HER2-Positive Cancer Cells

    Science.gov (United States)

    Serwotka-Suszczak, Anna M.; Sochaj-Gregorczyk, Alicja M.; Pieczykolan, Jerzy; Krowarsch, Daniel; Jelen, Filip; Otlewski, Jacek

    2017-01-01

    Antibody-drug conjugates (ADCs) have recently emerged as efficient and selective cancer treatment therapeutics. Currently, alternative forms of drug carriers that can replace monoclonal antibodies are under intensive investigation. Here, a cytotoxic conjugate of an anti-HER2 (Human Epidermal Growth Factor Receptor 2) diaffibody with monomethyl-auristatin E (MMAE) is proposed as a potential anticancer therapeutic. The anti-HER2 diaffibody was based on the ZHER2:4 affibody amino acid sequence. The anti-HER2 diaffibody has been expressed as a His-tagged protein in E. coli and purified by Ni-nitrilotriacetyl (Ni-NTA) agarose chromatography. The molecule was properly folded, and the high affinity and specificity of its interaction with HER2 was confirmed by surface plasmon resonance (SPR) and flow cytometry, respectively. The (ZHER2:4)2DCS-MMAE conjugate was obtained by coupling the maleimide group linked with MMAE to cysteines, which were introduced in a drug conjugation sequence (DCS). Cytotoxicity of the conjugate was evaluated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide MTT assay and the xCELLigence Real-Time Cell Analyzer. Our experiments demonstrated that the conjugate delivered auristatin E specifically to HER2-positive tumor cells, which finally led to their death. These results indicate that the cytotoxic diaffibody conjugate is a highly potent molecule for the treatment of various types of cancer overexpressing HER2 receptors. PMID:28216573

  18. Treatment with anti-interferon-δ monoclonal antibodies modifies experimental autoimmune encephalomyelitis in interferon-δ receptor knockout mice

    DEFF Research Database (Denmark)

    Espejo, C.; Penkowa, Milena; Saez-Torres, I.

    2001-01-01

    Neuroinflammation, neuronal degeneration, regeneration, monoclonal antibodies, multiple schlerosis......Neuroinflammation, neuronal degeneration, regeneration, monoclonal antibodies, multiple schlerosis...

  19. Drug Development of Therapeutic Monoclonal Antibodies.

    Science.gov (United States)

    Mould, Diane R; Meibohm, Bernd

    2016-08-01

    Monoclonal antibodies (MAbs) have become a substantial part of many pharmaceutical company portfolios. However, the development process of MAbs for clinical use is quite different than for small-molecule drugs. MAb development programs require careful interdisciplinary evaluations to ensure the pharmacology of both the MAb and the target antigen are well-understood. Selection of appropriate preclinical species must be carefully considered and the potential development of anti-drug antibodies (ADA) during these early studies can limit the value and complicate the performance and possible duration of preclinical studies. In human studies, many of the typical pharmacology studies such as renal or hepatic impairment evaluations may not be needed but the pharmacokinetics and pharmacodynamics of these agents is complex, often necessitating more comprehensive evaluation of clinical data and more complex bioanalytical assays than might be used for small molecules. This paper outlines concerns and strategies for development of MAbs from the early in vitro assessments needed through preclinical and clinical development. This review focuses on how to develop, submit, and comply with regulatory requirements for MAb therapeutics.

  20. Monoclonal antibodies against naturally occurring bioactive compounds.

    Science.gov (United States)

    Shoyama, Y; Tanaka, H; Fukuda, N

    1999-09-01

    The ratio of hapten to bovine serum albumin (BSA) in an antigen conjugate was determined by matrix-assisted laser desorption/ionization (MALDI) tof mass spectrometry. A hybridoma secreting monoclonal antibody (MAb) was produced by fusing splenocytes immunized with an antigen-BSA conjugate with HAT-sensitive mouse myeloma cells. The cross-reaction of anti-forskolin antibodies with 7-deacetyl forskolin was 5.6%. A very small cross-reaction appeared with other derivatives. The full measuring range of the assay extends from 5 ng to 5 mug/ml of forskolin. Immunoaffinity column chromatography using anti-forskolin MAbs appears to be far superior to previously published separation methods. The capacity of the immunoaffinity column as determined by ELISA is 9 mug/ml. Forskolin has been isolated directly from the crude extracts of tuberous roots and the callus culture of Coleus forskohlii. A MAb against tetrahydrocannabinolic acid (THCA) was produced. The cross-reaction of anti-THCA antibody against other cannabinoids was very wide. Many cannabinoids and a spiro-compound were reactive, but did not react with other phenolics. It became evident that this ELISA was able to be applied to the biotransformation experiments of cannabinoids in plant tissue culture system. Anti-ginsenoside Rb1 MAbs were produced. New western blotting method of determination for ginsenosides was established. Ginsenosides separated by silica gel TLC were transferred to a polyvinylidene difluoride (PVDF) membrane. The membrane was treated with NaIO(4) solution followed by BSA, resulting in a ginsenoside-BSA conjugate. Immunostaining of ginsenosides was more sensitive compared to other staining. Immunostaining of ginsenosides in the fresh ginseng root was succeeded using anti-ginsenoside Rb1 (GRb1) MAb after blotting to PVDF membrane.

  1. Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies.

    Science.gov (United States)

    Ulaeto, David O; Hutchinson, Alistair P; Nicklin, Stephen

    2015-08-01

    Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites.

  2. Monoclonal antibodies and Fc fragments for treating solid tumors

    Directory of Open Access Journals (Sweden)

    Eisenbeis AM

    2012-01-01

    Full Text Available Andrea M Eisenbeis, Stefan J GrauDepartment of Neurosurgery, University Hospital of Cologne, Cologne, GermanyAbstract: Advances in biotechnology, better understanding of pathophysiological processes, as well as the identification of an increasing number of molecular markers have facilitated the use of monoclonal antibodies and Fc fragments in various fields in medicine. In this context, a rapidly growing number of these substances have also emerged in the field of oncology. This review will summarize the currently approved monoclonal antibodies used for the treatment of solid tumors with a focus on their clinical application, biological background, and currently ongoing trials.Keywords: targeted therapy, monoclonal antibodies, cancer, biological therapy

  3. Designing a HER2/neu promoter to drive alpha1,3galactosyltransferase expression for targeted anti-alphaGal antibody-mediated tumor cell killing.

    OpenAIRE

    Lanteri, Marion; Ollier, Laurence; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2005-01-01

    INTRODUCTION: Our goal was to specifically render tumor cells susceptible to natural cytolytic anti-alphaGal antibodies by using a murine alpha1,3galactosyltransferase (malphaGalT) transgene driven by a designed form of HER2/neu promoter (pNeu), the transcription of which is frequently observed to be above basal in breast tumors. Indeed, the alphaGalT activity that promotes Galalpha1,3Galbeta1,4GlcNAc-R (alphaGal) epitope expression has been mutationally disrupted during the course of evoluti...

  4. Production and characterization of monoclonal antibodies against mink leukocytes

    DEFF Research Database (Denmark)

    Chen, W.S.; Pedersen, Mikael; Gram-Nielsen, S.

    1997-01-01

    Three monoclonal antibodies (mAbs) were generated against mink leukocytes. One antibody reacted with all T lymphocytes, one with all monocytes and one had platelet reactivity. Under reducing conditions, the T lymphocyte reactive antibody immunoprecipitated 18 kDa, 23 kDa, 25 kDa and 32-40 kDa pol...

  5. Syngeneic anti-idiotypic monoclonal antibodies to an anti-NeuGc-containing ganglioside monoclonal antibody.

    Science.gov (United States)

    Vázquez, A M; Pérez, A; Hernández, A M; Macías, A; Alfonso, M; Bombino, G; Pérez, R

    1998-12-01

    An IgM monoclonal antibody (MAb), named P3, has the characteristic to react specifically with a broad battery of N-glycolyl containing-gangliosides and with antigens expressed on breast tumors. When this MAb was administered alone in syngeneic mice, an specific IgG anti-idiotypic antibody (Ab2) response was induced, this Ab2 response was increased when P3 MAb was injected coupled to a carrier protein and in the presence of Freund's adjuvant. Spleen cells from these mice were used in somatic-cell hybridization experiments, using the murine myeloma cell line P3-X63-Ag8.653 as fusion partner. Five Ab2 MAbs specific to P3 MAb were selected. These IgG1 Ab2 MAbs were able to block the binding of P3 MAb to GM3(NeuGc) ganglioside and to a human breast carcinoma cell line. Cross-blocking experiments demonstrated that these Ab2 MAbs are recognizing the same or very close sites on the Abl MAb. The five Ab2 MAbs were injected into syngeneic mice and four of them produced strong anti-anti-idiotypic antibody (Ab3) response. While these Ab2 MAbs were unable to generate Ab3 antibodies with the same antigenic specificity than P3 MAb, three of them induced antibodies bearing P3 MAb idiotopes (Ag-Id+ Ab3). These results demonstrated that these Ab2 MAbs are not "internal image" antibodies, but they could define "regulatory idiotopes."

  6. A monoclonal antibody against human MUDENG protein.

    Science.gov (United States)

    Wagley, Yadav; Choi, Jun-Ha; Wickramanayake, Dimuthu Dhammika; Choi, Geun-Yeol; Kim, Chang-Kyu; Kim, Tae-Hyoung; Oh, Jae-Wook

    2013-08-01

    MUDENG (mu-2-related death-inducing gene, MuD) encodes a predicted ∼54-kDa protein in humans, considered to be involved in trafficking proteins from endosomes toward other membranous compartments as well as in inducing cell death. Here we report on the generation of a mouse monoclonal antibody (MAb) against the middle domain of human (h) MuD. This IgG sub 1 MAb, named M3H9, recognizes residues 244-326 in the middle domain of the MuD protein. Thus, the MuD proteins expressed in an astroglioma cell line and primary astrocytes can be detected by the M3H9 MAb. We showed that M3H9 MAb can be useful in enzyme-linked immunosorbent assay (ELISA) and immunoblot experiments. In addition, M3H9 MAb can detect the expression of the MuD protein in formalin-fixed, paraffin-embedded mouse ovary and uterus tissues. These results indicate that the MuD MAb M3H9 could be useful as a new biomarker of hereditary spastic paraplegia and other related diseases.

  7. Generation and characterization of monoclonal antibodies specific to Coenzyme A

    Directory of Open Access Journals (Sweden)

    Malanchuk O. M.

    2015-06-01

    Full Text Available Aim. Generation of monoclonal antibodies specific to Coenzyme A. Methods. Hybridoma technique. KLH carrier protein conjugated with CoA was used for immunization. Screening of positive clones was performed with BSA conjugated to CoA. Results. Monoclonal antibody that specifically recognizes CoA and CoA derivatives, but not its precursors ATP and cysteine has been generated. Conclusion. In this study, we describe for the first time the production and characterization of monoclonal antibodies against CoA. The monoclonal antibody 1F10 was shown to recognize specifically CoA in Western blotting, ELISA and immunoprecipitation. These properties make this antiboby a particularly valuable reagent for elucidating CoA function in health and disease.

  8. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer.

    Science.gov (United States)

    Gijsen, Merel; King, Peter; Perera, Tim; Parker, Peter J; Harris, Adrian L; Larijani, Banafshé; Kong, Anthony

    2010-12-21

    Herceptin (trastuzumab) is used in patients with breast cancer who have HER2 (ErbB2)-positive tumours. However, its mechanisms of action and how acquired resistance to Herceptin occurs are still poorly understood. It was previously thought that the anti-HER2 monoclonal antibody Herceptin inhibits HER2 signalling, but recent studies have shown that Herceptin does not decrease HER2 phosphorylation. Its failure to abolish HER2 phosphorylation may be a key to why acquired resistance inevitably occurs for all responders if Herceptin is given as monotherapy. To date, no studies have explained why Herceptin does not abolish HER2 phosphorylation. The objective of this study was to investigate why Herceptin did not decrease HER2 phosphorylation despite being an anti-HER2 monoclonal antibody. We also investigated the effects of acute and chronic Herceptin treatment on HER3 and PKB phosphorylation in HER2-positive breast cancer cells. Using both Förster resonance energy transfer (FRET) methodology and conventional Western blot, we have found the molecular mechanisms whereby Herceptin fails to abolish HER2 phosphorylation. HER2 phosphorylation is maintained by ligand-mediated activation of EGFR, HER3, and HER4 receptors, resulting in their dimerisation with HER2. The release of HER ligands was mediated by ADAM17 through a PKB negative feedback loop. The feedback loop was activated because of the inhibition of PKB by Herceptin treatment since up-regulation of HER ligands and ADAM17 also occurred when PKB phosphorylation was inhibited by a PKB inhibitor (Akt inhibitor VIII, Akti-1/2). The combination of Herceptin with ADAM17 inhibitors or the panHER inhibitor JNJ-26483327 was able to abrogate the feedback loop and decrease HER2 phosphorylation. Furthermore, the combination of Herceptin with JNJ-26483327 was synergistic in tumour inhibition in a BT474 xenograft model. We have determined that a PKB negative feedback loop links ADAM17 and HER ligands in maintaining HER2

  9. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer.

    Directory of Open Access Journals (Sweden)

    Merel Gijsen

    Full Text Available Herceptin (trastuzumab is used in patients with breast cancer who have HER2 (ErbB2-positive tumours. However, its mechanisms of action and how acquired resistance to Herceptin occurs are still poorly understood. It was previously thought that the anti-HER2 monoclonal antibody Herceptin inhibits HER2 signalling, but recent studies have shown that Herceptin does not decrease HER2 phosphorylation. Its failure to abolish HER2 phosphorylation may be a key to why acquired resistance inevitably occurs for all responders if Herceptin is given as monotherapy. To date, no studies have explained why Herceptin does not abolish HER2 phosphorylation. The objective of this study was to investigate why Herceptin did not decrease HER2 phosphorylation despite being an anti-HER2 monoclonal antibody. We also investigated the effects of acute and chronic Herceptin treatment on HER3 and PKB phosphorylation in HER2-positive breast cancer cells. Using both Förster resonance energy transfer (FRET methodology and conventional Western blot, we have found the molecular mechanisms whereby Herceptin fails to abolish HER2 phosphorylation. HER2 phosphorylation is maintained by ligand-mediated activation of EGFR, HER3, and HER4 receptors, resulting in their dimerisation with HER2. The release of HER ligands was mediated by ADAM17 through a PKB negative feedback loop. The feedback loop was activated because of the inhibition of PKB by Herceptin treatment since up-regulation of HER ligands and ADAM17 also occurred when PKB phosphorylation was inhibited by a PKB inhibitor (Akt inhibitor VIII, Akti-1/2. The combination of Herceptin with ADAM17 inhibitors or the panHER inhibitor JNJ-26483327 was able to abrogate the feedback loop and decrease HER2 phosphorylation. Furthermore, the combination of Herceptin with JNJ-26483327 was synergistic in tumour inhibition in a BT474 xenograft model. We have determined that a PKB negative feedback loop links ADAM17 and HER ligands in maintaining

  10. Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-MPA and CdTe-MSA Quantum Dots.

    Science.gov (United States)

    Singh, Gurpal; Kumar, Manoj; Soni, Udit; Arora, Vikas; Bansal, Vivek; Gupta, Dikshi; Bhat, Madhusudan; Dinda, Amit K; Sapra, Sameer; Singh, Harpal

    2015-12-01

    CdSe/CdS/ZnS and CdTe quantum dots (QDs) were synthesized by successive ion layer adsorption and reaction (SILAR) technique and direct aqueous synthesis respectively using thiol stabilizers. Synthesized CdSe/CdS/ZnS and CdTe QDs stabilized with 3-mercaptopropionic acid (MPA) and mercaptosuccinic acid (MSA) were used as fluorescent labels after conjugation with folic acid (FA) and anti-HER2 antibodies. Photoluminescence quantum yield of folated CdSe/CdS/ZnS-MPA and CdTe-MSA QDs was 59% and 77% than that of non-folated hydrophilic QDs. The folate receptor-mediated delivery of folic acid-conjugated CdTe-MSA and CdSe/CdS/ZnS-MPA QDs showed higher cellular internalization as observed by confocal laser scanning microscopic studies. Folated and non-folated CdTe-MSA QDs were highly toxic and exhibited only 10% cell viability as compared to > 80% cell viability with CdSe/CdS/ZnS-MPA QDs over the concentration ranging from 3.38 to 50 pmoles. Immunohistochemistry (IHC) results of human breast cancer tissue samples showed positive results with anti-HER2 antibody conjugated CdSe/CdS/ZnS-MPA QDs with better sensitivity and specificity as compared to conventional IHC analysis using diaminobenzedene staining.

  11. Purification of Murine Monoclonal IgM Antibody

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    This paper presents the purification of a monoclonal IgM antibody against human tumor associated antigen Lewis-Y by ion exchange chromatography and gel filtration.Enzyme-linked immunosorbent assay (ELISA) and SDS-polyacrylamide gel electrophoresis (PAGE) were used to identify purified IgM antibody.In flow cytometry analysis, the purified IgM antibody recognizes human breast tumor cell line MCF-7 which expresses Lewis-Y antigen.This work presents a new way for the purification of murine monoclonal IgM antibody.

  12. ELISA Detection of Francisella tularensis using Polyclonaland Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Miroslav Pohanka

    2008-09-01

    Full Text Available The mouse monoclonal and polyclonal antibodies were produced for the detection of intracellular pathogenand potential warfare agent Francisella tularensis. Antibody titers obtained were 1:640 for polyclonal antibodiesand 1:320 for monoclonal antibodies. Both antibodies were used in the indirect enzyme-linked immunosorbentassay (ELISA found to detect F. tularensis whole cells. The limit of detection was 5.4×106 CFU/ml for polyclonalantibodies and 6.9×106 CFU/ml for monoclonal antibodies. The value sample could  be distinguished from anyconcentration of another gram-negative bacterium: Escherichia coli.Defence Science Journal, 2008, 58(5, pp.698-702, DOI:http://dx.doi.org/10.14429/dsj.58.1693

  13. Combined use of anti-ErbB monoclonal antibodies and erlotinib enhances antibody-dependent cellular cytotoxicity of wild-type erlotinib-sensitive NSCLC cell lines

    Directory of Open Access Journals (Sweden)

    Cavazzoni Andrea

    2012-12-01

    Full Text Available Abstract Background The epidermal growth factor receptor (EGFR is an established target for anti-cancer treatment in different tumour types. Two different strategies have been explored to inhibit this pivotal molecule in epithelial cancer development: small molecules TKIs and monoclonal antibodies. ErbB/HER-targeting by monoclonal antibodies such as cetuximab and trastuzumab or tyrosine-kinase inhibitors as gefitinib or erlotinib has been proven effective in the treatment of advanced NSCLC. Results In this study we explored the potential of combining either erlotinib with cetuximab or trastuzumab to improve the efficacy of EGFR targeted therapy in EGFR wild-type NSCLC cell lines. Erlotinib treatment was observed to increase EGFR and/or HER2 expression at the plasma membrane level only in NSCLC cell lines sensitive to the drug inducing protein stabilization. The combined treatment had marginal effect on cell proliferation but markedly increased antibody-dependent, NK mediated, cytotoxicity in vitro. Moreover, in the Calu-3 xenograft model, the combination significantly inhibited tumour growth when compared with erlotinib and cetuximab alone. Conclusion Our results indicate that erlotinib increases surface expression of EGFR and/or HER2 only in EGFR-TKI sensitive NSCLC cell lines and, in turns, leads to increased susceptibility to ADCC both in vitro and in a xenograft models. The combination of erlotinib with monoclonal antibodies represents a potential strategy to improve the treatment of wild-type EGFR NSCLC patients sensitive to erlotinib.

  14. Development of monoclonal antibodies that recognize Treponema pallidum.

    OpenAIRE

    Saunders, J M; Folds, J D

    1983-01-01

    We developed a panel of monoclonal antibodies to Treponema pallidum (Nichols) antigens, some of which recognize treponemal antigens on T. pallidum (Nichols), T. pallidum strain 14, and Treponema phagedenis biotype Reiter. The antibodies were detected by either an enzyme-linked immunosorbent assay or a radioimmunoassay.

  15. Monoclonal antibodies for the control of influenza virus vaccines.

    NARCIS (Netherlands)

    H.J.M. van de Donk; M.F. van Olderen; A.D.M.E. Osterhaus (Albert); J.C. de Jong (Jan)

    1984-01-01

    textabstractHybridomas producing haemagglutination inhibiting monoclonal antibodies against influenza A/Texas/1/77 H3N2 were developed. One hybridoma producing antibodies reacting with Victoria/3/75, Texas/1/77 Bangkok/1/79 and England/496/80 was selected to determine the potency of influenza virusv

  16. MONOCLONAL ANTIBODIES TO IDENTIFY TOMATO MOSAIC TOBAMOVIRUS (TOMV

    Directory of Open Access Journals (Sweden)

    Duarte Keila M.R.

    2001-01-01

    Full Text Available Monoclonal antibodies were obtained against Tomato mosaic tobamovirus (ToMV isolated in Brazil. One antibody (8G7G2 isotyped as IgG2b (kappa light chain showed strong specificity and very low cross reaction with the Tobacco mosaic virus (TMV. It can be used in identification of tomato mosaic virus (ToMV.

  17. Serological comparison of tospovirus isolates using polyclonal and monoclonal antibodies.

    NARCIS (Netherlands)

    Adam, G.; Peters, D.; Goldbach, R.W.

    1996-01-01

    A test was conducted to compare tospovirus isolates using different poly- and monoclonal antibodies. All isolates and antibodies were compared under identical conditions. From 130 tospovirus isolates, which were obtained from all over the world and included well-characterized isolates from all four

  18. Serological comparison of tospovirus isolates using polyclonal and monoclonal antibodies.

    NARCIS (Netherlands)

    Adam, G.; Peters, D.; Goldbach, R.W.

    1996-01-01

    A test was conducted to compare tospovirus isolates using different poly- and monoclonal antibodies. All isolates and antibodies were compared under identical conditions. From 130 tospovirus isolates, which were obtained from all over the world and included well-characterized isolates from all four

  19. High throughput production of mouse monoclonal antibodies using antigen microarrays

    DEFF Research Database (Denmark)

    De Masi, Federico; Chiarella, P.; Wilhelm, H.;

    2005-01-01

    Recent advances in proteomics research underscore the increasing need for high-affinity monoclonal antibodies, which are still generated with lengthy, low-throughput antibody production techniques. Here we present a semi-automated, high-throughput method of hybridoma generation and identification....... Monoclonal antibodies were raised to different targets in single batch runs of 6-10 wk using multiplexed immunisations, automated fusion and cell-culture, and a novel antigen-coated microarray-screening assay. In a large-scale experiment, where eight mice were immunized with ten antigens each, we generated...

  20. Immunoblotting with monoclonal antibodies: importance of the blocking solution.

    Science.gov (United States)

    Hauri, H P; Bucher, K

    1986-12-01

    Four commonly used blocking agents, i.e., fetal calf serum, mammalian gelatin-Nonidet-P40, fish gelatin-Nonidet-P40, and defatted powdered milk were compared with respect to their efficiency to block the nonspecific background and to promote maximal immunoreactivity of monoclonal antibodies against human intestinal sucrase-isomaltase during immunoblotting. Two of five monoclonal antibodies were found to react with the electroblotted enzyme. However, one of the reacting antibodies gave optimal results with fish gelatin-Nonidet-P40 and the other with defatted powdered milk, while fetal calf serum lead to unacceptably high backgrounds. The results suggest that some of the difficulties encountered with monoclonal antibodies in immunoblotting may be due to inappropriate blocking conditions.

  1. Pan-HER - an antibody mixture targeting EGFR, HER2, and HER3 abrogates preformed and ligand-induced EGFR homo- and heterodimers

    DEFF Research Database (Denmark)

    Ellebaek, Sofie; Pedersen, Susanne Brix; Grandal, Michael

    2016-01-01

    Abs is development of acquired resistance through mechanisms such as alterated receptor dimerization patterns and dependencies. Pan-HER is a mixture of six mAbs simultaneously targeting epidermal growth factor receptor (EGFR), HER2, and HER3 with two mAbs against each receptor. Pan-HER has previously demonstrated....... The effect of Pan-HER on cell proliferation and HER-family receptor degradation was superior to treatment with single mAbs targeting either single receptor, and similar to targeting a single receptor with two non-overlapping antibodies. Furthermore, changes in EGFR-dimerization patterns after treatment......-HER and the EGFR-targeting mAb mixture also blocked EGF-binding and thereby ligand-induced changes in EGFR-dimerization levels. These results suggest that Pan-HER reduces the cellular capability to switch HER-dependency and dimerization pattern in response to treatment and thus hold promise for future clinical...

  2. Coarse grained modeling of transport properties in monoclonal antibody solution

    Science.gov (United States)

    Swan, James; Wang, Gang

    Monoclonal antibodies and their derivatives represent the fastest growing segment of the bio pharmaceutical industry. For many applications such as novel cancer therapies, high concentration, sub-cutaneous injections of these protein solutions are desired. However, depending on the peptide sequence within the antibody, such high concentration formulations can be too viscous to inject via human derived force alone. Understanding how heterogenous charge distribution and hydrophobicity within the antibodies leads to high viscosities is crucial to their future application. In this talk, we explore a coarse grained computational model of therapeutically relevant monoclonal antibodies that accounts for electrostatic, dispersion and hydrodynamic interactions between suspended antibodies to predict assembly and transport properties in concentrated antibody solutions. We explain the high viscosities observed in many experimental studies of the same biologics.

  3. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy

    Science.gov (United States)

    Hart, Felix; Danielczyk, Antje; Goletz, Steffen

    2017-01-01

    IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich) and hematological (CD20) cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.

  4. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Felix Hart

    2017-05-01

    Full Text Available IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich and hematological (CD20 cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.

  5. New developments in the treatment of HER2-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Nahta R

    2012-05-01

    Full Text Available Rita NahtaDepartments of Pharmacology and Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USAAbstract: Approximately 20%–30% of metastatic breast cancers show increased expression of the human epidermal growth factor receptor-2 (HER2 tyrosine kinase. Two HER2-specific therapies are currently approved for clinical treatment of patients with HER2-overexpressing metastatic breast cancer. Trastuzumab is a monoclonal antibody against HER2 and is approved for first-line treatment of HER2-positive metastatic breast cancer. Lapatinib is a small molecule dual inhibitor of epidermal growth factor receptor and HER2 tyrosine kinases, and is approved for trastuzumab-refractory disease. Although trastuzumab is a highly effective therapy for patients with HER2-overexpressing metastatic breast cancer, a significant number of patients in the initial clinical trials of trastuzumab monotherapy showed resistance to trastuzumab-based therapy. Further, among those who did respond, the initial trials indicated that the median time to progression was less than 1 year. Similarly, lapatinib is effective in a subset of trastuzumab-refractory cases, but the majority of patients display resistance. This review discusses the multiple molecular mechanisms of resistance that have been proposed in the literature. In addition, novel agents that are being tested for efficacy against HER2-positive breast cancer, including the antibodies pertuzumab and trastuzumab-DM1 and the immunotoxin affitoxin, are reviewed. The introduction of trastuzumab has revolutionized the clinical care of patients with HER2-positive metastatic breast cancer and has resulted in dramatic reductions in recurrences of early-stage HER2-positive breast cancer. The development and implementation of gene- and protein-based assays that measure potential molecular predictors of trastuzumab resistance will allow individualization of HER2-targeted therapeutic approaches

  6. The Case for Adjunctive Monoclonal Antibody Immunotherapy in Schizophrenia.

    Science.gov (United States)

    Miller, Brian J; Buckley, Peter F

    2016-06-01

    This article presents the case in favor of clinical trials of adjunctive monoclonal antibody immunotherapy in schizophrenia. Evidence for prenatal and premorbid immune risk factors for the development of schizophrenia in the offspring is highlighted. Then key evidence for immune dysfunction in patients with schizophrenia is considered. Next, previous trials of adjunctive anti-inflammatory or other immunotherapy in schizophrenia are discussed. Then evidence for psychosis as a side effect of immunotherapy for other disorders is discussed. Also presented is preliminary evidence for adjunctive monoclonal antibody immunotherapy in psychiatric disorders. Finally, important considerations in the design and implementation of clinical trials of adjunctive monoclonal antibody immunotherapy in schizophrenia are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Pan-HER - an antibody mixture targeting EGFR, HER2, and HER3 abrogates preformed and ligand-induced EGFR homo- and heterodimers

    DEFF Research Database (Denmark)

    Ellebaek, Sofie; Pedersen, Susanne Brix; Grandal, Michael

    2016-01-01

    The human epidermal growth factor receptor (HER)-family is involved in development of many epithelial cancers. Therefore, HER-family members constitute important targets for anti-cancer therapeutics such as monoclonal antibodies (mAbs). A limitation to the success of single HER-targeting m...... broader efficacy than targeting single or dual receptor combinations also in resistant settings. In light of this broad efficacy, we decided to investigate the effect of Pan-HER compared with single HER-targeting with single and dual mAbs on HER-family cross-talk and dimerization focusing on EGFR....... The effect of Pan-HER on cell proliferation and HER-family receptor degradation was superior to treatment with single mAbs targeting either single receptor, and similar to targeting a single receptor with two non-overlapping antibodies. Furthermore, changes in EGFR-dimerization patterns after treatment...

  8. Preparation and Identification of Anti-rabies Virus Monoclonal Antibodies

    Institute of Scientific and Technical Information of China (English)

    Wen-juan Wang; Xiong Li; Li-hua Wang; Hu Shan; Lei Cao; Peng-cheng Yu; Qing Tang; Guo-dong Liang

    2012-01-01

    To provide a foundation for the development of rapid and specific methods for the diagnosis of rabies virus infection,anti-rabies virus monoclonal antibodies were prepared and rabies virus nucleoprotein and human rabies virus vaccine strain (PV strain) were used as immunogens to immunize 6-8 week old female BALB/c mice.Spleen cells and SP2/0 myeloma cells were fused according to conventional methods:the monoclonal cell strains obtained were selected using the indirect immunofluorescence test; this was followed by preparation of monoclonal antibody ascitic fluid; and finally,systematic identification of subclass,specificity and sensitivity was carried out.Two high potency and specific monoclonal antibodies against rabies virus were obtained and named 3B12 and 4A12,with ascitic fluid titers of 1∶8000 and 1∶10000,respectively.Both belonged to the IgG2a subclass.These strains secrete potent,stable and specific anti-rabies virus monoclonal antibodies,which makes them well suited for the development of rabies diagnosis reagents.

  9. Therapeutic monoclonal antibodies in human breast milk: a case study.

    Science.gov (United States)

    Ross, Elle; Robinson, Steven E; Amato, Carol; McMillan, Colette; Westcott, Jay; Wolf, Tiffany; Robinson, William A

    2014-04-01

    Recently, therapeutic monoclonal antibodies have been introduced for the treatment of advanced melanoma and other diseases. It remains unclear whether these drugs can be safely administered to women who are breast feeding because of the potential hazardous side effects for nursing infants. One such therapy for metastatic melanoma is ipilimumab, a human monoclonal antibody that blocks cytotoxic T-lymphocyte-antigen-4, and is the preferred treatment for patients with metastatic melanoma when other molecular therapies are not viable. This study measured ipilimumab levels in the breast milk of a patient undergoing treatment that were enough to raise concerns for a nursing infant exposed to ipilimumab.

  10. ERBB oncogene proteins as targets for monoclonal antibodies.

    Science.gov (United States)

    Polanovski, O L; Lebedenko, E N; Deyev, S M

    2012-03-01

    General properties of the family of tyrosine kinase ERBB receptors are considered in connection with their role in the generation of cascades of signal transduction in normal and tumor cells. Causes of acquisition of oncogene features by genes encoding these receptors and their role in tumorigenesis are analyzed. Anti-ERBB monoclonal antibodies approved for therapy are described in detail, and mechanisms of their antitumor activity and development of resistance to them are reviewed. The existing and the most promising strategies for creating and using monoclonal antibodies and their derivatives for therapy of cancer are discussed.

  11. Quantitative analysis of monoclonal antibodies by cation-exchange chromatofocusing.

    Science.gov (United States)

    Rozhkova, Anna

    2009-08-07

    A robust cation-exchange chromatofocusing method was developed for the routine analysis of a recombinant humanized monoclonal IgG antibody. We compare the chromatofocusing method to the conventional cation-exchange chromatography (CEX) employing a salt gradient and show clear advantages of chromatofocusing over CEX. We demonstrate the suitability of the present chromatofocusing method for its intended purpose by testing the validation characteristics. To our knowledge, this is the first chromatofocusing method developed for the routine analysis of monoclonal antibody charge species.

  12. Surface activity of a monoclonal antibody.

    Science.gov (United States)

    Mahler, Hanns-Christian; Senner, Frank; Maeder, Karsten; Mueller, Robert

    2009-12-01

    The development of high concentration antibody formulations presents a major challenge for the formulation scientist, as physical characteristics and stability behavior change compared to low concentration protein formulations. The aim of this study was to investigate the potential correlation between surface activity and shaking stress stability of a model antibody-polysorbate 20 formulation. The surface activities of pure antibody and polysorbate 20 were compared, followed by a study on the influence of a model antibody on the apparent critical micelle concentration (CMC) of polysorbate 20 over a protein concentration range from 10 to 150 mg/mL. In a shaking stress experiment, the stability of 10, 75, and 150 mg/mL antibody formulations was investigated containing different concentrations of polysorbate 20, both below and above the CMC. The antibody increased significantly the apparent CMC of antibody-polysorbate 20 mixtures in comparison to the protein-free buffer. However, the concentration of polysorbate required for stabilization of the model antibody in a shaking stress experiment did not show dependence on the CMC. A polysorbate 20 level of 0.005% was found sufficient to stabilize both at low and high antibody concentration against antibody aggregation and precipitation.

  13. In Vivo Molecular Imaging to Diagnose and Subtype Tumors through Receptor-Targeted Optically Labeled Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Yoshinori Koyama

    2007-12-01

    Full Text Available Molecular imaging of cell surface receptors can potentially diagnose tumors based on their distinct expression profiles. Using multifilter spectrally resolved optical imaging with three fluorescently labeled antibodies, we simultaneously imaged three different cell surface receptors to distinguish tumor types noninvasively. We selected tumors overexpressing different subtypes of EGFR receptor: HER-1 (A431 and HER-2 (NIH3T3/HER2+, or interleukin-2 receptor α-subunit receptor (IL-2Rα; SP2/Tac. After tumor establishment, a cocktail of three fluorescently labeled monoclonal antibodies was injected: cetuximab-Cy5 (targeting HER-1, trastuzumab-Cy7 (HER-2, daclizumab-AIexaFluor700 (IL-2Ra. Optical fluorescence imaging was performed after 24 hours with both a red filter set and three successive filter sets (yellow, red, deep red. Spectrally resolved imaging of 10 mice clearly distinguished A431, NIH3T3/HER2+, SP2-Tac tumors based on their distinct optical spectra. Three-filter sets significantly increased the signal-to-background ratio compared to a single-filter set by reducing the background signal, thus significantly improving the differentiation of each of the receptors targeted (P < .022. In conclusion, following multifilter spectrally resolved imaging, different tumor types can be simultaneously distinguished and diagnosed in vivo. Multiple filter sets increase the signal-to-noise ratio by substantially reducing the background signal, may allow more optical dyes to be resolved within the narrow limits of the near-infrared spectrum.

  14. Antibody discovery: sourcing of monoclonal antibody variable domains.

    Science.gov (United States)

    Strohl, William R

    2014-03-01

    Historically, antibody variable domains for therapeutic antibodies have been sourced primarily from the mouse IgG repertoire, and typically either chimerized or humanized. More recently, human antibodies from transgenic mice producing human IgG, phage display libraries, and directly from human B lymphocytes have been used more broadly as sources of antibody variable domains for therapeutic antibodies. Of the total 36 antibodies approved by major maket regulatory agencies, the variable domain sequences of 26 originate from the mouse. Of these, four are marketed as murine antibodies (of which one is a mouse-rat hybrid IgG antibody), six are mouse-human chimeric antibodies, and 16 are humanized. Ten marketed antibodies have originated from human antibody genes, three isolated from phage libraries of human antibody genes and seven from transgenic mice producing human antibodies. Five antibodies currently in clinical trials have been sourced from camelids, as well as two from non-human primates, one from rat, and one from rabbit. Additional sources of antibody variable domains that may soon find their way into the clinic are potential antibodies from sharks and chickens. Finally, the various methods for retrieval of antibodies from humans, mouse and other sources, including various display technologies and amplification directly from B cells, are described.

  15. A monoclonal antibody for G protein-coupled receptor crystallography.

    Science.gov (United States)

    Day, Peter W; Rasmussen, Søren G F; Parnot, Charles; Fung, Juan José; Masood, Asna; Kobilka, Tong Sun; Yao, Xiao-Jie; Choi, Hee-Jung; Weis, William I; Rohrer, Daniel K; Kobilka, Brian K

    2007-11-01

    G protein-coupled receptors (GPCRs) constitute the largest family of signaling proteins in mammals, mediating responses to hormones, neurotransmitters, and senses of sight, smell and taste. Mechanistic insight into GPCR signal transduction is limited by a paucity of high-resolution structural information. We describe the generation of a monoclonal antibody that recognizes the third intracellular loop (IL3) of the native human beta(2) adrenergic (beta(2)AR) receptor; this antibody was critical for acquiring diffraction-quality crystals.

  16. Recent Progress toward Engineering HIV-1-Specific Neutralizing Monoclonal Antibodies

    OpenAIRE

    Ming Sun; Yue Li; Huiwen Zheng; Yiming Shao

    2016-01-01

    The recent discoveries of broadly potent neutralizing human monoclonal antibodies represent a new generation of antiretrovirals for the treatment and prophylaxis. Antibodies are generally considered more effective and safer and have been proved to provide passive protection against mucosal challenge in humanized mice and macaques. Several neutralizing Abs could protect animals against HIV-1 but are not effective when used in an established infected model for therapy. In order to overcome the ...

  17. [Neutralizing Monoclonal and Chimeric Antibodies to Human IFN-γ].

    Science.gov (United States)

    Larina, M V; Aliev, T K; Solopova, O N; Pozdnyakova, L P; Korobova, S V; Yakimov, S A; Sveshnikov, P G; Dolgikh, D A; Kirpichnikov, M P

    2015-01-01

    Autoiminune disorders are chronic diseases characterized by abnormal immune response directed against self-antigens that leads to tissue damage and violation of its normal functioning. Such diseases often result in disability or even death of patients. Nowadays a number of monoclonal antibodies to pro-inflammatory cytokines and their receptors are successfully used for the targeted treatment of autoimmune diseases. One of the perspective targets in autoimmune disease therapy is interferon gamma, a key cytokine in Th1 cells differentiation, activation of macrophages, and inflammation. In the present work, 5 monoclonal antibodies to human IFN-γ were obtained. For the development of potential therapeutic agent, we have performed neutralizing activity and affinity analysis of the antibodies. Based on the data obtained, the monoclonal antibody F1 was selected. This antibody has a dissociation constant 1.7 x 10(-9) M and IC90 = 8.9 ± 2.0 nM measured upon antibody inhibition of the IFN-γ-induced HLA-DR expression on the surface of U937 cells. We have constructed a bicistronic vector for the production of recombinant chimeric Fab fragment F1 chim in E. coli cells. The recombinant chimeric Fab fragment Fl chim neutralizes IFN-γ activity in vitro and has a dissociation constant 1.8 x 10(-9) M.

  18. Heterogeneity of monoclonal antibodies revealed by charge-sensitive methods.

    Science.gov (United States)

    Vlasak, J; Ionescu, R

    2008-12-01

    The expanding field of monoclonal antibody-based pharmaceuticals has triggered increased interest in analytical characterization of these large proteins and in understanding of their heterogeneity and degradation pathways. As a result, a large number of enzymatic modifications as well as chemical and physical degradations have been reported in monoclonal antibodies in recent years. Most heterogeneity is related to changes in the surface charge of the antibody, either directly, as a change in the number of charged residues, or indirectly as a chemical or physical alteration that changes surface-charge distribution. This review presents an overview of the sources of charge-related heterogeneity in monoclonal antibodies and the methods used for their detection. A detailed section is dedicated to deamidation of asparagine and isomerization of aspartic acid residues, two ubiquitous degradation pathways detected in antibodies and other proteins as well. Finally, kinetic modeling of the accumulation of antibody variants is presented as a tool to determine the expected fraction of molecules that have undergone one or more degradation reactions.

  19. Characterization of Binding Epitopes of CA125 Monoclonal Antibodies

    DEFF Research Database (Denmark)

    Marcos-Silva, Lara; Narimatsu, Yoshiki; Halim, Adnan

    2014-01-01

    The most used cancer serum biomarker is the CA125 immunoassay for ovarian cancer that detects the mucin glycoprotein MUC16. Several monoclonal antibodies (mAbs) including OC125 and M11 are used in CA125 assays. However, despite considerable efforts, our knowledge of the molecular characteristics...

  20. Production and potential use of monoclonal antibodies against polio viruses.

    NARCIS (Netherlands)

    A.D.M.E. Osterhaus (Albert); A.L. van Wezel; G. van Steenis (Bert); A.G. Hazendonk

    1982-01-01

    textabstractLymphocyte hybridomas secreting monoclonal antibodies against different strains of polio virus type 1, 2, or 3 have been produced. For this purpose Balb/C mice were immunized with purified and inactivated virus suspensions and their splenocytes were fused with P3X63Ag8 mouse myeloma cell

  1. Immunohistochemical diagnosis of systemic bovine zygomycosis by murine monoclonal antibodies

    DEFF Research Database (Denmark)

    Jensen, H.E.; Aalbaek, B.; Lind, Peter

    1996-01-01

    Murine monoclonal antibodies (Mabs) against water-soluble somatic antigens (WSSA) and the wall fraction (WF) from Rhizopus arrhizus (Rhizopus oryzae) were produced in vitro by fusion of splenocytes from immunized BALB/c mice with mouse myeloma X63-Ag 8.653 cells. Supernatants reacting only with h...... for the in situ diagnosis of systemic bovine zygomycosis....

  2. A mouse monoclonal antibody against Alexa Fluor 647.

    Science.gov (United States)

    Wuethrich, Irene; Guillen, Eduardo; Ploegh, Hidde L

    2014-04-01

    Fluorophores are essential tools in molecular and cell biology. However, their application is mostly confined to the singular exploitation of their fluorescent properties. To enhance the versatility and expand the use of the fluorophore Alexa Fluor 647 (AF647), we generated a mouse monoclonal antibody against it. We demonstrate its use of AF647 for immunoblot, immunoprecipitation, and cytofluorimetry.

  3. Monoclonal antibodies for the detection of Puccinia striiformis urediniospores

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Frøkiær, Hanne; Hearty, Stephen

    2007-01-01

    The fungal pathogen Pst causes yellow rust disease in wheat plants leading to crop losses. The organism spreads by releasing wind-dispersed urediniospores from infected plants. In this study a library of novel monoclonal antibodies (mAbs) was developed against Pst urediniospores. Nine mAb-produci...

  4. Monoclonal Antibodies to Prevent Use of Mycotoxins as Biological Weapons

    Science.gov (United States)

    2007-07-01

    Mycotoxins as Biological Weapons PRINCIPAL INVESTIGATOR: Marta Feldmesser, M.D. CONTRACTING ORGANIZATION: Albert Einstein College of...Monoclonal Antibodies to Prevent Use of Mycotoxins as Biological Weapons 5b. GRANT NUMBER W81XWH-06-1-0085 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  5. Monoclonal antibodies specific for the organophosphate pesticide azinphos-methyl

    NARCIS (Netherlands)

    Jones, WT; Harvey, D; Jones, SD; Ryan, GB; Wynberg, H; TenHoeve, W; Reynolds, PHS

    1995-01-01

    2-(2-Mercapto-5-methyl-1,3,2-dioxaphosphorinan-5-yl,2-sulphide) methoxyacetic acid has been synthesized and used to prepare an azinphos hapten and protein conjugates. Monoclonal antibodies of high affinity against the pesticide azinphos-methyl were prepared from mice immunized with the

  6. Generation and Characterization of Novel Human IRAS Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2009-01-01

    Full Text Available Imidazoline receptors were first proposed by Bousquet et al., when they studied antihypertensive effect of clonidine. A strong candidate for I1R, known as imidazoline receptor antisera-selected protein (IRAS, has been cloned from human hippocampus. We reported that IRAS mediated agmatine-induced inhibition of opioid dependence in morphine-dependent cells. To elucidate the functional and structure properties of I1R, we developed the newly monoclonal antibody against the N-terminal hIRAS region including the PX domain (10–120aa through immunization of BALB/c mice with the NusA-IRAS fusion protein containing an IRAS N-terminal (10–120aa. Stable hybridoma cell lines were established and monoclonal antibodies specifically recognized full-length IRAS proteins in their native state by immunoblotting and immunoprecipitation. Monoclonal antibodies stained in a predominantly punctate cytoplasmic pattern when applied to IRAS-transfected HEK293 cells by indirect immunofluorescence assays and demonstrated excellent reactivity in flow immunocytometry. These monoclonal antibodies will provide powerful reagents for the further investigation of hIRAS protein functions.

  7. Monoclonal antibodies specific for the organophosphate pesticide azinphos-methyl

    NARCIS (Netherlands)

    Jones, WT; Harvey, D; Jones, SD; Ryan, GB; Wynberg, H; TenHoeve, W; Reynolds, PHS

    1995-01-01

    2-(2-Mercapto-5-methyl-1,3,2-dioxaphosphorinan-5-yl,2-sulphide) methoxyacetic acid has been synthesized and used to prepare an azinphos hapten and protein conjugates. Monoclonal antibodies of high affinity against the pesticide azinphos-methyl were prepared from mice immunized with the hapten-ovalbu

  8. New frontiers in oncology: biosimilar monoclonal antibodies for the treatment of breast cancer.

    Science.gov (United States)

    Thill, Marc

    2015-03-01

    Trastuzumab is a highly successful monoclonal antibody (mAb) that has been used primarily for the treatment of HER2-positive breast cancer. Because of its success and its impending patent expiry in Europe in 2014, a number of copy versions of trastuzumab have been developed and are currently undergoing a comparability exercise for marketing authorization. Although biosimilar products have been approved in Europe since 2006, including two biosimilar mAbs of infliximab approved in 2013, the use of mAbs such as trastuzumab in the cancer setting has raised a number of new concerns. The requirements for the approval of biosimilar mAbs published by the EMA will be discussed and examined in the context of trastuzumab biosimilars to highlight potential controversies.

  9. Structure and specificity of lamprey monoclonal antibodies

    OpenAIRE

    Herrin, Brantley R.; Alder, Matthew N; Roux, Kenneth H.; Sina, Christina; Ehrhardt, Götz R. A.; Boydston, Jeremy A.; Turnbough, Charles L.; Cooper, Max D.

    2008-01-01

    Adaptive immunity in jawless vertebrates (lamprey and hagfish) is mediated by lymphocytes that undergo combinatorial assembly of leucine-rich repeat (LRR) gene segments to create a diverse repertoire of variable lymphocyte receptor (VLR) genes. Immunization with particulate antigens induces VLR-B-bearing lymphocytes to secrete antigen-specific VLR-B antibodies. Here, we describe the production of recombinant VLR-B antibodies specific for BclA, a major coat protein of Bacillus anthracis spores...

  10. Development of Biodegradable Nanocarriers Loaded with a Monoclonal Antibody

    Directory of Open Access Journals (Sweden)

    Andrew Gdowski

    2015-02-01

    Full Text Available Treatments utilizing monoclonal antibody therapeutics against intracellular protein-protein interactions in cancer cells have been hampered by several factors, including poor intracellular uptake and rapid lysosomal degradation. Our current work examines the feasibility of encapsulating monoclonal antibodies within poly(lactic-co-glycolic acid (PLGA nanoparticles using a water/oil/water double emulsion solvent evaporation technique. This method can be used to prepare protective polymeric nanoparticles for transporting functional antibodies to the cytoplasmic compartment of cancer cells. Nanoparticles were formulated and then characterized using a number of physical and biological parameters. The average nanoparticle size ranged from 221 to 252 nm with a low polydispersity index. Encapsulation efficiency of 16%–22% and antibody loading of 0.3%–1.12% were observed. The antibody molecules were released from the nanoparticles in a sustained manner and upon release maintained functionality. Our studies achieved successful formulation of antibody loaded polymeric nanoparticles, thus indicating that a PLGA-based antibody nanoformulation is a promising intracellular delivery vehicle for a large number of new intracellular antibody targets in cancer cells.

  11. Investigation of HER2 expression in canine mammary tumors by antibody-based, transcriptomic and mass spectrometry analysis: is the dog a suitable animal model for human breast cancer?

    Science.gov (United States)

    Burrai, G P; Tanca, A; De Miglio, M R; Abbondio, M; Pisanu, S; Polinas, M; Pirino, S; Mohammed, S I; Uzzau, S; Addis, M F; Antuofermo, E

    2015-11-01

    Canine mammary tumors (CMTs) share many features with human breast cancer (HBC), specifically concerning cancer-related pathways. Although the human epidermal growth factor receptor 2 (HER2) plays a significant role as a therapeutic and prognostic biomarker in HBC, its relevance in the pathogenesis and prognosis of CMT is still controversial. The aim of this study was to investigate HER2 expression in canine mammary hyperplasic and neoplastic tissues as well as to evaluate the specificity of the most commonly used polyclonal anti HER2 antibody by multiple molecular approaches. HER2 protein and RNA expression were determined by immunohistochemistry (IHC) and by quantitative real-time (qRT) PCR. A strong cell membrane associated with non-specific cytoplasmic staining was observed in 22% of carcinomas by IHC. Adenomas and carcinomas exhibited a significantly higher HER2 mRNA expression when compared to normal mammary glands, although no significant difference between benign and malignant tumors was noticed by qRT-PCR. The IHC results suggest a lack of specificity of the FDA-approved antibody in CMT samples as further demonstrated by Western immunoblotting (WB) and reverse phase protein arrays (RPPA). Furthemore, HER2 was not detected by mass spectrometry (MS) in a protein-expressing carcinoma at the IHC investigation. This study highlights that caution needs to be used when trying to translate from human to veterinary medicine information concerning cancer-related biomarkers and pathways. Further investigations are necessary to carefully assess the diagnostic and biological role specifically exerted by HER2 in CMTs and the use of canine mammary tumors as a model of HER2 over-expressing breast cancer.

  12. Intrinsic and Acquired Resistance to HER2-Targeted Therapies in HER2 Gene-Amplified Breast Cancer: Mechanisms and Clinical Implications

    Science.gov (United States)

    Rexer, Brent N.; Arteaga, Carlos L.

    2012-01-01

    Approximately 25% of human breast cancers overexpress the HER2 (ErbB2) proto-oncogene, which confers a more aggressive tumor phenotype and associates with a poor prognosis in patients with this disease. Two approved therapies targeting HER2, the monoclonal antibody trastuzumab and the tyrosine kinase inhibitor lapatinib, are clinically active against this type of breast cancer. However, a significant fraction of patients with HER2+ breast cancer treated with these agents eventually relapse or develop progressive disease. This suggests that tumors acquire or possess intrinsic mechanisms of resistance that allow escape from HER2 inhibition. This review focuses on mechanisms of intrinsic and/or acquired resistance to HER2-targeted therapies that have been identified in preclinical and clinical studies. These mechanisms involve alterations to HER2 itself, coexpression or acquisition of bypass signaling through other receptor or intracellular signaling pathways, defects in mechanisms of cell cycle regulation or apoptosis, and host factors that may modulate drug response. Emerging clinical evidence already suggests that combinations of therapies targeting HER2 as well as these resistance pathways will be effective in overcoming or preventing resistance. PMID:22471661

  13. [Single B cell monoclonal antibody technologies and applications].

    Science.gov (United States)

    Chi, Xiangyang; Yu, Changming; Chen, Wei

    2012-06-01

    Monoclonal antibodies (mAbs) contribute a lot to the development of numerous fields in life science as a pivotal tool in modern biological research. Development of the PCR methods and maturation of antibody production have made it possible to generate mAbs from single human B cells by single cell RT-PCR with successional cloning and expression in vitro. Compared to traditional monoclonal antibody technologies, single B cell technologies require relatively fewer cells, which are highly efficient in obtaining specific mAbs in a rapid way with preservation of the natural heavy and light chain pairing. With so many advantages, single B cell technologies have been proved to be an attractive approach for retrieval of naive and antigen-experienced antibody repertoires generated in vivo, design of rationale structure-based vaccine, evaluation and development of basic B cell biology concepts in health and autoimmunity, and prevention of infectious diseases by passive immunization and therapy for disorders. Accordingly, this review introduced recent progresses in the single B cell technologies for generating monoclonal antibodies and applications.

  14. Library of monoclonal antibodies against brush border membrane epithelial antigens

    Energy Technology Data Exchange (ETDEWEB)

    Behar, M.; Katz, A.; Silverman, M.

    1986-03-01

    A purified fraction of proximal tubule brush border membranes (BBM) was prepared from dog kidney and used to immunize mice. The standard technique of hybridoma production was followed as described by Kohler and Milstein. Production of antibodies was detected by indirect immunofluorescence on dog kidney slices and by immunodot against the purified fraction on nitrocellulose. Five hybrids exhibited anti BBM activity. These were cloned twice and yielded stable cell lines producing IgG type monoclonal antibodies against BBM. They were designated A/sub 1/, C/sub 7/, D/sub 3/, D/sub 7/ and H/sub 4/. As a family these five monoclonals have broad tissue specificity, i.e. positive staining of the surface mucosa of intestinal kidney proximal tubules. D/sub 3/ exhibits even broader specificity for epithelium reacting with bile canaliculi and choroid plexus. The authors have verified that at least 4/5 antibodies are directed against BBM protein as revealed by immunoprecipitation of solubilized BBM and detected by Coomassie blue staining or autoradiography of lactoperoxidase labelled BBM. Most interestingly all antibodies bind to the surface of LL CPK/sub 1/ cells, a continuous pig kidney cell line of undefined origin but exhibiting many characteristics of proximal tubule cells. The library of monoclonal antibodies obtained provide important probes with which to study membrane biogenesis and polarization in epithelial cells.

  15. Adsorption of monoclonal antibodies to glass microparticles.

    Science.gov (United States)

    Hoehne, Matthew; Samuel, Fauna; Dong, Aichun; Wurth, Christine; Mahler, Hanns-Christian; Carpenter, John F; Randolph, Theodore W

    2011-01-01

    Microparticulate glass represents a potential contamination to protein formulations that may occur as a result of processing conditions or glass types. The effect of added microparticulate glass to formulations of three humanized antibodies was tested. Under the three formulation conditions tested, all three antibodies adsorbed irreversibly at near monolayer surface coverages to the glass microparticles. Analysis of the secondary structure of the adsorbed antibodies by infrared spectroscopy reveal only minor perturbations as a result of adsorption. Likewise, front-face fluorescence quenching measurements reflected minimal tertiary structural changes upon adsorption. In contrast to the minimal effects on protein structure, adsorption of protein to suspensions of glass microparticles induced significant colloidal destabilization and flocculation of the suspension.

  16. Tailoring DNA vaccines: designing strategies against HER2 positive cancers

    Directory of Open Access Journals (Sweden)

    Cristina eMarchini

    2013-05-01

    Full Text Available The crucial role of HER2 in epithelial transformation and its selective overexpression on cancer tissues makes it an ideal target for cancer immunotherapies such as passive immunotherapy with Trastuzumab. There are, however, a number of concerns regarding the use of monoclonal antibodies which include resistance, repeated treatments, considerable costs and side effects that make active immunotherapies against HER2 desirable alternative approaches. The efficacy of anti-HER2 DNA vaccination has been widely demonstrated in transgenic cancer-prone mice, which recapitulate several features of human breast cancers. Nonetheless, the rational design of a cancer vaccine able to trigger a long lasting immunity, and thus prevent tumor recurrence in patients, would require the understanding of how tolerance and immunosuppression regulate antitumor immune responses and, at the same time, the identification of the most immunogenic portions of the target protein. We herein retrace the findings that led to our most promising DNA vaccines that, by encoding human/rat chimeric forms of HER2, are able to circumvent peripheral tolerance. Preclinical data obtained with these chimeric DNA vaccines have provided the rationale for their use in an ongoing phase I clinical trial (EudraCT 2011-001104-34.

  17. Prognostic impact of HER-2 Subclonal Amplification in breast cancer.

    Science.gov (United States)

    Di Oto, Enrico; Brandes, Alba A; Cucchi, Maria C; Foschini, Maria P

    2017-06-02

    The presence of a limited number of cells with HER-2 amplification (Subclonal Amplification) in breast carcinomas is occasionally encountered, but its prognostic impact is poorly known. The purpose of this study is to evaluate the prognostic impact of HER-2 Subclonal Amplification in a retrospective series of breast cancers. Accordingly, 81 consecutive breast carcinomas showing HER-2 Subclonal Amplification were obtained from the histology files (case series). These cases were subdivided into two groups: (a) those cases in which the HER-2 Subclonal Amplification was consonant to the accepted criteria for amplification, showing clusters of amplified cells, and (b) those cases with rare HER-2 Subclonal Amplification that did not reflect the accepted criteria for amplification, showing scattered amplified cells only. The incidence of metastases and late recurrences of the case series was compared with a series composed of 109 consecutive cases, being HER-2 homogeneous (comprising 14 Amplified and 95 Non-Amplified cases), matched for grade and stage (control series). It appeared that cases showing Subclonal Amplification had an incidence of metastases intermediate between the cases Amplified and Non-Amplified. Specifically, Subclonal Amplification with clustered cells had a lower incidence of metastases than Amplified cases (12.9 versus 21.4%). On the contrary, Subclonal Amplification with scattered cells showed an incidence of metastases higher than Non-Amplified cases (14 versus 9.47%). In addition, patients Subclonal Amplification with clustered cells, who were treated with the specific monoclonal antibody, had a lower incidence of metastases than patients showing Subclonal Amplification with scattered cells, who did not receive target therapy. These data, together with those recently published, indicate that Subclonal Amplification has an impact on prognosis and should be taken into consideration to correctly plan the treatment of breast cancer patients.

  18. Monoclonal IgA Antibodies for Aflatoxin Immunoassays

    OpenAIRE

    2016-01-01

    Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA) isotype with a strong binding affinity to aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and aflatoxin M1 (AFM1). The antibody was effectively used in immunoaffinity column (IAC) and ELISA kit development. The performance of the IACs was compatible ...

  19. Sperm-immobilizing monoclonal antibody to human seminal plasma antigens.

    Science.gov (United States)

    Shigeta, M; Watanabe, T; Maruyama, S; Koyama, K; Isojima, S

    1980-01-01

    Rat spleen cells immunized to human azoospermic semen (a mixture of seminal plasma components) and mouse myeloma cells (P3/X63 Ag8U1; P3U1) (Marguilies et al., 1976) were successfully fused with polyethylene glycol (PEG 1500) and 19 of 89 fused cell cultures were found to produce sperm-immobilizing antibody. The cells that produced antibody indicating the highest sperm-immobilizing activity were distributed into wells for further recloning and 10 clones producing sperm-immobilizing antibody were established. The clone (1C4) producing the highest antibody titre was found to produce a large amount of IgG in culture supernatants and to contain a mixture of rat and mouse chromosomes. It was proved by immunodiffusion test that the monoclonal antibody was produced to the human seminal plasma antigen No. 7 which is common to human milk protein. Using this hybridoma which produced a large amount of monoclonal sperm-immobilizing antibody, a new method could be developed for purifying human seminal plasma antigen by immunoaffinity chromatography with bound antibody from the hybridoma. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:6783353

  20. Generation of monoclonal antibodies against highly conserved antigens.

    Directory of Open Access Journals (Sweden)

    Hongzhe Zhou

    Full Text Available BACKGROUND: Therapeutic antibody development is one of the fastest growing areas of the pharmaceutical industry. Generating high-quality monoclonal antibodies against a given therapeutic target is very crucial for the success of the drug development. However, due to immune tolerance, some proteins that are highly conserved between mice and humans are not very immunogenic in mice, making it difficult to generate antibodies using a conventional approach. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the impaired immune tolerance of NZB/W mice was exploited to generate monoclonal antibodies against highly conserved or self-antigens. Using two highly conserved human antigens (MIF and HMGB1 and one mouse self-antigen (TNF-alpha as examples, we demonstrate here that multiple clones of high affinity, highly specific antibodies with desired biological activities can be generated, using the NZB/W mouse as the immunization host and a T cell-specific tag fused to a recombinant antigen to stimulate the immune system. CONCLUSIONS/SIGNIFICANCE: We developed an efficient and universal method for generating surrogate or therapeutic antibodies against "difficult antigens" to facilitate the development of therapeutic antibodies.

  1. Monoclonal IgA Antibodies for Aflatoxin Immunoassays

    Directory of Open Access Journals (Sweden)

    Özlem Ertekin

    2016-05-01

    Full Text Available Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA isotype with a strong binding affinity to aflatoxin B1 (AFB1, aflatoxin B2 (AFB2, aflatoxin G1 (AFG1, aflatoxin G2 (AFG2 and aflatoxin M1 (AFM1. The antibody was effectively used in immunoaffinity column (IAC and ELISA kit development. The performance of the IACs was compatible with AOAC performance standards for affinity columns (Test Method: AOAC 991.31. The total binding capacity of the IACs containing our antibody was 111 ng, 70 ng, 114 ng and 73 ng for AFB1, AFB2, and AFG1 andAFG2, respectively. Furthermore, the recovery rates of 5 ng of each AF derivative loaded to the IACs were determined as 104.9%, 82.4%, 85.5% and 70.7% for AFB1, AFB2, AFG1 and AFG2, respectively. As for the ELISA kit developed using non-oriented, purified IgA antibody, we observed a detection range of 2–50 µg/L with 40 min total test time. The monoclonal antibody developed in this research is hitherto the first presentation of quadruple antigen binding IgA monoclonal antibodies in mycotoxin analysis and also the first study of their utilization in ELISA and IACs. IgA antibodies are valuable alternatives for immunoassay development, in terms of both sensitivity and ease of preparation, since they do not require any orientation effort.

  2. Monoclonal IgA Antibodies for Aflatoxin Immunoassays

    Science.gov (United States)

    Ertekin, Özlem; Pirinçci, Şerife Şeyda; Öztürk, Selma

    2016-01-01

    Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA) isotype with a strong binding affinity to aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and aflatoxin M1 (AFM1). The antibody was effectively used in immunoaffinity column (IAC) and ELISA kit development. The performance of the IACs was compatible with AOAC performance standards for affinity columns (Test Method: AOAC 991.31). The total binding capacity of the IACs containing our antibody was 111 ng, 70 ng, 114 ng and 73 ng for AFB1, AFB2, and AFG1 andAFG2, respectively. Furthermore, the recovery rates of 5 ng of each AF derivative loaded to the IACs were determined as 104.9%, 82.4%, 85.5% and 70.7% for AFB1, AFB2, AFG1 and AFG2, respectively. As for the ELISA kit developed using non-oriented, purified IgA antibody, we observed a detection range of 2–50 µg/L with 40 min total test time. The monoclonal antibody developed in this research is hitherto the first presentation of quadruple antigen binding IgA monoclonal antibodies in mycotoxin analysis and also the first study of their utilization in ELISA and IACs. IgA antibodies are valuable alternatives for immunoassay development, in terms of both sensitivity and ease of preparation, since they do not require any orientation effort. PMID:27187470

  3. Monoclonal IgA Antibodies for Aflatoxin Immunoassays.

    Science.gov (United States)

    Ertekin, Özlem; Pirinçci, Şerife Şeyda; Öztürk, Selma

    2016-05-12

    Antibody based techniques are widely used for the detection of aflatoxins which are potent toxins with a high rate of occurrence in many crops. We developed a murine monoclonal antibody of immunoglobulin A (IgA) isotype with a strong binding affinity to aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and aflatoxin M1 (AFM1). The antibody was effectively used in immunoaffinity column (IAC) and ELISA kit development. The performance of the IACs was compatible with AOAC performance standards for affinity columns (Test Method: AOAC 991.31). The total binding capacity of the IACs containing our antibody was 111 ng, 70 ng, 114 ng and 73 ng for AFB1, AFB2, and AFG1 andAFG2, respectively. Furthermore, the recovery rates of 5 ng of each AF derivative loaded to the IACs were determined as 104.9%, 82.4%, 85.5% and 70.7% for AFB1, AFB2, AFG1 and AFG2, respectively. As for the ELISA kit developed using non-oriented, purified IgA antibody, we observed a detection range of 2-50 µg/L with 40 min total test time. The monoclonal antibody developed in this research is hitherto the first presentation of quadruple antigen binding IgA monoclonal antibodies in mycotoxin analysis and also the first study of their utilization in ELISA and IACs. IgA antibodies are valuable alternatives for immunoassay development, in terms of both sensitivity and ease of preparation, since they do not require any orientation effort.

  4. HER-2 status in gastrointestinal stromal tumor.

    Science.gov (United States)

    Lopes, Lisandro Ferreira; Bacchi, Carlos E

    2008-08-01

    Human epidermal growth factor receptor-2 (HER-2) encodes for the transmembrane glycoprotein HER-2 that is involved in activation of intracellular signal transduction pathways that control cell growth and differentiation. HER-2 is overexpressed in approximately 20% of patients with breast cancer and has been associated with poorer prognosis. Since 1998, the anti-HER-2 antibody trastuzumab has been used for the treatment of patients with HER-2-positive breast cancers. However, little information is available about the relationship between HER-2 and gastrointestinal stromal tumors. This study's purpose was to determine the HER-2 status in gastrointestinal stromal tumors. We found that all 477 cases included in this study were negative (score 0) by immunohistochemistry using HercepTest, and no HER-2 gene amplification was detected in 71 cases submitted to fluorescence in situ hybridization. These results show that HER-2 may not have any role in gastrointestinal stromal tumor pathogenesis and that the neoplasm may not be suitable for treatment with trastuzumab.

  5. The Use of Monoclonal Antibodies in Human Prion Disease

    Science.gov (United States)

    Bodemer, Walter

    Detection of PrP and its pathological isoform(s) is the key to understanding the etiology and pathogenesis of transmissible spongiform encephalopathy. There is ample evidence that PrP isoforms constitute a major component of an unknown and perhaps unconventional infectious agent. An etiological relationship between human and zoonotic transmissible spongiform encephalopathies may be revealed with monoclonal antibodies. Knowledge of the conformational transition rendering a nonpathogenic, almost ubiquitous cellular protein into a pathogenic one is crucial to defining pathomechanisms. The stepwise or even continuous formation of pathogenic molecules can be monitored. Any improvement in the early diagnosis could help to conceive new therapeutic measures which are not currently available. Determination of PrP isoforms in tissue, cells, or body fluids may be of prognostic value. Many experimental approaches in molecular medicine and molecular biology of the prion protein already rely on monoclonal antibodies. Recombinant antibodies such as the single-chain Fv may soon replace traditional hybridoma techniques. Binding affinity can easily be manipulated by a number of techniques, including in vitro mutagenesis - a step which could never be carried out using the traditional hybridoma technology. Monoclonal antibodies are and will remain an essential support for ongoing research on the prion protein in general and on the unconventional infectious prions.

  6. Challenges and opportunities for monoclonal antibody therapy in veterinary oncology.

    Science.gov (United States)

    Beirão, Breno C B; Raposo, Teresa; Jain, Saurabh; Hupp, Ted; Argyle, David J

    2016-12-01

    Monoclonal antibodies (mAbs) have come to dominate the biologics market in human cancer therapy. Nevertheless, in veterinary medicine, very few clinical trials have been initiated using this form of therapy. Some of the advantages of mAb therapeutics over conventional drugs are high specificity, precise mode of action and long half-life, which favour infrequent dosing of the antibody. Further advancement in the field of biomedical sciences has led to the production of different forms of antibodies, such as single chain antibody fragment, Fab, bi-specific antibodies and drug conjugates for use in diagnostic and therapeutic purposes. This review describes the potential for mAbs in veterinary oncology in supporting both diagnosis and therapy of cancer. The technical and financial hurdles to facilitate clinical acceptance of mAbs are explored and insights into novel technologies and targets that could support more rapid clinical development are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Control of Her-2 tumor immunity and thyroid autoimmunity by MHC and regulatory T cells.

    Science.gov (United States)

    Jacob, Jennifer B; Kong, Yi-chi M; Meroueh, Chady; Snower, Daniel P; David, Chella S; Ho, Ye-Shih; Wei, Wei-Zen

    2007-07-15

    Immune reactivity to self-antigens in both cancer and autoimmune diseases can be enhanced by systemic immune modulation, posing a challenge in cancer immunotherapy. To distinguish the genetic and immune regulation of tumor immunity versus autoimmunity, immune responses to human ErbB-2 (Her-2) and mouse thyroglobulin (mTg) were tested in transgenic mice expressing Her-2 that is overexpressed in several cancers, and HLA-DRB1*0301 (DR3) that is associated with susceptibility to several human autoimmune diseases, as well as experimental autoimmune thyroiditis (EAT). To induce Her-2 response, mice were electrovaccinated with pE2TM and pGM-CSF encoding the extracellular and transmembrane domains of Her-2 and the murine granulocyte macrophage colony-stimulating factor, respectively. To induce EAT, mice received mTg i.v. with or without lipopolysaccharide. Depletion of regulatory T cells (Treg) with anti-CD25 monoclonal antibody enhanced immune reactivity to Her-2 as well as mTg, showing control of both Her-2 and mTg responses by Treg. When immunized with, Her-2xDR3 and B6xDR3 mice expressing H2(b)xDR3 haplotype developed more profound mTg response and thyroid pathology than Her-2 or B6 mice that expressed the EAT-resistant H2(b) haplotype. In Her-2xDR3 mice, the response to mTg was further amplified when mice were also immunized with pE2TM and pGM-CSF. On the contrary, Her-2 reactivity was comparable whether mice expressed DR3 or not. Therefore, induction of Her-2 immunity was independent of DR3 but development of EAT was dictated by this allele, whereas Tregs control the responses to both self-antigens. These results warrant close monitoring of autoimmunity during cancer immunotherapy, particularly in patients with susceptible MHC class II alleles.

  8. Effects of Herceptin on circulating tumor cells in HER2 positive early breast cancer.

    Science.gov (United States)

    Zhang, J-L; Yao, Q; Chen Y Wang, J-H; Wang, H; Fan, Q; Ling, R; Yi, J; Wang, L

    2015-03-20

    The objective of this study was to determine the changes in peripheral blood circulating tumor cells in HER2-positive early breast cancer before and after Herceptin therapy, and to explore the effects of the HER2 gene and Herceptin on circulating tumor cells. CK19 mRNA expression in peripheral blood was evaluated by qRT-PCR as an index of circulating tumor cells in 15 cases of HER-2-positive breast cancer and 18 cases of HER2-negative breast cancer before, and after chemotherapy as well. Ten cases of HER2-positive breast cancer continued on Herceptin therapy for 3 months after chemotherapy, and their peripheral blood was again drawn and assayed for CK-19 mRNA expression. Preoperatively, all cases of HER2-positive cancer were positive for CK19 mRNA in peripheral blood, but 6 cases of HER2-negative breast cancer were positive (33.3%), where there was a substantial difference between the two groups. After 6 cycles of adjuvant chemotherapy, CK19 positive rates in cases of HER2-positive and -negative breast cancer reduced by 93.3 and 11.1%, respectively, with a significant difference still existing. After 3 months of Herceptin therapy, expression of CK19 mRNA declined considerably in 10 cases of HER2 positive breast cancer (113.66 ± 88.65 vs 63.35 ± 49.27, P = 0.025). HER-2 gene expression closely correlated with circulating tumor cells in peripheral blood of early breast cancer patients. Moreover, Herceptin, a monoclonal antibody for HER2, can reduce the number of circulating tumor cells, which can be an early predictive factor for Herceptin therapy effectiveness against breast cancer.

  9. A recombinant, fully human monoclonal antibody with antitumor activity constructed from phage-displayed antibody fragments

    NARCIS (Netherlands)

    Huls, GA; Heijnen, IAFM; Cuomo, ME; Koningsberger, JC; Boel, E; de Vries, ARV; Loyson, SAJ; Helfrich, W; Henegouwen, GPV; van Meijer, M; de Kruif, J; Logtenberg, T

    1999-01-01

    A single-chain Fv antibody fragment specific for the tumor-associated Ep-CAM molecule was isolated from a semisynthetic phage display library and converted into an intact, fully human IgG1 monoclonal antibody (huMab), The purified huMab had an affinity of 5 nM and effectively mediated tumor cell kil

  10. Combination of antibody that inhibits ligand-independent HER3 dimerization and a p110α inhibitor potently blocks PI3K signaling and growth of HER2+ breast cancers.

    Science.gov (United States)

    Garrett, Joan T; Sutton, Cammie R; Kurupi, Richard; Bialucha, Carl Uli; Ettenberg, Seth A; Collins, Scott D; Sheng, Qing; Wallweber, Jerry; Defazio-Eli, Lisa; Arteaga, Carlos L

    2013-10-01

    We examined the effects of LJM716, an HER3 (ERBB3) neutralizing antibody that inhibits ligand-induced and ligand-independent HER3 dimerization, as a single agent and in combination with BYL719, an ATP competitive p110α-specific inhibitor, against HER2-overexpressing breast and gastric cancers. Treatment with LJM716 reduced HER2-HER3 and HER3-p85 dimers, P-HER3 and P-AKT, both in vitro and in vivo. Treatment with LJM716 alone markedly reduced growth of BT474 xenografts. The combination of LJM716/lapatinib/trastuzumab significantly improved survival of mice with BT474 xenografts compared with lapatinib/trastuzumab (P = 0.0012). LJM716 and BYL719 synergistically inhibited growth in a panel of HER2+ and PIK3CA mutant cell lines. The combination also inhibited P-AKT in HER2-overexpressing breast cancer cells and growth of HER2+ NCI-N87 gastric cancer xenografts more potently than LJM716 or BYL719 alone. Trastuzumab-resistant HER2+/PIK3CA mutant MDA453 xenografts regressed completely after 3 weeks of therapy with LJM716 and BYL719, whereas either single agent inhibited growth only partially. Finally, mice with BT474 xenografts treated with trastuzumab/LJM716, trastuzumab/BYL719, LJM716/BYL719, or trastuzumab/LJM716/BYL719 exhibited similar rates of tumor regression after 3 weeks of treatment. Thirty weeks after treatment discontinuation, 14% of mice were treated with trastuzumab/LJM716/BYL719, whereas >80% in all other treatment groups were sacrificed due to a recurrent large tumor burden (P = 0.0066). These data suggest that dual blockade of the HER2 signaling network with an HER3 antibody that inhibits HER2-HER3 dimers in combination with a p110α-specific inhibitor in the absence of a direct HER2 antagonist is an effective treatment approach against HER2-overexpressing cancers.

  11. Current status of cancer immunodetection with radiolabeled human monoclonal antibodies.

    Science.gov (United States)

    De Jager, R; Abdel-Nabi, H; Serafini, A; Pecking, A; Klein, J L; Hanna, M G

    1993-04-01

    The use of radiolabeled murine monoclonal antibodies (MoAbs) for cancer immunodetection has been limited by the development of human antimouse antibodies (HAMA). Human monoclonal antibodies do not elicit a significant human antihuman (HAHA) response. The generation and production of human monoclonal antibodies met with technical difficulties that resulted in delaying their clinical testing. Human monoclonal antibodies of all isotypes have been obtained. Most were immunoglobulin (Ig) M directed against intracellular antigens. Two antibodies, 16.88 (IgM) and 88BV59 (IgG3k), recognize different epitopes on a tumor-associated antigen, CTA 16.88, homologous to cytokeratins 8, 18, and 19. CTA 16.88 is expressed by most epithelial-derived tumors including carcinomas of the colon, pancreas, breast, ovary, and lung. The in vivo targeting by these antibodies is related to their localization in nonnecrotic areas of tumors. Repeated administration of 16.88 over 5 weeks to a cumulative dose of 1,000 mg did not elicit a HAHA response. Two of 53 patients developed a low titer of HAHA 1 to 3 months after a single administration of 88BV59. Planar imaging of colorectal cancer with Iodine-131 (131I)-16.88 was positive in two studies in 9 of 12 and 16 of 20 patients preselected by immunohistochemistry. Tumors less than 2 cm in diameter are usually not detected. The lack of immunogenicity and long tumor residence time (average = 17 days) makes 16.88 a good candidate for therapy. Radioimmunlymphoscintigraphy with indium-111 (111In)-LiLo-16.88 administered by an intramammary route was used in the presurgical staging of primary breast cancer. The negative predictive value of lymph node metastases for tumors less than 3 cm was 90.5%. Planar and single photon emission computed tomography imaging of colorectal carcinoma with technetium-99m (99mTc) 88BV59 was compared with computed tomography (CT) scan in 36 surgical patients. The antibody scan was more sensitive than the CT scan in detecting

  12. A gene-protein assay for human epidermal growth factor receptor 2 (HER2: brightfield tricolor visualization of HER2 protein, the HER2 gene, and chromosome 17 centromere (CEN17 in formalin-fixed, paraffin-embedded breast cancer tissue sections

    Directory of Open Access Journals (Sweden)

    Nitta Hiroaki

    2012-05-01

    Full Text Available Abstract Background The eligibility of breast cancer patients for human epidermal growth factor receptor 2 (HER2-directed therapies is determined by the HER2 gene amplification and/or HER2 protein overexpression status of the breast tumor as determined by in situ hybridization (ISH or immunohistochemistry (IHC, respectively. Our objective was to combine the US Food and Drug Administration (FDA-approved HER2 & chromosome 17 centromere (CEN17 brightfield ISH (BISH and HER2 IHC assays into a single automated HER2 gene-protein assay allowing simultaneous detection of all three targets in a single tissue section. Methods The HER2 gene-protein assay was optimized using formalin-fixed, paraffin-embedded (FFPE samples of the xenograft tumors MCF7 [HER2 negative (non-amplified gene, protein negative] and Calu-3 [HER2 positive (amplified gene, protein positive]. HER2 IHC was performed using a rabbit monoclonal anti-HER2 antibody (clone 4B5 and a conventional 3,3'-diaminobenzidine IHC detection. The HER2 & CEN17 BISH signals were visualized using horseradish peroxidase-based silver and alkaline phosphatase-based red detection systems, respectively with a cocktail of 2,4-dinitrophenyl-labeled HER2 and digoxigenin-labeled CEN17 probes. The performance of the gene-protein assay on tissue microarray slides containing 189 randomly selected FFPE clinical breast cancer tissue cores was compared to that of the separate HER2 IHC and HER2 & CEN17 BISH assays. Results HER2 protein detection was optimal when the HER2 IHC protocol was used before (rather than after the BISH protocol. The sequential use of HER2 IHC and HER2 & CEN17 BISH detection steps on FFPE xenograft tumor sections appropriately co-localized the HER2 protein, HER2 gene, and CEN17 signals after mitigating the silver background staining by using a naphthol phosphate-containing hybridization buffer for the hybridization step. The HER2 protein and HER2 gene status obtained using the multiplex HER2 gene

  13. Designing a HER2/neu promoter to drive α1,3galactosyltransferase expression for targeted anti-αGal antibody-mediated tumor cell killing

    Science.gov (United States)

    Lanteri, Marion; Ollier, Laurence; Giordanengo, Valérie; Lefebvre, Jean-Claude

    2005-01-01

    Introduction Our goal was to specifically render tumor cells susceptible to natural cytolytic anti-αGal antibodies by using a murine α1,3galactosyltransferase (mαGalT) transgene driven by a designed form of HER2/neu promoter (pNeu), the transcription of which is frequently observed to be above basal in breast tumors. Indeed, the αGalT activity that promotes Galα1,3Galβ1,4GlcNAc-R (αGal) epitope expression has been mutationally disrupted during the course of evolution, starting from Old World primates, and this has led to the counter-production of large amounts of cytotoxic anti-αGal antibodies in recent primates, including man. Method Expression of the endogenous c-erbB-2 gene was investigated in various cell lines by northern blotting. A mαGalT cDNA was constructed into pcDNA3 vector downstream of the original CMV promoter (pCMV/mαGalT) and various forms of pNeu were prepared by PCR amplification and inserted in the pCMV/mαGalT construct upstream of the mαGalT cDNA, in the place of the CMV promoter. These constructs were transferred into HEK-293 control and breast tumor cell lines. Stably transfected cells were analyzed by northern blotting for their expression of αGalT and c-erbB-2, and by flow cytometry for their binding with fluorescein isothiocyanate-conjugated Griffonia simplicifolia/isolectin B4. Results We show that expression of the mαGalT was up- or down-modulated according to the level of endogenous pNeu activity and the particular form of constructed pNeu. Among several constructs, two particular forms of the promoter, pNeu250 containing the CCAAT box and the PEA3 motif adjacent to the TATAA box, and pNeu664, which has three additional PEA3 motifs upstream of the CCAAT box, were found to promote differential αGalT expression. Conclusion Our results strengthen current concepts about the crucial role played by the proximal PEA3 motif of pNeu, and may represent a novel therapeutic approach for the development of targeted transgene expression

  14. Production of monoclonal antibodies to human glomerular basement membrane.

    Directory of Open Access Journals (Sweden)

    Mino,Yasuaki

    1984-10-01

    Full Text Available Using the technique of somatic cell fusion, we produced monoclonal antibodies to collagenase-digested human glomerular basement membrane (GBM. Fourteen monoclonal antibodies which reacted with normal human kidney in indirect immunofluorescence (IIF studies were produced. An analysis of the binding patterns indicated that the antigens recognized could be divided into six broad groups. Monoclonal antibody B3-H10 (Group 1 reacted with only GBM in a fine granular pattern. A5-B12 and B5-C2 (Group 2 reacted with GBM and peritubular capillary in a linear pattern. B2-A12 (Group 3 reacted with only epithelial cells. Al-C9 and A4-E2 (Group 4 showed a mesangial pattern in glomerulus and a lineal pattern in tubular basement membrane (TBM, Bowman's capsule and peritubular capillary. A1-E1, A1-E11, A2-E6, A3-B6, A4-F8 and B5-H2 (Group 5 recognized determinants common to GBM, TBM, Bowman's capsule and/or peritubular capillary. A3-F1 and B5-E10 (Group 6 reacted with TBM and Bowman's capsule. The staining pattern of B3-H10 (Group 1 was characteristic because it was not linear, but finely granular along the GBM. The staining pattern of B2-A12 (Group 3 was also characteristic because only epithelial cells were stained, and processes of epithelial cells were observed as fine fibrils. To the best of our knowledge, these two types of monoclonal antibodies have not been reported previously.

  15. Strategies for Treating Autoimmune Disease With Monoclonal Antibodies

    OpenAIRE

    Wofsy, David

    1985-01-01

    There is no safe and reliable therapy for most serious autoimmune diseases, such as systemic lupus erythematosus. Severe cases usually require treatment with corticosteroids or cytotoxic drugs or both, which frequently provide inadequate disease control and can cause serious complications. These therapies are not restricted in their effects to cells of the immune system, but rather have a broad range of toxic effects on cells throughout the body. The development of monoclonal antibodies has l...

  16. Quantification of Moraxella bovis haemagglutinating adhesins with monoclonal antibodies.

    Science.gov (United States)

    Gil-Turnes, C; Aleixo, J A

    1991-08-01

    Six monoclonal antibodies (MAbs) against Moraxella bovis GF 9 were used to quantify haemagglutinating adhesins of 16 strains of this organism. The amount of each MAb necessary to inhibit one haemagglutinating unit of each strain varied between 4 and 0.007 times that required by strain GF 9. Five strains reacted with six MAbs, one with five, two with four, one with three, two with two and three with none. The procedures used enabled to detect dominant strains candidates for vaccines.

  17. Monoclonal antibody to native P39 protein from Borrelia burgdorferi.

    OpenAIRE

    Sullivan, T J; Hechemy, K E; Harris, H L; Rudofsky, U H; Samsonoff, W A; Peterson, A J; Evans, B. D.; Balaban, S L

    1994-01-01

    We have produced, by using a sonicate of Borrelia burgdorferi, a monoclonal antibody (MAb), NYSP39H, that is specific for the P39 protein band. This MAb reacted with 13 isolates of B. burgdorferi but not with eight different spirochetes (four borrelias, two leptospiras, and two treponemas). Surface labeling of B. burgdorferi with biotin and subsequent treatment with Nonidet P-40 showed that P39 was not biotinylated but was extracted with Nonidet P-40, indicating that it is present within the ...

  18. Monoclonal Antibody-Based Therapeutics for Melioidosis and Glanders

    Directory of Open Access Journals (Sweden)

    Hyung-Yong Kim

    2011-01-01

    Full Text Available Problem statement: Burkholderia Pseudomallei (BP and B. Mallei (BM were two closely related pathogenic gram-negative bacteria. They were the causative agents of melioidosis and glanders, respectively and are recognized by CDC as category B select agents. Significant efforts had been devoted to developing the diagnostic and therapeutic measures against these two pathogens. Monoclonal antibody-based therapeutic was a promising targeted therapy to fight against melioidosis and glanders. Valuable findings have been reported by different groups in their attempt to identify vaccine targets against these two pathogens. Approach: Our group has generated neutralizing Monoclonal Antibodies (MAbs against BP and BM and characterized them by both in vitro and in vivo experiments. We present an overview of the MAb-based therapeutic approaches against BP and BM and demonstrate some of our efforts for developing chimeric and fully human MAbs using antibody engineering. Results: Throughout conventional mouse hybridoma technique and antibody engineering (chimerization and in vitro antibody library techniques, we generated 10 chimeric MAbs (3 stable MAbs and 7 transient MAbs and one fully human MAb against BP and BM. In addition, we present the reactive antigen profiles of these MAbs. Our approaches had potentials to accelerate the development of therapeutics for melioidosis and glanders in humans. Conclusion: Our experience and findings presented here will be valuable for choosing the best antigenic targets and ultimately for the production of effective vaccines for these two pathogens.

  19. Rapid Purification of a New Humanized Single-chain Fv Antibody/Human Interleukin-2 Fusion Protein Reactive against HER2 Receptor

    Institute of Scientific and Technical Information of China (English)

    Wei-Yun ZHANG; Tak-Chun YIP; Cheuk-Sang KWOK

    2004-01-01

    Human embryonic kidney 293 cells were transfected with plasmid pcDNA-H520C9scFv-rhIL2 containing a chimeric cDNA encoding the humanized 520C9 scFv/recombinant human IL-2 fusion protein (H520C9scFv-rhIL-2). The transfected cells in plateau growing phase were cultured in serum-free medium for three days. The supernatant was collected, concentrated and purified using an affinity column packed with CNBr-activated Sepharose 4B coupled with anti-rhIL-2 mouse monoclonal antibody. The purified fusion protein was analyzed by ELISA, SDS-PAGE and Western blot. The fusion protein showed only one band in both silver stained electrophoresis gel and Western blot developed by ECL chemiluminescence system.Its molecular weight was confirmed to be about 45 kD. This fusion protein possessed binding specificity against p 185 positive SKOV3 and B 16/neu cells, and it might stimulate IL-2-dependent CTLL-2 cell proliferation as well.

  20. Monoclonal antibodies in animal production; their use in diagnostics and passive immunization.

    NARCIS (Netherlands)

    Booman, P.

    1989-01-01

    One of the landmarks in immunology was the invention and development of monoclonal antibody-secreting hybridomas by Milstein and his coworkers. The enormous promise of monoclonal antibody technology, which became apparent soon after its discovery, may explain the unusual speed with which monoclonal

  1. Human epidermal growth factor receptor 2 (HER2) immunoreactivity

    DEFF Research Database (Denmark)

    Rasmussen, Anne-Sofie Schrohl; Pedersen, Hans Christian; Jensen, Sussie Steen

    2011-01-01

    The availability of specific antibody-based test systems is essential to testing of HER2 protein expression. Here, we mapped epitopes recognized by three pharmacodiagnostic HER2 antibodies and investigated their specificity towards peptides and fusion proteins homologous to the intracellular doma...... domains of HER1, HER2, HER3 and HER4. The investigated antibodies were PATHWAY(®) HER2 (clone 4B5; Ventana Medical Systems Inc., Tucson, AZ, USA), HercepTest™ (Dako Denmark A/S, Glostrup, Denmark), and Oracle(®) HER2 (clone CB11; Leica Microsystems GmbH, Wetzlar, Germany)....

  2. Ofatumumab: a novel monoclonal anti-CD20 antibody

    Directory of Open Access Journals (Sweden)

    Thomas S Lin

    2010-05-01

    Full Text Available Thomas S LinGlaxoSmithKline Oncology R&D, Collegeville, PA, USAAbstract: Ofatumumab, a novel humanized monoclonal anti-CD20 antibody, was recently approved by the FDA for the treatment of fludarabine and alemtuzumab refractory chronic lymphocytic leukemia (CLL. Ofatumumab effectively induces complement-dependent cytotoxicity (CDC in vitro, and recent studies demonstrated that ofatumumab also effectively mediates antibody-dependent cellular cytotoxicity (ADCC. Pharmacokinetic studies indicated that increased exposure to the antibody correlated with improved clinical outcome in CLL. Thus, pharmacogenomics may be important in identifying which patients are more likely to respond to ofatumumab therapy, although such studies have not yet been performed. Patients with the high-affinity FCGR3a 158 V/V polymorphism may be more likely to respond to therapy, if ADCC is the primary in vivo mechanism of action of ofatumumab. Patients with increased expression of the complement defense proteins CD55 and CD59 may be less likely to respond if ofatumumab works in vivo primarily via CDC. Patients with increased metabolism and clearance of ofatumumab may have lower exposure and be less likely to respond clinically. Thus, pharmacogenomics may determine the responsiveness of patients to ofatumumab therapy.Keywords: monoclonal antibody, CD20, CLL, NHL, lymphoma

  3. Monoclonal Antibody Production against Human Spermatozoal Surface Antigens

    Directory of Open Access Journals (Sweden)

    M Jedi-Tehrani

    2005-10-01

    Full Text Available Introduction: As monoclonal antibodies are potential tools for characterization of soluble or cellular surface antigens, use of these proteins has always been considered in infertility and reproduction research. Therefore, in this study, monoclonal antibodies against human sperm surface antigens were produced. Material and Methods: To produce specific clones against human sperm surface antigens, proteins were extracted using solubilization methods. Balb/c mice were immunized intraperitoneally with the proteins using complete Freund’s adjuvant in the first injection and incomplete Adjuvant in the following booster injections. Hybridoma cells producing ASA were cloned by limiting dilution. Results: Five stable ASA producing hybridoma clones were achieved and their antibody isotypes were determined by ELISA. All the isotypes were of IgG class. Their cross reactivity with rat and mice spermatozoa was examined but they did not have any cross reactivity. Conclusion: The produced antibodies can be used in further studies to characterize and evaluate each of the antigens present on human sperm surface and determining their role in fertilization.

  4. Prediction and Reduction of the Aggregation of Monoclonal Antibodies.

    Science.gov (United States)

    van der Kant, Rob; Karow-Zwick, Anne R; Van Durme, Joost; Blech, Michaela; Gallardo, Rodrigo; Seeliger, Daniel; Aßfalg, Kerstin; Baatsen, Pieter; Compernolle, Griet; Gils, Ann; Studts, Joey M; Schulz, Patrick; Garidel, Patrick; Schymkowitz, Joost; Rousseau, Frederic

    2017-04-21

    Protein aggregation remains a major area of focus in the production of monoclonal antibodies. Improving the intrinsic properties of antibodies can improve manufacturability, attrition rates, safety, formulation, titers, immunogenicity, and solubility. Here, we explore the potential of predicting and reducing the aggregation propensity of monoclonal antibodies, based on the identification of aggregation-prone regions and their contribution to the thermodynamic stability of the protein. Although aggregation-prone regions are thought to occur in the antigen binding region to drive hydrophobic binding with antigen, we were able to rationally design variants that display a marked decrease in aggregation propensity while retaining antigen binding through the introduction of artificial aggregation gatekeeper residues. The reduction in aggregation propensity was accompanied by an increase in expression titer, showing that reducing protein aggregation is beneficial throughout the development process. The data presented show that this approach can significantly reduce liabilities in novel therapeutic antibodies and proteins, leading to a more efficient path to clinical studies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Efficient generation of human IgA monoclonal antibodies.

    Science.gov (United States)

    Lorin, Valérie; Mouquet, Hugo

    2015-07-01

    Immunoglobulin A (IgA) is the most abundant antibody isotype produced in humans. IgA antibodies primarily ensure immune protection of mucosal surfaces against invading pathogens, but also circulate and are present in large quantities in blood. IgAs are heterogeneous at a molecular level, with two IgA subtypes and the capacity to form multimers by interacting with the joining (J) chain. Here, we have developed an efficient strategy to rapidly generate human IgA1 and IgA2 monoclonal antibodies in their monomeric and dimeric forms. Recombinant monomeric and dimeric IgA1/IgA2 counterparts of a prototypical IgG1 monoclonal antibody, 10-1074, targeting the HIV-1 envelope protein, were produced in large amounts after expression cloning and transient transfection of 293-F cells. 10-1074 IgAs were FPLC-purified using a novel affinity-based resin engrafted with anti-IgA chimeric Fabs, followed by a monomers/multimers separation using size exclusion-based FPLC. ELISA binding experiments confirmed that the artificial IgA class switching of 10-1074 did not alter its antigen recognition. In summary, our technical approach allows the very efficient production of various forms of purified recombinant human IgA molecules, which are precious tools in dissecting IgA B-cell responses in physiological and pathophysiological conditions, and studying the biology, function and therapeutic potential of IgAs.

  6. Radiolabelled peptides and monoclonal antibodies for therapy decision making in inflammatory diseases

    NARCIS (Netherlands)

    Malviya, G.; Signore, A.; Lagana, B.; Dierckx, R. A.

    2008-01-01

    Radiolabelled peptides and monoclonal antibodies are an emerging class of radiopharmaceuticals for imaging inflammation with clinical implications for several chronic inflammatory disorders for diagnosis, therapy decision making and follow up. In the last decades, a number of novel monoclonal antibo

  7. Studies on Purification of Methamidophos Monoclonal Antibodies and Comoarative Immunoactivity of Purified Antibodies

    Institute of Scientific and Technical Information of China (English)

    SU-QING ZHAO; YUAN-MING SUN; CHUN-YAN ZHANG; XIAO-YU HUANG; HOU-RUI ZHANG; ZHEN-YU ZHU

    2003-01-01

    Objective To purify Methamidophos (Met) monoclonal antibodies with two methods andcompare immune activity of purified antibodies. Method Caprylic acid ammonium sulphateprecipition (CAASP) method and Sepharose protein-A (SPA) affinity chromatography method wereused to purify Met monoclonal antibodies, UV spectrum scanning was used to determine proteincontent and recovery of purified antibodies, sodium dodecylsulphate polyacrylamide gelelectrophoresis (SDS-PAGE) was used to analyze the purity of purified antibodies, and enzyme-linkedimmunosorbent assay (ELISA) was used to determine immune activity of purified antibodies.Results Antibody protein content and recovery rate with CAASP method were 7.62 mg/mL and8.05% respectively, antibody protein content and recovery rate with SPA method were 6.45 mg/mLand 5.52% respectively. Purity of antibodies purified by SPA method was higher than that by CAASPmethod. The half-maximal inhibition concentration (IC50) of antibodies purified by SPA to Met was181.26 μg/mL, and the linear working range and the limit of quantification (LOD) were 2.43-3896.01μg/mL and 1.03 μg/mL, respectively. The IC50 of antibodies purified by CAASP to Met was 352.82μg/mL, and the linear working range and LOD were 10.91-11412.29 ug/mL and 3.42 μg/mL,respectively. Conclusion Antibodies purified by SPA method are better than those by CAASPmethod, and Met monoclonal antibodies purified by SPA method can be used to prepare gold-labelledtesting paper for analyzing Met residue in vegetable and drink water.

  8. Modulation of desmin intermediate filament assembly by a monoclonal antibody

    Science.gov (United States)

    1988-01-01

    We have used a monoclonal antibody against desmin to examine the assembly of intermediate filaments (IF) from their building blocks, the tetrameric protofilaments. The antibody, designated D76, does not cross react with any other IF proteins (Danto, S.I., and D.A. Fischman. 1984. J. Cell Biol. 98:2179-2191). It binds to a region amino-terminal to cys- 324 of avian desmin that is resistant to chymotrypsin and trypsin digestion, and in the electron microscope appears to bind to the ends of tetrameric protofilaments. In combination, these findings suggest that the epitope of the antibody resides at the amino-terminal end of the alpha-helical rod domain. Preincubation of desmin protofilaments with an excess of D76 antibodies blocks their subsequent assembly into IF. In the presence of sub-stoichiometric amounts of antibodies, IF are assembled from protofilaments but they are morphologically aberrant in that (a) they are capped by IgG molecules at one or both ends; (b) they are unraveled to varying degree, revealing a characteristic right- handed helical arrangement of sub-filamentous strands of different diameters. The antibody binds only to the ends but not along the length of desmin IF. The most straightforward explanation for this is that the epitope resides in a part of the desmin molecule that becomes buried within the core of the filament upon polymerization and is therefore inaccessible to the antibody. PMID:2450097

  9. Monitoring monoclonal antibody delivery in oncology: the example of bevacizumab.

    Directory of Open Access Journals (Sweden)

    Guillaume Nugue

    Full Text Available Developing therapeutic monoclonal antibodies paves the way for new strategies in oncology using targeted therapy which should improve specificity. However, due to a lack of biomarkers, a personalized therapy scheme cannot always be applied with monoclonal antibodies. As a consequence, the efficacy or side effects associated with this type of treatment often appear to be sporadic. Bevacizumab is a therapeutic monoclonal antibody targeting Vascular Endothelial Growth Factor (VEGF. It is used to limit tumor vascularization. No prognosis or response biomarker is associated with this antibody, we therefore assessed whether the administration protocol could be a possible cause of heterogeneous responses (or variable efficacy. To do this, we developed a bevacizumab assay with a broad sensitivity range to measure blood bevacizumab concentrations. We then analyzed bevacizumab concentrations in 17 patients throughout the first quarter of treatment. In line with previously published data, average blood concentrations were 88+/-27 mg/L following the first dose administered, and 213+/-105 mg/L after the last (6(th dose administered. However, the individual values were scattered, with a mean 4-fold difference between the lowest and the highest concentration for each dose administered. We demonstrated that the bevacizumab administration schedule results in a high inter-individual variability in terms of blood concentrations. Comparison of assay data with clinical data indicates that blood concentrations above the median are associated with side effects, whereas values below the median favor inefficacy. In conclusion, bevacizumab-based therapy could benefit from a personalized administration schedule including follow-up and adjustment of circulating bevacizumab concentrations.

  10. Pertuzumab: a review of its use for first-line combination treatment of HER2-positive metastatic breast cancer.

    Science.gov (United States)

    McCormack, Paul L

    2013-09-01

    Pertuzumab (Perjeta®) is a humanized anti-HER2 monoclonal antibody that binds to the extracellular dimerization subdomain of the HER2 receptor and reduces HER2 intracellular signalling by preventing HER2 from forming heterodimers with other HER receptors. Inhibition of HER2 signalling results in a reduction of tumour cell proliferation, invasiveness and survival. Pertuzumab and trastuzumab bind to different sites on the HER2 receptor and have complementary antitumour activities; they act synergistically in inhibiting the growth of HER2-overexpressing breast cancer cell lines in vitro. The efficacy of intravenous pertuzumab (840 mg loading dose, then 420 mg every 3 weeks) in combination with trastuzumab plus docetaxel in the first-line treatment of HER2-positive metastatic breast cancer was demonstrated in the randomized, double-blind, placebo-controlled, multinational, phase III CLEOPATRA trial. Pertuzumab in combination with trastuzumab and docetaxel significantly increased independently assessed median progression-free survival (primary endpoint), objective response rate and overall survival compared with placebo in combination with trastuzumab and docetaxel. Pertuzumab had an acceptable tolerability profile when added to trastuzumab and docetaxel in the pivotal CLEOPATRA trial. Thus, pertuzumab is a valuable addition to the growing list of anti-HER2 targeted therapies for breast cancer.

  11. Membrane adsorbers as purification tools for monoclonal antibody purification.

    Science.gov (United States)

    Boi, Cristiana

    2007-03-15

    Downstream purification processes for monoclonal antibody production typically involve multiple steps; some of them are conventionally performed by bead-based column chromatography. Affinity chromatography with Protein A is the most selective method for protein purification and is conventionally used for the initial capturing step to facilitate rapid volume reduction as well as separation of the antibody. However, conventional affinity chromatography has some limitations that are inherent with the method, it exhibits slow intraparticle diffusion and high pressure drop within the column. Membrane-based separation processes can be used in order to overcome these mass transfer limitations. The ligand is immobilized in the membrane pores and the convective flow brings the solute molecules very close to the ligand and hence minimizes the diffusional limitations associated with the beads. Nonetheless, the adoption of this technology has been slow because membrane chromatography has been limited by a lower binding capacity than that of conventional columns, even though the high flux advantages provided by membrane adsorbers would lead to higher productivity. This review considers the use of membrane adsorbers as an alternative technology for capture and polishing steps for the purification of monoclonal antibodies. Promising industrial applications as well as new trends in research will be addressed.

  12. Monoclonal Antibody Therapy and Renal Transplantation: Focus on Adverse Effects

    Directory of Open Access Journals (Sweden)

    Gianluigi Zaza

    2014-02-01

    Full Text Available A series of monoclonal antibodies (mAbs are commonly utilized in renal transplantation as induction therapy (a period of intense immunosuppression immediately before and following the implant of the allograft, to treat steroid-resistant acute rejections, to decrease the incidence and mitigate effects of delayed graft function, and to allow immunosuppressive minimization. Additionally, in the last few years, their use has been proposed for the treatment of chronic antibody-mediated rejection, a major cause of late renal allograft loss. Although the exact mechanism of immunosuppression and allograft tolerance with any of the currently used induction agents is not completely defined, the majority of these medications are targeted against specific CD proteins on the T or B cells surface (e.g., CD3, CD25, CD52. Moreover, some of them have different mechanisms of action. In particular, eculizumab, interrupting the complement pathway, is a new promising treatment tool for acute graft complications and for post-transplant hemolytic uremic syndrome. While it is clear their utility in renal transplantation, it is also unquestionable that by using these highly potent immunosuppressive agents, the body loses much of its innate ability to mount an adequate immune response, thereby increasing the risk of severe adverse effects (e.g., infections, malignancies, haematological complications. Therefore, it is extremely important for clinicians involved in renal transplantation to know the potential side effects of monoclonal antibodies in order to plan a correct therapeutic strategy minimizing/avoiding the onset and development of severe clinical complications.

  13. Monoclonal anti-elastin antibody labelled with technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcia B.N. de; Silva, Claudia R. da; Araujo, Adriano C. de; Bernardo Filho, Mario [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Instituto de Biologia Roberto Alcantara Gomes. Lab. de Radiofarmacia; Porto, Luis Cristovao M.S.; Gutfilen, Bianca [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Instituto de Biologia Roberto Alcantara Gomes; Souza, J.E.Q. [Instituto Nacional do Cancer, Rio de Janeiro, RJ (Brazil). Centro de Pesquisa Basica; Frier, Malcolm [University Hospital, Nottingham (United Kingdom). Dept. of Medical Physics

    1999-11-01

    Technetium-99m ({sup 99m} Tc) is widely employed in nuclear medicine due to its desirable physical, chemical and biological properties. Moreover, it is easily available and normally is inexpensive. A reducing agent is necessary to label cells and molecules with {sup 99m} Tc and stannous chloride (Sn C L{sub 2}) is usually employed. Elastin is the functional protein component of the elastic fiber and it is related with some diseases such as arteriosclerosis, pulmonary emphysema and others. The present study refers to the preparation of the {sup 99m} Tc labeled monoclonal anti-elastin antibody. The monoclonal antibody was incubated with an excess of 2-iminothiolane. The free thiol groups created, were capable of binding with the reduced technetium. Labeling was an exchange reaction with {sup 99m} Tc-glucoheptonate. The labeled preparation was left at 4 deg C for one hour. Then, it was passed through a Sephadex G50 column. Various fractions were collected and counted. A peak corresponding to the radiolabeled antibody was obtained. Stability studies of the labelled anti-elastin were performed at 0,3 6, 24 hours, at both 4 deg C or room temperature. The biodistribution pattern of the {sup 99m} Tc-anti-elastin was studied in healthy male Swiss mice. The immunoreactivity was also determined. An useful labeled-anti-elastin was obtained to future immunoscintigraphic investigations. (author) 4 refs., 7 figs., 6 tabs.

  14. Characterization of oxidative carbonylation on recombinant monoclonal antibodies.

    Science.gov (United States)

    Yang, Yi; Stella, Cinzia; Wang, Weiru; Schöneich, Christian; Gennaro, Lynn

    2014-05-20

    In the biotechnology industry, oxidative carbonylation as a post-translational modification of protein pharmaceuticals has not been studied in detail. Using Quality by Design (QbD) principles, understanding the impact of oxidative carbonylation on product quality of protein pharmaceuticals, particularly from a site-specific perspective, is critical. However, comprehensive identification of carbonylation sites has so far remained a very difficult analytical challenge for the industry. In this paper, we report for the first time the identification of specific carbonylation sites on recombinant monoclonal antibodies with a new analytical approach via derivatization with Girard's Reagent T (GRT) and subsequent peptide mapping with high-resolution mass spectrometry. Enhanced ionization efficiency and high quality MS(2) data resulted from GRT derivatization were observed as key benefits of this approach, which enabled direct identification of carbonylation sites without any fractionation or affinity enrichment steps. A simple data filtering process was also incorporated to significantly reduce false positive assignments. Sensitivity and efficiency of this approach were demonstrated by identification of carbonylation sites on both unstressed and oxidized antibody bulk drug substances. The applicability of this approach was further demonstrated by identification of 14 common carbonylation sites on three highly similar IgG1s. Our approach represents a significant improvement to the existing analytical methodologies and facilitates extended characterization of oxidative carbonylation on recombinant monoclonal antibodies and potentially other protein pharmaceuticals in the biotechnology industry.

  15. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Weigelt, Britta; Lo, Alvin T; Park, Catherine C; Gray, Joe W; Bissell, Mina J

    2009-07-27

    Development of effective and durable breast cancer treatment strategies requires a mechanistic understanding of the influence of the microenvironment on response. Previous work has shown that cellular signaling pathways and cell morphology are dramatically influenced by three-dimensional (3D) cultures as opposed to traditional two-dimensional (2D) monolayers. Here, we compared 2D and 3D culture models to determine the impact of 3D architecture and extracellular matrix (ECM) on HER2 signaling and on the response of HER2-amplified breast cancer cell lines to the HER2-targeting agents Trastuzumab, Pertuzumab and Lapatinib. We show that the response of the HER2-amplified AU565, SKBR3 and HCC1569 cells to these anti-HER2 agents was highly dependent on whether the cells were cultured in 2D monolayer or 3D laminin-rich ECM gels. Inhibition of {beta}1 integrin, a major cell-ECM receptor subunit, significantly increased the sensitivity of the HER2-amplified breast cancer cell lines to the humanized monoclonal antibodies Trastuzumab and Pertuzumab when grown in a 3D environment. Finally, in the absence of inhibitors, 3D cultures had substantial impact on HER2 downstream signaling and induced a switch between PI3K-AKT- and RAS-MAPKpathway activation in all cell lines studied, including cells lacking HER2 amplification and overexpression. Our data provide direct evidence that breast cancer cells are able to rapidly adapt to different environments and signaling cues by activating alternative pathways that regulate proliferation and cell survival, events that may play a significant role in the acquisition of resistance to targeted therapies.

  16. Improved detection of Pneumocystis carinii by an immunofluorescence technique using monoclonal antibodies

    DEFF Research Database (Denmark)

    Orholm, M; Holten-Andersen, W; Lundgren, Jens Dilling

    1990-01-01

    To assess whether a recently developed indirect immunofluorescent stain using monoclonal antibodies was more sensitive in detecting Pneumocystis carinii than the combination of Giemsa and methenamine silver nitrate stains which has routinely been used in the laboratory, 88 lavage fluid specimens...... and 34 induced sputum specimens were examined. All specimens were stained by five techniques: immunofluorescence using a combination of three monoclonal antibodies (from the National Institutes of Health, USA), immunofluorescence using a single monoclonal antibody (from Dakopatts), Giemsa, methenamine...

  17. High-efficiency screening of monoclonal antibodies for membrane protein crystallography.

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Lim

    Full Text Available Determination of crystal structures of membrane proteins is often limited by difficulties obtaining crystals diffracting to high resolution. Co-crystallization with Fab fragments of monoclonal antibodies has been reported to improve diffraction of membrane proteins crystals. However, it is not simple to generate useful monoclonal antibodies for membrane protein crystallography. In this report, we present an optimized process for efficient screening from immunization to final validation of monoclonal antibody for membrane protein crystallography.

  18. Alemtuzumab and Natalizumab: The Monoclonal Antibody Story Continues

    Directory of Open Access Journals (Sweden)

    BL Johnston

    2006-01-01

    Full Text Available In the July/August 2006 issue of this journal, the infectious complications associated with the use of infliximab, etanercept and adalimumab were reviewed (1. These represent only three of the many monoclonal antibodies either licensed or in clinical trials for therapeutic use in cancer and autoimmune disease or to prevent rejection in both solid organ and hematopoietic stem cell transplantation. While most of these agents have not been associated with increased infection rates, alemtuzumab and natalizumab have gained particular attention related to either the frequency or type of infection seen in some individuals who have received them.

  19. Rapid analysis of small samples containing forskolin using monoclonal antibodies.

    Science.gov (United States)

    Yanagihara, H; Sakata, R; Shoyama, Y; Murakami, H

    1996-04-01

    The effective range of the competitive ELISA test for detection of forskolin content in clonally propagated plant organs of Coleus forskohlii using monoclonal antibodies extends from 5ng to 5 micrograms. A correlation between the forskolin accumulation and the growth rate was investigated using the clonally propagated shoots. An increase of forskolin content was noted, beginning at week 6. Flowers, rachises, leaves, stems, tuberous roots, and roots were analyzed. Tuberous roots and the stem base contained higher amounts of forskolin than other organs. The forskolin content in the stem decreased gradually towards the top of the shoot.

  20. Fluorescence polarization immunoassay for salinomycin based on monoclonal antibodies

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A fluorescence polarization immunoassay(FPIA) for the determination of salinomycin(SAL) was developed by using anti-SAL monoclonal antibodies(mAb).Fluorescein labeled SAL(tracer) was synthesized by the N-hydroxysuccinimide active ester method and purified using thin layer chromatography(TLC).The developed FPIA for SAL had a dynamic range from 0.60 to 2193 ng/mL with an IC50 value of 33.2 ng/mL and a detection limit(LOD) of 0.08 ng/mL.No significant cross-reactivities were observed with other drugs but 67.6% with narasin.

  1. Monoclonal antibody therapy in the treatment of Reye's syndrome.

    Science.gov (United States)

    Treon, S P; Broitman, S A

    1992-11-01

    A role for lipopolysaccharides (endotoxins, LPS) in 7 the pathogenesis of Reye's syndrome (RS) has previously been suggested. Impairment of hepatic LPS clearance can lead to systemic endotoxemia as previous studies by this and other laboratories have suggested for several hepatic disorders including RS. Systemic LPS may mediate many of the clinical findings associated with RS by eliciting monokines such as tumor necrosis factor-alpha, interleukin-1, interleukin-6, and interleukin-8. Monoclonal antibody therapy directed at LPS, and monokines may represent a novel approach to the treatment of RS.

  2. Large-scale production of monoclonal antibodies in suspension culture.

    Science.gov (United States)

    Backer, M P; Metzger, L S; Slaber, P L; Nevitt, K L; Boder, G B

    1988-10-01

    Monoclonal antibodies are being manufactured for clinical trials in suspension culture at the 1300-L scale. Suspension culture offers some advantages relative to high-density mammalian cell culture methods; in particular, the ability to closely monitor the behavior of cells in a homogeneous environment. Computer control and on-line mass spectrography of exit gases provide instantaneous information about the culture metabolic activity. Air sparging and agitation by marine impeller provide aeration sufficient to maintain a constant dissolved oxygen tension at cell concentrations up to 5.0 x 10(6) cells/mL without causing apparent cell damage.

  3. Monoclonal Antibodies as Prophylactic and Therapeutic Agents Against Chikungunya Virus.

    Science.gov (United States)

    Clayton, April M

    2016-12-15

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is responsible for considerable epidemics worldwide and recently emerged in the Americas in 2013. CHIKV may cause long-lasting arthralgia after acute infection. With currently no licensed vaccines or antivirals, the design of effective therapies to prevent or treat CHIKV infection is of utmost importance and will be facilitated by increased understanding of the dynamics of chikungunya. In this article, monoclonal antibodies against CHIKV as viable prophylactic and therapeutic agents will be discussed. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. Production and Characterization of Monoclonal Antibodies of Shrimp White Spot Syndrome Virus Envelope Protein VP28

    Institute of Scientific and Technical Information of China (English)

    Wan-gang GU; Jun-fa YUAN; Ge-lin XU; Li-juan LI; Ni LIU; Cong ZHANG; Jian-hong ZHANG; Zheng-li SHI

    2007-01-01

    BALB/c mice were immunized with purified White spot syndrome virus (WSSV).Six monoclonal antibody cell lines were selected by ELISA with VP28 protein expressed in E.coll in vitro neutralization experiments showed that 4 of them could inhibit the virus infection in crayfish.Westernblot suggested that all these monoclonal antibodies were against the conformational structure of VP28.The monoclonal antibody 7B4 was labeled with colloidal gold particles and used to locate the VP28 on virus envelope by immunogold labeling.These monoclonal antibodies could be used to develop immunological diagnosis methods for WSSV infection.

  5. Monoclonal antibodies to intermediate filament proteins of human cells: unique and cross-reacting antibodies.

    Science.gov (United States)

    Gown, A M; Vogel, A M

    1982-11-01

    Monoclonal antibodies were generated against the intermediate filament proteins of different human cells. The reactivity of these antibodies with the different classes of intermediate filament proteins was determined by indirect immunofluorescence on cultured cells, immunologic indentification on SDS polyacrylamide gels ("wester blot" experiments), and immunoperoxidase assays on intact tissues. The following four antibodies are described: (a) an antivimentin antibody generated against human fibroblast cytoskeleton; (b), (c) two antibodies that recognize a 54-kdalton protein in human hepatocellular carcinoma cells; and (d) an antikeratin antibody made to stratum corneum that recognizes proteins of molecular weight 66 kdaltons and 57 kdaltons. The antivimentin antibody reacts with vimentin (58 kdaltons), glial fibrillary acidic protein (GFAP), and keratins from stratum corneum, but does not recognize hepatoma intermediate filaments. In immunofluorescence assays, the antibody reacts with mesenchymal cells and cultured epithelial cells that express vimentin. This antibody decorates the media of blood vessels in tissue sections. One antihepatoma filament antibody reacts only with the 54 kdalton protein of these cells and, in immunofluorescence and immunoperoxidase assays, only recognizes epithelial cells. It reacts with almost all nonsquamous epithelium. The other antihepatoma filament antibody is much less selective, reacting with vimentin, GFAP, and keratin from stratum corneum. This antibody decorates intermediate filaments of both mesenchymal and epithelial cells. The antikeratin antibody recognizes 66-kdalton and 57-kdalton proteins in extracts of stratum corneum and also identifies proteins of similar molecular weights in all cells tested. However, by immunofluorescence, this antibody decorates only the intermediate filaments of epidermoid carcinoma cells. When assayed on tissue sections, the antibody reacts with squamous epithelium and some, but not all

  6. Monoclonal antibody-based candidate therapeutics against HIV type 1.

    Science.gov (United States)

    Chen, Weizao; Dimitrov, Dimiter S

    2012-05-01

    Treatment of HIV-1 infection has been highly successful with small molecule drugs. However, resistance still develops. In addition, long-term use can lead to toxicity with unpredictable effects on health. Finally, current drugs do not lead to HIV-1 eradication. The presence of the virus leads to chronic inflammation, which can result in increased morbidity and mortality after prolonged periods of infection. Monoclonal antibodies (mAbs) have been highly successful during the past two decades for therapy of many diseases, primarily cancers and immune disorders. They are relatively safe, especially human mAbs that have evolved in humans at high concentrations to fight diseases and long-term use may not lead to toxicities. Several broadly neutralizing mAbs (bnmAbs) against HIV-1 can protect animals but are not effective when used for therapy of an established infection. We have hypothesized that HIV-1 has evolved strategies to effectively escape neutralization by full-size antibodies in natural infections but not by smaller antibody fragments. Therefore, a promising direction of research is to discover and exploit antibody fragments as potential candidate therapeutics against HIV-1. Here we review several bnmAbs and engineered antibody domains (eAds), their in vitro and in vivo antiviral efficacy, mechanisms used by HIV-1 to escape them, and strategies that could be effective to develop more powerful mAb-based HIV-1 therapeutics.

  7. Novel neutralizing monoclonal antibodies protect rodents against lethal filovirus challenges

    Directory of Open Access Journals (Sweden)

    Caleb D. Marceau

    2014-01-01

    Full Text Available Filoviruses are the causative agents of lethal hemorrhagic fever in human and non-human primates (NHP. The family of Filoviridae is composed of three genera, Ebolavirus, Marburgvirus and Cuevavirus. There are currently no approved vaccines or antiviral therapeutics for the treatment of filovirus infections in humans. Passive transfer of neutralizing antibodies targeting the Ebola virus (EBOV glycoprotein (GP has proven effective in protecting mice, guinea pigs and NHP from lethal challenges with EBOV. In this study, we generated two neutralizing monoclonal antibodies (MAbs, termed S9 and M4 that recognize the GP of EBOV or multiple strains of Marburg virus (MARV, respectively. We characterized the putative binding site of S9 as a linear epitope on the glycan cap of the GP1 subunit of the EBOV-GP. The M4 antibody recognizes an unknown conformational epitope on MARV-GP. Additionally, we demonstrated the post-exposure protection potential of these antibodies in both the mouse and guinea pig models of filovirus infection. These data indicate that MAbs S9 and M4 would be good candidates for inclusion in an antibody cocktail for the treatment of filovirus infections.

  8. Moving through three-dimensional phase diagrams of monoclonal antibodies.

    Science.gov (United States)

    Rakel, Natalie; Baum, Miriam; Hubbuch, Jürgen

    2014-01-01

    Protein phase behavior characterization is a multivariate problem due to the high amount of influencing parameters and the diversity of the proteins. Single influences on the protein are not understood and fundamental knowledge remains to be obtained. For this purpose, a systematic screening method was developed to characterize the influence of fluid phase conditions on the phase behavior of proteins in three-dimensional phase diagrams. This approach was applied to three monoclonal antibodies to investigate influences of pH, protein and salt concentrations, with five different salts being tested. Although differences exist between the antibodies, this extensive study confirmed the general applicability of the Hofmeister series over the broad parameter range analyzed. The influence of the different salts on the aggregation (crystallization and precipitation) probability was described qualitatively using this Hofmeister series, with a differentiation between crystallization and precipitation being impossible, however.

  9. Olive oil's bitter principle reverses acquired autoresistance to trastuzumab (Herceptin™ in HER2-overexpressing breast cancer cells

    Directory of Open Access Journals (Sweden)

    Brunet Joan

    2007-05-01

    Full Text Available Abstract Background A low incidence of breast cancer in the Mediterranean basin suggests that a high consumption of Extra Virgin Olive Oil (EVOO might confer this benefit. While the anti-HER2 oncogene effects of the main ω-9 fatty acid present in EVOO triacylglycerols (i.e., oleic acid have been recently described, the anti-breast cancer activities of EVOO non-glyceridic constituents -which consist of at least 30 phenolic compounds-, remained to be evaluated. Methods Semi-preparative HPLC was used to isolate EVOO polyphenols (i.e., tyrosol, hydroxytyrosol, oleuropein. Both the anti-proliferative and the pro-apoptotic effects of EVOO phenolics were evaluated by using MTT-based quantification of metabolically viable cells and ELISA-based detection of histone-associated DNA fragments, respectively. The nature of the interaction between oleuropein aglycone and the anti-HER2 monoclonal antibody trastuzumab (Herceptin™ was mathematically evaluated by the dose-oriented isobologram technique. HER2-specific ELISAs were employed to quantitatively assess both the basal cleavage of the HER2 extracellular domain (ECD and the expression level of total HER2. The activation status of HER2 was evaluated by immunoblotting procedures using a monoclonal antibody specifically recognizing the tyrosine phosphorylated (Phosphor-Tyr1248 form of HER2. Results Among EVOO polyphenols tested, oleuropein aglycone was the most potent EVOO phenolic in decreasing breast cancer cell viability. HER2 gene-amplified SKBR3 cells were ~5-times more sensitive to oleuropein aglycone than HER2-negative MCF-7 cells. Retroviral infection of the HER2 oncogene in MCF-7 cells resulted in a "SKBR3-assimilated" phenotype of hypersensitivity to oleuropein aglycone. An up to 50-fold increase in the efficacy of trastuzumab occurred in the presence of oleuropein aglycone. A preclinical model of acquired autoresistance to trastuzumab (SKBR3/Tzb100 cells completely recovered trastuzumab

  10. Belimumab: anti-BLyS human monoclonal antibody, anti-BLyS monoclonal antibody, BmAb, human monoclonal antibody to B-lymphocyte stimulator.

    Science.gov (United States)

    2008-01-01

    Belimumab is a fully human monoclonal antibody that specifically recognizes and inhibits the biological activity of B-lymphocyte stimulator, or BLyS. Belimumab is in phase III trials for the treatment of systemic lupus erythematosus (SLE) and has completed a phase II trial in rheumatoid arthritis (RA); the product may also have potential in the treatment of other autoimmune disorders. In May 2001, Cambridge Antibody Technology (now MedImmune) completed its discovery programme and Human Genome Sciences identified belimumab as a candidate for clinical development. More than 1000 distinct human antibodies specific to BLyS were characterized by the collaboration.B-lymphocyte stimulator is a naturally occurring protein discovered by Human Genome Sciences that stimulates B-lymphocytes to develop into mature B cells. Laboratory studies have indicated that higher than normal levels of B-lymphocyte stimulator may contribute to the pathogenesis of autoimmune diseases, such as SLE and RA. Human Genome Sciences (HGS) and Cambridge Antibody Technology signed a collaborative agreement in August 1999 to study the B-lymphocyte stimulator as a human protein target. HGS is also developing other BLyS products. In March 2000, HGS and Cambridge Antibody Technology expanded their agreement into a 10-year collaboration and product development alliance, providing Human Genome Sciences with the right to use the antibody technology of Cambridge Antibody Technology to fully develop human antibodies for therapeutic and diagnostic purposes. Cambridge Antibody Technology will receive royalty payments on product sales from HGS, as well as the development and milestone payments it has already received. Belimumab will be manufactured in Human Genome Sciences' manufacturing facility, located in Rockville, MD, USA. HGS holds commercial rights to the drug. In July 2005, GlaxoSmithKline (GSK) exercised its co-development and co-promotion option to belimumab. In an agreement made in June 1996, HGS had

  11. Pertuzumab in combination with trastuzumab and docetaxel for HER2-positive metastatic breast cancer.

    Science.gov (United States)

    Kawajiri, Hidemi; Takashima, Tsutomu; Kashiwagi, Shinichiro; Noda, Satoru; Onoda, Naoyoshi; Hirakawa, Kosei

    2015-01-01

    Overexpression of HER2 - found in approximately 15-20% of all breast cancers - is a negative prognostic factor. Although trastuzumab significantly improves the prognosis of HER2-positive breast cancer, half of the patients with metastatic breast cancer experience disease progression within 1 year. Pertuzumab is a novel HER2-targeted humanized monoclonal antibody that binds to the dimerization domain of HER2 and acts synergically with trastuzumab in inhibiting tumor progression. The CLEOPATRA trial demonstrated that adding pertuzumab to trastuzumab plus docetaxel significantly prolonged progression-free survival and overall survival without increasing severe adverse events. Conclusively, pertuzumab was approved by the US FDA in June 2012 for use in combination with trastuzumab and docetaxel for the treatment of patients with HER2-positive metastatic breast cancer. Furthermore, various clinical trials to evaluate the efficacy and safety of pertuzumab combined with other cytotoxic agents are ongoing at present. Thus, pertuzumab has been becoming important for the treatment of patients with HER2-positive metastatic breast cancer.

  12. Monoclonal antibodies directed to fucoidan preparations from brown algae.

    Science.gov (United States)

    Torode, Thomas A; Marcus, Susan E; Jam, Murielle; Tonon, Thierry; Blackburn, Richard S; Hervé, Cécile; Knox, J Paul

    2015-01-01

    Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance.

  13. Monoclonal antibodies directed to fucoidan preparations from brown algae.

    Directory of Open Access Journals (Sweden)

    Thomas A Torode

    Full Text Available Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance.

  14. Fingerprinting of Natural Product by Eastern Blotting Using Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Hiroyuki Tanaka

    2012-01-01

    Full Text Available We succeeded in developing the fingerprint of natural product by eastern blotting using monoclonal antibodies. After developing and separating them on a TLC plate, solasodine glycosides are oxidized by NaIO4 and reacted with a protein to give conjugates which are recognized with anti-solamargine monoclonal antibody (MAb. Anti-solamargine MAb having wide cross-reactivity can stain and detect all solasodine glycosides by fingerprint. Different sensitivity between solamargine and solasonine was observed. The detection limit was 1.6 ng of solasonine. The hydrolysed products of solamargine were determined by fingerprint of eastern blotting compared to their Rf values depending on the sugar number. Fingerprint by eastern blotting using anti-ginsenoside Rb1 MAb distinguished the formula containing ginseng prescribed in traditional Chinese medicine. By double-staining of ginsenosides it is possible to suggest that the staining color shows the pharmacological activity, such as the purple bands indicate ginsenosides having stimulation activity, and the blue color indicated compound like ginsenosides possessed the depression affect for the central nervous system (CNS, respectively.

  15. [Obtaining monoclonal antibodies against outer membrane glycoproteins of Entamoeba histolytica].

    Science.gov (United States)

    Agundis, C; Isibasi, A; Ortíz, V; Reyes, J L; Paniagua, J; Ramírez, A; Kumate, J

    1990-01-01

    The goal of this paper was the production of monoclonal antibodies capable of detecting relevant antigens from the surface of Entamoeba histolytica trophozoites, with the purpose of using them as a diagnostic test. The cellular fusion for obtaining the monoclonal antibodies (mAb) was done with spleen cells from BALB/c mice, previously immunized with glycoproteins from the membrane, as well as Sp2/0 cells. The hybridoma supernatants were tested with ELISA, using glycoproteins and lipopeptide phosphoglycans (LPPG) as antigens. Seven hybridomas producing mAb against the glycoproteins were found. Among these, three recognize LPPG. The ability of reacting with the mAb against two molecules disappeared for all the LPPG positive ones when were treated with meta-periodate, and only three reacted against the glycoproteins. All of the mAb were of the Ig M isotypes. They were characterized by Dot blot and Western blot assays. From the results, one may deduce that some mAb recognize as epitopes the polysaccharide portion, and thus infer that they are directed of against the surface and therefore, in the future, could be used with a diagnostic purpose.

  16. Immunotherapy of hepatoma with a monoclonal antibody against murine endoglin

    Institute of Scientific and Technical Information of China (English)

    Guang-Hong Tan; Feng-Ying Huang; Hua Wang; Yong-Hao Huang; Ying-Ying Lin; Yue-Nan Li

    2007-01-01

    AIM: To explore the capability of a monoclonal antibody(mAb) against murine endoglin to inhibit tumor angiogenesis and suppression of hepatoma growth in murine models.METHODS: A monoclonal antibody against murine endoglin was purified by affinity chromatography and passively transfused through tail veins in two murine hepatoma models. Tumor volume and survival time were observed at three-day intervals for 48 d. Microvessels in tumor tissues were detected by immunohistochemistry against CD31, and angiogenesis in vivo was determined by alginate encapsulated assay. In addition, tumor cell apoptosis was detected by TUNEL assay.RESULTS: Passive immunotherapy with anti-endoglin mAb could effectively suppress tumor growth, and prolonged the survival time of hepatoma-bearing mice.Angiogenesis was apparently inhibited within the tumor tissues, and the vascularization of alginate beads was also reduced in the mice passively transfused with antiendoglin mAb. In addition, increased apoptotic cells were observed within the tumor tissues from the mice passively transfused with anti-endoglin mAb.CONCLUSION: Passive immunotherapy with antiendoglin mAb effectively inhibits tumor growth via inhibiting tumor angiogenesis and increasing tumor cell apoptosis, which may be highly correlated with the blockage of endoglin-related signal pathway induced by anti-endoglin mAb.

  17. Near-infrared quantum dots for HER2 localization and imaging of cancer cells

    Directory of Open Access Journals (Sweden)

    Rizvi SB

    2014-03-01

    Full Text Available Sarwat B Rizvi,1 Sepideh Rouhi,1 Shohei Taniguchi,2 Shi Yu Yang,1 Mark Green,2 Mo Keshtgar,1,3 Alexander M Seifalian1,3 1UCL Centre for Nanotechnology and Regenerative Medicine, University College London, 2Department of Physics, King's College London, 3Royal Free London NHS Foundation Trust Hospital, London, UK Background: Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu is overexpressed in 25%–30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Methods: Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing, and MCF7 (HER2-underexpressing. Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. Results: In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 µg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells

  18. Perspectives on the development of a therapeutic HER-2 cancer vaccine.

    Science.gov (United States)

    Renard, Valéry; Leach, Dana R

    2007-09-27

    With good reason, the majority of cancer vaccines tested, or being tested, have targeted the induction of anti-tumour CTL responses. However, the clinical success of monoclonal antibodies such as Rituximab/CD20, Trastuzumab/HER-2, Cetuximab/EGFR and Bevacisumab/VEGF suggests that their respective targets may also be relevant for cancer vaccines aiming at the induction of an effective humoral anti-tumour response to mimic, or potentially improve upon, the effects of monoclonal therapies. We report here an overview of the development of a protein vaccine targeting HER-2/neu, with an emphasis on the immunologic results obtained from the testing of the vaccine in animal models of disease and in toxicology programs, to its evaluation in three clinical trials in breast cancer patients.

  19. NCI Requests Targets for Monoclonal Antibody Production and Characterization - Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution.

  20. [Production and characteristics of monoclonal antibodies to the diphtheria toxin].

    Science.gov (United States)

    Valiakina, T I; Lakhtina, O E; Komaleva, R L; Simonova, M A; Samokhvalova, L V; Shoshina, N S; Kalinina, N A; Rubina, A Iu; Filippova, M A; Vertiev, Iu V; Grishin, E V

    2009-01-01

    Monoclonal antibodies to the diphtheria toxin were produced without cross reactivity with the thermolabile toxin (LT) from Escherichia coli; ricin; choleraic toxin; the SeA, SeB, SeE, SeI, and SeG toxins of staphylococcus; the lethal factor of the anthrax toxin; and the protective antigen of the anthrax toxin. A pair of antibodies for the quantitative determination of the diphtheria toxin in the sandwich variation of enzyme-linked immunosorbent assay (ELISA) was chosen. The determination limit of the toxin was 0.7 ng/ml in plate and 1.6 ng/ml in microchip ELISA. The presence of a secretion from the nasopharynx lavage did not decrease the sensitivity of the toxin determination by sandwich ELISA. The immunization of mice with the diphtheria toxin and with a conjugate of the diphtheria toxin with polystyrene microspheres demonstrated that the conjugate immunization resulted in the formation of hybridoma clones which produced antibodies only to the epitopes of the A fragment of the diphtheria toxin. The immunization with the native toxin caused the production of hybridoma clones which predominantly produced antibodies to the epitopes of the B fragment.

  1. [Monoclonal antibodies against PCSK9: from bench to clinic].

    Science.gov (United States)

    Guijarro Herraiz, Carlos

    2016-05-01

    Antibodies are glycoproteins with high specificity binding to multiple antigens due to the large number of structural conformations of the variable chains. Hybridoma technology (fusion of myeloma cells with immunoglobulin-producing lymphocytes) has allowed the synthesis of large quantities of unique antibodies (monoclonal [mAb]). mAbs were initially murine. Subsequently, chimeric mAbs were developed, followed by humanized mAbs and finally human mAbs. The high selectivity and good tolerance of human mAbs allows their therapeutic administration to block specific exogenous or endogenous molecules. Selective human mAbs to the catalytic domain of PCSK9 have recently been developed. These antibodies block PCSK9, favour low-density lipoprotein receptor recycling and markedly reduce circulating cholesterol. Preliminary studies indicate that lowering cholesterol through anti-PCSK9 antibodies may significantly reduce the cardiovascular complications of arteriosclerosis. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Arteriosclerosis. All rights reserved.

  2. Antibodies in infectious diseases: polyclonals, monoclonals and niche biotechnology.

    Science.gov (United States)

    Berry, Jody D; Gaudet, Ryan G

    2011-09-01

    Antibody preparations have a long history of providing protection from infectious diseases. Although antibodies remain the only natural host-derived defense mechanism capable of completely preventing infection, as products, they compete against inexpensive therapeutics such as antibiotics, small molecule inhibitors and active vaccines. The continued discovery in the monoclonal antibody (mAb) field of leads with broadened cross neutralization of viruses and demonstrable synergy of antibody with antibiotics for bacterial diseases, clearly show that innovation remains. The commercial success of mAbs in chronic disease has not been paralleled in infectious diseases for several reasons. Infectious disease immunotherapeutics are limited in scope as endemic diseases necessitate active vaccine development. Also, the complexity of these small markets draws the interest of niche companies rather than big pharmaceutical corporations. Lastly, the cost of goods for mAb therapeutics is inherently high for infectious agents due to the need for antibody cocktails, which better mimic polyclonal immunoglobulin preparations and prevent antigenic escape. In cases where vaccine or convalescent populations are available, current polyclonal hyperimmune immunoglobulin preparations (pIgG), with modern and highly efficient purification technology and standardized assays for potency, can make economic sense. Recent innovations to broaden the potency of mAb therapies, while reducing cost of production, are discussed herein. On the basis of centuries of effective use of Ab treatments, and with growing immunocompromised populations, the question is not whether antibodies have a bright future for infectious agents, but rather what formats are cost effective and generate safe and efficacious treatments to satisfy regulatory approval. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Characterization and evaluation of monoclonal antibodies developed for typing influenza A and influenza B viruses.

    OpenAIRE

    Walls, H H; Harmon, M W; Slagle, J J; Stocksdale, C; Kendal, A P

    1986-01-01

    Monoclonal antibodies that are broadly reactive with influenza A or influenza B viruses were produced as stable reagents for typing influenza viruses. Monoclonal antibodies to influenza A were specific for either matrix protein or nucleoprotein. The antibodies to influenza B were specific for nucleoprotein or hemagglutinin protein. In an enzyme immunoassay procedure, influenza A antibodies detected H1N1, H2N2, and H3N2 influenza A virus strains collected between 1934 and 1984. Each of the inf...

  4. New monoclonal antibodies directed against human renin. Powerful tools for the investigation of the renin system.

    OpenAIRE

    Galen, F X; Devaux, C.; Atlas, S; Guyenne, T; Menard, J; Corvol, P; Simon, D.; Cazaubon, C; Richer, P; Badouaille, G

    1984-01-01

    Monoclonal antibodies directed against human renin were obtained by the fusing of myeloma cells with spleen cells from Balb/c or high-responder Biozzi mice injected with pure tumoral or highly purified renal renin. These procedures resulted in the production of seven stable monoclonal antibodies to human renin. Antibodies in the hybridoma culture medium were screened by binding to pure iodinated renin or insolubilized renin in a solid phase assay. The concentration of purified antibodies that...

  5. Preparation of monoclonal antibody to P53 and its clinical application

    Institute of Scientific and Technical Information of China (English)

    Wenqing Wei; Junhua Wu; Jing Liu; Yuxia Wang

    2013-01-01

    Objective:The aim of this study was to prepare monoclonal antibody against P53, a kind of tumor suppressor protein,and use the antibody initial y in clinical immunoassay. Methods:Monoclonal antibody was prepared and identified via the classic protocol of monoclonal antibody preparation. Identified monoclonal antibodies were purified by af inity chro-matography. Antibody titer was determined by enzyme linked immunosorbent assay (ELISA). The specific binding activity of antibody was detected by Western blotting and immunohistochemistry. Results:Three strains of monoclonal antibodies named 1P15, 2P37 and 3P40 were obtained and purified by af inity chromatography. The purity of antibodies was higher than 90%. The titers of antibodies were more than 1:6000. Western blot and immunohistochemistry assay showed that the specific antibody can combine with endogenous P53 protein in the tumor celllines and determine the expression of P53 in tumor tis-sue. Conclusion:Three strains of monoclonal antibodies with high af inity to P53 were successful y established, which can be used for detecting the expression of P53 in tumor cells or tissue.

  6. Monoclonal antibodies against a synthetic peptide from human immunodeficiency virus type 1 Nef protein

    DEFF Research Database (Denmark)

    Steinaa, L; Wulff, A M; Saermark, T

    1994-01-01

    Monoclonal antibodies against a synthetic peptide (aa 138-152) from HIV-1 Nef protein were produced and characterized. Three hybridoma lines producing monoclonal antibodies (MAbs) against the synthetic peptide were generated by fusion between P3-X63 Ag8.653 myeloma cells and BALB/c splenocytes fr...

  7. Preparation of Europium Induced Conformation—specific anti—calmodulin Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    WeiGuoLI; ChaoQI; 等

    2002-01-01

    Monoclonal antibody technique was employed to detect the conformational difference of CaM induced by metal ions. A trivalent europium ion induced conformation-specific anti-calmodulin monoclonal antibody was successfully prepared with europium-saturated calmodulin as antigen.

  8. Preparation of Europium Induced Conformation-specific anti-calmodulin Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Monoclonal antibody technique was employed to detect the conformational difference of CaM induced by metal ions. A trivalent europium ion induced conformation-specific anti-calmodulin monoclonal antibody was successfully prepared with europium-saturated calmodulin as antigen.

  9. Development and characterization of mouse monoclonal antibodies specific for chicken interleukin 18

    Science.gov (United States)

    Four mouse monoclonal antibodies (mAbs) which are specific for chicken interleukin 18 (chIL18) were produced and characterized by enzyme-linked immunosorbent assay (ELISA), Western blotting, quantitative real-time PCR and neutralization assays. Monoclonal antibodies specific for chIL18 identified a ...

  10. Reactivity of eleven anti-human leucocyte monoclonal antibodies with lymphocytes from several domestic animals

    DEFF Research Database (Denmark)

    Aasted, Bent; Blixenkrone-Møller, Merete; Larsen, Else Bang

    1988-01-01

    Nine commercially available monoclonal antibodies and two monoclonal antibodies from The American Type Culture Collection, raised against various human leucocyte surface antigens, were tested on lymphocytes from cow, sheep, goat, swine, horse, cat, dog, mink, and rabbit as well as man. Four...... antibodies bound to lymphocytes from some of the animals. These were the antibodies against CD8 and CD4 antigen, the antibody to C3b-receptor, and the antibody to the HLA-DR antigen. The CD8 antigen-reactive antibody reacted with lymphocytes from mink, cat, dog, and sheep, while the CD4 antigen...

  11. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    Science.gov (United States)

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed.

  12. Physical and structural stability of the monoclonal antibody, trastuzumab (Herceptin®), intravenous solutions.

    Science.gov (United States)

    Pabari, Ritesh M; Ryan, Benedict; Ahmad, Wazir; Ramtoola, Zebunnissa

    2013-01-01

    A major limitation of biological therapeutics is their propensity for degradation particularly in aqueous solutions hence resulting in their short shelf-life. In this study, the stability of trastuzumab (Herceptin®) intravenous (i.v.) solutions, an IgG1 monoclonal antibody (mAb), indicated for the treatment of HER2 positive breast cancer, stored under refrigerated conditions, was evaluated over 28 days. No change in visual appearance or average particle size was observed. The pH values of the trastuzumab i.v. solutions remained stable over time. Interestingly, no change in trastuzumab monomer concentration was observed throughout the 28-day study, as determined by SEC-HPLC. SDSPAGE showed only a monomer band corresponding to the molecular weight of trastuzumab. Circular dichroism spectra obtained following 28-day storage demonstrated integrity of the secondary structural conformation of trastuzumab. Results from this study show that trastuzumab i.v. solutions remain physically and structurally stable on storage at 2-8°C for 28 days. These findings suggest that trastuzumab in solution may not be as sensitive to degradation as expected for a mAb and therefore may have important implications in extending trastuzumab shelf life for clinical use and reducing associated healthcare cost.

  13. Use of commercially available rabbit monoclonal antibodies for immunofluorescence double staining

    DEFF Research Database (Denmark)

    Bzorek, M.; Stamp, I.M.; Frederiksen, L.

    2008-01-01

    Immunohistochemistry, that is, the use of polyclonal and monoclonal antibodies to detect cell and tissue antigens at a microscopical level is a powerful tool for both research and diagnostic purposes. Especially in the field of hematologic disease, there is often a need to detect several antigens...... synchronously, and we report here a fast and easy technique for demonstrating more than 1 antigen in 1 slide using immunofluorescence. We have used commercially available rabbit monoclonal antibodies (Cyclin D1, CD3, CD5, CD23, etc.) paired with mouse monoclonal antibodies (CD7, CD20, CD79a, Pax-5, etc.......) for double immunofluorescence labeling on paraffin-embedded tissue sections. Commercially available rabbit monoclonal antibodies in combination with mouse monoclonal antibodies proved useful in double immunofluorescence labeling on paraffin-embedded tissue, and all combinations used yielded excellent results...

  14. Monoclonal antibodies against human granulocytes and myeloid differentiation antigens.

    Science.gov (United States)

    Mannoni, P; Janowska-Wieczorek, A; Turner, A R; McGann, L; Turc, J M

    1982-12-01

    Monoclonal antibodies (MCA) were obtained by immunizing BALB/c mice with 99% pure granulocytes from normal donors or with a whole leukocyte suspension obtained from a chronic myelogenous leukemia (CML) patient, and then fusing the mouse spleen cells with a 315-43 myeloma cell clone. Four MCA were selected and studied using ELISA, immunofluorescence, cytotoxicity assays, and FACS analysis. Antibodies 80H.1, 80H.3, and 80H.5 (from normals) and 81H.1 (from CML) detected antigens expressed on neutrophils. Antibodies 80H.1 and 80H.3 (IgG) also reacted with monocytes but not with other blood cell subsets. Antibodies 80H.5 and 81H.1 (IgM) were cytotoxic and reacted strongly with most of the cells of the neutrophil maturation sequence, i.e., myeloblasts, promyelocytes, myelocytes, and mature granulocytes. Antibodies 80H.5 and 81H.1 also inhibited CFU-GM growth stimulated by leukocyte feeder layers or placental conditioned media, but did not inhibit BFU-E and CFU-E. Antigens recognized by 80H.3, 80H.5, and 81H.1 were expressed both on a proportion of cells from HL.60, KG.1, ML.1, and K562 myeloid cell lines, and on a proportion of blast cells isolated from patients with acute myelogenous leukemia. They were not found on lymphoid cell lines or lymphoid leukemia cells. These MCA recognize either late differentiation antigens expressed on mature neutrophils and monocytes (80H.1 and 80H.3) or early differentiation antigens (80H.5 and 81H.1) specific to the granulocytic lineage. They may be useful for a better definition of those antigens specific to hematopoietic stem cells and their relationship with normal or neoplastic hematopoiesis.

  15. [ICO-10 monoclonal antibodies to the Thy-1 antigen].

    Science.gov (United States)

    Korotkova, O V; Baryshnikov, A Iu; Tupitsyn, N N; Chimishkian, K L; Kostrykina, V N

    1989-01-01

    Mouse monoclonal antibodies (MAB) ICO-10 to Thy-1 antigen were obtained. MAB ICO-10 reacted in indirect immunofluorescence test with 5.7 +/- 0.8% human thymocytes. Antibodies did not react with granulocytes, monocytes, T- and non-T cells from peripheral blood, and with marrow cells of healthy donors. MAB ICO-10 reacted with blast cells from 25 of 53 patients with T-cell acute lymphoblastic leukemia (ALL), from 2 of 5 patients with B-cell ALL. This antigen was absent on blood and marrow cells from some patients with ALL, 80 patients with chronic lymphoid leukemia, 54 patients with chronic granulocytic leukemia at the stage of blastic crisis, 128 patients with acute nonlymphoblastic leukemia. Antibodies are specifically bound to thymocytes and spleen cells of Thy 1.1 and Thy 1.2 mice. MAB ICO-10 detect Thy-1 antigen expressed on human hematopoietic cells. MAB ICO-10 may be applied for human leukemia and lymphoma immune diagnosis.

  16. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab.

    Science.gov (United States)

    Brand, Toni M; Iida, Mari; Wheeler, Deric L

    2011-05-01

    The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase belonging to the HER family of receptor tyrosine kinases. Receptor activation upon ligand binding leads to down stream activation of the PI3K/AKT, RAS/RAF/MEK/ERK and PLCγ/PKC pathways that influence cell proliferation, survival and the metastatic potential of tumor cells. Increased activation by gene amplification, protein overexpression or mutations of the EGFR has been identified as an etiological factor in a number of human epithelial cancers (e.g., NSCLC, CRC, glioblastoma and breast cancer). Therefore, targeting the EGFR has been intensely pursued as a cancer treatment strategy over the last two decades. To date, five EGFR inhibitors, including three small molecule tyrosine kinase inhibitors (TKIs) and two monoclonal antibodies have gained FDA approval for use in oncology. Both approaches to targeting the EGFR have shown clinical promise and the anti-EGFR antibody cetuximab is used to treat HNSCC and CRC. Despite clinical gains arising from use of cetuximab, both intrinsic resistance and the development of acquired resistance are now well recognized. In this review we focus on the biology of the EGFR, the role of EGFR in human cancer, the development of antibody-based anti-EGFR therapies and a summary of their clinical successes. Further, we provide an in depth discussion of described molecular mechanisms of resistance to cetuximab and potential strategies to circumvent this resistance.

  17. ANTITUMOR EFFECTS OF MONOCLONAL ANTIBODY FAB′ FRAGMENT CONTAINING IMMUNOCONJUGATES

    Institute of Scientific and Technical Information of China (English)

    刘小云; 甄永苏

    2002-01-01

    Objective.Using monoclonal antibody (mAb) Fab′ fragment to develop mAb immunoconjugates for cancer. Methods.Fab′ fragment of mAb 3A5 was prepared by digestion of the antibody with pepsin and then reduced by dithiothreitol (DTT),while Fab′ fragment of mAb 3D6 was obtained by digestion of the antibody with ficin and subsequently reduced by β mercaptoethanol.The conjugation between Fab′ fragment and pingyangmycin (PYM),an antitumor antibiotic,was mediated by dextran T 40.Immunoreactivity of Fab′ PYM conjugates with cancer cells was determined by ELISA,and the cytotoxicity of those conjugates to cancer cells was determined by clonogenic assay.Antitumor effects of the Fab′ PYM conjugates were evaluated by subcutaneously transplanted tumors in mice. Results.The molecular weight of Fab′ fragment was approximately 53 kD,while the average molecular weight of Fab′ PYM conjugate was 170 kD.The Fab′ PYM conjugates showed immunoreactivity with antigen relevant cancer cells and selective cytotoxicity against target cells.Administered intravenously,Fab′ PYM conjugates were more effective against the growth of tumors in mice than free PYM and PYM conjugated with intact mAb. Conclusion.Fab′ PYM conjugate may be capable of targeting cancer cells and effectively inhibiting tumor growth,suggesting its therapeutic potential in cancer treatment.

  18. Contribution of fluorescence in situ hybridization to immunohistochemistry for the evaluation of HER-2 in breast cancer.

    Science.gov (United States)

    Cianciulli, Anna M; Botti, Claudio; Coletta, Angela M; Buglioni, Simonetta; Marzano, Raffaella; Benevolo, Maria; Cione, Antonio; Mottolese, Marcella

    2002-02-01

    The main focus of the present study was to assess the efficacy of interphase cytogenetics using fluorescence in situ hybridization (FISH) as a valid alternative to immunohistochemistry (IHC) in paraffin-embedded tissue sections and/or the efficacy of the combination of the two methods, while, at the same time, aiming to provide additional information on the use of the two methods. For this study, selected breast cancer patients (n=66) were tested for HER-2 gene amplification by FISH. The probe contains DNA sequences specific for the HER-2 human gene locus and hybridizes to the 17q11.2 through q12 region of human chromosome 17. The same samples were tested previously for HER-2 overexpression by two monoclonal antibodies (300G9 and CB11), recognizing an extracellular and an internal domain of gp185(Her-2), respectively. HER-2 overexpression also was evaluated using the HerceptTest Kit (Dako, Milan, Italy). The HerceptTest was performed according to the manufacturer's standard procedures, and results were scored on a 0 to 3+ scale. A total of 34 (51%) of 66 breast tumors enrolled in this study were positive by FISH. Of the 34 cases amplified by FISH, 9 were negative by IHC using both monoclonal antibody (MoAb) 300G9 and MoAb CB11, with a concordance rate from 80.3% to 83.3%. A higher concordance was verified (92.4%) when we used the HerceptTest Kit. Of the 32 cases found negative with the HerceptTest, FISH analysis identified HER-2 gene amplification in more than 10%. Our results indicate that with the combined use of both methods, several amplified samples classified negative by IHC can be used thus improving therapeutic planning for specific therapy with the monoclonal antibody trastuzumab.

  19. Effect of polyol sugars on the stabilization of monoclonal antibodies.

    Science.gov (United States)

    Nicoud, Lucrèce; Cohrs, Nicholas; Arosio, Paolo; Norrant, Edith; Morbidelli, Massimo

    2015-02-01

    We investigate the impact of sugars and polyols on the heat-induced aggregation of a model monoclonal antibody whose monomer depletion is rate-limited by protein unfolding. We follow the kinetics of monomer consumption by size exclusion chromatography, and we interpret the results in the frame of two mechanistic schemes describing the enhanced protein stability in the presence of polyols. It is found that the stabilization effect increases with increasing polyol concentration with a comparable trend for all of the tested polyols. However, the stabilization effect at a given polyol concentration is polyol specific. In particular, the stabilization effect increases as a function of polyol size until a plateau is reached above a critical polyol size corresponding to six carbon atoms. Our results show that the stabilization by polyols does not depend solely on the volume fraction filled by the polyol molecules, but is also affected by the polyol chemistry.

  20. Characteristics of Monoclonal Antibody Against Infectious Bursal Disease Virus

    Institute of Scientific and Technical Information of China (English)

    LiYan-Fei; WangWei; 等

    1999-01-01

    Thirteen strains of monoclonal antibodies(McAbs) against infections bursal disease virus(IBDV) were obtained by using hydridoma technique and their characteristics were studied by double immunodiffusion,enzyme-linked immunosorbent assay(ELISA),virus neutralization test(VNT) and Western-blotting assay (WBA).The result showed that nine of the thirteen McAbs belonged to IgG class and four of them belonged to IgM class.No crossreactions were detected betwween the McAbs and Newscastle disease virus (NDV),infectious bronchitis virus(IBV) and Marek's disease virus(MDV).All of McAbs were positively specific reactive with IBDV and five of them can neutralize viral infectivity.Their recognized epitopes of the neutralizing McAbs were all presented on VP2 of the IBDV.

  1. Characteristics of Monoclonal Antibody Against Infectious Bursal Disease Virus

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Thirteen strains of monoclonal antibodies (McAbs) against infectious bursal disease virus (IBDV) were obtained by using hybridoma technique and their characteristics were studied by double immunodiffusion,en- zyme- linked immunosorbent assay (ELISA), virus neutralization test (VNT) and Western- blotting assay (WBA). The result showed that nine of the thirteen McAbs belonged to IgG class and four of them belonged to IgM class. No crossreactions were detected betwween the McAbs and Newscastle disease virus (NDV) ,in- fectious bronchitis virus(IBV) and Marek's disease virus(MDV). All of McAbs were positively specific reac- tive with IBDV and five of them can neutralize viral infectivity. Their recognized epitopes of the neutralizing McAbs were all presented on VP2 of the IBDV.

  2. Preparation and Identification of Monoclonal Antibodies Against Vibrio anguillarum

    Institute of Scientific and Technical Information of China (English)

    Chen Shiyong(陈师勇); Zhang Peijun; Mo Zhaolan; Zhang Zhendong; Zou Yuxia; Xu Yongli

    2004-01-01

    Monoclonal antibodies (Mabs) against V.anguillarum strain M3 are prepared, and their isotypes are also characterized. Among them, C1C5 is the only Mab which does not crossreact with other eleven non-V.anguillarum strains. The proteinase K digestion test shows that the epitopes recognized by C1C5, C6C3 and C6C32 Mabs contained protein. The periodate oxidation test showed that the epitopes recognized by Mabs except C1C5 are glycosylated. In addition, results of additivity test indicate that the epitopes recognized by C6C3 and C6C32 Mabs are similar, and quite different from those recognized by Mab C1C5.

  3. [Monoclonal antibodies for the treatment of multiple sclerosis].

    Science.gov (United States)

    Sánchez-Seco, Victoria Galán; Casanova Peño, Ignacio; Arroyo González, Rafael

    2014-12-01

    Until the mid 1990s, with the appearance of interferon beta and glatiramer acetate, there was no treatment for multiple sclerosis (MS). However, due to their moderate therapeutic potential in some patients, a broad search was continued to find new and more effective treatment strategies, largely concentrated on monoclonal antibodies (MOAB). Natalizumab, the first MOAB for the treatment of MS, was approved at the end of 2004, representing a major advance in the field of neuroimmunology. Today, there is broad experience with natalizumab and other MOAB (alemtuzumab, daclizumab, rituximab, ocrelizumab, ofatumumab and anti-lingo-1) that are pending commercialization or are under phase II or III of development with promising results. The present review analyzes the efficacy and safety results of all these drugs. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  4. Pharmacokinetic, pharmacodynamic and immunogenicity comparability assessment strategies for monoclonal antibodies.

    Science.gov (United States)

    Putnam, Wendy S; Prabhu, Saileta; Zheng, Yanan; Subramanyam, Meena; Wang, Yow-Ming C

    2010-10-01

    Regulatory guidance stipulates that comparability assessment is required to support manufacturing process changes during the development of a biological product or post-approval. However, strategies for assessing the comparability of pre- and post-change materials are still evolving. A hierarchical risk-based approach is recommended, starting with analytical testing to ensure quality, followed by biological characterization and, if needed, in vivo pharmacokinetic (PK), PK-pharmacodynamic (PD), safety and/or efficacy studies. The need for an in vivo study and the type of study required depend on the magnitude and the potential impact of the changes and the timing in the development process. This review discusses factors affecting the PK, PD and immunogenicity of monoclonal antibodies, and provides guidance for determining non-clinical and clinical comparability assessment strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Selection of Ceratitis capitata (Diptera: Tephritidae) specific recombinant monoclonal phage display antibodies for prey detection analysis.

    Science.gov (United States)

    Monzó, César; Urbaneja, Alberto; Ximénez-Embún, Miguel; García-Fernández, Julia; García, José Luis; Castañera, Pedro

    2012-01-01

    Several recombinant antibodies against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), one of the most important pests in agriculture worldwide, were selected for the first time from a commercial phage display library of human scFv antibodies. The specificity and sensitivity of the selected recombinant antibodies were compared with that of a rabbit polyclonal serum raised in parallel using a wide range of arthropod species as controls. The selected recombinant monoclonal antibodies had a similar or greater specificity when compared with classical monoclonal antibodies. The selected recombinant antibodies were successfully used to detect the target antigen in the gut of predators and the scFv antibodies were sequenced and compared. These results demonstrate the potential for recombinant scFv antibodies to be used as an alternative to the classical monoclonal antibodies or even molecular probes in the post-mortem analysis studies of generalist predators.

  6. PCSK9 Inhibition With Monoclonal Antibodies: Modern Management of Hypercholesterolemia.

    Science.gov (United States)

    Ito, Matthew K; Santos, Raul D

    2017-01-01

    Current guidelines for hypercholesterolemia treatment emphasize lifestyle modification and lipid-modifying therapy to reduce the risk for cardiovascular disease. Statins are the primary class of agents used for the treatment of hypercholesterolemia. Although statins are effective for many patients, they fail to achieve optimal reduction in lipids for some patients, including those who have or are at high risk for cardiovascular disease. The PCSK9 gene was identified in the past decade as a potential therapeutic target for the management of patients with hypercholesterolemia. Pharmacologic interventions to decrease PCSK9 levels are in development, with the most promising approach using monoclonal antibodies that bind to PCSK9 in the plasma. Two monoclonal antibodies, alirocumab and evolocumab, have recently been approved for the treatment of hypercholesterolemia, and a third one, bococizumab, is in phase 3 clinical development. All 3 agents achieve significant reductions in levels of low-density lipoprotein cholesterol, as well as reductions in non-high-density lipoprotein cholesterol, apolipoprotein B, and lipoprotein(a). Long-term outcome trials are under way to determine the sustained efficacy, safety, and tolerability of PCSK9 inhibitors and whether this novel class of agents decreases the risk for major cardiovascular events in patients on lipid-modifying therapy. Available data suggest that PCSK9 inhibitors provide a robust reduction in atherogenic cholesterol levels with a good safety profile, especially for patients who fail to obtain an optimal clinical response to statin therapy, those who are statin intolerant or have contraindications to statin therapy, and those with familial hypercholesterolemia. © 2016, The Authors. The Journal of Clinical Pharmacology Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  7. Antibodies to poliovirus detected by immunoradiometric assay with a monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, M.; Fossati, C.A.; Schild, G.C.; Spitz, L.; Brasher, M. (National Inst. for Biological Standards and Control, London (UK))

    1982-10-01

    An immunoradiometric assay (IRMA) for the assay of antibodies to poliovirus antigens is described. Dilutions of the test sera or whole (finger prick) blood samples were incubated with the poliovirus antigen bound to a solid phase and the specific antibody was detected by the addition of a mouse anti-human IgG monoclonal antibody (McAb), which was itself revealed by iodinated sheep IgG antimouse F(ab). The authors have shown that this technique is suitable for the estimation of IgG anti-poliovirus antibodies induced in children following polio vaccine. The present study shows that SPRIA provides a simple and inexpensive method for serological studies with poliovirus particularly for use in large-scale surveys.

  8. Anti-Tumor Effects of Peptide Therapeutic and Peptide Vaccine Antibody Co-targeting HER-1 and HER-2 in Esophageal Cancer (EC and HER-1 and IGF-1R in Triple-Negative Breast Cancer (TNBC

    Directory of Open Access Journals (Sweden)

    Jay Overholser

    2015-07-01

    Full Text Available Despite the promise of targeted therapies, there remains an urgent need for effective treatment for esophageal cancer (EC and triple-negative breast cancer (TNBC. Current FDA-approved drugs have significant problems of toxicity, safety, selectivity, efficacy and development of resistance. In this manuscript, we demonstrate that rationally designed peptide vaccines/mimics are a viable therapeutic strategy for blocking aberrant molecular signaling pathways with high affinity, specificity, potency and safety. Specifically, we postulate that novel combination treatments targeting members of the EGFR family and IGF-1R will yield significant anti-tumor effects in in vitro models of EC and TNBC possibly overcoming mechanisms of resistance. We show that the combination of HER-1 and HER-2 or HER-1 and IGF-1R peptide mimics/vaccine antibodies exhibited enhanced antitumor properties with significant inhibition of tumorigenesis in OE19 EC and MDA-MB-231 TNBC cell lines. Our work elucidates the mechanisms of HER-1/IGF-1R and HER-1/HER-2 signaling in these cancer cell lines, and the promising results support the rationale for dual targeting with HER-1 and HER-2 or IGF-1R as an improved treatment regimen for advanced therapy tailored to difference types of cancer.

  9. Preparation and Biological Evaluation of 188Re Labeled Monoclonal Antibody TGLA

    Institute of Scientific and Technical Information of China (English)

    WEN; Kai; ZHANG; Jun-li; CHEN; Bao-jun; CUI; Hai-ping

    2012-01-01

    <正>Monoclonal antibody TGLA is a specific targeting CD20 chimeric antibody. It can kill tumor cells and inhibit tumor cells’ growth effectively, which has been applied to clinical therapy of lymphoma cell B. 188 Re is easy to get, and emits both β and γ rays. 188Re labeled monoclonal antibody TGLA can be used for the study of lymphoma therapy and imaging. This work got the product 188Re-TGLA by direct labeling

  10. A MONOCLONAL-ANTIBODY AGAINST HUMAN BETA-GLUCURONIDASE FOR APPLICATION IN ANTIBODY-DIRECTED ENZYME PRODRUG THERAPY

    NARCIS (Netherlands)

    Haisma, Hidde; VANMUIJEN, M; SCHEFFER, G; SCHEPER, RJ; PINEDO, HM; BOVEN, E

    1995-01-01

    The selectivity of anticancer agents may be improved by antibody-directed enzyme prodrug therapy (ADEPT), The immunogenicity of antibody-enzyme conjugates and the low tumor to normal tissue ratio calls for the use of a human enzyme and the development of a monoclonal antibody (MAb) against that enzy

  11. Profiling formulated monoclonal antibodies by (1)H NMR spectroscopy.

    Science.gov (United States)

    Poppe, Leszek; Jordan, John B; Lawson, Ken; Jerums, Matthew; Apostol, Izydor; Schnier, Paul D

    2013-10-15

    Nuclear magnetic resonance (NMR) is arguably the most direct methodology for characterizing the higher-order structure of proteins in solution. Structural characterization of proteins by NMR typically utilizes heteronuclear experiments. However, for formulated monoclonal antibody (mAb) therapeutics, the use of these approaches is not currently tenable due to the requirements of isotope labeling, the large size of the proteins, and the restraints imposed by various formulations. Here, we present a new strategy to characterize formulated mAbs using (1)H NMR. This method, based on the pulsed field gradient stimulated echo (PGSTE) experiment, facilitates the use of (1)H NMR to generate highly resolved spectra of intact mAbs in their formulation buffers. This method of data acquisition, along with postacquisition signal processing, allows the generation of structural and hydrodynamic profiles of antibodies. We demonstrate how variation of the PGSTE pulse sequence parameters allows proton relaxation rates and relative diffusion coefficients to be obtained in a simple fashion. This new methodology can be used as a robust way to compare and characterize mAb therapeutics.

  12. Analysis of viral clearance unit operations for monoclonal antibodies.

    Science.gov (United States)

    Miesegaes, George; Lute, Scott; Brorson, Kurt

    2010-06-01

    Demonstration of viral clearance is a critical step in assuring the safety of biotechnology products. We generated a viral clearance database that contains product information, unit operation process parameters, and viral clearance data from monoclonal antibody and antibody-related regulatory submissions to FDA. Here we present a broad overview of the database and resulting analyses. We report that the diversity of model viruses tested expands as products transition to late-phase. We also present averages and ranges of viral clearance results by Protein A and ion exchange chromatography steps, low pH chemical inactivation, and virus filtration, focusing on retro- and parvoviruses. For most unit operations, an average log reduction value (LRV, a measure of clearance power) for retrovirus of >4 log(10) were measured. Cases where clearance data fell outside of the anticipated range (i.e., outliers) were rationally explained. Lastly, a historical analysis did not find evidence of any improvement trend in viral clearance over time. The data collectively suggest that many unit operations in general can reliably clear viruses.

  13. Monoclonal antibodies: pharmacokinetics as a basis for new dosage regimens?

    Science.gov (United States)

    Azanza, J-R; Sádaba, B; Gómez-Guiu, A

    2015-10-01

    Complete monoclonal IgG antibodies which are in use in clinical practice share some pharmacological properties resulting in high concentrations in plasma. This fact is reflected in their low volumes of distribution, which can also be correlated with a high molecular weight and water solubility. This feature allows a novel approach to be applied to the dosing schedule for this group of drugs with fixed doses being used instead of the initially developed weight- or body surface-adjusted dosing schedules. In addition, the development of a new formulation containing hyaluronidase allows a subcutaneous route of administration to be used, because hyaluronidase creates a space in the subcutaneous tissue that helps antibody absorption. This method requires higher doses, but has allowed testing the feasibility of administering a fixed dose, with no individual dose adjustments based on weight or body surface. Moreover, loading doses are not needed, because the first dose results, within 3 weeks, in minimum concentrations that are higher than effective concentrations.

  14. Anti-bacterial monoclonal antibodies: back to the future?

    Science.gov (United States)

    Oleksiewicz, Martin B; Nagy, Gábor; Nagy, Eszter

    2012-10-15

    Today's medicine has to deal with the emergence of multi-drug resistant bacteria, and is beginning to be confronted with pan-resistant microbes. This worsening inadequacy of the antibiotics concept, which has ruled infectious medicine in the last six decades creates an increasing unmet medical need that can be addressed by passive immunization. While past experience from the pre-antibiotic era with serum therapy was in many cases encouraging, antibacterial monoclonal antibodies have so far suffered high attrition rates in the clinic, generally from lack of efficacy. Yet, we believe that recent developments in a number of areas such as infectious disease pathogenesis research, translational medicine, mAb engineering, mAb manufacturing and rapid bedside diagnostics are converging to make the medium-term future permissive for antibacterial mAb development. Here, we review antibacterial mAb-based approaches that are or were in clinical development, and may potentially act as paradigms with regards to molecular targets, antibody formats and mode-of-action, pre-clinical validation and selection of most relevant patient populations, in order to increase the likelihood of successful product development in this field.

  15. Defining process design space for monoclonal antibody cell culture.

    Science.gov (United States)

    Abu-Absi, Susan Fugett; Yang, LiYing; Thompson, Patrick; Jiang, Canping; Kandula, Sunitha; Schilling, Bernhard; Shukla, Abhinav A

    2010-08-15

    The concept of design space has been taking root as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non-key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product-related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified.

  16. Research progress on target therapeutic agents of HER-2 extracellular ligand-binding domain in breast cancer%乳腺癌HER-2胞外配体结合区靶点治疗的研究进展*

    Institute of Scientific and Technical Information of China (English)

    钟锦绣; 李亚梅(综述); 关晏星(审校)

    2013-01-01

    The target therapeutic agents of HER-2 extracellular ligand-binding domain have become the core of breast cancer research. A small peptide molecule and an anti-HER2 extracellular domain monoclonal antibody conjugated with protein toxins, radioisotopes, and chemotherapeutic drugs (immunoconjugate) can improve efficacy and reduce systemic toxicity. Vaccines based on HER-2 extracellular region should protect patients from HER-2-overexpressing breast cancer growth. In this review, studies on targeted-block therapies of the HER-2 extracellular ligand-binding domain in breast cancer were discussed to provide references for clinical applications.%针对乳腺癌HER-2受体胞外结合区的靶点治疗成为当今研究的热点。小分子多肽、HER-2胞外结合区的单抗药物及其与蛋白毒素、放射性核素,化疗药物的偶联物即免疫偶联物既能增强药物的有效性,又可减少对正常组织的毒害。HER-2胞外区肽疫苗可有效预防HER-2高表达乳腺癌的生长。本文将对乳腺癌HER-2胞外区靶向阻断治疗的研究进行综述,为相应的临床应用提供参考。

  17. HER2 Testing in Gastric/Gastroesophageal Junction Adenocarcinomas: Unique Features of a Familiar Test.

    Science.gov (United States)

    Ross, Jeffrey S; Mulcahy, Mary

    2011-03-01

    Using the standard slide-based techniques of immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH), it has been firmly established that human epidermal growth factor receptor 2 (HER2) is overexpressed in adenocarcinoma of the upper gastrointestinal tract. In the ToGA trial, the addition of the monoclonal antibody trastuzumab to a standard regimen of cisplatin and fluoropyrimidine resulted in a clinically and statistically significant benefit in terms of response rate, median progression-free survival, and median overall survival in HER2-positive patients. Major differences exist, however, between HER2 testing in gastric/gastroesophageal junction (GEJ) cancer versus breast cancer, and the ToGA trial employed a significant modification of the breast cancer scoring criteria. As trastuzumab approaches regulatory approval in the United States for gastric/GEJ cancer, it is critical that pathologists and diagnostic laboratories learn and apply the unique criteria for assessing gastric/GEJ tumors for their HER2 status defined by the ToGA investigators, as they ready themselves for the approximately 50,000 new specimens that will be tested for HER2 status by both IHC and FISH each year.

  18. Small Molecule Tyrosine Kinase Inhibitors of ErbB2/HER2/Neu in the Treatment of Aggressive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Richard L. Schroeder

    2014-09-01

    Full Text Available The human epidermal growth factor receptor 2 (HER2 is a member of the erbB class of tyrosine kinase receptors. These proteins are normally expressed at the surface of healthy cells and play critical roles in the signal transduction cascade in a myriad of biochemical pathways responsible for cell growth and differentiation. However, it is widely known that amplification and subsequent overexpression of the HER2 encoding oncogene results in unregulated cell proliferation in an aggressive form of breast cancer known as HER2-positive breast cancer. Existing therapies such as trastuzumab (Herceptin® and lapatinib (Tyverb/Tykerb®, a monoclonal antibody inhibitor and a dual EGFR/HER2 kinase inhibitor, respectively, are currently used in the treatment of HER2-positive cancers, although issues with high recurrence and acquired resistance still remain. Small molecule tyrosine kinase inhibitors provide attractive therapeutic targets, as they are able to block cell signaling associated with many of the proposed mechanisms for HER2 resistance. In this regard we aim to present a review on the available HER2 tyrosine kinase inhibitors, as well as those currently in development. The use of tyrosine kinase inhibitors as sequential or combinatorial therapeutic strategies with other HER family inhibitors is also discussed.

  19. Generation and applications of monoclonal antibodies for livestock production.

    Science.gov (United States)

    Van Der Lende, T

    1994-01-01

    Monoclonal antibodies (MCAs) have found widespread applications in livestock production. Although the generation of murine MCAs is at present a routine, the production of homologous MCAs, especially important for in vivo applications, is still hampered by the lack of efficient homologous fusion partners for immortalization of antibody producing lymphocytes of livestock species. At present, MCAs are used in immunodiagnostic tests e.g. to monitor livestock reproduction and quality of livestock products. In the future MCAs will also be used in immunosensors for real-time and on-site applications in the same areas. The commercial application of MCAs for the immunomodulation of (pharmacologically induced) physiological processes underlying important (re)production traits is at present limited to the use of anti-PMSG MCAs in PMSG-induced superovulation. However, many potentially interesting applications are under investigation (e.g. immunopotentiation of growth hormone to enhance growth; immunocytolysis of adipocytes to increase lean meat production; immunoneutralization of GnRH for immunocastration; immunoimitation of hormone activity with anti-idiotype antibodies). Attempts to use specific MCAs for the sexing of embryos have been disappointing, mainly because of the relatively low accuracy. In the future, MCAs against membrane proteins which are specific for X- or Y-chromosome bearing spermatozoa might be used for bulk separation of livestock sperm. In general, it is expected that engineered (homologous) recombinant MCAs will largely contribute to the development of a new generation of rapid immunodiagnostic tests and effective immunomodulation applications. They will further increase the use of MCAs in livestock production.

  20. Kinetic analysis of the multistep aggregation mechanism of monoclonal antibodies.

    Science.gov (United States)

    Nicoud, Lucrèce; Arosio, Paolo; Sozo, Margaux; Yates, Andrew; Norrant, Edith; Morbidelli, Massimo

    2014-09-11

    We investigate by kinetic analysis the aggregation mechanism of two monoclonal antibodies belonging to the IgG1 and IgG2 subclass under thermal stress. For each IgG, we apply a combination of size exclusion chromatography and light scattering techniques to resolve the time evolution of the monomer, dimer, and trimer concentrations, as well as the average molecular weight and the average hydrodynamic radius of the aggregate distribution. By combining the detailed experimental characterization with a theoretical kinetic model based on population balance equations, we extract relevant information on the contribution of the individual elementary steps on the global aggregation process. The analysis shows that the two molecules follow different aggregation pathways under the same operating conditions. In particular, while the monomer depletion of the IgG1 is found to be rate-limited by monomeric conformational changes, bimolecular collision is identified as the rate-limiting step in the IgG2 aggregation process. The measurement of the microscopic rate constants by kinetic analysis allows the quantification of the protein-protein interaction potentials expressed in terms of the Fuchs stability ratio (W). It is found that the antibody solutions exhibit large W values, which are several orders of magnitude larger than the values computed in the frame of the DLVO theory. This indicates that, besides net electrostatic repulsion, additional effects delay the aggregation kinetics of the antibody solutions with respect to diffusion-limited conditions. These effects likely include the limited efficiency of the collision events due to the presence of a limited number of specific aggregation-prone patches on the heterogeneous protein surface, and the contribution of additional repulsive non-DLVO forces to the protein-protein interaction potential, such as hydration forces.

  1. Immunolocation of antisperm monoclonal antibody 6B10 and corresponding antigen

    Institute of Scientific and Technical Information of China (English)

    高绍荣; 胡国俊; 段崇文; 刘辉; 韩之明; 宋祥芬; 陈大元

    1999-01-01

    An antisperm monoclonal antibody 6B10 was produced by hybridoma technique of the isotype IgG. The monoclonal antibody was purified by means of ammonium sulfate precipitation and protein A-Sepharose Cl-4B affinity chromatography. SDS polyacrylamide gel electrophoresis was used to evaluate the purity of the antibody. Evaluation of the sperm acrosomal status was determined by chlortetracycline (CTC) staining. It was found that monoclonal antibody 6B10 can inhibit the sperm acrosome reaction induced by progesterone. The corresponding antigen recognized by monoclonal antibody 6B10 was located on the plasma membrane of the sperm acrosome by indirect immunofluorescent microscopy and immunoelectronmicroscopy. Sperm protein was extracted by 1% Triton X-100. The molecular weight of the antigen is 50 ku, detected by Western blot. The antigen is a key protein in the sperm acrosome reaction and may be the receptor of progesterone on the sperm acrosome. It may either be developed as a candidate contraceptive vaccine

  2. Immunogenicity assessment of monoclonal antibody products: A simulated case study correlating antibody induction with clinical outcomes.

    Science.gov (United States)

    Knezevic, Ivana; Kang, Hye-Na; Thorpe, Robin

    2015-09-01

    Monoclonal antibodies are large molecules with complex structure and functions. They have a wide application for treatment of a broad range of chronic diseases and represent the largest class of biotherapeutic products. Given that biotherapeutic products may induce unwanted humoral and/or cellular immune responses in recipients, it is essential to investigate the immunogenicity of a product prior to licensure. The immune response is influenced by many factors and data generated in the pre-licensure studies are usually somewhat difficult for regulatory review. The knowledge and expertise required for this requires a thorough understanding of animal and human immunology as well as specific product characteristics, including mechanism of action, antibody assays and assessment of results in a given clinical context. The appropriate interpretation of immunogenicity data is of critical importance for defining the safety profile of a monoclonal antibody. Two case studies described in this paper were prepared to mimic a real situation in which regulators need to evaluate immunogenicity studies conducted by manufacturers of monoclonal antibody products. The specific objective of the case studies was to illustrate assessment of unwanted immunogenicity and the important factors that need to be considered in this context. Regulators and manufacturers who attended the World Health Organization (WHO) implementation workshop on Evaluation of Biotherapeutic Products, held in Seoul, Republic of Korea, in May 2014, participated in the case studies and provided valuable input. This article outlines the main aspects of immunogenicity discussed in these case studies and a summary of the lessons learned at this occasion. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-Mercaptopropionic Acid and CdTe-Mercaptosuccinic Acid Quantum Dots.

    Science.gov (United States)

    Singh, Gurpal; Kumar, Manoj; Soni, Udit; Arora, Vikas; Bansal, Vivek; Gupta, Dikshi; Bhat, Madhusudan; Dinda, Amit K; Sapra, Sameer; Singh, Harpal

    2016-01-01

    CdSe/CdS/ZnS and CdTe quantum dots (QDs) were synthesized by successive ion layer adsorption and reaction (SILAR) technique and direct aqueous synthesis respectively using thiol stabilizers. Synthesized CdSe/CdS/ZnS and CdTe QDs stabilized with 3-mercaptopropionic acid (MPA) and mercaptosuccinic acid (MSA) were used as fluorescent labels after conjugation with folic acid (FA) and anti-HER2 antibodies. Photoluminescence quantum yield of folated CdSe/CdS/ZnS-MPA and CdTe-MSA QDs was 59% and 77% than that of non-folated hydrophilic QDs. The folate receptor-mediated delivery of folic acid-conjugated CdTe-MSA and CdSe/CdS/ZnS-MPA QDs showed higher cellular internalization as observed by confocal laser scanning microscopic studies. Folated and non-folated CdTe-MSA QDs were highly toxic and exhibited only 10% cell viability as compared to > 80% cell viability with CdSe/CdS/ZnS-MPA QDs over the concentration ranging from 3.38 to 50 pmoles. Immunohistochemistry (IHC) results of human breast cancer tissue samples showed positive results with anti-HER2 antibody conjugated CdSe/CdS/ZnS-MPA QDs with better sensitivity and specificity as compared to conventional IHC analysis using diaminobenzedene staining.

  4. Monoclonal antibodies neutralizing the haemolytic activity of box jellyfish (Chironex fleckeri) tentacle extracts.

    Science.gov (United States)

    Collins, S P; Comis, A; Marshall, M; Hartwick, R F; Howden, M E

    1993-09-01

    1. Three monoclonal antibodies have been produced which neutralize in vitro the haemolytic activity present in tentacle extracts of the box jellyfish (Chironex fleckeri). 2. Two of these monoclonal antibodies bound specifically to a component of relative molecular mass 50,000 in tentacle extract on Western blots. 3. This binding only occurred when the extracts were electrophoresed under non-reducing conditions. 4. The third monoclonal antibody did not display binding to Western blots of tentacle extract under any of our experimental conditions.

  5. Radiolabeled monoclonal antibodies for imaging and therapy: Potential, problems, and prospects: Scientific highlights

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.; Buraggi, G.L.

    1986-01-01

    This meeting focused on areas of research on radiolabeled monoclonal antibodies. Topics covered included the production, purification, and fragmentation of monoclonal antibodies and immunochemistry of hybridomas; the production and the chemistry of radionuclides; the radiohalogenation and radiometal labeling techniques; the in-vivo pharmacokinetics of radiolabeled antibodies; the considerations of immunoreactivity of radiolabeled preparations; the instrumentation and imaging techniques as applied to radioimmunodetection; the radiation dosimetry in diagnostic and therapeutic use of labeled antibodies; the radioimmunoscintigraphy and radioimmunotherapy studies; and perspectives and directions for future research. Tutorial as well as scientific lectures describing the latest research data on the above topics were presented. Three workshop panels were convened on ''Methods for Determining Immunoreactivity of Radiolabeled Monoclonal Antibodies - Problems and Pitfalls,'' Radiobiological and Dosimetric Considerations for Immunotherapy with Labeled Antibodies,'' and ''The Human Anti-Mouse Antibody Response in Patients.''

  6. Plant-made trastuzumab (herceptin inhibits HER2/Neu+ cell proliferation and retards tumor growth.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available BACKGROUND: Plant biotechnology provides a valuable contribution to global health, in part because it can decrease the cost of pharmaceutical products. Breast cancer can now be successfully treated by a humanized monoclonal antibody (mAb, trastuzumab (Herceptin. A course of treatment, however, is expensive and requires repeated administrations of the mAb. Here we used an Agrobacterium-mediated transient expression system to produce trastuzumab in plant cells. METHODOLOGY/PRINCIPAL FINDINGS: We describe the cloning and expression of gene constructs in Nicotiana benthamiana plants using intron-optimized Tobacco mosaic virus- and Potato virus X-based vectors encoding, respectively, the heavy and light chains of trastuzumab. Full-size antibodies extracted and purified from plant tissues were tested for functionality and specificity by (i binding to HER2/neu on the surface of a human mammary gland adenocarcinoma cell line, SK-BR-3, in fluorescence-activated cell sorting assay and (ii testing the in vitro and in vivo inhibition of HER-2-expressing cancer cell proliferation. We show that plant-made trastuzumab (PMT bound to the Her2/neu oncoprotein of SK-BR-3 cells and efficiently inhibited SK-BR-3 cell proliferation. Furthermore, mouse intraperitoneal PMT administration retarded the growth of xenografted tumors derived from human ovarian cancer SKOV3 Her2+ cells. CONCLUSIONS/SIGNIFICANCE: We conclude that PMT is active in suppression of cell proliferation and tumor growth.

  7. Use of AN Eosinophil Specific Monoclonal Antibody in Assessing Eosinophil Function.

    Science.gov (United States)

    Minkoff, Marjorie Sue

    A monoclonal antibody to an eosinophil specific determinant is very important in assessing eosinophil function during helminthic infection. Eosinophils induced by Schistosoma mansoni infection in BALB/c mice were used to induce C57B1/6 immunocytes for production of hybridomas secreting eosinophil monoclonal antibodies. These antibodies were shown to react with an eosinophil surface epitope but not with neutrophils or macrophages as determined by ELISA, immunodiffusion, immunofluorescence, and immunoblot assay. Affinity chromatography with eosinophil chemotactic factor-sepharose consistently selected out a { rm M_ R} 67,000 protein from solubilized eosinophil membrane antigens but not from neutrophil and macrophage antigens. In vitro studies showed that the eosinophil-specific monoclonal antibodies abrogated antibody-dependent eosinophil -mediated killing of S. mansoni schistosomula using mouse, rat or human eosinophils. Neutrophil and macrophage killing activities were unaffected. The monoclonal antibodies effected complement-dependent lysis of mouse and rat eosinophils but not of human eosinophils. ECF-treated eosinophils showed enhanced killing of schistosomula which was blocked by the monoclonal antibody. Murine and human eosinophils preincubated with monoclonal antibody exhibited decreased chemotaxis to ECF at optimal chemotactic concentrations. The monoclonal antibody also blocked eosinophil binding to ECF- sepharose beads. In vivo induction of peripheral blood eosinophilia by injection of S. mansoni eggs was suppressed by injections of monoclonal antibodies 2CD13 and 2QD45 in mouse and rat experimental models. Eosinophilia induced by keyhole limpet hemocyanin- cyclophosphamide treatment was also suppressed by monoclonal antibody in both murine and rat systems. Pulmonary granulomas in mice given egg injection and monoclonal antibody were smaller and contained fewer eosinophils than those granulomas from mice given eggs only. In immuno-biochemical studies, the

  8. Identification of antigen-specific human monoclonal antibodies using high-throughput sequencing of the antibody repertoire.

    Science.gov (United States)

    Liu, Ju; Li, Ruihua; Liu, Kun; Li, Liangliang; Zai, Xiaodong; Chi, Xiangyang; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-04-22

    High-throughput sequencing of the antibody repertoire provides a large number of antibody variable region sequences that can be used to generate human monoclonal antibodies. However, current screening methods for identifying antigen-specific antibodies are inefficient. In the present study, we developed an antibody clone screening strategy based on clone dynamics and relative frequency, and used it to identify antigen-specific human monoclonal antibodies. Enzyme-linked immunosorbent assay showed that at least 52% of putative positive immunoglobulin heavy chains composed antigen-specific antibodies. Combining information on dynamics and relative frequency improved identification of positive clones and elimination of negative clones. and increase the credibility of putative positive clones. Therefore the screening strategy could simplify the subsequent experimental screening and may facilitate the generation of antigen-specific antibodies.

  9. A monoclonal antibody that recognizes an antigenic determinant shared by HLA A2 and B17.

    Science.gov (United States)

    McMichael, A J; Parham, P; Rust, N; Brodsky, F

    1980-09-01

    A hybridoma monoclonal anti-HLA antibody has been produced by the technique of Kohler and Milstein [1]. This antibody recognizes a new specificity common to HLA A2 and B17. It was shown to be a single antibody by isoelectric focusing and absorption experiments.

  10. EFFECT OF POLYCLONAL AND MONOCLONAL-ANTIBODIES ON SURFACE-PROPERTIES OF STREPTOCOCCUS-SOBRINUS

    NARCIS (Netherlands)

    VANRAAMSDONK, M; VANDERMEI, HC; DESOET, JJ; BUSSCHER, HJ; DEGRAAFF, J

    1995-01-01

    In this study, the effect of antibody adsorption on physicochemical properties of Streptococcus sobrinus was studied. Bacteria were preincubated with polyclonal antibodies or with OMVU10, a monoclonal antibody (MAb) reactive with S. sobrinus. The zeta potentials and the hydrophobicity as determined

  11. Use of radiolabeled monoclonal antibodies for diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Keigo (Kyoto Univ. (Japan). Faculty of Medicine)

    1990-08-01

    Monoclonal antibodies (MoAbs) are expected to carry radionuclides selectively to target tissues and to offer antigen-specific diagnosis. Indium (In)-111 has many favorable nuclear properties and is efficiently labeled with MoAbs using DAPA as a bifunctional chelating agent. In-111 labeled MoAbs are clinically employed for the diagnosis of malignant melanoma, colorectal cancer and acute myocardial infarction in Japan. Although non-specific deposit of In-111 was seen in liver and bone-marrow, scintigraphy using In-111 labeled MoAbs was encouraging, since it detected about 80% of tumors, tumors missed by conventional diagnostic methods such as CT, and tumors in patients with normal serum CEA values, and acute myocarditis as well as acute myocardial infarction was positive with In-111 labeled Fab fraction of anti-myosin Ab. Acute or subacute toxicity was not observed. Human anti-murine antibody (HAMA) was detected in 53 of 64 (82.8%) patients who were intravenously administered with 20 to 42 mg of anti-melanoma or anti-CEA MoAbs (whole IgG). In contrast, only 5 of 406 (1.2%) patients had detectable levels of HAMA in their serum after receiving 0.5 mg of Fab fraction of MoAb. Recently mouse-human chimeric Ab has been produced by recombinant DNA techniques, which localized well in xenografted tumors and seems to be promising for clinical use. Investigations are under way to increase the tumor to non-tumor ratio by modifying chelating agents for coupling MoAbs with radionuclides. (author).

  12. Characterization of monoclonal antibodies that strongly inhibit Electrophorus electricus acetylcholinesterase.

    Science.gov (United States)

    Remy, M H; Frobert, Y; Grassi, J

    1995-08-01

    In this study, we describe three different monoclonal antibodies (mAbs Elec-403, Elec-408, and Elec-410) directed against Electrophorus electricus acetylcholinesterase (AChE) which were selected as inhibitors for this enzyme. Two of these antibodies (Elec-403 and Elec-410), recognized overlapping but different epitopes, competed with snake venom toxin fasciculin for binding to the enzyme, and thus apparently recognized the peripheral site of AChE. In addition, the binding of Elec-403 was antagonized by 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284C51) and propidium, indicating that the corresponding epitope encompassed the anionic site involved in the binding of these low-molecular-mass inhibitors. The third mAb (Elec-408), was clearly bound to another site on the AChE molecule, and its inhibitory effect was cumulative with those of Elec-403, Elec-410, and fasciculin. All mAbs bound AChE with high affinity and were as strong inhibitors with an apparent Ki values less than 0.1 nM. Elec-403 was particularly efficient with an inhibitory activity similar to that of fasciculin. Inhibition was observed with both charged (acetylthiocholine) and neutral substrates (o-nitrophenyl acetate) and had the characteristics of a non-competitive process. Elec-403 and Elec-410 probably exert their effect by triggering allosteric transitions from the peripheral site to the active site. The epitope recognized by mAb Elec-408 has not been localized, but it may correspond to a new regulatory site on AChE.

  13. Characterization of monoclonal antibodies to avian Escherichia coli Iss.

    Science.gov (United States)

    Lynne, Aaron M; Foley, Steven L; Nolan, Lisa K

    2006-09-01

    Colibacillosis accounts for annual multimillion dollar losses in the poultry industry, and control of this disease is hampered by limited understanding of the virulence mechanisms used by avian pathogenic Escherichia coli (APEC). Previous work in our laboratory has found that the presence of the increased serum survival gene (iss) is strongly associated with APEC but not commensal E. coli, making iss and the protein it encodes (Iss) candidate targets of colibacillosis-control procedures. Previously, we produced monoclonal antibodies (MAbs) against Iss to be used as a reagent in studies of APEC virulence and colibacillosis pathogenesis. Unfortunately, the utility of these MAbs was limited because these MAbs exhibited nonspecific binding. It was thought that the lack of specificity might be related to the fact that these MAbs were of the immunoglobulin M (IgM) isotype. In the present study, new MAbs were produced using a different immunization strategy in an effort to generate MAbs of a different isotype. Also, because Iss bears strong similarity to Bor, a lambda-derived protein that occurs commonly among E. coli, MAbs were assessed for their ability to distinguish Iss and Bor. For these studies, the bor gene from an APEC isolate was cloned into an expression vector. The fusion protein expressed from this construct was used to assess the potential of the anti-Iss MAbs produced in the past and present studies to distinguish Bor and Iss. The MAbs produced in this study were of the IgG1 isotype, which appeared to bind more specifically to Iss than previously generated antibodies in certain immunologic procedures. These results suggested that the MAbs generated in this study might prove superior to the previous MAbs as a reagent for study of APEC. However, both MAbs recognized recombinant Iss and Bor, suggesting that any results obtained using anti-Iss MAbs would need to be interpreted with this cross-reactivity in mind.

  14. Human Monoclonal Antibodies Broadly Neutralizing against Influenza B Virus

    Science.gov (United States)

    Yasugi, Mayo; Kubota-Koketsu, Ritsuko; Yamashita, Akifumi; Kawashita, Norihito; Du, Anariwa; Sasaki, Tadahiro; Nishimura, Mitsuhiro; Misaki, Ryo; Kuhara, Motoki; Boonsathorn, Naphatsawan; Fujiyama, Kazuhito; Okuno, Yoshinobu; Nakaya, Takaaki; Ikuta, Kazuyoshi

    2013-01-01

    Influenza virus has the ability to evade host immune surveillance through rapid viral genetic drift and reassortment; therefore, it remains a continuous public health threat. The development of vaccines producing broadly reactive antibodies, as well as therapeutic strategies using human neutralizing monoclonal antibodies (HuMAbs) with global reactivity, has been gathering great interest recently. Here, three hybridoma clones producing HuMAbs against influenza B virus, designated 5A7, 3A2 and 10C4, were prepared using peripheral lymphocytes from vaccinated volunteers, and were investigated for broad cross-reactive neutralizing activity. Of these HuMAbs, 3A2 and 10C4, which recognize the readily mutable 190-helix region near the receptor binding site in the hemagglutinin (HA) protein, react only with the Yamagata lineage of influenza B virus. By contrast, HuMAb 5A7 broadly neutralizes influenza B strains that were isolated from 1985 to 2006, belonging to both Yamagata and Victoria lineages. Epitope mapping revealed that 5A7 recognizes 316G, 318C and 321W near the C terminal of HA1, a highly conserved region in influenza B virus. Indeed, no mutations in the amino acid residues of the epitope region were induced, even after the virus was passaged ten times in the presence of HuMAb 5A7. Moreover, 5A7 showed significant therapeutic efficacy in mice, even when it was administered 72 hours post-infection. These results indicate that 5A7 is a promising candidate for developing therapeutics, and provide insight for the development of a universal vaccine against influenza B virus. PMID:23408886

  15. Characterization of monoclonal antibodies against waterfowl parvoviruses VP3 protein

    Directory of Open Access Journals (Sweden)

    Yin Xiuchen

    2012-11-01

    Full Text Available Abstract Background The VP3 protein of goose parvovirus (GPV or Muscovy duck parvovirus (MDPV, a major structural protein, can induce neutralizing antibodies in geese and ducks, but monoclonal antibodies (MAbs against VP3 protein has never been characterized. Results Three hybridoma cell lines secreting anti-GPV VP3 MAbs were obtained and designated 4A8, 4E2, and 2D5. Immunoglobulin subclass tests differentiated them as IgG2b (4A8 and 4E2 and IgG2a (2D5. Dot blotting assays showed that three MAbs reacted with His-VP3 protein in a conformation-independent manner. A competitive binding assay indicated that the MAbs delineated two epitopes, A and B of VP3. Immunofluorescence assay showed that MAbs 4A8, 4E2, and 2D5 could specifically bind to goose embryo fibroblast cells (GEF or duck fibroblast cells (DEF infected with GPV and MDPV. Dot blotting also showed that the MAbs recognized both nature GPV and MDPV antigen. Western blotting confirmed that the MAbs recognized VP3 proteins derived from purified GPV and MDPV particles. The MAbs 4A8 and 2D5 had universal reactivity to heterologous GPV and MDPV tested in an antigen-capture enzyme-linked immunosorbent assay. Conclusions Preparation and characterization of these the MAbs suggests that they may be useful for the development of a MAb-capture ELISA for rapid detection of both GPV and MDPV. Virus isolation and PCR are reliable for detecting GPV and MDPV infection, but these procedures are laborious, time-consuming, and requiring instruments. These diagnosis problems highlight the ongoing demand for rapid, reproducible, and automatic methods for the sensitive detection of both GPV and MDPV infection.

  16. [ICO-166 monoclonal antibodies against the CD45RA antigen].

    Science.gov (United States)

    Frolova, E A; Baryshnikov, A Iu; Novikov, V V; Syrkin, A B

    1993-07-01

    Monoclonal antibodies (MCA) ICO-166 against CD45RA antigen were generated and characterized. In the indirect IFA, MCA ICO-166 reacted with 54.1 +/- 1.9% lymphocytes of human peripheral blood and 15.2 +/- 2.3% monocytes but not with granulocytes or thrombocytes. The method of double labelling of cells demonstrated that MCA ICO-166 detected all B-lymphocytes, all NK-cells and 31% of mature T-lymphocytes but only 55% of CD8 suppressor cells and only 21% of CDA helper cells carried this antigen on the surface. Experiments were carried out to block binding of FITC-labeled MCA ALB11 against CD45RA antigen with human lymphocytes by pretreatment of cells with different concentrations of MCA ICO-166. Treatment of cells with MCA ALB11 blocked binding of MCA ALB11-FITC by 85% on the average. MCA ICO-166 blocked binding of MCA ALB11-FITC by 66% on the average. When different dilutions of MCA ICO-166 were used, the dose-dependent effect of blocking of MCA ALB11-FITC binding was observed. MCA ICO-166 immunoprecipitated a protein band of molecular weight 220 kDa from lysates of mononuclear cells of the human peripheral blood.

  17. Role of cosolutes in the aggregation kinetics of monoclonal antibodies.

    Science.gov (United States)

    Nicoud, Lucrèce; Sozo, Margaux; Arosio, Paolo; Yates, Andrew; Norrant, Edith; Morbidelli, Massimo

    2014-10-16

    We propose a general strategy based on kinetic analysis to investigate how cosolutes affect the aggregation behavior of therapeutic proteins. We apply this approach to study the impact of NaCl and sorbitol on the aggregation kinetics of two monoclonal antibodies, an IgG1 and an IgG2. By using a combination of size exclusion chromatography and light scattering techniques, we study the impact of the cosolutes on the monomer depletion, as well as on the formation of dimers, trimers, and larger aggregates. We analyze these macroscopic effects in the frame of a kinetic model based on Smoluchowski's population balance equations modified to account for nucleation events. By comparing experimental data with model simulations, we discriminate the effect of cosolutes on the elementary steps which contribute to the global aggregation process. In the case of the IgG1, it is found that NaCl accelerates the kinetics of aggregation by promoting specifically aggregation events, while sorbitol delays the kinetics of aggregation by specifically inhibiting protein unfolding. In the case of the IgG2, whose monomer depletion kinetics is limited by dimer formation, NaCl and sorbitol are found respectively to accelerate and inhibit conformational changes and aggregation events to the same extent.

  18. Kinetics of Monoclonal Antibody Aggregation from Dilute toward Concentrated Conditions.

    Science.gov (United States)

    Nicoud, Lucrèce; Jagielski, Jakub; Pfister, David; Lazzari, Stefano; Massant, Jan; Lattuada, Marco; Morbidelli, Massimo

    2016-04-07

    Gaining understanding on the aggregation behavior of proteins under concentrated conditions is of both fundamental and industrial relevance. Here, we study the aggregation kinetics of a model monoclonal antibody (mAb) under thermal stress over a wide range of protein concentrations in various buffer solutions. We follow experimentally the monomer depletion and the aggregate growth by size exclusion chromatography with inline light scattering. We describe the experimental results in the frame of a kinetic model based on population balance equations, which allows one to discriminate the contributions of the conformational and of the colloidal stabilities to the global aggregation rate. Finally, we propose an expression for the aggregation rate constant, which accounts for solution viscosity, protein-protein interactions, as well as aggregate compactness. All these effects can be quantified by light scattering techniques. It is found that the model describes well the experimental data under dilute conditions. Under concentrated conditions, good model predictions are obtained when the solution pH is far below the isoelectric point (pI) of the mAb. However, peculiar effects arise when the solution pH is increased toward the mAb pI, and possible explanations are discussed.

  19. DNA immunization as a technology platform for monoclonal antibody induction.

    Science.gov (United States)

    Liu, Shuying; Wang, Shixia; Lu, Shan

    2016-04-06

    To combat the threat of many emerging infectious diseases, DNA immunization offers a unique and powerful approach to the production of high-quality monoclonal antibodies (mAbs) against various pathogens. Compared with traditional protein-based immunization approaches, DNA immunization is efficient for testing novel immunogen designs, does not require the production or purification of proteins from a pathogen or the use of recombinant protein technology and is effective at generating mAbs against conformation-sensitive targets. Although significant progress in the use of DNA immunization to generate mAbs has been made over the last two decades, the literature does not contain an updated summary of this experience. The current review provides a comprehensive analysis of the literature, including our own work, describing the use of DNA immunization to produce highly functional mAbs, in particular, those against emerging infectious diseases. Critical factors such as immunogen design, delivery approach, immunization schedule, use of immune modulators and the role of final boost immunization are discussed in detail.

  20. Characterization of Endotrypanum Parasites Using Specific Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Ramos Franco Antonia Maria

    1997-01-01

    Full Text Available A large number of Endotrypanum stocks (representing an heterogeneous population of strains have been screened against a panel of monoclonal antibodies (MAbs derived for selected species of Endotrypanum or Leishmania, to see whether this approach could be used to group/differentiate further among these parasites. Using different immunological assay systems, MAbs considered specific for the genus Endotrypanum (E-24, CXXX-3G5-F12 or strain M6159 of E. schaudinni (E-2, CXIV-3C7-F5 reacted variably according to the test used but in the ELISA or immunofluorescence assay both reacted with all the strains tested. Analyses using these MAbs showed antigenic diversity occurring among the Endotrypanum strains, but no qualitative or quantitative reactivity pattern could be consistently related to parasite origin (i.e., host species involved or geographic area of isolation. Western blot analyses of the parasites showed that these MAbs recognized multiple components. Differences existed either in the epitope density or molecular forms associated with the antigenic determinants and therefore allowed the assignment of the strains to specific antigenic groups. Using immunofluorescence or ELISA assay, clone E-24 produced reaction with L. equatorensis (which is a parasite of sloth and rodent, but not with other trypanosomatids examined. Interestingly, the latter parasite and the Endotrypanum strains cross-reacted with a number of MAbs that were produced against members of the L. major-L. tropica complex

  1. Development and Evaluation of Monoclonal Antibodies for Paxilline

    Directory of Open Access Journals (Sweden)

    Chris M. Maragos

    2015-09-01

    Full Text Available Paxilline (PAX is a tremorgenic mycotoxin that has been found in perennial ryegrass infected with Acremonium lolii. To facilitate screening for this toxin, four murine monoclonal antibodies (mAbs were developed. In competitive indirect enzyme-linked immunosorbent assays (CI-ELISAs the concentrations of PAX required to inhibit signal development by 50% (IC50s ranged from 1.2 to 2.5 ng/mL. One mAb (2-9 was applied to the detection of PAX in maize silage. The assay was sensitive to the effects of solvents, with 5% acetonitrile or 20% methanol causing a two-fold or greater increase in IC50. For analysis of silage samples, extracts were cleaned up by adsorbing potential matrix interferences onto a solid phase extraction column. The non-retained extract was then diluted with buffer to reduce solvent content prior to assay. Using this method, the limit of detection for PAX in dried silage was 15 µg/kg and the limit of quantification was 90 µg/kg. Recovery from samples spiked over the range of 100 to 1000 µg/kg averaged 106% ± 18%. The assay was applied to 86 maize silage samples, with many having detectable, but none having quantifiable, levels of PAX. The results suggest the CI-ELISA can be applied as a sensitive technique for the screening of PAX in maize silage.

  2. Monoclonal antibody probe for assessing beer foam stabilizing proteins.

    Science.gov (United States)

    Onishi, A; Proudlove, M O; Dickie, K; Mills, E N; Kauffman, J A; Morgan, M R

    1999-08-01

    A monoclonal antibody (Mab; IFRN 1625) has been produced, which is specific for the most hydrophobic polypeptides responsible for foam stabilization. The binding characteristics of the Mab suggest that it is the conformation of certain hydrophobic polypeptides which is important for foam stabilization. An enzyme-linked immunosorbent assay (ELISA) for assessing the foam-positive form of the foam-stabilizing polypeptides in beer was developed using IFRN 1625. A good correlation was obtained between ELISA determination of foam-stabilizing polypeptides and an empirical means of determining foaming, that is, the Rudin head retention values, for a collection of beers of various foam qualities. Application of the ELISA to different stages of the brewing process showed that the amounts of foam-positive polypeptides increased during barley germination. During the brewing process the proportion of foam-positive polypeptides present after fermentation increased slightly, although a large amount was lost along with other beer proteins during subsequent steps, such as filtering. The present study demonstrates that the amounts of beer polypeptide present in a foam-positive form have a direct relationship with the foaming potential of beer, that their levels are altered by processing, and that there is potential for greater quality control.

  3. Monoclonal antibodies against NS1 protein of Goose parvovirus.

    Science.gov (United States)

    Qiu, Zheng; Tian, Wei; Yu, Tianfei; Li, Li; Ma, Bo; Wang, Junwei

    2012-04-01

    In the present study, monoclonal antibodies (MAbs) against NS1 protein of Goose parvovirus (GPV) were generated. The secreted MAbs were obtained by fusing mouse myeloma cells and spleen cells of BALB/c mice, which were immunized with the plasmid pcDNA3.1-GPV-NS1 and recombinant protein of GPV-NS1. With indirect ELISA, six hybridoma cell lines against GPV-NS1 were screened. The subtypes of the two MAbs were IgG2a; the others were IgM. The light chain was κ. Western blot analysis showed that six MAbs reacted with recombinant protein GPV-NS1. GPV-NS1 was dissected into 15 overlapping epitopes, which were used to react with MAbs in Western blot. Results showed that six MAbs recognized NS1 protein linear B-cell epitopes located at the C-terminus 453-514 aa, 485-542 aa, and 533-598 aa.

  4. Immunomodulatory Monoclonal Antibodies in Combined Immunotherapy Trials for Cutaneous Melanoma

    Directory of Open Access Journals (Sweden)

    Mariana Aris

    2017-08-01

    Full Text Available In the last few years, there has been a twist in cancer treatment toward immunotherapy thanks to the impressive results seen in advanced patients from several tumor pathologies. Cutaneous melanoma is a highly mutated and immunogenic tumor that has been a test field for the development of immunotherapy. However, there is still a way on the road to achieving complete and long-lasting responses in most patients. It is desirable that immunotherapeutic strategies induce diverse immune reactivity specific to tumor antigens, including the so-called neoantigens, as well as the blockade of immunosuppressive mechanisms. In this review, we will go through the role of promising monoclonal antibodies in cancer immunotherapy with immunomodulatory function, especially blocking of the inhibitory immune checkpoints CTLA-4 and PD-1, in combination with different immunotherapeutic strategies such as vaccines. We will discuss the rational basis for these combinatorial approaches as well as different schemes currently under study for cutaneous melanoma in the clinical trials arena. In this way, the combination of “push and release” immunomodulatory therapies can contribute to achieving a more robust and durable antitumor immune response in patients.

  5. An update on newer monoclonal antibodies in lymphoma therapy

    Directory of Open Access Journals (Sweden)

    Subhashini Archana Kadavakolan

    2016-01-01

    Full Text Available In 2014, an estimated 9.4% of all new cancers in the US were accounted to hematological cancers. Most of these cancers have a B-cell origin and on the cell surface express antigen CD20-known to restrict B-cells. Considering the intrinsic immune status of the patients receiving chemotherapy, monoclonal antibodies (mAbs are designed to provide active or passive immunotherapy. Clinical success of rituximab-anti-CD20 mAb in the treatment of lymphoma has led to the development of newer generations of mAb to increase the anti-tumor activity. Hence, recent advances in lymphoma therapy are being built on the conventional prototype of anti-CD20 mAb-rituximab. Our review is an update on the advances in lymphoma therapy using mAb against CD20 including the second generation-ofatumumab, veltuzumab, ocrelizumab, and the third-generation mAbs-ocaratuzumab and obinutuzumab.

  6. Establishment of a novel monoclonal antibody against LGR5.

    Science.gov (United States)

    Sasaki, Yuka; Kosaka, Hiromichi; Usami, Katsuaki; Toki, Hiroe; Kawai, Hironori; Shiraishi, Norihiko; Ota, Toshio; Nakamura, Kazuyasu; Furuya, Akiko; Satoh, Mitsuo; Hasegawa, Kazumasa; Masuda, Kazuhiro

    2010-04-09

    LGR5 is an orphan G-protein-coupled receptor (GPCR) that is expressed on the cell surface membrane. LGR5 is reported to be overexpressed in colon, liver, and ovary tumor compared to normal tissue. However, a specific ligand for LGR5 has not yet been determined, and the function is still not clear. An LGR5-specific monoclonal antibody (mAb) is needed as a tool for detection and analysis of LGR5 biological function and cancer therapy. To date, no mAb against LGR5 that retains high affinity and specificity has been reported. Here, we report successful establishment and characterization of a mAb (KM4056) that specifically recognizes the extracellular N-terminal domain of human LGR5, but not LGR4 or LGR6. This mAb has potent complement-dependent cytotoxicity (CDC) activity in vitro and shows strong anti-tumor activity in vivo against xenograft model by transplanting LGR5 expressing CHO transfectants into SCID mice. Thus, KM4056 can be a useful tool for detection of LGR5 positive cells and analysis of LGR5 biological function.

  7. Production and Characterization of Monoclonal Antibody Against Recombinant Human Erythropoietin

    Institute of Scientific and Technical Information of China (English)

    JIE-BO MI; JIN YAN; XIAO-JIE DING; ZHEN-QUAN GUO; MEI-PING ZHAO; WEN-BAO CHANG

    2007-01-01

    Objective To produce specific monoclonal antibody(mAb)against recombinant human erythropoietin(rHuEPO)for development of higmy efficient methods for erythropoietin detection in biological fluids.Methods rHuEPO was covalently coupled with bovine serum albumin(BSA)and the conjugate was used to immunize mice to produce specific mAb against rHuEPO based on hybridoma technology.The obtained F3-mAb was characterized by enzyme-linked immunosorbent assay (ELISA),SDS-PAGE and Western blot.Results The isotype of F3-mAb Was found to be IgM with an affinity constant of 2.1x108 L/mol.The competitive ELISA using the obtained IgM showed a broader linear range and lower detection limit compared with previous work.Conclusions The modification of rHuEPO was proved to be successful in generating required specific mAb with high avidity to rHuEPO.

  8. Downstream processing of monoclonal antibodies--application of platform approaches.

    Science.gov (United States)

    Shukla, Abhinav A; Hubbard, Brian; Tressel, Tim; Guhan, Sam; Low, Duncan

    2007-03-15

    This paper presents an overview of large-scale downstream processing of monoclonal antibodies and Fc fusion proteins (mAbs). This therapeutic modality has become increasingly important with the recent approval of several drugs from this product class for a range of critical illnesses. Taking advantage of the biochemical similarities in this product class, several templated purification schemes have emerged in the literature. In our experience, significant biochemical differences and the variety of challenges to downstream purification make the use of a completely generic downstream process impractical. Here, we describe the key elements of a flexible, generic downstream process platform for mAbs that we have adopted at Amgen. This platform consists of a well-defined sequence of unit operations with most operating parameters being pre-defined and a small subset of parameters requiring development effort. The platform hinges on the successful use of Protein A chromatography as a highly selective capture step for the process. Key elements of each type of unit operation are discussed along with data from 14 mAbs that have undergone process development. Aspects that can be readily templated as well as those that require focused development effort are identified for each unit operation. A brief description of process characterization and validation activities for these molecules is also provided. Finally, future directions in mAb processing are summarized.

  9. Pharmacokinetics of biotech drugs: peptides, proteins and monoclonal antibodies.

    Science.gov (United States)

    Lin, Jiunn H

    2009-09-01

    With the advances in recombinant DNA biotechnology, molecular biology and immunology, the number of biotech drugs, including peptides, proteins and monoclonal antibodies, available for clinical use has dramatically increased in recent years. Although pharmacokinetic principles are equally applicable to the large molecule drugs and conventional small molecule drugs, the underlying mechanisms for the processes of absorption, distribution, metabolism and excretion (ADME) of large molecule drugs are often very different from that of small molecule drugs. Therefore, a good understanding of the ADME processes of large molecule drugs is essential in support of the development of therapeutic biologics. The purpose of this article is to review the current knowledge of the ADME processes that govern the pharmacokinetics of biotech drugs. The challenges encountered by orally administered peptide and protein drugs, and the nature of lymphatic absorption after subcutaneous administration will be discussed. In addition, molecular mechanisms of biodistribution, metabolism and renal excretion of biotech drugs will also be discussed. Finally, approaches used for prediction of human pharmacokinetics of protein drugs will be briefly discussed.

  10. THE MECHANISM OF ANTI-IMPLANTATION EFFECT OF PROGESTERONE MONOCLONAL ANTIBODIES IN MICE

    Institute of Scientific and Technical Information of China (English)

    WANGMin-Yi; HEZhi-Ying; WANGHan-Zheng

    1989-01-01

    The purpose of this study is to investigate the mechanism by which antiprogcsterone monoclonal antibodies block early pregnancy in mice. The mechanism of passive immunization is a complex issue as indicated below:

  11. Purification of a Mycoplasma pneumoniae adhesin by monoclonal antibody affinity chromatography.

    OpenAIRE

    Leith, D K; Baseman, J B

    1984-01-01

    A 165,000-dalton surface protein of Mycoplasma pneumoniae, designated protein P1, appears to be the major attachment ligand of the pathogen. We employed monoclonal antibody affinity chromatography to obtain purified protein P1.

  12. The role of radiolabeled anti-TNFα monoclonal antibodies for diagnostic purposes and therapy evaluation

    NARCIS (Netherlands)

    Glaudemans, A. W.J.M.; Dierckx, R. A.J.O.; Kallenberg, C. G.M.; Anzola Fuentes, K. L.

    2010-01-01

    Radiolabelled cytokines and monoclonal antibodies are an emerging class of radiopharmaceuticals for imaging inflammation. These radiopharmaceuticals bind to their targets with high affinity and specificity and therefore have excellent diagnostic potential for imaging of patients with chronic inflamm

  13. CHARACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST BOTH PIG AND RABBIT ZONA PELLUCIDA

    Institute of Scientific and Technical Information of China (English)

    OURU-QIANG

    1989-01-01

    Three monoclonal antibodies (MAbs) were raised against both pig and rabbit zona pellucida with a dual immunization protocol employing heat soluble pig zona (HSPZ) and heat soluble rabbit zona (HSRZ), Of the 140 wells screencd, 12 wells were positive to

  14. Real-time kinetic analysis applied to the production of bispecific monoclonal antibodies for radioimmunodetection of cancer.

    Science.gov (United States)

    Horenstein, A L; Poiesi, C; DeMonte, L; Camagna, M; Mariani, M; Albertini, A; Malavasi, F

    1993-01-01

    An automated biosensor system designed for measuring molecular interactions in real-time and without labelling of the reactants has been used to evaluate the association/dissociation rate and affinity constants of bivalent monoclonal antibodies and a monovalent bispecific monoclonal antibody. Observed differences in affinity between parental and bispecific antibody produced were related to the association rate constants, since the dissociation rate constants were in the same range. Values were also closely related to radioimmunochemical data. These results indicate that the biosensor system, besides presenting several advantages for characterizing antigen-antibody interaction, is valuable for selecting monoclonal antibodies with properties which might be useful in the development of bispecific monoclonal antibodies.

  15. Radiation binary targeted therapy for HER-2 positive breast cancers: assumptions, theoretical assessment and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, Daniel W [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47909 (United States); Harb, Wael [Horizon Oncology, The Care Group, Unity Medical Center, Lafayette, IN 47901 (United States); Jevremovic, Tatjana [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47909 (United States)

    2006-03-21

    A novel radiation targeted therapy is investigated for HER-2 positive breast cancers. The proposed concept combines two known approaches, but never used together for the treatment of advanced, relapsed or metastasized HER-2 positive breast cancers. The proposed radiation binary targeted concept is based on the anti HER-2 monoclonal antibodies (MABs) that would be used as vehicles to transport the nontoxic agent to cancer cells. The anti HER-2 MABs have been successful in targeting HER-2 positive breast cancers with high affinity. The proposed concept would utilize a neutral nontoxic boron-10 predicting that anti HER-2 MABs would assure its selective delivery to cancer cells. MABs against HER-2 have been a widely researched strategy in the clinical setting. The most promising antibody is Trastuzumab (Herceptin (registered) ). Targeting HER-2 with the MAB Trastuzumab has been proven to be a successful strategy in inducing tumour regression and improving patient survival. Unfortunately, these tumours become resistant and afflicted women succumb to breast cancer. In the proposed concept, when the tumour region is loaded with boron-10 it is irradiated with neutrons (treatment used for head and neck cancers, melanoma and glioblastoma for over 40 years in Japan and Europe). The irradiation process takes less than an hour producing minimal side effects. This paper summarizes our recent theoretical assessments of radiation binary targeted therapy for HER-2 positive breast cancers on: the effective drug delivery mechanism, the numerical model to evaluate the targeted radiation delivery and the survey study to find the neutron facility in the world that might be capable of producing the radiation effect as needed. A novel method of drug delivery utilizing Trastuzumab is described, followed by the description of a computational Monte Carlo based breast model used to determine radiation dose distributions. The total flux and neutron energy spectra of five currently available

  16. Production and immunoanalytical application of 32 monoclonal antibodies against metacestode somatic antigens of Echinococcus multilocularis.

    Science.gov (United States)

    Wang, Xin; Lu, Rui; Liu, Qiao-Feng; Chen, Jian-Ping; Deng, Qiang; Zhang, Ya-Lou; Zhang, Bing-Hua; Xu, Jia-Nan; Sun, Lei; Niu, Qin-Wang; Liang, Quan-Zeng

    2010-06-01

    Alveolar echinococcosis is a rare but potentially fatal disease. Immunodiagnosis based on antibodies or antigens plays an important role in its diagnosis. In this study, metacestode somatic antigens of Echinococcus multilocularis were used to immunize BALB/c mice, and hybridomas were formed by cell fusion. Making use of the inherent effect of monoclonal antibody techniques to isolate different epitopes, we obtained a repertoire of 32 monoclonal antibodies against the metacestode somatic antigens. These monoclonal antibodies were used to investigate the specificity and localization of the metacestode antigens by enzyme-linked immunosorbent assay and immunohistochemistry, respectively. Nine antibodies specifically reacted with E. multilocularis, while 14 and ten cross-reacted with Echinococcus granulosus and Taenia saginata, respectively. Twenty-five antibodies stained the laminated layer. Eight reacted with the tegument of the protoscolex. Fourteen antibodies recognized the germinal layer. Most of the monoclonal antibodies can react with the antigen Em2. One antibody can react with antigen Em2 and Em10. One antibody that cross-reacted with T. saginata stained the germinal layer and protoscolex, especially its hooklets and suckers, but could not react with Em2 and Em10 antigens. It detected protein bands at 26 and 52 kDa. Two E. multilocularis-specific monoclonal antibodies stained both the germinal and laminated layers and could be used not only to purify specific antigens but also for immunohistochemical studies of E. multilocularis. In summary, these 32 monoclonal antibodies could have potential applications as useful tools in further studies of E. multilocularis antigen profiles.

  17. Identification of Haemophilus influenzae type b by a monoclonal antibody coagglutination assay.

    OpenAIRE

    Hamel, J.; Brodeur, B R; Belmaaza, A; Montplaisir, S; Musser, J M; Selander, R K

    1987-01-01

    A coagglutination assay using monoclonal antibody is described for the identification of Haemophilus influenzae type b. An immunoglobulin G2a monoclonal antibody, Hb-2, directed against a serotype-specific outer membrane protein of H. influenzae type b was adsorbed to Staphylococcus aureus Cowan 1 cells. In a dot enzyme immunoassay, Hb-2 reacted with 453 of 455 H. influenzae type b isolates and did not react with H. influenzae of other serotypes, untypeable H. influenzae strains, or other bac...

  18. Inhibition of lipoxygenase activity in lentil protoplasts by monoclonal antibodies introduced into the cells via electroporation

    OpenAIRE

    J. F. G. Vliegenthart; Maccarrone, M.; Veldink, G.A.

    1992-01-01

    The isolation of lentil protoplasts and the transfer of anti-lipoxygenase monoclonal antibodies into plant protoplasts by electroporation is reported. The dependence of the efficiency of monoclonal antibody incorporation on the field strength is shown as well. The transferred immunoglobulins retained their functional and structural integrity and were able to inhibit the intracellular target enzyme, with a linear relationship between inhibition of lipoxygenase activity and amount of incorporat...

  19. Quantitative assessment of antibody internalization with novel monoclonal antibodies against Alexa fluorophores.

    Directory of Open Access Journals (Sweden)

    Sindy Liao-Chan

    Full Text Available Antibodies against cell surface antigens may be internalized through their specific interactions with these proteins and in some cases may induce or perturb antigen internalization. The anti-cancer efficacy of antibody-drug conjugates is thought to rely on their uptake by cancer cells expressing the surface antigen. Numerous techniques, including microscopy and flow cytometry, have been used to identify antibodies with desired cellular uptake rates. To enable quantitative measurements of internalization of labeled antibodies, an assay based on internalized and quenched fluorescence was developed. For this approach, we generated novel anti-Alexa Fluor monoclonal antibodies (mAbs that effectively and specifically quench cell surface-bound Alexa Fluor 488 or Alexa Fluor 594 fluorescence. Utilizing Alexa Fluor-labeled mAbs against the EphA2 receptor tyrosine kinase, we showed that the anti-Alexa Fluor reagents could be used to monitor internalization quantitatively over time. The anti-Alexa Fluor mAbs were also validated in a proof of concept dual-label internalization assay with simultaneous exposure of cells to two different mAbs. Importantly, the unique anti-Alexa Fluor mAbs described here may also enable other single- and dual-label experiments, including label detection and signal enhancement in macromolecules, trafficking of proteins and microorganisms, and cell migration and morphology.

  20. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies

    Science.gov (United States)

    Kurosawa, Nobuyuki; Wakata, Yuka; Inobe, Tomonao; Kitamura, Haruki; Yoshioka, Megumi; Matsuzawa, Shun; Kishi, Yoshihiro; Isobe, Masaharu

    2016-01-01

    Threonine phosphorylation accounts for 10% of all phosphorylation sites compared with 0.05% for tyrosine and 90% for serine. Although monoclonal antibody generation for phospho-serine and -tyrosine proteins is progressing, there has been limited success regarding the production of monoclonal antibodies against phospho-threonine proteins. We developed a novel strategy for generating phosphorylation site-specific monoclonal antibodies by cloning immunoglobulin genes from single plasma cells that were fixed, intracellularly stained with fluorescently labeled peptides and sorted without causing RNA degradation. Our high-throughput fluorescence activated cell sorting-based strategy, which targets abundant intracellular immunoglobulin as a tag for fluorescently labeled antigens, greatly increases the sensitivity and specificity of antigen-specific plasma cell isolation, enabling the high-efficiency production of monoclonal antibodies with desired antigen specificity. This approach yielded yet-undescribed guinea pig monoclonal antibodies against threonine 18-phosphorylated p53 and threonine 68-phosphorylated CHK2 with high affinity and specificity. Our method has the potential to allow the generation of monoclonal antibodies against a variety of phosphorylated proteins. PMID:27125496

  1. Monoclonal antibody:the corner stone of modern biotherapeutics%Monoclonal antibody: the corner stone of modern biotherapeutics

    Institute of Scientific and Technical Information of China (English)

    XIA Zhi-nan; CAI Xue-ting; CAO Peng

    2012-01-01

    Worldwide sales of biologic drugs exceeded 100 billion USD in 2011.About 32% is from therapeutic monoclonal antibody (mAb).With many blockbuster biopharmaceutical patents expiring over the next decade,there is a great opportunity for biosimilar to enter the worldwide especially emerging market.Both European Medicines Agency (EMA) and Food and Drug Administration (FDA) have introduced regulatory frameworks for the potential approval of biosimilar mAb therapeutics.Rather than providing a highly abbreviated path,as in the case for small molecule chemical drug,approval for biosimilar mAb will require clinical trial and the details will be very much on a case-by-case basis.Since mAb is the dominant category of biologic drugs,mAb will be the focus of this review.First,the United States (US) and European Union (EU) approved mAb and those in phase 3 trials will be reviewed,then strategies on how to win biosimilar competition will be reviewed.

  2. ANTIBODIES DEFINING RAT ENDOTHELIAL-CELLS - RECA-1, A PAN-ENDOTHELIAL CELL-SPECIFIC MONOCLONAL-ANTIBODY

    NARCIS (Netherlands)

    DUIJVESTIJN, AM; VANGOOR, H; KLATTER, F; MAJOOR, GD; VANBUSSEL, E; VRIESMAN, PJCV

    1992-01-01

    We have been searching for antibodies reactive with rat endothelial cells. Two monoclonal antibodies (mAb), named RECA-1 and RECA-2 were produced and tested in immunoperoxidase staining on frozen sections of various rat tissues. Staining patterns were compared to those obtained with the mAbs OX-2, O

  3. Development of novel monoclonal antibodies against starch and ulvan - Implications for antibody production against polysaccharides with limited immunogenicity

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro; Kračun, Stjepan K.; Fangel, Jonatan U.

    2017-01-01

    Monoclonal antibodies (mAbs) are widely used and powerful research tools, but the generation of mAbs against glycan epitopes is generally more problematic than against proteins. This is especially significant for research on polysaccharide-rich land plants and algae (Viridiplantae). Most antibody...

  4. ANTIBODIES DEFINING RAT ENDOTHELIAL-CELLS - RECA-1, A PAN-ENDOTHELIAL CELL-SPECIFIC MONOCLONAL-ANTIBODY

    NARCIS (Netherlands)

    DUIJVESTIJN, AM; VANGOOR, H; KLATTER, F; MAJOOR, GD; VANBUSSEL, E; VRIESMAN, PJCV

    1992-01-01

    We have been searching for antibodies reactive with rat endothelial cells. Two monoclonal antibodies (mAb), named RECA-1 and RECA-2 were produced and tested in immunoperoxidase staining on frozen sections of various rat tissues. Staining patterns were compared to those obtained with the mAbs OX-2, O

  5. An economic evaluation of trastuzumab as adjuvant treatment of early HER2-positive breast cancer patients in Colombia.

    Science.gov (United States)

    Buendía, Jefferson Antonio; Vallejos, Carlos; Pichón-Rivière, Andrés

    2013-01-01

    Trastuzumab (Herceptin), a recombinant, humanized, monoclonal antibody targeting HER2 is well established as an effective treatment for HER2-positive breast cancer. Evidence from developed countries showed that trastuzumab was cost-effective; but there are few evidences in developing countries. This study assesses the cost-effectiveness of adjuvant trastuzumab treatment in Colombia. A Markov health-state transition model was built to estimate clinical and economic outcomes in HER2-positive breast cancer with or without 12 months trastuzumab adjuvant chemotherapy over a lifetime perspective with annual transition cycles. The model incorporated five health states (diseasefree, local recurrence, distant recurrence, cardiac failure, and death). Baseline event rates and 3-year hazard ratio (HR=0.51, IC 95% 0.44-0.59; pdefinition of WHO cost-effectiveness threshold of 3 times GDP per capita.

  6. Antigen-specific monoclonal antibodies isolated from B cells expressing constitutively active STAT5.

    Directory of Open Access Journals (Sweden)

    Ferenc A Scheeren

    Full Text Available BACKGROUND: Fully human monoclonal antibodies directed against specific pathogens have a high therapeutic potential, but are difficult to generate. METHODOLOGY/PRINCIPAL FINDINGS: Memory B cells were immortalized by expressing an inducible active mutant of the transcription factor Signal Transducer and Activator of Transcription 5 (STAT5. Active STAT5 inhibits the differentiation of B cells while increasing their replicative life span. We obtained cloned B cell lines, which produced antibodies in the presence of interleukin 21 after turning off STAT5. We used this method to obtain monoclonal antibodies against the model antigen tetanus toxin. CONCLUSIONS/SIGNIFICANCE: Here we describe a novel and relatively simple method of immortalizing antigen-specific human B cells for isolation of human monoclonal antibodies. These results show that STAT5 overexpression can be employed to isolate antigen specific antibodies from human memory B cells.

  7. Radiolabeling of Herceptin with 99mTc as a Her2 tracer

    Directory of Open Access Journals (Sweden)

    Samira Heydari

    2014-08-01

    Full Text Available Introduction: Trastuzumab is a monoclonal antibody that is used in treating breast cancer. We labeled this monoclonal antibody with Technetium-99m and performed in vitro and in vivo quality control tests as a first step in the production of a new radiopharmaceutical. Methods: Trastuzumab was labeled with Technetium-99m using Succinimidyl Hydrazinonicotinamide (HYNIC as chelator. Radiochemical Purity and stability in buffer and serum were determined. Immunoreactivity and toxicity of the complex were tested on SKBR3, MCF7 and A431 breast cancer cell lines. Biodistribution study was performed in normal mice at 4 and 24 h post injection.Results: The radiochemical purity of the complex was 95±1.4%. The stabilities in phosphate buffer and in human blood serum at 24 h post preparation were 85±3.5% and 74±1.2%, respectively. The immunoreactivity of the complex was 86±1.4%. The binding of labeled antibody to the surface of SKBR3, MCF7 and A431 cells were increased by increasing Her2 concentration on the cells surface.Conclusions: The findings showed that the new radiopharmaceutical can be a promising candidate as Her2 antigen scanning for human breast cancer.

  8. [Generation and characterization of monoclonal antibodies against chicken interleukin 4].

    Science.gov (United States)

    Guan, Xiaoyu; Xu, Zhichao; Wang, Yongqiang; Li, Xiaoqi; Cao, Hong; Zheng, Shijun

    2017-01-25

    To develop monoclonal antibodies (McAbs) against chicken interleukin 4 (chIL-4), we subcloned the mature chIL-4 gene into prokaryotic expression vectors pET-28a and pGEX-6P-1, then expressed and purified the recombinant proteins. We immunized BALB/c mice with the purified His-chIL-4 protein and fused the murine splenocytes with SP2/0 after 4 times of immunization. We used the GST-chIL-4 protein as a coating antigen to establish an indirect ELISA to screen positive clones. After screening and 3 rounds of cloning process, we obtained 3 hybridomas that stably secreted McAbs against chIL-4, and named 1G11-3B, 2E5-3D, and 1G11-5H. The isotypes of these McAbs were all IgG1 and the dissociation constant (Kd) of these McAbs were 1.79×10⁻⁹, 1.61×10⁻⁹, and 2.36×10⁻⁹, respectively. These McAbs specifically bound to chIL-4 expressed by either prokaryotic or eukaryotic system as determined by Western blotting and indirect immunofluorescence assay. The binding domains of chIL-4 recognized by 1G11-3B, 2E5-3D, and 1G11-5H were located between aa 1-40, 80-112, and 40-80, respectively, as determined by Western blotting. These McAbs would help to detect chIL-4 and to elucidate the biological roles of chIL-4 in immune responses.

  9. Fixation time does not affect expression of HER2/neu: a pilot study.

    Science.gov (United States)

    Ibarra, Julio A; Rogers, Lowell W

    2010-10-01

    It is said that HER2/neu expression by immunohistochemical analysis varies with the time of fixation. The purpose of this pilot study was to determine the impact of the length of fixation in 10% buffered formalin on the expression of HER2/neu by immunohistochemical analysis. We studied tissue samples from 10 invasive breast cancer cases after fixation for 3, 48, 72, 96, and 120 hours. The tissue was processed immediately after fixation, resembling routine practice. The 50 resulting blocks were then batch stained with PATHWAY HER2/neu clone 4B5 rabbit monoclonal antibody using the Ventana Ultraview DAB detection kit in a Ventana BenchMark XT processor (Ventana, Tucson, AZ). The stained slides were reviewed and scored. We found no significant difference in the intensity of the stain or the percentage of cells stained regardless of the time in fixation. Fixation times between 3 and 120 hours in 10% buffered formalin do not appear to have an impact on the expression of HER2/neu by immunohistochemical analysis.

  10. A Spectrum of Monoclonal Antibodies Reactive with Human Mammary Tumor Cells

    Science.gov (United States)

    Colcher, D.; Horan Hand, P.; Nuti, M.; Schlom, J.

    1981-05-01

    Splenic lymphocytes of mice, immunized with membrane-enriched fractions of metastatic human mammary carcinoma tissues, were fused with the NS-1 non-immunoglobulin-secreting murine myeloma cell line. This resulted in the generation of hybridoma cultures secreting immunoglobulins reactive in solid-phase radioimmunoassays with extracts of metastatic mammary carcinoma cells from involved livers, but not with extracts of apparently normal human liver. As a result of further screening of immunoglobulin reactivities and double cloning of cultures, 11 monoclonal antibodies were chosen that demonstrated reactivities with human mammary tumor cells and not with apparently normal human tissues. These monoclonal antibodies could be placed into at least five major groups on the basis of their differential binding to the surface of various live human mammary tumor cells in culture, to extracts of mammary tumor tissues, or to tissue sections of mammary tumor cells studied by the immunoperoxidase technique. Whereas a spectrum of reactivities to mammary tumors was observed with the 11 monoclonal antibodies, no reactivity was observed to apparently normal cells of the following human tissues: breast, lymph node, lung, skin, testis, kidney, thymus, bone marrow, spleen, uterus, thyroid, intestine, liver, bladder, tonsils, stomach, prostate, and salivary gland. Several of the antibodies also demonstrated a ``pancarcinoma'' reactivity, showing binding to selected non-breast carcinomas. None of the monoclonal antibodies showed binding to purified ferritin or carcinoembryonic antigen. Monoclonal antibodies of all five major groups, however, demonstrated binding to human metastatic mammary carcinoma cells both in axillary lymph nodes and at distal sites.

  11. Partial analysis of the flagellar antigenic determinant recognized by a monoclonal antibody to Clostridium tyrobutyricum.

    Science.gov (United States)

    Bédouet, L; Arnold, F; Robreau, G; Batina, P; Talbot, F; Malcoste, R

    1998-01-01

    In order to count Clostridium tyrobutyricum spores in milk after membrane filtration, murine 21E7-B12 monoclonal antibody was produced. Elution of the monoclonal antibody from this antigen, the flagellar filament protein, by carbohydrate ligands was used to study the epitope structure. A competitive elution of an anti-dextran monoclonal antibody by carbohydrate ligands served as a control in order to validate the immunological tool applied to flagellin epitope study. The carbohydrate moiety of flagellin contained D-glucose and N-acetyl-glucosamine in a molar ration of 11:1 as determined by gas-liquid chromatography and 2 low-abundancy unidentified compounds. In ELISA, D-glucose and N-acetyl-glucosamine did not dissociate the antibody-flagellin complex contrary to maltose, maltotriose, maltotetraose and maltopentaose. The efficiency of elution increased from the dimer to the pentamer and became nil for maltohexaose and maltoheptaose. The fact that the hexamer and heptamer could not react with the 21E7-B12 monoclonal antibody could be explained by a drastic conformational change. The over-all stretched maltopentaose switch to a helical-shaped maltoheptaose which could not fit the 21E7-B12 monoclonal antibody antigen-combining site. Thus, flagellin epitope may contain alpha (1-->4) linked glucose residues plus either N-actyl-glucosamine or an unidentified compound that maintain it in an extended shape.

  12. The generation of monoclonal antibodies and their use in rapid diagnostic tests

    Science.gov (United States)

    Antibodies are the most important component of an immunoassay. In these proceedings we outline novel methods used to generate and select monoclonal antibodies that meet performance criteria for use in rapid lateral flow and microfluidic immunoassay tests for the detection of agricultural pathogens ...

  13. Human monoclonal HLA antibodies reveal interspecies crossreactive swine MHC class I epitopes relevant for xenotransplantation.

    NARCIS (Netherlands)

    Mulder, A.; Kardol, M.J.; Arn, J.S.; Eijsink, C.; Franke, M.E.; Schreuder, G.M.; Haasnoot, G.W.; Doxiadis, I.I.; Sachs, D.H.; Smith, D.M.; Claas, F.H.

    2010-01-01

    Crossreactivity of anti-HLA antibodies with SLA alleles may limit the use of pig xenografts in some highly sensitized patients. An understanding of the molecular basis for this crossreactivity may allow better selection of xenograft donors. We have tested 68 human monoclonal HLA class I antibodies (

  14. The Synthesis of N-Morphine Hapten and Production of Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Those antibodies elicited by different tether site for attachment to carrier protein have different specificity. Herein we reported that a monoclonal antibody against morphine with high specificity and affinity was successfully produced by using different linkers to couple to different carrier proteins.

  15. Synthetic methyl hexagalacturonate hapten inhibitors of antihomogalacturonan monoclonal antibodies LM7, JIM5 and JIM7

    DEFF Research Database (Denmark)

    Clausen, Mads Hartvig; Willats, William George Tycho; Knox, J. Paul

    2003-01-01

    A range of synthetic methyl hexagalacturonates were used as potential hapten inhibitors in competitive-inhibition enzyme-linked immunosorbent assays (ELISAs) with anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. The selective inhibition of these antibodies by different haptens prov...

  16. B lymphocyte depletion with the monoclonal antibody rituximab in Graves' disease: a controlled pilot study

    DEFF Research Database (Denmark)

    El Fassi, Daniel; Nielsen, Claus H; Bonnema, Steen J

    2007-01-01

    Graves' disease (GD) is a common TSH receptor autoantibody (TRAb)-mediated disorder. Because B lymphocytes are important self-antigen presenting cells and precursors for antibody-secreting plasma cells, temporary B-lymphocyte depletion with the monoclonal antibody rituximab (RTX) might be of bene...

  17. Development of a PBPK model for monoclonal antibodies and simulation of human and mice PBPK of a radiolabelled monoclonal antibody.

    Science.gov (United States)

    Heiskanen, Tomi; Heiskanen, Tomas; Kairemo, Kalevi

    2009-01-01

    Physiology based pharmacokinetic (PBPK) modeling and simulation is a useful method for prediction of biodistribution of both macromolecules and small molecules. It can enhance our understanding of the underlying mechanisms of biodistribution and hence may help in rational design of macromolecules used as diagnostic and therapeutic agents. In this review we discuss PBPK modeling and simulation of a radiolabelled Monoclonal Antibody ((111)In-DOTA-hAFP31 IgG) ("MAB") in mice without tumor and in a human with tumor. This study is part of Xemet Co.'s effort to develop a more accurate and reliable PBPK model and simulation platform, which is applicable both for small molecules and macromolecules. The simulated results were fitted to experimental time series data by varying parameters which were not fixed a priori. It was demonstrated that the PBPK model describes the main features of the pharmacokinetics of the studied systems. It was also shown that simulation can be used for evaluating the parameters of the system and scaling up the pharmacokinetics of MAB from mice to man. We identified several areas of improvement and further development needed to improve the accuracy of PBPK simulation for MAB and other macromolecules. It was concluded that the transvascular permeabilities are the most important parameters and more research is needed to enable prediction of permeabilities from molecular characteristics of macromolecules. It would also be necessary to understand better and describe with a more detailed model the microstructure of the tumor and to measure or predict the antigen concentration in tumor. Non-specific, non-saturable binding in other organs/tissues should be understood better and the kinetic constants of the binding should be measured experimentally. Although the metabolism and clearance were neglected in this study they need to be included in more detailed studies. Also the intracellular trafficking of macromolecules, which was not included in this study

  18. Is overexpression of HER-2 a predictor of prognosis in colorectal cancer?

    LENUS (Irish Health Repository)

    Kavanagh, Dara O

    2012-01-31

    BACKGROUND: The development of novel chemotherapeutic agents in colorectal cancer has improved survival. Following initial response to chemotherapeutic strategies many patients develop refractory disease. This poses a significant challenge common to many cancer subtypes. Newer agents such as Bevacizumab have successfully targeted the tyrosine kinase receptor epidermal growth factor receptor in metastatic colorectal cancer. Human epidermal growth factor receptor-2 is another member of the tyrosine kinase receptor family which has been successfully targeted in breast cancer. This may play a role in colorectal cancer. We conducted a clinicopathological study to determine if overexpression of human epidermal growth factor receptor-2 is a predictor of outcome in a cohort of patients with colorectal cancer. METHODS: Clinicopathological data and paraffin-embedded specimens were collected on 132 consecutive patients who underwent colorectal resections over a 24-month period at Mayo General Hospital. Twenty-six contained non-malignant disease. Her-2\\/neu protein overexpression was detected using immunohistochemistry (IHC). The HER-2 4B5 Ventana monoclonal antibody was used. Fluorescent insitu hybridisation (FISH) was performed using INFORM HER-2\\/Neu Plus. Results were correlated with established clinical and pathological predictors of outcome including TNM stage. Statistical analysis was performed using SPSS version 11.5. RESULTS: 114 were HER-2\\/Neu negative using IHC, 7 showed barely perceptible positivity (1+), 9 showed moderate staining (2+) and 2 were strongly positive (3+). There was no correlation with gender, age, grade, Dukes\\' stage, TNM stage, time to recurrence and 5-year survival (p > 0.05). FISH was applied to all 2+ and 3+ cases as well as some negative cases selected at random. Three were amplified (2 were 3+ and 1 was 2+). Similarly, HER-2 gene overexpression did not correlate with established prognostic indicators. CONCLUSION: HER-2 protein is over

  19. Is overexpression of HER-2 a predictor of prognosis in colorectal cancer?

    Directory of Open Access Journals (Sweden)

    Bennani Fadel

    2009-01-01

    Full Text Available Abstract Background The development of novel chemotherapeutic agents in colorectal cancer has improved survival. Following initial response to chemotherapeutic strategies many patients develop refractory disease. This poses a significant challenge common to many cancer subtypes. Newer agents such as Bevacizumab have successfully targeted the tyrosine kinase receptor epidermal growth factor receptor in metastatic colorectal cancer. Human epidermal growth factor receptor-2 is another member of the tyrosine kinase receptor family which has been successfully targeted in breast cancer. This may play a role in colorectal cancer. We conducted a clinicopathological study to determine if overexpression of human epidermal growth factor receptor-2 is a predictor of outcome in a cohort of patients with colorectal cancer. Methods Clinicopathological data and paraffin-embedded specimens were collected on 132 consecutive patients who underwent colorectal resections over a 24-month period at Mayo General Hospital. Twenty-six contained non-malignant disease. Her-2/neu protein overexpression was detected using immunohistochemistry (IHC. The HER-2 4B5 Ventana monoclonal antibody was used. Fluorescent insitu hybridisation (FISH was performed using INFORM HER-2/Neu Plus. Results were correlated with established clinical and pathological predictors of outcome including TNM stage. Statistical analysis was performed using SPSS version 11.5. Results 114 were HER-2/Neu negative using IHC, 7 showed barely perceptible positivity (1+, 9 showed moderate staining (2+ and 2 were strongly positive (3+. There was no correlation with gender, age, grade, Dukes' stage, TNM stage, time to recurrence and 5-year survival (p > 0.05. FISH was applied to all 2+ and 3+ cases as well as some negative cases selected at random. Three were amplified (2 were 3+ and 1 was 2+. Similarly, HER-2 gene overexpression did not correlate with established prognostic indicators. Conclusion HER-2 protein

  20. Analysis of HER2 expression and gene amplification in adenocarcinoma of the stomach and the gastro-oesophageal junction: rationale for the Belgian way of working.

    Science.gov (United States)

    Jouret-Mourin, A; Hoorens, A; De Hertogh, G; Vanderveken, J; Demetter, P; Van Cutsem, E

    2012-03-01

    The Human Epidermal growth factor Receptor 2 (HER2) has been established as a key player in the development of certain human tumors. ToGA trial has demonstrated that the addition of the monoclonal antibody blocking HER2 receptor, trastuzumab (Herceptin®), to chemotherapy significantly improves overall survival of patients with HER2-positive advanced or metastatic adenocarcinoma of the stomach or gastro-oesophageal junction. Therefore, it is essential that pathologists guarantee an accurate testing of HER2 status in these tumours. Following the international recommendations and the Belgian criteria for reimbursement of trastuzumab, a consortium of expert pathologists (Belgian Working Group Molecular Pathology) proposes an adaptation of the international guidelines in order to develop strategies for optimal performance, interpretation and reporting assays.

  1. Secretory leukocyte protease inhibitor (SLPI) might contaminate murine monoclonal antibodies after purification on protein G.

    Science.gov (United States)

    Schenk, Jörg A; Fettke, Joerg; Lenz, Christine; Albers, Katharina; Mallwitz, Frank; Gajovic-Eichelmann, Nenad; Ehrentreich-Förster, Eva; Kusch, Emely; Sellrie, Frank

    2012-03-31

    The large scale production of a monoclonal anti-progesterone antibody in serum free medium followed by affinity chromatography on protein G lead to a contamination of the antibody sample with a protein of about 14 kDa. This protein was identified by mass spectrometry as secretory leukocyte protease inhibitor (SLPI). This SLPI contamination lead to a failure of the fiber-optic based competitive fluorescence assay to detect progesterone in milk. Purification of the monoclonal antibody using protein A columns circumvented this problem.

  2. Rescue and expression of human immunoglobulin genes to generate functional human monoclonal antibodies.

    Science.gov (United States)

    Lewis, A P; Parry, N; Peakman, T C; Crowe, J S

    1992-07-01

    Human monoclonal antibody production has been hampered for many years by the instability of cell lines and low levels of expression of the antibodies. We describe here the rescue of human immunoglobulin genes utilizing micro-mRNA preparation from a small number of human hybridoma cells and conventional cDNA cloning. This allows cloning and immediate high-level expression from full-length human heavy and light chain cDNA molecules and provides a mechanism to rescue whole human monoclonal antibodies of proven efficacy.

  3. Mammalian tissue distribution of a large heparan sulfate proteoglycan detected by monoclonal antibodies

    DEFF Research Database (Denmark)

    Couchman, J R; Ljubimov, A V

    1989-01-01

    A panel of nine monoclonal antibodies has been characterized, all of which have reactivity with the core protein of a large heparan sulfate proteoglycan derived from the murine EHS tumor matrix. These rat monoclonal antibodies stained mouse basement membranes intensely, including those of all...... muscle, endothelia, peripheral nerve fibers and epithelia so far examined. In addition, two of the monoclonal antibodies show cross-species reactivity, staining bovine and human basement membranes, and immunoprecipitating proteoglycans from human endothelial cell cultures. These antibodies do not......, however, cross-react with avian tissues. These results show the ubiquitous distribution of a heparan sulfate proteoglycan in mammalian tissues, which will be useful in vitro and in vivo for studies on the biology of basement membrane proteoglycans and investigations of possible roles of these molecules...

  4. Epidemiologic investigation by macrorestriction analysis and by using monoclonal antibodies of nosocomial pneumonia caused by Legionella pneumophila serogroup 10.

    OpenAIRE

    Lück, P. C.; Helbig, J H; Günter, U; Assmann, M.; Blau, R; Koch, H.; Klepp, M.

    1994-01-01

    A 67-year-old woman was hospitalized with an acute pneumonia of the left lower lobe. Legionella pneumophila serogroup 10 was cultured from two sputum specimens taken on days 18 and 20 and was also detected by direct immunofluorescence assay by using a commercially available species-specific monoclonal antibody as well as serogroup 10-specific monoclonal antibodies. Antigenuria was detected in enzyme-linked immunosorbent assays by using serogroup 10-specific polyclonal and monoclonal antibodie...

  5. A feasibility study of cyclophosphamide, trastuzumab, and an allogeneic GM-CSF-secreting breast tumor vaccine for HER2+ metastatic breast cancer.

    Science.gov (United States)

    Chen, Gang; Gupta, Richa; Petrik, Silvia; Laiko, Marina; Leatherman, James M; Asquith, Justin M; Daphtary, Maithili M; Garrett-Mayer, Elizabeth; Davidson, Nancy E; Hirt, Kellie; Berg, Maureen; Uram, Jennifer N; Dauses, Tianna; Fetting, John; Duus, Elizabeth M; Atay-Rosenthal, Saadet; Ye, Xiaobu; Wolff, Antonio C; Stearns, Vered; Jaffee, Elizabeth M; Emens, Leisha A

    2014-10-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting tumor vaccines are bioactive, but limited by disease burden and immune tolerance. Cyclophosphamide augments vaccine activity in tolerant neu mice and in patients with metastatic breast cancer. HER2-specific monoclonal antibodies (mAb) enhance vaccine activity in neu mice. We hypothesized that cyclophosphamide-modulated vaccination with HER2-specific mAb safely induces relevant HER2-specific immunity in neu mice and patients with HER2+ metastatic breast cancer. Adding both cyclophosphamide and the HER2-specific mAb 7.16.4 to vaccination maximized HER2-specific CD8+ T-cell immunity and tumor-free survival in neu transgenic mice. We, therefore, conducted a single-arm feasibility study of cyclophosphamide, an allogeneic HER2+ GM-CSF-secreting breast tumor vaccine, and weekly trastuzumab in 20 patients with HER2+ metastatic breast cancer. Primary clinical trial objectives were safety and clinical benefit, in which clinical benefit represents complete response + partial response + stable disease. Secondary study objectives were to assess HER2-specific T-cell responses by delayed type hypersensitivity (DTH) and intracellular cytokine staining. Patients received three monthly vaccinations, with a boost 6 to 8 months from trial entry. This combination immunotherapy was safe, with clinical benefit rates at 6 months and 1 year of 55% [95% confidence interval (CI), 32%-77%; P = 0.013] and 40% (95% CI, 19%-64%), respectively. Median progression-free survival and overall survival durations were 7 months (95% CI, 4-16) and 42 months (95% CI, 22-70), respectively. Increased HER2-specific DTH developed in 7 of 20 patients [of whom 4 had clinical benefit (95% CI, 18-90)], with a trend toward longer progression-free survival and overall survival in DTH responders. Polyfunctional HER2-specific CD8+ T cells progressively expanded across vaccination cycles. Further investigation of cyclophosphamide-modulated vaccination

  6. A Feasibility Study of Cyclophosphamide, Trastuzumab, and an Allogeneic GM-CSF-secreting Breast Tumor Vaccine for HER-2+ Metastatic Breast Cancer

    Science.gov (United States)

    Chen, G; Gupta, R; Petrik, S; Laiko, M; Leatherman, JM; Asquith, JM; Daphtary, MM; Garrett-Mayer, E; Davidson, NE; Hirt, K; Berg, M; Uram, JN; Dauses, T; Fetting, J; Duus, EM; Atay-Rosenthal, S; Ye, X; Wolff, AC; Stearns, V; Jaffee, EM; Emens, LA

    2014-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting tumor vaccines are bioactive, but limited by disease burden and immune tolerance. Cyclophosphamide (CY) augments vaccine activity in tolerant neu mice and metastatic breast cancer (MBC) patients. HER-2-specific monoclonal antibodies (MAb) enhance vaccine activity in neu mice. We hypothesized that CY-modulated vaccination with HER-2-specific MAb safely induces relevant HER-2-specific immunity in neu mice and HER-2+ MBC patients. Adding both CY and the HER-2-specific MAb 7.16.4 to vaccination maximized HER-2-specific CD8+ T-cell immunity and tumor-free survival in neu transgenic mice. We therefore conducted a single arm feasibility study of CY, an allogeneic HER-2+ GM-CSF-secreting breast tumor vaccine, and weekly trastuzumab in 20 HER-2+ MBC patients. Primary clinical trial objectives were safety and clinical benefit (CB), in which CB represents complete response+partial response+stable disease. Secondary study objectives were to assess HER-2-specific T-cell responses by delayed type hypersensitivity (DTH) and intracellular cytokine staining. Subjects received three monthly vaccinations, with a boost 6-8 months from trial entry. This combination immunotherapy was safe, with CB rates at 6 months and 1 year of 55% (95% CI:32-77%, p=0.013) and 40% (95% CI:19-64%) respectively. Median progression-free survival (PFS) and overall survival (OS) were 7 (95% CI:4-16) and 42 months (95% CI:22-70) respectively. Increased HER-2-specific DTH developed in 7/20 subjects (of whom 4 had CB (95% CI:18-90)), with a trend toward longer PFS and OS in DTH responders. Polyfunctional HER-2-specific CD8+ T cells progressively expanded across vaccination cycles. Further investigation of CY-modulated vaccination with trastuzumab is warranted. (Clinicaltrials.gov identifier: NCT00399529) PMID:25116755

  7. Effects of simultaneous knockdown of HER2 and PTK6 on malignancy and tumor progression in human breast cancer cells.

    Science.gov (United States)

    Ludyga, Natalie; Anastasov, Natasa; Rosemann, Michael; Seiler, Jana; Lohmann, Nadine; Braselmann, Herbert; Mengele, Karin; Schmitt, Manfred; Höfler, Heinz; Aubele, Michaela

    2013-04-01

    Breast cancer is the most common malignancy in women of the Western world. One prominent feature of breast cancer is the co- and overexpression of HER2 and protein tyrosine kinase 6 (PTK6). According to the current clinical cancer therapy guidelines, HER2-overexpressing tumors are routinely treated with trastuzumab, a humanized monoclonal antibody targeting HER2. Approximately, 30% of HER2-overexpressing breast tumors at least initially respond to the anti-HER2 therapy, but a subgroup of these tumors develops resistance shortly after the administration of trastuzumab. A PTK6-targeted therapy does not yet exist. Here, we show for the first time that the simultaneous knockdown in vitro, compared with the single knockdown of HER2 and PTK6, in particular in the trastuzumab-resistant JIMT-1 cells, leads to a significantly decreased phosphorylation of crucial signaling proteins: mitogen-activated protein kinase 1/3 (MAPK 1/3, ERK 1/2) and p38 MAPK, and (phosphatase and tensin homologue deleted on chromosome ten) PTEN that are involved in tumorigenesis. In addition, dual knockdown strongly reduced the migration and invasion of the JIMT-1 cells. Moreover, the downregulation of HER2 and PTK6 led to an induction of p27, and the dual knockdown significantly diminished cell proliferation in JIMT-1 and T47D cells. In vivo experiments showed significantly reduced levels of tumor growth following HER2 or PTK6 knockdown. Our results indicate a novel strategy also for the treatment of trastuzumab resistance in tumors. Thus, the inhibition of these two signaling proteins may lead to a more effective control of breast cancer.

  8. Generation and characterization of monoclonal antibodies against the transcription factor Nkx6.1.

    Science.gov (United States)

    Pedersen, Inger L; Klinck, Rasmus; Hecksher-Sorensen, Jacob; Zahn, Stefan; Madsen, Ole D; Serup, Palle; Jorgensen, Mette C

    2006-05-01

    We present the generation of a panel of monoclonal antibodies (F55A10, F55A12, F64A6B4, and F65A2) against the homeodomain transcription factor Nkx6.1, one of the essential transcription factors that regulates the multistep differentiation process of precursor cells into endocrine beta-cells in the pancreas. Expression of Nkx6.1 can be detected in developing pancreatic epithelium and in adult insulin-producing beta-cells, making this transcription factor a unique beta-cell marker. For production of monoclonal antibodies, RBF mice were immunized with a GST-Nkx6.1 fusion protein containing a 66-amino acid C-terminal fragment of rat Nkx6.1. Four clones were established as stable hybridoma cell lines and the produced antibodies were of the mouse IgG1/kappa subtype. When applied for immunohistochemistry on frozen sections of adult mouse pancreas, monoclonal antibodies stain specifically the beta-cells in the endocrine islets of Langerhans with patterns comparable to that of a previously produced polyclonal rabbit serum. Monoclonal antibodies can be divided into two groups that appear to recognize different epitopes, as determined by competition ELISA. The presented antibodies are useful tools for the further characterization of the role and function of Nkx6.1 in pancreatic development, especially for use in double-labeling experiments with existing polyclonal rabbit antibodies.

  9. The European Medicines Agency Review of Pertuzumab for the treatment of adult patients with HER2-positive metastatic or locally recurrent unresectable breast cancer : summary of the scientific assessment of the committee for medicinal products for human use

    NARCIS (Netherlands)

    Boix-Perales, Hector; Borregaard, Jeanett; Jensen, Kristina Bech; Ersbøll, Jens; Galluzzo, Sara; Giuliani, Rosa; Ciceroni, Cinzia; Melchiorri, Daniela; Salmonson, Tomas; Bergh, Jonas; Schellens, Jan H; Pignatti, Francesco

    2014-01-01

    Pertuzumab is a recombinant humanized monoclonal antibody that specifically targets the extracellular dimerization domain (subdomain II) of HER2. Based on the positive opinion from the European Medicines Agency (EMA) on March 4, 2013, a marketing authorization valid throughout the European Union (EU

  10. The European Medicines Agency Review of Pertuzumab for the treatment of adult patients with HER2-positive metastatic or locally recurrent unresectable breast cancer : summary of the scientific assessment of the committee for medicinal products for human use

    NARCIS (Netherlands)

    Boix-Perales, Hector; Borregaard, Jeanett; Jensen, Kristina Bech; Ersbøll, Jens; Galluzzo, Sara; Giuliani, Rosa; Ciceroni, Cinzia; Melchiorri, Daniela; Salmonson, Tomas; Bergh, Jonas; Schellens, Jan H; Pignatti, Francesco

    Pertuzumab is a recombinant humanized monoclonal antibody that specifically targets the extracellular dimerization domain (subdomain II) of HER2. Based on the positive opinion from the European Medicines Agency (EMA) on March 4, 2013, a marketing authorization valid throughout the European Union

  11. Human peripheral blood monocytes display surface antigens recognized by monoclonal antinuclear antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Holers, V.M.; Kotzin, B.L.

    1985-09-01

    The authors used monoclonal anti-nuclear autoantibodies and indirect immunofluorescence to examine normal human peripheral blood mononuclear leukocytes for the presence of cell surface nuclear antigens. Only one monoclonal anti-histone antibody (MH-2) was found to bind to freshly isolated PBL, staining approximately 10% of large cells. However, after cells were placed into culture for 16-24 h, a high percentage (up to 60%) of large-sized cells were recognized by an anti-DNA (BWD-1) and several different antihistone monoclonal antibodies (BWH-1, MH-1, and MH-2). These antibodies recognize separate antigenic determinants on chromatin and histones extracted from chromatin. The histone antigen-positive cells were viable, and the monoclonal antibodies could be shown to be binding to the cell surface and not to the nucleus. Using monoclonal antibodies specific for monocytes and T cells, and complement-mediated cytotoxicity, the cells bearing histone antigens were shown to be primarily monocytes. The appearance of histone and DNA antigen-positive cells was nearly completely inhibited by the addition of low concentrations of cycloheximide at initiation of the cultures. In contrast, little effect on the percentage of positive cells was detected if cells were exposed to high doses of gamma irradiation before culture. These data further support the existence of cell surface nuclear antigens on selected cell subsets, which may provide insight into the immunopathogenesis of systemic lupus erythematosus and related autoimmune diseases.

  12. Epitope Mapping of Dengue-Virus-Enhancing Monoclonal-Antibody Using Phage Display Peptide Library

    OpenAIRE

    Chung-I Rai; Huan-Yao Lei; Yee-Shin Lin; Hsiao-Sheng Liu; Shun-Hua Chen; Lien-Cheng Chen; Trai-Ming Yeh

    2008-01-01

    The Antibody-Dependent Enhancement (ADE) hypothesis has been proposed to explain why more severe manifestations of Dengue Hemorrhagic Fever and Dengue Shock Syndrome (DHF/DSS) occur predominantly during secondary infections of Dengue Virus (DV) with different serotypes. However, the epitopes recognized by these enhancing antibodies are unclear. Recently, anti-pre-M monoclonal antibody (mAb 70-21), which recognized all DV serotypes without neutralizing activity, were generated and demonstrated...

  13. Purification and identification of Haemophilus ducreyi cytotoxin by use of a neutralizing monoclonal antibody.

    OpenAIRE

    Purvén, M; Frisk, A.; Lönnroth, I.; Lagergard, T

    1997-01-01

    Haemophilus ducreyi produces a cytotoxin responsible for the killing of cultured human epithelial cells. Cytotoxin-neutralizing antibodies were detected in the majority of sera from patients with culture-proven chancroid, and a significantly higher level of such antibodies in patients than in blood donors was noted both in areas where the disease is endemic and those where it is not. We produced neutralizing monoclonal antibodies (MAbs) in mice with a crude osmotic preparation of the cytotoxi...

  14. Overloading ion-exchange membranes as a purification step for monoclonal antibodies

    OpenAIRE

    Brown, Arick; Bill, Jerome; Tully, Timothy; Radhamohan, Asha; Dowd, Chris

    2010-01-01

    The present study examined the overloading of ion-exchange membrane adsorbers, a form of frontal chromatography, as the final purification step in the production of mAbs (monoclonal antibodies) produced from CHO (Chinese-hamster ovary) cells. Preferential binding of impurities over antibody product was exploited using commercially available cation- and anion-exchange membranes. Three different antibody feedstreams previously purified over Protein A and ion-exchange column chromatography were ...

  15. Limited cross-reactivity of mouse monoclonal antibodies against Dengue virus capsid protein among four serotypes

    Directory of Open Access Journals (Sweden)

    Noda M

    2012-11-01

    Full Text Available Megumi Noda,1 Promsin Masrinoul,1 Chaweewan Punkum,1 Chonlatip Pipattanaboon,2,3 Pongrama Ramasoota,2,4 Chayanee Setthapramote,2,3 Tadahiro Sasaki,6 Mikiko Sasayama,1 Akifumi Yamashita,1,5 Takeshi Kurosu,6 Kazuyoshi Ikuta,6 Tamaki Okabayashi11Mahidol-Osaka Center for Infectious Diseases, 2Center of Excellence for Antibody Research, 3Department of Microbiology and Immunology, 4Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand; 5Graduate School of Life Science, Tohoku University, Sendai, Miyagi, 6Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, JapanBackground: Dengue illness is one of the important mosquito-borne viral diseases in tropical and subtropical regions. Four serotypes of dengue virus (DENV-1, DENV-2, DENV-3, and DENV-4 are classified in the Flavivirus genus of the family Flaviviridae. We prepared monoclonal antibodies against DENV capsid protein from mice immunized with DENV-2 and determined the cross-reactivity with each serotype of DENV and Japanese encephalitis virus.Methods and results: To clarify the relationship between the cross-reactivity of monoclonal antibodies and the diversity of these viruses, we examined the situations of flaviviruses by analyses of phylogenetic trees. Among a total of 60 prepared monoclonal antibodies specific for DENV, five monoclonal antibodies stained the nuclei of infected cells and were found to be specific to the capsid protein. Three were specific to DENV-2, while the other two were cross-reactive with DENV-2 and DENV-4. No monoclonal antibodies were cross-reactive with all four serotypes. Phylogenetic analysis of DENV amino acid sequences of the capsid protein revealed that DENV-2 and DENV-4 were clustered in the same branch, while DENV-1 and DENV-3 were clustered in the other branch. However, these classifications of the capsid protein were different from those of the

  16. Boronated monoclonal antibody 225. 28S for potential use in neutron capture therapy of malignant melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Tamat, S.R.; Moore, D.E.; Patwardhan, A.; Hersey, P. (Univ. of Sydney (Australia))

    1989-07-01

    The concept of conjugating boron cluster compounds to monoclonal antibodies has been examined by several groups of research workers in boron neutron capture therapy (BNCT). The procedures reported to date for boronation of monoclonal antibodies resulted in either an inadequate level of boron incorporation, the precipitation of the conjugates, or a loss of immunological activity. The present report describes the conjugation of dicesium-mercapto-undecahydrododecaborate (Cs2B12H11SH) to 225.28S monoclonal antibody directed against high molecular weight melanoma-associated antigens (HMW-MAA), using poly-L-ornithine as a bridge to increase the carrying capacity of the antibody and to minimize change in the conformational structure of antibody. The method produces a boron content of 1,300 to 1,700 B atoms per molecule 225.28S while retaining the immunoreactivity. Characterization in terms of the homogeneity of the conjugation of the boron-monoclonal antibody conjugates has been studied by gel electrophoresis and ion-exchange HPLC.

  17. Production and Purification of Monoclonal Antibody Against Tumor Marker of TPA

    Directory of Open Access Journals (Sweden)

    Seyyed Amir Abbas Ghodrat

    2016-05-01

    Full Text Available Considering the invasive nature of cancer cells, one of the most important and best indicator of them is the markers inside them. One of the most important markers that observed in some types of cancer cells in various parts of the body is the Cytokeratin. Tissue plasminogen activator antigen (TPA is a Cytokeratin composed of molecules with various molecular weights. The level of TPA serum as associated with cellular growth level and tumorization of cells. In this research, the hybrid of spleen cells in BALB/c female mouse with myeloma cells was conducted with a ratio of 10:1. The resulting monoclonal antibodies were confirmed by SDS-PAGE and western blot. Protein G chromatography was utilized to purify monoclonal antibodies. The results for determining isotypes showed IgM and IgG classes. The titer of the antibody obtained from various clones was capable of identifying Cytokeratin antigen with a dilution of 1/10000. The resulting antibodies were finally confirmed by western blot and all the 5 resulting monoclonal antibodies were capable of identifying a 48 kDa protein. The results indicate that with the help of TPA marker and the monoclonal antibodies produced against them, this marker can be recognized quickly with great accuracy in suspicious cases of cancer. Thus, appropriate measures will be taken to prevent and fight off its probable side effects. This factor can be further used to build a diagonal kit with high sensitivity.

  18. Production and characterization of monoclonal antibodies to the edta extract of Leptospira interrogans, serovar icterohaemorrhagiae

    Directory of Open Access Journals (Sweden)

    Lilian Terezinha de Queiroz Leite

    1996-10-01

    Full Text Available Monoclonal antibodies (MABs ivere produced against an etbylenediaminetetraacetate (EDTA extract of Leptospira interrogans serovar icterohaemorrhagiae being characterized by gel precipitation as IgM and IgG (IgGl and IgG2b. The EDTA extract was detected as several bands by silver staining in SDS-PAGE. In the Western blot the bands around 20 KDa reacted with a monoclonal antibody, 47B4D6, and was oxidized by periodate and was not digested by pronase, suggesting that the determinant is of carbohydrate nature, lmmunocytochemistry, using colloidal gold labeling, showed that an EDTA extract determinant recognized by monoclonal antibody 47B4D6, is localized under the outer envelope of serovar icterohaemorrhagiae. Hoe AIAB raised against the EDTA extract was not able to protect hamsters from lethal challenge with virulent homologous leptospires.

  19. Simultaneous Raising of Rabbit Monoclonal Antibodies to Fluoroquinolones with Diverse Recognition Functionalities via Single Mixture Immunization.

    Science.gov (United States)

    Liu, Na; Zhao, Zhiyong; Tan, Yanglan; Lu, Lei; Wang, Lin; Liao, Yucai; Beloglazova, Natalia; De Saeger, Sarah; Zheng, Xiaodong; Wu, Aibo

    2016-01-19

    Highly specific monoclonal and polyclonal antibodies are the key components in a diverse set of immunoassay applications, from research work to routine monitoring and analysis. In the current manuscript, combinatorial strategies for a single mixture immunization, screening and rabbit hybridoma cell technology were described. Fluoroquinolones (FQs) drugs were chosen as representative analytes. Six FQs were conjugated with bovine serum albumin and used as immunogens for subsequent immunization, while a mixture of all was injected for coimmunization. The hybridomas obtained against the individual and multiple FQs were used for the production of diverse varieties of rabbit monoclonal antibodies (RabMAbs) against the target analytes. As was proven by indirect competitive ELISA and quantitative lateral flow immunoassay, this approach opens a new way for simultaneously obtaining functional monoclonal antibodies which are capable of recognizing both individual and multiple analytes in a single preparation circle. This addresses various needs of different monitoring regulations as analytical methodology advances.

  20. Precipitating and non-precipitating monoclonal antibodies against chicken avidin. Significance of epitope density.

    Science.gov (United States)

    Krohn, K; Ashorn, R; Ashorn, P; Kulomaa, M

    1987-01-01

    1. Monoclonal antibodies, generated against chicken avidin, were characterized in Ouchterlony's immunodiffusion. 2. Of the nine antibodies three were non-precipitable but six could form clear visible precipitation lines with egg-white avidin in agarose gel. 3. The latter six antibodies could be divided into two groups according to their reactive pattern in immunodiffusion. 4. Antibodies belonging to the first group precipitated both dimeric as well as tetrameric avidin molecules, while those of the second group precipitated only the tetrameric avidin molecules. 5. The relevance of these results to the structure of avidin as well as possibilities to use monoclonal antibodies and the immunodiffusion technique to compare the structure of avidin induced by different factors are discussed.

  1. Rapid high-resolution characterization of functionally important monoclonal antibody N-glycans by capillary electrophoresis.

    Science.gov (United States)

    Szabo, Zoltan; Guttman, András; Bones, Jonathan; Karger, Barry L

    2011-07-01

    Characterization of the N-glycosylation present in the Fc region of therapeutic monoclonal antibodies requires rapid, high-resolution separation methods to guarantee product safety and efficacy during all stages of process development. Determination of fucosylated oligosaccharides is particularly important during clone selection, product characterization, and lot release as fucose has been shown to adversely affect the ability of mAbs to induce antibody dependent cellular cytotoxicity (ADCC). Here, we apply a general capillary electrophoresis optimization strategy to separate functionally relevant fucosylated and afucosylated glycans on mononclonal antibody products in the presence of several high mannose oligosaccharides. The N-glycans chosen represent those most commonly reported on CHO cell derived therapeutic antibodies. A rapid (processing for automated 96 well plate-based glycosylation analyses of two nonproprietary therapeutic monoclonal antibodies, demonstrating ruggedness and suitability for high-throughput process and product monitoring applications.

  2. Screening a hybridoma producing a specific monoclonal antibody to HLA-A24+Bw4 antigen by cytotoxicity inhibition assay.

    Science.gov (United States)

    Hiroishi, S; Kaneko, T; Arita, J

    1987-02-01

    A hybridoma secreting a monoclonal antibody (Tsa-1, IgG3) reacting specifically to HLA-A24+Bw4 was screened by cytotoxicity inhibition assay and micrototoxicity test. The R value of the antibody was 0.843.

  3. PURIFICATION OF MONOCLONAL ANTIBODY 3H11 AGAINST GASTRIC CANCER FOR IN VIVO USE

    Institute of Scientific and Technical Information of China (English)

    LI Zhen-fu; ZHANG Hong; NIU Yong-ge

    1999-01-01

    Monoclonal antibody (McAb) 3H11 against gastric cancer was grown in the mouse ascites system. To acquire a clinical grade product for cancer radioimmuno-imaging was purified by two step high performance liquid chromatography (HPLC) protocol using protein A and high-performance hydroxylapatite (HPHT). An analysis of data reported shows the two step HPLC method to be the best purification procedure. This protocol satisfies purity and immunoreactivity requirement, and provides an sample sterility,free-pyrogens, free-mycoplasma and non-specific IgG contamination. This procedure described was capable of generating large amounts of clinical grade monoclonal antibody.

  4. Docetaxel immunonanocarriers as targeted delivery systems for HER2-positive tumor cells: preparation, characterization, and cytotoxicity studies

    Directory of Open Access Journals (Sweden)

    Noori Koopaei M

    2011-09-01

    Full Text Available Mona Noori Koopaei1, Rassoul Dinarvand1,2, Mohsen Amini3, Hojatollah Rabbani4, Shaghayegh Emami4, Seyed Nasser Ostad5, Fatemeh Atyabi1,21Novel Drug Delivery Laboratory, Faculty of Pharmacy, 2Nanotechnology Research Center, 3Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; 4Monoclonal Antibody Research Center, Avesina Research Institute, ACECR, Tehran, Iran; 5Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, IranBackground: The objective of this study was to develop pegylated poly lactide-co-glycolide acid (PLGA immunonanocarriers for targeting delivery of docetaxel to human breast cancer cells.Methods: The polyethylene glycol (PEG groups on the surface of the PLGA nanoparticles were functionalized using maleimide groups. Trastuzumab, a monoclonal antibody against human epidermal growth factor receptor 2 (HER2 antigens of cancer cells, used as the targeting moiety, was attached to the maleimide groups on the surface of pegylated PLGA nanoparticles. Nanoparticles prepared by a nanoprecipitation method were characterized for their size, size distribution, surface charge, surface morphology, drug-loading, and in vitro drug release profile.Results: The average size of the trastuzumab-decorated nanoparticles was 254 ± 16.4 nm and their zeta potential was -11.5 ± 1.4 mV. The average size of the nontargeted PLGA nanoparticles was 183 ± 22 nm and their zeta potential was -2.6 ± 0.34 mV. The cellular uptake of nanoparticles was studied using both HER2-positive (SKBR3 and BT-474 and HER2-negative (Calu-6 cell lines.Conclusion: The cytotoxicity of the immunonanocarriers against HER2-positive cell lines was significantly higher than that of nontargeted PLGA nanoparticles and free docetaxel.Keywords: nanoparticles, drug targeting, immunonanocarriers, trastuzumab, docetaxel, PLGA, HER2 receptor

  5. Reduction-mediated technetium-99m labeling of monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Mather, S.J.; Ellison, D. (St. Bartholomews Hospital, London (England))

    1990-05-01

    A simple and generally applicable method for labeling antibodies with technetium-99m ({sup 99m}Tc) is described. Following reduction of intrinsic disulphide bonds, the antibody is labeled with {sup 99m}Tc in the presence of a weak competing ligand methylene diphosphonate. High labeling efficiencies (greater than 97%), in a final labeling step taking only a few minutes, can be routinely obtained with high in-vitro stability over 24 hr. No effect upon antibody reactivity is seen.

  6. Molecular imaging of rheumatoid arthritis by radiolabelled monoclonal antibodies: new imaging strategies to guide molecular therapies

    Energy Technology Data Exchange (ETDEWEB)

    Malviya, G.; Dierckx, R.A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Conti, F. [Rheumatology Unit, I Faculty of Medicine and Surgery, Sapienza University of Rome (Italy); Chianelli, M. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Unit of Nuclear Medicine, Regina apostolorum Hospital, Albano, Rome (Italy); Scopinaro, F. [Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy); Signore, A. [Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen (Netherlands); Nuclear Medicine Department, Sapienza University of Rome, St. Andrea Hospital, Rome (Italy)

    2010-02-15

    The closing of the last century opened a wide variety of approaches for inflammation imaging and treatment of patients with rheumatoid arthritis (RA). The introduction of biological therapies for the management of RA started a revolution in the therapeutic armamentarium with the development of several novel monoclonal antibodies (mAbs), which can be murine, chimeric, humanised and fully human antibodies. Monoclonal antibodies specifically bind to their target, which could be adhesion molecules, activation markers, antigens or receptors, to interfere with specific inflammation pathways at the molecular level, leading to immune-modulation of the underlying pathogenic process. These new generation of mAbs can also be radiolabelled by using direct or indirect method, with a variety of nuclides, depending upon the specific diagnostic application. For studying rheumatoid arthritis patients, several monoclonal antibodies and their fragments, including anti-TNF-{alpha}, anti-CD20, anti-CD3, anti-CD4 and anti-E-selectin antibody, have been radiolabelled mainly with {sup 99m}Tc or {sup 111}In. Scintigraphy with these radiolabelled antibodies may offer an exciting possibility for the study of RA patients and holds two types of information: (1) it allows better staging of the disease and diagnosis of the state of activity by early detection of inflamed joints that might be difficult to assess; (2) it might provide a possibility to perform 'evidence-based biological therapy' of arthritis with a view to assessing whether an antibody will localise in an inflamed joint before using the same unlabelled antibody therapeutically. This might prove particularly important for the selection of patients to be treated since biological therapies can be associated with severe side-effects and are considerably expensive. This article reviews the use of radiolabelled mAbs in the study of RA with particular emphasis on the use of different radiolabelled monoclonal antibodies for

  7. A high affinity monoclonal antibody recognizing the light chain of human coagulating factor VII.

    Science.gov (United States)

    Sarial, Sheila; Asadi, Farzad; Jeddi-Tehrani, Mahmood; Hadavi, Reza; Bayat, Ali Ahmad; Mahmoudian, Jafar; Taghizadeh-Jahed, Masoud; Shokri, Fazel; Rabbani, Hodjattallah

    2012-12-01

    Factor VII (FVII) is a serine protease-coagulating element responsible for the initiation of an extrinsic pathway of clot formation. Here we generated and characterized a high affinity monoclonal antibody that specifically recognizes human FVII. Recombinant human FVII (rh-FVII) was used for the production of a monoclonal antibody using BALB/c mice. The specificity of the antibody was determined by Western blot using plasma samples from human, mouse, sheep, goat, bovine, rabbit, and rat. Furthermore, the antibody was used to detect transiently expressed rh-FVII in BHK21 cell line using Western blot and sandwich ELISA. A mouse IgG1 (kappa chain) monoclonal antibody clone 1F1-B11 was produced against rh-FVII. The affinity constant (K(aff)) of the antibody was calculated to be 6.4×10(10) M(-1). The antibody could specifically recognize an epitope on the light chain of hFVII, with no reactivity with factor VII from several other animals. In addition, transiently expressed rh-FVII in BHK21 cells was recognized by 1F1-B11. The high affinity as well as the specificity of 1F1-B11 for hFVII will facilitate the affinity purification of hFVII and also production of FVII deficient plasma and minimizes the risk of bovine FVII contamination when fetal bovine serum-supplemented media are used for production and subsequent purification of rh-FVII.

  8. In-situ Detection of Squalane in Sedimentary Organic Matter Using Monoclonal Antibodies

    Science.gov (United States)

    Bailey, J. V.; Corsetti, F. A.; Moldowan, J. M.; Fago, F.; Caron, D.

    2008-12-01

    Sedimentary geolipids can serve as powerful tools for reconstructing ancient ecosystems, but only if investigators can demonstrate that the hydrocarbons are indigenous to their host rocks. The association of molecules with primary sedimentary fabrics could indicate a syngenetic relationship. However, traditional biomarker analyses require extraction from large quantities of powdered rock, confounding detailed spatial correlations. Biological studies commonly use antibodies as extremely sensitive molecular probes. When coupled with fluorescent labels, antibodies allow for the visual localization of molecules. Here we show that monoclonal antibodies that bind specifically to geolipid compounds can be used for in situ detection and labeling of such compounds in mineral-bound organic macerals. Monoclonal antibodies to squalene, produced for human health studies, also react with the geolipid, squalane. We show that squalene antibodies do not react with other common sedimentary hydrocarbons. We also show that squalane antibodies bind specifically to isolated organic-rich lamina in Eocene-age, squalane-containing rocks. These results suggest that squalane is confined to discrete organo-sedimentary fabrics within those rocks, providing evidence for its syngeneity. The chemical similarity of squalane to other sedimentary hydrocarbons hints at the potential for developing monoclonal antibodies to a variety of biomarkers that could then be localized in rocks, sediments, and extant cells.

  9. Invasion of erythrocytes in vitro by Plasmodium falciparum can be inhibited by monoclonal antibody directed against an S antigen.

    Science.gov (United States)

    Saul, A; Cooper, J; Ingram, L; Anders, R F; Brown, G V

    1985-11-01

    A monoclonal antibody has been produced which binds to the heat stable S antigen present in the FCQ-27/PNG isolate of Plasmodium falciparum. This monoclonal antibody also inhibits the invasion in vitro of erythrocytes by malarial merozoites thus demonstrating that the S antigens of Plasmodium falciparum may be a target of protective immune responses.

  10. Characterization of Two Human Monoclonal Antibodies Neutralizing Influenza A H7N9 Viruses

    Science.gov (United States)

    Wang, Jianmin; Chen, Zhe; Bao, Linlin; Zhang, Weijia; Xue, Ying; Pang, XingHuo; Zhang, Xi

    2015-01-01

    H7N9 was a cause of significant global health concern due to its severe infection and approximately 35% mortality in humans. By screening a Fab antibody phage library derived from patients who recovered from H7N9 infections, we characterized two human monoclonal antibodies (HuMAbs), HNIgGD5 and HNIgGH8. The epitope of these two antibodies was dependent on two residues in the receptor binding site at positions V186 and L226 of the hemagglutinin glycoprotein. Both antibodies possessed high neutralizing activity. PMID:26063436

  11. Three monoclonal antibodies against the serpin protease nexin-1 prevent protease translocation

    DEFF Research Database (Denmark)

    Kousted, Tina Mostrup; Skjoedt, K; Petersen, S V

    2013-01-01

    , conversion to an inactive conformation or induction of serpin substrate behaviour. Until now, no inhibitory antibodies against PN-1 have been thoroughly characterised. Here we report the development of three monoclonal antibodies binding specifically and with high affinity to human PN-1. The antibodies all...... the loop connecting α-helix F with β-strand 3A and the loop connecting α-helix A with β-strand 1B. We conclude that antibody binding causes a direct blockage of the final critical step of protease translocation, resulting in abortive inhibition and premature release of reactive centre cleaved PN-1...

  12. Anti-TNP monoclonal antibodies as reagents for enzyme immunoassay (ELISA)

    OpenAIRE

    Leo, P; P. Ucelli; Augusto, EFP; Oliveira,MS; Tamashiro, WMSC

    2000-01-01

    The aim of this study was to produce anti-TNP monoclonal antibodies (MAbs) that could be conjugated and used for the detection of antigen-antibody reactions, in which the antigen specific-antibody had been previously bound to trinitrophenyl (TNP). For hybridoma production, SP2/0-Ag14 cells were fused with spleen cells from mice previously immunized with TNP-ovalbumin (TNP-OVA). After 10 days, enzyme-linked immunoadsorbent assay (ELISA) was used to detect anti-TNP antibodies in the supernatant...

  13. In vivo examination of {sup 188}Re(I)-tricarbonyl-labeled trastuzumab to target HER2-overexpressing breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.-T. [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lee, T.-W. [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Lo, Jem-Mau [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China)], E-mail: jmlo@mx.nthu.edu.tw

    2009-05-15

    Introduction: Trastuzumab (Herceptin), a humanized IgG1 monoclonal antibody directed against the extracellular domain of the HER2 protein, acts as an immunotherapeutic agent for HER2-overexpressing human breast cancers. Radiolabeled trastuzumab with {beta}- or {alpha} emitters can be used as radioimmunotherapeutic agent for the similar purpose but with additional radiation effect. Methods: In this study, trastuzumab was labeled with {sup 188}Re for radioimmunotherapy of HER2/neu-positive breast cancer. {sup 188}Re(I)-tricarbonyl ion, [{sup 188}Re(OH{sub 2}){sub 3}(CO){sub 3}]{sup +}, was employed as a precursor for directly labeling the monoclonal antibody with {sup 188}Re. The immunoreactivity of {sup 188}Re(I)-trastuzumab was estimated by competition receptor-binding assay using HER2/neu-overexpressive BT-474 human breast cancer cells. The localization properties of {sup 188}Re(I)-trastuzumab within both tumor and normal tissues of athymic mice bearing BT-474 human breast cancer xenografts (HER2/neu-overexpressive) and similar mice bearing MCF-7 human breast cancer xenografts (HER2/neu-low expressive) were investigated. Results: When incubated with human serum albumin and histidine at 25{sup o}C, {sup 188}Re(I)-trastuzumab was found to be stable within 24 h. The IC{sub 50} of {sup 188}Re(I)-trastuzumab was found to be 22.63{+-}4.57 nM. {sup 188}Re(I)-trastuzumab was shown to accumulate specifically in BT-474 tumor tissue in in vivo biodistribution studies. By microSPECT/CT, the image of {sup 188}Re localized BT-474 tumor was clearly visualized within 24 h. In contrast, {sup 188}Re(I)-trastuzumab uptake in HER2-low-expressing MCF-7 tumor was minimal, and the {sup 188}Re image at the localization of the tumor was dim. Conclusion: These results reveal that {sup 188}Re(I)-trastuzumab could be an appropriate radioimmunotherapeutic agent for the treatment of HER2/neu-overexpressing cancers.

  14. beta-Adrenergic agonist activity of a monoclonal anti-idiotypic antibody.

    Science.gov (United States)

    Guillet, J G; Kaveri, S V; Durieu, O; Delavier, C; Hoebeke, J; Strosberg, A D

    1985-03-01

    Hybridoma cells bearing monoclonal antibody against the beta-adrenergic ligand alprenolol were used as an immunogen to raise monoclonal anti-idiotypic antibodies. Of six anti-idiotypic antibodies, which inhibit ligand binding, three were able to recognize beta-adrenergic receptors. One of them, mAb2B4, an IgM that could be amplified into ascites, binds to the beta-adrenergic catecholamine receptors of intact epidermoid A431 cells and precipitates receptors solubilized from plasma membranes by digitonin. This antibody identifies the beta 2-adrenergic receptor of A431 cells as a single 55-kDa protein and stimulates adenylate cyclase activity. This stimulation is inhibited by the beta-adrenergic antagonist propranolol.

  15. Characterization of a Novel Neutralizing Monoclonal Antibody Against Ebola Virus GP.

    Science.gov (United States)

    Reynard, Olivier; Volchkov, Viktor E

    2015-10-01

    Ebola virus is the etiological agent of a severe hemorrhagic fever with a high mortality rate. As the only protein exposed on the surface of viral particles, the spike glycoprotein GP is the unique target for neutralizing monoclonal antibodies. In this study, we demonstrate the strong neutralization capacity of the monoclonal antibody #3327 and characterize its activity. GP residues that are required for recognition and neutralization were found to be located both in the internal fusion loop and in the receptor-binding domain. Analysis of Ebola virus entry in the presence of #3327 allows us to hypothesize that this antibody binds to the virus particle before internalization and endosomal processing of GP and likely prevents the final viral fusion step. Importantly, #3327 is able to block entry of virions bearing GP that contain the Q508 escape mutation common to a number of virus-neutralizing antibodies, and therefore provides future perspectives for treatment strategies against Ebola virus infection.

  16. The Effects of Anti-Hcg Monoclonal Antibodies on Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Mirshahi M

    2011-12-01

    Full Text Available Background: Human cancer cell lines express human choriogonadotropin (hCG, its subunits and derivatives, regardless of their origin and type. It appears that hCG is a common phenotype in human cancer cell lines. In this research, the effects of hCG targeting monoclonal antibodies (7D9, T18H7 and T8B12 on human cancer cell lines were evaluated. Methods: Monoclonal antibody secreting hybridomas were proliferated and injected intraperitoneally to Balb/C mice after treatment with pristine. Two weeks later, ascites fluid was collected. Purification of aforementioned antibodies from ascites fluid was performed using G-protein affinity followed by ion exchange chromatography. SDS-PAGE and ELISA confirmed the structure and functional integrity of the purified antibodies, respectively. Two human cancer cell lines "Hela" and "MDA" were treated by the purified antibodies. Three days later, different wells were imaged and the cells counted. Results: SDS-PAGE gel (None-reducing indicated consistency of band migration patterns with control antibodies. ELISA test using hCG antigens indicated that the produced antibodies could detect hCG antigens. Cell lines were cultured and treated with different concentrations of each antibody. Counting and imaging different wells of treated plates, indicated that 7D9 antibody had a more significant (P<0.01 cytotoxic effect on cancer cell lines than the control cells. Conclusion: HCG targeting monoclonal antibodies can be used for targeted cancer therapy, as human cancer cells express hCG gene. 7D9 antibody that exhibits protease activity is a proper candidate for this purpose, as it possesses both antagonistic and enzymatic properties.

  17. Isolation of highly active monoclonal antibodies against multiresistant gram-positive bacteria.

    Directory of Open Access Journals (Sweden)

    Friederike S Rossmann

    Full Text Available Multiresistant nosocomial pathogens often cause life-threatening infections that are sometimes untreatable with currently available antibiotics. Staphylococci and enterococci are the predominant Gram-positive species associated with hospital-acquired infections. These infections often lead to extended hospital stay and excess mortality. In this study, a panel of fully human monoclonal antibodies was isolated from a healthy individual by selection of B-cells producing antibodies with high opsonic killing against E. faecalis 12030. Variable domains (VH and VL of these immunoglobulin genes were amplified by PCR and cloned into an eukaryotic expression vector containing the constant domains of a human IgG1 molecule and the human lambda constant domain. These constructs were transfected into CHO cells and culture supernatants were collected and tested by opsonophagocytic assay against E. faecalis and S. aureus strains (including MRSA. At concentrations of 600 pg/ml, opsonic killing was between 40% and 70% against all strains tested. Monoclonal antibodies were also evaluated in a mouse sepsis model (using S. aureus LAC and E. faecium, a mouse peritonitis model (using S. aureus Newman and LAC and a rat endocarditis model (using E. faecalis 12030 and were shown to provide protection in all models at a concentration of 4 μg/kg per animal. Here we present a method to produce fully human IgG1 monoclonal antibodies that are opsonic in vitro and protective in vivo against several multiresistant Gram-positive bacteria. The monoclonal antibodies presented in this study are significantly more effective compared to another monoclonal antibody currently in clinical trials.

  18. Specificities of monoclonal antibodies to domain I of alpha-gliadins.

    Science.gov (United States)

    Ellis, H J; Doyle, A P; Wieser, H; Sturgess, R P; Ciclitira, P J

    1993-03-01

    Eight monoclonal antibodies were raised against a sequenced 54-amino-acid peptide of alpha-gliadin, which is thought to exacerbate coeliac disease. Five of the antibodies cross-reacted with coeliac non-toxic cereals. Two of eight of the antibodies bound specifically to coeliac toxic prolamins. These two antibodies cross-reacted with high molecular weight gliadins, which are closely related to alpha-gliadins and whose toxicity to patients with coeliac disease is unclear. The antibodies were screened by enzyme-linked immunosorbent assay against three amino-acid-sequenced peptides of alpha-gliadin with single amino-acid differences. Differential binding of antibody WC2 suggested that this antibody binds in the region of amino-acid residue 36, a proline residue, where there may be an antigenic beta-reverse turn. This proline residue forms part of a tetrapeptide motif, QQQP, which is thought to be present in all coeliac-active peptides.

  19. Preliminary characterisation of Toxoplasma gondii isolates from Zimbabwe, with stage-specific monoclonal antibodies

    DEFF Research Database (Denmark)

    Hove, T.; Lind, Peter; Mukaratirwa, S.

    2005-01-01

    Cell-culture-derived clones of eight Toxoplasma gondii isolates from Zimbabwe were characterised in IFAT with a panel of five monoclonal antibodies (mAb). Each clone had been established from a single murine brain cyst. The antibodies were bradyzoite-specific (4.3), tachyzoite-specific (4.25, 5.1...... in the IFAT in a similar way to the Danish reference strain of T. gondii, SSI-119....

  20. Monoclonal antibody to human endothelial cell surface internalization and liposome delivery in cell culture.

    Science.gov (United States)

    Trubetskaya, O V; Trubetskoy, V S; Domogatsky, S P; Rudin, A V; Popov, N V; Danilov, S M; Nikolayeva, M N; Klibanov, A L; Torchilin, V P

    1988-02-01

    A monoclonal antibody (mAb), E25, is described that binds to the surface of cultured human endothelial cells. Upon binding E25 is rapidly internalized and digested intracellularly. Selective liposome targeting to the surface of the cells is performed using a biotinylated E25 antibody and an avidin-biotin system. Up to 30% of the cell-adherent liposomal lipid is internalized.

  1. PREPARATION AND CHARACTERIZATION OF MONOCLONAL ANTIBODY AGAINST HUMAN TELOMERASE REVERSE TRANSCRIPTASE

    Institute of Scientific and Technical Information of China (English)

    王俊梅; 张波; 杨邵敏; 韩继生; 李冰思; 侯琳

    2003-01-01

    Objective. To develop monoclonal antibodies against the catalytic subunit of human telomerase reverse transcriptase (hTERT) for its expression detection of human tumors. Methods. A dominant epitope in hTERT (peptide hTERT7)was automatically synthesized based on Fmoc method, and was used to immunize Balb/c mice. Hybridomas were generated and screened by ELISA for specific monoclonal antibodies, and the characterization was performed by Western blotting and immunohistochemical staining. The heavy chain variable region of antibody was cloned by RT-PCR and sequenced. Results. Antigenic peptide hTERT7 was synthesized and confirmed by MALDI-TOF-MS and HPLC analysis. One hybridoma cell line secreting anti-hTERT7 antibodies designated as M2 was established after primary screening and consequent 3 rounds of limited dilution. M2 was IgG1 in isotyping. The competi tive assay showed that the M2 antibody was hTERT7 -specific, and the affinity constant was about 1×106 mol-1. The antibody reacted with cell extracts from HeLa cancer cells but not with those from normal 2BS cells in ELISA assay. For in situ staining of immunohistochemistry, the positive staining presented in the nuclear compartment of HeLa, while 2BS was negative. The heavy chain variable region from M2 re vealed that the monoclonal antibody was mouse origin. Conclusions. The developed mouse monoclonal antibody is hTERT-specific and able to recognize native cellular hTERT in ELISA and immunohistochemistry, which makes the immuno-detection of telom erase hTERT expression in cancer cells or tissues possible.

  2. Anti-MrkA Monoclonal Antibodies Reveal Distinct Structural and Antigenic Features of MrkA

    Science.gov (United States)

    Wang, Qun; Chen, Yan; Cvitkovic, Romana; Pennini, Meghan E.; Chang, Chew shun; Pelletier, Mark; Bonnell, Jessica; Wu, Herren; Dall’Acqua, William F.; Stover, C. Kendall; Xiao, Xiaodong

    2017-01-01

    Antibody therapy against antibiotics resistant Klebsiella pneumoniae infections represents a promising strategy, the success of which depends critically on the ability to identify appropriate antibody targets. Using a target-agnostic strategy, we recently discovered MrkA as a potential antibody target and vaccine antigen. Interestingly, the anti-MrkA monoclonal antibodies isolated through phage display and hybridoma platforms all recognize an overlapping epitope, which opens up important questions including whether monoclonal antibodies targeting different MrkA epitopes can be generated and if they possess different protective profiles. In this study we generated four anti-MrkA antibodies targeting different epitopes through phage library panning against recombinant MrkA protein. These anti-MrkA antibodies elicited strong in vitro and in vivo protections against a multi-drug resistant Klebsiella pneumoniae strain. Furthermore, mutational and epitope analysis suggest that the two cysteine residues may play essential roles in maintaining a MrkA structure that is highly compacted and exposes limited antibody binding/neutralizing epitopes. These results suggest the need for further in-depth understandings of the structure of MrkA, the role of MrkA in the pathogenesis of Klebsiella pneumoniae and the protective mechanism adopted by anti-MrkA antibodies to fully explore the potential of MrkA as an efficient therapeutic target and vaccine antigen. PMID:28107434

  3. Cancer Therapy Targeting the HER2-PI3K Pathway: Potential Impact on the Heart

    Directory of Open Access Journals (Sweden)

    Giannoula Lakka Klement

    2012-06-01

    Full Text Available The HER2-PI3K pathway is the one of the most mutated pathways in cancer. Several drugs targeting the major kinases of this pathway have been approved by the Food and Drug Administration and many are being tested in clinical trials for the treatment of various cancers. However, the HER2-PI3K pathway is also pivotal for maintaining the physiological function of the heart, especially in the presence of cardiac stress. Clinical studies have shown that in patients treated with doxorubicin concurrently with Trastuzumab, a monoclonal antibody that blocks the HER2 receptor, the New York Heart Association class III/IV heart failure was significantly increased compared to those who were treated with doxorubicin alone (16 vs. 3%. Studies in transgenic mice have also shown that other key kinases of this pathway, such as PI3Kα, PDK1, Akt and mTOR, are important for protecting the heart from ischemia-reperfusion and aortic stenosis induced cardiac dysfunction. Studies, however, have also shown that inhibition of PI3Kγ improve cardiac function of a failing heart. In addition, results from transgenic mouse models are not always consistent with the outcome of the pharmacological inhibition of this pathway. Here, we will review these findings and discuss how we can address the cardiac side-effects caused by inhibition of this important pathway in both cancer and cardiac biology.

  4. The antitumor immune response in HER-2 positive, metastatic breast cancer patients

    Directory of Open Access Journals (Sweden)

    Stanojevic-Bakic Nevenka

    2005-03-01

    Full Text Available Abstract The aim of this study was to determine the basis for anti-tumor immune reactivity observed in patients with human epidermal growth factor receptor-2 (HER-2 (3+ breast carcinoma using an in vitro model in which the role of the HER-2-specific monoclonal antibody Herceptin was also investigated. Patients with metastatic breast cancer who had their primary tumor resected were included in this study. Peripheral blood mononuclear cell (PBMC-dependent cytotoxicity in the presence or absence of Herceptin were assessed using the survival of target breast adenocarcinoma MDA-MB-361 cells as a parameter in a (3-(4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT test. We observed a significant increase in PBMC-dependent cytotoxicity when autologous serum was introduced in the assay. Furthermore, the addition of Herceptin significantly increases their cytotoxicity. These data suggest that autologous serum constitutively contains factors that might affect PBMC-dependent cytotoxic activity against HER-2 positive cancer cells.

  5. [HER-2/neu positive breast cancer: how to prescribe adjuvant trastuzumab (Herceptin)?].

    Science.gov (United States)

    Belkacémi, Yazid; Gligorov, Joseph; Mauriac, Louis; Azria, David

    2006-10-01

    One of the most recent advances in the management of Her-2/neu positive breast cancer is the validation of a targeted therapy from bench to the clinic, particularly towards the adjuvant setting. The recommended dose of trastuzumab (Herceptin), a humanized monoclonal antibody targeting the HER-2 antigen, has been determined in phase I studies. In the metastatic patients two randomised trials have demonstrated its efficacy when associated to taxanes. In less than 10 years, trastuzumab became the standard of care in the adjuvant treatment of HER-2/neu positive breast cancer. In this setting, two combinations regimen with chemotherapy (concomitant or sequential) have been recently published. The concomitant schedule has been used in three studies (North American Group, BCIRG, FinHer), whereas in the Hera trial trastuzumab was started after the end of neo-adjuvant and adjuvant chemotherapy. In this article, the advantages and uncertainties on efficacy and toxicities of the trastuzumab administration modalities, associated or not to chemotherapy and radiation therapy, are discussed.

  6. Pertuzumab: in the first-line treatment of HER2-positive metastatic breast cancer.

    Science.gov (United States)

    Keating, Gillian M

    2012-02-12

    The humanized monoclonal antibody pertuzumab is the first in a new class of drugs, the human epidermal growth factor receptor (HER) dimerization inhibitors. Given that pertuzumab binds to a different epitope of the HER2 extracellular domain than trastuzumab, combination therapy with pertuzumab plus trastuzumab may result in more comprehensive blockade of HER2 signalling than can be achieved with trastuzumab alone. The efficacy of adding pertuzumab to trastuzumab plus docetaxel for the first-line treatment of HER2-positive metastatic breast cancer was demonstrated in the randomized, double-blind, multinational, phase III CLEOPATRA trial. Both independently assessed progression-free survival (primary endpoint) and investigator-assessed progression-free survival were significantly improved in patients receiving pertuzumab plus trastuzumab and docetaxel compared with those receiving placebo plus trastuzumab and docetaxel. The prespecified interim analysis of survival revealed a strong trend towards a survival benefit associated with pertuzumab, although this was not considered statistically significant. The objective response rate was higher with pertuzumab than with placebo. Intravenous pertuzumab had an acceptable tolerability profile when added to trastuzumab and docetaxel in the CLEOPATRA trial.

  7. Human Monoclonal antibodies - A dual advantaged weapon to tackle cancer and viruses

    Directory of Open Access Journals (Sweden)

    Kurosawa G

    2014-11-01

    Full Text Available Human monoclonal antibodies (mAbs are powerful tools as pharmaceutical agents to tackle cancer and infectious diseases. Antibodies (Abs are present in blood at the concentration of 10 mg/ml and play a vital role in humoral immunity. Many therapeutic Abs have been reported since early 1980s. Human mAb technology was not available at that time and only the hybridoma technology for making mouse mAbs had been well established. In order to avoid various potential problems associated with use of mouse proteins, two different technologies to make human/mouse chimeric Ab as well as humanized Ab were developed crossing the various hurdles for almost twenty years and mAb based drugs such as rituximab, anti-CD20 Ab, and trastuzumab, anti-HER2 Ab, have been approved by the US Food and Drug Administration (FDA for treatment of non-Hodgkin's lymphoma and breast cancer in 1997 and 1998, respectively. These drugs are well recognized and accepted by clinicians for treatment of patients. The clinical outcome of the treatment with mAb has strongly encouraged the researchers to develop much more refined mAbs. In addition to chimeric Ab and humanized Ab, now human mAbs can be produced by two technologies. The first is transgenic mice that produce human Abs and the second is human Ab libraries using phage-display system. Until now, several hundreds of mAbs against several tens of antigens (Ags have been developed and subjected to clinical examinations. While many Abs have been approved as therapeutic agents against hematological malignancies, the successful mAbs against solid tumors are still limited. However, many researchers have suggested that developing potential mAbs agents should be possible and incurable cancers may become curable within another decade. Though it is hard to say explicitly that this prediction is correct, a passion for this development should be worth supporting to lead to a successful outcome which will lead to patient benefits. Our institute

  8. Rapid production of antigen-specific monoclonal antibodies from a variety of animals

    Directory of Open Access Journals (Sweden)

    Kurosawa Nobuyuki

    2012-09-01

    Full Text Available Abstract Background Although a variety of animals have been used to produce polyclonal antibodies against antigens, the production of antigen-specific monoclonal antibodies from animals remains challenging. Results We propose a simple and rapid strategy to produce monoclonal antibodies from a variety of animals. By staining lymph node cells with an antibody against immunoglobulin and a fluorescent dye specific for the endoplasmic reticulum, plasma/plasmablast cells were identified without using a series of antibodies against lineage markers. By using a fluorescently labeled antigen as a tag for a complementary cell surface immunoglobulin, antigen-specific plasma/plasmablast cells were sorted from the rest of the cell population by fluorescence-activated cell sorting. Amplification of cognate pairs of immunoglobulin heavy and light chain genes followed by DNA transfection into 293FT cells resulted in the highly efficient production of antigen-specific monoclonal antibodies from a variety of immunized animals. Conclusions Our technology eliminates the need for both cell propagation and screening processes, offering a significant advantage over hybridoma and display strategies.

  9. Inhibition of iodothyronine transport into rat liver cells by a monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Mol, J.A.; Krenning, E.P.; Docter, R.; Rozing, J.; Hennemann, G.

    1986-06-15

    The role of the rat liver plasma membrane in the regulation of uptake and subsequent deiodination of thyroxine (T4) or the biologically active thyroid hormone 3,3',5-triiodothyronine (T3) was investigated. Here we report on the production of monoclonal antibodies raised against rat hepatocytes. Two antibodies were selected. Antibody ER-22 did bind to a Mr 52,000 membrane protein and inhibited the 1- and 5-min uptake of both T4 and T3 by primary cultured rat hepatocytes in a dose-dependent fashion. As the uptake of T4 and T3 depends on the presence of a sodium gradient over the plasma membrane, the inhibitory potency of ER-22 on the Na+,K+-ATPase activity was investigated. No inhibition of the uptake of 86Rb+ could be determined, indicating that antibody ER-22 is not directed against the Na+,K+-ATPase but probably the carrier protein itself. Clearance of T3 from the medium and concomitant iodide production by cultured rat hepatocytes during a 20-h incubation in the presence of ER-22 were both inhibited by 50% with respect to a control incubation in the absence of monoclonal antibody, pointing to the importance of carrier-mediated transport in cellular uptake and metabolism of T3. A second monoclonal antibody did bind to two other plasma membrane proteins but did not inhibit transport of thyroid hormone.

  10. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis

    DEFF Research Database (Denmark)

    Leonardi, Craig; Matheson, Robert; Zachariae, Claus;

    2012-01-01

    Type 17 helper T cells have been suggested to play a pathological role in psoriasis. They secrete several proinflammatory cytokines, including interleukin-17A (also known as interleukin-17). We evaluated the safety and efficacy of ixekizumab (LY2439821), a humanized anti-interleukin-17 monoclonal...... antibody, for psoriasis treatment....

  11. Survey of citrus tristeza virus populations in Central California that react with MCA13 monoclonal antibody

    Science.gov (United States)

    The Citrus Pest Detection Program (CPDP) of the Central California Tristeza Eradication Agency monitors Citrus tristeza virus (CTV) in Central California. MCA13 is a severe strain discriminating monoclonal antibody used to screen for potentially virulent CTV isolates. MCA13-reactive CTV isolates are...

  12. Harnessing the immune system's arsenal: producing human monoclonal antibodies for therapeutics and investigating immune responses

    Science.gov (United States)

    Sullivan, Meghan; Kaur, Kaval; Pauli, Noel

    2011-01-01

    Monoclonal antibody technology has undergone rapid and innovative reinvention over the last 30 years. Application of these technologies to human samples revealed valuable therapeutic and experimental insights. These technologies, each with their own benefits and flaws, have proven indispensable for immunological research and in our fight to provide new treatments and improved vaccines for infectious disease. PMID:21876728

  13. Two courses of rituximab (anti-CD20 monoclonal antibody) for recalcitrant pemphigus vulgaris

    DEFF Research Database (Denmark)

    Faurschou, A.; Gniadecki, R.

    2008-01-01

    Background Pemphigus vulgaris (PV) is a severe autoimmune blistering disease involving the skin and mucous membranes. The response to therapy varies greatly amongst patients and treatment may be challenging. Rituximab is a chimeric monoclonal antibody that selectively targets cell surface antigen...

  14. Inhibition of middle east respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody

    NARCIS (Netherlands)

    K. Ohnuma (Kei); B.L. Haagmans (Bart); R. Hatano (Ryo); V.S. Raj (Stalin); H. Mou (Huihui); S. Iwata (Satoshi); R.L. Dang (Rong); B.J. Bosch (Berend Jan); C. Morimoto (Chikao)

    2013-01-01

    textabstractWe identified the domains of CD26 involved in the binding of Middle East respiratory syndrome coronavirus (MERS-CoV) using distinct clones of anti-CD26 monoclonal antibodies (MAbs). One clone, named 2F9, almost completely inhibited viral entry. The humanized anti-CD26 MAb YS110 also sign

  15. Development of a Highly Protective Combination Monoclonal Antibody Therapy against Chikungunya Virus

    NARCIS (Netherlands)

    Pal, Pankaj; Dowd, Kimberly A.; Brien, James D.; Edeling, Melissa A.; Gorlatov, Sergey; Johnson, Syd; Lee, Iris; Akahata, Wataru; Nabel, Gary J.; Richter, Mareike K. S.; Smit, Jolanda M.; Fremont, Daved H.; Pierson, Theodore C.; Heise, Mark T.; Diamond, Michael S.

    2013-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit

  16. A phase II trial of chimeric monoclonal antibody G250 for advanced renal cell carcinoma patients.

    NARCIS (Netherlands)

    Bleumer, I.; Knuth, A.; Oosterwijk, E.; Hofmann, R.; Varga, Z.; Lamers, C.B.H.W.; Kruit, W.; Melchior, S.; Mala, C.; Ullrich, S.; Mulder, P.; Mulders, P.F.A.; Beck, J.L.M.

    2004-01-01

    Chimeric monoclonal antibody G250 (WX-G250) binds to a cell surface antigen found on >90% of renal cell carcinoma (RCC). A multicentre phase II study was performed to evaluate the safety and efficacy of WX-G250 in metastatic RCC (mRCC) patients. In all, 36 patients with mRCC were included. WX-G250 w

  17. Purification of infectious canine parvovirus from cell culture by affinity chromatography with monoclonal antibodies.

    NARCIS (Netherlands)

    J. Groen (Jan); N. Juntti; J.S. Teppema; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert); G.F. Rimmelzwaan (Guus)

    1987-01-01

    textabstractImmuno affinity chromatography with virus neutralizing monoclonal antibodies, directed to the haemagglutinating protein of canine parvovirus (CPV) was used to purify and concentrate CPV from infected cell culture. The procedure was monitored by testing the respective fractions in an infe

  18. Competitive adsorption of monoclonal antibodies and nonionic surfactants at solid hydrophobic surfaces

    DEFF Research Database (Denmark)

    Kapp, Sebastian J; Larsson, Iben; van de Weert, Marco

    2015-01-01

    Two monoclonal antibodies from the IgG subclasses one and two were compared in their adsorption behavior with hydrophobic surfaces upon dilution to 10 mg/mL with 0.9% NaCl. These conditions simulate handling of the compounds at hospital pharmacies and surfaces encountered after preparation, such ...

  19. Comprehensive analysis of varicella-zoster virus proteins using a new monoclonal antibody collection

    NARCIS (Netherlands)

    T.L. Roviš (Tihana Lenac); S.M. Bailer (Susanne); V.R. Pothineni (Venkata R); W.J.D. Ouwendijk (Werner ); H. Šimić (Hrvoje); M. Babić (Marina); K. Miklić (Karmela); S. Malić (Suzana); M.C. Verweij; M. Baiker (Martin); O. Gonzalez (Orland); A. Brunn (Albrecht von); R. Zimmer; K. Früh (Klaus); G.M.G.M. Verjans (George); S. Jonjic (Stipan); J. Haasb (Jürgeni)

    2013-01-01

    textabstractVaricella-zoster virus (VZV) is the etiological agent of chickenpox and shingles. Due to the virus's restricted host and cell typetropism and the lack of tools for VZV proteomics, it is one of the least-characterized human herpesviruses. We generated 251monoclonal antibodies (MAbs) again

  20. Detection of tomato spotted wilt virus using monoclonal antibodies and riboprobes.

    NARCIS (Netherlands)

    C. Huguenot; G.J.P.M. van den Dobbelsteen (Germie); P. de Haan (Jurre); C.A.M. Wagemakers; G.A. Drost; A.D.M.E. Osterhaus (Albert); D. Peters

    1990-01-01

    textabstractThe immunoreactivity of a panel of monoclonal antibodies raised to tomato spotted wilt virus (TSWV) was examined in enzyme-linked immunosorbent assays (ELISA) and dot immunobinding assays (DIBA) procedures. MAbs 6.12.15 and 2.9 were specific for the nucleocapsid protein of TSWV. The

  1. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma

    DEFF Research Database (Denmark)

    van de Donk, Niels W C J; Moreau, Philippe; Plesner, Torben;

    2016-01-01

    have demonstrated significantly improved progression-free survival when elotuzumab is added to lenalidomide-dexamethasone or bortezomib-dexamethasone. Importantly, there has been no significant additive toxicity when these monoclonal antibodies are combined with other anti-MM agents, other than...

  2. HIV monoclonal antibodies: a new opportunity to further reduce mother-to-child HIV transmission.

    Directory of Open Access Journals (Sweden)

    Yegor Voronin

    2014-04-01

    Full Text Available Yegor Voronin and colleagues explore how monoclonal antibodies against HIV could provide a new opportunity to further reduce mother-to-child transmission of HIV and propose that new interventions should consider issues related to implementation, feasibility, and access. Please see later in the article for the Editors' Summary.

  3. Prolonged skin graft survival by administration of anti-CD80 monoclonal antibody with cyclosporin A

    NARCIS (Netherlands)

    Ossevoort, MA; Lorre, K; Boon, L; van den Hout, Y; de Boer, M; De Waele, P; Jonker, M; VandeVoorde, A

    1999-01-01

    Costimulation via the B7/CD28 pathway is an important signal for the activation of T cells. Maximal inhibition of T-cell activation and the induction of alloantigen-specific nonresponsiveness in vitro was achieved using anti-CD80 monoclonal antibody (mAb) in combination with cyclosporin A (CsA). Bas

  4. Intravenous cidofovir for resistant cutaneous warts in a patient with psoriasis treated with monoclonal antibodies.

    LENUS (Irish Health Repository)

    McAleer, M A

    2012-02-01

    Human papilloma virus is a common and often distressing cutaneous disease. It can be therapeutically challenging, especially in immunocompromised patients. We report a case of recalcitrant cutaneous warts that resolved with intravenous cidofovir treatment. The patient was immunocompromised secondary to monoclonal antibody therapy for psoriasis.

  5. A novel polymorphism of human complement component C3 detected by means of a monoclonal antibody

    DEFF Research Database (Denmark)

    Koch, C; Behrendt, N

    1986-01-01

    A mouse monoclonal antibody, HAV 4-1, obtained after immunization of a BALB/c mouse with purified C3F, detected a novel genetic polymorphism of human complement component C3 in a simple immunoblotting system. The frequency of HAV 4-1-positive genes was 20.1%. Reactivity of HAV 4-1 was closely rel...

  6. Data on the characterization of follicle-stimulating hormone monoclonal antibodies and localization in Japanese eel pituitary

    Directory of Open Access Journals (Sweden)

    Dae-Jung Kim

    2016-09-01

    In support of our recent publication, "Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica" [1], it was important to characterize the specificity of eel follicle-stimulating hormone antibodies. Here, the production and ELISA system of these monoclonal antibodies are presented. The affinity-purified monoclonal antibodies specifically detected eel rec-FSH in ELISA and on western blots of rec-FSH produced from CHO cells. Immunohistochemical analysis revealed that FSH staining was specifically localized in the eel pituitary.

  7. Antibody networks and imaging: elicitation of anti-fluorescein antibodies in response to the metatypic state of fluorescein-specific monoclonal antibodies.

    Science.gov (United States)

    Cedergren, A M; Miklasz, S D; Voss, E W

    1996-01-01

    Studies are described regarding generation of anti-hapten antibodies starting with a monoclonal Ig immunogen in the ligand-induced conformation or metatypic state. Liganded monoclonal Ab1 antibodies represent the unique feature of the study since previous reports investigating internal imaging in the original Idiotype Network Hypothesis [Jerne, 1974 (Ann. Immun. 125C, 373-389)] were based on the non-liganded or idiotypic state [as reviewed in: Rodkey, 1980 (Microbiol. Rev. 44, 631-659); Kohler et al., 1979 (In: Methods in Enzymology: Antibodies, Antigens and Molecular Mimicry, pp. 3-35); Greenspan and Bona, 1993 (FASEB J. 7,437-444)]. Affinity-labeled liganded murine monoclonal anti-fluorescein antibodies served as immunogens administered both in the syngenic and xenogenic modes to determine if the metatypic state elicited anti-hapten antibodies through imaging-like mechanisms. Polyclonal and monoclonal anti-Ab1 reagents in various hosts were assayed for anti-fluorescein and/or anti-metatype specificity. Significant anti-fluorescein responses were measured indicating that the metatypic state directly or indirectly stimulates an anti-hapten antibody population.

  8. Motility assays using myosin attached to surfaces through specific binding to monoclonal antibodies.

    Science.gov (United States)

    Winkelmann, D A; Bourdieu, L; Kinose, F; Libchaber, A

    1995-04-01

    We have analyzed the dependence of actin filament movement on the mode of myosin attachment to surfaces. Monoclonal antibodies that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. These monoclonal antibodies were used to provide increasing flexibility in the mode of attachment. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these monoclonal antibodies and the sliding movement of fluorescently labeled actin filaments analyzed by video microscopy. Each of these antibodies produced stable, myosin-coated surfaces that supported uniform movement of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM monoclonal antibodies yielded a maximum velocity of 10 microns/s at 30 degrees C, whereas attachment through anti-LC2 produced a lower velocity of 4-5 microns/s. Each antibody showed a characteristic minimum myosin density below which sliding movement was no longer supported and an exponential dependence of actin filament velocity on myosin surface density below Vmax. Maximum sliding velocity was achieved over a range of myosin surface densities. Thus, the specific mode of attachment can influence the characteristic velocity of actin filament movement and the surface density needed to support movement. These data are being used to analyze the dynamics of sliding filament assays and evaluate estimates of the average number of motor molecules per unit length of actin required to support movement.

  9. Preparation of monoclonal antibody of anti-feline calicivirus and establishment of double-antibody sandwich enzyme-linked immunosorbent assay detecting method.

    Science.gov (United States)

    Yuan, B; Ai, C-X; Yuan, L; Gao, W; Hu, J-P; Chen, J; Ren, W-Z

    2014-09-12

    This study aimed to prepare monoclonal antibody of feline calicivirus (FCV) and identify its basic biological characteristics. Saturated ammonium sulfate precipitation, combined differential centrifugation, and cesium chloride density gradient centrifugation were used for the purification of FCV. The purified FCV was used as antigen to immunize BALB/c mice. The hybridoma lines of anti-FCV monoclonal antibodies were established using cell fusion and hybridoma screening techniques. The subtypes of the monoclonal antibody were identified. The results showed that 3 strains of hybridoma cell lines stably secreted anti-FCV monoclonal antibody; they were named as D8, E5, and H4. The D8 and E5 were IgM subtype antibodies, and H4 was IgG2b subtype antibody. The monoclonal antibody obtained shared no cross-reactivity with feline parvovirus, canine parvovirus, and canine distemper virus. According to the different recognition sites of 2 monoclonal antibodies E5 and H4 to the FCV, they were used to coat microtiter plates and prepare 2 enzyme-labeled secondary antibodies to establish double-antibody sandwich enzyme-linked immunosorbent assay detecting method.

  10. Model-based prediction of monoclonal antibody retention in ion-exchange chromatography.

    Science.gov (United States)

    Guélat, Bertrand; Delegrange, Lydia; Valax, Pascal; Morbidelli, Massimo

    2013-07-12

    In order to support a model-based process design in ion-exchange chromatography, an adsorption equilibrium model was adapted to predict the protein retention behavior from the amino acid sequence and from structural information on the resin. It is based on the computation of protein-resin interactions with a colloidal model and accounts for the contribution of each ionizable amino acid to the protein charge. As a verification of the protein charge model, the experimental titration curve of a monoclonal antibody was compared to its predicted net charge. Using this protein charge model in the computation of the protein-resin interactions, it is possible to predict the adsorption equilibrium constant (i.e. retention factor or Henry constant) with an explicit pH and salt dependence. The application of the model-based predictions for an in silico screening of the protein retention on various stationary phases or, alternatively, for the comparison of various monoclonal antibodies on a given cation-exchanger was demonstrated. Furthermore, considering the structural differences between charge variants of a monoclonal antibody, it was possible to predict their individual retention times. The selectivity between the side variants and the main isoform of the monoclonal antibody were computed. The comparison with the experimental data showed that the model was reliable with respect to the identification of the operating conditions maximizing the selectivity, i.e. the most promising conditions for a monoclonal antibody variant separation. Such predictions can be useful in reducing the experimental effort to identify the parameter space.

  11. CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation.

    Science.gov (United States)

    Grainger, Rhian K; James, David C

    2013-11-01

    Here we demonstrate that it is possible to predict and control N-glycan processing of a secreted recombinant monoclonal antibody during manufacturing process development using a combination of statistical modelling and comparative measurement of cell surface glycans using fluorescent lectins. Using design of experiments--response surface modelling (DoE-RSM) methodology to adjust the relative media concentrations of known metabolic effectors of galactosylation (manganese, galactose, and uridine) we have shown that β1,4-galactosylation of the same recombinant IgG4 monoclonal antibody produced by different CHO cell lines can be precisely controlled in a cell line specific manner. For two cell lines, monoclonal antibody galactosylation could be increased by over 100% compared to control, non-supplemented cultures without a reduction in product titre and with minimal effect on cell growth. Analysis of galactosylation effector interactions by DoE-RSM indicated that Mn²⁺ alone was necessary but not sufficient to improve galactosylation, and that synergistic combinations of Gal and Urd were necessary to maximize galactosylation, whilst minimizing the deleterious effect of Urd on cell growth. To facilitate rapid cell culture process development we also tested the hypothesis that substrate-level control of cellular galactosylation would similarly affect both cell surface and secreted monoclonal antibody glycans, enabling facile indirect prediction of product glycan processing. To support this hypothesis, comparative quantitation of CHO cell surface β1,4-galactosylation by flow cytometry using fluorescent derivatives of RCA and ConA lectins revealed that substrate-controlled variation in monoclonal antibody galactosylation and cell surface galactosylation were significantly correlated. Taken together, these data show that precision control of a complex, dynamic cellular process essential for the definition of protein product molecular heterogeneity and bioactivity is

  12. Monoclonal antibodies:Principles and applications of immmunodiagnosis and immunotherapy for hepatitis C virus

    Institute of Scientific and Technical Information of China (English)

    Ashraf; Tabll; Aymn; T; Abbas; Sherif; El-Kafrawy; Ahmed; Wahid

    2015-01-01

    Hepatitis C virus(HCV) is a major health problem worldwide. Early detection of the infection will help better management of the infected cases. The monoclonal antibodies(m Ab) of mice are predominantly used for the immunodiagnosis of several viral,bacterial,and parasitic antigens. Serological detection of HCV antigens and antibodies provide simple and rapid methods of detection but lack sensitivity specially in the window phase between the infection and antibody development. Human mA b are used in the immunotherapy of several blood malignancies,such as lymphoma and leukemia,as well as for autoimmune diseases. In this review article,we will discuss methods of mouse and human monoclonal antibody production. We will demonstrate the role of mouse mA b in the detection of HCV antigens as rapid and sensitive immunodiagnostic assays for the detection of HCV,which is a major health problem throughout the world,particularly in Egypt. We will discuss the value of HCV-neutralizing antibodies and their roles in the immunotherapy of HCV infections and in HCV vaccine development. We will also discuss the different mechanisms by which the virus escape the effect of neutralizing mA b. Finally,we will discuss available and new trends to produce antibodies,such as egg yolk-based antibodies(Ig Y),production in transgenic plants,and the synthetic antibody mimics approach.

  13. Discovery and characterization of antibody variants using mass spectrometry-based comparative analysis for biosimilar candidates of monoclonal antibody drugs.

    Science.gov (United States)

    Li, Wenhua; Yang, Bin; Zhou, Dongmei; Xu, Jun; Ke, Zhi; Suen, Wen-Chen

    2016-07-01

    Liquid chromatography mass spectrometry (LC-MS) is the most commonly used technique for the characterization of antibody variants. MAb-X and mAb-Y are two approved IgG1 subtype monoclonal antibody drugs recombinantly produced in Chinese hamster ovary (CHO) cells. We report here that two unexpected and rare antibody variants have been discovered during cell culture process development of biosimilars for these two approved drugs through intact mass analysis. We then used comprehensive mass spectrometry-based comparative analysis including reduced light, heavy chains, and domain-specific mass as well as peptide mapping analysis to fully characterize the observed antibody variants. The "middle-up" mass comparative analysis demonstrated that the antibody variant from mAb-X biosimilar candidate was caused by mass variation of antibody crystalline fragment (Fc), whereas a different variant with mass variation in antibody antigen-binding fragment (Fab) from mAb-Y biosimilar candidate was identified. Endoproteinase Lys-C digested peptide mapping and tandem mass spectrometry analysis further revealed that a leucine to glutamine change in N-terminal 402 site of heavy chain was responsible for the generation of mAb-X antibody variant. Lys-C and trypsin coupled non-reduced and reduced peptide mapping comparative analysis showed that the formation of the light-heavy interchain trisulfide bond resulted in the mAb-Y antibody variant. These two cases confirmed that mass spectrometry-based comparative analysis plays a critical role for the characterization of monoclonal antibody variants, and biosimilar developers should start with a comprehensive structural assessment and comparative analysis to decrease the risk of the process development for biosimilars.

  14. Development and Characterization of Clinical-Grade Zr-89-Trastuzumab for HER2/neu ImmunoPET Imaging

    NARCIS (Netherlands)

    Dijkers, Eli C. F.; Kosterink, Jos G. W.; Rademaker, Anna P.; Perk, Lars R.; van Dongen, Guus A. M. S.; Bart, Joost; de Jong, Johan R.; de Vries, Elisabeth G. E.; Lub-de Hooge, Marjolijn N.

    2009-01-01

    The anti-human epidermal growth factor receptor 2 (HER2/neu) antibody trastuzumab is administered to patients with HER2/neu-overexpressing breast cancer. Whole-body noninvasive HER2/neu scintigraphy could help to assess and quantify the HER2/neu expression of all lesions, including nonaccessible met

  15. A human monoclonal antibody to high-frequency red cell antigen Jra.

    Science.gov (United States)

    Miyazaki, T; Kwon, K W; Yamamoto, K; Tone, Y; Ihara, H; Kato, T; Ikeda, H; Sekiguchi, S

    1994-01-01

    A human-mouse heterohybridoma (HMR0921) secreting human monoclonal IgG3, lambda antibody was produced from peripheral blood lymphocytes of a healthy blood donor with serum antibody to Jra, by EBV transformation and hybridization with mouse myeloma cell line P3X63Ag8.653. The reactivity of HMR0921 antibody was assessed by antiglobulin test with a panel of red cells including 14 different rare blood types. Only Jr(a-) red cells were negative. The strict specificity of this antibody to Jra antigen was further confirmed by absorption test with fluorescence flow cytometry. On screening of 28,744 blood donor samples by HMR0921 antibody, we detected 19 agglutination-negative samples, which were confirmed as Jr(a-) by conventional anti-Jra antisera. Therefore, our HMR0921 antibody is extremely useful for detecting rare Jr(a-) blood.

  16. Use of a Monoclonal Antibody to Purify the Tetrodotoxin Binding Component from the Electroplax of Electrophorus electricus

    OpenAIRE

    Nakayama, H; Withy, R M; Raftery, M A

    1982-01-01

    The tetrodotoxin binding component of the voltage-sensitive sodium channel from Electrophorus electricus electroplax was purified by using a monoclonal antibody. An impure preparation of tetrodotoxin binding component was mixed with the pure monoclonal antibody, and the immune complex so formed was isolated by affinity chromatography on a protein A-Sepharose column. Excess antibody was removed by ion-exchange chromatography. The purified material has a specific activity of over 1,800 pmol of ...

  17. Mycobacterium leprae antigens involved in human immune responses. I. Identification of four antigens by monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Britton, W.J.; Hellqvist, L.; Basten, A.; Raison, R.L.

    1985-12-01

    Four distinct antigens were identified in soluble sonicates of Mycobacterium leprae by using a panel of 11 monoclonal antibodies. Cross-reactivity studies with other mycobacterial species were conducted by using ELISA and immunoblot assays, and demonstrated that determinants on two of the antigens were present in many mycobacteria, whereas the other two were limited in distribution. Competitive inhibition experiments with radiolabeled monoclonal antibodies showed cross-inhibition between antibodies identifying two of the four antigenicbands. These two bands, of M/sub tau/ 4.5 to 6 KD and 30 to 40 KD, were resistant to protease treatment after immunoblotting. In contrast the two other bands of 16 and 70 KD were protease-sensitive. Although all four bands reacted with some human lepromatous leprosy sera in immunoblots, the 4.5 to 6 KD and 30 to 40 KD bands were most prominent. Lepromatous leprosy sera also inhibited the binding of radiolabeled monoclonal antibodies to each of the four antigens, with the mean titer causing 50% inhibition being higher for antibodies reacting with the 4.5 to 6 KD and 30 to 40 KD bands. These findings indicated that all four antigens were involved in the human B cell response to M. leprae.

  18. Characterization of a monoclonal antibody that specifically inhibits triosephosphate isomerase activity of Taenia solium.

    Science.gov (United States)

    Víctor, Sanabria-Ayala; Yolanda, Medina-Flores; Araceli, Zavala-Carballo; Lucía, Jiménez; Abraham, Landa

    2013-08-01

    In the present study, we obtained and characterized partially a monoclonal antibody (4H11D10B11 mAb) against triosephosphate isomerase from Taenia solium (TTPI). This antibody recognized the enzyme by both ELISA and western blot and was able to inhibit its enzymatic activity in 74%. Moreover, the antigen-binding fragments (Fabs), products of digestion of the monoclonal antibody with papain, retained almost the same inhibitory effect. We determined the binding site by ELISA; synthetic peptides containing sequences from different non-conserved regions of the TTPI were confronted to the 4H11D10B11 mAb. The epitope recognized by the monoclonal antibody was located on peptide TTPI-56 (ATPAQAQEVHKVVRDWIRKHVDAGIADKARI), and an analysis of mimotopes, obtained with the 4H11D10B11 mAb, suggests that the epitope spans the sequence WIRKHVDAGIAD, residues 193-204 of the enzyme. This epitope is located within helix 6, next to loop 6, an essential active loop during catalysis. The antibody did not recognize triosephosphate isomerase from man and pig, definitive and intermediary hosts of T. solium, respectively. Furthermore, it did not bind to the catalytic site, since kinetic analysis demonstrated that inhibition had a non-competitive profile.

  19. Development of rabbit monoclonal antibodies for detection of alpha-dystroglycan in normal and dystrophic tissue.

    Directory of Open Access Journals (Sweden)

    Marisa J Fortunato

    Full Text Available Alpha-dystroglycan requires a rare O-mannose glycan modification to form its binding epitope for extracellular matrix proteins such as laminin. This functional glycan is disrupted in a cohort of muscular dystrophies, the secondary dystroglycanopathies, and is abnormal in some metastatic cancers. The most commonly used reagent for detection of alpha-dystroglycan is mouse monoclonal antibody IIH6, but it requires the functional O-mannose structure for recognition. Therefore, the ability to detect alpha-dystroglycan protein in disease states where it lacks the full O-mannose glycan has been limited. To overcome this hurdle, rabbit monoclonal antibodies against the alpha-dystroglycan C-terminus were generated. The new antibodies, named 5-2, 29-5, and 45-3, detect alpha-dystroglycan from mouse, rat and pig skeletal muscle by Western blot and immunofluorescence. In a mouse model of fukutin-deficient dystroglycanopathy, all antibodies detected low molecular weight alpha-dystroglycan in disease samples demonstrating a loss of functional glycosylation. Alternately, in a porcine model of Becker muscular dystrophy, relative abundance of alpha-dystroglycan was decreased, consistent with a reduction in expression of the dystrophin-glycoprotein complex in affected muscle. Therefore, these new rabbit monoclonal antibodies are suitable reagents for alpha-dystroglycan core protein detection and will enhance dystroglycan-related studies.

  20. Discrimination between Fibrin and Fibrinogen by a Monoclonal Antibody against a Synthetic Peptide

    Science.gov (United States)

    Scheefers-Borchel, Ursula; Muller-Berghaus, Gert; Fuhge, Peter; Eberle, Reinhard; Heimburger, Nobert

    1985-10-01

    Circulating soluble fibrin, observed in the blood of patients with ongoing intravascular coagulation, is generated from the plasma protein fibrinogen by the limited proteolytic action of thrombin. We report the production of a monoclonal antibody that discriminates between fibrin and fibrinogen in blood. The synthetic hexapeptide Gly-Pro-Arg-Val-Val-Glu, representing the amino terminus of the α chain of human fibrin, was used as immunogen. This hexapeptide is located within the Aα chain of fibrinogen but becomes the amino terminus of the fibrin α chain, after fibrinopeptide A is removed by the action of thrombin, and thus becomes accessible for antibody binding. The monoclonal antibody we have prepared can discriminate between fibrin and fibrinogen and thus can be used in assay systems to quantitate soluble fibrin or, potentially, to image fibrin-rich thrombi.

  1. GENERATION OF MONOCLONAL ANTIBODY AGAINST HUMAN ANDROGEN RECEPTOR WITH SYNTHETIC PEPTIDE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: Preparation of anti-human androgen receptor(hAR) monoclonal antibody (McAb). Methods: Four cells lines of hybridoma secreting specific monoclonal antibodies against AR were first established by fusion SP2/0 cell with spleen cell from BALB/c mice immunized with the coupling complex of hAR-KLH. Results: Paraffin-embedded sections of 45 prostate cancers were detected. There was an overall concordance of 91% using Immunohistochemistry between AR polyclonal antibody from Zymed and hAR-N McAb selfmade. Conclusion: The results show that the McAb obtained in this study would be a useful tool to detect the AR status in prostate cancer.

  2. Development of a monoclonal antibody against viral haemorrhagic septicaemia virus (VHSV) genotype IVa

    DEFF Research Database (Denmark)

    Ito, T.; Olesen, Niels Jørgen; Skall, Helle Frank

    2010-01-01

    of the spread of genotypes to new geographical areas. A monoclonal antibody (MAb) against VHSV genotype IVa was produced, with the aim of providing a simple method of discriminating this genotype from the other VHSV genotypes (I, II, III and IVb). Balb/c mice were injected with purified VHSV-JF00Ehil (genotype...... IVa) from diseased farmed Japanese flounder. Ten hybridoma clones secreting monoclonal antibodies (MAbs) against VHSV were established. One of these, MAb VHS-10, reacted only with genotype IVa in indirect fluorescent antibody technique (IFAT) and ELISA. Using cell cultures that were transfected...... with each of the viral protein genes, it was shown that the MAb VHS-10 recognizes a nonlinear genotype IVa-specific epitope on the VHSV N-protein....

  3. Studies towards the improvement of an anti-cocaine monoclonal antibody for treatment of acute overdose.

    Science.gov (United States)

    Zhou, Bin; Eubanks, Lisa M; Jacob, Nicholas T; Ellis, Beverly; Roberts, Amanda J; Janda, Kim D

    2016-10-15

    There is currently no clinically-approved antidote for cocaine overdose. Efforts to develop a therapy via passive immunization have resulted in a human monoclonal antibody, GNCgzk, with a high affinity for cocaine (Kd=0.18nM). Efforts to improve the production of antibody manifolds based on this antibody are disclosed. The engineering of an HRV 3C protease cleavage site into the GNCgzk IgG has allowed for increased production of a F(ab')2 with a 20% superior capacity to reduce mortality for cocaine overdose in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Preparation and properties of monoclonal antibodies to individual prekeratins of simple rat epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Troyanovskii, S.M.; Krutovskikh, V.A.; Bannikov, G.A.

    1986-11-01

    The authors study the properties of a series of hybridoma clones producing antibodies to individual prekeratins (PK) from simple types of epithelium. BALB/c mice were immunized with a preparation of intermediate filaments isolated from the mucosa of the rat large intestine. The specificity of the five clones studied was studied by monoautoradiography. For a more detailed study of the specificity of the experimentally obtained antibodies, the authors used the same immunoautoradiographic method to study their reaction with proteins of cells of other types. The authors have obtained monoclonal antibodies to three individual PK of simple types of rat epithelium: PK40, PK49, and PK55.

  5. Monoclonal antibodies directed against protoplasts of soybean cells : Generation of hybridomas and characterization of a monoclonal antibody reactive with the cell surface.

    Science.gov (United States)

    Villanueva, M A; Metcalf, T N; Wang, J L

    1986-09-01

    Splenocytes, derived from mice that had been immunized with protoplasts prepared from suspension cultures of root cells of Glycine max (L.) Merr. (SB-1 cell line), were fused with a murine myeloma cell line. The resulting hybridoma cultures were screened for the production of antibodies directed against the soybean protoplasts and were then cloned. One monoclonal antibody, designated MVS-1, was found to bind to the outer surface of the plasma membrane on the basis of several criteria: (a) agglutination of the protoplasts; (b) binding of fluorescence-labeled immunoglobulin on protoplasts yielding a ring staining pattern with prominent intensity at the edges; and (c) saturable binding by protoplasts of (125)I-labeled Antibody MVS-1. The antigenic target of Antibody MVS-1, identified by immunoblotting techniques, contained a polypeptide of relative molecular mass (Mr) approx. 400000 under both reducing and non-reducing conditions. When the antigenic target of Antibody MVS-1 was chromatographed in potassium phosphate buffer, the position of elution corresponded to that of a high-molecular-weight species (Mr 400000). These results provide the protein characterization required for the analysis of the mobility of Antibody MVS-1 bound to the plasma membrane of SB-1 cells.

  6. In vitro and in vivo studies of the combination of IGF1R inhibitor figitumumab (CP-751,871) with HER2 inhibitors trastuzumab and neratinib.

    Science.gov (United States)

    Chakraborty, Ashok K; Zerillo, Cynthia; DiGiovanna, Michael P

    2015-08-01

    The insulin-like growth factor I receptor (IGF1R) has been linked to resistance to HER2-directed therapy with trastuzumab (Herceptin). We examined the anti-tumor activity of figitumumab (CP-751,871), a human monoclonal antibody that blocks IGF1R ligand binding, alone and in combination with the therapeutic anti-HER2 antibody trastuzumab and the pan-HER family tyrosine kinase inhibitor neratinib, using in vitro and in vivo breast cancer model systems. In vitro assays of proliferation, apoptosis, and signaling, and in vivo anti-tumor experiments were conducted in HER2-overexpressing (BT474) and HER2-normal (MCF7) models. We find single-agent activity of the HER2-targeting drugs but not figitumumab in the BT474 model, while the reverse is true in the MCF7 model. However, in both models, combining figitumumab with HER2-targeting drugs shows synergistic anti-proliferative and apoptosis-inducing effects, and optimum inhibition of downstream signaling. In murine xenograft models, synergistic anti-tumor effects were observed in the HER2-normal MCF7 model for the combination of figitumumab with trastuzumab, and, in the HER2-overexpressing BT474 model, enhanced anti-tumor effects were observed for the combination of figitumumab with either trastuzumab or neratinib. Analysis of tumor extracts from the in vivo experiments showed evidence of the most optimal inhibition of downstream signaling for the drug combinations over the single-agent therapies. These results suggest promise for such combinations in treating patients with breast cancer, and that, unlike the case for single-agent therapy, the therapeutic effects of such combinations may be independent of expression levels of the individual receptors or the single-agent activity profile.

  7. Detection of experimental myocarditis by monoclonal antimyosin antibody, Fab fragment

    Energy Technology Data Exchange (ETDEWEB)

    Rezkalla, S.; Kloner, R.A.; Khaw, B.A.; Haber, E.; Fallon, J.T.; Smith, F.E.; Khatib, R.

    1989-02-01

    The purpose of this study was to determine whether monoclonal antimyosin Fab (antigen binding fragment) was capable of labeling hearts with experimental coxsackievirus myocarditis, and to determine whether Fab could be used for detecting myocardial damage in either early or chronic phases of the disease. Sixty-five, 3-week-old cesarean-derived 1 (CD 1) mice were divided into two groups: group I (noninfected animals) and group II (infected with coxsackievirus B3). Mice from each group were killed on days 7, 17, 30, or 90 of infection. Forty-eight hours before killing, mice were injected with monoclonal I-125 antimyosin, Fab (25 microCi/injection) and radioactivity was counted in the heart. Selected heart sections were also examined by autoradiography. Heart radioactivity, count/m/mg (m +/- SEM) on days 7, 17, 30, and 90 of infection was 10.8 +/- 1.7, 21.3 +/- 1.1, 11.2 +/- 3.4, and 12.4 +/- 1.5 for group I, versus 36.7 +/- 8.0 (p less than 0.01), 50.0 +/- 4.5 (p less than 0.001), 33.4 +/- 16.1 (p = NS), and 40.6 +/- 8.5 (p less than 0.01) for group II, respectively. Autoradiography revealed focal uptake within areas of necrotic myocardium. We conclude that I125 Fab may be useful in detecting myocardial damage in the experimental model of murine myocarditis up to day 90 of infection.

  8. Barriers to the Use of Trastuzumab for HER2+ Breast Cancer and the Potential Impact of Biosimilars: A Physician Survey in the United States and Emerging Markets

    Directory of Open Access Journals (Sweden)

    Philip Lammers

    2014-09-01

    Full Text Available Trastuzumab in combination with chemotherapy has become a standard of care for patients with HER2+ breast cancer. The cost of therapy, however, can limit patient access to trastuzumab in areas with limited financial resources for treatment reimbursement. This study examined access to trastuzumab and identified potential barriers to its use in the United States, Mexico, Turkey, Russia and Brazil via physician survey. The study also investigated if the availability of a biosimilar to trastuzumab would improve access to and use of HER2 monoclonal antibody therapy. Across all countries, a subset of oncologists reported barriers to the use of trastuzumab in a neoadjuvant, adjuvant or metastatic setting. Common barriers to the use of trastuzumab included issues related to insurance coverage, drug availability and cost to the patient. Overall, nearly half of oncologists reported that they would increase the use of HER2 monoclonal antibody therapy across all treatment settings if a lower cost biosimilar to trastuzumab were available. We conclude that the introduction of a biosimilar to trastuzumab may alleviate cost-related barriers to treatment and could increase patient access to HER2-directed therapy in all countries examined.

  9. Barriers to the Use of Trastuzumab for HER2+ Breast Cancer and the Potential Impact of Biosimilars: A Physician Survey in the United States and Emerging Markets.

    Science.gov (United States)

    Lammers, Philip; Criscitiello, Carmen; Curigliano, Giuseppe; Jacobs, Ira

    2014-09-17

    Trastuzumab in combination with chemotherapy has become a standard of care for patients with HER2+ breast cancer. The cost of therapy, however, can limit patient access to trastuzumab in areas with limited financial resources for treatment reimbursement. This study examined access to trastuzumab and identified potential barriers to its use in the United States, Mexico, Turkey, Russia and Brazil via physician survey. The study also investigated if the availability of a biosimilar to trastuzumab would improve access to and use of HER2 monoclonal antibody therapy. Across all countries, a subset of oncologists reported barriers to the use of trastuzumab in a neoadjuvant, adjuvant or metastatic setting. Common barriers to the use of trastuzumab included issues related to insurance coverage, drug availability and cost to the patient. Overall, nearly half of oncologists reported that they would increase the use of HER2 monoclonal antibody therapy across all treatment settings if a lower cost biosimilar to trastuzumab were available. We conclude that the introduction of a biosimilar to trastuzumab may alleviate cost-related barriers to treatment and could increase patient access to HER2-directed therapy in all countries examined.

  10. Monoclonal antibodies: A review of therapeutic applications and ...

    African Journals Online (AJOL)

    Only a small amounts of mAb (0.1 g) is required for .... immortalised cell lines and human hybridomas. It ... antibody fragments or single cell variable fragment .... leukemia are. Gemtuzumab® and. Alemtuzumab®; while Nimotuzumab® and.

  11. Refining EGFR-monoclonal antibody treatment in colorectal cancer

    NARCIS (Netherlands)

    Krens, Lisanne Laura

    2015-01-01

    The use of the epidermal growth factor receptor (EGFR) antibodies cetuximab and panitumumab is limited to colorectal cancer (CRC) patients with KRAS wild type tumors and more recently in RAS wild type only. After having become chemotherapy refractory, treatment options are limited for this substanti

  12. Heterogenous high-level HER-2 amplification in a small subset of colorectal cancers.

    Science.gov (United States)

    Marx, Andreas H; Burandt, Eike C; Choschzick, Matthias; Simon, Ronald; Yekebas, Emre; Kaifi, Jussuf T; Mirlacher, Martina; Atanackovic, Djordje; Bokemeyer, Carsten; Fiedler, Walter; Terracciano, Luigi; Sauter, Guido; Izbicki, Jakob R

    2010-11-01

    HER-2 is the molecular target for antibody-based treatment of breast cancer (trastuzumab). The potential benefit of anti-HER-2 therapy is currently investigated in several other HER-2 amplified cancers. For example, trastuzumab was recently shown to be effective in HER-2 positive gastric cancer. To address the potential applicability of anti-HER-2 therapy in colorectal cancer, tissue microarray sections and colorectal resection specimens of 1851 colorectal cancers were analyzed for HER-2 overexpression and amplification using FDA approved reagents for immunohistochemistry and fluorescence in situ hybridization. HER-2 amplification was seen in 2.5% and HER-2 overexpression in 2.7% of 1439 interpretable colorectal cancers. Amplification was often high level with HER-2 copies ranging from 4 to 60 per tumor cell and was strongly related to protein overexpression. HER-2 amplification and overexpression were unrelated to histological tumor type, tumor localization, grading, pT, pN, pM or survival. As heterogeneity of drug target expression could represent a major drawback for targeted cancer therapy we next studied HER-2 heterogeneity in selected cases. Extensive evaluation of all available large sections from patients with HER-2 positive colorectal cancer revealed heterogenous findings in 3 of 4 cases. In summary, high-level HER-2 amplification occurs in a small fraction of colorectal cancers. Heterogeneity of amplification may limit the utility of anti- HER-2 therapy in some of these tumors and therefore, adequate clinical trials are needed to further evaluate this approach.

  13. Monoclonal antibody proteomics: use of antibody mimotope displaying phages and the relevant synthetic peptides for mAb scouting.

    Science.gov (United States)

    Hajdú, István; Flachner, Beáta; Bognár, Melinda; Végh, Barbara M; Dobi, Krisztina; Lőrincz, Zsolt; Lázár, József; Cseh, Sándor; Takács, László; Kurucz, István

    2014-08-01

    Monoclonal antibody proteomics uses nascent libraries or cloned (Plasmascan™, QuantiPlasma™) libraries of mAbs that react with individual epitopes of proteins in the human plasma. At the initial phase of library creation, cognate protein antigen and the epitope interacting with the antibodies are not known. Scouting for monoclonal antibodies (mAbs) with the best binding characteristics is of high importance for mAb based biomarker assay development. However, in the absence of the identity of the cognate antigen the task represents a challenge. We combined phage display, and surface plasmon resonance (Biacore) experiments to test whether specific phages and the respective mimotope peptides obtained from large scale studies are applicable to determine key features of antibodies for scouting. We show here that mAb captured phage-mimotope heterogeneity that is the diversity of the selected peptide sequences, is inversely correlated with an important binding descriptor; the off-rate of the antibodies and that represents clues for driving the selection of useful mAbs for biomarker assay development. Carefully chosen synthetic mimotope peptides are suitable for specificity testing in competitive assays using the target proteome, in our case the human plasma.

  14. Development and monitoring of a novel monoclonal antibody purification strategy

    OpenAIRE

    Capito, Florian

    2014-01-01

    The studies presented in the cumulative part of this thesis illustrate the different steps to develop a polymer-driven antibody purification process. These peer-reviewed reports show in detail fundamental research, additional method development useful in the development of such a purification process as well as implementation of the final process. A strategy for analyzing copolymers, synthesized by a lab in house, was implemented with particular emphasis on copolymer composition analysis. Thi...

  15. Production of neutralizing monoclonal antibody against human vascular endothelial growth factor receptor Ⅱ

    Institute of Scientific and Technical Information of China (English)

    Rong LI; Dong-sheng XIONG; Xiao-feng SHAO; Jia LIU; Yuan-fu XU; Yuan-sheng XU; Han-zhi LIU; Zhen-ping ZHU; Chun-zheng YANG

    2004-01-01

    AIM: To prepare neutralizing monoclonal antibody (mAb) against extracellular immunoglobulin (Ig)-like domainⅢ of vascular endothelial growth factor receptor KDR and study its biological activity. METHODS: Soluble KDR Ig domain Ⅲ (KDR-Ⅲ) fusion protein was expressed in E Coli and purified from the bacterial periplasmic extracts via an affinity chromatography. Monoclonal antibodies against KDR-Ⅲ were prepared by hybridoma technique. ELISA and FACS analysis were used to identify its specificity. Immunoprecipitation and [3H]-thymidine incorporation assay were also used to detect the activity of anti-KDR mAb blocking the phosphorylation of KDR tyrosine kinase receptor and the influence on vascular endothelial growth factor-induced mitogenesis of human endothelial ceils.RESULTS: A monoclonal antibody, Ycom1D3 (IgG1), was generated from a mouse immunized with the recombinant KDR-Ⅲ protein. Ycom1D3 bound specifically to both the soluble KDR-Ⅲ and the cell-surface expressed KDR. Ycom1D3 effectively blocked VEGF/KDR interaction and inhibited VEGF-stimulated KDR activation in human endothelial cells. Furthermore, the antibody efficiently neutralized VEGF-induced mitogenesis of human endothelial cells. CONCLUSION: Our results suggest that the anti-KDR mAb, Ycom1D3, has potential applications in the treatment of cancer and other diseases where pathological angiogenesis is involved.

  16. Immunohistochemical identification of mast cells in formaldehyde-fixed tissue using monoclonal antibodies specific for tryptase.

    Science.gov (United States)

    Walls, A F; Jones, D B; Williams, J H; Church, M K; Holgate, S T

    1990-10-01

    An avidin-biotin enhanced immunoperoxidase procedure using monoclonal antibodies (AA1, AA3, and AA5) prepared against human mast cell tryptase resulted in intense staining of mast cells in paraffin-embedded tissue. The distribution of mast cells observed was similar to that seen when adjacent serial sections were stained using a standard procedure with toluidine blue, though the immunoperoxidase technique permitted the identification of significantly more mast cells. With monoclonal antibody AA1, immunostaining was entirely specific for mast cell granules, and there was negligible background staining in a range of tissues including lung, tonsil, colon, gastric mucosa, skin, and pituitary. There was no staining of antibody on basophils or on any other normal blood leukocyte. The technique was effective with tissue fixed in either Carnoy's or neutral buffered formalin, though the internal mast cell structure was better preserved with formaldehyde fixation. The immunoperoxidase staining procedure with monoclonal antibody AA1 is a highly specific and sensitive means for the detection of mast cells in routinely processed tissues.

  17. Capillary ion-exchange chromatography with nanogram sensitivity for the analysis of monoclonal antibodies.

    Science.gov (United States)

    Rea, Jennifer C; Freistadt, Benny S; McDonald, Daniel; Farnan, Dell; Wang, Yajun Jennifer

    2015-12-11

    Ion-exchange chromatography (IEC) is widely used for profiling the charge heterogeneity of proteins, including monoclonal antibodies (mAbs). Despite good resolving power and robustness, ionic strength-based ion-exchange separations are generally product specific and can be time consuming to develop. In addition, conventional analytical scale ion-exchange separations require tens of micrograms of mAbs for each injection, amounts that are often unavailable in sample-limited applications. We report the development of a capillary IEC (c-IEC) methodology for the analysis of nanogram amounts of mAb charge variants. Several key modifications were made to a commercially available liquid chromatography system to perform c-IEC for charge variant analysis of mAbs with nanogram sensitivity. We demonstrate the method for multiple monoclonal antibodies, including antibody fragments, on different columns from different manufacturers. Relative standard deviations of <10% were achieved for relative peak areas of main peak, acidic and basic regions, which are common regions of interest for quantifying monoclonal antibody charge variants using IEC. The results herein demonstrate the excellent sensitivity of this c-IEC characterization method, which can be used for analyzing charge variants in sample-limited applications, such as early-stage candidate screening and in vivo studies.

  18. Evaluation of a monoclonal antibody able to detect live Listeria monocytogenes and Listeria innocua

    DEFF Research Database (Denmark)

    Sølve, Marianne; Boel, Jeppe; Nørrung, Birgit

    2000-01-01

    A monoclonal Listeria antibody, designated B4, was evaluated. The ability of the antibody to bind to viable bacteria belonging to Listeria spp, compared to bacteria of the same species killed by beat treatment, acid or base treatment, sanitizers, and irradiation was examined. The antibody was found...... to react with viable L. monocytogenes and L. innocua, but not with heat-killed (72 degrees C, 5 min) strains of these organisms. When L. monocytogenes and L. innocua were killed by methods other than heat treatment, it was ambiguous whether the antibody detected the organism or not. It was concluded...... that the B4 antibody has potential to be used in an immune capture step to capture live L, monocytogenes and L. innocua from foods prior to identification of L. monocytogenes by polymerase chain reaction (PCR)....

  19. Recent progress of diagnostic and therapeutic approach to cancers using polyclonal or monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Koji, T. (Nagasaki Univ. (Japan). School of Medicine)

    1982-09-01

    Among the major topics of interest in cancer immunology, immunodiagnosis and immunotherapy with the antibodies are summarized historically and prospectively. The concept of injecting anti-tumor cell antibodies to localize tumors was first introduced in experimental systems by Pressman (1957). Since then, various trials have been achieved with human tumors using specific or nonspecific tumor-localizing antibodies diagnostically or therapeutically. In 1970's, successes in immunodiagnosis with the antibodies to oncofetal proteins also have been reported. Recently, there are numerous papers dealing with a series of external scanning or serotherapeutic trials by the use of monoclonal antibodies that bind selectively to tumor cells. Various relevant problems with them are discussed.

  20. Comprehensive Mapping Antigenic Epitopes of NS1 Protein of Japanese Encephalitis Virus with Monoclonal Antibodies.

    Directory of Open Access Journals (Sweden)

    Rong-Hong Hua

    Full Text Available Japanese encephalitis virus (JEV non-structural protein 1 (NS1 contributes to virus replication and elicits protective immune responses during infection. JEV NS1-specific antibody responses could be a target in the differential diagnosis of different flavivirus infections. However, the epitopes on JEV NS1 are poorly characterized. The present study describes the full mapping of linear B-cell epitopes in JEV NS1. We generated eleven NS1-specific monoclonal antibodies from mice immunized with recombinant NS1. For epitope mapping of monoclonal antibodies, a set of 51 partially-overlapping peptides covering the entire NS1 protein were expressed with a GST-tag and then screened using monoclonal antibodies. Through enzyme-linked immunosorbent assay (ELISA, five linear epitope-containing peptides were identified. By sequentially removing amino acid residues from the carboxy and amino terminal of peptides, the minimal units of the five linear epitopes were identified and confirmed using monoclonal antibodies. Five linear epitopes are located in amino acids residues (5AIDITRK(11, (72RDELNVL(78, (251KSKHNRREGY(260, (269DENGIVLD(276, and (341DETTLVRS(348. Furthermore, it was found that the epitopes are highly conserved among JEV strains through sequence alignment. Notably, none of the homologous regions on NS1 proteins from other flaviviruses reacted with the MAbs when they were tested for cross-reactivity, and all five epitope peptides were not recognized by sera against West Nile virus or Dengue virus. These novel virus-specific linear B-cell epitopes of JEV NS1 would benefit the development of new vaccines and diagnostic assays.

  1. Guinea pig line 10 hepatocarcinoma model: characterization of monoclonal antibody and in vivo effect of unconjugated antibody and antibody conjugated to diphtheria toxin A chain.

    Science.gov (United States)

    Bernhard, M I; Foon, K A; Oeltmann, T N; Key, M E; Hwang, K M; Clarke, G C; Christensen, W L; Hoyer, L C; Hanna, M G; Oldham, R K

    1983-09-01

    Monoclonal antibodies were raised against the guinea pig line 10 (L10) hepatocarcinoma, and an IgG1-producing hybridoma (D3) was selected for further study. D3 is a true monoclonal antibody as demonstrated by two-dimensional gel electrophoresis. Radioimmunoassays on live cells revealed no cross-reactivity with normal tissues or with the line 1 hepatocarcinoma which was used as a control. Membrane immunofluorescence assays demonstrated similar specificity. Immunoperoxidase staining of cryostat sections of tumor and normal tissues of both adult animals and fetuses showed that the D3 monoclonal antibody reacted primarily with the L10 tumor, but some cross-reactivity with smooth muscle, placenta, fetal skeletal muscle, and fetal liver was also demonstrated. Radioimmunoprecipitation of detergent extracts of iodinated L10 cells showed that the antigen is present on the cell surface as a dimer of Mr 290,000 (unit size, Mr 148,000). Therapy studies with unconjugated D3 antibody demonstrated a minor dose-dependent effect on tumor growth. D3 antibody conjugated to the A chain of diphtheria toxin (10(-7) M) was cytotoxic to 100% of L10 cells in vitro. Animals treated with a single 1-mg i.v. injection of this immunoconjugate on Day 7 following the intradermal injection of 10(5) tumor cells demonstrated a highly significant inhibition of tumor growth compared to control animals and those treated with unconjugated antibody.

  2. Dengue Virus Envelope Dimer Epitope Monoclonal Antibodies Isolated from Dengue Patients Are Protective against Zika Virus

    Directory of Open Access Journals (Sweden)

    J. A. Swanstrom

    2016-07-01

    Full Text Available Zika virus (ZIKV is a mosquito-borne flavivirus responsible for thousands of cases of severe fetal malformations and neurological disease since its introduction to Brazil in 2013. Antibodies to flaviviruses can be protective, resulting in lifelong immunity to reinfection by homologous virus. However, cross-reactive antibodies can complicate flavivirus diagnostics and promote more severe disease, as noted after serial dengue virus (DENV infections. The endemic circulation of DENV in South America and elsewhere raises concerns that preexisting flavivirus immunity may modulate ZIKV disease and transmission potential. Here, we report on the ability of human monoclonal antibodies and immune sera derived from dengue patients to neutralize contemporary epidemic ZIKV strains. We demonstrate that a class of human monoclonal antibodies isolated from DENV patients neutralizes ZIKV in cell culture and is protective in a lethal murine model. We also tested a large panel of convalescent-phase immune sera from humans exposed to primary and repeat DENV infection. Although ZIKV is most closely related to DENV compared to other human-pathogenic flaviviruses, most DENV immune sera (73% failed to neutralize ZIKV, while others had low (50% effective concentration [EC50], 1:100 serum dilution; 9% levels of cross-neutralizing antibodies. Our results establish that ZIKV and DENV share epitopes that are targeted by neutralizing, protective human antibodies. The availability of potently neutralizing human monoclonal antibodies provides an immunotherapeutic approach to control life-threatening ZIKV infection and also points to the possibility of repurposing DENV vaccines to induce cross-protective immunity to ZIKV.

  3. HER-2/neu oncogene amplification and chromosome 17 aneusomy in endometrial carcinoma: correlation with oncoprotein expression and conventional pathological parameters.

    Science.gov (United States)

    Cianciulli, A M; Guadagni, F; Marzano, R; Benevolo, M; Merola, R; Giannarelli, D; Marandino, F; Vocaturo, G; Mariani, L; Mottolese, M

    2003-06-01

    The objective of the present study was to evaluate the correlation between HER-2 gene amplification and HER-2 protein overexpression in endometrial carcinoma using fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC). We also analyzed chromosome 17 aneusomy and the association between these biological parameters and conventional clinicopathological variables. FISH analysis was performed on 73 selected paraffin-embedded sections from endometrial carcinomas which previously had HER-2 status determined immunohistochemically using monoclonal antibodies (MoAb) 300G9 and CB11. Using a ratio of more than two oncogene signals/centromere to indicate amplification, a total of 42 out of the 73 endometrial tumors included in this study resulted positive by FISH where as protein overexpression was identified in 29 out of 73 with a concordance rate of 74.3%. However, when the mean signals/centromere per nucleus increased (ratio > 4 2 4 < or = 5 when we grouped the amplified cases on the basis of HER-2:CEP17 ratio. In conclusion, molecular characteristics provide objective data that may be useful in predicting prognosis in patients with endometrial cancer.

  4. Docetaxel immunonanocarriers as targeted delivery systems for HER 2-positive tumor cells: preparation, characterization, and cytotoxicity studies

    Science.gov (United States)

    Koopaei, Mona Noori; Dinarvand, Rassoul; Amini, Mohsen; Rabbani, Hojatollah; Emami, Shaghayegh; Ostad, Seyed Nasser; Atyabi, Fatemeh

    2011-01-01

    Background The objective of this study was to develop pegylated poly lactide-co-glycolide acid (PLGA) immunonanocarriers for targeting delivery of docetaxel to human breast cancer cells. Methods The polyethylene glycol (PEG) groups on the surface of the PLGA nanoparticles were functionalized using maleimide groups. Trastuzumab, a monoclonal antibody against human epidermal growth factor receptor 2 (HER2) antigens of cancer cells, used as the targeting moiety, was attached to the maleimide groups on the surface of pegylated PLGA nanoparticles. Nanoparticles prepared by a nanoprecipitation method were characterized for their size, size distribution, surface charge, surface morphology, drug-loading, and in vitro drug release profile. Results The average size of the trastuzumab-decorated nanoparticles was 254 ± 16.4 nm and their zeta potential was −11.5 ± 1.4 mV. The average size of the nontargeted PLGA nanoparticles was 183 ± 22 nm and their zeta potential was −2.6 ± 0.34 mV. The cellular uptake of nanoparticles was studied using both HER2-positive (SKBR3 and BT-474) and HER2-negative (Calu-6) cell lines. Conclusion The cytotoxicity of the immunonanocarriers against HER2-positive cell lines was significantly higher than that of nontargeted PLGA nanoparticles and free docetaxel. PMID:21931485

  5. Discovery and Characterization of Phage Display-Derived Human Monoclonal Antibodies against RSV F Glycoprotein.

    Directory of Open Access Journals (Sweden)

    Zhifeng Chen

    Full Text Available Respiratory syncytial virus (RSV is a leading cause of lower respiratory tract infection in infants, the elderly and in immunosuppressed populations. The vast majority of neutralizing antibodies isolated from human subjects target the RSV fusion (F glycoprotein, making it an attractive target for the development of vaccines and therapeutic antibodies. Currently, Synagis® (palivizumab is the only FDA approved antibody drug for the prevention of RSV infection, and there is a great need for more effective vaccines and therapeutics. Phage display is a powerful tool in antibody discovery with the advantage that it does not require samples from immunized subjects. In this study, Morphosys HuCAL GOLD® phage libraries were used for panning against RSV prefusion and postfusion F proteins. Panels of human monoclonal antibodies (mAbs against RSV F protein were discovered following phage library panning and characterized. Antibodies binding specifically to prefusion or postfusion F proteins and those binding both conformations were identified. 3B1 is a prototypic postfusion F specific antibody while 2E1 is a prototypic prefusion F specific antibody. 2E1 is a potent broadly neutralizing antibody against both RSV A and B strains. Epitope mapping experiments identified a conformational epitope spanning across three discontinuous sections of the RSV F protein, as well as critical residues for antibody interaction.

  6. Characterization of monoclonal and polyclonal antibodies to bovine enteric coronavirus: Establishment of an efficient ELISA for antigen detection in feces

    OpenAIRE

    Czerny, C. P.; Eichhorn, Werner

    1989-01-01

    Monoclonal antibodies to bovine enteric coronavirus (BEC) were produced. Additionally, polyclonal antibodies were made in rabbits and guinea pigs and extracted from the yolk of immunized hens. The antibodies were characterized by neutralization test, hemagglutination inhibition test, enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Neutralizing antibody titers of polyclonal antisera ranged from 1:1280 to 1:40 000. Only one out of 908 hybridoma colonies tested secreted antibodies ...

  7. Production and Application of Monoclonal Antibodies Against Methamphetamine (MA) and Morphine (MP)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Three monoclonal antibodies (MAbs) against metharnphetamine (BD1, BD2, BD10) and four MAbs against morphine (MP6A8, MP6D9, MP7D6, MP8D9) are obtained by using MA-conjugated bovine serum albumin (BSA) and MP-conjugated BSA as immunogens, respectively. The MAbs against MA belonged to the IgG1 subclass with λ chains. The association constants (Ka) of the antibodies are higher than 107 L/mol (RIA). The MAbs against MP also belonged to the IgG1 subclass with λ chains. Ka of these antibodies is higher thanThree monoclonal antibodies (MAbs) against metharnphetamine (BD1, BD2, BD10) and four MAbs against morphine (MP6A8, MP6D9, MP7D6, MP8D9) are obtained by using MA-conjugated bovine serum albumin (BSA) and MP-conjugated BSA as immunogens, respectively. The MAbs against MA belonged to the IgG1 subclass with λ chains. The association constants (Ka) of the antibodies are higher than 107 L/mol (RIA). The MAbs against MP also belonged to the IgG1 subclass with λ chains. Ka of these antibodies is higher than 108

  8. Monoclonal antibody selection for interleukin-4 quantification using suspension arrays and forward-phase protein microarrays.

    Science.gov (United States)

    Wang, L; Cole, K D; Peterson, A; He, Hua-Jun; Gaigalas, A K; Zong, Y

    2007-12-01

    A recombinant mouse interleukin-4 (IL-4) and three different purified rat antimouse IL-4 monoclonal antibodies (Mab) with different clonalities were employed as a model system. This system was used to examine monoclonal antibody effectiveness using both conventional and high-throughput measurement techniques to select antibodies for attaining the most sensitive detection of the recombinant IL-4 through the "sandwich-type" immunoassays. Surface plasmon resonance (SPR) measurements and two high-throughput methods, suspension arrays (also called multiplexed bead arrays) and forward-phase protein microarrays, predicted the same capture (BVD4-1D11) and detection (BVD6-24G2) antibody pair for the most sensitive detection of the recombinant cytokine. By using this antibody pair, we were able to detect as low as 2 pg/mL of IL-4 in buffer solution and 13.5 pg/mL of IL-4 spiked in 100% normal mouse serum with the multiplexed bead arrays. Due to the large amount of material required for SPR measurements, the study suggests that the multiplexed bead arrays and protein microarrays are both suited for the selection of numerous antibodies against the same analyte of interest to meet the need in the areas of systems biology and reproducible clinical diagnostics for better patient care.

  9. Detection of experimental pulmonary emboli using radiolabeled monoclonal antiplatelet antibody

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Tomiyoshi (Fukushima Medical Coll. (Japan))

    1988-12-01

    This study compared the ability of radiolabeled anti-platelet antibody (7E3) and Tc-99m macroaggregated albumin (MAA) to detect pulmonary emboli induced by thrombin and barium or by thrombogenic copper coils in mongrel dogs. In-111 diethylene triamine pentaacetic acid-7E3-F (ab'){sub 2} was incubated with platelet-rich plasma before i.v. administration to minimize unbound antibody. Serial planar images were obtained over a 4-5 hour, followed by single photon emission computed tomography (SPECT) images. Similarly, planar and SPECT images were obtained after i.v. injection of Tc-99m MAA. The animals were autopsied for the confirmation of embolus localization. A total of 34 emboli were recovered. When the In-111 or Tc-99m activity for the lung distal to an embolus was {le}10% of the normal lung one, an occlusive embolus was regarded as present. Eighteen emboli were considered occlusive and the 16 others non-occlusive. In-111 antibody imaging revealed: 14 emboli (41%)--6 occlusive and 8 non-occlusive emboli--by planar study and 22 emboli (65%)--13 occlusive and 9 non-occlusive-- by SPECT study. In detecting occlusive emboli, SPECT was significantly superior to planar imaging with In-111. Conventional lung perfusion imaging with Tc-99m MAA, whether by planar or SPECT study, revealed 18 emboli (53%), consisting of 11 occlusive and 7 non-occlusive emboli. It is concluded that SPECT with In-111 platelets is equivalent or sometimes superior to lung perfusion imaging with Tc-99m MAA, especially in detecting non-occlusive emboli.

  10. Potential of afatinib in the treatment of patients with HER2-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Geuna E

    2012-08-01

    Full Text Available Elena Geuna,1 Filippo Montemurro,2–4 Massimo Aglietta,1–3,5 Giorgio Valabrega1–3,51Division of Medical Oncology, Institute for Cancer Research and Treatment, Candiolo, Turin, 2Institute for Cancer Research, Candiolo, Turin, 3Foundation of Piedmont Oncology, Candiolo, Turin, 4Unit of Investigative Clinical Oncology, Candiolo, Turin, 5University Medical School of Turin, Turin, ItalyAbstract: In the absence of treatment, overexpression of the human epidermal growth factor receptor 2 (HER2 predicts a poor prognosis in breast cancer. In the last decade, monoclonal antibodies and small molecule tyrosine kinase inhibitors have significantly improved the outcome of HER2-positive breast cancer patients. However, tumor resistance and toxicities often limit the use of these therapies. For this reason, there is a compelling need for further investigation of new targeted therapies, such as afatinib, an oral irreversible pan inhibitor of the epidermal growth factor receptor (EGFR family. This compound covalently interacts with tyrosine kinase domains, which are deeply involved in signal transduction leading to cell proliferation and protection from apoptosis. Afatinib has been studied in several Phase I clinical trials in advanced solid tumors. These trials have shown encouraging clinical activity and manageable side effects when afatinib is used either as a single agent or in combination with chemotherapy, with cutaneous adverse events and diarrhea being the most frequently observed toxicities. This review will focus on afatinib’s clinical activity and will discuss ongoing clinical studies in HER2-positive breast cancer patients. In the scenario of the different HER2-targeted therapies, it will be important to define the best specific clinical and “molecular” setting for afatinib use, trying to identify predictors of resistance and response. Moreover, afatinib, which has the ability to cross the blood–brain barrier, could play a role in

  11. Purification of human monoclonal antibodies and their fragments.

    Science.gov (United States)

    Müller-Späth, Thomas; Morbidelli, Massimo

    2014-01-01

    This chapter summarizes the most common chromatographic mAb and mAb fragment purification methods, starting by elucidating the relevant properties of the compounds and introducing the various chromatography modes that are available and useful for this application. A focus is put on the capture step affinity and ion exchange chromatography. Aspects of scalability play an important role in judging the suitability of the methods. The chapter introduces also analytical chromatographic methods that can be utilized for quantification and purity control of the product. In the case of mAbs, for most purposes the purity obtained using an affinity capture step is sufficient. Polishing steps are required if material of particularly high purity needs to be generated. For mAb fragments, affinity chromatography is not yet fully established, and the capture step potentially may not provide material of high purity. Therefore, the available polishing techniques are touched upon briefly. In the case of mAb isoform and bispecific antibody purification, countercurrent chromatography techniques have been proven to be very useful and a part of this chapter has been dedicated to them, paying tribute to the rising interest in these antibody formats in research and industry.

  12. Limitations of safranin 'O' staining in proteoglycan-depleted cartilage demonstrated with monoclonal antibodies.

    Science.gov (United States)

    Camplejohn, K L; Allard, S A

    1988-01-01

    The intensity of safranin 'O' staining is directly proportional to the proteoglycan content in normal cartilage. Safranin 'O' has thus been used to demonstrate any changes that occur in articular disease. In this study, staining patterns obtained using monoclonal antibodies against the major components of cartilage proteoglycan chondroitin sulphate (anti CS) and keratan sulphate (anti KS), have been compared with those obtained with safranin 'O' staining, in both normal and arthritic tissues. In cartilage where safranin 'O' staining was not detectable, the monoclonal antibodies revealed the presence of both keratan and chondroitin sulphate. Thus, safranin 'O' is not a sensitive indicator of proteoglycan content in diseases where glycosaminoglaycan loss from cartilage has been severe.

  13. The use of monoclonal antibodies for the characterization and production of Mycobacterium leprae antigens

    Directory of Open Access Journals (Sweden)

    J. Ivanyi

    1987-01-01

    Full Text Available Similar immunizations of mice and hybridoma technology were used by several investigators to raise monoclonal antibodies which identified a limited range of epitopes and antigenic molecules. Further studies would have the scope for revealing yet more novel structures. The existing MABs are agreed standard reagents, avaiable to investigators and valuable for several applications. At least six epitopes specific for M. leprae were defined in molecular terms. Monoclonal antibody based immunoassays proved to be invaluable for the screening of recombinant DNA clones and for the topographic study of individual epitopes. Purification of antigens using affinity chromatography requires further development of techniques whilst serology of leprosy is open for clinical and epidemiological evaluation.

  14. Immunomodulatory therapies for relapsing-remitting multiple sclerosis: monoclonal antibodies, currently approved and in testing.

    Science.gov (United States)

    Craddock, Jessica; Markovic-Plese, Silva

    2015-05-01

    Relapsing-remitting multiple sclerosis (RRMS), a CNS inflammatory demyelinating disease, is one of the most prevalent causes of chronic disability in young adults. Studies of the disease pathogenesis have identified multiple therapeutic targets. The number of approved disease modifying therapies has almost doubled within the past 5 years, which creates a challenge for medical professionals to stay abreast of their use in everyday practice. This manuscript provides an overview of available injectable, oral, and intravenous therapies for RRMS, and offers guidance in selecting an appropriate therapy. Focus is on the recently approved and emerging monoclonal antibody therapies, because they offer more selective and superior therapeutic efficacy compared with injectable and oral disease modifying therapies. We discuss the outlook for monoclonal antibodies and their role in RRMS treatment in the future.

  15. Introduction to the application of QbD principles for the development of monoclonal antibodies.

    Science.gov (United States)

    Finkler, Christof; Krummen, Lynne

    2016-09-01

    Quality by Design (QbD) is a global regulatory initiative with the goal of enhancing pharmaceutical development through the proactive design of pharmaceutical manufacturing process and controls to consistently deliver the intended performance of the product. The principles of pharmaceutical development relevant to QbD are described in the ICH guidance documents (ICHQ8-11). An integrated set of risk assessments and their related elements developed at Roche/Genentech were designed to provide an overview of product and process knowledge for the production of a recombinant monoclonal antibody. This chapter introduces a publication series on the application of Quality by Design for biopharmaceuticals, with a focus on the development of recombinant monoclonal antibodies. The development of and overview on the QbD concept applied by Roche and Genentech is described and essential QbD elements are presented.

  16. Gene transfer by retrovirus-derived shuttle vectors in the generation of murine bispecific monoclonal antibodies.

    Science.gov (United States)

    DeMonte, L B; Nistico, P; Tecce, R; Dellabona, P; Momo, M; Anichini, A; Mariani, M; Natali, P G; Malavasi, F

    1990-01-01

    The present study reports on the use of gene transfer by retrovirus-derived shuttle vectors in the generation of hybrid hybridomas secreting bispecific monoclonal antibodies. neo- and dhfr- genes were infected into distinct murine hybridomas, thus conferring a dominant resistance trait to geneticin (G418) and to methotrexate. The vectors employed were replication-deficient and dependent on complementation by a helper virus provided by the irradiated packaging lines. After cocultivation with the relevant packaging cell lines, stable hybridoma lines expressing the selectable markers were easily obtained and were then suitable for conventional somatic fusion. This high-efficiency method was used to generate two bispecific monoclonal antibodies simultaneously targeting molecules expressed on cytotoxic cells (i.e., T lymphocytes and natural killer cells) against a human melanoma-associated antigen. Images PMID:2326256

  17. Isolation of isoproteins from monoclonal antibodies and recombinant proteins by chromatofocusing.

    Science.gov (United States)

    Jungbauer, A; Tauer, C; Wenisch, E; Uhl, K; Brunner, J; Purtscher, M; Steindl, F; Buchacher, A

    1990-07-20

    A fast protein liquid chromatographic method for the preparative separation of the various isoproteins is described. Highly purified human monoclonal antibodies, recombinant human superoxide dismutase and human superoxide dismutase from erythrocytes were used as starting material. The isoproteins were separated by chromatofocusing on Mono P columns. A very narrow pH gradient was applied to achieve complete separation of the isoproteins. The prepurification steps and the pretreatment of the samples to achieve optimum resolution are described in detail. The method is also applicable to extremely basic monoclonal antibodies (pI = 9). The successful separation was checked by isoelectric focusing in immobilized pH gradients (Immobilines). The future of these methods is discussed, because for many different biochemical and biophysical investigations pure and homogeneous isoproteins are necessary.

  18. Detection of Penicillinase in Milk by Sandwich ELISA Based Polyclonal and Monoclonal Antibody.

    Science.gov (United States)

    Zhao, Yinli; Li, Guoxi

    2016-01-01

    A sandwich ELISA has been developed using polyclonal and monoclonal antibody for the determination of penicillinase in milk. For this purpose, specific polyclonal and monoclonal antibodies against penicillinase were generated and characterized. Using penicillinase standards prepared from 1-128 ng/mL, the method indicated that the detection limit of the sandwich ELISA, as measured in an ELISA plate reader, was as low as 0.86 ng/mL of penicillinase. For determine the accuracy, raw milk containing 2, 8, 32, and 64 ng/mL of penicillinase were tested by sandwich ELISA. Recoveries were from 93-97.5%, and the coefficient of variation [CV (%)] were from 5.55-8.38%. For interassay reproducibility, recoveries were from 89.5-95.1%, the coefficient of variation [CV (%)] were from 5.26-9.58%. This sandwich ELISA provides a useful screening method for quantitative detection of penicillinase in milk.

  19. Characterization of a monoclonal antibody with specificity for holo-transcobalamin

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey N

    2006-01-01

    Full Text Available Abstract Background Holotranscobalamin, cobalamin-saturated transcobalamin, is the minor fraction of circulating cobalamin (vitamin B12, which is available for cellular uptake and hence is physiologically relevant. Currently, no method allows simple, direct quantification of holotranscobalamin. We now report on the identification and characterization of a monoclonal antibody with a unique specificity for holotranscobalamin. Methods The specificity and affinity of the monoclonal antibodies were determined using surface plasmon resonance and recombinant transcobalamin as well as by immobilizing the antibodies on magnetic microspheres and using native transcobalamin in serum. The epitope of the holotranscobalamin specific antibody was identified using phage display and comparison to a de novo generated three-dimensional model of transcobalamin using the program Rosetta. A direct assay for holotrnscobalamin in the ELISA format was developed using the specific antibody and compared to the commercial assay HoloTC RIA. Results An antibody exhibiting >100-fold specificity for holotranscobalamin over apotranscobalamin was identified. The affinity but not the specificity varied inversely with ionic strength and pH, indicating importance of electrostatic interactions. The epitope was discontinuous and epitope mapping of the antibody by phage display identified two similar motifs with no direct sequence similarity to transcobalamin. A comparison of the motifs with a de novo generated three-dimensional model of transcobalamin identified two structures in the N-terminal part of transcobalamin that resembled the motif. Using this antibody an ELISA based prototype assay was developed and compared to the only available commercial assay for measuring holotranscobalamin, HoloTC RIA. Conclusion The identified antibody possesses a unique specificity for holotranscobalamin and can be used to develop a direct assay for the quantification of holotranscobalamin.

  20. Produksi dan Karakterisasi Antibodi Monoklonal Anti-Cysticercus cellulosae (PRODUCTION AND CHRACTERIZATION OF MONOCLONAL ANTIBODIES AGAINST CYSTICERCUS CELLULOSAE

    Directory of Open Access Journals (Sweden)

    Ida Bagus Ngurah Swacita

    2015-10-01

    Full Text Available The purpose of this study is to make a monoclonal antibody against- Cysticercus cellulosae and itscharacterization. Samples antigen prepared from T. solium larvae (C. cellulosae was then used to immunizeBalb/c. The immune response of mice assessed by ELISA test, then the lymphocytes of mice used for theproduction of monoclonal antibodies (MoAb. Origin lymphocytes of mice that produce antibodies againstC. cellulosae antigen, fused with myeloma cells (NS1. Results fusion of two cells produces hybrid cellscalled hybridomas; cells are then screened by ELISA test. Hybridoma cells that produce only MoAb, usedto produce large quantities in vitro. Characterization of MoAb against-C.cellulosae was tested by usingELISA and Western blotting. Mice were immunized with C.cellulosae antigen showed an immune responseproducing antibodies to C.cellulosae. Based on the results of fusion, produced a total of 51 hybridoma cellclones and after being screened, only three clones of hybridoma cells that produced MoAb against–C.cellulosae. MoAb produced, named after the hole where the growth of the ELISA micro plate, the BE6,BE7, and EE9. Characteristics of this MoAb capable of tracking cellulosae of fluid larvae and recognizeantigen protein bands with molecular weight 78kDa.

  1. Studying host cell protein interactions with monoclonal antibodies using high throughput protein A chromatography.

    Science.gov (United States)

    Sisodiya, Vikram N; Lequieu, Joshua; Rodriguez, Maricel; McDonald, Paul; Lazzareschi, Kathlyn P

    2012-10-01

    Protein A chromatography is typically used as the initial capture step in the purification of monoclonal antibodies produced in Chinese hamster ovary (CHO) cells. Although exploiting an affinity interaction for purification, the level of host cell proteins in the protein A eluent varies significantly with different feedstocks. Using a batch binding chromatography method, we performed a controlled study to assess host cell protein clearance across both MabSelect Sure and Prosep vA resins. We individually spiked 21 purified antibodies into null cell culture fluid generated with a non-producing cell line, creating mock cell culture fluids for each antibody with an identical composition of host cell proteins and antibody concentration. We demonstrated that antibody-host cell protein interactions are primarily responsible for the variable levels of host cell proteins in the protein A eluent for both resins when antibody is present. Using the additives guanidine HCl and sodium chloride, we demonstrated that antibody-host cell protein interactions may be disrupted, reducing the level of host cell proteins present after purification on both resins. The reduction in the level of host cell proteins differed between antibodies suggesting that the interaction likely varies between individual antibodies but encompasses both an electrostatic and hydrophobic component.

  2. The Effect of CD3-Specific Monoclonal Antibody on Treating Experimental Autoimmune Myasthenia Gravis

    Institute of Scientific and Technical Information of China (English)

    Ruonan Xu; Jianan Wang; Guojiang Chen; Gencheng Han; Renxi Wang; Beffen Shen; Yan Li

    2005-01-01

    CD3-specific monoclonal antibody was the first one used for clinical practice in field of transplantation. Recently,renewed interests have elicited in its capacity to prevent autoimmune diabetes by inducing immune tolerance. In this study, we tested whether this antibody can also be used to treat another kind of autoimmune disease myasthenia gravis (MG) and explored the possible mechanisms. MG is caused by an autoimmune damage mediated by antibody- and complement-mediated destruction of AChR at the neuromuscular junction. We found that administration of CD3-specific antibody (Fab)2 to an animal model with experimental autoimmune myasthenia gravis (EAMG) (B6 mice received 3 times of AChR/CFA immunization) could not significantly improve the clinical signs and clinical score. When the possible mechanisms were tested, we found that CD3 antibody treatment slightly down-regulated the T-cell response to AChR, modestly up-regulation the muscle strength. And no significant difference in the titers of IgG2b was found between CD3 antibody treated and control groups. These data indicated that CD3-specific antibody was not suitable for treating MG, an antibody- and complementmediated autoimmune disease, after this disease has been established. The role of CD3-specific antibody in treating this kind of disease remains to be determined.

  3. A platelet monoclonal antibody inhibition assay for detection of glycoprotein IIb/IIIa-related platelet alloantibodies.

    Science.gov (United States)

    Reiner, A P; Teramura, G; Nelson, K A; Slichter, S J

    1995-08-18

    Post-transfusion purpura (PTP) and neonatal alloimmune thrombocytopenia (NAT) result from formation of alloantibodies to platelet membrane glycoprotein-associated antigens. The detection and identification of platelet-specific alloantibodies in patient sera is often complicated by the presence of co-existing HLA antibodies and/or more than one platelet specificity in the same serum. We describe a solid phase assay that specifically detects antibodies to platelet membrane associated alloantigens by measuring the ability of patient antisera to inhibit the binding of glycoprotein GPIIb or GPIIIa monoclonal antibodies to intact platelets. When tested in the GPIIIa assay against a panel of random platelet donors, the reactivities of two known PLAI antisera that also contained different HLA antibodies were highly correlated (r = 0.99) and allowed PLA phenotyping of the population. A standard direct binding platelet ELISA, on the other hand, was unable to accurately PLA phenotype the same population. The reactivities of two known Baka antisera (one containing additional anti-PLA2 and the other anti-Brb specificities) were highly correlated (r = 0.95) in the GPIIb assay, and Bak phenotype determination was similarly accomplished for a random platelet panel. Furthermore, a comparison of platelet phenotype results (using the monoclonal inhibition assay) and genotype results (using DNA analysis) for the PLA and Bak systems showed a concordance of 98% for 146 alleles tested. In conclusion, the platelet monoclonal antibody inhibition assay: (1) allows determination of platelet-specific alloantibodies in the presence of contaminating HLA antibodies and/or in sera containing multiple platelet alloantibodies; (2) allows accurate platelet phenotyping for the GPIIIa-associated PLA and GPIIb-associated Bak antigen systems; and (3) may be applicable to the detection of other known or even novel platelet glycoprotein-associated antigens.

  4. Development and characterization of monoclonal antibodies to Marek's disease tumor-associated surface antigen.

    OpenAIRE

    Liu, X. F.; Lee, L F

    1983-01-01

    Four monoclonal antibodies, A35, B94, EB29, and G152, against Marek's disease tumor-associated surface antigen have been developed and their specificities studied against a panel of Marek's disease and lymphoid leukosis primary tumors; Marek's disease, and lymphoid leukosis, and reticuloendotheliosis lymphoblastoid cell lines; and normal chicken cells. A35 and G152 are of the immunoglobulin M class, and B94 and EB29 are of the immunoglobulin G1 subclass.

  5. Use of monoclonal antibodies as an effective strategy for treatment of ciguatera poisoning.

    Science.gov (United States)

    Inoue, Masayuki; Lee, Nayoung; Tsumuraya, Takeshi; Fujii, Ikuo; Hirama, Masahiro

    2009-06-01

    Ciguatera is a global food poisoning caused by the consumption of fish that have accumulated sodium channel activator toxins, ciguatoxins. At present, most diagnosed cases of ciguatera are treated with symptomatic and supportive remedies, and no specific therapy has been devised. Here we report that ciguatoxin CTX3C can be effectively neutralized in vitro and in vivo by simultaneous use of two anti-ciguatoxin monoclonal antibodies, providing the first rational approach toward directly preventing and treating ciguatera.

  6. Characterization of Hemolysin of Moraxella bovis Using a Hemolysis-Neutralizing Monoclonal Antibody

    OpenAIRE

    2000-01-01

    A concentrated bacterial culture supernatant from the hemolytic Moraxella bovis strain UQV 148NF was used to immunize mice and generate monoclonal antibodies (MAbs). One, MAb G3/D7, neutralized the hemolytic activity of M. bovis and recognized a 94-kDa protein by Western blot analysis in hemolytic M. bovis strains representing each of the different fimbrial serogroups. Exposure of corneal epithelial cells to M. bovis concentrated culture supernatants demonstrated a role for an exotoxin in the...

  7. Novel EphB4 Monoclonal Antibodies Modulate Angiogenesis and Inhibit Tumor Growth

    OpenAIRE

    Krasnoperov, Valery; Kumar, S. Ram; Ley, Eric; Li, Xiuqing; Scehnet, Jeffrey; Liu, Ren; Zozulya, Sergey; Gill, Parkash S.

    2010-01-01

    EphB4 receptor tyrosine kinase and its cognate ligand EphrinB2 regulate induction and maturation of newly forming vessels. Inhibition of their interaction arrests angiogenesis, vessel maturation, and pericyte recruitment. In addition, EphB4 is expressed in the vast majority of epithelial cancers and provides a survival advantage to most. Here, we describe two anti-EphB4 monoclonal antibodies that inhibit tumor angiogenesis and tumor growth by two distinct pathways. MAb131 binds to fibronectin...

  8. The Efficacy of an anti-CD4 Monoclonal Antibody for HIV-1 Treatment

    OpenAIRE

    Fessel, W. Jeffrey; Anderson, Brooke; Follansbee, Stephen E.; Winters, Mark A.; Lewis, Stanley; Weinheimer, Steven; Christos J Petropoulos; Shafer, Robert W.

    2011-01-01

    The availability of 24 antiretroviral (ARV) drugs within six distinct drug classes has transformed HIV-1 infection (AIDS) into a treatable chronic disease. However, the ability of HIV-1 to develop resistance to multiple classes continues to present challenges to the treatment of many ARV treatment-experienced patients. In this case report, we describe the response to ibalizumab, an investigational CD4-binding monoclonal antibody (mAb), in a patient with advanced immunodeficiency and high-leve...

  9. Belimumab: anti-BLyS monoclonal antibody; Benlysta; BmAb; LymphoStat-B.

    Science.gov (United States)

    2010-01-01

    Belimumab is a fully human monoclonal antibody for the treatment of autoimmune disorders that is being developed by Human Genome Sciences and GlaxoSmithKline. Two pivotal phase III trials in systemic lupus erythematosus have been concluded with the primary endpoints being met in both studies. A phase II trial in rheumatoid arthritis has also been completed, with positive results. Marketing authorization submissions are being prepared in the major markets worldwide. This review discusses the development history and scientific profile of belimumab.

  10. Protection Against Clostridium difficile Infection With Broadly Neutralizing Antitoxin Monoclonal Antibodies

    OpenAIRE

    2012-01-01

    The spore-forming bacterium Clostridium difficile represents the principal cause of hospital-acquired diarrhea and pseudomembranous colitis worldwide. C. difficile infection (CDI) is mediated by 2 bacterial toxins, A and B; neutralizing these toxins with monoclonal antibodies (mAbs) provides a potential nonantibiotic strategy for combating the rising prevalence, severity, and recurrence of CDI. Novel antitoxin mAbs were generated in mice and were humanized. The humanized antitoxin A mAb PA-50...

  11. Dialysis cultures with immobilized hybridoma cells for effective production of monoclonal antibodies

    OpenAIRE

    Pörtner, Ralf; Lüdemann, Ines; Märkl, Herbert

    1997-01-01

    An industrial scale reactor concept for continuous cultivation of immobilized animal cells (e.g. hybridoma cells) in a radial-flow fixed bed is presented, where low molecular weight metabolites are removed via dialysis membrane and high molecular products (e.g. monoclonal antibodies) are enriched. In a new “nutrient-split” feeding strategy concentrated medium is fed directly to the fixed bed unit, whereas a buffer solution is used as dialysis fluid. This feeding strategy was investigated in a...

  12. Stability of monoclonal antibodies at high-concentration

    DEFF Research Database (Denmark)

    Neergaard, Martin S; Nielsen, Anders D; Parshad, Henrik;

    2014-01-01

    Few studies have so far directly compared the impact of antibody subclass on protein stability. This case study investigates two mAbs (one IgG1 and one IgG4 ) with identical variable region. Investigations of mAbs that recognize similar epitopes are necessary to identify possible differences....... The stability of our mAb molecules is clearly affected by the IgG framework, and this study suggests that subclass switching may alter aggregation propensity and aggregation pathway and thus potentially improve the overall formulation stability while retaining antigen specificity....... between the IgG subclasses. Both physical and chemical stability were evaluated by applying a range of methods to measure formation of protein aggregates [size-exclusion chromatography (SEC)-HPLC and UV340 nm], structural integrity (circular dichroism and FTIR), thermodynamic stability (differential...

  13. Preparation and epitope characterization of monoclonal antibodies against firefly luciferase

    Institute of Scientific and Technical Information of China (English)

    徐沁; 丁建芳; 胡红雨; 许根俊

    1999-01-01

    The 6-His tagged firefly luciferase was highly expressed in E. coli and purified to homogeneity by affinity chromatography and gel filtration. After immunizing Balb/c mice with the antigen, 6 hybridomas clones were found to secrete monoelonal antibodies (mAbs) and the mAbs were also purified separately. The competitive binding experiments show that 2 mAbs can bind heat-denatured antigen or its proteolytic fragments but not the native lueiferase, suggesting that their epitopes might be accommodated in the internal segments of the protein. On the other hand, the other 4 mAbs are capable of binding both native and denatured antigens. It infers that their epitopes locate in the segments on the protein surface. The results also suggest that the six mAbs are all sequence-specific.

  14. 77 FR 9678 - Prospective Grant of Exclusive License: The Development of Human Anti-CD22 Monoclonal Antibodies...

    Science.gov (United States)

    2012-02-17

    ... and m972 (SMB-002) monoclonal antibodies as therapies for the treatment of B cell cancers and... designated m971 and m972 (SMB-002; applicant designation). CD22 is a cell surface antigen that is...

  15. One-step purification of mouse monoclonal antibodies from ascitic fluid by DEAE Affi-Gel blue chromatography.

    Science.gov (United States)

    Bruck, C; Portetelle, D; Glineur, C; Bollen, A

    1982-09-30

    Monoclonal antibodies can be purified directly from ascitic fluids by chromatography on a DEAE Affi-gel blue column. Optimal conditions were determined for the recovery of immunoglobulins free of contaminating protease and nuclease activities.

  16. Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography.

    Science.gov (United States)

    Guélat, Bertrand; Ströhlein, Guido; Lattuada, Marco; Delegrange, Lydia; Valax, Pascal; Morbidelli, Massimo

    2012-08-31

    A model was developed for the design of a monoclonal antibody charge variants separation process based on ion-exchange chromatography. In order to account for a broad range of operating conditions in the simulations, an explicit pH and salt concentration dependence has been included in the Langmuir adsorption isotherm. The reliability of this model was tested using experimental chromatographic retention times as well as information about the structural characteristics of the different charge variants, e.g. C-terminal lysine groups and deamidated groups. Next, overloaded isocratic elutions at various pH and salt concentrations have been performed to determine the saturation capacity of the ion-exchanger. Furthermore, the column simulation model was applied for the prediction of monoclonal antibody variants separations with both pH and salt gradient elutions. A good prediction of the elution times and peak shapes was observed, even though none of the model parameters was adjusted to fit the experimental data. The trends in the separation performance obtained through the simulations were generally sufficient to identify the most promising operating conditions. The predictive column simulation model thus developed in this work, including a set of parameters determined through specific independent experiments, was experimentally validated and offers a useful basis for a rational optimization of monoclonal antibody variants separation processes on ion-exchange chromatography.

  17. Identification of novel proteins in Neospora caninum using an organelle purification and monoclonal antibody approach.

    Science.gov (United States)

    Sohn, Catherine S; Cheng, Tim T; Drummond, Michael L; Peng, Eric D; Vermont, Sarah J; Xia, Dong; Cheng, Stephen J; Wastling, Jonathan M; Bradley, Peter J

    2011-04-04

    Neospora caninum is an important veterinary pathogen that causes abortion in cattle and neuromuscular disease in dogs. Neospora has also generated substantial interest because it is an extremely close relative of the human pathogen Toxoplasma gondii, yet does not appear to infect humans. While for Toxoplasma there are a wide array of molecular tools and reagents available for experimental investigation, relatively few reagents exist for Neospora. To investigate the unique biological features of this parasite and exploit the recent sequencing of its genome, we have used an organelle isolation and monoclonal antibody approach to identify novel organellar proteins and develop a wide array of probes for subcellular localization. We raised a panel of forty-six monoclonal antibodies that detect proteins from the rhoptries, micronemes, dense granules, inner membrane complex, apicoplast, mitochondrion and parasite surface. A subset of the proteins was identified by immunoprecipitation and mass spectrometry and reveal that we have identified and localized many of the key proteins involved in invasion and host interaction in Neospora. In addition, we identified novel secretory proteins not previously studied in any apicomplexan parasite. Thus, this organellar monoclonal antibody approach not only greatly enhances the tools available for Neospora cell biology, but also identifies novel components of the unique biological characteristics of this important veterinary pathogen.

  18. THE USE OF MONOCLONAL ANTIBODIES IN THE TREATMENT OF AUTOIMMUNE COMPLICATIONS OF CHRONIC LYMPHOCYTIC LEUKEMIA

    Directory of Open Access Journals (Sweden)

    Luca Laurenti

    2013-04-01

    Full Text Available Autoimmune cytopenias are a frequent complication in CLL, occuring in approximately 5-10% of the patients. The most common manifestation is autoimmune haemolytic anaemia, followed by immune thrombocytopaenia and only rarely pure red blood cell aplasia or autoimmune granulocytopaenia. Initial treatment is as for the idiopathic autoimmune cytopenias, with most patients responding to conventional corticosteroid therapy. Patients not responding after 4–6 weeks of conventional therapy should be considered for alternative immunosuppression, monoclonal antibody therapy or splenectomy.   While randomized trials demonstrating the benefit of rituximab in CLL-related autoimmune diseases are still lacking, there are considerable data in the literature that provide evidence for its effectiveness. The monoclonal antibody alemtuzumab also displays considerable activity against both the malignant disease and the autoimmune complication in patients with CLL, although at the expense of greater toxicity. A number of new monoclonal antibodies, such as ofatumumab, GA-101, lumiliximab, TRU-016, epratuzumab, and galiximab, are currently investigated in CLL and their activity in CLL-related autoimmune cytopenias should be evaluated in future studies.

  19. Identification of novel proteins in Neospora caninum using an organelle purification and monoclonal antibody approach.

    Directory of Open Access Journals (Sweden)

    Catherine S Sohn

    Full Text Available Neospora caninum is an important veterinary pathogen that causes abortion in cattle and neuromuscular disease in dogs. Neospora has also generated substantial interest because it is an extremely close relative of the human pathogen Toxoplasma gondii, yet does not appear to infect humans. While for Toxoplasma there are a wide array of molecular tools and reagents available for experimental investigation, relatively few reagents exist for Neospora. To investigate the unique biological features of this parasite and exploit the recent sequencing of its genome, we have used an organelle isolation and monoclonal antibody approach to identify novel organellar proteins and develop a wide array of probes for subcellular localization. We raised a panel of forty-six monoclonal antibodies that detect proteins from the rhoptries, micronemes, dense granules, inner membrane complex, apicoplast, mitochondrion and parasite surface. A subset of the proteins was identified by immunoprecipitation and mass spectrometry and reveal that we have identified and localized many of the key proteins involved in invasion and host interaction in Neospora. In addition, we identified novel secretory proteins not previously studied in any apicomplexan parasite. Thus, this organellar monoclonal antibody approach not only greatly enhances the tools available for Neospora cell biology, but also identifies novel components of the unique biological characteristics of this important veterinary pathogen.

  20. Monoclonal antibody-escape variant of dengue virus serotype 1: Genetic composition and envelope protein expression.

    Science.gov (United States)

    Chem, Y K; Chua, K B; Malik, Y; Voon, K

    2015-06-01

    Monoclonal antibody-escape variant of dengue virus type 1 (MabEV DEN-1) was discovered and isolated in an outbreak of dengue in Klang Valley, Malaysia from December 2004 to March 2005. This study was done to investigate whether DEN152 (an isolate of MabEV DEN-1) is a product of recombination event or not. In addition, the non-synonymous mutations that correlate with the monoclonal antibody-escape variant were determined in this study. The genomes of DEN152 and two new DEN-1 isolates, DENB04 and DENK154 were completely sequenced, aligned, and compared. Phylogenetic tree was plotted and the recombination event on DEN152 was investigated. DEN152 is sub-grouped under genotype I and is closely related genetically to a DEN-1 isolated in Japan in 2004. DEN152 is not a recombinant product of any parental strains. Four amino acid substitutions were unique only to DEN 152. These amino acid substitutions were (Ser)[326](Leu), (Ser)[340](Leu) at the deduced E protein, (Ile)[250](Thr) at NS1 protein, and (Thr)[41](Ser) at NS5 protein. Thus, DEN152 is an isolate of the emerging monoclonal antibody-escape variant DEN-1 that escaped diagnostic laboratory detection.

  1. Monoclonal antibody against Saint Louis encephalitis prM viral protein.

    Science.gov (United States)

    Pupo-Antúnez, M; Vázquez, S; Sosa, A L; Caballero, Y; Vásquez, Y; Morier, L; Álvarez, M; Guzmán, M G

    2015-06-15

    Saint Louis encephalitis virus belongs to Flavivirus genus; Flaviviridae family jointly with other medically important flaviviruses including dengue virus and West Nile virus. The biological properties and functions of prM flavivirus protein are under investigation due to its importance in the generation of infectious virion and host interactions. Monoclonal antibodies have become powerful tools in this approach. Also the use of monoclonal antibodies has been successfully applied for antigenic analysis, clinical diagnosis and treatments. Here, using an immunofluorescence assay we describe a monoclonal antibody (mAb 3D2) that uniquely recognizes native prM Saint Louis encephalitis virus protein expressed in either C6/36-HT or Vero cells. In conclusion, mAb3D2 has significant potential for use in (a) the diagnosis of infections caused by this virus and (b) therapeutic use to treat patients infected by this virus and fundamental research to understand the role of the prM in the Saint Louis encephalitis virus infectious process.

  2. Effects of Monoclonal Antibody Against Adipocyte-Specific Membrane Protein on Lipid Metabolism in Pigs

    Institute of Scientific and Technical Information of China (English)

    GAO Shi-zheng; LIU Ling-yun; ZHAO Su-mei; HU Hong-mei; GE Chang-rong; LIU Yong-gang; ZHANG Xi

    2008-01-01

    This study was to investigate the regulation of monoclonal antibodies against adipocyte membrane proteins(McAb)on lipid metabolism in pigs.Forty Landrace x Saba pigs were randomly divided into eight groups;the control group was given 10 mL saline and the treat groups were given monoclonal antibody against adipocyte-specific membrane protein with 0.10 0.5,and 1.0 mg kg-1 body weight at 15 and 60 kg body weight,respectively,by intraperitoneal injection.The results showed that McAb could increase,significantly,serum lipoprotein lipase activity and reduce serum nonesterified fatty acid(NEFA)content.Meanwhile,McAb increased content of serum lipid,triglyceride(TG),cholesterol(CHO),high density lipoprotein(HDL),and low density lipoprotein(LDL) both at 15 and 60 kg body weight.However,McAb affected more significantly the lipid metabolism at 15 kg body weight than at 60 kg body weight.Moreover,this effect of McAb on lipid metabolism exhibited dose-dependent effect.These results suggested that this monoclonal antibody increased lipase activity,promoted lipolysis,and utilization of lipid so that McAb could be applied to restrain excessive fat deposition in porcine production through the regulation of fat metabolism.

  3. Development of a bispecific monoclonal antibody to pesticide carbofuran and triazophos using hybrid hybridomas.

    Science.gov (United States)

    Jin, R Y; Guo, Y R; Wang, C M; Wu, J X; Zhu, G N

    2009-01-01

    A mouse hybrid hybridoma (tetradoma) was derived from fusing hybridomas producing monoclonal antibody to N-methylcarbamate pesticide carbofuran with hybridomas producing monoclonal antibody to organophosphorus pesticide Triazophos. The prepared tetradoma line (12C1 to 2H12) secreted hybrid immunoglobulin exhibiting parental and bispecific binding characteristics. The effect of relevant physicochemical factors on the immunoassay based on the 12C1 to 2H12 bispecific monoclonal antibody had been studied to optimize the ELISA performance. The developed immunoassay showed that the detection limit (I(20)) were 0.36 and 1.89 ng/mL for triazophos and carbofuran, respectively, without obvious cross-reactivity to other related compounds. Water samples spiked with triazophos at 0.5, 1, and 5 ng/mL or carbofuran at 5, 10, and 20 ng/mL were directly analyzed by the developed ELISA format. The mean recovery of triazophos and carbofuran were 108.1% and 107.5%, with variation coefficient of 15.9% and 17.7%, respectively.

  4. Novel monoclonal antibodies recognizing different subsets of lymphocytes from the common marmoset (Callithrix jacchus).

    Science.gov (United States)

    Ito, Ryoji; Maekawa, Shin-ichiro; Kawai, Kenji; Suemizu, Hiroshi; Suzuki, Shuzo; Ishii, Hajime; Tanioka, Yoshikuni; Satake, Masanobu; Yagita, Hideo; Habu, Sonoko; Ito, Mamoru

    2008-12-22

    Callithrix jacchus, the common marmoset, is a small new world primate that is considered effective as an experimental animal model for various human diseases. In this study, we generated monoclonal antibodies (mAbs) against common marmoset lymphocytes for immunological studies on the common marmoset. We established five hybridoma clones, 6C9, 10D7, 6F10, 7A4 and 5A1, producing anti-marmoset mAbs against cell surface antigens on marmoset T and/or B lymphocytes. We confirmed that 6C9 and 10D7 antibodies recognized CD45 antigen, and 6F10 antibody recognized CD8 antigen by flow cytometry using marmoset cDNA transfectants. We also tested them for application of immunoprecipitation, Western blot analysis and immunohistochemistry. We found that immunohistochemistry using marmoset spleen sections could be applied with all established mAbs but immunoprecipitation and the Western blot analysis could be applied with 6F10 and 10D7 antibodies but not with the other three mAbs. These results show that these monoclonal antibodies are useful for advancing immunological research on the common marmoset.

  5. Structural and functional characterization of a human IgG monoclonal antiphospholipid antibody.

    Science.gov (United States)

    Prinz, Nadine; Häuser, Friederike; Lorenz, Mareike; Lackner, Karl J; von Landenberg, Philipp

    2011-01-01

    Antiphospholipid antibodies (aPL) are likely involved in the pathogenesis of the antiphospholipid syndrome (APS). This study analyzes the structural and functional characteristics of a human monoclonal aPL (HL7G) from the IgG2 subtype with λ light chains generated from a patient with primary APS and recurrent cerebral microemboli. DNA encoding the variable region of heavy and light chains of the antibody was sequenced, analyzed, and compared to HL5B a previously described monoclonal aPL from the same patient. Both antibodies are derived from the same germline genes. HL7G had similar but more extensive somatic mutations in the CDR1 and 2 regions than HL5B, indicating that both antibodies are closely related and derived by a T cell-dependent antigen driven process. In ELISA assays HL7G bound to cardiolipin and several other phospholipid antigens in the absence of protein cofactors. Different from HL5B this aPL bound to β2-glycoprotein I (β2GPII). This suggests that reactivity of aPL against β2GPI is determined by only few specific amino acid exchanges. HL7G was able to induce tissue factor (TF) as one of the procoagulant effects of aPL. Our data suggest that the binding specificity of aPL is only of limited value to predict the biological effect and the pathophysiological impact of the antibodies. Copyright © 2010 Elsevier GmbH. All rights reserved.

  6. Monoclonal antibody-based analysis of cell wall remodeling during xylogenesis.

    Science.gov (United States)

    Shinohara, Naoki; Kakegawa, Koichi; Fukuda, Hiroo

    2015-11-01

    Xylogenesis, a process by which woody tissues are formed, entails qualitative and quantitative changes in the cell wall. However, the molecular events that underlie these changes are not completely understood. Previously, we have isolated two monoclonal antibodies, referred to as XD3 and XD27, by subtractive screening of a phage-display library of antibodies raised against a wall fraction of Zinnia elegans xylogenic culture cells. Here we report the biochemical and immunohistochemical characterization of those antibodies. The antibody XD3 recognized (1→4)-β-D-galactan in pectin fraction. During xylogenesis, the XD3 epitope was localized to the primary wall of tracheary-element precursor cells, which undergo substantial cell elongation, and was absent from mature tracheary elements. XD27 recognized an arabinogalactan protein that was bound strongly to a germin-like protein. The XD27 epitope was localized to pre-lignified secondary walls of tracheary elements. Thus these cell-wall-directed monoclonal antibodies revealed two molecular events during xylogenesis. The biological significance of these events is discussed in relation to current views of the plant cell wall.

  7. Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against Influenza A M2 protein

    Directory of Open Access Journals (Sweden)

    Gwerder Myriam

    2009-12-01

    Full Text Available Abstract Influenza virus infection is a prevalent disease in humans. Antibodies against hemagglutinin have been shown to prevent infection and hence hemagglutinin is the major constituent of current vaccines. Antibodies directed against the highly conserved extracellular domain of M2 have also been shown to mediate protection against Influenza A infection in various animal models. Active vaccination is generally considered the best approach to combat viral diseases. However, passive immunization is an attractive alternative, particularly in acutely exposed or immune compromized individuals, young children and the elderly. We recently described a novel method for the rapid isolation of natural human antibodies by mammalian cell display. Here we used this approach to isolate human monoclonal antibodies directed against the highly conserved extracellular domain of the Influenza A M2 protein. The identified antibodies bound M2 peptide with high affinities, recognized native cell-surface expressed M2 and protected mice from a lethal influenza virus challenge. Moreover, therapeutic treatment up to 2 days after infection was effective, suggesting that M2-specific monoclonals have a great potential as immunotherapeutic agents against Influenza infection.

  8. Clearance of persistent hepatitis C virus infection using a claudin-1-targeting monoclonal antibody

    Science.gov (United States)

    Mailly, Laurent; Wilson, Garrick K.; Aubert, Philippe; Duong, François H. T.; Calabrese, Diego; Leboeuf, Céline; Fofana, Isabel; Thumann, Christine; Bandiera, Simonetta; Lütgehetmann, Marc; Volz, Tassilo; Davis, Christopher; Harris, Helen J.; Mee, Christopher J.; Girardi, Erika; Chane-Woon-Ming, Béatrice; Ericsson, Maria; Fletcher, Nicola; Bartenschlager, Ralf; Pessaux, Patrick; Vercauteren, Koen; Meuleman, Philip; Villa, Pascal; Kaderali, Lars; Pfeffer, Sébastien; Heim, Markus H.; Neunlist, Michel; Zeisel, Mirjam B.; Dandri, Maura; McKeating, Jane A.; Robinet, Eric; Baumert, Thomas F.

    2015-01-01

    Hepatitis C virus (HCV) infection is a leading cause of liver cirrhosis and cancer1. Cell entry of HCV2 and other pathogens3-5 is mediated by tight junction (TJ) proteins, but successful therapeutic targeting of TJ proteins has not been reported yet. Using a human liver-chimeric mouse model6 we show that a monoclonal antibody specific for TJ protein claudin-17 eliminates chronic HCV infection without detectable toxicity. This antibody inhibits HCV entry, cell-cell transmission and virus-induced signaling events. Antibody treatment reduces the number of HCV-infected hepatocytes in vivo, highlighting the need for de novo infection via host entry factors to maintain chronic infection. In summary, we demonstrate that an antibody targeting a virus receptor can cure chronic viral infection and uncover TJ proteins as targets for antiviral therapy. PMID:25798937

  9. Automated pipeline for rapid production and screening of HIV-specific monoclonal antibodies using pichia pastoris.

    Science.gov (United States)

    Shah, Kartik A; Clark, John J; Goods, Brittany A; Politano, Timothy J; Mozdzierz, Nicholas J; Zimnisky, Ross M; Leeson, Rachel L; Love, J Christopher; Love, Kerry R

    2015-12-01

    Monoclonal antibodies (mAbs) that bind and neutralize human pathogens have great therapeutic potential. Advances in automated screening and liquid handling have resulted in the ability to discover antigen-specific antibodies either directly from human blood or from various combinatorial libraries (phage, bacteria, or yeast). There remain, however, bottlenecks in the cloning, expression and evaluation of such lead antibodies identified in primary screens that hinder high-throughput screening. As such, "hit-to-lead identification" remains both expensive and time-consuming. By combining the advantages of overlap extension PCR (OE-PCR) and a genetically stable yet easily manipulatable microbial expression host Pichia pastoris, we have developed an automated pipeline for the rapid production and screening of full-length antigen-specific mAbs. Here, we demonstrate the speed, feasibility and cost-effectiveness of our approach by generating several broadly neutralizing antibodies against human immunodeficiency virus (HIV).

  10. Demonstration of the salmonid humoral response to Renibacterium salmoninarum using a monoclonal antibody against salmonid immunoglobulin

    Science.gov (United States)

    Bartholomew, J.L.; Arkoosh , M.R.; Rohovec, J.S.

    1991-01-01

    The specificity of the antibody response of salmonids to Renibacterium salmoninarum antigens was demonstrated by western blotting techniques that utilized a monoclonal antibody against salmonid immunoglobulin. In this study, the specificity of the response in immunized chinook salmon Oncorhynchus tshawytschawas compared with the response in naturally infected chinook salmon and coho salmon O. kisutch, and immunized rabbits. The antibody response in immunized salmon and rabbits and the naturally infected fish was primarily against the 57–58kilodalton protein complex. In addition to recognizing these proteins in the extracellular fraction and whole-cell preparations, antibody from the immunized salmon and rabbits detected four proteins with lower molecular masses. Western blotting techniques allow identification of the specific antigens recognized and are a useful tool for comparing the immunogenicity of different R. salmoninarumpreparations. Immunofluorescent techniques with whole bacteria were less sensitive than western blotting in detecting salmonid anti-R. salmoninarumantibody.

  11. Production of monoclonal antibody for the detection of meat and bone meal in animal feed.

    Science.gov (United States)

    Kim, Shin-Hee; Huang, Tung-Shi; Seymour, Thomas A; Wei, Cheng-i; Kempf, Stephen C; Bridgman, C Roger; Clemens, Roger A; An, Haejung

    2004-12-15

    For the detection of prohibited meat and bone meal (MBM) in animal feed, monoclonal antibodies (MAbs) were raised against heat-stable h-caldesmon purified from bovine intestinal smooth muscle. The obtained hybridoma cells were screened against extracts of the bovine MBM and heat-treated smooth muscle, and MAb 5E12 was identified as having the best performance. Antibody 5E12 did not react with animal feed, milk product, plant proteins, and other ingredients used for commercial animal feed except for the gelatin. This antibody diluted to 100-fold was able to detect MBM mixed in animal feed at 0.05% in an ELISA, and it showed strong affinity toward bovine smooth muscle autoclaved at 130 degrees C. Therefore, this antibody can be used in the ELISA system for field testing of the presence of MBM in animal feed.

  12. Application of fusion protein 4D5 scFv-dibarnase:barstar-gold complex for studying P185HER2 receptor distribution in human cancer cells.

    Science.gov (United States)

    Ivanova, Julia L; Edelweiss, Evelina F; Leonova, Olga G; Balandin, Taras G; Popenko, Vladimir I; Deyev, Sergey M

    2012-08-01

    Overexpression of the P185(HER2) protein determines the malignancy and unfavorable prognosis of ovarian and breast tumors. In this work, the distribution of P185(HER2) in human cancer cells was studied by electron microscopy, using a novel approach. It is based on the interaction between barnase (a ribonuclease from Bacillus amyloliquefaciens) and its specific inhibitor barstar. The monoclonal antibody 4D5 scFv to extracellular P185(HER2) domain fused with two molecules of barnase was used as a recognizing agent, and the conjugate of colloidal gold with barstar, as an electron dense label for electron microscopic visualization. For labeling, we used supramolecular complexes 4D5 scFv-dibarnase:barstar-Au. The distribution of P185(HER2) in human ovarian carcinoma cells SKOV-3 and breast carcinoma cells BT-474 was studied at 4 °C and 37 °C. It was shown that at 4 °C the protein P185(HER2) occurs exclusively on the cell surface, mainly on protrusions or close to their bases. At 37 °C, the internalization of P185(HER2) caused by its interaction with 4D5 scFv-dibarnase was observed. Inside the cells, P185(HER2) was located in the coated pits and vesicles, endosomes and multivesicular bodies. The data obtained indicate that the supramolecular 4D5 scFv-dibarnase:barstar-gold complex can be used as a new immunodetection system for exploring the P185(HER2) distribution.

  13. Enhancement of monoclonal antibody uptake in human colon tumor xenografts following irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kalofonos, H.; Rowlinson, G.; Epenetos, A.A. (Royal Postgraduate Medical School, London (England))

    1990-01-01

    Indium-111-labeled AUA1 tumor-associated monoclonal antibody raised against an antigen of colon adenocarcinoma was used to evaluate the effect of ionizing radiation on antibody uptake by the LoVo adenocarcinoma cell line grown as a xenograft in nude mice. Tumors were exposed to single doses of external X-irradiation of between 400 and 1600 cGy followed, 24 h later, by administration of specific or nonspecific antibody. Animals were sacrificed 3 days after antibody administration. At doses higher than 400 cGy, tumor uptake with both specific and nonspecific antibody was significantly increased. No difference in changes in tumor volume was observed between the groups receiving irradiation and the controls. Specific antibody uptake by tumors was always significantly higher than nonspecific having an approximate 4-fold binding advantage. Vascular permeability and the vascular volume of irradiated and control tumors was measured 24 and 72 h after irradiation, using iodine-125-labeled nonspecific antibody and labelling of the red blood cells in vivo with 99mTcO4. At doses higher than 400 cGy, vascular permeability in the tumor 24 h after irradiation was significantly increased (P less than 0.05), while the vascular volume decreased (P less than 0.001) compared to control values. However at 72 h after irradiation there was no difference between treated and control groups. The results obtained in this study suggest a potential value of external irradiation to increase monoclonal antibody uptake by tumors governed mainly by the increased vascular permeability of the tumor vasculature soon after the irradiation exposure.

  14. A prospective, non-randomized phase II trial of Trastuzumab and Capecitabine in patients with HER2 expressing metastasized pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Endlicher Esther

    2009-01-01

    Full Text Available Abstract Background Pancreatic cancer is the fourth most common cause of cancer related death in Western countries. Advantages in surgical techniques, radiation and chemotherapy had almost no impact on the long term survival of affected patients. Therefore, the need for better treatment strategies is urgent. HER2, a receptor tyrosine kinase of the EGFR family, involved in signal transduction pathways leading to cell growth and differentiation is overexpressed in a number of cancers, including breast and pancreatic cancer. While in breast cancer HER2 has already been successfully used as a treatment target, there are only limited data evaluating the effects of inhibiting HER2 tyrosine kinases in patients with pancreatic cancer. Methods Here we report the design of a prospective, non-randomized multi-centered Phase II clinical study evaluating the effects of the Fluoropyrimidine-carbamate Capecitabine (Xeloda ® and the monoclonal anti-HER2 antibody Trastuzumab (Herceptin® in patients with non-resectable, HER2 overexpressing pancreatic cancer. Patients eligible for the study will receive Trastuzumab infusions on day 1, 8 and 15 concomitant to the oral intake of Capecitabine from day 1 to day 14 of each three week cylce. Cycles will be repeated until tumor progression. A total of 37 patients will be enrolled with an interim analysis after 23 patients. Discussion Primary end point of the study is to determine the progression free survival after 12 weeks of bimodal treatment with the chemotherapeutic agent Capecitabine and the anti-HER2 antibody Trastuzumab. Secondary end points include patient's survival, toxicity analysis, quality of life, the correlation of HER2 overexpression and clinical response to Trastuzumab treatment and, finally, the correlation of CA19-9 plasma levels and progression free intervals.

  15. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S

    1999-01-01

    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes are coexpr......In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...

  16. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S;

    1999-01-01

    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes are coexpr......In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...

  17. Molecular Characterization of the Monoclonal Antibodies Composing ZMAb: A Protective Cocktail Against Ebola Virus

    Science.gov (United States)

    Audet, Jonathan; Wong, Gary; Wang, Han; Lu, Guangwen; Gao, George F.; Kobinger, Gary; Qiu, Xiangguo

    2014-01-01

    Ebola virus (EBOV) causes severe viral hemorrhagic fever in humans and non-human primates, with a case fatality rate of up to 88% in human outbreaks. Over the past 3 years, monoclonal antibody (mAb) cocktails have demonstrated high efficacy as treatments against EBOV infection. One such cocktail is ZMAb, which consists of three mouse antibodies, 1H3, 2G4, and 4G7. Here, we present the epitope binding properties of mAbs 1H3, 2G4, and 4G7. We showed that these antibodies have different variable region sequences, suggesting that the individual mAbs are not clonally related. All three antibodies were found to neutralize EBOV variant Mayinga. Additionally, 2G4 and 4G7 were shown to cross-inhibit each other in vitro and select for an escape mutation at the same position on the EBOV glycoprotein (GP), at amino acid 508. 1H3 selects an escape mutant at amino acid 273 on EBOV GP. Surface plasmon resonance studies showed that all three antibodies have dissociation constants on the order of 10−7. In combination with previous studies evaluating the binding sites of other protective antibodies, our results suggest that antibodies targeting the GP1-GP2 interface and the glycan cap are often selected as efficacious antibodies for post-exposure interventions against EBOV. PMID:25375093

  18. Targeting HER2-positive cancer using multifunctional nanoparticles

    DEFF Research Database (Denmark)

    Juul, Christian Ammitzbøll

    efficiency, is thoroughly reviewed. Chapter 4 encompasses a comprehensive manuscript, which describes the in vitro and in vivo evaluation of a novel liposomal delivery platform designed to target the HER2 receptor on cancer cells and be activated by enzyme activity in the tumor. In Chapter 5, an alternative...... HER2-targeted liposome formulation was assessed in vitro. Rather than being enzyme-sensitive, these liposomes were responsive to reducing conditions. Such conditions are found in several cancers due to hypoxia as well as in endocytic compartments. The progressive in vitro optimization of a complex....... The final study, described in Chapter 7, comprises an in vivo evaluation of the potential benefits of combining enzyme-sensitive liposomal oxaliplatin with the HER2-targeted antibody trastuzumab. As concluded in the final comments in Chapter 8, the extensive in vitro and in vivo data reported in this thesis...

  19. Biochemical and pharmacological characterization of human c-Met neutralizing monoclonal antibody CE-355621

    Science.gov (United States)

    Michaud, Neil R.; Jani, Jitesh P.; Hillerman, Stephen; Tsaparikos, Konstantinos E.; Barbacci-Tobin, Elsa G.; Knauth, Elisabeth; Putz Jr., Henry; Campbell, Mary; Karam, George A.; Chrunyk, Boris; Gebhard, David F.; Green, Larry L.; Xu, Jinghai J.; Dunn, Margaret C.; Coskran, Tim M.; Lapointe, Jean-Martin; Cohen, Bruce D.; Coleman, Kevin G.; Bedian, Vahe; Vincent, Patrick; Kajiji, Shama; Steyn, Stefan J.; Borzillo, Gary V.; Los, Gerrit

    2012-01-01

    The c-Met proto-oncogene is a multifunctional receptor tyrosine kinase that is stimulated by its ligand, hepatocyte growth factor (HGF), to induce cell growth, motility and morphogenesis. Dysregulation of c-Met function, through mutational activation or overexpression, has been observed in many types of cancer and is thought to contribute to tumor growth and metastasis by affecting mitogenesis, invasion, and angiogenesis. We identified human monoclonal antibodies that bind to the extracellular domain of c-Met and inhibit tumor growth by interfering with ligand-dependent c-Met activation. We identified antibodies representing four independent epitope classes that inhibited both ligand binding and ligand-dependent activation of c-Met in A549 cells. In cells, the antibodies antagonized c-Met function by blocking receptor activation and by subsequently inducing downregulation of the receptor, translating to phenotypic effects in soft agar growth and tubular morphogenesis assays. Further characterization of the antibodies in vivo revealed significant inhibition of c-Met activity (≥ 80% lasting for 72–96 h) in excised tumors corresponded to tumor growth inhibition in multiple xenograft tumor models. Several of the antibodies identified inhibited the growth of tumors engineered to overexpress human HGF and human c-Met (S114 NIH 3T3) when grown subcutaneously in athymic mice. Furthermore, lead candidate antibody CE-355621 inhibited the growth of U87MG human glioblastoma and GTL-16 gastric xenografts by up to 98%. The findings support published pre-clinical and clinical data indicating that targeting c-Met with human monoclonal antibodies is a promising therapeutic approach for the treatment of cancer. PMID:23007574

  20. Monoclonal Antibodies as Probes for Unique Antigens in Secretory Cells of Mixed Exocrine Organs

    Science.gov (United States)

    Basbaum, C. B.; Mann, J. K.; Chow, A. W.; Finkbeiner, W. E.

    1984-07-01

    In the past, it has been difficult to identify the secretory product and control mechanisms associated with individual cell types making up mixed exocrine organs. This report establishes the feasibility of using immunological methods to characterize both the biochemical constituents and regulatory mechanisms associated with secretory cells in the trachea. Monoclonal antibodies directed against components of tracheal mucus were produced by immunizing mice with dialyzed, desiccated secretions harvested from tracheal organ culture. An immunofluorescence assay revealed that of the total 337 hybridomas screened, 100 produced antibodies recognizing goblet cell granules; 64, gland cell granules; and 3, antigen confined to the ciliated apical surface of the epithelium. The tracheal goblet cell antibody described in this report was strongly cross-reactive with intestinal goblet cells, as well as with a subpopulation of submandibular gland cells, but not with cells of Brunner's glands or the ciliated cell apical membrane. The serous cell antibody was not cross-reactive with goblet, Brunner's gland, or submandibular cells, or the ciliated cell apical membrane. The antibody directed against the apical membrane of ciliated cells did not cross-react with gland or goblet cells or the apical membrane of epithelial cells in the duodenum. Monoclonal antibodies, therefore, represent probes by which products unique to specific cells or parts of cells in the trachea can be distinguished. The antibodies, when used in enzyme immunoassays, can be used to quantitatively monitor secretion by individual cell types under a variety of physiological and pathological conditions. They also provide the means for purification and characterization of cell-specific products by immunoaffinity chromatography.

  1. Neoadjuvant chemotherapy:The touchstone of targeted therapy of HER-2 positive breast cancer%新辅助疗法:乳腺癌抗HER-2靶向治疗的试金石

    Institute of Scientific and Technical Information of China (English)

    柳光宇; 王玉洁

    2013-01-01

    人表皮生长因子受体(human epidermal growth factor receptor 2, HER-2)高表达被视为预后不良的重要预测因素,但随着抗HER-2靶向治疗药物曲妥珠单抗的问世以及化疗联合靶向治疗的应用,其预后逐步得到了改善。新辅助疗法因可作为“体内药敏”试验的特殊优势,成为早期可手术乳腺癌综合治疗的一种新的选择模式。近年来,新一代的抗HER-2靶向药物和治疗方法层出不穷,而在验证其疗效方面,新辅助疗法提供了一个重要的研究平台。现对HER-2过表达乳腺癌新辅助化疗的相关临床试验结果进行分析和解读,并对新近开展的多项针对HER-2过表达乳腺癌的新辅助靶向治疗研究作一综述。%The overexpression of human epidermal growth factor receptor 2 (HER-2) is generally considered as an signiifcant predictor of poor prognosis, but the outcome has been rewritten with the appearance and application of the HER-2 targeted monoclonal antibody trastuzumab and chemotherapy plus targeted therapy. For the superiority of acting as "in vivo susceptibility” test, neoadjuvant chemotherapy has become a new comprehensive treatment mode for operable breast cancer. And it has also provided an important approach to investigate the effectiveness of newly appeared targeted therapy. We focused more on reviewing and analyzing the results of clinical trials related to preoperation chemotherapy and the latest studies in HER-2 positive breast cancer in this article.

  2. Pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody in murine experimental viral myocarditis

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T.; Matsumori, A.; Watanabe, Y.; Tamaki, N.; Yonekura, Y.; Endo, K.; Konishi, J.; Kawai, C. (Kyoto Univ. (Japan))

    1990-11-01

    The pharmacokinetics of indium-111-labeled antimyosin monoclonal antibody Fab were investigated with use of murine experimental viral myocarditis as a model. The biodistribution of indium-111-labeled antimyosin antibody Fab on days 3, 5, 7, 14, 21 and 28 after encephalomyocarditis virus inoculation demonstrated that myocardial uptake increased significantly on days 5, 7 and 14 (maximum on day 7) in infected versus uninfected mice (p less than 0.001). In vivo kinetics in infected mice on day 7 demonstrated that the heart to blood ratio reached a maximum 48 h after the intravenous administration of indium-111-labeled antimyosin Fab, which was considered to be the optimal time for scintigraphy. The scintigraphic images obtained with indium-111-labeled antimyosin Fab demonstrated positive uptake in the cardiac lesion in infected mice. The pathologic study demonstrated that myocardial uptake correlated well with pathologic grades of myocardial necrosis. High performance liquid chromatography revealed the presence of an antigen-antibody complex in the circulation of infected mice after the injection of indium-111-labeled antimyosin Fab. This antigen bound to indium-111-labeled antimyosin Fab in the circulation might be whole myosin and this complex may decrease myocardial uptake and increase liver uptake. It is concluded that indium-111-labeled antimyosin monoclonal antibody Fab accumulates selectively in damaged heart tissue in mice with acute myocarditis and that indium-111-labeled antimyosin Fab scintigraphy may be a useful method for the visualization of acute myocarditis.

  3. [Production and characteristics of monoclonal antibodies against individual prekeratins in simple types of rat epithelium].

    Science.gov (United States)

    Troianovskiĭ, S M; Krutovskikh, V A; Bannikov, G A

    1986-06-01

    BALB/c mice were immunized with intermediate filaments (IF) from the rat colon mucosa, and their splenocytes were fused with myeloma cells to obtain hybridomas. Specific antibody production was assessed by indirect immunofluorescence on cultured rat hepatoma 27 containing prekeratins. The clones that stained IF in hepatoma and not in fibroblasts were judged positive. Clones E3 and E6 were shown to produce monoclonal antibodies against prekeratin with molecular mass of 40 kD (PK40), while clones E2 and E7 produced antibodies against prekeratin with molecular mass of 55 kD (PK55). This was established by immunoblotting with 125I-protein A in cell lysates from the colon, bladder, and hepatoma 27. Only PK55 was revealed in liver and salivary gland lysates. The above proteins were not detected in esophagus, fibroblast and skeletal muscle cell lysates. The monoclonal antibodies make it possible to study individual prekeratin expression in embryogenesis, differentiation and neoplastic transformation of simple epithelium.

  4. Preparation and characterization of new anti-PSMA monoclonal antibodies with potential clinical use.

    Science.gov (United States)

    Moffett, Serge; Mélançon, Dominic; DeCrescenzo, Gregory; St-Pierre, Caroline; Deschénes, François; Saragovi, H Uri; Gold, Phil; Cuello, A Claudio

    2007-12-01

    Monoclonal antibodies with high specificity for prostate cancer tissue are of interest for diagnostic and therapeutic applications employing targeted therapy. The prostate-specific membrane antigen (PSMA) is a protein predominantly found in epithelial cells of prostate tissue origin and its expression correlates with tumor aggressiveness. Here, we report the development and characterization of new antibodies against PSMA. Murine monoclonal antibodies (MAb) were obtained by immunizing mice with a peptide corresponding to PSMA extracellular residues 490-500 -- GKSLYESWTKK (PSMA(490-500)). The MAbs react specifically to PSMA and to the prostate cancer cell line LNCaP with an affinity for PSMA in the low nanomolar range. This study also demonstrates the potential use of these antibodies for targeted drug delivery to prostate cancer cells. Nanomolar concentrations of PSMA-specific MAb in association with a molecule with cytotoxic potential were sufficient to allow for binding and uptake by LNCaP cells within minutes, leading to complete cell death within 3 days. These MAbs have potential clinical value in the development of diagnostic and therapeutic applications for prostate cancer.

  5. Production and Characterization of a Murine Monoclonal Antibody Against Human Ferritin

    Science.gov (United States)

    Bayat, Ali Ahmad; Yeganeh, Omid; Ghods, Roya; Zarnani, Amir Hassan; Ardekani, Reza Bahjati; Mahmoudi, Ahmad Reza; Mahmoudian, Jafar; Haghighat-Noutash, Farzaneh; Jeddi-Tehrani, Mahmood

    2013-01-01

    Background Ferritin is an iron storage protein, which plays a key role in iron metabolism. Measurement of ferritin level in serum is one of the most useful indicators of iron status and also a sensitive measurement of iron deficiency. Monoclonal antibodies may be useful as a tool in various aspects of ferritin investigations. In this paper, the production of a murine monoclonal antibody (mAb) against human ferritin was reported. Methods Balb/c mice were immunized with purified human ferritin and splenocytes of hyper immunized mice were fused with Sp2/0 myeloma cells. After four times of cloning by limiting dilution, a positive hybridoma (clone: 2F9-C9) was selected by ELISA using human ferritin. Anti-ferritin mAb was purified from culture supernatants by affinity chromatography. Results Determination of the antibody affinity for ferritin by ELISA revealed a relatively high affinity (2.34×109 M -1) and the isotype was determined to be IgG2a. The anti-ferritin mAb 2F9-C9 reacted with 79.4% of Hela cells in flow cytometry. The antibody detected a band of 20 kDa in K562 cells, murine and human liver lysates, purified ferritin in Western blot and also ferritin in human serum. Conclusion This mAb can specifically recognize ferritin and may serve as a component of ferritin diagnostic kit if other requirements of the kit are met. PMID:24285995

  6. Paper-PEG-based membranes for hydrophobic interaction chromatography: purification of monoclonal antibody.

    Science.gov (United States)

    Yu, Deqiang; Chen, Xiaonong; Pelton, Robert; Ghosh, Raja

    2008-04-15

    This article discusses the preparation of novel Paper-PEG interpenetrating polymer network-based membranes as inexpensive alternative to currently available adsorptive membranes. The Paper-PEG membranes were developed for carrying out hydrophobic interaction membrane chromatography (HIMC). PEG is normally very hydrophilic but can undergo phase separation and become hydrophobic in the presence of high antichaotropic salt concentrations. Two variants of the Paper-PEG membranes, Paper-PEG 1 and Paper-PEG 2 were prepared by grafting different amounts of the polymer on filter paper and these were tested for their hydraulic properties and antibody binding capacity. The better of the two membranes (Paper-PEG 1) was then used for purifying the monoclonal antibody hIgG1-CD4 from simulated mammalian cell culture supernatant. The processing conditions required for purification were systematically optimized. The dynamic antibody binding capacity of the Paper-PEG 1 membrane was about 9 mg/mL of bed volume. A single step membrane chromatographic process using Paper-PEG 1 membrane gave high monoclonal antibody purity and recovery. The hydraulic permeability of the paper-based membrane was high and was maintained even after many runs, indicating that membrane fouling was negligible and the membrane was largely incompressible.

  7. Production and characterization of monoclonal antibodies against Campylobacter fetus subsp. venerealis

    Directory of Open Access Journals (Sweden)

    Telma M. Alves

    2012-07-01

    Full Text Available Myeloma cells Sp2/0-Ag14 and spleen cells from BALB/c mouse immunized with sonicated Campylobacter fetus subsp. venerealis NCTC 10354 were fused with polyethylene glycol (PEG for the selection of clones producing antibodies. Clones were obtained by limiting dilution and screened for the production of specific antibodies to C. fetus subsp. venerealis NCTC 10354 by indirect ELISA and western blot against a panel of bacteria: C. fetus subsp. venerealis NCTC 10354, C. fetus subsp fetus ADRI 1812, C. sputorum biovar sputorum LMG 6647, C. lari NCTC 11352, and Arcobacter skirrowii LMG 6621 for the ELISA and C. fetus subsp. venerealis NCTC 10354 and C. sputorum biovar sputorum LMG 6647 for the western blotting. Fifteen clones producing monoclonal antibodies (MAbs anti-C. fetus subsp. venerealis of the IgM (1 and IgG (14 classes were further screened for species-specificity. Four clones of the 15 obtained were producers of species-specific monoclonal antibodies (MAbs: two were specific for C. fetus subsp. venerealis and two were specific for C. fetus subsp. fetus. None of the clones were reactive against C. sputorum biovar sputorum LMG 6647. All clones recognized a protein with molecular mass of approximately 148 kDa from lysed C. fetus subsp. venerealis NCTC 10354.

  8. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture.

    Science.gov (United States)

    Doherty, Margaret; Bones, Jonathan; McLoughlin, Niaobh; Telford, Jayne E; Harmon, Bryan; DeFelippis, Michael R; Rudd, Pauline M

    2013-11-01

    Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Optimizing HER2 assessment in breast cancer

    DEFF Research Database (Denmark)

    Holten-Rossing, Henrik; Møller Talman, Maj-Lis; Kristensson, Martin

    2015-01-01

    In breast cancer, analysis of HER2 expression is pivotal for treatment decision. This study aimed at comparing digital, automated image analysis with manual reading using the HER2-CONNECT algorithm (Visiopharm) in order to minimize the number of equivocal 2+ scores and the need for reflex...

  10. Effects of Monoclonal Antibody Against Porcine 40-kDa Adipocyte-Specific Membrane Protein on Endocrine Secretion in Pigs

    Institute of Scientific and Technical Information of China (English)

    LIU Ling-yun; HU Hong-mei; ZHAO Su-mei; ZHANG Xi; DUAN Gang; GAO Shi-zheng

    2009-01-01

    The present study was to investigate the effect of monocional antibody against porcine 40-kDa adipocyte-specific membrane protein on endocrine secretion in pigs, in order to provide the evidence for application of this antibody to reduce excessive fat deposition in pig production. 40 Landrace × Saba pigs were randomly divided into 8 groups: 2 control groups were given saline with 10 mL, respectively, and the 6 treatment groups were given monoclonal antibody against porcine 40-kDa adipocyte-specific membrane protein with 0.1,0.5, and 1.0 mg kg-1 body weight at 15 or 60 kg body weight,respectively, all treatments were performed by intraperitoneal injection. The results showed that this monoclonal antibody could significantly reduce serum insulin level and increase levels of serum growth hormone (GH), insulin-like growth factor-1 (IGF-1), triiodothyronine (T3), and tetraiodothyronine (T4) either at 15 or 60 kg body weight injection. However,more marked effect was observed at 15 kg body weight treatment. Moreover, the dose-dependent effect of this monoclonal antibody on endocrine secretion was also observed. This result revealed that this monoclonal antibody increased secretion of hormones regulating fat lysis and reduced secretion of hormones regulating fat synthesis, suggests the reduction of porcine excessive fat deposition by this monoclonal antibody was carried out through affecting hormones regulating fat metabolism.

  11. A Monoclonal Antibody Based Capture ELISA for Botulinum Neurotoxin Serotype B: Toxin Detection in Food

    Directory of Open Access Journals (Sweden)

    Larry H. Stanker

    2013-11-01

    Full Text Available Botulism is a serious foodborne neuroparalytic disease, caused by botulinum neurotoxin (BoNT, produced by the anaerobic bacterium Clostridium botulinum. Seven toxin serotypes (A–H have been described. The majority of human cases of botulism are caused by serotypes A and B followed by E and F. We report here a group of serotype B specific monoclonal antibodies (mAbs capable of binding toxin under physiological conditions. Thus, they serve as capture antibodies for a sandwich (capture ELISA. The antibodies were generated using recombinant peptide fragments corresponding to the receptor-binding domain of the toxin heavy chain as immunogen. Their binding properties suggest that they bind a complex epitope with dissociation constants (KD’s for individual antibodies ranging from 10 to 48 × 10−11 M. Assay performance for all possible combinations of capture-detector antibody pairs was evaluated and the antibody pair resulting in the lowest level of detection (L.O.D., ~20 pg/mL was determined. Toxin was detected in spiked dairy samples with good recoveries at concentrations as low as 0.5 pg/mL and in ground beef samples at levels as low as 2 ng/g. Thus, the sandwich ELISA described here uses mAb for both the capture and detector antibodies (binding different epitopes on the toxin molecule and readily detects toxin in those food samples tested.

  12. Efficient Methods To Isolate Human Monoclonal Antibodies from Memory B Cells and Plasma Cells.

    Science.gov (United States)

    Corti, Davide; Lanzavecchia, Antonio

    2014-10-01

    In this article, we highlight the advantages of isolating human monoclonal antibodies from the human memory B cells and plasma cell repertoires by using high-throughput cellular screens. Memory B cells are immortalized with high efficiency using Epstein-Barr virus (EBV) in the presence of a toll-like receptor (TLR) agonist, while plasma cells are maintained in single-cell cultures by using interleukin 6 (IL-6) or stromal cells. In both cases, multiple parallel assays, including functional assays, can be used to identify rare cells that produce antibodies with unique properties. Using these methods, we have isolated potent and broadly neutralizing antibodies against a variety of viruses, in particular, a pan-influenza-A-neutralizing antibody and an antibody that neutralizes four different paramyxoviruses. Given the high throughput and the possibility of directly screening for function (rather than just binding), these methods are instrumental to implement a target-agnostic approach to identify the most effective antibodies and, consequently, the most promising targets for vaccine design. This approach is exemplified by the identification of unusually potent cytomegalovirus-neutralizing antibodies that led to the identification of the target, a pentameric complex that we are developing as a candidate vaccine.

  13. A human-mouse hybridoma producing monoclonal antibody against human sperm coating antigen.

    Science.gov (United States)

    Kyurkchiev, S D; Shigeta, M; Koyama, K; Isojima, S

    1986-01-01

    Since anti-sperm antibodies were first discovered in the sera of women, the relationship of these antibodies to sterility has been studied by many investigators. In order to determine the antigens of spermatozoa responsible for raising antibodies to spermatozoa in humans, many studies have been carried out by purifying human spermatozoa cell membrane and seminal plasma components. Since it was found that the purification was difficult by physiochemical procedures, the immunoaffinity chromatography bound monoclonal antibody (Mab) to spermatozoa antigens was attempted for this purpose. The establishment of hybridomas producing Mabs to human seminal plasma and human spermatozoa was reported by Shigeta et al. (1980), Isojima, Koyoma & Fujiwara (1982), Lee et al. (1982) and Isahakia & Alexander (1984). The ordinary approaches to obtain the Mabs consisted of xenogenic immunization with human semen and cell fusion of immunized spleen cells with mouse myeloma cells. However, the antigenic epitopes of human spermatozoa, which induced antibody production, are xenogenic for the mouse, and therefore there is a possibility that there is a difference in recognized antigenic epitopes in humans as isotypic and in mice as xenogenic. In order to study these antigenic epitopes, which correspond to antibodies against spermatozoa in women, the establishment of human-mouse hybridomas, which produced anti-semen antibodies as produced in sterile women, became essential. In these studies, we used recently developed cell fusion techniques to fuse immunized human peripheral lymphocytes with mouse myeloma cells. PMID:3456978

  14. Immunotherapy of melanoma with the immune costimulatory monoclonal antibodies targeting CD137

    Directory of Open Access Journals (Sweden)

    Li SY

    2013-09-01

    Full Text Available Shi-Yan Li, Yizhen Liu Cancer Research Institute, Scott and White Healthcare, Temple, TX, USA Abstract: Knowledge of how the immune system recognizes and attempts to control cancer growth and development has improved dramatically. The advent of immunotherapies for cancer has resulted in robust clinical responses and confirmed that the immune system can significantly inhibit tumor progression. Until recently, metastatic melanoma was a disease with limited treatment options and a poor prognosis. CD137 (also known as 4-1BB a member of the tumor necrosis factor (TNF receptor superfamily, is an activation-induced T cell costimulator molecule. Growing evidence indicates that anti-CD137 monoclonal antibodies possess strong antitumor properties, the result of their powerful capability to activate CD8+ T cells, to produce interferon (IFN-γ, and to induce cytolytic markers. Combination therapy of anti-CD137 with other anticancer agents, such as radiation, has robust tumor-regressing abilities against nonimmunogenic or poorly immunogenic tumors. Of importance, targeting CD137 eliminates established tumors, and the fact that anti-CD137 therapy acts in concert with other anticancer agents and/or radiation therapy to eradicate nonimmunogenic and weakly immunogenic tumors is an additional benefit. Currently, BMS-663513, a humanized anti-CD137 antibody, is in clinical trials in patients with solid tumors, including melanoma, renal carcinoma, ovarian cancer, and B-cell malignancies. In this review, we discuss the basis of the therapeutic potential of targeting CD137 in cancer treatment, focusing in particular, on BMS-663513 as an immune costimulatory monoclonal antibody for melanoma immunotherapy. Keywords: anti-CD137 monoclonal antibodies, immune costimulator molecule, BMS-663513

  15. Production and characterization of monoclonal antibodies to wall-localized peroxidases from corn seedlings

    Science.gov (United States)

    Kim, S. H.; Terry, M. E.; Hoops, P.; Dauwalder, M.; Roux, S. J.

    1988-01-01

    A library of 22 hybridomas, which make antibodies to soluble wall antigens from the coleoptiles and primary leaves of etiolated corn (Zea mays L.) seedlings, was raised and cloned three times by limit dilution to assure monoclonal growth and stability. Two of these hybridomas made immunoglobulin G antibodies, designated mWP3 and mWP19, which both effectively immunoprecipitated peroxidase activity from crude and partially purified preparations of wall peroxidases. Direct peroxidase-binding assays revealed that both antibodies bound enzymes with peroxidase activity. As judged by immunoblot analyses, mWP3 recognized a Mr 98,000 wall peroxidase with an isoelectric point near 4.2, and mWP19 recognized a Mr 58,000 wall peroxidase. Immunogold localization studies showed both peroxidases are predominately in cell walls.