WorldWideScience

Sample records for hepatic taurine transport

  1. Phenotype of the taurine transporter knockout mouse.

    Science.gov (United States)

    Warskulat, Ulrich; Heller-Stilb, Birgit; Oermann, Evelyn; Zilles, Karl; Haas, Helmut; Lang, Florian; Häussinger, Dieter

    2007-01-01

    This chapter reports present knowledge on the properties of mice with disrupted gene coding for the taurine transporter (taut-/- mice). Study of those mice unraveled some of the roles of taurine and its membrane transport for the development and maintenance of normal organ functions and morphology. When compared with wild-type controls, taut-/- mice have decreased taurine levels in skeletal and heart muscle by about 98%, in brain, kidney, plasma, and retina by 80 to 90%, and in liver by about 70%. taut-/- mice exhibit a lower body mass as well as a strongly reduced exercise capacity compared with taut+/- and wild-type mice. Furthermore, taut-/- mice show a variety of pathological features, for example, subtle derangement of renal osmoregulation, changes in neuroreceptor expression, and loss of long-term potentiation in the striatum, and they develop clinically relevant age-dependent disorders, for example, visual, auditory, and olfactory dysfunctions, unspecific hepatitis, and liver fibrosis. Taurine-deficient animal models such as acutely dietary-manipulated foxes and cats, pharmacologically induced taurine-deficient rats, and taurine transporter knockout mouse are powerful tools allowing identification of the mechanisms and complexities of diseases mediated by impaired taurine transport and taurine depletion (Chapman et al., 1993; Heller-Stilb et al., 2002; Huxtable, 1992; Lake, 1993; Moise et al., 1991; Novotny et al., 1991; Pion et al., 1987; Timbrell et al., 1995; Warskulat et al., 2004, 2006b). Taurine, which is the most abundant amino acid in many tissues, is normally found in intracellular concentrations of 10 to 70 mmol/kg in mammalian heart, brain, skeletal muscle, liver, and retina (Chapman et al., 1993; Green et al., 1991; Huxable, 1992; Timbrell et al., 1995). These high taurine levels are maintained by an ubiquitous expression of Na(+)-dependent taurine transporter (TAUT) in the plasma membrane (Burg, 1995; Kwon and Handler, 1995; Lang et al., 1998

  2. Physiological significance of taurine and the taurine transporter in intestinal epithelial cells.

    Science.gov (United States)

    Shimizu, M; Satsu, H

    2000-01-01

    Taurine transport in human intestinal epithelial Caco-2 cells was down-regulated by culturing the cells in taurine-containing media and was up-regulated in a taurine-free medium. This adaptive regulation was associated with changes in both the Vmax and Km values of taurine transport. A change in the mRNA level of the taurine transporter (TAUT) in this regulation was also observed. The presence of such a regulatory mechanism for maintaining the intracellular taurine content at a certain level suggests that taurine plays an important role in the intestinal cell functions. The intracellular taurine content was increased when Caco-2 cells were exposed to a hypertonic stress. TAUT was up-regulated via the increased expression of TAUT mRNA in the hypertonic cells, suggesting that taurine serves as an osmolyte and protects the cells from osmotic stress. Similar up-regulation of TAUT was observed in the small intestine of water-deprived rats.

  3. Natural taurine promotes apoptosis of human hepatic stellate cells in proteomics analysis

    OpenAIRE

    Deng, Xin; Liang, Jian; LIN, ZHI-XIU; Wu, Fa-Sheng; Zhang, Ya-ping; Zhang, Zhi-Wei

    2010-01-01

    AIM: To study the differential expression of proteins between natural taurine treated hepatic stellate cells and controls, and investigate the underlying regulatory mechanism of natural taurine in inhibiting hepatic fibrosis.

  4. Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy.

    Science.gov (United States)

    Ito, Takashi; Kimura, Yasushi; Uozumi, Yoriko; Takai, Mika; Muraoka, Satoko; Matsuda, Takahisa; Ueki, Kei; Yoshiyama, Minoru; Ikawa, Masahito; Okabe, Masaru; Schaffer, Stephen W; Fujio, Yasushi; Azuma, Junichi

    2008-05-01

    The sulfur-containing beta-amino acid, taurine, is the most abundant free amino acid in cardiac and skeletal muscle. Although its physiological function has not been established, it is thought to play an important role in ion movement, calcium handling, osmoregulation and cytoprotection. To begin examining the physiological function of taurine, we generated taurine transporter- (TauT-) knockout mice (TauTKO), which exhibited a deficiency in myocardial and skeletal muscle taurine content compared with their wild-type littermates. The TauTKO heart underwent ventricular remodeling, characterized by reductions in ventricular wall thickness and cardiac atrophy accompanied with the smaller cardiomyocytes. Associated with the structural changes in the heart was a reduction in cardiac output and increased expression of heart cardiac failure (fetal) marker genes, such as ANP, BNP and beta-MHC. Moreover, ultrastructural damage to the myofilaments and mitochondria was observed. Further, the skeletal muscle of the TauTKO mice also exhibited decreased cell volume, structural defects and a reduction of exercise endurance capacity. Importantly, the expression of Hsp70, ATA2 and S100A4, which are upregulated by osmotic stress, was elevated in both heart and skeletal muscle of the TauTKO mice. Taurine depletion causes cardiomyocyte atrophy, mitochondrial and myofiber damage and cardiac dysfunction, effects likely related to the actions of taurine. Our data suggest that multiple actions of taurine, including osmoregulation, regulation of mitochondrial protein expression and inhibition of apoptosis, collectively ensure proper maintenance of cardiac and skeletal muscular structure and function.

  5. The taurine transporter substrate guanidinoethyl sulfonate mimics the action of taurine on long-term synaptic potentiation.

    Science.gov (United States)

    Suárez, Luz M; Muñoz, María-Dolores; González, José C; Bustamante, Julián; Del Río, Rafael Martín; Solís, José M

    2016-11-01

    Taurine is especially abundant in rodent brain where it appears to be involved in osmoregulation and synaptic plasticity mechanisms. The demonstration of a physiological role for taurine has been hampered by the difficulty in modifying taurine levels in most tissues, including the brain. We used an experimental strategy to reduce taurine levels, involving treatment with guanidinoethyl sulfonate (GES), a structural analogue of taurine that, among other properties, acts as a competitive inhibitor of taurine transport. GES delivered in the drinking water of rats for 1 month effectively reduced taurine levels in brain structures (hippocampus, cerebellum and cortex) and outside the brain (heart, muscle, kidney, liver and plasma) by between 50 and 80 %, depending on the tissue. This partial taurine depletion did not affect either basal synaptic transmission or the late phase of long-term potentiation (late-LTP) in hippocampal slices. In vivo microdialysis studies in the hippocampus revealed that GES treatment reduced extracellular taurine levels and the magnitude of taurine released in response to the application of either N-methyl-D-aspartate (NMDA) or a hypoosmotic solution, without affecting release mechanisms. Finally, we demonstrated in hippocampal slices that a brief GES application can mimic taurine action on the conversion of a decremental LTP into a perdurable late-LTP, concluding that GES might replace taurine function in some mechanisms such as those implicated in synaptic plasticity.

  6. Taurine drinking ameliorates hepatic granuloma and fibrosis in mice infected with Schistosoma japonicum.

    Science.gov (United States)

    Yu, Yan-Rong; Ni, Xian-Qiang; Huang, Jie; Zhu, Yong-Hong; Qi, Yong-Fen

    2016-04-01

    In schistosomiasis, egg-induced hepatic granuloma formation is a cytokine-mediated, predominantly CD4(+) Th2 immune response that can give rise to hepatic fibrosis. Hepatic fibrosis is the main cause of increased morbidity and mortality in humans with schistosome infection. Taurine has various physiological functions and hepatoprotective properties as well as anti-inflammatory and immunomodulatory activity. However, little is known about the role of taurine in schistosome egg-induced granuloma formation and fibrosis. We aimed to evaluate the therapeutic potential of taurine as preventative treatment for Schistosoma japonicum infection. Mice infected with S. japonicum cercariae were supplied with taurine drinking water (1% w/v) for 4 weeks starting at 4 weeks post-infection. Taurine supplementation significantly improved the liver pathologic findings, reduced the serum levels of aminotransferases and area of hepatic granuloma, and prevented fibrosis progression. In addition, taurine decreased the expression of the granulomatous and fibrogenic mediators transforming growth factor β1, tumor necrosis factor α, monocyte chemotactic protein 1α and macrophage inflammatory protein 1α as well as the endoplasmic reticulum stress marker glucose-regulated protein 78. Thus, taurine can significantly attenuate S. japonicum egg-induced hepatic granuloma and fibrosis, which may depend in part on the downregulation of some relevant cytokine/chemokines and reducing the endoplasmic reticulum stress response.

  7. Taurine drinking ameliorates hepatic granuloma and fibrosis in mice infected with Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Yan-Rong Yu

    2016-04-01

    Full Text Available In schistosomiasis, egg-induced hepatic granuloma formation is a cytokine-mediated, predominantly CD4+ Th2 immune response that can give rise to hepatic fibrosis. Hepatic fibrosis is the main cause of increased morbidity and mortality in humans with schistosome infection. Taurine has various physiological functions and hepatoprotective properties as well as anti-inflammatory and immunomodulatory activity. However, little is known about the role of taurine in schistosome egg-induced granuloma formation and fibrosis. We aimed to evaluate the therapeutic potential of taurine as preventative treatment for Schistosoma japonicum infection. Mice infected with S. japonicum cercariae were supplied with taurine drinking water (1% w/v for 4 weeks starting at 4 weeks post-infection. Taurine supplementation significantly improved the liver pathologic findings, reduced the serum levels of aminotransferases and area of hepatic granuloma, and prevented fibrosis progression. In addition, taurine decreased the expression of the granulomatous and fibrogenic mediators transforming growth factor β1, tumor necrosis factor α, monocyte chemotactic protein 1α and macrophage inflammatory protein 1α as well as the endoplasmic reticulum stress marker glucose-regulated protein 78. Thus, taurine can significantly attenuate S. japonicum egg-induced hepatic granuloma and fibrosis, which may depend in part on the downregulation of some relevant cytokine/chemokines and reducing the endoplasmic reticulum stress response.

  8. Natural taurine promotes apoptosis of human hepatic stellate cells in proteomics analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To study the differential expression of proteins between natural taurine treated hepatic stellate cells and controls, and investigate the underlying regulatory mechanism of natural taurine in inhibiting hepatic fibrosis.METHODS: A proteomic strategy combining two-dimensional gel electrophoresis and ultraperform ance liquid chromatographyelectrospray ionizationtandem mass spectrometry (UPLCESIMS/MS) was used to study the differential expression of proteins and Western blotting was used to validate the re...

  9. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Terrill, Jessica R; Grounds, Miranda D; Arthur, Peter G

    2015-09-01

    The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Downregulation of hepatic betaine:homocysteine methyltransferase (BHMT) expression in taurine-deficient mice is reversed by taurine supplementation in vivo.

    Science.gov (United States)

    Jurkowska, Halina; Niewiadomski, Julie; Hirschberger, Lawrence L; Roman, Heather B; Mazor, Kevin M; Liu, Xiaojing; Locasale, Jason W; Park, Eunkyue; Stipanuk, Martha H

    2016-03-01

    The cysteine dioxygenase (Cdo1)-null and the cysteine sulfinic acid decarboxylase (Csad)-null mouse are not able to synthesize hypotaurine/taurine by the cysteine/cysteine sulfinate pathway and have very low tissue taurine levels. These mice provide excellent models for studying the effects of taurine on biological processes. Using these mouse models, we identified betaine:homocysteine methyltransferase (BHMT) as a protein whose in vivo expression is robustly regulated by taurine. BHMT levels are low in liver of both Cdo1-null and Csad-null mice, but are restored to wild-type levels by dietary taurine supplementation. A lack of BHMT activity was indicated by an increase in the hepatic betaine level. In contrast to observations in liver of Cdo1-null and Csad-null mice, BHMT was not affected by taurine supplementation of primary hepatocytes from these mice. Likewise, CSAD abundance was not affected by taurine supplementation of primary hepatocytes, although it was robustly upregulated in liver of Cdo1-null and Csad-null mice and lowered to wild-type levels by dietary taurine supplementation. The mechanism by which taurine status affects hepatic CSAD and BHMT expression appears to be complex and to require factors outside of hepatocytes. Within the liver, mRNA abundance for both CSAD and BHMT was upregulated in parallel with protein levels, indicating regulation of BHMT and CSAD mRNA synthesis or degradation.

  11. Regulation of taurine transport at the blood-placental barrier by calcium ion, PKC activator and oxidative stress conditions

    Science.gov (United States)

    2010-01-01

    Background In the present study, we investigated the changes of uptake and efflux transport of taurine under various stress conditions using rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT cells), as in vitro blood-placental barrier (BPB) model. Methods The transport of taurine in TR-TBT cells were characterized by cellular uptake study using radiolabeled taurine. The efflux of taurine was measured from the amount of radiolabeled taurine remaining in the cells after the uptake of radiolabeled taurine for 60 min. Results Taurine uptake was significantly decreased by phosphorylation of protein kinase C (PKC) activator in TR-TBT cells. Also, calcium ion (Ca2+) was involved in taurine transport in TR-TBT cells. Taurine uptake was inhibited and efflux was enhanced under calcium free conditions in the cells. In addition, oxidative stress induced the change of taurine transport in TR-TBT cells, but the changes were different depending on the types of oxidative stress inducing agents. Tumor necrosis factor-α (TNF-α), lipopolysaccharide (LPS) and diethyl maleate (DEM) significantly increased taurine uptake, but H2O2 and nitric oxide (NO) donor decreased taurine uptake in the cells. Taurine efflux was down-regulated by TNF-α in TR-TBT cells. Conclusion Taurine transport in TR-TBT cells were regulated diversely at extracellular Ca2+ level, PKC activator and oxidative stress conditions. It suggested that variable stresses affected the taurine supplies from maternal blood to fetus and taurine level of fetus. PMID:20804613

  12. The influence of dietary taurine and reduced housing density on hepatic functions in laying hens.

    Science.gov (United States)

    Ma, Zili; Zhang, Jinqiu; Ma, Haitian; Dai, Bin; Zheng, Liuhai; Miao, Jinfeng; Zhang, Yuanshu

    2014-07-01

    To investigate the influence of dietary taurine and reduced housing density on hepatic functions in laying hens, green-shell laying hens were randomly assigned to 3 groups: a free-range group, a caged group with low-density, and a caged group with high-density. Each group was further divided into the control (C) and taurine-treatment (T) groups. All the test birds were fed the same basic diet, except that the T groups were supplemented with 0.1% taurine. After 15 d, sera and liver were aseptically collected. The results show that dietary taurine supplementation and reduced housing density significantly attenuated physiopathological changes in the liver. When compared with the free-range group, serum alanine aminotransterase and aspartate aminotransterase in the caged hens were significantly higher and were deceased by taurine (P caged hens was higher than that in free-range hens, and taurine reduced serum inducible nitric oxide synthase activities in the low-density group (P < 0.05). Nuclear factor-κB DNA-binding activity increased significantly in the high-density housing group when compared with the other 2 housing patterns and was decreased by taurine (P < 0.05). Taurine reduced the expression of tumor necrosis factor-α mRNA in all 3 rearing patterns, IL-4 mRNA expression in the high-density group, and IL-10 in the low-density group (P < 0.05). Malondialdehyde levels decreased in serum and liver from T groups and serum total antioxidation capability levels increased significantly (P < 0.05) in the low-density group. Dietary taurine supplementation decreased acetyl-CoA and sterol regulatory element-binding protein-1c mRNA expression in the high-density groups (P < 0.05). Taurine significantly increased lipoprotein lipase mRNA expression in the high-density group and peroxisome proliferator receptor mRNA expression both in the low- and high-density groups (P < 0.05). Taurine supplementation reduced total cholesterol levels in the low- and high-density groups

  13. Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice.

    Science.gov (United States)

    Ito, Takashi; Oishi, Shohei; Takai, Mika; Kimura, Yasushi; Uozumi, Yoriko; Fujio, Yasushi; Schaffer, Stephen W; Azuma, Junichi

    2010-08-24

    Taurine, a sulfur-containing beta-amino acid, is highly contained in heart and skeletal muscle. Taurine has a variety of biological actions, such as ion movement, calcium handling and cytoprotection in the cardiac and skeletal muscles. Meanwhile, taurine deficiency leads various pathologies, including dilated cardiomyopathy, in cat and fox. However, the essential role of taurine depletion on pathogenesis has not been fully clarified. To address the physiological role of taurine in mammalian tissues, taurine transporter-(TauT-) knockout models were recently generated. TauTKO mice exhibited loss of body weight, abnormal cardiac function and the reduced exercise capacity with tissue taurine depletion. In this chapter, we summarize pathological profile and histological feature of heart and skeletal muscle in TauTKO mice.

  14. Impact of SLC6A Transporters in Physiological Taurine Transport at the Blood-Retinal Barrier and in the Liver.

    Science.gov (United States)

    Kubo, Yoshiyuki; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi

    2016-01-01

    Cumulative studies showed that taurine (2-aminoethanesulfonic acid) contributes to a variety of physiological events. Transport study suggested the cellular taurine transport in an Na(+)- and Cl(-)-dependent manner, and the several members of SLC6A family have been shown as taurine transporter. At the inner blood-retinal barrier (BRB), taurine transporter (TauT/SLC6A) is involved in the transport of taurine to the retina from the circulating blood. The involvement of TauT is also suggested in γ-aminobutyric acid (GABA) transport at the inner BRB, and its role is assumed in the elimination of GABA from the retinal interstitial fluid. In the retina, taurine is thought to be a major organic osmolyte, and its influx and efflux through TauT and volume-sensitive organic osmolyte and anion channel (VSOAC) in Müller cells regulate the osmolarity in the retinal microenvironment to maintain a healthy retina. In the liver, hepatocytes take up taurine via GABA transporter 2 (GAT2/SLC6A13, the orthologue of mouse GAT3) expressed at the sinusoidal membrane of periportal hepatocytes, contributing to the metabolism of bile acid. Site-directed mutagenesis study suggests amino acid residues that are crucial in the recognition of substrates by GATs and TauT. The evidence suggests the physiological impact of taurine transporters in tissues.

  15. High expression of the taurine transporter TauT in primary cilia of NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Voss, Jesper W.; Teilmann, Stefan C.

    2005-01-01

    Taurine, present in high concentrations in various mammalian cells, is essential for regulation of cell volume, cellular oxidative status as well as the cellular Ca2+ homeostasis. Cellular taurine content is a balance between active uptake through the saturable, Na+-dependent taurine transporter...... TauT expression and (iii) long-term exposure to hypertonic taurine medium, i.e., growth medium supplemented with 100 mM taurine, reduces ciliary TauT expression. These results point to an important role of taurine in the regulation of physiological processes located to the primary cilium....

  16. Taurine transport in human placental trophoblast is important for regulation of cell differentiation and survival.

    Science.gov (United States)

    Desforges, M; Parsons, L; Westwood, M; Sibley, C P; Greenwood, S L

    2013-03-21

    The outer epithelial cell layer of human placenta, the syncytiotrophoblast, is a specialised terminally differentiated multinucleate tissue. It is generated and renewed from underlying cytotrophoblast cells that undergo proliferation, differentiation and fusion with syncytiotrophoblast. Acquisition of fresh cellular components is thought to be balanced by apoptosis and shedding of aged nuclei. This process of trophoblast cell turnover maintains a functional syncytiotrophoblast, capable of sufficient nutrient transfer from mother to foetus. Foetal growth restriction (FGR) is a pregnancy complication associated with aberrant trophoblast turnover and reduced activity of certain amino acid transporters, including the taurine transporter (TauT). Taurine is the most abundant amino acid in human placenta implying an important physiological role within this tissue. Unlike other amino acids, taurine is not incorporated into proteins and in non-placental cell types represents an important osmolyte involved in cell volume regulation, and is also cytoprotective. Here, we investigated the role of taurine in trophoblast turnover using RNA interference to deplete primary human trophoblast cells of TauT and reduce intracellular taurine content. Trophoblast differentiation was compromised in TauT-deficient cells, and susceptibility of these cells to an inflammatory cytokine that is elevated in FGR was increased, evidenced by elevated levels of apoptosis. These data suggest an important role for taurine in trophoblast turnover and cytoprotection.

  17. Downregulation of the taurine transporter TauT during hypo-osmotic stress in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Hansen, Daniel Bloch; Friis, Martin Barfred; Hoffmann, Else Kay

    2012-01-01

    The present work was initiated to investigate regulation of the taurine transporter TauT by reactive oxygen species (ROS) and the tonicity-responsive enhancer binding protein (TonEBP) in NIH3T3 mouse fibroblasts during acute and long-term (4 h) exposure to low-sodium/hypo-osmotic stress. Taurine...... by ROS under hypo-osmotic, low-sodium conditions, whereas the TauT mRNA level is unaffected. Acute exposure to ROS reduces taurine uptake as a result of modulated TauT transport kinetics. Thus, swelling-induced ROS production could account for the reduced taurine uptake under low-sodium...

  18. High expression of the taurine transporter TauT in primary cilia of NIH3T3 fibroblasts.

    Science.gov (United States)

    Christensen, Søren T; Voss, Jesper W; Teilmann, Stefan C; Lambert, Ian H

    2005-05-01

    Taurine, present in high concentrations in various mammalian cells, is essential for regulation of cell volume, cellular oxidative status as well as the cellular Ca2+ homeostasis. Cellular taurine content is a balance between active uptake through the saturable, Na(+)-dependent taurine transporter TauT, and passive release via a volume-sensitive leak pathway. Here we demonstrate that: (i) TauT localizes to the primary cilium of growth-arrested NIH3T3 fibroblasts, (ii) long-term exposure to TNF(alpha) or hypertonic sucrose medium, i.e., growth medium supplemented with 100 mM sucrose, increases ciliary TauT expression and (iii) long-term exposure to hypertonic taurine medium, i.e., growth medium supplemented with 100 mM taurine, reduces ciliary TauT expression. These results point to an important role of taurine in the regulation of physiological processes located to the primary cilium.

  19. Effects of taurine supplementation on hepatic markers of inflammation and lipid metabolism in mothers and offspring in the setting of maternal obesity.

    Directory of Open Access Journals (Sweden)

    Minglan Li

    Full Text Available Maternal obesity is associated with obesity and metabolic disorders in offspring. However, intervention strategies to reverse or ameliorate the effects of maternal obesity on offspring health are limited. Following maternal undernutrition, taurine supplementation can improve outcomes in offspring, possibly via effects on glucose homeostasis and insulin secretion. The effects of taurine in mediating inflammatory processes as a protective mechanism has not been investigated. Further, the efficacy of taurine supplementation in the setting of maternal obesity is not known. Using a model of maternal obesity, we examined the effects of maternal taurine supplementation on outcomes related to inflammation and lipid metabolism in mothers and neonates. Time-mated Wistar rats were randomised to either: 1 control : control diet during pregnancy and lactation (CON; 2 CON supplemented with 1.5% taurine in drinking water (CT; 3 maternal obesogenic diet (high fat, high fructose during pregnancy and lactation (MO; or 4 MO supplemented with taurine (MOT. Maternal and neonatal weights, plasma cytokines and hepatic gene expression were analysed. A MO diet resulted in maternal hyperinsulinemia and hyperleptinemia and increased plasma glucose, glutamate and TNF-α concentrations. Taurine normalised maternal plasma TNF-α and glutamate concentrations in MOT animals. Both MO and MOT mothers displayed evidence of fatty liver accompanied by alterations in key markers of hepatic lipid metabolism. MO neonates displayed a pro-inflammatory hepatic profile which was partially rescued in MOT offspring. Conversely, a pro-inflammatory phenotype was observed in MOT mothers suggesting a possible maternal trade-off to protect the neonate. Despite protective effects of taurine in MOT offspring, neonatal mortality was increased in CT neonates, indicating possible adverse effects of taurine in the setting of normal pregnancy. These data suggest that maternal taurine supplementation

  20. The role of taurine in infant nutrition.

    Science.gov (United States)

    Chesney, R W; Helms, R A; Christensen, M; Budreau, A M; Han, X; Sturman, J A

    1998-01-01

    The importance of taurine in the diet of pre-term and term infants has not always been clearly understood and is a topic of interest to students of infant nutrition. Recent evidence indicates that it should be considered one of the "conditionally essential" amino acids in infant nutrition. Plasma values for taurine will fall if infants are fed a taurine-free formula or do not have taurine provided in the TPN solution. Urine taurine values also fall, which is indicative of an attempt by the kidney to conserve taurine. The very-low-birth-weight infant, for a variety of reasons involving the maturation of tubular transport function, cannot maximally conserve taurine by enhancing renal reabsorption and, hence, is potentially at greater risk for taurine depletion than larger pre-term or term infants, and certainly more than older children who have taurine in their diet. Taurine has an important role in fat absorption in pre-term and possibly term infants and in children with cystic fibrosis. Because taurine-conjugated bile acids are better emulsifiers of fat than glycine-conjugated bile acids, the dietary (or TPN) intake has a direct influence on absorption of lipids. Taurine supplementation of formulas or TPN solutions could potentially serve to minimize the brain phospholipid fatty acid composition differences between formula-fed and human milk-fed infants. Taurine appears to have a role in infants, children, and even adults receiving most (> 75%) of their calories from TPN solutions in the prevention of granulation of the retina and electroencephalographic changes. Taurine has also been reported to improve maturation of auditory-evoked responses in pre-term infants, although this point is not fully established. Clearly, taurine is an important osmolyte in the brain and the renal medulla. At these locations, it is a primary factor in the cell volume regulatory process, in which brain or renal cells swell or shrink in response to osmolar changes, but return to their

  1. Taurine Attenuates Hepatic Inflammation in Chronic Alcohol-Fed Rats Through Inhibition of TLR4/MyD88 Signaling.

    Science.gov (United States)

    Lin, Chao-Jen; Chiu, Chun-Ching; Chen, Yi-Chen; Chen, Mu-Lin; Hsu, Tsai-Ching; Tzang, Bor-Show

    2015-12-01

    Accumulating evidence indicates that overconsumption of ethanol contributes in many ways to the pathogenesis of hepatic injury. Although studies indicate that taurine decreases lipogenesis, oxidative stress, and inflammatory cytokines, the protective effect of taurine against alcohol-induced liver injury is still unclear. To clarify the precise signaling involved in the beneficial effect of taurine on alcohol-induced liver injury, rats were randomly divided into four treatment groups: (1) control (Ctl), (2) alcohol (Alc), (3) Alc+taurine (Tau), and (4) Alc+silymarin (Sil). The Tau and Sil groups had lower lymphocyte infiltration and significantly lower TLR-4/MyD88 and IκB/NFκB compared to the Alc group. The inducible nitric oxide synthase (iNOS), C-reactive protein (CRP), tumor necrosis factors (TNF)-α, interleukin (IL)-6, and IL-1β were also significantly lower in the Tau and Sil groups than in the Alc group. The experimental results indicated that hepatoprotection against alcohol-induced inflammation may be mediated by decreased TLR-4/MyD88 signaling.

  2. Transcriptomic and proteomic analysis of human hepatic stellate cells treated with natural taurine.

    Science.gov (United States)

    Liang, Jian; Deng, Xin; Wu, Fa-Sheng; Tang, Yan-Fang

    2013-05-01

    The aim of this study was to investigate the differential expression of genes and proteins between natural taurine (NTau)‑treated hepatic stellate cells (HSCs) and control cells as well as the underlying mechanism of NTau in inhibiting hepatic fibrosis. A microculture tetrazolium (MTT) assay was used to analyze the proliferation of NTau‑treated HSCs. Flow cytometry was performed to compare the apoptosis rate between NTau-treated and non‑treated HSCs. Proteomic analysis using a combination of 2-dimensional gel electrophoresis (2DE) and mass spectrometry (MS) was conducted to identify the differentially expressed proteins. Microarray analysis was performed to investigate the differential expression of genes and real-time polymerase chain reaction (PCR) was used to validate the results. The experimental findings obtained demonstrated that NTau decreased HSC proliferation, resulting in an increased number of cells in the G0/G1 phase and a reduced number of cells in the S phase. Flow cytometric analysis showed that NTau-treated HSCs had a significantly increased rate of apoptosis when compared with the non‑treated control group. A total of 15 differentially expressed proteins and 658 differentially expressed genes were identified by 2DE and MS, and microarray analysis, respectively. Gene ontology (GO) functional analysis indicated that these genes and proteins were enriched in the function clusters and pathways related to cell proliferation, cellular apoptosis and oxidation. The transcriptome and proteome analyses of NTau-treated HSCs demonstrated that NTau is able to significantly inhibit cell proliferation and promote cell apoptosis, highlighting its potential therapeutic benefits in the treatment of hepatic fibrosis.

  3. Effect of fishmeal replacement by soy protein concentrate with taurine supplementation on hepatic intermediary metabolism and antioxidant status of totoaba juveniles (Totoaba macdonaldi).

    Science.gov (United States)

    Bañuelos-Vargas, Isaura; López, Lus M; Pérez-Jiménez, Amalia; Peres, Helena

    2014-04-01

    The effect of dietary incorporation of soy protein concentrate (SPC) and the concomitant supplementation with taurine on hepatic intermediary metabolism and antioxidant status of totoaba (Totoaba macdonaldi) juveniles was assessed. Four isoproteic and isolipidic diets were formulated containing either 30 or 60% of SPC (diets SP30 and SP60), supplemented or not with 1% of taurine (diets SP30T and SP60T). A fish meal (FM) based diet, without SPC and taurine supplementation, was used as a control. Triplicate groups of 32 totoaba juveniles (average body mass=7.5g) were fed these diets over 45days. Results revealed that dietary FM replacement by SPC depressed the overall intermediary metabolism. Activity of key enzymes of amino acid catabolism and gluconeogenesis was significantly reduced and a trend to reduce glycolysis and glucose-6-phosphate dehydrogenase activity was observed. The incorporation of the highest level of SPC also significantly increased hepatic lipid peroxidation and the activity of superoxide dismutase. Concomitant taurine supplementation restored the activity of amino acid catabolic and gluconeogenic enzymes and hexokinase to levels similar of those of the control diet. Taurine supplementation also led to a significant increase of glucose-6-phosphate dehydrogenase and catalase activity, as well as to a significant reduction of liver lipid peroxidation. These results suggest that taurine may play an important metabolic modulation action on totoaba fed SPC based diets, contributing to the enhancement of the overall metabolism and to the reduction of liver oxidative damage.

  4. Taurine treatment preserves brain and liver mitochondrial function in a rat model of fulminant hepatic failure and hyperammonemia.

    Science.gov (United States)

    Jamshidzadeh, Akram; Heidari, Reza; Abasvali, Mozhgan; Zarei, Mehdi; Ommati, Mohammad Mehdi; Abdoli, Narges; Khodaei, Forouzan; Yeganeh, Yasaman; Jafari, Faezeh; Zarei, Azita; Latifpour, Zahra; Mardani, Elnaz; Azarpira, Negar; Asadi, Behnam; Najibi, Asma

    2017-02-01

    Ammonia-induced mitochondrial dysfunction and energy crisis is known as a critical consequence of hepatic encephalopathy (HE). Hence, mitochondria are potential targets of therapy in HE. The current investigation was designed to evaluate the role of taurine treatment on the brain and liver mitochondrial function in a rat model of hepatic encephalopathy and hyperammonemia. The animals received thioacetamide (400mg/kg, i.p, for three consecutive days at 24-h intervals) as a model of acute liver failure and hyperammonemia. Several biochemical parameters were investigated in the serum, while the animals' cognitive function and locomotor activity were monitored. Mitochondria was isolated from the rats' brain and liver and several indices were assessed in isolated mitochondria. Liver failure led to cognitive dysfunction and impairment in locomotor activity in the rats. Plasma and brain ammonia was high and serum markers of liver injury were drastically elevated in the thioacetamide-treated group. An assessment of brain and liver mitochondrial function in the thioacetamide-treated animals revealed an inhibition of succinate dehydrogenase activity (SDA), collapsed mitochondrial membrane potential, mitochondrial swelling, and increased reactive oxygen species (ROS). Furthermore, a significant decrease in mitochondrial ATP was detected in the brain and liver mitochondria isolated from thioacetamide-treated animals. Taurine treatment (250, 500, and 1000mg/kg) decreased mitochondrial swelling, ROS, and LPO. Moreover, the administration of this amino acid restored brain and liver mitochondrial ATP. These data suggest taurine to be a potential protective agent with therapeutic capability against hepatic encephalopathy and hyperammonemia-induced mitochondrial dysfunction and energy crisis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Effect of taurine supplementation on hepatic metabolism and alleviation of cadmium toxicity and bioaccumulation in a marine teleost, red sea bream, Pagrus major.

    Science.gov (United States)

    Hano, Takeshi; Ito, Katsutoshi; Kono, Kumiko; Ito, Mana; Ohkubo, Nobuyuki; Mochida, Kazuhiko

    2017-02-01

    This study was performed to unravel the mechanism of the beneficial action of taurine on marine teleost fish, red sea bream (Pagrus major), by analyzing the hepatic metabolism. Moreover, the ameliorative effects of the nutrient against cadmium toxicity and bioaccumulation were further evaluated. The fish were fed a diet containing 0 % (TAU0 %), 0.5 % (TAU0.5 %), or 5.0 % (TAU5.0 %) taurine for 40-55 days (d) and subjected to cadmium acute toxicity and bioaccumulation tests. Taurine deficiency in feed severely affected growth and the hepatic metabolic profiles of the fish, including a remarkable increase in myo-inositol, aspartate, and ß-alanine in the TAU0 % group, which indicates a complementary physiological response to taurine deficiency. For the acute toxicity test, fish were fed the test diets for 55 d and were then exposed to different dose of cadmium ranging from 0 to 5.6 mg/L for 96 h. Fish fed taurine had a higher tolerance to cadmium than those not fed taurine. For the bioaccumulation test, fish were fed the test diets for 40 d and then were chronically exposed to 0.2 mg/L of cadmium for 28 d followed by depuration for 21 d. Cadmium concentrations in the liver and muscle of fish fed TAU5.0 % were significantly lower than those of fish fed TAU0 % for the first 7 d of exposure and the first 7 d of elimination. Our findings suggest a possible mechanism for the beneficial role played by taurine and that the inclusion of taurine in fish aquaculture feed may reduce cadmium contamination of fish intended for human consumption.

  6. The anti-epileptic drug substance vigabatrin inhibits taurine transport in intestinal and renal cell culture models

    DEFF Research Database (Denmark)

    Plum, Jakob Munk; Nøhr, Martha Kampp; Hansen, Steen H

    2014-01-01

    , such evidence does not preclude the involvement of other transporters. The aim of the present study was, therefore, to investigate if vigabatrin interacts with taurine transport. The uptake of taurine was measured in intestinal human Caco-2 and canine MDCK cell monolayers in the absence or presence of amino...... acids such as GABA and vigabatrin. Vigabatrin inhibits the uptake of taurine in Caco-2 and MDCK cells to 34±3 and 53±2%, respectively, at a concentration of 30mM. In Caco-2 cells the uptake of vigabatrin under neutral pH conditions is concentration-dependent and saturable with a Km-value of 27mM (log......Km is 1.43±0.09). In conclusion, the present study shows that vigabatrin was able to inhibit the uptake of taurine in intestinal and renal cell culture models. Furthermore, uptake of vigabatrin in Caco-2 cells under neutral pH conditions was concentration-dependent and saturable and suggesting...

  7. Deletion of the γ-Aminobutyric Acid Transporter 2 (GAT2 and SLC6A13) Gene in Mice Leads to Changes in Liver and Brain Taurine Contents*

    Science.gov (United States)

    Zhou, Yun; Holmseth, Silvia; Guo, Caiying; Hassel, Bjørnar; Höfner, Georg; Huitfeldt, Henrik S.; Wanner, Klaus T.; Danbolt, Niels C.

    2012-01-01

    The GABA transporters (GAT1, GAT2, GAT3, and BGT1) have mostly been discussed in relation to their potential roles in controlling the action of transmitter GABA in the nervous system. We have generated the first mice lacking the GAT2 (slc6a13) gene. Deletion of GAT2 (both mRNA and protein) neither affected growth, fertility, nor life span under nonchallenging rearing conditions. Immunocytochemistry showed that the GAT2 protein was predominantly expressed in the plasma membranes of periportal hepatocytes and in the basolateral membranes of proximal tubules in the renal cortex. This was validated by processing tissue from wild-type and knockout mice in parallel. Deletion of GAT2 reduced liver taurine levels by 50%, without affecting the expression of the taurine transporter TAUT. These results suggest an important role for GAT2 in taurine uptake from portal blood into liver. In support of this notion, GAT2-transfected HEK293 cells transported [3H]taurine. Furthermore, most of the uptake of [3H]GABA by cultured rat hepatocytes was due to GAT2, and this uptake was inhibited by taurine. GAT2 was not detected in brain parenchyma proper, excluding a role in GABA inactivation. It was, however, expressed in the leptomeninges and in a subpopulation of brain blood vessels. Deletion of GAT2 increased brain taurine levels by 20%, suggesting a taurine-exporting role for GAT2 in the brain. PMID:22896705

  8. Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCdelta-JNK pathway.

    Science.gov (United States)

    Das, Joydeep; Ghosh, Jyotirmoy; Manna, Prasenjit; Sil, Parames C

    2010-09-07

    Oxidative stress-mediated hepatotoxic effect of arsenic (As) is mainly due to the depletion of glutathione (GSH) in liver. Taurine, on the other hand, enhances intracellular production of GSH. Little is known about the mechanism of the beneficial role of taurine in As-induced hepatic pathophysiology. Therefore, in the present study we investigated its beneficial role in As-induced hepatic cell death via mitochondria-mediated pathway. Rats were exposed to NaAsO(2) (2 mg/kg body weight for 6 months) and the hepatic tissue was used for oxidative stress measurements. In addition, the pathophysiologic effect of NaAsO(2) (10 microM) on hepatocytes was evaluated by determining cell viability, mitochondrial membrane potential and ROS generation. As caused mitochondrial injury by increased oxidative stress and reciprocal regulation of Bcl-2, Bcl-xL/Bad, Bax, Bim in association with increased level of Apaf-1, activation of caspase 9/3, cleavage of PARP protein and ultimately led to apoptotic cell death. In addition, As markedly increased JNK and p38 phosphorylation with minimal disturbance of ERK. Pre-exposure of hepatocytes to a JNK inhibitor SP600125 prevented As-induced caspase-3 activation, ROS production and loss in cell viability. Pre-exposure of hepatocytes to a p38 inhibitor SB2035, on the other hand, had practically no effect on these events. Besides, As activated PKCdelta and pre-treatment of hepatocytes with its inhibitor, rottlerin, suppressed the activation of JNK indicating that PKCdelta is involved in As-induced JNK activation and mitochondrial dependent apoptosis. Oral administration of taurine (50 mg/kg body weight for 2 weeks) both pre and post to NaAsO(2) exposure or incubation of the hepatocytes with taurine (25 mM) were found to be effective in counteracting As-induced oxidative stress and apoptosis. Results indicate that taurine treatment improved As-induced hepatic damages by inhibiting PKCdelta-JNK signalling pathways. Therefore taurine

  9. Protective Role of Taurine against Arsenic-Induced Mitochondria-Dependent Hepatic Apoptosis via the Inhibition of PKCδ-JNK Pathway

    Science.gov (United States)

    Das, Joydeep; Ghosh, Jyotirmoy; Manna, Prasenjit; Sil, Parames C.

    2010-01-01

    Background Oxidative stress-mediated hepatotoxic effect of arsenic (As) is mainly due to the depletion of glutathione (GSH) in liver. Taurine, on the other hand, enhances intracellular production of GSH. Little is known about the mechanism of the beneficial role of taurine in As-induced hepatic pathophysiology. Therefore, in the present study we investigated its beneficial role in As-induced hepatic cell death via mitochondria-mediated pathway. Methodology/Principal Findings Rats were exposed to NaAsO2 (2 mg/kg body weight for 6 months) and the hepatic tissue was used for oxidative stress measurements. In addition, the pathophysiologic effect of NaAsO2 (10 µM) on hepatocytes was evaluated by determining cell viability, mitochondrial membrane potential and ROS generation. As caused mitochondrial injury by increased oxidative stress and reciprocal regulation of Bcl-2, Bcl-xL/Bad, Bax, Bim in association with increased level of Apaf-1, activation of caspase 9/3, cleavage of PARP protein and ultimately led to apoptotic cell death. In addition, As markedly increased JNK and p38 phosphorylation with minimal disturbance of ERK. Pre-exposure of hepatocytes to a JNK inhibitor SP600125 prevented As-induced caspase-3 activation, ROS production and loss in cell viability. Pre-exposure of hepatocytes to a p38 inhibitor SB2035, on the other hand, had practically no effect on these events. Besides, As activated PKCδ and pre-treatment of hepatocytes with its inhibitor, rottlerin, suppressed the activation of JNK indicating that PKCδ is involved in As-induced JNK activation and mitochondrial dependent apoptosis. Oral administration of taurine (50 mg/kg body weight for 2 weeks) both pre and post to NaAsO2 exposure or incubation of the hepatocytes with taurine (25 mM) were found to be effective in counteracting As-induced oxidative stress and apoptosis. Conclusions/Significance Results indicate that taurine treatment improved As-induced hepatic damages by inhibiting PKC

  10. Protective role of taurine against arsenic-induced mitochondria-dependent hepatic apoptosis via the inhibition of PKCdelta-JNK pathway.

    Directory of Open Access Journals (Sweden)

    Joydeep Das

    Full Text Available BACKGROUND: Oxidative stress-mediated hepatotoxic effect of arsenic (As is mainly due to the depletion of glutathione (GSH in liver. Taurine, on the other hand, enhances intracellular production of GSH. Little is known about the mechanism of the beneficial role of taurine in As-induced hepatic pathophysiology. Therefore, in the present study we investigated its beneficial role in As-induced hepatic cell death via mitochondria-mediated pathway. METHODOLOGY/PRINCIPAL FINDINGS: Rats were exposed to NaAsO(2 (2 mg/kg body weight for 6 months and the hepatic tissue was used for oxidative stress measurements. In addition, the pathophysiologic effect of NaAsO(2 (10 microM on hepatocytes was evaluated by determining cell viability, mitochondrial membrane potential and ROS generation. As caused mitochondrial injury by increased oxidative stress and reciprocal regulation of Bcl-2, Bcl-xL/Bad, Bax, Bim in association with increased level of Apaf-1, activation of caspase 9/3, cleavage of PARP protein and ultimately led to apoptotic cell death. In addition, As markedly increased JNK and p38 phosphorylation with minimal disturbance of ERK. Pre-exposure of hepatocytes to a JNK inhibitor SP600125 prevented As-induced caspase-3 activation, ROS production and loss in cell viability. Pre-exposure of hepatocytes to a p38 inhibitor SB2035, on the other hand, had practically no effect on these events. Besides, As activated PKCdelta and pre-treatment of hepatocytes with its inhibitor, rottlerin, suppressed the activation of JNK indicating that PKCdelta is involved in As-induced JNK activation and mitochondrial dependent apoptosis. Oral administration of taurine (50 mg/kg body weight for 2 weeks both pre and post to NaAsO(2 exposure or incubation of the hepatocytes with taurine (25 mM were found to be effective in counteracting As-induced oxidative stress and apoptosis. CONCLUSIONS/SIGNIFICANCE: Results indicate that taurine treatment improved As-induced hepatic damages

  11. Estrone-1-sulphate (E1S) has impact on the kinetics parameters of transporter mediated taurine and glutamate influx in Caco-2 cells

    DEFF Research Database (Denmark)

    Steffansen, Bente; El-Sayed, F

    of membrane transporters. The aim was therefore to investigate if addition of E1S to the growth medium of Caco-2 cells before but not during the influx study, change the kinetic parameters of transporter-mediated influx of taurine and glutamate by respective TAUT and EAAT transporters. The results show that 4...... days pretreatment with E1S change the concentration dependent influx curves and Km for transporter mediated taurine and Km and Jmax for glutamate influx although the effects on Km and Jmax are not significant....

  12. Taurine uptake across the human intestinal brush-border membrane is via two transporters: H+-coupled PAT1 (SLC36A1) and Na+- and Cl−-dependent TauT (SLC6A6)

    OpenAIRE

    Anderson, Catriona M. H.; Howard, Alison; Walters, Julian R F; Ganapathy, Vadivel; Thwaites, David T.

    2008-01-01

    Taurine is an essential amino acid in some mammals and is conditionally essential in humans. Taurine is an abundant component of meat and fish-based foods and has been used as an oral supplement in the treatment of disorders such as cystic fibrosis and hypertension. The purpose of this investigation was to identity the relative contributions of the solute transporters involved in taurine uptake across the luminal membrane of human enterocytes. Distinct transport characteristics were revealed ...

  13. Feline hepatic biotransformation and transport mechanisms

    NARCIS (Netherlands)

    van Beusekom, C.D. van

    2015-01-01

    Hepatic biotransformation and drug transport mechanisms vary significantly between species. While these processes that determine largely the kinetic behavior of drugs have been studied abundantly in dogs, corresponding investigations in cats are hardly available, despite the increasing role of cats

  14. Physiological role of taurine--from organism to organelle.

    Science.gov (United States)

    Lambert, I H; Kristensen, D M; Holm, J B; Mortensen, O H

    2015-01-01

    Taurine is often referred to as a semi-essential amino acid as newborn mammals have a limited ability to synthesize taurine and have to rely on dietary supply. Taurine is not thought to be incorporated into proteins as no aminoacyl tRNA synthetase has yet been identified and is not oxidized in mammalian cells. However, taurine contributes significantly to the cellular pool of organic osmolytes and has accordingly been acknowledged for its role in cell volume restoration following osmotic perturbation. This review describes taurine homeostasis in cells and organelles with emphasis on taurine biophysics/membrane dynamics, regulation of transport proteins involved in active taurine uptake and passive taurine release as well as physiological processes, for example, development, lung function, mitochondrial function, antioxidative defence and apoptosis which seem to be affected by a shift in the expression of the taurine transporters and/or the cellular taurine content. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  15. Taurine Homeostasis and Volume Control.

    Science.gov (United States)

    Pasantes-Morales, Herminia

    2017-01-01

    Taurine content is high (mM) in mammalian brain. By its major role as an osmolyte, taurine contributes to the cell volume control, which is particularly critical in the brain. Taurine participates in osmotic adjustments required to maintain the organization and size of intracellular compartments. It counteracts volume fluctuations in unbalanced transmembrane fluxes of ions and neurotransmitters, preserving the functional synaptic contacts. Taurine has a key role in the long-term adaptation to chronic hyponatremia as well as in other pathologies leading to brain edema. Together with other osmolytes, taurine corrects cell shrinkage, preventing mysfunction of organelles and apoptosis. Swelling corrective taurine efflux occurs through a leak pathway, likely formed by LCRR8 protein isoforms. Shrinkage-activated influx comes largely by the increased activity of the Na(+)/Cl(-)-dependent transporter. The brain taurine pool results from the equilibrium between (i) dietary intake and active transport into the cell, (ii) synthesis in the brain itself or import of that synthesized elsewhere, and (iii) leak and posterior excretion. The interplay between these elements preserves brain taurine homeostasis in physiological conditions and permits the proper adjustments upon deviations of normal in the internal/external environment.

  16. Interaction of GABA-mimetics with the taurine transporter (TauT, Slc6a6) in hyperosmotic treated caco-2, LLC-PK1 and rat renal SKPT cells

    DEFF Research Database (Denmark)

    Rasmussen, Rune Nørgaard; Lagunas, Candela; Plum, Jakob Munk;

    2016-01-01

    The aim of the present study was to investigate if basic GABA-mimetics interact with the taurine transporter (TauT, Slc6a6), and to find a suitable cell based model that is robust towards extracellular changes in osmolality during uptake studies. Taurine uptake was measured in human Caco-2 cells...

  17. Imidazole-4-acetic acid, a new lead structure for interaction with the taurine transporter in outer blood-retinal barrier cells

    DEFF Research Database (Denmark)

    Valembois, Sophie; Krall, Jacob; Frølund, Bente

    2017-01-01

    therapeutic approach. The taurine transporter (TAUT) plays a key role in the retinal transport of GABA and has been previously suggested to display a higher functional activity in the retina compared to the brain. TAUT would therefore stand as a suitable target for the selective delivery of ρ GABAARs ligands...... by testing their ability to inhibit the TAUT-mediated influx of taurine in ARPE-19 cells. Results showed that taurine influx was seven-fold higher when the ARPE-19 cells were cultured under hyperosmotic conditions and was demonstrated to display saturable kinetics (Km=27.7±2.2μM and Jmax=24.2±0.6pmol/cm(2......)·min). Furthermore, the taurine influx was significantly inhibited in a concentration-dependent manner by GABA and imidazole-4-acetic acid (IAA), which is a naturally occurring metabolite of histamine. These compounds display similar Ki values of 644.2μM and 658.6μM, respectively. Moreover, IAA...

  18. Taurine Biosynthesis in a Fish Liver Cell Line (ZFL) Adapted to a Serum-Free Medium.

    Science.gov (United States)

    Liu, Chieh-Lun; Watson, Aaron M; Place, Allen R; Jagus, Rosemary

    2017-05-25

    Although taurine has been shown to play multiple important physiological roles in teleosts, little is known about the molecular mechanisms underlying dietary requirements. Cell lines can provide useful tools for deciphering biosynthetic pathways and their regulation. However, culture media and sera contain variable taurine levels. To provide a useful cell line for the investigation of taurine homeostasis, an adult zebrafish liver cell line (ZFL) has been adapted to a taurine-free medium by gradual accommodation to a commercially available synthetic medium, UltraMEM™-ITES. Here we show that ZFL cells are able to synthesize taurine and be maintained in medium without taurine. This has allowed for the investigation of the effects of taurine supplementation on cell growth, cellular amino acid pools, as well as the expression of the taurine biosynthetic pathway and taurine transporter genes in a defined fish cell type. After taurine supplementation, cellular taurine levels increase but hypotaurine levels stay constant, suggesting little suppression of taurine biosynthesis. Cellular methionine levels do not change after taurine addition, consistent with maintenance of taurine biosynthesis. The addition of taurine to cells grown in taurine-free medium has little effect on transcript levels of the biosynthetic pathway genes for cysteine dioxygenase (CDO), cysteine sulfinate decarboxylase (CSAD), or cysteamine dioxygenase (ADO). In contrast, supplementation with taurine causes a 30% reduction in transcript levels of the taurine transporter, TauT. This experimental approach can be tailored for the development of cell lines from aquaculture species for the elucidation of their taurine biosynthetic capacity.

  19. Taurine Biosynthesis in a Fish Liver Cell Line (ZFL Adapted to a Serum-Free Medium

    Directory of Open Access Journals (Sweden)

    Chieh-Lun Liu

    2017-05-01

    Full Text Available Although taurine has been shown to play multiple important physiological roles in teleosts, little is known about the molecular mechanisms underlying dietary requirements. Cell lines can provide useful tools for deciphering biosynthetic pathways and their regulation. However, culture media and sera contain variable taurine levels. To provide a useful cell line for the investigation of taurine homeostasis, an adult zebrafish liver cell line (ZFL has been adapted to a taurine-free medium by gradual accommodation to a commercially available synthetic medium, UltraMEM™-ITES. Here we show that ZFL cells are able to synthesize taurine and be maintained in medium without taurine. This has allowed for the investigation of the effects of taurine supplementation on cell growth, cellular amino acid pools, as well as the expression of the taurine biosynthetic pathway and taurine transporter genes in a defined fish cell type. After taurine supplementation, cellular taurine levels increase but hypotaurine levels stay constant, suggesting little suppression of taurine biosynthesis. Cellular methionine levels do not change after taurine addition, consistent with maintenance of taurine biosynthesis. The addition of taurine to cells grown in taurine-free medium has little effect on transcript levels of the biosynthetic pathway genes for cysteine dioxygenase (CDO, cysteine sulfinate decarboxylase (CSAD, or cysteamine dioxygenase (ADO. In contrast, supplementation with taurine causes a 30% reduction in transcript levels of the taurine transporter, TauT. This experimental approach can be tailored for the development of cell lines from aquaculture species for the elucidation of their taurine biosynthetic capacity.

  20. Taurine and fish development: insights for the aquaculture industry.

    Science.gov (United States)

    Pinto, Wilson; Rønnestad, Ivar; Dinis, Maria Teresa; Aragão, Cláudia

    2013-01-01

    Expansion of the aquaculture industry is limited by incomplete knowledge on fish larval nutritional requirements. Nevertheless, it is believed that dietary taurine deficiencies may be particularly critical for fish larvae. The reasons include the high taurine levels found during egg and yolk-sac stages of fish, suggesting that taurine may be of pivotal importance for larval development. Moreover, unlike aquaculture feeds, natural preys of fish larvae contain high taurine levels, and dietary taurine supplementation has been shown to increase larval growth in several fish species. This study aimed to further explore the physiological role of taurine during fish development. Firstly, the effect of dietary taurine supplementation was assessed on growth of gilthead sea bream (Sparus aurata) larvae and growth, metamorphosis success and amino acid metabolism of Senegalese sole (Solea senegalensis) larvae. Secondly, the expression of taurine transporter (TauT) was characterised by qPCR in sole larvae and juveniles. Results showed that dietary taurine supplementation did not increase sea bream growth. However, dietary taurine supplementation significantly increased sole larval growth, metamorphosis success and amino acid retention. Metamorphosis was also shown to be an important developmental trigger to promote taurine transport in sole tissues, while evidence for an enterohepatic recycling pathway for taurine was found in sole at least from juvenile stage. Taken together, our studies showed that the dependence of dietary taurine supplementation differs among fish species and that taurine has a vital role during the ontogenetic development of flatfish, an extremely valuable group targeted for aquaculture production.

  1. Interaction of GABA-mimetics with the taurine transporter (TauT, Slc6a6) in hyperosmotic treated Caco-2, LLC-PK1 and rat renal SKPT cells.

    Science.gov (United States)

    Rasmussen, Rune Nørgaard; Lagunas, Candela; Plum, Jakob; Holm, René; Nielsen, Carsten Uhd

    2016-01-20

    The aim of the present study was to investigate if basic GABA-mimetics interact with the taurine transporter (TauT, Slc6a6), and to find a suitable cell based model that is robust towards extracellular changes in osmolality during uptake studies. Taurine uptake was measured in human Caco-2 cells, porcine LLC-PK1 cells, and rat SKPT cells using radiolabelled taurine. Hyperosmotic conditions were obtained by incubation with raffinose (final osmolality of 500mOsm) for 24h prior to the uptake experiments. Expression of the taurine transporter, TauT, was investigated at the mRNA level by real-time PCR. Uptake of the GABA-mimetics gaboxadol and vigabatrin was investigated in SKPT cells, and quantified by liquid scintillation or HPLC-MS/MS analysis, respectively. The uptake rate of [(3)H]-taurine was Na(+) and Cl(-) and concentration dependent with taurine with an apparent Vmax of 6.3±1.6pmolcm(-2)min(-1) and a Km of 24.9±15.0μM. β-alanine, nipecotic acid, gaboxadol, GABA, vigabatrin, δ-ALA and guvacine inhibited the taurine uptake rate in a concentration dependent manner. The order of affinity for TauT was β-alanine>GABA>nipecotic acid>guvacine>δ-ALA>vigabatrin>gaboxadol with IC50-values of 0.04, 1.07, 2.02, 4.19, 4.94, 31.4 and 39.9mM, respectively. In conclusion, GABA mimetics inhibited taurine uptake in hyperosmotic rat renal SKPT cells. SKPT cells, which seem to be a useful model for investigating taurine transport in the short-term presence of high concentrations of osmolytes. Furthermore, analogues of β-alanine appear to have higher affinities for TauT than GABA-analogues.

  2. Hepatic lesions and hemolysis following administration of 3. cap alpha. , 7. cap alpha. , 12. cap alpha. -trihydroxy-5. beta. -cholestan-26-oyl taurine to rats

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, R.F. (Univ. of Minnesota, Minneapolis); Williams, G.C.; Hachey, D.; Sharp, H.L.

    1977-09-01

    Patients with a metabolic block in the conversion of THCA into cholic acid develop cirrhosis and hemolysis, and die of hepatic failure. In these patients, THCA is largely conjugated to taurine (tauro-THCA) and excreted instead of being converted into cholic acid. In the present study, the effects of tauro-THCA on hemolysis, bile flow, and hepatic morphology were evaluated in bile fistula rats. All rats infused with tauro-THCA at rates of 0.25, 0.50 or 0.75 ..mu..mol/min developed hemolysis with hemoglobinuria. A direct toxic effect of tauro-THCA on washed human red blood cell membranes was demonstrated at a concentration of 8 x 10/sup -4/ M. Liver biopsy sections from rats infused for a 2 hr period with tauro-THCA were examined by electron microscopy and showed dilation of the rough endoplasmic reticulum and distortion of mitochondrial membranes. Cholestasis was not induced, since tauro-THCA actually caused a greater choleretic response for a given rate of bile salt excretion than did taurocholate. This study raises the possibility that the clinical liver disease seen in patients with a metabolic block in the conversion of THCA into cholic acid may be caused by tauro-THCA.

  3. Physiological roles of taurine in heart and muscle

    Science.gov (United States)

    2010-01-01

    Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an

  4. Physiological roles of taurine in heart and muscle.

    Science.gov (United States)

    Schaffer, Stephen W; Jong, Chian Ju; Ramila, K C; Azuma, Junichi

    2010-08-24

    Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an

  5. Taurine's effects on the neuroendocrine functions of pancreatic β cells.

    Science.gov (United States)

    Cuttitta, Christina M; Guariglia, Sara R; Idrissi, Abdeslem El; L'amoreaux, William J

    2013-01-01

    Taurine plays significant physiological roles, including those involved in neurotransmission. Taurine is a potent γ-aminobutyric acid (GABA) agonist and alters cellular events via GABA(A) receptors. Alternately, taurine is transported into cells via the high affinity taurine transporter (TauT), where it may also play a regulatory role. We have previously demonstrated that treatment of Hit-T15 cells with 1 mM taurine for 24 h significantly decreases insulin and GABA levels. We have also demonstrated that chronic in vivo administration of taurine results in an up-regulation of glutamic acid decarboxylase (GAD), the key enzyme in GABA synthesis. Here, we wished to test if administration of 1 mM taurine for 24 h may increase release of another β cell neurotransmitter somatostatin (SST) and also directly impact up-regulation of GAD synthesis. Treatment with taurine did not significantly alter levels of SST (p > 0.05) or GAD67 (p > 0.05). This suggests that taurine does not directly affect SST release, nor does it directly affect GAD synthesis. Taken together with our observation that taurine does promote GABA release via large dense-core vesicles, the data suggest that taurine may alter membrane potential, which in turn would affect calcium flux. We show here that 1 mM taurine does not alter intracellular Ca(2+) concentrations from 20 to 80 s post treatment (p > 0.05), but does increase Ca(2+) flux between 80 and 200 s post-treatment (p taurine may induce a biphasic response in β cells. The initial response of taurine via GABA(A) receptors hyperpolarizes β cell and sequesters Ca(2+). Subsequently, taurine may affect Ca(2+) flux in long term via interaction with K(ATP) channels.

  6. Taurine, glutathione and bioenergetics

    DEFF Research Database (Denmark)

    Hansen, Svend Høime; Grunnet, Niels

    2013-01-01

    Biochemistry textbook presentations of bioenergetics and mitochondrial function normally focus on the chemiosmotic theory with introduction of the tricarboxylic acid cycle and the electron transport chain, the proton and electrical gradients and subsequent oxidative phosphorylation and ATP...... to be independent of the matrix pH. Finally a simplified model for mitochondrial oxidation is presented with introduction of GSH as redox buffer to stabilise the electrical gradient, and taurine as pH buffer stabilising the pH gradient, but simultaneously establishing the equilibrium between the NADH/NAD(+) redox...

  7. Taurine and atherosclerosis.

    Science.gov (United States)

    Murakami, Shigeru

    2014-01-01

    Taurine is abundantly present in most mammalian tissues and plays a role in many important physiological functions. Atherosclerosis is the underlying mechanism of cardiovascular disease including myocardial infarctions, strokes and peripheral artery disease and remains a major cause of morbidity and mortality worldwide. Studies conducted in laboratory animal models using both genetic and dietary models of hyperlipidemia have demonstrated that taurine supplementation retards the initiation and progression of atherosclerosis. Epidemiological studies have also suggested that taurine exerts preventive effects on cardiovascular diseases. The present review focuses on the effects of taurine on the pathogenesis of atherosclerosis. In addition, the potential mechanisms by which taurine suppress the development of atherosclerosis will be discussed.

  8. A Novel Cysteine Sulfinic Acid Decarboxylase Knock-Out Mouse: Taurine Distribution in Various Tissues With and Without Taurine Supplementation.

    Science.gov (United States)

    Park, Eunkyue; Park, Seung Yong; Cho, In Soo; Kim, Bo Sook; Schuller-Levis, Georgia

    2017-01-01

    Taurine, a sulfur containing amino acid, has various physiological functions including development of the eye and brain, immune function, reproduction, osmo-regulatory function as well as anti-oxidant and anti-inflammatory activities. In order to understand the physiological role, we developed taurine deficient mice deleting a rate-liming enzyme, cysteine sulfinic acid decarboxylase (CSAD) for biosynthesis of taurine. Taurine was measured in various tissues including the liver, brain, lung, spleen, thymus, pancreas, heart, muscle and kidney as well as plasma from CSAD knock-out mice (CSAD KO) with and without treatment of taurine in the drinking water at the age of 2 months (2 M). Taurine was determined using HPLC as a phenylisothiocyanate derivative of taurine at 254 nm. Taurine concentrations in the liver and kidney from homozygotes of CSAD KO (HO), in which CSAD level is high, were 90% and 70% lower than WT, respectively. Taurine concentrations in the brain, spleen and lung, where CSAD level is low, were 21%, 20% and 28% lower than WT, respectively. At 2 M, 1% taurine treatment of HO restored taurine concentrations in all tissues compared to that of WT. To select an appropriate taurine treatment, HO were treated with various concentrations (0.05, 0.2, 1%) of taurine for 4 months (4 M). Restoration of taurine in all tissues except the liver, kidney and lung requires 0.05% taurine to be restored to that of WT. The liver and kidney restore taurine back to WT with 0.2% taurine. To examine which enzymes influence taurine concentrations in various tissues from WT and HO at 2 M, expression of five taurine-related enzymes, two antioxidant enzymes as well as lactoferrin (Lft) and prolactin receptor (Prlr) was determined using RT(2) qPCR. The expression of taurine transporter in the liver, brain, muscle and kidney from HO was increased except in the lung. Our data showed expression of glutamate decarboxylase-like 1(Gadl-1) was increased in the brain and muscle in HO

  9. Recent advances in understanding hepatic drug transport

    Science.gov (United States)

    Stieger, Bruno; Hagenbuch, Bruno

    2016-01-01

    Cells need to strictly control their internal milieu, a function which is performed by the plasma membrane. Selective passage of molecules across the plasma membrane is controlled by transport proteins. As the liver is the central organ for drug metabolism, hepatocytes are equipped with numerous drug transporters expressed at the plasma membrane. Drug disposition includes absorption, distribution, metabolism, and elimination of a drug and hence multiple passages of drugs and their metabolites across membranes. Consequently, understanding the exact mechanisms of drug transporters is essential both in drug development and in drug therapy. While many drug transporters are expressed in hepatocytes, and some of them are well characterized, several transporters have only recently been identified as new drug transporters. Novel powerful tools to deorphanize (drug) transporters are being applied and show promising results. Although a large set of tools are available for studying transport in vitro and in isolated cells, tools for studying transport in living organisms, including humans, are evolving now and rely predominantly on imaging techniques, e.g. positron emission tomography. Imaging is an area which, certainly in the near future, will provide important insights into "transporters at work" in vivo. PMID:27781095

  10. Effect of Liver Disease on Hepatic Transporter Expression and Function.

    Science.gov (United States)

    Thakkar, Nilay; Slizgi, Jason R; Brouwer, Kim L R

    2017-09-01

    Liver disease can alter the disposition of xenobiotics and endogenous substances. Regulatory agencies such as the Food and Drug Administration and the European Medicines Evaluation Agency recommend, if possible, studying the effect of liver disease on drugs under development to guide specific dose recommendations in these patients. Although extensive research has been conducted to characterize the effect of liver disease on drug-metabolizing enzymes, emerging data have implicated that the expression and function of hepatobiliary transport proteins also are altered in liver disease. This review summarizes recent developments in the field, which may have implications for understanding altered disposition, safety, and efficacy of new and existing drugs. A brief review of liver physiology and hepatic transporter localization/function is provided. Then, the expression and function of hepatic transporters in cholestasis, hepatitis C infection, hepatocellular carcinoma, human immunodeficiency virus infection, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and primary biliary cirrhosis are reviewed. In the absence of clinical data, nonclinical information in animal models is presented. This review aims to advance the understanding of altered expression and function of hepatic transporters in liver disease and the implications of such changes on drug disposition. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats.

    Science.gov (United States)

    Murakami, Shigeru; Fujita, Michiko; Nakamura, Masakazu; Sakono, Masanobu; Nishizono, Shoko; Sato, Masao; Imaizumi, Katsumi; Mori, Mari; Fukuda, Nobuhiro

    2016-03-01

    This study was designed to investigate the effects of dietary taurine on cholesterol metabolism in high-cholesterol-fed rats. Male Sprague-Dawley rats were randomly divided into two dietary groups (n = 6 in each group): a high-cholesterol diet containing 0.5% cholesterol and 0.15% sodium cholate, and a high-cholesterol diet with 5% (w/w) taurine. The experimental diets were given for 2 weeks. Taurine supplementation reduced the serum and hepatic cholesterol levels by 37% and 32%, respectively. Faecal excretion of bile acids was significantly increased in taurine-treated rats, compared with untreated rats. Biliary bile acid concentrations were also increased by taurine. Taurine supplementation increased taurine-conjugated bile acids by 61% and decreased glycine-conjugated bile acids by 53%, resulting in a significant decrease in the glycine/taurine (G/T) ratio. Among the taurine-conjugated bile acids, cholic acid and deoxycholic acid were significantly increased. In the liver, taurine supplementation increased the mRNA expression and enzymatic activity of hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme for bile acid synthesis, by three- and two-fold, respectively. Taurine also decreased the enzymatic activity of acyl-CoA:cholesterol acyltransferase (ACAT) and microsomal triglyceride transfer protein (MTP). These observations suggest that taurine supplementation increases the synthesis and excretion of taurine-conjugated bile acids and stimulates the catabolism of cholesterol to bile acid by elevating the expression and activity of CYP7A1. This may reduce cholesterol esterification and lipoprotein assembly for very low density lipoprotein (VLDL) secretion, leading to reductions in the serum and hepatic cholesterol levels. © 2016 John Wiley & Sons Australia, Ltd.

  12. Pharmacology of taurine.

    Science.gov (United States)

    Oja, Simo S; Saransaari, Pirjo

    2007-01-01

    Taurine has a number of physiological functions, e.g., in cell volume regulation and inhibitory neuromodulation. Taurine and its derivatives have also been tested as potential pharmacological agents in many pathological states. We endeavor here to review the present status of this investigation. Taurine (2-aminoethanesulfonic acid) is a simple sulfur-containing amino acid present in virtually all cells throughout the animal kingdom. In particular, it is enriched in electrically excitable tissues such as brain, retina, heart and skeletal muscles. In the central nervous system, taurine has been implicated in two major phenomena; in cell volume regulation [1-3] and in inhibitory neuromodulation or neurotransmission [4-7]. Its function as a neurotransmitter implies the existence of specific taurine receptors and the neuromodulatory role, an interference with functions of other transmitter systems. There is scant evidence to corroborate the first assumption, but ample for the latter. In other tissues taurine has also been thought to act as an antioxidant in cell protection and to have beneficial effects on cardiovascular functions. These taurine properties are only partially explored so far but taurine and many of its derivatives have been tested as potential pharmaceutical agents in a number of pathological states.

  13. Enzymes of the taurine biosynthetic pathway are expressed in rat mammary gland.

    Science.gov (United States)

    Ueki, Iori; Stipanuk, Martha H

    2007-08-01

    Taurine is the most abundant free amino acid in the body and is present at high concentrations during development and in the early milk. It is synthesized from cysteine via oxidation of cysteine to cysteinesulfinate by the enzyme cysteine dioxygenase (CDO), followed by the decarboxylation of cysteinesulfinate to hypotaurine, catalyzed by cysteine sulfinic acid decarboxylase (CSAD). To determine whether the taurine biosynthetic pathway is present in mammary gland and whether it is differentially expressed during pregnancy and lactation, and also to further explore the possible regulation of hepatic taurine synthesis during pregnancy and lactation, we measured mammary and hepatic CDO and CSAD mRNA and protein concentrations and tissue, plasma and milk taurine concentrations. CDO and CSAD mRNA and protein were expressed in mammary gland and liver regardless of physiological state. Immunohistochemistry demonstrated the expression of CDO in ductal cells of pregnant rats, but not in other mammary epithelial cells or in ductal cells of nonpregnant rats. CDO was also present in stromal adipocytes in mammary glands of both pregnant and nonpregnant rats. Our findings support an upregulation of taurine synthetic capacity in the mammary gland of pregnant rats, based on mammary taurine and hypotaurine concentrations and the intense immunohistochemical staining for CDO in ductal cells of pregnant rats. Hepatic taurine synthetic capacity, particularly CSAD, and taurine concentrations were highest in rats during the early stages of lactation, suggesting the liver may also play a role in the synthesis of taurine to support lactation or repletion of maternal reserves.

  14. Effect of taurine on mRNA expression of thioredoxin interacting protein in Caco-2 cells.

    Science.gov (United States)

    Gondo, Yusuke; Satsu, Hideo; Ishimoto, Yoko; Iwamoto, Taku; Shimizu, Makoto

    2012-09-28

    Taurine (2-aminoethanesulfonic acid), a sulfur-containing β-amino acid, plays an important role in several essential biological processes; although, the underlying mechanisms for these regulatory functions remain to be elucidated, especially at the genetic level. We investigated the effects of taurine on the gene expression profile in Caco-2 cells using DNA microarray. Taurine increased the mRNA expression of thioredoxin interacting protein (TXNIP), which is involved in various metabolisms and diseases. β-Alanine or γ-aminobutyric acid (GABA), which are structurally or functionally related to taurine, did not increase TXNIP mRNA expression. These suggest the expression of TXNIP mRNA is induced specifically by taurine. β-Alanine is also known to be a substrate of taurine transporter (TAUT) and competitively inhibits taurine uptake. Inhibition of taurine uptake by β-alanine eliminated the up-regulation of TXNIP, which suggests TAUT is involved in inducing TXNIP mRNA expression. The up-regulation of TXNIP mRNA expression by taurine was also observed at the protein level. Furthermore, taurine significantly increased TXNIP promoter activity. Our present study demonstrated the taurine-specific phenomenon of TXNIP up-regulation, which sheds light on the physiological function of taurine. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Intracellular transport of hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    For genome multiplication hepadnaviruses use the transcriptional machinery of the cell that is found within the nucleus. Thus the viral genome has to be transported through the cytoplasm and nuclear pore. The intracytosolic translocation is facilitated by the viral capsid that surrounds the genome and that interacts with cellular microtubules. The subsequent passage through the nuclear pore complexes (NPC) is mediated by the nuclear transport receptors importin α and β. Importin α binds to the C-terminus of the capsid protein that comprises a nuclear localization signal (NLS). The exposure of the NLS is regulated and depends upon genome maturation and/or phosphorylation of the capsid protein. As for other karyophilic cargos using this pathway importin α interacts with importin β that facilitates docking of the import complex to the NPC and the passage through the pore.Being a unique strategy, the import of the viral capsid is incomplete in that it becomes arrested inside the nuclear basket, which is a cage-like structure on the karyoplasmic face of the NPC. Presumably only this compartment provides the factors that are required for capsid disassembly and genome release that is restricted to those capsids comprising a mature viral DNA genome.

  16. Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Joydeep; Vasan, Vandana; Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in

    2012-01-15

    Hyperlipidemia, inflammation and altered antioxidant profiles are the usual complications in diabetes mellitus. In the present study, we investigated the therapeutic potential of taurine in diabetes associated cardiac complications using a rat model. Rats were made diabetic by alloxan (ALX) (single i.p. dose of 120 mg/kg body weight) and left untreated or treated with taurine (1% w/v, orally, in water) for three weeks either from the day of ALX exposure or after the onset of diabetes. Animals were euthanized after three weeks. ALX-induced diabetes decreased body weight, increased glucose level, decreased insulin content, enhanced the levels of cardiac damage markers and altered lipid profile in the plasma. Moreover, it increased oxidative stress (decreased antioxidant enzyme activities and GSH/GSSG ratio, increased xanthine oxidase enzyme activity, lipid peroxidation, protein carbonylation and ROS generation) and enhanced the proinflammatory cytokines levels, activity of myeloperoxidase and nuclear translocation of NFκB in the cardiac tissue of the experimental animals. Taurine treatment could, however, result to a decrease in the elevated blood glucose and proinflammatory cytokine levels, diabetes-evoked oxidative stress, lipid profiles and NFκB translocation. In addition, taurine increased GLUT 4 translocation to the cardiac membrane by enhanced phosphorylation of IR and IRS1 at tyrosine and Akt at serine residue in the heart. Results also suggest that taurine could protect cardiac tissue from ALX induced apoptosis via the regulation of Bcl2 family and caspase 9/3 proteins. Taken together, taurine supplementation in regular diet could play a beneficial role in regulating diabetes and its associated complications in the heart. Highlights: ► Taurine controls blood glucose via protection of pancreatic β cells in diabetic rat. ► Taurine controls blood glucose via increasing the insulin level in diabetic rat. ► Taurine improves cardiac AKT/GLUT4 signaling

  17. Renal and hepatic transporter expression in type 2 diabetic rats.

    Science.gov (United States)

    Nowicki, Michael T; Aleksunes, Lauren M; Sawant, Sharmilee P; Dnyanmote, Ankur V; Mehendale, Harihara M; Manautou, José E

    2008-01-01

    Membrane transporters are critical for the uptake as well as elimination of chemicals and by-products of metabolism from the liver and kidneys. Since these proteins are important determinants of chemical disposition, changes in their expression in different disease states can modulate drug pharmacokinetics. The present study investigated alterations in the renal and hepatic expression of organic anion and cation transporters (Oats/Octs), multidrug resistance-associated proteins (Mrps), breast cancer resistance protein (Bcrp), P-glycoprotein (Pgp), and hepatic Na(+)-taurocholate cotransporting polypeptide (Ntcp) in type 2 diabetic rats. For this purpose, type 2 diabetes was induced by feeding male Sprague-Dawley rats a high fat diet followed by a single dose of streptozotocin (45 mg/kg, i.p., in 0.01 M citrate buffer pH 4.3) on day 14. Controls received normal diet and vehicle. Kidney and liver samples were collected on day 24 for generation of crude plasma membrane fractions and Western blot analysis of Oat, Oct, Mrp, Bcrp, Pgp, and Ntcp proteins. With regards to renal uptake transporters, type 2 diabetes increased levels of Oat2 (2.3-fold) and decreased levels of Oct2 to 50% of control kidneys. Conversely, efflux transporters Mrp2, Mrp4, and Bcrp were increased 5.4-fold, 2-fold, and 1.6-fold, respectively in type 2 diabetic kidneys with no change in levels of Mrp1, Mrp5, or Pgp. Studies of hepatic transporters in type 2 diabetic rats reveal that the protein level of Mrp5 was reduced to 4% of control livers with no change in levels of Bcrp, Mrp1, Mrp2, Mrp4, Ntcp, or Pgp. The changes reported in this study may have implications in type 2 diabetic patients.

  18. Taurine inhibits osteoblastic differentiation of vascular smooth muscle cells via the ERK pathway.

    Science.gov (United States)

    Liao, Xiao-bo; Zhou, Xin-min; Li, Jian-ming; Yang, Jin-fu; Tan, Zhi-ping; Hu, Zhuo-wei; Liu, Wei; Lu, Ying; Yuan, Ling-qing

    2008-05-01

    Vascular calcification develops within atherosclerotic lesions and results from a process similar to osteogenesis. Taurine is a free beta-amino acid and plays an important physiological role in mammals. We have recently demonstrated that vascular smooth muscle cells (VSMCs) express a functional taurine transporter. To evaluate the possible role of taurine in vascular calcification, we assessed its effects on osteoblastic differentiation of VSMCs in vitro. The results showed that taurine inhibited the beta-glycerophosphate-induced osteoblastic differentiation of VSMCs as evidenced by both the decreasing alkaline phosphate (ALP) activity and expression of the core binding factor alpha1 (Cbfalpha1). Taurine also activated the extracellular signal-regulated protein kinase (ERK) pathway. Inhibition of ERK pathway reversed the effect of taurine on ALP activity and Cbfalpha1 expression. These results suggested that taurine inhibited osteoblastic differentiation of vascular cells via the ERK pathway.

  19. Effects of taurine intake on serum lipids in young women

    Directory of Open Access Journals (Sweden)

    Sadako Matsui

    2015-04-01

    Full Text Available Background: Taurine is an abundant amino acid in human cells, promoting ocular and biliary health, which is also used to treat congestive heart failure, hypertension, and hepatitis. Recently, taurine-enriched energy drinks have become popular with young adults, but the effects of taurine on serum lipids in young adults are unknown. Objective: We studied the influence of oral administration of taurine on serum lipid levels in healthy young women. Methods: Ten healthy young women with a mean body mass index of 20.0kg/m2, apolipoprotein E (apoE phenotype 3/3 and normal menstrual cycles participated. Each subject was instructed to orally ingest 1g of taurine powder after each meal (3g/day in addition to their usual diets during one menstrual cycle. Before and at the end of taurine intake, physical measurements and blood collection were performed in the morning after a 12-h fast, and 3-day weighted dietary records were obtained. Concentrations of serum lipids, apolipoproteins, and fatty acids in the serum phospholipid fraction were measured. Results: The subjects showed good compliance with taurine intake and none reported adverse effects during the experimental period. After taurine intake, concentrations of total cholesterol, low density lipoprotein cholesterol (LDL-C, free cholesterol, and apolipoprotein B (apoB increased (p<0.05, while phospholipids tended to increase (p=0.051. Fatty acids in the serum phospholipid fraction also significantly increased (p<0.05. However, triglyceride, remnant-like particle cholesterol, remnant-like particle triglyceride, apoE, the apolipoprotein A-1 (apoA- 1/apoB ratio and the LDL-C/apoB ratio were unchanged. Furthermore, body weight was significantly increased (p<0.01, but did not correlate with changes either in serum lipids or nutrient intakes. Conclusion: These results suggest that high taurine intake affects lipoprotein metabolism and increases serum lipids in slightly lean young women.

  20. Taurine and the renal system

    Science.gov (United States)

    2010-01-01

    Taurine participates in a number of different physiologic and biologic processes in the kidney, often reflected by urinary excretion patterns. The kidney is key to aspects of taurine body pool size and homeostasis. This review will examine the renal-taurine interactions relative to ion reabsorption; renal blood flow and renal vascular endothelial function; antioxidant properties, especially in the glomerulus; and the role of taurine in ischemia and reperfusion injury. In addition, taurine plays a role in the renal cell cycle and apoptosis, and functions as an osmolyte during the stress response. The role of the kidney in adaptation to variations in dietary taurine intake and the regulation of taurine body pool size are described. Finally, the protective function of taurine against several kidney diseases is reviewed. PMID:20804616

  1. Taurine prevents ultraviolet B induced apoptosis in retinal ganglion cells.

    Science.gov (United States)

    Dayang, Wu; Dongbo, Pang

    2017-06-07

    Compatible osmolytes accumulation is an active resistance response in retina under ultraviolet radiation and hypertonicity conditions. The purpose of this research is to investigate the protective role of taurine on retina under ultraviolet B radiation. Osmolytes transporters was measured by quantitative realtime PCR. Osmolytes uptake was estimated by radioimmunoassay. Cell viability was caculated by MTT assay. Cell apoptosis was measured by flow cytometry analysis. Hypertonicity accelerated osmolytes uptake into retinal ganglion cells including taurine, betaine and myoinositol. Ultraviolet B radiation increased osmolytes transporter expression and osmolytes uptake. In addition, osmolyte taurine remarkably prevented ultraviolet B radiation induced cell apoptosis in retinal ganglion cells. The effect of compatible osmolyte taurine on cell survival rate may play an important role in cell resistance and adaption to UVB exposure.

  2. The effect of long-term taurine supplementation and fructose feeding on glucose and lipid homeostasis in Wistar rats.

    Science.gov (United States)

    Larsen, Lea Hüche; Orstrup, Laura Kofoed Hvidsten; Hansen, Svend Høime; Grunnet, Niels; Quistorff, Bjørn; Mortensen, Ole Hartvig

    2013-01-01

    The nonprotein amino acid taurine has been shown to counteract the negative effects of a high-fructose diet in rats with regard to insulin resistance and dyslipidemia. Here we examined the long-term (26 weeks) effects of oral taurine supplementation (2% in the drinking water) in fructose-fed Wistar rats.The combination of fructose and taurine caused a significant increase in fasting glucose compared to the control diet without changing hepatic phosphoenol pyruvate carboxykinase mRNA levels. The combination of fructose and taurine also improved glucose tolerance compared to control. Neither a high-fructose diet nor taurine supplementation induced significant changes in body weight, body fat or total calorie intake, fasting insulin levels, HOMA-IR, or insulin-induced Akt phosphorylation in skeletal muscle.Fructose alone caused a decrease in liver triglyceride content, with taurine supplementation preventing this. There was no effect of long-term fructose diet and/or taurine supplementation on plasma triglycerides, plasma nonesterified fatty acids, as well as plasma HDL, LDL, and total cholesterol.In conclusion, the study suggests that long-term taurine supplementation improves glucose tolerance and normalize hepatic triglyceride content following long-term fructose feeding. However, as the combination of taurine and fructose also increased fasting glucose levels, the beneficial effect of taurine supplementation towards amelioration of glucose intolerance and insulin resistance may be questionable.

  3. Ontogenetic taurine biosynthesis ability in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Wang, Xuan; He, Gen; Mai, Kangsen; Xu, Wei; Zhou, Huihui

    2015-07-01

    Taurine (2-aminoethane sulfonic acid) plays important roles in multiple physiological processes including osmoregulation, bile salt conjugation and membrane protection. It is known that taurine biosynthesis varies in different fish species. However, its ontogenetic regulation has not been clear. In the present study, we found that the hepatic concentrations of taurine increased marginally with rainbow trout growth. The mRNA expression, protein levels and enzyme activities of key enzymes involved in taurine biosynthesis, cysteine dioxygenase (CDO) and cysteine sulfinate decarboxylase (CSD), were analyzed. Our results showed that the mRNA levels and protein abundances of CSD increased dramatically with the development of rainbow trout stages while the enzyme activities showed a slight improvement. However, the expression and activities of CDO decreased with rainbow trout growth. These results provide valuable information on defining the exact supplementation of taurine in diets for different stages of rainbow trout and give new insights into elucidating the regulation of taurine metabolism in rainbow trout. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Long-lasting enhancement of corticostriatal neurotransmission by taurine.

    Science.gov (United States)

    Chepkova, A N; Doreulee, N; Yanovsky, Y; Mukhopadhyay, D; Haas, H L; Sergeeva, O A

    2002-10-01

    Taurine occurs at high concentrations in the forebrain and its distribution varies with (patho)physiological conditions; however, its role in neural function is poorly understood. We have now characterized its effects on corticostriatal synaptic transmission. Bath application of taurine (10 mm) to slices obtained from mice and rats exerted a biphasic action on corticostriatal field potentials. The fast and reversible inhibition by taurine was accompanied by a depolarization and conductance increase in medium spiny neurons and was sensitive to gamma-aminobutyric acid (GABA)A and glycine receptor (GlyR) antagonists. A long-lasting enhancement (LLETAU) of field potentials was recorded after taurine withdrawal. The LLETAU was not prevented by N-methyl-d-aspartate (NMDA)- or by GABAA receptor-antagonists, but was sensitive to the GlyR-antagonist strychnine and blocked by the competitive taurine uptake inhibitor guanidinoethylsulphonate (GES, 1 mm). GES at 10 mm evoked an enhancement of field potentials similar to LLETAU. LLETAU depended on protein kinase C activation as it was blocked by chelerythrine, but was unaffected by trifluoperazine, and thus independent of calmodulin. LLETAU was significantly smaller in juvenile than in mature rodents. Activation of GlyRs and the specific taurine transporter by taurine evoke a long-lasting enhancement of corticostriatal transmission.

  5. Taurine decreased uric acid levels in hyperuricemic rats and alleviated kidney injury.

    Science.gov (United States)

    Feng, Ying; Sun, Fang; Gao, Yongchao; Yang, Jiancheng; Wu, Gaofeng; Lin, Shumei; Hu, Jianmin

    2017-07-29

    Hyperuricemia can lead to direct kidney damage. Taurine participates in several renal physiological processes and has been shown as a renoprotective agent. It has been reported that taurine could reduce uric acid levels in diabetic rats, but to date there was no research on the effects of taurine on hyperuricemic rats with kidney injury. In present study, hyperuricemic rat models were induced by intragastric administration of adenine and ethambutol hydrochloride for 10 days, and taurine (1% or 2%) were added in the drinking water 7 days in advance for consecutively 17 days. The results showed that taurine alleviated renal morphological and pathological changes as well as kidney dysfunction in hyperuricemic rats. Taurine could efficiently decrease the elevated xanthine oxidase activities in hyperuricemic rats, indicating its effect on the regulation of uric acid formation. The reabsorption and secretion of uric acid are dependent on a number of urate transporters. Expressions of three urate transporters were significantly down-regulated in hyperuricemic rats, while taurine prevented the decrease of mRNA and protein expression levels of these urate transporters. The results indicate that taurine might play a role in the regulation of renal uric acid excretion. Therefore, taurine could be a promising agent for the treatment of hyperuricemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Is taurine a functional nutrient?

    Science.gov (United States)

    Bouckenooghe, Thomas; Remacle, Claude; Reusens, Brigitte

    2006-11-01

    Taurine, a free amino acid, is found in millimolar concentrations in most mammalian tissues. Mammals are able to synthesize taurine endogenously, but some species such as humans are more dependent on dietary sources of taurine. A growing body of evidence suggests that taurine plays a preponderant role in many physiological processes, which will be summarized in this review. Evidence for the requirement of taurine in the human diet has been obtained in many studies involving animal models and a few clinical trials. Recent and past studies suggested that taurine might be a pertinent candidate for use as a nutritional supplement to protect against oxidative stress, neurodegenerative diseases or atherosclerosis. Taurine has demonstrated promising actions in vitro, and as a result clinical trials have begun to investigate its effects on various diseases. Taurine appears to have multiple functions and plays an important role in many physiological processes, such as osmoregulation, immunomodulation and bile salt formation. Taurine analogues/derivatives have recently been reported to have a marked activity on various disorders. Taken together, these observations actualize the old story of taurine.

  7. The effect of long-term taurine supplementation and fructose feeding on glucose and lipid homeostasis in Wistar rats

    DEFF Research Database (Denmark)

    Larsen, Lea Hüche; Orstrup, Laura Kofoed Hvidsten; Hansen, Svend Høime

    2013-01-01

    The nonprotein amino acid taurine has been shown to counteract the negative effects of a high-fructose diet in rats with regard to insulin resistance and dyslipidemia. Here we examined the long-term (26 weeks) effects of oral taurine supplementation (2% in the drinking water) in fructose-fed Wistar...... rats.The combination of fructose and taurine caused a significant increase in fasting glucose compared to the control diet without changing hepatic phosphoenol pyruvate carboxykinase mRNA levels. The combination of fructose and taurine also improved glucose tolerance compared to control. Neither a high......-fructose diet nor taurine supplementation induced significant changes in body weight, body fat or total calorie intake, fasting insulin levels, HOMA-IR, or insulin-induced Akt phosphorylation in skeletal muscle.Fructose alone caused a decrease in liver triglyceride content, with taurine supplementation...

  8. Hyperinsulinemia Enhances Hepatic Expression of the Fatty Acid Transporter Cd36 and Provokes Hepatosteatosis and Hepatic Insulin Resistance.

    Science.gov (United States)

    Steneberg, Pär; Sykaras, Alexandros G; Backlund, Fredrik; Straseviciene, Jurate; Söderström, Ingegerd; Edlund, Helena

    2015-07-31

    Hepatosteatosis is associated with the development of both hepatic insulin resistance and Type 2 diabetes. Hepatic expression of Cd36, a fatty acid transporter, is enhanced in obese and diabetic murine models and human nonalcoholic fatty liver disease, and thus it correlates with hyperinsulinemia, steatosis, and insulin resistance. Here, we have explored the effect of hyperinsulinemia on hepatic Cd36 expression, development of hepatosteatosis, insulin resistance, and dysglycemia. A 3-week sucrose-enriched diet was sufficient to provoke hyperinsulinemia, hepatosteatosis, hepatic insulin resistance, and dysglycemia in CBA/J mice. The development of hepatic steatosis and insulin resistance in CBA/J mice on a sucrose-enriched diet was paralleled by increased hepatic expression of the transcription factor Pparγ and its target gene Cd36 whereas that of genes implicated in lipogenesis, fatty acid oxidation, and VLDL secretion was unaltered. Additionally, we demonstrate that insulin, in a Pparγ-dependent manner, is sufficient to directly increase Cd36 expression in perfused livers and isolated hepatocytes. Mouse strains that display low insulin levels, i.e. C57BL6/J, and/or lack hepatic Pparγ, i.e. C3H/HeN, do not develop hepatic steatosis, insulin resistance, or dysglycemia on a sucrose-enriched diet, suggesting that elevated insulin levels, via enhanced CD36 expression, provoke fatty liver development that in turn leads to hepatic insulin resistance and dysglycemia. Thus, our data provide evidence for a direct role for hyperinsulinemia in stimulating hepatic Cd36 expression and thus the development of hepatosteatosis, hepatic insulin resistance, and dysglycemia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Downregulation of taurine uptake in multidrug resistant Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Poulsen, K A; Litman, Thomas; Eriksen, J;

    2002-01-01

    In daunorubicin resistant Ehrlich ascites tumor cells (DNR), the initial taurine uptake was reduced by 56% as compared to the parental, drug sensitive Ehrlich cells. Kinetic experiments indicated that taurine uptake in Ehrlich cells occurs via both high- and low-affinity transporters. The maximal...

  10. Regulation of taurine homeostasis by protein kinase CK2 in mouse fibroblasts

    DEFF Research Database (Denmark)

    Hansen, Daniel Bloch; Guerra, Barbara; Jacobsen, Jack Hummeland

    2011-01-01

    is a critical step in cell proliferation, differentiation and induction of apoptosis. In the present study, we use mouse NIH3T3 fibroblasts and Ehrlich Lettré ascites tumour cells with different CK2 expression levels. Taurine uptake via the Na(+) dependent transporter TauT and taurine release are increased...

  11. Effect of taurine in rat milk on the growth of offspring.

    Science.gov (United States)

    Hu, J M; Rho, J Y; Suzuki, M; Nishihara, M; Takahashi, M

    2000-07-01

    The physiological significance of taurine in milk in the growth of rat pups was investigated. Our results confirmed that taurine was at an exceptionally high concentration in rat milk during the lactational period, especially for the first few days after birth. Pups taking no milk from natural dams but from foster mothers at an advanced lactational period showed a slower growth rate. Intraperitoneal administration of taurine to the foster mothers in the first five days restored this growth retardation. On the other hand, intraperitoneal administration of beta-alanine, a transport antagonist of taurine, to the natural dams through the lactational period induced a slower growth rate of pups. This beta-alanine treatment to dams increased beta-alanine concentration, but did not decrease taurine concentrations in milk, and serum taurine concentration in the pups receiving this milk was elevated. Direct administration of beta-alanine to pups also increased the serum taurine concentrations dose-dependently. Beta-alanine administration to pups significantly decreased [3H]taurine incorporation into all the organs examined, and in contrast. [3H]taurine concentrations in serum and urine were elevated. Thus, beta-alanine inhibited taurine incorporation into cells and accelerated taurine excretion into either urine or milk. Serum IGF-I levels in pups receiving beta-alanine either directly or via their mothers was significantly lower than those in control pups. Cumulatively, taurine ingestion from milk at an early lactational period seems critical for normal growth of rat neonates due to its role in maintaining normal serum IGF-I levels.

  12. Taurine Supplementation Improves Functional Capacity, Myocardial Oxygen Consumption, and Electrical Activity in Heart Failure.

    Science.gov (United States)

    Ahmadian, Mehdi; Dabidi Roshan, Valiollah; Ashourpore, Eadeh

    2017-07-04

    Taurine is an amino acid found abundantly in the heart in very high concentrations. It is assumed that taurine contributes to several physiological functions of mammalian cells, such as osmoregulation, anti-inflammation, membrane stabilization, ion transport modulation, and regulation of oxidative stress and mitochondrial protein synthesis. The objective of the current study was to evaluate the effectiveness of taurine supplementation on functional capacity, myocardial oxygen consumption, and electrical activity in patients with heart failure. In a double-blind and randomly designed study, 16 patients with heart failure were assigned to two groups: taurine (TG, n = 8) and placebo (PG, n = 8). TG received 500-mg taurine supplementation three times per day for two weeks. Significant decrease in the values of Q-T segments (p taurine concentration, T wave, Q-T segment, physical capacities, and lower values of cardiovascular capacities were detected post-supplementation in TG as compared with PG (all p values Taurine significantly enhanced the physical function and significantly reduced the cardiovascular function parameters following exercise. Our results also suggest that the short-term taurine supplementation is an effective strategy for improving some selected hemodynamic parameters in heart failure patients. Together, these findings support the view that taurine improves cardiac function and functional capacity in patients with heart failure. This idea warrants further study.

  13. Taurine plays an important role in the protection of spermatogonia from oxidative stress.

    Science.gov (United States)

    Higuchi, Masato; Celino, Fritzie T; Shimizu-Yamaguchi, Sonoko; Miura, Chiemi; Miura, Takeshi

    2012-12-01

    It has been demonstrated that taurine has various physiological functions in the body. We demonstrated that taurine is abundant in the serum, liver, muscle and testis of the Japanese eel (Anguilla japonica). In the eel testis, taurine is found mainly in spermatogonia and is weakly expressed also in the Sertoli cells. We have further found in the eel testis that taurine is actively accumulated via the sodium/chloride-dependent taurine transporter (TauT; SLC6A6), which is expressed in germ cells. In our current study, the effects of taurine on the anti-oxidant response were examined. Taurine was found to promote the total superoxide dismutase (SOD) activity in the testis. Moreover, our results indicate that taurine does not affect the mRNA levels of copper-zinc (Cu/Zn) SOD or manganese SOD, but promotes the translation of Cu/Zn SOD. Overall, our present data suggest that taurine may modulate Cu/Zn SOD at the translational level and thereby may play an important role in the protection of germ cells from oxidative stress.

  14. Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice.

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    Full Text Available Taurine (2-aminoethanesulfonic acid is found in milimolar concentrations in mammalian tissues. One of its main functions is osmoregulation; however, it also exhibits cytoprotective activity by diminishing injury caused by stress and disease. Taurine depletion is associated with several defects, many of which are found in the aging animal, suggesting that taurine might exert anti-aging actions. Therefore, in the present study, we examined the hypothesis that taurine depletion accelerates aging by reducing longevity and accelerating aging-associated tissue damage. Tissue taurine depletion in taurine transporter knockout (TauTKO mouse was found to shorten lifespan and accelerate skeletal muscle histological and functional defects, including an increase in central nuclei containing myotubes, a reduction in mitochondrial complex 1 activity and an induction in an aging biomarker, Cyclin-dependent kinase 4 inhibitor A (p16INK4a. Tissue taurine depletion also enhances unfolded protein response (UPR, which may be associated with an improvement in protein folding by taurine. Our data reveal that tissue taurine depletion affects longevity and cellular senescence; an effect possibly linked to a disturbance in protein folding.

  15. Hepatic expression and cellular distribution of the glucose transporter family

    Institute of Scientific and Technical Information of China (English)

    Sumera Karim; David H Adams; Patricia F Lalor

    2012-01-01

    Glucose and other carbohydrates are transported into cells using members of a family of integral membrane glucose transporter (GLUT) molecules.To date 14 members of this family,also called the solute carrier 2A proteins have been identified which are divided on the basis of transport characteristics and sequence similarities into several families (Classes 1 to 3).The expression of these different receptor subtypes varies between different species,tissues and cellular subtypes and each has differential sensitivities to stimuli such as insulin.The liver is a contributor to metabolic carbohydrate homeostasis and is a major site for synthesis,storage and redistribution of carbohydrates.Situations in which the balance of glucose homeostasis is upset such as diabetes or the metabolic syndrome can lead metabolic disturbances that drive chronic organ damage and failure,confirming the importance of understanding the molecular regulation of hepatic glucose homeostasis.There is a considerable literature describing the expression and function of receptors that regulate glucose uptake and release by hepatocytes,the most import cells in glucose regulation and glycogen storage.However there is less appreciation of the roles of GLUTs expressed by non parenchymal cell types within the liver,all of which require carbohydrate to function.A better understanding of the detailed cellular distribution of GLUTs in human liver tissue may shed light on mechanisms underlying disease pathogenesis.This review summarises the available literature on hepatocellular expression of GLUTs in health and disease and highlights areas where further investigation is required.

  16. Taurine in neonatal nutrition - revisited

    Science.gov (United States)

    Taurine (2-aminoethanesulfonic acid) was isolated from ox (Bos Taurus) bile in 1827 but, until the mid to late 1970, it was thought to be merely a by-product of sulfur amino and metabolism. In 1975, it was noted that taurine deficiency in cats was associated with retinal degeneration which was reve...

  17. Physiological roles of taurine in heart and muscle

    National Research Council Canada - National Science Library

    Schaffer, Stephen W; Jong, Chian Ju; Ramila, K C; Azuma, Junichi

    2010-01-01

    .... The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine...

  18. 21 CFR 573.980 - Taurine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Taurine. 573.980 Section 573.980 Food and Drugs... Listing § 573.980 Taurine. The food additive taurine (2-amino-ethanesulfonic acid) may be safely used in... in the feed of growing chickens. (b) It is added to complete feeds so that the total taurine content...

  19. Hepatic OATP Transporter and Thyroid Hormone Receptor Interplay Determines Cholesterol and Glucose Homeostasis

    OpenAIRE

    Meyer zu Schwabedissen, Henriette E; Ware, Joseph A; Finkelstein, David; Chaudhry, Amarjit S.; Lemay, Sara; Leon-Ponte, Matilde; Strom, Stephen C.; Zaher, Hani; Schwarz, Ute I; Freeman, David J.; Schuetz, Erin G; Tirona, Rommel G; Kim, Richard B

    2011-01-01

    The role of Organic Anion Transporting Polypeptides (OATPs), particularly the members of OATP1B-subfamily, in hepatocellular handling of endogenous and exogenous compounds is an important and emerging area of research. Using a mouse model lacking Slco1b2, the murine ortholog of the OATP1B-subfamily, we previously demonstrated that genetic ablation causes reduced hepatic clearance capacity for substrates. In this report we focused on the physiological function of the hepatic OATP1B transporters.

  20. Protective effects of taurine on doxorubicin-induced acute hepatotoxicity through suppression of oxidative stress and apoptotic responses.

    Science.gov (United States)

    Nagai, Katsuhito; Fukuno, Shuhei; Oda, Ayano; Konishi, Hiroki

    2016-01-01

    The organ toxicity of doxorubicin (DOX), an anthracycline antineoplastic agent, narrows the therapeutic window despite its clinical usefulness. In the present study, we determined whether taurine protected against DOX-induced hepatic injury, and explored the molecular mechanisms underlying the suppressive effects of taurine in terms of alterations in oxidative stress and apoptotic responses. DOX-induced body weight loss was completely suppressed by taurine treatment. Elevations in the serum activity levels of lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase by DOX were also dose-dependently attenuated by a concurrent treatment with taurine. Superoxide dismutase activity and reduced glutathione content in the liver were decreased following the administration of DOX, whereas these changes were suppressed when 10 mg/kg taurine was given in combination with DOX. Taurine attenuated the increased expression of mRNAs for Fas and Bax after DOX exposure. Furthermore, the formation of cleaved caspase-3 protein in the group given DOX with taurine was lower than that in the group treated with DOX alone. Our results suggest that taurine can protect against DOX-induced acute hepatic damage, the underlying mechanism of which is attributable to the suppression of oxidative stress and apoptotic responses.

  1. Branched-chain amino acids inhibit the TGF-beta-induced down-regulation of taurine biosynthetic enzyme cysteine dioxygenase in HepG2 cells.

    Science.gov (United States)

    Hagiwara, Asami; Ishizaki, Sonoko; Takehana, Kenji; Fujitani, Shoji; Sonaka, Ichiro; Satsu, Hideo; Shimizu, Makoto

    2014-05-01

    Taurine deficiency has been suggested to contribute to the pathogenesis and complications of advanced hepatic diseases. The molecular basis for a low level of taurine associated with hepatic failure is largely unknown. Using carbon tetrachloride (CCl4)-induced cirrhotic rat model, we found that the activity and expression of cysteine dioxygenase (CDO), a rate-limiting enzyme in taurine synthesis, were significantly decreased in the liver of these rats. To investigate the underlying mechanisms for the suppression, we examined the effects of pathological cytokines on CDO expression in human hepatoma HepG2 cells. Among the several cytokines, transforming growth factor-β (TGF-β), one of the key mediators of fibrogenesis, suppressed Cdo1 gene transcription through the MEK/ERK pathway. Finally, we further examined potential effects of branched-chain amino acids (BCAA) on CDO expression, as it has been reported that oral BCAA supplementation increased plasma taurine level in the patients with liver cirrhosis. BCAA, especially leucine, promoted Cdo1 gene transcription, and attenuated TGF-β-mediated suppression of Cdo1 gene expression. These results indicate that the low plasma level of taurine in advanced hepatic disease is due to decreased hepatic CDO expression, which can be partly attributed to suppressive effect of TGF-β on Cdo1 gene transcription. Furthermore, our observation that BCAA promotes Cdo1 expression suggests that BCAA may be therapeutically useful to improve hepatic taurine metabolism and further suppress dysfunctions associated with low level of taurine in hepatic diseases.

  2. Mechanism for modulation of gating of connexin26-containing channels by taurine

    Science.gov (United States)

    Kieken, Fabien; Tao, Liang; Sorgen, Paul L.; Harris, Andrew L.

    2011-01-01

    The mechanisms of action of endogenous modulatory ligands of connexin channels are largely unknown. Previous work showed that protonated aminosulfonates (AS), notably taurine, directly and reversibly inhibit homomeric and heteromeric channels that contain Cx26, a widely distributed connexin, but not homomeric Cx32 channels. The present study investigated the molecular mechanisms of connexin channel modulation by taurine, using hemichannels and junctional channels composed of Cx26 (homomeric) and Cx26/Cx32 (heteromeric). The addition of a 28–amino acid “tag” to the carboxyl-terminal domain (CT) of Cx26 (Cx26T) eliminated taurine sensitivity of homomeric and heteromeric hemichannels in cells and liposomes. Cleavage of all but four residues of the tag (Cx26Tc) resulted in taurine-induced pore narrowing in homomeric hemichannels, and restored taurine inhibition of heteromeric hemichannels (Cx26Tc/Cx32). Taurine actions on junctional channels were fully consistent with those on hemichannels. Taurine-induced inhibition of Cx26/Cx32T and nontagged Cx26 junctional channels was blocked by extracellular HEPES, a blocker of the taurine transporter, confirming that the taurine-sensitive site of Cx26 is cytoplasmic. Nuclear magnetic resonance of peptides corresponding to Cx26 cytoplasmic domains showed that taurine binds to the cytoplasmic loop (CL) and not the CT, and that the CT and CL directly interact. ELISA showed that taurine disrupts a pH-dependent interaction between the CT and the CT-proximal half of the CL. These studies reveal that AS disrupt a pH-driven cytoplasmic interdomain interaction in Cx26-containing channels, causing closure, and that the Cx26CT has a modulatory role in Cx26 function. PMID:21844220

  3. Reciprocal regulation between taurine and glutamate response via Ca2+- dependent pathways in retinal third-order neurons

    Science.gov (United States)

    2010-01-01

    Although taurine and glutamate are the most abundant amino acids conducting neural signals in the central nervous system, the communication between these two neurotransmitters is largely unknown. This study explores the interaction of taurine and glutamate in the retinal third-order neurons. Using specific antibodies, both taurine and taurine transporters were localized in photoreceptors and Off-bipolar cells, glutamatergic neurons in retinas. It is possible that Off-bipolar cells release juxtaposed glutamate and taurine to activate the third-order neurons in retina. The interaction of taurine and glutamate was studied in acutely dissociated third-order neurons in whole-cell patch-clamp recording and Ca2+ imaging. We find that taurine effectively reduces glutamate-induced Ca2+ influx via ionotropic glutamate receptors and voltage-dependent Ca2+ channels in the neurons, and the effect of taurine was selectively inhibited by strychnine and picrotoxin, but not GABA receptor antagonists, although GABA receptors are present in the neurons. A CaMKII inhibitor partially reversed the effect of taurine, suggesting that a Ca2+/calmodulin-dependent pathway is involved in taurine regulation. On the other hand, a rapid influx of Ca2+ through ionotropic glutamate receptors could inhibit the amplitude and kinetics of taurine-elicited currents in the third-order neurons, which could be controlled with intracellular application of BAPTA a fast Ca2+ chelator. This study indicates that taurine is a potential neuromodulator in glutamate transmission. The reciprocal inhibition between taurine and glutamate in the postsynaptic neurons contributes to computation of visual signals in the retinal neurons. PMID:20804625

  4. Protective effects of taurine in traumatic brain injury via mitochondria and cerebral blood flow.

    Science.gov (United States)

    Wang, Qin; Fan, Weijia; Cai, Ying; Wu, Qiaoli; Mo, Lidong; Huang, Zhenwu; Huang, Huiling

    2016-09-01

    In mammalian tissues, taurine is an important natural component and the most abundant free amino acid in the heart, retina, skeletal muscle, brain, and leukocytes. This study is to examine the taurine's protective effects on neuronal ultrastructure, the function of the mitochondrial respiratory chain complex, and on cerebral blood flow (CBF). The model of traumatic brain injury (TBI) was made for SD rats by a fluid percussion device, with taurine (200 mg/kg) administered by tail intravenous injection once daily for 7 days after TBI. It was found that CBF was improved for both left and right brain at 30 min and 7 days post-injury by taurine. Reaction time was prolonged relative to the TBI-only group. Neuronal damage was prevented by 7 days taurine. Mitochondrial electron transport chain complexes I and II showed greater activity with the taurine group. The improvement by taurine of CBF may alleviate edema and elevation in intracranial pressure. Importantly taurine improved the hypercoagulable state.

  5. Taurine inhibits interleukin-6 expression and release induced by ultraviolet B exposure to human retinal pigment epithelium cells.

    Science.gov (United States)

    Dayang, Wu; Jinsong, Zhang

    2015-01-01

    The massive uptake of compatible osmolytes is a self-protective response shared by retina exposed to hypertonic stress and ultraviolet stress. This study aimed to investigate the protective effects of taurine against ultraviolet damage in human retinal pigment epithelium cells. Real-time PCR, radioimmunoassay, ELISA and immunoassay were used to measure osmolyte uptake and IL-6 expression. Compared with normotonic stress, hypertonic stress led to an induction of osmolyte uptake including betaine, myoinositol and taurine. UVB exposure upregulated osmolyte transporter mRNA expression and increased osmolyte uptake respectively. Especially, taurine suppressed UVB-induced IL-6 mRNA expression significantly. The accumulation of IL-6 in UVB-exposed human retinal pigment epithelial cells supernatant was much slower when the cells were preincubated with taurine. Moreover, taurine suppressed IL-6 concentration in aqueous humour. The effect of compatible osmolyte taurine on IL-6 expression and release may play an important role in cell resistance and adaption to UVB exposure.

  6. Altered Hepatic Transport by Fetal Arsenite Exposure in Diet-Induced Fatty Liver Disease.

    Science.gov (United States)

    Ditzel, Eric J; Li, Hui; Foy, Caroline E; Perrera, Alec B; Parker, Patricia; Renquist, Benjamin J; Cherrington, Nathan J; Camenisch, Todd D

    2016-07-01

    Non-alcoholic fatty liver disease can result in changes to drug metabolism and disposition potentiating adverse drug reactions. Furthermore, arsenite exposure during development compounds the severity of diet-induced fatty liver disease. This study examines the effects of arsenite potentiated diet-induced fatty liver disease on hepatic transport in male mice. Changes were detected for Mrp2/3/4 hepatic transporter gene expression as well as for Oatp1a4/2b1/1b2. Plasma concentrations of Mrp and Oatp substrates were increased in arsenic exposure groups compared with diet-only controls. In addition, murine embryonic hepatocytes and adult primary hepatocytes show significantly altered transporter expression after exposure to arsenite alone: a previously unreported phenomenon. These data indicate that developmental exposure to arsenite leads to changes in hepatic transport which could increase the risk for ADRs during fatty liver disease.

  7. Immunonutrition: the role of taurine.

    LENUS (Irish Health Repository)

    Redmond, H P

    2012-02-03

    Taurine is a sulfonated beta amino acid derived from methionine and cysteine metabolism. It is present in high concentrations in most tissues and in particular in proinflammatory cells such as polymorphonuclear phagocytes. Initial investigation into the multifaceted properties of this non-toxic physiologic amino acid revealed a link between retinal dysfunction and dietary deficiency. Since then a role for this amino acid has been found in membrane stabilization, bile salt formation, antioxidation, calcium homeostasis, growth modulation, and osmoregulation. Our own group has demonstrated a key role for taurine in modulation of apoptosis in a variety of cell types. This review summarizes our current knowledge of taurine in nutrition, host proinflammatory cell homeostasis, therapeutic applications, and its potential immunoregulatory properties. It is our belief that taurine, similar to arginine and glutamine, is now more than worthy of critical clinical analysis.

  8. 重型颅脑创伤大鼠后期脑水肿研究及牛磺酸转运体的作用%Protection role of taurine transporter in rats brain edema followed severe traumatic head injury

    Institute of Scientific and Technical Information of China (English)

    蔡英; 黄慧玲; 范维佳; 武俏丽; 李晓茜; 苏彦华; 温晓昶

    2015-01-01

    Objective To investigate the effect of taurine transporter in the process of protection of brain edema in rats with severe traumatic head injury. Methods A total of 24 Male Sprague-Dawley rats were randomly divided into 4 groups. Except the control rats (Group Sham), all other three groups were subjected to lateral fluid percussion head injury. The TBI (Traumatic brain injury) models (Group TBI) and surgical control rats (Group Sham) were injected with saline through caudal vein after surgery, while the Taurine prevention and Taurine treatment models (Group Pre Tau and Group Tau) were injected with 120 g/L taurine solution before or after surgeries respectively. Water content in each brain, mRNA and protein expres⁃sion of aquaporin 4 and taurine transporter in the injured rat brain hemispheres were all evaluated over the time course of the study (7 d) in each group. Results Compared with rats in Group Sham, water content in each brain increase, mRNA tran⁃scription and protein expression of AQP4 were both up regulated but the mRNA transcription and protein expression of TauT were both down-regulated in rats in TBI group. Compared with rats in TBI group, brain water content, mRNA transcription and protein expression of AQP4 all decrease while mRNA transcription and protein expression of TauT all increase in rats in Pre tau and Tau groups. There is no statistical difference of TauT expression between rats in pre-tau group and Tau group. Conclusion Taurine exert its neuron protection role through draining water content from brain and down regulating expres⁃sion of AQP4 but rising expression of TauT after TBI.%目的:研究牛磺酸转运体(TauT)在牛磺酸调节重型颅脑创伤大鼠后期脑水肿中的作用。方法将40只大鼠按随机数字表法分为4组:假手术组(Sham组)、脑外伤组(TBI组)、牛磺酸预防组(Pre-Tau组)和牛磺酸治疗组(Tau组)。液压冲击法制作重型颅脑创伤大鼠模型。Pre-Tau组和Tau

  9. Acute cholesterol depletion leads to net loss of the organic osmolyte taurine in Ehrlich Lettré tumor cells

    DEFF Research Database (Denmark)

    Villumsen, Kasper Rømer; Duelund, Lars; Lambert, Ian Henry

    2010-01-01

    In mammalian cells, the organic osmolyte taurine is accumulated by the Na-dependent taurine transporter TauT and released though the volume- and DIDS-sensitive organic anion channel. Incubating Ehrlich Lettré tumor cells with methyl-ß-cyclodextrin (5 mM, 1 h) reduces the total cholesterol pool...

  10. Transporter-Enzyme Interplay: Deconvoluting Effects of Hepatic Transporters and Enzymes on Drug Disposition Using Static and Dynamic Mechanistic Models.

    Science.gov (United States)

    Varma, Manthena V; El-Kattan, Ayman F

    2016-07-01

    A large body of evidence suggests hepatic uptake transporters, organic anion-transporting polypeptides (OATPs), are of high clinical relevance in determining the pharmacokinetics of substrate drugs, based on which recent regulatory guidances to industry recommend appropriate assessment of investigational drugs for the potential drug interactions. We recently proposed an extended clearance classification system (ECCS) framework in which the systemic clearance of class 1B and 3B drugs is likely determined by hepatic uptake. The ECCS framework therefore predicts the possibility of drug-drug interactions (DDIs) involving OATPs and the effects of genetic variants of SLCO1B1 early in the discovery and facilitates decision making in the candidate selection and progression. Although OATP-mediated uptake is often the rate-determining process in the hepatic clearance of substrate drugs, metabolic and/or biliary components also contribute to the overall hepatic disposition and, more importantly, to liver exposure. Clinical evidence suggests that alteration in biliary efflux transport or metabolic enzymes associated with genetic polymorphism leads to change in the pharmacodynamic response of statins, for which the pharmacological target resides in the liver. Perpetrator drugs may show inhibitory and/or induction effects on transporters and enzymes simultaneously. It is therefore important to adopt models that frame these multiple processes in a mechanistic sense for quantitative DDI predictions and to deconvolute the effects of individual processes on the plasma and hepatic exposure. In vitro data-informed mechanistic static and physiologically based pharmacokinetic models are proven useful in rationalizing and predicting transporter-mediated DDIs and the complex DDIs involving transporter-enzyme interplay.

  11. Role of Mitochondria and Endoplasmic Reticulum in Taurine-Deficiency-Mediated Apoptosis.

    Science.gov (United States)

    Jong, Chian Ju; Ito, Takashi; Prentice, Howard; Wu, Jang-Yen; Schaffer, Stephen W

    2017-07-25

    Taurine is a ubiquitous sulfur-containing amino acid found in high concentration in most tissues. Because of its involvement in fundamental physiological functions, such as regulating respiratory chain activity, modulating cation transport, controlling inflammation, altering protein phosphorylation and prolonging lifespan, taurine is an important nutrient whose deficiency leads to severe pathology and cell death. However, the mechanism by which taurine deficiency causes cell death is inadequately understood. Therefore, the present study examined the hypothesis that overproduction of reactive oxygen species (ROS) by complex I of the respiratory chain triggers mitochondria-dependent apoptosis in hearts of taurine transporter knockout (TauTKO) mice. In support of the hypothesis, a 60% decrease in mitochondrial taurine content of 3-month-old TauTKO hearts was observed, which was associated with diminished complex I activity and the onset of mitochondrial oxidative stress. Oxidative damage to stressed mitochondria led to activation of a caspase cascade, with stimulation of caspases 9 and 3 prevented by treatment of 3-month-old TauTKO mice with the mitochondria specific antioxidant, MitoTempo. In 12 month-old, but not 3-month-old, TauTKO hearts, caspase 12 activation contributes to cell death, revealing a pathological role for endoplasmic reticulum (ER) stress in taurine deficient, aging mice. Thus, taurine is a cytoprotective nutrient that ensures normal mitochondrial and ER function, which is important for the reduction of risk for apoptosis and premature death.

  12. Role of Mitochondria and Endoplasmic Reticulum in Taurine-Deficiency-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Chian Ju Jong

    2017-07-01

    Full Text Available Taurine is a ubiquitous sulfur-containing amino acid found in high concentration in most tissues. Because of its involvement in fundamental physiological functions, such as regulating respiratory chain activity, modulating cation transport, controlling inflammation, altering protein phosphorylation and prolonging lifespan, taurine is an important nutrient whose deficiency leads to severe pathology and cell death. However, the mechanism by which taurine deficiency causes cell death is inadequately understood. Therefore, the present study examined the hypothesis that overproduction of reactive oxygen species (ROS by complex I of the respiratory chain triggers mitochondria-dependent apoptosis in hearts of taurine transporter knockout (TauTKO mice. In support of the hypothesis, a 60% decrease in mitochondrial taurine content of 3-month-old TauTKO hearts was observed, which was associated with diminished complex I activity and the onset of mitochondrial oxidative stress. Oxidative damage to stressed mitochondria led to activation of a caspase cascade, with stimulation of caspases 9 and 3 prevented by treatment of 3-month-old TauTKO mice with the mitochondria specific antioxidant, MitoTempo. In 12 month-old, but not 3-month-old, TauTKO hearts, caspase 12 activation contributes to cell death, revealing a pathological role for endoplasmic reticulum (ER stress in taurine deficient, aging mice. Thus, taurine is a cytoprotective nutrient that ensures normal mitochondrial and ER function, which is important for the reduction of risk for apoptosis and premature death.

  13. Taurine increases hippocampal neurogenesis in aging mice

    Directory of Open Access Journals (Sweden)

    Elias Gebara

    2015-05-01

    Full Text Available Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging.

  14. Effect of β-alanine treatment on mitochondrial taurine level and 5-taurinomethyluridine content

    Science.gov (United States)

    2010-01-01

    Background The β-amino acid, taurine, is a nutritional requirement in some species. In these species, the depletion of intracellular stores of taurine leads to the development of severe organ dysfunction. The basis underlying these defects is poorly understood, although there is some suggestion that oxidative stress may contribute to the abnormalities. Recent studies indicate that taurine is required for normal mitochondrial protein synthesis and normal electron transport chain activity; it is known that defects in these events can lead to severe mitochondrial oxidative stress. The present study examines the effect of taurine deficiency on the first step of mitochondrial protein synthesis regulation by taurine, namely, the formation of taurinomethyluridine containing tRNA. Methods Isolated rat cardiomyocytes were rendered taurine deficient by incubation with medium containing the taurine transport inhibitor, β-alanine. The time course of cellular and mitochondrial taurine depletion was measured. The primer extension method was employed to evaluate the effect of β-alanine treatment on taurinomethyluridine content of tRNALeu. The protein levels of ND6 were also determined by Western blot analysis. Results β-alanine caused a time-dependent decrease in cellular taurine content, which were reduced in half after 48 hrs of incubation. The amount of taurine in the mitochondria was considerably less than that in the cytosol and was unaffected by β-alanine treatment. Approximately 70% of the tRNALeu in the untreated cell lacked taurinomethyluridine and these levels were unchanged following β-alanine treatment. Protein content of ND6, however, was significantly reduced after 48 hours incubation with β-alanine. Conclusions The taurine levels of the cytosol and the mitochondria are not directly coupled. The β-alanine-mediated reduction in taurine levels is too small to affect taurinomethyluridine levels. Nonetheless, it interferes with mitochondrial protein synthesis

  15. Decreased expression of an ATP-binding cassette transporter, MRP2, in human livers with hepatitis C virus infection.

    Science.gov (United States)

    Hinoshita, E; Taguchi, K; Inokuchi, A; Uchiumi, T; Kinukawa, N; Shimada, M; Tsuneyoshi, M; Sugimachi, K; Kuwano, M

    2001-12-01

    To understand hepatic injury during the process of hepatitis viral infection, determination of liver-specific functions at molecular levels is critical. Because the transport of endogenous/exogenous toxic substances is an intrinsically important hepatic function, we examined whether expression of the ATP-binding cassette (ABC) transporter gene was affected in patients with hepatitis viral infection. To determine which ABC transporter was expressed differently in patients with hepatic viral infection, we assayed the expression of MDR1, MDR3, MRP1, MRP2, and MRP3 in non-cancerous regions in the liver of 42 patients with hepatic tumors using both quantitative RT-PCR and immunological staining analysis, and compared the hepatic expression levels between patients with hepatitis viral infection and non-infected controls. Of the five ABC transporter genes studied, the mRNAs of MRP2 and MRP3 were highly expressed in the human liver. There was a significant reduction in MRP2 expression to 29% in the virus-infected liver. Treatment of hepatic cells with inflammatory cytokines resulted in decreased mRNA levels of MRP2 and decreased MRP2 promoter activity. The down-regulation of MRP2 might induce a failure in the transport of various genotoxic substances in the liver with hepatitis virus infection.

  16. Taurine Protects Lens Epithelial Cells Against Ultraviolet B-Induced Apoptosis.

    Science.gov (United States)

    Dayang, Wu; Dongbo, Pang

    2017-10-01

    The massive uptake of compatible osmolytes is a self-protective response shared by lens exposed to hypertonic stress and ultraviolet stress. This study aimed to investigate the protective effects of taurine against ultraviolet B-induced cytotoxicity in the lens epithelial cells. Real-time PCR was used to measure osmolytes transport. Radioimmunoassay was used to measure osmolytes uptake. Cell counting kit-8 assays were used to measure cellular viability. Flow cytometry analysis was used to measure apoptosis level. Compared with normotonic stress, hypertonic stress-induced osmolytes uptake into the lens epithelial cells such as betaine, myoinositol and taurine. UVB exposure increased osmolytes transporter mRNA expression together with osmolytes uptake. Moreover, taurine suppressed UVB-induced cell apoptosis in the lens epithelial cells significantly. The effect of compatible osmolyte taurine on cell survival rate may play an important role in cell resistance and adaption to UVB exposure.

  17. Acute effects of nicotinic acid on hepatic transport of /sup 99m/Tc-pipida

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, R.B; Knodell, R.G.; Stanley, L.N.; Elson, M.K.

    1983-01-01

    Hepatic injury has been associated with nicotinic acid treatment of schizophrenia and hypercholesterolemia. This association was implicated when the liver and biliary tract were not visualized after /sup 99m/Tc-HIDA in a patient taking 3 g daily of nicotinic acid. We studied hepatic transport of /sup 99m/Tc-PIPIDA both in vitro in isolated hepatocytes and in vivo in rabbits pretreated with nicotinic acid to further examine this association. Nicotinic acid increased uptake of PIPIDA by isolated hepatocytes and 7 days of nicotinic acid treatment in rabbits produced no abnormalities in hepatic uptake, gallbladder visualization, or biliary excretion of PIPIDA. We conclude that nicotinic acid does not have an inhibitory effect on uptake of biliary imaging agents and actually may be useful in enhancing hepatic imaging in patients with reduced liver function.

  18. Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis

    Science.gov (United States)

    Brandoni, Anabel; Hazelhoff, María Herminia; Bulacio, Romina Paula; Torres, Adriana Mónica

    2012-01-01

    Obstructive jaundice occurs in patients suffering from cholelithiasis and from neoplasms affecting the pancreas and the common bile duct. The absorption, distribution and elimination of drugs are impaired during this pathology. Prolonged cholestasis may alter both liver and kidney function. Lactam antibiotics, diuretics, non-steroidal anti-inflammatory drugs, several antiviral drugs as well as endogenous compounds are classified as organic anions. The hepatic and renal organic anion transport pathways play a key role in the pharmacokinetics of these compounds. It has been demonstrated that acute extrahepatic cholestasis is associated with increased renal elimination of organic anions. The present work describes the molecular mechanisms involved in the regulation of the expression and function of the renal and hepatic organic anion transporters in extrahepatic cholestasis, such as multidrug resistance-associated protein 2, organic anion transporting polypeptide 1, organic anion transporter 3, bilitranslocase, bromosulfophthalein/bilirubin binding protein, organic anion transporter 1 and sodium dependent bile salt transporter. The modulation in the expression of renal organic anion transporters constitutes a compensatory mechanism to overcome the hepatic dysfunction in the elimination of organic anions. PMID:23197884

  19. Expression and function of renal and hepatic organic anion transporters in extrahepatic cholestasis

    Institute of Scientific and Technical Information of China (English)

    Anabel Brandoni; María Herminia Hazelhoff; Romina Paula Bulacio; Adriana Mónica Torres

    2012-01-01

    Obstructive jaundice occurs in patients suffering from cholelithiasis and from neoplasms affecting the pancreas and the common bile duct.The absorption,distribution and elimination of drugs are impaired during this pathology.Prolonged cholestasis may alter both liver and kidney function.Lactam antibiotics,diuretics,non-steroidal anti-inflammatory drugs,several antiviral drugs as well as endogenous compounds are classified as organic anions.The hepatic and renal organic anion transport pathways play a key role in the pharmacokinetics of these compounds.It has been demonstrated that acute extrahepatic cholestasis is associated with increased renal elimination of organic anions.The present work describes the molecular mechanisms involved in the regulation of the expression and function of the renal and hepatic organic anion transporters in extrahepatic cholestasis,such as multidrug resistanceassociated protein 2,organic anion transporting polypeptide 1,organic anion transporter 3,bilitranslocase,bromosulfophthalein/bilirubin binding protein,organic anion transporter 1 and sodium dependent bile salt transporter.The modulation in the expression of renal organic anion transporters constitutes a compensatory mechanism to overcome the hepatic dysfunction in the elimination of organic anions.

  20. Regulation of human hepatic drug transporter activity and expression by diesel exhaust particle extract.

    Directory of Open Access Journals (Sweden)

    Marc Le Vee

    Full Text Available Diesel exhaust particles (DEPs are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC uptake transporters organic anion-transporting polypeptides (OATP 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP, whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP. Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a reference activator of the aryl hydrocarbon receptor (AhR pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute

  1. Protective role of taurine against genotoxic damage in mice treated with methotrexate and tamoxfine.

    Science.gov (United States)

    Alam, Sally S; Hafiz, Nagla A; Abd El-Rahim, Abeer H

    2011-01-01

    The genotoxic actions of anti-neoplastic drugs can lead to the development of secondary cancers in patients in extended remission. One of the most attractive approaches to disease prevention involves the use of natural antioxidants to protect tissue against toxic injury. We investigated the modulatory effects of exogenously administered taurine, on the genotoxicity of two well known anti-neoplastic drugs methotrexate (MTX) and tamoxifen (TAM) in Swiss albino mice. The animals were randomly divided into six groups consisting of ten mice each. Two groups were received single intraperitoneal injection of MTX (10 mg/kgb.wt.) and TAM (50 mg/kgb.wt.) to induce genotoxicity. Two other groups were treated orally with taurine (100 mg/kgb.wt.) for nine days prior to MTX and TAM administration. A vehicle treated control group and taurine control groups were also included. The protective effects of taurine were monitored by apoptosis assays and level of reduced glutathione (GSH), a key antioxidant, in liver, chromosomal aberrations in somatic and germ cells as well as sperm count, motility and morphology. The results indicated that taurine pre-treatment showed significant increment in the levels of GSH content, reduction in DNA fragmentation and ladder formation in hepatic tissue, suggesting the antioxidant activity of taurine may reduce the toxic effects of MTX and TAM. Treatment with taurine showed also significant reduction in the frequency of chromosomal aberrations in both somatic and germ cells. Moreover, it increases sperm count and motility, and decreases the incidence of sperm abnormalities. In conclusion, it appears that taurine protects against anti-neoplastic drugs-induced genotoxicity in somatic and germ tissues and may be of therapeutic potential in alleviating the risk of secondary tumors in chemotherapy.

  2. Experimental evidence for therapeutic potential of taurine in the treatment of nonalcoholic fatty liver disease

    Science.gov (United States)

    Gentile, Christopher L.; Nivala, Angela M.; Gonzales, Jon C.; Pfaffenbach, Kyle T.; Wang, Dong; Wei, Yuren; Jiang, Hua; Orlicky, David J.; Petersen, Dennis R.; Maclean, Kenneth N.

    2011-01-01

    The incidence of obesity is now at epidemic proportions and has resulted in the emergence of nonalcoholic fatty liver disease (NAFLD) as a common metabolic disorder that can lead to liver injury and cirrhosis. Excess sucrose and long-chain saturated fatty acids in the diet may play a role in the development and progression of NAFLD. One factor linking sucrose and saturated fatty acids to liver damage is dysfunction of the endoplasmic reticulum (ER). Although there is currently no proven, effective therapy for NAFLD, the amino sulfonic acid taurine is protective against various metabolic disturbances, including alcohol-induced liver damage. The present study was undertaken to evaluate the therapeutic potential of taurine to serve as a preventative treatment for diet-induced NAFLD. We report that taurine significantly mitigated palmitate-mediated caspase-3 activity, cell death, ER stress, and oxidative stress in H4IIE liver cells and primary hepatocytes. In rats fed a high-sucrose diet, dietary taurine supplementation significantly reduced hepatic lipid accumulation, liver injury, inflammation, plasma triglycerides, and insulin levels. The high-sucrose diet resulted in an induction of multiple components of the unfolded protein response in the liver consistent with ER stress, which was ameliorated by taurine supplementation. Treatment of mice with the ER stress-inducing agent tunicamycin resulted in liver injury, unfolded protein response induction, and hepatic lipid accumulation that was significantly ameliorated by dietary supplementation with taurine. Our results indicate that dietary supplementation with taurine offers significant potential as a preventative treatment for NAFLD. PMID:21957160

  3. The Taurine Content of Japanese Seaweed.

    Science.gov (United States)

    Kawasaki, Azusa; Ono, Ayuko; Mizuta, Shoshi; Kamiya, Mitsunobu; Takenaga, Takaaki; Murakami, Shigeru

    2017-01-01

    Japanese and South Koreans have a dietary habit of eating seaweed. Although it is known that some seaweed contains taurine, there have been few detailed analyses on the taurine content of seaweed other than the major types of edible seaweed. In the present study, we determined the content of free amino acids, including taurine, in seaweed obtained along the Sea of Japan coast. The taurine content in the seaweed varied according to the species. Among the 29 different types of seaweed that were studied, red algae contained relatively high concentrations of taurine. In contrast, the taurine content was low or undetectable in brown and green algae. The algal alanine level was relatively higher in brown sea algae, which was in sharp contrast to its taurine level. No clear trends were observed with regards to the distribution of the other free amino acids, including aspartic acid, glutamic acid, and phenylalanine. Considering the physiological role of taurine in cellular homeostasis, the algal taurine content may be associated with the growing environment. Taurine-rich red edible algae such as mafunori (Gloiopeltis tenax)/fukurofunori (Gloiopeltis furcata), kabanori (Gracilaria textorii), and ogonori (Gracilaria vermiculophylla) may be used to create functional foods that are rich in naturally occurring taurine.

  4. Role of taurine in spinal cord injury.

    Science.gov (United States)

    Gupta, R C; Seki, Y; Yosida, J

    2006-08-01

    Taurine is a sulfur amino acid. It is found endogenously in human and several others tissues. It is significantly in high concentration in mammals. Human body contains about 0.1% of body weight as taurine. It has a number of physiological and pharmacological actions. It is also used in the therapy of important organs dysfunctions. In spinal cord it has inhibitory effects; like antiepileptic and anti-nociceptive. Taurine also inhibits substance p induced biting and scratching behavior. In spinal cord injury elevated level of taurine has been observed. Higher level of taurine has been also recorded in SCI therapy using, known clinical agent methyl prednisolone (MP). The increased taurine concentration seems to be involved in protection and regeneration of tissues following injury. In SCI along with physical injury secondary activities also takes place which are complex in nature. Secondary activity includes vascular events and activation of neutrophils, resulting endothelial damage. Activated neutrophils; release a variety of inflammatory mediators such as myeloperoxidase (MPO), reactive oxygen species (ROS), and some others. It is believed that taurine exert its protective action through scavenging of ROS and down regulating several other inflammatory mediators like tumor necrosis factors (TNFalpha). The inside of mechanism reveals toxic substance HOCl is produced by MPO is converted to less toxic substances through scavenging action of taurine. Amino acid therapy has its own limitations and to over come such situation there is a need to develop small, simple lipophilic analogs of taurine. Use of taurine analogs has provided better results; for example, N- chloro taurine (NCT) which is a taurine derivative has exhibited therapeutic advances over taurine. Taurine and its analogs with sound experimental and clinical support may constitute a new class of therapeutic agents for SCI., and perhaps this review may provide enough material to think of this.

  5. 牛磺酸对重度颅脑创伤大鼠脑组织AQP4/牛磺酸转运体基因的影响%Effect of Taurine on AQP4/Taurine transporter gene in rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    李晓茜; 黄慧玲; 范维嘉; 蔡英; 武俏丽

    2011-01-01

    目的 研究牛磺酸(Tau)对重度颅脑创伤(TBI)大鼠脑组织的脑组织含水量、水通道蛋白-4(AQP-4)/Tau转运体(TAUT)基因表达的影响.方法 按随机数字表法将84只雄性SD大鼠分为7组:假手术组(Sham组)、脑外伤组(TBI组)、Tau治疗组(Tau组),Tau预防组(Pre-Tau组)、β-丙氨酸组(β-Ala组)、维生素C组(Vc组)、叶酸组(Fa组),每组12只.后6组均采用液压打击制作重度TBI模型.造模成功后即刻尾静脉给药200 mg/kg.Sham组和TBI组给予相同量等渗盐水,24 h后取脑.采用HE染色法观察TBI后各组脑组织形态学变化、测定脑组织含水量,用荧光定量RT-PCR方法检测AQP-4/TAUT基因表达.结果 形态学检查:TBI 24 h后,神经细胞肿胀,细胞丢失,细胞核固缩,突起短小消失,坏死灶边缘可见炎性细胞浸润,β-Ala组同TBI组.但与TBI组比较,Tau组、Vc组、Fa组、Pre-Tau组形态上无显著改善;脑组织含水量:与Sham组相比,TBI组、β-Ala组伤后24 h显著升高(P<0.05).而Tau组、Vc组、Fa组明显降低,与Sham组无统计学差异;Pre-Tau组显著低于Sham组(P<0.05).基因表达:与Sham组相比,TBI组脑组织AQP-4 mRNA表达量显著升高(P<0.05),Fa组TAUT mRNA表达量显著升高(P<0.05).结论 Tau、Vc、Fa及Tau预防性治疗均可以显著降低脑水肿和AQP-4基因表达,对TBI后脑水肿有较好的治疗作用,但Tau、Vc对TBI早期的TAUT无调节作用,其对脑组织含水量的有效性并不是通过调节TAUT实现的.%Objective To investigate the changes of the brain water content and AQP4/taurine transporter gene expression in brain tissue after taurine treatment in rats with traumatic brain injury (TBI). Methods A total of 84 male SD rats were randomly divided into 7 groups: Sham group, traumatic brain injury TBI group, Tau group, Pre-Tau group, β-Ala group, Vc group, Fa group. TBI models of the latter six groups were performed by lateral fluid percussion. The rats were administered drugs ( drug dose

  6. Taurine Biosynthesis by Neurons and Astrocytes*

    Science.gov (United States)

    Vitvitsky, Victor; Garg, Sanjay K.; Banerjee, Ruma

    2011-01-01

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capability as reported by incorporation of radioactivity from [35S]cysteine into taurine, in primary murine astrocytes and neurons, and in several transformed cell lines (human (SH-SY5Y) and murine (N1E-115) neuroblastoma, human astrocytoma (U-87MG and 1321 N1), and rat glioma (C6)). Extensive incorporation of radioactivity from [35S]cysteine into taurine was observed in rat glioma cells as well as in primary mouse astrocytes and neurons, establishing the presence of an intact taurine synthesis pathway in these cells. Interestingly, exposure of cells to cysteine or cysteamine resulted in elevated intracellular hypotaurine without a corresponding increase in taurine levels, suggesting that oxidation of hypotaurine limits taurine synthesis in cells. Consistent with its role as an organic osmolyte, taurine synthesis was stimulated under hypertonic conditions in neurons. PMID:21778230

  7. Taurine biosynthesis by neurons and astrocytes.

    Science.gov (United States)

    Vitvitsky, Victor; Garg, Sanjay K; Banerjee, Ruma

    2011-09-16

    The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capability as reported by incorporation of radioactivity from [(35)S]cysteine into taurine, in primary murine astrocytes and neurons, and in several transformed cell lines (human (SH-SY5Y) and murine (N1E-115) neuroblastoma, human astrocytoma (U-87 MG and 1321 N1), and rat glioma (C6)). Extensive incorporation of radioactivity from [(35)S]cysteine into taurine was observed in rat glioma cells as well as in primary mouse astrocytes and neurons, establishing the presence of an intact taurine synthesis pathway in these cells. Interestingly, exposure of cells to cysteine or cysteamine resulted in elevated intracellular hypotaurine without a corresponding increase in taurine levels, suggesting that oxidation of hypotaurine limits taurine synthesis in cells. Consistent with its role as an organic osmolyte, taurine synthesis was stimulated under hypertonic conditions in neurons.

  8. Substantia nigra osmoregulation: taurine and ATP involvement.

    Science.gov (United States)

    Morales, Ingrid; Dopico, Jose G; Sabate, Magdalena; Gonzalez-Hernandez, Tomas; Rodriguez, Manuel

    2007-05-01

    An extracellular nonsynaptic taurine pool of glial origin was recently reported in the substantia nigra (SN). There is previous evidence showing taurine as an inhibitory neurotransmitter in the SN, but the physiological role of this nonsynaptic pool of taurine has not been explored. By using microdialysis methods, we studied the action of local osmolarity on the nonsynaptic taurine pool in the SN of the rat. Hypoosmolar pulses (285-80 mosM) administered in the SN by the microdialysis probe increased extrasynaptic taurine in a dose-dependent way, a response that was counteracted by compensating osmolarity with choline. The opposite effect (taurine decrease) was observed when osmolarity was increased. Under basal conditions, the blockade of either the AMPA-kainate glutamate receptors with 6-cyano-7-nitroquinoxaline-2,3-dionine disodium or the purinergic receptors with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid modified the taurine concentration, suggesting that both receptors modulate the extrasynaptic pool of taurine. In addition, these drugs decreased the taurine response to hypoosmolar pulses, suggesting roles for glutamatergic and purinergic receptors in the taurine response to osmolarity. The participation of purinergic receptors was also supported by the fact that ATP (which, under basal conditions, increased the extrasynaptic taurine in a dose-dependent way) administered in doses saturating purinergic receptors also decreased the taurine response to hypoosmolarity. Taken together, present data suggest osmoregulation as a role of the nonsynaptic taurine pool of the SN, a function that also involves glutamate and ATP and that could influence the nigral cell vulnerability in Parkinson's disease.

  9. Hepatic drug transporters and nuclear receptors: Regulation by therapeutic agents

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The canalicular membrane represents the excretory pole of hepatocytes. Bile is an important route of elimina-tion of potentially toxic endo- and xenobiotics (including drugs and toxins), mediated by the major canalicular transporters: multidrug resistance protein 1 (MDR1, ABCB1), also known as P-glycoprotein, multidrug re-sistance-associated protein 2 (MRP2, ABCC2), and the breast cancer resistance protein (BCRP, ABCG2). Their activities depend on regulation of expression and proper localization at the canalicular membrane, as regulated by transcriptional and post-transcriptional events, re-spectively. At transcriptional level, specific nuclear re-ceptors (NR)s modulated by ligands, co-activators and co-repressors, mediate the physiological requirements of these transporters. This complex system is also re-sponsible for alterations occurring in specific liver pa-thologies. We briefly describe the major Class Ⅱ NRs, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), and their role in regulating expression of multidrug resistance proteins. Several therapeutic agents regulate the expression of relevant drug trans-porters through activation/inactivation of these NRs. We provide some representative examples of the action of therapeutic agents modulating liver drug transporters, which in addition, involve CAR or PXR as mediators.

  10. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930140 Hepatocyte stimulator peptide and itsclinical significance in viral hepatitis.ZHOUWeiping(周卫平),et al.Instit Viral Hepatitis,Chongqing Med Univ,630010.Chin J InternMed 1992;31(10):626-628.Hepatocyte stimulator peptide(HSP)is anewly developed hepatic stimulator substance.Its monoclonal antibodies have been obtained inour laboratory.In this study,HSP was deter-mined in the sera of 315 subjects including pa-

  11. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    2010349 Relationships between serum hepatitis B virus load in mothers,free maternal DNA in peripheral blood of newborns and hepatitis B virus infection of newborns. WEI Junni(魏俊妮),et al. Dept Epidemiol,Shanxi Med Univ,Taiyuan 030001. Chin J Infect Dis 2010;28(5):297-300. Objective To study the relationships between serum hepatitis B virus (HBV) DNA level

  12. [Compatibility of Banxia Houpo decoction on hepatic CYP450 and renal organicion transporters in mice].

    Science.gov (United States)

    Wang, Fumeng; Lu, Yan; Kong, Lingdong

    2011-01-01

    By analyzing the related indicators [hepatic CYP450 subtype and renal organic anion and cation transporters (OATs and OCTs)], the present study investigated the effects of formula Banxia Houpo decoction principal drug pinellia, assistant drug magnolia, their compatibility and the principle of the whole decoction on the metabolism ability in the liver and the transport change in the kidney of mice. Biochemical and molecular (RT-PCR and western blotting) results indicated that pinellia increased activity and expression of hepatic Cyp2e1 and Cyp3a11 in mice, respectively. Pinellia and magnolia increased expression of renal OAT1, OAT3, OCT1 and OCT2 in mice, respectively. The compatibility of pinellia and magnolia, as well as Banxia Houpo decoction synergistically restrained the activated effect of pinellia on hepatic Cyp2e1, therefore avoiding liver peroxidation and reducing toxicity potential. The compatibility of this drug pair and Banxia Houpo decoction not only reduced activity and expression of hepatic Cyp3a11 to control drug metabolism speed, but also balanced the expression of renal OAT1/3 and OCT1/2 to enhance drug efficacy. The effect of compatibility of Banxia Houpo decoction was better than that of pinellia and magnolia pair, and the normal dosage was better than the high dosage. The present study proved the advantage of the compatibility of pinellia combined with magnolia and the principle of Banxia Houpo decoction, which related to hepatic CYP450 and renal organic ion transporters, and guided the clinical use of Banxia Houpo decoction to exert its toxicity reduction and efficacy enhancement.

  13. Organic anion transporting polypeptides in the hepatic uptake of PBDE congeners in mice

    Energy Technology Data Exchange (ETDEWEB)

    Pacyniak, Erik [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Hagenbuch, Bruno [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); The University of Kansas Cancer Center, Kansas City, KS (United States); Klaassen, Curtis D. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Lehman-McKeeman, Lois [Bristol Myers Squibb Co., Princeton, NJ (United States); Guo, Grace L., E-mail: lguo@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2011-11-15

    BDE47, BDE99 and BDE153 are the predominant polybrominated diphenyl ether (PBDE) congeners detected in humans and can induce drug metabolizing enzymes in the liver. We have previously demonstrated that several human liver organic anion transporting polypeptides (humans: OATPs; rodents: Oatps) can transport PBDE congeners. Mice are commonly used to study the toxicity of chemicals like the PBDE congeners. However, the mechanism of the hepatic PBDE uptake in mice is not known. Therefore, the purpose of the current study was to test the hypothesis that BDE47, BDE99, and BDE153 are substrates of mouse hepatic Oatps (Oatp1a1, Oatp1a4, Oatp1b2, and Oatp2b1). We used Human Embryonic Kidney 293 (HEK293) cells transiently expressing individual Oatps and quantified the uptake of BDE47, BDE99, and BDE153. Oatp1a4, Oatp1b2, and Oatp2b1 transported all three PBDE congeners, whereas Oatp1a1 did transport none. Kinetic studies demonstrated that Oatp1a4 and Oatp1b2 transported BDE47 with the greatest affinity, followed by BDE99 and BDE153. In contrast, Oatp2b1 transported all three PBDE congeners with similar affinities. The importance of hepatic Oatps for the liver accumulation of BDE47 was confirmed using Oatp1a4-, and Oatp1b2-null mice. -- Highlights: Black-Right-Pointing-Pointer PBDE congeners are substrates of OATPs expressed in human hepatocytes. Black-Right-Pointing-Pointer Mice are commonly used to study the toxicity of chemicals like the PBDE congeners. Black-Right-Pointing-Pointer Oatp1a4, Oatp1b2, and Oatp2b1 transported all three PBDE congeners in vitro. Black-Right-Pointing-Pointer In vivo Oatp1a4 plays a minor and Oatp1b2 a major role in BDE47 liver accumulation.

  14. Sulfoacetate generated by Rhodopseudomonas palustris from taurine

    OpenAIRE

    Denger, Karin; Weinitschke, Sonja; Hollemeyer, Klaus; Cook, Alasdair M.

    2004-01-01

    Genes thought to encode (a) the regulator of taurine catabolism under carbon-limiting or nitrogen-limiting conditions and (b) taurine dehydrogenase were found in the genome of Rhodopseudomonas palustris. The organism utilized taurine quantitatively as a sole source of nitrogen (but not of carbon) for aerobic and photoheterotrophic growth. No sulfate was released, and the C-sulfonate bond was recovered stoichiometrically as sulfoacetate, which was identified by mass spectrometry. An inducible ...

  15. Maternal taurine supplementation attenuates maternal fructose-induced metabolic and inflammatory dysregulation and partially reverses adverse metabolic programming in offspring.

    Science.gov (United States)

    Li, M; Reynolds, C M; Sloboda, D M; Gray, C; Vickers, M H

    2015-03-01

    Excessive fructose consumption is associated with insulin resistance (IR) and nonalcoholic fatty liver disease (NAFLD), and high fructose intake during pregnancy can lead to compromised fetal development in the rat. Evidence suggests that the amino acid taurine can ameliorate fructose-induced IR and NAFLD in nonpregnant animals. This study investigated the efficacy of taurine supplementation on maternal fructose-induced metabolic dysfunction and neonatal health. Time-mated Wistar rats were randomized to four groups during pregnancy and lactation: (a) control diet (CON), (b) CON supplemented with 1.5% taurine in drinking water (CT), (c) CON supplemented with fructose solution (F) and (d) F supplemented with taurine (FT). Maternal and neonatal weights, plasma cytokines and hepatic gene expression were analyzed. Maternal hyperinsulinemia, increased homeostasis model assessment of IR indices and elevated proinflammatory cytokines were observed in F group and normalized in FT group. Maternal fructose-induced hepatic steatosis accompanied with increased liver weight was ameliorated with taurine supplementation. Maternal hepatic sterol regulatory element-binding protein-1c and fatty acid synthase expression was significantly increased in the F group compared to the CON, CT and FT groups. Neonatal hepatic phosphoenolpyruvate carboxykinase expression was increased in male F neonates compared to the CON, CT and FT groups and was increased in female F and FT neonates compared to CON and CT. Interleukin-1β expression was decreased in male CT and FT neonates compared to other male groups. Hepatic tumour necrosis factor receptor-1 was lower in the male FT group than the F group. These results demonstrate that maternal taurine supplementation can partially reverse fructose-induced maternal metabolic dysfunction and may ameliorate adverse developmental programming effects in offspring in a sex-specific manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Hepatitis

    Science.gov (United States)

    ... inflammation of the liver.” This inflammation can be caused by a wide variety of toxins, drugs, and metabolic diseases, as well as infection. There are at least 5 hepatitis viruses. Hepatitis A is contracted when a child eats food or drinks water that is contaminated with the virus or has ...

  17. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    970349 Primary structure and variability of partialsequences in nonstructural gene 5 region of hepatitis Gvirus, CHANG Jinhong(常锦红), et al. Hepatol Instis,People’s Hosp, Beijing Med Univ, Beijing, 100044. NatlMed J China 1997; 77(3): 178-182. Objective: To sequence partial genome of hepatitis G

  18. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    2009209 Effects of chronic hepatitis B virus infection on human hepatic cytochrome P450 2C9.ZHO Fuping(周福平),et al.Dept Infect Dis,Shanghai Changzheng Hosp,Shanghai 200003.Chin J Infect Dis,2009;27(2):94-98.

  19. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    920691 The determination of serum hepa-titis B virus DNA by polymerase chain rea-ction in hepatitis B patients treated withalpha-interferon. XU. Jianye(徐建业), et al.Centr Lab, Chongqing Cancer Instit, 630030.Chin J Intern Med, 1992; 31(5): 278-280. To clarify the status of HBV in serum of

  20. Impact of taurine depletion on glucose control and insulin secretion in mice.

    Science.gov (United States)

    Ito, Takashi; Yoshikawa, Natsumi; Ito, Hiromi; Schaffer, Stephen W

    2015-09-01

    Taurine, an endogenous sulfur-containing amino acid, is found in millimolar concentrations in mammalian tissue, and its tissue content is altered by diet, disease and aging. The effectiveness of taurine administration against obesity and its related diseases, including type 2 diabetes, has been well documented. However, the impact of taurine depletion on glucose metabolism and fat deposition has not been elucidated. In this study, we investigated the effect of taurine depletion (in the taurine transporter (TauT) knockout mouse model) on blood glucose control and high fat diet-induced obesity. TauT-knockout (TauTKO) mice exhibited lower body weight and abdominal fat mass when maintained on normal chow than wild-type (WT) mice. Blood glucose disposal after an intraperitoneal glucose injection was faster in TauTKO mice than in WT mice despite lower serum insulin levels. Islet beta-cells (insulin positive area) were also decreased in TauTKO mice compared to WT mice. Meanwhile, overnutrition by high fat (60% fat)-diet could lead to obesity in TauTKO mice despite lower body weight under normal chow diet condition, indicating nutrition in normal diet is not enough for TauTKO mice to maintain body weight comparable to WT mice. In conclusion, taurine depletion causes enhanced glucose disposal despite lowering insulin levels and lower body weight, implying deterioration in tissue energy metabolism. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  1. Exogenous taurine attenuates mitochondrial oxidative stress and endoplasmic reticulum stress in rat cardiomyocytes

    Institute of Scientific and Technical Information of China (English)

    Yujie Yang; Yue Zhang; Xiaoyu Liu; Ji Zuo; Keqiang Wang; Wen Liu; Junbo Ge

    2013-01-01

    Taurine,a conditionally essential amino acid,plays a critical role in cardiovascular function.Here we examined the effect of taurine on mitochondria and endoplasmic reticulum in rat cardiomyocytes during glucose deprivation (GD).Data showed that cell viability,intracellular taurine contents,and taurine transporter expression were decreased during GD.In contrast,an increase in reactive oxygen species and intracellular Ca2+ contents was observed.GD also caused disrupted mitochondrial membrane potential,apoptotic cell death,and dissociation of unfolded protein response (UPR)-relative proteins in cardiomyocytes.Signal transduction analysis showed that Bcl-2 family protein balance was disturbed,caspase-12 was activated and UPR-relative protein levels were up-regulated.Moreover,pre-treatment with 80 mM exogenous taurine attenuated GD effect in cardiomyocytes.Our results suggest that taurine have beneficial effects on inhibiting mitochondria-dependent cell apoptosis and UPR-associated cell apoptosis and might have clinical impfications on acute myocardial infarction in future.

  2. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats.

    Science.gov (United States)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lu, Wenping; Li, Binglong; Xu, Donghui

    2015-11-15

    The clinical efficacy of anthracycline anti-neoplastic agents is limited by cardiac and hepatic toxicities. The aim of this study was to assess the hepatoprotective and cardioprotective effects of taurine zinc solid dispersions, which is a newly-synthesized taurine zinc compound, against doxorubicin-induced toxicity in Sprague-Dawley rats intraperitoneally injected with doxorubicin hydrochloride (3mg/kg) three times a week (seven injections) over 28 days. Hemodynamic parameters, levels of liver toxicity markers and oxidative stress were assessed. Taurine zinc significantly attenuated the reductions in blood pressure, left ventricular pressure and ± dp/dtmax, increases in serum alanine aminotransferase and aspartate aminotransferase activities, and reductions in serum Zn(2+) and albumin levels (Ptaurine zinc dose-dependently increased liver superoxide dismutase activity and glutathione concentration, and decreased malondialdehyde level (PTaurine zinc dose-dependently increased liver heme oxygenase-1 and UDP-glucuronyl transferase mRNA and protein expression (Ptaurine zinc inhibited c-Jun N-terminal kinase phosphorylation by upregulating dual-specificity phosphoprotein phosphatase-1. Additionally, taurine zinc inhibited cardiomyocyte apoptosis as there was decreased TUNEL/DAPI positivity and protein expression of caspase-3. These results indicate that taurine zinc solid dispersions prevent the side-effects of anthracycline-based anticancer therapy. The mechanisms might be associated with the enhancement of antioxidant defense system partly through activating transcription to synthesize endogenous phase II medicine enzymes and anti-apoptosis through inhibiting JNK phosphorylation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Taurine Boosts Cellular Uptake of Small d-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly

    OpenAIRE

    Zhou, Jie; Du, Xuewen; Li, Jie; Yamagata, Natsuko; Xu, Bing

    2015-01-01

    Due to their biostability, d-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, d-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small d-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.6 mM (after conjugating taurine). The uptake of a large amount of the ester con...

  4. Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the Golden Retriever Muscular Dystrophy dog model for Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Jessica R. Terrill

    2016-10-01

    Full Text Available Duchenne Muscular Dystrophy (DMD is a fatal skeletal muscle wasting disease presenting with excessive myofibre necrosis and increased inflammation and oxidative stress. In the mdx mouse model of DMD, homeostasis of the amino acid taurine is altered, and taurine administration drastically decreases muscle necrosis, dystropathology, inflammation and protein thiol oxidation. Since the severe pathology of the Golden Retriever Muscular Dystrophy (GRMD dog model more closely resembles the human DMD condition, we aimed to assess the generation of oxidants by inflammatory cells and taurine metabolism in this species. In muscles of 8 month GRMD dogs there was an increase in the content of neutrophils and macrophages, and an associated increase in elevated myeloperoxidase, a protein secreted by neutrophils that catalyses production of the highly reactive hypochlorous acid (HOCl. There was also increased chlorination of tyrosines, a marker of HOCl generation, increased thiol oxidation of many proteins and irreversible oxidative protein damage. Taurine, which functions as an antioxidant by trapping HOCl, was reduced in GRMD plasma; however taurine was increased in GRMD muscle tissue, potentially due to increased muscle taurine transport and synthesis. These data indicate a role for HOCl generated by neutrophils in the severe dystropathology of GRMD dogs, which may be exacerbated by decreased availability of taurine in the blood. These novel data support continued research into the precise roles of oxidative stress and taurine in DMD and emphasise the value of the GRMD dogs as a suitable pre-clinical model for testing taurine as a therapeutic intervention for DMD boys.

  5. Protective effect of taurine on hypochlorous acid toxicity to nuclear nucleoside triphosphatase in isolated nuclei from rat liver

    Institute of Scientific and Technical Information of China (English)

    Ju-Xiang Li; Yong-Zheng Pang; Chao-Shu Tang; Zai-Quan Li

    2004-01-01

    AIM: Taurine has been shown to be an effective scavenger of hypochlorous acid (HOCI). The role of HOCI is well established in tissue damage associated with inflammation and injury. In the present study, the effect of HOCI on nuclear nucleoside triphosphatase of hepatocytes and the ability of taurine to prevent this effect were investigated.METHODS: Isolated hepatic nuclei from rat liver were exposed to HOCI with or without taurine. The NTPase activity on nuclear envelope was assayed using ATP and GTP as substrates, respectively.RESULTS: The first series of experiments evaluated the toxicity of HOCl and the efficacy of taurine to protect NTPase.HOCI at 10-9-5×10-6 mol/L reduced nuclear NTPase activities in a concentration dependent manner (ATP and GTP as substrates) (P<0.01). HOCI at 10-6 mol/L reduced the NTPase activity by 65% (ATP as substrate) and 76% (GTP as substrate). Taurine (10-7 to 10-4 mol/L) was tested for protection against HOCI at 10-6 mol/L and the nuclei treated with 5x10-4 mol/L taurine exhibited only 20% and 12% reduction in NTPase activities compared to untreated controls. A second study was performed comparing taurine to glutathione (GSH). GSH and HOCI at 10-6 mol/L exhibited 46% and 67.4% reduction in NTPase activities compared with control. GSH (10-4 mol/L) which was incubated with the nuclei and HOCi still exhibited 44.2% and 44.8% reduction in NTPase activities of untreated control. Taurine with HOCI only exhibited 15.2% and 17.1% reduction in NTPase activities, which provided more powerful protection against HOCI than GSH. The third experiment was undertaken to evaluate the specificity of taurine against HOCI. Incubation of rat hepatic nuclei with Fe3+/H2O2 (1 m mol/L vS 5μ mol/L) resulted in a decrease in nuclear NTPase activities (P<0.01).When hepatic nuclei were incubated with Tau (10-4 mol/L) and Fe3+/H2O2 (1m mol/L vS 5μ mol/L), nuclear NTPase activities were only slightly increased as compared with that of incubation with Fe3+/H

  6. Altered regulation of hepatic efflux transporters disrupts acetaminophen disposition in pediatric nonalcoholic steatohepatitis.

    Science.gov (United States)

    Canet, Mark J; Merrell, Matthew D; Hardwick, Rhiannon N; Bataille, Amy M; Campion, Sarah N; Ferreira, Daniel W; Xanthakos, Stavra A; Manautou, Jose E; A-Kader, H Hesham; Erickson, Robert P; Cherrington, Nathan J

    2015-06-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, representing a spectrum of liver pathologies that include simple hepatic steatosis and the more advanced nonalcoholic steatohepatitis (NASH). The current study was conducted to determine whether pediatric NASH also results in altered disposition of acetaminophen (APAP) and its two primary metabolites, APAP-sulfate and APAP-glucuronide. Pediatric patients with hepatic steatosis (n = 9) or NASH (n = 3) and healthy patients (n = 12) were recruited in a small pilot study design. All patients received a single 1000-mg dose of APAP. Blood and urine samples were collected at 1, 2, and 4 hours postdose, and APAP and APAP metabolites were determined by high-performance liquid chromatography. Moreover, human liver tissues from patients diagnosed with various stages of NAFLD were acquired from the Liver Tissue Cell Distribution System to investigate the regulation of the membrane transporters, multidrug resistance-associated protein 2 and 3 (MRP2 and MRP3, respectively). Patients with the more severe disease (i.e., NASH) had increased serum and urinary levels of APAP-glucuronide along with decreased serum levels of APAP-sulfate. Moreover, an induction of hepatic MRP3 and altered canalicular localization of the biliary efflux transporter, MRP2, describes the likely mechanism for the observed increase in plasma retention of APAP-glucuronide, whereas altered regulation of sulfur activation genes may explain decreased sulfonation activity in NASH. APAP-glucuronide and APAP-sulfate disposition is altered in NASH and is likely due to hepatic membrane transporter dysregulation as well as altered intracellular sulfur activation.

  7. Prophylactic and therapeutic effects of taurine against aluminum-induced acute hepatotoxicity in mice.

    Science.gov (United States)

    El-Sayed, Wael M; Al-Kahtani, Mohamed A; Abdel-Moneim, Ashraf M

    2011-08-30

    Aluminum is a well known neurotoxin and a possible candidate of hepatotoxins to humans. Using natural antioxidants against metal-induced hepatotoxicity is a modern approach. In the present study, Aluminum (AlCl(3)) intoxication (a single injection of 25mg Al(3+)/kg, i.p.) for 24h in mice resulted in elevations in serum alanine aminotransferase activity and serum tumor necrosis factor and hepatic malondialdehyde levels. Aluminum reduced the activities of glutathione peroxidase, glutathione S-transferase, quinone oxidoreductase, and catalase in liver. In addition, Al caused hepatic hemorrhage, cellular degeneration as well as necrosis of hepatocytes. Ultrastructure examination showed swelling of mitochondria, derangement of rough endoplasmic reticulum cisternae and pleomorphic nuclei with abnormal chromatin distribution. Taurine, a sulfur-containing amino acid was administered to mice daily for 5 days before (at 100mg/kg, i.p.) or 2h after (a single dose of 1g/kg, i.p.) aluminum administration. Treating mice with taurine at either dosing regimens, pre- or post-aluminum administration alleviated aluminum oxidative damaging effects. The rate of recovery was better when taurine was administered prior to Al. Taurine had anaphylactic and therapeutic activity against hepatotoxicity induced by aluminum in mice.

  8. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    2005226 Characteristics of peripheral blood T lymphocyte subsets in hepatitis B patients. FAN Zhen-ping(范振平),et al. Center Bio Ther, Instit Infect Dis, 302 Hosp Chin PLA, Beijing 100039. World Chin J Digestol, 2005;13(2): 194-197. Objective: To characterize the T-lymphocyte subsets in peripheral blood of patients with acute and chronic hepatitis B, and to explore their relations with the disease state. Methods: Peripheral blood

  9. Islet cryopreservation: improved recovery following taurine pretreatment.

    Science.gov (United States)

    Hardikar, A A; Risbud, M V; Remacle, C; Reusens, B; Hoet, J J; Bhonde, R R

    2001-01-01

    Simple and efficient freezing methods with maximal postthawing recovery form the basis of ideal cryopreservation. Taurine (2-amino ethanesulfonic acid), an end-product of sulphur amino acid metabolism, is one of the most abundant free amino acids in the body. The membrane stabilizing, free radical scavenging, and osmoregulatory roles of taurine have been well documented. We studied the effect of physiological and supra-physiological concentrations (0.3 and 3.0 mM) of taurine on islet cryopreservation. Islet viability on cryopreservation was significantly improved in both the taurine-treated groups (91.9 +/- 2.3% in 0.3 mM and 94.6 +/- 1.58% in 3.0 mM group, p taurine group, as examined under phase contrast and quantified by islet morphometric analysis (p Taurine-treated islets showed significant reduction in lipid peroxidation (0.905 and 0.848 nM MDA/microg protein for 0.3 and 3.0 mM taurine, respectively, p 200 mg/dl) following removal of the graft. Suboptimal islet transplantation using 250 IE suggests that the grafted islet mass was inadequate for diabetes reversal. In addition, no significant differences were observed in the islet insulin content between the three groups following cryopreservation of the islets at -196 degrees C. Our studies indicate that taurine pretreatment and its continued presence during islet cryopreservation improves the postthawing viable recovery of islets.

  10. Advances in Drug Design Based on the Amino Acid Approach: Taurine Analogues for the Treatment of CNS Diseases

    Directory of Open Access Journals (Sweden)

    Paulo Renato Yamasaki

    2012-10-01

    Full Text Available Amino acids are well known to be an important class of compounds for the maintenance of body homeostasis and their deficit, even for the polar neuroactive aminoacids, can be controlled by supplementation. However, for the amino acid taurine (2-aminoethanesulfonic acid this is not true. Due its special physicochemical properties, taurine is unable to cross the blood-brain barrier. In addition of injured taurine transport systems under pathological conditions, CNS supplementation of taurine is almost null. Taurine is a potent antioxidant and anti-inflammatory semi-essential amino acid extensively involved in neurological activities, acting as neurotrophic factor, binding to GABA A/glycine receptors and blocking the excitotoxicity glutamate-induced pathway leading to be a neuroprotective effect and neuromodulation. Taurine deficits have been implicated in several CNS diseases, such as Alzheimer’s, Parkinson’s, epilepsy and in the damage of retinal neurons. This review describes the  CNS physiological functions of taurine and the development of new derivatives based on its structure useful in CNS disease treatment.

  11. Modulatory effects of taurine on jejunal contractility

    Science.gov (United States)

    Yao, Q.Y.; Chen, D.P.; Ye, D.M.; Diao, Y.P.; Lin, Y.

    2014-01-01

    Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca2+ dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism. PMID:25387674

  12. Modulatory effects of taurine on jejunal contractility

    Directory of Open Access Journals (Sweden)

    Q.Y. Yao

    2014-12-01

    Full Text Available Taurine (2-aminoethanesulfonic acid is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca2+ dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism.

  13. Modulatory effects of taurine on jejunal contractility

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Q.Y.; Chen, D.P.; Ye, D.M.; Diao, Y.P.; Lin, Y. [Dalian Medical University, Dalian, Liaoning (China)

    2014-10-14

    Taurine (2-aminoethanesulfonic acid) is widely distributed in animal tissues and has diverse pharmacological effects. However, the role of taurine in modulating smooth muscle contractility is still controversial. We propose that taurine (5-80 mM) can exert bidirectional modulation on the contractility of isolated rat jejunal segments. Different low and high contractile states were induced in isolated jejunal segments of rats to observe the effects of taurine and the associated mechanisms. Taurine induced stimulatory effects on the contractility of isolated rat jejunal segments at 3 different low contractile states, and inhibitory effects at 3 different high contractile states. Bidirectional modulation was not observed in the presence of verapamil or tetrodotoxin, suggesting that taurine-induced bidirectional modulation is Ca{sup 2+} dependent and requires the presence of the enteric nervous system. The stimulatory effects of taurine on the contractility of isolated jejunal segments was blocked by atropine but not by diphenhydramine or by cimetidine, suggesting that muscarinic-linked activation was involved in the stimulatory effects when isolated jejunal segments were in a low contractile state. The inhibitory effects of taurine on the contractility of isolated jejunal segments were blocked by propranolol and L-NG-nitroarginine but not by phentolamine, suggesting that adrenergic β receptors and a nitric oxide relaxing mechanism were involved when isolated jejunal segments were in high contractile states. No bidirectional effects of taurine on myosin phosphorylation were observed. The contractile states of jejunal segments determine taurine-induced stimulatory or inhibitory effects, which are associated with muscarinic receptors and adrenergic β receptors, and a nitric oxide associated relaxing mechanism.

  14. Antenatal taurine supplementation increases taurine content in intrauterine growth restricted fetal rat brain tissue.

    Science.gov (United States)

    Li, Fang; Teng, Hui-Yun; Liu, Jing; Wang, Hua-Wei; Zeng, Li; Zhao, Li-Fang

    2014-09-01

    This study aimed to determine the influence of antenatal taurine supplementation on taurine content in the brains of fetal rats with intrauterine growth restriction (IUGR). Experiments were performed at the Central Laboratory of Bayi Children's Hospital Affiliated to Beijing Military General Hospital in China from January to June 2013. Fifteen pregnant rats were randomly divided into three groups: normal controls, an IUGR group and an IUGR + antenatal taurine supplement group (Taurine group) (n = 5). The IUGR model was induced using a low-protein diet throughout gestation. Rats in the taurine group were fed a diet supplemented with 300 mg/kg/day taurine for 12 days after conception until natural delivery. Two fetal rats were randomly selected in every litter, and taurine levels in the brains of rats were detected using high-performance liquid chromatography-mass spectrometry. Results showed that (1) the mean body weight of the fetal rats in the normal control, IUGR and IUGR + antenatal taurine supplement groups was 6.619 ± 0.4132, 4.509 ± 0.454, and 5.176 ± 0.436 g (F = 429.818, P taurine levels in the brains of the fetal rats in the normal control, IUGR and taurine groups were (2.399 ± 0.134) × 10(5), (1.881 ± 0.166) × 10(5) and (2.170 ± 0.191) × 10(5) μg/g (F = 24.828, P taurine levels in IUGR fetal rat brains were lower than in the control animals, and that antenatal taurine supplementation could significantly increase taurine levels in the brains of fetal rats with IUGR.

  15. Effect of taurine on GFAP and TauT expressions in rat retinal Müller cells in high glucose culture

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya-jie; XU Hong-xia; ZENG Kai-hong; MI Man-tian

    2007-01-01

    Objective:To detect the expression of glial fibrillary acid protein (GFAP) and taurine transporter (TauT) in the retinal Müller cells in high glucose culture with taurine and to explore the influence of glucose on the taurine transporting, and the possible protective effects of taurine on Müller cells in early diabetic retinopathy. Methods: The Müller cells from the rat retina were cultured in high glucose, and GFAP and TauT expressions were detected in the cells treated with different doses of taurine by immuocytochemical fluorescein staining and Western blotting. Results: High glucose enhanced the expression of GFAP and decreased the expression of TauT in Müller cells. Taurine decreased the up-regulation of GFAP in the cells which was induced by high glucose; 0. 1-10 mmol/L taurine increased the expression of TauT in Müller cells. Conclusion: Taurine can inhibit the changes in Müller cell resulted from high glucose.

  16. A case of taurine-containing drink induced anaphylaxis

    OpenAIRE

    Lee, Seung-Eun; Lee, Suh-Young; Jo, Eun-Jung; Kim, Mi-Young; Yang, Min-Suk; Chang, Yoon-Seok; Kim, Sae-Hoon

    2013-01-01

    Taurine is one of most abundant free amino acids in mammalian tissue. It has been used for various health functional foods as a main ingredient in food industry. A 33-year-old female patient repeatedly experienced generalized itching, urticaria, dyspnea and dizziness after drinking taurine-containing drinks. The patient showed positive response to oral challenge tests with taurine-containing drinks. The patient also showed positive response with synthetic taurine but not with natural taurine....

  17. Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide

    Science.gov (United States)

    Ueki, Iori; Roman, Heather B.; Valli, Alessandro; Fieselmann, Krista; Lam, Jimmy; Peters, Rachel; Hirschberger, Lawrence L.

    2011-01-01

    Cysteine homeostasis is dependent on the regulation of cysteine dioxygenase (CDO) in response to changes in sulfur amino acid intake. CDO oxidizes cysteine to cysteinesulfinate, which is further metabolized to either taurine or to pyruvate plus sulfate. To gain insight into the physiological function of CDO and the consequence of a loss of CDO activity, mice carrying a null CDO allele (CDO+/− mice) were crossed to generate CDO−/−, CDO+/−, and CDO+/+ mice. CDO−/− mice exhibited postnatal mortality, growth deficit, and connective tissue pathology. CDO−/− mice had extremely low taurine levels and somewhat elevated cysteine levels, consistent with the lack of flux through CDO-dependent catabolic pathways. However, plasma sulfate levels were slightly higher in CDO−/− mice than in CDO+/− or CDO+/+ mice, and tissue levels of acid-labile sulfide were elevated, indicating an increase in cysteine catabolism by cysteine desulfhydration pathways. Null mice had lower hepatic cytochrome c oxidase levels, suggesting impaired electron transport capacity. Supplementation of mice with taurine improved survival of male pups but otherwise had little effect on the phenotype of the CDO−/− mice. H2S has been identified as an important gaseous signaling molecule as well as a toxicant, and pathology may be due to dysregulation of H2S production. Control of cysteine levels by regulation of CDO may be necessary to maintain low H2S/sulfane sulfur levels and facilitate the use of H2S as a signaling molecule. PMID:21693692

  18. Dietary taurine supplementation ameliorates the lethal effect of phenanthrene but not the bioaccumulation in a marine teleost, red sea bream, Pagrus major.

    Science.gov (United States)

    Hano, Takeshi; Ito, Mana; Ito, Katsutoshi; Kono, Kumiko; Ohkubo, Nobuyuki

    2017-03-01

    The present study was performed to evaluate the effect of dietary taurine on the hepatic metabolic profiles of red sea bream (Pagrus major) and on phenanthrene (a polyaromatic hydrocarbon) toxicity and bioaccumulation. The fish were fed a diet supplemented with 0% (TAU0%), 0.5% (TAU0.5%), or 5% (TAU5%) taurine for 40-55d and subjected to phenanthrene acute toxicity and bioaccumulation tests. Taurine deficiency in feed severely affected the hepatic metabolic profiles of fish, which indicated a complementary physiological response to taurine deficiency. For the acute toxicity test, fish were fed the test diets for 55d and were then exposed to 0-893µg/L phenanthrene for 96h. Tolerance to phenanthrene was significantly improved by 0.5% of taurine inclusion in feed relative to TAU0%, but not by 5.0% inclusion. Reduced glutathione in the liver, which acts as an oxygen-free radical scavenger, was associated with a reduction in the toxicity of phenanthrene. For the bioaccumulation test, fish were fed the test diets for 40d and were thereafter chronically exposed to 20µg/L phenanthrene for 13d followed by depuration for 3d. The activity of hepatic biomarker, ethoxyresorufin-O-deethylase, was increased by phenanthrene exposure in the taurine inclusion groups. However, phenanthrene concentrations in the liver and muscle of fish fed TAU5.0% tended to be higher than those of fish fed TAU0% and TAU0.5% during the exposure period. These results indicate that 0.5% of taurine inclusion in feed plays an important role in the alleviation of phenanthrene toxicity but not bioaccumulation. Furthermore, larger amount of taurine inclusion (TAU5%) did not show marked beneficial effects against phenanthrene exposure. This study provides insight about a major concern of environmental contaminants into aquatic environment and can be effectively used for improvement of aquaculture. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Quantitative and Topographical Analysis of the Losses of Cone Photoreceptors and Retinal Ganglion Cells Under Taurine Depletion.

    Science.gov (United States)

    Hadj-Saïd, Wahiba; Froger, Nicolas; Ivkovic, Ivana; Jiménez-López, Manuel; Dubus, Élisabeth; Dégardin-Chicaud, Julie; Simonutti, Manuel; Quénol, César; Neveux, Nathalie; Villegas-Pérez, María Paz; Agudo-Barriuso, Marta; Vidal-Sanz, Manuel; Sahel, Jose-Alain; Picaud, Serge; García-Ayuso, Diego

    2016-09-01

    Taurine depletion is known to induce photoreceptor degeneration and was recently found to also trigger retinal ganglion cell (RGC) loss similar to the retinal toxicity of vigabatrin. Our objective was to study the topographical loss of RGCs and cone photoreceptors, with a distinction between the two cone types (S- and L- cones) in an animal model of induced taurine depletion. We used the taurine transporter (Tau-T) inhibitor, guanidoethane sulfonate (GES), to induce taurine depletion at a concentration of 1% in the drinking water. Spectral-domain optical coherence tomography (SD-OCT) and electroretinograms (ERG) were performed on animals after 2 months of GES treatment administered through the drinking water. Retinas were dissected as wholemounts and immunodetection of Brn3a (RGC), S-opsin (S-cones), and L-opsin (L-cones) was performed. The number of Brn3a+ RGCs, and L- and S-opsin+ cones was automatically quantified and their retinal distribution studied using isodensity maps. The treatment resulted in a significant reduction in plasma taurine levels and a profound dysfunction of visual performance as shown by ERG recordings. Optical coherence tomography analysis revealed that the retina was thinner in the taurine-depleted group. S-opsin+cones were more affected (36%) than L-opsin+cones (27%) with greater cone cell loss in the dorsal area whereas RGC loss (12%) was uniformly distributed. This study confirms that taurine depletion causes RGC and cone loss. Electroretinograms results show that taurine depletion induces retinal dysfunction in photoreceptors and in the inner retina. It establishes a gradient of cell loss depending on the cell type from S-opsin+cones, L-opsin+cones, to RGCs. The greater cell loss in the dorsal retina and of the S-cone population may underline different cellular mechanisms of cellular degeneration and suggests that S-cones may be more sensitive to light-induced retinal toxicity enhanced by the taurine depletion.

  20. Potential benefits of taurine in the prevention of skeletal muscle impairment induced by disuse in the hindlimb-unloaded rat.

    Science.gov (United States)

    Pierno, Sabata; Liantonio, Antonella; Camerino, Giulia M; De Bellis, Michela; Cannone, Maria; Gramegna, Gianluca; Scaramuzzi, Antonia; Simonetti, Simonetta; Nicchia, Grazia Paola; Basco, Davide; Svelto, Maria; Desaphy, Jean-François; Camerino, Diana Conte

    2012-07-01

    Hindlimb unloading (HU) in rats induces severe atrophy and a slow-to-fast phenotype transition in postural slow-twitch muscles, as occurs in human disuse conditions, such as spaceflight or bed rest. In rats, a reduction of soleus muscle weight and a decrease of cross-sectional area (CSA) were observed as signs of atrophy. An increased expression of the fast-isoform of myosin heavy chain (MHC) showed the phenotype transition. In parallel the resting cytosolic calcium concentration (restCa) was decreased and the resting chloride conductance (gCl), which regulates muscle excitability, was increased toward the values of the fast-twitch muscles. Here, we investigated the possible role of taurine, which is known to modulate calcium homeostasis and gCl, in the restoration of muscle impairment due to 14-days-HU. We found elevated taurine content and higher expression of the taurine transporter TauT in the soleus muscle as compared to the fast-twitch extensor digitorum longus (EDL) muscle of control rats. Taurine level was reduced in the HU soleus muscle, although, TauT expression was not modified. Taurine oral supplementation (5 g/kg) fully prevented this loss, and preserved resting gCl and restCa together with the slow MHC phenotype. Taurine supplementation did not prevent the HU-induced drop of muscle weight or fiber CSA, but it restored the expression of MURF-1, an atrophy-related gene, suggesting a possible early protective effect of taurine. In conclusion, taurine prevented the HU-induced phenotypic transition of soleus muscle and might attenuate the atrophic process. These findings argue for the beneficial use of taurine in the treatment of disuse-induced muscle dysfunction.

  1. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008312 Impact of hepatitis B virus infection on the activity of hematopoietic stem cell.SHI Yanmei(石雁梅),et al.Dept Infect Dis,1st Clin Coll,Harbin Med Univ,Harbin 150001.Chin J Infect Dis 2008;26(4):197-201.Objective To study the impact of hepatitis B virus (HBV)infection on the activity of cord hematopoieticstem cells.Methods CD34+cells were isolated from healthy human cord blood by mini MACS.Cells were

  2. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008449 A cross-sectional survey of occult hepatitis B virus infection in HIV-infected patients. MA Jianxin(马建新), et al.Dept Infect Dis, Shanghai Public Health Clin Center, Shanghai 201508. Chin J Intern Med 2008;47(7):574-577. Objective To assess the prevalence of occult HBV infection in HIV-infected patients.

  3. Adaptive regulation of taurine and beta-alanine uptake in a human kidney cell line from the proximal tubule

    DEFF Research Database (Denmark)

    Jessen, H; Jacobsen, Christian

    1997-01-01

    homeostasis occurs predominantly via changes in the activity of the high-affinity taurine transport system by alterations in the uptake capacity and with an unaffected half-saturation constant. An adaptive response was not observed for the structurally related beta-alanine. 3. Only colchicine, which......), mimicking the effects of diacylglycerol, induced inhibition of both beta-alanine and taurine uptake. By contrast, the Ca2(+)-ionophore A23187, mimicking the effects of IP3, only stimulated the uptake of taurine but not the influx of beta-alanine. However, the effect of PMA down-regulation and A23187 up......1. The underlying mechanisms involved in the adaptive regulation of beta-amino acid uptake in the human proximal tubule were examined by use of an immortalized human embryonic kidney epithelial cell line (IHKE). 2. The results indicated that the adaptive response to maintain whole-body taurine...

  4. Sulfoacetate generated by Rhodopseudomonas palustris from taurine.

    Science.gov (United States)

    Denger, Karin; Weinitschke, Sonja; Hollemeyer, Klaus; Cook, Alasdair M

    2004-10-01

    Genes thought to encode (a) the regulator of taurine catabolism under carbon-limiting or nitrogen-limiting conditions and (b) taurine dehydrogenase were found in the genome of Rhodopseudomonas palustris. The organism utilized taurine quantitatively as a sole source of nitrogen (but not of carbon) for aerobic and photoheterotrophic growth. No sulfate was released, and the C-sulfonate bond was recovered stoichiometrically as sulfoacetate, which was identified by mass spectrometry. An inducible sulfoacetaldehyde dehydrogenase was detected. R. palustris thus contains a pathway to generate a natural product that was previously believed to be formed solely from sulfoquinovose.

  5. Taurine Boosts Cellular Uptake of Small D-Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly.

    Science.gov (United States)

    Zhou, Jie; Du, Xuewen; Li, Jie; Yamagata, Natsuko; Xu, Bing

    2015-08-19

    Due to their biostability, D-peptides are emerging as an important molecular platform for biomedical applications. Being proteolytically resistant, D-peptides lack interactions with endogenous transporters and hardly enter cells. Here we show that taurine, a natural amino acid, drastically boosts the cellular uptake of small D-peptides in mammalian cells by >10-fold, from 118 μM (without conjugating taurine) to >1.6 mM (after conjugating taurine). The uptake of a large amount of the ester conjugate of taurine and D-peptide allows intracellular esterase to trigger intracellular self-assembly of the D-peptide derivative, further enhancing their cellular accumulation. The study on the mechanism of the uptake reveals that the conjugates enter cells via both dynamin-dependent endocytosis and macropinocytosis, but likely not relying on taurine transporters. Differing fundamentally from the positively charged cell-penetrating peptides, the biocompatibility, stability, and simplicity of the enzyme-cleavable taurine motif promise new ways to promote the uptake of bioactive molecules for countering the action of efflux pump and contributing to intracellular molecular self-assembly.

  6. A case of taurine-containing drink induced anaphylaxis.

    Science.gov (United States)

    Lee, Seung-Eun; Lee, Suh-Young; Jo, Eun-Jung; Kim, Mi-Young; Yang, Min-Suk; Chang, Yoon-Seok; Kim, Sae-Hoon

    2013-01-01

    Taurine is one of most abundant free amino acids in mammalian tissue. It has been used for various health functional foods as a main ingredient in food industry. A 33-year-old female patient repeatedly experienced generalized itching, urticaria, dyspnea and dizziness after drinking taurine-containing drinks. The patient showed positive response to oral challenge tests with taurine-containing drinks. The patient also showed positive response with synthetic taurine but not with natural taurine. Skin prick test and basophil activation test with the synthetic taurine were negative. To our knowledge, there has been no report of taurine-induced hypersensitivity reactions. We herein report the first case of taurine-containing drink induced anaphylaxis, especially by synthetic taurine.

  7. Tissue Taurine Depletion Alters Metabolic Response to Exercise and Reduces Running Capacity in Mice

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    2014-01-01

    Full Text Available Taurine is a sulfur-containing amino acid found in very high concentration in skeletal muscle. Taurine deficient mice engineered by knocking out the taurine transporter gene exhibit skeletal muscle wasting, structural defects, and exercise intolerance. In the present study, we investigated the mechanism underlying the development of metabolic abnormalities and exercise intolerance in muscle of the TauTKO phenotype. Running speed and endurance time of TauTKO mice were lower than those of control mice. Blood lactate level was elevated by >3-fold during treadmill running in TauTKO mice but remained largely unaltered by exercise in WT mice. Blood glucose was cleared faster during treadmill running in TauTKO mice than WT mice. AMP-activated kinase (AMPK β-2 subunit was reduced in TauTKO muscle concomitant with a reduction in α1 and α2 subunits of AMPK. The level of PPARα and its targets, Gpx3, Cpt2, and Echs1, were also decreased in TauTKO muscle. Collectively, taurine depletion impairs metabolic adaptation to exercise in skeletal muscle, a phenomenon associated with a downregulation of AMPK and diminished NADH utilization by the mitochondrial respiratory chain. These findings suggest a crucial role of taurine in regulating energy metabolism in skeletal muscle of exercising TauTKO mice, changes that contribute to impaired exercise endurance.

  8. Taurine suppresses osteoblastic differentiation of aortic valve interstitial cells induced by beta-glycerophosphate disodium, dexamethasone and ascorbic acid via the ERK pathway.

    Science.gov (United States)

    Feng, Xiang; Li, Jian-ming; Liao, Xiao-bo; Hu, Ye-rong; Shang, Bao-peng; Zhang, Zhi-yuan; Yuan, Ling-qing; Xie, Hui; Sheng, Zhi-feng; Tang, Hao; Zhang, Wei; Gu, Lu; Zhou, Xin-min

    2012-10-01

    Aortic valve calcification (AVC) is an active process characterized by osteoblastic differentiation of the aortic valve interstitial cells (AVICs). Taurine is a free β-amino acid and plays important physiological roles including protective effect of cardiovascular events. To evaluate the possible role of taurine in AVC, we isolated human AVICs from patients with type A dissection without leaflet disease. We demonstrated that the cultured AVICs express SM α-actin, vimentin and taurine transporter (TAUT), but not CD31, SM-myosin or desmin. We also established the osteoblastic differentiation model of the AVICs induced by pro-calcific medium (PCM) containing β-glycerophosphate disodium, dexamethasone and ascorbic acid in vitro. The results showed that taurine attenuated the PCM-induced osteoblastic differentiation of AVICs by decreasing the alkaline phosphate (ALP) activity/expression and the expression of the core binding factor α1 (Cbfα1) in a dose-dependent manner (reaching the maximum protective effect at 10 mM), and taurine (10 mM) inhibited the mineralization level of AVICs in the form of calcium content significantly. Furthermore, taurine activated the extracellular signal-regulated protein kinase (ERK) pathway via TAUT, and the inhibitor of ERK (PD98059) abolished the effect of taurine on both ALP activity/expression and Cbfα1 expression. These results suggested that taurine could inhibit osteoblastic differentiation of AVIC via the ERK pathway.

  9. Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression.

    Science.gov (United States)

    Donepudi, Ajay C; Cheng, Qiuqiong; Lu, Zhenqiang James; Cherrington, Nathan J; Slitt, Angela L

    2016-04-01

    Metabolic syndrome is a multifactorial disease associated with obesity, insulin resistance, diabetes, and the alteration of multiple metabolic hormones. Obesity rates have been rising worldwide, which increases our need to understand how this population will respond to drugs and exposure to other chemicals. The purpose of this study was to determine in lean and obese mice the ontogeny of clinical biomarkers such as serum hormone and blood glucose levels as well as the physiologic markers that correlate with nuclear receptor- and transporter-related pathways. Livers from male and female wild-type (WT) (C57BL/6) and ob/ob mice littermates were collected before, during, and after the onset of obesity. Serum hormone and mRNA levels were analyzed. Physiologic changes and gene expression during maturation and progression to obesity were performed and correlation analysis was performed using canonical correlations. Significant ontogenic changes in both WT and ob/ob mice were observed and these ontogenic changes differ in ob/ob mice with the development of obesity. In males and females, the ontogenic pattern of the expression of genes such as Abcc3, 4, Abcg2, Cyp2b10, and 4a14 started to differ from week 3, and became significant at weeks 4 and 8 in ob/ob mice compared with WT mice. In obese males, serum resistin, glucagon, and glucose levels correlated with the expression of most hepatic ATP-binding cassette (Abc) transporters, whereas in obese females, serum glucagon-like peptide 1 levels were correlated with most hepatic uptake transporters and P450 enzymes. Overall, the correlation between physiologic changes and gene expression indicate that metabolism-related hormones may play a role in regulating the genes involved in drug metabolism and transport.

  10. Variability in hepatic expression of organic anion transporter 7/SLC22A9, a novel pravastatin uptake transporter: impact of genetic and regulatory factors.

    Science.gov (United States)

    Emami Riedmaier, A; Burk, O; van Eijck, B A C; Schaeffeler, E; Klein, K; Fehr, S; Biskup, S; Müller, S; Winter, S; Zanger, U M; Schwab, M; Nies, A T

    2016-08-01

    Human organic anion transporter 7 (OAT7, SLC22A9) is a hepatic transport protein poorly characterized so far. We therefore sought to identify novel OAT7 substrates and factors contributing to variable hepatic OAT7 expression. Using OAT7-expressing cells, pravastatin was identified as a substrate. Hepatic SLC22A9/OAT7 mRNA and protein expression varied 28-fold and 15-fold, respectively, in 126 Caucasian liver samples. Twenty-four variants in SLC22A9 were genotyped, including three rare missense variants (rs377211288, rs61742518, rs146027075), which occurred only heterozygously. No variant significantly affected hepatic SLC22A9/OAT7 expression. The three missense variants, however, showed functional consequences when expressed in vitro. Hepatic nuclear factor 4-alpha (HNF4α) emerged as a major transcriptional regulator of SLC22A9 by a series of in silico and in vitro analyses. In conclusion, pravastatin is the first identified OAT7 drug substrate. Substantial inter-individual variability in hepatic OAT7 expression, majorly driven by HNF4α, may contribute to pravastatin drug disposition and might affect response.The Pharmacogenomics Journal advance online publication, 4 August 2015; doi:10.1038/tpj.2015.55.

  11. Hepatitis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008079 Relationship of HBV genotype and bcp and pc mutations with HBV DNA rebound after lamivudine therapy. SU Minghua(苏明华), et al. Dept Infect Dis Clin Hosp, Guangxi Med Univ, Nanning 530027. World Chin J Digestol 2007;15(33):3507-3513. Objective To investigate the relationship of HBV gene mutations with HBV DNA rebound after lamivudine therapy. Methods Twenty-seven hepatitis B patients with HBV DNA rebound after

  12. Taurine zinc solid dispersions enhance bile-incubated L02 cell viability and improve liver function by inhibiting ERK2 and JNK phosphorylation during cholestasis.

    Science.gov (United States)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lai, Xiaofang; Xu, Donghui

    2016-07-29

    Dietary intakes of taurine and zinc are associated with decreased risk of liver disease. In this study, solid dispersions (SDs) of a taurine zinc complex on hepatic injury were examined in vitro using the immortalized human hepatocyte cell line L02 and in a rat model of bile duct ligation. Sham-operated and bile duct ligated Sprague-Dawley rats were treated with the vehicle alone or taurine zinc (40, 80, 160mg/kg) for 17days. Bile duct ligation significantly increased blood lipid levels, and promoted hepatocyte apoptosis, inflammation and compensatory biliary proliferation. In vitro, incubation with bile significantly reduced L02 cell viability; this effect was significantly attenuated by pretreatment with SP600125 (a JNK inhibitor) and enhanced when co-incubated with taurine zinc SDs. In vivo, administration of taurine zinc SDs decreased serum alanine aminotransferase and aspartate aminotransferase activities in a dose-dependent manner and attenuated the increases in serum total bilirubin, total cholesterol and low density lipoprotein cholesterol levels after bile duct ligation. Additionally, taurine zinc SDs downregulated the expression of interleukin-1β and inhibited the phosphorylation of Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase2 (ERK2) in the liver after bile duct ligation. Moreover, taurine zinc SDs had more potent blood lipid regulatory and anti-apoptotic effects than the physical mixture of taurine and zinc acetate. Therefore, we speculate that taurine zinc SDs protect liver function at least in part via a mechanism linked to reduce phosphorylation of JNK and ERK2, which suppresses inflammation, apoptosis and cholangiocyte proliferation during cholestasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Synthesis and characterization of Taurine

    Directory of Open Access Journals (Sweden)

    B Bayarmaa

    2014-10-01

    Full Text Available Have been obtained 2-aminoethanesulfonic acid (taurine from ethanolamine, sulfuric acid and sodium sulfite during the synthesis in laboratory condition. The process involves two steps of reactions, the first was esterification of ethanolamine with sulfuric acid to produce the intermediate product of 2-aminoethyl ester which than was extended to the second step by sulfonation with sodium sulfite to produce 2-aminoethanesulfonic acid. Resulting product was analyzed using 1H-NMR, IR, FAB-MS analysis and examined purity characterizations of the synthesized products. DOI: http://dx.doi.org/10.5564/mjc.v14i0.200 Mongolian Journal of Chemistry 14 (40, 2013, p57-60

  14. Role of Hepatic Lipase and Endothelial Lipase in High-Density Lipoprotein-Mediated Reverse Cholesterol Transport

    NARCIS (Netherlands)

    Annema, Wijtske; Tietge, Uwe J. F.

    2011-01-01

    Reverse cholesterol transport (RCT) constitutes a key part of the atheroprotective properties of high-density lipoproteins (HDL). Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol levels. Although overexpression of EL decreases overall macrophage-to-fe

  15. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU.

    Science.gov (United States)

    Laue, H; Denger, K; Cook, A M

    1997-05-01

    Organosulfonates are important natural and man-made compounds, but until recently (T. J. Lie, T. Pitta, E. R. Leadbetter, W. Godchaux III, and J. R. Leadbetter. Arch. Microbiol. 166:204-210, 1996), they were not believed to be dissimilated under anoxic conditions. We also chose to test whether alkane- and arenesulfonates could serve as electron sinks in respiratory metabolism. We generated 60 anoxic enrichment cultures in mineral salts medium which included several potential electron donors and a single organic sulfonate as an electron sink, and we used material from anaerobic digestors in communal sewage works as inocula. None of the four aromatic sulfonates, the three unsubstituted alkanesulfonates, or the N-sulfonate tested gave positive enrichment cultures requiring both the electron donor and electron sink for growth. Nine cultures utilizing the natural products taurine, cysteate, or isethionate were considered positive for growth, and all formed sulfide. Two clearly different pure cultures were examined. Putative Desulfovibrio sp. strain RZACYSA, with lactate as the electron donor, utilized sulfate, aminomethanesulfonate, taurine, isethionate, and cysteate, converting the latter to ammonia, acetate, and sulfide. Strain RZATAU was identified by 16S rDNA analysis as Bilophila wadsworthia. In the presence of, e.g., formate as the electron donor, it utilized, e.g., cysteate and isethionate and converted taurine quantitatively to cell material and products identified as ammonia, acetate, and sulfide. Sulfite and thiosulfate, but not sulfate, were utilized as electron sinks, as was nitrate, when lactate was provided as the electron donor and carbon source. A growth requirement for 1,4-naphthoquinone indicates a menaquinone electron carrier, and the presence of cytochrome c supports the presence of an electron transport chain. Pyruvate-dependent disappearance of taurine from cell extracts, as well as formation of alanine and release of ammonia and acetate, was

  16. Effects of graded taurine levels on juvenile cobia

    Science.gov (United States)

    Taurine, which has multiple important physiological roles in teleost fish and mammals, is an amino acid not found in alternative protein sources not derived from animals. Although taurine is found in fish-meal-based feeds, its high water solubility leads to lower taurine levels in reduction-process-...

  17. Physiological role of taurine - from organism to organelle

    DEFF Research Database (Denmark)

    Lambert, Ian Henry; Kristensen, David Møbjerg Boslev; Holm, Jacob Bak

    2015-01-01

    in mammalian cells. However, taurine contributes significantly to the cellular pool of organic osmolytes and has accordingly been acknowledged for its role in cell volume restoration following osmotic perturbation. This review describes taurine homeostasis in cells and organelles with emphasis on taurine...

  18. Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats.

    Science.gov (United States)

    Flora, Swaran J S; Chouhan, Swapnila; Kannan, Gurusamy M; Mittal, Megha; Swarnkar, Harimohan

    2008-01-01

    Arsenic is a naturally occurring element that is ubiquitously present in the environment. High concentration of naturally occurring arsenic in drinking water is a major health problem in different parts of the world. Despite arsenic being a health hazard and a well documented carcinogen, no safe, effective and specific preventive or therapeutic measures are available. Among various recent strategies adopted, administration of an antioxidant has been reported to be the most effective. The present study was designed to evaluate the therapeutic efficacy of monoisoamyl dimercaptosuccinic acid (MiADMSA), administered either individually or in combination with taurine post chronic arsenic exposure in rats. Arsenic exposed male rats (25 ppm, sodium arsenite in drinking water for 24 weeks) were treated with taurine (100 mg/kg, i.p., once daily), monoisoamyl dimercaptosuccinic acid (MiADMSA) (50 mg/kg, oral, once daily) either individually or in combination for 5 consecutive days. Biochemical variables indicative of oxidative stress along-with arsenic concentration in blood, liver and kidney were measured. Arsenic exposure significantly reduced blood delta-aminolevulinic acid dehydratase (ALAD) activity, a key enzyme involved in the heme biosynthesis and enhanced zinc protoporphyrin (ZPP) level. Clinical hematological variables like white blood cells (WBC), mean cell hemoglobin (MCH), and mean cell hemoglobin concentration (MCHC) showed significant decrease with a significant elevation in platelet (PLT) count. These changes were accompanied by significant decrease in superoxide dismutase (SOD) activity and increased catalase activity. Arsenic exposure caused a significant decrease in hepatic and renal glutathione (GSH) level and an increase in oxidized glutathione (GSSG). These biochemical changes were correlated with an increased uptake of arsenic in blood, liver and kidney. Administration of taurine significantly reduced hepatic oxidative stress however co

  19. Combined Administration of Taurine and Monoisoamyl Dmsa Protects Arsenic Induced Oxidative Injury in Rats

    Directory of Open Access Journals (Sweden)

    Swaran J. S. Flora

    2008-01-01

    Full Text Available Arsenic is a naturally occurring element that is ubiquitously present in the environment. High concentration of naturally occurring arsenic in drinking water is a major health problem in different parts of the world. Despite arsenic being a health hazard and a well documented carcinogen, no safe, effective and specific preventive or therapeutic measures are available. Among various recent strategies adopted, administration of an antioxidant has been reported to be the most effective. The present study was designed to evaluate the therapeutic efficacy of monoisoamyl dimercaptosuccinic acid (MiADMSA, administered either individually or in combination with taurine post chronic arsenic exposure in rats. Arsenic exposed male rats (25 ppm, sodium arsenite in drinking water for 24 weeks were treated with taurine (100 mg/kg, i.p., once daily, monoisoamyl dimercaptosuccinic acid (MiADMSA (50 mg/kg, oral, once daily either individually or in combination for 5 consecutive days. Biochemical variables indicative of oxidative stress along-with arsenic concentration in blood, liver and kidney were measured. Arsenic exposure significantly reduced blood δ-aminolevulinic acid dehydratase (ALAD activity, a key enzyme involved in the heme biosynthesis and enhanced zinc protoporphyrin (ZPP level. Clinical hematological variables like white blood cells (WBC, mean cell hemoglobin (MCH, and mean cell hemoglobin concentration (MCHC showed significant decrease with a significant elevation in platelet (PLT count. These changes were accompanied by significant decrease in superoxide dismutase (SOD activity and increased catalase activity. Arsenic exposure caused a significant decrease in hepatic and renal glutathione (GSH level and an increase in oxidized glutathione (GSSG. These biochemical changes were correlated with an increased uptake of arsenic in blood, liver and kidney. Administration of taurine significantly reduced hepatic oxidative stress however co

  20. Taurine Inhibits K+-Cl− Cotransporter KCC2 to Regulate Embryonic Cl− Homeostasis via With-no-lysine (WNK) Protein Kinase Signaling Pathway*

    Science.gov (United States)

    Inoue, Koichi; Furukawa, Tomonori; Kumada, Tatsuro; Yamada, Junko; Wang, Tianying; Inoue, Rieko; Fukuda, Atsuo

    2012-01-01

    GABA inhibits mature neurons and conversely excites immature neurons due to lower K+-Cl− cotransporter 2 (KCC2) expression. We observed that ectopically expressed KCC2 in embryonic cerebral cortices was not active; however, KCC2 functioned in newborns. In vitro studies revealed that taurine increased KCC2 inactivation in a phosphorylation-dependent manner. When Thr-906 and Thr-1007 residues in KCC2 were substituted with Ala (KCC2T906A/T1007A), KCC2 activity was facilitated, and the inhibitory effect of taurine was not observed. Exogenous taurine activated the with-no-lysine protein kinase 1 (WNK1) and downstream STE20/SPS1-related proline/alanine-rich kinase (SPAK)/oxidative stress response 1 (OSR1), and overexpression of active WNK1 resulted in KCC2 inhibition in the absence of taurine. Phosphorylation of SPAK was consistently higher in embryonic brains compared with that of neonatal brains and down-regulated by a taurine transporter inhibitor in vivo. Furthermore, cerebral radial migration was perturbed by a taurine-insensitive form of KCC2, KCC2T906A/T1007A, which may be regulated by WNK-SPAK/OSR1 signaling. Thus, taurine and WNK-SPAK/OSR1 signaling may contribute to embryonic neuronal Cl− homeostasis, which is required for normal brain development. PMID:22544747

  1. A role of taurine in mitochondrial function

    DEFF Research Database (Denmark)

    Hansen, Svend Høime; Andersen, Mogens Larsen; Cornett, Claus

    2010-01-01

    The mitochondrial pH gradient across the inner-membrane is stabilised by buffering of the matrix. A low-molecular mass buffer compound has to be localised in the matrix to maintain its alkaline pH value. Taurine is found ubiquitously in animal cells with concentrations in the millimolar range...... and its pKa value is determined to 9.0 (25 degrees C) and 8.6 (37 degrees C), respectively. Localisation of such a low-molecular buffer in the mitochondrial matrix, transforms the matrix into a biochemical reaction chamber for the important matrix-localised enzyme systems. Three acyl-CoA dehydrogenase...... enzymes, which are pivotal for beta-oxidation of fatty acids, are demonstrated to have optimal activity in a taurine buffer. By application of the model presented, taurine depletion caused by hyperglycemia could provide a link between mitochondrial dysfunction and diabetes....

  2. Host defense--a role for the amino acid taurine?

    Science.gov (United States)

    Stapleton, P P; O'Flaherty, L; Redmond, H P; Bouchier-Hayes, D J

    1998-01-01

    Taurine (2-aminoethane sulphonic acid), a ubiquitous beta-amino acid is conditionally essential in man. It is not utilized in protein synthesis but found free or in some simple peptides. Derived from methionine and cysteine metabolism, taurine is known to play a pivotal role in numerous physiological functions. Some of the roles with which taurine has been associated include osmoregulation, antioxidation, detoxification and stimulation of glycolysis and glycogenesis. Intracellular taurine is maintained at high concentrations in a variety of cell types and alteration of cell taurine levels is difficult. The role of taurine within the cell appears to be determined by the cell type. Recent research has determined a regulatory role for taurinechloramine, the product formed by the reaction between taurine and neutrophil derived hypochlorous acid on macrophage function. Plasma taurine levels are also high, although decreases are observed in response to surgical injury and numerous pathological conditions including cancer and sepsis. Supplementary taurine replenishes decreased plasma taurine. Although commonly used as a dietary supplement in the Far East, the potential advantages of dietary taurine supplementation have not as yet been fully recognized in the Western World; this is an area which could prove to be beneficial in the clinical arena.

  3. Role of protein phosphorylation in excitation-contraction coupling in taurine deficient hearts.

    Science.gov (United States)

    Ramila, K C; Jong, Chian Ju; Pastukh, Viktor; Ito, Takashi; Azuma, Junichi; Schaffer, Stephen W

    2015-02-01

    Taurine is a beta-amino acid found in very high concentration in the heart. Depletion of these intracellular stores results in the development of cardiomyopathy, thought to be mediated by abnormal sarcoplasmic reticular (SR) Ca(2+) transport. There is also evidence that taurine directly alters the Ca(2+) sensitivity of myofibrillar proteins. Major regulators of SR Ca(2+) ATPase (SERCA2a) are the phosphorylation status of a regulatory protein, phospholamban, and SERCA2a expression, which are diminished in the failing heart. The failing heart also exhibits reductions in myofibrillar Ca(2+) sensitivity, a property regulated by the phosphorylation of the muscle protein, troponin I. Therefore, we tested the hypothesis that taurine deficiency leads to alterations in SR Ca(2+) ATPase activity related to reduced phospholamban phosphorylation and expression of SERCA2a. We found that a sequence of events, which included elevated protein phosphatase 1 activity, reduced autophosphorylation of CaMKII, and reduced phospholamban phosphorylation, supports the reduction in SR Ca(2+) ATPase activity. However, the reduction in SR Ca(2+) ATPase activity was not caused by reduced SERCA2a expression. Taurine transporter knockout (TauTKO) hearts also exhibited a rightward shift in the Ca(2+) dependence of the myofibrillar Ca(2+) ATPase, a property that is associated with an elevation in phosphorylated troponin I. The findings support the observation that taurine deficient hearts develop systolic and diastolic defects related to reduced SR Ca(2+) ATPase activity, a change mediated in part by reduced phospholamban phosphorylation. Copyright © 2015 the American Physiological Society.

  4. The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II.

    Science.gov (United States)

    Ito, Takashi; Schaffer, Stephen; Azuma, Junichi

    2014-01-01

    Taurine, a ubiquitous endogenous sulfur-containing amino acid, possesses numerous pharmacological and physiological actions, including antioxidant activity, modulation of calcium homeostasis and antiapoptotic effects. There is mounting evidence supporting the utility of taurine as a pharmacological agent against heart disease, including chronic heart failure (CHF). In the past decade, angiotensin II blockade and β-adrenergic inhibition have served as the mainstay in the treatment of CHF. Both groups of pharmaceutical agents decrease mortality and improve the quality of life, a testament to the critical role of the sympathetic nervous system and the renin--angiotensin system in the development of CHF. Taurine has also attracted attention because it has beneficial actions in CHF, in part by its demonstrated inhibition of the harmful actions of the neurohumoral factors. In this review, we summarize the beneficial actions of taurine in CHF, focusing on its antagonism of the catecholamines and angiotensin II.

  5. Acute ammonia toxicity in crucian carp Carassius auratus and effects of taurine on hyperammonemia.

    Science.gov (United States)

    Ren, Qianyan; Li, Ming; Yuan, Lixia; Song, Meize; Xing, Xiaodan; Shi, Ge; Meng, Fanxing; Wang, Rixin

    2016-12-01

    The four experimental groups were carried out to test the response of crucian carp Carassius auratus to ammonia toxicity and taurine: group 1 was injected with NaCl, group 2 was injected with ammonium acetate, group 3 was injected with ammonium acetate and taurine, and group 4 was injected with taurine. Fish in group 2 had the highest ammonia and glutamine contents, and the lowest glutamate content in liver and brain. Serum superoxide dismutase (SOD), glutathione (GSH) activities, red cell count (RBC), white cell count (WBC), lysozyme (LYZ) activity, complement C3 content of fish in group 2 reflected the lowest, but malondialdehyde content was the highest. Importantly, serum SOD and GSH activites, RBC, WBC, and LYZ activity, C3, C4 and total immunoglobulin contents of fish in group 3 were significantly higher than those of fish in group 2. This study indicates that ammonia exerts its toxic effects by interfering with amino acid transport, inducing ROS generation, leading to malondialdehyde accumulation and immunosuppression of crucian carp. The exogenous taurine could mitigate the adverse effect of high ammonia level on fish physiological disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase.

    Science.gov (United States)

    Krejcík, Zdenĕk; Denger, Karin; Weinitschke, Sonja; Hollemeyer, Klaus; Paces, Václav; Cook, Alasdair M; Smits, Theo H M

    2008-08-01

    Taurine (2-aminoethanesulfonate) is a widespread natural product whose nitrogen moiety was recently shown to be assimilated by bacteria, usually with excretion of an organosulfonate via undefined novel pathways; other data involve transcriptional regulator TauR in taurine metabolism. A screen of genome sequences for TauR with the BLAST algorithm allowed the hypothesis that the marine gammaproteobacterium Neptuniibacter caesariensis MED92 would inducibly assimilate taurine-nitrogen and excrete sulfoacetate. The pathway involved an ABC transporter (TauABC), taurine:pyruvate aminotransferase (Tpa), a novel sulfoacetaldehyde dehydrogenase (SafD) and exporter(s) of sulfoacetate (SafE) (DUF81). Ten candidate genes in two clusters involved three sets of paralogues (for TauR, Tpa and SafE). Inducible Tpa and SafD were detected in cell extracts. SafD was purified 600-fold to homogeneity in two steps. The monomer had a molecular mass of 50 kDa (SDS-PAGE); data from gel filtration chromatography indicated a tetrameric native protein. SafD was specific for sulfoacetaldehyde with a K (m)-value of 0.12 mM. The N-terminal amino acid sequence of SafD confirmed the identity of the safD gene. The eight pathway genes were transcribed inducibly, which indicated expression of the whole hypothetical pathway. We presume that this pathway is one source of sulfoacetate in nature, where this compound is dissimilated by many bacteria.

  7. Review: Taurine: A “very essential” amino acid

    Science.gov (United States)

    Shen, Wen

    2012-01-01

    Taurine is an organic osmolyte involved in cell volume regulation, and provides a substrate for the formation of bile salts. It plays a role in the modulation of intracellular free calcium concentration, and although it is one of the few amino acids not incorporated into proteins, taurine is one of the most abundant amino acids in the brain, retina, muscle tissue, and organs throughout the body. Taurine serves a wide variety of functions in the central nervous system, from development to cytoprotection, and taurine deficiency is associated with cardiomyopathy, renal dysfunction, developmental abnormalities, and severe damage to retinal neurons. All ocular tissues contain taurine, and quantitative analysis of ocular tissue extracts of the rat eye revealed that taurine was the most abundant amino acid in the retina, vitreous, lens, cornea, iris, and ciliary body. In the retina, taurine is critical for photoreceptor development and acts as a cytoprotectant against stress-related neuronal damage and other pathological conditions. Despite its many functional properties, however, the cellular and biochemical mechanisms mediating the actions of taurine are not fully known. Nevertheless, considering its broad distribution, its many cytoprotective attributes, and its functional significance in cell development, nutrition, and survival, taurine is undoubtedly one of the most essential substances in the body. Interestingly, taurine satisfies many of the criteria considered essential for inclusion in the inventory of neurotransmitters, but evidence of a taurine-specific receptor has yet to be identified in the vertebrate nervous system. In this report, we present a broad overview of the functional properties of taurine, some of the consequences of taurine deficiency, and the results of studies in animal models suggesting that taurine may play a therapeutic role in the management of epilepsy and diabetes. PMID:23170060

  8. Role of taurine on acid secretion in the rat stomach

    Science.gov (United States)

    2011-01-01

    Background Taurine has chemical structure similar to an inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Previous studies on GABA in the stomach suggest GABAergic neuron is involved in acid secretion, but the effects of taurine are poor understood. Methods The effects of taurine on acid secretion, signal transduction, and localization of taurinergic neurons were determined in the rat stomach using everted whole stomach, RIA kit and immunohistochemical methods. Results We used antibodies against taurine-synthesizing enzyme, cysteine sulfuric acid decarboxylase (CSAD), and taurine. CSAD- and taurine-positive cells were found in the muscle and mucosal layers. Distributions of CSAD- and taurine-positive cells in both mucosal and muscle layers were heterogeneous in the stomach. Taurine at 10-9~10-4 M induced acid secretion, and the maximum secretion was at 10-5 M, 1.6-fold higher than the spontaneous secretion. Taurine-induced acid secretion was completely inhibited by bicuculline and atropine but not by cimetidine, proglumide, or strychnine. Atropine and tetrodotoxin (TTX) completely inhibited the acid secretion induced by low concentrations of taurine and partially inhibited induced by high concentrations. Verapamil, a calcium blocker agent, inhibited acid output elicited by taurine. We assumed all Ca2+ channels involved in the response to these secretagogues were equally affected by verapamil. Intracellular cAMP (adenosine 3', 5'-monophosphat) in the stomach significantly increased with taurine treatment in a dose-dependent manner. High correlation (r=0.859, p taurine concentrations with cAMP was observed. Conclusions Our results demonstrated for the first time in taurine-induced acid secretion due to increase intracellular calcium may act through the A type of GABA receptors, which are mainly located on cholinergic neurons though cAMP pathway and partially on nonneuronal cells in the rat stomach. PMID:21294907

  9. Hepatic alterations are accompanied by changes to bile acid transporter-expressing neurons in the hypothalamus after traumatic brain injury

    Science.gov (United States)

    Nizamutdinov, Damir; DeMorrow, Sharon; McMillin, Matthew; Kain, Jessica; Mukherjee, Sanjib; Zeitouni, Suzanne; Frampton, Gabriel; Bricker, Paul Clint S.; Hurst, Jacob; Shapiro, Lee A.

    2017-01-01

    Annually, there are over 2 million incidents of traumatic brain injury (TBI) and treatment options are non-existent. While many TBI studies have focused on the brain, peripheral contributions involving the digestive and immune systems are emerging as factors involved in the various symptomology associated with TBI. We hypothesized that TBI would alter hepatic function, including bile acid system machinery in the liver and brain. The results show activation of the hepatic acute phase response by 2 hours after TBI, hepatic inflammation by 6 hours after TBI and a decrease in hepatic transcription factors, Gli 1, Gli 2, Gli 3 at 2 and 24 hrs after TBI. Bile acid receptors and transporters were decreased as early as 2 hrs after TBI until at least 24 hrs after TBI. Quantification of bile acid transporter, ASBT-expressing neurons in the hypothalamus, revealed a significant decrease following TBI. These results are the first to show such changes following a TBI, and are compatible with previous studies of the bile acid system in stroke models. The data support the emerging idea of a systemic influence to neurological disorders and point to the need for future studies to better define specific mechanisms of action. PMID:28106051

  10. Organic anion-transporting polypeptides contribute to the hepatic uptake of berberine.

    Science.gov (United States)

    Chen, Chen; Wu, Zhi-Tao; Ma, Lei-Lei; Ni, Xuan; Lin, Yun-Fei; Wang, Le; Chen, Ke-Ping; Huang, Cheng-gang; Pan, Guoyu

    2015-01-01

    1. The purpose of this study was to investigate the mechanism of hepatic uptake of berberine. Berberine accumulation in hepatocytes was found to be highly dependent on active uptake, which could not be explained by liver organic cation transporter (OCT) alone. 2. Our studies indicated that berberine uptake was significantly suppressed by rifampicin, cyclosporine A and glycyrrhizic acid, which act as specific inhibitors of different Oatp isoforms (Oatp1a1, Oatp1a4 and Oatp1b2) in rat hepatocytes. The combination of OCT and OATP inhibitors further reduced berberine accumulation in both rat and human hepatocytes. The uptake of berberine could be increased in human HEK293-OATP1B3 but not in OATP1B1-transfected HEK 293 cells. 3. Rifampicin could reduce the berberine liver extraction ratio (ER) and double its concentration in the effluent in isolated rat livers. Further in vivo study indicated that berberine plasma exposure could be significantly increased by co-administration of the OATP inhibitor rifampicin or the substrate rosuvastatin. 4. In conclusion, this study demonstrated that both OCT and OATP contribute to the accumulation of berberine in the liver. OATPs may have important roles in berberine liver disposition and potential clinically relevant drug--drug interactions.

  11. Reduced serotonin reuptake transporter (SERT) function causes insulin resistance and hepatic steatosis independent of food intake.

    Science.gov (United States)

    Chen, Xiaoning; Margolis, Kara J; Gershon, Michael D; Schwartz, Gary J; Sze, Ji Y

    2012-01-01

    Serotonin reuptake transporter (SERT) is a key regulator of serotonin neurotransmission and a major target of antidepressants. Antidepressants, such as selectively serotonin reuptake inhibitors (SSRIs), that block SERT function are known to affect food intake and body weight. Here, we provide genetic evidence that food intake and metabolism are regulated by separable mechanisms of SERT function. SERT-deficient mice ate less during both normal diet and high fat diet feeding. The reduced food intake was accompanied with markedly elevated plasma leptin levels. Despite reduced food intake, SERT-deficient mice exhibited glucose intolerance and insulin resistance, and progressively developed obesity and hepatic steatosis. Several lines of evidence indicate that the metabolic deficits of SERT-deficient mice are attributable to reduced insulin-sensitivity in peripheral tissues. First, SERT-deficient mice exhibited beta-cell hyperplasia and islet-mass expansion. Second, biochemical analyses revealed constitutively elevated JNK activity and diminished insulin-induced AKT activation in the liver of SERT-deficient mice. SERT-deficient mice exhibited hyper-JNK activity and hyperinsulinemia prior to the development of obesity. Third, enhancing AKT signaling by PTEN deficiency corrected glucose tolerance in SERT-deficient mice. These findings have potential implications for designing selective SERT drugs for weight control and the treatment of metabolic syndromes.

  12. Reduced serotonin reuptake transporter (SERT function causes insulin resistance and hepatic steatosis independent of food intake.

    Directory of Open Access Journals (Sweden)

    Xiaoning Chen

    Full Text Available Serotonin reuptake transporter (SERT is a key regulator of serotonin neurotransmission and a major target of antidepressants. Antidepressants, such as selectively serotonin reuptake inhibitors (SSRIs, that block SERT function are known to affect food intake and body weight. Here, we provide genetic evidence that food intake and metabolism are regulated by separable mechanisms of SERT function. SERT-deficient mice ate less during both normal diet and high fat diet feeding. The reduced food intake was accompanied with markedly elevated plasma leptin levels. Despite reduced food intake, SERT-deficient mice exhibited glucose intolerance and insulin resistance, and progressively developed obesity and hepatic steatosis. Several lines of evidence indicate that the metabolic deficits of SERT-deficient mice are attributable to reduced insulin-sensitivity in peripheral tissues. First, SERT-deficient mice exhibited beta-cell hyperplasia and islet-mass expansion. Second, biochemical analyses revealed constitutively elevated JNK activity and diminished insulin-induced AKT activation in the liver of SERT-deficient mice. SERT-deficient mice exhibited hyper-JNK activity and hyperinsulinemia prior to the development of obesity. Third, enhancing AKT signaling by PTEN deficiency corrected glucose tolerance in SERT-deficient mice. These findings have potential implications for designing selective SERT drugs for weight control and the treatment of metabolic syndromes.

  13. Role of taurine in the pathogenesis of obesity.

    Science.gov (United States)

    Murakami, Shigeru

    2015-07-01

    Taurine is a sulfur-containing amino acid that is present in mammalian tissues in millimolar concentrations. Taurine is involved in a diverse array of biological and physiological functions, including bile salt conjugation, osmoregulation, membrane stabilization, calcium modulation, anti-oxidation, and immunomodulation. The prevalence of obesity and being overweight continues to rise worldwide at an alarming rate. Obesity is associated with a higher risk of metabolic and cardiovascular diseases, cancer, and other clinical conditions. Ingestion of taurine has been shown to alleviate metabolic diseases such as hyperlipidemia, diabetes, hypertension, and obesity in animal models. A global epidemiological survey showed that 24-h urinary taurine excretion, as a marker of dietary taurine intake, was inversely associated with BMI, blood pressure, and plasma cholesterol in humans. In addition, taurine chloramine, an endogenous product derived from activated neutrophils, has been reported to suppress obesity-induced oxidative stress and inflammation in adipocytes. Synthetic activity and concentration of taurine in adipose tissues and plasma have been shown to decrease in humans and animals during the development of obesity, suggesting a relationship between taurine deficiency and obesity. In this review, I summarize the effects of taurine on the progression of obesity in animal models and humans. Furthermore, I discuss possible mechanisms underlying the antiobesity effects of taurine. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Taurine Provides Neuroprotection against Retinal Ganglion Cell Degeneration

    Science.gov (United States)

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases. PMID:23115615

  15. Role of taurine on acid secretion in the rat stomach

    Directory of Open Access Journals (Sweden)

    Ho Jau-Der

    2011-02-01

    Full Text Available Abstract Background Taurine has chemical structure similar to an inhibitory neurotransmitter, γ-aminobutyric acid (GABA. Previous studies on GABA in the stomach suggest GABAergic neuron is involved in acid secretion, but the effects of taurine are poor understood. Methods The effects of taurine on acid secretion, signal transduction, and localization of taurinergic neurons were determined in the rat stomach using everted whole stomach, RIA kit and immunohistochemical methods. Results We used antibodies against taurine-synthesizing enzyme, cysteine sulfuric acid decarboxylase (CSAD, and taurine. CSAD- and taurine-positive cells were found in the muscle and mucosal layers. Distributions of CSAD- and taurine-positive cells in both mucosal and muscle layers were heterogeneous in the stomach. Taurine at 10-9~10-4 M induced acid secretion, and the maximum secretion was at 10-5 M, 1.6-fold higher than the spontaneous secretion. Taurine-induced acid secretion was completely inhibited by bicuculline and atropine but not by cimetidine, proglumide, or strychnine. Atropine and tetrodotoxin (TTX completely inhibited the acid secretion induced by low concentrations of taurine and partially inhibited induced by high concentrations. Verapamil, a calcium blocker agent, inhibited acid output elicited by taurine. We assumed all Ca2+ channels involved in the response to these secretagogues were equally affected by verapamil. Intracellular cAMP (adenosine 3', 5'-monophosphat in the stomach significantly increased with taurine treatment in a dose-dependent manner. High correlation (r=0.859, p Conclusions Our results demonstrated for the first time in taurine-induced acid secretion due to increase intracellular calcium may act through the A type of GABA receptors, which are mainly located on cholinergic neurons though cAMP pathway and partially on nonneuronal cells in the rat stomach.

  16. Taurine provides neuroprotection against retinal ganglion cell degeneration.

    Directory of Open Access Journals (Sweden)

    Nicolas Froger

    Full Text Available Retinal ganglion cell (RGC degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats. After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%, whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases.

  17. Taurine provides neuroprotection against retinal ganglion cell degeneration.

    Science.gov (United States)

    Froger, Nicolas; Cadetti, Lucia; Lorach, Henri; Martins, Joao; Bemelmans, Alexis-Pierre; Dubus, Elisabeth; Degardin, Julie; Pain, Dorothée; Forster, Valérie; Chicaud, Laurent; Ivkovic, Ivana; Simonutti, Manuel; Fouquet, Stéphane; Jammoul, Firas; Léveillard, Thierry; Benosman, Ryad; Sahel, José-Alain; Picaud, Serge

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was incriminated in the retinal toxicity of an antiepileptic drug. We demonstrate here that taurine can improve RGC survival in culture or in different animal models of RGC degeneration. Taurine effect on RGC survival was assessed in vitro on primary pure RCG cultures under serum-deprivation conditions, and on NMDA-treated retinal explants from adult rats. In vivo, taurine was administered through the drinking water in two glaucomatous animal models (DBA/2J mice and rats with vein occlusion) and in a model of Retinitis pigmentosa with secondary RGC degeneration (P23H rats). After a 6-day incubation, 1 mM taurine significantly enhanced RGCs survival (+68%), whereas control RGCs were cultured in a taurine-free medium, containing all natural amino-acids. This effect was found to rely on taurine-uptake by RGCs. Furthermore taurine (1 mM) partly prevented NMDA-induced RGC excitotoxicity. Finally, taurine supplementation increased RGC densities both in DBA/2J mice, in rats with vein occlusion and in P23H rats by contrast to controls drinking taurine-free water. This study indicates that enriched taurine nutrition can directly promote RGC survival through RGC intracellular pathways. It provides evidence that taurine can positively interfere with retinal degenerative diseases.

  18. Analysis of MTHFR, CBS, Glutathione, Taurine, and Hydrogen Sulfide Levels in Retinas of Hyperhomocysteinemic Mice.

    Science.gov (United States)

    Cui, Xuezhi; Navneet, Soumya; Wang, Jing; Roon, Penny; Chen, Wei; Xian, Ming; Smith, Sylvia B

    2017-04-01

    Hyperhomocysteinemia (Hhcy) is implicated in certain retinal neurovascular diseases, although whether it is causative remains uncertain. In isolated ganglion cells (GCs), mild Hhcy induces profound death, whereas retinal phenotypes in Hhcy mice caused by mutations in remethylation (methylene tetrahydrofolatereductase [Mthfr+/-]) or transsulfuration pathways (cystathionine β-synthase [Cbs+/-]) demonstrate mild GC loss and mild vasculopathy. The current work investigated compensation in vivo of one pathway for the other, and, because the transsulfuration pathway yields cysteine necessary for formation of glutathione (GSH), taurine, and hydrogen sulfide (H2S), they were analyzed also. Retinas isolated from wild-type (WT), Mthfr+/-, and Cbs+/- mice (12 and 22 weeks) were analyzed for methylene tetrahydrofolate reductase (MTHFR), cystathionine-β-synthase (CBS), and cystathionase (CTH) RNA/protein levels. Retinas were evaluated for levels of reduced:oxidized GSH (GSH:GSSG), Slc7a11 (xCT), taurine, taurine transporter (TAUT), and H2S. Aside from decreased CBS RNA/protein levels in Cbs+/- retinas, there were minimal alterations in remethylation/transsulfuration pathways in the two mutant mice strains. Glutathione and taurine levels in Mthfr+/- and Cbs+/- retinas were similar to WT, which may be due to robust levels of xCT and TAUT in mutant retinas. Interestingly, levels of H2S were markedly increased in retinas of Mthfr+/- and Cbs+/- mice compared with WT. Ganglion cell loss and vasculopathy observed in Mthfr+/- and Cbs+/- mouse retinas may be milder than expected, not because of compensatory increases of enzymes in remethylation/transsulfuration pathways, but because downstream transsulfuration pathway products GSH, taurine, and H2S are maintained at robust levels. Elevation of H2S is particularly intriguing owing to neuroprotective properties reported for this gasotransmitter.

  19. Effect of taurine on rat Achilles tendon healing.

    Science.gov (United States)

    Akdemir, Ovunc; Lineaweaver, William C; Cavusoglu, Turker; Binboga, Erdal; Uyanikgil, Yigit; Zhang, Feng; Pekedis, Mahmut; Yagci, Tugay

    2015-01-01

    Taurine has anti-inflammatory and antioxidant characteristics. We have introduced taurine into a tendon-healing model to evaluate its effects on tendon healing and adhesion formation. Two groups of 16 rats underwent diversion and repair of the Achilles tendon. One group received a taurine injection (200 mg/ml) at the repair site, while the other group received 1 ml of saline. Specimens were harvested at 6 weeks and underwent biomechanical and histological evaluation. No tendon ruptured. Average maximum load was significantly greater in the taurine-applied group compared with the control group (p taurine-applied group compared with the control group (p  0.05). After histological assessment, we found that fibroblast proliferation, edema, and inflammation statistically decreased in the treatment group (p taurine may have an effect on adhesion formation.

  20. Taurine in milk and yoghurt marketed in Italy.

    Science.gov (United States)

    Manzi, Pamela; Pizzoferrato, Laura

    2013-02-01

    Taurine, a free amino acid, was studied as natural compound of different typologies of milk: pasteurized, ultra-high temperature (UHT), microfiltered whole and semi-skimmed cow's milk; pasteurized and UHT goat's whole milk and raw buffalo's whole milk. Moreover, taurine contents in yoghurt from cow and goat's milk were evaluated. The data obtained in this research showed that no significant variations of taurine occurred in cow's milk subjected to different technological processes and between whole and semi-skimmed milk. The amount of taurine was less (p taurine occurred between goat and buffalo's samples. The amounts of taurine in yoghurt reflected, substantially, the content of this molecule in the milk of the relevant animal species. These results are noteworthy because data available in the literature on this molecule in commercial dairy products are old or few.

  1. 33S NMR cryogenic probe for taurine detection

    Science.gov (United States)

    Hobo, Fumio; Takahashi, Masato; Maeda, Hideaki

    2009-03-01

    With the goal of a S33 nuclear magnetic resonance (NMR) probe applicable to in vivo NMR on taurine-biological samples, we have developed the S33 NMR cryogenic probe, which is applicable to taurine solutions. The NMR sensitivity gain relative to a conventional broadband probe is as large as 3.5. This work suggests that improvements in the preamplifier could allow NMR measurements on 100 μM taurine solutions, which is the level of sensitivity necessary for biological samples.

  2. The potential protective role of taurine against experimental allergic inflammation.

    Science.gov (United States)

    Nam, Sun-Young; Kim, Hyung-Min; Jeong, Hyun-Ja

    2017-09-01

    Taurine has been widely evaluated as a potential therapeutic agent in chronic inflammatory disorders and various infections. However, the potential role of taurine in regulating allergic inflammatory responses is currently unknown. The present study was designed to evaluate the in vitro effects of taurine on the levels of thymic stromal lymphopoietin (TSLP) and other pro-inflammatory cytokines and activation of caspase-1 and nuclear factor (NF)-κB as well as the phosphorylations of c-Jun N-terminal kinase (JNK) and p38 in phorbol 12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-triggered human mast cell line, HMC-1 cells. Furthermore, we assessed the therapeutic effects of taurine on ovalbumin (OVA)-induced allergic rhinitis (AR) animal models. Here, the obtained results showed that taurine dose-dependently inhibited the production and mRNA expression of TSLP and pro-inflammatory cytokines in HMC-1 cells exposed to PMACI. Taurine attenuated the phosphorylation of JNK and p38 in activated HMC-1 cells. Moreover, taurine brought a significant inhibition of the activities of NF-κB and caspase-1. In an OVA-induced AR animal model, the increased levels of nose rubbing, histamine, immunoglobulin E, TSLP, and interleukin IL-1β were dramatically reduced by the administration of taurine. In summary, taurine could serve as potential novel remedy of allergic inflammatory disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of periconceptional undernutrition on maternal taurine concentrations in sheep

    National Research Council Canada - National Science Library

    Thorstensen, Eric B; Derraik, José G B; Oliver, Mark H; Jaquiery, Anne L; Bloomfield, Frank H; Harding, Jane E

    Taurine has an important role in numerous physiological processes, including many aspects of fetal development such as development of the pancreas and brain, and requirements increase during pregnancy...

  4. Roles of taurine-mediated tonic GABAA receptor activation in the radial migration of neurons in the fetal mouse cerebral cortex

    Directory of Open Access Journals (Sweden)

    Tomonori eFurukawa

    2014-03-01

    Full Text Available γ-Aminobutyric acid (GABA depolarizes embryonic cerebrocortical neurons and continuous activation of the GABAA receptor (GABAAR contributes to their tonic depolarization. Although multiple reports have demonstrated a role of GABAAR activation in neocortical development, including in migration, most of these studies have used pharmacological blockers. Herein, we performed in utero electroporation in GABA synthesis-lacking homozygous GAD67-GFP knock-in mice (GAD67GFP/GFP to label neurons born in the ventricular zone. Three days after electroporation, there were no differences in the distribution of labeled cells between the genotypes. The dose-response properties of cells labeled to detect GABA were equivalent among genotypes. However, continuous blockade of GABAAR with the GABAAR antagonist SR95531 accelerated radial migration. This effect of GABAAR blockade in GAD67GFP/GFP mice suggested a role for alternative endogenous GABAAR agonists. Thus, we tested the role of taurine, which is derived from maternal blood but is abundant in the fetal brain. The taurine-evoked currents in labeled cells were mediated by GABAAR. Taurine uptake was blocked by a taurine transporter inhibitor, 2-(guanidinoethanesulfonic acid (GES, and taurine release was blocked by a volume-sensitive anion channel blocker, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl oxobutyric acid (DCPIB, as examined through high-performance liquid chromatography (HPLC. GES increased the extracellular taurine concentration and induced an inward shift of the holding current, which was reversed by SR95531. In a taurine-deficient mouse model, the GABAAR-mediated tonic currents were greatly reduced, and radial migration was accelerated. As the tonic currents were equivalent among the genotypes of GAD67-GFP knock-in mice, taurine, rather than GABA, might play a major role as an endogenous agonist of embryonic tonic GABAAR conductance, regulating the radial migration of neurons in the

  5. The Hepatoprotection Provided by Taurine and Glycine against Antineoplastic Drugs Induced Liver Injury in an Ex Vivo Model of Normothermic Recirculating Isolated Perfused Rat Liver

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2016-03-01

    Full Text Available Taurine (2-aminoethane sulfonic acid is a non-protein amino acid found in high concentration in different tissues. Glycine (Amino acetic acid is the simplest amino acid incorporated in the structure of proteins. Several investigations indicate the hepatoprotective properties of these amino acids. On the other hand, antineoplastic agents-induced serum transaminase elevation and liver injury is a clinical complication. The current investigation was designed to screen the possible hepatoprotective properties of taurine and glycine against antineoplastic drugs-induced hepatic injury in an ex vivo model of isolated perfused rat liver. Rat liver was perfused with different concentration (10 μM, 100 μM and 1000 μM of antineoplastic drugs (Mitoxantrone, Cyclophosphamide, Cisplatin, 5 Fluorouracil, Doxorubicin and Dacarbazine via portal vein. Taurine and glycine were administered to drug-treated livers and liver perfusate samples were collected for biochemical measurements (ALT, LDH, AST, and K+. Markers of oxidative stress (reactive oxygen species formation, lipid peroxidation, total antioxidant capacity and glutathione were also assessed in liver tissue. Antineoplastic drugs caused significant pathological changes in perfusate biochemistry. Furthermore, markers of oxidative stress were significantly elevated in drug treated livers. It was found that taurine (5 and 10 mM and glycine (5 and 10 mM administration significantly mitigated the biomarkers of liver injury and attenuated drug induced oxidative stress. Our data indicate that taurine and glycine supplementation might help as potential therapeutic options to encounter anticancer drugs-induced liver injury.

  6. A Novel Role of SIRT1/ FGF-21 in Taurine Protection Against Cafeteria Diet-Induced Steatohepatitis in Rats

    Directory of Open Access Journals (Sweden)

    Azza H. Abd Elwahab

    2017-09-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is one of the alarmingly rising clinical problems in the 21st century with no effective drug treatment until now. Taurine is an essential amino acid in humans that proved efficacy as a non-pharmacological therapy in a plethora of diseases; however, its impact on NAFLD remains elusive. The aim of the current study is to evaluate the protective mechanism of taurine in experimental steatohepatitis induced by junk food given as cafeteria-diet (CAF-D in male albino rats. Methods: Forty adult male albino rats of local strain between 8-10 weeks old, weighing 150 ± 20 g, were divided into four equal groups: Group I (control group, Group II (Taurine group, Group III (CAF-D for 12 weeks and Group IV (CAF-D +Taurine. CAF-D was given in addition to the standard chow for 12 weeks, where each rat was given one piece of beef burger fried in 15 g of sunflower oil, one teaspoonful of mayonnaise, and one piece of petit pan bread, weighing 60g/ piece. In the serum, liver function tests; ALT, AST, ALP, GGT and the lipid profile; TG, TC, HDL-C added to reduced glutathione (GSH were assessed colorimetrically, while fibroblast growth factor (FGF-21, adiponectin & interleukin (IL-6 via ELISA. The same technique was used for the assays of the hepatic levels of FGF-21, silent information regulator (SIRT1, malondialdehyde (MDA,IL-10, tumor necrosis factor-α (TNF-α as well as the apoptotic markers; caspase-3 and B-cell lymphoma (Bcl-2. Results: The cafeteria-diet induced steatohepatitis was reflected by significantly increased body and liver weight gain, elevation of liver enzymes; ALT, AST, ALP and GGT added to the dyslipidemic panel, presented as increased TC, TG, LDL-C and decreased HDL-C levels. The steatosis-induced inflammatory milieu, marked by elevated serum levels of FGF-21, IL-6, hepatic TNF-α, as well as reduced IL-10 and adiponectin, was associated with steatosis- induced hepatic oxidative stress

  7. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Terrill, Jessica R; Pinniger, Gavin J; Graves, Jamie A; Grounds, Miranda D; Arthur, Peter G

    2016-06-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease associated with increased inflammation, oxidative stress and myofibre necrosis. Cysteine precursor antioxidants such as N-acetyl cysteine (NAC) and l-2-oxothiazolidine-4-carboxylate (OTC) reduce dystropathology in the mdx mouse model for DMD, and we propose this is via increased synthesis of the amino acid taurine. We compared the capacity of OTC and taurine treatment to increase taurine content of mdx muscle, as well as effects on in vivo and ex vivo muscle function, inflammation and oxidative stress. Both treatments increased taurine in muscles, and improved many aspects of muscle function and reduced inflammation. Taurine treatment also reduced protein thiol oxidation and was overall more effective, as OTC treatment reduced body and muscle weight, suggesting some adverse effects of this drug. These data suggest that increasing dietary taurine is a better candidate for a therapeutic intervention for DMD. Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease for which there is no widely available cure. Whilst the mechanism of loss of muscle function in DMD and the mdx mouse model are not fully understood, disruptions in intracellular calcium homeostasis, inflammation and oxidative stress are implicated. We have shown that protein thiol oxidation is increased in mdx muscle, and that the indirect thiol antioxidant l-2-oxothiazolidine-4-carboxylate (OTC), which increases cysteine availability, decreases pathology and increases in vivo strength. We propose that the protective effects of OTC are a consequence of conversion of cysteine to taurine, which has itself been shown to be beneficial to mdx pathology. This study compares the efficacy of taurine with OTC in decreasing dystropathology in mdx mice by measuring in vivo and ex vivo contractile function and measurements of inflammation and protein thiol oxidation. Increasing the taurine content of mdx muscle improved both in vivo and ex

  8. Altered Regulation of Hepatic Efflux Transporters Disrupts Acetaminophen Disposition in Pediatric Nonalcoholic Steatohepatitis

    OpenAIRE

    Canet, Mark J.; Merrell, Matthew D.; Hardwick, Rhiannon N.; Bataille, Amy M.; Campion, Sarah N; Ferreira, Daniel W.; Xanthakos, Stavra A.; Manautou, Jose E.; Hesham A-Kader, H.; Erickson, Robert P.; Cherrington, Nathan J

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, representing a spectrum of liver pathologies that include simple hepatic steatosis and the more advanced nonalcoholic steatohepatitis (NASH). The current study was conducted to determine whether pediatric NASH also results in altered disposition of acetaminophen (APAP) and its two primary metabolites, APAP-sulfate and APAP-glucuronide. Pediatric patients with hepatic steatosis (n = 9) or NASH (n = 3) and health...

  9. Stress- (and diet-) related regulation of hepatic nuclear receptors and its relevance for ABC-transporter functions.

    Science.gov (United States)

    Stienstra, Rinke; Lichtenauer-Kaligis, Elgin; Müller, Michael

    2004-05-01

    Nuclear receptors (NRs) play an important role in maintaining cellular homeostasis. With clearly established roles in fatty acid metabolism and inflammation, peroxisome proliferator activated receptors (PPARs) and other nuclear receptors are essential in liver functioning. However, much less is known about the regulation of NRs themselves during inflammatory processes in the liver. Interestingly PPARs and other NRs are negative acute phase proteins because they become rapidly downregulated during the acute phase response. However, PPARs have important roles in modulating inflammatory responses. One of the mechanisms by which dietary or inflammatory stress is relieved involves the hepatic adenosine triphosphate-binding cassette (ABC) transporter proteins, which import and export a wide variety of substrates. These ABC transporters are under close control of several NRs. Because NRs play important roles in fatty acid metabolism and inflammation as well as in the regulation of bile production, they are reviewed here with respect to their role in dietary and stress-related responses of the liver and their impact on the regulation and function of hepatic ABC transporters.

  10. Taurine concentrations in fetal, neonatal and pregnant rats.

    Directory of Open Access Journals (Sweden)

    Akahori,Shuichiro

    1986-04-01

    Full Text Available The concentrations of taurine in the fetal and neonatal organs, and the maternal organs, plasma and urine of rats between the 15th day of gestation and the 21st day after birth were determined using an automatic amino acid analyzer. In the fetal liver and brain and in the placenta, the taurine concentration was the highest of all ninhydrin positive compounds. In the fetal liver and placenta, the concentrations of taurine increased significantly with the gestational days. Concentrations of taurine in the brain were much higher in the fetus and neonate than that in the adult. Moreover, the total amount of taurine per fetus increased markedly after the 15th day of gestation, and near term, reached almost the same amount as in the adult rat liver. In contrast to this, a significant decrease was observed in the taurine concentration in the maternal liver and muscle near term. The concentration of taurine in the urine of pregnant rats decreased near term, but in the plasma of pregnant rats the concentration of taurine did not change during pregnancy.

  11. Effect of Taurine on The Respiratory System of Rats

    Directory of Open Access Journals (Sweden)

    Ammer E.M

    2013-08-01

    Full Text Available The present study was designed to investigate the effect of taurine on isolated trachea and pulmonary artery of rats and the possible mechanism(s of action. The possible antioxidant effect of taurine was also studied by measuring its protective effect against cyclophosphamide induced lung injuiry. Taurine produced a concentration dependent relaxation in the isolated tracheal strips and pulmonary arterial rings precontracted by serotonin (2x10-4 mM. The relaxing effect of taurine was not influenced by pretreatment with nitric oxide synthase inhibitor (L-NAME , cysteinyl leukotreines receptor 1 blocker (montelukast , H1 receptor blocker (chlorpheniramine , β-adrenoceptor blocker (propranolol, potassium channel blocker (amiodarone , cyclo-oxygenase inhibitor (indomethacin or muscarinic receptor blocker (atropine. Preincubation with adenosine receptor blocker (aminophylline significantly potentiated the relaxing effect of taurine in the tracheal strips and pulmonary arterial rings. Cyclophosphamide (CYP, 150 mg/kg administerated i.p. in a single dose was used to produce lung injuiry in rats. CYP caused marked increase in lung lipid peroxides (MDA and decrease in lung reduced glutathione (GSH. Administration of taurine (1% in drinking water starting 7 days before CYP and continuing throughout the duration of the experiment (24 hours improved significantly the lung GSH and MDA. It can be concluded that taurine relaxes precontracted rat tracheal strips and pulmonary arterial rings probably by direct effect on the smooth muscles. Also, the observed antioxidant activity of taurine which may contribute to its relaxant effect suggesting the usefulness of turine in pulmonary hypertension.

  12. Genome-enabled analysis of the utilization of taurine as sole source of carbon or of nitrogen by Rhodobacter sphaeroides 2.4.1.

    Science.gov (United States)

    Denger, Karin; Smits, Theo H M; Cook, Alasdair M

    2006-11-01

    A degradative pathway for taurine (2-aminoethanesulfonate) in Rhodobacter sphaeroides 2.4.1 was proposed by Brüggemann et al. (2004) (Microbiology 150, 805-816) on the basis of a partial genome sequence. In the present study, R. sphaeroides 2.4.1 was found to grow exponentially with taurine as the sole source of carbon and energy for growth. When taurine was the sole source of nitrogen in succinate-salts medium, the taurine was rapidly degraded, and most of the organic nitrogen was excreted as the ammonium ion, which was then utilized for growth. Most of the enzymes involved in dissimilation, taurine dehydrogenase (TDH), sulfoacetaldehyde acetyltransferase (Xsc) and phosphate acetyltransferase (Pta), were found to be inducible, and evidence for transcription of the corresponding genes (tauXY, xsc and pta), as well as of tauKLM, encoding the postulated TRAP transporter for taurine, and of tauZ, encoding the sulfate exporter, was obtained by reverse-transcription PCR. An additional branch of the pathway, observed by Novak et al. (2004) (Microbiology 150, 1881-1891) in R. sphaeroides TAU3, involves taurine : pyruvate aminotransferase (Tpa) and a presumptive ABC transporter (NsbABC). No evidence for a significant role of this pathway, or of the corresponding alanine dehydrogenase (Ald), was obtained for R. sphaeroides 2.4.1. The anaplerotic pathway needed under these conditions in R. sphaeroides 2.4.1 seems to involve malyl-CoA lyase, which was synthesized inducibly, and not malate synthase (GlcB), whose presumed gene was not transcribed under these conditions.

  13. TAURINE REGULATION OF VOLTAGE-GATED CHANNELS IN RETINAL NEURONS

    Science.gov (United States)

    Rowan, Matthew JM; Bulley, Simon; Purpura, Lauren; Ripps, Harris; Shen, Wen

    2017-01-01

    Taurine activates not only Cl−-permeable ionotropic receptors, but also receptors that mediate metabotropic responses. The metabotropic property of taurine was revealed in electrophysiological recordings obtained after fully blocking Cl−-permeable receptors with an inhibitory “cocktail” consisting of picrotoxin, SR95531, and strychnine. We found that taurine’s metabotropic effects regulate voltage-gated channels in retinal neurons. After applying the inhibitory cocktail, taurine enhanced delayed outward rectifier K+ channels preferentially in Off-bipolar cells, and the effect was completely blocked by the specific PKC inhibitor, GF109203X. Additionally, taurine also acted through a metabotropic pathway to suppress both L- and N-type Ca2+ channels in retinal neurons, which were insensitive to the potent GABAB receptor inhibitor, CGP55845. This study reinforces our previous finding that taurine in physiological concentrations produces a multiplicity of metabotropic effects that precisely govern the integration of signals being transmitted from the retina to the brain. PMID:23392926

  14. Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects.

    Science.gov (United States)

    Kim, Chaekyun; Cha, Young-Nam

    2014-01-01

    Taurine is one of the most abundant non-essential amino acid in mammals and has many physiological functions in the nervous, cardiovascular, renal, endocrine, and immune systems. Upon inflammation, taurine undergoes halogenation in phagocytes and is converted to taurine chloramine (TauCl) and taurine bromamine. In the activated neutrophils, TauCl is produced by reaction with hypochlorite (HOCl) generated by the halide-dependent myeloperoxidase system. TauCl is released from activated neutrophils following their apoptosis and inhibits the production of inflammatory mediators such as, superoxide anion, nitric oxide, tumor necrosis factor-α, interleukins, and prostaglandins in inflammatory cells at inflammatory tissues. Furthermore, TauCl increases the expressions of antioxidant proteins, such as heme oxygenase 1, peroxiredoxin, thioredoxin, glutathione peroxidase, and catalase in macrophages. Thus, a central role of TauCl produced by activated neutrophils is to trigger the resolution of inflammation and protect macrophages and surrounding tissues from being damaged by cytotoxic reactive oxygen metabolites overproduced during inflammation. This is achieved by attenuating further production of proinflammatory cytokines and reactive oxygen metabolites and also by increasing the levels of antioxidant proteins that are able to scavenge and diminish the production of cytotoxic oxygen metabolites. These findings suggest that TauCl released from activated neutrophils may be involved in the recovery processes of cells affected by inflammatory oxidative stresses and thus TauCl could be used as a potential physiological agent to control pathogenic symptoms of chronic inflammatory diseases.

  15. Effect of fishmeal replacement by soy protein concentrate with taurine supplementation on growth performance, hematological and biochemical status, and liver histology of totoaba juveniles (Totoaba macdonaldi).

    Science.gov (United States)

    López, Lus M; Flores-Ibarra, Maricela; Bañuelos-Vargas, Isaura; Galaviz, Mario A; True, Conal D

    2015-08-01

    The effect of dietary inclusion of soy protein concentrate (SPC) and simultaneous supplementation with taurine on the growth, hematology, blood biochemistry, and liver histology of totoaba (Totoaba macdonaldi) juveniles was assessed. Four isoproteic and isolipidic diets were formulated containing either 30 or 60% of SPC (diets S30 and S60), supplemented or not with 1% of taurine (diets S30T and S60T). A fishmeal-based diet formulated for totoaba nutritional requirements, without SPC and taurine supplementation, was used as a reference diet. Triplicate groups of 32 totoaba juveniles (average body weight 7.5 ± 0.6 g) were fed these diets for 45 days. Results showed that growth performance in fish fed S30, S30T, and S60T was similar to fish fed the reference diet. Red blood cells and hematocrit in fish fed with supplemented taurine in both levels of SPC (S30T and S60T) were similar to the fish fed the RD; the addition of taurine improved the state of hydration of totoaba. Plasmatic hemoglobin in fish fed the lower SPC level was similar to fish fed the RD. The mean corpuscular hemoglobin concentration in fish fed S30T was similar to fish fed the RD, taurine supplementation prevented the development of hypochromic anemia in this group of fish. Plasmatic albumin in fish fed S30 was similar to fish fed the RD. Plasmatic total protein and globulin concentration increased and AL:GLB (albumin:globulin ratio) decreased in fish fed the SPC-based diets despite taurine supplementation. The protein profile showed that taurine supplementation did not prevent a possible inflammatory process (increased globulins, decreased AL:GLB) in juvenile totoaba fed both levels of SPC. Glucose concentration was similar in fish fed S30, S30T, and S60T. The histological hepatic index was highest in fish fed S60. These results suggest that with an appropriate nutritional level, taurine may play an important modulatory role in the hematology and blood biochemistry status in totoaba fed SPC

  16. Taurine activates GABAergic networks in the neocortex of immature mice

    Directory of Open Access Journals (Sweden)

    Bogdan Aurel Sava

    2014-02-01

    Full Text Available Although it has been suggested that taurine is the main endogenous neurotransmitter acting on glycine receptors, the implications of glycine receptor-mediated taurine actions on immature neocortical networks have not been addressed yet. To investigate the influence of taurine on the excitability of neuronal networks in the immature neocortex, we performed whole-cell patch-clamp recordings from visually identified pyramidal neurons and interneurons in coronal slices from C57Bl/6 and GAD67-GFP transgenic mice (postnatal days 2-4. In 46 % of the pyramidal neurons bath-application of taurine at concentrations ≥ 300 mM significantly enhanced the frequency of postsynaptic currents (PSCs by 744.3 ± 93.8 % (n = 120 cells. This taurine-induced increase of PSC frequency was abolished by 0.2 mM tetrodotoxine, 1 mM strychnine or 3 mM gabazine, but was unaffected by the glutamatergic antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX and (± R(--3-(2-carboxypiperazine-4-yl-propyl-1-phosphonic acid (CPP, suggesting that taurine specifically activates GABAergic network activity projecting to pyramidal neurons. Cell-attached recordings revealed that taurine enhanced the frequency of action potentials in pyramidal neurons, indicating an excitatory action of the GABAergic PSCs. In order to identify the presynaptic targets of taurine we demonstrate that bath application of taurine induced in GAD67-GFP labeled interneurons an inward current that is mainly mediated by glycine receptors and can generate action potentials in these cells. We conclude from these results that taurine can enhance network excitability in the immature neocortex by selectively activating GABAergic interneurons via interactions with glycine receptors.

  17. Expression of glutamine transporter isoforms in cerebral cortex of rats with chronic hepatic encephalopathy

    DEFF Research Database (Denmark)

    Leke, Renata; Escobar, Thayssa D.C.; Rama Rao, Kakulavarapu V.

    2015-01-01

    Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs due to acute and chronic liver diseases, the hallmark of which is the increased levels of ammonia and subsequent alterations in glutamine synthesis, i.e. conditions associated with the pathophysiology of HE. Under physiological...

  18. THE MODULATORY ROLE OF TAURINE IN RETINAL GANGLION CELLS

    Science.gov (United States)

    Jiang, Zheng; Bulley, Simon; Guzzone, Joseph; Ripps, Harris; Shen, Wen

    2017-01-01

    Taurine (2-aminoethylsuphonic acid) is present in nearly all animal tissues, and is the most abundant free amino acid in muscle, heart, CNS and retina. Although it is known to be a major cytoprotectant and essential for normal retinal development, its role in retinal neurotransmission and modulation is not well understood. We investigated the response of taurine in retinal ganglion cells, and its effect on synaptic transmission between ganglion cells and their pre-synaptic neurons. We find that taurine-elicited currents in ganglion cells could be fully blocked by both strychnine and SR95531, glycine and GABAA receptor antagonists, respectively. This suggests that taurine-activated receptors might share the antagonists with GABA and glycine receptors. The effect of taurine at micromolar concentrations can effectively suppress spontaneous vesicle release from the pre-synaptic neurons, but had limited effects on light-evoked synaptic signals in ganglion cells. We also describe a metabotropic effect of taurine in the suppression of light-evoked response in ganglion cells. Clearly, taurine acts in multiple ways to modulate synaptic signals in retinal output neurons, ganglion cells. PMID:23392924

  19. Biophysical insight into the anti-amyloidogenic behavior of taurine.

    Science.gov (United States)

    Chaturvedi, Sumit Kumar; Alam, Parvez; Khan, Javed Masood; Siddiqui, Mohd Khursheed; Kalaiarasan, Ponnusamy; Subbarao, Naidu; Ahmad, Zeeshan; Khan, Rizwan Hasan

    2015-09-01

    In this work, we investigated the inhibitory ability of taurine on the aggregation of Human serum albumin (HSA) and also examined how it controls the kinetic parameters of the aggregation process. We demonstrated the structural alterations in the HSA after binding to the taurine at 65 °C by exploiting various biophysical techniques. UV-vis spectroscopy was used to check the turbidometric changes in the protein. Thioflavin T fluorescence kinetics was subjected to explore kinetic parameters comparing the amyloid formation in the presence of varying concentration of taurine. Further, Congo red binding and ANS binding assays were performed to determine the inhibitory effect of taurine on HSA fibrillation process and surface hydrophobicity modifications occurring before and after the addition of taurine with protein, respectively. Far UV CD and Dynamic Light Scattering (DLS) confirmed that taurine stabilized the protein α-helical structure and formed complex with HSA which is further supported by differential scanning calorimetry (DSC). Moreover, microscopic imaging techniques were also done to analyze the morphology of aggregation formed. Taurine is also capable of altering the cytotoxicity of the proteinaceous aggregates. Molecular docking study also deciphered the possible residues involved in protein and drug interaction. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Interactions between taurine and ethanol in the central nervous system.

    Science.gov (United States)

    Olive, M F

    2002-01-01

    This purpose of this review will be to summarize the interactions between the endogenous amino acid taurine and ethyl alcohol (ethanol) in the central nervous system (CNS). Taurine is one of the most abundant amino acids in the CNS and plays an integral role in physiological processes such as osmoregulation, neuroprotection and neuromodulation. Both taurine and ethanol exert positive allosteric modulatory effects on neuronal ligand-gated chloride channels (i.e., GABA(A) and glycine receptors) as well as inhibitory effects on other ligand- and voltage-gated cation channels (i.e., NMDA and Ca(2+) channels). Behavioral evidence suggests that taurine can alter the locomotor stimulatory, sedating, and motivational effects of ethanol in a strongly dose-dependent manner. Microdialysis studies have revealed that ethanol elevates extracellular levels of taurine in numerous brain regions, although the functional consequences of this phenomenon are currently unknown. Finally, taurine and several related molecules including the homotaurine derivative acamprosate (calcium acetylhomotaurinate) can reduce ethanol self-administration and relapse to drinking in both animals and humans. Taken together, these data suggest that the endogenous taurine system may be an important modulator of effects of ethanol on the nervous system, and may represent a novel therapeutic avenue for the development of medications to treat alcohol abuse and alcoholism.

  1. Atrophic cardiac remodeling induced by taurine deficiency in Wistar rats.

    Directory of Open Access Journals (Sweden)

    Mariele Castilho Pansani

    Full Text Available INTRODUCTION: Micronutrient deficiency is observed in heart failure patients. Taurine, for example, represents 50% of total free amino acids in the heart, and in vivo studies have linked taurine deficiency with cardiomyopathy. METHODS: Thirty-four male Wistar rats (body weight = 100 g were weighed and randomly assigned to one of two groups: Control (C or taurine-deficient (T (-. Beta-alanine at a concentration of 3% was added to the animals' water to induce taurine deficiency in the T (- group. On day 30, the rats were individually submitted to echocardiography; morphometrical and histopathological evaluation and metalloproteinase activity, oxidative stress and inflammation evaluation were performed. Tissue samples were collected to determine the taurine concentration in the heart. RESULTS: Taurine deficiency led to decreases in: ventricular wall thickness, left ventricle dry weight, myocyte sectional area, left ventricle posterior wall thickness and ventricular geometry. With regard to heart function, the velocity of the A wave, the ratio between the E and A wave, the ejection fraction, fractional shortening and cardiac output values were decreased in T (- rats, suggesting abnormal diastolic and systolic function. Increased fibrosis, inflammation and increased activation of metalloproteinases were not observed. Oxidative stress was increased in deficient animals. CONCLUSIONS: These data suggest that taurine deficiency promotes structural and functional cardiac alterations with unique characteristics.

  2. Effects of periconceptional undernutrition on maternal taurine concentrations in sheep.

    Science.gov (United States)

    Thorstensen, Eric B; Derraik, José G B; Oliver, Mark H; Jaquiery, Anne L; Bloomfield, Frank H; Harding, Jane E

    2012-02-01

    Taurine has an important role in numerous physiological processes, including many aspects of fetal development such as development of the pancreas and brain, and requirements increase during pregnancy. Periconceptional undernutrition has long-term effects on pancreas and brain function of the offspring, but the effects on maternal taurine economy are unknown. We, therefore, studied the effects of different periods of periconceptional undernutrition on maternal plasma and urine taurine concentrations before and during pregnancy. Four groups of singleton-bearing ewes were studied (n 10-11): controls fed ad libitum, and groups undernourished from 60 d before until mating (PreC), from 2 d before mating until 30 d after mating (PostC) or from 60 d before until 30 d after mating (Pre+PostC). In PreC ewes, plasma taurine concentrations remained at control levels for the first 30 d, and then decreased through the remainder of undernutrition, but recovered by 30 d after mating; urinary taurine excretion was low at mating, but recovered similarly. In PostC ewes, plasma taurine concentrations recovered after 2 weeks despite ongoing undernutrition; urinary taurine excretion had recovered by 30 d after mating. Pre+PostC ewes followed the same pattern as PreC for the first 60 d, but plasma taurine concentrations and urinary excretion recovered slowly, and did not reach the control levels until 97 d. These data suggest that different periods of mild periconceptional undernutrition in sheep have different but substantial effects on maternal taurine homoeostasis. These effects may be one mechanism by which maternal periconceptional undernutrition alters development of the offspring with implications for adult health.

  3. Effect of Taurine on the antimicrobial efficiency of Gentamicin

    Directory of Open Access Journals (Sweden)

    Islambulchilar Mina

    2011-12-01

    Full Text Available Context: Gentamicin is mainly used in severe infections caused by gram-negatives. However toxicity including nephrotoxicity and ototoxicity is one of the most important complications of its treatment. The production of free radicals seems to be involved in gentamicin toxicity mechanism. Taurine, a major intracellular free β-amino acid, is known to be an endogenous antioxidant. So potentially the co-therapy of taurine and gentamicin would reduce the adverse effects of the antibiotic. Objectives: In this study, we wished to know the effect of taurine on the antibiotic capacity of gentamicin. methods: strains of P. aeruginosa, E. coli, S. aureus and S. epidermidis were used as test organisms. Minimum inhibitory concentrations of gentamicin in the presence and absence of taurine at quantities from 40 to 2 mg/L were determined using macro-dilution method. Results: MICs were determined in the various concentrations of taurine for bacterial indicators. The MIC values of gentamicin for P. aeruginosa, S. aureus and E. coli remained unchanged in the values of 2.5, 5 and 20 μg/ml respectively in the absence and presences of different concentrations of taurine. The bactericidal activity of gentamicin against S. epidermidis was increased by addition of taurine in the concentrations higher than 6 mg/L. Conclusion: According to our study the antibacterial activity of gentamicin against the indicator microorganisms were not interfere with taurine at selected concentrations. Further in vivo studies are needed to establish if a combination of gentamicin and taurine would have the same effect.

  4. Dilated cardiomyopathy in an American cocker spaniel with taurine deficiency.

    Science.gov (United States)

    Gavaghan, B J; Kittleson, M D

    1997-12-01

    An American Cocker Spaniel with low plasma taurine concentration (taurine. Improvement in all echocardiographic indices were noted over a 22 week follow-up, most notably an increase in left ventricular shortening fraction to 20%, a decrease of E-point septal separation from 14 mm to 7 mm and marked left ventricular remodelling. This degree of improvement in myocardial function may represent a direct link between dilated cardiomyopathy in the American Cocker Spaniel and plasma taurine deficiency. Alternatively, this response may reflect a breed-related cardiomyopathy with a natural history and therapeutic response not commonly seen in the more common large breed cardiomyopathy presentations.

  5. Complex Kinetics in the Reaction of Taurine with Aqueous Bromine ...

    African Journals Online (AJOL)

    Complex Kinetics in the Reaction of Taurine with Aqueous Bromine and Acidic Bromate : A Possible Cytoprotective Role against Hypobromous Acid. ... toxicity of bromine and hypobromous acid in the slightly basic physiological environments.

  6. Two distinct modes of hypoosmotic medium-induced release of excitatory amino acids and taurine in the rat brain in vivo.

    Directory of Open Access Journals (Sweden)

    Renée E Haskew-Layton

    Full Text Available A variety of physiological and pathological factors induce cellular swelling in the brain. Changes in cell volume activate several types of ion channels, which mediate the release of inorganic and organic osmolytes and allow for compensatory cell volume decrease. Volume-regulated anion channels (VRAC are thought to be responsible for the release of some of organic osmolytes, including the excitatory neurotransmitters glutamate and aspartate. In the present study, we compared the in vivo properties of the swelling-activated release of glutamate, aspartate, and another major brain osmolyte taurine. Cell swelling was induced by perfusion of hypoosmotic (low [NaCl] medium via a microdialysis probe placed in the rat cortex. The hypoosmotic medium produced several-fold increases in the extracellular levels of glutamate, aspartate and taurine. However, the release of the excitatory amino acids differed from the release of taurine in several respects including: (i kinetic properties, (ii sensitivity to isoosmotic changes in [NaCl], and (iii sensitivity to hydrogen peroxide, which is known to modulate VRAC. Consistent with the involvement of VRAC, hypoosmotic medium-induced release of the excitatory amino acids was inhibited by the anion channel blocker DNDS, but not by the glutamate transporter inhibitor TBOA or Cd2+, which inhibits exocytosis. In order to elucidate the mechanisms contributing to taurine release, we studied its release properties in cultured astrocytes and cortical synaptosomes. Similarities between the results obtained in vivo and in synaptosomes suggest that the swelling-activated release of taurine in vivo may be of neuronal origin. Taken together, our findings indicate that different transport mechanisms and/or distinct cellular sources mediate hypoosmotic medium-induced release of the excitatory amino acids and taurine in vivo.

  7. Separation methods for taurine analysis in biological samples.

    Science.gov (United States)

    Mou, Shifen; Ding, Xiaojing; Liu, Yongjian

    2002-12-05

    Taurine plays an important role in a variety of physiological functions, pharmacological actions and pathological conditions. Many methods for taurine analysis, therefore, have been reported to monitor its levels in biological samples. This review discusses the following techniques: sample preparation; separation and determination methods including high-performance liquid chromatography, gas chromatography, ion chromatography, capillary electrophoresis and hyphenation procedures. It covers articles published between 1990 and 2001.

  8. Taurine Provides Neuroprotection against Retinal Ganglion Cell Degeneration

    OpenAIRE

    Nicolas Froger; Lucia Cadetti; Henri Lorach; Joao Martins; Alexis-Pierre Bemelmans; Elisabeth Dubus; Julie Degardin; Dorothée Pain; Valérie Forster; Laurent Chicaud; Ivana Ivkovic; Manuel Simonutti; Stéphane Fouquet; Firas Jammoul; Thierry Léveillard

    2012-01-01

    Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential for the survival of photoreceptors, but this dependence was not related to any retinal disease. More recently, taurine deprivation was inc...

  9. Comparison of the developmental changes of the brainstem auditory evoked response (BAER) in taurine-supplemented and taurine-deficient kittens.

    Science.gov (United States)

    Vallecalle-Sandoval, M H; Heaney, G; Sersen, E; Sturman, J A

    1991-01-01

    A similar development of the brainstem auditory evoked response is present in taurine-supplemented and taurine-deficient kittens between the second postnatal week and the third month of life. Between birth and the second postnatal week kittens from mothers fed the 1% taurine diet showed earlier maturation of the brainstem auditory evoked response as indicated by lower threshold, shorter P1 latency and shorter central conduction time when compared to the kittens from mothers fed the 0.05% taurine diet. These results suggest an important role of taurine in the anatomical and functional development of the auditory system.

  10. Protective effects of taurine against closed head injury in rats.

    Science.gov (United States)

    Sun, Ming; Zhao, Yumei; Gu, Yi; Zhang, Yazhuo

    2015-01-01

    Taurine, an abundant amino acid in the nervous system, is reported to reduce ischemic brain injury in a dose-dependent manner. This study was designed to investigate whether taurine protected the brain against closed head injury (CHI) in rats. Taurine was administered intravenously 30 min after CHI. It was found that taurine lessened body-weight loss and improved neurological functions at 7 days after CHI. Moreover, it lowered brain edema and blood-brain barrier permeability, enhanced activity of superoxide dismutase and the level of glutathione, and reduced levels of malondialdehyde and lactic acid in traumatic tissue 24 h after CHI. In addition, it attenuated neuronal cell death in hippocampal CA1 and CA3 subfields 7 days after CHI. All of these effects were dose dependent. These data demonstrated the dose-dependent protection of taurine against experimental CHI and suggest that taurine treatment might be beneficial in reducing trauma-induced oxidative damage to the brain, thus showing the potential for clinical implications.

  11. Effects of taurine on gut microbiota and metabolism in mice.

    Science.gov (United States)

    Yu, Haining; Guo, Zhengzhao; Shen, Shengrong; Shan, Weiguang

    2016-07-01

    As being a necessary amino acid, taurine plays an important role in the regulation of neuroendocrine functions and nutrition. In this study, effects of taurine on mice gut microbes and metabolism were investigated. BALB/C mice were randomly divided into three experimental groups: The first group was administered saline (CK), the second was administered 165 mg/kg natural taurine (NE) and the third one administered 165 mg/kg synthetic taurine (CS). Gut microbiota composition in mice feces was analyzed by metagenomics technology, and the content of short-chain fatty acids (SCFA) in mice feces was detected by gas chromatography (GC), while the concentrations of lipopolysaccharide (LPS) and superoxide dismutase (SOD) were detected by a LPS ELISA kit and a SOD assay kit, respectively. The results showed that the effect of taurine on gut microbiota could reduce the abundance of Proteobacteria, especially Helicobacter. Moreover, we found that the SCFA content was increased in feces of the NE group while LPS content was decreased in serum of the NE group; the SOD activity in serum and livers of the NE and CS groups were not changed significantly compare to that of the CK group. In conclusion, taurine could regulate the gut micro-ecology, which might be of benefit to health by inhibiting the growth of harmful bacteria, accelerating the production of SCFA and reducing LPS concentration.

  12. Prolactin increases hepatic Na+/taurocholate co-transport activity and messenger RNA post partum.

    Science.gov (United States)

    Ganguly, T C; Liu, Y; Hyde, J F; Hagenbuch, B; Meier, P J; Vore, M

    1994-01-01

    We have shown that Na+/taurocholate co-transport activity is decreased in pregnancy, but rebounds post partum relative to non-pregnant controls, and that activity can be increased by treatment with ovine prolactin [Ganguly, Hyde and Vore (1993) J. Pharmacol. Exp. Ther. 267, 82-87]. To determine the basis for these effects, Na+/taurocholate co-transport was determined in purified basolateral liver plasma-membrane (bLPM) vesicles and compared with steady-state mRNA levels encoding the Na+/taurocholate-co-transporting polypeptide (Ntcp) in non-pregnant controls, pregnant rats (19-20 days pregnant), rats post partum (48 h post partum) and rats post partum treated with bromocriptine to inhibit prolactin secretion. Na+/taurocholate co-transport activity (nmol/5 s per mg of protein) in bLPM was decreased from 10.4 +/- 1.8 in non-pregnant controls to 7.9 +/- 0.6 in bLPM in pregnant rats, but rebounded to 17.5 +/- 1.3 post partum; treatment of rats post partum with bromocriptine to inhibit prolactin secretion decreased activity to 14.1 +/- 0.9. Northern and slot-blot analyses revealed similar changes in mRNA for Ntcp, so that a positive correlation was observed between Na+/taurocholate co-transport activity and Ntcp mRNA. Furthermore, treatment of ovariectomized rats with ovine prolactin increased Ntcp mRNA 10-fold compared with solvent-treated controls, consistent with the 2-fold increase in Vmax, for Na+/taurocholate co-transport in isolated hepatocytes. These data are the first to demonstrate endogenous physiological regulation by prolactin of Ntcp mRNA in parallel with Na+/taurocholate co-transport activity. Images Figure 2 PMID:7945260

  13. Minimal role of hepatic transporters in the hepatoprotection against LCA-induced intrahepatic cholestasis.

    Science.gov (United States)

    Beilke, Lisa D; Besselsen, David G; Cheng, Quiqiong; Kulkarni, Supriya; Slitt, Angela L; Cherrington, Nathan J

    2008-03-01

    The multidrug resistance-associated proteins (Mrps) are a family of adenosine triphosphate-dependent transporters that facilitate the movement of various compounds, including bile acids, out of hepatocytes. The current study was conducted to determine whether induction of these transporters alters bile acid disposition as a means of hepatoprotection during bile acid-induced cholestasis. Lithocholic acid (LCA) was used to induce intrahepatic cholestasis. C57BL/6 mice were pretreated with corn oil (CO) or known transporter inducers, phenobarbital (PB), oltipraz (OPZ), or TCPOBOP (TC) for 3 days prior to cotreatment with LCA and inducer for 4 days. Histopathology revealed that PB and TC pretreatments provide a protective effect from LCA-induced toxicity, whereas OPZ pretreatment did not. Both PB/LCA and TC/LCA cotreatment groups also had significantly lower alanine aminotransferase values than the LCA-only group. In TC/LCA cotreated mice compared with LCA only, messenger RNA (mRNA) expression of uptake transporters Ntcp and Oatp4 was significantly increased, as were sinusoidal efflux transporters Mrp3 and Mrp4. Although in PB/LCA cotreated mice, the only significant change compared with LCA-only treatment was an increase in uptake transporter Oatp4. Oatp1 was reduced in all groups compared with CO controls. No significant changes in mRNA expression were observed in Oatp2, Bsep, Mrp2, Bcrp, Mrp1, Mrp5, or Mrp6. Mrp4 protein expression was induced in the OPZ/LCA and TC/LCA cotreated groups, whereas Mrp3 protein levels remained unchanged between groups. Protein expression of Mrp1 and Mrp5 was increased in the unprotected LCA-only and OPZ/LCA mice. Thus, transporter expression did not correlate with histologic hepatoprotection, however, there was a correlation between hepatoprotection and significantly reduced total liver bile acids in the PB/LCA and TC/LCA cotreated mice compared with LCA only. In conclusion, changes in transporter expression did not correlate with

  14. Taurine inhibits ischemia/reperfusion-induced compartment syndrome in rabbits

    Institute of Scientific and Technical Information of China (English)

    Ji-xian WANG; Yan LI; Li-ke ZHANG; Jing ZHAO; Yong-zheng PANG; Chao-shu TANG; Jing ZHANG

    2005-01-01

    Aim: To investigate effects of taurine on ischemia/reperfusion (I/R)-induced compartment syndrome in rabbit hind limbs.Methods: Rabbits underwent femoral artery occ lusion after ligation of branches from terminal aorta to femoral artery.After a 7-h ischemia, reperfusion was established with the use of heparinized by iv infusion 10 min before shunt placement.During reperfusion, anterior compartment pressure (ACP) was monitored continuously in the left lower extremity.Gastrocnemius muscle triphenyltetrazolium chloride (TTC) level, taurine content and myeloperoxidase activity were assayed.Oxidative stress was induced in the in vitro gastrocnemius muscle slices by free radical generating systems (FRGS),and the malondialdehyde content was measured in presence or absence of taurine.Results: After 7 h of ischemia, none of the parameters that we measured were different from those before ischemia, except that TTC reduction decreased by 80%.In the control group, after 2 h of reperfusion, ACP increased 4.5-fold, and gastrocnemius muscle taurine content was reduced by 33%.In taurine-treated animals, at 2 h reperfusion, the mean arterial blood pressure and heart rate were increased, by 6% and 10%.ACP decreased by 39%, muscle edema decreased by 16%, TTC reduction increased by 150%, and lactate dehydrogenase decreased by 36% compared to control group.Plasma and muscle taurine content increased by 70% and 88%, respectively.In the taurine-treated group, at 2 h reperfusion, plasma malondialdehyde and conjugated diene content were decreased by 38% and 23%,respectively, and muscle malondialdehyde and conjugated diene content decreased by 22% and 30%, respectively compared to the control group.At 2 h reperfusion,myeloperoxidase activity was increased 3.5-fold in control animals.In the in vitro study, taurine decreased malondialdehyde content in muscle slices incubated with hypochlorous acid in a dose-dependent manner, but there was no change when incubated with hydrogen peroxide and

  15. Effect of supplemental taurine on juvenile channel catfish Ictalurus punctatus growth

    Science.gov (United States)

    Taurine is a beta-amino sulfur amino acid found in most animal tissues. It has many important biological functions in mammals including membrane stabilization, antioxidation, cellular osmoregulation, detoxification, neuromodulation, and brain and eye development. Taurine supplementation in juvenil...

  16. Functions of Maternally-Derived Taurine in Fetal and Neonatal Brain Development.

    Science.gov (United States)

    Tochitani, Shiro

    2017-01-01

    Taurine (2-aminoethanesulfonic acid) is a sulfur-containing organic acid, which has various physiological functions, including membrane stabilization, cell-volume regulation, mitochondrial protein translocation, anti-oxidative activity, neuroprotection against neurotoxicity and modulation of intracellular calcium levels. Taurine also activates GABAA receptors and glycine receptors. Mammalian fetuses and infants are dependent on taurine delivered from their mothers via either the placenta or their mother's milk. Taurine is a molecule that links mother-fetus or mother-infant bonding.This review describes the functions of taurine and the mechanisms of action of taurine in fetal and brain development. Taurine is involved in regulating the proliferation of neural progenitors, migration of newly-generated neurons, and the synapse formation of neurons after migration during fetal and neonatal development. In this review, we also discuss the environmental factors that might influence the functional roles of taurine in neural development.

  17. Two different conformations in hepatitis C virus p7 protein account for proton transport and dye release.

    Science.gov (United States)

    Gan, Siok Wan; Surya, Wahyu; Vararattanavech, Ardcharaporn; Torres, Jaume

    2014-01-01

    The p7 protein from the hepatitis C virus (HCV) is a 63 amino acid long polypeptide that is essential for replication, and is involved in protein trafficking and proton transport. Therefore, p7 is a possible target for antivirals. The consensus model for the channel formed by p7 protein is a hexameric or heptameric oligomer of α-helical hairpin monomers, each having two transmembrane domains, TM1 and TM2, where the N-terminal TM1 would face the lumen of this channel. A reported high-throughput functional assay to search for p7 channel inhibitors is based on carboxyfluorescein (CF) release from liposomes after p7 addition. However, the rationale for the dual ability of p7 to serve as an ion or proton channel in the infected cell, and to permeabilize membranes to large molecules like CF is not clear. We have recreated both activities in vitro, examining the conformation present in these assays using infrared spectroscopy. Our results indicate that an α-helical form of p7, which can transport protons, is not able to elicit CF release. In contrast, membrane permeabilization to CF is observed when p7 contains a high percentage of β-structure, or when using a C-terminal fragment of p7, encompassing TM2. We propose that the reported inhibitory effect of some small compounds, e.g., rimantadine, on both CF release and proton transport can be explained via binding to the membrane-inserted C-terminal half of p7, increasing its rigidity, in a similar way to the influenza A M2-rimantadine interaction.

  18. Taurine Regulates Mitochondrial Function During 7,12-Dimethyl Benz[a]anthracene Induced Experimental Mammary Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Manickam Kalappan Vanitha

    2015-09-01

    Full Text Available Objectives: The present study was undertaken to determine the modulatory effect of taurine on the liver mitochondrial enzyme system with reference to mitochondrial lipid peroxidation (LPO, antioxidants, major tricarboxylic acid cycle enzymes, and electron transport chain enzymes during 7,12-dimethyl benz[a]anthracene (DMBA induced breast cancer in Sprague-Dawley rats. Methods: Animals in which breast cancer had been induced by using DMBA (25 mg/kg body weight showed an increase in mitochondrial LPO together with decreases in enzymic antioxidants (superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione reductase (GR and glutathione-S-transferase (GST, non-enzymic antioxidants (reduced glutathione (GSH, vitamin C, and vitamin E, in citric acid cycle enzymes (isocitrate dehydrogenase (ICDH, alpha ketoglutarate dehydrogenase (alpha KDH, succinate dehydrogenase (SDH and malate dehydrogenase (MDH, and in electron transport chain (ETC complexes. Results: Taurine (100 mg/kg body weight treatment decreased liver mitochondrial LPO and augmented the activities/levels of enzymic, and non-enzymic antioxidants, tricarboxylic acid cycle enzymes and ETC complexes. Conclusion: The results of our present study demonstrated the chemotherapeutic efficacy of taurine treatment for DMBA-induced breast carcinomas.

  19. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin

    NARCIS (Netherlands)

    Wang, DS; Jonker, JW; Kato, Y; Kusuhara, H; Schinkel, AH; Sugiyama, Y

    2002-01-01

    Metformin, a biguanide, is widely used as an oral hypoglycemic agent for the treatment of type 2 diabetes mellitus. The purpose of the present study was to investigate the role of organic cation transporter 1 (Oct1) in the disposition of metformin. Transfection of rat Oct1 cDNA results in the time-d

  20. Differential effects of streptozotocin-induced diabetes on expression of hepatic ABC-transporters in rats

    NARCIS (Netherlands)

    van Waarde, Willie M.; Verkade, Henkjan J.; Wolters, Henk; Havinga, Rick; Baller, Juul; Bloks, Vincent; Muller, Michael; Sauer, Pieter J.J.; Kuipers, F

    Background & Aims: Diabetes mellitus Is associated with changes In bile formation. The aim of our study was to investigate the molecular basis for these changes In rats with experimentally Induced diabetes. Methods: Expression of bile canalicular transporters was studied by reverse-transcription

  1. [Plasma taurine levels in patients with esophagus cancer].

    Science.gov (United States)

    Lamônica-Garcia, Vânia Cristina; Marin, Flávia Andréa; Lerco, Mauro Masson; Moreto, Fernando; Henry, Maria Aparecida Coelho Arruda; Burini, Roberto Carlos

    2008-01-01

    The esophagus cancer-host has a two way close relationship as seen in its sulphur-amino acid metabolism. Taurine one of these compounds has ubiquous role in host defense and other physiological mechanisms related to survival. To study the plasma levels of taurine and its precursors in patients with esophagus cancer. In a sectional design both groups, patients (n = 16, 43-73 yrs old) and healthy controls (n = 20, 27-65 yrs old) were assessed for anthropometry, body-weight lost, hematology (Hb, Ht, total leukocytes and lymphocyte counts), general biochemistry (albumin, glucose, lipids and aminotransferases) and chromatographic analysis for taurine, cysteine, and homocysteine. The survival time was registered there since from the clinical-histopathological diagnosis. All participants had a written ethical consent for the research. The cancer patients were predominantly, white males of low social economic class, with spinocellular carcinoma stage IV located at upper 3rd half of them presented hypoalbuminemia and 16% referred significant body-weight loss. The patients showed statistically lower values of Hb, Ht, total and HDL cholesterol and cysteine and significantly higher values of taurine, homocysteine and aminotransferases than healthy controls. A positive relationship was found between taurine and either TLC (r = 0.50) and survival (r = 0.81). Lower plasma cysteine along with higher levels of taurine and homocysteine and the positive direct association of taurine with indications of survival suggest an effective role of this compound and therefore a prospective special nutritional care in its precursors (cysteine, methionine and B vitamins) of these patients.

  2. Involvement of Nuclear Factor κB, not Pregnane X Receptor, in Inflammation-Mediated Regulation of Hepatic Transporters.

    Science.gov (United States)

    Abualsunun, Walaa A; Piquette-Miller, Micheline

    2017-10-01

    Endotoxin-induced inflammation decreases the hepatic expression of several drug transporters, metabolizing enzymes, and nuclear transcription factors, including pregnane X receptor (PXR). As the nuclear factor κB (NF-κB) is a major mediator of inflammation, and reciprocal repression between NF-κB and PXR signaling has been reported, the objective of this study was to examine whether NF-κB directly regulates the expression of transporters or exerts its effect indirectly via PXR. PXR-deficient (-/-) or wild-type (+/+) male mice were dosed with the selective NF-κB inhibitor PHA408 (40 mg/kg i.p.) or vehicle (n = 5-8/group), followed by endotoxin (5 mg/kg) or saline 30 minutes later. Animals were sacrificed at 6 hours; samples were analyzed using quantitative reverse-transcription polymerase chain reaction and Western blots. Endotoxin induced tumor necrosis factor-α, interleukin (IL)-6, IL-1β, and inducible nitric oxide synthase in PXR (+/+) and (-/-) mice. As compared with saline controls, endotoxin administration imposed 30%-70% significant decreases in the expression of Abcb1a, Abcb11, Abcc2, Abcc3, Abcg2, Slc10a1, Slco2b1, and Slco1a4 in PXR (+/+) and (-/-) mice to a similar extent. Preadministration of PHA408 attenuated endotoxin-mediated changes in both PXR (+/+) and (-/-) mice (P < 0.05). Our findings demonstrate that endotoxin activates NF-κB and imposes a downregulation of numerous ATP-binding cassette and solute carrier transporters through NF-κB in liver and is independent of PXR. Moreover, inhibition of NF-κB attenuates the impact of endotoxin on transporter expression. As NF-κB activation is involved in many acute and chronic disease states, disease-induced changes in transporter function may be an important source of variability in drug response. This information may be useful in predicting potential drug-disease interactions. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Effects of taurine on anxiety-like and locomotor behavior of mice.

    Science.gov (United States)

    El Idrissi, Abdeslem; Boukarrou, Latifa; Heany, Wally; Malliaros, George; Sangdee, Chaichan; Neuwirth, Lorenz

    2009-01-01

    Taurine is one of the most abundant free amino acids especially in excitable tissues, with wide physiological actions. We have previously reported that chronic supplementation of taurine in drinking water to mice increases brain excitability, mainly through alterations in the inhibitory GABAergic system. In this study we investigated the effects of chronic versus acute taurine treatment on anxiety-like and locomotor behaviors using two behavioral tests: elevated plus-maze and open-field. These two test conditions generated different levels of anxiety, and both anxiolytic and anxiogenic effects of taurine could be assessed. We used two paradigms for taurine treatment: Acute injection versus chronic supplementation. In the open field test, taurine supplementation increased whereas taurine injection suppressed locomotor activity. We found that taurine supplementation induced an increase in the total distance traveled, the overall movement speed, the time the animals spent mobile, the number of line crossings, and the time the animals entered the center zone. In the elevated arm maze, taurine injection suppressed anxiety whereas taurine supplementation was anxiogenic. The major findings of this are two folds: First these results suggest that taurine might play a role in the modulation of anxiety and locomotor activity. Second, taurine when injected acutely had opposite effects than when administered chronically.

  4. Taurine attenuates radiation-induced lung fibrosis in C57/Bl6 fibrosis prone mice.

    LENUS (Irish Health Repository)

    Robb, W B

    2010-03-01

    The amino acid taurine has an established role in attenuating lung fibrosis secondary to bleomycin-induced injury. This study evaluates taurine\\'s effect on TGF-beta1 expression and the development of lung fibrosis after single-dose thoracic radiotherapy.

  5. Hepatitis C

    Science.gov (United States)

    ... Events Follow Us Home Health Information Liver Disease Hepatitis (Viral) Hepatitis C Related Topics English English Español Section Navigation Hepatitis (Viral) What Is Viral Hepatitis? Hepatitis A Hepatitis B ...

  6. Is Taurine a Biomarker in Autistic Spectrum Disorder?

    Science.gov (United States)

    Park, Eunkyue; Cohen, Ira; Gonzalez, Maripaz; Castellano, Mario R; Flory, Michael; Jenkins, Edmund C; Brown, W Ted; Schuller-Levis, Georgia

    2017-01-01

    Taurine is a sulfur-containing amino acid which is not incorporated into protein. However, taurine has various critical physiological functions including development of the eye and brain, reproduction, osmoregulation, and immune functions including anti-inflammatory as well as anti-oxidant activity. The causes of autistic spectrum disorder (ASD) are not clear but a high heritability implicates an important role for genetic factors. Reports also implicate oxidative stress and inflammation in the etiology of ASD. Thus, taurine, a well-known antioxidant and regulator of inflammation, was investigated here using the sera from both girls and boys with ASD as well as their siblings and parents. Previous reports regarding taurine serum concentrations in ASD from various laboratories have been controversial. To address the potential role of taurine in ASD, we collected sera from 66 children with ASD (males: 45; females: 21, age 1.5-11.5 years, average age 5.2 ± 1.6) as well as their unaffected siblings (brothers: 24; sisters: 32, age 1.5-17 years, average age 7.0 ± 2.0) as controls of the children with ASD along with parents (fathers: 49; mothers: 54, age 28-45 years). The sera from normal adult controls (males: 47; females: 51, age 28-48 years) were used as controls for the parents. Taurine concentrations in all sera samples were measured using high performance liquid chromatography (HPLC) using a phenylisothiocyanate labeling technique. Taurine concentrations from female and male children with ASD were 123.8 ± 15.2 and 145.8 ± 8.1 μM, respectively, and those from their unaffected brothers and sisters were 142.6 ± 10.4 and 150.8 ± 8.4 μM, respectively. There was no significant difference in taurine concentration between autistic children and their unaffected siblings. Taurine concentrations in children with ASD were also not significantly different from their parents (mothers: 139.6 ± 7.7 μM, fathers: 147.4 ± 7.5 μM). No significant

  7. Endothelial progenitor cell mediates transport of hepatitis B virus into myocardial tissue

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Hepatitis B virus (HBV) replication has been reported to be involved in many extrahepatic viral disorders;however,the mechanism by which HBV is transinfected into extrahepatic tissues such as myocardium and causes HBV associated myocarditis remains largely unknown.Methods In this study,endothelial progenitor cells (EPCs) were infected by HBV and then transfused into ischemic model of mice.HBV surface and core antigen as well as mutation of HBV particles were detected by immunonistochemistry,fluorescent activated cell sorter and transmission electron microscopy in vitro and in vivo.Results Human cord blood EPCs, but not human umbilical vein endothelial cells (HUVECs) could be effectively infected by taking up HBV in vitro.HBV envelope surface and core antigen expressions were first detectable in EPCs at day 3 after virus challenge,sustained for up to 11 days,and decreased thereafter.Similarly,the virus particles were the most abundant in EPCs ln the first week observed by a transmission electron microscope,and declined in 3 weeks after HBV infection.HBV DNA but not HBV cccDNA in EPCs were detectable even 3 weeks after virus challenge,as shown by PCR analysis.Furthermore,intravenous transplantation of HBV-treated EPCs into myocardial infarction Sprague & Dawley rats model resulted in incorporation of both EPCs and HBV into injured endothelial tissues of capillaries in the ischemic border zone.Conclusions These results strongly support that EPCs serve as virus carrier mediating HBV trans-infection into the injured myocardial tissues.The findings might suggest a novel mechanism for HBV-associated myocarditis.

  8. Perinatal taurine exposure affects adult arterial pressure control

    Science.gov (United States)

    Roysommuti, Sanya; Wyss, J. Michael

    2012-01-01

    Taurine is an abundant free amino acid found in mammalian cells that contributes to many physiologic functions from that of a simple cell osmolyte to a programmer of adult health and disease. Taurine’s contribution extends from conception throughout life, but its most critical exposure period is during perinatal life. In adults, taurine supplementation prevents or alleviates cardiovascular disease and related complications. In contrast, low taurine consumption coincides with increased risk of cardiovascular disease, obesity and type II diabetes. This review focuses on the effects that altered perinatal taurine exposure has on long-term mechanisms that control adult arterial blood pressure and could thereby contribute to arterial hypertension through its ability to program these cardiovascular regulatory mechanisms very early in life. The modifications of these mechanisms can last a lifetime and transfer to the next generation, suggesting that epigenetic mechanisms underlie the changes. The ability of perinatal taurine exposure to influence arterial pressure control mechanisms and hypertension in adult life appears to involve the regulation of growth and development, the central and autonomic nervous system, the renin-angiotensin system, glucose-insulin interaction and changes to heart, blood vessels and kidney function. PMID:23070226

  9. Taurine deficiency and MELAS are closely related syndromes.

    Science.gov (United States)

    Schaffer, Stephen W; Jong, Chian Ju; Warner, Danielle; Ito, Takashi; Azuma, Junichi

    2013-01-01

    MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes) is a mitochondrial disease caused by one or more mutations of tRNA(Leu(UUR)). These mutations reduce both the aminoacylation of tRNA(Leu(UUR)) and a posttranslational modification in the wobble position of tRNA(Leu(UUR)). Both changes result in reduced transcription of mitochondria-encoded proteins; however, reduced aminoacylation affects the decoding of both UUG and UUA while the wobble defect specifically diminishes UUG decoding. Because 12 out of the 13 mitochondria-encoded proteins are more dependent on UUA decoding than UUG decoding, the aminoacylation defect should have a more profound effect on protein synthesis than the wobble defect, which more specifically alters the expression of one mitochondria-encoded protein, ND6. Taurine serves as a substrate in the formation of 5-taurinomethyluridine-tRNA(Leu(UUR)); therefore, taurine deficiency should mimic 5-taurinomethyluridine-tRNA(Leu(UUR)) deficiency. Hence, the wobble hypothesis predicts that the symptoms of MELAS mimic those of taurine deficiency, provided that the dominant defect in MELAS is wobble modification deficiency. On the other hand, if the aminoacylation defect dominates, significant differences should exist between taurine deficiency and MELAS. The present review tests this hypothesis by comparing the symptoms of MELAS and taurine deficiency.

  10. Effect of Taurine on Febrile Episodes in Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Mina Islambulchilar

    2015-03-01

    Full Text Available Purpose: The purpose of our study was to evaluate the effect of oral taurine on the incidence of febrile episodes during chemotherapy in young adults with acute lymphoblastic leukemia. Methods: Forty young adults with acute lymphoblastic leukemia, at the beginning of maintenance course of their chemotherapy, were eligible for this study. The study population was randomized in a double blind manner to receive either taurine or placebo (2 gram per day orally. Life quality and side effects including febrile episodes were assessed using questionnaire. Data were analyzed using Pearson’s Chi square test. Results: Of total forty participants, 43.8% were female and 56.3 % were male. The mean age was 19.16±1.95 years (ranges: 16-23 years. The results indicated that the levels of white blood cells are significantly (P<0.05 increased in taurine treated group. There was no elevation in blasts count. A total of 70 febrile episodes were observed during study, febrile episodes were significantly (P<0.05 lower in taurine patients in comparison to the control ones. Conclusion: The overall incidence of febrile episodes and infectious complications in acute lymphoblastic leukemia patients receiving taurine was lower than placebo group. Taurine’s ability to increase leukocyte count may result in lower febrile episodes.

  11. Serum serotonin reduced the expression of hepatic transporter Mrp2 and P-gp via regulating nuclear receptor CAR in PI-IBS rats.

    Science.gov (United States)

    Shao, Yun-Yun; Huang, Jing; Ma, Yan-Rong; Han, Miao; Ma, Kang; Qin, Hong-Yan; Rao, Zhi; Wu, Xin-An

    2015-08-01

    Hepatic transporters and drug metabolizing enzymes (DMEs) play important roles in the pharmacological effects and (or) side-effects of many drugs, and are regulated by several mediators, including neurotransmitters. This work aimed to investigate whether serum levels of 5-hydroxytryptamine (5-HT) affected the expression of hepatic transporters or DMEs. The expression of hepatic transporters was assessed using the Western-blot technique in a 2,4,6-trinitrobenzenesulfonic-acid-induced rat model of post-infectious irritable bowel syndrome (PI-IBS), in which serum levels of 5-HT were significantly elevated. To further clarify the underlying mechanism, the 5-HT precursor 5-hydroxytryptophan (5-HTP) and the 5-HT depleting agent parachlorophenylalanine (pCPA) were applied to adjust serum levels of 5-HT. Serum levels of 5-HT were measured using LC-MS/MS; the expression of hepatic transporters, DMEs, and nuclear receptors were examined by Western-blot technique. Our results showed that in PI-IBS rats the expression of multidrug resistance protein 2 (Mrp2) was significantly decreased, while colonic enterochromaffin cell density and serum levels of 5-HT were all significantly increased. Moreover, 5-HTP treatment significantly increased serum levels of 5-HT and decreased the expression of Mrp2 and glycoprotein P (P-gp), whereas treatment with pCPA markedly decreased serum levels of 5-HT and increased the expression of Mrp2 and P-gp. Our results indicated that serum 5-HT regulates the expression of Mrp2 and P-gp, and the underlying mechanism may be related to the altered expression of the nuclear receptor constitutive androstane receptor (CAR).

  12. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia.

    Directory of Open Access Journals (Sweden)

    Tolunay Beker Aydemir

    Full Text Available ZIP14 (slc39A14 is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia of acute inflammation. ZIP14 can transport Zn(2+ and non-transferrin-bound Fe(2+ in vitro. Using a Zip14(-/- mouse model we demonstrated that ZIP14 was essential for control of phosphatase PTP1B activity and phosphorylation of c-Met during liver regeneration. In the current studies, a global screening of ZIP transporter gene expression in response to LPS-induced endotoxemia was conducted. Following LPS, Zip14 was the most highly up-regulated Zip transcript in liver, but also in white adipose tissue and muscle. Using ZIP14(-/- mice we show that ZIP14 contributes to zinc absorption from the gastrointestinal tract directly or indirectly as zinc absorption was decreased in the KOs. In contrast, Zip14(-/- mice absorbed more iron. The Zip14 KO mice did not exhibit hypozincemia following LPS, but do have hypoferremia. Livers of Zip14-/- mice had increased transcript abundance for hepcidin, divalent metal transporter-1, ferritin and transferrin receptor-1 and greater accumulation of iron. The Zip14(-/- phenotype included greater body fat, hypoglycemia and higher insulin levels, as well as increased liver glucose and greater phosphorylation of the insulin receptor and increased GLUT2, SREBP-1c and FASN expression. The Zip14 KO mice exhibited decreased circulating IL-6 with increased hepatic SOCS-3 following LPS, suggesting SOCS-3 inhibited insulin signaling which produced the hypoglycemia in this genotype. The results are consistent with ZIP14 ablation yielding abnormal labile zinc pools which lead to increased SOCS-3 production through G-coupled receptor activation and increased cAMP production as well as signaled by increased pSTAT3 via the IL-6 receptor, which inhibits IRS 1/2 phosphorylation. Our data show the role of ZIP14 in the hepatocyte is multi-functional since zinc and iron trafficking are

  13. Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters.

    Directory of Open Access Journals (Sweden)

    Yu-Kun Jennifer Zhang

    Full Text Available BACKGROUND: Diurnal fluctuation of bile acid (BA concentrations in the enterohepatic system of mammals has been known for a long time. Recently, BAs have been recognized as signaling molecules beyond their well-established roles in dietary lipid absorption and cholesterol homeostasis. METHODS AND RESULTS: The current study depicted diurnal variations of individual BAs detected by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS in serum and livers collected from C57BL/6 mice fed a regular chow or a chow containing cholestyramine (resin. Circadian rhythms of mRNA of vital BA-related nuclear receptors, enzymes, and transporters in livers and ilea were determined in control- and resin-fed mice, as well as in farnesoid X receptor (FXR null mice. The circadian profiles of BAs showed enhanced bacterial dehydroxylation during the fasting phase and efficient hepatic reconjugation of BAs in the fed phase. The resin removed more than 90% of BAs with β-hydroxy groups, such as muricholic acids and ursodeoxycholic acid, from serum and livers, but did not exert as significant influence on CA and CDCA in both compartments. Both resin-fed and FXR-null mouse models indicate that BAs regulate their own biosynthesis through the FXR-regulated ileal fibroblast growth factor 15. BA flux also influences the daily mRNA levels of multiple BA transporters. CONCLUSION: BA concentration and composition exhibit circadian variations in mouse liver and serum, which influences the circadian rhythms of BA metabolizing genes in liver and ileum. The diurnal variations of BAs appear to serve as a signal that coordinates daily nutrient metabolism in mammals.

  14. Genetic variations of bile salt transporters as predisposing factors for drug-induced cholestasis, intrahepatic cholestasis of pregnancy and therapeutic response of viral hepatitis.

    Science.gov (United States)

    Stieger, Bruno; Geier, Andreas

    2011-04-01

    Drug-induced cholestasis, intrahepatic cholestasis of pregnancy and viral hepatitis are acquired forms of liver disease. Cholestasis is a pathophysiologic state with impaired bile formation and subsequent accumulation of bile salts in hepatocytes. The bile salt export pump (BSEP) (ABCB11) is the key export system for bile salts from hepatocytes. This article provides an introduction into the physiology of bile formation followed by a summary of the current knowledge on the key bile salt transporters, namely, the sodium-taurocholate co-transporting polypeptide NTCP, the organic anion transporting polypeptides (OATPs), BSEP and the multi-drug resistance protein 3. The pathophysiologic consequences of altered functions of these transporters, with an emphasis on molecular and genetic aspects, are then discussed. Knowledge of the role of hepatocellullar transporters, especially BSEP, in acquired cholestasis is continuously increasing. A common variant of BSEP (p.V444A) is now a well-established susceptibility factor for acquired cholestasis and recent evidence suggests that the same variant also influences the therapeutic response and disease progression of viral hepatitis C. Studies in large independent cohorts are now needed to confirm the relevance of p.V444A. Genome-wide association studies should lead to the identification of additional genetic factors underlying cholestatic liver disease.

  15. The effect of subacute supplementation of taurine on spatial learning and memory.

    Science.gov (United States)

    Ito, Koichi; Arko, Matevz; Kawaguchi, Tomohiro; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2009-04-01

    Although the effect of taurine on the heart and liver is well studied, there has been no direct observation concerning the effect of taurine on spatial learning and memory at the behavior level. In this study, we tested the effect of subacute taurine supplementation with evaluation by the Morris water maze method. Although swim distance to find the platform of taurine-supplemented rats was significantly longer than that of control rats due to increase of swimming velocity, escape latency and the efficacy of learning and memory was comparable in both groups. These results suggest that taurine supplemented orally does not affect the learning and memory function.

  16. Changes in plasma taurine levels after different endurance events.

    Science.gov (United States)

    Ward, R J; Francaux, M; Cuisinier, C; Sturbois, X; De Witte, P

    1999-01-01

    The sulphonated amino acid taurine increased significantly in the plasma of trained athletes after three endurance exercises of different duration and intensity, a 90 min run on a treadmill at 75% of an individual's VO2 peak, a Marathon, 42.2 km and a 100 km run, by 19%, 77% and 36%, respectively. Such results indicated that the speed at which the exercise is performed, referred to as the intensity, rather than the duration of the exercise, correlated with the elevated taurine levels possibly indicating its release from muscle fibres. The plasma amino acid pool decreased significantly in relationship with the duration of the exercise, caused by their utilisation for glucogenesis. The possible sources of the increased plasma taurine are discussed.

  17. Taurine increases testicular function in aged rats by inhibiting oxidative stress and apoptosis.

    Science.gov (United States)

    Yang, Jiancheng; Zong, Xiaomeng; Wu, Gaofeng; Lin, Shumei; Feng, Ying; Hu, Jianmin

    2015-08-01

    In males, the decline of androgen synthesis, spermatogenesis and sexual function are the main phenotypes of aging, which may be attributed to testicular dysfunction. Taurine can act as an antioxidant, a testosterone secretion stimulator, a sperm membrane stabilizer and motility factor, and an anti-apoptotic agent. Recent observational studies suggested that taurine may play an important role in spermatogenesis, but to date whether taurine has anti-aging effects on testes remains unknown. We found that in aged rats testicular SDH and G6PDH activities, marker enzymes of testes, serum testosterone, testicular 3β-HSD and 17β-HSD mRNA expression levels were significantly increased by taurine treatment. Taurine administration also markedly raised the sperm count, viability and motility, decreased the sperm abnormality. Our data suggested that taurine can postpone testicular function deterioration in aged rats. Importantly, we observed obvious elevation of testicular antioxidant enzymes (SOD, GSH, GSH-Px) activities, and remarkable reduction of ROS and MDA by taurine administration, indicating taurine can decrease testicular oxidative stress and lipid peroxidation in aged rats. Finally, we found taurine effectively reduced testicular DNA fragmentation, increased testicular Bcl-2 protein expression, and decreased cytochrome c, Bax, Fas, FasL and caspase-3 expression, suggesting taurine can prohibit aged testicular apoptosis by mitochondrial dependent and independent signal pathway. In summary, our results indicated that taurine can suppress testicular function deterioration by increasing antioxidant ability and inhibiting apoptosis.

  18. Taurine Alleviates the Progression of Diabetic Nephropathy in Type 2 Diabetic Rat Model

    Directory of Open Access Journals (Sweden)

    Jang Hyun Koh

    2014-01-01

    Full Text Available The overexpression of vascular endothelial growth factor (VEGF is known to be involved in the pathogenesis of diabetic nephropathy. In this study, the protective effects of taurine on diabetic nephropathy along with its underlying mechanism were investigated. Experimental animals were divided into three groups: LETO rats as normal group (n=10, OLETF rats as diabetic control group (n=10, and OLETF rats treated with taurine group (n=10. We treated taurine (200 mg/kg/day for 20 weeks and treated high glucose (HG, 30 mM with or without taurine (30 mM in mouse cultured podocyte. After taurine treatment, blood glucose level was decreased and insulin secretion was increased. Taurine significantly reduced albuminuria and ACR. Also it decreased glomerular volume, GBM thickness and increased open slit pore density through decreased VEGF and increased nephrin mRNA expressions in renal cortex. The antioxidant effects of taurine were confirmed by the reduction of urine MDA in taurine treated diabetic group. Also reactive oxygen species (ROS levels were decreased in HG condition with taurine treated podocytes compared to without taurine. These results indicate that taurine lowers glucose level via increased insulin secretion and ameliorates the progression of diabetic nephropathy through antifibrotic and antioxidant effects in type 2 diabetes rat model.

  19. Liquiritigenin, a flavonoid aglycone from licorice, has a choleretic effect and the ability to induce hepatic transporters and phase-II enzymes.

    Science.gov (United States)

    Kim, Young Woo; Kang, Hee Eun; Lee, Myung Gull; Hwang, Se Jin; Kim, Sang Chan; Lee, Chang Ho; Kim, Sang Geon

    2009-02-01

    Liquiritigenin (LQ), an active component of licorice, has an inhibitory effect on LPS-induced inhibitory nitric oxide synthase expression. This study investigated the effects of LQ on choleresis, the expression of hepatic transporters and phase-II enzymes, and fulminant hepatitis. The choleretic effect and the pharmacokinetics of LQ and its glucuronides were monitored in rats. After intravenous administration of LQ, the total area under the plasma concentration-time curve of glucuronyl metabolites was greater than that of LQ in plasma, which accompanied elevations in bile flow rate and biliary excretion of bile acid, glutathione, and bilirubin. The expressions of hepatocellular transporters and phase-II enzymes were assessed by immunoblots, real-time PCR, and immunohistochemistry. In the livers of rats treated with LQ, the protein and mRNA levels of multidrug resistance protein 2 and bile salt export pump were increased in the liver, which was verified by their increased localizations in canalicular membrane. In addition, LQ treatment enhanced the expression levels of major hepatic phase-II enzymes. Consistent with these results, LQ treatments attenuated galactosamine/LPS-induced hepatitis in rats, as supported by decreases in the plasma alanine aminotransferase, liver necrosis, and plasma TNF-alpha. These results demonstrate that LQ has a choleretic effect and the ability to induce transporters and phase-II enzymes in the liver, which may be associated with a hepatoprotective effect against galactosamine/LPS. Our findings may provide insight into understanding the action of LQ and its therapeutic use for liver disease.

  20. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats.

    Science.gov (United States)

    Qian, Taizhe; Chen, Rongqing; Nakamura, Masato; Furukawa, Tomonori; Kumada, Tatsuro; Akita, Tenpei; Kilb, Werner; Luhmann, Heiko J; Nakahara, Daiichiro; Fukuda, Atsuo

    2014-01-01

    In the developing cerebral cortex, the marginal zone (MZ), consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA) in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl(-)]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using the voltage-sensitive dye JPW1114 on tangential neocortical slices of neonatal rats. A single electrical stimulus evoked an action-potential-dependent optical signal that spread radially over the MZ. The amplitude of the signal was not affected by glutamate receptor blockers, but was suppressed by either GABAA or glycine receptor antagonists. Combined application of both antagonists nearly abolished the signal. Inhibition of Na(+), K(+)-2Cl(-) cotransporter by 20 µM bumetanide reduced the signal, indicating that this transporter contributes to excitation. Analysis of the interstitial fluid obtained by microdialysis from tangential neocortical slices with high-performance liquid chromatography revealed that GABA and taurine, but not glycine or glutamate, were released in the MZ in response to the electrical stimulation. The ambient release of taurine was reduced by the addition of a voltage-sensitive Na(+) channel blocker. Immunohistochemistry and immunoelectron microscopy indicated that taurine was stored both in Cajal-Retzius and non-Cajal-Retzius cells in the MZ, but was not localized in presynaptic structures. Our results suggest that activity-dependent non-synaptic release of endogenous taurine facilitates excitatory neurotransmission through activation of glycine

  1. Activity-dependent endogenous taurine release facilitates excitatory neurotransmission in the neocortical marginal zone of neonatal rats

    Directory of Open Access Journals (Sweden)

    Taizhe eQian

    2014-02-01

    Full Text Available In the developing cerebral cortex, the marginal zone (MZ, consisting of early-generated neurons such as Cajal-Retzius cells, plays an important role in cell migration and lamination. There is accumulating evidence of widespread excitatory neurotransmission mediated by γ-aminobutyric acid (GABA in the MZ. Cajal-Retzius cells express not only GABAA receptors but also α2/β subunits of glycine receptors, and exhibit glycine receptor-mediated depolarization due to high [Cl−]i. However, the physiological roles of glycine receptors and their endogenous agonists during neurotransmission in the MZ are yet to be elucidated. To address this question, we performed optical imaging from the MZ using the voltage-sensitive dye JPW1114 on tangential neocortical slices of neonatal rats. A single electrical stimulus evoked an action-potential-dependent optical signal that spread radially over the MZ. The amplitude of the signal was not affected by glutamate receptor blockers, but was suppressed by either GABAA or glycine receptor antagonists. Combined application of both antagonists nearly abolished the signal. Inhibition of Na+, K+-2Cl− cotransporter by 20 µM bumetanide reduced the signal, indicating that this transporter contributes to excitation. Analysis of the interstitial fluid obtained by microdialysis from tangential neocortical slices with high-performance liquid chromatography revealed that GABA and taurine, but not glycine or glutamate, were released in the MZ in response to the electrical stimulation. The ambient release of taurine was reduced by the addition of a voltage-sensitive Na+ channel blocker. Immunohistochemistry and immunoelectron microscopy indicated that taurine was stored both in Cajal-Retzius and non-Cajal-Retzius cells in the MZ, but was not localized in presynaptic structures. Our results suggest that activity-dependent non-synaptic release of endogenous taurine facilitates excitatory neurotransmission through activation of

  2. Hepatic xenobiotic metabolizing enzyme and transporter gene expression through the life stages of the mouse.

    Directory of Open Access Journals (Sweden)

    Janice S Lee

    Full Text Available BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs. No comprehensive analysis of the mRNA expression of XMETs has been carried out through life stages in any species. RESULTS: Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during fetal (gestation day (GD 19, neonatal (postnatal day (PND 7, prepubescent (PND32, middle age (12 months, and old age (18 and 24 months in the C57BL/6J (C57 mouse liver and compared to adults. Fetal and neonatal life stages exhibited dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes. The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or polar groups (Phase I, conjugation (Phase II and excretion (Phase III. In the fetus and neonate, parallel increases in expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and regulated genes were generally down-regulated. Suppression of male-specific XMETs was observed at early (GD19, PND7 and to a lesser extent, later life stages (18 and 24 months. A number of female-specific XMETs exhibited a spike in expression centered at PND7. CONCLUSIONS: The analysis revealed dramatic differences in the expression of the XMETs, especially in the fetus and neonate that are partially dependent on gender-dependent factors. XMET expression can be used to predict life stage-specific responses to environmental chemicals and drugs.

  3. A karyopherin alpha2 nuclear transport pathway is regulated by glucose in hepatic and pancreatic cells.

    Science.gov (United States)

    Cassany, Aurélia; Guillemain, Ghislaine; Klein, Christophe; Dalet, Véronique; Brot-Laroche, Edith; Leturque, Armelle

    2004-01-01

    We studied the role of the karyopherin alpha2 nuclear import carrier (also known as importin alpha2) in glucose signaling. In mhAT3F hepatoma cells, GFP-karyopherin alpha2 accumulated massively in the cytoplasm within minutes of glucose extracellular addition and returned to the nucleus after glucose removal. In contrast, GFP-karyopherin alpha1 distribution was unaffected regardless of glucose concentration. Glucose increased GFP-karyopherin alpha2 nuclear efflux by a factor 80 and its shuttling by a factor 4. These glucose-induced movements were not due to glycolytic ATP production. The mechanism involved was leptomycin B-insensitive, but phosphatase- and energy-dependent. HepG2 and COS-7 cells displayed no glucose-induced GFP-karyopherin alpha2 movements. In pancreatic MIN-6 cells, the glucose-induced movements of karyopherin alpha2 and the stimulation of glucose-induced gene transcription were simultaneously lost between passages 28 and 33. Thus, extracellular glucose regulates a nuclear transport pathway by increasing the nuclear efflux and shuttling of karyopherin alpha2 in cells in which glucose can stimulate the transcription of sugar-responsive genes.

  4. Determination of bilirubin by thermal lens spectrometry and studies of its transport into hepatic cells

    Science.gov (United States)

    Margon, A.; Terdoslavich, M.; Cocolo, A.; Decorti, G.; Passamonti, S.; Franko, M.

    2005-06-01

    The liver is responsible for clearance of bilirubin, the end product of heme catabolism, from the bloodstream. The main aim of our investigation was to determine the role of the carrier protein bilitranslocase in bilirubin uptake into the liver. Our experiments consisted of exposing cell cultures to bilirubin solutions under different conditions and measuring the uptake of bilirubin into the cells. However, since bilirubin is only slightly soluble in aqueous solution (pH 7.4), we had to use bilirubin concentrations that are far below the limit of detection of the commonly used techniques (e.g. LOD for HPLC with UV-Vis detection \\cong 10 μM). TLS showed up to be a suitable technique for investigation of bilirubin uptake with an LOD of 2 nM. Under basal conditions, bilirubin uptake did not occur. However, increase of cytosolic NADH due to catabolism of specific substrates (e.g. lactate or ethanol) seemed to trigger bilirubin uptake. Furthermore, bilirubin uptake was completely inhibited by addition of specific anti-bilitranslocase antibodies. We can thus infer that, under these conditions, bilitranslocase is the main bilirubin transporter.

  5. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor.

    Science.gov (United States)

    de Aguiar Vallim, Thomas Q; Tarling, Elizabeth J; Kim, Tammy; Civelek, Mete; Baldán, Ángel; Esau, Christine; Edwards, Peter A

    2013-06-07

    The bile acid receptor farnesoid X receptor (FXR) regulates many aspects of lipid metabolism by variouscomplex and incompletely understood molecular mechanisms. We set out to investigate the molecular mechanisms for FXR-dependent regulation of lipid and lipoprotein metabolism. To identify FXR-regulated microRNAs that were subsequently involved in regulating lipid metabolism. ATP binding cassette transporter A1 (ABCA1) is a major determinant of plasma high-density lipoprotein (HDL)-cholesterol levels. Here, we show that activation of the nuclear receptor FXR in vivo increases hepatic levels of miR-144, which in turn lowers hepatic ABCA1 and plasma HDL levels. We identified 2 complementary sequences to miR-144 in the 3' untranslated region of ABCA1 mRNA that are necessary for miR-144-dependent regulation. Overexpression of miR-144 in vitro decreased both cellular ABCA1 protein and cholesterol efflux to lipid-poor apolipoprotein A-I protein, whereas overexpression in vivo reduced hepatic ABCA1 protein and plasma HDL-cholesterol. Conversely, silencing miR-144 in mice increased hepatic ABCA1 protein and HDL-cholesterol. In addition, we used tissue-specific FXR-deficient mice to show that induction of miR-144 and FXR-dependent hypolipidemia requires hepatic, but not intestinal, FXR. Finally, we identified functional FXR response elements upstream of the miR-144 locus, consistent with direct FXR regulation. We have identified a novel pathway involving FXR, miR-144, and ABCA1 that together regulate plasma HDL-cholesterol.

  6. Unconjugated Bile Salts Shuttle Through Hepatocyte Peroxisomes for Taurine Conjugation

    NARCIS (Netherlands)

    Rembacz, Krzysztof P.; Woudenberg, Jannes; Hoekstra, Mark; Jonkers, Elles Z.; van den Heuvel, Fiona A. J.; Buist-Homan, Manon; Woudenberg-Vrenken, Titia E.; Rohacova, Jana; Luisa Marin, M.; Miranda, Miguel A.; Moshage, Han; Stellaard, Frans; Faber, Klaas Nico

    2010-01-01

    Bile acid-CoA.amino acid N-acyltransferase (BAAT) conjugates bile salts to glycine or taurine, which is the final step in bile salt biosynthesis In addition, BAAT is required for reconjugation of bile salts in the enterohepatic circulation Recently, we showed that BAAT is a peroxisomal protein,

  7. Activation of Rat Intestinal Alkaline Phosphatase by Taurine May be ...

    African Journals Online (AJOL)

    Dr. K.J. Umar

    intestinal ALP activity is higher (12x10-3nmol-1min-1mg protein) in the presence of taurine and LPS when compared with the ... are essential for the toxic activity of lipid A. Removal of ... gram-negative bacteria and lipopolysaccaride (LPS) and.

  8. Occurrence of a taurine derivative in an antarctic glass sponge.

    Science.gov (United States)

    Carbone, Marianna; Núñez-Pons, Laura; Ciavatta, M Letizia; Castelluccio, Francesco; Avila, Conxita; Gavagnin, Margherita

    2014-04-01

    The n-butanol extract of an Antarctic hexactinellid sponge, Anoxycalyx (Scolymastra) joubini, was found to contain a taurine-conjugated anthranilic acid, never reported so far either as a natural product or by synthesis. The compound was inactive against human cancer cells in an in vitro growth inhibitory test, and also showed no antibacterial activity.

  9. Effects of taurine on cardiovascular and autonomic nervous functions in cold exposed rats.

    Science.gov (United States)

    Kuwahara, Masayoshi; Kawaguchi, Tomohiro; Ito, Koichi; Tsubone, Hirokazu

    2009-01-01

    Exposure to cold temperature might affect on cardiovascular and autonomic nervous function. Although there are a lot of studies on physiological and pathophysiological responses of taurine, it was poorly understood the effects of taurine on cardiovascular and autonomic nervous function during cold circumstances. Therefore, the purpose of this study was to clarify the possible role of taurine on cardiovascular and autonomic nervous function in rats exposed to cold temperature. For this purpose, heart rate, blood pressure and locomotive activity were recorded from conscious and unrestrained rats using a telemetry system. Moreover, the autonomic nervous function was investigated by power spectral analysis of heart rate variability. After the recovery period of implantation of transmitter, 1% taurine was supplied during experimental period ad libitum. After the 7 days control period, both taurine administrated and control groups of rats were exposed a cold temperature. There were no differences in heart rate, blood pressure and locomotive activity between taurine and control groups before cold exposure. However, parasympathetic nervous function was somewhat predominant in taurine group. Heart rate and blood pressure in both groups increased greatly by cold exposure. Heart rate in taurine group was much higher than that in control group. LF and HF powers were decreased by cold exposure in both groups. Although no differences were observed in LF, decrease of HF in taurine group was greater than that in control group. These results suggested that taurine might provide some reservoir for cardiovascular and autonomic nervous function to cold stress in rats.

  10. Up-regulation of the ATP-binding cassette transporter A1 inhibits hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Simone Bocchetta

    Full Text Available Hepatitis C virus (HCV establishes infection using host lipid metabolism pathways that are thus considered potential targets for indirect anti-HCV strategies. HCV enters the cell via clathrin-dependent endocytosis, interacting with several receptors, and virus-cell fusion, which depends on acidic pH and the integrity of cholesterol-rich domains of the hepatocyte membrane. The ATP-binding Cassette Transporter A1 (ABCA1 mediates cholesterol efflux from hepatocytes to extracellular Apolipoprotein A1 and moves cholesterol within cell membranes. Furthermore, it generates high-density lipoprotein (HDL particles. HDL protects against arteriosclerosis and cardiovascular disease. We show that the up-regulation of ABCA1 gene expression and its cholesterol efflux function in Huh7.5 hepatoma cells, using the liver X receptor (LXR agonist GW3965, impairs HCV infection and decreases levels of virus produced. ABCA1-stimulation inhibited HCV cell entry, acting on virus-host cell fusion, but had no impact on virus attachment, replication, or assembly/secretion. It did not affect infectivity or properties of virus particles produced. Silencing of the ABCA1 gene and reduction of the specific cholesterol efflux function counteracted the inhibitory effect of the GW3965 on HCV infection, providing evidence for a key role of ABCA1 in this process. Impaired virus-cell entry correlated with the reorganisation of cholesterol-rich membrane microdomains (lipid rafts. The inhibitory effect could be reversed by an exogenous cholesterol supply, indicating that restriction of HCV infection was induced by changes of cholesterol content/distribution in membrane regions essential for virus-cell fusion. Stimulation of ABCA1 expression by GW3965 inhibited HCV infection of both human primary hepatocytes and isolated human liver slices. This study reveals that pharmacological stimulation of the ABCA1-dependent cholesterol efflux pathway disrupts membrane cholesterol homeostasis

  11. Global Hepatic Uptake of {sup 99m}Tc-MAA During VQ Scintigraphy Secondary to Synchronous Superior and Inferior Vena Caval Obstruction: a Demonstraion of Trans-Portal Venous Collateral Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Conway, Oliver; Lloyd, Simon; Gruening, Thomas [Derriford Hospital, Plymouth (United States)

    2013-12-15

    A 38-year-old woman underwent lung scintigraphy. Injection of technetium-99m macroaggregated albumin ({sup 99m}Tc-MAA) via the left antecubital fossa revealed global hepatic uptake. Review of contemporary computed tomography (CT) imaging demonstrated synchronous superior and inferior vena cava (SVC and IVC) obstruction, with formation of systemic-portal venous collateral pathways. Systemic-portal venous collateralisation can in rare circumstances lead to focal hepatic uptake of {sup 99m}Tc-MAA during lung scintigraphy. This case of global hepatic uptake, secondary to synchronous SVC and IVC obstruction, demonstrates the trans-portal venous collateral pathways leading to this unusual imaging outcome.

  12. Taurine content in different brain structures during ageing: effect on hippocampal synaptic plasticity.

    Science.gov (United States)

    Suárez, Luz M; Muñoz, María-Dolores; Martín Del Río, Rafael; Solís, José M

    2016-05-01

    A reduction in taurine content accompanies the ageing process in many tissues. In fact, the decline of brain taurine levels has been associated with cognitive deficits whereas chronic administration of taurine seems to ameliorate age-related deficits such as memory acquisition and retention. In the present study, using rats of three age groups (young, adult and aged) we determined whether the content of taurine and other amino acids (glutamate, serine, glutamine, glycine, alanine and GABA) was altered during ageing in different brain areas (cerebellum, cortex and hippocampus) as well non-brain tissues (heart, kidney, liver and plasma). Moreover, using hippocampal slices we tested whether ageing affects synaptic function and plasticity. These parameters were also determined in aged rats fed with either taurine-devoid or taurine-supplemented diets. With age, we found heterogeneous changes in amino acid content depending on the amino acid type and the tissue. In the case of taurine, its content was reduced in the cerebellum of adult and aged rats, but it remained unchanged in the hippocampus, cortex, heart and liver. The synaptic response amplitude decreased in aged rats, although the late phase of long-term synaptic potentiation (late-LTP), a taurine-dependent process, was not altered. Our study highlights the stability of taurine content in the hippocampus during ageing regardless of whether taurine was present in the diet, which is consistent with the lack of changes detected in late-LTP. These results indicate that the beneficial effects of taurine supplementation might be independent of the replenishment of taurine stores.

  13. Taurine: the appeal of a safe amino acid for skeletal muscle disorders

    OpenAIRE

    De Luca, Annamaria; Pierno, Sabata; Camerino, Diana Conte

    2015-01-01

    Taurine is a natural amino acid present as free form in many mammalian tissues and in particular in skeletal muscle. Taurine exerts many physiological functions, including membrane stabilization, osmoregulation and cytoprotective effects, antioxidant and anti-inflammatory actions as well as modulation of intracellular calcium concentration and ion channel function. In addition taurine may control muscle metabolism and gene expression, through yet unclear mechanisms. This review summarizes the...

  14. Partial Agonism of Taurine at Gamma-Containing Native and Recombinant GABAA Receptors

    Science.gov (United States)

    Kletke, Olaf; Gisselmann, Guenter; May, Andrea; Hatt, Hanns; A. Sergeeva, Olga

    2013-01-01

    Taurine is a semi-essential sulfonic acid found at high concentrations in plasma and mammalian tissues which regulates osmolarity, ion channel activity and glucose homeostasis. The structural requirements of GABAA-receptors (GABAAR) gated by taurine are not yet known. We determined taurine potency and efficacy relative to GABA at different types of recombinant GABAAR occurring in central histaminergic neurons of the mouse hypothalamic tuberomamillary nucleus (TMN) which controls arousal. At binary α1/2β1/3 receptors taurine was as efficient as GABA, whereas incorporation of the γ1/2 subunit reduced taurine efficacy to 60–90% of GABA. The mutation γ2F77I, which abolishes zolpidem potentiation, significantly reduced taurine efficacy at recombinant and native receptors compared to the wild type controls. As taurine was a full- or super- agonist at recombinant αxβ1δ-GABAAR, we generated a chimeric γ2 subunit carrying the δ subunit motif around F77 (MTVFLH). At α1/2β1γ2(MTVFLH) receptors taurine became a super-agonist, similar to δ-containing ternary receptors, but remained a partial agonist at β3-containing receptors. In conclusion, using site-directed mutagenesis we found structural determinants of taurine’s partial agonism at γ-containing GABAA receptors. Our study sheds new light on the β1 subunit conferring the widest range of taurine-efficacies modifying GABAAR function under (patho)physiological conditions. PMID:23637894

  15. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    Science.gov (United States)

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  16. Development of a novel cysteine sulfinic Acid decarboxylase knockout mouse: dietary taurine reduces neonatal mortality.

    Science.gov (United States)

    Park, Eunkyue; Park, Seung Yong; Dobkin, Carl; Schuller-Levis, Georgia

    2014-01-01

    We engineered a CSAD KO mouse to investigate the physiological roles of taurine. The disruption of the CSAD gene was verified by Southern, Northern, and Western blotting. HPLC indicated an 83% decrease of taurine concentration in the plasma of CSAD(-/-). Although CSAD(-/-) generation (G)1 and G2 survived, offspring from G2 CSAD(-/-) had low brain and liver taurine concentrations and most died within 24 hrs of birth. Taurine concentrations in G3 CSAD(-/-) born from G2 CSAD(-/-) treated with taurine in the drinking water were restored and survival rates of G3 CSAD(-/-) increased from 15% to 92%. The mRNA expression of CDO, ADO, and TauT was not different in CSAD(-/-) compared to WT and CSAD mRNA was not expressed in CSAD(-/-). Expression of Gpx 1 and 3 was increased significantly in CSAD(-/-) and restored to normal levels with taurine supplementation. Lactoferrin and the prolactin receptor were significantly decreased in CSAD(-/-). The prolactin receptor was restored with taurine supplementation. These data indicated that CSAD KO is a good model for studying the effects of taurine deficiency and its treatment with taurine supplementation.

  17. Taurine enhances the sexual response and mating ability in aged male rats.

    Science.gov (United States)

    Yang, Jiancheng; Lin, Shumei; Feng, Ying; Wu, Gaofeng; Hu, Jianmin

    2013-01-01

    It has been demonstrated that taurine is abundant in male reproductive organs, and can be biosynthesized by testis, but the taurine concentration will reduce with aging. The levels of serum LH, T, NOS, and NO were found to be obviously increased by taurine supplementation in aged rats in our previous study. In addition, aging will result in a significant decline in sexual response and function, which may be attributed to the androgen deficiency. Furthermore, NO has been proposed as a crucial mediator of penile erection. That makes us hypothesize that there is potential relationship between taurine decline and erection dysfunction in aged males. So the primary aim of the present study was to investigate the effect of taurine on male sexuality in rats. Taurine was offered in water to male aged (20 months old) rats for 110 days. The effects of taurine on the sexual response, mating ability, levels of serum reproductive hormones, and penile NOS and NO levels were investigated. The results showed that taurine can significantly reduce the EL and ML; obviously increase the ERF, MF, IF, and EJF; stimulate the secretion of GnRH, LH, and T; and elevate penis NOS and NO level in aged rats. The results indicated that taurine can enhance the sexual response and mating ability in aged male rats by increasing the level of testosterone and NO, but the exact mechanism of which needs to be further investigated.

  18. Development of a Novel Cysteine Sulfinic Acid Decarboxylase Knockout Mouse: Dietary Taurine Reduces Neonatal Mortality

    Directory of Open Access Journals (Sweden)

    Eunkyue Park

    2014-01-01

    Full Text Available We engineered a CSAD KO mouse to investigate the physiological roles of taurine. The disruption of the CSAD gene was verified by Southern, Northern, and Western blotting. HPLC indicated an 83% decrease of taurine concentration in the plasma of CSAD-/-. Although CSAD-/- generation (G1 and G2 survived, offspring from G2 CSAD-/- had low brain and liver taurine concentrations and most died within 24 hrs of birth. Taurine concentrations in G3 CSAD-/- born from G2 CSAD-/- treated with taurine in the drinking water were restored and survival rates of G3 CSAD-/- increased from 15% to 92%. The mRNA expression of CDO, ADO, and TauT was not different in CSAD-/- compared to WT and CSAD mRNA was not expressed in CSAD-/-. Expression of Gpx 1 and 3 was increased significantly in CSAD-/- and restored to normal levels with taurine supplementation. Lactoferrin and the prolactin receptor were significantly decreased in CSAD-/-. The prolactin receptor was restored with taurine supplementation. These data indicated that CSAD KO is a good model for studying the effects of taurine deficiency and its treatment with taurine supplementation.

  19. Conformational Study of Taurine in the Gas Phase

    Science.gov (United States)

    Cortijo, Vanessa; Sanz, M. Eugenia; López, Juan C.; Alonso, José L.

    2009-08-01

    The conformational preferences of the amino sulfonic acid taurine (NH2-CH2-CH2-SO3H) have been investigated in the gas phase by laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) in the 6-14 GHz frequency range. One conformer has been observed, and its rotational, centrifugal distortion, and hyperfine quadrupole coupling constants have been determined from the analysis of its rotational spectrum. Comparison of the experimental constants with those calculated theoretically identifies the detected conformer unambiguously. The observed conformer of taurine is stabilized by an intramolecular hydrogen bond O-H···N between the hydrogen of the sulfonic acid group and the nitrogen atom of the amino group.

  20. Taurine and ellagic acid: two differently-acting natural antioxidants.

    Science.gov (United States)

    Cozzi, R; Ricordy, R; Bartolini, F; Ramadori, L; Perticone, P; De Salvia, R

    1995-01-01

    Naturally occurring antimutagenic compounds are extensively analyzed for their capacity to protect cells from induced damage. We selected two agents, taurine and ellagic acid, treated in the literature as antioxidants, but whose activity is insufficiently known. This paper reports on the ability of these agents to act against damage induced by mitomycin-C and hydrogen peroxide in Chinese hamster ovary cells cultivated in vitro. Cytogenetic and cytofluorimetric analyses were performed. Ellagic acid proved to have more than one mechanism of action, probably as a scavenger of oxygen species produced by H2O2 treatment, and as a protector of the DNA double helix from alkylating agent injury. In our experimental conditions, taurine seems able to scavenge oxygen species.

  1. High taurine levels in the Solemya velum symbiosis.

    Science.gov (United States)

    Conway, N M; McDowell Capuzzo, J E

    1992-05-01

    1. To compare biochemical differences between bivalves with and without endosymbiotic chemoautotrophic bacteria, specimens of Solemya velum, a bivalve species known to contain bacterial endosymbionts, and the symbiont-free soft-shelled clam Mya arenaria, were collected from the same subtidal reducing sediments during October and November 1988. 2. Total and free amino acid compositions were determined for both species. Protein-bound amino acids were calculated as the difference between total and free amino acids. In addition, stable isotope ratios of the total and free amino acids of each species were measured to determine potential sources for these molecules. 3. Both species had similar total hydrolyzable- and protein-bound amino acid compositions; approximately 50% of the protein-bound amino acids were essential amino acids. In S. velum, the small size of the digestive system suggests that these amino acids are probably synthesized by the endosymbiotic bacteria and translocated to the animal tissue. The delta 13C and delta 15N ratios of the amino acids are very similar to the isotope ratios previously found in both the endosymbionts and whole tissues of S. velum. The relative and absolute amounts of free amino acids are very different in the two species. In S. velum, the absolute concentrations of taurine, a sulfur-containing amino acid, were greater than the total free amino acid concentrations found in other bivalves. 4. The delta 34S ratios of the free amino acids of S. velum, which were predominantly composed of taurine, were extremely negative (-17.2/1000) suggesting that taurine is synthesized using sulfur originally derived from external reduced sulfur sources, such as pore water sulfides. The possible roles for taurine in this animal-bacteria symbiosis are discussed.

  2. Effect of hepatic or renal impairment on the pharmacokinetics of canagliflozin, a sodium glucose co-transporter 2 inhibitor.

    Science.gov (United States)

    Devineni, Damayanthi; Curtin, Christopher R; Marbury, Thomas C; Smith, William; Vaccaro, Nicole; Wexler, David; Vandebosch, An; Rusch, Sarah; Stieltjes, Hans; Wajs, Ewa

    2015-03-01

    Canagliflozin is a sodium-glucose cotransporter 2 inhibitor approved for the treatment of type 2 diabetes mellitus (T2DM). Because T2DM is often associated with renal or hepatic impairment, understanding the effects of these comorbid conditions on the pharmacokinetics of canagliflozin, and further assessing its safety, in these special populations is essential. Two open-label studies evaluated the pharmacokinetics, pharmacodynamics (renal study only), and safety of canagliflozin in participants with hepatic or renal impairment. Participants in the hepatic study (8 in each group) were categorized based on their Child-Pugh score (normal hepatic function, mild impairment [Child-Pugh score of 5 or 6], and moderate impairment [Child-Pugh score of 7-9]) and received a single oral dose of canagliflozin 300 mg. Participants in the renal study (8 in each group) were categorized based on their creatinine clearance (CLCR) (normal renal function [CLCR ≥80 mL/min]; mild [CLCR 50 to canagliflozin 200 mg; the exception was those with ESRD, who received 1 dose postdialysis and 1 dose predialysis (10 days later). Canagliflozin's pharmacokinetics and pharmacodynamics (urinary glucose excretion [UGE] and renal threshold for glucose excretion [RTG]) were assessed at predetermined time points. Mean maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from time zero to infinite (AUC)0-∞ values differed by Canagliflozin's pharmacokinetics were not affected by mild or moderate hepatic impairment. Systemic exposure to canagliflozin increased in the renal impairment groups relative to participants with normal renal function. Pharmacodynamic response to canagliflozin, measured by using UGE and RTG, declined with increasing severity of renal impairment. A single oral dose of canagliflozin was well tolerated by participants in both studies. ClinicalTrials.gov identifiers: NCT01186588 and NCT01759576. Copyright © 2015 Elsevier HS Journals, Inc. All rights

  3. The beneficial effects of taurine to counteract sarcopenia.

    Science.gov (United States)

    Scicchitano, Bianca M; Sica, Gigliola

    2016-11-22

    Aging is a multifactorial process characterized by several features including low-grade inflammation, increased oxidative stress and reduced regenerative capacity, which ultimately lead to alteration in morpho-functional properties of skeletal muscle, thus promoting sarcopenia. This condition is characterized by a gradual loss of muscle mass due to an unbalance between protein synthesis and degradation, finally conveying in functional decline and disability. The development of specific therapeutic approaches able to block or reverse this condition may represent an invaluable tool for the promotion of a healthy aging among elderly. It is well established that changes in the quantity and the quality of dietary proteins, as well as the intake of specific amino acids, are able to counteract some of the physiopathological processes related to the progression of the loss of muscle mass and may have beneficial effects in improving the anabolic response of muscle in the elderly. Taurine is a non-essential amino acid expressed in high concentration in several mammalian tissues and particularly in skeletal muscle where it is involved in the modulation of intracellular calcium concentration and ion channel regulation and where it also acts as an antioxidant and anti-inflammatory factor. The aim of this review is to summarize the pleiotropic effects of taurine on specific muscle targets and to discuss its role in regulating signaling pathways involved in the maintenance of muscle homeostasis. We also highlight the potential use of taurine as a therapeutic molecule for the amelioration of skeletal muscle function and performance severely compromised during aging.

  4. Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: possible role in osmoregulation.

    Science.gov (United States)

    Hussy, N; Deleuze, C; Pantaloni, A; Desarménien, M G; Moos, F

    1997-08-01

    1. To evaluate the implication of taurine in the physiology of supraoptic neurones, we (i) investigated the agonist properties of taurine on glycine and GABAA receptors of supraoptic magnocellular neurones acutely dissociated from adult rats, using whole-cell voltage clamp, (ii) studied the effects of taurine and strychnine in vivo by extracellular recordings of supraoptic vasopressin neurones in anaesthetized rats, and (iii) measured the osmolarity-dependent release of endogenous taurine from isolated supraoptic nuclei by HPLC. 2. GABA, glycine and taurine evoked rapidly activating currents that all reversed close to the equilibrium potential for Cl-, indicating activation of Cl(-)-selective channels. Glycine-activated currents were reversibly blocked by strychnine (IC50 of 35 nM with 100 microM glycine), but were unaffected by the GABAA antagonist gabazine (1-3 microM). GABA-activated currents were reversibly antagonized by 3 microM gabazine, but not by strychnine (up to 1 microM). 3. Responses to 1 mM taurine were blocked by strychnine but not by gabazine and showed no additivity with glycine-induced currents, indicating selective activation of glycine receptors. Responses to 10 mM taurine were partially antagonized by gabazine, the residual current being blocked by strychnine. Thus, taurine is also a weak agonist of GABAA receptors. 4. In the presence of gabazine, taurine activated glycine receptors with an EC50 of 406 microM. Taurine activated at most 70% of maximal glycine currents, suggesting that it is a partial agonist of glycine receptors. 5. In vivo, locally applied strychnine (300 nM) increased and taurine (1 mM) decreased the basal electrical activity of vasopressin neurones in normally hydrated rats. The effect of strychnine was markedly more pronounced in water-loaded rats. 6. Taurine, which is concentrated in supraoptic glial cells, could be released from isolated supraoptic nuclei upon hyposmotic stimulation. Decreases in osmolarity of 15 and 30

  5. Serum taurine and risk of coronary heart disease: a prospective, nested case-control study

    Science.gov (United States)

    Wójcik, Oktawia P.; Koenig, Karen L.; Zeleniuch-Jacquotte, Anne; Pearte, Camille; Costa, Max; Chen, Yu

    2013-01-01

    Purpose Taurine (2-aminoethanesulfonic acid), a molecule obtained from diet, is involved in bile acid conjugation, blood pressure regulation, anti-oxidation and anti-inflammation. We performed the first prospective study of taurine and CHD risk. Methods We conducted a case-control study nested in the New York University Women’s Health Study to evaluate the association between circulating taurine levels and risk of coronary heart disease (CHD). Taurine was measured in two yearly pre-diagnostic serum samples of 223 CHD cases and 223 matched controls and averaged for a more reliable measurement of long-term taurine levels. Results Mean serum taurine was positively related to age and dietary intake of poultry, niacin, vitamin B1, fiber, and iron, and negatively related to dietary intake of saturated fat (all p values ≤ 0.05). There was no statistically significant association between the risk of CHD and serum taurine levels. The adjusted ORs for CHD in increasing taurine tertiles were 1.0 (reference), 0.85 (95% CI, 0.51–1.40), and 0.66 (0.39–1.13; p for trend = 0.14). There was a significant inverse association between serum taurine and CHD risk among women with high total serum cholesterol (>250 mg/dl) (adjusted OR = 0.39 (0.19–0.83) for the third vs. first tertile; p for trend = 0.02) but not among those with low total serum cholesterol (p for interaction = 0.01). The data suggest a possible inverse association of serum taurine with diabetes and hypertension risk. Conclusions The findings suggest that high levels of taurine may be protective against CHD among individuals with high serum cholesterol levels. PMID:22322924

  6. Taurine protects cardiac contractility in killifish, Fundulus heteroclitus, by enhancing sarcoplasmic reticular Ca(2+) cycling.

    Science.gov (United States)

    Henry, Elenor F; MacCormack, Tyson J

    2017-05-23

    Intracellular taurine is abundant in many animals and it influences an array of physiological processes, including osmoregulation, metabolism, and cardiac contractility. Taurine is an important osmolyte in teleost hearts, but its role in stress tolerance, cardiac metabolism, and contractility has not been assessed. The goal of this study was to determine if ventricular taurine concentration changes in response to environmental stress and to characterize its influence on contractility. Cardiac taurine concentrations varied in killifish (Fundulus heteroclitus) but were generally maintained following acute environmental challenges. In isometrically contracting ventricular strips, supplemental taurine (40 mmol L(-1)) protected peak tension development (F max) at high stimulation frequencies, an effect abolished by treatment with ryanodine, a blocker of sarcoplasmic reticulum Ca(2+) release. In the presence of ryanodine, taurine-treated preparations were also better able to maintain F max at supraphysiological extracellular Ca(2+) levels, but a prior anoxia exposure abolished this effect. Taurine had no impact on basal F max during or after anoxia, but it provided additive protection to high-frequency contractility post-anoxia. Tissue oxygen consumption and extracellular glucose utilization were unaffected by taurine in non-contracting preparations, indicating that it does not impact energy metabolism. Overall, the results suggest that cardiac taurine levels are well maintained on acute time scales in this highly stress-tolerant species. Supplemental taurine has no effect on aerobic metabolism in vitro, but it significantly improved cardiac contractility in a manner dependent upon sarcoplasmic reticulum Ca(2+) cycling. The data indicate that taurine likely plays an important role in the regulation of cardiac performance in teleosts.

  7. Hepatic encephalopathy: etiology, pathogenesis, and clinical signs.

    Science.gov (United States)

    Salgado, Melissa; Cortes, Yonaira

    2013-06-01

    Hepatic encephalopathy (HE) is a manifestation of clinical signs that may result from a variety of liver diseases. In small animals, HE is most commonly a result of portosystemic shunting. The pathogenesis is not completely understood, although it is likely multifactorial. Theories of pathogenesis include altered ammonia metabolism and glutamine and glutamate transmission, an increase in gamma-aminobutyric acid agonists and benzodiazepine-like substances, alterations of the serotonergic system and amino acid metabolism, elevated taurine levels, contributions from inflammatory mediators, and toxic effects of manganese. An understanding of the underlying mechanisms that result in HE may lead to new treatments in the future.

  8. Effect of dietary taurine supplementation on growth, feed efficiency, and nutrient composition of juvenile sablefish (Anoplopoma fimbria)

    Science.gov (United States)

    Juvenile sablefish were fed a low taurine, basal feed with seven graded levels of supplemental taurine to determine taurine requirements for growth and feed efficiency. The basal feed was plant based, formulated primarily with soy and corn proteins with a minimal (9%) amount of fishmeal. The unsuppl...

  9. The effect of taurine on the relationship between NO, ADMA and homocysteine in endotoxin-mediated inflammation in HUVEC cultures.

    Science.gov (United States)

    Pasaoglu, Ozge Tugce; Turkozkan, Nurten; Ark, Mustafa; Polat, Belgin; Agilli, Mehmet; Yaman, Halil

    2014-10-01

    The aim of our study was to investigate the effect of taurine on the relationship between nitric oxide (NO), asymmetric dimethylarginine (ADMA) and homocysteine (Hcy) in endotoxin-induced human umblical vein endothelial cell (HUVEC) cultures. For this reason, four groups were formed (n=12). Control group consists of HUVEC cultures without any treatment. Lipopolysaccharide (LPS) and LPS+taurine groups were treated with 10 μg/mL endotoxin, 5 μg/mL taurine and endotoxin+taurine (same doses), respectively. Nitrite/nitrate (NOx), ADMA and Hcy levels were measured. There was a significant increase of NOx, ADMA and Hcy in endotoxemia (p<0.05). Taurine treatment elevated NOx levels significantly (p<0.01) in taurine and LPS + taurine group compared to control group, while it reduced NOx levels compared to LPS group. In contrast, taurine decreased ADMA levels to the control level both in taurine and taurine+LPS group compared to LPS. Hcy levels increased significantly compared to taurine group (p<0.05) and did not change compared to LPS group. Taurine was effective on ADMA-NO relationship whereas no beneficial effect was observed in Hcy levels (p<0.05).

  10. [Measurement of C14 beta-radioactivity of stable natural origin taurine (2-aminoethanesulfonic acid) in bovine bile].

    Science.gov (United States)

    Gaetano, G; Bisegna, F; Bisio, V; Parenti, M

    1994-01-01

    Taurine from natural sources has gained great importance as essential nutrient in milk for formula-fed infants. There is a strong request for a method capable of determining the natural origin of taurine. The measure of beta-radioactivity of 14C of taurine by means of liquid scintillation counting proved the most reliable. A simple method is reported.

  11. Casein kinase 2 regulates the active uptake of the organic osmolyte taurine in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Jacobsen, Jack H; Clement, Christian A; Friis, Martin B;

    2008-01-01

    T to ER but has no detectable effect on TauT protein expression. On the other hand, CK2 inhibition increases the affinity of TauT towards Na(+ )and reduces the Na(+)/taurine stoichiometry for active taurine uptake. It is suggested that CK2 controls the cellular taurine uptake in unperturbated NIH3T3 cells...

  12. Effect of hepatitis C virus infection on the mRNA expression of drug transporters and cytochrome p450 enzymes in chimeric mice with humanized liver.

    Science.gov (United States)

    Kikuchi, Ryota; McCown, Matthew; Olson, Pamela; Tateno, Chise; Morikawa, Yoshio; Katoh, Yumiko; Bourdet, David L; Monshouwer, Mario; Fretland, Adrian J

    2010-11-01

    The expression of drug transporters and metabolizing enzymes is a primary determinant of drug disposition. Chimeric mice with humanized liver, including PXB mice, are an available model that is permissive to the in vivo infection of hepatitis C virus (HCV), thus being a promising tool for investigational studies in development of new antiviral molecules. To investigate the potential of HCV infection to alter the pharmacokinetics of small molecule antiviral therapeutic agents in PXB mice, we have comprehensively determined the mRNA expression profiles of human ATP-binding cassette (ABC) transporters, solute carrier (SLC) transporters, and cytochrome P450 (P450) enzymes in the livers of these mice under noninfected and HCV-infected conditions. Infection of PXB mice with HCV resulted in an increase in the mRNA expression levels of a series of interferon-stimulated genes in the liver. For the majority of genes involved in drug disposition, minor differences in the mRNA expression of ABC and SLC transporters as well as P450s between the noninfected and HCV-infected groups were observed. The exceptions were statistically significantly higher expression of multidrug resistance-associated protein 4 and organic anion-transporting polypeptide 2B1 and lower expression of organic cation transporter 1 and CYP2D6 in HCV-infected mice. Furthermore, the enzymatic activities of the major human P450s were, in general, comparable in the two experimental groups. These data suggest that the pharmacokinetic properties of small molecule antiviral therapies in HCV-infected PXB mice are likely to be similar to those in noninfected PXB mice. However, caution is needed in the translation of this relationship to HCV-infected patients as the PXB mouse model does not accurately reflect the pathology of patients with chronic HCV infection.

  13. Protective and therapeutic effectiveness of taurine in diabetes mellitus: a rationale for antioxidant supplementation.

    Science.gov (United States)

    Sirdah, Mahmoud M

    2015-01-01

    Taurine, 2-amino ethanesulfonic acid, is a conditionally essential β amino acid which is not utilized in protein synthesis. Taurine is one of the most abundant free amino acids in mammals tissues and is one of the three well-known sulfur-containing amino acids; the others are methionine and cysteine which are considered as the precursors for taurine synthesis. Different scientific studies emphasize on the cytoprotective properties of taurine which included antioxidation, antiapoptosis, membrane stabilization, osmoregulation, and neurotransmission. Protective and therapeutic ameliorations of oxidative stress-induced pathologies were also attributed to taurine both in experimental and human models. Data demonstrating the beneficial effectiveness of taurine against type 1 and type 2 diabetes mellitus and their complications are growing and providing a better understanding of the underlying molecular mechanisms. Although the clinical studies are limited compared to the experimental ones, the present updated systematic review of the literature is set up to provide experimental and clinical evidences regarding the effectiveness of taurine in the context of diabetes mellitus and its complications. Gathering these scientific effects of taurine on diabetes mellitus could provide the physicians and specially the endocrinologists with a comprehensive overview on possible trends in the prevention and management of the disease and its complications through antioxidant supplementation. Copyright © 2014 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  14. Specific role of taurine in the 8-brominated-2'-deoxyguanosine formation.

    Science.gov (United States)

    Asahi, Takashi; Nakamura, Yoshimasa; Kato, Yoji; Osawa, Toshihiko

    2015-11-15

    At the sites of inflammation, hypohalous acids, such as hypochlorous acid and hypobromous acid (HOBr), are produced by myeloperoxidase. These hypohalous acids rapidly react with the primary amino groups to produce haloamines, which are relatively stable and can diffuse long distances and cross the plasma membrane. In this study, we examined the effects of taurine, the most abundant free amino acid in the leukocyte cytosol, on the hypohalous acid-dependent formation of 8-chloro-2'-deoxyguanosine (8-CldG) and 8-bromo-2'-deoxyguanosine (8-BrdG). The reaction of taurine with HOBr yielded taurine bromamine, which is the most stable among other bromamines of amino acids. Taurine also enhanced the bromination of only dG among the four 2'-deoxynucleosides, whereas it inhibited the 8-CldG formation. The specificity of taurine for the enhanced formation of halogenated dG is completely different from that of nicotine, an enhancer of chlorination. The amount of dibrominated taurine (taurine dibromamine) closely correlated with the formation of 8-BrdG, suggesting that taurine dibromamine might be a plausible mediator for the dG bromination in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Plasma taurine levels are not affected by vigabatrin in pediatric patients.

    Science.gov (United States)

    Spelbrink, Emily M; Mabud, Tarub S; Reimer, Richard; Porter, Brenda E

    2016-08-01

    Vigabatrin is a highly effective antiseizure medication, but its use is limited due to concerns about retinal toxicity. One proposed mechanism for this toxicity is vigabatrin-mediated reduction of taurine. Herein we assess plasma taurine levels in a retrospective cohort of children with epilepsy, including a subset receiving vigabatrin. All children who underwent a plasma amino acid analysis as part of their clinical evaluation between 2006 and 2015 at Stanford Children's Health were included in the analysis. There were no significant differences in plasma taurine levels between children taking vigabatrin (n = 16), children taking other anti-seizure medications, and children not taking any anti-seizure medication (n = 556) (analysis of variance [ANOVA] p = 0.841). There were, however, age-dependent decreases in plasma taurine levels. Multiple linear regression revealed no significant association between vigabatrin use and plasma taurine level (p = 0.87) when controlling for age. These results suggest that children taking vigabatrin maintain normal plasma taurine levels, although they leave unanswered whether taurine supplementation is necessary or sufficient to prevent vigabatrin-associated visual field loss. They also indicate that age should be taken into consideration when evaluating taurine levels in young children. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  16. Assessment of taurine bioavailability in pelleted and extruded diets with red drum Sciaenops ocellatus

    Science.gov (United States)

    Taurine has been reported to be efficacious in supporting growth of carnivorous fish species, particularly when supplemented to diets primarily containing plant feedstuffs. Although taurine may become unavailable to some extent by heat and moisture, and is susceptible to the Maillard reaction with r...

  17. Taurine depresses cardiac contractility and enhances systemic heart glucose utilization in the cuttlefish, Sepia officinalis.

    Science.gov (United States)

    MacCormack, Tyson J; Callaghan, N I; Sykes, A V; Driedzic, W R

    2016-02-01

    Taurine is the most abundant amino acid in the blood of the cuttlefish, Sepia officinalis, where levels can exceed 200 mmol L(-1). In mammals, intracellular taurine modulates cardiac Ca(2+) handling and carbohydrate metabolism at much lower concentrations but it is not clear if it exerts similar actions in cephalopods. Blood Ca(2+) levels are high in cephalopods and we hypothesized that taurine would depress cardiac Ca(2+) flux and modulate contractility in systemic and branchial hearts of cuttlefish. Heart performance was assessed with an in situ perfused systemic heart preparation and contractility was evaluated using isometrically contracting systemic and branchial heart muscle rings. Stroke volume, cardiac output, and Ca(2+) sensitivity were significantly lower in systemic hearts perfused with supplemental taurine (100 mmol L(-1)) than in controls. In muscle ring preparations, taurine impaired relaxation at high contraction frequencies, an effect abolished by supra-physiological Ca(2+) levels. Taurine did not affect oxygen consumption in non-contracting systemic heart muscle, but extracellular glucose utilization was twice that of control preparations. Collectively, our results suggest that extracellular taurine depresses cardiac Ca(2+) flux and potentiates glucose utilization in cuttlefish. Variations in taurine levels may represent an important mechanism for regulating cardiovascular function and metabolism in cephalopods.

  18. Effect of supplemental taurine on juvenile channel catfish Ictalurus punctatus growth performance

    Science.gov (United States)

    Taurine is a beta-amino sulfur amino acid found in most animal tissues that has many important biological functions including bile salt conjugation, cellular osmoregulation, neuromodulation, calcium signaling. The benefits of supplementing diets with taurine are just beginning to be realized in a n...

  19. Taurine activates delayed rectifier KV channels via a metabotropic pathway in retinal neurons

    Science.gov (United States)

    Bulley, Simon; Liu, Yufei; Ripps, Harris; Shen, Wen

    2013-01-01

    Taurine is one of the most abundant amino acids in the retina, throughout the CNS, and in heart and muscle cells. In keeping with its broad tissue distribution, taurine serves as a modulator of numerous basic processes, such as enzyme activity, cell development, myocardial function and cytoprotection. Despite this multitude of functional roles, the precise mechanism underlying taurine's actions has not yet been identified. In this study we report findings that indicate a novel role for taurine in the regulation of voltage-gated delayed rectifier potassium (KV) channels in retinal neurons by means of a metabotropic receptor pathway. The metabotropic taurine response was insensitive to the Cl− channel blockers, picrotoxin and strychnine, but it was inhibited by a specific serotonin 5-HT2A receptor antagonist, MDL11939. Moreover, we found that taurine enhanced KV channels via intracellular protein kinase C-mediated pathways. When 5-HT2A receptors were expressed in human embryonic kidney cells, taurine and AL34662, a non-specific 5-HT2 receptor activator, produced a similar regulation of KIR channels. In sum, this study provides new evidence that taurine activates a serotonin system, apparently via 5-HT2A receptors and related intracellular pathways. PMID:23045337

  20. Serum Taurine and Stroke Risk in Women: A Prospective, Nested Case-Control Study.

    Science.gov (United States)

    Wu, Fen; Koenig, Karen L; Zeleniuch-Jacquotte, Anne; Jonas, Saran; Afanasyeva, Yelena; Wójcik, Oktawia P; Costa, Max; Chen, Yu

    2016-01-01

    Taurine (2-aminoethanesulfonic acid), a conditionally essential sulfur-containing amino acid, is mainly obtained from diet in humans. Experimental studies have shown that taurine's main biological actions include bile salt conjugation, blood pressure regulation, anti-oxidation, and anti-inflammation. We conducted a prospective case-control study nested in the New York University Women's Health Study, a cohort study involving 14,274 women enrolled since 1985. Taurine was measured in pre-diagnostic serum samples of 241 stroke cases and 479 matched controls. There was no statistically significant association between serum taurine and stroke risk in the overall study population. The adjusted ORs for stroke were 1.0 (reference), 0.87 (95% CI, 0.59-1.28), and 1.03 (95% CI, 0.69-1.54) in increasing tertiles of taurine (64.3-126.6, 126.7-152.9, and 153.0-308.5 nmol/mL, respectively). A significant inverse association between serum taurine and stroke risk was observed among never smokers, with an adjusted OR of 0.66 (95% CI, 0.37-1.18) and 0.50 (95% CI, 0.26-0.94) for the second and third tertile, respectively (p for trend = 0.01), but not among past or current smokers (p for interaction taurine and stroke risk, although a protective effect was observed in never smokers, which requires further investigation. Taurine, Stroke, Epidemiology, Prospective, Case-control study, NYUWHS.

  1. Taurine supplementation in spontaneously hypertensive rats: Advantages and limitations for human applications.

    Science.gov (United States)

    Suwanich, Atchariya; Wyss, J Michael; Roysommuti, Sanya

    2013-11-26

    Taurine (2-aminoethanesulfonic acid) is a β-amino acid found in many tissues particularly brain, myocardium, and kidney. It plays several physiological roles including cardiac contraction, antioxidation, and blunting of hypertension. Though several lines of evidence indicate that dietary taurine can reduce hypertension in humans and in animal models, evidence that taurine supplementation reduces hypertension in humans has not been conclusive. One reason for the inconclusive nature of past studies may be that taurine having both positive and negative effects on cardiovascular system depending on when it is assessed, some effects may occur early, while others only appear later. Further, other consideration may play a role, e.g., taurine supplementation improves hypertension in spontaneously hypertensive rats on a low salt diet but fails to attenuate hypertension on a high salt diet. In humans, some epidemiologic studies indicate that people with high taurine and low salt diets display lower arterial pressure than those with low taurine and high salt diets. Differences in techniques for measuring arterial pressure, duration of treatment, and animal models likely affect the response in different studies. This review considers both the positive and negative effects of taurine on blood pressure in animal models and their applications for human interventions.

  2. Inhibitory Effect of Taurine on Biofilm Formation During Alkane Degradation in Acinetobacter oleivorans DR1.

    Science.gov (United States)

    Eom, Hyo Jung; Park, Woojun

    2017-06-15

    Taurine, 2-aminoethanesulfonate, is known to function as an antioxidant or membrane stabilizer in eukaryotic cells, but its role in bacteria has been poorly characterized. Biofilm formation of Acinetobacter oleivorans DR1 was significantly reduced by taurine only during alkane degradation, suggesting that taurine affects alkane-induced cell surface. Structurally similar compounds harboring an amine group such as hypotaurine or ethylenediamine have a similar effect, which was not observed with sulfonate-containing chemicals such as ethanesulfonic acid, hexanesulfonic acid. Our biochemical assays and physiological tests demonstrate that taurine reduced cell surface hydrophobicity, which resulted in interruption of the interactions between cells and oily substrate surfaces, such that cells utilized alkanes less effectively. Interestingly, taurine-mediated reduction of quorum sensing (QS) signal production and QS-control sapA gene expression indicated that membrane permeability of quorum signals was also interfered by taurine. Composition and biomass of extracellular polymeric saccharides were changed in taurine-amended conditions. Taken together, our data provide evidence that amine-containing taurine can inhibit biofilm formation of DR1 cells during alkane degradation by (i) changing cell surface charge and (ii) reducing membrane hydrophobicity and QS sensing.

  3. Taurine-induced modulation of voltage-sensitive Na+ channels in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Yu, Shan-Shan; Yu, Kuai; Gu, Yan; Ruan, Di-Yun

    2005-08-15

    The physiological role of taurine, an abundant free amino acid in the neural system, is still poorly understood. The aim of this study was to investigate its effect on TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) Na+ currents in enzymatically dissociated neurons from rat dorsal root ganglion (DRG) with conventional whole-cell recording manner under voltage-clamp conditions. A TTX-S Na+ current was recorded preferentially from large DRG neurons and a TTX-R Na+ current preferentially from small ones. For TTX-S Na+ channel, taurine of the concentration > or = 10 mM shifted the activation curve in the depolarizing direction and the inactivation curve in the hyperpolarizing direction. There was no change in the activation curve for TTX-R Na+ channel and the inactivation curve was shifted in the hyperpolarizing direction slightly in the presence of taurine > or = 20 mM. When the recovery kinetics was examined, the presence of taurine resulted in a slower recovery from inactivation of TTX-S currents and no change of TTX-R ones. All the effects of taurine were weakly concentration-dependent and partly recovered quite slowly after washout. Our data indicate that taurine alters the properties of Na+ currents in intact DRG neurons. These may contribute to the understanding of taurine as a natural neuroprotectant and the potential of taurine as a useful medicine for the treatment of sensory neuropathies.

  4. Peroxynitrite induced decrease in Na+, K+-ATPase activity is restored by taurine

    Institute of Scientific and Technical Information of China (English)

    Necla Kocak-Toker; Murat Giris; Feti Tülübas; Müjdat Uysal; Gülcin Aykac-Toker

    2005-01-01

    AIM: Peroxynitrite (ONOO-) is a powerful oxidant shown to damage membranes. In the present study, the effect of taurine on changes of liver plasma membrane Na+, K+-ATPase induced by ONOO- was investigated. METHODS: Liver plasma membrane was exposed toONOO-with or without taurine. Na+, K+-ATPase activity and lipid peroxidation as thiobarbituric acid reactive substances (TBARS) levels were measured.RESULTS: Different concentrations of ONOO- (100, 200,500, and 1 000 μmol/L) were found to decrease liver plasma membrane Na+, K+-ATPase activity significantly. The depletion of enzyme activity was not concentration dependent. Effects of different concentrations of taurine on liver plasma membrane Na+, K+-ATPase activity were also measured. Taurine did not cause any increase in enzyme activity. When plasma membranes were treated with 200 μmol/L ONOO- with different concentrations of taurine, a restoring effect of taurine on enzyme activity was observed. TBARS levels were also measured and taurine was found to decrease the elevated values. CONCLUSION: Taurine is observed to act as an antioxidant of ONOO-to decrease lipid peroxidation and thus affect liver plasma membrane Na+, K+-ATPase by restoring its activity.

  5. The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity.

    Science.gov (United States)

    Murakami, Shigeru

    2017-10-01

    Obesity is caused by an imbalance between energy intake and energy expenditure. It is established that obesity is a state of low-grade chronic inflammation, which is characterized by enlarged hypertrophied adipocytes, increased infiltration by macrophages and marked changes in the secretion of adipokines and free fatty acids. The effects of taurine on the pathogenesis of obesity have been reported in animals and humans. Although the mechanisms underlying the anti-obesity action of taurine remain to be defined, taurine seems to ameliorate obesity through stimulation of energy expenditure, modulation of lipid metabolism, anorexic effect, anti-inflammatory and anti-oxidative effects. Recent studies revealed that taurine supplementation reduces the infiltration of macrophages and modulates the polarization of adipose tissue macrophages in high-fat diet-induced obese mice. In addition, taurine downregulates the production of pro-inflammatory cytokines by adipocytes, suggesting that taurine plays an anti-inflammatory role in adipose tissue. This article reviews the effects and mechanisms of taurine on the development of obesity, focusing on the role of taurine in white adipose tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Differential Regulation of Ferritin Subunits and Iron Transport Proteins: An Effect of Targeted Hepatic X-Irradiation

    Directory of Open Access Journals (Sweden)

    Naila Naz

    2013-01-01

    Full Text Available The current study aimed to investigate radiation-induced regulation of iron proteins including ferritin subunits in rats. Rat livers were selectively irradiated in vivo at 25 Gy. This dose can be used to model radiation effects to the liver without inducing overt radiation-induced liver disease. Sham-irradiated rats served as controls. Isolated hepatocytes were irradiated at 8 Gy. Ferritin light polypeptide (FTL was detectable in the serum of sham-irradiated rats with an increase after irradiation. Liver irradiation increased hepatic protein expression of both ferritin subunits. A rather early increase (3 h was observed for hepatic TfR1 and Fpn-1 followed by a decrease at 12 h. The increase in TfR2 persisted over the observed time. Parallel to the elevation of AST levels, a significant increase (24 h in hepatic iron content was measured. Complete blood count analysis showed a significant decrease in leukocyte number with an early increase in neutrophil granulocytes and a decrease in lymphocytes. In vitro, a significant increase in ferritin subunits at mRNA level was detected after irradiation which was further induced with a combination treatment of irradiation and acute phase cytokine. Irradiation can directly alter the expression of ferritin subunits and this response can be strongly influenced by radiation-induced proinflammatory cytokines. FTL can be used as a serum marker for early phase radiation-induced liver damage.

  7. Effect of taurine and caffeine on plasma c-reactive protein and calcium in Wistar rats.

    Science.gov (United States)

    Owoyele, B V; Oyewole, A L; Biliaminu, S A; Alashi, Y

    2015-09-01

    Caffeine is a component of several beverages such as coffee and tea. It has been shown to possess psychoactive properties because it increases alertness, energy and ability to concentrate at moderate doses. Taurine on the other hand, is an amino acid which has the capacity to promote neural development, osmoregulation and neuroprotection. There is paucity of information on the effect of the combined administration of taurine and caffeine on C-reactive protein (CRP)--a marker of inflammation and plasma calcium level in rats. The present study was designed to investigate the effects of combined taurine and caffeine on the plasma level of CRP, Ca2+ as well as the effect of nifedipine on calcium level. Fifty four rats weighing 120-140 g were used for these studies. The animals were divided into nine groups consisting of six animals each. Group 1 was treated with 10 m/kg of normal saline, Groups 2 and 3 were given 100 mg/kg and 200 mg/kg of taurine respectively, groups 4 and 5 received 7.5 mg/kg and 15 mg/kg of caffeine respectively while group 6 was administered taurine (200 mg/kg) and caffeine (15 mg/kg), groups 7 and 8 were treated with taurine (200 mg/kg) plus nifedipine (10 mg/kg) and taurine (200 mg/kg)plus furosemide (20 mg/kg) respectively while group 9 was given taurine plu caffeine plus nifdipine plus furosemide. Treatment was done once daily for 21 days and blood was finally collected via cardiac puncture for the assay of CRP and calcium while the animals were under anaesthesia. The results showed that CRP was significantly decreased in five of the treated groups compared with the control with the exception of the group treated with taurine alone (Group 2), and that treated with combined taurine and caffeine (Group 6). The Ca2+ level of groups treated with caffeine (11.70 ± 0.29 mg/dL) and taurine with caffeine (11.64 ± 0.15 mg/dL) were significantly (p taurine and nifedipine (Group 7) led to significant (p taurine can boost plasma calcium level and

  8. Potential role of taurine in the prevention of diabetes and metabolic syndrome.

    Science.gov (United States)

    Imae, Masato; Asano, Toshiki; Murakami, Shigeru

    2014-01-01

    Metabolic syndrome is characterized by the cluster of a number of metabolic abnormalities in the presence of underlying insulin resistance. The prevalence of metabolic syndrome has steadily increased in all populations worldwide. Taurine (2-aminoethanesulfonic acid) is a sulfur-containing amino acid that is involved in a variety of physiological functions. Clinical and experimental studies show that taurine intake may be beneficial in the prevention of metabolic syndrome including diabetes, obesity, dyslipidemia, and hypertension. This article reviews the effect of taurine on all of the components of metabolic syndrome. In addition, the possible mechanisms by which taurine prevents diabetes and metabolic syndrome are also discussed. Further study is needed to determine the role of taurine in the development of metabolic syndrome in humans, because there is presently limited clinical data available.

  9. Taurine protects DNA of lymphocytes against oxidative alteration in riding horses

    DEFF Research Database (Denmark)

    Sokól, Janusz Leszek; Sawosz, Ewa; Niemiec, Tomasz

    2009-01-01

    . The addition of taurine to feed caused smaller oxidative stress, manifested by lower concentration of TBA-RS in plasma and of 8-oxo-dG in lymphocytes. The taurine lowered the lipid peroxidation intensity that occurred in horses due to the oxidative stress caused by physical effort. Furthermore, taurine......The study aimed at evaluation the effect of dietary supplement of taurine on the oxidation-reduction status in riding horses, and especially on the extent of oxidative DNA degradation in lymphocytes. Ten Thoroughbred and half-bred geldings aged 6-13 years were classified according to breed...... and amount of work done into two groups - control (C, n=5) and experimental (E, n=5), the latter fed the diet with addition of 40 g taurine/horse/day. Blood samples were withdrawn from the horses' jugular vein before commencing the riding season and then after 30 days of working. In the blood some selected...

  10. Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells

    DEFF Research Database (Denmark)

    Lambert, Ian Henry; Hoffmann, Else Kay

    1994-01-01

    The taurine efflux from Ehrlich ascites tumor cells is stimulated by hypotonic cell swelling. The swelling-activated taurine efflux is unaffected by substitution of gluconate for extracellular Cl– but inhibited by addition of MK196 (anion channel blocker) and 4,4 -diisothiocyanostilbene-2......,2 -disulfonic acid (DIDS; anion channel and anion exchange blocker) and by depolarization of the cell membrane. This is taken to indicate that taurine does not leave the osmotically swollen Ehrlich cells in exchange for extracellular Cl–, i.e., via the anion exchanger but via a MK196- and DIDS-sensitive channel...... that is potential dependent. An additional stimulation of the swelling-activated taurine efflux is seen after addition of arachidonic acid and oleic acid. Cell swelling also activates a Mini Cl– channel. The Cl– efflux via this Cl– channel, in contrast to the swelling-activated taurine efflux, is unaffected by DIDS...

  11. Taurine protects DNA of lymphocytes against oxidative alteration in riding horses

    DEFF Research Database (Denmark)

    Sokól, Janusz Leszek; Sawosz, Ewa; Niemiec, Tomasz

    2009-01-01

    The study aimed at evaluation the effect of dietary supplement of taurine on the oxidation-reduction status in riding horses, and especially on the extent of oxidative DNA degradation in lymphocytes. Ten Thoroughbred and half-bred geldings aged 6-13 years were classified according to breed...... and amount of work done into two groups - control (C, n=5) and experimental (E, n=5), the latter fed the diet with addition of 40 g taurine/horse/day. Blood samples were withdrawn from the horses' jugular vein before commencing the riding season and then after 30 days of working. In the blood some selected....... The addition of taurine to feed caused smaller oxidative stress, manifested by lower concentration of TBA-RS in plasma and of 8-oxo-dG in lymphocytes. The taurine lowered the lipid peroxidation intensity that occurred in horses due to the oxidative stress caused by physical effort. Furthermore, taurine...

  12. Developmental stability of taurine's activation on glycine receptors in cultured neurons of rat auditory cortex.

    Science.gov (United States)

    Tang, Zheng-Quan; Lu, Yun-Gang; Chen, Lin

    2008-01-03

    Taurine is an endogenous amino acid that can activate glycine and/or gamma-aminobutyric acid type A (GABA(A)) receptors in the central nervous system. During natural development, taurine's receptor target undergoes a shift from glycine receptors to GABA(A) receptors in cortical neurons. Here, we demonstrate that taurine's receptor target in cortical neurons remains stable during in vitro development. With whole-cell patch-clamp recordings, we found that taurine always activated glycine receptors, rather than GABA(A) receptors, in neurons of rat auditory cortex cultured for 5-22 days. Our results suggest that the functional sensitivity of glycine and GABA(A) receptors to taurine is critically regulated by their developmental environments.

  13. Effects of taurine on tolerance to and dependence on morphine in mice.

    Science.gov (United States)

    Contreras, E; Tamayo, L

    1984-02-01

    The effects of taurine on the analgesic response to morphine, on the intensity of tolerance and on physical dependence were examined. Taurine induced a hyperalgesic state and attenuated morphine analgesia in mice. The hyperalgesia was maximal at a dose level of 1.5 mg/kg i.p., while the effects of higher doses (6.0 and 10.0 mg/kg) were masked by a depression of the animals' gross behavior. Taurine induced a dose related antagonism of morphine tolerance. The amino acid administered 30 min before naloxone, produced a partial reduction in the abstinence signs in the chronically treated mice. Taurine also attenuated the abstinence behavior when administered during the course of dependence. The results are consistent with taurine antagonism to the known effects of morphine on intracellular calcium disposition in nervous tissue.

  14. Taurine Growth Effects - Determining Optimum Taurine Supplementation Levels for Plant Proteins Incorporated into Marine Finfish Feeds using Juvenile Sablefish Anoplopoma fimbria

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Taurine, an amino sulfonic acid, has important roles in osmoregulation, bile acid conjugation, membrane stabilization and calcium homeostasis in vertebrates. Though...

  15. Cholestasis induced by total parenteral nutrition: effects of the addition of Taurine (Tauramin® on hepatic function parameters; possible synergistic action of structured lipids (SMOFlipid® Colestasis inducida por nutrición parenteral total: efecto de la adición de Taurina (Tauramin® sobre los parámetros de función hepática; posible acción sinérgica de lípidos estructurados (SMOFlipid®

    Directory of Open Access Journals (Sweden)

    J. González-Contreras

    2012-12-01

    Full Text Available Objective: Assess the hepatoprotective effect of Taurine (Tau in cases of hepatic cholestasis induced by Total Parenteral Nutrition (TPN. Methods: We describe a retrospective series of 54 patients who received TPN, in which cholestasis was detected at an (Intermediate point that separates the duration of TPN into 2 Phases. From this moment -Phase 2- on, and according to clinical criteria, some patients (Group A, n = 27 received amino acids with Tau (22.41 ± 3.57 mg/kg/day(Tauramin®, while the rest (Group B, n = 27 received the standard solution without Tau. The mean TPN durations were 39.2 ± 17.1 and 36.4 ± 18.1 days respectively, with the Intermediate points on days 19.56 ± 10.51 and 17.89 ± 11.14. They all received diets that were homogeneous in terms of kcal and macronutrients. In Phase 2, 21 patients from Group A received structured lipids (SMOFlipid®; while 20 from Group B received soy MCT/LCT [ Medium Chain Triglycerides/Long Chain Triglycerides ] (physical or structured mixture. In a retrospective study, differences could not be avoided. The analytical parameters from three periods (Initial, Intermediate, and Final were obtained from Nutridata® and Servolab®. We compared interperiod values using the Wilcoxon test SPSS® (p Objetivo: Evaluar el papel hepatoprotector de Taurina (Tau en situación de colestasis hepática inducida por Nutrición Parenteral Total (NPT. Métodos: Se describe una serie retrospectiva de 54 pacientes, que recibieron NPT, detectándose colestasis en un momento (Intermedio que separa en 2 Fases la duración de la NPT. A partir de este momento - Fase 2- y según criterios clínicos, unos -grupo A, n = 27- recibieron aminoácidos con Tau -22,41 ± 3,57 mg/kg/día (Tauramin®, mientras otros -grupo B, n = 27- recibieron solución estándar sin Tau. La duración media de NPT fue de 39,2 ± 17,1 y 36,4 ± 18,1 días respectivamente; con el punto Intermedio en día 19,56 ± 10,51 y 17,89 ± 11,14. Todos

  16. Ultrasound-assisted extraction and purification of taurine from the red algae Porphyra yezoensis.

    Science.gov (United States)

    Wang, Fen; Guo, Xiao-Yu; Zhang, Dan-Ni; Wu, Yue; Wu, Tao; Chen, Zhi-Gang

    2015-05-01

    The present study reports on the development of a method using ultrasound-assisted extraction (UAE) during the purification of taurine from Porphyra yezoensis. The Box-Behnken design, which is a widely used form of response surface methodology, was used to investigate the effects of parameters on the UAE process. Three independent variables of taurine purification using UAE were studied including: extraction time, temperature, and ultrasonic power. The results showed that the highest taurine yield of 13.0mg/g was obtained with an extraction time of 38.3 min, the use of 300.0 W ultrasonic power, and an extraction temperature of 40.5°C. A comparative study of taurine extraction was also conducted using either ultrasonication or mechanical agitation. The results indicated that the ultrasonic process required 9 times less time at 40°C to obtain taurine with a similar yield as compared to the conventional extraction method. Therefore, UAE can used as an alternative to the conventional extraction method used during the recovery of taurine from P. yezoensis. The UAE method has several advantages, including that it uses lower extraction temperatures and has a shorter extraction time. The taurine present in the extract supernatant was efficiently separated and purified using a combination of 732 cation exchange chromatography and crystallization. The yield of purified taurine using this process was 1.1%. The structure of the purified taurine was confirmed by FTIR, MS, and NMR. Our findings suggest that P. yezoensis can be used as a taurine-rich food or food material. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Taurine Reduced Epidural Fibrosis in Rat Models after Laminectomy via Downregulating EGR1.

    Science.gov (United States)

    Yang, Lei; Tang, Jian; Chen, Hongtao; Ge, Dawei; Sui, Tao; Que, Jun; Cao, Xiaojian; Ge, Yingbin

    2016-01-01

    Epidural fibrosis, a common complication after laminectomy, has been demonstrated to be closely associated with poor surgical outcomes. Previous studies showed that taurine had remarkable anti-fibrotic effects on lung and liver fibrosis. We performed this study to investigate the effects of taurine in rat models of epidural fibrosis after laminectomy and to explore the potential molecular mechanism. Laminectomy was performed on each rat to establish epidural fibrosis model. After taurine treatment, Masson's trichrome and immunohistochemistry staining were used to examine epidural fibrosis. Cell viability was determined using the Cell Counting Kit-8 assay. Annexin V/Propidium Iodide double staining was performed to detect fibroblasts apoptosis. Microarray was adopted to identify significantly changed mRNAs. mRNA expression was measured by qRT-PCR. Lentivirus infection was performed to establish stable knockdown and overexpression cell lines. The expression of fibrosis-related proteins was determined via Western blot. Taurine treatment markedly reduced laminectomy-induced epidural fibrosis in rat models. However, this effect of taurine was independent on TGF-β/Smad pathway, evidenced by no change in the expression of TGF-β and its receptors. Besides, taurine had almost no effect on cell apoptosis. Interestingly, taurine treatment significantly decreased expression of EGR1 (Early growth response protein 1), an enhancer of fibrosis, both in vivo and in vitro. Furthermore, overexpression of EGR1 increased activation of fibroblasts, while EGR1 knockdown achieved an opposite effect, indicating that EGR1 plays a key role in the inhibitory effect of taurine on TGF-β-induced fibrosis. Reduced epidural fibrosis in vivo and decreased activation of fibroblasts in vitro after taurine treatment was mediated by EGR1. Taurine promises to be a potential prevention for epidural fibrosis after laminectomy. © 2016 The Author(s) Published by S. Karger AG, Basel.

  18. Diverse effects of taurine on vascular response and inflammation in GSH depletion model in rabbits.

    Science.gov (United States)

    Ozsarlak-Sozer, G; Sevin, G; Ozgur, H H; Yetik-Anacak, G; Kerry, Z

    2016-04-01

    A reduction in GSH and an increase in free radicals are observed in inflammatory diseases, indicating oxidative stress. Taurine protects cells from the cytotoxic effects of inflammation. There have been limited studies to date evaluating the effect of taurine in oxidative stress-induced vascular dysfunction and its role in vascular inflammatory diseases. Therefore, we aimed to investigate the effect of taurine on the regulation of vascular tonus and vascular inflammatory markers in rabbit aortae and carotid arteries in oxidative stress-induced by GSH depletion. Rabbits were treated subcutaneously with buthionine sulfoximine (BSO), GSH-depleting compound and/or taurine. Cumulative concentration-response curves for acetylcholine (ACh), phenylephrine and 5-hydroxytriptamine (5-HT) were constructed with or without Nω-nitro-L-arginine (LNA) in the carotid artery and aorta rings. Immunohistochemical staining was performed for TNF-α and IL-1β. BSO increased ACh-induced NO-dependent relaxations, phenylephrine-induced contractions in the carotid artery and 5-HT induced-contractions in both the carotid artery and the aorta. BSO decreased EDHF dependent relaxations only in the aorta. ACh-induced NO-dependent relaxations and augmented contractions were normalized by taurine. BSO increased TNF-α expressions in both carotid arteries and aortas, which were reversed by taurine. The BSO-induced increase in IL-1β was reversed by taurine only in aortae. Treatment with BSO resulted in vascular reactivity changes and increased immunostaining of TNF-α in mainly carotid arteries in this model of oxidative stress. The effect of taurine on BSO-induced vascular reactivity changes varied depending on the vessel. The inhibition of the increase in TNF-α expression by taurine in both carotid arteries and aortae supports the proposal that taurine has a beneficial effect in the treatment of inflammatory diseases such as atherosclerosis.

  19. Vasopressin-induced taurine efflux from rat pituicytes: a potential negative feedback for hormone secretion.

    Science.gov (United States)

    Rosso, Lia; Peteri-Brunbäck, Brigitta; Poujeol, Philippe; Hussy, Nicolas; Mienville, Jean-Marc

    2004-02-01

    Previous work on the whole neurohypophysis has shown that hypotonic conditions increase release of taurine from neurohypophysial astrocytes (pituicytes). The present work confirms that taurine is present in cultured pituicytes, and that its specific release increases in response to a hypotonic shock. We next show that vasopressin (VP) and oxytocin (OT) also specifically release taurine from pituicytes. With an EC(50) of approximately 2 nm, VP is much more potent than OT, and the effects of both hormones are blocked by SR 49059, a V(1a) receptor antagonist. This pharmacological profile matches the one for VP- and OT-evoked calcium signals in pituicytes, consistent with the fact that VP-induced taurine efflux is blocked by BAPTA-AM. However, BAPTA-AM also blocks the taurine efflux induced by a 270 mosmol l(-1) challenge, which per se does not evoke any calcium signal, suggesting a permissive role for calcium in this case. Nevertheless, the fact that structurally unrelated calcium-mobilizing agents and ionomycin are able to induce taurine efflux suggests that calcium may also play a signalling role in this event. It is widely accepted that in hypotonic conditions taurine exits cells through anionic channels. Antagonism by the chloride channel inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) suggests the same pathway for VP-induced taurine efflux, which is also blocked in hypertonic conditions (330 mosmol l(-1)). Moreover, it is likely that the osmosensitivity of the taurine channel is up-regulated by calcium. These results, together with our in situ experiments showing stimulation of taurine release by endogenous VP, strengthen the concept of a glial control of neurohormone output.

  20. Taurine Ameliorates Renal Oxidative Damage and Thyroid Dysfunction in Rats Chronically Exposed to Fluoride.

    Science.gov (United States)

    Adedara, Isaac A; Ojuade, Temini Jesu D; Olabiyi, Bolanle F; Idris, Umar F; Onibiyo, Esther M; Ajeigbe, Olufunke F; Farombi, Ebenezer O

    2017-02-01

    Excessive exposure to fluoride poses several detrimental effects to human health particularly the kidney which is a major organ involved in its elimination from the body. The influence of taurine on fluoride-induced renal toxicity was investigated in a co-exposure paradigm for 45 days using five groups of eight rats each. Group I rats received normal drinking water alone, group II rats were exposed to sodium fluoride (NaF) in drinking water at 15 mg/L alone, group III received taurine alone at a dose of 200 mg/kg group IV rats were co-administered with NaF and taurine (100 mg/kg), while group V rats were co-administered with NaF and taurine (200 mg/kg). Administration of taurine significantly reversed the fluoride-mediated decrease in absolute weight and organo-somatic index of the kidney in the exposed rats. Taurine significantly prevented fluoride-induced elevation in plasma urea and creatinine levels in the exposed rats. Moreover, taurine restored fluoride-mediated decrease in the circulatory concentrations of triiodothyronine, thyroxine, and the ratio of triiodothyronine to thyroxine. Taurine ameliorated fluoride-mediated decrease in renal antioxidant status by significantly enhancing the antioxidant enzyme activities as well as glutathione level in the exposed rats. Additionally, taurine inhibited fluoride-induced renal oxidative damage by markedly decreasing the hydrogen peroxide and malondialdehyde levels as well as improved the kidney architecture in the treated rats. Collectively, taurine protected against fluoride-induced renal toxicity via enhancement of thyroid gland function, renal antioxidant status, and histology in rats.

  1. Differential cognitive effects of energy drink ingredients: caffeine, taurine, and glucose.

    Science.gov (United States)

    Giles, Grace E; Mahoney, Caroline R; Brunyé, Tad T; Gardony, Aaron L; Taylor, Holly A; Kanarek, Robin B

    2012-10-01

    Energy drinks containing caffeine, taurine, and glucose may improve mood and cognitive performance. However, there are no studies assessing the individual and interactive effects of these ingredients. We evaluated the effects of caffeine, taurine, and glucose alone and in combination on cognitive performance and mood in 24-hour caffeine-abstained habitual caffeine consumers. Using a randomized, double-blind, mixed design, 48 habitual caffeine consumers (18 male, 30 female) who were 24-hour caffeine deprived received one of four treatments (200 mg caffeine/0 mg taurine, 0 mg caffeine/2000 mg taurine, 200 mg caffeine/2000 mg taurine, 0 mg caffeine/0 mg taurine), on each of four separate days, separated by a 3-day wash-out period. Between-participants treatment was a glucose drink (50 g glucose, placebo). Salivary cortisol, mood and heart rate were measured. An attention task was administered 30-minutes post-treatment, followed by a working memory and reaction time task 60-minutes post-treatment. Caffeine enhanced executive control and working memory, and reduced simple and choice reaction time. Taurine increased choice reaction time but reduced reaction time in the working memory tasks. Glucose alone slowed choice reaction time. Glucose in combination with caffeine, enhanced object working memory and in combination with taurine, enhanced orienting attention. Limited glucose effects may reflect low task difficulty relative to subjects' cognitive ability. Caffeine reduced feelings of fatigue and increased tension and vigor. Taurine reversed the effects of caffeine on vigor and caffeine-withdrawal symptoms. No effects were found for salivary cortisol or heart rate. Caffeine, not taurine or glucose, is likely responsible for reported changes in cognitive performance following consumption of energy drinks, especially in caffeine-withdrawn habitual caffeine consumers.

  2. Ethanol- and/or Taurine-Induced Oxidative Stress in Chick Embryos

    Directory of Open Access Journals (Sweden)

    Emily J. Berning

    2013-01-01

    Full Text Available Because taurine alleviates ethanol- (EtOH- induced lipid peroxidation and liver damage in rats, we asked whether exogenous taurine could alleviate EtOH-induced oxidative stress in chick embryos. Exogenous EtOH (1.5 mmol/Kg egg or 3 mmol/Kg egg, taurine (4 μmol/Kg egg, or EtOH and taurine (1.5 mmol EtOH and 4 μmol taurine/Kg egg or 3 mmol EtOH and 4 μmol taurine/Kg egg were injected into fertile chicken eggs during the first three days of embryonic development (E0–2. At 11 days of development (midembryogenesis, serum taurine levels and brain caspase-3 activities, homocysteine (HoCys levels, reduced glutathione (GSH levels, membrane fatty acid composition, and lipid hydroperoxide (LPO levels were measured. Early embryonic EtOH exposure caused increased brain apoptosis rates (caspase-3 activities; increased brain HoCys levels; increased oxidative-stress, as measured by decreased brain GSH levels; decreased brain long-chain polyunsaturated levels; and increased brain LPO levels. Although taurine is reported to be an antioxidant, exogenous taurine was embryopathic and caused increased apoptosis rates (caspase-3 activities; increased brain HoCys levels; increased oxidative-stress (decreased brain GSH levels; decreased brain long-chain polyunsaturated levels; and increased brain LPO levels. Combined EtOH and taurine treatments also caused increased apoptosis rates and oxidative stress.

  3. Hepatitis A FAQs

    Science.gov (United States)

    ... Policy and Programs Resource Center Viral Hepatitis Hepatitis A Questions and Answers for the Public Recommend on ... Hepatitis C. What is the difference between Hepatitis A, Hepatitis B, and Hepatitis C? Hepatitis A , Hepatitis ...

  4. Association of ATP-Binding Cassette Transporter (ABC) Gene Polymorphisms with Viral Load in Patients with Genotype 1 Hepatitis C Virus Infection.

    Science.gov (United States)

    Chen, Long; Rao, Huiying; Zhang, Wei; Liu, Feng; Jiang, Dong; Wei, Lai

    2016-09-01

    ATP-binding cassette transporters (ABC) gene polymorphisms are associated with various biological functions, including hepatitis C virus (HCV) infection. This study aims to explore the impact of ABC transporters polymorphisms on HCV viral load in chronic treatment-naïve hepatitis C patients. We recruited 347 Chinese Han patients chronically infected with genotype 1 HCV in this study. Ten single nucleotide polymorphism (SNPs) in ABCA1, ABCB5, ABCB11, ABCG2, ABCG5, ABCG10 were analyzed by custom chip from Illumina. Allele frequency analysis and genotype frequency analysis were performed. Patients were categorized according to pretreatment HCV viral load (VL) with a cutoff level 600 000 IU/mL. No significant variations on gender and age were observed in the two groups. G allele of rs3890182 and C allele of rs1883025 in ABCA1 gene were significantly associated with lower HCV viral load (p = 0.013 and p = 0.006) in allele frequency analysis. GG genotype of rs3890182 and CC genotype of rs1883025 in ABCA1 gene were significantly associated with lower HCV viral load (p = 0.027 and p = 0.013) in genotype frequency analysis. Quantitative analysis showed significantly lower viral load in patients with CC genotype of rs1883025 (p = 0.012). Allele associated lower HCV viral load was reported to be associated with higher HDL cholesterol level. Our finding suggests that ABCA1 gene polymorphism in rs1883025 is significantly associated with HCV VL in patients infected with HCV genotype 1.

  5. Hepatitis A

    Science.gov (United States)

    ... care, food, or sewage industry Other common hepatitis virus infections include hepatitis B and hepatitis C. Hepatitis A is the least serious and mildest of these diseases. Symptoms ... most often show up 2 to 6 weeks after being exposed to the hepatitis A virus. They are most often mild, but may last ...

  6. EPR studies of gamma-irradiated taurine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, A. E-mail: abulut@samsun.omu.edu.tr; Karabulut, B.; Tapramaz, R.; Koeksal, F

    2000-04-01

    An EPR study of gamma-irradiated taurine [C{sub 2}H{sub 7}NO{sub 3}S] single crystal was carried out at room temperature. The EPR spectra were recorded in the three at mutually perpendicular planes. There are two magnetically distinct sites in monoclinic lattice. The principle values of g and hyperfine constants for both sites were calculated. The results have indicated the presence of {sup 32}SO{sup -}{sub 2} and {sup 33}SO{sup -}{sub 2} radicals. The hyperfine values of {sup 33}SO{sup -}{sub 2} radical were used to obtain O-S-O bond angle for both sites.

  7. Thiosulfate as a metabolic product: the bacterial fermentation of taurine.

    Science.gov (United States)

    Denger, K; Laue, H; Cook, A M

    1997-10-01

    Thiosulfate (S2O32-) is a natural product that is widely utilized in natural ecosystems as an electron sink or as an electron donor. However, the major biological source(s) of this thiosulfate is unknown. We present the first report that taurine (2-aminoethanesulfonate), the major mammalian solute, is subject to fermentation. This bacterial fermentation was found to be catalyzed by a new isolate, strain GKNTAU, a strictly anaerobic, gram-positive, motile rod that formed subterminal spores. Thiosulfate was a quantitative fermentation product. The other fermentation products were ammonia and acetate, and all could be formed by cell-free extracts.

  8. Hepatitis E

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Hepatitis E Fact sheet Updated July 2016 Key facts ... et al. Lancet 2012;380:2095-2128. World Hepatitis Day Know hepatitis - Act now Event notice Key ...

  9. Reduced plasma taurine level in Parkinson's disease: association with motor severity and levodopa treatment.

    Science.gov (United States)

    Zhang, Li; Yuan, Yongsheng; Tong, Qing; Jiang, Siming; Xu, Qinrong; Ding, Jian; Zhang, Lian; Zhang, Rui; Zhang, Kezhong

    2016-01-01

    This study aimed to evaluate the level of taurine in plasma, and its association with the severity of motor and non-motor symptoms (NMS) and chronic levodopa treatment in Parkinson's disease (PD). Plasma taurine level was measured in treated PD (tPD), untreated PD (ntPD) and control groups. Motor symptoms and NMS were assessed using the Unified Parkinson's Disease Rating Scale, the short form of the McGill Pain Questionnaire, the Hamilton Depression Scale, the Scale for Outcomes in Parkinson's disease for Autonomic Symptoms and the Pittsburgh Sleep Quality Index. Longtime exposure to levodopa was indicated by its approximate cumulative dosage. The plasma taurine levels of PD patients were decreased when compared with controls and negatively associated with motor severity but not NMS. Moreover, tPD patients exhibited lower levels of plasma taurine than ntPD patients. Interestingly, plasma taurine levels negatively correlated with cumulative levodopa dosage in tPD. After controlling for potential confounders, the association between taurine and levodopa remained significant. Our study supports that taurine may play important roles in the pathophysiology of PD and the disturbances caused by chronic levodopa administration.

  10. Taurine homeostasis requires de novo synthesis via cysteine sulfinic acid decarboxylase during zebrafish early embryogenesis.

    Science.gov (United States)

    Chang, Yen-Chia; Ding, Shih-Torng; Lee, Yen-Hua; Wang, Ya-Ching; Huang, Ming-Feng; Liu, I-Hsuan

    2013-02-01

    Cysteine sulfinic acid decarboxylase (Csad) is the rate-limiting enzyme in the de novo biosynthesis of taurine. There are a number of physiological roles of taurine, such as bile salt synthesis, osmoregulation, lipid metabolism, and oxidative stress inhibition. To investigate the role of de novo synthesis of taurine during embryonic development, zebrafish csad was cloned and functionally analyzed. Semi-quantitative RT-PCR showed that csad transcripts are maternally deposited, while whole-mount in situ hybridization demonstrated that csad is expressed in yolk syncytial layer and various embryonic tissues such as notochord, brain, retina, pronephric duct, liver, and pancreas. Knockdown of csad significantly reduced the embryonic taurine level, and the affected embryos had increased early mortality and cardiac anomalies. mRNA coinjection and taurine supplementation rescued the cardiac phenotypes suggesting that taurine originating from the de novo synthesis pathway plays a role in cardiac development. Our findings indicated that the de novo synthesis pathway via Csad plays a critical role in taurine homeostasis and cardiac development in zebrafish early embryos.

  11. Taurine acts as a glycine receptor agonist in slices of rat inferior colliculus.

    Science.gov (United States)

    Xu, Han; Wang, Wei; Tang, Zheng-Quan; Xu, Tian-Le; Chen, Lin

    2006-10-01

    Taurine is an important endogenous amino acid for neural development and for many physiological functions, but little is known about its functional role in the central auditory system. We investigated in young rats (P10-P14) the effects of taurine on the neuronal responses and synaptic transmissions in the central nucleus of the inferior colliculus (ICC) with a brain slice preparation and with whole-cell patch-clamp recordings. Perfusion of taurine at 1mM reliably evoked a current across the membrane and decreased the input resistance in neurons of the ICC. Taurine also depressed the spontaneous and current-evoked firing of ICC neurons. All these effects were reversible after washout and could be blocked by 3 microM strychnine, an antagonist of glycine receptors, but not by 10 microM bicuculline, an antagonist of GABA(A) receptors. When the inhibitory receptors were not pharmacologically blocked, taurine reversibly reduced the postsynaptic currents/potentials evoked by electrically stimulating the commissure of the inferior colliculus or the ipsilateral lateral lemniscus. The results demonstrate that taurine reduces the neuronal excitability and depresses the synaptic transmission in the ICC by activating glycine-gated chloride channels. Our findings suggest that taurine acts as a ligand of glycine receptors in the ICC and can be involved in the information processing of the central auditory system similarly like the neurotransmitter glycine.

  12. Taurine-EVA copolymer-paraffin rods dosimeters for EPR high-dose radiation dosimetry

    Directory of Open Access Journals (Sweden)

    Maghraby Ahmed M.

    2014-03-01

    Full Text Available Taurine/EPR rods (3 × 10 mm have been prepared by a simple technique in the laboratory where taurine powder was mixed with a molten mixture of paraffin wax and an ethylene vinyl acetate (EVA copolymer. The binding mixture EVA/Paraffin does not present interference or noise in the EPR signal before or after irradiation. The rods show good mechanical properties for safe and multi-use handling. An EPR investigation of radiation induced radicals in taurine rods revealed that there are two types of radicals produced after exposure to gamma radiation (60Co. EPR spectra were recorded and analyzed - also the microwave power saturation and modulation amplitude were studied and optimized. Response of taurine to different radiation doses (1.5-100 kGy was studied and found to follow a linear relationship up to 100 kGy. Radiation induced radicals in taurine persists and showed a noticeable stability over 94 days following irradiation. Uncertainities associated with the evaluation of radiation doses using taurine dosimeters were discussed and tabulated. It was found that taurine possesses good dosimetric properties using EPR spectroscopy in high doses in addition to its simple spectrum.

  13. Taurine: the appeal of a safe amino acid for skeletal muscle disorders.

    Science.gov (United States)

    De Luca, Annamaria; Pierno, Sabata; Camerino, Diana Conte

    2015-07-25

    Taurine is a natural amino acid present as free form in many mammalian tissues and in particular in skeletal muscle. Taurine exerts many physiological functions, including membrane stabilization, osmoregulation and cytoprotective effects, antioxidant and anti-inflammatory actions as well as modulation of intracellular calcium concentration and ion channel function. In addition taurine may control muscle metabolism and gene expression, through yet unclear mechanisms. This review summarizes the effects of taurine on specific muscle targets and pathways as well as its therapeutic potential to restore skeletal muscle function and performance in various pathological conditions. Evidences support the link between alteration of intracellular taurine level in skeletal muscle and different pathophysiological conditions, such as disuse-induced muscle atrophy, muscular dystrophy and/or senescence, reinforcing the interest towards its exogenous supplementation. In addition, taurine treatment can be beneficial to reduce sarcolemmal hyper-excitability in myotonia-related syndromes. Although further studies are necessary to fill the gaps between animals and humans, the benefit of the amino acid appears to be due to its multiple actions on cellular functions while toxicity seems relatively low. Human clinical trials using taurine in various pathologies such as diabetes, cardiovascular and neurological disorders have been performed and may represent a guide-line for designing specific studies in patients of neuromuscular diseases.

  14. Effect of Cordyceps sinensis and taurine either alone or in combination on streptozotocin induced diabetes.

    Science.gov (United States)

    El Zahraa Z El Ashry, Fatma; Mahmoud, Mona F; El Maraghy, Nabila N; Ahmed, Ahmed F

    2012-03-01

    The present study aimed to investigate the antidiabetic effects of Cordyceps sinensis, taurine and their combination in comparison with glibenclamide both in vivo and in vitro using streptozotocin rat model. The diabetic rats were orally given glibenclamide, C. sinensis, taurine or Cordyceps and taurine combination for 21 days. Their effects were studied both in vivo and in vitro. Oral administration of Cordyceps, taurine and their combination decreased serum glucose, fructosamine, total cholesterol, triglycerides levels, insulin resistance index and pancreatic malondialdehyde content. Cordyceps significantly increased serum insulin, HDL-cholesterol, total antioxidant capacity levels, β cell function percent, and pancreatic reduced glutathione (GSH) content. However, taurine was unable to elevate pancreatic GSH level to a significant level. These natural products and their combinations were more effective than glibenclamide in reducing insulin resistance index and they had stronger antioxidant properties. Cordyceps and taurine significantly enhanced glucose uptake by diaphragms of normal and diabetic rats in absence and presence of insulin. In conclusion, Cordyceps and taurine either alone or in combination have less potent hypoglycemic effects than glibenclamide; however, they have more ability to reduce insulin resistance and stronger antioxidant properties.

  15. Copper-taurine (CT): a potential organic compound to facilitate infected wound healing.

    Science.gov (United States)

    Tian, Xiliang; Zhang, Zhen; Wang, Shouyu; Diao, Yunpeng; Zhao, Zexu; Lv, Decheng

    2009-12-01

    Taurine plays various important roles in a large number of physiological and pathological conditions in human body, such as the cytoprotective functions, antioxidant, anti-inflammatory and anti-apoptosis effects. Copper demonstrates a critical effect in the processes of wound healing, including induction of endothelial growth factor, angiogenesis, antimicrobial potency and expression and stabilization of extracellular matrix. Both copper and taurine are effective in accelerating wound healing, but it was rarely reported about the formation of copper complexes of taurine and the effect of the compound in wound healing. Generally speaking, to human body, organic compound could provide a better bioavailability than the inorganic ones. We thus hypothesize that taurine combined with copper would be a new therapeutic candidate for infected wound healing. We name the new compound copper-taurine (CT). Copper-taurine (CT) added into the wound dressings would not only reduce the risk of wound infection, but, more importantly, would stimulate wound repair directly. The sustained release of copper and taurine from the wound dressings into the wound site would together facilitate the wound healing more potently.

  16. Effect of taurine and potential interactions with caffeine on cardiovascular function.

    Science.gov (United States)

    Schaffer, Stephen W; Shimada, Kayoko; Jong, Chian Ju; Ito, Takashi; Azuma, Junichi; Takahashi, Kyoko

    2014-05-01

    The major impetus behind the rise in energy drink popularity among adults is their ability to heighten mental alertness, improve physical performance and supply energy. However, accompanying the exponential growth in energy drink usage have been recent case reports and analyses from the National Poison Data System, raising questions regarding the safety of energy drinks. Most of the safety concerns have centered on the effect of energy drinks on cardiovascular and central nervous system function. Although the effects of caffeine excess have been widely studied, little information is available on potential interactions between the other active ingredients of energy drinks and caffeine. One of the active ingredients often mentioned as a candidate for interactions with caffeine is the beta-amino acid, taurine. Although taurine is considered a conditionally essential nutrient for humans and is thought to play a key role in several human diseases, clinical studies evaluating the effects of taurine are limited. However, based on this review regarding possible interactions between caffeine and taurine, we conclude that taurine should neutralize several untoward effects of caffeine excess. In agreement with this conclusion, the European Union's Scientific Committee on Food published a report in March 2003 summarizing its investigation into potential interactions of the ingredients in energy drinks. At the cardiovascular level, they concluded that "if there are any interactions between caffeine and taurine, taurine might reduce the cardiovascular effects of caffeine." Although these interactions remain to be further examined in humans, the physiological functions of taurine appear to be inconsistent with the adverse cardiovascular symptoms associated with excessive consumption of caffeine-taurine containing beverages.

  17. Taurine protects methamphetamine-induced developmental angiogenesis defect through antioxidant mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Xue; Hu, Zhengtao; Hu, Chunyan; Bu, Qian; Yan, Guangyan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Deng, Pengchi [Analytical and Testing Center, Sichuan University, Chengdu 610041 (China); Lv, Lei [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Wu, Dan [College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041 (China); Deng, Yi; Zhao, Jinxuan; Zhu, Ruiming; Li, Yan; Li, Hongyu; Xu, Youzhi; Yang, Hanshuo; Zhao, Yinglan [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China); Cen, Xiaobo, E-mail: xbcenalan@vip.sina.com [National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 (China)

    2012-05-01

    Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using {sup 1}H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use. Highlights: ► Metabonomics findings. ► Abnormal development. ► Dysregulations of key proteins.

  18. A terahertz study of taurine: Dispersion correction and mode couplings

    Science.gov (United States)

    Dai, Zelin; Xu, Xiangdong; Gu, Yu; Li, Xinrong; Wang, Fu; Lian, Yuxiang; Fan, Kai; Cheng, Xiaomeng; Chen, Zhegeng; Sun, Minghui; Jiang, Yadong; Yang, Chun; Xu, Jimmy

    2017-03-01

    The low-frequency characteristics of polycrystalline taurine were studied experimentally by terahertz (THz) absorption spectroscopy and theoretically by ab initio density-functional simulations. Full optimizations with semi-empirical dispersion correction were performed in spectral computations and vibrational mode assignments. For comparison, partial optimizations with pure density functional theory were conducted in parallel. Results indicate that adding long-range dispersion correction to the standard DFT better reproduces the measured THz spectra than the popular partial optimizations. The main origins of the observed absorption features were also identified. Moreover, a coupled-oscillators model was proposed to explain the experimental observation of the unusual spectral blue-shift with the increase of temperature. Such coupled-oscillators model not only provides insights into the temperature dynamics of non-bonded interactions but also offers an opportunity to better understand the physical mechanisms behind the unusual THz spectral behaviors in taurine. Particularly, the simulation approach and novel coupled-oscillators model presented in this work are applicable to analyze the THz spectra of other molecular systems.

  19. Taurine-EVA copolymer-paraffin rods dosimeters for EPR high-dose radiation dosimetry

    OpenAIRE

    Maghraby Ahmed M.; Mansour A; Abdel-Fattah A. A.

    2014-01-01

    Taurine/EPR rods (3 × 10 mm) have been prepared by a simple technique in the laboratory where taurine powder was mixed with a molten mixture of paraffin wax and an ethylene vinyl acetate (EVA) copolymer. The binding mixture EVA/Paraffin does not present interference or noise in the EPR signal before or after irradiation. The rods show good mechanical properties for safe and multi-use handling. An EPR investigation of radiation induced radicals in taurine rods revealed that there are two types...

  20. Effect of praziquantel on the differential expression of mouse hepatic genes and parasite ATP binding cassette transporter gene family members during Schistosoma mansoni infection.

    Directory of Open Access Journals (Sweden)

    Melissa C Sanchez

    2017-06-01

    Full Text Available Schistosomiasis is a chronic parasitic disease caused by sexually dimorphic blood flukes of the genus Schistosoma. Praziquantel (PZQ is the only drug widely available to treat the disease but does not kill juvenile parasites. Here we report the use of next generation sequencing to study the transcriptional effect of PZQ on murine hepatic inflammatory, immune and fibrotic responses to Schistosoma mansoni worms and eggs. An initial T helper cell 1 (Th1 response is induced against schistosomes in mice treated with drug vehicle (Vh around the time egg laying begins, followed by a T helper cell 2 (Th2 response and the induction of genes whose action leads to granuloma formation and fibrosis. When PZQ is administered at this time, there is a significant reduction in egg burden yet the hepatic Th1, Th2 and fibrotic responses are still observed in the absence of granuloma formation suggesting some degree of gene regulation may be induced by antigens released from the dying adult worms. Quantitative real-time PCR was used to examine the relative expression of 16 juvenile and adult S. mansoni genes during infection and their response to Vh and PZQ treatment in vivo. While the response of stress genes in adult parasites suggests the worms were alive immediately following exposure to PZQ, they were unable to induce transcription of any of the 9 genes encoding ATP-binding cassette (ABC transporters tested. In contrast, juvenile schistosomes were able to significantly induce the activities of ABCB, C and G family members, underscoring the possibility that these efflux systems play a major role in drug resistance.

  1. Effect of praziquantel on the differential expression of mouse hepatic genes and parasite ATP binding cassette transporter gene family members during Schistosoma mansoni infection.

    Science.gov (United States)

    Sanchez, Melissa C; Krasnec, Katina V; Parra, Amalia S; von Cabanlong, Christian; Gobert, Geoffrey N; Umylny, Boris; Cupit, Pauline M; Cunningham, Charles

    2017-06-01

    Schistosomiasis is a chronic parasitic disease caused by sexually dimorphic blood flukes of the genus Schistosoma. Praziquantel (PZQ) is the only drug widely available to treat the disease but does not kill juvenile parasites. Here we report the use of next generation sequencing to study the transcriptional effect of PZQ on murine hepatic inflammatory, immune and fibrotic responses to Schistosoma mansoni worms and eggs. An initial T helper cell 1 (Th1) response is induced against schistosomes in mice treated with drug vehicle (Vh) around the time egg laying begins, followed by a T helper cell 2 (Th2) response and the induction of genes whose action leads to granuloma formation and fibrosis. When PZQ is administered at this time, there is a significant reduction in egg burden yet the hepatic Th1, Th2 and fibrotic responses are still observed in the absence of granuloma formation suggesting some degree of gene regulation may be induced by antigens released from the dying adult worms. Quantitative real-time PCR was used to examine the relative expression of 16 juvenile and adult S. mansoni genes during infection and their response to Vh and PZQ treatment in vivo. While the response of stress genes in adult parasites suggests the worms were alive immediately following exposure to PZQ, they were unable to induce transcription of any of the 9 genes encoding ATP-binding cassette (ABC) transporters tested. In contrast, juvenile schistosomes were able to significantly induce the activities of ABCB, C and G family members, underscoring the possibility that these efflux systems play a major role in drug resistance.

  2. Interaction of dietary cholesterol and triglycerides in the regulation of hepatic low density lipoprotein transport in the hamster.

    OpenAIRE

    Spady, D K; Dietschy, J M

    1988-01-01

    These studies report the effects of dietary cholesterol and triglyceride on rates of receptor-dependent and receptor-independent LDL transport in the liver of the hamster. In animals fed diets enriched with 0.1, 0.25, or 1% cholesterol for 1 mo, receptor-dependent LDL transport in the liver was suppressed by 43, 63, and 77%, respectively, and there were reciprocal changes in plasma LDL-cholesterol concentrations. In addition, dietary triglycerides modified the effect of dietary cholesterol on...

  3. The Anti-TNF-α Antibody Infliximab Inhibits the Expression of Fat-Transporter-Protein FAT/CD36 in a Selective Hepatic-Radiation Mouse Model

    Directory of Open Access Journals (Sweden)

    Gesa Martius

    2015-03-01

    Full Text Available Previously, we reported a radiation-induced inflammation triggering fat-accumulation through fatty-acid-translocase/cluster of differentiation protein 36 (FAT/CD36 in rat liver. Furthermore, inhibition of radiation-induced FAT/CD36-expression by anti-tumor necrosis factor-α (anti-TNF-α (infliximab was shown in vitro. The current study investigates fat-accumulation in a mouse-model of single-dose liver-irradiation (25-Gray and the effect of anti-TNF-α-therapy on FAT/CD36 gene-expression. Mice livers were selectively irradiated in vivo in presence or absence of infliximab. Serum- and hepatic-triglycerides, mRNA, and protein were analyzed by colorimetric assays, RT-PCR, Immunofluorescence and Western-Blot, respectively. Sudan-staining was used demonstrating fat-accumulation in tissue. In mice livers, early (1–3 h induction of TNF-α-expression, a pro-inflammatory cytokine, was observed. It was followed by elevated hepatic-triglyceride level (6–12 h, compared to sham-irradiated controls. In contrast, serum-triglyceride level was decreased at these time points. Similar to triglyceride level in mice livers, Sudan staining of liver cryosections showed a quick (6–12 h increase of fat-droplets after irradiation. Furthermore, expression of fat-transporter-protein FAT/CD36 was increased at protein level caused by radiation or TNF-α. TNF-α-blockage by anti-TNF-α showed an early inhibition of radiation-induced FAT/CD36 expression in mice livers. Immunohistochemistry showed basolateral and cytoplasmic expression of FAT/CD36 in hepatocytes. Moreover, co-localization of FAT/CD36 was detected with α-smooth muscle actin (α-SMA+ cells and F4/80+ macrophages. In summary, hepatic-radiation triggers fat-accumulation in mice livers, involving acute-phase-processes. Accordingly, anti-TNF-α-therapy prevented early radiation-induced expression of FAT/CD36 in vivo.

  4. The anti-TNF-α antibody infliximab inhibits the expression of fat-transporter-protein FAT/CD36 in a selective hepatic-radiation mouse model.

    Science.gov (United States)

    Martius, Gesa; Cameron, Silke; Rave-Fränk, Margret; Hess, Clemens F; Wolff, Hendrik A; Malik, Ihtzaz A

    2015-03-02

    Previously, we reported a radiation-induced inflammation triggering fat-accumulation through fatty-acid-translocase/cluster of differentiation protein 36 (FAT/CD36) in rat liver. Furthermore, inhibition of radiation-induced FAT/CD36-expression by anti-tumor necrosis factor-α (anti-TNF-α) (infliximab) was shown in vitro. The current study investigates fat-accumulation in a mouse-model of single-dose liver-irradiation (25-Gray) and the effect of anti-TNF-α-therapy on FAT/CD36 gene-expression. Mice livers were selectively irradiated in vivo in presence or absence of infliximab. Serum- and hepatic-triglycerides, mRNA, and protein were analyzed by colorimetric assays, RT-PCR, Immunofluorescence and Western-Blot, respectively. Sudan-staining was used demonstrating fat-accumulation in tissue. In mice livers, early (1-3 h) induction of TNF-α-expression, a pro-inflammatory cytokine, was observed. It was followed by elevated hepatic-triglyceride level (6-12 h), compared to sham-irradiated controls. In contrast, serum-triglyceride level was decreased at these time points. Similar to triglyceride level in mice livers, Sudan staining of liver cryosections showed a quick (6-12 h) increase of fat-droplets after irradiation. Furthermore, expression of fat-transporter-protein FAT/CD36 was increased at protein level caused by radiation or TNF-α. TNF-α-blockage by anti-TNF-α showed an early inhibition of radiation-induced FAT/CD36 expression in mice livers. Immunohistochemistry showed basolateral and cytoplasmic expression of FAT/CD36 in hepatocytes. Moreover, co-localization of FAT/CD36 was detected with α-smooth muscle actin (α-SMA+) cells and F4/80+ macrophages. In summary, hepatic-radiation triggers fat-accumulation in mice livers, involving acute-phase-processes. Accordingly, anti-TNF-α-therapy prevented early radiation-induced expression of FAT/CD36 in vivo.

  5. Activation of Glycine and Extrasynaptic GABAA Receptors by Taurine on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis

    Science.gov (United States)

    Bhattarai, Janardhan Prasad; Park, Soo Joung; Han, Seong Kyu

    2013-01-01

    The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AARBC) with tetrodotoxin, indicating that taurine acts directly on the postsynaptic SG neurons. Further, application of taurine at different doses (10 μM to 3 mM) showed a concentration dependent depolarizations and inward currents with the EC50 of 84.3 μM and 723 μM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50 μM) and almost completely blocked by strychnine (2 μM), suggesting that taurine-mediated responses are via glycine receptor (GlyR) activation. In addition, taurine (1 mM) activated extrasynaptic GABAA receptor (GABAAR)-mediated currents. Taken together, our results indicate that taurine can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABAARs on the SG neurons. PMID:24379976

  6. Activation of Glycine and Extrasynaptic GABAA Receptors by Taurine on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hoang Nguyen

    2013-01-01

    Full Text Available The substantia gelatinosa (SG of the trigeminal subnucleus caudalis (Vc has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AARBC with tetrodotoxin, indicating that taurine acts directly on the postsynaptic SG neurons. Further, application of taurine at different doses (10 μM to 3 mM showed a concentration dependent depolarizations and inward currents with the EC50 of 84.3 μM and 723 μM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50 μM and almost completely blocked by strychnine (2 μM, suggesting that taurine-mediated responses are via glycine receptor (GlyR activation. In addition, taurine (1 mM activated extrasynaptic GABAA receptor (GABAAR-mediated currents. Taken together, our results indicate that taurine can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABAARs on the SG neurons.

  7. Taurine Supplementation Lowers Blood Pressure and Improves Vascular Function in Prehypertension: Randomized, Double-Blind, Placebo-Controlled Study.

    Science.gov (United States)

    Sun, Qianqian; Wang, Bin; Li, Yingsha; Sun, Fang; Li, Peng; Xia, Weijie; Zhou, Xunmei; Li, Qiang; Wang, Xiaojing; Chen, Jing; Zeng, Xiangru; Zhao, Zhigang; He, Hongbo; Liu, Daoyan; Zhu, Zhiming

    2016-03-01

    Taurine, the most abundant, semiessential, sulfur-containing amino acid, is well known to lower blood pressure (BP) in hypertensive animal models. However, no rigorous clinical trial has validated whether this beneficial effect of taurine occurs in human hypertension or prehypertension, a key stage in the development of hypertension. In this randomized, double-blind, placebo-controlled study, we assessed the effects of taurine intervention on BP and vascular function in prehypertension. We randomly assigned 120 eligible prehypertensive individuals to receive either taurine supplementation (1.6 g per day) or a placebo for 12 weeks. Taurine supplementation significantly decreased the clinic and 24-hour ambulatory BPs, especially in those with high-normal BP. Mean clinic systolic BP reduction for taurine/placebo was 7.2/2.6 mm Hg, and diastolic BP was 4.7/1.3 mm Hg. Mean ambulatory systolic BP reduction for taurine/placebo was 3.8/0.3 mm Hg, and diastolic BP was 3.5/0.6 mm Hg. In addition, taurine supplementation significantly improved endothelium-dependent and endothelium-independent vasodilation and increased plasma H2S and taurine concentrations. Furthermore, changes in BP were negatively correlated with both the plasma H2S and taurine levels in taurine-treated prehypertensive individuals. To further elucidate the hypotensive mechanism, experimental studies were performed both in vivo and in vitro. The results showed that taurine treatment upregulated the expression of hydrogen sulfide-synthesizing enzymes and reduced agonist-induced vascular reactivity through the inhibition of transient receptor potential channel subtype 3-mediated calcium influx in human and mouse mesenteric arteries. In conclusion, the antihypertensive effect of chronic taurine supplementation shows promise in the treatment of prehypertension through improvement of vascular function. © 2016 American Heart Association, Inc.

  8. Impact of hyperlipidemia on plasma protein binding and hepatic drug transporter and metabolic enzyme regulation in a rat model of gestational diabetes.

    Science.gov (United States)

    Anger, Gregory J; Piquette-Miller, Micheline

    2010-07-01

    It is currently unknown whether gestational diabetes mellitus (GDM), a prevalent obstetrical complication, compounds the changes in drug disposition that occur naturally in pregnancy. Hyperlipidemia occurs in GDM. Using a rat model of GDM, we determined whether excess lipids compete with drugs for plasma protein binding. Because lipids activate nuclear receptors that regulate drug transporters and metabolic enzymes, we used proteome analysis to determine whether hyperlipidemia indirectly leads to the dysregulation of these proteins in the liver. GDM was induced on gestational day 6 (GD6) via streptozotocin injection. Controls received either vehicle alone or streptozotocin with subsequent insulin treatment. Liver and plasma were collected on GD20. Glyburide and saquinavir protein binding was determined by ultrafiltration, and an established solvent method was used for plasma delipidation. Proteomics analysis was performed by using isobaric tags for relative and absolute quantitation methodology with membrane-enriched hepatic protein samples. Relative to controls, GDM rat plasma contained more cholesterol and triglycerides. Plasma protein binding of glyburide and saquinavir was decreased in GDM. Delipidation normalized protein binding in GDM plasma. Proteins linked to lipid metabolism were strongly affected in the GDM proteomics data set, with prohyperlipidemic and antihyperlipidemic changes observed, and formed networks that implicated several nuclear receptors. Up-regulation of drug transporters and metabolic enzymes was observed (e.g., multidrug resistance 1/2, CYP2A1, CYP2B9, and CYP2D3). In this study, GDM-induced hyperlipidemia decreased protein binding and was associated with drug transporter and metabolic enzyme up-regulation in the liver. Both of these findings could change drug disposition in affected pregnancies, compounding changes associated with pregnancy itself.

  9. Effects of taurine and housing density on renal function in laying hens.

    Science.gov (United States)

    Ma, Zi-Li; Gao, Yang; Ma, Hai-Tian; Zheng, Liu-Hai; Dai, Bin; Miao, Jin-Feng; Zhang, Yuan-Shu

    This study investigated the putative protective effects of supplemental 2-aminoethane sulfonic acid (taurine) and reduced housing density on renal function in laying hens. We randomly assigned fifteen thousand green-shell laying hens into three groups: a free range group, a low-density caged group, and a high-density caged group. Each group was further divided equally into a control group (C) and a taurine treatment group (T). After 15 d, we analyzed histological changes in kidney cells, inflammatory mediator levels, oxidation and anti-oxidation levels. Experimental data revealed taurine supplementation, and rearing free range or in low-density housing can lessen morphological renal damage, inflammatory mediator levels, and oxidation levels and increase anti-oxidation levels. Our data demonstrate that taurine supplementation and a reduction in housing density can ameliorate renal impairment, increase productivity, enhance health, and promote welfare in laying hens.

  10. A possible physiological role of taurine in the adult female rat liver

    National Research Council Canada - National Science Library

    Pierre, Y; Chatagner, F

    1981-01-01

    ...) in the liver of the lactating rat: 1.84 twenty-one days after the birth of pups. These observations suggest a physiological role for the higher concentration of taurine in the liver of the adult female rat...

  11. Sulfur - Containing Amino Acids Homocysteine And Taurine In Seizures: Current State Of The Art.

    Science.gov (United States)

    Hrncic, Dragan; Rasic-Markovic, Aleksandra; Macut, Duro; Mladenovic, Dusan; Susic, Veselinka; Djuric, Dragan; Stanojlovic, Olivera

    2017-06-08

    Homocysteine and taurine are non-proteinogenic sulfur-containing amino acids with numerous important physiological roles. Homocysteine and taurine are considered to be neurotransmitters and neuromodulators, the first showing clear hyperexcitability role, while the second is known by its inhibitory and neuroprotective properties. In this article we addressed the role of homocysteine and its related metabolite homocysteine thiolactone in the development of seizures, focusing on its experimental models in vivo, potential mechanisms of proepileptogenic activity via interactions with glutamatergic neurotransmission, sodium pump activity, oxidative stress, cholinergic system and NO-mediated neuronal signaling, as well as the pharmacological and non-pharmacological approaches to modulate its proconvulsive activity. Additionally, herein we will focus on taurine neuroprotective effects linked with its anticonvulsive properties and mediated by taurine interactions with GABA-ergic and glutamatergic system and oxidative stress. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Effects of taurine and housing density on renal function in laying hens*

    Science.gov (United States)

    Ma, Zi-li; Gao, Yang; Ma, Hai-tian; Zheng, Liu-hai; Dai, Bin; Miao, Jin-feng; Zhang, Yuan-shu

    2016-01-01

    This study investigated the putative protective effects of supplemental 2-aminoethane sulfonic acid (taurine) and reduced housing density on renal function in laying hens. We randomly assigned fifteen thousand green-shell laying hens into three groups: a free range group, a low-density caged group, and a high-density caged group. Each group was further divided equally into a control group (C) and a taurine treatment group (T). After 15 d, we analyzed histological changes in kidney cells, inflammatory mediator levels, oxidation and anti-oxidation levels. Experimental data revealed taurine supplementation, and rearing free range or in low-density housing can lessen morphological renal damage, inflammatory mediator levels, and oxidation levels and increase anti-oxidation levels. Our data demonstrate that taurine supplementation and a reduction in housing density can ameliorate renal impairment, increase productivity, enhance health, and promote welfare in laying hens. PMID:27921400

  13. Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp.

    Science.gov (United States)

    Denger, K; Laue, H; Cook, A M

    1997-06-01

    Enrichment cultures were prepared under strictly anoxic conditions in medium representing fresh water and containing an organosulfonate as electron donor and carbon source, and nitrate as electron acceptor. The inoculum was from the anaerobic digestor of two communal sewage works. The natural organosulfonates 2-aminoethanesulfonate (taurine), DL-2-amino-3-sulfopropionate (cysteate) and 2-hydroxyethanesulfonate (isethionate) all gave positive enrichments, whereas unsubstituted alkanesulfonates, such as methanesulfonate and arenesulfonates, gave no enrichment. Two representative enrichments were used to obtain pure cultures, and strains NKNTAU (utilizing taurine) and NKNIS (utilizing isethionate) were isolated. Strain NKNTAU was examined in detail. Out of 18 tested organosulfonates, it utilized only one, taurine, and was identified as a novel Alcaligenes sp., a facultatively anaerobic bacterium. Carbon from taurine was converted to cell material and carbon dioxide. The amino group was released as ammonium ion and the sulfonate moiety was recovered as sulfate. Nitrate was reduced to nitrogen gas.

  14. SINERGIS TAURIN LINTAH LAUT (Discodoris sp. DAN TEMULAWAK (Curcuma xanthorriza Roxb. DALAM SERBUK MINUMAN FUNGSIONAL

    Directory of Open Access Journals (Sweden)

    R. Marwita Sari Putri

    2014-06-01

    Full Text Available AbstrakSumber daya perairan seperti lintah laut (Discodoris sp. dapat dibuat menjadi minuman fungsional.Lintah laut telah dilaporkan memiliki sifat antioksidan dan mengandung taurin. Penelitian ini dilakukandalam 2 tahap: 1 persiapan bahan baku (Discodoris sp, 2 formulasi produk minuman fungsional.Tujuan dari penelitian ini adalah: 1 untuk menentukan konsentrasi komposisi bahan baku denganmempertimbangkan efek sinergis dari taurin pada minuman fungsional, 2 untuk mengetahui pengaruhpreparasi pada serbuk minuman fungsional terhadap jumlah taurin. Tiga formula terbaik yang diterimasecara organoleptik yaitu formula T1 (Discodoris sp. 20%, jahe 40%, 20% curcuma, lemon 20%, T2 formula(Discodoris sp. 25%, jahe 40%, 15% curcuma, lemon 20% dan T3 formula (Discodoris sp. 30%, jahe 40%,10% curcuma, lemon 20%.Kata kunci: efek sinergis, lintah laut, minuman fungsional, taurin

  15. Characterization of taurine as anti-obesity agent in C. elegans.

    Science.gov (United States)

    Kim, Hye Min; Do, Chang-Hee; Lee, Dong Hee

    2010-08-24

    Taurine plays an important role in reducing physiological stress. Recent studies indicated that taurine may serve as an anti-obesity agent at the cellular level. This study characterizes taurine's potential anti-obesity function in C. elegans, which have become a popular in vivo model for understanding the regulatory basis of lipid biosynthesis and deposition. Two strains of C. elegans were raised on a normal or high-fat diet: N2 (normal) and RB1600, a mutant in tub-1 that serves as a tubby homologue and functions parallel to the 3-ketoacyl-CoA thiolase gene (kat-1) in regulating lipid accumulation. Taurine's effect on lipid deposition was characterized according to assays of Sudan black B staining, triglyceride content measurement, food consumption, and mobility comparison. When N2 was treated with taurine after the culture in the high-fat media, the worms showed lower lipid accumulation in the assays of the Sudan black B staining and the triglyceride quantification. The anti-obesity effect was less evident in the experiment for RB1600. When the amount of taurine was increased for the high-fat-diet-treated N2 strain, fat deposition decreased and mobility increased in a dose-dependent manner. In the food consumption assays, taurine did not cause a significant change in food intake. Taken together, these results strongly imply that taurine plays an important role in reducing fat deposition by modulating cellular pathways for lipid accumulation and stimulating mobility, but not the pathways for lipid biosynthesis and food intake.

  16. Taurine induces anti-anxiety by activating strychnine-sensitive glycine receptor in vivo.

    Science.gov (United States)

    Zhang, Cheng Gao; Kim, Sung-Jin

    2007-01-01

    Taurine has a variety of actions in the body such as cardiotonic, host-defensive, radioprotective and glucose-regulatory effects. However, its action in the central nervous system remains to be characterized. In the present study, we tested to see whether taurine exerts anti-anxiety effects and to explore its mechanism of anti-anxiety activity in vivo. The staircase test and elevated plus maze test were performed to test the anti-anxiety action of taurine. Convulsions induced by strychnine, picrotoxin, yohimbine and isoniazid were tested to explore the mechanism of anti-anxiety activity of taurine. The Rotarod test was performed to test muscle relaxant activity and the passive avoidance test was carried out to test memory activity in response to taurine. Taurine (200 mg/kg, p.o.) significantly reduced rearing numbers in the staircase test while it increased the time spent in the open arms as well as the number of entries to the open arms in the elevated plus maze test, suggesting that it has a significant anti-anxiety activity. Taurine's action could be due to its binding to and activating of strychnine-sensitive glycine receptor in vivo as it inhibited convulsion caused by strychnine; however, it has little effect on picrotoxin-induced convulsion, suggesting its anti-anxiety activity may not be linked to GABA receptor. It did not alter memory function and muscle activity. Taken together, these results suggest that taurine could be beneficial for the control of anxiety in the clinical situations. Copyright (c) 2007 S. Karger AG, Basel.

  17. New N-acyl taurine from the sea urchin Glyptocidaris crenularis.

    Science.gov (United States)

    Zhou, Xuefeng; Xu, Tunhai; Wen, Kewei; Yang, Xian-Wen; Xu, Shi-Hai; Liu, Yonghong

    2010-01-01

    A new N-acyl taurine (1), together with a new natural product, l-(beta-D-ribofuranosyl)-1,2,4-triazole (4), and two known compounds (2 and 3), were isolated from the sea urchin, Glyptocidaris crenularis. The new N-acyl taurine was elucidated as 2-(5R,15S-dihydroxyeicosanoylamino) ethanesulfonic acid on the basis of spectroscopic (NMR, MS) analyses and the modified Mosher ester method. Compound 2 showed significant toxicity against brine shrimp larvae.

  18. Taurine antagonized oxidative stress injury induced by homocysteine in rat vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Lin CHANG; Jian-xin XU; Jing ZHAO; Yong-zheng PANG; Chao-shu TANG; Yong-fen QI

    2004-01-01

    AIM: To observe protective effects of taurine on reactive oxygen species generation induced by homocysteine in rat vascular smooth muscle cells (VSMC). METHODS: Rat VSMC was incubated with various concentrations of homocysteine and taurine. The lactate dehydrogenase (LDH) activity which released into culture medium was elevated as an indicator for VSMC injury. The reactive oxygen species (ROS) - hydrogen peroxide (H2O2) and superoxide anion (O2- )were measured with luminol or lucigenin chemiluminescences method, and the mitochondria Mn-superoxide dismutase (Mn-SOD) and catalase (CAT) were also measured in treated VSMC. RESULTS: LDH leakage from cultured VSMC treated with homocystenie, was increased (P<0.01 vs control), and it was markedly inhibited when co-incubated with taurine (P<0.01). Homocysteine induced H2O2 generation from VSMC in a concentration dependent manner (P<0.01 vs control). However, taurine (5, 10, and 20 mmol/L) significantly antagonized 0.5 mmol/L homocysteine-induced H2O2 generation in VSMC in a concentration dependent manner (P<0.01 vs homocysteine alone group), although taurine itself did not alter the H2O2 generation in VSMC (P>0.05 vs control).In this study, the superoxide anion in VSMC was not detectable by chemiluminent method. In addition, treatment of VSMC with taurine increased mitochondria Mn-SOD and CAT activity in a concentration dependent manner (P<0.05), but homocysteine decreased mitochondria Mn-SOD and CAT activity (P<0.01 vs control). In addition,co-administration of taurine markedly ameliorated homocysteine-induced inhibition of Mn-SOD and CAT activity in VSMC (P<0.01 vs homocysteine alone group). CONCLUSION: Taurine antagonized the effects of homocysteine on ROS generation and anti-oxidant enzyme activities in rat VSMC in vitro.

  19. PLA2 - a major regulator of volume-sensitive taurine release in NIH3T3 fibroblasts

    DEFF Research Database (Denmark)

    Lambert, I. H.

    2006-01-01

    Release of the organic osmolyte taurine efflux from NIH3T3 cells is increased by osmotic cell swelling in hypotonic medium and decreased by osmotic cell shrinkage in hypertonic medium. Release of arachidonic acid is increased under hypotonic conditions if oxidation of the fatty acid via the 5...... and taurine in NIH3T3 cells under isotonic conditions. The potentiating effect of melittin on arachidonic release and taurine efflux is substantially increased in osmotically swollen cells and almost abolished in osmotic shrunken cells. H2O2 potentiates the melittin-induced taurine efflux under isotonic...... conditions but has only a minor effect on the melittin-induced taurine efflux under hypertonic conditions. Bromoenol lactone and manoalide, known inhibitors of Ca2+-independent phospholipase A2 (iPLA2) and secretory phospholipase A2 (sPLA2), respectively, reduce arachidonic acid and taurine release from NIH3...

  20. Comparison of taurine, GABA, Glu, and Asp as scavengers of malondialdehyde in vitro and in vivo

    Science.gov (United States)

    Deng, Yan; Wang, Wei; Yu, Pingfeng; Xi, Zhijiang; Xu, Lijian; Li, Xiaolong; He, Nongyue

    2013-04-01

    The purpose of this study is to determine if amino acid neurotransmitters such as gamma-aminobutyric acid (GABA), taurine, glutamate (Glu), and aspartate (Asp) can scavenge activated carbonyl toxicants. In vitro, direct reaction between malondialdehyde (MDA) and amino acids was researched using different analytical methods. The results indicated that scavenging activated carbonyl function of taurine and GABA is very strong and that of Glu and Asp is very weak in pathophysiological situations. The results provided perspective into the reaction mechanism of taurine and GABA as targets of activated carbonyl such as MDA in protecting nerve terminals. In vivo, we studied the effect of taurine and GABA as antioxidants by detecting MDA concentration and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. It was shown that MDA concentration was decreased significantly, and the activities of SOD and GSH-Px were increased significantly in the cerebral cortex and hippocampus of acute epileptic state rats, after the administration of taurine and GABA. The results indicated that the peripherally administered taurine and GABA can scavenge free radicals and protect the tissue against activated carbonyl in vivo and in vitro.

  1. Physiological concentrations of zinc reduce taurine-activated GlyR responses to drugs of abuse

    Science.gov (United States)

    Kirson, Dean; Cornelison, Garrett L.; Philpo, Ashley E.; Todorovic, Jelena; Mihic, S. John

    2013-01-01

    Taurine is an endogenous ligand acting on glycine receptors in many brain regions, including the hippocampus, prefrontal cortex, and nucleus accumbens (nAcc). These areas also contain low concentrations of zinc, which is known to potentiate glycine receptor responses. Despite an increasing awareness of the role of the glycine receptor in the rewarding properties of drugs of abuse, the possible interactions of these compounds with zinc has not been thoroughly addressed. Two-electrode voltage-clamp electrophysiological experiments were performed on α1, α2 α1β and a2β glycine receptors expressed in Xenopus laevis oocytes. The effects of zinc alone, and zinc in combination with other positive modulators on the glycine receptor, were investigated when activated by the full agonist glycine versus the partial agonist taurine. Low concentrations of zinc enhanced responses of maximally-effective concentrations of taurine but not glycine. Likewise, chelation of zinc from buffers decreased responses of taurine- but not glycine-mediated currents. Potentiating concentrations of zinc decreased ethanol, isoflurane, and toluene enhancement of maximal taurine currents with no effects on maximal glycine currents. Our findings suggest that the concurrence of high concentrations of taurine and low concentrations of zinc attenuate the effects of additional modulators on the glycine receptor, and that these conditions are more representative of in vivo functioning than effects seen when these modulators are applied in isolation. PMID:23973295

  2. The effect of taurine and enriched environment on behaviour, memory and hippocampus of diabetic rats.

    Science.gov (United States)

    Rahmeier, Francine Luciano; Zavalhia, Lisiane Silveira; Tortorelli, Lucas Silva; Huf, Fernanda; Géa, Luiza Paul; Meurer, Rosalva Thereza; Machado, Aryadne Cardoso; Gomez, Rosane; Fernandes, Marilda da Cruz

    2016-09-06

    Diabetes mellitus (DM) has been studied recently as a major cause of cognitive deficits, memory and neurodegenerative damage. Taurine and enriched environment have stood out for presenting neuroprotective and stimulating effects that deserve further study. In this paper, we examined the effects of taurine and enriched environment in the context of diabetes, evaluating effects on behaviour, memory, death and cellular activity. Eighty-eight Wistar rats were divided into 2 groups (E=enriched environment; C=standard housing). Some animals (24/group) underwent induction of diabetes, and within each group, some animals (half of diabetics (D) and half of non-diabetics (ND)/group) were treated for 30days with taurine (T). Untreated animals received saline (S). In total, there were eight subgroups: DTC, DSC, NDTC, NDSC, DTE, DSE, NDTE and NDSE. During the experiment, short-term memory was evaluated. After 30th day of experiment, the animals were euthanized and was made removal of brains used to immunohistochemistry procedures for GFAP and cleaved caspase-3. As a result, we observed that animals treated with taurine showed better performance in behavioural and memory tasks, and the enriched environment had positive effects, especially in non-diabetic animals. Furthermore, taurine and enriched environment seemed to be able to interfere with neuronal apoptosis and loss of glial cells, and in some instances, these two factors seemed to have synergistic effects. From these data, taurine and enriched environment may have important neurostimulant and neuroprotective effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Physiological concentrations of zinc reduce taurine-activated GlyR responses to drugs of abuse.

    Science.gov (United States)

    Kirson, Dean; Cornelison, Garrett L; Philpo, Ashley E; Todorovic, Jelena; Mihic, S John

    2013-12-01

    Taurine is an endogenous ligand acting on glycine receptors in many brain regions, including the hippocampus, prefrontal cortex, and nucleus accumbens (nAcc). These areas also contain low concentrations of zinc, which is known to potentiate glycine receptor responses. Despite an increasing awareness of the role of the glycine receptor in the rewarding properties of drugs of abuse, the possible interactions of these compounds with zinc has not been thoroughly addressed. Two-electrode voltage-clamp electrophysiological experiments were performed on α1, α2 α1β and α2β glycine receptors expressed in Xenopus laevis oocytes. The effects of zinc alone, and zinc in combination with other positive modulators on the glycine receptor, were investigated when activated by the full agonist glycine versus the partial agonist taurine. Low concentrations of zinc enhanced responses of maximally-effective concentrations of taurine but not glycine. Likewise, chelation of zinc from buffers decreased responses of taurine- but not glycine-mediated currents. Potentiating concentrations of zinc decreased ethanol, isoflurane, and toluene enhancement of maximal taurine currents with no effects on maximal glycine currents. Our findings suggest that the concurrence of high concentrations of taurine and low concentrations of zinc attenuate the effects of additional modulators on the glycine receptor, and that these conditions are more representative of in vivo functioning than effects seen when these modulators are applied in isolation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Investigating the in vitro effect of taurine on the infant lymphocytes by sister chromatid exchange.

    Science.gov (United States)

    Ergun, Mehmet Ali; Soysal, Yasemin; Kismet, Erol; Akay, Cemal; Dundaroz, Rusen; Ilhan, Mustafan; Imirzalioglu, Necat

    2006-06-01

    Taurine (2-aminoethane sulphonic acid) is normally present in most mammalian tissues and the most abundant free amino acid in lymphocytes. It participates in various important physiological activities including modulation of the functioning of the central nervous system, cell proliferation, viability and prevention of oxidant-induced injury in many tissues. Its levels in human milk are very high which may be the most important difference from cow's milk. In contrast, an inverse association between breast-feeding and carcinogenesis in childhood or later in life has been suggested by several studies. The study group consisted of eight healthy infants. Peripheral blood was collected and lymphocytes were cultured with either Taurine or Mitomycin C (MMC). Sister chromatid exchange in lymphocytes of the infants were calculated. Statistical differences were found between untreated and MMC-treated lymphocytes, untreated and MMC plus taurine-treated lymphocytes, and between MMC and MMC plus taurine-treated lymphocytes (P = 0.012). The results indicated that taurine plays a protective role in MMC-induced sister chromatid exchange in human lymphocytes. The authors suggest that the high levels of taurine found in human milk may induce protecting effects from breast-feeding against DNA damage and malignancy.

  5. The role of NADPH oxidase in taurine attenuation of Streptococcus uberis-induced mastitis in rats.

    Science.gov (United States)

    Miao, Jinfeng; Zhang, Jinqiu; Ma, Zili; Zheng, Liuhai

    2013-08-01

    In order to evaluate the role of taurine on the oxidative stress mediated by NADPH oxidase in Streptococcus uberis-induced (S. uberis) mastitis, rats were administered daily (per os) 100mg/kg of taurine (group TS) or an equal volume of physiological saline (group CS) from gestation day 14 until parturition. Seventy-two hours after parturition, approximately 100cfu of S. uberis was infused into each of 2 mammary glands. Pretreatment with taurine significantly decreased mRNA and protein expression of p47phox and p22phox in mammary tissues. The total anti-oxidation capability (T-AOC) levels and superoxide dismutase (SOD) activities decreased, while malondialdehyde (MDA) levels increased both in mammary tissues and serum of rats with intramammary S. uberis infusion. Gavage administration of taurine moderated this change. Concentrations of interleukin-1β (IL-1β) and IL-6 in mammary glands decreased as a result of taurine administration. Significant differences (Ptaurine has the ability of regulating redox conditions which leads to the suppression of oxidative stress and secretion of proinflammatory cytokines. This phenomenon may be ascribed to taurines's ability to inhibit the expression of NADPH oxidase. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Taurine reduces the secretion of apolipoprotein B100 and lipids in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Nagao Koji

    2008-10-01

    Full Text Available Abstract Background Higher concentrations of serum lipids and apolipoprotein B100 (apoB are major individual risk factors of atherosclerosis and coronary heart disease. Therefore ameliorative effects of food components against the diseases are being paid attention in the affluent countries. The present study was undertaken to investigate the effect of taurine on apoB secretion and lipid metabolism in human liver model HepG2 cells. Results The results demonstrated that an addition of taurine to the culture media reduces triacylglycerol (TG-mass in the cells and the medium. Similarly, cellular cholesterol-mass was decreased. Taurine inhibited the incorporation of [14C] oleate into cellular and medium TG, suggesting the inhibition of TG synthesis. In addition, taurine reduced the synthesis of cellular cholesterol ester and its secretion, suggesting the inhibition of acyl-coenzyme A:cholesterol acyltransferase activity. Furthermore, taurine reduced the secretion of apoB, which is a major protein component of very low-density lipoprotein. Conclusion This is a first report to demonstrate that taurine inhibits the secretion of apoB from HepG2 cells.

  7. Pegylated interferon-alpha plus taurine in treatment of rat liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Ilker Tasci; Cihan Yurdaydin; Hakan Bozkaya; Ozden Uzunalimoglu; Ahmet Turan Isik; Harun M Said; Mehmet Refik Mas; Sevil Atalay Vural; Salih Deveci; Bilgin Comert; Gunay Alcigir; Nuket Mas; Cemal Akay; Mithat Bozdayi

    2007-01-01

    AIM: To investigate the antifibrotic effects of peginterferonalpha 2b and taurine on oxidative stress markers and hepatocellular apoptosis.METHODS: Sixty rats with CCl4-induced liver fibrosis were divided into 4 groups (n=15). Group 1 was left for spontaneous recovery (SR). Groups 2-4 received peginterferon-alpha 2b, taurine, and their combination,respectively, for four weeks. Histological fibrosis scores,histomorphometric analysis, tissue hydroxyproline, tissue MDA, GPx and SOD activities were determined. Activated stellate cells and hepatocellular apoptosis were also evaluated.RESULTS: The degree of fibrosis decreased in all treatment groups compared to spontaneous recovery group. Taurine alone and in combination with peginterferon-alpha 2b reduced oxidative stress markers,but peginterferon-alpha 2b alone did not. Apoptotic hepatocytes and activated stellate cells were higher in groups 2-4 than in group 1. Combined taurine and peginterferon-alpha 2b further reduced fibrosis and increased activated stellate cell apoptosis, but could not improve oxidative stress more than taurine alone.CONCLUSION: Peginterferon-alpha 2b exerts antifibrotic effects on rat liver fibrosis. It seems ineffective against oxidative stress in vivo. Peginterferon-alpha 2b in combination with taurine seems to be an antifibrotic strategy.

  8. Protection of the ischemic myocardium by propionylcarnitine taurine amide. Comparison with other carnitine derivatives.

    Science.gov (United States)

    Regitz, V; Paulson, D J; Noonan, J; Fleck, E; Shug, A L

    1987-01-01

    The cardioprotective effect of the two synthetic carnitine derivatives, propionylcarnitine taurine amide (PCTA) and butyrylcarnitine taurine amide (BCTA), were studied in isolated perfused rat hearts. The protective effects of PCTA and BCTA were compared with those of chemically similar compounds, which have already been investigated in part and reported on; i.e. propionylcarnitine, carnitine, taurine and the combination of propionylcarnitine and taurine. The addition of either PCTA or BCTA significantly improved the recovery of cardiac function of ischemic reperfused hearts. PCTA (0.5 mM) treated hearts regained 75%, 91% and 89% of their preischemic values for cardiac output, left ventricular pressure and dp/dt after 90 min ischemia and 15 min reperfusion. These parameters of cardiac function remained impaired in control hearts which recovered only 38% of the initial preischemic cardiac output, 73% of initial intraventricular developed pressure and 64% of initial positive dp/dt. The cardioprotective effects of PCTA, BCTA and propionylcarnitine were in the same range. However, PCTA and BCTA acted in 20-fold lower molar concentrations compared to propionylcarnitine. Carnitine (11 mM), taurine (11 mM) as well as the combination of propionylcarnitine and taurine at low concentrations had no cardioprotective effect in these experiments. Myocardial adenosine triphosphate (ATP) and creatine phosphate (CP) concentrations were significantly higher in the PCTA or BCTA treated hearts than in controls, and lactate levels were reduced.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Quantification of taurine in energy drinks using ¹H NMR.

    Science.gov (United States)

    Hohmann, Monika; Felbinger, Christine; Christoph, Norbert; Wachter, Helmut; Wiest, Johannes; Holzgrabe, Ulrike

    2014-05-01

    The consumption of so called energy drinks is increasing, especially among adolescents. These beverages commonly contain considerable amounts of the amino sulfonic acid taurine, which is related to a magnitude of various physiological effects. The customary method to control the legal limit of taurine in energy drinks is LC-UV/vis with postcolumn derivatization using ninhydrin. In this paper we describe the quantification of taurine in energy drinks by (1)H NMR as an alternative to existing methods of quantification. Variation of pH values revealed the separation of a distinct taurine signal in (1)H NMR spectra, which was applied for integration and quantification. Quantification was performed using external calibration (R(2)>0.9999; linearity verified by Mandel's fitting test with a 95% confidence level) and PULCON. Taurine concentrations in 20 different energy drinks were analyzed by both using (1)H NMR and LC-UV/vis. The deviation between (1)H NMR and LC-UV/vis results was always below the expanded measurement uncertainty of 12.2% for the LC-UV/vis method (95% confidence level) and at worst 10.4%. Due to the high accordance to LC-UV/vis data and adequate recovery rates (ranging between 97.1% and 108.2%), (1)H NMR measurement presents a suitable method to quantify taurine in energy drinks.

  10. Energy drink ingredients. Contribution of caffeine and taurine to performance outcomes.

    Science.gov (United States)

    Peacock, Amy; Martin, Frances Heritage; Carr, Andrea

    2013-05-01

    While the performance-enhancing effects of energy drinks are commonly attributed to caffeine, recent research has shown greater facilitation of performance post-consumption than typically expected from caffeine content alone. Consequently, the aim of the present study was to investigate the independent and combined effect of taurine and caffeine on behavioural performance, specifically reaction time. Using a double-blind, placebo-controlled, crossover, within-subjects design, female undergraduates (N=19) completed a visual oddball task and a stimulus degradation task 45min post-ingestion of capsules containing: (i) 80mg caffeine, (ii) 1000mg taurine, (iii) caffeine and taurine combined, and (iv) matched placebo. Participants completed each treatment condition, with sessions separated by a minimum 2-day washout period. Whereas no significant treatment effects were recorded for reaction time in the visual oddball task, facilitative caffeine effects were evident in the stimulus degradation task, with significantly faster reaction time in active relative to placebo caffeine conditions. Furthermore, there was a trend towards faster mean reaction time in the caffeine condition relative to the taurine condition and combined caffeine and taurine condition. Thus, treatment effects were task-dependent, in that independent caffeine administration exerted a positive effect on performance, and co-administration with taurine tended to attenuate the facilitative effects of caffeine in the stimulus degradation task only. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Chitosan film enriched with an antioxidant agent, taurine, in fenestration defects.

    Science.gov (United States)

    Ozmeriç, N; Ozcan, G; Haytaç, C M; Alaaddinoğlu, E E; Sargon, M F; Senel, S

    2000-09-05

    A natural polysaccharide, chitosan (poly-N-acetyl glucosaminoglycan), which is a nontoxic and bioabsorbable polymer, has been shown to have hemostatic and antibacterial effects. An amino acid, taurine, is considered to be beneficial for regulating the inflammation process. The purpose of this study was to investigate the synergistic effects of taurine and chitosan in the experimental defects at the vestibular bone of maxillary canine teeth in six dogs. Chitosan films were prepared as delivery system with or without taurine and placed in the randomly chosen defects. Biopsies were performed on the postoperative seventh day and routine histological procedures were performed for light and electron microscopic evaluations. For each group, 30 different microscopic areas were examined and the numbers of macrophages and neutrophils in these areas were counted. The mean numbers of both macrophages and neutrophils were found statistically different between the chitosan film incorporated with taurine and free chitosan groups (p 0.05). In addition to the increase in cell counts in both groups, the cytological alterations were more obvious in the chitosan film group incorporated with taurine. Accordingly, taurine appears to enhance the acceleration effect of chitosan on wound healing at early periods. This effect could be considered beneficial in tissue repair in destructive diseases like periodontitis.

  12. Cholesterol-lowing effect of taurine in HepG2 cell.

    Science.gov (United States)

    Guo, Junxia; Gao, Ya; Cao, Xuelian; Zhang, Jing; Chen, Wen

    2017-03-16

    A number of studies indicate that taurine promotes cholesterol conversion to bile acids by upregulating CYP7A1 gene expression. Few in vitro studies are concerned the concentration change of cholesterol and its product of bile acids, and the molecular mechanism of CYP7A1 induction by taurine. The levels of intracellular total cholesterol (TC), free cholesterol (FC), cholesterol ester (EC), total bile acids (TBA) and medium TBA were determined after HepG2 cells were cultured for 24/48 h in DMEM supplemented with taurine at the final concentrations of 1/10/20 mM respectively. The protein expressions of CYP7A1, MEK1/2, c-Jun, p-c-Jun and HNF-4α were detected. Taurine significantly reduced cellular TC and FC in dose -and time-dependent ways, and obviously increased intracellular/medium TBA and CYP7A1 expressions. There was no change in c-Jun expression, but the protein expressions of MEK1/2 and p-c-Jun were increased at 24 h and inhibited at 48 h by 20 mM taurine while HNF4α was induced after both of the 24 h and 48 h treatment. Taurine could enhance CYP7A1 expression by inducing HNF4α and inhibiting MEK1/2 and p-c-Jun expressions to promote intracellular cholesterol metabolism.

  13. Measuring the Orientation of Taurine in the Active Site of the Non-Heme Fe (II)/α-Ketoglutarate Dependent Taurine Hydroxylase (TauD) using Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy

    OpenAIRE

    Casey, Thomas M.; Grzyska, Piotr K.; Hausinger, Robert P.; McCracken, John

    2013-01-01

    The position and orientation of taurine near the non-heme Fe(II) center of the α-ketoglutarate (α-KG) dependent taurine hydroxylase (TauD) was measured using Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy. TauD solutions containing Fe(II), α-KG, and natural abundance taurine or specifically deuterated taurine were prepared anaerobically and treated with nitric oxide (NO) to make an S=3/2 {FeNO}7 complex that is suitable for robust analysis with EPR spectroscopy. Using ratios of E...

  14. A Preliminary Study on the Relationship between Platelet Serotonin Transporter Functionality, Depression, and Fatigue in Patients with Untreated Chronic Hepatitis C

    Directory of Open Access Journals (Sweden)

    Leonora Franke

    2014-01-01

    Full Text Available Objective and Methods. Although the interaction between fatigue and depression in patients with chronic hepatitis C infection (HCV has been recognized, the biological correlates of this observation have yet to be reported. We addressed this issue by examining serotonin transporter- (SERT- driven [14C]-serotonin uptake rate (SUR and serotonin content in platelets of 65 untreated HCV patients and 65 healthy control subjects (HCS. All patients completed report questionnaires for fatigue, depression, and general psychopathology. Structured interviews were conducted by a board-certified psychiatrist. Results. Whereas 36 of the patients experienced fatigue of moderate-to-severe intensity, only 16 reported symptoms of depression (BDI score > 10. Mean SUR in patients with depressive symptoms was significantly higher relative to the HCS, corresponding to a large Cohen’s effect size of d=1.45 (95% CI=0.66—1.83. Patients who rated their fatigue to have a marked impact on mood and activity displayed a moderate relationship between the BDI score and SUR (n=18, r=0.563, P=0.015, which becomes stronger after controlling for age, gender, and thrombocytopenia (rpart=0.710, P=0.003. In the univariate analysis, high fatigue interference score, thrombocytopenia, and high SUR were all significant predictors of depression. Conclusions. High SERT activity could be implicated in the expression of depressive symptoms especially in a subgroup of HCV patients who are feeling fatigue as markedly distressing.

  15. Cerebral Taurine Levels are Associated with Brain Edema and Delayed Cerebral Infarction in Patients with Aneurysmal Subarachnoid Hemorrhage.

    Science.gov (United States)

    Kofler, Mario; Schiefecker, Alois; Ferger, Boris; Beer, Ronny; Sohm, Florian; Broessner, Gregor; Hackl, Werner; Rhomberg, Paul; Lackner, Peter; Pfausler, Bettina; Thomé, Claudius; Schmutzhard, Erich; Helbok, Raimund

    2015-12-01

    Cerebral edema and delayed cerebral infarction (DCI) are common complications after aneurysmal subarachnoid hemorrhage (aSAH) and associated with poor functional outcome. Experimental data suggest that the amino acid taurine is released into the brain extracellular space secondary to cytotoxic edema and brain tissue hypoxia, and therefore may serve as a biomarker for secondary brain injury after aSAH. On the other hand, neuroprotective mechanisms of taurine treatment have been described in the experimental setting. We analyzed cerebral taurine levels using high-performance liquid chromatography in the brain extracellular fluid of 25 consecutive aSAH patients with multimodal neuromonitoring including cerebral microdialysis (CMD). Patient characteristics and clinical course were prospectively recorded. Associations with CMD-taurine levels were analyzed using generalized estimating equations with an autoregressive process to handle repeated observations within subjects. CMD-taurine levels were highest in the first days after aSAH (11.2 ± 3.2 µM/l) and significantly decreased over time (p taurine levels compared to those without (Wald = 7.3, df = 1, p taurine supplementation and brain extracellular taurine (p = 0.6). Moreover, a significant correlation with brain extracellular glutamate (r = 0.82, p taurine levels were found in patients with brain edema or DCI after aneurysmal subarachnoid hemorrhage. Its value as a potential biomarker deserves further investigation.

  16. Dietary taurine can improve the hypoxia-tolerance but not the growth performance in juvenile grass carp Ctenopharyngodon idellus.

    Science.gov (United States)

    Yang, Huijun; Tian, Lixia; Huang, Junwa; Liang, Guiying; Liu, Yongjian

    2013-10-01

    This study was conducted to evaluate the effects of dietary taurine, as a feed additive, on the hypoxia-tolerance and growth performance of the juvenile grass carp Ctenopharyngodon idellus, one of the most important and intensively cultured freshwater fish, with the largest production in China. Graded levels of taurine (0, 0.5, 1, 1.5, 2 and 2.5 g kg(-1) dry diet) were fed to grass carp juveniles (mean weight: 5.26 ± 0.03 g) for 8 weeks. The survival time during acute hypoxia increased as dietary levels of taurine increased, with the highest dose of taurine resulting in the best acute hypoxia-tolerance. The erythrocyte osmotic fragility in grass carp was significantly improved when dietary taurine level was at least 1.5 g kg(-1) diet and can be improved much more when dietary taurine level was up to 2.5 g kg(-1) diet. A significant correlation between hemolysis rate of the erythrocyte osmotic fragility test and the survival time of acute hypoxia (r = -0.873, P = 0.023 taurine may contribute to its role of enhancing acute hypoxia-tolerance in grass carp. Dietary taurine cannot improve growth performance of grass carp, but it can increase the value of mesenteric fat index, indicating that dietary taurine influences the lipid metabolism. This study provides valuable information to improve hypoxia-tolerance of grass carp.

  17. Influence of dietary taurine and housing density on oviduct function in laying hens.

    Science.gov (United States)

    Dai, Bin; Zhang, Yuan-shu; Ma, Zi-li; Zheng, Liu-hai; Li, Shuang-jie; Dou, Xin-hong; Gong, Jian-sen; Miao, Jin-feng

    2015-06-01

    Experiments were conducted to study the effects of dietary taurine and housing density on oviduct function in laying hens. Green-shell laying hens were randomly assigned to a free range group and two caged groups, one with low-density and the other with high-density housing. Each group was further divided into control (C) and taurine treatment (T) groups. All hens were fed the same basic diet except that the T groups' diet was supplemented with 0.1% taurine. The experiment lasted 15 d. Survival rates, laying rates, daily feed consumption, and daily weight gain were recorded. Histological changes, inflammatory mediator levels, and oxidation and anti-oxidation levels were determined. The results show that dietary taurine supplementation and reduced housing density significantly attenuated pathophysiological changes in the oviduct. Nuclear factor-κB (NF-κB) DNA binding activity increased significantly in the high-density housing group compared with the two other housing groups and was reduced by taurine supplementation. Tumor necrosis factor-α (TNF-α) mRNA expression in the high-density and low-density C and T groups increased significantly. In the free range and low-density groups, dietary taurine significantly reduced the expression of TNF-α mRNA. Supplementation with taurine decreased interferon-γ (IFN-γ) mRNA expression significantly in the low-density groups. Interleukin 4 (IL-4) mRNA expression was significantly higher in caged hens. IL-10 mRNA expression was higher in the high-density C group than in the free range and low-density C groups. Supplementation with taurine decreased IL-10 mRNA expression significantly in the high-density group and increased superoxide dismutase (SOD) activity in the free range hens. We conclude that taurine has important protective effects against oviduct damage. Reducing housing density also results in less oxidative stress, less inflammatory cell infiltration, and lower levels of inflammatory mediators in the oviduct

  18. Hepatitis C and Incarceration

    Science.gov (United States)

    HEPATITIS C & INCARCERATION What is hepatitis? “Hepatitis” means inflammation or swelling of the liver. The liver is an important ... viral hepatitis: Hepatitis A, Hepatitis B, and Hepatitis C. They are all different from each other and ...

  19. Hepatic Encephalopathy

    Medline Plus

    Full Text Available ... of terms Donate Today Enroll in 123 What is Hepatic Encephalopathy? Hepatic Encephalopathy, sometimes referred to as portosystemic encephalopathy or PSE, is a condition that causes temporary worsening of brain ...

  20. Hepatitis A

    Science.gov (United States)

    ... an inflammation of the liver. One type, hepatitis A, is caused by the hepatitis A virus (HAV). The disease spreads through contact with ... washed in untreated water Putting into your mouth a finger or object that came into contact with ...

  1. Hepatitis B

    Science.gov (United States)

    ... information on hepatitis, both in the context of HIV coinfection and as a separate illness. NATAP provides coverage of key conferences, maintains a selection of hepatitis articles, and features an ask-the-expert forum on ...

  2. Hepatitis B

    Science.gov (United States)

    ... personal items (such as toothbrush, razor, and nail clippers) with a person who has the virus Were ... B virus Digestive system Aggressive hepatitis Gianotti-Crosti syndrome on the leg Hepatitis B References Kim DK, ...

  3. Scallop protein with endogenous high taurine and glycine content prevents high-fat, high-sucrose-induced obesity and improves plasma lipid profile in male C57BL/6J mice

    DEFF Research Database (Denmark)

    Tastesen, Hanne Sørup; Keenan, Alison H.; Madsen, Lise

    2014-01-01

    -fasted states. Dietary intake of taurine and glycine correlated negatively with body mass gain and total fat mass, while intake of all other amino acids correlated positively. Furthermore taurine and glycine intake correlated positively with improved plasma lipid profile, i.e., lower levels of plasma lipids...... and higher HDL-to-total-cholesterol ratio. In conclusion, dietary scallop protein completely prevents high-fat, high-sucrose-induced obesity whilst maintaining lean body mass and improving the plasma lipid profile in male C57BL/6J mice......., glycerol and hydroxy-butyrate levels were significantly reduced, indicating reduced lipid mobilization in scallop-fed mice. The plasma HDL-to-total-cholesterol ratio was higher, suggesting increased reverse cholesterol transport or cholesterol clearance in scallop-fed mice in both fasted and non...

  4. Taurine Concentrations Decrease in Critically Ill Patients With Shock Given Enteral Nutrition.

    Science.gov (United States)

    Vermeulen, Mechteld A R; van Stijn, Mireille F M; Visser, Marlieke; Lemmens, Stéphanie M P; Houdijk, Alexander P J; van Leeuwen, Paul A M; Oudemans-van Straaten, Heleen M

    2016-02-01

    Nutrition studies in the intensive care unit (ICU) have shown that adequate enteral nutrition (EN) support has clinical benefits. However, the course of amino acid concentrations in plasma has never been investigated in patients admitted with shock receiving EN. We hypothesized that plasma concentrations, when deficit, increase during EN and that persistent deficiency is associated with poor outcome. In 33 septic or cardiogenic shock patients receiving EN, plasma amino acid concentrations were measured during 5 days. Changes in amino acid concentrations, correlations with clinical outcome variables, and regression analyses were studied. On ICU admission, several plasma concentrations were deficient. Plasma concentrations of almost all amino acids increased. In contrast, taurine decreased by >50%, from 47.6 µmol/L on admission to 20.0 µmol/L at day 1, and remained low at day 5. Taurine (admission) correlated with time on mechanical ventilation (R = -0.42, P = .015). Taurine decrease within 24 hours correlated with Acute Physiology and Chronic Health Evaluation II predicted mortality (R = 0.43, P = .017) and Sequential Organ Failure Assessment score (R = 0.36, P = .05). Regression analyses confirmed correlations. Several amino acids were deficient in plasma on ICU admission but increased during EN. Taurine concentrations declined and were associated with longer periods of mechanical ventilation and ICU support. Fast taurine decline correlated with severity of organ failure. These findings support the role of taurine during ischemia, reperfusion, and inflammation. Taurine may be an essential candidate to enrich nutrition support for critically ill patients, although more research is required. © 2015 American Society for Parenteral and Enteral Nutrition.

  5. Taurine supplementation attenuates delayed increase in exercise-induced arterial stiffness.

    Science.gov (United States)

    Ra, Song-Gyu; Choi, Youngju; Akazawa, Nobuhiko; Ohmori, Hajime; Maeda, Seiji

    2016-06-01

    There is a delayed increase in arterial stiffness after eccentric exercise that is possibly mediated by the concurrent delayed increase in circulating oxidative stress. Taurine has anti-oxidant action, and taurine supplementation may be able to attenuate the increase in oxidative stress after exercise. The purpose of the present study was to investigate whether taurine supplementation attenuates the delayed increase in arterial stiffness after eccentric exercise. In the present double-blind, randomized, and placebo-controlled trial, we divided 29 young, healthy men into 2 groups. Subjects received either 2.0 g of placebo (n = 14) or taurine (n = 15) 3 times per day for 14 days prior to the exercise, on the day of exercise, and the following 3 days. The exercise consisted of 2 sets of 20 maximal-effort eccentric repetitions with the nondominant arm only. On the morning of exercise and for 4 days thereafter, we measured serum malondialdehyde (MDA) and carotid-femoral pulse wave velocity (cfPWV) as indices of oxidative stress and arterial stiffness, respectively. On the third and fourth days after exercise, both MDA and cfPWV significantly increased in the placebo group. However, these elevations were significantly attenuated in the taurine group. The increase in MDA was associated with an increase in cfPWV from before exercise to 4 days after exercise (r = 0.597, p taurine group. Our results suggest that delayed increase in arterial stiffness after eccentric exercise was probably affected by the exercise-induced oxidative stress and was attenuated by the taurine supplementation.

  6. Neuroprotective influence of taurine on fluoride-induced biochemical and behavioral deficits in rats.

    Science.gov (United States)

    Adedara, Isaac A; Abolaji, Amos O; Idris, Umar F; Olabiyi, Bolanle F; Onibiyo, Esther M; Ojuade, TeminiJesu D; Farombi, Ebenezer O

    2017-01-05

    Epidemiological and experimental studies have demonstrated that excessive exposure to fluoride induced neurodevelopmental toxicity both in humans and animals. Taurine is a free intracellular β-amino acid with antioxidant and neuroprotective properties. The present study investigated the neuroprotective mechanism of taurine by evaluating the biochemical and behavioral characteristics in rats exposed to sodium fluoride (NaF) singly in drinking water at 15 mg/L alone or orally co-administered by gavage with taurine at 100 and 200 mg/kg body weight for 45 consecutive days. Locomotor behavior was assessed using video-tracking software during a 10-min trial in a novel environment while the brain structures namely the hypothalamus, cerebrum and cerebellum of the rats were processed for biochemical determinations. Results showed that taurine administration prevented NaF-induced locomotor and motor deficits namely decrease in total distance travelled, total body rotation, maximum speed, absolute turn angle along with weak forelimb grip, increased incidence of fecal pellets and time of grooming, immobility and negative geotaxis. The taurine mediated enhancement of the exploratory profiles of NaF-exposed rats was supported by track and occupancy plot analyses. Moreover, taurine prevented NaF-induced increase in hydrogen peroxide and lipid peroxidation levels but increased acetylcholinesterase and the antioxidant enzymes activities in the hypothalamus, cerebrum and cerebellum of the rats. Collectively, taurine protected against NaF-induced neurotoxicity via mechanisms involving the restoration of acetylcholinesterase activity and antioxidant status with concomitant inhibition of lipid peroxidation in the brain of rats. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Taurine ameliorated thyroid function in rats co-administered with chlorpyrifos and lead.

    Science.gov (United States)

    Akande, Motunrayo Ganiyat; Shittu, Muftau; Uchendu, Chidiebere; Yaqub, Lukuman Surakat

    2016-12-01

    Chlorpyrifos is a widely used organophosphate insecticide for domestic, agricultural and industrial purposes. Lead is a toxic heavy metal and it is used for domestic and industrial purposes. Taurine is a semi essential amino acid with bioprotective properties. The aim of this study was to investigate the effects of taurine on thyroid function in Wistar rats co-administered with chlorpyrifos and lead. The rats were divided into 5 groups of 10 rats each. The first two groups were administered with distilled water and soya oil (1 ml/kg) respectively. The other groups received taurine (50 mg/kg), chlorpyrifos + lead [chlorpyrifos (4.25 mg/kg, 1/20 median lethal dose] and lead (233.25 mg/kg, 1/20 median lethal dose) and taurine + chlorpyrifos + lead respectively. The treatments were administered once daily by oral gavage for 16 weeks. The rats were euthanized after the completion of the study and the thyroid function and thyroid histoarchitecture were evaluated. The results revealed that co-administration of chlorpyrifos and lead to the rats induced perturbations in thyroid function and this was manifested by reductions in the concentrations of triiodothyronine and thyroxine, increased thyroid stimulating hormone concentration and degeneration of the follicular epithelia of the thyroid gland. Taurine alleviated the perturbations in thyroid function and improved thyroid gland histoarchitecture. The beneficial effects of taurine may be attributed to its ability to protect the body from toxicity and oxidative stress. Taurine may be useful for prophylaxis against disruptions in thyroid function in animals that are exposed to environmental chlorpyrifos and lead.

  8. Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus.

    Science.gov (United States)

    Deleuze, C; Duvoid, A; Hussy, N

    1998-03-01

    1. Taurine, prominently concentrated in glial cells in the supraoptic nucleus (SON), is probably involved in the inhibition of SON vasopressin neurones by peripheral hypotonic stimulus, via activation of neuronal glycine receptors. We report here the properties and origin of the osmolarity-dependent release of preloaded [3H]taurine from isolated whole SO nuclei. 2. Hyposmotic medium induced a rapid, reversible and dose-dependent increase in taurine release. Release showed a high sensitivity to osmotic change, with a significant enhancement with less than a 5% decrease in osmolarity. Hyperosmotic stimulus decreased basal release. 3. Evoked release was independent of extracellular Ca2+ and Na+, and was blocked by the Cl- channel blockers DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid) and DPC (N-phenylanthranilic acid), suggesting a diffusion process through volume-sensitive Cl- channels. 4. Evoked release was transient for large osmotic reductions (> or = 15%), probably reflecting regulatory volume decrease (RVD). However, it was sustained for smaller changes, suggesting that taurine release induced by physiological variations in osmolarity is not linked to RVD. 5. Basal and evoked release were strongly inhibited by an incubation of the tissue with the glia-specific toxin fluorocitrate, but were unaffected by a neurotoxic-treatment with NMDA, demonstrating the glial origin of the release of taurine in the SON. 6. The high osmosensitivity of taurine release suggests an important role in the osmoregulation of the SON function. These results strengthen the notion of an implication of taurine and glial cells in the regulation of the whole-body fluid balance through the modulation of vasopressin release.

  9. Revisiting AFLP fingerprinting for an unbiased assessment of genetic structure and differentiation of taurine and zebu cattle.

    Science.gov (United States)

    Utsunomiya, Yuri Tani; Bomba, Lorenzo; Lucente, Giordana; Colli, Licia; Negrini, Riccardo; Lenstra, Johannes Arjen; Erhardt, Georg; Garcia, José Fernando; Ajmone-Marsan, Paolo

    2014-04-17

    Descendants from the extinct aurochs (Bos primigenius), taurine (Bos taurus) and zebu cattle (Bos indicus) were domesticated 10,000 years ago in Southwestern and Southern Asia, respectively, and colonized the world undergoing complex events of admixture and selection. Molecular data, in particular genome-wide single nucleotide polymorphism (SNP) markers, can complement historic and archaeological records to elucidate these past events. However, SNP ascertainment in cattle has been optimized for taurine breeds, imposing limitations to the study of diversity in zebu cattle. As amplified fragment length polymorphism (AFLP) markers are discovered and genotyped as the samples are assayed, this type of marker is free of ascertainment bias. In order to obtain unbiased assessments of genetic differentiation and structure in taurine and zebu cattle, we analyzed a dataset of 135 AFLP markers in 1,593 samples from 13 zebu and 58 taurine breeds, representing nine continental areas. We found a geographical pattern of expected heterozygosity in European taurine breeds decreasing with the distance from the domestication centre, arguing against a large-scale introgression from European or African aurochs. Zebu cattle were found to be at least as diverse as taurine cattle. Western African zebu cattle were found to have diverged more from Indian zebu than South American zebu. Model-based clustering and ancestry informative markers analyses suggested that this is due to taurine introgression. Although a large part of South American zebu cattle also descend from taurine cows, we did not detect significant levels of taurine ancestry in these breeds, probably because of systematic backcrossing with zebu bulls. Furthermore, limited zebu introgression was found in Podolian taurine breeds in Italy. The assessment of cattle diversity reported here contributes an unbiased global view to genetic differentiation and structure of taurine and zebu cattle populations, which is essential for an

  10. Hepatitis C

    Science.gov (United States)

    ... an inflammation of the liver. One type, hepatitis C, is caused by the hepatitis C virus (HCV). It usually spreads through contact with ... childbirth. Most people who are infected with hepatitis C don't have any symptoms for years. If ...

  11. Hepatitis C Virus Proteins Interact with the Endosomal Sorting Complex Required for Transport (ESCRT Machinery via Ubiquitination To Facilitate Viral Envelopment

    Directory of Open Access Journals (Sweden)

    Rina Barouch-Bentov

    2016-11-01

    Full Text Available Enveloped viruses commonly utilize late-domain motifs, sometimes cooperatively with ubiquitin, to hijack the endosomal sorting complex required for transport (ESCRT machinery for budding at the plasma membrane. However, the mechanisms underlying budding of viruses lacking defined late-domain motifs and budding into intracellular compartments are poorly characterized. Here, we map a network of hepatitis C virus (HCV protein interactions with the ESCRT machinery using a mammalian-cell-based protein interaction screen and reveal nine novel interactions. We identify HRS (hepatocyte growth factor-regulated tyrosine kinase substrate, an ESCRT-0 complex component, as an important entry point for HCV into the ESCRT pathway and validate its interactions with the HCV nonstructural (NS proteins NS2 and NS5A in HCV-infected cells. Infectivity assays indicate that HRS is an important factor for efficient HCV assembly. Specifically, by integrating capsid oligomerization assays, biophysical analysis of intracellular viral particles by continuous gradient centrifugations, proteolytic digestion protection, and RNase digestion protection assays, we show that HCV co-opts HRS to mediate a late assembly step, namely, envelopment. In the absence of defined late-domain motifs, K63-linked polyubiquitinated lysine residues in the HCV NS2 protein bind the HRS ubiquitin-interacting motif to facilitate assembly. Finally, ESCRT-III and VPS/VTA1 components are also recruited by HCV proteins to mediate assembly. These data uncover involvement of ESCRT proteins in intracellular budding of a virus lacking defined late-domain motifs and a novel mechanism by which HCV gains entry into the ESCRT network, with potential implications for other viruses.

  12. Caffeamide 36-13 Regulates the Antidiabetic and Hypolipidemic Signs of High-Fat-Fed Mice on Glucose Transporter 4, AMPK Phosphorylation, and Regulated Hepatic Glucose Production

    Directory of Open Access Journals (Sweden)

    Yueh-Hsiung Kuo

    2014-01-01

    Full Text Available This study was to investigate the antidiabetic and antihyperlipidemic effects of (E-3-[3, 4-dihydroxyphenyl-1-(piperidin-1-ylprop-2-en-1-one] (36-13 (TS, one of caffeic acid amide derivatives, on high-fat (HF- fed mice. The C57BL/6J mice were randomly divided into the control (CON group and the experimental group, which was firstly fed a HF diet for 8 weeks. Then, the HF group was subdivided into four groups and was given TS orally (including two doses or rosiglitazone (Rosi or vehicle for 4 weeks. Blood, skeletal muscle, and tissues were examined by measuring glycaemia and dyslipidemia-associated events. TS effectively prevented HF diet-induced increases in the levels of blood glucose, triglyceride, insulin, leptin, and free fatty acid (FFA and weights of visceral fa; moreover, adipocytes in the visceral depots showed a reduction in size. TS treatment significantly increased the protein contents of glucose transporter 4 (GLUT4 in skeletal muscle; TS also significantly enhanced Akt phosphorylation in liver, whereas it reduced the expressions of phosphoenolpyruvate carboxykinase (PEPCK and glucose-6-phosphatase (G6Pase. Moreover, TS enhanced phosphorylation of AMP-activated protein kinase (phospho-AMPK both in skeletal muscle and liver tissue. Therefore, it is possible that the activation of AMPK by TS resulted in enhanced glucose uptake in skeletal muscle, contrasting with diminished gluconeogenesis in liver. TS exhibits hypolipidemic effect by decreasing the expressions of fatty acid synthase (FAS. Thus, antidiabetic properties of TS occurred as a result of decreased hepatic glucose production by PEPCK and G6Pase downregulation and improved insulin sensitization. Thus, amelioration of diabetic and dyslipidemic state by TS in HF-fed mice occurred by regulation of GLUT4, G6Pase, and FAS and phosphorylation of AMPK.

  13. Pre-incubation with cyclosporine A potentiates its inhibitory effects on pitavastatin uptake mediated by recombinantly expressed cynomolgus monkey hepatic organic anion transporting polypeptide.

    Science.gov (United States)

    Takahashi, Tsuyoshi; Ohtsuka, Tatsuyuki; Uno, Yasuhiro; Utoh, Masahiro; Yamazaki, Hiroshi; Kume, Toshiyuki

    2016-11-01

    Cyclosporine A, an inhibitor of hepatic organic anion transporting polypeptides (OATPs), reportedly increased plasma concentrations of probe substrates, although its maximum unbound blood concentrations were lower than the experimental half-maximal inhibitory (IC50 ) concentrations. Pre-incubation with cyclosporine A in vitro before simultaneous incubation with probes has been reported to potentiate its inhibitory effects on recombinant human OATP-mediated probe uptake. In the present study, the effects of cyclosporine A and rifampicin on recombinant cynomolgus monkey OATP-mediated pitavastatin uptake were investigated in pre- and simultaneous incubation systems. Pre-incubation with cyclosporine A, but not with rifampicin, decreased the apparent IC50 values on recombinant cynomolgus monkey OATP1B1- and OATP1B3-mediated pitavastatin uptake. Application of the co-incubated IC50 values toward R values (1 + [unbound inhibitor]inlet to the liver, theoretically maximum /inhibition constant) in static models, 1.1 in monkeys and 1.3 in humans, for recombinant cynomolgus monkey and human OATP1B1-mediated pitavastatin uptake might result in the poor prediction of drug interaction magnitudes. In contrast, the lowered IC50 values after pre-incubation with cyclosporine A provided better prediction with R values of 3.9 for monkeys and 2.7 for humans when the estimated maximum cyclosporine A concentrations at the inlet to the liver were used. These results suggest that the enhanced inhibitory potential of perpetrator medicines by pre-incubation on cynomolgus monkey OATP-mediated pitavastatin uptake in vitro could be of value for the precise estimation of drug interaction magnitudes in silico, in accordance with the findings from pre-administration of inhibitors on pitavastatin pharmacokinetics validated in monkeys. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Hypoksisk hepatitis

    DEFF Research Database (Denmark)

    Amadid, Hanan; Schiødt, Frank Vinholt

    2014-01-01

    Hypoxic hepatitis (HH), also known as ischaemic hepatitis or shock liver, is an acute liver injury caused by hepatic hypoxia. Cardiac failure, respiratory failure and septic shock are the main underlying conditions. In each of these conditions, several haemodynamic mechanisms lead to hepatic...... hypoxia. A shock state is observed in only 50% of cases. Thus, shock liver and ischaemic hepatitis are misnomers. HH can be a diagnostic pitfall but the diagnosis can be established when three criteria are met. Prognosis is poor and prompt identification and treatment of the underlying conditions...

  15. Neuroprotection of taurine against reactive oxygen species is associated with inhibiting NADPH oxidases.

    Science.gov (United States)

    Han, Zhou; Gao, Li-Yan; Lin, Yu-Hui; Chang, Lei; Wu, Hai-Yin; Luo, Chun-Xia; Zhu, Dong-Ya

    2016-04-15

    It is well established that taurine shows potent protection against glutamate-induced injury to neurons in stroke. The neuroprotection may result from multiple mechanisms. Increasing evidences suggest that NADPH oxidases (Nox), the primary source of superoxide induced by N-methyl-d-aspartate (NMDA) receptor activation, are involved in the process of oxidative stress. We found that 100μM NMDA induced oxidative stress by increasing the reactive oxygen species level, which contributed to the cell death, in vitro. Neuron cultures pretreated with 25mM taurine showed lower percentage of death cells and declined reactive oxygen species level. Moreover, taurine attenuated Nox2/Nox4 protein expression and enzyme activity and declined intracellular calcium intensity during NMDA-induced neuron injury. Additionally, taurine also showed neuroprotection against H2O2-induced injury, accompanying with Nox inhibition. So, we suppose that protection of taurine against reactive oxygen species during NMDA-induced neuron injury is associated with Nox inhibition, probably in a calcium-dependent manner. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of Taurine on Hemodiafiltration in Patients With Chronic Heart Failure.

    Science.gov (United States)

    Shiohira, Shunji; Komatsu, Mizuki; Okazaki, Masayuki; Naganuma, Toshiaki; Kawaguchi, Hiroshi; Nitta, Kosaku; Tsuchiya, Ken

    2016-02-01

    Taurine, an important factor in the living body, is essential for cardiovascular function and development and function of skeletal muscle, retina and central nervous system. In the present study, its effect on cardiovascular function was specifically taken into consideration. In hemodiafiltration (HDF) patients, the effect of taurine on patients with chronic heart failure (CHF), in whom dry weight was difficult to control, was evaluated. All patients who were subjected to regular HDF for 4 h three times per week at Joban hospital were included in this study. Patients with chronic heart failure, in whom dry weight was difficult to control (N = 4), were included in the evaluation of clinical status. X-ray and echocardiography were determined before and after taurine treatment. Almost all patients were taking nitric acid, warfarin, anti-platelet agents and vasopressors. Because vital signs were unstable in chronic heart failure, all cases withheld antihypertensive drugs during HDF. For unstable vital signs during HDF, pulmonary congestion was chronically recognized. After taurine was started, vital signs stabilized and lowering of dry weight was possible. In addition, X-ray and cardiac diastolic failure on echocardiography improved. Taurine was effective for CHF patients on HDF in whom dry weight was difficult to control in spite of various medications. © 2015 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  17. Taurine Attenuates Dimethylbenz[a]anthracene-induced Breast Tumorigenesis in Rats: A Plasma Metabolomic Study.

    Science.gov (United States)

    He, Y U; Li, Qingdi Quentin; Guo, Song Chao

    2016-02-01

    Breast cancer is the most common malignancy and the leading cause of cancer-related mortality in women worldwide. Taurine, the most abundant free amino acid, plays a role in several biological processes in humans and has been shown to have activity against breast cancer and other tumors. To investigate the role and mechanism of taurine action in breast cancer, we used dimethylbenz[a]anthracene (DMBA)-induced breast carcinogenesis in rats as a model of breast cancer. The administration of taurine significantly reduced the DMBA-induced breast cancer rate from 80% to 40% in rats (ptaurine-administered rats. Bioinformatic analysis further revealed that these metabolites are involved in multiple metabolic pathways, including energy, glucose, amino acid, and nucleic acid metabolism, suggesting that the antitumor activity of taurine in rats is mediated through altered metabolism of breast cancer cells. We propose that these differential metabolites may be potential biomarkers for monitoring cancer therapy and prognosis in the clinic. This study provides a scientific basis for further investigations of the antitumor mechanism of taurine and the development of novel therapeutic strategies to treat breast cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Effect of oral taurine on morbidity and mortality in elderly hip fracture patients: a randomized trial.

    Science.gov (United States)

    Van Stijn, Mireille F M; Bruins, Arnoud A; Vermeulen, Mechteld A R; Witlox, Joost; Teerlink, Tom; Schoorl, Margreet G; De Bandt, Jean Pascal; Twisk, Jos W R; Van Leeuwen, Paul A M; Houdijk, Alexander P J

    2015-05-29

    Hip fracture patients represent a large part of the elderly surgical population and face severe postoperative morbidity and excessive mortality compared to adult surgical hip fracture patients. Low antioxidant status and taurine deficiency is common in the elderly, and may negatively affect postoperative outcome. We hypothesized that taurine, an antioxidant, could improve clinical outcome in the elderly hip fracture patient. A double blind randomized, placebo controlled, clinical trial was conducted on elderly hip fracture patients. Supplementation started after admission and before surgery up to the sixth postoperative day. Markers of oxidative status were measured during hospitalization, and postoperative outcome was monitored for one year after surgery. Taurine supplementation did not improve in-hospital morbidity, medical comorbidities during the first year, or mortality during the first year. Taurine supplementation lowered postoperative oxidative stress, as shown by lower urinary 8-hydroxy-2-deoxyguanosine levels (Generalized estimating equations (GEE) analysis average difference over time; regression coefficient (Beta): -0.54; 95% CI: -1.08--0.01; p = 0.04), blunted plasma malondialdehyde response (Beta: 1.58; 95% CI: 0.00-3.15; p = 0.05) and a trend towards lower lactate to pyruvate ratio (Beta: -1.10; 95% CI: -2.33-0.12; p = 0.08). We concluded that peri-operative taurine supplementation attenuated postoperative oxidative stress in elderly hip fracture patients, but did not improve postoperative morbidity and mortality.

  19. The role of taurine in diabetes and the development of diabetic complications.

    Science.gov (United States)

    Hansen, S H

    2001-01-01

    The ubiquitously found beta-amino acid taurine has several physiological functions, e.g. in bile acid formation, as an osmolyte by cell volume regulation, in the heart, in the retina, in the formation of N-chlorotaurine by reaction with hypochlorous acid in leucocytes, and possibly for intracellular scavenging of carbonyl groups. Some animals, such as the cat and the C57BL/6 mouse, have disturbances in taurine homeostasis. The C57BL/6 mouse strain is widely used in diabetic and atherosclerotic animal models. In diabetes, the high extracellular levels of glucose disturb the cellular osmoregulation and sorbitol is formed intracellularly due to the intracellular polyol pathway, which is suspected to be one of the key processes in the development of diabetic late complications and associated cellular dysfunctions. Intracellular accumulation of sorbitol is most likely to cause depletion of other intracellular compounds including osmolytes such as myo-inositol and taurine. When considering the clinical complications in diabetes, several links can be established between altered taurine metabolism and the development of cellular dysfunctions in diabetes which cause the clinical complications observed in diabetes, e.g. retinopathy, neuropathy, nephropathy, cardiomyopathy, platelet aggregation, endothelial dysfunction and atherosclerosis. Possible therapeutic perspectives could be a supplementation with taurine and other osmolytes and low-molecular compounds, perhaps in a combinational therapy with aldose reductase inhibitors. Copyright 2001 John Wiley & Sons, Ltd.

  20. Alterations of taurine in the brain of chronic kainic acid epilepsy model.

    Science.gov (United States)

    Baran, H

    2006-10-01

    The aim of the study was to investigate the changes of taurine in the kainic acid (KA, 10 mg/kg, s.c.) chronic model of epilepsy, six months after KA application. The KA-rats used were divided into a group of animals showing weak behavioural response to KA (WDS, rare focal convulsion; rating scale 3 up to 3 h after KA injection). The brain regions investigated were caudate nucleus, substantia nigra, septum, hippocampus, amygdala/piriform cortex, and frontal, parietal, temporal and occipital cortices. KA-rats with rating rats with rating >3 developed spontaneous recurrent seizures and six months after injection increased taurine levels were found in the caudate nucleus (162.5% of control) and hippocampus (126.6% of control), while reduced taurine levels were seen in the septum (78.2% of control). In summary, increased taurine levels in the hippocampus may involve processes for membrane stabilisation, thus favouring recovery after neuronal hyperactivity. The increased taurine levels in the caudate nucleus could be involved in the modulation of spontaneous recurrent seizure activity.

  1. Effects of taurine supplementation on bone mineral density in ovariectomized rats fed calcium deficient diet.

    Science.gov (United States)

    Choi, Mi-Ja

    2009-01-01

    Taurine supplementation has been shown to have a beneficial effect on femur bone mineral content in ovariectomized rats. It therefore seemed desirable to find out whether the beneficial effect of taurine on ovariectomized rats fed calcium deficient diet could also be reproduced. Forty female Sprague-Dawley rats were divided into two groups. One group was OVX and the other group received sham operation (SHAM), and received either control diet or a taurine supplemented diet for 6 weeks. All rats were fed on calcium deficient diet (AIN-93: 50% level of calcium) and deionized water. Bone mineral density (BMD) and bone mineral content (BMC) were measured in spine and femur. The serum and urine concentrations of calcium and phosphorus were determined. Bone formation was measured by serum osteocalcin and alkaline phosphatase (ALP) concentrations. Bone resorption rate was measured by deoxypyridinoline (DPD) crosslinks immunoassay and corrected for creatinine. Urinary calcium and phosphorus excretion, osteocalcin in blood and cross link value were not significantly different among the groups. Within the OVX group, the taurine supplemented group had not higher femur bone mineral content than the control group. This study established the need for a study on the taurine effect on bone with different calcium levels.

  2. Two weeks taurine supplementation reverses endothelial dysfunction in young male type 1 diabetics.

    LENUS (Irish Health Repository)

    Moloney, Michael A

    2010-10-01

    Type 1 diabetics have a well-recognised risk of accelerated cardiovascular disease. Even in the absence of clinical signs there are detectable abnormalities of conduit vessel function. Our group has previously reported reversal of endothelial dysfunction in diabetics with pravastatin. In young asymptomatic smokers, taurine supplementation has a beneficial impact on macrovascular function, assessed by FMD, and shows an up-regulation of nitric oxide from monocyte-endothelial cell interactions. We hypothesise that taurine supplementation reverses early endothelial abnormalities in young male type 1 diabetics, as assessed by applanation tonometry, brachial artery ultrasound and laser Doppler fluximetry. Asymptomatic, male diabetics (n=9) were scanned prior to treatment and then randomised in a double-blind cross-over fashion to receive either 2 weeks placebo or taurine. Control patients (n=10) underwent a baseline scan. Assessed diabetics had detectable, statistically significant abnormalities when compared with controls, in both arterial stiffness (augmentation index) and brachial artery reactivity (FMD). Both of these parameters were returned to control levels with 2 weeks taurine supplementation. In conclusion, 2 weeks taurine supplementation reverses early, detectable conduit vessel abnormalities in young male diabetics. This may have important implications in the long-term treatment of diabetic patients and their subsequent progression towards atherosclerotic disease.

  3. Antenatal taurine supplementation for improving brain ultrastructure in fetal rats with intrauterine growth restriction.

    Science.gov (United States)

    Liu, J; Liu, L; Chen, H

    2011-05-05

    Changes in brain ultrastructure of fetal rats with intrauterine growth restriction (IUGR) were explored and the effects of antenatal taurine supplementation on their brain ultrastructure were determined. Fifteen pregnant rats were randomly divided into three groups: control group, IUGR model group and IUGR group given antenatal taurine supplements. Taurine was added to the diet of the taurine group at a dose of 300 mg/kg/d from 12 days after conception until natural delivery. Transmission electron microscopy was used to observe ultrastructural changes in the brains of the newborn rats. At the same time, brain cellular apoptosis was detected using TUNEL, and the changes in protein expression of neuron specific enolase and glial fibrillary acidic protein were analyzed using immunohistochemistry. The results showed that: 1) The average body weight and cerebral weight were significantly lower in the IUGR group than in the control group (ptaurine was supplemented (ptaurine supplementation. 3) The results of TUNEL showed that the counts of apoptotic brain cells in IUGR groups were significantly increased from those in control groups and that taurine could significantly decrease brain cell apoptosis (ptaurine-supplementation could significantly increase the counts of neuron specific enolase and glial fibrillary acidic protein immunoreactive cells in fetal rats with IUGR (ptaurine can significantly improve the IUGR fetal brain development.

  4. Possible anxiolytic effects of taurine in the mouse elevated plus-maze.

    Science.gov (United States)

    Chen, Si Wei; Kong, Wei Xi; Zhang, Yi Jing; Li, Yu Lei; Mi, Xiao Juan; Mu, Xiao Shuo

    2004-08-01

    The effects of taurine, an inhibitory amino acid, on the behavior of male mice were examined in the elevated plus-maze test of anxiety. Acute taurine treatment (60 mg/kg, PO) significantly increased the percentage of time spent in the open arms. Moreover, when taurine was administered daily for seven days and the plus-maze test was conducted 40 minutes after the last administration, a significant increase of the percentage of time in the open arms was observed even at dose of 2.5 mg/kg, however the open arm entries and the total entries were unaffected at any dose tested. In order to get a comprehensive profile of drug action, detailed behavioral analyses were further exerted. Single administration of 60 mg/kg taurine can significantly reduce the total rears. The results suggest that taurine have some anxiolytic-like properties, although its effects seem more limited and are not consistent with those presented by classic anxiolytics, such as diazepam.

  5. Taurine supplementation has anti-atherogenic and anti-inflammatory effects before and after incremental exercise in heart failure.

    Science.gov (United States)

    Ahmadian, Mehdi; Roshan, Valiollah Dabidi; Aslani, Elaheh; Stannard, Stephen R

    2017-07-01

    The purpose of this study was to examine the anti-atherogenic and anti-inflammatory effect of supplemental taurine prior to and following incremental exercise in patients with heart failure (HF). Patients with HF and left ventricle ejection fraction less than 50%, and placed in functional class II or III according to the New York Heart Association classification, were randomly assigned to two groups: (1) taurine supplementation; or (2) placebo. The taurine group received oral taurine (500 mg) 3 times a day for 2 weeks, and performed exercise before and after the supplementation period. The placebo group followed the same protocol, but with a starch supplement (500 mg) rather than taurine. The incremental multilevel treadmill test was done using a modified Bruce protocol. Our results indicate that inflammatory indices [C-reactive protein (CRP), platelets] decreased in the taurine group in pre-exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation ( p exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation in the placebo group ( p exercise, post-supplementation and post-exercise, post-supplementation as compared with pre-exercise, pre-supplementation ( p 0.05). our results suggest that 2 weeks of oral taurine supplementation increases the taurine levels and has anti-atherogenic and anti-inflammatory effects prior to and following incremental exercise in HF patients.

  6. Fatty acid analogue N-arachidonoyl taurine restores function of IKs channels with diverse long QT mutations

    DEFF Research Database (Denmark)

    Liin, Sara I; Larsson, Johan E; Barro-Soria, Rene

    2016-01-01

    . Finally, we find that the fatty acid analogue N-arachidonoyl taurine restores channel gating of many different mutant channels, even though the mutations are in different domains of the IKs channel and affect the channel by different molecular mechanisms. N-arachidonoyl taurine is therefore an interesting...

  7. The intrauterine metabolic environment modulates the gene expression pattern in fetal rat islets: prevention by maternal taurine supplementation

    DEFF Research Database (Denmark)

    Reusens, B; Sparre, T; Kalbe, L;

    2008-01-01

    is decreased at birth and metabolic perturbation lasts through adulthood even though a normal diet is given after birth or after weaning. Maternal and fetal plasma taurine levels are suboptimal. Maternal taurine supplementation prevents these induced abnormalities. In this study, we aimed to reveal changes...

  8. Effect of Taurine on Acinar Cell Apoptosis and Pancreatic Fibrosis in Dibutyltin Dichloride-induced Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Sawa,Kiminari

    2012-08-01

    Full Text Available The relationship between pancreatic fibrosis and apoptosis of pancreatic acinar cells has not been fully elucidated. We reported that taurine had an anti-fibrotic effect in a dibutyltin dichloride (DBTC-chronic pancreatitis model. However, the effect of taurine on apoptosis of pancreatic acinar cells is still unclear. Therefore, we examined apoptosis in DBTC-chronic pancreatitis and in the AR42J pancreatic acinar cell line with/without taurine. Pancreatic fibrosis was induced by a single administration of DBTC. Rats were fed a taurine-containing diet or a normal diet and were sacrificed at day 5. The AR42J pancreatic acinar cell line was incubated with/without DBTC with taurine chloramines. Apoptosis was determined by using terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL assay. The expression of Bad and Bcl-2 proteins in the AR42J cells lysates was detected by Western blot analysis. The apoptotic index of pancreatic acinar cells in DBTC-administered rats was significantly increased. Taurine treatment inhibited pancreatic fibrosis and apoptosis of acinar cells induced by DBTC. The number of TUNEL-positive cells in the AR42J pancreatic acinar cell lines was significantly increased by the addition of DBTC. Incubation with taurine chloramines ameliorated these changes. In conclusion, taurine inhibits apoptosis of pancreatic acinar cells and pancreatitis in experimental chronic pancreatitis.

  9. Hepatitis A through E (Viral Hepatitis)

    Science.gov (United States)

    ... Nutrition Clinical Trials Primary Sclerosing Cholangitis Wilson Disease Hepatitis (Viral) View or Print All Sections What is Viral Hepatitis? Viral hepatitis is an infection that causes liver inflammation ...

  10. Positive correlation between serum taurine and adiponectin levels in high-fat diet-induced obesity rats.

    Science.gov (United States)

    You, Jeong Soon; Zhao, Xu; Kim, Sung Hoon; Chang, Kyung Ja

    2013-01-01

    The purpose of this study was to investigate the relationship between serum taurine level and serum adiponectin or leptin levels in high-fat diet-induced obesity rats. Five-week-old male Sprague-Dawley rats were randomly divided into three groups for a period of 8 weeks (normal diet, N group; high-fat diet, HF group; high-fat diet + taurine, HFT group). Taurine was supplemented by dissolving in feed water (3% w/v), and the same amount of distilled water was orally administrated to N and HF groups. In serum, adiponectin level was higher in HFT group compared to HF group. The serum taurine level was negatively correlated with serum total cholesterol (TC) level and positively correlated with serum adiponectin level. These results suggest that dietary taurine supplementation has beneficial effects on total cholesterol and adiponectin levels in high-fat diet-induced obesity rats.

  11. A case study involving allergic reactions to sulfur-containing compounds including, sulfite, taurine, acesulfame potassium and sulfonamides.

    Science.gov (United States)

    Stohs, Sidney J; Miller, Mark J S

    2014-01-01

    A case study is reported whereby an individual with known sulfite and sulfonamide allergies develops hypersensitivity to taurine above a threshold level as well as to the non-nutritive sweetener acesulfame potassium, compounds that are not normally associated with allergic reactions. Sulfites, sulfonamides, taurine and acesulfame potassium all contain a SO3 moiety. Challenge tests provide evidence for the hypersensitivities to taurine and acesulfame potassium. The subject is also allergic to thiuram mix and thimerosal, sulfur containing compounds, as well as to various food products. This may be the first case where hypersensitivities to taurine and acesulfame potassium have been documented and reported. Several mechanistic explanations are provided for the untoward reactions to taurine and acesulfame potassium. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man.

    NARCIS (Netherlands)

    Tuschl, K.; Clayton, P.T.; Gospe Jr, S.M.; Gulab, S.; Ibrahim, S.; Singhi, P.; Aulakh, R.; Ribeiro, R.T.; Barsottini, O.G.; Zaki, M.S.; Rosario, M.L. Del; Dyack, S.; Price, V.; Rideout, A.; Gordon, K.; Wevers, R.A.; Chong, W.K.; Mills, P.B.

    2012-01-01

    Environmental manganese (Mn) toxicity causes an extrapyramidal, parkinsonian-type movement disorder with characteristic magnetic resonance images of Mn accumulation in the basal ganglia. We have recently reported a suspected autosomal recessively inherited syndrome of hepatic cirrhosis, dystonia,

  13. [Autoimmune hepatitis].

    Science.gov (United States)

    Ostojić, Rajko

    2003-01-01

    Autoimmune hepatitis is an unresolving, hepatocellular inflammation of unknown cause that is characterized by the presence of periportal hepatitis on histologic examination, tissue autoantibodies in serum, and hypergammaglobulinemia. By international consensus, the designation autoimmune hepatitis has replaced alternative terms for the condition. Three types of autoimmune hepatitis have been proposed based on immunoserologic findings. Type 1 autoimmune hepatitis is characterized by the presence of antinuclear antibodies (ANA) or smooth muscle antibodies (SMA) (or both) in serum. Seventy percent of patients with type 1 of autoimmune hepatitis are women. This type is the most common form and accounts for at least 80% of cases. Type 2 is characterized by the presence of antibodies to liver-kidney microsome type 1 (anti-LKM1) in serum. Patients with this type of autoimmune hepatitis are predominantly children. Type 3 autoimmune hepatitis is characterized by the presence of antibodies to soluble liver antigen (anti-SLA) in serum. There are no individual features that are pathognomonic of autoimmune hepatitis, and its diagnosis requires the confident exclusion of other conditions. The large majority of patients show satisfactory response to corticosteroid (usually prednisone or prednisolone) therapy. For the past 30 years it has been customary to add azathioprine as a "steroid sparing" agent to allow lower doses of steroids to be used and remission, once achieved, can be sustained in many patients with azathioprine alone after steroid withdrawal. Patients with autoimmune hepatitis who have decompensated during or after corticosteroid therapy are candidates for liver transplantation.

  14. Novel validated spectrofluorimetric methods for the determination of taurine in energy drinks and human urine.

    Science.gov (United States)

    Sharaf El Din, M K; Wahba, M E K

    2015-03-01

    Two sensitive, selective, economic and validated spectrofluorimetric methods were developed for the determination of taurine in energy drinks and spiked human urine. Method Ι is based on fluorimetric determination of the amino acid through its reaction with Hantzsch reagent to form a highly fluorescent product measured at 490 nm after excitation at 419 nm. Method ΙΙ is based on the reaction of taurine with tetracyanoethylene yielding a fluorescent charge transfer complex, which was measured at λex /em of (360 nm/450 nm). The proposed methods were subjected to detailed validation procedures, and were statistically compared with the reference method, where the results obtained were in good agreement. Method Ι was further applied to determine taurine in energy drinks and spiked human urine giving promising results. Moreover, the stoichiometry of the reactions was studied, and reaction mechanisms were postulated.

  15. Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses.

    Science.gov (United States)

    Chowdhury, Sayantani; Sinha, Krishnendu; Banerjee, Sharmistha; Sil, Parames C

    2016-11-12

    Oxidative stress, ER stress, inflammation, and apoptosis results in the pathogenesis of cisplatin-induced cardiotoxicity. The present study was designed to investigate the signaling mechanisms involved in the ameliorating effect of taurine, a conditionally essential amino acid, against cisplatin-mediated cardiac ER stress dependent apoptotic death and inflammation. Mice were simultaneously treated with taurine (150 mg kg(-1) body wt, i.p.) and cisplatin (10 mg kg(-1) body wt, i.p.) for a week. Cisplatin exposure significantly altered serum creatine kinase and troponin T levels. In addition, histological studies revealed disintegration in the normal radiation pattern of cardiac muscle fibers. However, taurine administration could abate such adverse effects of cisplatin. Taurine administration significantly mitigated the reactive oxygen species production, alleviated the overexpression of nuclear factor-κB (NF-κB), and inhibited the elevation of proinflammatoy cytokines, adhesion molecules, and chemokines. Cisplatin exposure resulted in the unfolded protein response (UPR)-regulated CCAAT/enhancer binding protein (CHOP) up-regulation, induction of GRP78: a marker of ER stress and eIF2α signaling. Increase in calpain-1 expression level, activation of caspase-12 and caspase-3, cleavage of the PARP protein as well as the inhibition of antiapoptotic protein Bcl-2 were reflected on cisplatin-triggered apoptosis. Taurine could, however, combat against such cisplatin induced cardiac-abnormalities. The above mentioned findings suggest that taurine plays a beneficial role in providing protection against cisplatin-induced cardiac damage by modulating inflammatory responses and ER stress. © 2016 BioFactors, 42(6):647-664, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  16. Taurine modulates neutrophil function but potentiates uropathogenic E. coli infection in the murine bladder.

    LENUS (Irish Health Repository)

    Condron, Claire

    2010-08-01

    Eradication of a urinary tract infection (UTI) appears to be related to a number of innate host defence mechanisms and their interactions with invading bacteria. Recurrent UTIs (rUTIs) pose a difficult problem in that these bacteria use both host and bacterial factors to evade elimination. Neutrophil bactericidal function is depressed, both systemically and in urine, in patients with a history of recurrent UTI. Taurine is a semi-essential amino acid and is successful in preserving neutrophil bactericidal function in urine. Taurine may preserve neutrophil function at the urothelium and thus aid UTI resolution. Adult female (6 weeks old) C57Bl\\/6 mice were randomised into three groups: a saline gavage only control group, a saline gavage + E. coli group, and a taurine gavage + E. coli group [21 g\\/70 kg taurine in 0.9% normal saline (N\\/S) for 5 days]. Whilst taurine gavage pre-treatment resulted in increased serum neutrophils respiratory burst activity, at the urothelial-endothelial interface it caused higher colony forming units in the urine and a higher incidence of E. coli invasion in the bladder wall with no evidence of increased bladder wall neutrophils infiltration on MPO assay of histological assessment. Histologically there was also evidence of reduced bladder inflammation and urothelial cell apoptosis. In conclusion, taurine effectively increases neutrophils activity but given its anti-inflammatory properties, at the expense of decreased urothelial-endothelial activation thus preventing clearance of active E. coli infection in the bladder. Despite the negative results, this study demonstrates the importance of modulating interactions at the urothelial interface.

  17. Post-operative monitoring of cortical taurine in patients with subarachnoid hemorrhage: a microdialysis study.

    Science.gov (United States)

    De Micheli, E; Pinna, G; Alfieri, A; Caramia, G; Bianchi, L; Colivicchi, M A; Della Corte, L; Bricolo, A

    2000-01-01

    Intracerebral MD enables the retrieval of endogenous substances from the extracellular fluid (ECF) of the brain and has been demonstrated to be a sensitive technique for early detection of subtle vasospasm-induced neurometabolic abnormalities in patients with subarachnoid hemorrhage (SAH). The aim of this study was to monitor cortical extracellular concentrations of energy metabolism markers, such as glucose and lactate, neurotransmitter amino acids, such as glutamate, aspartate, GABA and taurine to identify any neurochemical patterns of cerebral ischemia. A prospective clinical study was conducted on a group of 16 patients with non-severe SAH operated on within 72 hours after initial bleeding. Following aneurysm clipping, an MD catheter was inserted in the cortical region where vasospasm could be expected to develop, and perfused with artificial CSF at 0.3 microl/min flow rate. Dialysate was collected every 6 hours and then analyzed on High Performance Liquid Cromatography (HPLC) for glucose, lactate, pyruvate, glutamate, aspartate, GABA and taurine. Mean ECF taurine concentrations ranged from 1.4 + 0.7 to 12.3 + 7.8 micromol/l in single patients: global mean value was 5.8 + 3.8 micromol/l. In this series, the highest absolute taurine value was 25.7 micromol/l, observed in a patient who developed clinical and radiological signs of cerebral ischemia. Nine patients presented clinical disturbances related to cerebral vasospasm. In this setting, representing a mild-to-moderate hypoxic condition, MD data demonstrated that lactate is the most sensitive marker of cellular energy imbalance. Increased lactate levels positively correlated with glutamate (P<0.0001), aspartate (P<0.0001), GABA (P<0.0001) and taurine (P<0.0001) concentrations. These results suggest that also in humans increased taurine levels reflect a condition of cellular stress. This study confirms that MD is a sensitive technique to reveal subtle metabolic abnormalities possibly resulting in cell damage.

  18. Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes

    Science.gov (United States)

    Oh, Da Hee; Kim, Jung Yeon; Lee, Bong Gn; You, Jeong Soon; Chang, Kyung Ja; Chung, Hyunju; Yoo, Myung Chul; Yang, Hyung-In; Kang, Ja-Heon; Hwang, Yoo Chul; Ahn, Kue Jeong; Chung, Ho-Yeon

    2012-01-01

    This study aimed to determine whether taurine supplementation improves metabolic disturbances and diabetic complications in an animal model for type 2 diabetes. We investigated whether taurine has therapeutic effects on glucose metabolism, lipid metabolism, and diabetic complications in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term duration of diabetes. Fourteen 50-week-old OLETF rats with chronic diabetes were fed a diet supplemented with taurine (2%) or a non-supplemented control diet for 12 weeks. Taurine reduced blood glucose levels over 12 weeks, and improved OGTT outcomes at 6 weeks after taurine supplementation, in OLETF rats. Taurine significantly reduced insulin resistance but did not improve β-cell function or islet mass. After 12 weeks, taurine significantly decreased serum levels of lipids such as triglyceride, cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol. Taurine significantly reduced serum leptin, but not adiponectin levels. However, taurine had no therapeutic effect on damaged tissues. Taurine ameliorated hyperglycemia and dyslipidemia, at least in part, by improving insulin sensitivity and leptin modulation in OLETF rats with long-term diabetes. Additional study is needed to investigate whether taurine has the same beneficial effects in human diabetic patients. PMID:23114424

  19. Taurine exerts anti-osteoclastogenesis activity via inhibiting ROS generation, JNK phosphorylation and COX-2 expression in RAW264.7 cells.

    Science.gov (United States)

    Jang, Hae Jin; Kim, Sung-Jin

    2013-12-01

    Taurine is one of the abundant amino acids present in mammalian cells. It exerts various physiological actions such as wound healing, radioprotection, neuroprotection and anti-anxiety. In the present study, we sought to determine if taurine could inhibit osteoclastogenesis and explore the potential role of cyclooxygenase-2 (COX-2) and Jun N-terminal kinase (JNK) with reactive oxygen species (ROS). The level of intracellular ROS generated by lipopolysaccharide (LPS) was measured with DCFH-DA staining and fluorescence microscopic analysis was also performed in response to taurine in RAW264.7 cells. The expression of COX-2 and phosphorylation status of JNK by LPS was analyzed by Western blot analysis in the presence of taurine. Osteoclastogenesis was induced by LPS in the absence or presence of taurine and TRAP assay was performed to confirm the formation of osteoclast cells. ROS production was significantly enhanced by LPS and taurine treatment inhibited the ROS generation in a dose-dependent manner. The fluorescence microscopic analysis clearly showed the inhibition of ROS staining by taurine. Western blot analysis indicated that taurine significantly inhibited LPS induced COX-2 protein expression and it also inhibited phosphorylation of JNK. Taurine at the same concentration inhibited osteoclastogenesis induced by LPS, suggesting that taurine prevent osteoclast differentiation by inhibiting ROS generation. Inhibition of COX-2 expression and JNK phoshorylation could be an important mechanism by which taurine exerts anti-osteoclastogeneis.

  20. Potential role of curcumin and taurine combination therapy on human myeloid leukemic cells propagated in vitro.

    Science.gov (United States)

    El-Houseini, Motawa E; Refaei, Mohammed Osman; Amin, Ahmed Ibrahim; Abol-Ftouh, Mahmoud A

    2013-10-01

    Curcumin and taurine are natural products that have been used in this study evaluating their therapeutic effect on myeloid leukemic cells propagated in vitro. Sixty patients with myeloid leukemia and 30 healthy volunteers were enrolled in the study. All patient groups were admitted to the Medical Oncology Department of the National Cancer Institute, Cairo University. There were statistically significant differences between treated leukemic cells compared to normal mononuclear leukocytes in cell density, interferon-γ and immunophenotypic profile, mainly CD4+, CD8 + and CD25+. This work highlights the possibility of using curcumin and taurine as a potential useful therapy in the management of patients suffering from chronic and acute myeloid leukemias.

  1. Hepatitis B and Hepatitis C in Pregnancy

    Science.gov (United States)

    ... and hepatitis C infections during pregnancy? • How is hepatitis B virus infection spread? • What is acute hepatitis B virus infection? • What is chronic hepatitis B virus infection? • Can ...

  2. Feature Hepatitis: Hepatitis Can Strike Anyone

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Feature Hepatitis Hepatitis Can Strike Anyone Past Issues / Spring 2009 Table ... from all walks of life are affected by hepatitis, especially hepatitis C, the most common form of ...

  3. Hepatitis (For Parents)

    Science.gov (United States)

    ... of three viruses: the hepatitis A virus the hepatitis B virus the hepatitis C virus In some rare cases, ... also called serum hepatitis) is caused by the hepatitis B virus (HBV). HBV can cause a wide range of ...

  4. Travelers' Health: Hepatitis C

    Science.gov (United States)

    ... 3 - Hepatitis B Chapter 3 - Hepatitis E Hepatitis C Deborah Holtzman INFECTIOUS AGENT Hepatitis C virus (HCV), ... to child. Map 3-05. Prevalence of hepatitis C virus infection 1 PDF Version (printable) 1 Disease ...

  5. Hepatitis (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Hepatitis KidsHealth > For Parents > Hepatitis Print A A A ... to Call the Doctor en español Hepatitis About Hepatitis The word hepatitis simply means an inflammation of ...

  6. Travelers' Health: Hepatitis B

    Science.gov (United States)

    ... Chapter 3 - Hepatitis A Chapter 3 - Hepatitis C Hepatitis B Francisco Averhoff INFECTIOUS AGENT Hepatitis B is ... their exposures. Map 3-04. Prevalence of chronic hepatitis B virus infection among adults PDF Version (printable) ...

  7. Travelers' Health: Hepatitis C

    Science.gov (United States)

    ... Chapter 3 - Hepatitis B Chapter 3 - Hepatitis E Hepatitis C Deborah Holtzman INFECTIOUS AGENT Hepatitis C virus ( ... human blood Map 3-05. Global epidemiology of hepatitis C virus infection 1 PDF Version (printable) 1 ...

  8. Measuring the orientation of taurine in the active site of the non-heme Fe(II)/α-ketoglutarate-dependent taurine hydroxylase (TauD) using electron spin echo envelope modulation (ESEEM) spectroscopy.

    Science.gov (United States)

    Casey, Thomas M; Grzyska, Piotr K; Hausinger, Robert P; McCracken, John

    2013-09-12

    The position and orientation of taurine near the non-heme Fe(II) center of the α-ketoglutarate (α-KG)-dependent taurine hydroxylase (TauD) was measured using Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy. TauD solutions containing Fe(II), α-KG, and natural abundance taurine or specifically deuterated taurine were prepared anaerobically and treated with nitric oxide (NO) to make an S = 3/2 {FeNO}(7) complex that is suitable for robust analysis with EPR spectroscopy. Using ratios of ESEEM spectra collected for TauD samples having natural abundance taurine or deuterated taurine, (1)H and (14)N modulations were filtered out of the spectra and interactions with specific deuterons on taurine could be studied separately. The Hamiltonian parameters used to calculate the amplitudes and line shapes of frequency spectra containing isolated deuterium ESEEM were obtained with global optimization algorithms. Additional statistical analysis was performed to validate the interpretation of the optimized parameters. The strongest (2)H hyperfine coupling was to a deuteron on the C1 position of taurine and was characterized by an effective dipolar distance of 3.90 ± 0.25 Å from the {FeNO}(7) paramagnetic center. The principal axes of this C1-(2)H hyperfine coupling and nuclear quadrupole interaction tensors were found to make angles of 26 ± 5 and 52 ± 17°, respectively, with the principal axis of the {FeNO}(7) zero-field splitting tensor. These results are discussed within the context of the orientation of substrate taurine prior to the initiation of hydrogen abstraction.

  9. The neuroprotective effects of taurine against nickel by reducing oxidative stress and maintaining mitochondrial function in cortical neurons.

    Science.gov (United States)

    Xu, Shangcheng; He, Mindi; Zhong, Min; Li, Li; Lu, Yonghui; Zhang, Yanwen; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2015-03-17

    Previous studies have indicated that oxidative stress and mitochondrial dysfunction are involved in the toxicity of nickel. Taurine is recognized as an efficient antioxidant and is essential for mitochondrial function. To investigate whether taurine could protect against the neurotoxicity of nickel, we exposed primary cultured cortical neurons to various concentrations of nickel chloride (NiCl2; 0.5mM, 1mM and 2mM) for 24h or to 1mM NiCl2 for various periods (0 h, 12h, 24h and 48 h). Our results showed that taurine efficiently reduced lactate dehydrogenase (LDH) release induced by NiCl2. Along with this protective effect, taurine pretreatment not only significantly reversed the increase of ROS production and mitochondrial superoxide concentration, but also attenuated the decrease of superoxide dismutase (SOD) activity and glutathione (GSH) concentration in neurons exposed to NiCl2 for 24h. Moreover, nickel exposure reduced ATP production, disrupted the mitochondrial membrane potential and decreased mtDNA content. These types of oxidative damage in the mitochondria were efficiently ameliorated by taurine pretreatment. Taken together, our results indicate that the neuroprotective effects of taurine against the toxicity of nickel might largely depend on its roles in reducing oxidative stress and improving mitochondrial function. Taurine may have great pharmacological potential in treating the adverse effects of nickel in the nervous system. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer's disease

    Science.gov (United States)

    Kim, Hye Yun; Kim, Hyunjin V.; Yoon, Jin H.; Kang, Bo Ram; Cho, Soo Min; Lee, Sejin; Kim, Ji Yoon; Kim, Joo Won; Cho, Yakdol; Woo, Jiwan; Kim, YoungSoo

    2014-01-01

    Alzheimer's disease (AD) is a lethal progressive neurological disorder affecting the memory. Recently, US Food and Drug Administration mitigated the standard for drug approval, allowing symptomatic drugs that only improve cognitive deficits to be allowed to accelerate on to clinical trials. Our study focuses on taurine, an endogenous amino acid found in high concentrations in humans. It has demonstrated neuroprotective properties against many forms of dementia. In this study, we assessed cognitively enhancing property of taurine in transgenic mouse model of AD. We orally administered taurine via drinking water to adult APP/PS1 transgenic mouse model for 6 weeks. Taurine treatment rescued cognitive deficits in APP/PS1 mice up to the age-matching wild-type mice in Y-maze and passive avoidance tests without modifying the behaviours of cognitively normal mice. In the cortex of APP/PS1 mice, taurine slightly decreased insoluble fraction of Aβ. While the exact mechanism of taurine in AD has not yet been ascertained, our results suggest that taurine can aid cognitive impairment and may inhibit Aβ-related damages. PMID:25502280

  11. Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer's disease.

    Science.gov (United States)

    Kim, Hye Yun; Kim, Hyunjin V; Yoon, Jin H; Kang, Bo Ram; Cho, Soo Min; Lee, Sejin; Kim, Ji Yoon; Kim, Joo Won; Cho, Yakdol; Woo, Jiwan; Kim, YoungSoo

    2014-12-12

    Alzheimer's disease (AD) is a lethal progressive neurological disorder affecting the memory. Recently, US Food and Drug Administration mitigated the standard for drug approval, allowing symptomatic drugs that only improve cognitive deficits to be allowed to accelerate on to clinical trials. Our study focuses on taurine, an endogenous amino acid found in high concentrations in humans. It has demonstrated neuroprotective properties against many forms of dementia. In this study, we assessed cognitively enhancing property of taurine in transgenic mouse model of AD. We orally administered taurine via drinking water to adult APP/PS1 transgenic mouse model for 6 weeks. Taurine treatment rescued cognitive deficits in APP/PS1 mice up to the age-matching wild-type mice in Y-maze and passive avoidance tests without modifying the behaviours of cognitively normal mice. In the cortex of APP/PS1 mice, taurine slightly decreased insoluble fraction of Aβ. While the exact mechanism of taurine in AD has not yet been ascertained, our results suggest that taurine can aid cognitive impairment and may inhibit Aβ-related damages.

  12. Taurine and magnesium supplementation enhances the function of endothelial progenitor cells through antioxidation in healthy men and spontaneously hypertensive rats.

    Science.gov (United States)

    Katakawa, Mayumi; Fukuda, Noboru; Tsunemi, Akiko; Mori, Mari; Maruyama, Takashi; Matsumoto, Taro; Abe, Masanori; Yamori, Yukio

    2016-12-01

    Endothelial damage is repaired by endothelial progenitor cells (EPCs), which are pivotal in preventing cardiovascular diseases and prolonging lifespan. The WHO Cardiovascular Diseases and Alimentary Comparison Study demonstrated that dietary taurine and magnesium (Mg) intake suppresses cardiovascular diseases. We herein evaluate the effects of taurine and Mg supplementation on EPC function and oxidative stress in healthy men and spontaneously hypertensive rats (SHRs). Healthy men received taurine (3 g per day) or Mg (340 mg per day) for 2 weeks. SHRs and Wistar-Kyoto (WKY) rats were housed with high-salt drinking water (1% NaCl). The SHRs received 3% taurine solution and/or a high-Mg (600 mg per 100 g) diet for 4 weeks. Their peripheral blood mononuclear cells were separated to quantify EPC colony formation. Oxidative stress markers in their peripheral blood were evaluated using a free radical analytical system and a thiobarbituric acid reactive substance (TBARS) assay. Taurine and Mg supplementation significantly increased EPC colony numbers and significantly decreased free radical levels and TBARS scores in healthy men. Taurine and Mg supplementation significantly increased EPC colony numbers and significantly decreased TBARS scores and free radical levels in SHRs. Nicotinamide adenine dinucleotide phosphate oxidase component mRNA expression was significantly higher in the renal cortex of salt-loaded SHRs than in WKY rats, in which it was suppressed by taurine and Mg supplementation. Taurine and Mg supplementation increased EPC colony formation in healthy men and improved impaired EPC function in SHRs through antioxidation, indicating that the dietary intake of taurine and Mg may prolong lifespan by preventing the progression of cardiovascular diseases.

  13. The preventive effects of taurine on neural tube defects through the Wnt/PCP-Jnk-dependent pathway.

    Science.gov (United States)

    Zhang, Qinghua; Liu, Yang; Wang, Hui; Ma, Li; Xia, Hechun; Niu, Jianguo; Sun, Tao; Zhang, Li

    2017-07-17

    The aim of this study was to clarify the protective role of taurine in neuronal apoptosis and the role of the Wnt/PCP-Jnk pathway in mediating the preventive effects of taurine on neural tube defects (NTDs). HT-22 cells (a hippocampal neuron cell line) were divided into a control group, a glutamate-induced apoptosis group, and glutamate (4.0 mmol/L) plus low-dose taurine (L; 0.5 mmol/L) and high-dose taurine (H; 2.0 mmol/L) groups. The MTT assay was used to monitor cell proliferation and cell survival. Immunofluorescence and Western blot analyses were used to determine caspase 9 expression. Retinoic acid (RA) induced embryonic NTDs in Kunming mice, thus establishing an NTD model. Pregnant mice were divided into a control group, an RA (30 mg/kg body weight) group, and an RA (30 mg/kg body weight) plus taurine (free drinking of 2 g/L solution) group. Immunohistochemistry and Western blot analyses were used to detect the expression of Dvl, RhoA and phosphorylated (p)-Jnk/Jnk in the embryonic neural tubes. In HT-22 cells, the apoptosis rate was significantly higher and caspase 9 activation was also significantly increased in the glutamate-induced apoptosis group compared to the L and H taurine groups. In the NTD model, the expression levels of Dvl, RhoA, and p-Jnk were significantly higher in the RA group than in the control group, whereas they were significantly reduced in the RA + taurine group. This study suggests that taurine has positive effects on neuronal protection and NTD prevention. Moreover, the Wnt/PCP-Jnk-dependent pathway plays an important role in taurine-mediated prevention of NTDs.

  14. Hepatitis A

    Science.gov (United States)

    ... inflammation of the liver.” This inflammation can be caused by a wide variety of toxins, drugs, and metabolic diseases, as well as infection. There are at least 5 hepatitis viruses. Hepatitis A is contracted when a child eats food or drinks water that is contaminated with the virus or has ...

  15. Effect of taurine and gold nanoparticles on the morphological and molecular characteristics of muscle development during chicken embryogenesis

    DEFF Research Database (Denmark)

    Zielinska, Marlena; Sawosz, Ewa; Grodzik, Marta

    2012-01-01

    The objective of the present investigation was to evaluate the effects of taurine and Au nanoparticles on the expression of genes related to embryonic muscle development and on the morphological characteristics of muscles. Fertilised chicken eggs (n = 160) were randomly divided into four groups......: without injection (Control) and with injection of Au nanoparticles (NanoAu), taurine (Tau) or Au nanoparticles with taurine (NanoAu + Tau). The experimental solutions were given in ovo, on the third day of incubation, by injecting 0.3 ml of the experimental solution into the air sack. The embryos were...

  16. Vitamin B12–dependent taurine synthesis regulates growth and bone mass

    Science.gov (United States)

    Roman-Garcia, Pablo; Quiros-Gonzalez, Isabel; Mottram, Lynda; Lieben, Liesbet; Sharan, Kunal; Wangwiwatsin, Arporn; Tubio, Jose; Lewis, Kirsty; Wilkinson, Debbie; Santhanam, Balaji; Sarper, Nazan; Clare, Simon; Vassiliou, George S.; Velagapudi, Vidya R.; Dougan, Gordon; Yadav, Vijay K.

    2014-01-01

    Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass. PMID:24911144

  17. Identification of Bilophila wadsworthia by specific PCR which targets the taurine:pyruvate aminotransferase

    NARCIS (Netherlands)

    Laue, H.; Smits, T.H.M.; Schumacher, U.K.; Claros, M.C.; Hartemink, R.; Cook, A.M.

    2006-01-01

    The bile-resistant, strictly anaerobic bacterium Bilophila wadsworthia is found in human faecal flora, in human infections and in environmental samples. A specific PCR primer set for the gene encoding the first metabolic enzyme in the degradative pathway for taurine in B. wadsworthia,

  18. Effects of Taurine Administration on Carbohydrate Metabolism in Skeletal Muscle during the Post-Exercise Phase.

    Science.gov (United States)

    Takahashi, Yumiko; Tamura, Yuki; Matsunaga, Yutaka; Kitaoka, Yu; Terada, Shin; Hatta, Hideo

    2016-01-01

    We previously reported that taurine (2-aminoethanesulfonic acid; dose: 0.5 mg/g body weight) administration after treadmill running at 25 m/min for 90 min increased the glycogen concentration in the skeletal muscle of ICR mice at 120 min after the exercise (Takahashi et al. 2014). In the current study, we further investigated the effects of taurine administration on glycogen repletion and carbohydrate metabolism in the tibialis anterior muscle after endurance exercise. The metabolomic profiles of the tibialis anterior muscle at 120 min after the exercise were analyzed by a capillary electrophoresis-time-of-flight mass spectrometry (n=6). Fructose-1,6-bisphosphate (F1,6P), a glycogenolytic/glycolytic intermediate produced by phosphofructokinase, was significantly lower in the taurine-treated group than that in the control group (ptaurine-treated group than in the controls. At that time, phosphorylated Ser(293) on the E1α subunit of pyruvate dehydrogenase (PDH) tended to be higher in the taurine-treated mice than in the controls (p=0.09, n=5). There was a positive correlation between phosphorylation of the PDH E1α subunit at Ser(293) and glycogen concentration (r=0.73, ptaurine treatment during the post-exercise phase was accompanied by the lower levels of glycogenolytic/glycolytic intermediates.

  19. Kinetics of the Reaction of CO2 with Aqueous Potassium Salt of Taurine and Glycine

    NARCIS (Netherlands)

    Kumar, P.S.; Hogendoorn, J.A.; Versteeg, G.F.; Feron, P.H.M.

    2003-01-01

    The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas–liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike

  20. Intestinal absorption and biliary secretion of ursodeoxycholic acid and its taurine conjugate

    NARCIS (Netherlands)

    Rudolph, G; Kloeters-Plachky, P; Sauer, P; Stiehl, A

    Background Ursodeoxycholic acid (UDCA) and its taurine conjugate (TUDCA) exert a protective effect in cholestatic liver diseases. A greater hepatoprotective effect of TUDCA has been suggested. Absorption appears to be a limiting factor and up to now has not been studied in man. Methods We studied

  1. Vitamin B₁₂-dependent taurine synthesis regulates growth and bone mass.

    Science.gov (United States)

    Roman-Garcia, Pablo; Quiros-Gonzalez, Isabel; Mottram, Lynda; Lieben, Liesbet; Sharan, Kunal; Wangwiwatsin, Arporn; Tubio, Jose; Lewis, Kirsty; Wilkinson, Debbie; Santhanam, Balaji; Sarper, Nazan; Clare, Simon; Vassiliou, George S; Velagapudi, Vidya R; Dougan, Gordon; Yadav, Vijay K

    2014-07-01

    Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass.

  2. Taurine Rescues Cisplatin-Induced Muscle Atrophy In Vitro: A Morphological Study

    Directory of Open Access Journals (Sweden)

    Alessandra Stacchiotti

    2014-01-01

    Full Text Available Cisplatin (CisPt is a widely used chemotherapeutic drug whose side effects include muscle weakness and cachexia. Here we analysed CisPt-induced atrophy in C2C12 myotubes by a multidisciplinary morphological approach, focusing on the onset and progression of autophagy, a protective cellular process that, when excessively activated, may trigger protein hypercatabolism and atrophy in skeletal muscle. To visualize autophagy we used confocal and transmission electron microscopy at different times of treatment and doses of CisPt. Moreover we evaluated the effects of taurine, a cytoprotective beta-amino acid able to counteract oxidative stress, apoptosis, and endoplasmic reticulum stress in different tissues and organs. Our microscopic results indicate that autophagy occurs very early in 50 μM CisPt challenged myotubes (4 h–8 h before overt atrophy but it persists even at 24 h, when several autophagic vesicles, damaged mitochondria, and sarcoplasmic blebbings engulf the sarcoplasm. Differently, 25 mM taurine pretreatment rescues the majority of myotubes size upon 50 μM CisPt at 24 h. Taurine appears to counteract atrophy by restoring regular microtubular apparatus and mitochondria and reducing the overload and the localization of autophagolysosomes. Such a promising taurine action in preventing atrophy needs further molecular and biochemical studies to best define its impact on muscle homeostasis and the maintenance of an adequate skeletal mass in vivo.

  3. Quantitative on-chip determination of taurine in energy and sports drinks

    NARCIS (Netherlands)

    Götz, S.; Revermann, T.; Karst, U.

    2007-01-01

    A new method for the quantitative determination of taurine in beverages by microchip electrophoresis was developed. A rapid and simple sample preparation procedure, only including two dilution steps and the addition of the fluorogenic labeling reagent NBD-Cl (4-chloro-7-nitrobenzofurazan), is

  4. Evaluation of Taurine by HPTLC Reveals the Mask of Adulterated Edible Bird’s Nest

    Directory of Open Access Journals (Sweden)

    Peishan Teo

    2013-01-01

    Full Text Available Detection of amino acid is an effective and common method to determine adulteration in edible bird’s nest. Therefore, a simple and sensitive method was developed to detect taurine for determining adulteration in edible bird’s nest in the future. Sample was separated on precoated silica gel GF254 high-performance thin layer chromatographic plates. Separation of taurine was performed by n-propyl alcohol : ethanol : water : glacial acetic acid (5.2 : 0.8 : 2 : 2, v : v : v : v. Densitometric analysis of taurine was carried out in the absorbance mode at 485 nm. The method was validated for precision, intra- and interday variation, and recovery. This study proved that high-performance thin layer chromatography is a simple, rapid, precise, and selective method for qualitative and quantitative analysis of taurine in edible bird’s nest.

  5. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction*

    Institute of Scientific and Technical Information of China (English)

    Jing Liu; Xiaofeng Wang; Ying Liu; Na Yang; Jing Xu; Xiaotun Ren

    2013-01-01

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12th day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neo-natal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cel s in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cel apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cel line-derived neuro-trophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cel apoptosis through the glial cel line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.

  6. Kinetic studies on the inhibition of GABA-T by gamma-vinyl GABA and taurine.

    Science.gov (United States)

    Sulaiman, Saba A J; Suliman, Fakhr Eldin O; Barghouthi, Samira

    2003-08-01

    Gamma-aminobutyric acid transaminase (GABA-T, EC 2.6.1.19) is a pyridoxal phosphate (PLP) dependent enzyme that catalyzes the degradation of gamma-aminobutyric acid. The kinetics of this reaction are studied in vitro, both in the absence, and in the presence of two inhibitors: gamma-vinyl GABA (4-aminohex-5-enoic acid), and a natural product, taurine (ethylamine-2-sulfonic acid). A kinetic model that describes the transamination process is proposed. GABA-T from Pseudomonas fluorescens is inhibited by gamma-vinyl GABA and taurine at concentrations of 51.0 and 78.5 mM. Both inhibitors show competitive inhibition behavior when GABA is the substrate and the inhibition constant (Ki) values for gamma-vinyl GABA and taurine were found to be 26 +/- 3 mM and 68 +/- 7 mM respectively. The transamination process of alpha-ketoglutarate was not affected by the presence of gamma-vinyl GABA, whereas, taurine was a noncompetitive inhibitor of GABA-T when alpha-ketoglutarate was the substrate. The inhibition dissociation constant (Kii) for this system was found to be 96 +/- 10 mM. The Michaelis-Menten constant (Km) in the absence of inhibition, was found to be 0.79 +/- 0.11 mM, and 0.47 +/- 0.10 mM for GABA and alpha-ketoglutarate respectively.

  7. Lipoic acid effects on glutamate and taurine concentrations in rat hippocampus after pilocarpine-induced seizures

    Directory of Open Access Journals (Sweden)

    P S Santos

    2011-01-01

    Full Text Available Pilocarpine-induced seizures can be mediated by increases in oxidative stress and by cerebral amino acid changes. The present research suggests that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures in cellular level. The objective of the present study was to evaluate the lipoic acid (LA effects in glutamate and taurine contents in rat hippocampus after pilocarpine-induced seizures. Wistar rats were treated intraperitoneally (i.p. with 0.9% saline (Control, pilocarpine (400 mg/kg, Pilocarpine, LA (10 mg/kg, LA, and the association of LA (10 mg/kg plus pilocarpine (400 mg/kg, that was injected 30 min before of administration of LA (LA plus pilocarpine. Animals were observed during 24 h. The amino acid concentrations were measured using high-performance liquid chromatograph (HPLC. In pilocarpine group, it was observed a significant increase in glutamate content (37% and a decrease in taurine level (18% in rat hippocampus, when compared to control group. Antioxidant pretreatment significantly reduced the glutamate level (28% and augmented taurine content (32% in rat hippocampus, when compared to pilocarpine group. Our findings strongly support amino acid changes in hippocampus during seizures induced by pilocarpine, and suggest that glutamate-induced brain damage plays a crucial role in pathogenic consequences of seizures, and imply that strong protective effect could be achieved using lipoic acid through the release or decrease in metabolization rate of taurine amino acid during seizures.

  8. Anti-nociceptive effects of taurine and caffeine in sciatic nerve ...

    African Journals Online (AJOL)

    effects were reversed by pre-treatment with cholinergic blockers especially atropine while the adrenergic ... Taurine is an important trophic factor in ... beverages (coffee, tea, energy drinks) and some foods .... was taken to avoid interruption of epineural blood flow .... system that alter its structure and function that results in.

  9. Volume-sensitive NADPH oxidase activity and taurine efflux in NIH3T3 mouse fibroblasts

    DEFF Research Database (Denmark)

    Friis, Martin Barfred; Vorum, Katrine Gribel; Lambert, Ian Henry

    2008-01-01

    +-mobilizing agonist ATP (10 microM) potentiates the release of taurine but has no effect on ROS production under hypotonic conditions. On the other hand, addition of the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA, 100 nM) or the lipid messenger lysophosphatidic acid (LPA, 10 n...

  10. Superoxide dismutase and taurine supplementation improves in vitro blastocyst yield from poor-quality feline oocytes.

    Science.gov (United States)

    Ochota, Małgorzata; Pasieka, Anna; Niżański, Wojciech

    2016-03-15

    Blastocyst production in vitro seems to be crucial part of assisted reproduction techniques in feline species. However, the results of cats' oocyte maturation and embryo development are still lower than those in other species. The aim of this study was to evaluate whether the supplementation with superoxide dismutase (SOD) and taurine during maturation or culture would improve the blastocyst yield obtained from lower grades of oocytes, that are usually discarded, as not suitable for further in vitro purposes. To investigate the effect of antioxidants' addition, the good- and poor-quality oocytes, were cultured with the addition of 10-mmol taurine and 600 UI/mL SOD. The nuclear maturity, embryo development, and blastocyst quality were subsequently assessed. In control group, without antioxidant supplementation, significantly less poor-quality oocytes matured (42% vs. 62%) and more degenerated (35% vs. 20%), comparing to the experimental group supplemented with SOD and taurine. The amount of obtained blastocyst was much higher, when poor quality oocytes were supplemented with SOD and taurine (supplementation to IVM-4%; supplementation to IVC-5.5%; supplementation to IVM and IVC-5.9% of blastocyst), comparing to not supplemented control group (1.3%). The best blastocysts were obtained when poor oocytes had antioxidants added only during embryo culture (185 ± 13.4 blastomeres vs. 100 ± 1.5 in control). In the present study, we reported that the lower grades of oocytes can better mature and form significantly more blastocysts with better quality, when cultured with addition of SOD and taurine. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Potassium-stimulated release of radiolabelled taurine and glycine from the isolated rat retina

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.F.; Pycock, C.J.

    1982-09-01

    The release of preloaded (/sup 3/H)glycine and (/sup 3/H)taurine in response to a depolarising stimulus (12.5-50 mM KCl) has been studied in the superfused rat retina. High external potassium concentration immediately increased the spontaneous efflux of (/sup 3/H)glycine, the effect of 50 mM K+ apparently being abolished by omitting calcium from the superfusing medium. In contrast, although high potassium concentrations increased the spontaneous efflux of (/sup 3/H)taurine from the superfused rat retina, this release was not evident until the depolarising stimulus was removed from the superfusing medium. The magnitude of this late release of (/sup 3/H)taurine was dependent on external K+ concentrations, and appeared immediately after cessation of the stimulus irrespective of whether it was applied for 4, 8, or 12 min. Potassium (50 mM)-induced release of taurine appeared partially calcium-dependent, being significantly reduced (p less than 0.01) but not abolished by replacing calcium with 1 mM EDTA in the superfusate. High-affinity uptake systems for both (/sup 3/H)glycine and (/sup 3/H)taurine were demonstrated in the rat retina in vitro (Km values, 1.67 microM and 2.97 microM; Vmax values, 19.3 and 23.1 nmol/g wet weight tissue/h, respectively). The results are discussed with respect to the possible neurotransmitter roles of both amino acids in the rat retina.

  12. Investigation on the adsorption characteristics of sodium benzoate and taurine on gold nanoparticle film by ATR-FTIR spectroscopy

    Science.gov (United States)

    Kumar, Naveen; Thomas, S.; Tokas, R. B.; Kshirsagar, R. J.

    2014-01-01

    Fourier transform infrared (FTIR) spectroscopic studies of sodium benzoate and taurine adsorbed on gold nanoparticle (AuNp) film on silanised glass slides have been studied by attenuated total reflection technique (ATR). The surface morphology of the AuNp films has been measured by Atomic Force Microscopy. The ATR spectra of sodium benzoate and taurine deposited on AuNp film are compared with ATR spectra of their powdered bulk samples. A new red-shifted band appeared along with the symmetric and asymmetric stretches of carboxylate group of sodium benzoate leading to a broadening of the above peaks. Similar behavior is also seen in the case of symmetric and asymmetric stretches of sulphonate group of taurine. The results indicate presence of both chemisorbed and physisorbed layers of both sodium benzoate and taurine on the AuNp film with bottom layer chemically bound to AuNp through carboxylate and sulphonate groups respectively.

  13. Antioxidant and antimicrobial activity of Maillard reaction products from xylan with chitosan/chitooligomer/glucosamine hydrochloride/taurine model systems.

    Science.gov (United States)

    Wu, Shuping; Hu, Jiao; Wei, Liuting; Du, Yumin; Shi, Xiaowen; Zhang, Lina

    2014-04-01

    The structure, UV absorbance, browning intensity, fluorescence changes, antioxidant activity and antimicrobial assessment of Maillard reaction products (MRPs) derived from xylan with chitosan, chitooligomer, glucosamine hydrochloride and taurine model systems were evaluated. The results revealed that all MRPs had similar infrared spectra and molecular structures. MRPs from different model systems on the UV absorbance at 294 nm after heated 90 min and browning intensity at 420 nm showed the similar law: xylan-taurine > xylan-glucosamine hydrochloride > xylan-chitooligomer > xylan-chitosan, and the order of DPPH scavenging activity of MRPs was as follows: xylan-chitosan > xylan-chitooligomer > xylan-glucosamine hydrochloride > xylan-taurine, which revealed that the properties of MRPs were closely related to molecular weight of model systems. Moreover, the highest radical scavenging activity of MRPs from xylan with chitosan/chitooligomer/glucosamine hydrochloride/taurine model systems was 65.9%, 63.7%, 46.4% and 42.5%, respectively.

  14. Hepatic Encephalopathy

    Medline Plus

    Full Text Available ... Symptoms to look for Caregiver Support Caregiver Stories Home › What is Hepatic Encephalopathy? Why Your Liver is ... questions about HE, one step at a time. Home About Us Ways to Give Contact Us Privacy ...

  15. Hepatitis A

    Science.gov (United States)

    ... Hepatitis A is more common in parts of Africa, Asia, Central and South America, and Eastern Europe ... la salud en español Health Statistics Healthy Moments Radio Broadcast Clinical Trials For Health Professionals Diabetes Discoveries & ...

  16. Autoimmune hepatitis.

    Science.gov (United States)

    Heneghan, Michael A; Yeoman, Andrew D; Verma, Sumita; Smith, Alastair D; Longhi, Maria Serena

    2013-10-26

    Autoimmune hepatitis is a disease of the hepatic parenchyma that can present in acute or chronic forms. In common with many autoimmune diseases, autoimmune hepatitis is associated with non-organ-specific antibodies in the context of hepatic autoimmunity. This dichotomy has made definition of a unifying hypothesis in the pathophysiology of the disease difficult, although data from the past 8 years have drawn attention to the role of regulatory T cells. Several triggers have been identified, and the disease arises in genetically susceptible individuals. Clinical and biochemical remission is achievable in up to 85% of cases. For the remaining patients, alternative immunosuppression strategies are an option. Liver transplantation provides an excellent outcome for patients with acute liver failure or complications of end-stage liver disease, including hepatocellular carcinoma. Variant or overlapping syndromes are worthy of consideration when unexpected disease features arise.

  17. Hepatic Encephalopathy

    Medline Plus

    Full Text Available ... Get Worse? How is HE Diagnosed? Prior to Treatment Who treats HE? Preparing for your Medical Appointment Hepatic Encephalopathy Treatment Options Treatment Basics Treatment Medications Importance of Adhering ...

  18. Hepatic Encephalopathy

    Medline Plus

    Full Text Available ... is a condition that causes temporary worsening of brain function in people with advanced liver disease. When ... travel through your body until they reach your brain, causing mental and physical symptoms of HE. Hepatic ...

  19. Hepatitis B

    Science.gov (United States)

    ... using an infected person’s razor, toothbrush, or nail clippers You can’t get hepatitis B from being ... personal items such as toothbrushes, razors, or nail clippers using a latex or polyurethane condom during sex ...

  20. Hepatic ischemia

    Science.gov (United States)

    ... or oxygen, causing injury to liver cells. Causes Low blood pressure from any condition can lead to hepatic ischemia. ... leading to reduced blood flow (vasculitis) Symptoms If low blood pressure continues for a long time, you may feel ...

  1. Hepatic Encephalopathy

    Medline Plus

    Full Text Available ... Get Worse? How is HE Diagnosed? Prior to Treatment Who treats HE? Preparing for your Medical Appointment Hepatic Encephalopathy Treatment Options Treatment Basics Treatment Medications Importance of Adhering ...

  2. Hepatic Encephalopathy

    Medline Plus

    Full Text Available ... the Stages of Hepatic Encephalopathy? What Triggers or Can Cause HE to Get Worse? How is HE ... liver disease. When your liver is damaged it can no longer remove toxic substances from your blood. ...

  3. Hepatic Encephalopathy

    Medline Plus

    Full Text Available ... to Treatment Who treats HE? Preparing for your Medical Appointment Hepatic Encephalopathy Treatment Options Treatment Basics Treatment ... treatment. Being a fully-informed participant in your medical care is an important factor in staying as ...

  4. Hepatic Encephalopathy

    Medline Plus

    Full Text Available ... is a condition that causes temporary worsening of brain function in people with advanced liver disease. When ... travel through your body until they reach your brain, causing mental and physical symptoms of HE. Hepatic ...

  5. Hepatic Encephalopathy

    Medline Plus

    Full Text Available ... Hepatic Encephalopathy so you can tell your doctor right away if you think you may have it. ... American Liver Foundation © 2017 American Liver Foundation. All rights reserved. Funding for the HE123 - Diagnosis, Treatment and ...

  6. Hepatitis autoinmune.

    OpenAIRE

    LOJA OROPEZA, David; VILCA VASQUEZ, Maricela; AVILES GONZAGA, Roberto

    2013-01-01

    Three patients with autoinmune hepatitis type 1 diagnosed at the Hospital Nacional Arzobispo Loayza in Lima-Perú, between 1993 and 1995, are here reported, emphasis is made on the clinical, histological and therapeutical aspects.

  7. Plasma Taurine, Diabetes Genetic Predisposition, and Changes of Insulin Sensitivity in Response to Weight-Loss Diets.

    Science.gov (United States)

    Zheng, Yan; Ceglarek, Uta; Huang, Tao; Wang, Tiange; Heianza, Yoriko; Ma, Wenjie; Bray, George A; Thiery, Joachim; Sacks, Frank M; Qi, Lu

    2016-10-01

    Taurine metabolism disturbance is closely linked to obesity, insulin resistance, and diabetes. Previous evidence suggested that the preventative effects of taurine on diabetes might be through regulating the expression levels of diabetes-related genes. We estimated whether blood taurine levels modified the overall genetic susceptibility to diabetes on improvement of insulin sensitivity in a randomized dietary trial. We genotyped 31 diabetes-associated variants to calculate a genetic risk score (GRS) and measured plasma taurine levels and glycemic traits among participants from the Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) trial. Seven-hundred eleven overweight or obese participants (age 30-70 y; 60% females) had genetic variants genotyped and blood taurine levels measured. Participants went on 2-year weight-loss diets, which were different in macronutrient composition. Improvements in glycemic traits were measured. We found that baseline taurine levels significantly modified the effects of diabetes GRS on changes in fasting glucose, insulin, and homeostatic model assessment of insulin resistance (HOMA-IR) during the 2-year diet intervention (P-interaction = .04, .01, .002, respectively), regardless of weight loss. High baseline taurine levels were associated with a less reduction in both glucose and HOMA-IR among the participants with the lowest tertile of diabetes GRS (both P = .02), and with a greater reduction in both insulin and HOMA-IR among those with the highest tertile of diabetes GRS (both P = .04). Our data suggest that blood taurine levels might differentially modulate the effects of diabetes-related genes on improvement of insulin sensitivity among overweight/obese patients on weight-loss diets.

  8. Evidence that acute taurine treatment alters extracellular AMP hydrolysis and adenosine deaminase activity in zebrafish brain membranes.

    Science.gov (United States)

    Rosemberg, Denis Broock; Kist, Luiza Wilges; Etchart, Renata Jardim; Rico, Eduardo Pacheco; Langoni, Andrei Silveira; Dias, Renato Dutra; Bogo, Maurício Reis; Bonan, Carla Denise; Souza, Diogo Onofre

    2010-09-06

    Taurine is one of the most abundant free amino acids in excitable tissues. In the brain, extracellular taurine may act as an inhibitory neurotransmitter, neuromodulator, and neuroprotector. Nucleotides are ubiquitous signaling molecules that play crucial roles for brain function. The inactivation of nucleotide-mediated signaling is controlled by ectonucleotidases, which include the nucleoside triphosphate diphosphohydrolase (NTPDase) family and ecto-5'-nucleotidase. These enzymes hydrolyze ATP/GTP to adenosine/guanosine, which exert a modulatory role controlling several neurotransmitter systems. The nucleoside adenosine can be inactivated in extracellular or intracellular milieu by adenosine deaminase (ADA). In this report, we tested whether acute taurine treatment at supra-physiological concentrations alters NTPDase, ecto-5'-nucleotidase, and ADA activities in zebrafish brain. Fish were treated with 42, 150, and 400 mg L(-1) taurine for 1h, the brains were dissected and the enzyme assays were performed. Although the NTPDase activities were not altered, 150 and 400 mg L(-1) taurine increased AMP hydrolysis (128 and 153%, respectively) in zebrafish brain membranes and significantly decreased ecto-ADA activity (29 and 38%, respectively). In vitro assays demonstrated that taurine did not change AMP hydrolysis, whereas it promoted a significant decrease in ecto-ADA activity at 150 and 400 mg L(-1) (24 and 26%, respectively). Altogether, our data provide the first evidence that taurine exposure modulates the ecto-enzymes responsible for controlling extracellular adenosine levels in zebrafish brain. These findings could be relevant to evaluate potential beneficial effects promoted by acute taurine treatment in the central nervous system (CNS) of this species. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Taurine activates strychnine-sensitive glycine receptors in neurons freshly isolated from nucleus accumbens of young rats.

    Science.gov (United States)

    Jiang, Zhenglin; Krnjević, Kresimir; Wang, Fushun; Ye, Jiang Hong

    2004-01-01

    Although functional glycine receptors (GlyRs) are present in the mature nucleus accumbens (NAcc), an important area of the mesolimbic dopamine system involved in drug addiction, their role has been unclear because the NAcc contains little glycine. However, taurine, an agonist of GlyRs, is abundant throughout the brain, especially during early development. In the present study on freshly dissociated NAcc neurons from young Sprague-Dawley rats (12- to 21-day old), we found that both glycine and taurine can strongly depolarize NAcc neurons and modulate their excitability. In voltage-clamped NAcc neurons, glycine and taurine elicited chloride currents (IGly and ITau) with an EC50 of 0.12 and 1.25 mM, respectively. The reversal potential of IGly or ITau was 0 mV in conventional whole cell mode and -30 mV in gramicidin-perforated mode. At concentrations taurine were very effectively antagonized by strychnine and by picrotoxin (with an IC50 of 60 nM and 36.5 microM for IGly, and 40 nM and 42.2 microM for ITau) but were insensitive to 10 microM bicuculline. The currents elicited by taurine (taurine (10 mM) showed partial cross-desensitization with IGABA, and it was substantially antagonized by 10 microM bicuculline. These results indicate that taurine binds mainly to GlyRs in NAcc, but it could be a partial agonist of GABAA receptors. By activating GlyRs, taurine may play an important physiological role in the control of NAcc function, especially during development.

  10. Therapeutic effect of taurine against aluminum-induced impairment on learning, memory and brain neurotransmitters in rats.

    Science.gov (United States)

    Wenting, Lu; Ping, Liu; Haitao, Jiao; Meng, Qiao; Xiaofei, Ren

    2014-10-01

    The aim of the study was to demonstrate the therapeutic effect of taurine against aluminum (Al)-induced neurological disorders in rats. Forty-two Wistar rats were randomly allotted into six groups: control (saline only), Al exposure (281.4 mg/kg/day for 1 month), Al + taurine (Al administration as previously plus taurine, doses were 200, 400 and 800 mg/kg/day, respectively, for the next 1 month) and prevention group (along with the Al administration as previously, 400 mg/kg/day taurine was treated for 1 month. During the next 1 month, rats were given taurine 400 mg/kg/day only). Starting from the sixth week, the body weight gain was significantly reduced in Al exposure group compared with saline (P < 0.05), and at the eighth week, the gain in prevention group was increased compared with Al (P < 0.05). Brain coefficient was gained in Al exposure compared with saline or prevention group (P < 0.05). Al exposure resulted in learning and memory impairment by increasing the escape latency and searching distance, meanwhile, decreasing the swimming time in the quadrant of platform and the numbers of crossing the platform (P < 0.05). Unsurprisingly, taurine treatment (400, 800 mg/kg/day and prevention) significantly protected against Al-induced brain dysfunction (P < 0.05). The Al exposure led to significant decreases in levels of γ-GABA and Tau, meanwhile, increased in level of Asp and Glu compared with saline (P < 0.05). And yet, taurine treatment partially reversed the deteriorated changes. The results suggested that taurine probably has neuroprotective effect against Al-induced learning, memory and brain neurotransmitters dysfunction.

  11. Enhancing effect of taurine on CYP7A1 mRNA expression in Hep G2 cells.

    Science.gov (United States)

    Lam, N V; Chen, W; Suruga, K; Nishimura, N; Goda, T; Yokogoshi, H

    2006-02-01

    Taurine has been reported to enhance cholesterol 7alpha-hydroxylase (CYP7A1) mRNA expression in animal models. However, no in vitro studies of this effect have been reported. The Hep G2 human hepatoma cell line has been recognized as a good model for studying the regulation of human CYP7A1. This work characterizes the effects of taurine on CYP7A1 mRNA levels of Hep G2 cells in a dose- and time-dependent manner. In the dose-dependent experiment, Hep G2 cells were treated with 0, 2, 10 or 20 mM taurine in the presence or absence of cholesterol 0.2 mM for 48 h. In the time-dependent experiment, Hep G2 cells were treated with 0 or 20 mM taurine for 4, 24 and 48 h with and without cholesterol 0.2 mM. Our data revealed that taurine showed time- and dose-response effects on CYP7A1 mRNA levels in Hep G2 cells. However, glycine - a structural analogue of taurine - did not have an effect on CYP7A1 gene expression. These results show that, in agreement to previous studies on animal models, taurine induces the mRNA levels of CYP7A1 in Hep G2 cells, which could enhance cholesterol conversion into bile acids. Also, Hep G2 cell line may be an appropriate model to study the effects of taurine on human cholesterol metabolism.

  12. Acquired cisplatin resistance in human ovarian A2780 cancer cells correlates with shift in taurine homeostasis and ability to volume regulate

    DEFF Research Database (Denmark)

    Sørensen, Belinda Halling; Thorsteinsdottir, Unnur Arna; Lambert, Ian Henry

    2014-01-01

    Cisplatin resistance is a major challenge in the treatment of cancer and develops through reduced drug accumulation and an increased ability to avoid drug-induced cell damage, cell shrinkage, and hence initiation of apoptosis. Uptake and release of the semiessential amino acid taurine contribute...... to cell volume homeostasis, and taurine has been reported to have antiapoptotic effects. Here we find that volume-sensitive taurine release in cisplatin-sensitive [wild-type (WT)] human ovarian cancer A2780 cells is reduced in the presence of the phospholipase A2 inhibitor bromenol lactone, the 5......-induced cell death in RES A2780 cells correlates with an increased accumulation of taurine, due to an increased taurine uptake and a concomitant impairment of the volume-sensitive taurine release pathway, as well an inability to reduce cell volume after osmotic cell swelling. Downregulation of volume...

  13. Taurine attenuates hippocampal and corpus callosum damage, and enhances neurological recovery after closed head injury in rats.

    Science.gov (United States)

    Gu, Y; Zhao, Y; Qian, K; Sun, M

    2015-04-16

    The protective effects of taurine against closed head injury (CHI) have been reported. This study was designed to investigate whether taurine reduced white matter damage and hippocampal neuronal death through suppressing calpain activation after CHI in rats. Taurine (50 mg/kg) was administered intravenously 30 min and 4 h again after CHI. It was found that taurine lessened the corpus callosum damage, attenuated the neuronal cell death in hippocampal CA1 and CA3 subfields and improved the neurological functions 7 days after CHI. Moreover, it suppressed the over-activation of calpain, enhanced the levels of calpastatin, and reduced the degradation of neurofilament heavy protein, myelin basic protein and αII-spectrin in traumatic tissue 24 h after CHI. These data confirm the protective effects of taurine against gray and white matter damage due to CHI, and suggest that down-regulating calpain activation could be one of the protective mechanisms of taurine against CHI. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Taurine Protected Against the Impairments of Neural Stem Cell Differentiated Neurons Induced by Oxygen-Glucose Deprivation.

    Science.gov (United States)

    Xiao, Bo; Liu, Huazhen; Gu, Zeyun; Liu, Sining; Ji, Cheng

    2015-11-01

    Cell transplantation of neural stem cells (NSCs) is a promising approach for neurological recovery both structurally and functionally. However, one big obstacle is to promote differentiation of NSCs into neurons and the followed maturation. In the present study, we aimed to investigate the protective effect of taurine on the differentiation of NSCs and subsequent maturation of their neuronal lineage, when exposed to oxygen-glucose deprivation (OGD). The results suggested that taurine (5-20 mM) promoted the viability and proliferation of NSCs, and it protected against 8 h of OGD induced impairments. Furthermore, 20 mM taurine promoted NSCs to differentiate into neurons after 7 days of culture, and it also protected against the suppressive impairments of 8 h of OGD. Consistently, taurine (20 mM) promoted the neurite sprouting and outgrowth of the NSC differentiated neurons after 14 days of differentiation, which were significantly inhibited by OGD (8 h). At D21, the mushroom spines and spine density were promoted or restored by 20 mM taurine. Taken together, the enhanced viability and proliferation of NSCs, more differentiated neurons and the promoted maturation of neurons by 20 mM taurine support its therapeutic application during stem cell therapy to enhance neurological recovery. Moreover, it protected against the impairments induced by OGD, which may highlight its role for a more direct therapeutic application especially in an ischemic stroke environment.

  15. Effect of Addition of Taurine on the Liquid Storage (5°C of Mithun (Bos frontalis Semen

    Directory of Open Access Journals (Sweden)

    P. Perumal

    2013-01-01

    Full Text Available The present study was undertaken to assess the effect of taurine on sperm motility, viability, total sperm abnormalities, acrosomal and plasma membrane integrity, enzymatic profiles such as reduced glutathione (GSH, glutathione peroxidase (GPX, superoxide dismutase (SOD, and catalase (CAT, and biochemical profiles such as cholesterol efflux and malondialdehyde (MDA production. A total of 50 ejaculates were collected twice a week from 8 mithun bulls, and semen was split into 4 equal aliquots and diluted with the TEYC extender. Group 1: semen was without additives (control; groups 2 to 4: semen was diluted with 25 mM, 50 mM, and 100 mM of taurine, respectively. Seminal parameters and enzymatic and biochemical profiles were assessed at 5°C. Inclusion of taurine into diluent resulted in significant ( decreases in percentages of dead spermatozoa, abnormal spermatozoa, and acrosomal abnormalities after liquid storage compared with the control group. Additionally, taurine at 50 mM has significant improvement in quality of mithun semen than taurine at 25 or 100 mM stored in in vitro at 5°C. It was concluded that the possible protective effects of taurine on sperm parameters are from enhancing the function of antioxidant enzymes, preventing efflux of cholesterol from cell membranes and decreased MDA production.

  16. Determination of the natural abundance δ15N of taurine by gas chromatography-isotope ratio measurement mass spectrometry.

    Science.gov (United States)

    Tea, Illa; Antheaume, Ingrid; Besnard, Jorick; Robins, Richard J

    2010-12-15

    The measurement of the nitrogen isotope ratio of taurine (2-aminoethanesulphonic acid) in biological samples has a large number of potential applications. Taurine is a small water-soluble molecule which is notoriously difficult to analyze due to its polarity and functionality. A method is described which allows the determination of the natural abundance δ(15)N values of taurine and structural analogues, such as 3-amino-1-propanesulphonic acid (APSA), by isotope ratio mass spectrometry interfaced to gas chromatography (GC-irm-MS). The one-step protocol exploits the simultaneous derivatization of both functionalities of these aminosulphonic acids by reaction with triethylorthoacetate (TEOA). Conditions have been established which ensure quantitative reaction thus avoiding any nitrogen isotope fractionation during derivatization and workup. The differences in the δ(15)N values of derivatized and non-derivatized taurine and APSA all fall within the working range of 0.4‰ (-0.02 to 0.39‰). When applied to four sources of taurine with various δ(15)N values, the method achieved excellent reproducibility and accuracy. The optimized method enables the determination of the natural abundance δ(15)N values of taurine over the concentration range 1.5-7.84 µmol.mL(-1) in samples of biological origin.

  17. Hepatitis B Foundation

    Science.gov (United States)

    ... worldwide 2 Billion People have been infected with Hepatitis B Worldwide The Hepatitis B Foundation is working on ... of people living with hepatitis B. Learn About Hepatitis B in 11 Other Languages . Resource Video See More ...

  18. Hepatitis A Test

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Hepatitis A Testing Share this page: Was this page ... HAV-Ab total; Anti-HAV Formal name: Viral Hepatitis A Antibody Related tests: Hepatitis B Testing ; Hepatitis ...

  19. Hepatitis Risk Assessment

    Science.gov (United States)

    ... Requirements for Viral Hepatitis Liver Cancer and Viral Hepatitis Viral Hepatitis and Young Persons Who Inject Drugs National Academies’ ... Sources for IG & HBIG About the Division of Viral Hepatitis Contact Us Anonymous Feedback File Formats Help: How ...

  20. Travelers' Health: Hepatitis A

    Science.gov (United States)

    ... 3 - Helminths, Soil-Transmitted Chapter 3 - Hepatitis B Hepatitis A Noele P. Nelson, Trudy V. Murphy INFECTIOUS ... hepatitis/HAV Table 3-02. Vaccines to prevent hepatitis A VACCINE TRADE NAME (MANUFACTURER) AGE (Y) DOSE ...

  1. Delta agent (Hepatitis D)

    Science.gov (United States)

    Hepatitis D virus ... Hepatitis D virus (HDV) is found only in people who carry the hepatitis B virus. HDV may make liver ... B virus but who never had symptoms. Hepatitis D infects about 15 million people worldwide. It occurs ...

  2. Feature Hepatitis: Hepatitis Symptoms, Diagnosis, Treatment & Prevention

    Science.gov (United States)

    ... Navigation Bar Home Current Issue Past Issues Feature Hepatitis Hepatitis: Symptoms, Diagnosis, Treatment & Prevention Past Issues / Spring 2009 ... No appetite Fever Headaches Diagnosis To check for hepatitis viruses, your doctor will test your blood. You ...

  3. Hepatitis C: Diet and Nutrition

    Science.gov (United States)

    ... with Hepatitis » Daily Living: Diet and Nutrition Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... have high cholesterol and have fatty liver. How hepatitis C affects diet If you have hepatitis, you ...

  4. Liver Cancer and Hepatitis B

    Science.gov (United States)

    ... Our Accomplishments Annual Reports Our Videos What Is Hepatitis B? What Is Hepatitis B? The ABCs of Viral Hepatitis Liver Cancer and Hepatitis B Hepatitis Delta Coinfection Hepatitis C Coinfection HIV/AIDS ...

  5. Autoimmune hepatitis

    Directory of Open Access Journals (Sweden)

    F Motamed

    2014-04-01

    Full Text Available Autoimmune hepatitis is (AIH is a chronic hepatitis that occurs in children and adults of all ages. It is characterized by immunologic and autoimmune features, including circulating auto antibodies and high serum globulin concentrations. It was first described in the 1950s by term of chronic active hepatitis. It has 2 types with different auto antibodies. Diagnosis is based upon serologic and histologic findings and exclusion of other forms of chronic liver disease.   A scoring system should be used in assessment based upon: 1 Auto anti bodie titer 2 Serum IgG level  3 Liver histology 4 Absence of viral and other causes of hepatitis. Clear indications for treatment: 1   rise of aminotrasferases 2   clinical symptoms of liver disease 3   histological features in liver biopsy 4   Children with AIH initial treatment involve glucocorticoid with or without azathioprine. For patients with fulminant hepatitis liver transplantation, should be kept in mind.   Remission is defined by: 1   Resolution of symptoms 2   Normalization of serum trasaminases 3   Normalization of serum bilirubin and gamma globuline levels. 4   Improvement in liver histology 5   Treatment is continued for at least 2-5 years, glucocorticoids are with drawn first, by tapering over six weeks. Azathioprine will be with drawn.  

  6. [Chronic hepatitis].

    Science.gov (United States)

    Figueroa Barrios, R

    1995-01-01

    Medical literature about chronic hepatitis is reviewed. This unresolving disease caused by viruses, drugs or unknown factors may progress to in cirrhosis and hepatocarcinoma. A classification based on liver biopsy histology into chronic persistent and chronic active types has been largely abandoned and emphasis is placed on recognizing the etiology of the various types. One is associated with continuing hepatitis B virus infection; another is related to chronic hepatitis C virus infection and the third is termed autoinmune, because of the association with positive serum autoantibodies. A fourth type with similar clinical functional and morphologic features is found with some drug reactions. Long term corticoesteroid therapy is usually successful in autoinmune type. Associations between antibodies to liver-kidney microsomes and the hepatitis C virus can cause diagnostic difficulties. Antiviral treatment of chronic hepatitis B and C with interpheron alfa is employed, controlling symptoms and abnormal biochemistry and the progression to cirrhosis and liver cancer in 30 to 40% patients. Alternative therapies or combinations with interpheron are being evaluated waiting for final results.

  7. Protective effect of taurine on the light-induced disruption of isolated frog rod outer segments

    Energy Technology Data Exchange (ETDEWEB)

    Pasantes-Morales, H.; Ademe, R.M.; Quesada, O.

    1981-01-01

    Isolated frog rod outer segments (ROS) incubated in a Krebs-bicarbonate medium, and illuminated for 2 h, show a profound alteration in their structure. This is characterized by distention of discs, vesiculation, and a marked swelling. The light-induced ROS disruption requires the presence of bicarbonate and sodium chloride. Replacement of bicarbonate by TRIS or HEPES protects ROS structure. Also, substitution of sodium chloride by sucrose or choline chloride maintains unaltered the ROS structure. Deletion of calcium, magnesium, or phosphate does not modify the effect produced by illumination. An increased accumulation of labeled bicarbonate and tritiated water is observed in illuminated ROS, as compared with controls in the dark. The presence of taurine, GABA, or glycine, at concentrations of 5-25 mM, effectively counteracts the light-induced ROS disruption. Taurine (25 mM) reduces labeled bicarbonate and tritiated water levels to those observed in the dark incubated ROS.

  8. Ergostatrien-3β-ol from Antrodia camphorata inhibits diabetes and hyperlipidemia in high-fat-diet treated mice via regulation of hepatic related genes, glucose transporter 4, and AMP-activated protein kinase phosphorylation.

    Science.gov (United States)

    Kuo, Yueh-Hsiung; Lin, Cheng-Hsiu; Shih, Chun-Ching

    2015-03-11

    This study was designed to explore the effects and mechanism of ergostatrien-3β-ol (EK100) from the submerged whole broth of Antrodia camphorata on diabetes and dyslipidemia in high fat diet (HFD)-fed mice for 12 weeks. The C57BL/6J mouse fed with a high fat diet (HFD) could induce insulin resistance and hyperlipidemia. After 8 week of induction, mice were receiving EK100 (at three dosages) or fenofibrate (Feno) or rosiglitazone (Rosi) or vehicle by oral gavage 4 weeks afterward. HFD-fed mice display increased blood glucose, glycated hemoglobin (HbA1c), total cholesterol (TC), triglyceride (TG), insulin, and leptin levels. These blood markers were significantly lower in EK100-treated mice, and finally ameliorated insulin resistance. EK100 treatment exhibited reduced hepatic ballooning degeneration and size of visceral adipocytes. Glucose transporter 4 (GLUT4) proteins and phosphorylation of Akt in skeletal muscle were significantly increased in EK100- and Rosi-treated mice. EK100, Feno, and Rosi treatment led to significant increases in phosphorylation of AMP-activated protein kinase (phospho-AMPK) protein in both skeletal muscle and liver. Moreover, EK100 caused a decrease in hepatic expressions of phosphenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6 Pase), and decreased glucose production. EK100 lowered blood TG level by inhibition of hepatic fatty acid synthesis by dampening sterol response element binding protein-1c (SREBP-1c) but increasing expression of peroxisome proliferator activated receptor α (PPARα). Moreover, EK100-treated mice reduced blood TC levels by decreased hepatic expressions of SREBP2, which plays a major role in the regulation of cholesterol synthesis. EK100 increased high-density lipoprotein cholesterol (HDL-C) concentrations by increasing expressions of apolipoprotein A-I (apo A-I) in liver tissue. Our findings manifest that EK100 may have therapeutic potential in treating type 2 diabetes associated with hyperlipidemia

  9. Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 [Slc22a1]) gene

    NARCIS (Netherlands)

    Jonker, JW; Wagenaar, E; Mol, CAAM; Buitelaar, M; Koepsell, H; Smit, JW; Schinkel, AH

    2001-01-01

    The polyspecific organic cation transporter 1 (OCT1 [SLC22A1]) mediates facilitated transport of small (hydrophilic) organic cations. OCT1 is localized at the basolateral membrane of epithelial cells in the liver, kidney, and intestine and could therefore be involved in the elimination of endogenous

  10. Effect of taurine and caffeine on sleep–wake activity in Drosophila melanogaster

    OpenAIRE

    Lin, Fang Ju

    2010-01-01

    Fang Ju Lin1, Michael M Pierce1, Amita Sehgal2, Tianyi Wu1, Daniel C Skipper1, Radhika Chabba11Department of Biology, Coastal Carolina University, Conway, SC, USA; 2Department of Neuroscience, HHMI at University of Pennsylvania, Philadelphia, PA, USAAbstract: Caffeine and taurine are two major neuromodulators present in large quantities in many popular energy drinks. We investigated their effects on sleep–wake control in constant darkness using the fruit fly Drosophila as a model sy...

  11. The multifaceted origin of taurine cattle reflected by the mitochondrial genome.

    Directory of Open Access Journals (Sweden)

    Alessandro Achilli

    Full Text Available A Neolithic domestication of taurine cattle in the Fertile Crescent from local aurochsen (Bos primigenius is generally accepted, but a genetic contribution from European aurochsen has been proposed. Here we performed a survey of a large number of taurine cattle mitochondrial DNA (mtDNA control regions from numerous European breeds confirming the overall clustering within haplogroups (T1, T2 and T3 of Near Eastern ancestry, but also identifying eight mtDNAs (1.3% that did not fit in haplogroup T. Sequencing of the entire mitochondrial genome showed that four mtDNAs formed a novel branch (haplogroup R which, after the deep bifurcation that gave rise to the taurine and zebuine lineages, constitutes the earliest known split in the mtDNA phylogeny of B. primigenius. The remaining four mtDNAs were members of the recently discovered haplogroup Q. Phylogeographic data indicate that R mtDNAs were derived from female European aurochsen, possibly in the Italian Peninsula, and sporadically included in domestic herds. In contrast, the available data suggest that Q mtDNAs and T subclades were involved in the same Neolithic event of domestication in the Near East. Thus, the existence of novel (and rare taurine haplogroups highlights a multifaceted genetic legacy from distinct B. primigenius populations. Taking into account that the maternally transmitted mtDNA tends to underestimate the extent of gene flow from European aurochsen, the detection of the R mtDNAs in autochthonous breeds, some of which are endangered, identifies an unexpected reservoir of genetic variation that should be carefully preserved.

  12. Taurine Inhibits Myocardial Fibrosis via PKC-ERK1/2 Signaling Pathways

    Institute of Scientific and Technical Information of China (English)

    WANG Li-ying; LI Hong; YANG Shi-jie

    2012-01-01

    Previous studies have demonstrated the important role of taurine in inhibiting proliferation of myofibroblasts(myoFb) and myocardial fibrosis.However,the underlying mechanisms are unclear.The present study was designed to shed light on this issue through exploring the signal pathways via in vitro experiments.Angiotension Ⅱ (AngⅡ) treatment significantly increased myoFb proliferation and the levels of collagens Ⅰ and Ⅲ(P<0.05),whereas taurine,PKCαt(PKC:protein kinase C) specific inhibitor L-threo-dihydro-sphingosine(D4681),ERK1/2 inhibitor (PD98095) abrogated myoFb proliferation and collagen levels(P<0.05,P<0.01,respectively),and increased the G0/G1 phase rate and decreased S phase rate.Immunocytochemistry,confocal fluorescence staining and image analysis showed that taurine could inhibit the translocation and expression of p-PKCαtin membrane,and then inhibit nuclear translocation and expression of p-ERK1/2.These results have statistically significant differences compared with those of AngⅡ group(P<0.0l).Western blot results also show that taurine could inhibit the protein expression of p-PKCαt and p-ERK1/2.We used p-PKCα specific inhibitor D4681 in order to elucidate the relationship between p-PKCα and p-ERK1/2 in signal transduction pathways.Finally,the results show that the protein expression of p-ERK1/2 and nuclear translocation were suppressed in D4681 group.

  13. Taurine is absent from amino components in fruits of Opuntia ficus-indica.

    Science.gov (United States)

    Ali, Hatem Salama Mohamed; Al-Khalifa, Abdulrahman Saleh; Brückner, Hans

    2014-01-01

    Juices of edible fruits from Opuntia ficus-indica (L.) Miller, commonly named prickly pears or Indian figs, were analysed for amino acids using an automated amino acid analyser run in the high-resolution physiological mode. Emphasis was put on the detection of free taurine (Tau), but Tau could be detected neither in different cultivars of prickly pears from Italy, South Africa and the Near East nor in commercially available prickly pear juices from the market.

  14. GABA, taurine and learning: release of amino acids from slices of chick brain following filial imprinting.

    Science.gov (United States)

    McCabe, B J; Horn, G; Kendrick, K M

    2001-01-01

    The intermediate and medial hyperstriatum ventrale (IMHV) is a forebrain region in the domestic chick that is a site of information storage for the learning process of imprinting. We enquired whether imprinting is associated with learning-related increases in calcium-dependent, potassium-stimulated release of neurotransmitter amino acids from the IMHV. Chicks were hatched and reared in darkness until 15-30 h after hatching. They then either remained in darkness or were trained for 2 h by exposure to an imprinting stimulus. One hour later, the chicks were given a preference test and a preference score was calculated from the results of this test, as a measure of imprinting. Chicks were killed 2 h after training. Slices from the left and right IMHV of trained and untrained chicks were superfused with Krebs' solution either with or without calcium and the superfusate assayed for arginine, aspartate, citrulline, GABA, glutamate, glycine and taurine using high-performance liquid chromatography. For calcium-containing superfusates from the left IMHV, preference score was significantly correlated with potassium-stimulated release of (i) GABA (r=0.51, 23 d.f., P=0.008) and (ii) taurine (r=0.77, 23 d.f., Pimprinting is associated with increases in releasable pools of GABA and taurine and/or membrane excitability in the left IMHV.

  15. Neuroprotection of taurine through inhibition of 12/15 lipoxygenase pathway in cerebral ischemia of rats.

    Science.gov (United States)

    Zhang, Zhe; Yu, Rongbo; Cao, Lei

    2017-05-01

    Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. Taurine (Tau), an endogenous substance, possesses a number of cytoprotective properties. The aim of the present study was to examine the neuroprotective effect of Tau, through affecting 12/15 lipoxygenase (12/15-LOX) signal pathway in an acute permanent middle cerebral artery occlusion (MCAO) model of rats. Sprague-Dawley rats were randomly divided into 3 groups (n = 10), namely the sham-operated group, MCAO group and Tau group. Tau was intraperitoneally administrated immediately after cerebral ischemia. At 24 h after MCAO, neurological function score, brain water content and infarct volume were assessed. The expression of 12/15-lipoxygenase (12/15-LOX), p38 mitogen-activated protein kinase (p38 MAPK), and cytosolic phospholipase A2 (cPLA2) was measured by Western blot. Enzyme-linked immunosorbent assay was used to evaluate the inflammatory factors TNF-α, IL-1β and IL-6 in serum. Compared with MCAO group, taurine significantly improved neurological function and significantly reduced brain water content (p Taurine protected the brain from damage caused by MCAO; this effect may be through down-regulation of 12/15-LOX, p38 MAPK, and cPLA2.

  16. Regulatory Volume Decrease in Neural Precursor Cells: Taurine Efflux and Gene Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Reyna Hernández-Benítez

    2014-11-01

    Full Text Available Background/Aims: Neural stem/ progenitor cells (NPCs endure important changes in cell volume during growth, proliferation and migration. As a first approach to know about NPC response to cell volume changes, the Regulatory Volume Decrease (RVD subsequent to hypotonic swelling was investigated. Methods: NPCs obtained from the mesencephalon and the subventricular zone of embryonic and adult mice, respectively, were grown and cultured as neurospheres. Cell volume changes were measured by large-angle light-scattering and taurine efflux by [3H]-taurine. Expression of genes encoding molecules related to RVD was analysed using a DNA microarray obtained from NPC samples. Results: Embryonic and adult NPCs exposed to osmolarity reduction (H15, H30, H40 exhibited rapid swelling followed by RVD. The magnitude, efficiency and pharmacological profile, of RVD and of [3H]-taurine osmosensitive efflux were comparable to those found in cultured brain cells, astrocytes and neurons. The relative expression of genes encoding molecules related to volume regulation, i.e. K+ and Cl- channels, cotransporters, exchangers and aquaporins were identified in NPCs. Conclusion: NPCs show the ability to respond to hypotonic-evoked volume changes by adaptative recovery processes, similar to those found in other cultured brain cells. Genes related to molecules involved in RVD were found expressed in NPCs.

  17. Protective Roles of N-acetyl Cysteine and/or Taurine against Sumatriptan-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Javad Khalili Fard

    2016-12-01

    Full Text Available Purpose: Triptans are the drug category mostly prescribed for abortive treatment of migraine. Most recent cases of liver toxicity induced by triptans have been described, but the mechanisms of liver toxicity of these medications have not been clear. Methods: In the present study, we obtained LC50 using dose-response curve and investigated cell viability, free radical generation, lipid peroxide production, mitochondrial injury, lysosomal membrane damage and the cellular glutathione level as toxicity markers as well as the beneficial effects of taurine and/or N-acetyl cysteine in the sumatriptan-treated rat parenchymal hepatocytes using accelerated method of cytotoxicity mechanism screening. Results: It was revealed that liver toxicity induced by sumatriptan in in freshly isolated parenchymal hepatocytes is dose-dependent. Sumatriptan caused significant free radical generation followed by lipid peroxide formation, mitochondrial injury as well as lysosomal damage. Moreover, sumatriptan reduced cellular glutathione content. Taurine and N-acetyl cysteine were able to protect hepatocytes against sumatriptan-induced harmful effects. Conclusion: It is concluded that sumatriptan causes oxidative stress in hepatocytes and the decreased hepatocytes glutathione has a key role in the sumatriptan-induced harmful effects. Also, N-acetyl cysteine and/or taurine could be used as treatments in sumatriptan-induced side effects.

  18. Caffeine and taurine containing energy drink increases left ventricular contractility in healthy volunteers.

    Science.gov (United States)

    Doerner, Jonas M; Kuetting, Daniel L; Luetkens, Julian A; Naehle, Claas P; Dabir, Darius; Homsi, Rami; Nadal, Jennifer; Schild, Hans H; Thomas, Daniel K

    2015-03-01

    To investigate the impact of a caffeine and taurine containing energy drink (ED) on myocardial contractility in healthy volunteers using cardiac MR and cardiac MR based strain analysis. 32 healthy volunteers (mean age 28 years) were investigated before and 1 h after consumption of a caffeine and taurine containing ED. For assessment of global cardiac functional parameters balanced SSFP-Cine imaging was performed, whereas CSPAMM tagging was used to evaluate global and regional myocardial strain. In addition, ten randomly chosen subjects were investigated once more using a caffeine only protocol to further evaluate the effect of caffeine solely. Heart rate and blood pressure were recorded throughout all studies. ED consumption led to a significant increase in peak systolic strain (PSS) and peak systolic strain rate (PSSR) 1 h after consumption (PSS: w/o ED -22.8 ± 2.1%; w ED -24.3 ± 2.4%, P = caffeine only group. In contrast, global left ventricular function was unchanged (P = 0.2076). No significant changes of vital parameters and diastolic filling pattern were detected 1 h after ED consumption. Consumption of a caffeine and taurine containing ED results in a subtle, but significant increase of myocardial contractility 1 h after consumption.

  19. Advancement of Taurine%牛磺酸研究进展

    Institute of Scientific and Technical Information of China (English)

    李大庆; 吴明均; 胡晓华; 陈尚; 何权敏; 张弦

    2011-01-01

    Taurine has anti-tumor and anti-aging, enhances immunity, protects the heart, lowers blood pressure, lipid, blood sugar and aminotransferase, and reduces fatty liver, etc.This article reviews and analyses the nature and role of pharmacology in Taurine, on the basis of searching relevant literature at home and abroad, and provides clues for research of gecko containing taurine and anti-cancer mechanism of Chinese patent medicines containing gecko.%牛磺酸具有抗肿瘤、增强免疫、保护心脏、降压、降血脂、降血糖、减轻脂肪肝、降转氨酶、抗衰老等诸多作用.本文查阅国内外相关文献,并将其分析归纳,综述了牛磺酸性质、药理作用的研究进展,以为含有牛磺酸的守宫及含守宫中成药的抗肿瘤等临床作用机理提供研究线索.

  20. The effect of urea and taurine as hydrophilic penetration enhancers on stratum corneum lipid models.

    Science.gov (United States)

    Mueller, J; Oliveira, J S L; Barker, R; Trapp, M; Schroeter, A; Brezesinski, G; Neubert, R H H

    2016-09-01

    To optimize transdermal application of drugs, the barrier function of the skin, especially the stratum corneum (SC), needs to be reduced reversibly. For this purpose, penetration enhancers like urea or taurine are applied. Until now, it is unclear if this penetration enhancement is caused by an interaction with the SC lipid matrix or related to effects within the corneocytes. Therefore, the effects of both hydrophilic enhancers on SC models with different dimensionality, ranging from monolayers to multilayers, have been investigated in this study. Many sophisticated methods were applied to ascertain the mode of action of both substances on a molecular scale. The experiments reveal that there is no specific interaction when 10% urea or 5% taurine solutions are added to the SC model systems. No additional water uptake in the head group region and no decrease of the lipid chain packing density have been observed. Consequently, we suppose that the penetration enhancing effect of both substances might be based on the introduction of large amounts of water into the corneocytes, caused by the enormous water binding capacity of urea and a resulting osmotic pressure in case of taurine.

  1. Acute ethanol and taurine intake affect absolute alpha power in frontal cortex before and after exercise.

    Science.gov (United States)

    Paulucio, Dailson; da Costa, Bruno M; Santos, Caleb G; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Cagy, Mauricio; Alvarenga, Renato L; Pompeu, Fernando A M S

    2017-09-14

    Taurine and alcohol has been popularly ingested through energy drinks. Reports from both compounds shows they are active on nervous system but little is known about the acute effect of these substances on the frontal cortex in an exercise approach. The aim of this study was to determine the effects of 0,6mldL(-1) of ethanol (ET), 6g of taurine (TA), and taurine with ethanol (TA+ET) intake on absolute alpha power (AAP) in the frontal region, before and after exercise. Nine participants were recruited, five women (22±3years) and four men (26±5years), for a counterbalanced experimental design. For each treatment, the tests were performed considering three moments: "baseline", "peak" and "post-exercise". In the placebo treatment (PL), the frontal areas showed AAP decrease at the post-exercise. However, in the TA, AAP decreased at peak and increased at post-exercise. In the ET treatment, AAP increased at the peak moment for the left frontal electrodes. In the TA+ET treatment, an AAP increase was observed at peak, and it continued after exercise ended. These substances were able to produce electrocortical activity changes in the frontal regions after a short duration and low intensity exercise. Left and right regions showed different AAP dynamics during peak and post-exercise moments when treatments were compared. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Imaging Taurine in the Central Nervous System Using Chemically Specific X-ray Fluorescence Imaging at the Sulfur K-Edge.

    Science.gov (United States)

    Hackett, Mark J; Paterson, Phyllis G; Pickering, Ingrid J; George, Graham N

    2016-11-15

    A method to image taurine distributions within the central nervous system and other organs has long been sought. Since taurine is small and mobile, it cannot be chemically "tagged" and imaged using conventional immuno-histochemistry methods. Combining numerous indirect measurements, taurine is known to play critical roles in brain function during health and disease and is proposed to act as a neuro-osmolyte, neuro-modulator, and possibly a neuro-transmitter. Elucidation of taurine's neurochemical roles and importance would be substantially enhanced by a direct method to visualize alterations, due to physiological and pathological events in the brain, in the local concentration of taurine at or near cellular spatial resolution in vivo or in situ in tissue sections. We thus have developed chemically specific X-ray fluorescence imaging (XFI) at the sulfur K-edge to image the sulfonate group in taurine in situ in ex vivo tissue sections. To our knowledge, this represents the first undistorted imaging of taurine distribution in brain at 20 μm resolution. We report quantitative technique validation by imaging taurine in the cerebellum and hippocampus regions of the rat brain. Further, we apply the technique to image taurine loss from the vulnerable CA1 (cornus ammonis 1) sector of the rat hippocampus following global brain ischemia. The location-specific loss of taurine from CA1 but not CA3 neurons following ischemia reveals osmotic stress may be a key factor in delayed neurodegeneration after a cerebral ischemic insult and highlights the significant potential of chemically specific XFI to study the role of taurine in brain disease.

  3. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chun-Yu [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Shen, Chao-Yu [School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Medicine, Chung Shan Medical University, Taichung, Taiwan (China); Kang, Chao-Kai [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, (China); Sher, Yuh-Pyng [Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan (China); Sheu, Wayne H.-H. [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan (China); School of Medicine, National Yang Ming University, Taipei, Taiwan (China); School of Medicine, National Defense Medical Center, Taipei, Taiwan (China); Chang, Chia-Che, E-mail: chia_che@dragon.nchu.edu.tw [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Lee, Tsung-Han, E-mail: thlee@email.nchu.edu.tw [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, (China); Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Department of Biological Science and Technology, China Medical University, Taichung, Taiwan (China)

    2014-09-15

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxici