WorldWideScience

Sample records for hepatic mesothelial cells

  1. Menstruum induces changes in mesothelial cell morphology.

    Science.gov (United States)

    Koks, C A; Demir Weusten, A Y; Groothuis, P G; Dunselman, G A; de Goeij, A F; Evers, J L

    2000-01-01

    In previous studies, we have shown that menstrual endometrium preferentially adheres to the subepithelial lining of the peritoneum. It remains to be elucidated, however, whether this damage is preexisting or inflicted by the menstrual tissue itself. We hypothesized that the menstrual tissue itself damages the peritoneum. To investigate this, the viability of menstrual endometrial tissue in peritoneal fluid (PF) was evaluated and the morphologic changes in the mesothelial cells were studied by in vitro cocultures of menstruum with mesothelial cell monolayers. Menstruum was collected with a menstrual cup. Endometrial tissue was isolated from the menstruum, resuspended in culture medium or in the cell-free fraction of PF and cultured for 24, 48 or 72 h. A 3(4, 5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to obtain a relative measure of viable adhered endometrial cells. Mesothelial cells isolated from human omental tissue were cultured on Matrigel or uncoated plastic. At confluence, overnight cocultures were performed and scanning electron microscopy was used to evaluate the morphologic changes. The viability of endometrial fragments was 84% (n = 36, p Menstrual endometrial fragments or menstrual serum added to and cocultured with mesothelial cells induced severe morphologic alterations of the latter, including retraction, shrinking and gap formation. Similar morphologic changes were observed when mesothelial cells were cocultured with menstrual endometrial fragments in PF or in culture inserts. Incubation with conditioned medium from cultured menstrual endometrium induced similar but less pronounced changes in morphology. In conclusion, menstrual endometrial fragments remain viable in PF in vitro for at least 72 h. Antegradely shed menstruum induces changes in mesothelial cell morphology, including retraction and shrinking with exposure of the underlying surface. These findings suggest that menstruum is harmful to the peritoneal

  2. Lesion of Aggregated Monocytes and Mesothelial Cells: Mesothelial/Monocytic Incidental Cardiac Lesion

    Directory of Open Access Journals (Sweden)

    Hilal Erinanç

    2013-01-01

    Full Text Available A 58-year-old woman with a history of childhood acute rheumatic fever and resultant mitral valve stenosis was admitted to our cardiovascular surgery clinic complaining of tachycardia, dyspnea, and chest pain. After clinical and radiological findings were evaluated, mitral valve replacement, tricuspid De Vega annuloplasty and plication, and resection of giant left atrium were performed. Atrial thrombus was removed from the top of the left atrial wall. Operation material considered as thrombus was sent to a pathology laboratory for histopathological examination. It was diagnosed with mesothelial/monocytic incidental cardiac lesion (cardiac MICE. Microscopic sections revealed that morphological features of the lesion were different from thrombus. The lesion was composed of a cluster of histiocytoid cells with abundant cytoplasm and oval shaped nuclei and epithelial-like cells resembling mesothelial cells within a fibrin network. Epithelial-like cells formed a papillary configuration in the focal areas. Mitotic figures were absent. Here we present a case which was incidentally found in a patient who underwent mitral valve replacement surgery, as a thrombotic lesion on the left atrium wall.

  3. Isolation, propagation, and characterization of rat liver serosal mesothelial cells.

    Science.gov (United States)

    Faris, R A; McBride, A; Yang, L; Affigne, S; Walker, C; Cha, C J

    1994-12-01

    Although rat liver epithelial cell (RLEC) lines have been developed by a number of laboratories, the identity of the clonogenic nonparenchymal progenitors is unknown. To provide insight into the derivation of RLEC, we immunoisolated serosal liver mesothelial cells (LMC) and bile duct epithelial cells and attempted to propagate each epithelial cell population using culture conditions routinely employed to establish RLEC lines. Briefly, the selective reactivity of LMC with two bile duct cell surface markers, OC.2 and BD.2, was exploited to develop an immunocytochemical technique to isolate LMC. Livers were collagenase dissociated, the mesothelial capsule was "peeled" and digested with pronase to destroy contaminating hepatocytes, and rare biliary ductal epithelial cells were immunodepleted using OC.2. LMC were subsequently isolated by selective binding to magnetic beads adsorbed with BD.2 and cultured in supplemented Waymouths 752/1 media containing 10% fetal calf serum. Proliferating BD.2+ LMC rapidly formed epithelial-like monolayers that could be continuously subcultured after trypsinization. In contrast, attempts to establish cell lines from purified OC.2+ bile duct epithelial cells were unsuccessful. Results from reverse transcriptase polymerase chain reaction analysis confirmed that LMC expressed Wilms' tumor transcripts, a lineage marker for mesodermally-derived cells. In summary, our findings clearly demonstrate that LMC can be continuously propagated using culture conditions routinely employed to establish RLEC lines, an observation that supports the contention that some RLEC lines may be derived from LMC.

  4. Analysis of early mesothelial cell responses to Staphylococcus epidermidis isolated from patients with peritoneal dialysis-associated peritonitis.

    Science.gov (United States)

    McGuire, Amanda L; Mulroney, Kieran T; Carson, Christine F; Ram, Ramesh; Morahan, Grant; Chakera, Aron

    2017-01-01

    The major complication of peritoneal dialysis (PD) is the development of peritonitis, an infection within the abdominal cavity, primarily caused by bacteria. PD peritonitis is associated with significant morbidity, mortality and health care costs. Staphylococcus epidermidis is the most frequently isolated cause of PD-associated peritonitis. Mesothelial cells are integral to the host response to peritonitis, and subsequent clinical outcomes, yet the effects of infection on mesothelial cells are not well characterised. We systematically investigated the early mesothelial cell response to clinical and reference isolates of S. epidermidis using primary mesothelial cells and the mesothelial cell line Met-5A. Using an unbiased whole genome microarray, followed by a targeted panel of genes known to be involved in the human antibacterial response, we identified 38 differentially regulated genes (adj. p-value peritonitis. This study provides new insights into early mesothelial cell responses to infection with S. epidermidis, and confirms the importance of validating findings in primary mesothelial cells.

  5. A Nanoconjugate Apaf-1 Inhibitor Protects Mesothelial Cells from Cytokine-Induced Injury

    Science.gov (United States)

    Santamaría, Beatriz; Benito-Martin, Alberto; Ucero, Alvaro Conrado; Aroeira, Luiz Stark; Reyero, Ana; Vicent, María Jesús; Orzáez, Mar; Celdrán, Angel; Esteban, Jaime; Selgas, Rafael; Ruíz-Ortega, Marta; Cabrera, Manuel López; Egido, Jesús; Pérez-Payá, Enrique; Ortiz, Alberto

    2009-01-01

    Background Inflammation may lead to tissue injury. We have studied the modulation of inflammatory milieu-induced tissue injury, as exemplified by the mesothelium. Peritoneal dialysis is complicated by peritonitis episodes that cause loss of mesothelium. Proinflammatory cytokines are increased in the peritoneal cavity during peritonitis episodes. However there is scarce information on the modulation of cell death by combinations of cytokines and on the therapeutic targets to prevent desmesothelization. Methodology Human mesothelial cells were cultured from effluents of stable peritoneal dialysis patients and from omentum of non-dialysis patients. Mesothelial cell death was studied in mice with S. aureus peritonitis and in mice injected with tumor necrosis factor alpha and interferon gamma. Tumor necrosis factor alpha and interferon gamma alone do not induce apoptosis in cultured mesothelial cells. By contrast, the cytokine combination increased the rate of apoptosis 2 to 3-fold over control. Cell death was associated with the activation of caspases and a pancaspase inhibitor prevented apoptosis. Specific caspase-8 and caspase-3 inhibitors were similarly effective. Co-incubation with both cytokines also impaired mesothelial wound healing in an in vitro model. However, inhibition of caspases did not improve wound healing and even impaired the long-term recovery from injury. By contrast, a polymeric nanoconjugate Apaf-1 inhibitor protected from apoptosis and allowed wound healing and long-term recovery. The Apaf-1 inhibitor also protected mesothelial cells from inflammation-induced injury in vivo in mice. Conclusion Cooperation between tumor necrosis factor alpha and interferon gamma contributes to mesothelial injury and impairs the regenerative capacity of the monolayer. Caspase inhibition attenuates mesothelial cell apoptosis but does not facilitate regeneration. A drug targeting Apaf-1 allows protection from apoptosis as well as regeneration in the course of

  6. A nanoconjugate Apaf-1 inhibitor protects mesothelial cells from cytokine-induced injury.

    Directory of Open Access Journals (Sweden)

    Beatriz Santamaría

    Full Text Available BACKGROUND: Inflammation may lead to tissue injury. We have studied the modulation of inflammatory milieu-induced tissue injury, as exemplified by the mesothelium. Peritoneal dialysis is complicated by peritonitis episodes that cause loss of mesothelium. Proinflammatory cytokines are increased in the peritoneal cavity during peritonitis episodes. However there is scarce information on the modulation of cell death by combinations of cytokines and on the therapeutic targets to prevent desmesothelization. METHODOLOGY: Human mesothelial cells were cultured from effluents of stable peritoneal dialysis patients and from omentum of non-dialysis patients. Mesothelial cell death was studied in mice with S. aureus peritonitis and in mice injected with tumor necrosis factor alpha and interferon gamma. Tumor necrosis factor alpha and interferon gamma alone do not induce apoptosis in cultured mesothelial cells. By contrast, the cytokine combination increased the rate of apoptosis 2 to 3-fold over control. Cell death was associated with the activation of caspases and a pancaspase inhibitor prevented apoptosis. Specific caspase-8 and caspase-3 inhibitors were similarly effective. Co-incubation with both cytokines also impaired mesothelial wound healing in an in vitro model. However, inhibition of caspases did not improve wound healing and even impaired the long-term recovery from injury. By contrast, a polymeric nanoconjugate Apaf-1 inhibitor protected from apoptosis and allowed wound healing and long-term recovery. The Apaf-1 inhibitor also protected mesothelial cells from inflammation-induced injury in vivo in mice. CONCLUSION: Cooperation between tumor necrosis factor alpha and interferon gamma contributes to mesothelial injury and impairs the regenerative capacity of the monolayer. Caspase inhibition attenuates mesothelial cell apoptosis but does not facilitate regeneration. A drug targeting Apaf-1 allows protection from apoptosis as well as regeneration

  7. Regeneration of peritoneal mesothelial cells after placement of hyaluronate carboxymethyl-cellulose (Seprafilm®).

    Science.gov (United States)

    Osawa, Hideki; Nishimura, Junichi; Hiraki, Masayuki; Takahashi, Hidekazu; Haraguchi, Naotsugu; Hata, Taishi; Ikenaga, Masakazu; Murata, Kohei; Yamamoto, Hirofumi; Mizushima, Tsunekazu; Doki, Yuichiro; Mori, Masaki

    2017-01-01

    To examine the regeneration of mesothelium under a bioresorbable membrane. A 1 cm2 piece of peritoneum was resected from both sides of the abdominal wall of retired female mice. A piece of hyaluronate and carboxymethyl-cellulose (Seprafilm®) was placed over the wound on one side and the other side was left uncovered. We evaluated the degree of adhesion and regeneration of mesothelial cells macroscopically and histologically using immunohistochemistry at different times. Macroscopically, the degree of postoperative adhesion in the treated site was significantly less than that in the untreated site. The membrane was left in place for 7 postoperative days (PODs). By POD 5, the regenerated peritoneum mesothelial cells covered part of the area and by POD 7, they had regenerated over almost all of that area in the abdominal wall. The anti-adhesion membrane worked as a physical barrier to prevent postoperative adhesion until the mesothelial cells had regenerated completely. To our knowledge, this is the first study conducted to assess the regeneration of peritoneum mesothelial cells under a bioresorbable membrane using immunohistochemistry.

  8. Use of Mesothelial Cells and Biological Matrices for Tissue Engineering of Simple Epithelium Surrogates

    Directory of Open Access Journals (Sweden)

    Christian Claude Lachaud

    2015-08-01

    Full Text Available Tissue engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large coelomic cavities (peritoneal, pericardial and pleural and internal organs housed inside. Interestedly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic, characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable and non-immunogenic may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions.

  9. Use of Mesothelial Cells and Biological Matrices for Tissue Engineering of Simple Epithelium Surrogates

    Science.gov (United States)

    Lachaud, Christian Claude; Rodriguez-Campins, Berta; Hmadcha, Abdelkrim; Soria, Bernat

    2015-01-01

    Tissue-engineering technologies have progressed rapidly through last decades resulting in the manufacture of quite complex bioartificial tissues with potential use for human organ and tissue regeneration. The manufacture of avascular monolayered tissues such as simple squamous epithelia was initiated a few decades ago and is attracting increasing interest. Their relative morphostructural simplicity makes of their biomimetization a goal, which is currently accessible. The mesothelium is a simple squamous epithelium in nature and is the monolayered tissue lining the walls of large celomic cavities (peritoneal, pericardial, and pleural) and internal organs housed inside. Interestingly, mesothelial cells can be harvested in clinically relevant numbers from several anatomical sources and not less important, they also display high transdifferentiation capacities and are low immunogenic characteristics, which endow these cells with therapeutic interest. Their combination with a suitable scaffold (biocompatible, degradable, and non-immunogenic) may allow the manufacture of tailored serosal membranes biomimetics with potential spanning a wide range of therapeutic applications, principally for the regeneration of simple squamous-like epithelia such as the visceral and parietal mesothelium vascular endothelium and corneal endothelium among others. Herein, we review recent research progresses in mesothelial cells biology and their clinical sources. We make a particular emphasis on reviewing the different types of biological scaffolds suitable for the manufacture of serosal mesothelial membranes biomimetics. Finally, we also review progresses made in mesothelial cells-based therapeutic applications and propose some possible future directions. PMID:26347862

  10. Pathophysiological Changes to the Peritoneal Membrane during PD-Related Peritonitis: The Role of Mesothelial Cells

    Science.gov (United States)

    Yung, Susan; Chan, Tak Mao

    2012-01-01

    The success of peritoneal dialysis (PD) is dependent on the structural and functional integrity of the peritoneal membrane. The mesothelium lines the peritoneal membrane and is the first line of defense against chemical and/or bacterial insult. Peritonitis remains a major complication of PD and is a predominant cause of technique failure, morbidity and mortality amongst PD patients. With appropriate antibiotic treatment, peritonitis resolves without further complications, but in some PD patients excessive peritoneal inflammatory responses lead to mesothelial cell exfoliation and thickening of the submesothelium, resulting in peritoneal fibrosis and sclerosis. The detrimental changes in the peritoneal membrane structure and function correlate with the number and severity of peritonitis episodes and the need for catheter removal. There is evidence that despite clinical resolution of peritonitis, increased levels of inflammatory and fibrotic mediators may persist in the peritoneal cavity, signifying persistent injury to the mesothelial cells. This review will describe the structural and functional changes that occur in the peritoneal membrane during peritonitis and how mesothelial cells contribute to these changes and respond to infection. The latter part of the review discusses the potential of mesothelial cell transplantation and genetic manipulation in the preservation of the peritoneal membrane. PMID:22577250

  11. NFAT5 Contributes to Osmolality-Induced MCP-1 Expression in Mesothelial Cells

    Directory of Open Access Journals (Sweden)

    Christoph Küper

    2012-01-01

    Full Text Available Increased expression of the C-C chemokine monocyte chemoattractant protein-1 (MCP-1 in mesothelial cells in response to high glucose concentrations and/or high osmolality plays a crucial role in the development of peritoneal fibrosis during continuous ambulatory peritoneal dialysis (CAPD. Recent studies suggest that in kidney cells osmolality-induced MCP-1 upregulation is mediated by the osmosensitive transcription factor, nuclear factor of activated T cells 5 (NFAT5. The present study addressed the question of whether activation of NFAT5 by hyperosmolality, as present in PD fluids, contributes to MCP-1 expression in the mesothelial cell line Met5A. Hyperosmolality, induced by addition of glucose, NaCl, or mannitol to the growth medium, increased NFAT5 activity and stimulated MCP-1 expression in Met5A cells. siRNA-mediated knockdown of NFAT5 attenuated osmolality-induced MCP-1 upregulation substantially. Hyperosmolality also induced activation of nuclear factor-κB (NF-κB. Accordingly, pharmacological inhibition of NF-κB significantly decreased osmolality-induced MCP-1 expression. Taken together, these results indicate that high osmolalities activate the transcription factor NFAT5 in mesothelial cells. NFAT5 in turn upregulates MCP-1, likely in combination with NF-κB, and thus may participate in the development of peritoneal fibrosis during CAPD.

  12. GM-CSF and GM-CSF receptor have regulatory role in transforming rat mesenteric mesothelial cells into macrophage-like cells.

    Science.gov (United States)

    Katz, Sándor; Zsiros, Viktória; Dóczi, Nikolett; Szabó, Arnold; Biczó, Ádám; Kiss, Anna L

    2016-10-01

    During peritonitis, mesothelial cells assume macrophage characteristics, expressing macrophage markers, indicating that they might differentiate into macrophage-like cells. Twenty-five male rats were used for in vivo experiments. For in vitro experiments, a primary mesentery culture model was developed. The mesothelial cell to macrophage-like cell transition was followed by studying ED1 expression. In vitro primary mesenteric culture was treated with granulocyte-macrophage colony-stimulating factor (GM-CSF, 1 ng/ml). Blocking internalization of receptor-ligand complex, Dynasore (80 µM) was used. Acute peritonitis was induced by Freund's adjuvant's (1 ml) intraperitoneal injection. Immunohistochemistry: GM-CSF in vitro treatment resulted in a prominent ED1 expression in transformed mesothelial cells. Blocking the internalization, ED1 expression could not be detected. GM-CSF receptor (both α and β) was expressed in mesothelial cells in vitro (even if the GM-CSF was not present) and in vivo. Inflammation resulted in an increasing GM-CSF and GM-CSF-receptor level in the lysate of mesothelial cells. Mesothelial cells can differentiate into macrophage-like cells, and GM-CSF, produced by the mesothelial cells, has probably an autocrine regulatory role in this transition. Our results provide new data about the plasticity of mesothelial cell and support the idea that during inflammation macrophages can derive from non-hematopoietic sources as well.

  13. Influence of monocyte-like cells on the fibrinolytic activity of peritoneal mesothelial cells and the effect of sodium hyaluronate.

    NARCIS (Netherlands)

    Sikkink, C.J.J.M.; Reijnen, M.M.P.J.; Falk, P.; Goor, H. van; Holmdahl, L.

    2005-01-01

    OBJECTIVE: To determine whether the presence of cells of the monocyte-macrophage system affects the fibrinolytic response of peritoneal mesothelial cells to lipopolysaccharide (LPS) in the presence and absence of sodium hyaluronate. DESIGN: Controlled laboratory experiment. SETTING: Cell cultures in

  14. Influence of monocyte-like cells on the fibrinolytic activity of peritoneal mesothelial cells and the effect of sodium hyaluronate

    NARCIS (Netherlands)

    Sikkink, CJJM; Reijnen, MMPJ; Falk, P; van Goor, Harry; Holmdahl, L

    2005-01-01

    Objective: To determine whether the presence of cells of the monocyte-macrophage system affects the fibrinolytic response of peritoneal mesothelial cells to lipopolysaccharide (LPS) in the presence and absence of sodium hyaluronate. Design: Controlled laboratory experiment. Setting: Cell cultures in

  15. Stress responses and conditioning effects in mesothelial cells exposed to peritoneal dialysis fluid.

    Science.gov (United States)

    Kratochwill, Klaus; Lechner, Michael; Siehs, Christian; Lederhuber, Hans C; Rehulka, Pavel; Endemann, Michaela; Kasper, David C; Herkner, Kurt R; Mayer, Bernd; Rizzi, Andreas; Aufricht, Christoph

    2009-04-01

    Renal replacement therapy by peritoneal dialysis is frequently complicated by technical failure. Peritoneal dialysis fluids (PDF) cause injury to the peritoneal mesothelial cell layer due to their cytotoxicity. As only isolated elements of the involved cellular processes have been studied before, we aimed at a global assessment of the mesothelial stress response to PDF. Following single or repeated exposure to PDF or control medium, proteomics and bioinformatics techniques were combined to study effects in mesothelial cells (MeT-5A). Protein expression was assessed by two-dimensional gel electrophoresis, and significantly altered spots were identified by MALDI-TOF MS and MS2 techniques. The lists of experimentally derived candidate proteins were expanded by a next neighbor approach and analyzed for significantly enriched biological processes. To address the problem of an unknown portion of false positive spots in 2DGE, only proteins showing significant p-values on both levels were further interpreted. Single PDF exposure resulted in reduction of biological processes in favor of reparative responses, including protein metabolism, modification and folding, with chaperones as a major subgroup. The observed biological processes triggered by this acute PDF exposure mainly contained functionally interwoven multitasking proteins contributing as well to cytoskeletal reorganization and defense mechanisms. Repeated PDF exposure resulted in attenuated protein regulation, reflecting inhibition of stress responses by high levels of preinduced chaperones. The identified proteins were less attributable to acute cellular injury but rather to specialized functions with a reduced number of involved multitasking proteins. This finding agrees well with the concept of conditioning effects and cytoprotection. In conclusion, this study describes the reprogrammed proteome of mesothelial cells during recovery from PDF exposure and adaption to repetitive stress. A broad stress response with

  16. Prolonged effect of fluid flow stress on the proliferative activity of mesothelial cells after abrupt discontinuation of fluid streaming

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Shigehisa, E-mail: aokis@cc.saga-u.ac.jp [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Ikeda, Satoshi [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Takezawa, Toshiaki [Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ibaraki (Japan); Kishi, Tomoya [Department of Internal Medicine, Saga University, Saga (Japan); Makino, Junichi [Makino Clinic, Saga (Japan); Uchihashi, Kazuyoshi; Matsunobu, Aki [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan); Noguchi, Mitsuru [Department of Urology, Faculty of Medicine, Saga University, Saga (Japan); Sugihara, Hajime [Department of Physical Therapy, International University of Health and Welfare, Fukuoka (Japan); Toda, Shuji [Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga (Japan)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. Black-Right-Pointing-Pointer Fluid streaming is a potent factor for peritoneal fibrosis in PD. Black-Right-Pointing-Pointer We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. Black-Right-Pointing-Pointer A history of fluid streaming exposure promoted mesothelial proliferative activity. Black-Right-Pointing-Pointer We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed

  17. Hepatocyte growth factor secreted by ovarian cancer cells stimulates peritoneal implantation via the mesothelial-mesenchymal transition of the peritoneum.

    Science.gov (United States)

    Nakamura, Michihiko; Ono, Yoshihiro J; Kanemura, Masanori; Tanaka, Tomohito; Hayashi, Masami; Terai, Yoshito; Ohmichi, Masahide

    2015-11-01

    A current working model for the metastatic process of ovarian carcinoma suggests that cancer cells are shed from the ovarian tumor into the peritoneal cavity and attach to the layer of mesothelial cells that line the inner surface of the peritoneum, and several studies suggest that hepatocyte growth factor (HGF) plays an important role in the dissemination of ovarian cancer. Our objectives were to evaluate the HGF expression of ovarian cancer using clinical data and assess the effect of HGF secreted from human ovarian cancer cells to human mesothelial cells. HGF expression was immunohistochemically evaluated in 165 epithelial ovarian cancer patients arranged as tissue microarrays. HGF expression in four ovarian cancer cell lines was evaluated by using semi-quantitative polymerase chain reaction, Western blotting and enzyme-linked immunosorbent assay. The effect of ovarian cancer cell derived HGF to the human mesothelial cells was assessed by using morphologic analysis, Western blotting and cell invasion assay. The effect of HGF on ovarian cancer metastasis was assessed by using in vivo experimental model. The clinical data showed a significantly high correlation between the HGF expression and the cancer stage. The in vivo and in vitro experimental models revealed that HGF secreted by ovarian cancer cells induces the mesothelial-to-mesenchymal transition and stimulates the invasion of mesothelial cells. Furthermore, manipulating the HGF activity affected the degree of dissemination and ascite formation. We demonstrated that HGF secreted by ovarian cancer cells plays an important role in cancer peritoneal implantation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Retinoic Acid Improves Morphology of Cultured Peritoneal Mesothelial Cells from Patients Undergoing Dialysis

    Science.gov (United States)

    Retana, Carmen; Sanchez, Elsa I.; Gonzalez, Sirenia; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas-Munoz, Jesus; Alfaro-Cruz, Carmen; Vital-Flores, Socorro; Reyes, José L.

    2013-01-01

    Patients undergoing continuous ambulatory peritoneal dialysis are classified according to their peritoneal permeability as low transporter (low solute permeability) or High transporter (high solute permeability). Factors that determine the differences in permeability between them have not been fully disclosed. We investigated morphological features of cultured human peritoneal mesothelial cells from low or high transporter patients and its response to All trans retinoic Acid (ATRA, vitamin A active metabolite), as compared to non-uremic human peritoneal mesothelial cells. Control cells were isolated from human omentum. High or low transporter cells were obtained from dialysis effluents. Cells were cultured in media containing ATRA (0, 50, 100 or 200 nM). We studied length and distribution of microvilli and cilia (scanning electron microscopy), epithelial (cytokeratin, claudin-1, ZO-1 and occludin) and mesenchymal (vimentin and α-smooth muscle actin) transition markers by immunofluorescence and Western blot, and transforming growth factor β1 expression by Western blot. Low and high transporter exhibited hypertrophic cells, reduction in claudin-1, occludin and ZO-1 expression, cytokeratin and vimentin disorganization and positive α-smooth muscle actin label. Vimentin, α-smooth muscle actin and transforming growth factor- β1 were overexpressed in low transporter. Ciliated cells were diminished in low and high transporters. Microvilli number and length were severely reduced in high transporter. ATRA reduced hypertrophic cells number in low transporter. It also improved cytokeratin and vimentin organization, decreased vimentin and α-smooth muscle actin expression, and increased claudin 1, occludin and ZO-1 expression, in low and high transporter. In low transporter, ATRA reduced transforming growth factor-β1 expression. ATRA augmented percentage of ciliated cells in low and high transporter. It also augmented cilia length in high transporter. Alterations in

  19. Endocytosis of Multiwalled Carbon Nanotubes in Bronchial Epithelial and Mesothelial Cells

    Directory of Open Access Journals (Sweden)

    Kayo Maruyama

    2015-01-01

    Full Text Available Bronchial epithelial cells and mesothelial cells are crucial targets for the safety assessment of inhalation of carbon nanotubes (CNTs, which resemble asbestos particles in shape. Intrinsic properties of multiwalled CNTs (MWCNTs are known to cause potentially hazardous effects on intracellular and extracellular pathways. These interactions alter cellular signaling and affect major cell functions, resulting in cell death, lysosome injury, reactive oxygen species production, apoptosis, and cytokine release. Furthermore, CNTs are emerging as a novel class of autophagy inducers. Thus, in this study, we focused on the mechanisms of MWCNT uptake into the human bronchial epithelial cells (HBECs and human mesothelial cells (HMCs. We verified that MWCNTs are actively internalized into HBECs and HMCs and were accumulated in the lysosomes of the cells after 24-hour treatment. Next, we determined which endocytosis pathways (clathrin-mediated, caveolae-mediated, and macropinocytosis were associated with MWCNT internalization by using corresponding endocytosis inhibitors, in two nonphagocytic cell lines derived from bronchial epithelial cells and mesothelioma cells. Clathrin-mediated endocytosis inhibitors significantly suppressed MWCNT uptake, whereas caveolae-mediated endocytosis and macropinocytosis were also found to be involved in MWCNT uptake. Thus, MWCNTs were positively taken up by nonphagocytic cells, and their cytotoxicity was closely related to these three endocytosis pathways.

  20. Actin polymerization plays a significant role in asbestos-induced inflammasome activation in mesothelial cells in vitro.

    Science.gov (United States)

    MacPherson, Maximilian; Westbom, Catherine; Kogan, Helen; Shukla, Arti

    2017-05-01

    Asbestos exposure leads to malignant mesothelioma (MM), a deadly neoplasm of mesothelial cells of various locations. Although there is no doubt about the role of asbestos in MM tumorigenesis, mechanisms are still not well explored. Recently, our group demonstrated that asbestos causes inflammasome priming and activation in mesothelial cells, which in part is dependent on oxidative stress. Our current study sheds light on yet another mechanism of inflammasome activation by asbestos. Here we show the role of actin polymerization in asbestos-induced activation of the nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome. Using human mesothelial cells, we first demonstrate that asbestos and carbon nanotubes induced caspase-1 activation and high-mobility group box 1, interleukin 1 beta and interleukin 18 secretion was blocked by Cytochalasin D (Cyto D) an actin polymerization inhibitor. Next, to understand the mechanism, we assessed whether phagocytosis of fibers by mesothelial cells is affected by actin polymerization inhibition. Transmission electron microscopy showed the inhibition of fiber uptake by mesothelial cells in the presence of Cyto D. Furthermore, localization of components of the inflammasome, apoptotic speck-like protein containing a CARD domain (ASC) and NLRP3, to the perinuclear space in mitochondria or endoplasmic reticulum in response to fiber exposure was also interrupted in the presence of Cyto D. Taken together, our studies suggest that actin polymerization plays important roles in inflammasome activation by fibers via regulation of phagocytosis and/or spatial localization of inflammasome components.

  1. Hyaluronan-positive plasma membrane protrusions exist on mesothelial cells in vivo.

    Science.gov (United States)

    Koistinen, Ville; Jokela, Tiina; Oikari, Sanna; Kärnä, Riikka; Tammi, Markku; Rilla, Kirsi

    2016-05-01

    Previous observations of our research group showed that HAS2 and HAS3 overexpression in cultured cells induces the formation of long and numerous microvillus-like cell protrusions, which are present also in cultured cell types with naturally high hyaluronan secretion and the cell protrusions resemble those found in mesothelial cells. The aim of this study was to investigate whether these hyaluronan secreting, actin-dependent protrusions exist also in vivo. It was found that rat mesothelium in vivo is positive for hyaluronan and Has1-3. Also microvilli in rat mesothelium and live primary cultures of mesothelial cells were found to be hyaluronan positive, and the cells expressed all Has isoforms. Furthermore, ultrastructure of the cell protrusions in rat mesothelium was similar to that induced by overexpression of HAS2 and HAS3, and the number and orientation of actin filaments supporting the cell protrusions was identical. The results of this study show that HA-positive protrusions exist in vivo and support the idea that hyaluronan secretion from plasma membrane protrusions is a general process. This mechanism is potentially crucial for the normal function and maintenance of tissues and body fluids and may be utilized in many therapeutic applications.

  2. Inhibition of NF-kappaB with Dehydroxymethylepoxyquinomicin modifies the function of human peritoneal mesothelial cells.

    Science.gov (United States)

    Sosińska, Patrycja; Baum, Ewa; Maćkowiak, Beata; Staniszewski, Ryszard; Jasinski, Tomasz; Umezawa, Kazuo; Bręborowicz, Andrzej

    2016-01-01

    Peritoneal mesothelial cells exposed to bioincompatible dialysis fluids contribute to damage of the peritoneum during chronic dialysis. Inflammatory response triggered in the mesothelium leading to neovascularization and fibrosis plays an important role in that process. We studied the effects of Dehydroxymethyepoxyquinmicin (DHMEQ)-an NF-κB inhibitor on function of human peritoneal mesothelial cells (HPMC) in in vitro culture. DHMEQ studied in concentrations of 1-10 µg/ml was not toxic to HPMC. Synthesis of IL-6, MCP-1 and hyaluronan in unstimulated and stimulated with interleukin-1 (100 pg/ml) HPMC was inhibited in the presence of DHMEQ and the effect was proportional to the dose of the drug. DHMEQ (10 µg/ml) reduced in unstimulated HPMC synthesis of IL-6 (-55%), MCP-1 (-58%) and hyaluronan (-41%). Respective values for stimulated HMPC were: -63% for IL-6, -57% for MCP-1 and -67% for hyaluronan. The observed effects were due to the suppression of the expression of genes responsible for the synthesis of these molecules. DHMEQ modified the effects of the effluent dialysates from CAPD patients on the function of HMPC. Dialysate induced accelerated growth of these cells, and synthesis of collagen was inhibited in the presence of DHMEQ 10 µg/ml, by 69% and 40%, respectively. The results of our study show that DHMEQ effectively reduces inflammatory response in HMPC and prevents excessive dialysate induced proliferation and collagen synthesis in these cells. All of these effects may be beneficial during chronic peritoneal dialysis and prevents progressive dialysis-induced damage to the peritoneum.

  3. Bleomycin induced epithelial–mesenchymal transition (EMT) in pleural mesothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li-Jun [Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Ye, Hong [Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei (China); Zhang, Qian; Li, Feng-Zhi; Song, Lin-Jie; Yang, Jie; Mu, Qing [Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Rao, Shan-Shan [Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Cai, Peng-Cheng [Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Xiang, Fei; Zhang, Jian-Chu [Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei (China); Su, Yunchao [Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University, Augusta, GA (United States); Xin, Jian-Bao, E-mail: 814643835@qq.com [Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei (China); Ma, Wan-Li, E-mail: whmawl@aliyun.com [Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Key Laboratory of Pulmonary Diseases, Ministry of Health of China, Wuhan, Hubei (China)

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by the development of subpleural foci of myofibroblasts that contribute to the exuberant fibrosis. Recent studies revealed that pleural mesothelial cells (PMCs) undergo epithelial–mesenchymal transition (EMT) and play a pivotal role in IPF. In animal model, bleomycin induces pulmonary fibrosis exhibiting subpleural fibrosis similar to what is seen in human IPF. It is not known yet whether bleomycin induces EMT in PMCs. In the present study, PMCs were cultured and treated with bleomycin. The protein levels of collagen-I, mesenchymal phenotypic markers (vimentin and α-smooth muscle actin), and epithelial phenotypic markers (cytokeratin-8 and E-cadherin) were measured by Western blot. PMC migration was evaluated using wound-healing assay of culture PMCs in vitro, and in vivo by monitoring the localization of PMC marker, calretinin, in the lung sections of bleomycin-induced lung fibrosis. The results showed that bleomycin induced increases in collagen-I synthesis in PMC. Bleomycin induced significant increases in mesenchymal phenotypic markers and decreases in epithelial phenotypic markers in PMC, and promoted PMC migration in vitro and in vivo. Moreover, TGF-β1-Smad2/3 signaling pathway involved in the EMT of PMC was demonstrated. Taken together, our results indicate that bleomycin induces characteristic changes of EMT in PMC and the latter contributes to subpleural fibrosis. - Highlights: • Bleomycin induces collagen-I synthesis in pleural mesothelial cells (PMCs). • Bleomycin induces increases in vimentin and α-SMA protein in PMCs. • Bleomycin induces decreases in cytokeratin-8 and E-cadherin protein in PMCs • TGF-β1-Smad2/3 signaling pathway is involved in the PMC EMT induced by bleomycin.

  4. Estrogen receptor alpha is expressed in mesenteric mesothelial cells and is internalized in caveolae upon Freund's adjuvant treatment.

    Directory of Open Access Journals (Sweden)

    Petra Balogh

    Full Text Available Transformation of epithelial cells into connective tissue cells (epithelial-mesenchymal transition, EMT is a complex mechanism involved in tumor metastasis, and in normal embryogenesis, while type II EMT is mainly associated with inflammatory events and tissue regenaration. In this study we examined type II EMT at the ultrastructural and molecular level during the inflammatory process induced by Freund's adjuvant treatment in rat mesenteric mesothelial cells. We found that upon the inflammatory stimulus mesothelial cells lost contact with the basal lamina and with each other, and were transformed into spindle-shaped cells. These morphological changes were accompanied by release of interleukins IL-1alpha, -1beta and IL-6 and by secretion of transforming growth factor beta (TGF-β into the peritoneal cavity. Mesothelial cells also expressed estrogen receptor alpha (ER-α as shown by immunolabeling at the light and electron microscopical levels, as well as by quantitative RT-PCR. The mRNA level of ER-α showed an inverse correlation with the secretion of TGF-β. At the cellular and subcellular levels ER-α was colocalized with the coat protein caveolin-1 and was found in the plasma membrane of mesothelial cells, in caveolae close to multivesicular bodies (MVBs or in the membrane of these organelles, suggesting that ER-α is internalized via caveola-mediated endocytosis during inflammation. We found asymmetric, thickened, electron dense areas on the limiting membrane of MVBs (MVB plaques indicating that these sites may serve as platforms for collecting and organizing regulatory proteins. Our morphological observations and biochemical data can contribute to form a potential model whereby ER-α and its caveola-mediated endocytosis might play role in TGF-β induced type II EMT in vivo.

  5. [Phosphorylation of glycogen synthase kinase-3beta induces epithelial mesenchymal transition in human peritoneal mesothelial cells].

    Science.gov (United States)

    Fan, Min; Liu, Fuyou; Yang, Yu; Ye, Yun; Huang, Guxiang

    2010-04-01

    To investigate the role of phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) inducing epithelial mesenchymal transition in human peritoneal mesothelial cells (HPMC). Primary HPMC was harvested from human omental tissue and maintained under defined in vitro conditions. The expression of p-GSK-3beta and total GSK-3beta in HMPC was detected by Western blot after incubation with different concentrations (0, 5, 10, 20, and 40 mmol/L)of LiCl at different time points (0, 1, 3, 6, and 12 h). The protein expression of E-cadherin and alpha-SMA was also examined after treatment with 20 mmol/L LiCl according to different time courses. The intracellular distribution and expression of alpha-SMA were determined by indirect immunofluorescence. LiCl stimulated phosphorylation of GSK-3beta and the effect was time-dependent and concentration-dependent to limited extent (PHMPC to epithelial mesenchymal transition and provides new clue for the treatment of peritoneal fibrosis.

  6. Cancer-associated peritoneal mesothelial cells lead the formation of pancreatic cancer peritoneal dissemination.

    Science.gov (United States)

    Abe, Toshiya; Ohuchida, Kenoki; Koikawa, Kazuhiro; Endo, Sho; Okumura, Takashi; Sada, Masafumi; Horioka, Kohei; Zheng, Biao; Moriyama, Taiki; Nakata, Kohei; Miyasaka, Yoshihiro; Manabe, Tatsuya; Ohtsuka, Takao; Nagai, Eishi; Mizumoto, Kazuhiro; Hashizume, Makoto; Nakamura, Masafumi

    2017-02-01

    The interaction between the cancer cells and the peritoneal mesothelial cells (PMCs) plays an important role in the peritoneal dissemination in several types of cancer. However, the role of PMCs in the peritoneal dissemination of pancreatic cancer remains unclear. In the present study, we investigated the interaction between the pancreatic cancer cells (PCCs) and the PMCs in the formation of peritoneal dissemination in vitro and in vivo. The tumor-stromal interaction of PCCs and PMCs significantly enhanced their mobility and invasiveness and enhanced the proliferation and anoikis resistance of PCCs. In a 3D organotypic culture model of peritoneal dissemination, co-culture of PCCs and PMCs significantly increased the cells invading into the collagen gel layer compared with mono-culture of PCCs. PMCs pre-invaded into the collagen gel, remodeled collagen fibers, and increased parallel fiber orientation along the direction of cell invasion. In the tissues of peritoneal dissemination of the KPC (LSL-KrasG12D/+; LSL-Trp53R172H/+;Pdx-1-Cre) transgenic mouse, the monolayer of PMCs was preserved in tumor-free areas, whereas PMCs around the invasive front of peritoneal dissemination proliferated and invaded into the muscle layer. In vivo, intraperitoneal injection of PCCs with PMCs significantly promoted peritoneal dissemination compared with PCCs alone. The present data suggest that the cancer-associated PMCs have important promoting roles in the peritoneal dissemination of PCCs. Therapy targeting cancer-associated PMCs may improve the prognosis of patients with pancreatic cancer.

  7. The Impact of 0.9% NaCl on Mesothelial Cells After Intraperitoneal Lavage During Surgical Procedures.

    Science.gov (United States)

    Cwaliński, Jarosław; Bręborowicz, Andrzej; Połubińska, Alicja

    2016-01-01

    Normal saline gained wide popularity in abdominal surgery as a basic compound used in intraoperative drainage of the peritoneal cavity. However, recent studies have revealed that saline solution is not quite biocompatible with the intraperitoneal enviroment and may promote peritoneal adhesions. The aim of the study was to evaluate the function and viability of human mesothelial cells cultured in vitro in 0.9% NaCl solution from intraperitoneal lavage carried out during laparoscopic cholecytectomies. The study included 40 consecutive patients suffering from gallstones who underwent laparoscopic cholecystectomy. Fluid was collected after intraperitoneal lavage during the surgical procedures. The samples obtained were used as a medium for in vitro incubation of primary human mesothelial cells. After 24 h the synthesis of interleukin 6 (IL-6), plasminogen activator inhibitor (PAI) and tissue plasminogen activator (tPA), as well as the index of cell proliferation were assessed in all the experimental groups. All the mesothelium cell cultures treated with fluid samples obtained ex vivo were characterized by elevated levels of IL-6. The highest concentrations of PAI-1 were found in groups of cells exposed to fluid with bile; similarly, tPA synthesis was extremely elevated in groups treaded with fluid containing bile and small amounts of hemolyzed blood. In contrast, cell proliferation was exceedingly high in 2 groups of cells placed in a standard culture medium and in 0.9% NaCl solution. Normal saline introduced into the abdominal cavity modifies the biological and physicochemical conditions of the intraperitoneal environment. The impact of 0.9% NaCl on mesothelial cells is manifested in destabilized tissue regeneration, which supposedly initiates adhesion formation.

  8. Silver nanoparticles alter the permeability of sheep pleura and of sheep and human pleural mesothelial cell monolayers.

    Science.gov (United States)

    Arsenopoulou, Zoi V; Taitzoglou, Ioannis A; Molyvdas, Paschalis-Adam; Gourgoulianis, Konstantinos I; Hatzoglou, Chrissi; Zarogiannis, Sotirios G

    2017-03-01

    Nanoparticles have been implicated in the development of pleural effusions in exposed factory workers while in experimental animal studies it has been shown that they induce inflammation, fibrosis and carcinogenesis in the pleura. The scope of this study was to investigate the direct effects of silver nanoparticles exposure on the membrane permeability of sheep parietal pleura, of primary sheep pleural cell monolayers and on a human mesothelial cell line. Our findings suggest that acute (30min) exposure increases the pleural permeability ex vivo, while longer (24h) exposure in vivo leads to late decrease of the pleural cell monolayers permeability. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mechanisms of oxidative stress and alterations in gene expression by Libby six-mix in human mesothelial cells

    Directory of Open Access Journals (Sweden)

    Hillegass Jedd M

    2010-09-01

    Full Text Available Abstract Background Exposures to an amphibole fiber in Libby, Montana cause increases in malignant mesothelioma (MM, a tumor of the pleural and peritoneal cavities with a poor prognosis. Affymetrix microarray/GeneSifter analysis was used to determine alterations in gene expression of a human mesothelial cell line (LP9/TERT-1 by a non-toxic concentration (15×106 μm2/cm2 of unprocessed Libby six-mix and negative (glass beads and positive (crocidolite asbestos controls. Because manganese superoxide dismutase (MnSOD; SOD2 was the only gene upregulated significantly (p 6 μm2/cm2 and toxic concentrations (75×106 μm2/cm2 of Libby six-mix. Results Exposure to 15×106 μm2/cm2 Libby six-mix elicited significant (p SOD2; 4-fold at 8 h and 111 gene changes at 24 h, including a 5-fold increase in SOD2. Increased levels of SOD2 mRNA at 24 h were also confirmed in HKNM-2 normal human pleural mesothelial cells by qRT-PCR. SOD2 protein levels were increased at toxic concentrations (75×106 μm2/cm2 of Libby six-mix at 24 h. In addition, levels of copper-zinc superoxide dismutase (Cu/ZnSOD; SOD1 protein were increased at 24 h in all mineral groups. A dose-related increase in SOD2 activity was observed, although total SOD activity remained unchanged. Dichlorodihydrofluorescein diacetate (DCFDA fluorescence staining and flow cytometry revealed a dose- and time-dependent increase in reactive oxygen species (ROS production by LP9/TERT-1 cells exposed to Libby six-mix. Both Libby six-mix and crocidolite asbestos at 75×106 μm2/cm2 caused transient decreases (p HO-1 in LP9/TERT-1 and HKNM-2 cells. Conclusions Libby six-mix causes multiple gene expression changes in LP9/TERT-1 human mesothelial cells, as well as increases in SOD2, increased production of oxidants, and transient decreases in intracellular GSH. These events are not observed at equal surface area concentrations of nontoxic glass beads. Results support a mechanistic basis for the importance of SOD2

  10. Distinguishing benign from malignant mesothelial cells in effusions by Glut-1, EMA, and Desmin expression: an evidence-based approach.

    Science.gov (United States)

    Kuperman, Michael; Florence, Roxanne R; Pantanowitz, Liron; Visintainer, Paul F; Cibas, Edmund S; Otis, Christopher N

    2013-02-01

    Distinguishing malignant mesothelioma (MM) from reactive mesothelial hyperplasia (RM) may be difficult in effusions. This study tested the hypothesis that immunocytochemistry (IC) in effusion cell blocks (CB) can distinguish MM from RM and that the results may be applied to individual specimens. External validation of a risk score (RS) model associating sensitivity and specificity was applied to an external set of MM and RM specimens from a separate institution. Forty three effusion cytology CBs of 25 confirmed malignant mesotheliomas were compared to CBs of 23 benign mesothelial effusions without inflammation and 13 reactive mesothelial proliferations associated with inflammation. Glut-1, EMA, and Desmin expression were evaluated by immunocytochemistry on CBs. Each antibody was compared using ROC values, where the area under the curve (AUC) was 0.90, 0.82, and 0.84 for Glut-1, EMA, and Desmin, respectively. Logistic regression (LR) analysis was applied to a combination of Glut-1 and EMA. A combined ROC curve was modeled for Glut-1 and EMA (AUC = 0.93). A RS = 2 × (Glut-1%) + 1 × (EMA%) was created from this ROC curve. When applied to an external set of MM and RM, the RS resulted in an ROC with AUC = 0.91. In conclusion, a RS derived from a LR of Glut-1 and EMA IC greatly improves the distinction between MM from RM cells in individual effusions. The study illustrates principles of evidence-based pathology concerning internal and external test performance in the differential diagnosis of MM versus RM. Copyright © 2011 Wiley Periodicals, Inc.

  11. Diabetes and exposure to peritoneal dialysis solutions alter tight junction proteins and glucose transporters of rat peritoneal mesothelial cells.

    Science.gov (United States)

    Debray-García, Yazmin; Sánchez, Elsa I; Rodríguez-Muñoz, Rafael; Venegas, Miguel A; Velazquez, Josue; Reyes, José L

    2016-09-15

    To evaluate alterations in tight junction (TJ) proteins and glucose transporters in rat peritoneal mesothelial cells (RPMC) from diabetic rats and after treatment with peritoneal dialysis solutions (PDS) in vitro. Diabetes was induced in female Wistar rats by streptozotocin (STZ)-injection. Twenty-one days after STZ-injection, peritoneal thickness and mesothelial cell morphology were studied by light microscopy and microvilli length and density by atomic force microscopy. RPMC were obtained from healthy and diabetic rats. Mesothelial phenotype, evaluated by cytokeratin and pan-cadherin, epithelial to mesenchymal transition (EMT), evaluated by alpha-smooth muscle action (α-SMA) and vimentin, TJ proteins, claudins-1 and -2, and occludin, and glucose transporters, sodium and glucose co-transporters (SGLT) -1 and -2 and facilitative glucose transporters (GLUT) -1 and -2 were analyzed. Also, transepithelial electrical resistance (TER) was measured. Oxidative stress was estimated by measuring reactive oxygen species production, and protein carbonylation, receptor for advanced glycation end products (RAGE), nuclear factor erythroid related factor-2 (Nrf-2), and expression of antioxidant enzymes. Peritoneal damage was present 21days after STZ-injection. Diabetes induced changes in TJ and glucose transporters in RPMC together with decreased TER. RPMC from diabetic rats showed oxidative stress, which was enhanced by exposure to PDS. In addition, RPMC from diabetic rats showed early EMT. To our knowledge, this is the first study that shows changes in TJ proteins and glucose transporters of RPMC from diabetic rats. All these alterations might explain the increased peritoneal permeability observed in diabetic patients undergoing peritoneal dialysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Regulation of CD4(+) T cells by pleural mesothelial cells via adhesion molecule-dependent mechanisms in tuberculous pleurisy.

    Science.gov (United States)

    Yuan, Ming-Li; Tong, Zhao-Hui; Jin, Xiao-Guang; Zhang, Jian-Chu; Wang, Xiao-Juan; Ma, Wan-Li; Yin, Wen; Zhou, Qiong; Ye, Hong; Shi, Huan-Zhong

    2013-01-01

    Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) have been demonstrated to be expressed on pleural mesothelial cells (PMCs), and to mediate leukocyte adhesion and migration; however, little is known about whether adhesion molecule-dependent mechanisms are involved in the regulation of CD4(+) T cells by PMCs in tuberculous pleural effusion (TPE). Expressions of ICAM-1 and VCAM-1 on PMCs, as well as expressions of CD11a and CD29, the counter-receptors for ICAM-1 and VCAM-1, respectively, expressed on CD4(+) T cells in TPE were determined using flow cytometry. The immune regulations on adhesion, proliferation, activation, selective expansion of CD4(+) helper T cell subgroups exerted by PMCs via adhesion molecule-dependent mechanisms were explored. Percentages of ICAM-1-positive and VCAM-1‒positive PMCs in TPE were increased compared with PMC line. Interferon-γ enhanced fluorescence intensity of ICAM-1, while IL-4 promoted VCAM-1 expression on PMCs. Percentages of CD11a(high)CD4(+) and CD29(high)CD4(+) T cells in TPE significantly increased as compared with peripheral blood. Prestimulation of PMCs with anti‒ICAM-1 or ‒VCAM-1 mAb significantly inhibited adhesion, activation, as well as effector regulatory T cell expansion induced by PMCs. Our current data showed that adhesion molecule pathways on PMCs regulated adhesion and activation of CD4(+) T cells, and selectively promoted the expansion of effector regulatory T cells.

  13. Regulation of CD4(+ T cells by pleural mesothelial cells via adhesion molecule-dependent mechanisms in tuberculous pleurisy.

    Directory of Open Access Journals (Sweden)

    Ming-Li Yuan

    Full Text Available BACKGROUND: Intercellular adhesion molecule-1 (ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1 have been demonstrated to be expressed on pleural mesothelial cells (PMCs, and to mediate leukocyte adhesion and migration; however, little is known about whether adhesion molecule-dependent mechanisms are involved in the regulation of CD4(+ T cells by PMCs in tuberculous pleural effusion (TPE. METHODS: Expressions of ICAM-1 and VCAM-1 on PMCs, as well as expressions of CD11a and CD29, the counter-receptors for ICAM-1 and VCAM-1, respectively, expressed on CD4(+ T cells in TPE were determined using flow cytometry. The immune regulations on adhesion, proliferation, activation, selective expansion of CD4(+ helper T cell subgroups exerted by PMCs via adhesion molecule-dependent mechanisms were explored. RESULTS: Percentages of ICAM-1-positive and VCAM-1‒positive PMCs in TPE were increased compared with PMC line. Interferon-γ enhanced fluorescence intensity of ICAM-1, while IL-4 promoted VCAM-1 expression on PMCs. Percentages of CD11a(highCD4(+ and CD29(highCD4(+ T cells in TPE significantly increased as compared with peripheral blood. Prestimulation of PMCs with anti‒ICAM-1 or ‒VCAM-1 mAb significantly inhibited adhesion, activation, as well as effector regulatory T cell expansion induced by PMCs. CONCLUSIONS: Our current data showed that adhesion molecule pathways on PMCs regulated adhesion and activation of CD4(+ T cells, and selectively promoted the expansion of effector regulatory T cells.

  14. Inhibition of transforming growth factor-activated kinase 1 (TAK1 blocks and reverses epithelial to mesenchymal transition of mesothelial cells.

    Directory of Open Access Journals (Sweden)

    Raffaele Strippoli

    Full Text Available Peritoneal fibrosis is a frequent complication of peritoneal dialysis following repeated low grade inflammatory and pro-fibrotic insults. This pathological process may lead to ultrafiltration failure and eventually to the discontinuing of the therapy. Fibrosis is linked to epithelial to mesenchymal transition (EMT of the peritoneal mesothelial cells, which acquire invasive and fibrogenic abilities. Here, we analyzed the role of the transforming growth factor-activated kinase-1 (TAK1 in the EMT of primary mesothelial cells from human peritoneum. The inhibition of TAK1 in mesenchymal-like mesothelial cells from the effluents of patients undergoing peritoneal dialysis led to the reacquisition of the apical to basolateral polarity, to increased expression of epithelial and to down-regulation of mesenchymal markers. TAK1 inhibition also resulted in decreased migratory/invasive abilities of effluent-derived mesothelial cells. Simultaneous inhibition of ERK1/2 and TAK1 pathways did not lead to an additive effect in the reacquisition of the epithelial phenotype. Inhibition of TAK1 also blocked EMT in vitro and reduced the levels of PAI-1, which is involved in fibrosis and invasion. Analysis of signalling pathways downstream of TAK1 involved in EMT induction, showed that TAK1 inhibition reduced the transcriptional activity of NF-κB and Smad3, as well as the phosphorylation of c-jun, while enhancing Smad1-5-8 activity. These results demonstrate that TAK1 is a cross-point in a network including different pro-EMT transcription factors, such as NF-κB, Snail, AP-1 and Smads. The identification of TAK1 as a main biochemical mediator of EMT and fibrosis in mesothelial cells from human peritoneum and the study of signalling pathways induced by its activity may be relevant in the design of new therapies aimed to counteract peritoneal fibrosis.

  15. The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells

    Directory of Open Access Journals (Sweden)

    Murphy Fiona A

    2012-04-01

    Full Text Available Abstract Carbon nanotubes (CNT are high aspect ratio nanoparticles with diameters in the nanometre range but lengths extending up to hundreds of microns. The structural similarities between CNT and asbestos have raised concern that they may pose a similar inhalation hazard. Recently CNT have been shown to elicit a length-dependent, asbestos-like inflammatory response in the pleural cavity of mice, where long fibres caused inflammation but short fibres did not. However the cellular mechanisms governing this response have yet to be elucidated. This study examined the in vitro effects of a range of CNT for their ability to stimulate the release of the acute phase cytokines; IL-1β, TNFα, IL-6 and the chemokine, IL-8 from both Met5a mesothelial cells and THP-1 macrophages. Results showed that direct exposure to CNT resulted in significant cytokine release from the macrophages but not mesothelial cells. This pro-inflammatory response was length dependent but modest and was shown to be a result of frustrated phagocytosis. Furthermore the indirect actions of the CNT were examined by treating the mesothelial cells with conditioned media from CNT-treated macrophages. This resulted in a dramatic amplification of the cytokine release from the mesothelial cells, a response which could be attenuated by inhibition of phagocytosis during the initial macrophage CNT treatments. We therefore hypothesise that long fibres elicit an inflammatory response in the pleural cavity via frustrated phagocytosis in pleural macrophages. The activated macrophages then stimulate an amplified pro-inflammatory cytokine response from the adjacent pleural mesothelial cells. This mechanism for producing a pro-inflammatory environment in the pleural space exposed to long CNT has implications for the general understanding of fibre-related pleural disease and design of safe nanofibres.

  16. Peroxisome-proliferator activator receptor-gamma activation decreases attachment of endometrial cells to peritoneal mesothelial cells in an in vitro model of the early endometriotic lesion.

    Science.gov (United States)

    Kavoussi, S K; Witz, C A; Binkley, P A; Nair, A S; Lebovic, D I

    2009-10-01

    The aim of this study was to investigate whether peroxisome proliferator-activated receptor (PPAR)-gamma activation has an effect on the attachment of endometrial cells to peritoneal mesothelial cells in a well-established in vitro model of the early endometriotic lesion. The endometrial epithelial cell line EM42 and mesothelial cell line LP9 were used for this study. EM42 cells, LP9 cells or both were treated with the PPAR-gamma agonist ciglitazone (CTZ) at varying concentrations (10, 20 and 40 microM) x 48 h with subsequent co-culture of EM42 and LP9 cells. The rate of EM42 attachment and invasion through LP9 cells was then assessed and compared with control (EM42 and LP9 cells co-cultured without prior treatment with CTZ). Next, attachment of CTZ-treated and untreated EM42 cells to hyaluronic acid (HA), a cell adhesion molecule (CAM) on peritoneal mesothelial cells, were assessed. Although there was no difference in EM42 attachment when LP9 cells alone were treated with CTZ, treatment of EM42 cells with 40 microM CTZ decreased EM42 attachment to LP9 cells by 27% (P CTZ decreased EM42 attachment to LP9 by 37% (P CTZ decreased attachment to HA by 66% (P = 0.056). CTZ did not decrease invasion of EM42 cells through the LP9 monolayer. CTZ may inhibit EM42 cell proliferation. In conclusion, CTZ significantly decreased EM42 attachment to LP9 cells and HA in an in vitro model of the early endometriotic lesion.

  17. Amadori adducts activate nuclear factor-kappaB-related proinflammatory genes in cultured human peritoneal mesothelial cells.

    Science.gov (United States)

    Nevado, Julián; Peiró, Concepción; Vallejo, Susana; El-Assar, Mariam; Lafuente, Nuria; Matesanz, Nuria; Azcutia, Verónica; Cercas, Elena; Sánchez-Ferrer, Carlos F; Rodríguez-Mañas, Leocadio

    2005-09-01

    Diabetes mellitus leads to a high incidence of several so-called complications, sharing similar pathophysiological features in several territories. Previous reports points at early nonenzymatic glycosylation products (Amadori adducts) as mediators of diabetic vascular complications. In the present study, we analysed a possible role for Amadori adducts as stimulators of proinflammatory pathways in human peritoneal mesothelial cells (HPMCs). Cultured HPMCs isolated from 13 different patients (mean age 38.7+/-16 years) were exposed to different Amadori adducts, that is, highly glycated haemoglobin (10 nM) and glycated bovine serum albumin (0.25 mg ml(-1)), as well as to their respective low glycosylation controls. Amadori adducts, but not their respective controls, elicited a marked increase of NF-kappaB activation, as determined by electromobility shift assays and transient transfection experiments. Additionally, Amadori adducts significantly increased the production of NF-kappaB-related proinflammatory molecules, including cytokines, such as TNF-alpha, IL-1beta or IL-6, and enzymes, such as cyclooxygenase-2 and inducible nitric oxide (NO) synthase, this latter leading to the release of NO by HPMCs. The effects of Amadori adducts were mediated by different reactive oxygen and nitrosative species (e.g. superoxide anions, hydroxyl radicals, and peroxynitrite), as they were blunted by coincubation with the appropriate scavengers. Furthermore, NO generated upon exposure to Amadori adducts further stimulated NF-kappaB activation, either directly or after combination with superoxide anions to form peroxynitrite. We conclude that Amadori adducts can favour peritoneal inflammation by exacerbating changes in NO synthesis pathway and triggering NF-kappaB-related proinflammatory signals in human mesothelial cells.

  18. Amadori adducts activate nuclear factor-κB-related proinflammatory genes in cultured human peritoneal mesothelial cells

    Science.gov (United States)

    Nevado, Julián; Peiró, Concepción; Vallejo, Susana; El-Assar, Mariam; Lafuente, Nuria; Matesanz, Nuria; Azcutia, Veronica; Cercas, Elena; Sánchez-Ferrer, Carlos F; Rodríguez-Mañas, Leocadio

    2005-01-01

    Diabetes mellitus leads to a high incidence of several so-called complications, sharing similar pathophysiological features in several territories. Previous reports points at early nonenzymatic glycosylation products (Amadori adducts) as mediators of diabetic vascular complications. In the present study, we analysed a possible role for Amadori adducts as stimulators of proinflammatory pathways in human peritoneal mesothelial cells (HPMCs). Cultured HPMCs isolated from 13 different patients (mean age 38.7±16 years) were exposed to different Amadori adducts, that is, highly glycated haemoglobin (10 nM) and glycated bovine serum albumin (0.25 mg ml−1), as well as to their respective low glycosylation controls. Amadori adducts, but not their respective controls, elicited a marked increase of NF-κB activation, as determined by electromobility shift assays and transient transfection experiments. Additionally, Amadori adducts significantly increased the production of NF-κB-related proinflammatory molecules, including cytokines, such as TNF-α, IL-1β or IL-6, and enzymes, such as cyclooxygenase-2 and inducible nitric oxide (NO) synthase, this latter leading to the release of NO by HPMCs. The effects of Amadori adducts were mediated by different reactive oxygen and nitrosative species (e.g. superoxide anions, hydroxyl radicals, and peroxynitrite), as they were blunted by coincubation with the appropriate scavengers. Furthermore, NO generated upon exposure to Amadori adducts further stimulated NF-κB activation, either directly or after combination with superoxide anions to form peroxynitrite. We conclude that Amadori adducts can favour peritoneal inflammation by exacerbating changes in NO synthesis pathway and triggering NF-κB-related proinflammatory signals in human mesothelial cells. PMID:15997235

  19. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    Science.gov (United States)

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Novel computer-aided diagnosis of mesothelioma using nuclear structure of mesothelial cells in effusion cytology specimens

    Science.gov (United States)

    Tosun, Akif Burak; Yergiyev, Oleksandr; Kolouri, Soheil; Silverman, Jan F.; Rohde, Gustavo K.

    2014-03-01

    diagnostic standard is a pleural biopsy with subsequent histologic examination of the tissue demonstrating invasion by the tumor. The diagnostic tissue is obtained through thoracoscopy or open thoracotomy, both being highly invasive procedures. Thoracocenthesis, or removal of effusion fluid from the pleural space, is a far less invasive procedure that can provide material for cytological examination. However, it is insufficient to definitively confirm or exclude the diagnosis of malignant mesothelioma, since tissue invasion cannot be determined. In this study, we present a computerized method to detect and classify malignant mesothelioma based on the nuclear chromatin distribution from digital images of mesothelial cells in effusion cytology specimens. Our method aims at determining whether a set of nuclei belonging to a patient, obtained from effusion fluid images using image segmentation, is benign or malignant, and has a potential to eliminate the need for tissue biopsy. This method is performed by quantifying chromatin morphology of cells using the optimal transportation (Kantorovich-Wasserstein) metric in combination with the modified Fisher discriminant analysis, a k-nearest neighborhood classification, and a simple voting strategy. Our results show that we can classify the data of 10 different human cases with 100% accuracy after blind cross validation. We conclude that nuclear structure alone contains enough information to classify the malignant mesothelioma. We also conclude that the distribution of chromatin seems to be a discriminating feature between nuclei of benign and malignant mesothelioma cells.

  1. Mesothelial Cell Autoantibodies Induce Collagen Deposition in vitro & Using a Case Study to Introduce Undergraduates to Bioinformatics

    Science.gov (United States)

    Serve, Kinta M.

    Part I. Pleural fibrosis, a non-malignant, asbestos-related respiratory disease characterized by excessive collagen deposition, is progressive, debilitating, and potentially fatal. Disease severity may be influenced by the type of asbestos fiber inhaled, with Libby amphibole (LA) a seemingly more potent mediator of pleural fibrosis than chrysotile (CH) asbestos. This difference in severity may be due to the reported immunological component associated with LA but not CH related diseases. Here, we report the potential mechanisms by which asbestos-associated mesothelial cell autoantibodies (MCAAs) contribute to pleural fibrosis development. MCAAs are shown to bind cultured human pleural mesothelial cells and induce the deposition of type I collagen proteins in the absence of phenotypic changes typically associated with fibrosis development. However, additional extracellular proteins seem to differentially contribute to LA and CH MCAA-associated collagen deposition. Our data also suggest that IgG subclass distributions differ between LA and CH MCAAs, potentially altering the antibody effector functions. Differences in MCAA mechanisms of action and effector functions may help explain the disparate clinical disease phenotypes noted between LA and CH-exposed populations and may provide insights for development of novel therapeutic strategies. Part II. As scientific research becomes increasingly reliant on computational tools, it is more important than ever before to train students to use these tools. While educators agree that biology students should gain experience with bioinformatics, there exists no consensus as to how to integrate these concepts into the already demanding undergraduate curriculum. The Portal-21 project offers a solution by utilizing on-line learning case studies to allow flexibility for classroom integration. Presented here are the results from two field tests of a case study developed to introduce the common bioinformatics tools pBLAST and PubMed to

  2. Transforming growth factor-beta1 signaling blockade attenuates gastric cancer cell-induced peritoneal mesothelial cell fibrosis and alleviates peritoneal dissemination both in vitro and in vivo.

    Science.gov (United States)

    Miao, Zhi-Feng; Zhao, Ting-Ting; Wang, Zhen-Ning; Miao, Feng; Xu, Ying-Ying; Mao, Xiao-Yun; Gao, Jian; Wu, Jian-Hua; Liu, Xing-Yu; You, Yi; Xu, Hao; Xu, Hui-Mian

    2014-04-01

    Peritoneal dissemination is the most frequent metastatic pattern of advanced gastric cancer and the main cause of death in gastric cancer patients. Transforming growth factor-beta1 (TGF- ß1), one of the most potent fibrotic stimuli for human peritoneal mesothelial cells, has been shown to play an important role in this process. In this study, we investigated the effect of TGF- ß1 signaling blockade in gastric cancer cell (GCC)-induced human peritoneal mesothelial cell (HPMC) fibrosis. HPMCs were cocultured with the high TGF- ß1 expressing GCC line SGC-7901 and various TGF- ß1 signaling inhibitors or SGC-7901 transfected with TGF-ß1-specific siRNA. HPMC fibrosis was monitored on the basis of morphology. Expression of the epithelial cell marker, E-cadherin, and the mesenchymal marker, α-smooth muscle actin (α-SMA), was evaluated by Western blotting and immunofluorescence confocal imaging. GCC adhesion to HPMC was also assayed. In nude mouse tumor model, the peritoneal fibrotic status was monitored by immunofluorescent confocal imaging and Masson's trichrome staining; formation of metastatic nodular and ascites fluid was also evaluated. Our study demonstrated that GCC expressing high levels of TGF-ß1 induced HMPC fibrosis, which is characterized by both upregulation of E-cadherin and downregulation of α-SMA. Furthermore, HPMC monolayers fibrosis was reversed by TGF- ß1 signaling blockade. In vivo, the TGF- ß1 receptor inhibitor SB-431542 partially attenuated early-stage gastric cancer peritoneal dissemination (GCPD). In conclusion, our study confirms the significance of TGFß1 signaling blockade in attenuating GCPD and may provide a therapeutic target for clinical therapy.

  3. Iron-related toxicity of single-walled carbon nanotubes and crocidolite fibres in human mesothelial cells investigated by Synchrotron XRF microscopy.

    Science.gov (United States)

    Cammisuli, Francesca; Giordani, Silvia; Gianoncelli, Alessandra; Rizzardi, Clara; Radillo, Lucia; Zweyer, Marina; Da Ros, Tatiana; Salomé, Murielle; Melato, Mauro; Pascolo, Lorella

    2018-01-15

    Carbon nanotubes (CNTs) are promising products in industry and medicine, but there are several human health concerns since their fibrous structure resembles asbestos. The presence of transition metals, mainly iron, in the fibres seems also implicated in the pathogenetic mechanisms. To unravel the role of iron at mesothelial level, we compared the chemical changes induced in MeT-5A cells by the exposure to asbestos (crocidolite) or CNTs at different content of iron impurities (raw-SWCNTs, purified- and highly purified-SWCNTs). We applied synchrotron-based X-Ray Fluorescence (XRF) microscopy and soft X-ray imaging (absorption and phase contrast images) to monitor chemical and morphological changes of the exposed cells. In parallel, we performed a ferritin assay. X-ray microscopy imaging and XRF well localize the crocidolite fibres interacting with cells, as well as the damage-related morphological changes. Differently, CNTs presence could be only partially evinced by low energy XRF through carbon distribution and sometimes iron co-localisation. Compared to controls, the cells treated with raw-SWCNTs and crocidolite fibres showed a severe alteration of iron distribution and content, with concomitant stimulation of ferritin production. Interestingly, highly purified nanotubes did not altered iron metabolism. The data provide new insights for possible CNTs effects at mesothelial/pleural level in humans.

  4. Long-Term Chronic Toxicity and Mesothelial Cell Reactions Induced by Potassium Octatitanate Fibers (TISMO) in the Left Thoracic Cavity in A/J Female Mice.

    Science.gov (United States)

    Yokohira, Masanao; Hashimoto, Nozomi; Nakagawa, Toshitaka; Nakano, Yuko; Yamakawa, Keiko; Kishi, Sosuke; Kanie, Shohei; Ninomiya, Fumiko; Saoo, Kousuke; Imaida, Katsumi

    2015-01-01

    The present study was conducted to examine the chronic effects of potassium octatitanate fibers (trade name TISMO; chemical formula K2O·6TiO2) on the mouse lung and thoracic cavity. This method of infusion was employed to examine the direct effects of the fibers to the pleura. In the present study, 52- and 65-week experiments were employed to examine the long-term chronic effects after infusion of fiber-shaped TISMO into the thoracic cavities of A/J mice. Following this infusion, TISMO fibers were observed in the alveoli, indicating penetration through the visceral pleura. The additional histopathological detection of TISMO fibers in the liver, spleen, kidneys, ovary, heart, bone marrow, and brain of TISMO-infused mice indicated migration of the fibers out from the thoracic cavity. Atypical mesothelial cells with severe pleural proliferation were observed, but malignant mesotheliomas were not detected. This study demonstrated that intrathoracic infusion of TISMO fiber did not cause malignant mesothelioma but did cause severe chronic inflammation and proliferation of pleural mesothelial cells. © The Author(s) 2015.

  5. A Nanoconjugate Apaf-1 Inhibitor Protects Mesothelial Cells from Cytokine-Induced Injury

    OpenAIRE

    Santamaría, Beatriz; Benito-Martin, Alberto; Conrado Ucero, Alvaro; Stark Aroeira, Luiz; Reyero, Ana; Vicent, María J.; Orzáez, Mar; Celdrán, Angel; Esteban, Jaime; Selgas, Rafael; Ruíz-Ortega, Marta; López Cabrera, Manuel; Egido, Jesús; Pérez-Payá, Enrique; Ortiz, Alberto

    2009-01-01

    BACKGROUND: Inflammation may lead to tissue injury. We have studied the modulation of inflammatory milieu-induced tissue injury, as exemplified by the mesothelium. Peritoneal dialysis is complicated by peritonitis episodes that cause loss of mesothelium. Proinflammatory cytokines are increased in the peritoneal cavity during peritonitis episodes. However there is scarce information on the modulation of cell death by combinations of cytokines and on the therapeutic targets to prevent desmesoth...

  6. Feasibility of mesothelial transplantation during experimental peritoneal dialysis and peritonitis

    NARCIS (Netherlands)

    Hekking, L. H. P.; van den Born, J.

    The mesothelial cell layer lining the peritoneum orchestrates peritoneal homeostasis. Continuous exposure to peritoneal dialysis fluids and episodes of peritonitis may damage the monolayer irreversibly, eventually leading to adhesion formation and fibrosis/sclerosis of the peritoneum. Autologous

  7. Active compounds extracted from extra virgin olive oil counteract mesothelial-to-mesenchymal transition of peritoneal mesothelium cells exposed to conventional peritoneal dialysate: in vitro and in vivo evidences.

    Science.gov (United States)

    Lupinacci, S; Toteda, G; Vizza, D; Perri, A; Benincasa, C; Mollica, A; La Russa, A; Gigliotti, P; Leone, F; Lofaro, D; Bonofiglio, M; Perri, E; Bonofiglio, R

    2017-12-01

    During peritoneal dialysis (PD), peritoneal mesothelial cells undergo a transition from an epithelial phenotype to a mesenchymal phenotype that, together with the inflammatory process, promotes tissue fibrosis and a failure of peritoneal membrane function. To date, there is no definitive treatment for the progressive thickening and angiogenesis of the peritoneal membrane associated with PD. In this study we tested, in vitro and in vivo, the ability of active compounds extracted from extra virgin olive oil (AC-EVOO) to counteract the mesothelial-to-mesenchymal transition process (MMT) observed in mesothelial cells chronically exposed to the conventional peritoneal dialysate (DL). In particular, we used a cultivar from southern Italy known to have a high polyphenol content. Our results showed that, in mesothelial cells exposed to DL, the combined treatment with AC-EVOO prevented the genic and protein upregulation of key mesenchymal and inflammatory markers, as well as the MCs' migratory capacity. Concomitantly, we tested the antifibrotic efficacy of AC-EVOO in mesothelial cells obtained from effluents of patients undergoing PD, whose "fibroblast-like" phenotype was defined by flow-cytometry assay. We observed that in these cells AC-EVOO significantly mitigated, but did not reverse, the MMT process. In conclusion, our preliminary results suggest that AC-EVOO can interfere with critical factors in the process of differentiation, preventing myofibroblast formation, but once fibrosis has already progressed it is unable to promote the redifferentiation to the epithelial phenotype. Further studies are needed to establish whether AC-EVOO could represent a new therapeutic target to prevent peritoneal fibrosis.

  8. Cancer antigen 125: a bulk marker for the mesothelial mass in stable peritoneal dialysis patients

    NARCIS (Netherlands)

    Visser, C. E.; Brouwer-Steenbergen, J. J.; Betjes, M. G.; Koomen, G. C.; Beelen, R. H.; Krediet, R. T.

    1995-01-01

    Mesothelial cells that line the peritoneal cavity are capable of producing several proinflammatory cytokines such as interleukin-6 and interleukin-8. Since they are the most numerous cell in the peritoneal cavity when the lining mesothelial cells are included, they may play a major role in the local

  9. Mesothelial Cyst of the Round Ligament Mimicking a Metastasis: a Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Mi; Lee, Ji Young; Han, Yoon Hee; Kim, Su Young; Seo, Jung Wook; Kim, Yong Hoon; Cha, Soon Joo; Hur, Gham; Joo, Mee; Lee, Eung Soo [Ilsan Paik Hospital, Inje University, School of Medicine, Goyang (Korea, Republic of)

    2010-06-15

    A mesothelial cyst of the round ligament is a rare cause of an inguinal mass. Clinically, it is frequently misdiagnosed as one of commoner diseases such as an inguinal hernia, femoral hernia, lipoma, and lymphadenopathy upon physical examination. Some previous reports elaborated the sonographic features of a mesothelial cyst of the round ligament. However, to our knowledge, few reports have described the CT features of a mesothelial cyst. We illustrated here the sonographic and multidetector CT features of a case of a mesothelial cyst of the round ligament that presented as an inguinal palpable mass and mimicked a metastasis in a patient with a Sertoli-Leydig cell tumor of the ovary.

  10. Different Cellular Response of Human Mesothelial Cell MeT-5A to Short-Term and Long-Term Multiwalled Carbon Nanotubes Exposure

    Directory of Open Access Journals (Sweden)

    Li Ju

    2017-01-01

    Full Text Available Despite being a commercially important product, multiwalled carbon nanotubes (MWCNTs continue to raise concerns over human health due to their structural similarity to asbestos. Indeed, exposure to MWCNT has been shown to induce lung cancer and even mesothelioma, but contradictory results also exist. To clarify the potentially carcinogenic effects of rigid and rod-like MWCNT and to elucidate the underlying mechanisms, the effects of MWCNT on human mesothelial cell MeT-5A were examined throughout 3 months of continuous exposure, including cytotoxicity, genotoxicity, and cell motility. It was found that MWCNT did not affect MeT-5A cell proliferation at 10 μg/cm2 within 72 h treatment, but under the same condition, MWCNT induced genotoxicity and perturbed cell motility. In addition, MeT-5A cells demonstrated different cellular responses to MWCNT after short-term and long-term exposure. Taken together, our results indicated a possible carcinogenic potential for MWCNT after long-term treatment, in which Annexin family proteins might be involved.

  11. Strain differences in pleural mesothelial cell reactions induced by potassium octatitanate fibers (TISMO) infused directly into the thoracic cavity.

    Science.gov (United States)

    Yokohira, Masanao; Nakano, Yuko; Yamakawa, Keiko; Kishi, Sosuke; Ninomiya, Fumiko; Saoo, Kousuke; Imaida, Katsumi

    2013-09-01

    Although we have previously reported that the fiber-shaped TISMO, morphologically similar to asbestos, can induce a severe mesothelial reaction in A/J mice, it is important to clarify any strain differences. In the present study, female A/J, C3H/HeN, ICR and C57BL/6 mice were therefore employed as test strains. At the beginning of the experiment, all mice underwent a left thoracotomy and direct administration of 3mg of TISMO particles suspended in 0.2 ml saline into the left thorax. The experiment was terminated after 21 weeks and all groups were sacrificed and the mesothelium and main organs were examined histopathologically. To contribute to mechanistic analysis, iron staining with Berlin blue and Turnbull's blue, and immunostaining for calretinin were also performed. The present experiment demonstrated only minor strain differences in the degree of pleural reaction to TISMO. However, there was clear variation in the iron and lymphocyte accumulation in the pleura and in the liver. This difference in response to TISMO fibers in vivo is important information when considering the development of mesothelioma as an animal model and the extrapolation to human risk from such animal studies. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Simvastatin reduces tumor cell adhesion to human peritoneal mesothelial cells by decreased expression of VCAM-1 and beta1 integrin.

    NARCIS (Netherlands)

    Wagner, B.J.; Lob, S.; Lindau, D.S.U.; Horzer, H.; Guckel, B.; Klein, G.; Glatzle, J.; Rammensee, H.G.; Brucher, B.L.; Konigsrainer, A.

    2011-01-01

    Peritoneal carcinomatosis describes cancer metastasis onto the surface of the peritoneum. It is frequently caused by ovarian and colorectal cancer. Once a tumor has penetrated the peritoneum, cancer cells disseminate into the abdominal cavity. Additionally, surgery can account for the spread of free

  13. A20 Overexpression Inhibits Lipopolysaccharide-Induced NF-κB Activation, TRAF6 and CD40 Expression in Rat Peritoneal Mesothelial Cells

    Directory of Open Access Journals (Sweden)

    Xun-Liang Zou

    2014-04-01

    Full Text Available Zinc finger protein A20 is a key negative regulator of inflammation. However, whether A20 may affect inflammation during peritoneal dialysis (PD-associated peritonitis is still unclear. This study was aimed to investigate the effect of A20 overexpression on lipopolysaccharide (LPS-induced inflammatory response in rat peritoneal mesothelial cells (RPMCs. Isolated and cultured RPMCs in vitro. Plasmid pGEM-T easy-A20 was transfected into RPMCs by Lipofectamine™2000. The protein expression of A20, phospho-IκBα, IκBα, TNF receptor-associated factor (TRAF 6 and CD40 were analyzed by Western blot. The mRNA expression of TRAF6, CD40, interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α were determined by real time-PCR. NF-κB p65 DNA binding activity, IL-6 and TNF-α levels in cells culture supernatant were determined by ELISA. Our results revealed that RPMCs overexpression of A20 lead to significant decrease of LPS-induced IκBα phosphorylation and NF-κB DNA binding activity (all p < 0.01. In addition, A20 also attenuated the expression of TRAF6, CD40, IL-6 and TNF-α as well as levels of IL-6 and TNF-α in cells culture supernatant (all p < 0.05. However, A20 only partly inhibited CD40 expression. Our study indicated that A20 overexpression may depress the inflammatory response induced by LPS in cultured RPMCs through negatively regulated the relevant function of adaptors in LPS signaling pathway.

  14. Nickel nanoparticles enhance platelet-derived growth factor-induced chemokine expression by mesothelial cells via prolonged mitogen-activated protein kinase activation.

    Science.gov (United States)

    Glista-Baker, Ellen E; Taylor, Alexia J; Sayers, Brian C; Thompson, Elizabeth A; Bonner, James C

    2012-10-01

    Pleural diseases (fibrosis and mesothelioma) are a major concern for individuals exposed by inhalation to certain types of particles, metals, and fibers. Increasing attention has focused on the possibility that certain types of engineered nanoparticles (NPs), especially those containing nickel, might also pose a risk for pleural diseases. Platelet-derived growth factor (PDGF) is an important mediator of fibrosis and cancer that has been implicated in the pathogenesis of pleural diseases. In this study, we discovered that PDGF synergistically enhanced nickel NP (NiNP)-induced increases in mRNA and protein levels of the profibrogenic chemokine monocyte chemoattractant protein-1 (MCP-1 or CCL2), and the antifibrogenic IFN-inducible CXC chemokine (CXCL10) in normal rat pleural mesothelial 2 (NRM2) cells in vitro. Carbon black NPs (CBNPs), used as a negative control NP, did not cause a significant increase in CCL2 or CXCL10 in the absence or presence of PDGF. NiNPs prolonged PDGF-induced phosphorylation of the mitogen-activated protein kinase family termed extracellular signal-regulated kinases (ERK)-1 and -2 for up to 24 hours, and NiNPs also synergistically increased PDGF-induced hypoxia-inducible factor (HIF)-1α protein levels in NRM2 cells. Inhibition of ERK-1,2 phosphorylation with the mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, blocked the synergistic increase in CCL2, CXCL10, and HIF-1α levels induced by PDGF and NiNPs. Moreover, the antioxidant, N-acetyl-L-cysteine (NAC), significantly reduced HIF-1α, ERK-1,2 phosphorylation, and CCL2 protein levels that were synergistically increased by the combination of PDGF and NiNPs. These data indicate that NiNPs enhance the activity of PDGF in regulating chemokine production in NRM2 cells through a mechanism involving reactive oxygen species generation and prolonged activation of ERK-1,2.

  15. Modulation of hepatic stellate cells and reversibility of hepatic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yu, E-mail: 1293363632@QQ.com [Faculty of Graduate Studies of Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region (China); Deng, Xin, E-mail: Hendly@163.com [Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 10 East China Road, Nanning 530011, Guangxi Zhuang Autonomous Region (China); Liang, Jian, E-mail: lj99669@163.com [Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region (China)

    2017-03-15

    Hepatic fibrosis (HF) is the pathological component of a variety of chronic liver diseases. Hepatic stellate cells (HSC) are the main collagen-producing cells in the liver and their activation promotes HF. If HSC activation and proliferation can be inhibited, HF occurrence and development can theoretically be reduced and even reversed. Over the past ten years, a number of studies have addressed this process, and here we present a review of HSC modulation and HF reversal. - Highlights: • We present a review of the modulation of hepatic stellate cells (HSC) and reversibility of hepatic fibrosis (HF). • HSC are the foci of HF occurrence and development, HF could be prevented and treated by modulating HSC. • If HSC activation and proliferation can be inhibited, HF could theoretically be inhibited and even reversed. • Prevention or reversal of HSC activation, or promotion of HSC apoptosis, immune elimination, and senescence may prevent, inhibit or reverse HF.

  16. Concurrent hepatic adenomatoid tumor and hepatic hemangioma: a case report.

    Science.gov (United States)

    Kim, Ji-Beom; Yu, Eunsil; Shim, Ju-Hyun; Song, Gi-Won; Kim, Gwang Un; Jin, Young-Joo; Park, Ho-Seop

    2012-06-01

    A 45-year-old male with alleged asymptomatic hepatic hemangioma of 4 years duration had right upper-quadrant pain and was referred to a tertiary hospital. Computed tomography and magnetic resonance imaging scans revealed a hypervascular mass of about 7 cm containing intratumoral multilobulated cysts. A preoperative liver biopsy was performed, but this failed to provide a definitive diagnosis. The patient underwent a partial hepatectomy of segments IV and VIII. The histologic findings revealed multifocal proliferation of flattened or cuboidal epithelioid cells and a highly vascular edematous stroma. Immunohistochemistry findings demonstrated that the epithelioid tumor cells were positive for cytokeratin (AE1/AE3), vimentin, calretinin, and cytokeratin 5/6, and were focally positive for CD10, and negative for WT1 and CD34, all of which support their mesothelial origin. Immunohistochemistry for a mesothelial marker should be performed for determining the presence of an adenomatoid tumor when benign epithelioid cells are seen.

  17. Concurrent hepatic adenomatoid tumor and hepatic hemangioma: a case report

    Directory of Open Access Journals (Sweden)

    Ji-Beom Kim

    2012-06-01

    Full Text Available A 45-year-old male with alleged asymptomatic hepatic hemangioma of 4 years duration had right upper-quadrant pain and was referred to a tertiary hospital. Computed tomography and magnetic resonance imaging scans revealed a hypervascular mass of about 7 cm containing intratumoral multilobulated cysts. A preoperative liver biopsy was performed, but this failed to provide a definitive diagnosis. The patient underwent a partial hepatectomy of segments IV and VIII. The histologic findings revealed multifocal proliferation of flattened or cuboidal epithelioid cells and a highly vascular edematous stroma. Immunohistochemistry findings demonstrated that the epithelioid tumor cells were positive for cytokeratin (AE1/AE3, vimentin, calretinin, and cytokeratin 5/6, and were focally positive for CD10, and negative for WT1 and CD34, all of which support their mesothelial origin. Immunohistochemistry for a mesothelial marker should be performed for determining the presence of an adenomatoid tumor when benign epithelioid cells are seen.

  18. Lack of promoting effects from physical pulmonary collapse in a female A/J mouse lung tumor initiated with 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) with remarkable mesothelial cell reactions in the thoracic cavity by the polymer.

    Science.gov (United States)

    Yokohira, Masanao; Hashimoto, Nozomi; Yamakawa, Keiko; Saoo, Kousuke; Kuno, Toshiya; Imaida, Katsumi

    2011-01-01

    Experimental identification of potential chemopreventive or tumor promotive agents in the lung is important. Establishment of short-term bioassay models is therefore a high priority. In an attempt to induce strong promotion effects, in Experiment 1, left thoracotomy was performed on A/J mice at week 3 after initiation with 4-(methylnitrosamno)-1-(3-pyridyl)-1-butanone (NNK) (2mg/0.1 ml saline/mouse i.p.) at weeks 0 and 1. In Experiment 2, at week 3, 0.2 ml of polymer gel was infused directly into the left cavity of the thorax with thoracotomy to occupy certain thoracic cavity volume and to examine the influence of physical pulmonary collapse. The experiments were terminated after 8, 10, 12 and 16 weeks in Experiment 1, and 12 weeks in Experiment 2 but no clear promotion effects in either experiment or pulmonary collapse due to infused polymer were apparent. However, a pronounced mesothelial cell reaction to the infused polymer was evident on the left lung surfaces and parietal pleura in Experiment 2. In conclusion, the present experiments did not demonstrate any clear lung tumor promotion effects of thoracotomy or physical left lung collapse. It remains possible, however, that alternative approaches might have greater efficacy and these need more consideration. In addition, mesothelial cells reaction was observed with the infused polymer. Copyright © 2009 Elsevier GmbH. All rights reserved.

  19. Human Peritoneal Mesothelial Cell Death Induced by High-Glucose Hypertonic Solution Involves Ca2+ and Na+ Ions and Oxidative Stress with the Participation of PKC/NOX2 and PI3K/Akt Pathways

    Directory of Open Access Journals (Sweden)

    Felipe Simon

    2017-06-01

    Full Text Available Chronic peritoneal dialysis (PD therapy is equally efficient as hemodialysis while providing greater patient comfort and mobility. Therefore, PD is the treatment of choice for several types of renal patients. During PD, a high-glucose hyperosmotic (HGH solution is administered into the peritoneal cavity to generate an osmotic gradient that promotes water and solutes transport from peritoneal blood to the dialysis solution. Unfortunately, PD has been associated with a loss of peritoneal viability and function through the generation of a severe inflammatory state that induces human peritoneal mesothelial cell (HPMC death. Despite this deleterious effect, the precise molecular mechanism of HPMC death as induced by HGH solutions is far from being understood. Therefore, the aim of this study was to explore the pathways involved in HGH solution-induced HPMC death. HGH-induced HPMC death included influxes of intracellular Ca2+ and Na+. Furthermore, HGH-induced HPMC death was inhibited by antioxidant and reducing agents. In line with this, HPMC death was induced solely by increased oxidative stress. In addition to this, the cPKC/NOX2 and PI3K/Akt intracellular signaling pathways also participated in HGH-induced HPMC death. The participation of PI3K/Akt intracellular is in agreement with previously shown in rat PMC apoptosis. These findings contribute toward fully elucidating the underlying molecular mechanism mediating peritoneal mesothelial cell death induced by high-glucose solutions during peritoneal dialysis.

  20. Human Peritoneal Mesothelial Cell Death Induced by High-Glucose Hypertonic Solution Involves Ca2+ and Na+ Ions and Oxidative Stress with the Participation of PKC/NOX2 and PI3K/Akt Pathways

    Science.gov (United States)

    Simon, Felipe; Tapia, Pablo; Armisen, Ricardo; Echeverria, Cesar; Gatica, Sebastian; Vallejos, Alejandro; Pacheco, Alejandro; Sanhueza, Maria E.; Alvo, Miriam; Segovia, Erico

    2017-01-01

    Chronic peritoneal dialysis (PD) therapy is equally efficient as hemodialysis while providing greater patient comfort and mobility. Therefore, PD is the treatment of choice for several types of renal patients. During PD, a high-glucose hyperosmotic (HGH) solution is administered into the peritoneal cavity to generate an osmotic gradient that promotes water and solutes transport from peritoneal blood to the dialysis solution. Unfortunately, PD has been associated with a loss of peritoneal viability and function through the generation of a severe inflammatory state that induces human peritoneal mesothelial cell (HPMC) death. Despite this deleterious effect, the precise molecular mechanism of HPMC death as induced by HGH solutions is far from being understood. Therefore, the aim of this study was to explore the pathways involved in HGH solution-induced HPMC death. HGH-induced HPMC death included influxes of intracellular Ca2+ and Na+. Furthermore, HGH-induced HPMC death was inhibited by antioxidant and reducing agents. In line with this, HPMC death was induced solely by increased oxidative stress. In addition to this, the cPKC/NOX2 and PI3K/Akt intracellular signaling pathways also participated in HGH-induced HPMC death. The participation of PI3K/Akt intracellular is in agreement with previously shown in rat PMC apoptosis. These findings contribute toward fully elucidating the underlying molecular mechanism mediating peritoneal mesothelial cell death induced by high-glucose solutions during peritoneal dialysis. PMID:28659813

  1. Mycobacterium tuberculosis Upregulates TNF-α Expression via TLR2/ERK Signaling and Induces MMP-1 and MMP-9 Production in Human Pleural Mesothelial Cells.

    Directory of Open Access Journals (Sweden)

    Wei-Lin Chen

    Full Text Available Tumor necrosis factor (TNF-α and matrix metalloproteinases (MMPs are elevated in pleural fluids of tuberculous pleuritis (TBP where pleural mesothelial cells (PMCs conduct the first-line defense against Mycobacterium tuberculosis (MTB. However, the clinical implication of TNF-α and MMPs in TBP and the response of PMCs to MTB infection remain unclear.We measured pleural fluid levels of TNF-α and MMPs in patients with TBP (n = 18 or heart failure (n = 18 as controls. Radiological scores for initial effusion amount and residual pleural fibrosis at 6-month follow-up were assessed. In vitro human PMC experiments were performed to assess the effect of heat-killed M. tuberculosis H37Ra (MTBRa on the expression of TNF-α and MMPs.As compared with controls, the effusion levels of TNF-α, MMP-1 and MMP-9 were significantly higher and correlated positively with initial effusion amount in patients with TBP, while TNF-α and MMP-1, but not MMP-9, were positively associated with residual pleural fibrosis of TBP. Moreover, effusion levels of TNF-α had positive correlation with those of MMP-1 and MMP-9 in TBP. In cultured PMCs, MTBRa enhanced TLR2 and TLR4 expression, activated ERK signaling, and upregulated TNF-α mRNA and protein expression. Furthermore, knockdown of TLR2, but not TLR4, significantly inhibited ERK phosphorylation and TNF-α expression. Additionally, both MTBRa and TNF-α markedly induced MMP-1 and MMP-9 synthesis in human PMCs, and TNF-α neutralization substantially reduced the production of MMP-1, but not MMP-9, in response to MTBRa stimulation.MTBRa activates TLR2/ERK signalings to induce TNF-α and elicit MMP-1 and MMP-9 in human PMCs, which are associated with effusion volume and pleural fibrosis and may contribute to pathogenesis of TBP. Further investigation of manipulation of TNF-α and MMP expression in pleural mesothelium may provide new insights into the mechanisms and rational treatment strategies for TBP.

  2. Mesothelial cyst of the round ligament of the liver

    Directory of Open Access Journals (Sweden)

    Fabio Carboni

    2016-01-01

    Full Text Available A 34-year-old man was admitted in our department with a 3 months history of epigastric pain, abdominal distension and tenderness. Helical computed tomography scan and magnetic resonance imaging showed a 10 cm low-density fluid-filled polilobate cystic lesion with internal septations and calcifications located between the left lobe of the liver, shorter gastric curvature, pancreas and mesocolon. Laparoscopic exploration was performed. Macroscopically the lesion was a unilocular serous cyst with a thick fibrous wall. Histopathology revealed a thin fibrous wall with a single layer of flattened to cuboidal mesothelial cell lining lacking any cellular atypia. The patient is currently alive without evidence of recurrence at 6 months. Cysts of mesothelial origin are rare lesions seen more frequently in young and middle-aged women, mostly benign and located in the mesenteries or omentum. Diagnosis is usually based on clinical examination and radiographic imaging. Immunohistochemistry is used to differentiate histologic type, with simple mesothelial cysts being positive for cytokeratins and calretinin and negative for CD31. The laparoscopic approach appears safe, feasible and less-invasive without compromising surgical principles and today should be considered the gold standard in most cases.

  3. Natural killer cells in chronic hepatitis B

    NARCIS (Netherlands)

    E.T.T.L. Tjwa (Eric)

    2012-01-01

    markdownabstract__Abstract__ Natural killer (NK) cells play a major role in anti-viral immunity as first line defense and regulation of virus-specific T cell responses. OBJECTIVE: To investigate phenotype and function of NK cells in patients with chronic hepatitis B virus (HBV) infection and

  4. Asbestos-Induced Mesothelial to Fibroblastic Transition Is Modulated by the Inflammasome.

    Science.gov (United States)

    Thompson, Joyce K; MacPherson, Maximilian B; Beuschel, Stacie L; Shukla, Arti

    2017-03-01

    Despite the causal relationship established between malignant mesothelioma (MM) and asbestos exposure, the exact mechanism by which asbestos induces this neoplasm and other asbestos-related diseases is still not well understood. MM is characterized by chronic inflammation, which is believed to play an intrinsic role in the origin of this disease. We recently found that asbestos activates the nod-like receptor family member containing a pyrin domain 3 (NLRP3) inflammasome in a protracted manner, leading to an up-regulation of IL-1β and IL-18 production in human mesothelial cells. Combined with biopersistence of asbestos fibers, we hypothesize that this creates an environment of chronic IL-1β signaling in human mesothelial cells, which may promote mesothelial to fibroblastic transition (MFT) in an NLRP3-dependent manner. Using a series of experiments, we found that asbestos induces a fibroblastic transition of mesothelial cells with a gain of mesenchymal markers (vimentin and N-cadherin), whereas epithelial markers, such as E-cadherin, are down-regulated. Use of siRNA against NLRP3, recombinant IL-1β, and IL-1 receptor antagonist confirmed the role of NLRP3 inflammasome-dependent IL-1β in the process. In vivo studies using wild-type and various inflammasome component knockout mice also revealed the process of asbestos-induced mesothelial to fibroblastic transition and its amelioration in caspase-1 knockout mice. Taken together, our data are the first to suggest that asbestos induces mesothelial to fibroblastic transition in an inflammasome-dependent manner. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Hepatic Giant Cell Arteritis and Polymyalgia Rheumatica

    Directory of Open Access Journals (Sweden)

    Donald R Duerksen

    1994-01-01

    Full Text Available Polymyalgia rheumatica (PMR is a clinical syndrome of the elderly characterized by malaise, proximal muscle aching and stiffness, low grade fever, elevated erythrocyte sedimentation rare and the frequent association with temporal giant cell arteritis. The authors describe a case of PMR associated with hepatic giant cell arteritis. This lesion has been described in two other clinical reports. The distribution of the arteritis may be patchy; in this report, diagnosis was made with a wedge biopsy performed after an initial nonspecific percutaneous liver biopsy. The authors review the spectrum of liver involvement in PMR and giant cell arteritis. Hepatic abnormalities respond to systemic corticosteroids, and patients with hepatic arteritis have a good prognosis.

  6. Hepatitis C virus infection of cholangiocarcinoma cell lines

    NARCIS (Netherlands)

    Fletcher, Nicola F.; Humphreys, Elizabeth; Jennings, Elliott; Osburn, William; Lissauer, Samantha; Wilson, Garrick K.; van Ijzendoorn, Sven C. D.; Baumert, Thomas F.; Balfe, Peter; Afford, Simon; McKeating, Jane A.

    Hepatitis C virus (HCV) infects the liver and hepatocytes are the major cell type supporting viral replication. Hepatocytes and cholangiocytes derive from a common hepatic progenitor cell that proliferates during inflammatory conditions, raising the possibility that cholangiocytes may support HCV

  7. [The effects of erythromycin on the secretion of tumor necrosis factor-alpha and transforming growth factor-beta1 and expression of connexin 43 in human pleural mesothelial cells].

    Science.gov (United States)

    Huang, Jian-Qiang; Xie, Can-Mao

    2003-04-01

    To investigate the effects of erythromycin on secretion of tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta(1) (TGF-beta(1)), and the level of connexin 43 in human pleural mesothelial cells (HPMC), and to explore the mechanism of pleurodesis. HPMC was incubated with erythromycin at concentrations of 100 mg/L or 25 mg/L. The levels of TNF-alpha and TGF-beta(1) in the supernatants were measured by ELISA method, and levels of connexin 43 were detected by Western blot. The secretion of TNF-alpha by HMPC increased after incubation with 100 mg/L erythromycin for 3 or 5 days, and the secretion of TGF-beta(1) increased markedly after incubation with lower or higher concentrations of erythromycin. The levels of connexin 43 in HPMC decreased after stimulation with 100 mg/L erythromycin, but no relationship was observed between the levels and the stimulation time. HPMC incubated with erythromycin showed increased secretion of TNF-alpha and TGF-beta(1), which may be one of the mechanisms for erythromycin pleurodesis. Erythromycin decreased the level of connexin 43 in HPMC, and this effect may be a response of the cells to the stimulus. A high concentration of erythromycin is suggested for clinical pleurodesis based on the results from this study.

  8. Value of Glut-1 and Koc markers in the differential diagnosis of reactive mesothelial hyperplasia, malignant mesothelioma and pulmonary adenocarcinoma.

    Science.gov (United States)

    Üçer, Özlem; Dağli, Adile Ferda; Kiliçarslan, Ahmet; Artaş, Gökhan

    2013-01-01

    Malignant mesothelioma (MM) is a primary malignant tumor developing from mesothelial cells lining the serosal surfaces and particularly the pleura, and has a very poor prognosis. It may display a variety of histological patterns and has a wide spectrum of cytomorphological characteristics, causing problems in its differential diagnosis from lung adenocarcinomas and sometimes from benign mesothelial proliferations. Immunohistochemical examination is the most useful method for this distinction. In our study, we aimed to determine the value of glucose transporter isoform-1 (GLUT-1) and K homology domain-containing protein (KOC) markers in the differential diagnosis of reactive mesothelial hyperplasia, malignant mesothelioma and lung adenocarcinoma. Our study included 30 samples of malignant mesothelioma, 30 samples of pulmonary adenocarcinoma and 30 samples of reactive mesothelial hyperplasia selected from the archives of the Fırat University Hospital's Pathology Department Laboratory. The samples were applied GLUT-1 and KOC markers by immunohistochemistry and the place of these markers in the differential diagnosis was examined. GLUT-1 was found positive in 80% of malignant mesothelioma cases, 83.3% of adenocarcinoma cases and 6.6% of reactive mesothelial hyperplasia cases. KOC was positive in 83.3% of malignant mesothelioma cases, 76.6% of adenocarcinoma cases and 46.6% of reactive mesothelial hyperplasia cases. There was no statistically significant difference between malignant mesothelioma and lung adenocarcinoma cases in terms of the diffuseness and intensity of staining with GLUT-1, whereas a significant difference was established when these groups were compared with reactive mesothelial hyperplasia cases. However, the KOC staining diffuseness and intensity results were similar to those obtained with GLUT-1. In conclusion, GLUT-1 and KOC markers do not differentiate malignant mesotheliomas from pulmonary adenocarcinomas but can be useful in differentiating

  9. The effects of erythromycin on the viability and the secretion of TNF-alpha and TGF-beta1 and expression of connexin43 by human pleural mesothelial cells.

    Science.gov (United States)

    Xie, Canmao; Huang, Jian Qiang; Light, Richard W

    2005-11-01

    The mechanism by which erythromycin produces pleurodesis remains unknown. The purpose of this study was to investigate the effects of erythromycin on human pleural mesothelial cell (HPMC) viability, the secretion of tumour necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta(1) (TGF-beta(1)) and the level of expression of connexin43. HPMC were incubated with different concentrations of erythromycin. The inhibitory effects of erythromycin on HPMC growth were measured using a tetrazolium-based colorimetric assay. The levels of TNF-alpha and TGF-beta(1) in supernatants were measured by ELISA and levels of connexin43 were assessed by Western blot. Erythromycin injured HPMC in a dose and time-dependent manner. The secretion of both TNF-alpha and TGF-beta(1) by HMPC increased significantly when they were incubated with 100 mg/L erythromycin for 3 or 5 days. The levels of connexin43 in HPMC decreased after incubation with 100 mg/L erythromycin and no relationship was observed between the levels and incubation time. Erythromycin injures HPMC in a dose- and time-dependent manner and results in the secretion of TNF-alpha and TGF-beta(1). This is one possible mechanism of pleurodesis with erythromycin. Furthermore, erythromycin decreased the levels of connexin43 in HPMC, which could possibly affect the response of HPMC to pleurodesis with erythromycin.

  10. Hepatitis C virus host cell interactions uncovered

    DEFF Research Database (Denmark)

    Gottwein, Judith; Bukh, Jens

    2007-01-01

      Insights into virus-host cell interactions as uncovered by Randall et al. (1) in a recent issue of PNAS further our understanding of the hepatitis C virus (HCV) life cycle, persistence, and pathogenesis and might lead to the identification of new therapeutic targets. HCV persistently infects 180...... million individuals worldwide, causing chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The only approved treatment, combination therapy with IFN- and ribavirin, targets cellular pathways (2); however, a sustained virologic response is achieved only in approximately half of the patients...... treated. Therefore, there is a pressing need for the identification of novel drugs against hepatitis C. Although most research focuses on the development of HCV-specific antivirals, such as protease and polymerase inhibitors (3), cellular targets could be pursued and might allow the development of broad...

  11. Hepatic Giant Cell Arteritis and Polymyalgia Rheumatica

    OpenAIRE

    Duerksen, Donald R; Jewell, Laurence D.; Bain, Vincent G

    1994-01-01

    Polymyalgia rheumatica (PMR) is a clinical syndrome of the elderly characterized by malaise, proximal muscle aching and stiffness, low grade fever, elevated erythrocyte sedimentation rare and the frequent association with temporal giant cell arteritis. The authors describe a case of PMR associated with hepatic giant cell arteritis. This lesion has been described in two other clinical reports. The distribution of the arteritis may be patchy; in this report, diagnosis was made with a wedge biop...

  12. miR-21 promotes fibrogenic epithelial-to-mesenchymal transition of epicardial mesothelial cells involving Programmed Cell Death 4 and Sprouty-1

    DEFF Research Database (Denmark)

    Brønnum, Hasse; Andersen, Ditte C; Schneider, Mikael

    2013-01-01

    cardiac fibrosis. However, the molecular basis of this process is poorly understood. Recently, microRNAs (miRNAs) have been shown to regulate a number of sub-cellular events in cardiac disease. Hence, we hypothesized that miRNAs regulate fibrogenic EMT in the adult heart. Indeed pro-fibrogenic stimuli...... that targeted miR-21 blocked this effect, as assessed on the E-cadherin/α-smooth muscle actin balance, cell viability, matrix activity, and cell motility, thus making miR-21 a relevant target of EMC-derived fibrosis. Several mRNA targets of miR-21 was differentially regulated during fibrogenic EMT of EMCs...... and miR-21-dependent targeting of Programmed Cell Death 4 (PDCD4) and Sprouty Homolog 1 (SPRY1) significantly contributed to the development of a fibroblastoid phenotype. However, PDCD4- and SPRY1-targeting was not entirely ascribable to all phenotypic effects from miR-21, underscoring the pleiotropic...

  13. Synthetic Polymer with a Structure-Driven Hepatic Deposition and Curative Pharmacological Activity in Hepatic Cells

    DEFF Research Database (Denmark)

    Riber, Camilla Frich; Halling Folkmar Andersen, Anna; Anegaard Rolskov, Lærke

    2017-01-01

    , and pharmacokinetic properties not observed in close structural analogues. Specifically, PEAA reveals capacity to bind to albumin with ensuing natural hepatic deposition in vivo and exhibits concurrent inhibitory activity against the hepatitis C virus and inflammation in hepatic cells. Our findings provide a view...

  14. Silencing of hepatic fate-conversion factors induce tumorigenesis in reprogrammed hepatic progenitor-like cells.

    Science.gov (United States)

    Serrano, Felipe; García-Bravo, Maria; Blazquez, Marina; Torres, Josema; Castell, Jose V; Segovia, Jose C; Bort, Roque

    2016-07-27

    Several studies have reported the direct conversion of mouse fibroblasts to hepatocyte-like cells with different degrees of maturation by expression of hepatic fate-conversion factors. We have used a combination of lentiviral vectors expressing hepatic fate-conversion factors with Oct4, Sox2, Klf4, and Myc to convert mouse embryonic fibroblasts into hepatic cells. We have generated hepatic cells with progenitor-like features (iHepL cells). iHepL cells displayed basic hepatocyte functions but failed to perform functions characteristic of mature hepatocytes such as significant Cyp450 or urea cycle activities. iHepL cells expressed multiple hepatic-specific transcription factors and functional genes characteristic of immature hepatocytes and cholangiocytes, as well as high levels of Foxl1, Cd24a, and Lgr5, specific markers of hepatic progenitor cells. When transplanted into partial hepatectomized and hepatic irradiated mice, they differentiated into hepatocytes and cholangiocytes. However, iHepL cells formed malignant non-teratoma cell aggregations in one out of five engrafted livers and five out of five xenografts assays. All the cells in these tumors had silenced key hepatic fate-conversion factors, and lost hepatic features. This study highlights the dangers of using pluripotency factors in reprogramming strategies when fate-conversion factors are silenced in vivo, and urges us to perform extensive tumorigenic tests in reprogrammed cells.

  15. Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy.

    Science.gov (United States)

    Pareja, Eugenia; Gómez-Lechón, María José; Tolosa, Laia

    2017-01-01

    Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.

  16. Littoral cell angioma mimicking hepatic tumor

    Directory of Open Access Journals (Sweden)

    Wenhua Liang

    2012-07-01

    Full Text Available Littoral cell angioma is a rare vascular tumor of the spleen that was described by Falk et al. in 1991. Because of the limited number, untypical imaging manifestations, and lack of knowledge on this tumor type, these tumors are often misdiagnosed. In most cases, the tumor presents with multiple small hypoattenuating nodules in the spleen with delayed enhancement. However, solitary littoral cell angiomas have not been well described. We present the CT features of an unusual littoral cell angioma mimicking hepatic tumor.

  17. El trasplante autólogo de células mesoteliales como acelerador y modificador de la cicatrización cutánea en ratas Autologous mesothelial cells transplantation as accelerator and skin healing modifier in rats

    Directory of Open Access Journals (Sweden)

    R. Esparza Iturbide

    2013-03-01

    ó menor inflamación y fibrosis, mayor colágeno y datos compatibles con una fase de remodelación. En conclusión, el autotrasplante de células mesoteliales peritoneales en heridas de espesor total acelera el proceso de cicatrización cutánea normal en ratas ya que disminuye la inflamación, la fibrosis y aumenta el colágeno.The purpose of this study was to verify if the autologous peritoneal mesothelial cells in full thickness wounds on rats, speed up and adjust the normal skin healing process. Based on the theory that mesothelial cells from tissues such as peritoneum, pleura or pericardium, are responsible for one of the faster healing process and synthesize stimulating wound healing and chemotactical factors (hence the genesis of surgical adhesions, besides possessing the ability to differentiate into other cell series (plasticity. We designed a pilot, analytical, longitudinal, prospective and comparative study in the Laboratory of Experimental Surgery at The American British Cowdray Medical Center, Mexico City (México. Were used 15 Wistar rats which were divided into 2 groups: Group I (n = 5 where after general anesthesia, skin removed 3 mm in diameter with microsurgical technique in the back and was close by secondary intention; and Group II or experimental group (n = 10 where laparotomy was performed with excision of the parietal peritoneum and primary closure, excision of full thickness skin on the dorsal surface of 3mm diameter and peritoneal autograft placement on the dorsal wound. In histological analysis, were reviewed 6 variables: collagen, fibroblasts, number of vessels, macrophages, inflammatory cells and retraction, to point out fully the nature and characteristics of healing in both groups. For the statistical analysis we used Statistical Package for Social Sciences 17.0. The descriptive statistics was made using frequency measures of central tendency and dispersion. The results showed that the Group I rats, had increased inflammation, fibrosis and

  18. CD69+NK cells contribute to the murine hepatitis virus strain 3-induced murine hepatitis.

    Science.gov (United States)

    Ding, Lin; Chen, Tao; Wang, Xiao-jing; Zhou, Li; Shi, Ai-chao; Ning, Qin

    2013-08-01

    The role of hepatic CD69+ natural killer (NK) cells in virus-induced severe liver injury and subsequent hepatic failure is not well defined. In this study, a mouse model of fulminant liver failure (FHF) induced by murine hepatitis virus strain 3 (MHV-3) was used to study the role of hepatic CD69+NK cells in the development of FHF. The CD69 expression in NK cells in the liver, spleen, bone marrow and peripheral blood was detected by using flow cytometry. The correlation between the CD69 level in hepatic NK cells and liver injury was studied. The functional marker (CD107a), and activating and inhibitory receptor (NKG2D and NKG2A) expressed on CD69+NK cells and CD69-NK cells were detected by using flow cytometry. Pro-inflammatory cytokines (IL-9, IFN-γ and TNF-α) were also examined by using intracellular staining. After MHV-3 infection, the number of CD69+NK cells in the liver of BALB/cJ mice was increased markedly and peaked at 72 h post-infection. Similar changes were also observed in the spleen, bone marrow and peripheral blood. Meanwhile, the CD69 expression in hepatic NK cells was highly correlated with the serum level of ALT and AST. The expression of CD107a and NKG2D, as well as the production of TNF-α, IFN-γ and IL-9 in hepatic CD69+NK cells was all significantly up-regulated during 48-72 h post-infection. In contrast, the NKG2A expression was increased in hepatic CD69-NK cells but not in CD69+NK cells. These results suggested that hepatic CD69+NK cells play a pivotal role in the pathogenesis of FHF by enhancing degranulation and cytotoxic ability of NK cells and increasing the production of pro-inflammatory cytokines.

  19. Hepatic stellate cells in liver development, regeneration, and cancer

    Science.gov (United States)

    Yin, Chunyue; Evason, Kimberley J.; Asahina, Kinji; Stainier, Didier Y.R.

    2013-01-01

    Hepatic stellate cells are liver-specific mesenchymal cells that play vital roles in liver physiology and fibrogenesis. They are located in the space of Disse and maintain close interactions with sinusoidal endothelial cells and hepatic epithelial cells. It is becoming increasingly clear that hepatic stellate cells have a profound impact on the differentiation, proliferation, and morphogenesis of other hepatic cell types during liver development and regeneration. In this Review, we summarize and evaluate the recent advances in our understanding of the formation and characteristics of hepatic stellate cells, as well as their function in liver development, regeneration, and cancer. We also discuss how improved knowledge of these processes offers new perspectives for the treatment of patients with liver diseases. PMID:23635788

  20. [Hepatic cell transplantation. Technical and methodological aspects].

    Science.gov (United States)

    Pareja, Eugenia; Martínez, Amparo; Cortés, Miriam; Bonora, Ana; Moya, Angel; Sanjuán, Fernando; Gómez-Lechón, M José; Mir, José

    2010-03-01

    Hepatic cell transplantation consists of grafting already differentiated cells such as hepatocytes. Human hepatocytes are viable and functionally active. Liver cell transplantation is carried out by means of a 3-step method: isolation of hepatocytes from donor liver rejected for orthotopic transplantation, preparing a cell suspension for infusion and, finally, hepatocytes are implanted into the recipient. There are established protocols for the isolation of human hepatocytes from unused segments of donor livers, based on collagenase digestion of cannulated liver tissue at 37 degrees C. The hepatocytes can be used fresh or cryopreserved. Cryopreservation of isolated human hepatocytes would then be available for planned use. In cell transplant, the important aspects are: infusion route, number of cells, number of infusions and viability of the cells. The cells are infused into the patient through a catheter inserted via portal vein or splenic artery. Liver cell transplantation allows liver tissue to be used that would, otherwise, be discarded, enabling multiple patients to be treated with hepatocytes from a single tissue donor. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  1. Octreotide decreases portal pressure: Hepatic stellate cells may play ...

    African Journals Online (AJOL)

    The aim of this study is to elucidate the effects of different dosages of octreotide on portal pressure in cirrhotic patients and to investigate the mechanism of activated human hepatic stellate cells (HSCs) on octreotide. Thirty-one (31) hepatitis B-related cirrhotic patients were randomly assigned to receive treatment with a 50 ...

  2. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Dongxin Zhao

    Full Text Available The derivation of hepatic progenitor cells from human embryonic stem (hES cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell-derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.

  3. Levels of hepatic Th17 cells and regulatory T cells upregulated by hepatic stellate cells in advanced HBV-related liver fibrosis.

    Science.gov (United States)

    Li, Xiaoyan; Su, Yujie; Hua, Xuefeng; Xie, Chan; Liu, Jing; Huang, Yuehua; Zhou, Liang; Zhang, Min; Li, Xu; Gao, Zhiliang

    2017-04-11

    Liver fibrosis which mainly occurs upon chronic hepatitis virus infection potentially leads to portal hypertension, hepatic failure and hepatocellular carcinoma. However, the immune status of Th17 and Treg cells in liver fibrosis is controversial and the exact mechanisms remain largely elusive. Liver tissues and peripheral blood were obtained simultaneously from 32 hepatitis B virus infected patients undergoing surgery for hepatocellular carcinoma at the medical center of Sun Yat-sen University. Liver tissues at least 3 cm away from the tumor site were used for the analyses. Levels of Th17 cells and regulatory T cells were detected by flow cytometry analysis and immunohistochemistry. In vitro experiment, we adopted magnetic cell sorting to investigate how hepatic stellate cells regulate the levels of Th17 cells and regulatory T cells. We found that hepatic Th17 cells and regulatory T cells were increased in patients with advanced stage HBV-related liver fibrosis. Hepatic stellate cells upregulated the levels of Th17 cells and regulatory T cells via PGE2/EP2 and EP4 pathway. We found that the increased levels of Th17 cells and regulatory T cells were upregulated by hepatic stellate cells. These results may provide insight into the role of hepatic stellate cells and Th17 cells and regulatory T cells in the persistence of fibrosis and into the occurrence of hepatocellular carcinoma following cirrhosis.

  4. Replacement of Diseased Mouse Liver by Hepatic Cell Transplantation

    Science.gov (United States)

    Rhim, Jonathan A.; Sandgren, Eric P.; Degen, Jay L.; Palmiter, Richard D.; Brinster, Ralph L.

    1994-02-01

    Adult liver has the unusual ability to fully regenerate after injury. Although regeneration is accomplished by the division of mature hepatocytes, the replicative potential of these cells is unknown. Here, the replicative capacity of adult liver cells and their medical usefulness as donor cells for transplantation were investigated by transfer of adult mouse liver cells into transgenic mice that display an endogenous defect in hepatic growth potential and function. The transplanted liver cell populations replaced up to 80 percent of the diseased recipient liver. These findings demonstrate the enormous growth potential of adult hepatocytes, indicating the feasibility of liver cell transplantation as a method to replace lost or diseased hepatic parenchyma.

  5. Bioenergetic Changes during Differentiation of Human Embryonic Stem Cells along the Hepatic Lineage

    DEFF Research Database (Denmark)

    Hopkinson, Branden M; Madsen, Claus Desler; Kalisz, Mark

    2017-01-01

    of embryonic origin differentiating along the hepatic lineage. Our study reveals especially the transition between hepatic specification and hepatic maturation as dependent on mitochondrial respiration and demonstrates that even though differentiating cells are primarily dependent on glycolysis until induction...

  6. Inhibition of hepatic stellate cells by bone marrow-derived mesenchymal stem cells in hepatic fibrosis

    Directory of Open Access Journals (Sweden)

    Yoon Ok Jang

    2015-06-01

    Full Text Available Background/AimsTherapies involving bone-marrow-derived mesenchymal stem cells (BM-MSCs have considerable potential in the management of hepatic disease. BM-MSCs have been investigated in regenerative medicine due to their ability to secrete various growth factors and cytokines that regress hepatic fibrosis and enhance hepatocyte functionality. The aim of this study was to determine the antifibrosis effect of BM-MSCs on activated hepatic stellate cells (HSCs and the mechanism underlying how BM-MSCs modulate the function of activated HSCs.MethodsWe used HSCs in both direct and indirect co-culture systems with BM-MSCs to evaluate the antifibrosis effect of BM-MSCs. The cell viability and apoptosis were evaluated by a direct co-culture system of activated HSCs with BM-MSCs. The activations of both HSCs alone and HSCs with BM-MSCs in the direct co-culture system were observed by immunocytochemistry for alpha-smooth muscle actin (α-SMA. The levels of growth factors and cytokines were evaluated by an indirect co-culture system of activated HSCs with BM-MSCs.ResultsThe BM-MSCs in the direct co-culture system significantly decreased the production of α-SMA and the viability of activated HSCs, whereas they induced the apoptosis of activated HSCs. The BM-MSCs in the indirect co-culture system decreased the production of transforming growth factor-β1 and interleukin (IL-6, whereas they increased the production of hepatocyte growth factor and IL-10. These results confirmed that the juxtacrine and paracrine effects of BM-MSCs can inhibit the proliferative, fibrogenic function of activated HSCs and have the potential to reverse the fibrotic process by inhibiting the production of α-SMA and inducing the apoptosis of HSCs.ConclusionsThese results have demonstrated that BM-MSCs may exert an antifibrosis effect by modulating the function of activated HSCs.

  7. Natural Killer Cells in Viral HepatitisSummary

    Directory of Open Access Journals (Sweden)

    Barbara Rehermann

    2015-11-01

    Full Text Available Natural killer (NK cells are traditionally regarded as first-line effectors of the innate immune response, but they also have a distinct role in chronic infection. Here, we review the role of NK cells against hepatitis C virus (HCV and hepatitis B virus (HBV, two agents that cause acute and chronic hepatitis in humans. Interest in NK cells was initially sparked by genetic studies that demonstrated an association between NK cell–related genes and the outcome of HCV infection. Viral hepatitis also provides a model to study the NK cell response to both endogenous and exogenous type I interferon (IFN. Levels of IFN-stimulated genes increase in both acute and chronic HCV infection and pegylated IFNα has been the mainstay of HCV and HBV treatment for decades. In chronic viral hepatitis, NK cells display decreased production of antiviral cytokines. This phenotype is found in both HCV and HBV infection but is induced by different mechanisms. Potent antivirals now provide the opportunity to study the reversibility of the suppressed cytokine production of NK cells in comparison with the antigen-induced defect in IFNγ and tumor necrosis factor-α production of virus-specific T cells. This has implications for immune reconstitution in other conditions of chronic inflammation and immune exhaustion, such as human immunodeficiency virus infection and cancer. Keywords: HBV, HCV, Infection, Interferon, T Cell

  8. Differential Location and Distribution of Hepatic Immune Cells

    Directory of Open Access Journals (Sweden)

    Maria Alice Freitas-Lopes

    2017-12-01

    Full Text Available The liver is one of the main organs in the body, performing several metabolic and immunological functions that are indispensable to the organism. The liver is strategically positioned in the abdominal cavity between the intestine and the systemic circulation. Due to its location, the liver is continually exposed to nutritional insults, microbiota products from the intestinal tract, and to toxic substances. Hepatocytes are the major functional constituents of the hepatic lobes, and perform most of the liver’s secretory and synthesizing functions, although another important cell population sustains the vitality of the organ: the hepatic immune cells. Liver immune cells play a fundamental role in host immune responses and exquisite mechanisms are necessary to govern the density and the location of the different hepatic leukocytes. Here we discuss the location of these pivotal cells within the different liver compartments, and how their frequency and tissular location can dictate the fate of liver immune responses.

  9. Hepatitis B Virus Infection In Patients With Homozygous Sickle Cell ...

    African Journals Online (AJOL)

    Nnebe-Agumadu U H, and Abiodun P O. Hepatitis B Virus Infection in Patients with Homozygous Sickle Cell Disease (HbSS): Need for Intervention. Annals Biomedical Sciences 2002; 1:79-87. This is a prospective study of 213 patients with sickle cell anaemia (SCA) (112 males and 101 females) aged 6 months to 18 years ...

  10. Combinatorial insulin secretion dynamics of recombinant hepatic and enteroendocrine cells.

    Science.gov (United States)

    Durvasula, Kiranmai; Thulé, Peter M; Sambanis, Athanassios

    2012-04-01

    One of the most promising cell-based therapies for combating insulin-dependent diabetes entails the use of genetically engineered non-β cells that secrete insulin in response to physiologic stimuli. A normal pancreatic β cell secretes insulin in a biphasic manner in response to glucose. The first phase is characterized by a transient stimulation of insulin to rapidly lower the blood glucose levels, which is followed by a second phase of insulin secretion to sustain the lowered blood glucose levels over a longer period of time. Previous studies have demonstrated hepatic and enteroendocrine cells to be appropriate hosts for recombinant insulin expression. Due to different insulin secretion kinetics from these cells, we hypothesized that a combination of the two cell types would mimic the biphasic insulin secretion of normal β cells with higher fidelity than either cell type alone. In this study, insulin secretion experiments were conducted with two hepatic cell lines (HepG2 and H4IIE) transduced with 1 of 3 adenoviruses expressing the insulin transgene and with a stably transfected recombinant intestinal cell line (GLUTag-INS). Insulin secretion was stimulated by exposing the cells to glucose only (hepatic cells), meat hydrolysate only (GLUTag-INS), or to a cocktail of the two secretagogues. It was found experimentally that the recombinant hepatic cells secreted insulin in a more sustained manner, whereas the recombinant intestinal cell line exhibited rapid insulin secretion kinetics upon stimulation. The insulin secretion profiles were computationally combined at different cell ratios to arrive at the combinatorial kinetics. Results indicate that combinations of these two cell types allow for tuning the first and second phase of insulin secretion better than either cell type alone. This work provides the basic framework in understanding the secretion kinetics of the combined system and advances it towards preclinical studies. Copyright © 2011 Wiley Periodicals

  11. Epigenetic regulation of hepatic stellate cell activation and liver fibrosis.

    Science.gov (United States)

    El Taghdouini, Adil; van Grunsven, Leo A

    2016-12-01

    Chronic liver injury to hepatocytes or cholangiocytes, when left unmanaged, leads to the development of liver fibrosis, a condition characterized by the excessive intrahepatic deposition of extracellular matrix proteins. Activated hepatic stellate cells constitute the predominant source of extracellular matrix in fibrotic livers and their transition from a quiescent state during fibrogenesis is associated with important alterations in their transcriptional and epigenetic landscape. Areas covered: We briefly describe the processes involved in hepatic stellate cell activation and discuss our current understanding of alterations in the epigenetic landscape, i.e DNA methylation, histone modifications and the functional role of non-coding RNAs that accompany this key event in the development of chronic liver disease. Expert commentary: Although great progress has been made, our understanding of the epigenetic regulation of hepatic stellate cell activation is limited and, thus far, insufficient to allow the development of epigenetic drugs that can selectively interrupt liver fibrosis.

  12. Hepatitis

    Science.gov (United States)

    ... yourself against hepatitis A is by vaccination. Other ways to protect yourself include avoiding rimming and other anal and oral contact. While condom use is essential in preventing the spread of HIV, hepatitis B and other STDs, it does not ...

  13. Hepatic Cell Adenoma: A Report of Four Cases

    Science.gov (United States)

    Albritton, David R.; Tompkins, Ronald K.; Longmire, William P.

    1974-01-01

    Four patients with hepatic cell adenoma have been treated at the UCLA Hospital since 1965. The most recent was a 22-year-old woman who underwent subtotal resection of a giant hepatic cell adenoma after an unusual and confusing clinical presentation. The tumor may be the largest reported to date and may have excreted metabolically-active substances. Increased familiarity with the varying clinical and radiographic presentations of these rare tumors may facilitate earlier diagnosis and management. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 6.Fig. 7. PMID:4366047

  14. Human mesenchymal stem cell-engineered hepatic cell sheets accelerate liver regeneration in mice

    OpenAIRE

    Noriko Itaba; Yoshiaki Matsumi; Kaori Okinaka; An Afida Ashla; Yohei Kono; Mitsuhiko Osaki; Minoru Morimoto; Naoyuki Sugiyama; Kazuo Ohashi; Teruo Okano; Goshi Shiota

    2015-01-01

    Mesenchymal stem cells (MSCs) are an attractive cell source for cell therapy. Based on our hypothesis that suppression of Wnt/β-catenin signal enhances hepatic differentiation of human MSCs, we developed human mesenchymal stem cell-engineered hepatic cell sheets by a small molecule compound. Screening of 10 small molecule compounds was performed by WST assay, TCF reporter assay, and albumin mRNA expression. Consequently, hexachlorophene suppressed TCF reporter activity in time- and concentrat...

  15. NATURAL KILLER T CELLS IN HEPATIC LEUCOCYTE INFILTRATES IN PATIENTS WITH MALIGNANT PROCESS AND VIRAL HEPATITIS

    Directory of Open Access Journals (Sweden)

    O. V. Lebedinskaya

    2010-01-01

    Full Text Available Morphology, topography, and immunohistochemical features of leukocyte infiltrates were studied in various sites of the liver samples from the patients with metastatic disease, been affected by hepatitis B and C viruses at different degree of activity. Liver of СВА mice with implanted САО-1 tumour was also under study. Histochemical, and functional features, as well as immune phenotype of these cells were investigated. It has been shown that the major fraction of leukocyte infiltrates, mostly associated with implanted tumours in experimental mice, and in the areas adjacent to the tumor in humans, like as on the peak of viral hepatitis activity, is composed of lymphocytes. They are presented by large numvers of activated proliferating and differentiating cells bearing specific antigens, as well as natural killers and T-lymphocytes, possessing high-level killer activity towards NK-sensitive, and autologous lines of cancer cells. Hence, the results of our study, generally, confirm the data from literature reporting on existence of a special lymphocyte subpopulation, NKT cells, in human or murine liver affected by hepatitis virus or malignant tumors. The data concerning functional properties of these cells may be used for development of immunotherapy methods of viral diseases and oncological conditions complicated by liver metastases.

  16. File list: Unc.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 Unclassified Liver Hepatic Stellate Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  17. File list: His.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 Histone Liver Hepatic Stellate Cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  18. File list: Pol.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 RNA polymerase Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  19. File list: Oth.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 TFs and others Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  20. File list: Pol.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 RNA polymerase Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  1. File list: ALL.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 All antigens Liver Hepatic Stellate Ce...lls SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  2. File list: His.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 Histone Liver Hepatic Stellate Cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  3. File list: Oth.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 TFs and others Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  4. File list: Pol.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 RNA polymerase Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  5. File list: DNS.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 DNase-seq Liver Hepatic Stellate Cells... SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  6. File list: Unc.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 Unclassified Liver Hepatic Stellate Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  7. File list: Unc.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 Unclassified Liver Hepatic Stellate Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  8. File list: ALL.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 All antigens Liver Hepatic Stellate Ce...lls SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  9. File list: Unc.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 Unclassified Liver Hepatic Stellate Ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  10. File list: DNS.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 DNase-seq Liver Hepatic Stellate Cells... SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  11. File list: ALL.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 All antigens Liver Hepatic Stellate Ce...lls SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  12. File list: His.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 Histone Liver Hepatic Stellate Cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  13. File list: ALL.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 All antigens Liver Hepatic Stellate Ce...lls SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  14. File list: Oth.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 TFs and others Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  15. File list: Oth.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 TFs and others Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  16. File list: DNS.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 DNase-seq Liver Hepatic Stellate Cells... SRX100919 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  17. File list: His.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 Histone Liver Hepatic Stellate Cells h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  18. Post-transfusion viral hepatitis in sickle Cell Anaemia: Retrospective ...

    African Journals Online (AJOL)

    Several complications of sickle cell anaemia (SCA) are well known including hepatobiliary dysfunction. We here present a study 151 randomly selected SCA patients to highlight the contributory role of blood transfusion to the development of viral hepatitis in them. Twenty (13.2%) had not received blood transfusion and no ...

  19. Regulatory T Cells in Chronic Hepatitis B Virus Infection

    NARCIS (Netherlands)

    J.N. Stoop (Jeroen Nicolaas)

    2007-01-01

    textabstractWorldwide 400 million people suffer from chronic hepatitis B virus (HBV) infection and approximately 1 million people die annually from HBV-related disease. To clear HBV, an effective immune response, in which several cell types and cytokines play a role, is important. It is known that

  20. Hepatitis B Surface Antigenaemia in Sickle Cell Anaemia in Kano ...

    African Journals Online (AJOL)

    The seroprevalence of Hepatitis B surface antigen (HBsAg) in 96 Sickle cell anaemia (SCA) patients (HbSS) was determined at Aminu Kano Teaching Hospital, Kano between May and November, 2005 using standard method for haemoglobin electrophoresis and HBsAgTM latex agglutination test kit. The seroprevalence of ...

  1. Octreotide decreases portal pressure: Hepatic stellate cells may play ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-22

    Mar 22, 2010 ... The protein and mRNA levels in all five ... Key words: Hepatic stellate cell, somatostatin receptor subtype, octreotide, portal hypertension, liver cirrhosis. ..... Pinzani M, Rosenbaum J, Geerts A (2004). Expression of somatostatin receptors in normal and cirrhotic human liver and in hepatocellular carcinoma.

  2. Hepatic Stellate Cells Support Hematopoiesis and are Liver-Resident Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Claus Kordes

    2013-02-01

    Full Text Available Background/Aims: Hematopoiesis can occur in the liver, when the bone marrow fails to provide an adequate environment for hematopoietic stem cells. Hepatic stellate cells possess characteristics of stem/progenitor cells, but their contribution to hematopoiesis is not known thus far. Methods: Isolated hepatic stellate cells from rats were characterized with respect to molecular markers of bone marrow mesenchymal stem cells (MSC and treated with adipocyte or osteocyte differentiation media. Stellate cells of rats were further co-cultured with murine stem cell antigen-1+ hematopoietic stem cells selected by magnetic cell sorting. The expression of murine hematopoietic stem cell markers was analyzed by mouse specific quantitative PCR during co-culture. Hepatic stellate cells from eGFP+ rats were transplanted into lethally irradiated wild type rats. Results: Desmin-expressing stellate cells were associated with hematopoietic sites in the fetal rat liver. Hepatic stellate cells expressed MSC markers and were able to differentiate into adipocytes and osteocytes in vitro. Stellate cells supported hematopoietic stem/progenitor cells during co-culture similar to bone marrow MSC, but failed to differentiate into blood cell lineages after transplantation. Conclusion: Hepatic stellate cells are liver-resident MSC and can fulfill typical functions of bone marrow MSC such as the differentiation into adipocytes or osteocytes and support of hematopoiesis.

  3. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Zan, Yanlu [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yuxia, E-mail: yzhang@wehi.edu.au [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Tien, Po, E-mail: tienpo@sun.im.ac.cn [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  4. Matrix metalloproteinase-14 mediates formation of bile ducts and hepatic maturation of fetal hepatic progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Otani, Satoshi [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Kakinuma, Sei, E-mail: skakinuma.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Kamiya, Akihide [Institute of Innovative Science and Technology, Tokai University, Isehara (Japan); Goto, Fumio; Kaneko, Shun; Miyoshi, Masato; Tsunoda, Tomoyuki; Asano, Yu; Kawai-Kitahata, Fukiko; Nitta, Sayuri; Nakata, Toru; Okamoto, Ryuichi; Itsui, Yasuhiro; Nakagawa, Mina; Azuma, Seishin [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Asahina, Yasuhiro [Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo (Japan); Department for Liver Disease Control, Tokyo Medical and Dental University, Tokyo (Japan); Yamaguchi, Tomoyuki [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Koshikawa, Naohiko [Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); Seiki, Motoharu [Medical School, Kanazawa University, Kanazawa (Japan); Nakauchi, Hiromitsu [Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo (Japan); and others

    2016-01-22

    Fetal hepatic stem/progenitor cells, called hepatoblasts, play central roles in liver development; however, the molecular mechanisms regulating the phenotype of these cells have not been completely elucidated. Matrix metalloproteinase (MMP)-14 is a type I transmembrane proteinase regulating pericellular proteolysis of the extracellular matrix and is essential for the activation of several MMPs and cytokines. However, the physiological functions of MMP-14 in liver development are unknown. Here we describe a functional role for MMP-14 in hepatic and biliary differentiation of mouse hepatoblasts. MMP-14 was upregulated in cells around the portal vein in perinatal stage liver. Formation of bile duct-like structures in MMP-14–deficient livers was significantly delayed compared with wild-type livers in vivo. In vitro biliary differentiation assays showed that formation of cholangiocytic cysts derived from MMP-14–deficient hepatoblasts was completely impaired, and that overexpression of MMP-14 in hepatoblasts promoted the formation of bile duct-like cysts. In contrast, the expression of molecules associated with metabolic functions in hepatocytes, including hepatic nuclear factor 4α and tryptophan 2,3-dioxygenase, were significantly increased in MMP-14–deficient livers. Expression of the epidermal growth factor receptor and phosphorylation of mitogen-activated protein kinases were significantly upregulated in MMP-14–deficient livers. We demonstrate that MMP-14–mediated signaling in fetal hepatic progenitor cells promotes biliary luminal formation around the portal vein and negatively controls the maturation of hepatocytes. - Highlights: • Loss of MMP-14 delayed formation of bile duct-like structures in perinatal liver. • Overexpression of MMP-14 in hepatobalsts promoted the biliary formation in vitro. • Loss of MMP-14 promoted hepatocyte maturation of hepatoblasts in vivo. • MMP-14–mediated signaling regulates terminal differentiation of

  5. HEPATITIS B AND C IN HEMATOPOIETIC STEM CELL TRANSPLANT

    Directory of Open Access Journals (Sweden)

    Anna Locasciulli

    2009-11-01

    Full Text Available Although  the risk of acquisition of hepatitis B or hepatitis C virus through blood products has considerably reduced since the last decade, some infected patients are candidates to stem cell transplantation. Others may have no alternative than an infected donor. In all these cases, recipients of transplant are prone to short and long term liver complications. The evolution of liver tests under chemotherapy before transplant may give useful information to anticipate on  the risk of hepatitis reactivation after transplant, both for HBv and HCv. More than sixty percent of the patients who are HBsAg-positive before transplant reactivate after transplant, and 3% develop acute severe liver failure. Because both viral replication and immune reconstitution are the key factors for reactivation, it is crucial to closely follow liver function tests and viral load during the first months of transplant, and to pay a special attention in slowly tapering the immunosuppression in these patients. Lamivudine reduces HBv viremia, but favors the emergence of HBv polymerase gene mutants and should be individually discussed. Both in case of HBv or HCv hepatitis reactivation with ALT > 10N concomitantly to an increase in viral load at time of immune reconstitution, steroids should be given. In case there is no alternative than a HBv or HCv positive geno-identical donor, the risk of viral hepatitis, including acute liver failure and late complications, should be balanced with the benefit of transplant in a given situation.

  6. Hepatic stellate cells promote upregulation of epithelial cell adhesion molecule and epithelial-mesenchymal transition in hepatic cancer cells.

    Science.gov (United States)

    Nagahara, Teruya; Shiraha, Hidenori; Sawahara, Hiroaki; Uchida, Daisuke; Takeuchi, Yasuto; Iwamuro, Masaya; Kataoka, Junro; Horiguchi, Shigeru; Kuwaki, Takeshi; Onishi, Hideki; Nakamura, Shinichiro; Takaki, Akinobu; Nouso, Kazuhiro; Yamamoto, Kazuhide

    2015-09-01

    Microenvironment plays an important role in epithelial-mesenchymal transition (EMT) and stemness of cells in hepatocellular carcinoma (HCC). Epithelial cell adhesion molecule (EpCAM) is known as a tumor stemness marker of HCC. To investigate the relationship between microenvironment and stemness, we performed an in vitro co-culture assay. Four HCC cell lines (HepG2, Hep3B, HuH-7 and PLC/PRF/5) were co-cultured with the TWNT-1 immortalized hepatic stellate cells (HSCs), which create a microenvironment with HCC. Cell proliferation ability was analyzed by flow cytometry (FCM) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while migration ability was assessed by a wound healing assay. Expression of EpCAM was analyzed by immunoblotting and FCM. HCC cell lines were co-cultured with TWNT-1 treated with small interfering RNA (siRNA) for TGF-β and HB-EGF; we then analyzed proliferation, migration ability and protein expression using the methods described above. Proliferation ability was unchanged in HCC cell lines co-cultured with TWNT-1. Migration ability was increased in HCC cell lines (HepG2, Hep3B, HuH-7 and PLC/PRF/5) directly (216.2±67.0, 61.0±22.0, 124.0±66.2 and 51.5±40.3%) and indirectly (102.5±22.0, 84.6±30.9, 86.1±25.7 and 73.9±29.7%) co-cultured with TWNT-1 compared with the HCC uni-culture. Immunoblot analysis revealed increased EpCAM expression in the HCC cell lines co-cultured with TWNT-1. Flow cytometry revealed that the population of E-cadherin-/N-cadherin+ and EpCAM-positive cells increased and accordingly, EMT and stemness in the HCC cell line were activated. These results were similar in the directly and indirectly co-cultured samples, indicating that humoral factors were at play. Conversely, HCC cell lines co-cultured with siRNA‑treated TWNT-1 showed decreased migration ability, a decreased population of EpCAM-positive and E-cadherin-/N-cadherin+ cells. Taken together, humoral factors secreted from TWNT-1

  7. Evaluation of hepatic hemangioma by Tc-99 m red blood cell hepatic blood pool scan

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Myung Hee [Chonbuk National University Medical School, Chonju (Korea, Republic of)

    2005-02-15

    Hemangioma is the most common benign tumor of the liver, with a prevalence estimated as high as 7%. Tc-99m red blood cell (RBC) hepatic blood pool scan with single photon emission computed tomography (SPECT) imaging is extremely useful for the confirmation or exclusion of hepatic hemangiomas. The classic finding of absent or decreased perfusion and increased blood pooling ('perfusion/blood pool mismatch') is the key diagnostic element in the diagnosis of hemangiomas. The combination of early arterial flow and delayed blood pooling ('perfusion/blood pool match') is shown uncommonly. In giant hemangioma, filling with radioactivity appears first in the periphery, with progressive central fill-in on sequential RBC blood pool scan. However, the reverse filling pattern, which begins first in the center with progressive peripheral filling, is also rarely seen. Studies with false-positive blood pooling have been reported infrequently in nonhemangiomas, including hemangiosarcoma, hepatocellular carcinoma, hepatic adenoma, and metastatic carcinomas (adenocarcinma of the colon, small cell carcinoma of the lung, neruroendocrine carcinoma). False-negative results have been also reported rarely except for small hemagniomas that are below the limits of spatial resolution of gamma camera.

  8. Apicobasal Polarity Controls Lymphocyte Adhesion to Hepatic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Natalia Reglero-Real

    2014-09-01

    Full Text Available Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1 adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α. We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery.

  9. An unusual unilocular mesothelial cyst of the pleura: a case report.

    Science.gov (United States)

    Monzen, Yoshio; Okazaki, Hajime; Kurose, Taichi; Mito, Mio; Wadasaki, Koichi; Nishisaka, Takashi

    2011-07-01

    A 79-year-old woman was found to have an abnormal shadow on chest radiography. Computed tomography demonstrated a pleural mass. The F-18 fluorodeoxyglucose positron emission tomography (FDG PET) was performed to determine whether the pleural mass was benign or malignant. The histologic examination of the resected mass showed a unilocular mesothelial cyst of the pleura. The FDG PET findings of a mesothelial cyst of the pleura have not yet been previously reported. The FDG PET findings of a mesothelial cyst in the pleura reflected the microscopic findings of the resected mass. The FDG PET findings, therefore, seem to be useful in the diagnosis of mesothelial cysts.

  10. Discovery of Aptamer Ligands for Hepatic Stellate Cells Using SELEX.

    Science.gov (United States)

    Chen, Zhijin; Liu, Hao; Jain, Akshay; Zhang, Li; Liu, Chang; Cheng, Kun

    2017-01-01

    Insulin like growth factor II receptor (IGFIIR) is a transmembrane protein overexpressed in activated hepatic stellate cells (HSCs), which are the major target for the treatment of liver fibrosis. In this study, we aim to discover an IGFIIR-specific aptamer that can be potentially used as a targeting ligand for the treatment and diagnosis of liver fibrosis. Systematic evolution of ligands by exponential enrichment (SELEX) was conducted on recombinant human IGFIIR to identify IGFIIR-specific aptamers. The binding affinity and specificity of the discovered aptamers to IGFIIR and hepatic stellate cells were studied using flow cytometry and Surface Plasmon Resonance (SPR). Aptamer-20 showed the highest affinity to recombinant human IGFIIR protein with a K d of 35.5 nM, as determined by SPR. Aptamer-20 also has a high affinity (apparent K d 45.12 nM) to LX-2 human hepatic stellate cells. Binding of aptamer-20 to hepatic stellate cells could be inhibited by knockdown of IGFIIR using siRNA, indicating a high specificity of the aptamer. The aptamer formed a chimera with an anti-fibrotic PCBP2 siRNA and delivered the siRNA to HSC-T6 cells to trigger silencing activity. In Vivo biodistribution study of the siRNA-aptamer chimera also demonstrated a high and specific uptake in the liver of the rats with CCl 4 -induced liver fibrosis. These data suggest that aptamer-20 is a high-affinity ligand for antifibrotic and diagnostic agents for liver fibrosis.

  11. A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection.

    Science.gov (United States)

    Zhang, David Y; Goossens, Nicolas; Guo, Jinsheng; Tsai, Ming-Chao; Chou, Hsin-I; Altunkaynak, Civan; Sangiovanni, Angelo; Iavarone, Massimo; Colombo, Massomo; Kobayashi, Masahiro; Kumada, Hiromitsu; Villanueva, Augusto; Llovet, Josep M; Hoshida, Yujin; Friedman, Scott L

    2016-10-01

    We used an informatics approach to identify and validate genes whose expression is unique to hepatic stellate cells and assessed the prognostic capability of their expression in cirrhosis. We defined a hepatic stellate cell gene signature by comparing stellate, immune and hepatic transcriptome profiles. We then created a prognostic index using a combination of hepatic stellate cell signature expression and clinical variables. This signature was derived in a retrospective-prospective cohort of hepatitis C-related early-stage cirrhosis (prognostic index derivation set) and validated in an independent retrospective cohort of patients with postresection hepatocellular carcinoma (HCC). We then examined the association between hepatic stellate cell signature expression and decompensation, HCC development, progression of Child-Pugh class and survival. The 122-gene hepatic stellate cell signature consists of genes encoding extracellular matrix proteins and developmental factors and correlates with the extent of fibrosis in human, mouse and rat datasets. Importantly, association of clinical prognostic variables with overall survival was improved by adding the signature; we used these results to define a prognostic index in the derivation set. In the validation set, the same prognostic index was associated with overall survival. The prognostic index was associated with decompensation, HCC and progression of Child-Pugh class in the derivation set, and HCC recurrence in the validation set. This work highlights the unique transcriptional niche of stellate cells, and identifies potential stellate cell targets for tracking, targeting and isolation. Hepatic stellate cell signature expression may identify patients with HCV cirrhosis or postresection HCC with poor prognosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Inhibitory effect of tanshinone IIA on rat hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Ya-Wei Liu

    Full Text Available Anti-inflammation via inhibition of NF-κB pathways in hepatic stellate cells (HSCs is one therapeutic approach to hepatic fibrosis. Tanshinone IIA (C19H18O3, Tan IIA is a lipophilic diterpene isolated from Salvia miltiorrhiza Bunge, with reported anti-inflammatory activity. We tested whether Tan IIA could inhibit HSC activation.The cell line of rat hepatic stellate cells (HSC-T6 was stimulated with lipopolysaccharide (LPS (100 ng/ml. Cytotoxicity was assessed by MTT assay. HSC-T6 cells were pretreated with Tan IIA (1, 3 and 10 µM, then induced by LPS (100 ng/ml. NF-κB activity was evaluated by the luciferase reporter gene assay. Western blotting analysis was performed to measure NF-κB-p65, and phosphorylations of MAPKs (ERK, JNK, p38. Cell chemotaxis was assessed by both wound-healing assay and trans-well invasion assay. Quantitative real-time PCR was used to detect gene expression in HSC-T6 cells.All concentrations of drugs showed no cytotoxicity against HSC-T6 cells. LPS stimulated NF-κB luciferase activities, nuclear translocation of NF-κB-p65, and phosphorylations of ERK, JNK and p38, all of which were suppressed by Tan IIA. In addition, Tan IIA significantly inhibited LPS-induced HSCs chemotaxis, in both wound-healing and trans-well invasion assays. Moreover, Tan IIA attenuated LPS-induced mRNA expressions of CCL2, CCL3, CCL5, IL-1β, TNF-α, IL-6, ICAM-1, iNOS, and α-SMA in HSC-T6 cells.Our results demonstrated that Tan IIA decreased LPS-induced HSC activation.

  13. Reactive mesothelial hyperplasia associated with chronic peritonitis in a 20-year-old Quarter horse

    Science.gov (United States)

    Hoon-Hanks, Laura L.; Rout, Emily D.; Vap, Linda M.; Aboellail, Tawfik A.; Hassel, Diana M.; Nout-Lomas, Yvette S.

    2016-01-01

    A 20-year-old gelding was diagnosed with peritonitis and severe reactive mesothelial hyperplasia. Exploratory laparotomy findings were suggestive of a neoplastic etiology; however, additional diagnostics ruled this out and the horse made a full recovery. This report demonstrates the difficulty and value of differentiating between reactive and neoplastic mesothelial processes. PMID:27152035

  14. A Case of Giant Cell Hepatitis Recurring after Liver Transplantation and Treated with Ribavirin

    Directory of Open Access Journals (Sweden)

    Ziad Hassoun

    2000-01-01

    Full Text Available A patient who underwent orthotopic liver transplantation for giant cell hepatitis with cirrhosis and in whom giant cell hepatitis recurred twice after orthotopic liver transplantation is reported. He was treated with ribavirin with an excellent result. The literature on this subject is reviewed. This observation clearly confirms the efficacy of ribavirin for the treatment of giant cell hepatitis, thus providing evidence for its viral origin.

  15. The role of human T cell lymphotrophic virus type 1, hepatitis B virus and hepatitis C virus coinfections in leprosy

    OpenAIRE

    Paulo Roberto Lima Machado; Johnson, Warren D.; Glesby, Marshall J.

    2012-01-01

    Leprosy spectrum and outcome is associated with the host immune response against Mycobacterium leprae. The role of coinfections in leprosy patients may be related to a depression of cellular immunity or amplification of inflammatory responses. Leprosy remains endemic in several regions where human T cell lymphotrophic virus type 1 (HTLV-1), hepatitis B virus (HBV) or hepatitis C virus (HCV) are also endemic. We have evaluated the evidence for the possible role of these viruses in the clinical...

  16. NK Cells Help Induce Anti-Hepatitis B Virus CD8+ T Cell Immunity in Mice.

    Science.gov (United States)

    Zheng, Meijuan; Sun, Rui; Wei, Haiming; Tian, Zhigang

    2016-05-15

    Although recent clinical studies demonstrate that NK cell function is impaired in hepatitis B virus (HBV)-persistent patients, whether or how NK cells play a role in anti-HBV adaptive immunity remains to be explored. Using a mouse model mimicking acute HBV infection by hydrodynamic injection of an HBV plasmid, we observed that although serum hepatitis B surface Ag and hepatitis B envelope Ag were eliminated within 3 to 4 wk, HBV might persist for >8 wk in CD8(-/-) mice and that adoptive transfer of anti-HBV CD8(+) T cells restored the ability to clear HBV in HBV-carrier Rag1(-/-) mice. These results indicate that CD8(+) T cells are critical in HBV elimination. Furthermore, NK cells increased IFN-γ production after HBV plasmid injection, and NK cell depletion led to significantly increased HBV persistence along with reduced frequency of hepatitis B core Ag-specific CD8(+) T cells. Adoptive transfer of IFN-γ-sufficient NK cells restored donor CD8(+) T cell function, indicating that NK cells positively regulated CD8(+) T cells via secreting IFN-γ. We also observed that NK cell depletion correlated with decreased effector memory CD8(+) T cell frequencies. Importantly, adoptive transfer experiments showed that NK cells were involved in anti-HBV CD8(+) T cell recall responses. Moreover, DX5(+)CD49a(-) conventional, but not DX5(-)CD49a(+) liver-resident, NK cells were involved in improving CD8(+) T cell responses against HBV. Overall, the current study reveals that NK cells, especially DX5(+)CD49a(-) conventional NK cells, promote the antiviral activity of CD8(+) T cell responses via secreting IFN-γ in a mouse model mimicking acute HBV infection. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. Simple mesothelial pericardial cyst in a rare location.

    Science.gov (United States)

    Ranchordás, Sara; Gomes, Catarina; Abecasis, Miguel; Gouveia, Rosa; Abecasis, João; Lopes, Luís R; Fazendas, Paula

    2016-09-01

    Pericardial cysts are rare and generally benign intrathoracic lesions, most frequently located in the cardiophrenic angles, but other locations have been described. We present a case of a pericardial cyst in a previously undescribed site. Our patient presented with a cyst in the interventricular septum which was discovered as an incidental finding. After surgical excision of the cyst, it was described pathologically as a simple mesothelial pericardial cyst. The explanation of this rare condition is uncertain, but some hypotheses can be outlined. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Replication of hepatitis C virus in cell culture

    Directory of Open Access Journals (Sweden)

    Fedorchenko D. B.

    2009-02-01

    Full Text Available The technique for replicating hepatitis C virus (HCV in cell culture has been modified and the susceptibility of the cells of various origin to HCV upon their infection with HCV-containing sera has been compared. The viral load on the fifth day post-infection has been assessed by reverse transcriptase polymerase chain reaction technique. The highest infection and replication efficacy have been found in cells of rat Gasser’s ganglion neurinoma. The peculiar features of the mitotic index and the anomalous forms of the mitosis have been studied in HCV-infected cells. The data presented may be used as a basis for the experimental model of HCV infection in vitro suitable for studying the effects of antiviral drugs on the infection caused by the cytopathogenic variant of HCV.

  19. [Sodium butyrate induces rat hepatic oval cells differentiating into mature hepatocytes in vitro].

    Science.gov (United States)

    Wang, Ping; Jia, Ji-Dong; Tang, Shu-Zhen; Yan, Zhong-Yu; You, Hong; Cong, Min; Wang, Bao-En; Chen, Li; An, Wei

    2004-12-01

    To elucidate the effects of sodium butyrate on rat hepatic oval cell differentiation in vitro. Hepatic oval cells were isolated from rats fed with a choline-deficient diet supplemented with 0.1% (w/w) ethonine for 4 to 6 weeks. The cultured hepatic oval cells were identified by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). After hepatic oval cells were treated with sodium butyrate, the morphological changes were studied through Giemsa staining and the albumin expression level was tested by Western blot. Immunohistochemical results showed the isolated cells were positive for both mature hepatocyte marker albumin and bile duct cell marker cytokeratin-19. Furthermore, RT-PCR results showed that the cells expressed stem cell marker c-kit, but not hematopoietic stem cell marker CD34. In short, the isolated cells were rat hepatic oval cells. 0.75 mmol/L sodium butyrate induced obvious phenotype changes of hepatic oval cells, including enlargement of the oval cells, a decrease in nucleus to cytoplasm ratio, and a 50% increase in the number of binucleated cells. Western blot results showed that 0.75 mmol/L sodium butyrate markedly raised the expression of albumin. Sodium butyrate, a differentiation promoting agent, can induce rat hepatic oval cells (liver progenitor cells) to differentiate into mature hepatocytes in vitro.

  20. B Cell: T Cell Interactions Occur within Hepatic Granulomas during Experimental Visceral Leishmaniasis

    Science.gov (United States)

    Moore, John W. J.; Beattie, Lynette; Dalton, Jane E.; Owens, Benjamin M. J.; Maroof, Asher; Coles, Mark C.; Kaye, Paul M.

    2012-01-01

    Hepatic resistance to Leishmania donovani infection in mice is associated with the development of granulomas, in which a variety of lymphoid and non-lymphoid populations accumulate. Although previous studies have identified B cells in hepatic granulomas and functional studies in B cell-deficient mice have suggested a role for B cells in the control of experimental visceral leishmaniasis, little is known about the behaviour of B cells in the granuloma microenvironment. Here, we first compared the hepatic B cell population in infected mice, where ≈60% of B cells are located within granulomas, with that of naïve mice. In infected mice, there was a small increase in mIgMlomIgD+ mature B2 cells, but no enrichment of B cells with regulatory phenotype or function compared to the naïve hepatic B cell population, as assessed by CD1d and CD5 expression and by IL-10 production. Using 2-photon microscopy to quantify the entire intra-granuloma B cell population, in conjunction with the adoptive transfer of polyclonal and HEL-specific BCR-transgenic B cells isolated from L. donovani-infected mice, we demonstrated that B cells accumulate in granulomas over time in an antigen-independent manner. Intra-vital dynamic imaging was used to demonstrate that within the polyclonal B cell population obtained from L. donovani-infected mice, the frequency of B cells that made multiple long contacts with endogenous T cells was greater than that observed using HEL-specific B cells obtained from the same inflammatory environment. These data indicate, therefore, that a subset of this polyclonal B cell population is capable of making cognate interactions with T cells within this unique environment, and provide the first insights into the dynamics of B cells within an inflammatory site. PMID:22479545

  1. The Effects of Old Age on Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Alessandra Warren

    2011-01-01

    Full Text Available Aging is associated with marked changes in the hepatic sinusoid, yet the effect of old age on hepatic stellate cells (HSC has not been well described. Transmission electron microscopy and immunohistochemistry were used to study the effects of aging on HSC in livers from rats (3-4 mths versus 24–27 mths and mice (2-3 mths versus 20–22 mths. Desmin-positive HSC doubled in old age in both mice and rats. Alpha-smooth muscle actin- (αSMA- positive cells did not increase significantly and remained only a small percentage of desmin-positive cells. Electron microscopy revealed that old age is associated with HSC that have a substantial increase in the number of lipid droplets which are larger in diameter. There was also a marked increase of HSC that protruded into the sinusoidal lumen in old mice. In conclusion, old age is associated with hyperplasia of HSC that are not activated and are engorged with lipid droplets.

  2. Naturally Occurring Hepatitis B Virus B-Cell and T-Cell Epitope Mutants in Hepatitis B Vaccinated Children

    Directory of Open Access Journals (Sweden)

    Yu-Min Lin

    2013-01-01

    Full Text Available To control hepatitis B virus (HBV infection, a universal HBV vaccination program for infants was launched in Taiwan in 1984. The aim of this study was to investigate the role of B-cell and T-cell epitope variations of HBsAg and polymerase in HBV infection in vaccinated children. One hundred sixty-three sera from vaccinated children were enrolled randomly. HBV serum markers, including hepatitis B surface antigen (HBsAg and antibodies to HBsAg (anti-HBs and core antigen (anti-HBc, were detected by ELISA. Nucleotide sequences encoding the S and the pre-S regions of HBsAg were analyzed in all HBsAg positive sera. Five children were HBsAg positive. Sequence analysis of S, pre-S, and overlapped polymerase (P genes showed that HBV isolates of HBsAg-positive vaccinees were variants; no G145R but G145A and other substitutions were found in the “a” determinant. Fifteen, six, and eight amino acid substitutions within B-cell and T-cell epitopes of S, pre-S, and P regions were detected, respectively. Several immune-epitope mutants, such as S45T/A, N131T, I194V, and S207N in S, were detected in all isolates. In conclusion, our results suggested that these naturally occurring immunoepitope mutants, which changed their immunogenicity leading to escape from immune response, might cause HBV infection.

  3. Visualizing hepatitis B virus with biarsenical labelling in living cells.

    Science.gov (United States)

    Sun, Shuzhen; Yan, Jingjun; Xia, Chao; Lin, Yuanyuan; Jiang, Xiaorui; Liu, Haojing; Ren, Huanping; Yan, Junwei; Lin, Jusheng; He, Xingxing

    2014-11-01

    Study on viruses has greatly benefited from visualization of viruses tagged with green fluorescent protein (GFP) in living cells. But GFP tag, as a large inserted fragment, is not suitable for labelling Hepatitis B virus (HBV) that is a compact virion with limited internal space. To visualize HBV in living cells, we constructed several recombinant HBV fluorescently labelled with biarsenical dye to track the behaviour of HBV in the cytoplasm of infected cells. By mutagenesis, a smaller size tetracysteine (TC) tag (C-C-P-G-C-C) that could be bound with a biarsenical fluorescent dye was genetically inserted at different cell epitopes of HBV core protein expressed in transfected cells. Confocal microscopy and transmission electron microscopy (TEM) observations showed that TC-tagged core proteins bound with biarsenical dye could specifically fluoresce in cells and be incorporated into nucleocapsid to form fluorescent virions. The recombinant fluorescent HBV virions retained their infectivity as wild-type ones. Moreover, tracking of fluorescent HBV particles in living cells reveals microtubule-dependent motility of the intracellular particles. To the best of our knowledge, this is the first time to generate fluorescent HBV virions with biarsenical labelling and to visualize their trafficking in living cells. The fluorescent HBV may become one highly valuable tool for further studying detailed dynamic processes of HBV life cycle and interaction of HBV with host in live-imaging approach. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. [Hepatic cell transplantation: a new therapy in liver diseases].

    Science.gov (United States)

    Pareja, Eugenia; Cortés, Miriam; Martínez, Amparo; Vila, Juan José; López, Rafael; Montalvá, Eva; Calzado, Angeles; Mir, José

    2010-07-01

    Liver transplantation has been remarkably effective in the treatment in patients with end-stage liver disease. However, disparity between solid-organ supply and increased demand is the greatest limitation, resulting in longer waiting times and increase in mortality of transplant recipients. This situation creates the need to seek alternatives to orthotopic liver transplantation.Hepatocyte transplantation or liver cell transplantation has been proposed as the best method to support patients. The procedure consists of transplanting individual cells to a recipient organ in sufficient quantity to survive and restore the function. The capacity of hepatic regeneration is the biological basis of hepatocyte transplantation. This therapeutic option is an experimental procedure in some patients with inborn errors of metabolism, fulminant hepatic failure and acute and chronic liver failure, as a bridge to orthotopic liver transplantation. In the Hospital La Fe of Valencia, we performed the first hepatocyte transplantation in Spain creating a new research work on transplant program. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  5. Docking of B-cell epitope antigen to specific hepatitis B antibody

    Indian Academy of Sciences (India)

    The interaction of pres1 region of hepatitis B virus B-cell epitope antigen with specific hepatitis B neutralizing monoclonal antibody was examined by docking study. We modelled the 3D complex structure of B-cell epitope antigen residues CTTPAQGNSMFPSCCCTKPTDGNCY by homology modelling and docked it with the ...

  6. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo

    NARCIS (Netherlands)

    Bansal, Ruchi; Prakash, Jai; De Ruiter, Marieke; Poelstra, Klaas

    2014-01-01

    Hepatic stellate cells play a crucial role in the pathogenesis of hepatic fibrosis. Thus, pharmacological inhibition of pro-fibrotic activities of these cells might lead to an effective therapy for this disease. Among the potent antifibrotics, interferon gamma (IFN gamma), a proinflammatory

  7. Hepatitis B virus antigens impair NK cell function.

    Science.gov (United States)

    Yang, Yinli; Han, Qiuju; Zhang, Cai; Xiao, Min; Zhang, Jian

    2016-09-01

    An inadequate immune response of the host is thought to be a critical factor causing chronic hepatitis B virus (CHB) infection. Natural killer (NK) cells, as one of the key players in the eradication and control of viral infections, were functionally impaired in CHB patients, which might contribute to viral persistence. Here, we reported that HBV antigens HBsAg and HBeAg directly inhibited NK cell function. HBsAg and/or HBeAg blocked NK cell activation, cytokine production and cytotoxic granule release in human NK cell-line NK-92 cells, which might be related to the downregulation of activating receptors and upregulation of inhibitory receptor. Furthermore, the underlying mechanisms likely involved the suppression of STAT1, NF-κB and p38 MAPK pathways. These findings implicated that HBV antigen-mediated inhibition of NK cells might be an efficient strategy for HBV evasion, targeting the early antiviral responses mediated by NK cells and resulting in the establishment of chronic virus infection. Therefore, this study revealed the relationship between viral antigens and human immune function, especially a potential important interaction between HBV and innate immune responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Efficient generation of hepatic cells from mesenchymal stromal cells by an innovative bio-microfluidic cell culture device.

    Science.gov (United States)

    Yen, Meng-Hua; Wu, Yuan-Yi; Liu, Yi-Shiuan; Rimando, Marilyn; Ho, Jennifer Hui-Chun; Lee, Oscar Kuang-Sheng

    2016-08-19

    Mesenchymal stromal cells (MSCs) are multipotent and have great potential in cell therapy. Previously we reported the differentiation potential of human MSCs into hepatocytes in vitro and that these cells can rescue fulminant hepatic failure. However, the conventional static culture method neither maintains growth factors at an optimal level constantly nor removes cellular waste efficiently. In addition, not only is the duration of differentiating hepatocyte lineage cells from MSCs required to improve, but also the need for a large number of hepatocytes for cell therapy has not to date been addressed fully. The purpose of this study is to design and develop an innovative microfluidic device to overcome these shortcomings. We designed and fabricated a microfluidic device and a culture system for hepatic differentiation of MSCs using our protocol reported previously. The microfluidic device contains a large culture chamber with a stable uniform flow to allow homogeneous distribution and expansion as well as efficient induction of hepatic differentiation for MSCs. The device enables real-time observation under light microscopy and exhibits a better differentiation efficiency for MSCs compared with conventional static culture. MSCs grown in the microfluidic device showed a higher level of hepatocyte marker gene expression under hepatic induction. Functional analysis of hepatic differentiation demonstrated significantly higher urea production in the microfluidic device after 21 days of hepatic differentiation. The microfluidic device allows the generation of a large number of MSCs and induces hepatic differentiation of MSCs efficiently. The device can be adapted for scale-up production of hepatic cells from MSCs for cellular therapy.

  9. File list: NoD.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 No description Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  10. File list: InP.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 Input control Liver Hepatic Stellate C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  11. File list: InP.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 Input control Liver Hepatic Stellate C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  12. File list: InP.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 Input control Liver Hepatic Stellate C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  13. File list: InP.Liv.20.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Liv.20.AllAg.Hepatic_Stellate_Cells hg19 Input control Liver Hepatic Stellate C...ells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Liv.20.AllAg.Hepatic_Stellate_Cells.bed ...

  14. File list: NoD.Liv.50.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.50.AllAg.Hepatic_Stellate_Cells hg19 No description Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.50.AllAg.Hepatic_Stellate_Cells.bed ...

  15. File list: NoD.Liv.05.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.05.AllAg.Hepatic_Stellate_Cells hg19 No description Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.05.AllAg.Hepatic_Stellate_Cells.bed ...

  16. File list: NoD.Liv.10.AllAg.Hepatic_Stellate_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Liv.10.AllAg.Hepatic_Stellate_Cells hg19 No description Liver Hepatic Stellate ...Cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Liv.10.AllAg.Hepatic_Stellate_Cells.bed ...

  17. Nephroblastoma overexpressed gene (NOV) expression in rat hepatic stellate cells.

    Science.gov (United States)

    Lee, Sung Hee; Seo, Geom Seog; Park, Young Nyun; Sohn, Dong Hwan

    2004-10-01

    Using the expression-profiling method, we identified nephroblastoma overexpressed gene (NOV) mRNA as one member of the mRNA population that was upregulated in cultured activated hepatic stellate cell (HSC). Northern analysis showed that NOV mRNA was increasingly expressed during progressive activation of cultured rat HSCs, and a significant increase was observed in both the carbon tetrachloride-induced and bile duct ligation/scission rat models of liver fibrosis. RT-PCR showed human NOV mRNA was increased in most fibrotic livers compared with normal livers. The expression of NOV protein in fibrotic rat and human livers was predominantly located in areas of ductular proliferation and HSC of the fibrous septa. HSCs stimulated with transforming growth factor beta1 showed increased expression of NOV protein without changing its mRNA levels. Dexamethasone stimulated the expression of NOV mRNA and protein. Furthermore, we demonstrated that bile acids have a modulating effect on the induction of NOV mRNA expression. In conclusion, this study suggests that NOV is expressed during liver fibrogenesis and HSCs may be an important source of hepatic NOV.

  18. Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells

    Science.gov (United States)

    Galler, Kerstin; Requardt, Robert Pascal; Glaser, Uwe; Markwart, Robby; Bocklitz, Thomas; Bauer, Michael; Popp, Jürgen; Neugebauer, Ute

    2016-04-01

    Hepatic stellate cells (HSCs) are retinoid storing cells in the liver: The retinoid content of those cells changes depending on nutrition and stress level. There are also differences with regard to a HSC’s anatomical position in the liver. Up to now, retinoid levels were only accessible from bulk measurements of tissue homogenates or cell extracts. Unfortunately, they do not account for the intercellular variability. Herein, Raman spectroscopy relying on excitation by the minimally destructive wavelength 785 nm is introduced for the assessment of the retinoid state of single HSCs in freshly isolated, unprocessed murine liver lobes. A quantitative estimation of the cellular retinoid content is derived. Implications of the retinoid content on hepatic health state are reported. The Raman-based results are integrated with histological assessments of the tissue samples. This spectroscopic approach enables single cell analysis regarding an important cellular feature in unharmed tissue.

  19. Hepatitis B virus surface antigen impairs myeloid dendritic cell function: a possible immune escape mechanism of hepatitis B virus.

    NARCIS (Netherlands)

    Brouw, M.L. Op den; Binda, R.S.; Roosmalen, M.H. van; Protzer, U.; Janssen, H.L.; Molen, R.G. van der; Woltman, A.M.

    2009-01-01

    Chronic hepatitis B virus (HBV) infection is the result of an inadequate immune response towards the virus. Myeloid dendritic cells (mDC) of patients with chronic HBV are impaired in their maturation and function, resulting in more tolerogenic rather than immunogenic responses, which may contribute

  20. Ethnic Differences in Insulin Sensitivity, β-Cell Function, and Hepatic Extraction Between Japanese and Caucasians

    DEFF Research Database (Denmark)

    Møller, Jonas B; Dalla Man, Chiara; Overgaard, Rune V

    2014-01-01

    : This was a cross-sectional study with oral glucose tolerance tests to assess β-cell function, hepatic insulin extraction, and insulin sensitivity. PARTICIPANTS: PARTICIPANTS included 120 Japanese and 150 Caucasian subjects. MAIN OUTCOMES: Measures of β-cell function, hepatic extraction, and insulin sensitivity...... were assessed using C-peptide, glucose, and insulin minimal models. RESULTS: Basal β-cell function (Φ(b)) was lower in Japanese compared with Caucasians (P ... compared with Caucasians (P insulin action showed higher sensitivity in the Japanese IGT subjects. Hepatic extraction was similar in NGT and IGT groups but higher in Japanese type 2 diabetic subjects (P insulin sensitivity, β-cell function...

  1. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source.

    Science.gov (United States)

    Chau, You-Ying; Bandiera, Roberto; Serrels, Alan; Martínez-Estrada, Ofelia M; Qing, Wei; Lee, Martin; Slight, Joan; Thornburn, Anna; Berry, Rachel; McHaffie, Sophie; Stimson, Roland H; Walker, Brian R; Chapuli, Ramon Muñoz; Schedl, Andreas; Hastie, Nick

    2014-04-01

    Fuelled by the obesity epidemic, there is considerable interest in the developmental origins of white adipose tissue (WAT) and the stem and progenitor cells from which it arises. Whereas increased visceral fat mass is associated with metabolic dysfunction, increased subcutaneous WAT is protective. There are six visceral fat depots: perirenal, gonadal, epicardial, retroperitoneal, omental and mesenteric, and it is a subject of much debate whether these have a common developmental origin and whether this differs from that for subcutaneous WAT. Here we show that all six visceral WAT depots receive a significant contribution from cells expressing Wt1 late in gestation. Conversely, no subcutaneous WAT or brown adipose tissue arises from Wt1-expressing cells. Postnatally, a subset of visceral WAT continues to arise from Wt1-expressing cells, consistent with the finding that Wt1 marks a proportion of cell populations enriched in WAT progenitors. We show that all visceral fat depots have a mesothelial layer like the visceral organs with which they are associated, and provide several lines of evidence that Wt1-expressing mesothelium can produce adipocytes. These results reveal a major ontogenetic difference between visceral and subcutaneous WAT, and pinpoint the lateral plate mesoderm as a major source of visceral WAT. They also support the notion that visceral WAT progenitors are heterogeneous, and suggest that mesothelium is a source of adipocytes.

  2. Intra-Hepatic Depletion of Mucosal-Associated Invariant T Cells in Hepatitis C Virus-Induced Liver Inflammation.

    Science.gov (United States)

    Bolte, Fabian J; O'Keefe, Ashley C; Webb, Lauren M; Serti, Elisavet; Rivera, Elenita; Liang, T Jake; Ghany, Marc; Rehermann, Barbara

    2017-11-01

    Chronic hepatitis affects phenotypes of innate and adaptive immune cells. Mucosal-associated invariant T (MAIT) cells are enriched in the liver as compared with the blood, respond to intra-hepatic cytokines, and (via the semi-invariant T-cell receptor) to bacteria translocated from the gut. Little is known about the role of MAIT cells in livers of patients with chronic hepatitis C virus (HCV) infection and their fate after antiviral therapy. We collected blood samples from 42 patients with chronic HCV infection who achieved a sustained virologic response after 12 weeks of treatment with sofosbuvir and velpatasvir. Mononuclear cells were isolated from blood before treatment, at weeks 4 and 12 during treatment, and 24 weeks after the end of treatment. Liver biopsies were collected from 37 of the patients prior to and at week 4 of treatment. Mononuclear cells from 56 blood donors and 10 livers that were not suitable for transplantation were used as controls. Liver samples were assessed histologically for inflammation and fibrosis. Mononuclear cells from liver and blood were studied by flow cytometry and analyzed for responses to cytokine and bacterial stimulation. The frequency of MAIT cells among T cells was significantly lower in blood and liver samples of patients with HCV infection than of controls (median, 1.31% vs 2.32% for blood samples, P = .0048; and median, 4.34% vs 13.40% for liver samples, P = .001). There was an inverse correlation between the frequency of MAIT cells in the liver and histologically determined levels of liver inflammation (r = -.5437, P = .0006) and fibrosis (r = -.5829, P = .0002). MAIT cells from the liver had higher levels of activation and cytotoxicity than MAIT cells from blood (P liver inflammation and MAIT cell activation and cytotoxicity, and increased the MAIT cell frequency among intra-hepatic but not blood T cells. The MAIT cell response to T-cell receptor-mediated stimulation did not change during the 12 weeks of

  3. Evaluation of the KEMRI Hep-cell II test kit for detection of hepatitis B ...

    African Journals Online (AJOL)

    Hepatitis B surface antigen (HBsAg) is one of the most important serological markers used to diagnose acute and chronic hepatitis B infection. The objective of the current evaluation was to assess the operational characteristics of the Kenya Medical Research Institute (KEMRI) Hep-cell II against an ELISA Exsym HBsAg in ...

  4. Hepatitis b virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function

    NARCIS (Netherlands)

    A.M. Woltman (Andrea); M.L.O. den Brouw; P.J. Biesta (Paula); C.C. Shi (Cui); H.L.A. Janssen (Harry)

    2011-01-01

    textabstractChronic hepatitis B virus (HBV) infection is caused by inadequate anti-viral immunity. Activation of plasmacytoid dendritic cells (pDC) leading to IFNα production is important for effective anti-viral immunity. Hepatitis B virus (HBV) infection lacks IFNα induction in animal models and

  5. Metastatic Renal Cell Carcinoma in a Hepatic Hemangioma: A Case Report and Review of the Literature.

    Science.gov (United States)

    Cohen, Joshua; Meunier, Rashna; Jamshed, Sarah; Karam, Adib R; Yates, Jennifer; Wang, Xiaofei; LaFemina, Jennifer

    2016-09-01

    We report the case of 55-year-old female with biopsy-proven clear cell renal cell carcinoma with a suspicious lesion found in the liver who presented for right radical nephrectomy and partial hepatectomy. Histologic evaluation of the hepatic specimen demonstrated metastatic renal cell carcinoma within a hepatic hemangioma. Herein we provide a review of the literature for this uncommon scenario. © The Author(s) 2016.

  6. Ezh2 restricts the smooth muscle lineage during mouse lung mesothelial development.

    Science.gov (United States)

    Snitow, Melinda; Lu, MinMin; Cheng, Lan; Zhou, Su; Morrisey, Edward E

    2016-10-15

    During development, the lung mesoderm generates a variety of cell lineages, including airway and vascular smooth muscle. Epigenetic changes in adult lung mesodermal lineages are thought to contribute towards diseases such as idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease, although the factors that regulate early lung mesoderm development are unknown. We show in mouse that the PRC2 component Ezh2 is required to restrict smooth muscle differentiation in the developing lung mesothelium. Mesodermal loss of Ezh2 leads to the formation of ectopic smooth muscle in the submesothelial region of the developing lung mesoderm. Loss of Ezh2 specifically in the developing mesothelium reveals a mesothelial cell-autonomous role for Ezh2 in repression of the smooth muscle differentiation program. Loss of Ezh2 derepresses expression of myocardin and Tbx18, which are important regulators of smooth muscle differentiation from the mesothelium and related cell lineages. Together, these findings uncover an Ezh2-dependent mechanism to restrict the smooth muscle gene expression program in the developing mesothelium and allow appropriate cell fate decisions to occur in this multipotent mesoderm lineage. © 2016. Published by The Company of Biologists Ltd.

  7. Elevated Levels of Endocannabinoids in Chronic Hepatitis C May Modulate Cellular Immune Response and Hepatic Stellate Cell Activation

    Directory of Open Access Journals (Sweden)

    Eleonora Patsenker

    2015-03-01

    Full Text Available The endocannabinoid (EC system is implicated in many chronic liver diseases, including hepatitis C viral (HCV infection. Cannabis consumption is associated with fibrosis progression in patients with chronic hepatitis C (CHC, however, the role of ECs in the development of CHC has never been explored. To study this question, anandamide (AEA and 2-arachidonoyl glycerol (2-AG were quantified in samples of HCV patients and healthy controls by gas and liquid chromatography mass spectrometry. Fatty acid amide hydrolase (FAAH and monoaclyglycerol lipase (MAGL activity was assessed by [3H]AEA and [3H]2-AG hydrolysis, respectively. Gene expression and cytokine release were assayed by TaqMan PCR and ELISpot, respectively. AEA and 2-AG levels were increased in plasma of HCV patients, but not in liver tissues. Hepatic FAAH and MAGL activity was not changed. In peripheral blood mononuclear cells (PBMC, ECs inhibited IFN-γ, TNF-α, and IL-2 secretion. Inhibition of IL-2 by endogenous AEA was stronger in PBMC from HCV patients. In hepatocytes, 2-AG induced the expression of IL-6, -17A, -32 and COX-2, and enhanced activation of hepatic stellate cells (HSC co-cultivated with PBMC from subjects with CHC. In conclusion, ECs are increased in plasma of patients with CHC and might reveal immunosuppressive and profibrogenic effects.

  8. Hepatic stellate cells may be potential effectors of platelet activating factor induced portal hypertension

    Science.gov (United States)

    Chen, Yan; Wang, Chun-Ping; Lu, Yin-Ying; Zhou, Lin; Su, Shu-Hui; Jia, Hong-Jun; Feng, Yong-Yi; Yang, Yong-Ping

    2008-01-01

    AIM: To determine platelet activating factor (PAF) receptor expression in cirrhotic hepatic stellate cells. METHODS: Hepatic stellate cells, isolated from the livers of control and CCl4-induced cirrhotic rats, were placed in serum-free medium after overnight culture. We determined the PAF receptor in hepatic stellate cells by saturation binding technique and semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), and the effects of PAF and its antagonist BN52021 on prostaglandin E2 (PGE2) release by stellate cells. RESULTS: Scatchard analysis indicated the presence of PAF receptor with dissociation constant (Kd) of 4.66 nmol/L and maximum binding capacity (Bmax) of 24.65 fmol/μg in cirrhotic stellate cells. Compared with the control, the maximum PAF binding capacity increased significantly (Bmax: 24.65 ± 1.96 fmol/μg. DNA, R = 0.982 vs 5.74 ± 1.55 fmol/μg. DNA, R = 0.93; P 0.05). Consistent with the receptor binding data, the mRNA expression of PAF receptor was increased significantly in cirrhotic stellate cells. PAF in a concentration-dependent manner induced PGE2 synthesis in cirrhotic hepatic stellate cells, but the effects were blocked significantly by BN52021. CONCLUSION: Cirrhosis sensitizes hepatic stellate cells to PAF by elevating its receptor level and hepatic stellate cells maybe potential effectors of PAF induced portal hypertension. PMID:18186558

  9. Osteopontin-enhanced hepatic metastasis of colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Jianjin Huang

    Full Text Available Liver metastasis is a major cause of mortality from colorectal cancer (CRC. However, mechanisms underlying this process are largely unknown. Osteopontin (OPN is a secreted phosphorylated glycoprotein that is involved in tumor migration and metastasis. The role of OPN in cancer is currently unclear. In this study, OPN mRNA was examined in tissues from CRC, adjacent normal mucosa, and liver metastatic lesions using quantitative real-time PCR analysis. The protein expression of OPN and its receptors (integrin αv and CD44 v6 was detected by using an immunohistochemical (IHC method. The role of OPN in liver metastasis was studied in established colon cancer Colo-205 and SW-480 cell lines transfected with sense- or antisense-OPN eukaryotic expression plasmids by flow cytometry and cell adhesion assay. Fluorescence redistribution after photobleaching (FRAP was used to study gap functional intercellular communication (GJIC among OPN-transfected cells. It was found that OPN was highly expressed in metastatic hepatic lesions from CRC compared to primary CRC tissue and adjacent normal mucosa. The expression of OPN mRNA in tumor tissues was significantly related with the CRC stages. OPN expression was also detected in normal hepatocytes surrounding CRC metastatic lesions. Two known receptors of OPN, integrin αv and CD44v6 proteins, were strongly expressed in hepatocytes from normal liver. CRC cells with forced OPN expression exhibited increased heterotypic adhesion with endothelial cells and weakened intercellular communication. OPN plays a significant role in CRC metastasis to liver through interaction with its receptors in hepatocytes, decreased homotypic adhesion, and enhanced heterotypic adhesion.

  10. Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Flygare, Johan; Lodish, Harvey F

    2013-05-01

    We have developed a coculture system that establishes DLK(+) fetal hepatic progenitors as the authentic supportive cells for expansion of hematopoietic stem (HSCs) and progenitor cells. In 1-week cultures supplemented with serum and supportive cytokines, both cocultured DLK(+) fetal hepatic progenitors and their conditioned medium supported rapid expansion of hematopoietic progenitors and a small increase in HSC numbers. In 2- and 3-week cultures DLK(+) cells, but not their conditioned medium, continuously and significantly (>20-fold) expanded both hematopoietic stem and progenitor cells. Physical contact between HSCs and DLK(+) cells was crucial to maintaining this long-term expansion. Similar HSC expansion (approximately sevenfold) was achieved in cocultures using a serum-free, low cytokine- containing medium. In contrast, DLK(-) cells are incapable of expanding hematopoietic cells, demonstrating that hepatic progenitors are the principle supportive cells for HSC expansion in the fetal liver. Copyright © 2013 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  11. Hepatic NK cell-mediated hypersensitivity to ConA-induced liver injury in mouse liver expressing hepatitis C virus polyprotein.

    Science.gov (United States)

    Fu, Qiuxia; Yan, Shaoduo; Wang, Licui; Duan, Xiangguo; Wang, Lei; Wang, Yue; Wu, Tao; Wang, Xiaohui; An, Jie; Zhang, Yulong; Zhou, Qianqian; Zhan, Linsheng

    2017-08-08

    The role of hepatic NK cells in the pathogenesis of HCV-associated hepatic failure is incompletely understood. In this study, we investigated the effect of HCV on ConA-induced immunological hepatic injury and the influence of HCV on hepatic NK cell activation in the liver after ConA administration. An immunocompetent HCV mouse model that encodes the entire viral polyprotein in a liver-specific manner based on hydrodynamic injection and φC31o integrase was used to study the role of hepatic NK cells. Interestingly, the frequency of hepatic NK cells was reduced in HCV mice, whereas the levels of other intrahepatic lymphocytes remained unaltered. Next, we investigated whether the reduction in NK cells within HCV mouse livers might elicit an effect on immune-mediated liver injury. HCV mice were subjected to acute liver injury models upon ConA administration. We observed that HCV mice developed more severe ConA-induced immune-mediated hepatitis, which was dependent on the accumulated intrahepatic NK cells. Our results indicated that after the administration of ConA, NK cells not only mediated liver injury through the production of immunoregulatory cytokines (IFN-γ, TNF-α and perforin) with direct antiviral activity, but they also killed target cells directly through the TRAIL/DR5 and NKG2D/NKG2D ligand signaling pathway in HCV mice. Our findings suggest a critical role for NK cells in oversensitive liver injury during chronic HCV infection.

  12. Side Population Cells From an Immortalized Human Liver Epithelial Cell Line Exhibit Hepatic Stem-Like Cell Properties.

    Science.gov (United States)

    Tokiwa, Takayoshi; Yamazaki, Taisuke; Enosawa, Shin

    2012-01-01

    The existence of hepatic stem cells in human livers is controversial. We investigated whether the side population (SP) cells derived from an immortalized human liver epithelial cell line THLE-5b possess the properties of hepatic stem-like cells. SP cells derived from THLE-5b were isolated using flow cytometry and were assayed for the expression of phenotypic markers by reverse transcription polymerase chain reaction and immunostaining. THLE-5b SP cells retained the capacity to generate both SP and non-SP cells, showed a capacity for self-renewal, and were more efficient in colony formation than non-SP cells. Neither the SP nor the non-SP cells formed tumors when transplanted into athymic nude mice or severe combined immunodeficient mice. The expression level of stem cell-associated markers such as an ATP-binding cassette membrane transporter, epithelial cell adhesion molecule, c-kit, Thy-1, and octomer binding transcription factor 4 was higher in SP cells than in non-SP cells. When cultivated as rotation-mediated aggregates, the expression of liver-specific genes including tryptophan oxygenase and CYP3A4 was up-regulated in SP cells, suggesting that THLE-5b SP cells have the ability to differentiate into a hepatocyte phenotype. One of the clonal cell lines derived from the SP cells expressed stem cell-associated markers. These results indicate that SP cells derived from THLE-5b possess hepatic stem-like cell properties and suggest that THLE-5b can be used as a model of normal human liver progenitor or stem cell line.

  13. Engraftment Potential of Spheroid-Forming Hepatic Endoderm Derived from Human Embryonic Stem Cells

    Science.gov (United States)

    Kim, Sung-Eun; An, Su Yeon; Woo, Dong-Hun; Han, Jiyou; Kim, Jong Hyun; Jang, Yu Jin; Son, Jeong Sang; Yang, Hyunwon; Cheon, Yong Pil

    2013-01-01

    Transplantation and drug discovery programs for liver diseases are hampered by the shortage of donor tissue. While recent studies have shown that hepatic cells can be derived from human embryonic stem cells (hESCs), few cases have shown selective enrichment of hESC-derived hepatocytes and their integration into host liver tissues. Here we demonstrate that the dissociation and reaggregation procedure after an endodermal differentiation of hESC produces spheroids mainly consisted of cells showing hepatic phenotypes in vitro and in vivo. A combined treatment with Wnt3a and bone morphogenic protein 4 efficiently differentiated hESCs into definitive endoderm in an adherent culture. Dissociation followed by reaggregation of these cells in a nonadherent condition lead to the isolation of spheroid-forming cells that preferentially expressed early hepatic markers from the adherent cell population. Further differentiation of these spheroid cells in the presence of the hepatocyte growth factor, oncostatin M, and dexamethasone produced a highly enriched population of cells exhibiting characteristics of early hepatocytes, including glycogen storage, indocyanine green uptake, and synthesis of urea and albumin. Furthermore, we show that grafted spheroid cells express hepatic features and attenuate the serum aspartate aminotransferase level in a model of acute liver injury. These data suggest that hepatic progenitor cells can be enriched by the spheroid formation of differentiating hESCs and that these cells have engraftment potential to replace damaged liver tissues. PMID:23373441

  14. Relationship between oxidative stress and hepatic glutathione levels in ethanol-mediated apoptosis of polarized hepatic cells.

    Science.gov (United States)

    McVicker, Benita L; Tuma, Pamela L; Kharbanda, Kusum K; Lee, Serene M L; Tuma, Dean J

    2009-06-07

    To investigate the role of reactive oxygen species (ROS) in ethanol-mediated cell death of polarized hepatic (WIF-B) cells. In this work, WIF-B cultures were treated with pyrazole (inducer of cytochrome P4502E1, CYP2E1) and/or L-buthionine sulfoximine (BSO), a known inhibitor of hepatic glutathione (GSH), followed by evaluation of ROS production, antioxidant levels, and measures of cell injury (apoptosis and necrosis). The results revealed that ethanol treatment alone caused a significant two-fold increase in the activation of caspase-3 as well as a similar doubling in ROS. When the activity of the CYP2E1 was increased by pyrazole pretreatment, an additional two-fold elevation in ROS was detected. However, the CYP2E1-related ROS elevation was not accompanied with a correlative increase in apoptotic cell injury, but rather was found to be associated with an increase in necrotic cell death. Interestingly, when the thiol status of the cells was manipulated using BSO, the ethanol-induced activation of caspase-3 was abrogated. Additionally, ethanol-treated cells displayed enhanced susceptibility to Fas-mediated apoptosis that was blocked by GSH depletion as a result of diminished caspase-8 activity. Apoptotic cell death induced as a consequence of ethanol metabolism is not completely dependent upon ROS status but is dependent on sustained GSH levels.

  15. Azadirachta indica modulates electrical properties and type of cell death in NDEA-induced hepatic tumors.

    Science.gov (United States)

    Bharati, Sanjay; Rishi, Praveen; Koul, Ashwani

    2014-09-01

    Tissue electrical conductivity is an important indicator of tissue structure and composition. Present study demonstrates modulatory effect of Azadirachta indica on the electrical conductivity and cell death in hepatic tumors. Hepatic tumors were generated by intraperitoneal injection of N-nitrosodiethylamine (cumulative dose: 200 μg/g body mass) to male BALB/c mice. Aqueous A. indica leaf extract (AAILE) was administered orally at a dosage of 100 μg/g body mass till the termination of experiment. At the end of experiment, electrical conductivity of hepatic tumors was measured with four-pin electrode method. Tissues and tumors were then processed for TUNEL assay and DNA fragmentation analysis. The levels of TNF-α were also determined in the normal hepatic and tumor tissue. Hepatic tumors had higher electrical conductivity compared to normal liver tissue. An increased necrotic cell percentage along with elevated TNF-α was also observed. Although, AAILE co-treatment resulted in tumors with higher electrical conductivity compared to normal animals. However, the electrical conductivity was decreased significantly compared to untreated tumors. A significant increase in apoptotic cell percentage and concomitant decrease in necrotic cell percentage along with the increased TNF-α level was observed in these tumors. The results suggest that A. indica modulated mode of cell death in tumors and type of cell death had significant contribution in determining hepatic tumor electrical conductivity.

  16. Inhibition of hepatic cells pyroptosis attenuates CLP-induced acute liver injury.

    Science.gov (United States)

    Chen, Yuan-Li; Xu, Guo; Liang, Xiao; Wei, Juan; Luo, Jing; Chen, Guan-Nan; Yan, Xiao-Di; Wen, Xue-Ping; Zhong, Ming; Lv, Xin

    2016-01-01

    Pyroptosis is a programmed cell death associated with caspase-1 and accompanied by the secretion of a large number of pro-inflammatory cytokines. In the acute stage of sepsis, the release of several pro-inflammatory cytokines aggravates hepatic cell death, and acute liver injury is aggravated with the progress of the disease, resulting in acute liver failure with a very high mortality rate. The present study investigated the effect of inhibiting hepatic cell pyroptosis on the septic acute liver injury. Septic acute liver injury mice model was established by cecal ligation and puncture (CLP model). The liver tissues were assessed for inflammatory infiltration by HE, serum concentrations of ALT, AST, IL-1β, and IL-18 were examined by ELISA, hepatic cell pyroptosis was determined by flow cytometry, and expressions of caspase-1 and NLRP3 were assessed by Western blot. CLP-induced acute liver injury was distinct at 24 h post-operation, with the highest hepatic cell pyroptosis rate. The pyroptosis rate and liver injury indexes were positively correlated. Western blot showed that the expressions of pyroptosis-related proteins, caspase-1, and NLRP3, were increased. Normal mouse hepatic cells were cultured in vitro and LPS+ATP introduced to establish the cell model of septic acute liver injury. The expressions of caspase-1, NLRP3, IL-1β, and IL-18 in LPS+ATP group were significantly higher than the control group by Western blot and ELISA. The inhibitors of NLRP3 (Glyburide) and caspase-1 (AC-YVAD-CMK) alone or in combination were used to pre-treat the hepatic cells, which revealed that the pyroptosis rate was decreased and the cell damage alleviated. The in vivo assay in rats showed that post inhibitor treatment, the 10-days survival was significantly improved and the liver damage reduced. Therefore, inhibiting the hepatic cell pyroptosis could alleviate CLP-induced acute liver injury, providing a novel treatment target for septic acute liver injury.

  17. Expression of cytokine and extracellular matrix mRNAs in fetal hepatic stellate cells.

    Science.gov (United States)

    Tan, Keai Sinn; Kulkeaw, Kasem; Nakanishi, Yoichi; Sugiyama, Daisuke

    2017-09-01

    In mouse fetal liver, hepatoblasts, sinusoidal endothelial cells and macrophages (or erythroblastic islands) promote differentiation and proliferation of hematopoietic cells through cell-cell interactions and secretion of cytokines and extracellular matrix factors. Until now, we have had little knowledge of the hematopoietic cytokines or extracellular matrix mRNAs expressed in hepatic stellate cells. Using p75 neurotrophin receptor (p75NTR) to mark this cell population, we sorted 12.5, 14.5 and 16.5 dpc hepatic stellate cells and analyzed expression of cytokines and extracellular matrix mRNAs. Among cytokines, insulin-like growth factor 2 (Igf2) was highly expressed at all three stages analyzed. The extracellular matrix molecule fibronectin (Fn1) was highly expressed in 12.5 dpc cells, whereas vitronectin (Vtn) was highly expressed in 14.5 and 16.5 dpc hepatic stellate cells. Among liver cells, Igf2 was predominantly expressed in hepatoblast-like cells at all three stages examined, suggesting that hepatoblast-like cells are an essential part of the niche that maintains homeostasis of hematopoietic cells in embryonic mouse liver. Defining these expression patterns could facilitate our understanding of cross talk between cytokine and extracellular matrix molecules in hepatic stellate cells and benefit research in developmental hematopoiesis as well as the study of liver biology. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  18. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Lodish, Harvey F

    2010-04-27

    Previously we showed that the ~2% of fetal liver cells reactive with an anti-CD3epsilon monoclonal antibody support ex vivo expansion of both fetal liver and bone marrow hematopoietic stem cells (HSCs); these cells express two proteins important for HSC ex vivo expansion, IGF2, and angiopoietin-like 3. Here we show that these cells do not express any CD3 protein and are not T cells; rather, we purified these HSC-supportive stromal cells based on the surface phenotype of SCF(+)DLK(+). Competitive repopulating experiments show that SCF(+)DLK(+) cells support the maintenance of HSCs in ex vivo culture. These are the principal fetal liver cells that express not only angiopoietin-like 3 and IGF2, but also SCF and thrombopoietin, two other growth factors important for HSC expansion. They are also the principal fetal liver cells that express CXCL12, a factor required for HSC homing, and also alpha-fetoprotein (AFP), indicating that they are fetal hepatic stem or progenitor cells. Immunocytochemistry shows that >93% of the SCF(+) cells express DLK and Angptl3, and a portion of SCF(+) cells also expresses CXCL12. Thus SCF(+)DLK(+) cells are a highly homogenous population that express a complete set of factors for HSC expansion and are likely the primary stromal cells that support HSC expansion in the fetal liver.

  19. POST-TRANSFUSION VIRAL HEPATITIS IN SICKLE CELL ANAEMIA:

    African Journals Online (AJOL)

    Twenty ( 13.2%) had not received blood transfusion and no case of acute viral hepatitis (AVH) was recorded in them. One hundred and thirty one (86.8%) had received an average of 4.2 pints of blood as at the time of study. Sixteen (12.3%) of these developed post-transfusion hepatitis (PTH) out of which 8(50%) were ...

  20. Hepatic natural killer cells exclusively kill splenic/blood natural killer-resistant tumor cells by the perforin/granzyme pathway

    NARCIS (Netherlands)

    Vermijlen, David; Luo, Dianzhong; Froelich, Christopher J.; Medema, Jan Paul; Kummer, Jean Alain; Willems, Erik; Braet, Filip; Wisse, Eddie

    2002-01-01

    Hepatic natural killer (NK) cells are located in the liver sinusoids adherent to the endothelium. Human and rat hepatic NK cells induce cytolysis in tumor cells that are resistant to splenic or blood NK cells. To investigate the mechanism of cell death, we examined the capacity of isolated, pure

  1. Therapeutic Potential of Cell Penetrating Peptides (CPPs) and Cationic Polymers for Chronic Hepatitis B

    DEFF Research Database (Denmark)

    Ndeboko, Bénédicte; Lemamy, Guy Joseph; Nielsen, Peter E

    2015-01-01

    Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. Because current anti-HBV treatments are only virostatic, there is an urgent need for development of alternative antiviral approaches. In this context, cell-penetrating peptides (CPPs) and cationic polymers...... hepatitis B virus (DHBV), a reference model for human HBV infection. The in vivo administration of PNA-CPP conjugates to neonatal ducklings showed that they reached the liver and inhibited DHBV replication. Interestingly, our results indicated also that a modified CPP (CatLip) alone, in the absence of its...... against chronic hepatitis B....

  2. Interleukin 17-producing γδT cells promote hepatic regeneration in mice.

    Science.gov (United States)

    Rao, Raghavendra; Graffeo, Christopher S; Gulati, Rishabh; Jamal, Mohsin; Narayan, Suchithra; Zambirinis, Constantinos P; Barilla, Rocky; Deutsch, Michael; Greco, Stephanie H; Ochi, Atsuo; Tomkötter, Lena; Blobstein, Reuven; Avanzi, Antonina; Tippens, Daniel M; Gelbstein, Yisroel; Van Heerden, Eliza; Miller, George

    2014-08-01

    Subsets of leukocytes synergize with regenerative growth factors to promote hepatic regeneration. γδT cells are early responders to inflammation-induced injury in a number of contexts. We investigated the role of γδT cells in hepatic regeneration using mice with disruptions in Tcrd (encodes the T-cell receptor δ chain) and Clec7a (encodes C-type lectin domain family 7 member a, also known as DECTIN1). We performed partial hepatectomies on wild-type C57BL/6, CD45.1, Tcrd(-/-), or Clec7a(-/-) mice. Cells were isolated from livers of patients and mice via mechanical and enzymatic digestion. γδT cells were purified by fluorescence-activated cell sorting. In mice, partial hepatectomy up-regulated expression of CCL20 and ligands of Dectin-1, which was associated with recruitment and activation of γδT cells and their increased production of interleukin (IL)-17 family cytokines. Recruited γδT cells induced production of IL-6 by antigen-presenting cells and suppressed expression of interferon gamma by natural killer T cells, promoting hepatocyte proliferation. Absence of IL-17-producing γδT cells or deletion of Dectin-1 prevented development of regenerative phenotypes in subsets of innate immune cells. This slowed liver regeneration and was associated with reduced expression of regenerative growth factors and cell cycle regulators. Conversely, exogenous administration of IL-17 family cytokines or Dectin-1 ligands promoted regeneration. More broadly, we found that γδT cells are required for inflammatory responses mediated by IL-17 and Dectin-1. γδT cells regulate hepatic regeneration by producing IL-22 and IL-17, which have direct mitogenic effects on hepatocytes and promote a regenerative phenotype in hepatic leukocytes, respectively. Dectin-1 ligation is required for γδT cells to promote hepatic regeneration. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  3. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver.

    Science.gov (United States)

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko; Teramoto, Kenichi; Nishida, Tomohiro; Shimizu-Saito, Keiko; Ota, Masato; Eto, Kazuhiro; Teraoka, Hirobumi

    2009-04-03

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or alpha-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  4. Alginate hydrogel protects encapsulated hepatic HuH-7 cells against hepatitis C virus and other viral infections.

    Directory of Open Access Journals (Sweden)

    Nhu-Mai Tran

    Full Text Available Cell microencapsulation in alginate hydrogel has shown interesting applications in regenerative medicine and the biomedical field through implantation of encapsulated tissue or for bioartificial organ development. Although alginate solution is known to have low antiviral activity, the same property regarding alginate gel has not yet been studied. The aim of this work is to investigate the potential protective effect of alginate encapsulation against hepatitis C virus (HCV infection for a hepatic cell line (HuH-7 normally permissive to the virus. Our results showed that alginate hydrogel protects HuH-7 cells against HCV when the supernatant was loaded with HCV. In addition, alginate hydrogel blocked HCV particle release out of the beads when the HuH-7 cells were previously infected and encapsulated. There was evidence of interaction between the molecules of alginate hydrogel and HCV, which was dose- and incubation time-dependent. The protective efficiency of alginate hydrogel towards HCV infection was confirmed against a variety of viruses, whether or not they were enveloped. This promising interaction between an alginate matrix and viruses, whose chemical mechanisms are discussed, is of great interest for further medical therapeutic applications based on tissue engineering.

  5. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    Directory of Open Access Journals (Sweden)

    Tobias Eggert

    Full Text Available Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL, while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  6. Back to the drawing board: Understanding the complexity of hepatic innate lymphoid cells.

    Science.gov (United States)

    Marotel, Marie; Hasan, Uzma; Viel, Sébastien; Marçais, Antoine; Walzer, Thierry

    2016-09-01

    Recent studies of immune populations in nonlymphoid organs have highlighted the great diversity of the innate lymphoid system. It has also become apparent that mouse and human innate lymphoid cells (ILCs) have distinct phenotypes and properties. In this issue of the European Journal of Immunology, Harmon et al. [Eur. J. Immunol. 2016. 46: 2111-2120] characterized human hepatic NK-cell subsets. The authors report that hepatic CD56(bright) NK cells resemble mouse liver ILC1s in that they express CXCR6 and have an immature phenotype. However, unlike mouse ILC1s, they express high levels of Eomes and low levels of T-bet, and upon stimulation with tumor cells, secrete low amounts of cytokines. These unexpected findings further support the differences between human and mouse immune populations and prompt the study of the role of hepatic ILC subsets in immune responses. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hepatitis C virus infection of a Vero cell clone displaying efficient virus-cell binding.

    Science.gov (United States)

    Valli, M B; Carloni, G; Manzin, A; Nasorri, F; Ponzetto, A; Clementi, M

    1997-01-01

    The susceptibility of Vero cells and derivative cell clones to hepatitis C virus (HCV) infection was assayed by qualitative and quantitative polymerase chain reaction (PCR)-based methods. Cell extracts from Vero cells inoculated with HCV were tested for the presence of both positive and negative strands of HCV RNA; in parallel, cell-free HCV genomes were assayed in culture supernatant fluids. Quantitation of genomic HCV RNA molecules in infected cells by competitive reverse transcription PCR (cRT-PCR) indicated that HCV replication was more efficient in a derivative clone (named clone 10) than in parental Vero cells or other clones under study. Analysis of HCV-binding to cell receptors, performed by cRT-PCR quantitation of viral particles adsorbed to the cell surface, demonstrated a 10-fold higher virus-binding level of clone 10 than that of parental Vero cells. The results shown here indicate that the Vero clone 10 may constitute an efficient model system for analysing early events in HCV infection as well as a source of virus for diagnostic and biotechnological applications.

  8. Antifibrotic activity of coumarins from Cnidium monnieri fruits in HSC-T6 hepatic stellate cells.

    Science.gov (United States)

    Shin, Eunjin; Lee, Chul; Sung, Sang Hyun; Kim, Young Choong; Hwang, Bang Yeon; Lee, Mi Kyeong

    2011-04-01

    The CHCl(3) fraction of Cnidium monnieri fruits significantly inhibited the proliferation of hepatic stellate cells in an in-vitro assay system employing HSC-T6 hepatic stellate cell lines. Activity-guided fractionation of the CHCl(3) fraction of C. monnieri led to the isolation of ten coumarins: osthol (1), meranzin (2), auraptenol (3), meranzin hydrate (4), 7-hydroxy-8-methoxy coumarin (5), imperatorin (6), xanthotoxol (7), xanthotoxin (8), bergapten (9) and isopimpinellin (10). Of these, compounds 1 and 6 significantly inhibited proliferation of HSCs in a time- and concentration-dependent manner. In addition, compounds 1 and 6 significantly reduced collagen content in HSC-T6 cells.

  9. GFP Labeling and Hepatic Differentiation Potential of Human Placenta-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Yu, Jiong; Su, Xiaoru; Zhu, Chengxing; Pan, Qiaoling; Yang, Jinfeng; Ma, Jing; Shen, Leyao; Cao, Hongcui; Li, Lanjuan

    2015-01-01

    Stem cell-based therapy in liver diseases has received increasing interest over the past decade, but direct evidence of the homing and implantation of transplanted cells is conflicting. Reliable labeling and tracking techniques are essential but lacking. The purpose of this study was to establish human placenta-derived mesenchymal stem cells (hPMSCs) expressing green fluorescent protein (GFP) and to assay their hepatic functional differentiation in vitro. The GFP gene was transduced into hPMSCs using a lentivirus to establish GFP(+) hPMSCs. GFP(+) hPMSCs were analyzed for their phenotypic profile, viability and adipogenic, osteogenic and hepatic differentiation. The derived GFP(+) hepatocyte-like cells were evaluated for their metabolic, synthetic and secretory functions, respectively. GFP(+) hPMSCs expressed high levels of HLA I, CD13, CD105, CD73, CD90, CD44 and CD29, but were negative for HLA II, CD45, CD31, CD34, CD133, CD271 and CD79. They possessed adipogenic, osteogenic and hepatic differentiation potential. Hepatocyte-like cells derived from GFP(+) hPMSCs showed typical hepatic phenotypes. GFP gene transduction has no adverse influences on the cellular or biochemical properties of hPMSCs or markers. GFP gene transduction using lentiviral vectors is a reliable labeling and tracking method. GFP(+) hPMSCs can therefore serve as a tool to investigate the mechanisms of MSC-based therapy, including hepatic disease therapy. © 2015 S. Karger AG, Basel.

  10. Docking of B-cell epitope antigen to specific hepatitis B antibody

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. The interaction of pres1 region of hepatitis B virus B-cell epitope antigen with specific hepa- titis B neutralizing monoclonal antibody was examined by docking study. We modelled the 3D complex structure of B-cell epitope antigen residues CTTPAQGNSMFPSCCCTKPTDGNCY by homology model- ling and ...

  11. Hepatitis C virus-related B cell subtypes in non Hodgkin's lymphoma

    OpenAIRE

    Pellicelli, Adriano M; Marignani, Massimo; Zoli, Valerio; Romano, Mario; Morrone, Aldo; Nosotti, Lorenzo; Barbaro, Giuseppe; Picardi, Antonio; Gentilucci, Umberto Vespasiani; Remotti, Daniele; D'Ambrosio, Cecilia; Furlan, Caterina; Mecenate, Fabrizio; Mazzoni, Ettore; Majolino, Ignazio

    2011-01-01

    AIM: To evaluate if indolent B cell-non Hodgkin’s lymphoma (B-NHL) and diffuse large B-cell lymphoma (DLBCL) in hepatitis C virus (HCV) positive patients could have different biological and clinical characteristics requiring different management strategies.

  12. Melatonin suppresses activation of hepatic stellate cells through ROR alpha-mediated inhibition of 5-lipoxygenase

    NARCIS (Netherlands)

    Shajari, Shiva; Laliena, Almudena; Heegsma, Janette; Jesus Tunon, Maria; Moshage, Han; Faber, Klaas Nico

    2015-01-01

    Liver fibrosis is scar tissue resulting from an uncontrolled wound-healing process in response to chronic liver injury. Liver damage generates an inflammatory reaction that activates hepatic stellate cells (HSC) that transdifferentiate from quiescent cells that control retinol metabolism to

  13. Growth factors and hepatic progenitor cells in liver regeneration : translating bench to bedside

    NARCIS (Netherlands)

    Kruitwagen, H.S.

    2017-01-01

    Upon severe acute or chronic liver injury, hepatic progenitor cells (HPCs) become activated. HPCs are adult stem cells of the liver and are considered a reserve population acting as second line of defense in liver regeneration. However, in many cases of severe liver disease this repair mechanism

  14. Sofosbuvir and Simeprevir Treatment of a Stem Cell Transplanted Teenager With Chronic Hepatitis C Infection.

    Science.gov (United States)

    Fischler, Björn; Priftakis, Peter; Sundin, Mikael

    2016-06-01

    There have been no previous reports on the use of interferon-free combinations in pediatric patients with chronic hepatitis C infection. An infected adolescent with severe sickle cell disease underwent stem cell transplantation and subsequent treatment with sofosbuvir and simeprevir during ongoing immunosuppression. Despite the emergence of peripheral edema as a side effect, treatment was continued with sustained antiviral response.

  15. Efficient differentiation of embryonic stem cells into hepatic cells in vitro using a feeder-free basement membrane substratum.

    Directory of Open Access Journals (Sweden)

    Nobuaki Shiraki

    Full Text Available The endoderm-inducing effect of the mesoderm-derived supportive cell line M15 on embryonic stem (ES cells is partly mediated through the extracellular matrix, of which laminin α5 is a crucial component. Mouse ES or induced pluripotent stem cells cultured on a synthesized basement membrane (sBM substratum, using an HEK293 cell line (rLN10-293 cell stably expressing laminin-511, could differentiate into definitive endoderm and subsequently into pancreatic lineages. In this study, we investigated the differentiation on sBM of mouse and human ES cells into hepatic lineages. The results indicated that the BM components played an important role in supporting the regional-specific differentiation of ES cells into hepatic endoderm. We show here that knockdown of integrin β1 (Itgb1 in ES cells reduced their differentiation into hepatic lineages and that this is mediated through Akt signaling activation. Moreover, under optimal conditions, human ES cells differentiated to express mature hepatocyte markers and secreted high levels of albumin. This novel procedure for inducing hepatic differentiation will be useful for elucidating the molecular mechanisms controlling lineage-specific fates during gut regionalization. It could also represent an attractive approach to providing a surrogate cell source, not only for regenerative medicine, but also for pharmaceutical and toxicologic studies.

  16. Attachment and Postattachment Receptors Important for Hepatitis C Virus Infection and Cell-to-Cell Transmission.

    Science.gov (United States)

    Fan, Huahao; Qiao, Luhua; Kang, Kyung-Don; Fan, Junfen; Wei, Wensheng; Luo, Guangxiang

    2017-07-01

    Hepatitis C virus (HCV) requires multiple receptors for its attachment to and entry into cells. Our previous studies found that human syndecan-1 (SDC-1), SDC-2, and T cell immunoglobulin and mucin domain-containing protein 1 (TIM-1) are HCV attachment receptors. Other cell surface molecules, such as CD81, Claudin-1 (CLDN1), Occludin (OCLN), SR-BI, and low-density lipoprotein receptor (LDLR), function mainly at postattachment steps and are considered postattachment receptors. The underlying molecular mechanisms of different receptors in HCV cell-free and cell-to-cell transmission remain elusive. In the present study, we used a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technology, gene-specific small interfering RNAs, and a newly developed luciferase-based reporter system to quantitatively determine the importance of individual receptors in HCV cell-free and cell-to-cell transmission. Knockouts of SDC-1 and SDC-2 resulted in remarkable reductions of HCV infection and cell attachment, whereas SDC-3 and SDC-4 knockouts did not affect HCV infection. Defective HCV attachment to SDC-1 and/or SDC-2 knockout cells was completely restored by SDC-1 and SDC-2 but not SDC-4 expression. Knockout of the attachment receptors SDC-1, SDC-2, and TIM-1 also modestly decreased HCV cell-to-cell transmission. In contrast, silencing and knockout of the postattachment receptors CD81, CLDN1, OCLN, SR-BI, and LDLR greatly impaired both HCV cell-free and cell-to-cell transmission. Additionally, apolipoprotein E was found to be important for HCV cell-to-cell spread, but very-low-density lipoprotein (VLDL)-containing mouse serum did not affect HCV cell-to-cell transmission, although it inhibited cell-free infection. These findings demonstrate that attachment receptors are essential for initial HCV binding and that postattachment receptors are important for both HCV cell-free and cell-to-cell transmission. IMPORTANCE The importance and underlying molecular mechanisms

  17. The hepatic progenitor cell niche in man and dog

    NARCIS (Netherlands)

    Schotanus, B.A.

    2011-01-01

    Chronic progressive liver diseases occur frequently in humans and animals, and lead to severe dysfunction and cirrhosis. The only available treatment is liver transplantation. Due to donor liver shortage, alternatives for liver transplantation are needed. Several forms of hepatitis occurring in dogs

  18. Hepatic stellate cells in the liver of dogs with steroid-induced hepatopathy

    Directory of Open Access Journals (Sweden)

    Sobczak-Filipiak Małgorzata

    2014-06-01

    Full Text Available Morphological lesions in hepatic stellate cells caused by the immunosuppressive doses of dexamethasone were investigated in dogs. The archival samples of liver collected during a surgical biopsy were examined. The samples were fixed in 10% buffered formalin or Carnoy’s solution and then stained with routine histochemical methods. The lesions were also investigated under electron microscope. It was demonstrated that the number of stellate cells significantly increased (P = 0.0277, yet the size of cytoplasmic lipid droplets significantly decreased (P = 0.0001. Even though steroid-induced hepatopathy is considered to be a reversible pathology, and the lesions in hepatocytes under the influence of dexamethasone occur in a short period, it was found that hepatic stellate cells proliferated and underwent activation. This resulted in collagen accumulation in the hepatic sinuses. The functional and morphological disturbances in the canine liver in the course of steroid-induced hepatopathy are initially subclinical, but the changes in the structure and function of hepatic stellate cells may become a cause of lesions in the wall of hepatic sinusoidal vessels, which may induce additional functional pathologies unrelated to the damage to hepatocytes.

  19. NK cells in hepatitis B virus infection: a potent target for immunotherapy.

    Science.gov (United States)

    Shabani, Ziba; Bagheri, Masomeh; Zare-Bidaki, Mohammad; Hassanshahi, Gholamhossein; Arababadi, Mohammad Kazemi; Mohammadi Nejad, Mozafar; Kennedy, Derek

    2014-07-01

    Viruses, including hepatitis B virus (HBV), are the most prevalent and infectious agents that lead to liver disease in humans. Hepatocellular carcinoma (HCC) and cirrhosis of the liver are the most serious complications arising from prolonged forms of hepatitis B. Previous studies demonstrated that patients suffering from long-term HBV infections are unable to eradicate HBV from hepatocytes completely. The mechanisms responsible for progression of these forms of infection have not yet been clarified. However, it seems that there are differences in genetic and immunological parameters when comparing patients to subjects who successfully clear HBV infections, and these may represent the causes of long-term infection. Natural killer (NK) cells, the main innate immune cells that target viral infections, play important roles in the eradication of HBV from hepatocytes. NK cells carry several stimulatory and inhibitor receptors, and binding of receptors with their ligands results in activation and suppression of NK cells, respectively. The aim of this review is to address the recent information regarding NK cell phenotype, functions and modifications in hepatitis B. This review addresses the recent data regarding the roles of NK cells as novel targets for immunotherapies that target hepatitis B infection. It also discusses the potential to reduce the risk of HCC or cirrhosis of the liver by targeting NK cells.

  20. 3D hepatic cultures simultaneously maintain primary hepatocyte and liver sinusoidal endothelial cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Yeonhee Kim

    Full Text Available Developing in vitro engineered hepatic tissues that exhibit stable phenotype is a major challenge in the field of hepatic tissue engineering. However, the rapid dedifferentiation of hepatic parenchymal (hepatocytes and non-parenchymal (liver sinusoidal endothelial, LSEC cell types when removed from their natural environment in vivo remains a major obstacle. The primary goal of this study was to demonstrate that hepatic cells cultured in layered architectures could preserve or potentially enhance liver-specific behavior of both cell types. Primary rat hepatocytes and rat LSECs (rLSECs were cultured in a layered three-dimensional (3D configuration. The cell layers were separated by a chitosan-hyaluronic acid polyelectrolyte multilayer (PEM, which served to mimic the Space of Disse. Hepatocytes and rLSECs exhibited several key phenotypic characteristics over a twelve day culture period. Immunostaining for the sinusoidal endothelial 1 antibody (SE-1 demonstrated that rLSECs cultured in the 3D hepatic model maintained this unique feature over twelve days. In contrast, rLSECs cultured in monolayers lost their phenotype within three days. The unique stratified structure of the 3D culture resulted in enhanced heterotypic cell-cell interactions, which led to improvements in hepatocyte functions. Albumin production increased three to six fold in the rLSEC-PEM-Hepatocyte cultures. Only rLSEC-PEM-Hepatocyte cultures exhibited increasing CYP1A1/2 and CYP3A activity. Well-defined bile canaliculi were observed only in the rLSEC-PEM-Hepatocyte cultures. Together, these data suggest that rLSEC-PEM-Hepatocyte cultures are highly suitable models to monitor the transformation of toxins in the liver and their transport out of this organ. In summary, these results indicate that the layered rLSEC-PEM-hepatocyte model, which recapitulates key features of hepatic sinusoids, is a potentially powerful medium for obtaining comprehensive knowledge on liver metabolism

  1. Mesothelial cyst in the liver round ligament: A case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Claudio F. Feo

    2017-01-01

    Conclusion: Mesothelial cysts of the liver round ligament are extremely rare but should be taken in consideration in the differential diagnosis of intra-abdominal cystic lesions. We stress the importance of exploratory laparoscopy that can allow both diagnosis and radical surgical excision.

  2. Cytomegalovirus-Driven Adaptive-Like Natural Killer Cell Expansions Are Unaffected by Concurrent Chronic Hepatitis Virus Infections

    Directory of Open Access Journals (Sweden)

    David F. G. Malone

    2017-05-01

    Full Text Available Adaptive-like expansions of natural killer (NK cell subsets are known to occur in response to human cytomegalovirus (CMV infection. These expansions are typically made up of NKG2C+ NK cells with particular killer-cell immunoglobulin-like receptor (KIR expression patterns. Such NK cell expansion patterns are also seen in patients with viral hepatitis infection. Yet, it is not known if the viral hepatitis infection promotes the appearance of such expansions or if effects are solely attributed to underlying CMV infection. In sizeable cohorts of CMV seropositive hepatitis B virus (HBV, hepatitis C virus (HCV, and hepatitis delta virus (HDV infected patients, we analyzed NK cells for expression of NKG2A, NKG2C, CD57, and inhibitory KIRs to assess the appearance of NK cell expansions characteristic of what has been seen in CMV seropositive healthy individuals. Adaptive-like NK cell expansions observed in viral hepatitis patients were strongly associated with CMV seropositivity. The number of subjects with these expansions did not differ between CMV seropositive viral hepatitis patients and corresponding healthy controls. Hence, we conclude that adaptive-like NK cell expansions observed in HBV, HCV, and/or HDV infected individuals are not caused by the chronic hepatitis infections per se, but rather are a consequence of underlying CMV infection.

  3. Replacement of Retinyl Esters by Polyunsaturated Triacylglycerol Species in Lipid Droplets of Hepatic Stellate Cells during Activation

    NARCIS (Netherlands)

    Testerink, N.; Ajat, M.A.; Houweling, M.; Brouwers, J.F.; Pully, V.V.; van Manen, H.J.; Otto, Cornelis; Helms, J.B.; Vaandrager, A.B.

    2012-01-01

    Activation of hepatic stellate cells has been recognized as one of the first steps in liver injury and repair. During activation, hepatic stellate cells transform into myofibroblasts with concomitant loss of their lipid droplets (LDs) and production of excessive extracellular matrix. Here we aimed

  4. In vitro migratory potential of rat quiescent hepatic stellate cells and its augmentation by cell activation.

    Science.gov (United States)

    Ikeda, K; Wakahara, T; Wang, Y Q; Kadoya, H; Kawada, N; Kaneda, K

    1999-06-01

    In liver injury, hepatic stellate cells are considered to depart from the sinusoidal wall and accumulate in the necrotic lesion through migration and proliferation. In this study, we investigated the migratory capacity of quiescent stellate cells in vitro and analyzed the relationship with proliferative response. Freshly isolated stellate cells that were seeded in the upper chamber of Cell Culture Insert (Becton Dickenson, Franklin Lakes, NJ) started to migrate to the lower chamber at 1 day and increased in migration index to 19% at 2 days. Cells in the lower chamber were stretched in shape with many lipid droplets and showed quiescent properties, i.e., negative expression of alpha-smooth muscle actin (alpha-SMA) or platelet-derived growth factor receptor-beta (PDGFR-beta). Migratory capacity in quiescent cells was also shown in the Matrigel-coated insert. Matrix metalloproteinase-2 (MMP-2) messenger RNA expression was low just after isolation, but was enhanced as migration became prominent. Migrating cells further showed higher proliferative activity than resting ones. The presence of PDGF/BB and Kupffer cells accelerated stellate cell migration by the chemotactic mechanism and concurrently augmented proliferation, whereas that of dexamethasone and interferon-gamma (IFN-gamma) attenuated migration as a result of general suppression effects. Compared with quiescent ones, alpha-SMA and PDGFR-beta-positive activated stellate cells obtained by 14-day culture exhibited more rapid and prominent migration, being regulated by mediators in a similar manner as described previously. These data indicate that quiescent stellate cells undergo migration, which is linked to proliferation and enhanced by PDGF/BB and Kupffer cells, suggesting the involvement of this function in the initial phase of development of postnecrotic fibrosis.

  5. [Hepatic intra-arterial infusion of BAK immune cells to treat metastatic liver cancer].

    Science.gov (United States)

    Ebina, Takusaburo

    2011-11-01

    Based on the "living with cancer" concept while maintaining a favorable QOL and avoiding side effects and drug resistance, we have developed a new immune cell treatment called BAK (BRM activated killer) therapy, primarily using CD56+ cells for a case of advanced progressive solid cancer. In the present case, we administered BAK cells by hepatic intra-arterial infusion to a patient who happened to be a surgeon and wished to undergo this therapy. The patient was a 52-year- old male surgeon who underwent surgery for rectal cancer in April 2007. Heavy particle radiotherapy was administered when liver metastases were identified in July 2008. Starting in December 2008, 10 billion BAK cells were administered each month by hepatic intra-arterial infusion via a catheter on a total of six different occasions. The 10 billion autologous lymphocytes were suspended in 200 mL of Ringer's solution and returned to the patient by hepatic intra-arterial infusion over a period of one hour. Interactions between the activated lymphocytes and liver cancer cells increased levels of serum α1AG, an inflammation marker, but these levels normalized following the sixth and final administration. Conventional drip-infusion BAK therapy was administered thereafter. Diagnostic imaging, including PET-CT and PET, confirmed a complete disappearance of liver metastases. This case suggests the effectiveness of hepatic intra-arterial infusion BAK cell therapy in treating liver cancer.

  6. Endogenous n-3 polyunsaturated fatty acids attenuate T cell-mediated hepatitis via autophagy activation

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2016-09-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFAs exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A was administered intravenously to wild-type (WT and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase (ALT activity, and inhibited production of pro-inflammatory cytokines (e.g. TNF-α, IL-6, IL-17A and IFN-γ. In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism, and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  7. How useful is GLUT-1 in differentiating mesothelial hyperplasia and fibrosing pleuritis from epithelioid and sarcomatoid mesotheliomas? An international collaborative study.

    Science.gov (United States)

    Husain, Aliya N; Mirza, M Kamran; Gibbs, Allen; Hiroshima, Kenzo; Chi, Yiqing; Boumendjel, Redouane; Stang, Nolwenn; Krausz, Thomas; Galateau-Salle, Francoise

    2014-03-01

    Mesothelial hyperplasia (MH) and fibrosing pleuritis (FP) can be difficult to distinguish from epithelioid (MM-E) and sarcomatoid (MM-S) malignant pleural mesotheliomas. GLUT-1 has shown variable results regarding its sensitivity and specificity when used to evaluate mesothelial proliferations. We evaluated the utility of GLUT-1 immunostaining in differentiating MH and FP from MM-E and MM-S. In this retrospective study, diagnostically well-characterized cases (MH=31, FP=29, MM-E=41, MM-S=29) were collected and manually stained for GLUT-1. All slides were visually scored by 2 pathologists; using the following system: 0%, 1+ 1-25%, 2+ 26-50% and 3+ >51% cells staining. All benign cases (n=60) were negative for GLUT-1 while 45 of 78 (58%) MM [21 of 41 (50%) MM-E, 21 of 29 (72%) MM-S and 3 of 3 biphasic mesothelioma (100%)] had 1+ to 3+ staining. Of the MM-E, 10 had 1+, and 11 had 2+ staining; of the MM-S 3 had 1+, 15 had 2+ and 3 had 3+ staining. Both sarcomatoid and epithelioid components of the 3 biphasic mesotheliomas revealed 1+ staining. All 5 desmoplastic MM were negative. Positive staining with GLUT-1 is helpful since it is present in half of MM-E and three-quarter of MM-S. Although all reactive mesothelial lesions were negative, the absence of immunoreactivity does not exclude the diagnosis of MM. As with all IHC stains used for diagnostic purposes, GLUT-1 has to be a part of a panel, and the results interpreted in the context of clinical, radiological and histological findings. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Biology of the Adult Hepatic Progenitor Cell: “Ghosts in the Machine”

    OpenAIRE

    Darwiche, Houda; Petersen, Bryon E.

    2010-01-01

    This chapter reviews some of the basic biological principles governing adult progenitor cells of the liver and the mechanisms by which they operate. If scientists were better able to understand the conditions that govern stem cell mechanics in the liver, it may be possible to apply that understanding in a clinical setting for use in the treatment or cure of human pathologies. This chapter gives a basic introduction to hepatic progenitor cell biology and explores what is known about progenitor...

  9. Signalome-wide assessment of host cell response to hepatitis C virus

    OpenAIRE

    Haqshenas, Gholamreza; Wu, Jianmin; Simpson, Kaylene J.; Daly, Roger J.; Netter, Hans J.; Baumert, Thomas F.; Doerig, Christian

    2017-01-01

    Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-?B pathways are suppressed, while the JAK/STAT5 pathway is activated; furthermore, components of the apoptosis and cell cycle control machine...

  10. Glucocorticoids Have Opposing Effects on Liver Fibrosis in Hepatic Stellate and Immune Cells

    OpenAIRE

    Kim, Kang Ho; Lee, Jae Man; Zhou, Ying; Harpavat, Sanjiv; Moore, David D.

    2016-01-01

    Liver fibrosis is a reversible wound-healing process that is protective in the short term, but prolonged fibrotic responses lead to excessive accumulation of extracellular matrix components that suppresses hepatocyte regeneration, resulting in permanent liver damage. Upon liver damage, nonparenchymal cells including immune cells and hepatic stellate cells (HSCs) have crucial roles in the progression and regression of liver fibrosis. Here, we report differential roles of the glucocorticoid rec...

  11. Identification of potential biomarkers of hepatitis B-induced acute liver failure using hepatic cells derived from human skin precursors.

    Science.gov (United States)

    Rodrigues, Robim M; Sachinidis, Agapios; De Boe, Veerle; Rogiers, Vera; Vanhaecke, Tamara; De Kock, Joery

    2015-09-01

    Besides their role in the elucidation of pathogenic processes of medical and pharmacological nature, biomarkers can also be used to document specific toxicological events. Hepatic cells generated from human skin-derived precursors (hSKP-HPC) were previously shown to be a promising in vitro tool for the evaluation of drug-induced hepatotoxicity. In this study, their capacity to identify potential liver-specific biomarkers at the gene expression level was investigated with particular emphasis on acute liver failure (ALF). To this end, a set of potential ALF-specific biomarkers was established using clinically relevant liver samples obtained from patients suffering from hepatitis B-associated ALF. Subsequently, this data was compared to data obtained from primary human hepatocyte cultures and hSKP-HPC, both exposed to the ALF-inducing reference compound acetaminophen. It was found that both in vitro systems revealed a set of molecules that was previously identified in the ALF liver samples. Yet, only a limited number of molecules was common between both in vitro systems and the ALF liver samples. Each of the in vitro systems could be used independently to identify potential toxicity biomarkers related to ALF. It seems therefore more appropriate to combine primary human hepatocyte cultures with complementary in vitro models to efficiently screen out potential hepatotoxic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The role of human T cell lymphotrophic virus type 1, hepatitis B virus and hepatitis C virus coinfections in leprosy

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Lima Machado

    2012-12-01

    Full Text Available Leprosy spectrum and outcome is associated with the host immune response against Mycobacterium leprae. The role of coinfections in leprosy patients may be related to a depression of cellular immunity or amplification of inflammatory responses. Leprosy remains endemic in several regions where human T cell lymphotrophic virus type 1 (HTLV-1, hepatitis B virus (HBV or hepatitis C virus (HCV are also endemic. We have evaluated the evidence for the possible role of these viruses in the clinical manifestations and outcomes of leprosy. HTLV-1, HBV and HCV are associated with leprosy in some regions and institutionalization is an important risk factor for these viral coinfections. Some studies show a higher prevalence of viral coinfection in lepromatous cases. Although HBV and HCV coinfection were associated with reversal reaction in one study, there is a lack of information about the consequences of viral coinfections in leprosy. It is not known whether clinical outcomes associated with leprosy, such as development of reactions or relapses could be attributed to a specific viral coinfection. Furthermore, whether the leprosy subtype may influence the progression of the viral coinfection is unknown. All of these important and intriguing questions await prospective studies to definitively establish the actual relationship between these entities.

  13. The role of human T cell lymphotrophic virus type 1, hepatitis B virus and hepatitis C virus coinfections in leprosy.

    Science.gov (United States)

    Machado, Paulo Roberto Lima; Johnson, Warren D; Glesby, Marshall J

    2012-12-01

    Leprosy spectrum and outcome is associated with the host immune response against Mycobacterium leprae. The role of coinfections in leprosy patients may be related to a depression of cellular immunity or amplification of inflammatory responses. Leprosy remains endemic in several regions where human T cell lymphotrophic virus type 1 (HTLV-1), hepatitis B virus (HBV) or hepatitis C virus (HCV) are also endemic. We have evaluated the evidence for the possible role of these viruses in the clinical manifestations and outcomes of leprosy. HTLV-1, HBV and HCV are associated with leprosy in some regions and institutionalization is an important risk factor for these viral coinfections. Some studies show a higher prevalence of viral coinfection in lepromatous cases. Although HBV and HCV coinfection were associated with reversal reaction in one study, there is a lack of information about the consequences of viral coinfections in leprosy. It is not known whether clinical outcomes associated with leprosy, such as development of reactions or relapses could be attributed to a specific viral coinfection. Furthermore, whether the leprosy subtype may influence the progression of the viral coinfection is unknown. All of these important and intriguing questions await prospective studies to definitively establish the actual relationship between these entities.

  14. Relationships among hepatitis C virus, hepatocellular carcinoma, and diffuse large B cell lymphoma: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hyuk Jun; Kim, Seong Hoon [Dept. of Radiology, Daegu Fatima Hospital, Daegu (Korea, Republic of)

    2015-07-15

    Hepatitis C virus (HCV) is one of the main causes of hepatocellular carcinoma (HCC). Recent studies have reported various associations between HCV and the incidence of non-Hodgkin's lymphoma. We report the radiologic findings in a rare case of simultaneous occurrence of HCC and diffuse large B cell lymphoma in a HCV carrier.

  15. Receptor-specific TRAIL as a means to achieve targeted elimination of activated hepatic stellate cells

    NARCIS (Netherlands)

    Arabpour, Mohammad; Cool, Robbert; Faber, Klaas Nico; Quax, Wim J; Haisma, Hidde J

    2017-01-01

    Activated hepatic stellate cells (HSCs) are known to play a central role in liver fibrosis and their elimination is a crucial step toward the resolution and reversion of liver fibrosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a molecule that may contribute to the apoptotic

  16. Selective targeting of pentoxifylline platinum-based to hepatic stellate cells using a novel linker technology

    NARCIS (Netherlands)

    Gonzalo, T; Talman, EG; de Ven, AV; Temming, K; Greupink, R; Beljaars, L; Reker-Smit, C; Meijer, DKF; Molema, G; Poelstra, K; Kok, RJ

    2006-01-01

    Targeting of antifibrotic drugs to hepatic stellate cells (HSC) is a promising strategy to block fibrotic processes leading to liver cirrhosis. For this purpose, we utilized the neo-glycoprotein mannose-6-phosphate-albumin (M6PHSA) that accumulates efficiently in HSC during liver fibrosis.

  17. Blockade of Retinol Metabolism Protects T Cell-Induced Hepatitis by Increasing Migration of Regulatory T Cells

    Science.gov (United States)

    Lee, Young-Sun; Yi, Hyon-Seung; Suh, Yang-Gun; Byun, Jin-Seok; Eun, Hyuk Soo; Kim, So Yeon; Seo, Wonhyo; Jeong, Jong-Min; Choi, Won-Mook; Kim, Myung-Ho; Kim, Ji Hoon; Park, Keun-Gyu; Jeong, Won-Il

    2015-01-01

    Retinols are metabolized into retinoic acids by alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (Raldh). However, their roles have yet to be clarified in hepatitis despite enriched retinols in hepatic stellate cells (HSCs). Therefore, we investigated the effects of retinols on Concanavalin A (Con A)-mediated hepatitis. Con A was injected into wild type (WT), Raldh1 knock-out (Raldh1−/−), CCL2−/− and CCR2−/− mice. For migration study of regulatory T cells (Tregs), we used in vivo and ex vivo adoptive transfer systems. Blockade of retinol metabolism in mice given 4-methylpyrazole, an inhibitor of ADH, and ablated Raldh1 gene manifested increased migration of Tregs, eventually protected against Con A-mediated hepatitis by decreasing interferon-γ in T cells. Moreover, interferon-γ treatment increased the expression of ADH3 and Raldh1, but it suppressed that of CCL2 and IL-6 in HSCs. However, the expression of CCL2 and IL-6 was inversely increased upon the pharmacologic or genetic ablation of ADH3 and Raldh1 in HSCs. Indeed, IL-6 treatment increased CCR2 expression of Tregs. In migration assay, ablated CCR2 in Tregs showed reduced migration to HSCs. In adoptive transfer of Tregs in vivo and ex vivo, Raldh1-deficient mice showed more increased migration of Tregs than WT mice. Furthermore, inhibited retinol metabolism increased survival rate (75%) compared with that of the controls (25%) in Con A-induced hepatitis. These results suggest that blockade of retinol metabolism protects against acute liver injury by increased Treg migration, and it may represent a novel therapeutic strategy to control T cell-mediated acute hepatitis. PMID:26537191

  18. Parenteral nutrition rapidly reduces hepatic mononuclear cell numbers and lipopolysaccharide receptor expression on Kupffer cells in mice.

    Science.gov (United States)

    Omata, Jiro; Fukatsu, Kazuhiko; Murakoshi, Satoshi; Noguchi, Midori; Moriya, Tomoyuki; Okamoto, Koichi; Saitoh, Daizoh; Yamamoto, Junji; Hase, Kazuo

    2010-01-01

    Parenteral nutrition (PN) reduces the number of hepatic mononuclear cell (MNCs) and impairs their function, resulting in poor survival after intraportal bacterial challenge in mice. Our recent animal study demonstrated resumption of enteral nutrition after PN to rapidly restore hepatic MNC numbers (in 12 hours) and lipopolysaccharide (LPS) receptor expression on Kupffer cells (in 48 hours). The present study examined the time courses of hepatic MNC number reductions and LPS receptor expression changes in mice receiving PN. Male mice (n = 49) from the Institute of Cancer Research were divided into chow (n = 8), PN0.5 (n = 8), PN1 (n = 8), PN2 (n = 9), PN3 (n = 9), and PN5 (n = 7) groups. The chow group was given chow with an intravenous saline infusion. The PN groups were fed parenterally for 0.5, 1, 2, 3, or 5 days following the chow-feeding courses. After 7 days of nutrition support, hepatic MNCs were isolated and counted. The expression of LPS receptors on Kupffer cells was analyzed by flow cytometry. Hepatic MNC numbers rapidly reached their lowest level in the PN0.5 and PN1 groups but were somewhat restored thereafter and remained stable after the third day, without significant differences between any 2 of the PN groups. CD14 and Toll-like receptor 4/MD-2 expressions both showed significant reductions in the PN1 group compared with the chow group and gradually decreased to their lowest levels in the PN5 group. PN administration rapidly reduces hepatic MNC numbers and LPS receptor expression on Kupffer cells.

  19. Polycomb group protein Ezh2 regulates hepatic progenitor cell proliferation and differentiation in murine embryonic liver.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Koike

    Full Text Available In embryonic liver, hepatic progenitor cells are actively proliferating and generate a fundamental cellular pool for establishing parenchymal components. However, the molecular basis for the expansion of the progenitors maintaining their immature state remains elusive. Polycomb group proteins regulate gene expression throughout the genome by modulating of chromatin structure and play crucial roles in development. Enhancer of zeste homolog 2 (Ezh2, a key component of polycomb group proteins, catalyzes tri-methylation of lysine 27 of histone H3 (H3K27me3, which trigger the gene suppression. In the present study, we investigated a role of Ezh2 in the regulation of the expanding hepatic progenitor population in vivo. We found that Ezh2 is highly expressed in the actively proliferating cells at the early developmental stage. Using a conditional knockout mouse model, we show that the deletion of the SET domain of Ezh2, which is responsible for catalytic induction of H3K27me3, results in significant reduction of the total liver size, absolute number of liver parenchymal cells, and hepatic progenitor cell population in size. A clonal colony assay in the hepatic progenitor cells directly isolated from in vivo fetal livers revealed that the bi-potent clonogenicity was significantly attenuated by the Ezh2 loss of function. Moreover, a marker expression based analysis and a global gene expression analysis showed that the knockout of Ezh2 inhibited differentiation to hepatocyte with reduced expression of a number of liver-function related genes. Taken together, our results indicate that Ezh2 is required for the hepatic progenitor expansion in vivo, which is essential for the functional maturation of embryonic liver, through its activity for catalyzing H3K27me3.

  20. Attenuated hepatitis A virus: genetic determinants of adaptation to growth in MRC-5 cells.

    OpenAIRE

    Funkhouser, A W; Purcell, R H; D'hondt, E.; Emerson, S. U.

    1994-01-01

    A live candidate hepatitis A virus vaccine, developed from the HM-175 strain and adapted to growth in primary African green monkey kidney (AGMK) cells, was adapted to growth in MRC-5 cells. The nucleotide sequence of the MRC-5 cell-adapted virus was determined and compared with the known sequence of the AGMK cell-adapted virus. Thirteen unique mutations, which occurred during passage in MRC-5 cells, were identified. Four of the unique mutations were located in a cluster in the 5' noncoding re...

  1. Antiproliferative and cytotoxic effects of purple pitanga (Eugenia uniflora L.) extract on activated hepatic stellate cells.

    Science.gov (United States)

    Denardin, Cristiane C; Parisi, Mariana M; Martins, Leo A M; Terra, Silvia R; Borojevic, Radovan; Vizzotto, Márcia; Perry, Marcos L S; Emanuelli, Tatiana; Guma, Fátima T C R

    2014-01-01

    The presence of phenolic compounds in fruit- and vegetable-rich diets has attracted researchers' attention due to their health-promoting effects. The objective of this study was to evaluate the effects of purple pitanga (Eugenia uniflora L.) extract on cell proliferation, viability, mitochondrial membrane potential, cell death and cell cycle in murine activated hepatic stellate cells (GRX). Cell viability by 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was significantly decreased on cells treated with 50 and 100 µg ml(-1) of purple pitanga extract for 48 and 72 h, and the percentage of dead cell stained with 7-amino-actinomycin D was significantly higher in treated cells. The reduction of cell proliferation was dose dependent, and we also observed alterations on cell cycle progression. At all times studied, GRX cells treated with 50 and 100 µg ml(-1) of purple pitanga showed a significant reduction in cellular mitochondrial content as well as a decrease in mitochondrial membrane potential. Furthermore, our results indicated that purple pitanga extract induces early and late apoptosis/necrosis and necrotic death in GRX cells. This is the first report describing the antiproliferative, cytotoxic and apoptotic activity for E. uniflora fruits in hepatic stellate cells. The present study provides a foundation for the prevention and treatment of liver fibrosis, and more studies will be carried to elucidate this effect. Copyright © 2013 John Wiley & Sons, Ltd.

  2. ADAPTIVE T-CELL RESPONSE IN PATHOGENESIS OF HEPATITIS C INFECTION

    Directory of Open Access Journals (Sweden)

    E. A. Oleynik

    2016-01-01

    Full Text Available Chronic viral hepatitis C is the most common cause of liver damage and the global problem worldwide since is characterized by a high prevalence, high chronization rates, and significantly increases the risk of liver cirrhosis and hepatocellular carcinoma. Many studies have shown that antigen-specific СD4+ and CD8+T-cells play a key role in pathogenesis and outcome of the infection. While the strong sustained antigenspecific multi-epitopic T-cell response predicts successful viral elimination, a deficiency of adaptive immune response is associated with virus persistence. This review presents data about pathogenetic significance of T-cell response in viral elimination, viral persistence and hepatitis development. Possible mechanisms of T-cell response failure in chronic infection are discussed as well.

  3. Increased YAP activation is associated with hepatic cyst epithelial cell proliferation in ARPKD/CHF.

    Science.gov (United States)

    Jiang, Lu; Sun, Lina; Edwards, Genea; Manley, Michael; Wallace, Darren P; Septer, Seth; Manohar, Chirag; Pritchard, Michele T; Apte, Udayan

    2017-09-15

    Autosomal recessive polycystic kidney disease/congenital hepatic fibrosis (ARPKD/CHF) is a rare but fatal genetic disease characterized by progressive cyst development in the kidneys and liver. Liver cysts arise from aberrantly proliferative cholangiocytes accompanied by pericystic fibrosis and inflammation. Yes associated protein (YAP), the downstream effector of the Hippo signaling pathway, is implicated in human hepatic malignancies such as hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma, but its role in hepatic cystogenesis in CHF/ARPKD is unknown. We studied the role of the YAP in hepatic cyst development using polycystic kidney (PCK) rats, an orthologous model of ARPKD, and in human ARPKD/CHF patients. The liver cyst wall epithelial cells (CWECs) in PCK rats were highly proliferative and exhibited expression of YAP. There was increased expression of YAP target genes, Cyclin D1 and Ctgf (connective tissue growth factor), in PCK rat livers. Extensive expression of YAP and its target genes was also detected in human ARPKD/CHF liver samples. Finally, pharmacological inhibition of YAP activity with verteporfin and short-hairpin (sh) RNA-mediated knockdown of YAP expression in isolated liver CWECs significantly reduced their proliferation. These data indicate that increased YAP activity, possibly through dysregulation of the Hippo signaling pathway, is associated with hepatic cyst growth in ARPKD/CHF.

  4. Identification of valid reference genes for microRNA expression studies in a hepatitis B virus replicating liver cell line

    DEFF Research Database (Denmark)

    Jacobsen, Kari Stougaard; Nielsen, Kirstine Overgaard; Nordmann Winther, Thilde

    2016-01-01

    expressed microRNAs with liver-specific target genes in plasma from children with chronic hepatitis B. To further understand the biological role of these microRNAs in the pathogenesis of chronic hepatitis B, we have used the human liver cell line HepG2, with and without HBV replication, after transfection...

  5. Interrupted Glucagon Signaling Reveals Hepatic α Cell Axis and Role for L-Glutamine in α Cell Proliferation.

    Science.gov (United States)

    Dean, E Danielle; Li, Mingyu; Prasad, Nripesh; Wisniewski, Scott N; Von Deylen, Alison; Spaeth, Jason; Maddison, Lisette; Botros, Anthony; Sedgeman, Leslie R; Bozadjieva, Nadejda; Ilkayeva, Olga; Coldren, Anastasia; Poffenberger, Greg; Shostak, Alena; Semich, Michael C; Aamodt, Kristie I; Phillips, Neil; Yan, Hai; Bernal-Mizrachi, Ernesto; Corbin, Jackie D; Vickers, Kasey C; Levy, Shawn E; Dai, Chunhua; Newgard, Christopher; Gu, Wei; Stein, Roland; Chen, Wenbiao; Powers, Alvin C

    2017-06-06

    Decreasing glucagon action lowers the blood glucose and may be useful therapeutically for diabetes. However, interrupted glucagon signaling leads to α cell proliferation. To identify postulated hepatic-derived circulating factor(s) responsible for α cell proliferation, we used transcriptomics/proteomics/metabolomics in three models of interrupted glucagon signaling and found that proliferation of mouse, zebrafish, and human α cells was mTOR and FoxP transcription factor dependent. Changes in hepatic amino acid (AA) catabolism gene expression predicted the observed increase in circulating AAs. Mimicking these AA levels stimulated α cell proliferation in a newly developed in vitro assay with L-glutamine being a critical AA. α cell expression of the AA transporter Slc38a5 was markedly increased in mice with interrupted glucagon signaling and played a role in α cell proliferation. These results indicate a hepatic α islet cell axis where glucagon regulates serum AA availability and AAs, especially L-glutamine, regulate α cell proliferation and mass via mTOR-dependent nutrient sensing. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Novel Radiolytic Rotenone Derivative, Rotenoisin B with Potent Anti-Carcinogenic Activity in Hepatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Srilatha Badaboina

    2015-07-01

    Full Text Available Rotenone, isolated from roots of derris plant, has been shown to possess various biological activities, which lead to attempting to develop a potent drug against several diseases. However, recent studies have demonstrated that rotenone has the potential to induce several adverse effects such as a neurodegenerative disease. Radiolytic transformation of the rotenone with gamma-irradiation created a new product, named rotenoisin B. The present work was designed to investigate the anticancer activity of rotenoisin B with low toxicity and its molecular mechanism in hepatic cancer cells compared to a parent compound, rotenone. Our results showed rotenoisin B inhibited hepatic cancer cells’ proliferation in a dose dependent manner and increased in apoptotic cells. Interestingly, rotenoisin B showed low toxic effects on normal cells compared to rotenone. Mitochondrial transmembrane potential has been decreased, which leads to cytochrome c release. Down regulation of anti-apoptotic Bcl-2 levels as well as the up regulation of proapoptotic Bax levels were observed. The cleaved PARP (poly ADP-ribose polymerase level increased as well. Moreover, phosphorylation of extracellular signal regulated kinase (ERK and p38 slightly up regulated and intracellular reactive oxygen species (ROS increased as well as cell cycle arrest predominantly at the G2/M phase observed. These results suggest that rotenoisin B might be a potent anticancer candidate similar to rotenone in hepatic cancer cells with low toxicity to normal cells even at high concentrations compared to rotenone.

  7. Modeling Inborn Errors of Hepatic Metabolism Using Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Pournasr, Behshad; Duncan, Stephen A

    2017-11-01

    Inborn errors of hepatic metabolism are because of deficiencies commonly within a single enzyme as a consequence of heritable mutations in the genome. Individually such diseases are rare, but collectively they are common. Advances in genome-wide association studies and DNA sequencing have helped researchers identify the underlying genetic basis of such diseases. Unfortunately, cellular and animal models that accurately recapitulate these inborn errors of hepatic metabolism in the laboratory have been lacking. Recently, investigators have exploited molecular techniques to generate induced pluripotent stem cells from patients' somatic cells. Induced pluripotent stem cells can differentiate into a wide variety of cell types, including hepatocytes, thereby offering an innovative approach to unravel the mechanisms underlying inborn errors of hepatic metabolism. Moreover, such cell models could potentially provide a platform for the discovery of therapeutics. In this mini-review, we present a brief overview of the state-of-the-art in using pluripotent stem cells for such studies. © 2017 American Heart Association, Inc.

  8. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure.

    Directory of Open Access Journals (Sweden)

    Yu-Bao Zheng

    Full Text Available Uncontrolled hepatic immunoactivation is regarded as the primary pathological mechanism of fulminant hepatic failure (FHF. The major acute-phase mediators associated with FHF, including IL-1β, IL-6, and TNF-α, impair the regeneration of liver cells and stem cell grafts. Amniotic-fluid-derived mesenchymal stem cells (AF-MSCs have the capacity, under specific conditions, to differentiate into hepatocytes. Interleukin-1-receptor antagonist (IL-1Ra plays an anti-inflammatory and anti-apoptotic role in acute and chronic inflammation, and has been used in many experimental and clinical applications. In the present study, we implanted IL-1Ra-expressing AF-MSCs into injured liver via the portal vein, using D-galactosamine-induced FHF in a rat model. IL-1Ra expression, hepatic injury, liver regeneration, cytokines (IL-1β, IL-6, and animal survival were assessed after cell transplantation. Our results showed that AF-MSCs over-expressing IL-1Ra prevented liver failure and reduced mortality in rats with FHF. These animals also exhibited improved liver function and increased survival rates after injection with these cells. Using green fluorescent protein as a marker, we demonstrated that the engrafted cells and their progeny were incorporated into injured livers and produced albumin. This study suggests that AF-MSCs genetically modified to over-express IL-1Ra can be implanted into the injured liver to provide a novel therapeutic approach to the treatment of FHF.

  9. Stable human lymphoblastoid cell lines constitutively expressing hepatitis C virus proteins.

    Science.gov (United States)

    Wölk, Benno; Gremion, Christel; Ivashkina, Natalia; Engler, Olivier B; Grabscheid, Benno; Bieck, Elke; Blum, Hubert E; Cerny, Andreas; Moradpour, Darius

    2005-06-01

    The cellular immune response plays a central role in virus clearance and pathogenesis of liver disease in hepatitis C. The study of hepatitis C virus (HCV)-specific immune responses is limited by currently available cell-culture systems. Here, the establishment and characterization of stable human HLA-A2-positive B-lymphoblastoid x T hybrid cell lines constitutively expressing either the NS3-4A complex or the entire HCV polyprotein are reported. These cell lines, termed T1/NS3-4A and T1/HCVcon, respectively, were maintained in continuous culture for more than 1 year with stable characteristics. HCV structural and non-structural proteins were processed accurately, indicating that the cellular and viral proteolytic machineries are functional in these cell lines. Viral proteins were found in the cytoplasm in dot-like structures when expressed in the context of the HCV polyprotein or in a perinuclear fringe when the NS3-4A complex was expressed alone. T1/NS3-4A and T1/HCVcon cells were lysed efficiently by HCV-specific cytotoxic T lymphocytes from patients with hepatitis C and from human HLA-A2.1 transgenic mice immunized with a liposomal HCV vaccine, indicating that viral proteins are processed endogenously and presented efficiently via the major histocompatibility complex class I pathway. In conclusion, these cell lines represent a unique tool to study the cellular immune response, as well as to evaluate novel vaccine and immunotherapeutic strategies against HCV.

  10. Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering.

    Science.gov (United States)

    Jiang, Wei-Cheng; Cheng, Yu-Hao; Yen, Meng-Hua; Chang, Yin; Yang, Vincent W; Lee, Oscar K

    2014-04-01

    Liver transplantation is the ultimate treatment for severe hepatic failure to date. However, the limited supply of donor organs has severely hampered this treatment. So far, great potentials of using mesenchymal stem cells (MSCs) to replenish the hepatic cell population have been shown; nevertheless, there still is a lack of an optimal three-dimensional scaffold for generation of well-transplantable hepatic tissues. In this study, we utilized a cryo-chemical decellularization method which combines physical and chemical approach to generate acellular liver scaffolds (ALS) from the whole liver. The produced ALS provides a biomimetic three-dimensional environment to support hepatic differentiation of MSCs, evidenced by expression of hepatic-associated genes and marker protein, glycogen storage, albumin secretion, and urea production. It is also found that hepatic differentiation of MSCs within the ALS is much more efficient than two-dimensional culture in vitro. Importantly, the hepatic-like tissues (HLT) generated by repopulating ALS with MSCs are able to act as functional grafts and rescue lethal hepatic failure after transplantation in vivo. In summary, the cryo-chemical method used in this study is suitable for decellularization of liver and create acellular scaffolds that can support hepatic differentiation of MSCs and be used to fabricate functional tissue-engineered liver constructs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Distinct subpopulations of hepatitis C virus infectious cells with different levels of intracellular hepatitis C virus core protein

    Directory of Open Access Journals (Sweden)

    Shu-Chi Wang

    2016-10-01

    Full Text Available Chronic infection by hepatitis C virus (HCV is a major risk factor for the development of hepatocellular carcinoma (HCC. Despite the clear clinical importance of virus-associated HCC, the underlying molecular mechanisms remain largely unclarified. Oxidative stress, in particular, DNA lesions associated with oxidative damage, plays a major role in carcinogenesis, and is strongly linked to the development of many cancers, including HCC. However, in identifying hepatocytes with HCV viral RNA, estimates of the median proportion of HCV-infected hepatocytes have been found as high as 40% in patients with chronic HCV infection. In order to explore the gene alternation and association between different viral loads of HCV-infected cells, we established a method to dissect high and low viral load cells and examined the expression of DNA damage-related genes using a quantitative polymerase chain reaction array. We found distinct expression patterns of DNA damage-related genes between high and low viral load cells. This study provides a new method for future study on virus-associated gene expression research.

  12. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions.

    Science.gov (United States)

    Fukuda, Takayuki; Takayama, Kazuo; Hirata, Mitsuhi; Liu, Yu-Jung; Yanagihara, Kana; Suga, Mika; Mizuguchi, Hiroyuki; Furue, Miho K

    2017-03-15

    Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. A crucial role for Kupffer cell-derived galectin-9 in regulation of T cell immunity in hepatitis C infection.

    Directory of Open Access Journals (Sweden)

    John A Mengshol

    2010-03-01

    Full Text Available Approximately 200 million people throughout the world are infected with hepatitis C virus (HCV. One of the most striking features of HCV infection is its high propensity to establish persistence (approximately 70-80% and progressive liver injury. Galectins are evolutionarily conserved glycan-binding proteins with diverse roles in innate and adaptive immune responses. Here, we demonstrate that galectin-9, the natural ligand for the T cell immunoglobulin domain and mucin domain protein 3 (Tim-3, circulates at very high levels in the serum and its hepatic expression (particularly on Kupffer cells is significantly increased in patients with chronic HCV as compared to normal controls. Galectin-9 production from monocytes and macrophages is induced by IFN-gamma, which has been shown to be elevated in chronic HCV infection. In turn, galectin-9 induces pro-inflammatory cytokines in liver-derived and peripheral mononuclear cells; galectin-9 also induces anti-inflammatory cytokines from peripheral but not hepatic mononuclear cells. Galectin-9 results in expansion of CD4(+CD25(+FoxP3(+CD127(low regulatory T cells, contraction of CD4(+ effector T cells, and apoptosis of HCV-specific CTLs. In conclusion, galectin-9 production by Kupffer cells links the innate and adaptive immune response, providing a potential novel immunotherapeutic target in this common viral infection.

  14. Kupffer cells hasten resolution of liver immunopathology in mouse models of viral hepatitis.

    Directory of Open Access Journals (Sweden)

    Giovanni Sitia

    2011-06-01

    Full Text Available Kupffer cells (KCs are widely considered important contributors to liver injury during viral hepatitis due to their pro-inflammatory activity. Herein we utilized hepatitis B virus (HBV-replication competent transgenic mice and wild-type mice infected with a hepatotropic adenovirus to demonstrate that KCs do not directly induce hepatocellular injury nor do they affect the pathogenic potential of virus-specific CD8 T cells. Instead, KCs limit the severity of liver immunopathology. Mechanistically, our results are most compatible with the hypothesis that KCs contain liver immunopathology by removing apoptotic hepatocytes in a manner largely dependent on scavenger receptors. Apoptotic hepatocytes not readily removed by KCs become secondarily necrotic and release high-mobility group box 1 (HMGB-1 protein, promoting organ infiltration by inflammatory cells, particularly neutrophils. Overall, these results indicate that KCs resolve rather than worsen liver immunopathology.

  15. Thy-1 (CD90)-Positive Hepatic Progenitor Cells, Hepatoctyes, and Non-parenchymal Liver Cells Isolated from Human Livers.

    Science.gov (United States)

    Weiss, Thomas S; Dayoub, Rania

    2017-01-01

    In response to liver injury, hepatic cells, especially hepatocytes, can rapidly proliferate to repair liver damage. Additionally, it was shown that under certain circumstances liver resident cells with progenitor capabilities are involved in liver cell proliferation and differentiation. These hepatic progenitor cells (HPCs), known as oval cells in rodents, are derived from the canals of Hering, which are located in the periportal region of the liver. Regarding to different cell niches, which were defined for human HPCs, several markers have been used to identify these cells such as CD34, c-kit, OV-6, and Thy-1 (CD90). The latter was shown to be expressed on HPCs in human liver tissue with histological signs of regeneration. In this chapter we describe a detailed method for the isolation of Thy-1 positive cells from human resected liver tissue. Based on a procedure for isolating primary human hepatocytes and non-parenchymal cells (NPCs) we expanded this protocol to additional enzymatic dissociation, filtration, and centrifugation steps. This results in a bile duct cell enriched fraction of NPCs from which Thy-1 (CD90) positive cells were purified by Thy-1 positivity selection using MACS technique. Bipotential progenitor cells from human liver resections can be isolated using Thy-1 and was shown to be a suitable tool for the enrichment of liver resident progenitor cells for xenotransplantation.

  16. EZH2-mediated repression of Dkk1 promotes hepatic stellate cell activation and hepatic fibrosis.

    Science.gov (United States)

    Yang, Yang; Chen, Xiao-Xia; Li, Wan-Xia; Wu, Xiao-Qin; Huang, Cheng; Xie, Juan; Zhao, Yu-Xin; Meng, Xiao-Ming; Li, Jun

    2017-10-01

    EZH2, a histone H3 lysine-27-specific methyltransferase, is involved in diverse physiological and pathological processes including cell proliferation and differentiation. However, the role of EZH2 in liver fibrosis is largely unknown. In this study, it was identified that EZH2 promoted Wnt pathway-stimulated fibroblasts in vitro and in vivo by repressing Dkk-1, which is a Wnt pathway antagonist. The expression of EZH2 was increased in CCl4 -induced rat liver and primary HSCs as well as TGF-β1-treated HSC-T6, whereas the expression of Dkk1 was reduced. Silencing of EZH2 prevented TGF-β1-induced proliferation of HSC-T6 cells and the expression of α-SMA. In addition, knockdown of Dkk1 promoted TGF-β1-induced activation of HSCs. Moreover, silencing of EZH2 could restore the repression of Dkk-1 through trimethylation of H3K27me3 in TGF-β1-treated HSC-T6 cells. Interestingly, inhibition of EZH2 had almost no effect on the activation of HSC when Dkk1 was silenced. Collectively, EZH2-mediated repression of Dkk1 promotes the activation of Wnt/β-catenin pathway, which is an essential event for HSC activation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Hepatitis B-related events in autologous hematopoietic stem cell transplantation recipients

    Science.gov (United States)

    Çeneli, Özcan; Özkurt, Zübeyde Nur; Acar, Kadir; Rota, Seyyal; Akı, Şahika Zeynep; Yeğin, Zeynep Arzu; Yağcı, Münci; Özenirler, Seren; Sucak, Gülsan Türköz

    2010-01-01

    AIM: To investigate the frequency of occult hepatitis B, the clinical course of hepatitis B virus (HBV) reactivation and reverse seroconversion and associated risk factors in autologous hematopoietic stem cell transplantation (HSCT) recipients. METHODS: This study was conducted in 90 patients undergoing autologous HSCT. Occult HBV infection was investigated by HBV-DNA analysis prior to transplantation, while HBV serology and liver function tests were screened prior to and serially after transplantation. HBV-related events including reverse seroconversion and reactivation were recorded in all patients. RESULTS: None of the patients had occult HBV prior to transplantation. Six (6.7%) patients were positive for HBV surface antigen (HBsAg) prior to transplantation and received lamivudine prophylaxis; they did not develop HBV reactivation after transplantation. Clinical HBV infection emerged in three patients after transplantation who had negative HBV-DNA prior to HSCT. Two of these three patients had HBV reactivation while one patient developed acute hepatitis B. Three patients had anti-HBc as the sole hepatitis B-related antibody prior to transplantation, two of whom developed hepatitis B reactivation while none of the patients with antibody to HBV surface antigen (anti-HBs) did so. The 14 anti-HBs- and/or anti-HBc-positive patients among the 90 HSCT recipients experienced either persistent (8 patients) or transient (6 patients) disappearance of anti-HBs and/or anti-HBc. HBsAg seroconversion and clinical hepatitis did not develop in these patients. Female gender and multiple myeloma emerged as risk factors for loss of antibody in regression analysis (P < 0.05). CONCLUSION: Anti-HBc as the sole HBV marker seems to be a risk factor for reactivation after autologous HSCT. Lamivudine prophylaxis in HbsAg-positive patients continues to be effective. PMID:20380010

  18. Proliferation and differentiation potential of mouse adult hepatic progenitor cells cultured in vitro.

    Science.gov (United States)

    Song, Lujun; Wang, Hongshan; Gao, Xiaodong; Shen, Kuntang; Niu, Weixin; Qin, Xinyu

    2010-02-01

    This study aimed to isolate the stem cells or progenitors, if exist, from normal adult mouse liver and investigate their potential of proliferation and differentiation. Hepatocytes were isolated by modified two-step liver perfusion method and centrifugation, and then cultured in modified serumcontaining DMEM for observation more than 60 days. Immunofluorescence technique was applied to check the hepatocytes and to examine the formation of colonies with albumin, alpha-fetoprotein (AFP) and cytokeratin 19 (CK19). Results showed that some hepatocytes that were strongly positive for hepatocyte specific markers albumin on Day 1 in culture, could be activated at Days 2-3, followed by rapid proliferation and formation of colonies. The colonies could expand continually for more than 60 days. On Day 5, all the cells in the colony expressed hepatic stem cell (HSC) markers AFP. With the time of culture, some cells in colonies lost ability to divide at Days 13-15, and differentiated into cells which had a large cytoplasm and some two nuclei, similar to the appearance of mature hepatocytes morphologically. These differentiated cells demonstrated strong expression of albumin. Around Day 30, some big cells appeared in colonies and expressed bile duct cell marker CK19. Therefore, this subpopulation of mouse hepatocytes could acquire some characteristics of immature hepatocytes and showed the profile of hepatic progenitor cells with a high proliferating ability and bi-potential of differentiation. They were isolated from normal adult mouse, hence, named adult hepatic progenitor cells (AHPCs). Mouse AHPCs may be used as an HSC model for hepatocytes transplantation and hepatopathy study.

  19. Biology of the adult hepatic progenitor cell: "ghosts in the machine".

    Science.gov (United States)

    Darwiche, Houda; Petersen, Bryon E

    2010-01-01

    This chapter reviews some of the basic biological principles governing adult progenitor cells of the liver and the mechanisms by which they operate. If scientists were better able to understand the conditions that govern stem cell mechanics in the liver, it may be possible to apply that understanding in a clinical setting for use in the treatment or cure of human pathologies. This chapter gives a basic introduction to hepatic progenitor cell biology and explores what is known about progenitor cell-mediated liver regeneration. We also discuss the putative stem cell niche in the liver, as well as the signaling pathways involved in stem cell regulation. Finally, the isolation and clinical application of stem cells to human diseases is reviewed, along with the current thoughts on the relationship between stem cells and cancer. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Genz, Berit [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Thomas, Maria [Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart (Germany); Pützer, Brigitte M. [Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock (Germany); Siatkowski, Marcin; Fuellen, Georg [Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock (Germany); Vollmar, Brigitte [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany); Abshagen, Kerstin, E-mail: kerstin.abshagen@uni-rostock.de [Institute for Experimental Surgery, Rostock University Medical Center, Rostock (Germany)

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  1. The reprogrammed pancreatic progenitor-like intermediate state of hepatic cells is more susceptible to pancreatic beta cell differentiation.

    Science.gov (United States)

    Wang, Qiwei; Wang, Hai; Sun, Yu; Li, Shi-Wu; Donelan, William; Chang, Lung-Ji; Jin, Shouguang; Terada, Naohiro; Cheng, Henrique; Reeves, Westley H; Yang, Li-Jun

    2013-08-15

    Induced pluripotent stem cells (iPSCs) hold great promise for cell therapy. However, their low efficiency of lineage-specific differentiation and tumorigenesis severely hinder clinical translation. We hypothesized that reprogramming of somatic cells into lineage-specific progenitor cells might allow for large-scale expansion, avoiding the tumorigenesis inherent with iPSCs and simultaneously facilitating lineage-specific differentiation. Here we aimed at reprogramming rat hepatic WB cells, using four Yamanaka factors, into pancreatic progenitor cells (PPCs) or intermediate (IM) cells that have characteristics of PPCs. IM clones were selected based on their specific morphology and alkaline phosphatase activity and stably passaged under defined culture conditions. IM cells did not have iPSC properties, could be stably expanded in large quantity, and expressed all 14 genes that are used to define the PPC developmental stage. Directed differentiation of IM and WB cells by Pdx1-Ngn3-MafA (PNM) into pancreatic beta-like cells revealed that the IM cells are more susceptible to directed beta cell differentiation because of their open chromatin configuration, as demonstrated by expression of key pancreatic beta cell genes, secretion of insulin in response to glucose stimulation, and easy access to exogenous PNM proteins at the rat insulin 1 and Pdx1 promoters. This notion that IM cells are superior to their parental cells is further supported by the epigenetic demonstration of accessibility of Pdx1 and insulin 1 promoters. In conclusion, we have developed a strategy to derive and expand PPC cells from hepatic WB cells using conventional cell reprogramming. This proof-of-principal study may offer a novel, safe and effective way to generate autologous pancreatic beta cells for cell therapy of diabetes.

  2. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction

    Science.gov (United States)

    Yang, Yinli; Han, Qiuju; Hou, Zhaohua; Zhang, Cai; Tian, Zhigang; Zhang, Jian

    2017-01-01

    Evidence suggests that exosomes can transfer genetic material between cells. However, their roles in hepatitis B virus (HBV) infection remain unclear. Here, we report that exosomes present in the sera of chronic hepatitis B (CHB) patients contained both HBV nucleic acids and HBV proteins, and transferred HBV to hepatocytes in an active manner. Notably, HBV nucleic acids were detected in natural killer (NK) cells from both CHB patients and healthy donors after exposure to HBV-positive exosomes. Through real-time fluorescence microscopy and flow cytometry, 1,1'-dioctadecyl-3,3,3',3',-tetramethylindodicarbocyanine, 4-chlorobenzenesulfnate salt (DiD)-labeled exosomes were observed to interact with NK cells and to be taken up by NK cells, which was enhanced by transforming growth factor-β treatment. Furthermore, HBV-positive exosomes impaired NK-cell functions, including interferon (IFN)-γ production, cytolytic activity, NK-cell proliferation and survival, as well as the responsiveness of the cells to poly (I:C) stimulation. HBV infection suppressed the expression of pattern-recognition receptors, especially retinoic acid inducible gene I (RIG-I), on NK cells, resulting in the dampening of the nuclear factor κB(NF-κB) and p38 mitogen-activated protein kinase pathways. Our results highlight a previously unappreciated role of exosomes in HBV transmission and NK-cell dysfunction during CHB infection. PMID:27238466

  3. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction.

    Science.gov (United States)

    Yang, Yinli; Han, Qiuju; Hou, Zhaohua; Zhang, Cai; Tian, Zhigang; Zhang, Jian

    2017-05-01

    Evidence suggests that exosomes can transfer genetic material between cells. However, their roles in hepatitis B virus (HBV) infection remain unclear. Here, we report that exosomes present in the sera of chronic hepatitis B (CHB) patients contained both HBV nucleic acids and HBV proteins, and transferred HBV to hepatocytes in an active manner. Notably, HBV nucleic acids were detected in natural killer (NK) cells from both CHB patients and healthy donors after exposure to HBV-positive exosomes. Through real-time fluorescence microscopy and flow cytometry, 1,1'-dioctadecyl-3,3,3',3',-tetramethylindodicarbocyanine, 4-chlorobenzenesulfnate salt (DiD)-labeled exosomes were observed to interact with NK cells and to be taken up by NK cells, which was enhanced by transforming growth factor-β treatment. Furthermore, HBV-positive exosomes impaired NK-cell functions, including interferon (IFN)-γ production, cytolytic activity, NK-cell proliferation and survival, as well as the responsiveness of the cells to poly (I:C) stimulation. HBV infection suppressed the expression of pattern-recognition receptors, especially retinoic acid inducible gene I (RIG-I), on NK cells, resulting in the dampening of the nuclear factor κB(NF-κB) and p38 mitogen-activated protein kinase pathways. Our results highlight a previously unappreciated role of exosomes in HBV transmission and NK-cell dysfunction during CHB infection.

  4. Endogenous hepatitis C virus homolog fragments in European rabbit and hare genomes replicate in cell culture.

    Directory of Open Access Journals (Sweden)

    Eliane Silva

    Full Text Available Endogenous retroviruses, non-retroviral RNA viruses and DNA viruses have been found in the mammalian genomes. The origin of Hepatitis C virus (HCV, the major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma in humans, remains unclear since its discovery. Here we show that fragments homologous to HCV structural and non-structural (NS proteins present in the European rabbit (Oryctolagus cuniculus and hare (Lepus europaeus genomes replicate in bovine cell cultures. The HCV genomic homolog fragments were demonstrated by RT-PCR, PCR, mass spectrometry, and replication in bovine cell cultures by immunofluorescence assay (IFA and immunogold electron microscopy (IEM using specific MAbs for HCV NS3, NS4A, and NS5 proteins. These findings may lead to novel research approaches on the HCV origin, genesis, evolution and diversity.

  5. Effect of recombinant human growth hormone and interferon gamma on hepatic collagen synthesis and proliferation of hepatic stellate cells in cirrhotic rats.

    Science.gov (United States)

    Chen, Yong-Hua; Du, Bing-Qing; Zheng, Zhen-Jiang; Xiang, Guang-Ming; Liu, Xu-Bao; Mai, Gang

    2012-06-01

    Fibrosis plays a key role in the development of liver cirrhosis. In this study, we investigated the effect of growth hormone and interferon gamma on hepatic collagen synthesis and the proliferation of hepatic stellate cells in a cirrhotic rat model. Cirrhosis was induced in rats using carbon tetrachloride. Rats were simultaneously treated with daily subcutaneous injections of recombinant human growth hormone or interferon gamma combined with recombinant human growth hormone. The control group was given saline. The relative content of type I and type IV collagen was assessed by indirect immunofluorescence analysis. Activated hepatic stellate cells were prepared from cirrhotic rats. The 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) method was used to assess the effects of recombinant human growth hormone and interferon gamma on these cells in vitro. Both qualitative and quantitative analysis showed that type I and type IV collagen secretion increased with time after recombinant human growth hormone administration and was significantly higher than control and recombinant human growth hormone combined with interferon gamma administration. In vitro, recombinant human growth hormone significantly stimulated hepatic stellate cell proliferation in a concentration-dependent manner (10(-3)-10(-1) mg/100 μL), and interferon gamma (10(-2)-10(-1) μg/100 μL) significantly inhibited their growth compared to the control group. Interferon gamma combined with recombinant human growth hormone eliminated this growth-promoting effect to a certain degree in a concentration-dependent manner (10(-1) μg/100 μL, P0.05) and a time-dependent manner (Pgrowth hormone increased collagen secretion in cirrhotic rats in vivo and promoted the proliferation of hepatic stellate cells from cirrhotic rats in vitro. It is possible that concurrent interferon gamma therapy can offset these side-effects of recombinant human growth hormone.

  6. Hepatosplenic Gamma/DeltaT-Cell Lymphoma Masquerading as Alcoholic Hepatitis and Methadone Withdrawal

    Directory of Open Access Journals (Sweden)

    H.A. Lopez Morra

    2007-09-01

    Full Text Available Hepatosplenic gamma/delta T-cell lymphoma is a rare neoplasm of mature gamma/delta T-cells with sinusoidal infiltration of spleen, liver, and bone marrow. Patients are predominantly adolescent and young adult males and usually present with marked hepatosplenomegaly. Pancytopenia is another common finding. Despite an initial response to treatment, patients have a median survival of one to two years. In this report, we document a case of alcoholic hepatitis and methadone withdrawal masquerading unsuspected, hepatosplenic gamma/delta T-cell lymphoma with unusual CD20 positivity.

  7. T-cell exhaustion in chronic hepatitis B infection: current knowledge and clinical significance

    Science.gov (United States)

    Ye, B; Liu, X; Li, X; Kong, H; Tian, L; Chen, Y

    2015-01-01

    Hepatitis B virus (HBV) infection is the major cause of inflammatory liver disease, of which the clinical recovery and effective anti-viral therapy is associated with the sustained viral control of effector T cells. In humans, chronic HBV infection often shows weak or absent virus-specific T-cell reactivity, which is described as the ‘exhaustion' state characterized by poor effector cytotoxic activity, impaired cytokine production and sustained expression of multiple inhibitory receptors, such as programmed cell death-1 (PD-1), lymphocyte activation gene-3, cytotoxic T lymphocyte-associated antigen-4 and CD244. As both CD4+ and CD8+ T cells participate in the immune responses against chronic hepatitis virus through distinct manners, compelling evidences have been proposed, which restore the anti-viral function of these exhausted T cells by blocking those inhibitory receptors with its ligand and will pave the way for the development of more effective immunotherapeutic and prophylactic strategies for the treatment of chronic infectious diseases. A large number of studies have stated the essentiality of T-cell exhaustion in virus-infected diseases, such as LCMV, hepatitis C virus (HCV), human immunodeficiency virus infections and cancers. Besides, the functional restoration of HCV- and HIV-specific CD8+ T cells by PD-1 blockade has already been repeatedly verified, and also for the immunological control of tumors in humans, blocking the PD-1 pathway could be a major immunotherapeutic strategy. Although the specific molecular pathways of T-cell exhaustion remain ambiguous, several transcriptional pathways have been implicated in T-cell exhaustion recently; among them Blimp-1, T-bet and NFAT2 were able to regulate exhausted T cells during chronic viral infection, suggesting a distinct lineage fate for this sub-population of T cells. This paper summarizes the current literature relevant to T-cell exhaustion in patients with HBV-related chronic hepatitis, the options

  8. Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation.

    Directory of Open Access Journals (Sweden)

    Nicole Testerink

    Full Text Available Activation of hepatic stellate cells has been recognized as one of the first steps in liver injury and repair. During activation, hepatic stellate cells transform into myofibroblasts with concomitant loss of their lipid droplets (LDs and production of excessive extracellular matrix. Here we aimed to obtain more insight in the dynamics and mechanism of LD loss. We have investigated the LD degradation processes in rat hepatic stellate cells in vitro with a combined approach of confocal Raman microspectroscopy and mass spectrometric analysis of lipids (lipidomics. Upon activation of the hepatic stellate cells, LDs reduce in size, but increase in number during the first 7 days, but the total volume of neutral lipids did not decrease. The LDs also migrate to cellular extensions in the first 7 days, before they disappear. In individual hepatic stellate cells. all LDs have a similar Raman spectrum, suggesting a similar lipid profile. However, Raman studies also showed that the retinyl esters are degraded more rapidly than the triacylglycerols upon activation. Lipidomic analyses confirmed that after 7 days in culture hepatic stellate cells have lost most of their retinyl esters, but not their triacylglycerols and cholesterol esters. Furthermore, we specifically observed a large increase in triacylglycerol-species containing polyunsaturated fatty acids, partly caused by an enhanced incorporation of exogenous arachidonic acid. These results reveal that lipid droplet degradation in activated hepatic stellate cells is a highly dynamic and regulated process. The rapid replacement of retinyl esters by polyunsaturated fatty acids in LDs suggests a role for both lipids or their derivatives like eicosanoids during hepatic stellate cell activation.

  9. Mitophagy Controls the Activities of Tumor Suppressor p53 to Regulate Hepatic Cancer Stem Cells.

    Science.gov (United States)

    Liu, Kai; Lee, Jiyoung; Kim, Ja Yeon; Wang, Linya; Tian, Yongjun; Chan, Stephanie T; Cho, Cecilia; Machida, Keigo; Chen, Dexi; Ou, Jing-Hsiung James

    2017-10-19

    Autophagy is required for benign hepatic tumors to progress into malignant hepatocellular carcinoma. However, the mechanism is unclear. Here, we report that mitophagy, the selective removal of mitochondria by autophagy, positively regulates hepatic cancer stem cells (CSCs) by suppressing the tumor suppressor p53. When mitophagy is enhanced, p53 co-localizes with mitochondria and is removed by a mitophagy-dependent manner. However, when mitophagy is inhibited, p53 is phosphorylated at serine-392 by PINK1, a kinase associated with mitophagy, on mitochondria and translocated into the nucleus, where it binds to the NANOG promoter to prevent OCT4 and SOX2 transcription factors from activating the expression of NANOG, a transcription factor critical for maintaining the stemness and the self-renewal ability of CSCs, resulting in the reduction of hepatic CSC populations. These results demonstrate that mitophagy controls the activities of p53 to maintain hepatic CSCs and provide an explanation as to why autophagy is required to promote hepatocarcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy.

    Science.gov (United States)

    Zhang, Zhengping; Wang, Chunming; Zha, Yinhe; Hu, Wei; Gao, Zhongfei; Zang, Yuhui; Chen, Jiangning; Zhang, Junfeng; Dong, Lei

    2015-03-24

    Strategies to modify nanoparticles with biological ligands for targeted drug delivery in vivo have been widely studied but met with limited clinical success. A possible reason is that, in the blood circulation, serum proteins could rapidly form a layer of protein "corona" on the vehicle surface, which might block the modified ligands and hamper their targeting functions. We speculate that strategies for drug delivery can be designed based upon elegant control of the corona formation on the vehicle surfaces. In this study, we demonstrate a retinol-conjugated polyetherimine (RcP) nanoparticle system that selectively recruited the retinol binding protein 4 (RBP) in its corona components. RBP was found to bind retinol, and direct the antisense oligonucleotide (ASO)-laden RcP carrier to hepatic stellate cells (HSC), which play essential roles in the progression of hepatic fibrosis. In both mouse fibrosis models, induced by carbon tetrachloride (CCl4) and bile duct ligation (BDL), respectively, the ASO-laden RcP particles effectively suppressed the expression of type I collagen (collagen I), and consequently ameliorated hepatic fibrosis. Such findings suggest that this delivery system, designed to exploit the power of corona proteins, can serve as a promising tool for targeted delivery of therapeutic agents for the treatment of hepatic fibrosis.

  11. Enhanced Hepatic Functions of Genetically Modified Mouse Hepatoma Cells by Spheroid Culture for Drug Toxicity Screening.

    Science.gov (United States)

    Sarkar, Joyita; Kumari, Jyoti; Tonello, Jane M; Kamihira, Masamichi; Kumar, Ashok

    2017-10-01

    While hepatic cell lines are mainly used for in vitro drug induced toxicity studies, they exhibit limited functionalities. To overcome this, the authors have employed genetically engineered mouse hepatoma cells, Hepa/8F5, wherein expression of liver enriched transcription factors is induced by doxycycline leading to increased functionality. Further enhancement in functionality is achieved by spheroid culture in a previously developed 3D cell culture platform. Cells are seeded in presence of temperature-responsive poly(N-isopropylacrylamide) on poly(N-isopropylacrylamide--co-gelatin) cryogel scaffold based high throughput platform. Cells seeded in presence of poly(N-isopropylacrylamide) and induced with doxycycline exhibited highest functionalities. There is an increase of ≈26, 36, and 39% in albumin secretion, ammonia removal, and CYP3A4 activity, respectively. Morphological analysis showed arrest in cell proliferation and enlarged nucleus in presence of doxycyline and spheroid formation in presence of poly(N-isopropylacrylamide). Drug induced liver toxicity studies revealed that cells induced with doxycycline are resistive to tamoxifen but sensitive to acetaminophen whereas, cultures initiated in presence of poly(N-isopropylacrylamide) are resistive to both the drugs which is indicative of diffusional barrier of the spheroids. The authors conclude that Hepa/8F5 cells show enhanced functionality in cryogel based spheroid culture platform which can be successfully used for high throughput screening of hepatic toxicity in vitro. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A novel porcine cell culture based protocol for the propagation of hepatitis E virus

    Directory of Open Access Journals (Sweden)

    Walter Chingwaru

    2016-08-01

    Full Text Available Objective: To present a comprehensive protocol for the processing of hepatitis E virus (HEV infected samples and propagation of the virus in primary cell cultures. Methods: Hepatitis E was extracted from porcine liver and faecal samples following standard protocols. The virus was then allowed to attach in the presence of trypsin to primary cells that included porcine and bovine intestinal epithelial cells and macrophages over a period of up to 3 h. The virus was propagated by rotational passaging through the cell cultures. Propagation was confirmed by immunoblotting. Results: We developed a comprehensive protocol to propagate HEV in porcine cell model that includes (i rotational culturing of the virus between porcine cell types, (ii pre-incubation of infected cells for 210 min, (iii use of a semi-complete cell culture medium supplemented with trypsin (0.33 µg/mL and (iv the use of simple immunoblot technique to detect the amplified virus based on the open reading frame 2/3. Conclusions: This protocol opens doors towards systematic analysis of the mechanisms that underlie the pathogenesis of HEV in vitro. Using our protocol, one can complete the propagation process within 6 to 9 d.

  13. Enzyme-activated nanoconjugates for tunable release of doxorubicin in hepatic cancer cells.

    Science.gov (United States)

    Medina, Scott H; Chevliakov, Maxim V; Tiruchinapally, Gopinath; Durmaz, Yasemin Yuksel; Kuruvilla, Sibu P; Elsayed, Mohamed E H

    2013-06-01

    We report the synthesis of a series of aromatic azo-linkers (L1-L4), which are selectively recognized and cleaved by azoreductase enzymes present in the cytoplasm of hepatic cancer cells via a NADPH-dependent mechanism. We utilized L1-L4 azo-linkers to conjugate doxorubicin to generation 5 (G5) of poly(amidoamine) dendrimers to prepare G5-L(x)-DOX nanoconjugates. We incorporated electron-donating oxygen (O) or nitrogen (N) groups in the para and ortho positions of L1-L4 azo-linkers to control the electronegativity of G5-L(x)-DOX conjugates and investigated their cleavage by azoreductase enzymes and the associated release of loaded DOX molecules. Hammett σ values of G5-L(x)-DOX conjugates ranged from -0.44 to -1.27, which is below the reported σ threshold (-0.37) required for binding to azoreductase enzymes. Results show that incubation of G5-L1-DOX (σ = -0.44), G5-L2-DOX (σ = -0.71), G5-L3-DOX (σ = -1.00), and G5-L4-DOX (σ = -1.27) conjugates with human liver microsomal (HLM) enzymes and the S9 fraction isolated from HepG2 hepatic cancer cells results in release of 4%-8%, 17%, 60%, and 100% of the conjugated DOX molecules, respectively. These results show that increasing the electronegativity (i.e. lower σ value) of L1-L4 azo-linkers increases their susceptibility to cleavage by azoreductase enzymes. Intracellular cleavage of G5-L(x)-DOX nanoconjugates, release of conjugated DOX molecules, and cytotoxicity correlated with conjugate's electronegativity (σ value) was investigated, with G5-L4-DOX conjugate exhibiting the highest toxicity towards hepatic cancer cells with an IC50 of 13 nm ± 5 nm in HepG2 cells. Cleavage of G5-L(x)-DOX conjugates was specific to hepatic cancer cells as shown by low non-specific DOX release upon incubation with non-enzymatic insect proteins and the S9 fraction isolated from rat cardiomyocytes. These enzyme-activated G5-L(x)-DOX conjugates represent a drug delivery platform that can achieve tunable and cell-specific release of

  14. effect of hepatitis-b virus co-infection on cd4 cell count and liver ...

    African Journals Online (AJOL)

    2014-06-01

    Jun 1, 2014 ... 1). Effect of Hepatitis B virus co-infection on CD4 cell count and liver function of HIV infected patients. The mean CD4 count of all the patients was 212. ±188/µl. The mean serum levels for ALT, AST, ALP, total protein and albumin for the study population were. 17±23IU/L, 25± 24IU/L, 56± 64IU/L, 75±9g/l and.

  15. Virion-Independent Transfer of Replication-Competent Hepatitis C Virus RNA between Permissive Cells

    OpenAIRE

    Longatti, Andrea; Boyd, Bryan; Chisari, Francis V.

    2014-01-01

    In this study, we show that replication-competent subgenomic hepatitis C virus (HCV) RNA can be transferred to permissive Huh7 cells, leading to the establishment of viral RNA replication. Further, we show that these events are mediated by exosomes rather than infectious virus particles. If similar events occur in vivo, this could represent a novel, albeit inefficient, mechanism of viral spread and immune escape.

  16. Virion-independent transfer of replication-competent hepatitis C virus RNA between permissive cells.

    Science.gov (United States)

    Longatti, Andrea; Boyd, Bryan; Chisari, Francis V

    2015-03-01

    In this study, we show that replication-competent subgenomic hepatitis C virus (HCV) RNA can be transferred to permissive Huh7 cells, leading to the establishment of viral RNA replication. Further, we show that these events are mediated by exosomes rather than infectious virus particles. If similar events occur in vivo, this could represent a novel, albeit inefficient, mechanism of viral spread and immune escape. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Kupffer cells interact with hepatitis B surface antigen in vivo and in vitro, leading to proinflammatory cytokine production and natural killer cell function

    NARCIS (Netherlands)

    Boltjes, Arjan; van Montfoort, Nadine; Biesta, Paula J; Op den Brouw, Marjoleine L; Kwekkeboom, Jaap; van der Laan, Luc J W; Janssen, Harry L A; Boonstra, André; Woltman, Andrea M

    2015-01-01

    BACKGROUND: Based on their localization, Kupffer cells (KCs) likely interact with hepatitis B virus (HBV). However, the role of KCs in inducing immunity toward HBV is poorly understood. Therefore, the interaction of hepatitis B surface antigen (HBsAg) and KCs, and possible functional consequences,

  18. Role and regulation of autophagy and apoptosis by nitric oxide in hepatic stellate cells during acute liver failure.

    Science.gov (United States)

    Jin, Li; Gao, Heng; Wang, JiuPing; Yang, ShuJuan; Wang, Jing; Liu, JingFeng; Yang, Yuan; Yan, TaoTao; Chen, Tianyan; Zhao, Yingren; He, Yingli

    2017-11-01

    We previously found that hepatic stellate cell activation induced by autophagy maintains the liver architecture to prevent collapse during acute liver failure. Nitric oxide has shown to induce hepatic stellate cell apoptosis. Whether and how nitric oxide is involved in acute liver failure and autophagy remains unclear. Acute liver failure patients were recruited to investigate the correlation between plasma nitric oxide levels and clinical features. Liver tissues were collected from chronic hepatitis patients by biopsy and from acute liver failure patients who had undergone liver transplantation. The expression of nitric oxide synthases and hepatic stellate cell activation (alpha-SMA), and autophagic activity (LC3) were investigated by immunohistochemistry. Autophagy and apoptosis were investigated by immunoblot analysis, confocal microscopy, and flow cytometry in hepatic stellate cells treated with nitric oxide donors. Plasma nitric oxide level was significantly increased in patients with acute liver failure compared to those with cirrhosis (53.60±19.74 μM vs 19.40±9.03 μM, Z=-7.384, Pfailure. At least some Nitric oxide was produced by overexpression of inducible nitric oxide synthases and endothelial nitric oxide synthases, but not neuronal nitric oxide synthases in the liver tissue. In vivo observation revealed that autophagy was inhibited in hepatic stellate cells based on decreased LC3 immunostaining, and in vitro experiments demonstrated that Nitric oxide can inhibit autophagy. Moreover, nitric oxide promoted hepatic stellate cell apoptosis, which was rescued by an autophagy inducer. Increased nitric oxide synthases/ nitric oxide promotes apoptosis through autophagy inhibition in hepatic stellate cells during acute liver failure, providing a novel strategy for the treatment of patients with acute liver failure. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Receptor-mediated transport of oligodeoxynucleotides into hepatic cells.

    Science.gov (United States)

    Reinis, M; Damková, M; Korec, E

    1993-04-01

    Receptor-mediated endocytosis was employed for a highly efficient transport of oligodeoxynucleotides into hepatoma cell line PLC/PRF/5. The oligodeoxynucleotides were bound to the asialofetuin-poly-L-lysine conjugate and this complex was internalized by the cells via asialoglycoprotein receptor, an endocytic receptor unique for hepatocytes. Binding of the oligodeoxynucleotides to the complex dramatically increased their cellular uptake more than 20-fold. Chloroquine, a lysosomatropic agent, further increased the transport of the complex but not of the free oligodeoxynucleotides.

  20. Graptopetalum paraguayense ameliorates chemical-induced rat hepatic fibrosis in vivo and inactivates stellate cells and Kupffer cells in vitro.

    Directory of Open Access Journals (Sweden)

    Li-Jen Su

    Full Text Available BACKGROUND: Graptopetalum paraguayense (GP is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN- and carbon tetrachloride (CCl(4-induced liver injury rats. METHODS: Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs and Kupffer cells, respectively, were evaluated. RESULTS: Oral administration of MGP significantly alleviated DMN- or CCl(4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression. CONCLUSIONS: The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis.

  1. Prevalence of Hepatitis B surface antigen in children with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Baba Jibrin

    2014-01-01

    Full Text Available Background: Hepatitis B virus is known to be endemic in Africa. The seroepidemiological studies of HBV have shown that infection commonly occurs in childhood in Africa resulting in an increased tendency to chronicity. This cross-sectional study was undertaken to determine the seroprevalence of hepatitis B surface antigen among pediatric patients with homozygous hemoglobin S. Materials and Methods: Three hundred sickle cell anemia children aged 6 months-15 years (both in steady state and in crises attending the SCA clinic and on admission in emergency pediatrics unit and pediatrics medical ward, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria, were screened for hepatitis B infection using HBsAg as marker of infection. The sensitive enzyme linked immunosorbent assay method was used for detection of the marker. Three hundred children with minor illness attending pediatrics outpatient department and on admission in EPU/PMW for various treatment in the same hospital served as gender- and age-marched controls cohorts. Results: The sero-prevalence of HBsAg seropositivity for hepatitis B virus infection among SCA children was 17.3% (52/300 compared to 10.7% (32/300 of the control (P = 0.0875. The peak prevalence age group for HBV infection among SCA children was in the age group 1.1-5.0 years (6% compared to 10.1-15.0 years (4.7% in the control. Risk factors for HBV infection such as blood transfusion, traditional scarification/circumcision/uvulectomy, and tattooing did not significantly affect the prevalence of HBV infection in both SCA children and controls. Conclusion: Hepatitis B infection is common in Sokoto. The need for strict adherence to HBV immunization and further community-based studies on the risk factors are recommended.

  2. Rosmarinic acid attenuates hepatic fibrogenesis via suppression of hepatic stellate cell activation/proliferation and induction of apoptosis.

    Science.gov (United States)

    El-Lakkany, Naglaa M; El-Maadawy, Walaa H; Seif El-Din, Sayed H; Hammam, Olfat A; Mohamed, Salwa H; Ezzat, Shahira M; Safar, Marwa M; Saleh, Samira

    2017-05-01

    To investigate the antifibrotic role of rosmarinic acid (RA), a natural polyphenolic compound, on HSCs activation/proliferation and apoptosis in vitro and in vivo. The impact of RA on stellate cell line (HSC-T6) proliferation, activation and apoptosis was assessed along with its safety on primary hepatocytes. In vivo, rats were divided into: (i) normal; (ii) thioacetamide (TAA)-intoxicated rats for 12 weeks; (iii) TAA + silymarin or (iv) TAA + RA. At the end of experiment, liver functions, oxidative stress, inflammatory and profibrogenic markers, tissue inhibitor metalloproteinases type-1 (TIMP-1) and hydroxyproline (HP) levels were evaluated. Additionally, liver histopathology and immunohistochemical examinations of alpha-smooth muscle actin (α-SMA), caspase-3 and proliferation cellular nuclear antigen (PCNA) were determined. RA exhibited anti-proliferative effects on cultured HSCs in a time and concentration dependent manner showing an IC50 of 276 μg/mL and 171 μg/mL for 24 h and 48 h, respectively, with morphological reversion of activated stellate cell morphology to quiescent form. It significantly improved ALT, AST, oxidative stress markers and reduced TIMP-1, HP levels, inflammatory markers and fibrosis score (S1 vs S4). Furthermore, reduction in α-SMA plus elevation in caspase-3 expressions of HSCs in vitro and in vivo associated with an inhibition in proliferation of damaged hepatocytes were recorded. RA impeded the progression of liver fibrosis through inhibition of HSCs activation/proliferation and induction of apoptosis with preservation of hepatic architecture. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  3. Natural Killer Cell Functional Dichotomy: a Feature of Chronic Viral Hepatitis ?

    Directory of Open Access Journals (Sweden)

    Mario Umberto Mondelli

    2012-11-01

    Full Text Available NK cells are involved in innate immune responses to viral infections either via direct cytotoxicity which destroys virus-infected cells or production of immunoregulatory cytokines which modulate adaptive immunity and directly inhibit virus replication. These functions are mediated by different NK subpopulations, with cytotoxicity being generally performed by CD56dim NK cells, whereas CD56bright NK cells are mainly involved in cytokine secretion. NK functional defects are usually combined so that impaired degranulation is often associated with deficient cytokine production. Innate immunity is thought to be relevant in the control of hepatitis virus infections such as HBV and HCV, and recent findings reproducibly indicate that NK cells in chronic viral hepatitis are characterized by a functional dichotomy, featuring a conserved or enhanced cytotoxicity and a reduced production of IFN-gamma and TNF-alfa. In chronic HCV infection this appears to be caused by altered IFN-alfa signaling resulting from increased STAT1 phosphorylation, which polarizes NK cells toward cytotoxicity, and a concomitantly reduced IFN-alfa induced STAT4 phosphorylation yielding reduced IFN-gamma mRNA levels. These previously unappreciated findings are compatible on the one hand with the inability to clear HCV and HBV from the liver and on the other they may contribute to understand why these patients are often resistant to interferon (IFNalfa-based therapies.

  4. Adult liver stem cells in hepatic regeneration and cancer

    NARCIS (Netherlands)

    Nantasanti, Sathidpak

    2015-01-01

    An alternative source of livers for transplantation in patients with (genetic) liver diseases and liver failure is needed because liver donors are scarce. HPC-derived hepatocyte-like cells could be one of the options. Because dogs and humans share liver-pathologies and disease-pathways, the dog is

  5. Sinusoidal endothelial cell and hepatic stellate cell phenotype correlates with stage of fibrosis in chronic liver disease in dogs.

    Science.gov (United States)

    Vince, Andrew R; Hayes, M Anthony; Jefferson, Barbara J; Stalker, Margaret J

    2016-09-01

    We evaluated the extent of hepatic fibrosis in chronic liver disease of dogs using a modification of Ishak's staging criteria for human chronic liver disease, and examined the association of stage of fibrosis with immunophenotypic markers of transdifferentiation of hepatic sinusoidal endothelial cells and hepatic stellate cells. Formalin-fixed, paraffin-embedded, hematoxylin and eosin-stained liver biopsy specimens from 45 case dogs with chronic liver disease and 55 healthy control dogs were scored for the presence and extent of fibrosis. This stage score for fibrosis strongly correlated with upregulated von Willebrand factor (vWF) expression in lobular sinusoidal endothelial cells (Spearman correlation coefficient [SCC] = 0.57, p < 0.05). Immunoreactivity for vWF factor was identified in 68.9% of case biopsies, varying in distribution from periportal to diffuse, whereas vWF immunoreactivity was identified in only 14.5% of control specimens, and was restricted to the immediate periportal sinusoids. The majority of both case and control biopsies exhibited similar prominent lobular perisinusoidal expression of alpha-smooth muscle actin (α-SMA). A minority of specimens (17.8% of case biopsies, 1.8% of control biopsies) exhibited low perisinoidal α-SMA expression, and there was a weak negative correlation between α-SMA expression and stage of fibrosis (SCC = -0.29, p = 0.0037). These results document a method for staging the severity of fibrosis in canine liver biopsies, and show a strong association between fibrosis and increased expression of vWF in hepatic sinusoidal endothelial cells. © 2016 The Author(s).

  6. An occult hepatitis B-derived hepatoma cell line carrying persistent nuclear viral DNA and permissive for exogenous hepatitis B virus infection.

    Directory of Open Access Journals (Sweden)

    Chih-Lang Lin

    Full Text Available Occult hepatitis B virus (HBV infection is defined as persistence of HBV DNA in liver tissues, with or without detectability of HBV DNA in the serum, in individuals with negative serum HBV surface antigen (HBsAg. Despite accumulating evidence suggesting its important clinical roles, the molecular and virological basis of occult hepatitis B remains unclear. In an attempt to establish new hepatoma cell lines, we achieved a new cell line derived from a hepatoma patient with chronic hepatitis C virus (HCV and occult HBV infection. Characterization of this cell line revealed previously unrecognized properties. Two novel human hepatoma cell lines were established. Hep-Y1 was derived from a male hepatoma patient negative for HCV and HBV infection. Hep-Y2 was derived from a female hepatoma patient suffering from chronic HCV and occult HBV infection. Morphological, cytogenetic and functional studies were performed. Permissiveness to HBV infection was assessed. Both cell lines showed typical hepatocyte-like morphology under phase-contrast and electron microscopy and expressed alpha-fetoprotein, albumin, transferrin, and aldolase B. Cytogenetic analysis revealed extensive chromosomal anomalies. An extrachromosomal form of HBV DNA persisted in the nuclear fraction of Hep-Y2 cells, while no HBsAg was detected in the medium. After treated with 2% dimethyl sulfoxide, both cell lines were permissive for exogenous HBV infection with transient elevation of the replication intermediates in the cytosol with detectable viral antigens by immunoflurescence analysis. In conclusions, we established two new hepatoma cell lines including one from occult HBV infection (Hep-Y2. Both cell lines were permissive for HBV infection. Additionally, Hep-Y2 cells carried persistent extrachromosomal HBV DNA in the nuclei. This cell line could serve as a useful tool to establish the molecular and virological basis of occult HBV infection.

  7. Phytomedicinal Role of Pithecellobium dulce against CCl4-mediated Hepatic Oxidative Impairments and Necrotic Cell Death

    Directory of Open Access Journals (Sweden)

    Prasenjit Manna

    2011-01-01

    Full Text Available Present study investigates the beneficial role of the aqueous extract of the fruits of Pithecellobium dulce (AEPD against carbon tetrachloride (CCl4-induced hepatic injury using a murine model. AEPD has been found to possess free radical (DPPH, hydroxyl and superoxide scavenging activity in cell-free system. CCl4 exposure increased the activities of various serum maker enzymes and intracellular reactive oxygen species (ROS production. In line with these findings, we also observed that CCl4 intoxication increased the lipid peroxidation and protein carbonylation accompanied by decreased intracellular antioxidant defense, activity of cytochrome P450 and CYP2E1 expression. DNA fragmentation and flow cytometric analyses revealed that CCl4 exposure caused hepatic cell death mainly via the necrotic pathway. Treatment with AEPD both pre- and post-toxin exposure protected the organ from CCl4-induced hepatic damage. Histological findings also support our results. A well-known antioxidant vitamin C was included in this study to compare the antioxidant potency of AEPD. Combining all, results suggest that AEPD protects murine liver against CCl4-induced oxidative impairments probably via its antioxidative property.

  8. Potential cellular receptors involved in hepatitis C virus entry into cells

    Directory of Open Access Journals (Sweden)

    Muellhaupt Beat

    2005-04-01

    Full Text Available Abstract Hepatitis C virus (HCV infects hepatocytes and leads to permanent, severe liver damage. Since the genomic sequence of HCV was determined, progress has been made towards understanding the functions of the HCV-encoded proteins and identifying the cellular receptor(s responsible for adsorption and penetration of the virus particle into the target cells. Several cellular receptors for HCV have been proposed, all of which are associated with lipid and lipoprotein metabolism. This article reviews the cellular receptors for HCV and suggests a general model for HCV entry into cells, in which lipoproteins play a crucial role.

  9. Successful Stem Cell Transplantation in a Patient with Pretransplant Hepatic Inflammatory Pseudotumour

    Directory of Open Access Journals (Sweden)

    Sanjay de Mel

    2016-01-01

    Full Text Available Inflammatory pseudotumours (IPT are rare benign neoplasms of unknown aetiology. We present a case of hepatic IPT which was incidentally discovered in a patient with relapsed B-acute lymphoblastic leukaemia (B-ALL undergoing pretransplant workup. After investigation to exclude an infective cause she underwent a reduced intensity conditioning stem cell transplant (SCT successfully and currently remains well and in remission. On repeat liver MRI after SCT, the IPT was seen to be resolving. To the best of our knowledge this is the first report of an adult patient with hepatic IPT successfully undergoing SCT. The reduction in size of the IPT after SCT also suggests an inflammatory rather than an infective aetiology for IPT.

  10. Altered natural killer cells subsets distribution in children with hepatitis C following vertical transmission.

    Science.gov (United States)

    Indolfi, G; Mangone, G; Moriondo, M; Serranti, D; Bartolini, E; Azzari, C; Resti, M

    2016-01-01

    Natural killer (NK) cells number, phenotypes and function have been evaluated in many studies in adults with hepatitis C as compared with healthy controls or dynamically during interferon-based and interferon-free treatments. Overall, in adults with chronic infection number of circulating NK cells has been reported to be lower when compared to spontaneous resolvers and healthy subjects. Different studies yielded inconsistent findings due to patient and virus heterogeneity. To evaluate NK cells in children according to the different outcomes of the infection. In this cross-sectional study, we examined numbers and phenotypes of circulating NK cells from a homogenous cohort of Italian children with vertically acquired hepatitis C. We compared 31 children who developed chronic infection with nine who presented spontaneous clearance and 13 controls. CD56(+) CD3(-) NK cell numbers were consistently lower in the persistently infected group (P = 0.03 and 0.04). This decrease was due to depletions of CD56(dim) NK cells (P = 0.03 chronic infection vs. spontaneous clearance), while CD56(bright) NK cells were expanded (P = 0.03). No significant difference was found in the frequencies of CD56(+) CD16(+) and CD56(dim) CD16(-) cells. Perforin expression was higher in children with chronic infection (P = 0.03 vs. spontaneous clearance). Altered NK cells number and phenotypes could impact the outcome of HCV infection in children following vertical transmission. This study suggests for the first time that NK cells cytolytic function, featured by CD56(dim) cells, contributes to the elimination of HCV in children presenting spontaneous clearance. © 2015 John Wiley & Sons Ltd.

  11. [Effects of vitamin D analogue EB1089 on proliferation and apoptosis of hepatic carcinoma cells].

    Science.gov (United States)

    Luo, Wen-jing; Chen, Jing-yuan; Xu, Wen; Zhao, Fang; Chen, Yao-ming; Shen, Xue-feng

    2004-11-01

    This study aimed at investigating the effects of vitamin D analogue EB1089 on the proliferation and apoptosis of hepatic carcinoma cells. Hepatic carcinoma cell strain G(2) (Hep-G(2)) in which prominent vitamin D receptor (VDR) mRNA could be expressed and the cell strain T (HCC-T) negative in VDR gene expression were incubated in culture media with 100 nmol/L, 10 nmol/L and 1 nmol/L EB1089 for 2 d, 4 d and 6 d, respectively. Survival and proliferation of the cells were detected by blue tetrazolium colorimetric test and plate clone-forming test, the VDR mRNA expression was determined by reverse transcription-polymerase chain reaction (RT-PCR) and apoptosis of the cells was detected by flow cytometry (FCM) and electron microscopy. EB1089 could inhibit the proliferation of hepatocellular cell line Hep-G(2) that expressed prominent vitamin D receptor mRNA, the inhibitory rate is 17.5% approximately 72.1%. On the other hand, EB1089 had no anti-proliferative effect on hepatocellular cell line HCC-T in which the gene expression of vitamin D receptors was negative. The electron microscope results showed that EB1089 could induce apoptosis of hepatocarcinoma cells and the percentages of apoptotic cells measured by flow cytometer was 21.4%. Cell cycle progression was blocked at G(1) phase with EB1089. EB1089 could inhibit proliferation of human Hep-G(2), probably through VDR, and induce apoptosis of the cells.

  12. Efficient generation of hepatic cells from multipotent adult mouse germ-line stem cells using an OP9 co-culture system.

    Science.gov (United States)

    Streckfuss-Bömeke, Katrin; Jende, Jörg; Cheng, I-Fen; Hasenfuss, Gerd; Guan, Kaomei

    2014-02-01

    On the basis of their self-renewal capacity and their ability to differentiate into derivatives of all three germ layers, germ line-derived multipotent adult stem cells (maGSCs) from mouse testis might serve as one of preferable sources for pluripotent stem cells in regenerative medicine. In our study, we aimed for an efficient hepatic differentiation protocol that is applicable for both maGSCs and embryonic stem cells (ESCs). We attempted to accomplish this goal by using a new established co-culture system with OP9 stroma cells for direct differentiation of maGSCs and ESCs into hepatic cells. We found that the hepatic differentiation of maGSCs was induced by the OP9 co-culture system in comparison to the gelatin culture. Furthermore, we showed that the combination of OP9 co-culture with activin A resulted in the increased expression of endodermal and early hepatic markers Gata4, Sox17, Foxa2, Hnf4, Afp, and Ttr compared to differentiated cells on gelatin or on OP9 alone. Moreover, the hepatic progenitors were capable of differentiating further into mature hepatic cells, demonstrated by the expression of liver-specific markers Aat, Alb, Tdo2, Krt18, Krt8, Krt19, Cps1, Sek, Cyp7a1, Otc, and Pah. A high percentage of maGSC-derived hepatic progenitors (51% AFP- and 61% DLK1-positive) and mature hepatic-like cells (26% ALB-positive) were achieved using this OP9 co-culture system. These generated hepatic cells successfully demonstrated in vitro functions associated with mature hepatocytes, including albumin and urea secretion, glycogen storage, and uptake of low-density lipoprotein. The established co-culture system for maGSCs into functional hepatic cells might serve as a suitable model to delineate the differentiation process for the generation of high numbers of mature hepatocytes in humans without genetic manipulations and make germ line-derived stem cells a potential autologous and alternative cell source for hepatic transplants in metabolic liver disorders.

  13. Rat hepatic stellate cells alter the gene expression profile and promote the growth, migration and invasion of hepatocellular carcinoma cells.

    Science.gov (United States)

    Wang, Zhi-Ming; Zhou, Le-Yuan; Liu, Bin-Bin; Jia, Qin-An; Dong, Yin-Ying; Xia, Yun-Hong; Ye, Sheng-Long

    2014-10-01

    The aim of the present study was to examine the effects of activated hepatic stellate cells (HSCs) and their paracrine secretions, on hepatocellular cancer cell growth and gene expression in vitro and in vivo. Differentially expressed genes in McA-RH7777 hepatocellular carcinoma (HCC) cells following non-contact co-culture with activated stellate cells, were identified by a cDNA microarray. The effect of the co-injection of HCC cells and activated HSCs on tumor size in rats was also investigated. Non-contact co-culture altered the expression of 573 HCC genes by >2-fold of the control levels. Among the six selected genes, ELISA revealed increased protein levels of hepatic growth factor, matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9). Incubation of HCC cells with medium conditioned by activated HSCs significantly increased the proliferation rate (Pexpression profile of HCC cells and affected their growth, migration and invasiveness. The results from the present study indicate that the interaction between the activated HSCs and HCC has an important role in the development of HCC.

  14. Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen

    Directory of Open Access Journals (Sweden)

    Arnaud Carpentier

    2016-05-01

    Full Text Available The establishment of protocols to differentiate human pluripotent stem cells (hPSCs including embryonic (ESC and induced pluripotent (iPSC stem cells into functional hepatocyte-like cells (HLCs creates new opportunities to study liver metabolism, genetic diseases and infection of hepatotropic viruses (hepatitis B and C viruses in the context of specific genetic background. While supporting efficient differentiation to HLCs, the published protocols are limited in terms of differentiation into fully mature hepatocytes and in a smaller-well format. This limitation handicaps the application of these cells to high-throughput assays. Here we describe a protocol allowing efficient and consistent hepatic differentiation of hPSCs in 384-well plates into functional hepatocyte-like cells, which remain differentiated for more than 3 weeks. This protocol affords the unique opportunity to miniaturize the hPSC-based differentiation technology and facilitates screening for molecules in modulating liver differentiation, metabolism, genetic network, and response to infection or other external stimuli.

  15. Hepatic B cells are readily activated by Toll‐like receptor‐4 ligation and secrete less interleukin‐10 than lymphoid tissue B cells

    National Research Council Canada - National Science Library

    Zhang, H; Stolz, D. B; Chalasani, G; Thomson, A. W

    2013-01-01

    ... their secretion of interleukin ( IL )‐10. While the liver is regarded both as an important immune organ and a tolerogenic environment, little is known about the functional biology of hepatic B cells...

  16. Glucocorticoids Have Opposing Effects on Liver Fibrosis in Hepatic Stellate and Immune Cells.

    Science.gov (United States)

    Kim, Kang Ho; Lee, Jae Man; Zhou, Ying; Harpavat, Sanjiv; Moore, David D

    2016-08-01

    Liver fibrosis is a reversible wound-healing process that is protective in the short term, but prolonged fibrotic responses lead to excessive accumulation of extracellular matrix components that suppresses hepatocyte regeneration, resulting in permanent liver damage. Upon liver damage, nonparenchymal cells including immune cells and hepatic stellate cells (HSCs) have crucial roles in the progression and regression of liver fibrosis. Here, we report differential roles of the glucocorticoid receptor (GR), acting in immune cells and HSCs, in liver fibrosis. In the carbon tetrachloride hepatotoxin-induced fibrosis model, both steroidal and nonsteroidal GR ligands suppressed expression of fibrotic genes and decreased extracellular matrix deposition but also inhibited immune cell infiltration and exacerbated liver injury. These counteracting effects of GR ligands were dissociated in mice with conditional GR knockout in immune cells (GR(LysM)) or HSC (GR(hGFAP)): the impacts of dexamethasone on immune cell infiltration and liver injury were totally blunted in GR(LysM) mice, whereas the suppression of fibrotic gene expression was diminished in GR(hGFAP) mice. The effect of GR activation in HSC was further confirmed in the LX-2 HSC cell line, in which antifibrotic effects were mediated by GR ligand inhibition of Sma and mad-related protein 3 (SMAD3) expression. We conclude that GR has differential roles in immune cells and HSCs to modulate liver injury and liver fibrosis. Specific activation of HSC-GR without alteration of GR activity in immune cells provides a potential therapeutic approach to treatment of hepatic fibrosis.

  17. Restoration of TLR3-activated myeloid dendritic cell activity leads to improved natural killer cell function in chronic hepatitis B virus infection

    NARCIS (Netherlands)

    E.T.T.L. Tjwa (Eric); G.W. van Oord (Gertine); P.J. Biesta (Paula); P.A. Boonstra (André); H.L.A. Janssen (Harry); A.M. Woltman (Andrea)

    2012-01-01

    textabstractThere is increasing evidence that the function of NK cells in patients with chronic hepatitis B (CHB) infection is impaired. The underlying mechanism for the impaired NK cell function is still unknown. Since myeloid dendritic cells (mDC) are potent inducers of NK cells, we investigated

  18. A Practical Approach to Immunotherapy of Hepatocellular Carcinoma Using T Cells Redirected Against Hepatitis B Virus

    Directory of Open Access Journals (Sweden)

    Sarene Koh

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC cells often have hepatitis B virus (HBV-DNA integration and can be targeted by HBV-specific T cells. The use of viral vectors to introduce exogenous HBV-specific T-cell receptors (TCR on T cells to redirect their specificity is complex and expensive to implement in clinical trials. Moreover, it raises safety concerns related to insertional mutagenesis and potential toxicity of long-lived HBV-specific T cells in patients with persistent infection. To develop a more practical and safer approach to cell therapy of HCC, we used electroporation of mRNA encoding anti-HBV TCR. Approximately 80% of CD8+ T cells expressed functional HBV TCR 24 hours postelectroporation, an expression efficiency much higher than that obtained by retroviral transduction (~18%. Antigen-specific cytokine production of electroporated T cells was efficient within 72-hour period, after which the redirected T cells lost their HBV-specific function. Despite this transient functionality, the TCR-electroporated T cells efficiently prevented tumor seeding and suppressed the growth of established tumors in a xenograft model of HCC. Finally, we established a method for large-scale TCR mRNA electroporation that yielded large numbers of highly functional clinical-grade anti-HBV T cells. This method represents a practical approach to cell therapy of HCC and its inherently self-limiting toxicity suggests potential for application in other HBV-related pathologies.

  19. THE STATE OF CELL MEDIATED IMMUNITY AMONG HEPATITIS B SURFACE ,ANTGENI CARRIERS IN IRAN,

    Directory of Open Access Journals (Sweden)

    A. MASSOUD

    1987-06-01

    Full Text Available Cell-mediated immune (CMI s t a t us and sub- popul at i ons o f pe r ipheral b l ood lymphocytes were investigated in one hundre d volunt a ry blood donors who were car r ier s of Ag • HE S A signi f i c ant decr e ase of t otal T-cells observed in HB Ag carri e rs as compared t o normal controls. The percenS t age o f active T-cells a nd B-lymphocytes did not d i f f e r signi f icant ly between the t wo groups ."nAddi t ion of aut ologous serum from HE Ag c a r r iers t o s t heir l ymphocyt e s reduced the numbe r of detectabl e cells in HE Ag carriers . This reduction coul d be due to the s presence of a r osette i nhi bitory f actor in their serum. Our studies demonstrated a failur e o f CMI among HB Ags car r i ers detected by the l e ukocyte migr ation i nhibition (LMI test. This failure cannot be attributed to the presence of HE Ag-AB complexes in their serum. It is s possible that specific failure of CMI allows the hepatitis B virus to remain harmless in carriers a Hepatitis B surface-antigen (HE Ag; Hepatitis Bs coreantigen (HE Ag and Hepatitis Be-antigen (HE Ag, c e have been established as indicating ineffectivity in viral hepatitis B ({I, 6 , 20, 28."nA number of infected individuals also developed clini cal evidence of disease and HE Ag may s the serum of some subjects for a long rema•ln present I•n time (18. It has been suggested that to a defect in CMI, the persistence of HB Ag s whether liver disease is is related present or not, and impairment of the lymphocyte response to phytohaemagglutinin (PHA in this group is presented in evide•"nnee (8, •9 , 13, 24, 25 .In contrast, other workers report a normal respons e t o PHA in healthy carriers of HE Ag and s they concludE that the defective T-cell response is relat ed to the live!' disease rather than the immune system (31. Dudley et al (8 have suggested that liver damage occurring after hepatitis B infection, may be an effect of thymus-dependent lymphocytes (12."n

  20. Single-step protocol for the differentiation of human-induced pluripotent stem cells into hepatic progenitor-like cells.

    Science.gov (United States)

    Tomizawa, Minoru; Shinozaki, Fuminobu; Sugiyama, Takao; Yamamoto, Shigenori; Sueishi, Makoto; Yoshida, Takanobu

    2013-01-01

    Induced pluripotent stem (iPS) cells are ideal sources of hepatocyte for transplantation into patients experiencing hepatic failure. Growth and transcription factors were analyzed to design a single-step protocol for the differentiation of iPS cells into hepatocytes. The expression of transcription factors was analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and compared among iPS cells, as well as fetal and adult liver cells. iPS cells were cultured with growth factors and RT-PCR was performed to analyze the expression of transcription factors. iPS cells were introduced with transcription factors, cultured with growth factors and subjected to real-time quantitative PCR. Indocyanine green (ICG) was added to the medium as a hepatocyte marker. Sox17, GATA4, GATA6, FoxA2, HEX, HNF4α and C/EBPα were expressed in fetal and adult liver cells, but not in iPS cells. Sox17, GATA6 and HNF4α were expressed after exposure a combination of oncostatin M, epidermal growth factor, retinoic acid, dexamethasone and ITS (OERDITS). When iPS cells were introduced with FoxA2, GATA4, HEX and C/EBPα and cultured with OERDITS for 8 days, the cells expressed α-fetoprotein, δ-like (Dlk)-1 and γ-glutamyl transpeptidase (GTP), and ICG uptake was observed. Exposure to FoxA2, GATA4, HEX and C/EBPα and culturing with OERDITS supplementation potentially serves as a single-step inducer for the differentiation of iPS cells into hepatic progenitor-like cells within 8 days.

  1. Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus.

    Science.gov (United States)

    Chen, S; Akbar, S M F; Abe, M; Hiasa, Y; Onji, M

    2011-10-01

    The immunosuppressive state of tumour-bearing hosts is attributable, at least in part, to myeloid-derived suppressor cells (MDSC). However, the role of MDSC in physiological conditions and diseases other than cancer has not been addressed. As the liver is a tolerogenic organ, the present study attempted to localize and assess functions of hepatic MDSC in a normal liver and in a murine model of chronic hepatitis B virus (HBV) infection. MDSC was identified in the liver of normal mice and HBV transgenic mice (TM) as CD11b(+) Gr1(+) cells by dual-colour flow cytometry. Highly purified populations of MDSC and their subtypes were isolated by fluorescence-activated cell sorting. The functions of MDSC and their subtypes were evaluated in allogenic mixed lymphocyte reaction (MLR) and hepatitis B surface antigen (HBsAg)-specific T cell proliferation assays. Normal mice-derived liver MDSC, but not other myeloid cells (CD11b(+) Gr1(-) ), suppressed T cell proliferation in allogenic MLR in a dose-dependent manner. Alteration of T cell antigens and impaired interferon-γ production seems to be related to MDSC-induced immunosuppression. In HBV TM, the frequencies of liver MDSC were about twice those of normal mice liver (13·6±3·2% versus 6·05±1·21%, n=5, Pderived MDSC from HBV TM also suppressed proliferative capacities of allogenic T cells and HBsAg-specific lymphocytes. Liver MDSC may have a critical role in maintaining homeostasis during physiological conditions. As liver MDSC had immunosuppressive functions in HBV TM, they may be a target of immune therapy in chronic HBV infection. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  2. Caffeine attenuates liver fibrosis via defective adhesion of hepatic stellate cells in cirrhotic model.

    Science.gov (United States)

    Shim, Sung Gon; Jun, Dae Won; Kim, Eun Kyung; Saeed, Waqar Khalid; Lee, Kang Nyeong; Lee, Hang Lak; Lee, Oh Young; Choi, Ho Soon; Yoon, Byung Chul

    2013-12-01

    Several epidemiological studies have shown that coffee intake attenuates the progression of liver fibrosis; however, the mechanism is unclear. We investigated the direct effects of caffeine on hepatic stellate cells (HSCs) and assessed whether caffeine attenuated intrahepatic fibrosis in rat model of liver cirrhosis. Human hepatic stellate cell line, an immortalized human HSCs line, was used in in vitro assay system. Cell migration and proliferation were assessed in presence of various caffeine concentrations (0, 1, 5, and 10 mmol), and levels of procollagen type Ic and α-smooth muscle actin (α-SMA) were measured by Western blot. Severity of liver inflammation and fibrosis were compared between thioacetamide-treated rats with and without caffeine supplementation. Caffeine increased HSCs apoptosis and intracellular F-actin and cyclic adenosine monophosphate expression. Caffeine also inhibited procollagen type Ic and α-SMA expression in a dose- and time-dependent manner. In rat model, caffeine decreased periportal inflammation, levels of inflammatory cells (1.4 ± 0.52 vs 2.6 ± 0.46, P caffeine. Caffeine attenuates the progression of liver fibrosis by inhibiting HSCs adhesion and activation. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  3. Genetic characteristics of the human hepatic stellate cell line LX-2.

    Directory of Open Access Journals (Sweden)

    Ralf Weiskirchen

    Full Text Available The human hepatic cell line LX-2 has been described as tool to study mechanisms of hepatic fibrogenesis and the testing of antifibrotic compounds. It was originally generated by immortalisation with the Simian Vacuolating Virus 40 (SV40 transforming (T antigen and subsequent propagation in low serum conditions. Although this immortalized line is used in an increasing number of studies, detailed genetic characterisation has been lacking. We here have performed genetic characterisation of the LX-2 cell line and established a single-locus short tandem repeat (STR profile for the cell line and characterized the LX-2 karyotype by several cytogenetic and molecular cytogenetic techniques. Spectral karyotyping (SKY revealed a complex karyotype with a set of aberrations consistently present in the metaphases analyses which might serve as cytogenetic markers. In addition, various subclonal and single cell aberrations were detected. Our study provides criteria for genetic authentication of LX-2 and offers insights into the genotype changes which might underlie part of its phenotypic features.

  4. Bisdemethoxycurcumin Induces Apoptosis in Activated Hepatic Stellate Cells via Cannabinoid Receptor 2

    Directory of Open Access Journals (Sweden)

    Phil Jun Lee

    2015-01-01

    Full Text Available Activated Hepatic Stellate Cells (HSCs, major fibrogenic cells in the liver, undergo apoptosis when liver injuries cease, which may contribute to the resolution of fibrosis. Bisdemethoxycurcumin (BDMC is a natural derivative of curcumin with anti-inflammatory and anti-cancer activities. The therapeutic potential of BDMC in hepatic fibrosis has not been studied thus far in the context of the apoptosis in activated HSCs. In the current study, we compared the activities of BDMC and curcumin in the HSC-T6 cell line and demonstrated that BDMC relatively induced a potent apoptosis. BDMC-induced apoptosis was mediated by a combinatory inhibition of cytoprotective proteins, such as Bcl2 and heme oxygenase-1 and increased generation of reactive oxygen species. Intriguingly, BDMC-induced apoptosis was reversed with co-treatment of sr144528, a cannabinoid receptor (CBR 2 antagonist, which was confirmed with genetic downregulation of the receptor using siCBR2. Additionally, incubation with BDMC increased the formation of death-induced signaling complex in HSC-T6 cells. Treatment with BDMC significantly diminished total intracellular ATP levels and upregulated ATP inhibitory factor-1. Collectively, the results demonstrate that BDMC induces apoptosis in activated HSCs, but not in hepatocytes, by impairing cellular energetics and causing a downregulation of cytoprotective proteins, likely through a mechanism that involves CBR2.

  5. [Divergence Analysis of Hepatitis Virus Infection between Aggressive and Indolent B Cell Non-Hodgkin's Lymphoma].

    Science.gov (United States)

    Xiong, Wen-Jie; Li, Heng; Liu, Hui-Min; Yi, Shu-Hua; Li, Zeng-Jun; Lu, Rui; Liu, Wei; Zou, De-Hui; Qiu, Lu-Gui

    2016-12-01

    To investigate the prevalence rate of hepatitis B virus(HBV)and hepatitis C virus(HCV)between aggressive and indolent B cell non-Hodgkin's lymphoma (B-NHL), and to compare the different infection rate of Hepatifis Virus between the 2 groups. Integrated clinical information of 733 newly diagnosed indolent B-NHL patients and 148 aggressive B-NHL patients from January 1994 to January 2014 was retrospectively analyzed. The difference of hepatitis virus infection was compared between the 2 groups. The positive rate of HCV-Ab was 1.8% in 881 newly diagnosed B-NHL patients. The HCV prevalence was 1.9% and 1.35% in the indolent and aggressive B-NHL group respecitvely. Compared with general population, the HCV positive rate was significantly higher in the whole B-NHL group and the indolent group(1.8% vs 0.4%,1.9% vs 1.4%)(P0.05).In the aggressive B-NHL group,the co-expression of HBs-Ag,HBe-Ag and anti-HBc-Ab was 4.4%, which was higher than that in the indolent one (4.7% vs 1.2%)(P0.05). The HCV is more relevant with indolent B-NHL, the HBV has more relevance with the aggressive patients.

  6. Therapeutic Potential of Cell Penetrating Peptides (CPPs and Cationic Polymers for Chronic Hepatitis B

    Directory of Open Access Journals (Sweden)

    Bénédicte Ndeboko

    2015-11-01

    Full Text Available Chronic hepatitis B virus (HBV infection remains a major health problem worldwide. Because current anti-HBV treatments are only virostatic, there is an urgent need for development of alternative antiviral approaches. In this context, cell-penetrating peptides (CPPs and cationic polymers, such as chitosan (CS, appear of particular interest as nonviral vectors due to their capacity to facilitate cellular delivery of bioactive cargoes including peptide nucleic acids (PNAs or DNA vaccines. We have investigated the ability of a PNA conjugated to different CPPs to inhibit the replication of duck hepatitis B virus (DHBV, a reference model for human HBV infection. The in vivo administration of PNA-CPP conjugates to neonatal ducklings showed that they reached the liver and inhibited DHBV replication. Interestingly, our results indicated also that a modified CPP (CatLip alone, in the absence of its PNA cargo, was able to drastically inhibit late stages of DHBV replication. In the mouse model, conjugation of HBV DNA vaccine to modified CS (Man-CS-Phe improved cellular and humoral responses to plasmid-encoded antigen. Moreover, other systems for gene delivery were investigated including CPP-modified CS and cationic nanoparticles. The results showed that these nonviral vectors considerably increased plasmid DNA uptake and expression. Collectively promising results obtained in preclinical studies suggest the usefulness of these safe delivery systems for the development of novel therapeutics against chronic hepatitis B.

  7. IL-22-producing RORγt-dependent innate lymphoid cells play a novel protective role in murine acute hepatitis.

    Directory of Open Access Journals (Sweden)

    Atsuhiro Matsumoto

    Full Text Available Retinoid-related orphan receptor (ROR γt is known to be related to the development and function of various immunological compartments in the liver, such as Th17 cells, natural killer T (NKT cells, and innate lymphoid cells (ILCs. We evaluated the roles of RORγt-expressing cells in mouse acute hepatitis model using RORγt deficient (RORγt(-/- mice and RAG-2 and RORγt double deficient (RAG-2(-/- × RORγt(-/- mice. Acute hepatitis was induced in mice by injection with carbon tetrachloride (CCl4, to investigate the regulation of liver inflammation by RORγt-expressing cells. We detected RORC expression in three compartments, CD4(+ T cells, NKT cells, and lineage marker-negative SCA-1(+Thy1(high ILCs, of the liver of wild type (WT mice. CCl4-treated RORγt(-/- mice developed liver damage in spite of lack of RORγt-dependent cells, but with reduced infiltration of macrophages compared with WT mice. In this regard, ILCs were significantly decreased in RAG-2(-/- × RORγt(-/- mice that lacked T and NKT cells. Surprisingly, RAG-2(-/- × RORγt(-/- mice developed significantly severer CCl4-induced hepatitis compared with RAG-2(-/- mice, in accordance with the fact that hepatic ILCs failed to produce IL-22. Lastly, anti-Thy1 monoclonal antibody (mAb, but not anti-NK1.1 mAb or anti-asialo GM1 Ab administration exacerbated liver damage in RAG-2(-/- mice with the depletion of liver ILCs. Collectively, hepatic RORγt-dependent ILCs play a part of protective roles in hepatic immune response in mice.

  8. Human induced hepatic lineage-oriented stem cells: autonomous specification of human iPS cells toward hepatocyte-like cells without any exogenous differentiation factors.

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishikawa

    Full Text Available Preparing targeted cells for medical applications from human induced pluripotent stem cells (hiPSCs using growth factors, compounds, or gene transfer has been challenging. Here, we report that human induced hepatic lineage-oriented stem cells (hiHSCs were generated and expanded as a new type of hiPSC under non-typical coculture with feeder cells in a chemically defined hiPSC medium at a very high density. Self-renewing hiHSCs expressed markers of both human embryonic stem cells (hESCs and hepatocytes. Those cells were highly expandable, markedly enhancing gene expression of serum hepatic proteins and cytochrome P450 enzymes with the omission of FGF-2 from an undefined hiPSC medium. The hepatic specification of hiHSCs was not attributable to the genetic and epigenetic backgrounds of the starting cells, as they were established from distinct donors and different types of cells. Approximately 90% of hiHSCs autonomously differentiated to hepatocyte-like cells, even in a defined minimum medium without any of the exogenous growth factors necessary for hepatic specification. After 12 days of this culture, the differentiated cells significantly enhanced gene expression of serum hepatic proteins (ALB, SERPINA1, TTR, TF, FABP1, FGG, AGT, RBP4, and AHSG, conjugating enzymes (UGT2B4, UGT2B7, UGT2B10, GSTA2, and GSTA5, transporters (SULT2A1, SLC13A5, and SLCO2B1, and urea cycle-related enzymes (ARG1 and CPS1. In addition, the hepatocyte-like cells performed key functions of urea synthesis, albumin secretion, glycogen storage, indocyanine green uptake, and low-density lipoprotein uptake. The autonomous hepatic specification of hiHSCs was due to their culture conditions (coculture with feeder cells in a defined hiPSC medium at a very high density in self-renewal rather than in differentiation. These results suggest the feasibility of preparing large quantities of hepatocytes as a convenient and inexpensive hiPSC differentiation. Our study also suggests the

  9. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.

    Science.gov (United States)

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-10-17

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.

  10. Decreased peripheral natural killer cells activity in the immune activated stage of chronic hepatitis B.

    Directory of Open Access Journals (Sweden)

    Yuan Li

    Full Text Available BACKGROUND & AIMS: The natural course of chronic hepatitis B virus (HBV infection is characterized by different immune responses, ranging from immune tolerant (IT to immune activated (IA stages. In our study, we investigated the natural killer (NK cells activity in patients at different immunological stages of chronic HBV infection. METHODS: Blood samples obtained from 57 HBeAg positive patients with chronic hepatitis B (CHB, including 15 patients in the immune tolerant (IT stage, 42 patients in the immune activated (IA stage, and 18 healthy individuals (HI. The analyses included flow cytometry to detect NK cells, the determination of cytokine levels as well as of surface receptor expression and cytotoxicity. RESULTS: NK cells in peripheral blood were significantly lower in patients in the IA stage of CHB compared to HI (p<0.05. Patients in the IA stage of CHB had lower levels of NK cells activating receptor NKp30 and NKG2D expression, cytokine interferon-γ (IFN-γ and tumor necrosis factor-α (TNF-α production, as compared to patients in the IT stage and HI, respectively (p<0.05. Cytotoxicity of NK cells was lower in patients in the IA stage of CHB compared to patients in the IT stage and HI, respectively (p<0.05. The level of IFN-γ but not level of TNF-α and cytotoxicity of NK cells was inversely correlated with serum HBV load in patients with CHB. Peripheral NK cells activity did not correlate with ALT level. CONCLUSION: NK cells activity was lower in CHB patients, especially in those in the IA stage.

  11. Dried human skin fibroblasts as a new substratum for functional culture of hepatic cells.

    Science.gov (United States)

    Wencel, Agnieszka; Zakrzewska, Karolina Ewa; Samluk, Anna; Noszczyk, Bartłomiej Henryk; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2017-01-01

    The primary hepatocytes culture is still one of the main challenges in toxicology studies in the drug discovery process, development of in vitro models to study liver function, and cell-based therapies. Isolated hepatocytes display a rapid decline in viability and liver-specific functions including albumin production, conversion of ammonia to urea, and activity of the drug metabolizing enzymes. A number of methods have been developed in order to maintain hepatocytes in their highly differentiated state in vitro. Optimization of culture conditions includes a variety of media formulations and supplements, growth surface coating with the components of extracellular matrix or with synthetic polymers, three-dimensional growth scaffolds and decellularized tissues, and coculture with other cell types required for the normal cell-cell interactions. Here we propose a new substratum for hepatic cells made by drying confluent human skin fibroblasts' culture. This growth surface coating, prepared using maximally simplified procedure, combines the advantages of the use of extracellular matrices and growth factors/cytokines secreted by the feeder layer cells. In comparison to the hepatoma cells grown on a regular tissue culture plastic, cells cultured on the dried fibroblasts were able to synthesize albumin in larger quantities and to form greater number of apical vacuoles. Unlike the coculture with the living feeder layer cells, the number of cells grown on the new substratum was not reduced after fourteen days of culture. This fact could make the dried fibroblasts coating an ideal candidate for the substrate for non-dividing human hepatocytes.

  12. Anaplastic large cell lymphoma ALK-negative clinically mimicking alcoholic hepatitis – a review

    Directory of Open Access Journals (Sweden)

    Fernando Peixoto Ferraz de Campos

    2013-10-01

    Full Text Available Anaplastic large cell lymphoma (ALCL, described less than 30 years ago by Karl Lennert and Herald Stein in Kiel, West Germany, is a T-cell or null non-Hodgkin lymphoma, with distinctive morphology (hallmark cells, prominent sinus and/or perivascular growth pattern, characteristic immunophenotype (CD30+, cytotoxic granules protein+, CD3–/+ and specific genetic features as translocations involving the receptor tyrosine kinase called anaplastic lymphoma kinase (ALK on 2p23 and variable partners genes, which results in the expression of ALK fusion protein. The absence of ALK expression is also observed and is associated with poorer prognosis that seen with ALK expression. ALK-negative ALCL is more frequent in adults, with both nodal and extra nodal clinical presentation and includes several differential diagnoses with other CD30+ lymphomas. Liver involvement by ALCL is rare and is generally seen as mass formation; the diffuse pattern of infiltration is even more unusual. The authors present a case of a 72-year-old man who presented clinical symptoms of acute hepatic failure. The patient had a long history of alcohol abuse and the diagnosis of alcoholic hepatitis was highly considered, although the serum lactic dehydrogenase (LDH value was highly elevated. The clinical course was fulminant leading to death on the fourth day of hospitalization. Autopsy demonstrated diffuse neoplastic hepatic infiltration as well as splenic, pulmonary, bone marrow, and minor abdominal lymph nodes involvement by the tumor. Based on morphological, immunophenotypical, and immunohistochemical features, a diagnosis of ALK- negative ALCL was concluded. When there is marked elevation of LDH the possibility of lymphoma, ALCL and other types, should be the principal diagnosis to be considered.

  13. Exercise training attenuates cerebral ischemic hyperglycemia by improving hepatic insulin signaling and β-cell survival.

    Science.gov (United States)

    Park, Sunmin; Kim, Da Sol; Kang, Sunna

    2013-08-06

    Preventing hyperglycemia after acute stroke attenuates complications of cerebral ischemia and reduces the risk of mortality. We investigated whether regular exercise prevents neuronal cell death and post-stroke hyperglycemia in gerbils after cerebral ischemia. Cerebral ischemia was induced by carotid artery occlusion for 8min. The gerbils that underwent ischemic or sham operations were randomly subdivided into exercise (ran on inclined treadmill at 20m/min for 30min 5days per week for 1week prior to surgery) or non-exercise groups. Gerbils were fed a 40% fat diet and after 28days, glucose metabolism, serum cytokine levels and cognitive function was measured. Artery occlusion resulted in a 64% reduction in hippocampal CA1 neurons in comparison to the sham gerbils, and caused decreased neuronal mass and impaired cognitive function. Exercise partially prevented neuronal death and improved ischemia-induced glucose intolerance. Ischemia decreased hepatic insulin signaling and exacerbated insulin resistance whereas exercise prevented the disturbance. Insulin secretion was lower in ischemic gerbils than sham gerbils, due to lowered pancreatic β-cell mass caused by increased β-cell apoptosis and decreased β-cell proliferation, which were also prevented by exercise. Increase of apoptosis was associated with elevated caspase-3 activity, consistent with increased serum tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels. Hippocampal neuronal cell death induces hyperglycemia due to attenuated hepatic insulin signaling and decreased β-cell mass by increased β-cell apoptosis through increased TNF-α and IL-1β levels. Exercise partially prevents this phenomenon suggesting that exercise training may provide neuroprotective benefits from cerebral ischemic hyperglycemia. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Kinetics and dynamics of cyclosporine A in three hepatic cell culture systems.

    Science.gov (United States)

    Bellwon, P; Truisi, G L; Bois, F Y; Wilmes, A; Schmidt, T; Savary, C C; Parmentier, C; Hewitt, P G; Schmal, O; Josse, R; Richert, L; Guillouzo, A; Mueller, S O; Jennings, P; Testai, E; Dekant, W

    2015-12-25

    In vitro experiments have a high potential to improve current chemical safety assessment and reduce the number of animals used. However, most studies conduct hazard assessment alone, largely ignoring exposure and kinetic parameters. Therefore, in this study the kinetics of cyclosporine A (CsA) and the dynamics of CsA-induced cyclophilin B (Cyp-B) secretion were investigated in three widely used hepatic in vitro models: primary rat hepatocytes (PRH), primary human hepatocytes (PHH) and HepaRG cells. Cells were exposed daily to CsA for up to 14 days. CsA in cells and culture media was quantified by LC-MS/MS and used for pharmacokinetic modeling. Cyp-B was quantified by western blot analysis in cells and media. All cell systems took up CsA rapidly from the medium after initial exposure and all showed a time- and concentration-dependent Cyp-B cellular depletion and extracellular secretion. Only in PRH an accumulation of CsA over 14 days repeated exposure was observed. Donor-specific effects in CsA clearance were observed in the PHH model and both PHH and HepaRG cells significantly metabolized CsA, with no bioaccumulation being observed after repeated exposure. The developed kinetic models are described in detail and show that all models under-predict the in vivo hepatic clearance of CsA, but to different extents with 27-, 24- and 2-fold for PRH, PHH and HepaRG cells, respectively. This study highlights the need for more attention to kinetics in in vitro studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Successful targeting to rat hepatic stellate cells using albumin modified with cyclic peptides that recognize the collagen type VI receptor

    NARCIS (Netherlands)

    Beljaars, L; Molema, G; Schuppan, D; Geerts, A; De Bleser, PJ; Weert, B; Meijer, DKF; Poelstra, K

    2000-01-01

    The key pathogenic event in liver fibrosis is the activation of hepatic stellate cells (HSC). Consequently, new antifibrotic therapies are directed toward an inhibition of HSC activities. The aim of the present study was to develop a drug carrier to HSC, which would allow cell-specific delivery of

  16. The interplay of the Notch signaling in hepatic stellate cells and macrophages determines the fate of liver fibrogenesis

    NARCIS (Netherlands)

    Bansal, Ruchi; Van Baarlen, Joop; Storm, G; Prakash, Jai

    2015-01-01

    Hepatic stellate cells (HSCs) known as master producers and macrophages as master regulators, are the key cell types that strongly contribute to the progression of liver fibrosis. Since Notch signaling regulates multiple cellular processes, we aimed to study the role of Notch signaling in HSCs

  17. Delivery of viral vectors to hepatic stellate cells in fibrotic livers using HVJ envelopes fused with targeted liposomes

    NARCIS (Netherlands)

    Adrian, Joanna E.; Kamps, Jan A. A. M.; Poelstra, Klaas; Scherphof, Gerrit L.; Meijer, Dirk K. F.; Kaneda, Yasufumi

    2007-01-01

    Hepatic stellate cells (HSC) are a major target for antifibrotic therapies in the liver and in particular gene delivery to these cells would be relevant. Previously, we demonstrated that mannose 6-phosphate human serum albumin (M6P-HSA) coupled liposomes accumulate in HSC in fibrotic livers. Here we

  18. Three-dimensional co-culture of hepatic progenitor cells and mesenchymal stem cells in vitro and in vivo.

    Science.gov (United States)

    Zhong, Li; Gou, Juhua; Deng, Nian; Shen, Hao; He, Tongchuan; Zhang, Bing-Qiang

    2015-08-01

    Here we co-cultured hepatic progenitor cells (HPCs) and mesenchymal stem cells (MSCs) to investigate whether the co-culture environments could increase hepatocytes form. Three-dimensional (3D) co-culture model of HPCs and MSCs was developed and morphological features of cells were continuously observed. Hepatocyte specific markers Pou5f1/Oct4, AFP, CK-18 and Alb were analyzed to confirm the differentiation of HPCs. The mRNA expression of CK-18 and Alb was analyzed by RT-PCR to investigate the influence of co-culture model to the terminal differentiation process of mature hepatocytes. The functional properties of hepatocyte-like cells were detected by continuously monitoring the albumin secretion using Gaussia luciferase assays. Scaffolds with HPCs and MSCs were implanted into nude mouse subcutaneously to set up the in vivo co-culture model. Although two groups formed smooth spheroids and high expressed of CK-18 and Alb, hybrid spheroids had more regular structures and higher cell density. CK-18 and Alb mRNA were at a relatively higher expression level in co-culture system during the whole cultivation time (P culture spheroids (P cells were consistent with the morphological features of mature hepatocytes and more well-differentiated hepatocyte-like cells were observed in the co-culture group. HPCs and MSCs co-culture system is an efficient way to form well-differentiated hepatocyte-like cells, hence, may be helpful to the cell therapy of hepatic tissues and alleviate the problem of hepatocytes shortage. © 2015 Wiley Periodicals, Inc.

  19. [Unusual location of an intrathoracic mesothelial cyst in the posterior and upper mediastinum].

    Science.gov (United States)

    Bacha, S; Chaouch, N; Mlika, M; Racil, H; Cheikhrouhou, S; Chabbou, A

    2016-09-01

    Intrathoracic mesothelial cysts are congenital lesions due to an abnormal development of the pericardial coelom. They are usually asymptomatic and found incidentally on chest radiography or computed tomography. As their classic anatomical location is in the cardiophrenic angle, they are also referred to pleuropericardial cysts. A 50-year-old male presented with a history of chest pain. Physical examination and chest X-ray were normal. Computed tomography (CT) scan revealed a cystic lesion in the posterior and upper mediastinum. The cyst was surgically removed through a posterolateral thoracotomy. Histopathological examination confirmed that it was a mesothelial cyst. The surgical resection of the cyst lead to relief of the thoracic pain over a three-year follow-up period. CT-scan showed an aberrant right subclavian artery or arteria lusoria, which is an anomaly of the aortic arch secondary to abnormal embryogenesis. We know no other report of concurrent ectopic coelomic cyst and aberrant right subclavian artery. Although the majority of coelomic cysts needs only radiological and clinical follow-up, surgical resection should be performed when the patient is symptomatic or when the diagnosis is uncertain. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  20. Promotion of Hepatic Differentiation of Bone Marrow Mesenchymal Stem Cells on Decellularized Cell-Deposited Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Hongliang He

    2013-01-01

    Full Text Available Interactions between stem cells and extracellular matrix (ECM are requisite for inducing lineage-specific differentiation and maintaining biological functions of mesenchymal stem cells by providing a composite set of chemical and structural signals. Here we investigated if cell-deposited ECM mimicked in vivo liver's stem cell microenvironment and facilitated hepatogenic maturation. Decellularization process preserved the fibrillar microstructure and a mix of matrix proteins in cell-deposited ECM, such as type I collagen, type III collagen, fibronectin, and laminin that were identical to those found in native liver. Compared with the cells on tissue culture polystyrene (TCPS, bone marrow mesenchymal stem cells (BM-MSCs cultured on cell-deposited ECM showed a spindle-like shape, a robust proliferative capacity, and a suppressed level of intracellular reactive oxygen species, accompanied with upregulation of two superoxide dismutases. Hepatocyte-like cells differentiated from BM-MSCs on ECM were determined with a more intensive staining of glycogen storage, an elevated level of urea biosynthesis, and higher expressions of hepatocyte-specific genes in contrast to those on TCPS. These results demonstrate that cell-deposited ECM can be an effective method to facilitate hepatic maturation of BM-MSCs and promote stem-cell-based liver regenerative medicine.

  1. Exosome-associated hepatitis C virus in cell cultures and patient plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ziqing [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Zhang, Xiugen [Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Yu, Qigui [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); He, Johnny J., E-mail: johnny.he@unthsc.edu [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2014-12-12

    Highlights: • HCV occurs in both exosome-free and exosome-associated forms. • Exosome-associated HCV is infectious and resistant to neutralizing antibodies. • More exosome-associated HCV than exosome-free HCV is present in patient plasma. - Abstract: Hepatitis C virus (HCV) infects its target cells in the form of cell-free viruses and through cell–cell contact. Here we report that HCV is associated with exosomes. Using highly purified exosomes and transmission electron microscopic imaging, we demonstrated that HCV occurred in both exosome-free and exosome-associated forms. Exosome-associated HCV was infectious and resistant to neutralization by an anti-HCV neutralizing antibody. There were more exosome-associated HCV than exosome-free HCV detected in the plasma of HCV-infected patients. These results suggest exosome-associated HCV as an alternative form for HCV infection and transmission.

  2. Advances in Liver Regeneration: Revisiting Hepatic Stem/Progenitor Cells and Their Origin

    Directory of Open Access Journals (Sweden)

    Ali-Reza Sadri

    2016-01-01

    Full Text Available The liver has evolved to become a highly plastic organ with extraordinary regenerative capabilities. What drives liver regeneration is still being debated. Adult liver stem/progenitor cells have been characterized and used to produce functional hepatocytes and biliary cells in vitro. However, in vivo, numerous studies have questioned whether hepatic progenitor cells have a significant role in liver regeneration. Mature hepatocytes have recently been shown to be more plastic than previously believed and give rise to new hepatocytes after acute and chronic injury. In this review, we discuss current knowledge in the field of liver regeneration and the importance of the serotonin pathway as a clinical target for patients with liver dysfunction.

  3. Adipose tissue-derived mesenchymal stem cells and hepatic differentiation: old concepts and future perspectives.

    Science.gov (United States)

    Puglisi, M A; Saulnier, N; Piscaglia, A C; Tondi, P; Agnes, S; Gasbarrini, A

    2011-04-01

    Mesenchymal stem cells (MSCs) are multipotent cells, able to differentiate into elements of the mesodermal lineage. Bone marrow and adipose tissue represent the main sources for MSC isolation. In the last decade, several studies have reported the plasticity of MSCs toward a hepatocyte-like phenotype. The use of MSCs to generate hepatocyte-like cells holds great promises to overcome the scarcity of available organs for transplantation. However, little is known about the molecular pathways involved in lineage cross-differentiation and several issues remain to be answered before MSC application in clinical settings. Aim of this review is to critically analyze the possible sources of MSCs suitable for liver repopulation and the molecular mechanisms underlying MSC hepatic differentiation.

  4. Interferon Response in Hepatitis C Virus (HCV Infection: Lessons from Cell Culture Systems of HCV Infection

    Directory of Open Access Journals (Sweden)

    Pil Soo Sung

    2015-10-01

    Full Text Available Hepatitis C virus (HCV is a positive-stranded RNA virus that infects approximately 130–170 million people worldwide. In 2005, the first HCV infection system in cell culture was established using clone JFH-1, which was isolated from a Japanese patient with fulminant HCV infection. JFH-1 replicates efficiently in hepatoma cells and infectious virion particles are released into the culture supernatant. The development of cell culture-derived HCV (HCVcc systems has allowed us to understand how hosts respond to HCV infection and how HCV evades host responses. Although the mechanisms underlying the different outcomes of HCV infection are not fully understood, innate immune responses seem to have a critical impact on the outcome of HCV infection, as demonstrated by the prognostic value of IFN-λ gene polymorphisms among patients with chronic HCV infection. Herein, we review recent research on interferon response in HCV infection, particularly studies using HCVcc infection systems.

  5. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    Science.gov (United States)

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L.; Santra, Amal

    2013-01-01

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 μg/ gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including α-smooth muscle actin, transforming growth factor-β1, PDGF-Rβ, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro (α) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis. PMID:21134390

  6. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyamae, Yusaku, E-mail: ymiyamae@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nishito, Yukina; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagumo, Yoko; Usui, Takeo [Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A{sub 1}. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  7. Tannic Acid Inhibits Hepatitis C Virus Entry into Huh7.5 Cells.

    Science.gov (United States)

    Liu, Shuanghu; Chen, Ren; Hagedorn, Curt H

    2015-01-01

    Chronic infection with the hepatitis C virus (HCV) is a cause of cirrhosis and hepatocellular carcinoma worldwide. Although antiviral therapy has dramatically improved recently, a number of patients remain untreated and some do not clear infection with treatment. Viral entry is an essential step in initiating and maintaining chronic HCV infections. One dramatic example of this is the nearly 100% infection of newly transplanted livers in patients with chronic hepatitis C. HCV entry inhibitors could play a critical role in preventing HCV infection of newly transplanted livers. Tannic acid, a polymer of gallic acid and glucose molecules, is a plant-derived polyphenol that defends some plants from insects and microbial infections. It has been shown to have a variety of biological effects, including antiviral activity, and is used as a flavoring agent in foods and beverages. In this study, we demonstrate that tannic acid is a potent inhibitor of HCV entry into Huh7.5 cells at low concentrations (IC50 5.8 μM). It also blocks cell-to-cell spread in infectious HCV cell cultures, but does not inhibit HCV replication following infection. Moreover, experimental results indicate that tannic acid inhibits an early step of viral entry, such as the docking of HCV at the cell surface. Gallic acid, tannic acid's structural component, did not show any anti-HCV activity including inhibition of HCV entry or replication at concentrations up to 25 μM. It is possible the tannin structure is related on the effect on HCV inhibition. Tannic acid, which is widely distributed in plants and foods, has HCV antiviral activity in cell culture at low micromolar concentrations, may provide a relative inexpensive adjuvant to direct-acting HCV antivirals and warrants future investigation.

  8. Completion of the Entire Hepatitis C Virus Life Cycle in Vero Cells Derived from Monkey Kidney

    Directory of Open Access Journals (Sweden)

    Asako Murayama

    2016-06-01

    Full Text Available A hepatitis C virus (HCV cell culture system incorporating the JFH-1 strain and the human hepatoma cell line HuH-7 enabled the production of infectious HCV particles. Several host factors were identified as essential for HCV replication. Supplementation of these factors in nonhepatic human cell lines enabled HCV replication and particle production. Vero cells established from monkey kidney are commonly used for the production of vaccines against a variety of viruses. In this study, we aimed to establish a novel Vero cell line to reconstruct the HCV life cycle. Unmodified Vero cells did not allow HCV infection or replication. The expression of microRNA 122 (miR-122, an essential factor for HCV replication, is notably low in Vero cells. Therefore, we supplemented Vero cells with miR-122 and found that HCV replication was enhanced. However, Vero cells that expressed miR-122 still did not allow HCV infection. We supplemented HCV receptor molecules and found that scavenger receptor class B type I (SRBI was essential for HCV infection in Vero cells. The supplementation of apolipoprotein E (ApoE, a host factor important for virus production, enabled the production of infectious virus in Vero cells. Finally, we created a Vero cell line that expressed the essential factors miR-122, SRBI, and ApoE; the entire HCV life cycle, including infection, replication, and infectious virus production, was completed in these cells. In conclusion, we demonstrated that miR-122, SRBI, and ApoE were necessary and sufficient for the completion of the entire HCV life cycle in nonhuman, nonhepatic Vero cells.

  9. Monocytes inhibit hepatitis C virus-induced TRAIL expression on CD56bright NK cells.

    Science.gov (United States)

    Mele, Dalila; Mantovani, Stefania; Oliviero, Barbara; Grossi, Giulia; Lombardi, Andrea; Mondelli, Mario U; Varchetta, Stefania

    2017-12-01

    Natural killer (NK) cells play an important role in the pathogenesis of hepatitis C virus (HCV) infection. We have previously shown that culture-derived HCV (HCVcc) enhance tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) expression on healthy NK cells, but not on those from patients infected with HCV, which was likely dependent on accessory cells. Here we sought to elucidate the mechanisms involved in altered TRAIL upregulation in this setting. Peripheral blood mononuclear cells (PBMC) from controls and patients infected with HCV were exposed to HCVcc. Cell depletions were performed to identify cells responsible for NK cell activation. Flow cytometry and ELISA were used to identify the cytokines involved in the NK activation process. In patients infected with HCV, soluble factors secreted by control PBMC restored the ability of NK cells to express TRAIL. Of note, CD14+ cell depletion had identical effects upon virus exposure and promoted increased degranulation. Moreover, increased concentrations of interleukin (IL)-18 binding protein a (IL-18BPa) and IL-36 receptor antagonist (IL-36RA) were observed after PBMC exposure to HCVcc in patients with HCV. HCVcc-induced NK cell TRAIL expression was inhibited by IL-18BPa and IL-36RA in control subjects. There were statistically significant correlations between IL-18BPa and indices of liver inflammation and fibrosis, supporting a role for this protein in the pathogenesis of chronic HCV infection. During chronic HCV infection, monocytes play a key role in negative regulation of NK cell activation, predominantly via secretion of inhibitors of IL-18 and IL-36. Coordination and collaboration between immune cells are essential to fight pathogens. Herein we show that during HCV infection monocytes secrete IL-18 and IL-36 inhibitory proteins, reducing NK cell activation, and consequently inhibiting their ability to express TRAIL and kill target cells. Copyright © 2017 European Association for the Study of the

  10. Mechanism of cell infection with hepatitis C virus (HCV)--a new paradigm in virus-cell interaction.

    Science.gov (United States)

    Budkowska, Agata

    2009-01-01

    Hepatitis C virus (HCV) is an enveloped, single-stranded RNA virus, belonging to the Flaviviridae family. HCV infection is a major cause of chronic hepatitis worldwide, leading to steatosis, liver cirrosis and hepatocellular carcinoma. Significant advances in understanding the mechanisms of HCV infection have been made since the development of a cell culture system reproducing the complete HCV cell cycle in vitro. HCV represents a new paradigm in interactions between the virus and its target cell, the human hepatocyte, due to the central role of lipoproteins in the HCV life cycle. Very low density lipoproteins are required for virus particle assembly and secretion. Upon the release, the infectious virus circulates in the blood as triglyceride-rich particles and infects cells using lipoprotein-receptor dependent mechanisms. HCV cell entry is a multi-step process: heparan sulphate and/or low-density lipoprotein receptor are cell surface factors mediating an initial virus attachment; subsequent virus interaction with tetraspanin CD81 and the human scavenger receptor SR-BI, the main HCV receptors, triggers virus movement to the tight junctions and its uptake via Claudin-1 and occludin. Another originality of HCV is that initiation of productive infection requires dynamic microtubules. Whereas other viruses use kinesin or dynein-dependent transport, HCV exploits mechanisms driven by microtubule polymerization to efficiently infect its target cell, in which virus nucleocapsid protein might play a particular role. An improved of understanding of the cellular events involved in HCV cell entry and transport, leading to the initiation of productive HCV infection, may reveal novel targets for anti-viral interventions.

  11. The proportion of different interleukin-17-producing T-cell subsets is associated with liver fibrosis in chronic hepatitis C.

    Science.gov (United States)

    Cachem, Fabio C O F; Dias, Aleida S; Monteiro, Clarice; Castro, José Roberto; Fernandes, Gabriel; Delphim, Letícia; Almeida, Adilson J; Tavares, Felipe; Maciel, Alessandra M A; Amendola-Pires, Marcia M; Brandão-Mello, Carlos E; Bento, Cleonice A M

    2017-06-01

    Studies have suggested the pivotal role of T helper type 1 (Th1) -related cytokines on the outcome of hepatitis C virus (HCV) infection. Nevertheless, the role of different interleukin-17 (IL-17) -secreting T cells on chronic hepatitis C (CHC) is less clear. Here, the in vivo IL-1β, IL-6, and IL-17 levels were positively correlated with both alanine transaminase (ALT) levels and hepatic lesions. When compared with the control group, CHC patients showed a lower proportion of IL-17-secreting (CD4 + and CD8 + ) T cells capable of simultaneously producing IL-21. Moreover, the percentage of IL-10-secreting Th17 cells was also lower in CHC patients. Notably, advanced liver lesions were observed among those patients with lower percentage levels of IL-17-producing T cells positive for IL-21, interferon-γ (IFN-γ) and IL-10. In contrast, the severity of hepatic damage was associated with peripheral single IL-17 + T cells. The percentage of IL-17 + IL-21 - IFN-γ + (CD4 + and CD8 + ) T-cell phenotypes was positively associated with plasma CD14 levels. Finally, elevated levels of circulating CD14 were detected among CHC patients with extensive liver damage. In summary, although preliminary, our results suggest that a balance between different IL-17-producing T cells, associated with peripheral levels of CD14, may be a progress marker for liver disease in chronically HCV-infected patients. © 2017 John Wiley & Sons Ltd.

  12. [The hepatic differentiation of adult and fetal liver stromal cells in vitro].

    Science.gov (United States)

    Kholodenko, I V; Kholodenko, R V; Manukyan, G V; Yarygin, K N

    2016-11-01

    The liver has a marked capacity for regeneration. In most cases the liver regeneration is determined by hepatocytes. The regenerative capacity of hepatocytes is significantly reduced in acute or chronic damage. In particular, repair mechanisms are not activated in patients with alcoholic cirrhosis. Organ transplantation or advanced methods of regenerative medicine can help such patients. The promising results were obtained in clinical trials involving patients with various forms of liver disease who received transplantation of autologous bone marrow stem cells. However, to improve the effectiveness of such treatment it is necessary to search for more optimal sources of progenitor cells, as well as to evaluate the possibility of using descendants of these cells differentiated in vitro. In this study we isolated stromal cells from the liver biopsies of three patients with alcoholic cirrhosis, conducted their morphological and phenotypic analysis, and evaluated the hepatic potential of these cells in vitro. The stromal cells isolated from fetal liver were used for comparison. The results of this can serve as a basis for the development of a new method for the treatment of end-stage liver disease. The stromal cells isolated from the liver biopsies for a long time proliferate in a culture and this which makes it possible to expand them to large amounts for subsequent differentiation into hepatocyte-like cells and autologous transplantation.

  13. Completion of the Entire Hepatitis C Virus Life Cycle in Vero Cells Derived from Monkey Kidney.

    Science.gov (United States)

    Murayama, Asako; Sugiyama, Nao; Wakita, Takaji; Kato, Takanobu

    2016-06-14

    A hepatitis C virus (HCV) cell culture system incorporating the JFH-1 strain and the human hepatoma cell line HuH-7 enabled the production of infectious HCV particles. Several host factors were identified as essential for HCV replication. Supplementation of these factors in nonhepatic human cell lines enabled HCV replication and particle production. Vero cells established from monkey kidney are commonly used for the production of vaccines against a variety of viruses. In this study, we aimed to establish a novel Vero cell line to reconstruct the HCV life cycle. Unmodified Vero cells did not allow HCV infection or replication. The expression of microRNA 122 (miR-122), an essential factor for HCV replication, is notably low in Vero cells. Therefore, we supplemented Vero cells with miR-122 and found that HCV replication was enhanced. However, Vero cells that expressed miR-122 still did not allow HCV infection. We supplemented HCV receptor molecules and found that scavenger receptor class B type I (SRBI) was essential for HCV infection in Vero cells. The supplementation of apolipoprotein E (ApoE), a host factor important for virus production, enabled the production of infectious virus in Vero cells. Finally, we created a Vero cell line that expressed the essential factors miR-122, SRBI, and ApoE; the entire HCV life cycle, including infection, replication, and infectious virus production, was completed in these cells. In conclusion, we demonstrated that miR-122, SRBI, and ApoE were necessary and sufficient for the completion of the entire HCV life cycle in nonhuman, nonhepatic Vero cells. HCV is a major cause of chronic liver diseases worldwide, and an effective prophylactic HCV vaccine is needed. For safety reasons, the current HCV cell culture system using HuH-7 cells, which was established from a hepatocellular carcinoma, is not suitable for the production of a vaccine against HCV. A robust HCV production system using non-cancer-derived cells is indispensable for

  14. The Human Amnion Epithelial Cell Secretome Decreases Hepatic Fibrosis in Mice with Chronic Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Majid Alhomrani

    2017-10-01

    Full Text Available Background: Hepatic stellate cells (HSCs are the primary collagen-secreting cells in the liver. While HSCs are the major cell type involved in the pathogenesis of liver fibrosis, hepatic macrophages also play an important role in mediating fibrogenesis and fibrosis resolution. Previously, we observed a reduction in HSC activation, proliferation, and collagen synthesis following exposure to human amnion epithelial cells (hAEC and hAEC-conditioned media (hAEC-CM. This suggested that specific factors secreted by hAEC might be effective in ameliorating liver fibrosis. hAEC-derived extracellular vesicles (hAEC-EVs, which are nanosized (40–100 nm membrane bound vesicles, may act as novel cell–cell communicators. Accordingly, we evaluated the efficacy of hAEC-EV in modulating liver fibrosis in a mouse model of chronic liver fibrosis and in human HSC.Methods: The hAEC-EVs were isolated and characterized. C57BL/6 mice with CCl4-induced liver fibrosis were administered hAEC-EV, hAEC-CM, or hAEC-EV depleted medium (hAEC-EVDM. LX2 cells, a human HSC line, and bone marrow-derived mouse macrophages were exposed to hAEC-EV, hAEC-CM, and hAEC-EVDM. Mass spectrometry was used to examine the proteome profile of each preparation.Results: The extent of liver fibrosis and number of activated HSCs were reduced significantly in CCl4-treated mice given hAEC-EVs, hAEC-CM, and hAEC EVDM compared to untreated controls. Hepatic macrophages were significantly decreased in all treatment groups, where a predominant M2 phenotype was observed. Human HSCs cultured with hAEC-EV and hAEC-CM displayed a significant reduction in collagen synthesis and hAEC-EV, hAEC-CM, and hAEC-EVDM altered macrophage polarization in bone marrow-derived mouse macrophages. Proteome analysis showed that 164 proteins were unique to hAEC-EV in comparison to hAEC-CM and hAEC-EVDM, and 51 proteins were co-identified components with the hAEC-EV fraction.Conclusion: This study provides novel data

  15. Crosstalk between PKCζ and the IL4/Stat6 pathway during T-cell-mediated hepatitis

    Science.gov (United States)

    Durán, Angeles; Rodriguez, Angelina; Martin, Pilar; Serrano, Manuel; Flores, Juana Maria; Leitges, Michael; Diaz-Meco, María T; Moscat, Jorge

    2004-01-01

    PKCζ is required for nuclear factor κ-B (NF-κB) activation in several cell systems. NF-κB is a suppressor of liver apoptosis during development and in concanavalin A (ConA)-induced T-cell-mediated hepatitis. Here we show that PKCζ−/− mice display inhibited ConA-induced NF-κB activation and reduced damage in liver. As the IL-4/Stat6 pathway is necessary for ConA-induced hepatitis, we addressed here the potential role of PKCζ in this cascade. Interestingly, the loss of PKCζ severely attenuated serum IL-5 and liver eotaxin-1 levels, two critical mediators of liver damage. Stat6 tyrosine phosphorylation and Jak1 activation were ablated in the liver of ConA-injected PKCζ−/− mice and in IL-4-stimulated PKCζ−/− fibroblasts. PKCζ interacts with and phosphorylates Jak1 and PKCζ activity is required for Jak1 function. In contrast, Par-4−/− mice have increased sensitivity to ConA-induced liver damage and IL-4 signaling. This unveils a novel and critical involvement of PKCζ in the IL-4/Stat6 signaling pathway in vitro and in vivo. PMID:15526032

  16. Analysis of antiviral response in human epithelial cells infected with hepatitis E virus.

    Directory of Open Access Journals (Sweden)

    Pradip B Devhare

    Full Text Available Hepatitis E virus (HEV is a major cause of enterically transmitted acute hepatitis in developing nations and occurs in sporadic and epidemic forms. The disease may become severe with high mortality (20% among pregnant women. Due to lack of efficient cell culture system and small animal model, early molecular events of HEV infection are not yet known. In the present study, human lung epithelial cells, A549, were infected with HEV to monitor expression levels of genes/proteins in antiviral pathways. Both live and UV inactivated virus elicited robust induction of inflammatory cytokines/chemokines such as IL-6, IL-8, TNF-α, and RANTES within 12 h of infection. Cells exposed to soluble capsid protein showed no induction suggesting the capsid structure and not the protein being detected as the pathogen pattern by cells. A delayed up-regulation of type I interferon genes only by the live virus at 48 h post HEV infection indicated the need of virus replication. However, absence of secreted interferons till 96 h suggested possible involvement of post-transcriptional regulation of type I IFN expression. HEV infected cells showed activation of both NF-κB and IRF3 transcription factors when seen at protein levels; however, reporter gene assays showed predominant expression via NF-κB promoter as compared to IRF3 promoter. Knockdown experiments done using siRNAs showed involvement of MyD88 and TRIF adaptors in generating antiviral response thus indicating role of TLR2, TLR4 and TLR3 in sensing viral molecules. MAVS knockdown surprisingly enhanced only proinflammatory cytokines and not type I IFNs. This suggested that HEV not only down-regulates RIG-I helicase like receptor mediated IFN induction but also employs MAVS in curtailing host inflammatory response. Our findings uncover an early cellular response in HEV infection and associated molecular mechanisms suggesting the potential role of inflammatory response triggered by HEV infection in host immune

  17. Neferine inhibits cultured hepatic stellate cell activation and facilitates apoptosis: A possible molecular mechanism.

    Science.gov (United States)

    Ding, Hui; Shi, Jinghong; Wang, Ying; Guo, Jia; Zhao, Juhui; Dong, Lei

    2011-01-10

    Neferine is a major alkaloid component of "Lian Zi Xin", embryos of the seeds of Nelumbo nucifera Gaertner, Nymphaeaceae. Previous studies have shown that neferine has an inhibitory effect on pulmonary fibrosis through its anti-inflammatory and anti-oxidative activities and inhibition of cytokines and NF-κB. However, it is unknown whether neferine also has an inhibitory effect on liver fibrosis through inhibition of TGF-β1 and collagen I and facilitation of apoptosis of hepatic stellate cells. This study examined the effects of neferine on cultured hepatic stellate (HSC-T6) cells and explored its possible action mechanisms by means of MTT assay, enzyme-linked immunosorbent assay, flow-cytometric annexin V-PI assay and Hoechst 33258 staining, as well as real-time PCR and western blotting. The results showed that neferine administration (2, 4, 6, 8 and 10μmol/l) significantly decreased the TGF-β1 and collagen I produced in HSC-T6 cells, and increased the HSC-T6 cell apoptosis in a dose-dependent manner. Neferine treatment for 48h at concentrations of 6 and 10μmol/l significantly increased Bax and caspase 3 mRNAs and proteins, and reduced Bcl2 and alpha-smooth muscle actin (α-SMA) mRNAs and proteins. Our data indicate that neferine efficiently inhibits cultured HSC-T6 cell activation and induces apoptosis by increasing Bax and caspase 3 expression via the mitochondrial pathway. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Effects of Telbivudine Treatment on the Circulating CD4+ T-Cell Subpopulations in Chronic Hepatitis B Patients

    Directory of Open Access Journals (Sweden)

    Yanhua Zheng

    2012-01-01

    Full Text Available CD4+ T cells serve as master regulators of the adaptive immune response to HBV. However, CD4+ T-cell subsets are heterogeneous, and it remains unknown how the antiviral agents affect the different CD4+ T cell subtypes. To this end, the expressions of signature transcription factors and cytokines of CD4+ T-cell subtypes were examined in hepatitis B patients before and after treatment with telbivudine. Results showed that, upon the rapid HBV copy decrease induced by telbivudine treatment, the frequencies and related cytokines of Th17 and Treg cells were dramatically decreased, while those for Th2 cells were dramatically increased. No obvious changes were observed in Th1 cell frequencies; although, IFN-γ expression was upregulated in response to telbivudine treatment, suggesting another cell source of IFN-γ in CHB patients. Statistical analyses indicated that Th17 and Tr1 (a Treg subtype cells were the most sensitive subpopulations of the peripheral blood CD4+ T cells to telbivudine treatment over 52 weeks. Thus, Th17 and Tr1 cells may represent a suitable and effective predictor of responsiveness during telbivudine therapy. These findings not only improve our understanding of hepatitis pathogenesis but also can aid in future development of appropriate therapeutic strategies to control viral hepatitis.

  19. Three-dimensional bio-printing of hepatic structures with direct-converted hepatocyte-like cells.

    Science.gov (United States)

    Kang, Kyojin; Kim, Yohan; Lee, Seung Bum; Kim, Ji Sook; Park, Sua; Kim, Wan-Doo; Yang, Heung-Mo; Kim, Sung-Joo; Jeong, Jaemin; Choi, Dongho

    2017-07-20

    Three-dimensional (3D) bio-printing technology is a promising new technology in the field of bio-artificial organ generation with regard to overcoming the limitations of organ supply. The cell source for bio-printing is very important. Here, we generated 3D hepatic scaffold with mouse induced hepatocyte-like cells (miHeps), and investigated whether their function was improved after transplantation in vivo. To generate miHeps, mouse embryonic fibroblasts were transformed with pMX retroviruses individually expressing hepatic transcription factors Hnf4a and Foxa3. After 8-10 days, MEFs formed rapidly-growing hepatocyte-like colonies. For 3D bio-printing, miHeps were mixed with a 3% alginate hydrogel and extruded by nozzle pressure. After seven days, they were transplanted into the omentum of Jo2-treated NSG mice as a liver damage model. Real-time PCR and immunofluorescence analyses were conducted to evaluate hepatic function. The 3D bio-printed hepatic scaffold (25 x 25 mm) expressed albumin, and ASGR1 and HNF4a expression gradually increased for 28 days in vitro. When transplanted in vivo, the cells in the hepatic scaffold grew more and exhibited higher albumin expression than in vitro scaffold. Therefore, combining 3D bio-printing with direct conversion technology appears to be an effective option for liver therapy.

  20. Natural Killer Cell Function and Dysfunction in Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Kayla A. Holder

    2014-01-01

    Full Text Available Viruses must continually adapt against dynamic innate and adaptive responses of the host immune system to establish chronic infection. Only a small minority (~20% of those exposed to hepatitis C virus (HCV spontaneously clear infection, leaving approximately 200 million people worldwide chronically infected with HCV. A number of recent research studies suggest that establishment and maintenance of chronic HCV infection involve natural killer (NK cell dysfunction. This relationship is illustrated in vitro by disruption of typical NK cell responses including both cell-mediated cytotoxicity and cytokine production. Expression of a number of activating NK cell receptors in vivo is also affected in chronic HCV infection. Thus, direct in vivo and in vitro evidence of compromised NK function in chronic HCV infection in conjunction with significant epidemiological associations between the outcome of HCV infection and certain combinations of NK cell regulatory receptor and class I human histocompatibility linked antigen (HLA genotypes indicate that NK cells are important in the immune response against HCV infection. In this review, we highlight evidence suggesting that selective impairment of NK cell activity is related to establishment of chronic HCV infection.

  1. Epithelial cell adhesion molecule-positive human hepatic neoplastic cells: development of combined hepatocellular-cholangiocarcinoma in mice.

    Science.gov (United States)

    Ogasawara, Sachiko; Akiba, Jun; Nakayama, Masamichi; Nakashima, Osamu; Torimura, Takuji; Yano, Hirohisa

    2015-02-01

    Human combined hepatocellular-cholangiocarcinoma (CHC) expresses several hepatic stem/progenitor cell (HSPC) markers, suggesting this neoplasm originates from HSPCs. We examined the significance of HSPC marker in CHC using a human CHC cell line. We used a human CHC cell line (KMCH-1) previously established in our laboratory. The original tumor was classified as CHC, showing areas of typical hepatocellular carcinoma (HCC) and cholangiocarcinoma (ChC). We examined the expression of HSPC markers and hepatocyte markers in KMCH-1 by flow cytometry (FCM) and quantitative real-time polymerase chain reaction. EpCAM(+) and EpCAM(-) KMCH-1 cells were isolated. Subsequently, their morphological features, HSPC marker expression, and biological characteristics were examined in vitro and in vivo. FCM showed expression of EpCAM, K7, K19, and ABCG2 in KMCH-1, with various degrees. EpCAM(+) cells expressed K19 mRNA, but did not express α-fetoprotein (AFP). In contrast, EpCAM(-) cells expressed AFP mRNA, but did not express K19. EpCAM(+) cells produced both EpCAM(+) and EpCAM(-) cells, but EpCAM(-) cells produced only EpCAM(-) cells in vitro. EpCAM(+) cells showed higher tumorigenicity and formed larger tumors than EpCAM(-) cells. Inoculation of EpCAM(+) and EpCAM(-) cells produced both ChC and HCC-like component and HCC-like component only, respectively. It is speculated that some CHCs may originate from EpCAM(+) neoplastic cells, and that these cells may affect malignant behavior and progression in such CHCs. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  2. DYRK1A Is a Regulator of S-Phase Entry in Hepatic Progenitor Cells.

    Science.gov (United States)

    Kruitwagen, Hedwig S; Westendorp, Bart; Viebahn, Cornelia S; Post, Krista; van Wolferen, Monique E; Oosterhoff, Loes A; Egan, David A; Delabar, Jean-Maurice; Toussaint, Mathilda J; Schotanus, Baukje A; de Bruin, Alain; Rothuizen, Jan; Penning, Louis C; Spee, Bart

    2018-01-15

    Hepatic progenitor cells (HPCs) are adult liver stem cells that act as second line of defense in liver regeneration. They are normally quiescent, but in case of severe liver damage, HPC proliferation is triggered by external activation mechanisms from their niche. Although several important proproliferative mechanisms have been described, it is not known which key intracellular regulators govern the switch between HPC quiescence and active cell cycle. We performed a high-throughput kinome small interfering RNA (siRNA) screen in HepaRG cells, a HPC-like cell line, and evaluated the effect on proliferation with a 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. One hit increased the percentage of EdU-positive cells after knockdown: dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A). Although upon DYRK1A silencing, the percentage of EdU- and phosphorylated histone H3 (pH3)-positive cells was increased, and total cell numbers were not increased, possibly through a subsequent delay in cell cycle progression. This phenotype was confirmed with chemical inhibition of DYRK1A using harmine and with primary HPCs cultured as liver organoids. DYRK1A inhibition impaired Dimerization Partner, RB-like, E2F, and multivulva class B (DREAM) complex formation in HPCs and abolished its transcriptional repression on cell cycle progression. To further analyze DYRK1A function in HPC proliferation, liver organoid cultures were established from mBACtgDyrk1A mice, which harbor one extra copy of the murine Dyrk1a gene (Dyrk+++). Dyrk+++ organoids had both a reduced percentage of EdU-positive cells and reduced proliferation compared with wild-type organoids. This study provides evidence for an essential role of DYRK1A as balanced regulator of S-phase entry in HPCs. An exact gene dosage is crucial, as both DYRK1A deficiency and overexpression affect HPC cell cycle progression.

  3. CD4+ T cells and natural killer cells: Biomarkers for hepatic fibrosis in human immunodeficiency virus/hepatitis C virus-coinfected patients.

    Science.gov (United States)

    Laufer, Natalia; Ojeda, Diego; Polo, María Laura; Martinez, Ana; Pérez, Héctor; Turk, Gabriela; Cahn, Pedro; Zwirner, Norberto Walter; Quarleri, Jorge

    2017-09-08

    To characterize peripheral blood natural killer (NK) cells phenotypes by flow cytometry as potential biomarker of liver fibrosis in human immunodeficiency virus (HIV)/hepatitis C virus (HCV) coinfected patients. Peripheral mononuclear cells from 24 HIV/HCV (HBV negative) coinfected and 5 HIV/HCV/HBV seronegative individuals were evaluated. HIV/HCV coinfected patients were divided in to groups: G1, patients with METAVIR F0-F2 and G2, patients with METAVIR F3-F4. NK surface cell staining was performed with: Anti-CD3(APC/Cy7), anti-CD56(PE/Cy5), anti-CD57(APC), anti-CD25(PE), anti-CD69(FITC), anti-NKp30(PE), anti-NKp46(PE/Cy7), anti-NKG2D(APC), anti-DNAM(FITC); anti-CD62L (PE/Cy7), anti-CCR7(PE), anti-TRAIL(PE), anti-FasL(PE), anti CD94(FITC). Flow cytometry data acquisition was performed on BD FACSCanto, analyzed using FlowJo software. Frequency of fluorescence was analyzed for all single markers. Clinical records were reviewed, and epidemiological and clinical data were obtained. Samples from 11 patients were included in G1 and from 13 in G2. All patients were on ARV, with undetectable HIV viral load. Liver fibrosis was evaluated by transient elastography in 90% of the patients and with biopsy in 10% of the patients. Mean HCV viral load was (6.18 ± 0.7 log10). Even though, no major significant differences were observed between G1 and G2 regarding NK surface markers, it was found that patients with higher liver fibrosis presented statistically lower percentage of NK cells than individual with low to mild fibrosis and healthy controls (G2: 5.4% ± 2.3%, G1: 12.6% ± 8.2%, P = 0.002 and healthy controls 12.2% ± 2.7%, P = 0.008). It was also found that individuals with higher liver fibrosis presented lower CD4 LT count than those from G1 (G2: 521 ± 312 cells/μL, G1: 770 ± 205 cells/μL; P = 0.035). Higher levels of liver fibrosis were associated with lower percentage of NK cells and LTCD4+ count; and they may serve as noninvasive biomarkers of liver damage.

  4. Efficient cell culture system for hepatitis C virus genotype 7a

    DEFF Research Database (Denmark)

    2013-01-01

    Genotype 7a has been identified recently, thus not much is known about the biology of this new, major HCV genotype. The present inventors developed hepatitis C virus 7a/2a intergenotypic recombinants in which the JFH1 structural genes (Core, E1 and E2), p7 and the complete NS2 were replaced...... by the corresponding genes of the genotype 7a strain QC69 and characterized them in Huh7.5 cells. Sequence analysis of 7a/JFH1 recombinants recovered after viral passage in Huh7.5 cells following 4 independent transfection experiments revealed adaptive mutations in Core, E2, NS2, NS5A and NS5B. In reverse genetic...... in HCV genotype 7, including vaccine studies and functional analyses...

  5. Atypical appearance of an hepatic hemangioma with technetium-99m red blood cell scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Larcos, G.; Farlow, D.C.; Gruenewald, S.M.; Antico, V.F. (Westmead Hospital, NSW (Australia))

    1989-11-01

    Three-phase 99mTc red blood cell scintigraphy is an established technique for distinguishing hemangiomas from other focal liver lesions. The most widely recognized feature is the perfusion to blood-pool mismatch characterized by decreased or normal arterial perfusion, with lesion activity which progressively increases over 1-2 hr. Although increased arterial vascularity of hemangiomas has been described, such cases either involved small portions of the lesion only or occurred in lesions not conclusively proven to be hemangiomas. We report a case of an angiography proven hemangioma with increased arterial vascularity involving a significant portion of the lesion as well as intense early blood-pool activity similar to that seen on delayed imaging. This case emphasizes the diverse appearance of hepatic hemangiomas using 99mTc blood cell scintigraphy.

  6. Fulminant hepatic failure attributed to ackee fruit ingestion in a patient with sickle cell trait.

    Science.gov (United States)

    Grunes, Dianne E; Scordi-Bello, Irini; Suh, Matthew; Florman, Sander; Yao, Jonathan; Fiel, Maria Isabel; Thung, Swan N

    2012-01-01

    We report a case of fulminant liver failure resulting in emergent liver transplantation following 3 weeks of nausea, vomiting, and malaise from Jamaican Vomiting Sickness. Jamaican Vomiting Sickness is caused by ingestion of the unripe arils of the Ackee fruit, its seeds and husks. It is characterized by acute gastrointestinal illness and hypoglycemia. In severe cases, central nervous system depression can occur. In previous studies, histologic sections taken from patients with Jamaican Vomiting Sickness have shown hepatotoxicity similar to that seen in Reye syndrome and/or acetaminophen toxicity. We highlight macroscopic and microscopic changes in the liver secondary to hepatoxicity of Ackee fruit versus those caused by a previously unknown sickle cell trait. We discuss the clinical variables and the synergistic hepatotoxic effect of Ackee fruit and ischemic injury from sickled red blood cells, causing massive hepatic necrosis in this patient.

  7. Fulminant Hepatic Failure Attributed to Ackee Fruit Ingestion in a Patient with Sickle Cell Trait

    Directory of Open Access Journals (Sweden)

    Dianne E. Grunes

    2012-01-01

    Full Text Available We report a case of fulminant liver failure resulting in emergent liver transplantation following 3 weeks of nausea, vomiting, and malaise from Jamaican Vomiting Sickness. Jamaican Vomiting Sickness is caused by ingestion of the unripe arils of the Ackee fruit, its seeds and husks. It is characterized by acute gastrointestinal illness and hypoglycemia. In severe cases, central nervous system depression can occur. In previous studies, histologic sections taken from patients with Jamaican Vomiting Sickness have shown hepatotoxicity similar to that seen in Reye syndrome and/or acetaminophen toxicity. We highlight macroscopic and microscopic changes in the liver secondary to hepatoxicity of Ackee fruit versus those caused by a previously unknown sickle cell trait. We discuss the clinical variables and the synergistic hepatotoxic effect of Ackee fruit and ischemic injury from sickled red blood cells, causing massive hepatic necrosis in this patient.

  8. Gradually softening hydrogels for modeling hepatic stellate cell behavior during fibrosis regression.

    Science.gov (United States)

    Caliari, Steven R; Perepelyuk, Maryna; Soulas, Elizabeth M; Lee, Gi Yun; Wells, Rebecca G; Burdick, Jason A

    2016-06-13

    The extracellular matrix (ECM) presents an evolving set of mechanical cues to resident cells. We developed methacrylated hyaluronic acid (MeHA) hydrogels containing both stable and hydrolytically degradable crosslinks to provide cells with a gradually softening (but not fully degradable) milieu, mimicking physiological events such as fibrosis regression. To demonstrate the utility of this cell culture system, we studied the phenotype of rat hepatic stellate cells, the major liver precursors of fibrogenic myofibroblasts, within this softening environment. Stellate cells that were mechanically primed on tissue culture plastic attained a myofibroblast phenotype, which persisted when seeded onto stiff (∼20 kPa) hydrogels. However, mechanically primed stellate cells on stiff-to-soft (∼20 to ∼3 kPa) hydrogels showed reversion of the myofibroblast phenotype over 14 days, with reductions in cell area, expression of the myofibroblast marker alpha-smooth muscle actin (α-SMA), and Yes-associated protein/Transcriptional coactivator with PDZ-binding motif (YAP/TAZ) nuclear localization when compared to stellate cells on stiff hydrogels. Cells on stiff-to-soft hydrogels did not fully revert, however. They displayed reduced expression of glial fibrillary acidic protein (GFAP), and underwent abnormally rapid re-activation to myofibroblasts in response to re-stiffening of the hydrogels through introduction of additional crosslinks. These features are typical of stellate cells with an intermediate phenotype, reported to occur in vivo with fibrosis regression and re-injury. Together, these data suggest that mechanics play an important role in fibrosis regression and that integrating dynamic mechanical cues into model systems helps capture cell behaviors observed in vivo.

  9. Apoptosis of rat hepatic stellate cells induced by diallyl trisulfide and proteomics profiling in vitro.

    Science.gov (United States)

    Zhang, Yajie; Zhou, Xiaoming; Xu, Lipeng; Wang, Lulu; Liu, Jinling; Ye, Jing; Qiu, Pengxin; Liu, Qinghua

    2017-05-01

    Diallyl trisulfide (DATS), a major garlic derivative, inhibits cell proliferation and triggers apoptosis in a variety of cancer cell lines. However, the effects of DATS on hepatic stellate cells (HSCs) remain unknown. The aim of this study was to analyze the effects of DATS on cell proliferation and apoptosis, as well as the protein expression profile in rat HSCs. Rat HSCs were treated with or without 12 and 24 μg/mL DATS for various time intervals. Cell proliferation and apoptosis were determined using tetrazolium dye (MTT) colorimetric assay, bromodeoxyuridine (5-bromo-2'-deoxyuridine; BrdU) assay, Hoechst 33342 staining, electroscopy, and flow cytometry. Protein expression patterns in HSCs were systematically studied using 2-dimensional electrophoresis and mass spectrometry. DATS inhibited cell proliferation and induced apoptosis of HSCs in a time-dependent manner. We observed clear morphological changes in apoptotic HSCs and dramatically increased annexin V-positive - propidium iodide negative apoptosis compared with the untreated control group. Twenty-one significant differentially expressed proteins, including 9 downregulated proteins and 12 upregulated proteins, were identified after DATS administration, and most of them were involved in apoptosis. Our results suggest that DATS is an inducer of apoptosis in HSCs, and several key proteins may be involved in the molecular mechanism of apoptosis induced by DATS.

  10. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  11. [Hepatitis C virus F protein-mediated inhibition of hepatoma cell proliferation].

    Science.gov (United States)

    Zhou, Fan; Liu, Jiao; Chen, Qing-mei; Shan, Xiao-ling; Chen, Lin-lin; Quan, Hui-qin; Tang, Ni

    2012-05-01

    To investigate the biological function of the hepatitis C virus (HCV)-encoded F protein in hepatocytes. The full-length F gene was amplified by PCR from HCV genotype 1a and cloned into plasmid pSEB-3Flag by restriction enzyme digestion and ligation. Hepatoma cell lines, Huh7 and SMMC7721, were transfected with the resultant recombinant pSEB-3Flag-F or the original pSEB-3Flag (negative control) and screened with the selective antibiotic, blasticidin. Stable F gene and protein expression was verified by RT-PCR analysis. Analysis of cell growth and cell cycle was carried out by MTS assay, crystal violet staining and flow cytometry. Huh7 and SMMC7721 cells transfected with pSEB-3Flag-F plasmid (Huh7-F and SMMC7721-F, respectively) uniquely expressed the F gene and protein. The Huh7-F and SMMC7721-F cells showed significantly decreased proliferation rates, compared to the respective control groups. A similar HCV F-mediated growth-inhibiting activity was observed by the cell viability assay. Furthermore, cell cycle analysis revealed that the S-phase distribution was much lower in Huh7-F (47.12%) and SMMC7721-F (30.75%) cells than in the respective controls (55.35% and 33.23%, respectively) (P less than 0.05). Stable expression of the HCV F gene reduced the in vitro proliferation rate of hepatoma cell lines, indicating that the F protein may function as a growth inhibitor of infected cells.

  12. Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection.

    Directory of Open Access Journals (Sweden)

    Dimitra Peppa

    2010-12-01

    Full Text Available NK cells are enriched in the liver, constituting around a third of intrahepatic lymphocytes. We have previously demonstrated that they upregulate the death ligand TRAIL in patients with chronic hepatitis B virus infection (CHB, allowing them to kill hepatocytes bearing TRAIL receptors. In this study we investigated whether, in addition to their pathogenic role, NK cells have antiviral potential in CHB. We characterised NK cell subsets and effector function in 64 patients with CHB compared to 31 healthy controls. We found that, in contrast to their upregulated TRAIL expression and maintenance of cytolytic function, NK cells had a markedly impaired capacity to produce IFN-γ in CHB. This functional dichotomy of NK cells could be recapitulated in vitro by exposure to the immunosuppressive cytokine IL-10, which was induced in patients with active CHB. IL-10 selectively suppressed NK cell IFN-γ production without altering cytotoxicity or death ligand expression. Potent antiviral therapy reduced TRAIL-expressing CD56(bright NK cells, consistent with the reduction in liver inflammation it induced; however, it was not able to normalise IL-10 levels or the capacity of NK cells to produce the antiviral cytokine IFN-γ. Blockade of IL-10 +/- TGF-β restored the capacity of NK cells from both the periphery and liver of patients with CHB to produce IFN-γ, thereby enhancing their non-cytolytic antiviral capacity. In conclusion, NK cells may be driven to a state of partial functional tolerance by the immunosuppressive cytokine environment in CHB. Their defective capacity to produce the antiviral cytokine IFN-γ persists in patients on antiviral therapy but can be corrected in vitro by IL-10+/- TGF-β blockade.

  13. Enhanced anti-fibrogenic effects of novel oridonin derivative CYD0692 in hepatic stellate cells.

    Science.gov (United States)

    Bohanon, Fredrick J; Wang, Xiaofu; Graham, Brittany M; Prasai, Anesh; Vasudevan, Sadhashiva J; Ding, Chunyong; Ding, Ye; Radhakrishnan, Geetha L; Rastellini, Cristiana; Zhou, Jia; Radhakrishnan, Ravi S

    2015-12-01

    Oridonin, isolated from Rabdosia rubescens, has been proven to possess various anti-neoplastic and anti-inflammatory properties. Previously, we reported the anti-fibrogenic effects of oridonin for liver in vitro. In the present study, we investigated the effects of a newly designed analog CYD0692 in vitro. Cell viability was measured by Alamar Blue assay. Cell apoptosis was assessed by Cell Death ELISA and Yo-Pro-1 staining. Western blots were performed for cellular proteins. Flow cytometry was used to measure cell cycle regulation. CYD0692 significantly inhibited LX-2 cells proliferation in a dose- and time-dependent manner with an IC50 value of ~0.7 μM for 48 h, ~tenfold greater potency than oridonin. Similar results were observed in HSC-T6 cells. In contrast, on the human hepatocyte cell line C3A, only 12 % of the cell growth was inhibited with 5 μM of CYD0692 treatment for 48 h, while 30 % inhibited at 10 μM. After CYD0692 treatment on LX-2 cells, apoptosis and S-phase cell cycle arrest were induced; cleaved-PARP, p21, and p53 were activated while cyclin-B1 levels declined. In addition, α-smooth muscle actin, type I Collagen, and fibronectin (FN) were markedly down regulated. Transforming growth factor β1 (TGF β1) has been identified as a dominant stimulator for ECM production in HSC. Our results indicated that pretreatment with CYD0692 blocked TGF β1-induced FN expression, thereby decreasing the downstream factors of TGF β1 signaling, such as Phospho-Smad2/3 and phospho-ERK. In comparison with oridonin, its novel derivative CYD0692 has demonstrated to be a more potent and potentially safer anti-fibrogenic agent for the treatment of hepatic fibrosis.

  14. RNA-seq based transcriptome analysis of hepatitis E virus (HEV and hepatitis B virus (HBV replicon transfected Huh-7 cells.

    Directory of Open Access Journals (Sweden)

    Neetu Jagya

    Full Text Available Pathogenesis of hepatitis B virus (HBV and hepatitis E virus (HEV infection is as varied as they appear similar; while HBV causes an acute and/or chronic liver disease and hepatocellular carcinoma, HEV mostly causes an acute self-limiting disease. In both infections, host responses are crucial in disease establishment and/or virus clearance. In the wake of worsening prognosis described during HEV super-infection over chronic HBV hepatitis, we investigated the host responses by studying alterations in gene expression in liver cells (Huh-7 cell line by transfection with HEV replicon only (HEV-only, HBV replicon only (HBV-only and both HBV and HEV replicons (HBV+HEV. Virus replication was validated by strand-specific real-time RT-PCR for HEV and HBsAg ELISA of the culture supernatants for HBV. Indirect immunofluorescence for the respective viral proteins confirmed infection. Transcription profiling was carried out by RNA Sequencing (RNA-Seq analysis of the poly-A enriched RNA from the transfected cells. Averages of 600 million bases within 5.6 million reads were sequenced in each sample and ∼15,800 genes were mapped with at least one or more reads. A total of 461 genes in HBV+HEV, 408 in HBV-only and 306 in HEV-only groups were differentially expressed as compared to mock transfection control by two folds (p<0.05 or more. Majority of the significant genes with altered expression clustered into immune-associated, signal transduction, and metabolic process categories. Differential gene expression of functionally important genes in these categories was also validated by real-time RT-PCR based relative gene-expression analysis. To our knowledge, this is the first report of in vitro replicon transfected RNA-Seq based transcriptome analysis to understand the host responses against HEV and HBV.

  15. Clinical applications of squamous cell carcinoma antigen-immunoglobulins M to monitor chronic hepatitis C.

    Science.gov (United States)

    Martini, Andrea; Gallotta, Andrea; Pontisso, Patrizia; Fassina, Giorgio

    2015-12-18

    Hepatitis C virus (HCV) is the main cause of chronic liver disease and cirrhosis in Western countries. Over time, the majority of cirrhotic patients develop hepatocellular carcinoma (HCC), one of the most common fatal cancers worldwide - fourth for incidence rate. A high public health priority need is the development of biomarkers to screen for liver disease progression and for early diagnosis of HCC development, particularly in the high risk population represented by HCV-positive patients with cirrhosis. Several studies have shown that serological determination of a novel biomarker, squamous cell carcinoma antigen-immunoglobulins M (SCCA-IgM), might be useful to identify patients with progressive liver disease. In the initial part of this review we summarize the main clinical studies that have investigated this new circulating biomarker on HCV-infected patients, providing evidence that in chronic hepatitis C SCCA-IgM may be used to monitor progression of liver disease, and also to assess the virological response to antiviral treatment. In the last part of this review we address other, not less important, clinical applications of this biomarker in hepatology.

  16. [Inhibition of CD4+ CD25+ regulatory T cells in chronic hepatitis B patients].

    Science.gov (United States)

    Zhang, Heng-Hui; Guo, Fang; Fei, Ran; Ma, Hui; Cong, Xu; Wei, Lai; Chen, Hong-Song

    2008-02-26

    To evaluate the inhibition of CD4+ CD25+ regulatory T cells (Treg) in the chronic hepatitis B patients. Peripheral blood samples were collected from 22 patients with chronic hepatitis B (CHB) and 18 healthy blood donors to isolate the peripheral blood mononuclear cells (PBMCs). Flow cytometry was used to analyze the proportion of CD4+ CD127(lo)CD25(hi-int) Tregs in the CD4+ T cells so as to calculate the proportion of CD4+ CD25+ Tregs in the CD4+ T cells. BrdU incorporation method was used to evaluate the immune inhibition of the CD4+ CD25+ Tregs. CD4+ CD25- cells were isolated by magnetic bead sorting technique. The CD4- T cells and CD4+ CD25- T cells ere mixed and stimulated by HBVcore 18-27 peptide. The PBMCs of the CHB patients with the Treg depleted and Treg not depleted underwent detection of HBVcore18-27 specific cytotoxic T lymphocytes (CTLs). The IFN-gamma secretion of the CTLs in the PBMCs of CHB patients with Treg depleted and Treg not depleted was detected by HLA-pentamer and enzyme-linked immunospot assay (Elispot). The proportion of CD4+ CD127(lo)CD25(hi-int) Treg in the CD4+ T cells used to reflect the percentage of CD4+CD25+ Tregs in the CD4+ T cells of the CHB patients was 4.3% +/- 2.4%, significantly higher than that of the healthy controls (2.1% +/- 1.3%, t = 3.74, P <0.01). There was no significant difference in the inhibition of CD4+ CD25- T cells by autogenous CD4+ CD25+ T cells between the CHB patients and healthy controls. The frequency of CTLs induced by HBV core 18-27 of the CHB patients with their CD4+ CD25+ cells in circulation depleted was 0.74% +/- 0.31%, significantly higher than that of the patients whose CD4+ CD25+ cells in circulation were not depleted (0.17% +/- 0.08%, t = 4.75, P <0.01). The frequency of IFN-gamma secreting spots of HBVcore18-27-specific CD8+ T cells of the CHB patients with their CD4+ CD25+ cells depleted was (112 +/- 33), significantly higher than that of the CHB patients whose CD4+ CD25+ cells in circulation

  17. New models of hepatitis E virus replication in human and porcine hepatocyte cell lines

    Science.gov (United States)

    Hepatitis E virus (HEV) causes acute, enterically-transmitted hepatitis. It is associated with large epidemics in tropical and subtropical regions where it is endemic or with sporadic cases in non-endemic regions. Unlike other hepatitis viruses, HEV has several animal reservoirs. Phylogenetic studie...

  18. Liver Cirrhosis in a Patient with Sickle Cell Trait (Hb Sβ+ Thalassemia without Other Known Causes of Hepatic Disease

    Directory of Open Access Journals (Sweden)

    Luca Santi

    2009-09-01

    Full Text Available Liver involvement in patients with sickle cell anemia/trait includes a wide range of alterations, from mild liver function test abnormalities to cirrhosis and acute liver failure. Approximately 15–30% of patients with sickle cell anemia present cirrhosis at autopsy. The pathogenesis of cirrhosis is usually related to chronic hepatitis B or C infection or to iron overload resulting from the many transfusions received by these patients in their lifetime. Thus, cirrhosis has been described almost exclusively in patients with sickle cell anemia, while only mild liver abnormalities have been associated with the sickle cell trait. In the present case study, we describe a young Mediterranean man carrying a sickle cell trait (Hb Sβ+ thalassemia who developed liver cirrhosis being negative for hepatitis C and B viruses or for other causes of cirrhosis and not receiving chronic blood transfusions.

  19. Pregnane X receptor activation and silencing promote steatosis of human hepatic cells by distinct lipogenic mechanisms.

    Science.gov (United States)

    Bitter, Andreas; Rümmele, Petra; Klein, Kathrin; Kandel, Benjamin A; Rieger, Jessica K; Nüssler, Andreas K; Zanger, Ulrich M; Trauner, Michael; Schwab, Matthias; Burk, Oliver

    2015-11-01

    In addition to its well-characterized role in the regulation of drug metabolism and transport by xenobiotics, pregnane X receptor (PXR) critically impacts on lipid homeostasis. In mice, both ligand-dependent activation and knockout of PXR were previously shown to promote hepatic steatosis. To elucidate the respective pathways in human liver, we generated clones of human hepatoma HepG2 cells exhibiting different PXR protein levels, and analyzed effects of PXR activation and knockdown on steatosis and expression of lipogenic genes. Ligand-dependent activation as well as knockdown of PXR resulted in increased steatosis in HepG2 cells. Activation of PXR induced the sterol regulatory element-binding protein (SREBP) 1-dependent lipogenic pathway via PXR-dependent induction of SREBP1a, which was confirmed in primary human hepatocytes. Inhibiting SREBP1 activity by blocking the cleavage-dependent maturation of SREBP1 protein impaired the induction of lipogenic SREBP1 target genes and triglyceride accumulation by PXR activation. On the other hand, PXR knockdown resulted in up-regulation of aldo-keto reductase (AKR) 1B10, which enhanced the acetyl-CoA carboxylase (ACC)-catalyzed reaction step of de novo lipogenesis. In a cohort of human liver samples histologically classified for non-alcoholic fatty liver disease, AKR1B10, SREBP1a and SREBP1 lipogenic target genes proved to be up-regulated in steatohepatitis, while PXR protein was reduced. In summary, our data suggest that activation and knockdown of PXR in human hepatic cells promote de novo lipogenesis and steatosis by induction of the SREBP1 pathway and AKR1B10-mediated increase of ACC activity, respectively, thus providing mechanistic explanations for a putative dual role of PXR in the pathogenesis of steatohepatitis.

  20. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor

    Science.gov (United States)

    Freyer, Nora; Knöspel, Fanny; Strahl, Nadja; Amini, Leila; Schrade, Petra; Bachmann, Sebastian; Damm, Georg; Seehofer, Daniel; Jacobs, Frank; Monshouwer, Mario; Zeilinger, Katrin

    2016-01-01

    Abstract The hepatic differentiation of human induced pluripotent stem cells (hiPSC) holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D) hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D) cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3). Differentiation into definitive endoderm (DE) was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP), a marker for DE, was significantly (p bioreactors. Functional analysis of multiple cytochrome P450 (CYP) isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH). CYP2B6 activities were significantly (p bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18), and hepatocyte nuclear factor 4-alpha (HNF4A) at the end of the differentiation process. In addition, cytokeratin 19 (CK19) staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture systems in stem cell differentiation approaches for improved formation of differentiated tissue structures. PMID:27610270

  1. Antisense oligonucleotide inhibition of hepatitis C virus genotype 4 replication in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Omran Moataza H

    2006-06-01

    Full Text Available Abstract Background Hepatitis C (HCV viral infection is a serious medical problem in Egypt and it has a devastating impact on the Egyptian economy. It is estimated that over 15% of Egyptians are infected by the virus and thus finding a cure for this disease is of utmost importance. Current therapies for hepatitis C virus (HCV genotype 4 with interferon/ribavirin have not been successful and thus the development of alternative therapy for this genotype is disparately needed. Results Although previous studies utilizing viral subgenomic or full cDNA fragments linked to reporter genes transfected into adhered cells or in a cell free system showed promise, demonstration of efficient viral replication was lacking. Thus, we utilized HepG2 cells infected with native HCV RNA genomes in a replication competent system and used antisense phosphorothioate Oligonucleotides (S-ODN against stem loop IIId and the AUG translation start site of the viral polyprotein precursor to monitor viral replication. We were able to show complete arrest of intracellular replication of HCV-4 at 1 uM S-ODN, thus providing a proof of concept for the potential antiviral activity of S-ODN on native genomic replication of HCV genotype 4. Conclusion We have successfully demonstrated that by using two S-ODNs [(S-ODN1 (nt 326–348 and S-ODN-2 (nt 264–282], we were able to completely inhibit viral replication in culture, thus confirming earlier reports on subgenomic constructs and suggesting a potential therapeutic value in HCV type 4.

  2. Hepatic Fibrosis Inhibitory Effect of Peptides Isolated from Navicula incerta on TGF-β1 Induced Activation of LX-2 Human Hepatic Stellate Cells.

    Science.gov (United States)

    Kang, Kyong-Hwa; Qian, Zhong-Ji; Ryu, Bomi; Karadeniz, Fatih; Kim, Daekyung; Kim, Se-Kwon

    2013-06-01

    In this study, novel peptides (NIPP-1, NIPP-2) derived from Navicula incerta (microalgae) protein hydrolysate were explored for their inhibitory effects on collagen release in hepatic fibrosis with the investigation of its underlying mechanism of action. TGF-β1 activated fibrosis in LX-2 cells was examined in the presence or absence of purified peptides NIPP-1 and NIPP-2. Besides the mechanisms of liver cell injury, protective effects of NIPP-1 and NIPP-2 were studied to show the protective mechanism against TGF-β1 stimulated fibrogenesis. Our results showed that the core protein of NIPP-1 peptide prevented fibril formation of type I collagen, elevated the MMP level and inhibited TIMP production in a dose-dependent manner. The treatment of NIPP-1 and NIPP-2 on TGF-β1 induced LX-2 cells alleviated hepatic fibrosis. Moreover, α-SMA, TIMPs, collagen and PDGF in the NIPP-1 treated groups were significantly decreased. Therefore, it could be suggested that NIPP-1 has potential to be used in anti-fibrosis treatment.

  3. p38β, A Novel Regulatory Target of Pokemon in Hepatic Cells

    Directory of Open Access Journals (Sweden)

    Ying Tan

    2013-06-01

    Full Text Available Pokemon is an important proto-oncogene involved in various biological processes and cancer development, such as cell differentiation, tumorigenesis and metastasis. Pokemon is recognized as a transcription factor localized upstream of several oncogenes, regulating their expression. p38MAPKs act as key regulatory factors in cellular signaling pathways associated with inflammatory responses, cell proliferation, differentiation and survival. p38β, a member of p38MAPK family, is closely correlated with tumorigenesis, but the mechanism of activation remains unclear. In this study, we found overexpression of Pokemon promoted the growth, migration and invasion of HepG2 cells. However, a p38 inhibitor SB202190 efficiently attenuated the promoting effect of Pokemon in the HepG2 cells. Targeted expression or silencing of Pokemon changed cellular p38β protein level and phosphorylation of downstream ATF2 in the p38 signaling pathway. Both dual luciferase report assay and ChIP assay suggested that p38β is a novel regulatory target of the transcription factor Pokemon and positively regulated by Pokemon in hepatic cells.

  4. p38β, A novel regulatory target of Pokemon in hepatic cells.

    Science.gov (United States)

    Chen, Zhe; Liu, Feng; Zhang, Nannan; Cao, Deliang; Liu, Min; Tan, Ying; Jiang, Yuyang

    2013-06-27

    Pokemon is an important proto-oncogene involved in various biological processes and cancer development, such as cell differentiation, tumorigenesis and metastasis. Pokemon is recognized as a transcription factor localized upstream of several oncogenes, regulating their expression. p38MAPKs act as key regulatory factors in cellular signaling pathways associated with inflammatory responses, cell proliferation, differentiation and survival. p38β, a member of p38MAPK family, is closely correlated with tumorigenesis, but the mechanism of activation remains unclear. In this study, we found overexpression of Pokemon promoted the growth, migration and invasion of HepG2 cells. However, a p38 inhibitor SB202190 efficiently attenuated the promoting effect of Pokemon in the HepG2 cells. Targeted expression or silencing of Pokemon changed cellular p38β protein level and phosphorylation of downstream ATF2 in the p38 signaling pathway. Both dual luciferase report assay and ChIP assay suggested that p38β is a novel regulatory target of the transcription factor Pokemon and positively regulated by Pokemon in hepatic cells.

  5. Signalome-wide assessment of host cell response to hepatitis C virus.

    Science.gov (United States)

    Haqshenas, Gholamreza; Wu, Jianmin; Simpson, Kaylene J; Daly, Roger J; Netter, Hans J; Baumert, Thomas F; Doerig, Christian

    2017-05-08

    Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-κB pathways are suppressed, while the JAK/STAT5 pathway is activated; furthermore, components of the apoptosis and cell cycle control machineries are affected in the expression and/or phosphorylation status. RNAi-based hit validation identifies components of the JAK/STAT, NF-κB, MAPK and calcium-induced pathways as modulators of HCV replication. Selective chemical inhibition of one of the identified targets, the JNK activator kinase MAP4K2, does impair HCV replication. Thus this study provides a comprehensive picture of host cell pathway mobilization by HCV and uncovers potential therapeutic targets. The strategy of identifying targets for anti-infective intervention within the host cell signalome can be applied to any intracellular pathogen.

  6. Signalome-wide assessment of host cell response to hepatitis C virus

    Science.gov (United States)

    Haqshenas, Gholamreza; Wu, Jianmin; Simpson, Kaylene J.; Daly, Roger J.; Netter, Hans J.; Baumert, Thomas F.; Doerig, Christian

    2017-01-01

    Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-κB pathways are suppressed, while the JAK/STAT5 pathway is activated; furthermore, components of the apoptosis and cell cycle control machineries are affected in the expression and/or phosphorylation status. RNAi-based hit validation identifies components of the JAK/STAT, NF-κB, MAPK and calcium-induced pathways as modulators of HCV replication. Selective chemical inhibition of one of the identified targets, the JNK activator kinase MAP4K2, does impair HCV replication. Thus this study provides a comprehensive picture of host cell pathway mobilization by HCV and uncovers potential therapeutic targets. The strategy of identifying targets for anti-infective intervention within the host cell signalome can be applied to any intracellular pathogen. PMID:28480889

  7. Cell cycle deregulation by the HBx protein of hepatitis B virus

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2007-02-01

    Full Text Available

    Cell cycle control by oncogenic viruses usually involves disruption of the normal restraints on cellular proliferation via abnormal proteolytic degradation and malignant transformation of cells. The cell cycle regulatory molecules viz. cyclins, cyclin-dependent kinases (cdks and inhibitors of cdks as well as the transcriptional targets of signaling pathways induce cells to move through the cell cycle checkpoints. These check points are often found deregulated in tumor cells and in the cells afflicted with DNA tumor viruses predisposing them towards transformation. The X protein or HBx of hepatitis B virus is a promiscuous transactivator that has been implicated in the development of hepatocellular carcinoma in humans. However, the exact role of HBx in establishing a permissive environment for hepatocarcinogenesis is not fully understood. HBx activates the Ras-Raf-MAP kinase signaling cascade, through which it activates transcription factors AP-1 and NFkappa B, and stimulates cell DNA synthesis. HBx shows a profound effect on cell cycle progression even in the absence of serum. It can override the replicative senescence of cells in G0 phase by binding to p55sen. It stimulates the G0 cells to transit through G1 phase by activating Src kinases and the cyclin A-cyclin-dependent kinase 2 complexes, that in turn induces the cyclin A promoter. There is an early and sustained level of cyclin-cdk2 complex in the presence of HBx during the cell cycle which is coupled with an increased protein kinase activity of cdk2 suggesting an early appearance of S phase. The interaction between cyclin-cdk2 complex and HBx occurs through its carboxyterminal region (amino acids 85-119 and requires a constitutive Src kinase activity. The increased cdk2 activity is associated with stabilization of cyclin E as well as proteasomal degradation of cdk inhibitor p27Kip1. Notably, the HBx mutant

  8. Intracellular Glutathione Depletion by Oridonin Leads to Apoptosis in Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Liang-Mou Kuo

    2014-03-01

    Full Text Available Proliferation of hepatic stellate cells (HSCs plays a key role in the pathogenesis of liver fibrosis. Induction of HSC apoptosis by natural products is considered an effective strategy for treating liver fibrosis. Herein, the apoptotic effects of 7,20-epoxy-ent-kaurane (oridonin, a diterpenoid isolated from Rabdosia rubescens, and its underlying mechanisms were investigated in rat HSC cell line, HSC-T6. We found that oridonin inhibited cell viability of HSC-T6 in a concentration-dependent manner. Oridonin induced a reduction in mitochondrial membrane potential and increases in caspase 3 activation, subG1 phase, and DNA fragmentation. These apoptotic effects of oridonin were completely reversed by thiol antioxidants, N-acetylcysteine (NAC and glutathione monoethyl ester. Moreover, oridonin increased production of reactive oxygen species (ROS, which was also inhibited by NAC. Significantly, oridonin reduced intracellular glutathione (GSH level in a concentration- and time-dependent fashion. Additionally, oridonin induced phosphorylations of extracellular signal-regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38 mitogen-activated protein kinase (MAPK. NAC prevented the activation of MAPKs in oridonin-induced cells. However, selective inhibitors of MAPKs failed to alter oridonin-induced cell death. In summary, these results demonstrate that induction of apoptosis in HSC-T6 by oridonin is associated with a decrease in cellular GSH level and increase in ROS production.

  9. CFP and YFP, but Not GFP, Provide Stable Fluorescent Marking of Rat Hepatic Adult Stem Cells

    Directory of Open Access Journals (Sweden)

    Rouzbeh R. Taghizadeh

    2008-01-01

    Full Text Available The stable expression of reporter genes in adult stem cells (ASCs has important applications in stem cell biology. The ability to integrate a noncytotoxic, fluorescent reporter gene into the genome of ASCs with the capability to track ASCs and their progeny is particularly desirable for transplantation studies. The use of fluorescent proteins has greatly aided the investigations of protein and cell function on short-time scales. In contrast, the obtainment of stably expressing cell strains with low variability in expression for studies on longer-time scales is often problematic. We show that this difficulty is partly due to the cytotoxicity of a commonly used reporter, green fluorescent protein (GFP. To avoid GFP-specific toxicity effects during attempts to stably mark a rat hepatic ASC strain and, therefore, obtain stable, long-term fluorescent ASCs, we evaluated cyan fluorescent protein (CFP and yellow fluorescent protein (YFP, in addition to GFP. Although we were unable to derive stable GFP-expressing strains, stable fluorescent clones (up to 140 doublings expressing either CFP or YFP were established. When fluorescently marked ASCs were induced to produce differentiated progeny cells, stable fluorescence expression was maintained. This property is essential for studies that track fluorescently marked ASCs and their differentiated progeny in transplantation studies.

  10. Cell culture system of a hepatitis C genotype 3a and 2a chimera

    DEFF Research Database (Denmark)

    2015-01-01

    passaged in cell culture had comparable growth kinetics and yielded similar peak HCV RNA titers and infectivity titers. Direct genome sequencing of cell culture derived S52/JFH1 viruses identified putative adaptive mutations in Core, E2, p7, NS3, and NS5A; clonal analysis revealed that all genomes analyzed...... exhibited different combinations of these mutations. Finally, viruses resulting from transfection with RNA transcripts of five S52/JFH1 recombinants containing these combinations of putative adaptive mutations performed as efficiently as J6/JFH viruses in Huh7.5 cells and were all genetically stable after......A robust and genetically stable cell culture system for Hepatitis C Virus (HCV) genotype 3a is provided. A genotype 3a/2a (S52/JFH1) recombinant containing the structural genes (Core, E1, E2), p7 and NS2 of strain S52 was constructed and characterized in Huh7.5 cells. S52/JFH1 and J6/JFH viruses...

  11. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Soumya C, E-mail: chidambaram.soumya@gmail.com [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Kannan, Anbarasu [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Gopal, Ashidha [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Devaraj, Niranjali [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Halagowder, Devaraj [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India)

    2015-08-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy.

  12. Lipoprotein lipase inhibits hepatitis C virus (HCV infection by blocking virus cell entry.

    Directory of Open Access Journals (Sweden)

    Patrick Maillard

    Full Text Available A distinctive feature of HCV is that its life cycle depends on lipoprotein metabolism. Viral morphogenesis and secretion follow the very low-density lipoprotein (VLDL biogenesis pathway and, consequently, infectious HCV in the serum is associated with triglyceride-rich lipoproteins (TRL. Lipoprotein lipase (LPL hydrolyzes TRL within chylomicrons and VLDL but, independently of its catalytic activity, it has a bridging activity, mediating the hepatic uptake of chylomicrons and VLDL remnants. We previously showed that exogenously added LPL increases HCV binding to hepatoma cells by acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate, while simultaneously decreasing infection levels. We show here that LPL efficiently inhibits cell infection with two HCV strains produced in hepatoma cells or in primary human hepatocytes transplanted into uPA-SCID mice with fully functional human ApoB-lipoprotein profiles. Viruses produced in vitro or in vivo were separated on iodixanol gradients into low and higher density populations, and the infection of Huh 7.5 cells by both virus populations was inhibited by LPL. The effect of LPL depended on its enzymatic activity. However, the lipase inhibitor tetrahydrolipstatin restored only a minor part of HCV infectivity, suggesting an important role of the LPL bridging function in the inhibition of infection. We followed HCV cell entry by immunoelectron microscopy with anti-envelope and anti-core antibodies. These analyses demonstrated the internalization of virus particles into hepatoma cells and their presence in intracellular vesicles and associated with lipid droplets. In the presence of LPL, HCV was retained at the cell surface. We conclude that LPL efficiently inhibits HCV infection by acting on TRL associated with HCV particles through mechanisms involving its lipolytic function, but mostly its bridging function. These mechanisms lead to immobilization of the virus at the cell

  13. Temporal analysis of hepatitis C virus cell entry with occludin directed blocking antibodies.

    Directory of Open Access Journals (Sweden)

    Marion Sourisseau

    2013-03-01

    Full Text Available Hepatitis C virus (HCV is a major cause of liver disease worldwide. A better understanding of its life cycle, including the process of host cell entry, is important for the development of HCV therapies and model systems. Based on the requirement for numerous host factors, including the two tight junction proteins claudin-1 (CLDN1 and occludin (OCLN, HCV cell entry has been proposed to be a multi-step process. The lack of OCLN-specific inhibitors has prevented a comprehensive analysis of this process. To study the role of OCLN in HCV cell entry, we created OCLN mutants whose HCV cell entry activities could be inhibited by antibodies. These mutants were expressed in polarized HepG2 cells engineered to support the complete HCV life cycle by CD81 and miR-122 expression and synchronized infection assays were performed to define the kinetics of HCV cell entry. During these studies, OCLN utilization differences between HCV isolates were observed, supporting a model that HCV directly interacts with OCLN. In HepG2 cells, both HCV cell entry and tight junction formation were impaired by OCLN silencing and restored by expression of antibody regulatable OCLN mutant. Synchronized infection assays showed that glycosaminoglycans and SR-BI mediated host cell binding, while CD81, CLDN1 and OCLN all acted sequentially at a post-binding stage prior to endosomal acidification. These results fit a model where the tight junction region is the last to be encountered by the virion prior to internalization.

  14. Quantitative evaluation of human bone mesenchymal stem cells rescuing fulminant hepatic failure in pigs.

    Science.gov (United States)

    Shi, Dongyan; Zhang, Jianing; Zhou, Qian; Xin, Jiaojiao; Jiang, Jing; Jiang, Longyan; Wu, Tianzhou; Li, Jiang; Ding, Wenchao; Li, Jun; Sun, Suwan; Li, Jianzhou; Zhou, Ning; Zhang, Liyuan; Jin, Linfeng; Hao, Shaorui; Chen, Pengcheng; Cao, Hongcui; Li, Mingding; Li, Lanjuan; Chen, Xin; Li, Jun

    2017-05-01

    Stem cell transplantation provides a promising alternative for the treatment of fulminant hepatic failure (FHF). However, it lacks fundamental understanding of stem cells' activities. Our objective was to clarify stem cell-recipient interactions for overcoming barriers to clinical application. We used an in-house large-animal (pig) model of FHF rescue by human bone marrow mesenchymal stem cells (hBMSCs) and profiled the cells' activities. The control and transplantation groups of pigs (n=15 per group) both received a D-galactosamine (D-Gal) injection (1.5 g/kg). The transplantation group received hBMSCs via intraportal vein infusion (3×10(6) cells/kg) immediately after D-Gal administration. The stem cell-recipient interactions were quantitatively evaluated by biochemical function, cytokine array, metabolite profiling, transcriptome sequencing and immunohistochemistry. All pigs in the control group died within an average of 3.22 days, whereas 13/15 pigs in the transplantation group lived >14 days. The cytokine array and metabolite profiling analyses revealed that hBMSC transplantation suppressed D-Gal-induced life-threatening cytokine storms and stabilised FHF within 7 days, while human-derived hepatocytes constituted only ∼4.5% of the pig hepatocytes. The functional synergy analysis of the observed profile changes indicated that the implanted hBMSCs altered the pigs' cytokine responses to damage through paracrine effects. Delta-like ligand 4 was validated to assist liver restoration in both pig and rat FHF models. Our results delineated an integrated model of the multifaceted interactions between stem cells and recipients, which may open a new avenue to the discovery of single molecule-based therapeutics that simulate stem cell actions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury.

    Science.gov (United States)

    McDaniel, Kelly; Huang, Li; Sato, Keisaku; Wu, Nan; Annable, Tami; Zhou, Tianhao; Ramos-Lorenzo, Sugeily; Wan, Ying; Huang, Qiaobing; Francis, Heather; Glaser, Shannon; Tsukamoto, Hidekazu; Alpini, Gianfranco; Meng, Fanyin

    2017-07-07

    The let-7/Lin28 axis is associated with the regulation of key cellular regulatory genes known as microRNAs in various human disorders and cancer development. This study evaluated the role of the let-7/Lin28 axis in regulating a mesenchymal phenotype of hepatic stellate cells in alcoholic liver injury. We identified that ethanol feeding significantly down-regulated several members of the let-7 family in mouse liver, including let-7a and let-7b. Similarly, the treatment of human hepatic stellate cells (HSCs) with lipopolysaccharide (LPS) and transforming growth factor-β (TGF-β) significantly decreased the expressions of let-7a and let-7b. Conversely, overexpression of let-7a and let-7b suppressed the myofibroblastic activation of cultured human HSCs induced by LPS and TGF-β, as evidenced by repressed ACTA2 (α-actin 2), COL1A1 (collagen 1A1), TIMP1 (TIMP metallopeptidase inhibitor 1), and FN1 (fibronectin 1); this supports the notion that HSC activation is controlled by let-7. A combination of bioinformatics, dual-luciferase reporter assay, and Western blot analysis revealed that Lin28B and high-mobility group AT-hook (HMGA2) were the direct targets of let-7a and let-7b. Furthermore, Lin28B deficiency increased the expression of let-7a/let-7b as well as reduced HSC activation and liver fibrosis in mice with alcoholic liver injury. This feedback regulation of let-7 by Lin28B is verified in hepatic stellate cells isolated by laser capture microdissection from the model. The identification of the let-7/Lin28 axis as an important regulator of HSC activation as well as its upstream modulators and down-stream targets will provide insights into the involvement of altered microRNA expression in contributing to the pathogenesis of alcoholic liver fibrosis and novel therapeutic approaches for human alcoholic liver diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused Three-Dimensional Multicompartment Bioreactor

    Directory of Open Access Journals (Sweden)

    Nora Freyer

    2016-08-01

    Full Text Available The hepatic differentiation of human induced pluripotent stem cells (hiPSC holds great potential for application in regenerative medicine, pharmacological drug screening, and toxicity testing. However, full maturation of hiPSC into functional hepatocytes has not yet been achieved. In this study, we investigated the potential of a dynamic three-dimensional (3D hollow fiber membrane bioreactor technology to improve the hepatic differentiation of hiPSC in comparison to static two-dimensional (2D cultures. A total of 100 × 106 hiPSC were seeded into each 3D bioreactor (n = 3. Differentiation into definitive endoderm (DE was induced by adding activin A, Wnt3a, and sodium butyrate to the culture medium. For further maturation, hepatocyte growth factor and oncostatin M were added. The same differentiation protocol was applied to hiPSC maintained in 2D cultures. Secretion of alpha-fetoprotein (AFP, a marker for DE, was significantly (p < 0.05 higher in 2D cultures, while secretion of albumin, a typical characteristic for mature hepatocytes, was higher after hepatic differentiation of hiPSC in 3D bioreactors. Functional analysis of multiple cytochrome P450 (CYP isoenzymes showed activity of CYP1A2, CYP2B6, and CYP3A4 in both groups, although at a lower level compared to primary human hepatocytes (PHH. CYP2B6 activities were significantly (p < 0.05 higher in 3D bioreactors compared with 2D cultures, which is in line with results from gene expression. Immunofluorescence staining showed that the majority of cells was positive for albumin, cytokeratin 18 (CK18, and hepatocyte nuclear factor 4-alpha (HNF4A at the end of the differentiation process. In addition, cytokeratin 19 (CK19 staining revealed the formation of bile duct-like structures in 3D bioreactors similar to native liver tissue. The results indicate a better maturation of hiPSC in the 3D bioreactor system compared to 2D cultures and emphasize the potential of dynamic 3D culture

  17. Alphavirus-based Vaccines Encoding Nonstructural Proteins of Hepatitis C Virus Induce Robust and Protective T-cell Responses

    NARCIS (Netherlands)

    Ip, Peng; Boerma, Annemarie; Regts, Joke; Meijerhof, Tjarko; Wilschut, Jan; Nijman, Hans W.; Daemen, Toos

    An absolute prerequisite for a therapeutic vaccine against hepatitis C virus (HCV) infection is the potency to induce HCV-specific vigorous and broad-spectrum T-cell responses. Here, we generated three HCV vaccines based on a recombinant Semliki Forest virus (rSFV) vector expressing all-or a part of

  18. The mannose receptor acts as hepatitis B virus surface antigen receptor mediating interaction with intrahepatic dendritic cells

    NARCIS (Netherlands)

    Op den Brouw, Marjoleine L.; Binda, Rekha S.; Geijtenbeek, Teunis B. H.; Janssen, Harry L. A.; Woltman, Andrea M.

    2009-01-01

    Dendritic cells (DC) play a key role in anti-viral immunity. Direct interactions between DC and hepatitis B virus (HBV) may explain the impaired DC function and the ineffective anti-viral response of chronic HBV patients resulting in HBV persistence. Here, the interaction between HBV surface

  19. Molecular constituents of the extracellular matrix in rat liver mounting a hepatic progenitor cell response for tissue repair

    DEFF Research Database (Denmark)

    Vestentoft, Peter Siig; Jelnes, Peter; Andersen, Jesper Bøje

    2013-01-01

    Tissue repair in the adult mammalian liver occurs in two distinct processes, referred to as the first and second tiers of defense. We undertook to characterize the changes in molecular constituents of the extracellular matrix when hepatic progenitor cells (HPCs) respond in a second tier of defense...

  20. Cholesterol depletion of hepatoma cells impairs hepatitis B virus envelopment by altering the topology of the large envelope protein.

    NARCIS (Netherlands)

    Dorobantu, C.M.; Macovei, A.; Lazar, C.; Dwek, R.A.; Zitzmann, N.; Branza-Nichita, N.

    2011-01-01

    Previous reports have shown that cholesterol depletion of the membrane envelope of the hepatitis B virus (HBV) impairs viral infection of target cells. A potential function of this lipid in later steps of the viral life cycle remained controversial, with secretion of virions and subviral particles

  1. Antiviral agents in hepatitis B virus transfected cell lines: Inhibitory and cytotoxic effect related to time of treatment

    NARCIS (Netherlands)

    J. Kruining; R.A. Heijtink; S.W. Schalm (Solko)

    1995-01-01

    textabstractThe antiviral and cytotoxic effects of ara-arabinoside monophosphate, 2′,3′, dideoxy-cytidine, ganciclovir, 9-2(-phosphonylmethoxyethyl) adenine, 2′,3′-dideoxy-3′-thiacytidine and recombinant interferon-alpha were studied using two human hepatitis B virus transfected hepatoma cell lines,

  2. Hepatic involvement of Langerhans cell histiocytosis in children - imaging findings of computed tomography, magnetic resonance imaging and magnetic resonance cholangiopancreatography

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yingyan; Qiao, Zhongwei; Gong, Ying; Yang, Haowei; Li, Guoping; Pa, Mier [Children' s Hospital of Fudan University, Department of Radiology, Shanghai (China); Xia, Chunmei [Shanghai Medical College of Fudan University, Physiology and Pathophysiology Department, Shanghai (China)

    2014-06-15

    Langerhans cell histiocytosis is a rare disease that occurs mainly in children, and hepatic involvement is generally a poor prognostic factor. To describe CT and MRI findings of hepatic involvement of Langerhans cell histiocytosis in children, especially the abnormal bile duct manifestation on magnetic resonance cholangiopancreatography (MRCP). Thirteen children (seven boys, six girls; mean age 28.9 months) were diagnosed with disseminated Langerhans cell histiocytosis. They underwent CT (n = 5) or MRI (n = 4), or CT and MRI examinations (n = 4) to evaluate the liver involvement. Periportal abnormalities presented as band-like or nodular lesions on CT and MRI in all 13 children. The hepatic parenchymal lesions were found in the peripheral regions of the liver in seven children, including multiple nodules on MRI (n = 6), and cystic-like lesions on CT and MRI (n = 3). In 11 of the 13 children the dilatations of the bile ducts were observed on CT and MRI. Eight of the 13 children underwent MR cholangiopancreatography, which demonstrated stenoses or segmental stenoses with slight dilatation of the central bile ducts, including the common hepatic duct and its first-order branches. The peripheral bile ducts in these children showed segmental dilatations and stenoses. Stenosis of the central bile ducts revealed by MR cholangiopancreatography was the most significant finding of liver involvement in Langerhans cell histiocytosis in children. (orig.)

  3. Expression of contactin associated protein-like 2 in a subset of hepatic progenitor cell compartment identified by gene expression profiling in hepatitis B virus-positive cirrhosis.

    Science.gov (United States)

    Wang, Huafeng; Gao, Yabo; Jin, Xiaolong; Xiao, Jiacheng

    2010-01-01

    Hepatic progenitor cells (HPC), a cell compartment capable of differentiating into hepatocytic and biliary lineages, may give rise to the formation of intermediate hepatobiliary cells (IHBC) or ductular reactions (DR). The aim of this study was to analyse the gene expression profiles of DR in cirrhosis and further investigate novel proteins expressed by HPC and their intermediate progeny. DR in hepatitis B virus (HBV)-positive cirrhotic liver tissues adjacent to hepatocellular carcinoma and interlobular bile ducts (ILBDs) in normal liver tissues were isolated by laser capture microdissection and then subjected to microarray analysis. Differential gene expression patterns were verified by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry on serial sections. HPC and their intermediate progeny were recognized by immunostaining with hepatocytic and biliary markers [HepPar1, cytokeratin (CK)7, CK19, neural cell adhesion molecule (NCAM), epithelial cell adhesion molecule (EpCAM)]. A total of 88 genes showed upregulation in DR compared with ILBDs. Gene ontology analyses revealed that these upregulated genes were mostly associated with cell adhesion, immune response and the metabolic process. Contactin associated protein-like 2 (CNTNAP2) was first confirmed to be a novel protein expressed in a subpopulation of DR that was positive for CK7, NCAM or EpCAM. In addition, immunoreactivity for CNTNAP2 was also noted in a subset of isolated CK7-positive HPC as well as some ductular IHBC positive for CK19 and HepPar1 in DR. CNTNAP2 is specifically associated with the emergence of ductular populations and may be identified as a novel protein for defining a subset of HPC and their intermediate progeny in cirrhosis.

  4. Replication of a hepatitis C virus replicon clone in mouse cells

    Directory of Open Access Journals (Sweden)

    Chisari Francis V

    2006-10-01

    Full Text Available Abstract Background Hepatitis C Virus (HCV is a significant public health burden and small animal models are needed to study the pathology and immunobiology of the virus. In effort to develop experimental HCV mouse models, we screened a panel of HCV replicons to identify clones capable of replicating in mouse hepatocytes. Results We report the establishment of stable HCV replication in mouse hepatocyte and fibroblast cell lines using replicons derived from the JFH-1 genotype 2a consensus sequence. Viral RNA replication efficiency in mouse cells was comparable to that observed in human Huh-7 replicon cells, with negative-strand HCV RNA and the viral NS5A protein being readily detected by Northern and Western Blot analysis, respectively. Although HCV replication was established in the absence of adaptive mutations that might otherwise compromise the in vitro infectivity of the JFH-1 clone, no infectious virus was detected when the culture medium from full length HCV RNA replicating mouse cells was titrated on Huh-7 cells, suggesting that the mouse cells were unable to support production of infectious progeny viral particles. Consistent with an additional block in viral entry, infectious JFH-1 particles produced in Huh-7 cells were not able to establish detectable HCV RNA replication in naïve mouse cells. Conclusion Thus, this report expands the repertoire of HCV replication systems and possibly represents a step toward developing mouse models of HCV replication, but it also highlights that other species restrictions might continue to make the development of a purely murine HCV infectious model challenging.

  5. Efficient infectious cell culture systems of the hepatitis C virus (HCV) prototype strains HCV-1 and H77

    DEFF Research Database (Denmark)

    Li, Yi-Ping; Ramirez, Santseharay; Mikkelsen, Lotte

    2015-01-01

    UNLABELLED: The first discovered and sequenced hepatitis C virus (HCV) genome and the first in vivo infectious HCV clones originated from the HCV prototype strains HCV-1 and H77, respectively, both widely used in research of this important human pathogen. In the present study, we developed...... efficiently after transfection and subsequent infection of naive Huh7.5 cells, reaching titers of 10(3.5) and 10(4.4) FFU/ml, respectively. IMPORTANCE: Hepatitis C virus (HCV) was discovered in 1989 with the cloning of the prototype strain HCV-1 genome. In 1997, two molecular clones of H77, the other HCV...

  6. Modulation of regulatory T-cell activity in combination with interleukin-12 increases hepatic tolerogenicity in woodchucks with chronic hepatitis B.

    Science.gov (United States)

    Otano, Itziar; Suarez, Lester; Dotor, Javier; Gonzalez-Aparicio, Manuela; Crettaz, Julien; Olagüe, Cristina; Vales, Africal; Riezu, Jose Ignacio; Larrea, Esther; Borras, Francisco; Benito, Alberto; Hernandez-Alcoceba, Ruben; Menne, Stephan; Prieto, Jesús; González-Aseguinolaza, Gloria

    2012-08-01

    Regulatory T cells (Treg) play a critical role in the modulation of immune responses to viral antigens in chronic viral hepatitis. Woodchucks (Marmota monax) infected with the woodchuck hepatitis virus (WHV) represent the best animal model for chronic hepatitis B virus (HBV) infection. Examination of intrahepatic and peripheral Treg in uninfected and WHV chronically infected woodchucks showed a significant increase of intrahepatic Treg numbers in chronically infected animals, whereas no differences were found in peripheral blood. In agreement with these data, higher expression levels of Forkhead box P3 (Foxp3), interleukin (IL)-10, transforming growth factor beta (TGF-β) were detected in the liver of chronic WHV carriers in comparison to uninfected animals. Furthermore, treatment of WHV-infected animals with an adenovirus encoding IL-12 failed to reduce viral load, a finding that was associated with lymphocyte unresponsiveness to IL-12 stimulation in vitro. We observed that TGF-β and Treg play a major role in the lack of lymphocyte response to IL-12 stimulation, as TGF-β inhibition and Treg depletion allowed recovery of T-cell responsiveness to this cytokine. Based on these results, woodchucks were treated with IL-12 in combination with a TGF-β inhibitory peptide or Treg depletion. However, no antiviral effect was achieved and, instead, an enhancement of the intrahepatic tolerogenic environment was observed. Our data show that TGF-β inhibition or Treg depletion had no added benefit over IL-12 therapy in chronic WHV infection. IL-12 immunostimulation induces a strong immunosuppressive reaction in the liver of chronic WHV carriers that counteracts the antiviral effect of the treatment. Copyright © 2012 American Association for the Study of Liver Diseases.

  7. Effect of TNF-like weak inducer of apoptosis and its receptor on migration of hepatic stellate cells

    Directory of Open Access Journals (Sweden)

    SU Min

    2018-01-01

    Full Text Available Objective To investigate the effect of TNF-like weak inducer of apoptosis (TWAEK and its receptor fibroblast growth factor-inducible 14 (Fn14 on the migration of hepatic stellate cells and the possible mechanism. Methods The human hepatic stellate cell line LX-2 cells were treated with TWEAK or Fn14 specific small interfering RNA (Fn14 siRNA+TWEAK. Transwell chamber was used to observe the migration of hepatic stellate cells, and real-time PCR and Western blot were used to measure the expression of matrix metalloproteinase-9 (MMP9. The independent samples t-test was used for comparison of continuous data between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. Results Compared with normal LX-2 cells, the TWEAK group had a significant increase in the migration of LX-2 cells (105±8 vs 164±17, t=5.287,P<0.01, and compared with the negative control group, the Fn14 siRNA+TWEAK group had a significant reduction in the number of migrated cells (122±9 vs 58±7, t=9.836, P<0.01. When LX-2 cells were treated with TWEAK, the mRNA and protein expression of MMP9 increased in a time-dependent manner (both P<0.05, while the Fn14 siRNA+TWEAK group had significant reductions in the mRNA and protein expression of MMP9 compared with the TWEAK group (t=5.358, P<0.01. Conclusion TWEAK and its receptor Fn14 can promote the migration of hepatic stellate cells by upregulating MMP9, and blockade of this pathway may become a potential target for the treatment of liver fibrosis.

  8. Viruses in cancer cell plasticity: the role of hepatitis C virus in hepatocellular carcinoma.

    Science.gov (United States)

    Hibner, Urszula; Grégoire, Damien

    2015-01-01

    Viruses are considered as causative agents of a significant proportion of human cancers. While the very stringent criteria used for their classification probably lead to an underestimation, only six human viruses are currently classified as oncogenic. In this review we give a brief historical account of the discovery of oncogenic viruses and then analyse the mechanisms underlying the infectious causes of cancer. We discuss viral strategies that evolved to ensure virus propagation and spread can alter cellular homeostasis in a way that increases the probability of oncogenic transformation and acquisition of stem cell phenotype. We argue that a useful way of analysing the convergent characteristics of viral infection and cancer is to examine how viruses affect the so-called cancer hallmarks. This view of infectious origin of cancer is illustrated by examples from hepatitis C infection, which is associated with a high proportion of hepatocellular carcinoma.

  9. Identification of hepatic niche harboring human acute lymphoblastic leukemic cells via the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Itaru Kato

    Full Text Available In acute lymphoblastic leukemia (ALL patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. The mechanism underlying this pathology is also poorly understood. Here, to answer these questions, we reconstituted the histopathology of leukemic liver by using patients-derived primary ALL cells into NOD/SCID/Yc (null mice. The liver pathology in this model was similar to that observed in the patients. By using this model, we clearly demonstrated that bile duct epithelial cells form a hepatic niche that supports infiltration and proliferation of ALL cells in the liver. Furthermore, we showed that functions of the niche are maintained by the SDF-1/CXCR4 axis, proposing a novel therapeutic approach targeting the extramedullary niche by inhibition of the SDF-1/CXCR4 axis. In conclusion, we demonstrated that the liver dissemination of leukemia is not due to nonselective infiltration, but rather systematic invasion and proliferation of leukemic cells in hepatic niche. Although the contribution of SDF-1/CXCR4 axis is reported in some cancer cells or leukemic niches such as bone marrow, we demonstrated that this axis works even in the extramedullary niche of leukemic cells. Our findings form the basis for therapeutic approaches that target the extramedullary niche by inhibiting the SDF-1/CXCR4 axis.

  10. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems.

    Science.gov (United States)

    Gottwein, Judith M; Bukh, Jens

    2008-01-01

    Worldwide approximately 180 million people are chronically infected with hepatitis C virus (HCV). HCV isolates exhibit extensive genetic heterogeneity and have been grouped in six genotypes and various subtypes. Additionally, several naturally occurring intergenotypic recombinants have been described. Research on the viral life cycle, efficient therapeutics, and a vaccine has been hampered by the absence of suitable cell culture systems. The first system permitting studies of the full viral life cycle was intrahepatic transfection of RNA transcripts of HCV consensus complementary DNA (cDNA) clones into chimpanzees. However, such full-length clones were not infectious in vitro. The development of the replicon system and HCV pseudo-particles allowed in vitro studies of certain aspects of the viral life cycle, RNA replication, and viral entry, respectively. Identification of the genotype 2 isolate JFH1, which for unknown reasons showed an exceptional replication capability and resulted in formation of infectious viral particles in the human hepatoma cell line Huh7, led in 2005 to the development of the first full viral life cycle in vitro systems. JFH1-based systems now enable in vitro studies of the function of viral proteins, their interaction with each other and host proteins, new antivirals, and neutralizing antibodies in the context of the full viral life cycle. However, several challenges remain, including development of cell culture systems for all major HCV genotypes and identification of other susceptible cell lines.

  11. The JAK2 inhibitor AZD1480 inhibits hepatitis A virus replication in Huh7 cells.

    Science.gov (United States)

    Jiang, Xia; Kanda, Tatsuo; Nakamoto, Shingo; Saito, Kengo; Nakamura, Masato; Wu, Shuang; Haga, Yuki; Sasaki, Reina; Sakamoto, Naoya; Shirasawa, Hiroshi; Okamoto, Hiroaki; Yokosuka, Osamu

    2015-03-20

    The JAK2 inhibitor AZD1480 has been reported to inhibit La protein expression. We previously demonstrated that the inhibition of La expression could inhibit hepatitis A virus (HAV) internal ribosomal entry-site (IRES)-mediated translation and HAV replication in vitro. In this study, we analyzed the effects of AZD1480 on HAV IRES-mediated translation and replication. HAV IRES-mediated translation in COS7-HAV-IRES cells was inhibited by 0.1-1 μM AZD1480, a dosage that did not affect cell viability. Results showed a significant reduction in intracellular HAV HA11-1299 genotype IIIA RNA levels in Huh7 cells treated with AZD1480. Furthermore, AZD1480 inhibited the expression of phosphorylated-(Tyr-705)-signal transducer and activator of transcription 3 (STAT3) and La in Huh7 cells. Therefore, we propose that AZD1480 can inhibit HAV IRES activity and HAV replication through the inhibition of the La protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload

    Science.gov (United States)

    Egnatchik, Robert A.; Leamy, Alexandra K.; Jacobson, David A.; Shiota, Masakazu; Young, Jamey D.

    2014-01-01

    Palmitate overload induces hepatic cell dysfunction characterized by enhanced apoptosis and altered citric acid cycle (CAC) metabolism; however, the mechanism of how this occurs is incompletely understood. We hypothesize that elevated doses of palmitate disrupt intracellular calcium homeostasis resulting in a net flux of calcium from the ER to mitochondria, activating aberrant oxidative metabolism. We treated primary hepatocytes and H4IIEC3 cells with palmitate and calcium chelators to identify the roles of intracellular calcium flux in lipotoxicity. We then applied 13C metabolic flux analysis (MFA) to determine the impact of calcium in promoting palmitate-stimulated mitochondrial alterations. Co-treatment with the calcium-specific chelator BAPTA resulted in a suppression of markers for apoptosis and oxygen consumption. Additionally, 13C MFA revealed that BAPTA co-treated cells had reduced CAC fluxes compared to cells treated with palmitate alone. Our results demonstrate that palmitate-induced lipoapoptosis is dependent on calcium-stimulated mitochondrial activation, which induces oxidative stress. PMID:25061559

  13. Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells.

    Science.gov (United States)

    Zhang, Zhuhong; Chen, Si; Mei, Hu; Xuan, Jiekun; Guo, Xiaoqing; Couch, Letha; Dobrovolsky, Vasily N; Guo, Lei; Mei, Nan

    2015-09-30

    Ginkgo biloba leaf extract has been shown to increase the incidence in liver tumors in mice in a 2-year bioassay conducted by the National Toxicology Program. In this study, the DNA damaging effects of Ginkgo biloba leaf extract and many of its constituents were evaluated in human hepatic HepG2 cells and the underlying mechanism was determined. A molecular docking study revealed that quercetin, a flavonoid constituent of Ginkgo biloba, showed a higher potential to interact with topoisomerase II (Topo II) than did the other Ginkgo biloba constituents; this in silico prediction was confirmed by using a biochemical assay to study Topo II enzyme inhibition. Moreover, as measured by the Comet assay and the induction of γ-H2A.X, quercetin, followed by keampferol and isorhamnetin, appeared to be the most potent DNA damage inducer in HepG2 cells. In Topo II knockdown cells, DNA damage triggered by Ginkgo biloba leaf extract or quercetin was dramatically decreased, indicating that DNA damage is directly associated with Topo II. DNA damage was also observed when cells were treated with commercially available Ginkgo biloba extract product. Our findings suggest that Ginkgo biloba leaf extract- and quercetin-induced in vitro genotoxicity may be the result of Topo II inhibition.

  14. Epigallocatechin-3-gallate protects against hepatic ischaemia–reperfusion injury by reducing oxidative stress and apoptotic cell death

    Science.gov (United States)

    Tak, Eunyoung; Park, Gil-Chun; Kim, Seok-Hwan; Jun, Dae Young; Lee, Jooyoung; Hwang, Shin; Lee, Sung-Gyu

    2016-01-01

    Objective To investigate the protective effects of epigallocatechin-3-gallate (EGCG), a major polyphenol source in green tea, against hepatic ischaemia–reperfusion injury in mice. Methods The partial hepatic ischaemia–reperfusion injury model was created by employing the hanging-weight method in C57BL/6 male mice. EGCG (50 mg/kg) was administered via an intraperitoneal injection 45 min before performing the reperfusion. A number of markers of inflammation, oxidative stress, apoptosis and liver injury were measured after the ischaemia–reperfusion injury had been induced. Results The treatment groups were: sham-operated (Sham, n = 10), hepatic ischaemia–reperfusion injury (IR, n = 10), and EGCG with ischaemia–reperfusion injury (EGCG-treated IR, n = 10). Hepatic ischaemia–reperfusion injury increased the levels of biochemical and histological markers of liver injury, increased the levels of malondialdehyde, reduced the glutathione/oxidized glutathione ratio, increased the levels of oxidative stress and lipid peroxidation markers, decreased B-cell lymphoma 2 levels, and increased the levels of Bax, cytochrome c, cleaved caspase-3, and cleaved caspase-9. Pretreatment with EGCG ameliorated all of these changes. Conclusion The antioxidant and antiapoptotic effects of EGCG protected against hepatic ischaemia–reperfusion injury in mice. PMID:27807255

  15. Epigallocatechin-3-gallate protects against hepatic ischaemia-reperfusion injury by reducing oxidative stress and apoptotic cell death.

    Science.gov (United States)

    Tak, Eunyoung; Park, Gil-Chun; Kim, Seok-Hwan; Jun, Dae Young; Lee, Jooyoung; Hwang, Shin; Song, Gi-Won; Lee, Sung-Gyu

    2016-12-01

    Objective To investigate the protective effects of epigallocatechin-3-gallate (EGCG), a major polyphenol source in green tea, against hepatic ischaemia-reperfusion injury in mice. Methods The partial hepatic ischaemia-reperfusion injury model was created by employing the hanging-weight method in C57BL/6 male mice. EGCG (50 mg/kg) was administered via an intraperitoneal injection 45 min before performing the reperfusion. A number of markers of inflammation, oxidative stress, apoptosis and liver injury were measured after the ischaemia-reperfusion injury had been induced. Results The treatment groups were: sham-operated (Sham, n = 10), hepatic ischaemia-reperfusion injury (IR, n = 10), and EGCG with ischaemia-reperfusion injury (EGCG-treated IR, n = 10). Hepatic ischaemia-reperfusion injury increased the levels of biochemical and histological markers of liver injury, increased the levels of malondialdehyde, reduced the glutathione/oxidized glutathione ratio, increased the levels of oxidative stress and lipid peroxidation markers, decreased B-cell lymphoma 2 levels, and increased the levels of Bax, cytochrome c, cleaved caspase-3, and cleaved caspase-9. Pretreatment with EGCG ameliorated all of these changes. Conclusion The antioxidant and antiapoptotic effects of EGCG protected against hepatic ischaemia-reperfusion injury in mice.

  16. De novo synthesis of glutathione is a prerequisite for curcumin to inhibit hepatic stellate cell (HSC) activation.

    Science.gov (United States)

    Zheng, Shizhong; Yumei, Fu; Chen, Anping

    2007-08-01

    On liver injury, quiescent hepatic stellate cells (HSC), the most relevant cell type for hepatic fibrogenesis, become active, characterized by enhanced cell growth and overproduction of extracellular matrix (ECM). Oxidative stress facilitates HSC activation and the pathogenesis of hepatic fibrosis. Glutathione (GSH) is the most important intracellular antioxidant. We previously showed that curcumin, the yellow pigment in curry from turmeric, significantly inhibited HSC activation. The aim of this study is to elucidate the underlying mechanisms. It is hypothesized that curcumin might inhibit HSC activation mainly by its antioxidant capacity. Results from this study demonstrate that curcumin dose and time dependently attenuates oxidative stress in passaged HSC demonstrated by scavenging reactive oxygen species and reducing lipid peroxidation. Curcumin elevates the level of cellular GSH and induces de novo synthesis of GSH in HSC by stimulating the activity and gene expression of glutamate-cysteine ligase (GCL), a key rate-limiting enzyme in GSH synthesis. Depletion of cellular GSH by the inhibition of GCL activity using L-buthionine sulfoximine evidently eliminates the inhibitory effects of curcumin on HSC activation. Taken together, our results demonstrate, for the first time, that the antioxidant property of curcumin mainly results from increasing the level of cellular GSH by inducing the activity and gene expression of GCL in activated HSC in vitro. De novo synthesis of GSH is a prerequisite for curcumin to inhibit HSC activation. These results provide novel insights into the mechanisms of curcumin as an antifibrogenic candidate in the prevention and treatment of hepatic fibrosis.

  17. Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    Directory of Open Access Journals (Sweden)

    Ruchi Sharma

    2010-01-01

    Full Text Available The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays.

  18. Hepatitis C virus-induced innate immune responses in human iPS cell-derived hepatocyte-like cells.

    Science.gov (United States)

    Sakurai, Fuminori; Kunito, Takemaru; Takayama, Kazuo; Hashimoto, Rina; Tachibana, Masashi; Sakamoto, Naoya; Wakita, Takaji; Mizuguchi, Hiroyuki

    2017-10-15

    Hepatitis C virus (HCV) infection is a major cause of liver-related morbidity and mortality. In order to develop effective remedies for hepatitis C, it is important to understand the HCV infection profile and host-HCV interaction. HCV-induced innate immune responses play a crucial role in spontaneous HCV clearance; however, HCV-induced innate immune responses have not been fully evaluated in hepatocytes, partly because there are few in vitro models of HCV-induced innate immunity. Recently, human induced pluripotent stem (iPS) cells have received much attention as an in vitro model of infection with various pathogens, including HCV. We previously established highly functional hepatocyte-like cells differentiated from human iPS cells (iPS-HLCs). Here, we examined the potential of iPS-HLCs as an in vitro HCV infection model, especially for evaluation of the relationship between HCV infection levels and HCV-induced innate immunity. Significant expressions of type I and III interferons (IFNs) and IFN-stimulated genes (ISGs) were induced following transfection with HCV genomic replicon RNA in iPS-HLCs. Following inoculation with the HCV JFH-1 strain in iPS-HLCs, peaks of HCV genome replication and HCV protein expression were observed on day 2, and then both the HCV genome and protein levels gradually declined, while the mRNA levels of type III IFNs and ISGs peaked at day 2 following inoculation. These results suggest that the HCV genome efficiently replicates in iPS-HLCs, resulting in HCV genome-induced up-regulation of IFNs and ISGs, and thereafter, HCV genome-induced up-regulation of IFNs and ISGs mediates a reduction in the HCV genome and protein levels in iPS-HLCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis and liver cancer

    OpenAIRE

    Duran, Angeles; Hernandez, Eloy D.; Reina-Campos, Miguel; Castilla, Elias A.; Subramaniam, Shankar; Raghunandan, Sindhu; Roberts, Lewis R.; Kisseleva, Tatiana; Karin, Michael; Diaz-Meco, Maria T.; Moscat, Jorge

    2016-01-01

    Hepatic stellate cells (HSC) play critical roles in liver fibrosis and hepatocellular carcinoma (HCC). Vitamin D receptor (VDR) activation in HSC inhibits liver inflammation and fibrosis. We found that p62/SQSTM1, a protein upregulated in liver parenchymal cells but downregulated in HCC-associated HSC, negatively controls HSC activation. Total body or HSC-specific p62 ablation potentiates HSC and enhances inflammation, fibrosis and HCC progression. p62 directly interacts with VDR and RXR prom...

  20. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2015-01-01

    Full Text Available The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs, are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases.

  1. Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation

    Science.gov (United States)

    Caliari, Steven R.; Perepelyuk, Maryna; Cosgrove, Brian D.; Tsai, Shannon J.; Lee, Gi Yun; Mauck, Robert L.; Wells, Rebecca G.; Burdick, Jason A.

    2016-02-01

    Tissue fibrosis contributes to nearly half of all deaths in the developed world and is characterized by progressive matrix stiffening. Despite this, nearly all in vitro disease models are mechanically static. Here, we used visible light-mediated stiffening hydrogels to investigate cell mechanotransduction in a disease-relevant system. Primary hepatic stellate cell-seeded hydrogels stiffened in situ at later time points (following a recovery phase post-isolation) displayed accelerated signaling kinetics of both early (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif, YAP/TAZ) and late (alpha-smooth muscle actin, α-SMA) markers of myofibroblast differentiation, resulting in a time course similar to observed in vivo activation dynamics. We further validated this system by showing that α-SMA inhibition following substrate stiffening resulted in attenuated stellate cell activation, with reduced YAP/TAZ nuclear shuttling and traction force generation. Together, these data suggest that stiffening hydrogels may be more faithful models for studying myofibroblast activation than static substrates and could inform the development of disease therapeutics.

  2. Lipid Droplet Accumulation and Impaired Fat Efflux in Polarized Hepatic Cells: Consequences of Ethanol Metabolism

    Directory of Open Access Journals (Sweden)

    Benita L. McVicker

    2012-01-01

    Full Text Available Steatosis, an early manifestation in alcoholic liver disease, is associated with the accumulation of hepatocellular lipid droplets (LDs. However, the role ethanol metabolism has in LD formation and turnover remains undefined. Here, we assessed LD dynamics following ethanol and oleic acid treatment to ethanol-metabolizing WIF-B cells (a hybrid of human fibroblasts (WI 38 and Fao rat hepatoma cells. An OA dose-dependent increase in triglyceride and stained lipids was identified which doubled (P<0.05 in the presence of ethanol. This effect was blunted with the inclusion of an alcohol metabolism inhibitor. The ethanol/ OA combination also induced adipophilin, LD coat protein involved in the attenuation of lipolysis. Additionally, ethanol treatment resulted in a significant reduction in lipid efflux. These data demonstrate that the metabolism of ethanol in hepatic cells is related to LD accumulation, impaired fat efflux, and enhancements in LD-associated proteins. These alterations in LD dynamics may contribute to ethanol-mediated defects in hepatocellular LD regulation and the formation of steatosis.

  3. Class II HDAC inhibition hampers hepatic stellate cell activation by induction of microRNA-29.

    Directory of Open Access Journals (Sweden)

    Inge Mannaerts

    Full Text Available BACKGROUND: The conversion of a quiescent vitamin A storing hepatic stellate cell (HSC to a matrix producing, contractile myofibroblast-like activated HSC is a key event in the onset of liver disease following injury of any aetiology. Previous studies have shown that class I histone deacetylases (HDACs are involved in the phenotypical changes occurring during stellate cell activation in liver and pancreas. AIMS: In the current study we investigate the role of class II HDACs during HSC activation. METHODS: We characterized the expression of the class II HDACs freshly isolated mouse HSCs. We inhibited HDAC activity by selective pharmacological inhibition with MC1568, and by repressing class II HDAC gene expression using specific siRNAs. RESULTS: Inhibition of HDAC activity leads to a strong reduction of HSC activation markers α-SMA, lysyl oxidase and collagens as well as an inhibition of cell proliferation. Knock down experiments showed that HDAC4 contributes to HSC activation by regulating lysyl oxidase expression. In addition, we observed a strong up regulation of miR-29, a well-known anti-fibrotic miR, upon treatment with MC1568. Our in vivo work suggests that a successful inhibition of class II HDACs could be promising for development of future anti-fibrotic compounds. CONCLUSIONS: In conclusion, the use of MC1568 has enabled us to identify a role for class II HDACs regulating miR-29 during HSC activation.

  4. In vitro proliferation and differentiation of hepatic oval cells and their potential capacity for intrahepatic transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Chen, J. [Liaocheng People' s Hospital, Department of Hepatobiliary Surgery, Liaocheng, Shandong, China, Department of Hepatobiliary Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong (China); Li, L.; Ran, J.H.; Liu, J. [The First People' s Hospital of Kunming, Kunming, Yunnan, China, The First People’s Hospital of Kunming, Kunming, Yunnan (China); Gao, T.X.; Guo, B.Y. [Dongchangfu Hospital of Women and Child Health Care, Liaocheng, Shandong (China); Li, X.H.; Liu, Z.H.; Liu, G.J.; Gao, Y.C.; Zhang, X.L. [Liaocheng People' s Hospital, Department of Hepatobiliary Surgery, Liaocheng, Shandong, China, Department of Hepatobiliary Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong (China)

    2013-07-30

    Hepatic oval cells (HOCs) are recognized as facultative liver progenitor cells that play a role in liver regeneration after acute liver injury. Here, we investigated the in vitro proliferation and differentiation characteristics of HOCs in order to explore their potential capacity for intrahepatic transplantation. Clusters or scattered HOCs were detected in the portal area and interlobular bile duct in the liver of rats subjected to the modified 2-acetylaminofluorene and partial hepatectomy method. Isolated HOCs were positive for c-kit and CD90 staining (99.8% and 88.8%, respectively), and negative for CD34 staining (3.6%) as shown by immunostaining and flow cytometric analysis. In addition, HOCs could be differentiated into hepatocytes and bile duct epithelial cells after leukemia inhibitory factor deprivation. A two-cuff technique was used for orthotopic liver transplantation, and HOCs were subsequently transplanted into recipients. Biochemical indicators of liver function were assessed 4 weeks after transplantation. HOC transplantation significantly prolonged the median survival time and improved the liver function of rats receiving HOCs compared to controls (P=0.003, Student t-test). Administration of HOCs to rats also receiving liver transplantation significantly reduced acute allograft rejection compared to control liver transplant rats 3 weeks following transplantation (rejection activity index score: control=6.3±0.9; HOC=3.5±1.5; P=0.005). These results indicate that HOCs may be useful in therapeutic liver regeneration after orthotopic liver transplantation.

  5. Evidence of viral replication in circulating dendritic cells during hepatitis C virus infection.

    Science.gov (United States)

    Goutagny, Nadège; Fatmi, Ahmed; De Ledinghen, Victor; Penin, François; Couzigou, Patrice; Inchauspé, Geneviève; Bain, Christine

    2003-06-15

    The existence of extrahepatic sites of hepatitis C virus (HCV) replication has been proposed as a mechanism responsible for the poor antiviral immune response found in chronic infection. Dendritic cells (DCs), as unique antigen-presenting cells able to induce a primary immune response, are prime targets of persistent viruses. From 24 blood samples obtained from HCV-seropositive patients, peripheral blood DCs (PBDCs) were purified. HCV genomic sequences were specifically detected by reverse-transcription polymerase chain reaction in 6 of 24 PBDC pellets, and replicative-strand RNA also was found in 3 of 24 cell purifications. Analysis of the HCV quasi-species distribution in the PBDC population of 1 patient showed the presence of a dominant variant different from that found in plasma with respect to the primary amino-acid sequence and physicochemical profile of the hypervariable region 1 of glycoprotein E2. These data strongly suggest that PBDCs constitute a reservoir in which HCV replication takes place during natural infection.

  6. Galectin-9 ameliorates Con A-induced hepatitis by inducing CD4(+CD25(low/int effector T-Cell apoptosis and increasing regulatory T cell number.

    Directory of Open Access Journals (Sweden)

    Kun Lv

    Full Text Available BACKGROUND: T cell-mediated liver damage is a key event in the pathogenesis of many chronic human liver diseases, such as liver transplant rejection, primary biliary cirrhosis, and sclerosing cholangitis. We and other groups have previously reported that galectin-9, one of the β-galactoside binding animal lectins, might be potentially useful in the treatment of T cell-mediated diseases. To evaluate the direct effect of galectin-9 on hepatitis induced by concanavalin A (Con A administration in mice and to clarify the mechanisms involved, we administered galectin-9 into mice, and evaluated its therapeutic effect on Con A-induced hepatitis. METHODOLOGY/PRINCIPAL FINDINGS: Galectin-9 was administrated i.v. to Balb/c mice 30 min before Con A injection. Compared with no treatment, galectin-9 pretreatment significantly reduced serum ALT and AST levels and improved liver histopathology, suggesting an ameliorated hepatitis. This therapeutic effect was not only attributable to a blunted Th1 immune response, but also to an increased number in regulatory T cells, as reflected in a significantly increased apoptosis of CD4(+CD25(low/int effector T cells and in reduced proinflammatory cytokine levels. CONCLUSION/SIGNIFICANCE: Our findings constitute the first preclinical data indicating that interfering with TIM-3/galectin-9 signaling in vivo could ameliorate Con A-induced hepatitis. This strategy may represent a new therapeutic approach in treating human diseases involving T cell activation.

  7. Cell Expansion During Directed Differentiation of Stem Cells Toward the Hepatic Lineage.

    Science.gov (United States)

    Raju, Ravali; Chau, David; Cho, Dong Seong; Park, Yonsil; Verfaillie, Catherine M; Hu, Wei-Shou

    2017-02-15

    The differentiation of human pluripotent stem cells toward the hepatocyte lineage can potentially provide an unlimited source of functional hepatocytes for transplantation and extracorporeal bioartificial liver applications. It is anticipated that the quantities of cells needed for these applications will be in the order of 109-1010 cells, because of the size of the liver. An ideal differentiation protocol would be to enable directed differentiation to the hepatocyte lineage with simultaneous cell expansion. We introduced a cell expansion stage after the commitment of human embryonic stem cells to the endodermal lineage, to allow for at least an eightfold increase in cell number, with continuation of cell maturation toward the hepatocyte lineage. The progressive changes in the transcriptome were measured by expression array, and the expression dynamics of certain lineage markers was measured by mass cytometry during the differentiation and expansion process. The findings revealed that while cells were expanding they were also capable of progressing in their differentiation toward the hepatocyte lineage. In addition, our transcriptome, protein and functional studies, including albumin secretion, drug-induced CYP450 expression and urea production, all indicated that the hepatocyte-like cells obtained with or without cell expansion are very similar. This method of simultaneous cell expansion and hepatocyte differentiation should facilitate obtaining large quantities of cells for liver cell applications.

  8. Glucagon Couples Hepatic Amino Acid Catabolism to mTOR-Dependent Regulation of α-Cell Mass

    Directory of Open Access Journals (Sweden)

    Mark J. Solloway

    2015-07-01

    Full Text Available Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and β-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into β-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation.

  9. Hepatitis E

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Hepatitis E Fact sheet Updated July 2017 Key facts ... in 2005 . Report Global hepatitis report, 2017 World Hepatitis Day Know hepatitis - Act now Event notice Key ...

  10. Viral Hepatitis

    Science.gov (United States)

    ... Home A-Z Health Topics Viral hepatitis Viral hepatitis > A-Z Health Topics Viral hepatitis (PDF, 90 ... liver. Source: National Cancer Institute Learn more about hepatitis Watch a video. Learn who is at risk ...

  11. Hepatitis A

    Science.gov (United States)

    ... or care for someone who has hepatitis A People who travel to developing countries are more likely to get hepatitis A. What are the complications of hepatitis A? People typically recover from hepatitis A without complications. In ...

  12. Toxicity assessment of 2,4-D and MCPA herbicides in primary culture of fish hepatic cells.

    Science.gov (United States)

    Salvo, Lígia M; Malucelli, Maria Ivette C; da Silva, José Roberto M C; Alberton, Geraldo C; Silva De Assis, Helena C

    2015-01-01

    In this study, we used primary cultures of fish hepatic cells as a tool for evaluating the effects of environmental contamination. Primary hepatic cell cultures derived from the subtropical fish Metynnis roosevelti were exposed to different concentrations (0.275, 2.75 and 27.5 μg L(-1)) of the herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA). Cellular respiratory activity was evaluated by polarography using three substrates: 0.5 M glucose, 0.5 M succinate and 0.5 M α-ketoglutarate. Significant changes were observed in cellular oxygen consumption with 0.5 M α-ketoglutarate. Even at low concentrations, 2,4-D and MCPA were potent uncouplers of oxidative phosphorylation. Primary cultures of M. roosevelti liver cells may provide a useful tool for the evaluation of environmental contaminant effects. A review of regulations regarding permitted concentrations of these herbicides is needed.

  13. Liver Fibrosis and Protection Mechanisms Action of Medicinal Plants Targeting Apoptosis of Hepatocytes and Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Florent Duval

    2014-01-01

    Full Text Available Following chronic liver injury, hepatocytes undergo apoptosis leading to activation of hepatic stellate cells (HSC. Consequently, activated HSC proliferate and produce excessive extracellular matrix, responsible for the scar formation. The pandemic trend of obesity, combined with the high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find accessible antifibrotic therapies. Treatment strategies should take into account the versatility of its pathogenesis and act on all the cell lines involved to reduce liver fibrosis. Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety, cost-effectiveness, and versatility. This review will describe the role of hepatocytes and HSC in the pathogenesis of liver fibrosis and detail the mechanisms of modulation of apoptosis of both cell lines by twelve known hepatoprotective plants in order to reduce liver fibrosis.

  14. Higher risk of hepatitis C virus perinatal transmission from drug user mothers is mediated by peripheral blood mononuclear cell infection.

    Science.gov (United States)

    Azzari, Chiara; Moriondo, Maria; Indolfi, Giuseppe; Betti, Letizia; Gambineri, Eleonora; de Martino, Maurizio; Resti, Massimo

    2008-01-01

    Maternal injection drug use and peripheral blood mononuclear cell infection by hepatitis C virus are important risk factors for perinatal transmission of the virus. The aim of present study was to evaluate the independent association of these two factors on perinatal transmission. Forty-eight consecutive mothers who transmitted infection to their offspring and 122 consecutive mothers who did not, together with their children, were examined. Both maternal injection drug use and peripheral blood mononuclear cell infection were significantly more frequent in infected than in uninfected children (respectively P = 0.04; odds ratio 2.33, 95% confidence intervals 1.02-5.42 and P < 10(-6); odds ratio and 95% confidence intervals not calculable due to zero values). Multivariate analysis confirmed the link between maternal peripheral blood mononuclear cell infection and perinatal transmission (P < 10(-6); odds ratio and 95% confidence intervals not calculable due to zero values) but no association was found with maternal injection drug use. The high risk of perinatal transmission found in injection drug use mothers is dependent on maternal peripheral blood mononuclear cell infection by hepatitis C virus. Peripheral blood mononuclear cell infection represents one of the most important risk factors for hepatitis C virus perinatal transmission. (c) 2007 Wiley-Liss, Inc.

  15. Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA.

    Directory of Open Access Journals (Sweden)

    Tomomi Ando

    Full Text Available Adenosine 5'-triphosphate (ATP is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energized by ATP is controlled. In this study, we investigated the fluctuation and distribution of ATP in cells during RNA replication of the hepatitis C virus (HCV, a member of the Flaviviridae family. We demonstrated that cells involved in viral RNA replication actively consumed ATP, thereby reducing cytoplasmic ATP levels. Subsequently, a method to measure ATP levels at putative subcellular sites of HCV RNA replication in living cells was developed by introducing a recently-established Förster resonance energy transfer (FRET-based ATP indicator, called ATeam, into the NS5A coding region of the HCV replicon. Using this method, we were able to observe the formation of ATP-enriched dot-like structures, which co-localize with non-structural viral proteins, within the cytoplasm of HCV-replicating cells but not in non-replicating cells. The obtained FRET signals allowed us to estimate ATP concentrations within HCV replicating cells as ∼5 mM at possible replicating sites and ∼1 mM at peripheral sites that did not appear to be involved in HCV replication. In contrast, cytoplasmic ATP levels in non-replicating Huh-7 cells were estimated as ∼2 mM. To our knowledge, this is the first study to demonstrate changes in ATP concentration within cells during replication of the HCV genome and increased ATP levels at distinct sites within replicating cells. ATeam may be a powerful tool for the study of energy metabolism during replication of the viral genome.

  16. Kupffer cells facilitate the acute effects of leptin on hepatic lipid metabolism.

    Science.gov (United States)

    Metlakunta, Anantha; Huang, Wan; Stefanovic-Racic, Maja; Dedousis, Nikolaos; Sipula, Ian; O'Doherty, Robert M

    2017-01-01

    Leptin has potent effects on lipid metabolism in a number of peripheral tissues. In liver, an acute leptin infusion (~120 min) stimulates hepatic fatty acid oxidation (~30%) and reduces triglycerides (TG, ~40%), effects that are dependent on phosphoinositol-3-kinase (PI3K) activity. In the current study we addressed the hypothesis that leptin actions on liver-resident immune cells are required for these metabolic effects. Myeloid cell-specific deletion of the leptin receptor (ObR) in mice or depletion of liver Kupffer cells (KC) in rats in vivo prevented the acute effects of leptin on liver lipid metabolism, while the metabolic effects of leptin were maintained in mice lacking ObR in hepatocytes. Notably, liver TG were elevated in both lean and obese myeloid cell ObR, but the degree of obesity and insulin resistance induced by a high-fat diet was similar to control mice. In isolated primary hepatocytes (HEP), leptin had no effects on HEP lipid metabolism and only weakly stimulated PI3K. However, the coculture of KC with HEP restored leptin action on HEP fatty acid metabolism and stimulation of HEP PI3K. Notably, leptin stimulated the release from KC of a number of cytokines. However, the exposure of HEP to these cytokines individually [granulocyte macrophage colony-stimulating factor, IL-1α, IL-1β, IL-6, IL-10, and IL-18] or in combination had no effects on HEP lipid metabolism. Together, these data demonstrate a role for liver mononuclear cells in the regulation of liver lipid metabolism by leptin. Copyright © 2017 the American Physiological Society.

  17. Different requirements for scavenger receptor class B type I in hepatitis C virus cell-free versus cell-to-cell transmission.

    Science.gov (United States)

    Catanese, Maria Teresa; Loureiro, Joana; Jones, Christopher T; Dorner, Marcus; von Hahn, Thomas; Rice, Charles M

    2013-08-01

    Hepatitis C virus (HCV) is believed to initially infect the liver through the basolateral side of hepatocytes, where it engages attachment factors and the coreceptors CD81 and scavenger receptor class B type I (SR-BI). Active transport toward the apical side brings the virus in close proximity of additional entry factors, the tight junction molecules claudin-1 and occludin. HCV is also thought to propagate via cell-to-cell spread, which allows highly efficient virion delivery to neighboring cells. In this study, we compared an adapted HCV genome, clone 2, characterized by superior cell-to cell spread, to its parental genome, J6/JFH-1, with the goal of elucidating the molecular mechanisms of HCV cell-to-cell transmission. We show that CD81 levels on the donor cells influence the efficiency of cell-to-cell spread and CD81 transfer between neighboring cells correlates with the capacity of target cells to become infected. Spread of J6/JFH-1 was blocked by anti-SR-BI antibody or in cells knocked down for SR-BI, suggesting a direct role for this receptor in HCV cell-to-cell transmission. In contrast, clone 2 displayed a significantly reduced dependence on SR-BI for lateral spread. Mutations in E1 and E2 responsible for the enhanced cell-to-cell spread phenotype of clone 2 rendered cell-free virus more susceptible to antibody-mediated neutralization. Our results indicate that although HCV can lose SR-BI dependence for cell-to-cell spread, vulnerability to neutralizing antibodies may limit this evolutionary option in vivo. Combination therapies targeting both the HCV glycoproteins and SR-BI may therefore hold promise for effective control of HCV dissemination.

  18. Free fatty acids induce ER stress and block antiviral activity of interferon alpha against hepatitis C virus in cell culture

    Directory of Open Access Journals (Sweden)

    Gunduz Feyza

    2012-08-01

    Full Text Available Abstract Background Hepatic steatosis is recognized as a major risk factor for liver disease progression and impaired response to interferon based therapy in chronic hepatitis C (CHC patients. The mechanism of response to interferon-alpha (IFN-α therapy under the condition of hepatic steatosis is unexplored. We investigated the effect of hepatocellular steatosis on hepatitis C virus (HCV replication and IFN-α antiviral response in a cell culture model. Methods Sub-genomic replicon (S3-GFP and HCV infected Huh-7.5 cells were cultured with a mixture of saturated (palmitate and unsaturated (oleate long-chain free fatty acids (FFA. Intracytoplasmic fat accumulation in these cells was visualized by Nile red staining and electron microscopy then quantified by microfluorometry. The effect of FFA treatment on HCV replication and IFN-α antiviral response was measured by flow cytometric analysis, Renilla luciferase activity, and real-time RT-PCR. Results FFA treatment induced dose dependent hepatocellular steatosis and lipid droplet accumulation in the HCV replicon cells was confirmed by Nile red staining, microfluorometry, and by electron microscopy. Intracellular fat accumulation supports replication more in the persistently HCV infected culture than in the sub-genomic replicon (S3-GFP cell line. FFA treatment also partially blocked IFN-α response and viral clearance by reducing the phosphorylation of Stat1 and Stat2 dependent IFN-β promoter activation. We show that FFA treatment induces endoplasmic reticulum (ER stress response and down regulates the IFNAR1 chain of the type I IFN receptor leading to defective Jak-Stat signaling and impaired antiviral response. Conclusion These results suggest that intracellular fat accumulation in HCV cell culture induces ER stress, defective Jak-Stat signaling, and attenuates the antiviral response, thus providing an explanation to the clinical observation regarding how hepatocellular steatosis influences IFN

  19. Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    DEFF Research Database (Denmark)

    Xiao, Fei; Fofana, Isabel; Heydmann, Laura

    2014-01-01

    -targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission...

  20. Hepatitis C virus core protein induces apoptosis-like caspase independent cell death

    Directory of Open Access Journals (Sweden)

    Gregor Michael

    2009-12-01

    Full Text Available Abstract Background Hepatitis C virus (HCV associated liver diseases may be related to apoptotic processes. Thus, we investigated the role of different HCV proteins in apoptosis induction as well as their potency to interact with different apoptosis inducing agents. Methods and Results The use of a tightly adjustable tetracycline (Tet-dependent HCV protein expression cell system with the founder osteosarcoma cell line U-2 OS allowed switch-off and on of the endogenous production of HCV proteins. Analyzed were cell lines expressing the HCV polyprotein, the core protein, protein complexes of the core, envelope proteins E1, E2 and p7, and non-structural proteins NS3 and NS4A, NS4B or NS5A and NS5B. Apoptosis was measured mainly by the detection of hypodiploid apoptotic nuclei in the absence or presence of mitomycin C, etoposide, TRAIL and an agonistic anti-CD95 antibody. To further characterize cell death induction, a variety of different methods like fluorescence microscopy, TUNEL (terminal deoxynucleotidyl transferase (TdT-catalyzed deoxyuridinephosphate (dUTP-nick end labeling assay, Annexin V staining, Western blot and caspase activation assays were included into our analysis. Two cell lines expressing the core protein but not the total polyprotein exerted a strong apoptotic effect, while the other cell lines did not induce any or only a slight effect by measuring the hypodiploid nuclei. Cell death induction was caspase-independent since it could not be blocked by zVAD-fmk. Moreover, caspase activity was absent in Western blot analysis and fluorometric assays while typical apoptosis-associated morphological features like the membrane blebbing and nuclei condensation and fragmentation could be clearly observed by microscopy. None of the HCV proteins influenced the apoptotic effect mediated via the mitochondrial apoptosis pathway while only the core protein enhanced death-receptor-mediated apoptosis. Conclusion Our data showed a caspase

  1. TSA increases C/EBP‑α expression by increasing its lysine acetylation in hepatic stellate cells.

    Science.gov (United States)

    Tao, Li-Li; Ding, Di; Yin, Wei-Hua; Peng, Ji-Ying; Hou, Chen-Jian; Liu, Xiu-Ping; Chen, Yao-Li

    2017-11-01

    CCAAT enhancer binding protein‑α (C/EBP‑α) is a transcription factor expressed only in certain tissues, including the liver. It has been previously demonstrated that C/EBP‑α may induce apoptosis in hepatic stellate cells (HSCs), raising the question of whether acetylation of C/EBP‑α is associated with HSCs, and the potential associated mechanism. A total of three histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), suberoylanilide hydroxamic acid and nicotinamide, were selected to determine whether acetylation affects C/EBP‑α expression. A Cell Counting Kit‑8 assay was used to determine the rate of proliferation inhibition following treatment with varying doses of the three HDACIs in HSC‑T6 and BRL‑3A cells. Western blot analysis was used to examine Caspase‑3, ‑8, ‑9, and ‑12 levels in HSC‑T6 cells treated with adenoviral‑C/EBP‑α and/or TSA. Following treatment with TSA, a combination of reverse transcription‑quantitative polymerase chain reaction and western blot analyses was used to determine the inherent C/EBP‑α mRNA and protein levels in HSC‑T6 cells at 0, 1, 2, 4, 8, 12, 24, 36 and 48 h. Nuclear and cytoplasmic proteins were extracted to examine C/EBP‑α distribution. Co‑immunoprecipitation analysis was used to examine the lysine acetylation of C/EBP‑α. It was observed that TSA inhibited the proliferation of HSC‑T6 cells to a greater extent compared with BRL‑3A cells, following treatment with the three HDACIs. TSA induced apoptosis in HSC‑T6 cells and enhanced the expression of C/EBP‑α. Following treatment of HSC‑T6 cells with TSA, inherent C/EBP‑α expression increased in a time‑dependent manner, and its lysine acetylation simultaneously increased. Therefore, the results of the present study suggested that TSA may increase C/EBP‑α expression by increasing its lysine acetylation in HSCs.

  2. In Situ Hepatitis C NS3 Protein Detection Is Associated with High Grade Features in Hepatitis C-Associated B-Cell Non-Hodgkin Lymphomas.

    Directory of Open Access Journals (Sweden)

    Danielle Canioni

    Full Text Available Hepatitis C Virus (HCV infection is associated with the B-cell non-Hodgkin lymphomas (NHL, preferentially marginal zone lymphomas (MZL and diffuse large B-cell lymphomas (DLBCL. While chronic antigenic stimulation is a main determinant of lymphomagenesis in marginal zone lymphomas (MZL, a putative role of HCV infection of B-cells is supported by in vitro studies. We performed a pathological study within the "ANRS HC-13 LymphoC" observational study focusing on in situ expression of the oncogenic HCV non structural 3 (NS3 protein. Lympho-C study enrolled 116 HCV-positive patients with B-NHL of which 86 histological samples were collected for centralized review. Main histological subtypes were DLBCL (36% and MZL (34%. Almost half of DLBCL (12/26 were transformed from underlying small B-cell lymphomas. NS3 immunostaining was found positive in 17 of 37 tested samples (46%. There was a striking association between NS3 detection and presence of high grade lymphoma features: 12 out of 14 DLBCL were NS3+ compared to only 4 out of 14 MZL (p = 0.006. Moreover, 2 among the 4 NS3+ MZL were enriched in large cells. Remarkably, this study supports a new mechanism of transformation with a direct oncogenic role of HCV proteins in the occurrence of high-grade B lymphomas.

  3. Hepatic cell lines for drug hepatotoxicity testing: limitations and strategies to upgrade their metabolic competence by gene engineering.

    Science.gov (United States)

    Donato, M Teresa; Jover, Ramiro; Gómez-Lechón, M José

    2013-11-01

    One key issue in the pharmaceutical development of new compounds is knowledge on metabolism, the enzymes involved and the potential hepatotoxicity of a drug. Primary cultured hepatocytes are a valuable in vitro model for drug metabolism studies. However, human hepatocytes show phenotypic instability and have restricted accessibility and high batch-to-batch functional variability, which seriously complicates their use in routine testing. Therefore, several liver-derived cell models have been developed for drug metabolism and hepatotoxicity screening to circumvent these drawbacks. Hepatoma cell lines offer important advantages, availability, an unlimited life span and a stable phenotype, thus rendering them suitable models for such studies. However, currently available human hepatoma cell lines are not a good alternative to cultured hepatocytes as they show very limited expression for most drug-metabolising enzymes. Other approaches have been developed to generate immortalised hepatic cells with metabolic competence (use of plasmids encoding immortalising genes to transform human hepatocytes, cell lines obtained from transgenic animals, hepatocytomes or hydrid cells). Recombinant models heterologously expressing cytochrome P450 enzymes in hepatoma cells have also been generated, and are widely used in drug metabolism and toxicity evaluations. In recent years, new approaches to up-regulate the expression of drug-biotransformation enzymes in human cell lines (i.e., transfection with the expression vectors encoding key hepatic transcription factors) have also been investigated. This paper reviews the features of liver-derived cell lines, their suitability for drug metabolism and hepatotoxicity studies, and the state-of-the-art strategies pursued to generate metabolically competent hepatic cell lines.

  4. The Modulatory Role of Endogenous IL-24/mda-7 in Inflammatory Response of Human Hepatic Stellate Cell (HSC, LX2

    Directory of Open Access Journals (Sweden)

    Iman Jamhiri

    2018-02-01

    Full Text Available Abstract Background: High morbidity and limited therapies of hepatic fibro genesis are important factor for better understanding the molecular mechanisms of the disease. Advances in the understanding of the molecular behavior of hepatic stellate cells (HSC allow the progress of a field dedicated to anti-fibrotic therapy. Melanoma differentiation associated gene-7 (IL-24/mda-7 as a gene induced during terminal differentiation in human melanoma cells, but the inflammatory response of cells to IL-24/mda-7 is not entirely cleared. Materias and Methods: LX-2 cells (a human hepatic stellate cell were treated by leptin (positive control, media (control negative, or were transfected by empty plasmid and pcDNA3.1/mda-7. The inflammatory state was evaluated through measuring the mRNA expression level of inflammatory molecule, IL-1β. The role of IL-24/mda-7 modulation on inflammatory response was assayed using SOCS1 and SOCS3 gene expressions. Results: The expression levels of IL-1β, SOCS1 and SOCS3 were compared in LX-2 cell line groups. The expression of the IL-1β in the transfected cells was higher than the control cell, but it was not significant. The results indicated that the expressions of SOCS1 and SOCS3 were up-regulated following pcDNA 3.1/mda-7 transfection into LX-2 cells compared to control plasmids (p=0.0179, p=0.0428. Conclusion: The endogenous IL-24/mda-7 exhibited a significant modulatory effect on stellate cells. Therefore, IL-24/mda-7 and relevant signaling pathways could be employed as a target for fibrosis treatment.

  5. Hepatic maturation of human iPS cell-derived hepatocyte-like cells by ATF5, c/EBPα, and PROX1 transduction.

    Science.gov (United States)

    Nakamori, Daiki; Takayama, Kazuo; Nagamoto, Yasuhito; Mitani, Seiji; Sakurai, Fuminori; Tachibana, Masashi; Mizuguchi, Hiroyuki

    2016-01-15

    Hepatocyte-like cells differentiated from human iPS cells (human iPS-HLCs) are expected to be utilized in drug development and research. However, recent hepatic characterization of human iPS-HLCs showed that these cells resemble fetal hepatocytes rather than adult hepatocytes. Therefore, in this study, we aimed to develop a method to enhance the hepatic function of human iPS-HLCs. Because the gene expression levels of the hepatic transcription factors (activating transcription factor 5 (ATF5), CCAAT/enhancer-binding protein alpha (c/EBPα), and prospero homeobox protein 1 (PROX1)) in adult liver were significantly higher than those in human iPS-HLCs and fetal liver, we expected that the hepatic functions of human iPS-HLCs could be enhanced by adenovirus (Ad) vector-mediated ATF5, c/EBPα, and PROX1 transduction. The gene expression levels of cytochrome P450 (CYP) 2C9, 2E1, alpha-1 antitrypsin, transthyretin, Na+/taurocholate cotransporting polypeptide, and uridine diphosphate glucuronosyl transferase 1A1 and protein expression levels of CYP2C9 and CYP2E1 were upregulated by ATF5, c/EBPα, and PROX1 transduction. These results suggest that the hepatic functions of the human iPS-HLCs could be enhanced by ATF5, c/EBPα, and PROX1 transduction. Our findings would be useful for the hepatic maturation of human iPS-HLCs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Hepatitis C virus-related B cell subtypes in non Hodgkin's lymphoma

    Science.gov (United States)

    Pellicelli, Adriano M; Marignani, Massimo; Zoli, Valerio; Romano, Mario; Morrone, Aldo; Nosotti, Lorenzo; Barbaro, Giuseppe; Picardi, Antonio; Gentilucci, Umberto Vespasiani; Remotti, Daniele; D'Ambrosio, Cecilia; Furlan, Caterina; Mecenate, Fabrizio; Mazzoni, Ettore; Majolino, Ignazio; Villani, Roberto; Andreoli, Arnaldo; Barbarini, Giorgio

    2011-01-01

    AIM: To evaluate if indolent B cell-non Hodgkin’s lymphoma (B-NHL) and diffuse large B-cell lymphoma (DLBCL) in hepatitis C virus (HCV) positive patients could have different biological and clinical characteristics requiring different management strategies. METHODS: A group of 24 HCV related B-NHL patients (11 indolent, 13 DLBCL) in whom the biological and clinical characteristics were described and confronted. Patients with DLBCL were managed with the standard of care of treatment. Patients with indolent HCV-related B-NHL were managed with antiviral treatment pegylated interferon plus ribavirin and their course observed. The outcomes of the different approaches were compared. RESULTS: Patients with DLBCL had a shorter duration of HCV infection and a higher prevalence of HCV genotype 1 compared to patients with indolent B-NHL in which HCV genotype 2 was the more frequent genotype. Five of the 9 patients with indolent HCV-related B-NHL treated with only antiviral therapy, achieved a complete response of their onco-haematological disease (55%). Seven of the 13 DLBCL patients treated with immunochemotheraphy obtained a complete response (54%). CONCLUSION: HCV genotypes and duration of HCV infection differed between B-NHL subtypes. Indolent lymphomas can be managed with antiviral treatment, while DLBCL is not affected by the HCV infection. PMID:22125661

  7. Estradiol inhibits hepatic stellate cell area and collagen synthesis in the chicken liver.

    Science.gov (United States)

    Nishimura, Shotaro; Teshima, Akifumi; Kawabata, Fuminori; Tabata, Shoji

    2017-11-01

    Hepatic stellate cells (HSCs) are the main collagen-producing cells in the liver. The HSC area and amount of collagen fibers are different between male and female chickens. This study was performed to confirm the effect of estradiol on collagen synthesis in the growing chicken liver. Blood estradiol levels in chicks were compared at 4 and 8 weeks of age, and the collagen fibril network in liver tissue was observed at 8 weeks by scanning electron microscopy. Intraperitoneal administrations of estradiol and tamoxifen to male and female chicks, respectively, were performed daily from 5 to 8 weeks of age. The areas of HSCs and collagen contents were measured in the liver tissue. The blood estradiol level was higher in females than in males, and the collagen fibril network was denser in males than in females at 8 weeks of age. Estradiol administration in males induced decreases in the HSC area and collagen content of the liver. Conversely, tamoxifen administration in females induced an increase in the HSC area but did not facilitate collagen synthesis. Based on these results, estradiol inhibits the area and collagen synthesis of HSCs in the growing chicken liver under normal physiological conditions. © 2017 Japanese Society of Animal Science.

  8. Dissecting the dendritic cell controversy in chronic hepatitis B virus infection.

    Science.gov (United States)

    Gehring, Adam J; Ann D'Angelo, June

    2015-05-01

    Therapeutic vaccines to boost endogenous T-cell immunity rely on the stimulatory capacity of dendritic cells (DCs). The functionality of DCs in chronic hepatitis B virus (HBV) infection has been a long-standing debate. Therefore, we have attempted to summarize multiple studies investigating DC function in chronic HBV patients to determine whether common observations can be drawn. We found that the frequency and function of ex vivo-tested myeloid and plasmacytoid DCs were largely intact in patients with HBV infection and similar to those of healthy donor DCs. The main exception was reduced IFN-α production by plasmacytoid DC from chronic HBV patients. This reduced IFN-α production correlated with liver inflammation in multiple studies but not with viral load, suggesting that viral antigens have little effect on DC function. The majority of the confusion about DC function arises from studies reporting the reduced function of healthy donor DCs exposed to various sources of HBV in vitro. These direct effects of viral antigens are in contrast to data from HBV-infected patients. The variations in the assays used and areas that require further investigation are also covered.

  9. Quantification and functional analysis of plasmacytoid dendritic cells in patients with chronic hepatitis C virus infection.

    Science.gov (United States)

    Goutagny, Nadege; Vieux, Claude; Decullier, Evelyne; Ligeoix, Benoit; Epstein, Alberto; Trepo, Christian; Couzigou, Patrice; Inchauspe, Genevieve; Bain, Christine

    2004-05-01

    Plasmacytoid dendritic cells (PDCs) are the major producers of interferon (IFN)- alpha within peripheral blood mononuclear cells (PBMCs). We analyzed whether chronic hepatitis C virus (HCV) infection could be linked to a defective function or number of PDCs. We evaluated the capacity of PBMCs from 5 cohorts of subjects to produce IFN- alpha after viral stimulation. We concomitantly analyzed the frequency of PDCs and the levels of IFN- alpha transcripts within the PBMCs from the same cohorts. PBMCs from patients with chronic HCV infection receiving antiviral therapy displayed a reduced capacity to release IFN- alpha, compared with those from healthy individuals, those from long-term responders to therapy, and those from nontreated patients. This defect was significantly correlated with the percentage of PDCs. In addition, PDCs from patients with chronic HCV infection receiving therapy displayed a reduced intrinsic capacity to produce IFN- alpha, which could be linked to the level of IFN- alpha transcripts. Our observations point to an effect of the therapy on either the survival or the localization of PDCs, rather than a direct detrimental effect due to the viral infection during chronic HCV infection.

  10. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of Sorafenib in hepatocellular cancer cells.

    Science.gov (United States)

    Lo Re, Oriana; Panebianco, Concetta; Porto, Stefania; Cervi, Carlo; Rappa, Francesca; Di Biase, Stefano; Caraglia, Michele; Pazienza, Valerio; Vinciguerra, Manlio

    2018-02-01

    Hepatocellular carcinoma (HCC) has a poor outcome. Most HCCs develop in the context of liver fibrosis and cirrhosis caused by chronic inflammation. Short-term fasting approaches enhance the activity of chemotherapy in preclinical cancer models, other than HCC. Multi-tyrosine kinase inhibitor Sorafenib is the mainstay of treatment in HCC. However, its benefit is frequently short-lived. Whether fasting can alleviate liver fibrosis and whether combining fasting with Sorafenib is beneficial remains unknown. A 24 hr fasting (2% serum, 0.1% glucose)-induced changes on human hepatic stellate cells (HSC) LX-2 proliferation/viability/cell cycle were assessed by MTT and flow cytometry. Expression of lypolysaccharide (LPS)-induced activation markers (vimentin, αSMA) was evaluated by qPCR and immunoblotting. Liver fibrosis and inflammation were evaluated in a mouse model of steatohepatitis exposed to cycles of fasting, by histological and biochemical analyses. A 24 hr fasting-induced changes were also analyzed on the proliferation/viability/glucose uptake of human HCC cells exposed to Sorafenib. An expression panel of genes involved in survival, inflammation, and metabolism was examined by qPCR in HCC cells exposed to fasting and/or Sorafenib. Fasting decreased the proliferation and the activation of HSC. Repeated cycles of short term starvation were safe in mice but did not improve fibrosis. Fasting synergized with Sorafenib in hampering HCC cell growth and glucose uptake. Finally, fasting normalized the expression levels of genes which are commonly altered by Sorafenib in HCC cells. Fasting or fasting-mimicking diet diets should be evaluated in preclinical studies as a mean to potentiate the activity of Sorafenib in clinical use. © 2017 Wiley Periodicals, Inc.

  11. Nanomaterial-induced cell death in pulmonary and hepatic cells following exposure to three different metallic materials

    DEFF Research Database (Denmark)

    Kermanizadeh, Ali; Jantzen, Kim; Ward, Michael B

    2017-01-01

    Autophagy is the catabolic process involving the sequestration of the cytoplasm within double-membrane vesicles, which fuse with lysosomes to form autolysosomes in which autophagic targets are degraded. Since most endocytic routes of nanomaterial uptake converge upon the lysosome and the possibil......Autophagy is the catabolic process involving the sequestration of the cytoplasm within double-membrane vesicles, which fuse with lysosomes to form autolysosomes in which autophagic targets are degraded. Since most endocytic routes of nanomaterial uptake converge upon the lysosome...... and the possibility that autophagy induction by NMs may be an attempt by the cell to self-preserve following the external challenge, this study investigated the role of autophagy following exposure to a panel of widely used metal-based NMs with high toxicity (Ag and ZnO) or low toxicity (TiO2) in a pulmonary (A549......) and hepatic (HepG2) cell line. The in vitro exposure to the Ag and ZnO NMs resulted in the induction of both apoptosis and autophagy pathways in both cell types. However, the progression of autophagy was blocked in the formation of the autolysosome, which coincided with morphologic changes in the actin...

  12. Reconstruction of hepatic stellate cell-incorporated liver capillary structures in small hepatocyte tri-culture using microporous membranes.

    Science.gov (United States)

    Kasuya, Junichi; Sudo, Ryo; Masuda, Genta; Mitaka, Toshihiro; Ikeda, Mariko; Tanishita, Kazuo

    2015-03-01

    In liver sinusoids, hepatic stellate cells (HSCs) locate the outer surface of microvessels to form a functional unit with endothelia and hepatocytes. To reconstruct functional liver tissue in vitro, formation of the HSC-incorporated sinusoidal structure is essential. We previously demonstrated capillary formation of endothelial cells (ECs) in tri-culture, where a polyethylene terephthalate (PET) microporous membrane was intercalated between the ECs and hepatic organoids composed of small hepatocytes (SHs), i.e. hepatic progenitor cells, and HSCs. However, the high thickness and low porosity of the membranes limited heterotypic cell-cell interactions, which are essential to form HSC-EC hybrid structures. Here, we focused on the effective use of the thin and highly porous poly( d, l-lactide-co-glycolide) (PLGA) microporous membranes in SH-HSC-EC tri-culture to reconstruct the HSC-incorporated liver capillary structures in vitro. First, the formation of EC capillary-like structures was induced on Matrigel-coated PLGA microporous membranes. Next, the membranes were stacked on hepatic organoids composed of small SHs and HSCs. When the pore size and porosity of the membranes were optimized, HSCs selectively migrated to the EC capillary-like structures. This process was mediated in part by platelet-derived growth factor (PDGF) signalling. In addition, the HSCs were located along the outer surface of the EC capillary-like structures with their long cytoplasmic processes. In the HSC-incorporated capillary tissues, SHs acquired high levels of differentiated functions, compared to those without ECs. This model will provide a basis for the construction of functional, thick, vascularized liver tissues in vitro. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Cell transplantation after oxidative hepatic preconditioning with radiation and ischemia-reperfusion leads to extensive liver repopulation

    Science.gov (United States)

    Malhi, Harmeet; Gorla, Giridhar R.; Irani, Adil N.; Annamaneni, Pallavi; Gupta, Sanjeev

    2002-10-01

    The inability of transplanted cells to proliferate in the normal liver hampers cell therapy. We considered that oxidative hepatic DNA damage would impair the survival of native cells and promote proliferation in transplanted cells. Dipeptidyl peptidase-deficient F344 rats were preconditioned with whole liver radiation and warm ischemia-reperfusion followed by intrasplenic transplantation of syngeneic F344 rat hepatocytes. The preconditioning was well tolerated, although serum aminotransferase levels rose transiently and hepatic injury was observed histologically, along with decreased catalase activity and 8-hydroxy adducts of guanine, indicating oxidative DNA damage. Transplanted cells did not proliferate in the liver over 3 months in control animals and animals preconditioned with ischemia-reperfusion alone. Animals treated with radiation alone showed some transplanted cell proliferation. In contrast, the liver of animals preconditioned with radiation plus ischemia-reperfusion was replaced virtually completely over 3 months. Transplanted cells integrated in the liver parenchyma and liver architecture were preserved normally. These findings offer a paradigm for repopulating the liver with transplanted cells. Progressive loss of cells experiencing oxidative DNA damage after radiation and ischemia-reperfusion injury could be of significance for epithelial renewal in additional organs.

  14. Hybrid hepatitis B virus-host transcripts in a human hepatoma cell.

    Science.gov (United States)

    Ou, J; Rutter, W J

    1985-01-01

    The human PLC/PRF/5 hepatoma cell line (the Alexander cell) contains at least seven copies of hepatitis B virus (HBV) DNA integrated in its genome; but it selectively expresses the HBV surface antigen (HBsAg) gene and perhaps low levels of the core gene. We have prepared a cDNA library from PLC/PRF/5 cell poly(A)+ RNA and isolated clones containing HBV sequences. Hybridization experiments show that the great majority of HBV-specific RNAs in this cell line contain HBsAg coding sequences and are presumably derived from the HBsAg gene. Primer extension experiments show that these HBsAg mRNAs are, however, derived from multiple initiation sites in the HBsAg gene and involve two promoters: one at the 5' end of the gene that can produce a protein of 45 kDa, and one located in the pre-S region that can produce two proteins of 31 kDa and the mature HBsAg, 25 kDa, respectively. The HBV RNAs are hybrid RNA species that contain HBV sequences at their 5' ends and host DNA sequences at the 3' ends. The great majority of these hybrid RNAs are transcribed from two closely related yet distinct HBV integrants. The viral-host sequences of these two related hybrid RNAs suggest that the related HBV sequences were generated from a parental fragment via duplication, translocation, and mutagenesis. These processes may play a role in HBV-related oncogenesis. Images PMID:2982146

  15. Overexpression of Fc receptor-like 1 associated with B-cell activation during hepatitis B virus infection

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2012-12-01

    Full Text Available The role of B cells in the pathogenesis of hepatitis B virus (HBV infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20 and patients with acute hepatitis B (AHB, N = 15 or chronic hepatitis B (CHB, N = 30 was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26% compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05, which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05. Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%, lowest in healthy donors (36.32 ± 9.98%, P < 0.05 and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05. The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions.

  16. Overexpression of Fc receptor-like 1 associated with B-cell activation during hepatitis B virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Pei, Hao [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Huang, Biao; Yang, Run-Lin [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China); Wu, Hang-Yuan [Wuxi Hospital of Infectious Disease, Wuxi, Jiangsu Province (China); Zhu, Xue; Zhu, Lan [Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu Province (China)

    2012-08-17

    The role of B cells in the pathogenesis of hepatitis B virus (HBV) infection has not been explored in depth. In the present study, the activation status of B cells from peripheral blood of healthy controls (N = 20) and patients with acute hepatitis B (AHB, N = 15) or chronic hepatitis B (CHB, N = 30) was evaluated by measuring the expression levels of B-cell activation markers CD69 and CD86, using quantitative real-time PCR and flow cytometry. Moreover, the potential mechanism underlying B-cell activation during HBV infection was further investigated by analyzing the expression profile of FCRL1, an intrinsic activation molecule of B cells. An elevation in the levels of B-cell activation markers including CD69 and CD86 was observed in the AHB patients (44.31 ± 9.27, 27.64 ± 9.26%) compared to CHB patients (30.35 ± 11.27, 18.41 ± 6.56%, P < 0.05), which was still higher than healthy controls (12.23 ± 7.84, 8.22 ± 3.43%, P < 0.05). Furthermore, the expression of FCRL1 was found to be similar to B-cell activation markers, which was highest in AHB patients (70.15 ± 17.11%), lowest in healthy donors (36.32 ± 9.98%, P < 0.05) and half-way between these levels in patients with CHB (55.17 ± 12.03%, P < 0.05). The results were positively associated with aberrant B-cell activation. These data suggest that B cells can play a role in HBV infection, and therefore more effort should be devoted to exploring their functions.

  17. Gene expression profiling of early hepatic stellate cell activation reveals a role for Igfbp3 in cell migration.

    Directory of Open Access Journals (Sweden)

    Inge Mannaerts

    Full Text Available BACKGROUND: Scarring of the liver is the result of prolonged exposure to exogenous or endogenous stimuli. At the onset of fibrosis, quiescent hepatic stellate cells (HSCs activate and transdifferentiate into matrix producing, myofibroblast-like cells. AIM AND METHODS: To identify key players during early HSC activation, gene expression profiling was performed on primary mouse HSCs cultured for 4, 16 and 64 hours. Since valproic acid (VPA can partly inhibit HSC activation, we included VPA-treated cells in the profiling experiments to facilitate this search. RESULTS: Gene expression profiling confirmed early changes for known genes related to HSC activation such as alpha smooth muscle actin (Acta2, lysyl oxidase (Lox and collagen, type I, alpha 1 (Col1a1. In addition we noticed that, although genes which are related to fibrosis change between 4 and 16 hours in culture, most gene expression changes occur between 16 and 64 hours. Insulin-like growth factor binding protein 3 (Igfbp3 was identified as a gene strongly affected by VPA treatment. During normal HSC activation Igfbp3 is up regulated and this can thus be prevented by VPA treatment in vitro and in vivo. siRNA-mediated silencing of Igfbp3 in primary mouse HSCs induced matrix metalloproteinase (Mmp 9 mRNA expression and strongly reduced cell migration. The reduced cell migration after Igfbp3 knock-down could be overcome by tissue inhibitor of metalloproteinase (TIMP 1 treatment. CONCLUSION: Igfbp3 is a marker for culture-activated HSCs and plays a role in HSC migration. VPA treatment prevents Igfbp3 transcription during activation of HSCs in vitro and in vivo.

  18. Interleukin-22 ameliorates liver fibrogenesis by attenuating hepatic stellate cell activation and downregulating the levels of inflammatory cytokines

    Science.gov (United States)

    Lu, Dong-Hong; Guo, Xiao-Yun; Qin, Shan-Yu; Luo, Wei; Huang, Xiao-Li; Chen, Mei; Wang, Jia-Xu; Ma, Shi-Jia; Yang, Xian-Wen; Jiang, Hai-Xing

    2015-01-01

    AIM: To investigate the effect of interleukin (IL)-22 on hepatic fibrosis in mice and the possible mechanism involved. METHODS: Liver fibrosis was induced in male BALB/c mice by CCl4. Recombinant IL-22 (rmIL-22) was administered intraperitoneally in CCl4-treated mice. Fibrosis was assessed by histology and Masson staining. The activation of hepatic stellate cells (HSCs) was investigated by analysis of α-smooth muscle actin expression. The frequencies of T helper (Th) 22 cells, Th17 cells and Th1 cells, the expression of inflammatory cytokines [IL-22, IL-17A, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), IL-6, IL-1β] and transcription factors [aryl hydrocarbon receptor (AHR), RAR-related orphan receptor (RORγt), T-bet] mRNA in the liver were investigated. In addition, the plasma levels of IL-22, IL-17A, IFN-γ, TNF-α, IL-6 and IL-1β were evaluated. RESULTS: Significant elevations in circulating Th22 cells, Th17 cells, Th1 cells, IL-22, IL-17A, and IFN-γ were observed in the hepatic fibrosis group compared with the control group (P < 0.01). Treatment with rmIL-22 in mice with hepatic fibrosis ameliorated the severity of hepatic fibrosis, which was confirmed by lower hepatic fibrosis pathological scores (P < 0.01). RmIL-22 decreased the frequencies of Th22 cells (6.71% ± 0.97% vs 8.09% ± 0.74%, P < 0.01), Th17 cells (4.34% ± 0.37% vs 5.71% ± 0.24%, P < 0.01), Th1 cells (3.09% ± 0.49% vs 4.91% ± 0.73%, P < 0.01), and the levels of IL-22 (56.23 ± 3.08 vs 70.29 ± 3.01, P < 0.01), IL-17A (30.74 ± 2.77 vs 45.68 ± 2.71, P < 0.01), and IFN-γ (74.78 ± 2.61 vs 124.89 ± 2.82, P < 0.01). Down-regulation of IL-22, IL-17A, IFN-γ, TNF-α, IL-6, IL-1β, AHR RORγt, and T-bet gene expression in the liver was observed in the rmIL-22 group (P < 0.01). CONCLUSION: The frequencies of Th22, Th17 and Th1 cells are elevated in hepatic fibrosis. RmIL-22 can attenuate HSC activation and down-regulate the levels of inflammatory cytokines, thereby ameliorating

  19. Human dental pulp stem cells derived from cryopreserved dental pulp tissues of vital extracted teeth with disease demonstrate hepatic-like differentiation.

    Science.gov (United States)

    Chen, Y K; Huang, Anderson H C; Chan, Anthony W S; Lin, L M

    2016-06-01

    Reviewing the literature, hepatic differentiation of human dental pulp stem cells (hDPSCs) from cryopreserved dental pulp tissues of vital extracted teeth with disease has not been studied. This study is aimed to evaluate the hypothesis that hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease could possess potential hepatic differentiation. Forty vital extracted teeth with disease recruited for hDPSCs isolation, stem cell characterization and hepatic differentiation were randomly and equally divided into group A (liquid nitrogen-stored dental pulp tissues) and group B (freshly derived dental pulp tissues). Samples of hDPSCs isolated from groups A and B but without hepatic growth factors formed negative controls. A well-differentiated hepatocellular carcinoma cell line was employed as a positive control. All the isolated hDPSCs from groups A and B showed hepatic-like differentiation with morphological change from a spindle-shaped to a polygonal shape and normal karyotype. Differentiated hDPSCs and the positive control expressed hepatic metabolic function genes and liver-specific genes. Glycogen storage of differentiated hDPSCs was noted from day 7 of differentiation-medium culture. Positive immunofluorescence staining of low-density lipoprotein and albumin was observed from day 14 of differentiation-medium culture; urea production in the medium was noted from week 6. No hepatic differentiation was observed for any of the samples of the negative controls. We not only demonstrated the feasibility of hepatic-like differentiation of hDPSCs from cryopreserved dental pulp tissues of vital extracted teeth with disease but also indicated that the differentiated cells possessed normal karyotype and were functionally close to normal hepatic-like cells. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. An inducible transgenic mouse model for immune mediated hepatitis showing clearance of antigen expressing hepatocytes by CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Marcin Cebula

    Full Text Available The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreER(T2 mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred K(b/OVA257-264-specific OT-I T cells to OVA_X_CreER(T2 mice or generated triple transgenic OVA_X CreER(T2_X_OT-I mice. OT-I T cells become activated in OVA_X_CreER(T2 mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreER(T2_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreER(T2_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance.

  1. Activated rat hepatic stellate cells influence Th1/Th2 profile in vitro

    Science.gov (United States)

    Xing, Zhi-Zhi; Huang, Liu-Ye; Wu, Cheng-Rong; You, Hong; Ma, Hong; Jia, Ji-Dong

    2015-01-01

    AIM: To investigate the effects of activated rat hepatic stellate cells (HSCs) on rat Th1/Th2 profile in vitro. METHODS: Growth and survival of activated HSCs and CD4+ T lymphocytes cultured alone or together was assessed after 24 or 48 h. CD4+ T lymphocytes were then cultured with or without activated HSCs for 24 or 48 h and the proportion of Th1 [interferon (IFN)-γ+] and Th2 [interleukin (IL)-4+] cells was assessed by flow cytometry. Th1 and Th2 cell apoptosis was assessed after 24 h of co-culture using a caspase-3 staining procedure. Differentiation rates of Th1 and Th2 cells from CD4+ T lymphocytes that were positive for CD25 but did not express IFN-γ or IL-4 were also assessed after 48 h of co-culture with activated HSCs. Galectin-9 expression in HSCs was determined by immunofluorescence and Western blotting. ELISA was performed to assess galectin-9 secretion from activated HSCs. RESULTS: Co-culture of CD4+ T lymphocytes with activated rat HSCs for 48 h significantly reduced the proportion of Th1 cells compared to culture-alone conditions (-1.73% ± 0.71%; P < 0.05), whereas the proportion of Th2 cells was not altered; the Th1/Th2 ratio was significantly decreased (-0.44 ± 0.13; P < 0.05). In addition, the level of IFN-γ in Th1 cells was decreased (-65.71 ± 9.67; P < 0.01), whereas the level of IL-4 in Th2 cells was increased (82.79 ± 25.12; P < 0.05) by co-culturing, as measured by mean fluorescence intensity by flow cytometry. Apoptosis rates in Th1 (12.27% ± 0.99%; P < 0.01) and Th2 (1.71% ± 0.185%; P < 0.01) cells were increased 24 h after co-culturing with activated HSCs; the Th1 cell apoptosis rate was significantly higher than in Th2 cells (P < 0.01). Galectin-9 protein expression was significantly decreased in HSCs only 24 h after co-culturing (P < 0.05) but not after 48 h. Co-culture for 48 h significantly increased the differentiation of Th1 and Th2 cells; however, the increase in the proportion of Th2 cells was significantly higher than that

  2. Melatonin protects against lipid-induced mitochondrial dysfunction in hepatocytes and inhibits stellate cell activation during hepatic fibrosis in mice.

    Science.gov (United States)

    Das, Nabanita; Mandala, Ashok; Naaz, Shamreen; Giri, Suresh; Jain, Mukul; Bandyopadhyay, Debasish; Reiter, Russel J; Roy, Sib Sankar

    2017-05-01

    Lipid generates reactive oxygen species (ROS) in consequence to mitochondrial fission followed by inflammation in propagating hepatic fibrosis. The interaction of SIRT1/Mitofusin2 is critical for maintaining mitochondrial integrity and functioning, which is disrupted upon excess lipid infiltration during the progression of steatohepatitis. The complex interplay between hepatic stellate cells and steatotic hepatocytes is critically regulated by extracellular factors including increased circulating free fatty acids during fibrogenesis. Melatonin, a potent antioxidant, protects against lipid-mediated mitochondrial ROS generation. Lipotoxicity induces disruption of SIRT1 and Mitofusin2 interaction leading to mitochondrial morphological disintegration in hepatocytes. Further, fragmented mitochondria leads to mitochondrial permeability transition pore opening, cell cycle arrest and apoptosis and melatonin protects against all these lipotoxicity-mediated dysfunctions. These impaired mitochondrial dynamics also enhances the cellular glycolytic flux and reduces mitochondrial oxygen consumption rate that potentiates ROS production. High glycolytic flux generates metabolically unfavorable milieu in hepatocytes leading to inflammation, which is abrogated by melatonin. The melatonin-mediated protection against mitochondrial dysfunction was also observed in high-fat diet (HFD)-fed mice through restoration of enzymatic activities associated with respiratory chain and TCA cycle. Subsequently, melatonin reduces hepatic fat deposition and inflammation in HFD-fed mice. Thus, melatonin disrupts the interaction between steatotic hepatocyte and stellate cells, leading to the activation of the latter to abrogate collagen deposition. Altogether, the results of the current study document that the pharmacological intervention with low dose of melatonin could abrogate lipotoxicity-mediated hepatic stellate cell activation and prevent the fibrosis progression. © 2017 John Wiley & Sons A

  3. Hepatic ischemia and reperfusion injury in the absence of myeloid cell-derived COX-2 in mice.

    Directory of Open Access Journals (Sweden)

    Sergio Duarte

    Full Text Available Cyclooxygenase-2 (COX-2 is a mediator of hepatic ischemia and reperfusion injury (IRI. While both global COX-2 deletion and pharmacologic COX-2 inhibition ameliorate liver IRI, the clinical use of COX-2 inhibitors has been linked to increased risks of heart attack and stroke. Therefore, a better understanding of the role of COX-2 in different cell types may lead to improved therapeutic strategies for hepatic IRI. Macrophages of myeloid origin are currently considered to be important sources of the COX-2 in damaged livers. Here, we used a Cox-2flox conditional knockout mouse (COX-2-M/-M to examine the function of COX-2 expression in myeloid cells during liver IRI. COX-2-M/-M mice and their WT control littermates were subjected to partial liver ischemia followed by reperfusion. COX-2-M/-M macrophages did not express COX-2 upon lipopolysaccharide stimulation and COX-2-M/-M livers showed reduced levels of COX-2 protein post-IRI. Nevertheless, selective deletion of myeloid cell-derived COX-2 failed to ameliorate liver IRI; serum transaminases and histology were comparable in both COX-2-M/-M and WT mice. COX-2-M/-M livers, like WT livers, developed extensive necrosis, vascular congestion, leukocyte infiltration and matrix metalloproteinase-9 (MMP-9 expression post-reperfusion. In addition, myeloid COX-2 deletion led to a transient increase in IL-6 levels after hepatic reperfusion, when compared to controls. Administration of celecoxib, a selective COX-2 inhibitor, resulted in significantly improved liver function and histology in both COX-2-M/-M and WT mice post-reperfusion, providing evidence that COX-2-mediated liver IRI is caused by COX-2 derived from a source(s other than myeloid cells. In conclusion, these results support the view that myeloid COX-2, including myeloid-macrophage COX-2, is not responsible for the hepatic IRI phenotype.

  4. Enhanced endoplasmic reticulum SERCA activity by overexpression of hepatic stimulator substance gene prevents hepatic cells from ER stress-induced apoptosis.

    Science.gov (United States)

    Zhang, Jing; Li, Yuan; Jiang, Shujun; Yu, Hao; An, Wei

    2014-02-01

    Although the potential pathogenesis of nonalcoholic fatty liver disease (NAFLD) is unclear, increasing evidence indicates that endoplasmic reticulum (ER) stress may link free fatty acids to NAFLD. Since we previously reported that hepatic stimulator substance (HSS) could protect the liver from steatosis, this study is aimed to investigate whether HSS protection could be related with its inhibition on ER stress. The HSS gene was stably transfected into BEL-7402 hepatoma cells and effectively expressed in ER. The palmitic acid (PA)-induced heptocyte lipotoxicity was reproduced in the HSS-transfected cells, and HSS alleviation of the ER stress and apoptosis were subsequently examined. The results showed that PA treatment led to a heavy accumulation of fatty acids within the cells and a remarkable increase in reactive oxygen species (ROS). However, in the HSS-expressing cells, production of ROS was inhibited and ER stress-related marker glucose-regulated protein 78 (GRP-78), sterol regulatory element-binding protein (SREBP), anti-phospho-PRK-1ike ER kinase (p-PERK), anti-phospho-eukaryotic initiation factor 2α (p-eIF2α), and anti-C/EBP homologous protein (CHOP) were downregulated compared with the wild-type or mutant HSS-transfected cells. Furthermore, PA treatment severely impaired the activity of sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), leading to imbalanced calcium homeostasis during ER stress, which could be rescued in the HSS-trasfected cells. The protection provided by HSS to the SERCA is identical to that observed with N-acetyl-l-cysteine (NAC) and sodium dimercaptopropane sulfonate (Na-DMPS), which are two typical free radical scavengers. As a consequence, the rate of ER stress-mediated apoptosis in the HSS-expressing cells was significantly reduced. In conclusion, the protective effect of HSS against ER stress may be associated with the removal of ROS to restore the activity of the SERCA.

  5. Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics.

    Science.gov (United States)

    Bi, Yan; Mukhopadhyay, Dhriti; Drinane, Mary; Ji, Baoan; Li, Xing; Cao, Sheng; Shah, Vijay H

    2014-10-01

    Hepatic stellate cells (HSCs) generate matrix, which in turn may also regulate HSCs function during liver fibrosis. We hypothesized that HSCs may endocytose matrix proteins to sense and respond to changes in microenvironment. Primary human HSCs, LX2, or mouse embryonic fibroblasts (MEFs) [wild-type; c-abl(-/-); or Yes, Src, and Fyn knockout mice (YSF(-/-))] were incubated with fluorescent-labeled collagen or gelatin. Fluorescence-activated cell sorting analysis and confocal microscopy were used for measuring cellular internalization of matrix proteins. Targeted PCR array and quantitative real-time PCR were used to evaluate gene expression changes. HSCs and LX2 cells endocytose collagens in a concentration- and time-dependent manner. Endocytosed collagen colocalized with Dextran 10K, a marker of macropinocytosis, and 5-ethylisopropyl amiloride, an inhibitor of macropinocytosis, reduced collagen internalization by 46%. Cytochalasin D and ML7 blocked collagen internalization by 47% and 45%, respectively, indicating that actin and myosin are critical for collagen endocytosis. Wortmannin and AKT inhibitor blocked collagen internalization by 70% and 89%, respectively, indicating that matrix macropinocytosis requires phosphoinositide-3-kinase (PI3K)/AKT signaling. Overexpression of dominant-negative dynamin-2 K44A blocked matrix internalization by 77%, indicating a role for dynamin-2 in matrix macropinocytosis. Whereas c-abl(-/-) MEF showed impaired matrix endocytosis, YSF(-/-) MEF surprisingly showed increased matrix endocytosis. It was also associated with complex gene regulations that related with matrix dynamics, including increased matrix metalloproteinase 9 (MMP-9) mRNA levels and zymographic activity. HSCs endocytose matrix proteins through macropinocytosis that requires a signaling network composed of PI3K/AKT, dynamin-2, and c-abl. Interaction with extracellular matrix regulates matrix dynamics through modulating multiple gene expressions including MMP-9

  6. Dendritic cells in uninfected infants born to hepatitis B virus-positive mothers.

    Science.gov (United States)

    Koumbi, Lemonica J; Papadopoulos, Nikolaos G; Anastassiadou, Vassiliki; Machaira, Maria; Kafetzis, Dimitris A; Papaevangelou, Vassiliki

    2010-07-01

    Plasmacytoid dendritic cells (pDCs) play a central role in antiviral immunity, detecting viruses via Toll-like receptors (TLR) and producing in response vast amounts of type I interferons (IFNs). Hepatitis B virus (HBV) causes chronic infection after vertical transmission. This study investigated whether an HBV-infected maternal environment might influence DC numbers and pDC function in uninfected infants. Blood was collected from inactive HBsAg carrier and control mothers and their infants at birth and 1 and 6 months of age. HBV DNA was measured in maternal and neonatal perinatal sera using real-time PCR. The circulating frequencies of myeloid DCs (mDCs) and pDCs were determined in the babies by flow cytometry. Peripheral blood mononuclear cells (PBMCs) and cord blood pDCs were stimulated with resiquimod, and alpha interferon (IFN-alpha) production and the pDC phenotype were assessed. The effect of the common-cold virus, rhinovirus (RV), on resiquimod stimulation was also determined. HBV DNA was detected in 62.3% of the mothers and 41% of their infants. DC numbers and pDC functions were similar between subjects and controls and were not correlated with maternal or neonatal viremia. RV infection did not induce pDC maturation until the age of 6 months, and it reduced TLR7-dependent resiquimod-induced IFN-alpha production similarly in both groups. Although the DC system is immature at birth, DCs of uninfected neonates of HBV-positive mothers are competent to initiate and maintain T-cell responses. RV is a weak inducer of IFN-alpha production until the age of 6 months and inhibits IFN-alpha responses triggered by the TLR7 pathway.

  7. Evaluation of a hybrid artificial liver module based on a spheroid culture system of embryonic stem cell-derived hepatic cells.

    Science.gov (United States)

    Mizumoto, Hiroshi; Hayashi, Shunsuke; Matsumoto, Kinya; Ikeda, Kaoru; Kusumi, Tomoaki; Inamori, Masakazu; Nakazawa, Kohji; Ijima, Hiroyuki; Funatsu, Kazumori; Kajiwara, Toshihisa

    2012-01-01

    Hybrid artificial liver (HAL) is an extracorporeal circulation system comprised of a bioreactor containing immobilized functional liver cells. It is expected to not only serve as a temporary liver function support system, but also to accelerate liver regeneration in recovery from hepatic failure. One of the most difficult problems in developing a hybrid artificial liver is obtaining an adequate cell source. In this study, we attempt to differentiate embryonic stem (ES) cells by hepatic lineage using a polyurethane foam (PUF)/spheroid culture in which the cultured cells spontaneously form spherical multicellular aggregates (spheroids) in the pores of the PUF. We also demonstrate the feasibility of the PUF-HAL system by comparing ES cells to primary hepatocytes in in vitro and ex vivo experiments. Mouse ES cells formed multicellular spheroids in the pores of PUF. ES cells expressed liver-specific functions (ammonia removal and albumin secretion) after treatment with the differentiation-promoting agent, sodium butyrate (SB). We designed a PUF-HAL module comprised of a cylindrical PUF block with many medium-flow capillaries for hepatic differentiation of ES cells. The PUF-HAL module cells expressed ammonia removal and albumin secretion functions after 2 weeks of SB culture. Because of high proliferative activity of ES cells and high cell density, the maximum expression level of albumin secretion function per unit volume of module was comparable to that seen in primary mouse hepatocyte culture. In the animal experiments with rats, the PUF-HAL differentiating ES cells appeared to partially contribute to recovery from liver failure. This outcome indicates that the PUF module containing differentiating ES cells may be a useful biocomponent of a hybrid artificial liver support system.

  8. Autophagy in Hepatic Fibrosis

    Directory of Open Access Journals (Sweden)

    Yang Song

    2014-01-01

    Full Text Available Hepatic fibrosis is a leading cause of morbidity and mortality worldwide. Hepatic fibrosis is usually associated with chronic liver diseases caused by infection, drugs, metabolic disorders, or autoimmune imbalances. Effective clinical therapies are still lacking. Autophagy is a cellular process that degrades damaged organelles or protein aggregation, which participates in many pathological processes including liver diseases. Autophagy participates in hepatic fibrosis by activating hepatic stellate cells and may participate as well through influencing other fibrogenic cells. Besides that, autophagy can induce some liver diseases to develop while it may play a protective role in hepatocellular abnormal aggregates related liver diseases and reduces fibrosis. With a better understanding of the potential effects of autophagy on hepatic fibrosis, targeting autophagy might be a novel therapeutic strategy for hepatic fibrosis in the near future.

  9. Regulation of hepatic stellate cell proliferation and activation by glutamine metabolism.

    Directory of Open Access Journals (Sweden)

    Jiang Li

    Full Text Available Liver fibrosis is the excessive accumulation of extracellular matrix proteins, which is mainly caused by accumulation of activated hepatic stellate cells (HSCs. The mechanisms of activation and proliferation of HSCs, two key events after liver damage, have been studied for many years. Here we report a novel pathway to control HSCs by regulating glutamine metabolism. We demonstrated that the proliferation of HSCs is critically dependent on glutamine that is used to generate α-ketoglutarate (α-KG and non-essential amino acid (NEAA. In addition, both culture- and in vivo-activated HSCs have increased glutamine utilization and increased expression of genes related to glutamine metabolism, including GLS (glutaminase, aspartate transaminase (GOT1 and glutamate dehydrogenase (GLUD1. Inhibition of these enzymes, as well as glutamine depletion, had a significant inhibitory effect on HSCs activation. In addition to providing energy expenditure, conversion of glutamine to proline is enhanced. The pool of free proline may also be increased via downregulation of POX expression. Hedgehog signaling plays an important role in the regulation of glutamine metabolism, as well as TGF-β1, c-Myc, and Ras signalings, via transcriptional upregulation and repression of key metabolic enzymes in this pathway. Finally, changes in glutamine metabolism were also found in mouse liver tissue following CCl4-induced acute injury.Glutamine metabolism plays an important role in regulating the proliferation and activation of HSCs. Strategies that are targeted at glutamine metabolism may represent a novel therapeutic approach to the treatment of liver fibrosis.

  10. Antiviral activity of Acacia nilotica against Hepatitis C Virus in liver infected cells

    Directory of Open Access Journals (Sweden)

    Javed Tariq

    2011-05-01

    Full Text Available Abstract Hepatitis C virus (HCV belonging to the family Flaviviridae has infected 3% of the population worldwide and 6% of the population in Pakistan. The only recommended standard treatment is pegylated INF-α plus ribavirin. Due to less compatibility of the standard treatment, thirteen medicinal plants were collected from different areas of Pakistan on the basis of undocumented antiviral reports against different viral infections. Medicinal plants were air dried, extracted and screened out against HCV by infecting HCV inoculums of 3a genotype in liver cells. RT-PCR results demonstrate that acetonic and methanolic extract of Acacia nilotica (AN showed more than 50% reduction at non toxic concentration. From the above results, it can be concluded that by selecting different molecular targets, specific structure-activity relationship can be achieved by doing mechanistic analysis. So, additional studies are required for the isolation and recognition of antiviral compound in AN to establish its importance as antiviral drug against HCV. For further research, we will scrutinize the synergistic effect of active antiviral compound in combination with standard PEG INF-α and ribavirin which may be helpful in exploring further gateways for antiviral therapy against HCV.

  11. Improved Recovery and Identification of Membrane Proteins from Rat Hepatic Cells using a Centrifugal Proteomic Reactor*

    Science.gov (United States)

    Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G.; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel

    2011-01-01

    Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism. PMID:21749988

  12. Effect of shear stress on the migration of hepatic stellate cells.

    Science.gov (United States)

    Sera, Toshihiro; Sumii, Tateki; Fujita, Ryosuke; Kudo, Susumu

    2018-01-01

    When the liver is damaged, hepatic stellate cells (HSCs) can change into an activated, highly migratory state. The migration of HSCs may be affected by shear stress due not only to sinusoidal flow but also by the flow in the space of Disse because this space is filled with blood plasma. In this study, we evaluated the effects of shear stress on HSC migration in a scratch-wound assay with a parallel flow chamber. At regions upstream of the wound area, the migration was inhibited by 0.6 Pa and promoted by 2.0 Pa shear stress, compared to the static condition. The platelet-derived growth factor (PDGF)-BB receptor, PDGFR-β, was expressed in all conditions and the differences were not significant. PDGF increased HSC migration, except at 0.6 Pa shear stress, which was still inhibited. These results indicate that another molecular factor, such as PDGFR-α, may act to inhibit the migration under low shear stress. At regions downstream of the wound area, the migration was smaller under shear stress than under the static condition, although the expression of PDGFR-β was significantly higher. In particular, the migration direction was opposite to the wound area under high shear stress; therefore, migration might be influenced by the intercellular environment. Our results indicate that HSC migration was influenced by shear stress intensity and the intercellular environment.

  13. Injection drug use facilitates hepatitis C virus infection of peripheral blood mononuclear cells.

    Science.gov (United States)

    Resti, Massimo; Azzari, Chiara; Moriondo, Maria; Betti, Letizia; Sforzi, Idanna; Novembre, Elio; Vierucci, Alberto

    2002-08-01

    Infection of peripheral blood mononuclear cells (PBMCs) with hepatitis C virus (HCV) has been demonstrated and has been found to play a role in relapse of HCV disease and vertical transmission of HCV. Injection drug use is thought to impair function of the immune system and induce tolerance to viruses; therefore, HCV infection of PBMCs could be more likely to occur in injection drug users (IDUs) with HCV infection. Of 108 women who tested negative for human immunodeficiency virus type 1 and positive for HCV RNA, 51 had a history of injection drug use and 57 had no known risk factor for HCV infection. HCV infection was found, by nested reverse-transcription polymerase chain reaction analysis, in the PBMCs of 33 IDUs and of 13 non-IDUs (P=.00003). No correlation was found between infection of the PBMCs and HCV genotype or virus load. Route of transmission and viral factors, as well as immunologic dysfunction, may play a role in viral tropism.

  14. Serotonin Activated Hepatic Stellate Cells Contribute to Sex Disparity in Hepatocellular CarcinomaSummary

    Directory of Open Access Journals (Sweden)

    Qiqi Yang

    2017-05-01

    Full Text Available Background & Aims: Hepatocellular carcinoma (HCC occurs more frequently and aggressively in men than in women. Although sex hormones are believed to play a critical role in this disparity, the possible contribution of other factors largely is unknown. We aimed to investigate the role of serotonin on its contribution of sex discrepancy during HCC. Methods: By using an inducible zebrafish HCC model through hepatocyte-specific transgenic krasV12 expression, differential rates of HCC in male and female fish were characterized by both pharmaceutical and genetic interventions. The findings were validated further in human liver disease samples. Results: Accelerated HCC progression was observed in krasV12-expressing male zebrafish and male fish liver tumors were found to have higher hepatic stellate cell (HSC density and activation. Serotonin, which is essential for HSC survival and activation, similarly were found to be synthesized and accumulated more robustly in males than in females. Serotonin-activated HSCs could promote HCC carcinogenesis and concurrently increase serotonin synthesis via transforming growth factor (Tgfb1 expression, hence contributing to sex disparity in HCC. Analysis of liver disease patient samples showed similar male predominant serotonin accumulation and Tgfb1 expression. Conclusions: In both zebrafish HCC models and human liver disease samples, a predominant serotonin synthesis and accumulation in males resulted in higher HSC density and activation as well as Tgfb1 expression, thus accelerating HCC carcinogenesis in males. Keywords: Liver Cancer, TGFB1, Kras, Zebrafish

  15. Hepatocellular Carcinomas Originate Predominantly from Hepatocytes and Benign Lesions from Hepatic Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Krishna S. Tummala

    2017-04-01

    Full Text Available Hepatocellular carcinoma (HCC is an aggressive primary liver cancer. However, its origin remains a debated question. Using human data and various hepatocarcinogenesis mouse models, we show that, in early stages, transformed hepatocytes, independent of their proliferation status, activate hepatic progenitor cell (HPC expansion. Genetic lineage tracing of HPCs and hepatocytes reveals that, in all models, HCC originates from hepatocytes. However, whereas in various models tumors do not emanate from HPCs, tracking of progenitors in a model mimicking human hepatocarcinogenesis indicates that HPCs can generate benign lesions (regenerative nodules and adenomas and aggressive HCCs. Mechanistically, galectin-3 and α-ketoglutarate paracrine signals emanating from oncogene-expressing hepatocytes instruct HPCs toward HCCs. α-Ketoglutarate preserves an HPC undifferentiated state, and galectin-3 maintains HPC stemness, expansion, and aggressiveness. Pharmacological or genetic blockage of galectin-3 reduces HCC, and its expression in human HCC correlates with poor survival. Our findings may have clinical implications for liver regeneration and HCC therapy.

  16. Antiproliferative effect of novel platinum(II) and palladium(II) complexes on hepatic tumor stem cells in vitro.

    Science.gov (United States)

    Miklášová, Natalia; Fischer-Fodor, Eva; Lönnecke, Peter; Tomuleasa, Ciprian Ionuţ; Virag, Piroska; Schrepler, Maria Perde; Mikláš, Roman; Dumitrescu, Luminiţa Silaghi; Hey-Hawkins, Evamarie

    2012-03-01

    Novel platinum and palladium complexes with (2-isopropoxyphenyl)dicyclohexylarsine and (2-methoxyphenyl)dicyclohexylarsine ligands were synthesized and tested on different tumor cells. Adducts with general formula MX(2)L(2) (M = Pt(II), Pd(II); X = Cl or I; L = organoarsenic ligand) were fully characterized. According to the crystallographic data, in all complexes the organoarsenic ligands coordinate the metal center through the arsenic atom only, in a trans arrangement with the halogen atoms. The antiproliferative potential of complexes 1-4 was evaluated in vitro on human tumor cell lines. A markedly biological activity was observed against the chemoresistant hepatic tumor stem cell line, the normal hepatic stem cells and towards the hepatocellular carcinoma (non-stem) cells. The new compounds toxicity is selectively limited in normal liver cells, unlikeness with the oxaliplatin, which displays a more intense effect in normal cells, compared with the two tumor cell lines. The stem cells treatment with compounds 1-4 causes DNA damages; the antimitotic effect of these compounds is based on their genotoxicity and on the capacity to form crosslinks with the DNA interstrand. In the case of platinum complexes 1 and 3 this mechanism gives rise to specific lesions on DNA that induces apoptosis in stem cells, influencing their selectivity in tumor cell growth inhibition. Compounds 1, 2 and 4 display higher activity against tumor stem cells. The novel platinum complexes 1 and 3 are more efficient against tumor stem cells than oxaliplatin, and if used in combination with sorafenib-based monoclonal anticancer therapy, complexes 1, 3 and 4 have the ability to induce superior chemosensitivity relative to sorafenib than the standard platinum-based drug, making them promising candidates for prodrug development. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  17. Natural Killer Cell Characteristics in Patients With Chronic Hepatitis B Virus (HBV) Infection Are Associated With HBV Surface Antigen Clearance After Combination Treatment With Pegylated Interferon Alfa-2a and Adefovir

    NARCIS (Netherlands)

    Stelma, Femke; de Niet, Annikki; Tempelmans Plat-Sinnige, Marjan J.; Jansen, Louis; Takkenberg, R. Bart; Reesink, Hendrik W.; Kootstra, Neeltje A.; van Leeuwen, Ester M. M.

    2015-01-01

    The role of natural killer (NK) cells in the process of hepatitis B virus (HBV) surface antigen (HBsAg) clearance and whether their phenotype is related to treatment outcome in patients with chronic hepatitis B are currently unknown. Patients with chronic hepatitis B (HBV DNA load, >17 000 IU/mL)

  18. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wen-Ta [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Li, Hui-Chun [Department of Biochemistry, Tzu Chi University, Hualien, Taiwan (China); Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China)

    2013-05-24

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.

  19. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice.

    Science.gov (United States)

    Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling; Lo, Shih-Yen

    2013-05-24

    The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Pegylated interferon α enhances recovery of memory T cells in e antigen positive chronic hepatitis B patients.

    Science.gov (United States)

    Liu, Yong Zhe; Hou, Feng Qin; Ding, Peng; Ren, Yuan Yuan; Li, Shi Hong; Wang, Gui Qiang

    2012-11-16

    Interferons (IFNs) are a group of cytokines commonly used in the clinical treatment of chronic hepatitis B (CHB) patients. Their therapeutic effects are highly correlated with recovery of host antiviral immunity. Clearance of hepatitis B virus (HBV) is mediated partially by activated functional memory T cells. The aims of the present study were to investigate memory T cell status in patients with different outcomes following pegylated interferon-α (IFN-α) therapy and to identify new biomarkers for predicting antiviral immune responses. Peripheral blood cells were isolated from 23 CHB patients who were treated with pegylated IFN-α at week 0 (baseline) and week 24. Co-expression of programmed death-1 (PD-1) and CD244 in CD45RO positive T cells, as well as a subset of CD127 and CXCR4 positive memory T cells were assessed. In addition, perforin, granzyme B, and interferon-γ (IFN-γ) expressions were also analyzed by flow cytometric analysis after intracytoplasmic cytokine staining (ICCS). Peripheral blood mononuclear cells (PBMC) isolated at week 24 were re-challenged with exogenous HBV core antigen, and the percentage of IFN-γ expression, serum HBV DNA loads, and ALT (alanine aminotransferase) levels were evaluated. At week 24, PD-1 and CD244 expression in CD8 memory T cells were down-regulated (P memory T cells was up-regulated (P memory T cells after pegylated IFN-α treatment (P memory T cells than the non-responders did after HBV antigen re-stimulation in vitro. Pegylated IFN-α treatment enhanced recovery of memory T cells in CHB patients by down-regulating inhibitory receptors and up-regulating effector molecules. The expressions of CXCR4 and CD127 in CD8 memory T cell may be used as biomarkers for predicting the outcome of treatment.

  1. Th1 and Th2 cytokine profiles induced by hepatitis C virus F protein in peripheral blood mononuclear cells from chronic hepatitis C patients.

    Science.gov (United States)

    Yue, Ming; Deng, Xiaozhao; Zhai, Xiangjun; Xu, Ke; Kong, Jing; Zhang, Jinhai; Zhou, Zhenxian; Yu, Xiaojie; Xu, Xiaodong; Liu, Yunxi; Zhu, Danyan; Zhang, Yun

    2013-05-01

    Th1 and Th2 cytokine response has been confirmed to be correlated with the pathogenesis of HCV infection. The aim of the study is to investigate the Th1 and Th2 cytokine profiles induced by HCV alternate reading frame protein (F protein) in chronic hepatitis C patients. We assessed the immune responses specific to HCV F protein in 55 chronic HCV patients. IFN-γ, IL-2, IL-4 and IL-5 secretion by peripheral blood mononuclear cells (PBMC) post F protein stimulation were compared among HCV patients and healthy donors. Finally, the associations between HCV F protein and HLA class II alleles were explored. We found that the seroprevalence of anti-F antibodies in HCV-related hepatocellular carcinoma (HCC) patients was significantly higher than that of patients without HCC, but such a significant difference in humoral immune responses to F protein was not observed in HCV 1b-infected- and non-HCV 1b-infected-patients. Additionally, the PBMC proliferation of HCC patients was significantly lower than that of patients without HCC. Furthermore, F protein stimulation of PBMCs from F-seropositive patients resulted in Th2 biased cytokine responses (significantly decreased IFN-γ and/or IL-2 and significantly increased IL-4 and/or IL-5 levels) that reportedly may contribute to HCC progression and pathogenesis. However, no significant difference in the association between HCV F protein and HLA-DRB1*0201, 0301, 0405, 1001 and HLA-DQB1*0201, 0401, 0502, 0602 was observed in this study. These findings suggest that F protein may contribute to the HCV-associated bias in Th1/Th2 responses of chronic hepatitis C patients including the progress of HCC pathogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems

    DEFF Research Database (Denmark)

    Gottwein, Judith Margarete; Bukh, Jens

    2008-01-01

    Worldwide approximately 180 million people are chronically infected with hepatitis C virus (HCV). HCV isolates exhibit extensive genetic heterogeneity and have been grouped in six genotypes and various subtypes. Additionally, several naturally occurring intergenotypic recombinants have been descr...

  3. Activated Hepatic Stellate Cells Induce Tumor Progression of Neoplastic Hepatocytes in a TGF-β Dependent Fashion

    Science.gov (United States)

    MIKULA, M.; PROELL, V.; FISCHER, A.N.M.; MIKULITS, W.

    2010-01-01

    The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells. For both tumorigenesis and hepatic fibrogenesis, transforming growth factor (TGF)-β signaling executes key roles and therefore is considered as a hallmark of these pathological events. By employing cellular transplantation we show that the interaction of neoplastic MIM-R hepatocytes with the tumor microenvironment, containing either activated hepatic stellate cells (M1-4HSCs) or myofibroblasts derived thereof (M-HTs), induces progression in malignancy. Cotransplantation of MIM-R hepatocytes with M-HTs yielded strongest MIM-R generated tumor formation accompanied by nuclear localization of Smad2/3 as well as of β-catenin. Genetic interference with TGF-β signaling by gain of antagonistic Smad7 in MIM-R hepatocytes diminished epithelial dedifferentiation and tumor progression upon interaction with M1-4HSCs or M-HTs. Further analysis showed that tumors harboring disrupted Smad signaling are devoid of nuclear β-catenin accumulation, indicating a crosstalk between TGF-β and β-catenin signaling. Together, these data demonstrate that activated HSCs and myofibroblasts directly govern hepatocarcinogenesis in a TGF-β dependent fashion by inducing autocrine TGF-β signaling and nuclear β-catenin accumulation in neoplastic hepatocytes. These results indicate that intervention with TGF-β signaling is highly promising in liver cancer therapy. PMID:16883581

  4. Involvement of the serine/threonine p70S6 kinase in TGF-beta1-induced ADAM12 expression in cultured human hepatic stellate cells

    DEFF Research Database (Denmark)

    Le Pabic, Hélène; L'Helgoualc'h, Annie; Coutant, Alexandre

    2005-01-01

    In chronic liver injury, quiescent hepatic stellate cells change into proliferative myofibroblast-like cells, which are a main source of fibrosis. We have recently reported that these cells synthesize ADAM12, a disintegrin and metalloprotease whose expression is up-regulated by TGF-beta1 in liver...

  5. Inhibition of hepatitis B virus surface gene expression by antisense oligodeoxynucleotides in a human hepatoma cell line.

    Science.gov (United States)

    Reinis, M; Reinisová, M; Korec, E; Hlozánek, I

    1993-01-01

    We have studied the inhibitory effect of antisense oligodeoxynucleotides on the expression of hepatitis B virus surface antigens. Human hepatoma cell line PLC/PRF/5 harbors several integrated copies of the HBV genome and produces and secretes hepatitis B virus surface antigen (HBsAg) to the medium. Synthetic antisense oligodeoxynucleotides complementary to various regions of the surface antigen gene were synthesized and their ability to block its expression was tested. Oligodeoxynucleotides (17- and 21-mers) complementary to regions covering ATG codons of both preS2 and S genes significantly inhibited preS2 and S protein production. Less efficient inhibition was achieved when the oligonucleotide complementary to the inside S gene region was assayed.

  6. Hepatic manifestations of celiac disease

    Directory of Open Access Journals (Sweden)

    Hugh James Freeman

    2010-05-01

    Full Text Available Hugh James FreemanDepartment of Medicine (Gastroenterology, University of British Columbia, Vancouver, British Columbia, CanadaAbstract: Different hepatic and biliary tract disorders may occur with celiac disease. Some have been hypothesized to share genetic or immunopathogenetic factors, such as primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis. Other hepatic changes in celiac disease may occur with malnutrition resulting from impaired nutrient absorption, including hepatic steatosis. In addition, celiac disease may be associated with rare hepatic complications, such as hepatic T-cell lymphoma.Keywords: celiac disease, autoimmune liver disease, primary biliary cirrhosis, fatty liver, gluten-free diet

  7. Dihydroartemisinin counteracts fibrotic portal hypertension via farnesoid X receptor-dependent inhibition of hepatic stellate cell contraction.

    Science.gov (United States)

    Xu, Wenxuan; Lu, Chunfeng; Zhang, Feng; Shao, Jiangjuan; Yao, Shunyu; Zheng, Shizhong

    2017-01-01

    Portal hypertension is a frequent pathological symptom occurring especially in hepatic fibrosis and cirrhosis. Current paradigms indicate that inhibition of hepatic stellate cell (HSC) activation and contraction is anticipated to be an attractive therapeutic strategy, because activated HSC dominantly facilitates an increase in intrahepatic vein pressure through secreting extracellular matrix and contracting. Our previous in vitro study indicated that dihydroartemisinin (DHA) inhibited contractility of cultured HSC by activating intracellular farnesoid X receptor (FXR). However, the effect of DHA on fibrosis-related portal hypertension still requires clarification. In this study, gain- and loss-of-function models of FXR in HSC were established to investigate the mechanisms underlying DHA protection against chronic CCl4 -caused hepatic fibrosis and portal hypertension. Immunofluorescence staining visually showed a decrease in FXR expression in CCl4 -administrated rat HSC but an increase in that in DHA-treated rat HSC. Serum diagnostics and morphological analyses consistently indicated that DHA exhibited hepatoprotective effects on CCl4 -induced liver injury. DHA also reduced CCl4 -caused inflammatory mediator expression and inflammatory cell infiltration. These improvements were further enhanced by INT-747 but weakened by Z-guggulsterone. Noteworthily, DHA, analogous to INT-747, significantly lowered portal vein pressure and suppressed fibrogenesis. Experiments on mice using FXR shRNA lentivirus consolidated the results above. Mechanistically, inhibition of HSC activation and contraction was found as a cellular basis for DHA to relieve portal hypertension. These findings demonstrated that DHA attenuated portal hypertension in fibrotic rodents possibly by targeting HSC contraction via a FXR activation-dependent mechanism. FXR could be a target molecule for reducing portal hypertension during hepatic fibrosis. © 2016 Federation of European Biochemical Societies.

  8. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused 3D Porous Polymer Scaffold for Liver Tissue Engineering

    DEFF Research Database (Denmark)

    Hemmingsen, Mette; Muhammad, Haseena Bashir; Mohanty, Soumyaranjan

    to limitations of primary hepatocytes regarding availability and maintenance of functionality, stem cells and especially human induced pluripotent stem cells (hIPS cells) are an attractive cell source for liver tissue engineering. The aim of this part of NanoBio4Trans is to optimize culture and hepatic......A huge shortage of liver organs for transplantation has motivated the research field of tissue engineering to develop bioartificial liver tissue and even a whole liver. The goal of NanoBio4Trans is to create a vascularized bioartificial liver tissue, initially as a liver-support system. Due...... differentiation of hIPS-derived definitive endoderm (DE) cells in a 3D porous polymer scaffold built-in a perfusable bioreactor. The use of a microfluidic bioreactor array enables the culture of 16 independent tissues in one experimental run and thereby an optimization study to be performed....

  9. Hepatitis B virus-associated diffuse large B-cell lymphoma: unique clinical features, poor outcome, and hepatitis B surface antigen-driven origin.

    Science.gov (United States)

    Deng, Lijuan; Song, Yuqin; Young, Ken H; Hu, Shimin; Ding, Ning; Song, Weiwei; Li, Xianghong; Shi, Yunfei; Huang, Huiying; Liu, Weiping; Zheng, Wen; Wang, Xiaopei; Xie, Yan; Lin, Ningjing; Tu, Meifeng; Ping, Lingyan; Ying, Zhitao; Zhang, Chen; Sun, Yingli; Zhu, Jun

    2015-09-22

    While the epidemiologic association between hepatitis B virus (HBV) infection and diffuse large B-cell lymphoma (DLBCL) is established, little is known more than this epidemiologic evidence. We studied a cohort of 587 patients with DLBCL for HBV infection status, clinicopathologic features, and the immunoglobulin variable region in HBV surface antigen (HBsAg)-positive patients. Eighty-one (81/587, 13.8%) patients were HBsAg-positive. Compared with HBsAg-negative DLBCL, HBsAg-positive DLBCL displayed a younger median onset age (45 vs. 55 years), more frequent involvement of spleen or retroperitoneal lymph node (40.7% vs. 16.0% and 61.7% vs. 31.0% respectively, both p < 0.001), more advanced disease (stage III/IV: 76.5% vs 59.5%, p = 0.003), and significantly worse outcome (2-year overall survival: 47% versus 70%, p < 0.001). In HBsAg-positive DLBCL patients, almost all (45/47, 96%) amino acid sequences of heavy and light chain complementarity determining region 3 exhibited a high homology to antibodies specific for HBsAg, and the majority (45/50, 90%) of IgHV and IgLV genes were mutated. We conclude that 13.8% of DLBCL cases are HBV-associated in HBV-endemic China and show unique clinical features and poor outcomes. Furthermore, our study strongly suggests that HBV-associated DLBCL might arise from HBV antigen-selected B cells.

  10. Phthalazinone Pyrazole Enhances the Hepatic Functions of Human Embryonic Stem Cell-Derived Hepatocyte-Like Cells via Suppression of the Epithelial-Mesenchymal Transition.

    Science.gov (United States)

    Choi, Young-Jun; Kim, Hyemin; Kim, Ji-Woo; Song, Chang-Woo; Kim, Dae-Sung; Yoon, Seokjoo; Park, Han-Jin

    2017-12-13

    During liver development, nonpolarized hepatic progenitor cells differentiate into mature hepatocytes with distinct polarity. This polarity is essential for maintaining the intrinsic properties of hepatocytes. The balance between the epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) plays a decisive role in differentiation of polarized hepatocytes. In this study, we found that phthalazinone pyrazole (PP), a selective inhibitor of Aurora-A kinase (Aurora-A), suppressed the EMT during the differentiation of hepatocyte-like cells (HLCs) from human embryonic stem cells. The differentiated HLCs treated with PP at the hepatoblast stage showed enhanced hepatic morphology and functions, particularly with regard to the expression of drug metabolizing enzymes. Moreover, we found that these effects were mediated though suppression of the AKT pathway, which is involved in induction of the EMT, and upregulation of hepatocyte nuclear factor 4α expression rather than Aurora-A inhibition. In conclusion, these findings provided insights into the regulatory role of the EMT on in vitro hepatic maturation, suggesting that inhibition of the EMT may drive transformation of hepatoblast cells into mature and polarized HLCs.

  11. Autophagy-deficiency in hepatic progenitor cells leads to the defects of stemness and enhances susceptibility to neoplastic transformation.

    Science.gov (United States)

    Xue, Feng; Hu, Lei; Ge, Ruiliang; Yang, Lixue; Liu, Kai; Li, Yunyun; Sun, Yanfu; Wang, Kui

    2016-02-01

    Autophagy is a highly conserved and lysosome-dependent degradation process which assists in cell survival and tissue homeostasis. Although previous reports have shown that deletion of the essential autophagy gene disturbs stem cell maintenance in some cell types such as hematopoietic and neural cells, it remains unclear how autophagy-deficiency influences hepatic progenitor cells (HPCs). Here we report that Atg5-deficiency in HPCs delays HPC-mediated rat liver regeneration in vivo. In vitro researches further demonstrate that loss of autophagy decreases the abilities of colony and spheroid formations, and disrupts the induction of hepatic differentiation in HPCs. Meanwhile, autophagy-deficiency increases the accumulations of damaged mitochondria and mitochondrial reactive oxygen species (mtROS) and suppresses homologous recombination (HR) pathway of DNA damage repair in HPCs. Moreover, in both diethylnitrosamine (DEN) and CCl4 models, autophagy-deficiency accelerates neoplastic transformation of HPCs. In conclusion, these findings demonstrate that autophagy contributes to stemness maintenance and reduces susceptibility to neoplastic transformation in HPCs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Cytotoxicity, genotoxicity and gene expression changes elicited by exposure of human hepatic cells to Ginkgo biloba leaf extract.

    Science.gov (United States)

    Grollino, Maria Giuseppa; Raschellà, Giuseppe; Cordelli, Eugenia; Villani, Paola; Pieraccioli, Marco; Paximadas, Irene; Malandrino, Salvatore; Bonassi, Stefano; Pacchierotti, Francesca

    2017-11-01

    The use of Ginkgo biloba leaf extract as nutraceutical is becoming increasingly common. As a consequence, the definition of a reliable toxicological profile is a priority for its safe utilization. Recently, contrasting data have been reported on the carcinogenic potential of Ginkgo biloba extract in rodent liver. We measured viability, Reactive Oxygen Species (ROS), apoptosis, colony-forming efficiency, genotoxicity by comet assay, and gene expression changes associated with hepato-carcinogenicity in human cells of hepatic origin (HepG2 and THLE-2) treated with different concentrations (0.0005-1.2 mg/mL) of Ginkgoselect ® Plus. Our analyses highlighted a decrease of cell viability, not due to apoptosis, after treatment with high doses of the extract, which was likely due to ROS generation by a chemical reaction between extract polyphenols and some components of the culture medium. Comet assay did not detect genotoxic effect at any extract concentration. Finally, the array analysis detected a slight decrease in the expression of only one gene (IGFBP3) in Ginkgo-treated THLE-2 cells as opposed to changes in 28 genes in Aflatoxin B1 treated-cells. In conclusion, our results did not detect any significant genotoxic or biologically relevant cytotoxic effects and gross changes in gene expression using the Ginkgo extract in the hepatic cells tested. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Rapid fabricating technique for multi-layered human hepatic cell sheets by forceful contraction of the fibroblast monolayer.

    Directory of Open Access Journals (Sweden)

    Yusuke Sakai

    Full Text Available Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered human hepatocyte sheets from cells with limited proliferation potential, and the engineered cell sheet could be used for cell transplantation with highly specific functions.

  14. NK cells lacking FcεRIγ are associated with reduced liver damage in chronic hepatitis C virus infection.

    Science.gov (United States)

    Oh, Jun S; Ali, Alaa K; Kim, Sungjin; Corsi, Daniel J; Cooper, Curtis L; Lee, Seung-Hwan

    2016-04-01

    A novel subset of human natural killer (NK) cells, which displays potent and broad antiviral responsiveness in concert with virus-specific antibodies, was recently uncovered in cytomegalovirus (CMV)+ individuals. This NK-cell subset (g-NK) was characterized by a deficiency in the expression of FcεRIγ adaptor protein and the long-lasting memory-like NK-cell phenotype, suggesting a role in chronic infections. This study investigates whether the g-NK-cell subset is associated with the magnitude of liver disease during chronic hepatitis C virus (HCV) infection. Analysis of g-NK-cell proportions and function in the PBMCs of healthy controls and chronic HCV subjects showed that chronic HCV subjects had slightly lower proportions of the g-NK-cell subset having similarly enhanced antibody-dependent cellular cytotoxicity responses compared to conventional NK cells. Notably, among CMV+ chronic HCV patients, lower levels of liver enzymes and fibrosis were found in those possessing g-NK cells. g-NK cells were predominant among the CD56(neg) NK cell population often found in chronic HCV patients, suggesting their involvement in immune response during HCV infection. For the first time, our findings indicate that the presence of the g-NK cells in CMV+ individuals is associated with amelioration of liver disease in chronic HCV infection, suggesting the beneficial roles of g-NK cells during a chronic infection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. GATA binding protein 3 is correlated with leptin regulation of PPARγ1 in hepatic stellate cells.

    Science.gov (United States)

    Guan, Wei; Cheng, Fangyun; Wu, Hao; Cao, Qing; Zhu, Xiaofei; Fan, Yan; Zhu, Huixia; Zhou, Yajun

    2017-03-01

    Accumulating evidence reveals that hormone leptin, mainly produced by adipocyte, plays a unique role in promotion of liver fibrosis. Hepatic stellate cell (HSC) activation is a key step in liver fibrosis and peroxisome-proliferator activated receptor γ (PPARγ) exerts a crucial role in inhibition of HSC activation. Our previous researches demonstrated that leptin reduced PPARγ1 (a major subtype of PPARγ in HSCs) expression through GATA binding protein 2 (GATA2) binding to a site around -2323 in PPARγ1 promoter. The present researches aimed to examine the effect of GATA3 on leptin-induced inhibition of PPARγ1 and elucidate the relationship between GATA3 and GATA2. Gene expressions were analysed by real-time PCR, western blot, luciferase assay and immunostaining. C57BL/6J ob/ob mouse model of thioacetamide-induced liver injury was used in vivo. Results demonstrate that leptin significantly induces GATA3 expression in HSCs by multiple signalling pathways including NADPH oxidase pathway. There exist crosstalks between NADPH oxidase pathway and the other pathways. GATA3 can bind to GATA2-binding site in PPARγ1 promoter and interacts with GATA2, contributing to leptin inhibition of PPARγ1 expression in HSCs. These data demonstrated novel molecular events for leptin inhibition of PPARγ1 expression in HSCs and thus might have potential implications for clarifying the detailed mechanisms underlying liver fibrosis in diseases in which circulating leptin levels are elevated such as non-alcoholic steatohepatitis in obese patients. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  16. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells

    Science.gov (United States)

    Pirazzi, Carlo; Valenti, Luca; Motta, Benedetta Maria; Pingitore, Piero; Hedfalk, Kristina; Mancina, Rosellina Margherita; Burza, Maria Antonella; Indiveri, Cesare; Ferro, Yvelise; Montalcini, Tiziana; Maglio, Cristina; Dongiovanni, Paola; Fargion, Silvia; Rametta, Raffaela; Pujia, Arturo; Andersson, Linda; Ghosal, Saswati; Levin, Malin; Wiklund, Olov; Iacovino, Michelina; Borén, Jan; Romeo, Stefano

    2014-01-01

    Retinoids are micronutrients that are stored as retinyl esters in the retina and hepatic stellate cells (HSCs). HSCs are key players in fibrogenesis in chronic liver diseases. The enzyme responsible for hydrolysis and release of retinyl esters from HSCs is unknown and the relationship between retinoid metabolism and liver disease remains unclear. We hypothesize that the patatin-like phospholipase domain-containing 3 (PNPLA3) protein is involved in retinol metabolism in HSCs. We tested our hypothesis both in primary human HSCs and in a human cohort of subjects with non-alcoholic fatty liver disease (N = 146). Here we show that PNPLA3 is highly expressed in human HSCs. Its expression is regulated by retinol availability and insulin, and increased PNPLA3 expression results in reduced lipid droplet content. PNPLA3 promotes extracellular release of retinol from HSCs in response to insulin. We also show that purified wild-type PNPLA3 hydrolyzes retinyl palmitate into retinol and palmitic acid. Conversely, this enzymatic activity is markedly reduced with purified PNPLA3 148M, a common mutation robustly associated with liver fibrosis and hepatocellular carcinoma development. We also find the PNPLA3 I148M genotype to be an independent (P = 0.009 in a multivariate analysis) determinant of circulating retinol-binding protein 4, a reliable proxy for retinol levels in humans. This study identifies PNPLA3 as a lipase responsible for retinyl-palmitate hydrolysis in HSCs in humans. Importantly, this indicates a potential novel link between HSCs, retinoid metabolism and PNPLA3 in determining the susceptibility to chronic liver disease. PMID:24670599

  17. Hypoxia impairs anti-viral activity of natural killer (NK) cells but has little effect on anti-fibrotic NK cell functions in hepatitis C virus infection.

    Science.gov (United States)

    Wolter, Franziska; Glässner, Andreas; Krämer, Benjamin; Kokordelis, Pavlos; Finnemann, Claudia; Kaczmarek, Dominik J; Goeser, Felix; Lutz, Philipp; Nischalke, Hans Dieter; Strassburg, Christian P; Spengler, Ulrich; Nattermann, Jacob

    2015-12-01

    Natural killer (NK) cells have been shown to exert anti-viral as well as anti-fibrotic functions in hepatitis C virus (HCV) infection. Previous studies, however, analyzed NK cell functions exclusively under atmospheric oxygen conditions despite the fact that the liver microenvironment is hypoxic. Here, we analyzed the effects of low oxygen tension on anti-viral and anti-fibrotic NK cell activity. Peripheral (n=34) and intrahepatic (n=15) NK cells from HCV(+) patients as well as circulating NK cells from healthy donors (n=20) were studied with respect to anti-viral and anti-fibrotic activity via co-culture experiments with HuH7 replicon cells and hepatic stellate cells, respectively. Anti-viral activity of resting NK cells from healthy controls was not affected by hypoxia. However, hypoxia significantly reduced the response of healthy NK cells to cytokine stimulation. In contrast to healthy controls, we observed resting and cytokine activated peripheral NK cells from HCV patients to display a significantly decreased anti-viral activity when cultured at 5% or 1% oxygen, suggesting HCV NK cells to be very sensitive to hypoxia. These findings could be confirmed when intrahepatic NK cells were tested. Finally, we show that anti-fibrotic NK cell activity was not affected by low oxygen tension. Our results show that anti-viral function of NK cells from HCV(+) patients is critically affected by a hypoxic microenvironment and, therefore, indicate that in order to obtain an accurate understanding of intrahepatic NK cell anti-HCV activity, the laboratory modelling should take into account the liver specific levels of oxygen. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. Triple Staining Including FOXA2 Identifies Stem Cell Lineages Undergoing Hepatic and Biliary Differentiation in Cirrhotic Human Liver.

    Science.gov (United States)

    Rogler, Charles E; Bebawee, Remon; Matarlo, Joe; Locker, Joseph; Pattamanuch, Nicole; Gupta, Sanjeev; Rogler, Leslie E

    2017-01-01

    Recent investigations have reported many markers associated with human liver stem/progenitor cells, "oval cells," and identified "niches" in diseased livers where stem cells occur. However, there has remained a need to identify entire lineages of stem cells as they differentiate into bile ducts or hepatocytes. We have used combined immunohistochemical staining for a marker of hepatic commitment and specification (FOXA2 [Forkhead box A2]), hepatocyte maturation (Albumin and HepPar1), and features of bile ducts (CK19 [cytokeratin 19]) to identify lineages of stem cells differentiating toward the hepatocytic or bile ductular compartments of end-stage cirrhotic human liver. We identified large clusters of disorganized, FOXA2 expressing, oval cells in localized liver regions surrounded by fibrotic matrix, designated as "micro-niches." Specific FOXA2-positive cells within the micro-niches organize into primitive duct structures that support both hepatocytic and bile ductular differentiation enabling identification of entire lineages of cells forming the two types of structures. We also detected expression of hsa-miR-122 in primitive ductular reactions expected for hepatocytic differentiation and hsa-miR-23b cluster expression that drives liver cell fate decisions in cells undergoing lineage commitment. Our data establish the foundation for a mechanistic hypothesis on how stem cell lineages progress in specialized micro-niches in cirrhotic end-stage liver disease.

  19. Intragenotypic JFH1 based recombinant hepatitis C virus produces high levels of infectious particles but causes increased cell death

    DEFF Research Database (Denmark)

    Mateu, Guaniri; Donis, Ruben O; Wakita, Takaji

    2008-01-01

    The full-length hepatitis C virus (HCV) JFH1 genome (genotype 2a) produces moderate titers of infectious particles in cell culture but the optimal determinants required for virion production are unclear. It has been shown that intragenotypic recombinants encoding core to NS2 from J6CF in the cont......The full-length hepatitis C virus (HCV) JFH1 genome (genotype 2a) produces moderate titers of infectious particles in cell culture but the optimal determinants required for virion production are unclear. It has been shown that intragenotypic recombinants encoding core to NS2 from J6CF...... into the JFH1 infectious clone. All genomes produced high levels of intracellular HCV RNA and NS3 protein in Huh-7.5 transfected cells. However, JFH1 genomes containing J6 sequences from C to E2 (CE2) or C to p7 (Cp7) secreted up to 100-fold more infectious HCV particles than the parental JFH1 clone....... Subsequent infection of naive Huh-7.5 cells with each of the J6/JFH1 recombinants at a multiplicity of infection of 0.0003 resulted in high viral titers only for CE2 and Cp7 viruses. Comparison of virion production by the Cp7 J6/JFH1 recombinant to previously described J6/JFH1 recombinants showed flexibility...

  20. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

    Directory of Open Access Journals (Sweden)

    Nidal Ghosheh

    2016-01-01

    Full Text Available Human pluripotent stem cells- (hPSCs- derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4 which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models.

  1. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

    Science.gov (United States)

    Ghosheh, Nidal; Olsson, Björn; Edsbagge, Josefina; Küppers-Munther, Barbara; Van Giezen, Mariska; Asplund, Annika; Andersson, Tommy B.; Björquist, Petter; Carén, Helena; Simonsson, Stina; Sartipy, Peter; Synnergren, Jane

    2016-01-01

    Human pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models. PMID:26949401

  2. Histological and immunohistochemical effects of Curcuma longa on activation of rat hepatic stellate cells after cadmium induced hepatotoxicity.

    Science.gov (United States)

    El-Mansy, A A; Mazroa, S A; Hamed, W S; Yaseen, A H; El-Mohandes, E A

    2016-01-01

    The liver is a target for toxic chemicals such as cadmium (Cd). When the liver is damaged, hepatic stellate cells (HSC) are activated and transformed into myofibroblast-like cells, which are responsible for liver fibrosis. Curcuma longa has been reported to exert a hepato-protective effect under various pathological conditions. We investigated the effects of C. longa administration on HSC activation in response to Cd induced hepatotoxicity. Forty adult male albino rats were divided into: group 1 (control), group 2 (Cd treated), group 3 (C. longa treated) and group 4 (Cd and C. longa treated). After 6 weeks, liver specimens were prepared for light and electron microscopy examination of histological changes and immunohistochemical localization of alpha smooth muscle actin (αSMA) as a specific marker for activated HSC. Activated HSC with a positive αSMA immune reaction were not detected in groups 1 and 3. Large numbers of activated HSC with αSMA immune reactions were observed in group 2 in addition to Cd induced hepatotoxic changes including excess collagen deposition in thickened portal triads, interlobular septa with hepatic lobulation, inflammatory cell infiltration, a significant increase in Kupffer cells and degenerated hepatocytes. In group 4, we observed a significant decrease in HSC that expressed αSMA with amelioration of the hepatotoxic changes. C. longa administration decreased HSC activation and ameliorated hepatotoxic changes caused by Cd in adult rats.

  3. CXCL10 Decreases GP73 Expression in Hepatoma Cells at the Early Stage of Hepatitis C Virus (HCV Infection

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2013-12-01<