WorldWideScience

Sample records for hepatic first-pass metabolism

  1. Positron emission tomography of hepatic first-pass metabolism of ammonia in pig

    DEFF Research Database (Denmark)

    Keiding, S; Munk, O L; Roelsgaard, K

    2001-01-01

    Hepatic first-pass metabolism plays a key role in metabolic regulation and drug metabolism. Metabolic processes can be quantified in vivo by positron emission tomography scanning (PET). We wished to develop a PET technique to measure hepatic first-pass metabolism of ammonia. Seven anaesthetised...... pigs were given positron-labelled ammonia, (13)NH(3), into the portal vein and into the vena cava as successive 2-min infusions followed by 22-min dynamic liver scanning. Vena cava infusion data were used to account for recirculation of tracer and metabolites following the portal vein infusion...

  2. Positron emission tomography of hepatic first-pass metabolism of ammonia in pig

    International Nuclear Information System (INIS)

    Keiding, S.; Munk, O.L.; Roelsgaard, K.; Bender, D.; Bass, L.

    2001-01-01

    Hepatic first-pass metabolism plays a key role in metabolic regulation and drug metabolism. Metabolic processes can be quantified in vivo by positron emission tomography scanning (PET). We wished to develop a PET technique to measure hepatic first-pass metabolism of ammonia. Seven anaesthetised pigs were given positron-labelled ammonia, 13 NH 3 , into the portal vein and into the vena cava as successive 2-min infusions followed by 22-min dynamic liver scanning. Vena cava infusion data were used to account for recirculation of tracer and metabolites following the portal vein infusion. The scan data were analysed by a model of sinusoidal zonation of ammonia metabolism with periportal urea formation and perivenous formation of glutamine. The hepatic extraction fraction of 13 NH 3 was 0.73±0.16 (mean±SD, n=7 pigs). Values of clearance of ammonia to urea and to glutamine were obtained, as were rate constants for washout of these two metabolites. Overall, the modelling showed half of the ammonia uptake to be converted to urea and half to glutamine. The washout rate constant for glutamine was about one-tenth of that for urea. We conclude that hepatic first-pass metabolism of ammonia was successfully assessed by PET. (orig.)

  3. First-pass metabolism of ethanol in human beings: effect of intravenous infusion of fructose

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Billinger, MH; Schäfer, C.

    2004-01-01

    Intravenous infusion of fructose has been shown to enhance reduced form of nicotinamide adenine dinucleotide reoxidation and, thereby, to enhance the metabolism of ethanol. In the current study, the effect of fructose infusion on first-pass metabolism of ethanol was studied in human volunteers....... A significantly higher first-pass metabolism of ethanol was obtained after administration of fructose in comparison with findings for control experiments with an equimolar dose of glucose. Because fructose is metabolized predominantly in the liver and can be presumed to have virtually no effects in the stomach...

  4. Changes in hepatic perfusion index determined by Tc-99m pertechnetate first pass scintigraphy in acute viral hepatitis

    International Nuclear Information System (INIS)

    Ali, M.K.

    1993-01-01

    Computerized sequential radionuclide angiography was used to analyze the first pass kinetics of peripherally injected bolus of Tc-99m-pertechnetate. The relative arterial/total hepatic blood flow, the Hepatic Perfusion Index (HPI%), was determined in normal subjects while 20 cases of Acute Viral Hepatitis (AVH) were studied serially. In addition, biochemical blood analysis as also carried out. The mean value of HPI in first study of all patients was 61.23% in comparison to 31.12% of control group. The patients were divided into three groups, based upon the duration elapsed between the onset of symptoms and the first study. HPI was found significantly high in first study of each group as compared to controls. In first group there was no significant correlation of mean HPI with other biochemical parameters. In second and third groups, significant correlation were observed between the mean HPI and serum bilirubin, serum alanine trans-aminase with mean HPI in the third group. The serum proteins correlated negatively with HPI in second group. This technique offers a simple, rapid, non-invasive and quantitative method to determine a new index which mostly behaves like other biochemical parameter and can be used to follow the course of acute viral hepatitis. (author)

  5. First pass effect by infusing 99mTc-human serum albumin into the hepatic artery

    International Nuclear Information System (INIS)

    Ozawa, Takashi; Kimura, Kousaburou; Koyanagi, Yasuhisa

    1988-01-01

    The fundamental principles of intra-arterial infusion chemotherapy are thought to be increased local drug concentration and the ''first-pass'' effect. The concentration in the rest of the body can only be decreased if there is local elimination of the infused drug before reaching the systemic circulation. This is referred to as the ''first-pass'' effect. In the evaluation of ''first-pass'' effect, the uptake of liver after infusing 99m Tc-human serum albumin ( 99m Tc-HSA) in the hepatic artery by injecting the subcutaneously implanted silicon reservoir was compared with that obtained after intravenous administration of 99m Tc-HSA. In order to remove the factor of portal infusion, each count of liver up take had been continued for only 24 seconds after starting the liver uptake. The results are as follows : for 24 cases excepting 6 cases with catheter obstruction, the mean i.a./i.v. ratio was 7.92 ± 3.34 (range 3.25 to 17.25). Although the elimination rate of drugs in the liver varies with each drug, the infusion of intraarterial chemotherapy should be about 8 times more concentrative than intravenous administration on the ''first-pass'' effect. (author)

  6. Intestinal first pass metabolism of midazolam in liver cirrhosis --effect of grapefruit juice

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Pedersen, Natalie; Larsen, Niels-Erik

    2002-01-01

    Grapefruit juice inhibits CYP3A4 in the intestinal wall leading to a reduced intestinal first pass metabolism and thereby an increased oral bioavailability of certain drugs. For example, it has been shown that the oral bioavailability of midazolam, a CYP3A4 substrate, increased by 52% in healthy...... subjects after ingestion of grapefruit juice. However, this interaction has not been studied in patients with impaired liver function. Accordingly, the effect of grapefruit juice on the AUC of midazolam and the metabolite alpha-hydroxymidazolam was studied in patients with cirrhosis of the liver....

  7. Advances in ammonia metabolism and hepatic encephalopathy

    International Nuclear Information System (INIS)

    Soeters, P.B.; Wilson, J.H.P.; Meijer, A.J.; Holm, E.

    1988-01-01

    There are four main 'parts' within the book: the first is devoted to peripheral and hepatic ammonia metabolism, the urea cycle, acid base status and its regulation; part two addresses animal models in liver failure, GABA-ergic neurotransmission and its relevance in hepatic failure; a third part concerns neurochemistry including brain ammonia metabolism, serotonin metabolism and energy status, in vivo evaluated with modern techniques like infusion of compounds labeled with stable or radioactive isotopes and with NMR, while the last section provides a description of the determination of ammonia and the treatment of encephalopathy with established but also with experimental techniques. refs.; figs.; tabs

  8. Hepatic diseases related to triglyceride metabolism.

    Science.gov (United States)

    Aguilera-Méndez, Asdrubal; Álvarez-Delgado, Carolina; Hernández-Godinez, Daniel; Fernandez-Mejia, Cristina

    2013-10-01

    Triglycerides participate in key metabolic functions such as energy storage, thermal insulation and as deposit for essential and non-essential fatty acids that can be used as precursors for the synthesis of structural and functional phospholipids. The liver is a central organ in the regulation of triglyceride metabolism, and it participates in triglyceride synthesis, export, uptake and oxidation. The metabolic syndrome and associated diseases are among the main concerns of public health worldwide. One of the metabolic syndrome components is impaired triglyceride metabolism. Diseases associated with the metabolic syndrome promote the appearance of hepatic alterations e.g., non-alcoholic steatosis, steatohepatitis, fibrosis, cirrhosis and cancer. In this article, we review the molecular actions involved in impaired triglyceride metabolism and its association with hepatic diseases. We discuss mechanisms that reconcile the chronic inflammation and insulin resistance, and new concepts on the role of intestinal micro-flora permeability and proliferation in fatty liver etiology. We also describe the participation of oxidative stress in the progression of events leading from steatosis to steatohepatitis and fibrosis. Finally, we provide information regarding the mechanisms that link fatty acid accumulation during steatosis with changes in growth factors and cytokines that lead to the development of neoplastic cells. One of the main medical concerns vis-a-vis hepatic diseases is the lack of symptoms at the onset of the illness and, as result, its late diagnosis. The understandings of the molecular mechanisms that underlie hepatic diseases could help design strategies towards establishing markers for their accurate and timely diagnosis.

  9. Hepatic folate metabolism in the chronic alcoholic monkey

    International Nuclear Information System (INIS)

    Tamura, T.; Romero, J.J.; Watson, J.E.; Gong, E.J.; Halsted, C.H.

    1981-01-01

    To assess the role of altered hepatic folate metabolism in the pathogenesis of the folate deficiency of chronic alcoholism, the hepatic metabolism of a tracer dose of 3 H-PteGlu was compared in monkeys given 50% of energy as ethanol for 2 years and in control monkeys. Long-term ethanol feeding resulted in mild hepatic injury, with a significant decrease in hepatic folate levels. Chromatographic studies of liver biopsies obtained after the tracer dose indicated that the processes of reduction, methylation, and formylation of reduced folate and the synthesis of polyglutamyl folates were not affected by long-term ethanol feeding. Hepatic tritium levels were significantly decreased in the ethanol-fed group. These studies suggest that the decrease in hepatic folate levels observed after long-term ethanol ingestion is due to a decrease in hepatic folate levels observed after long-term ethanol ingestion is due to a decreased ability to retain folates in the liver, whereas reduction and further metabolism of folates is not affected

  10. Arginase Inhibition Ameliorates Hepatic Metabolic Abnormalities in Obese Mice

    Science.gov (United States)

    Moon, Jiyoung; Do, Hyun Ju; Cho, Yoonsu; Shin, Min-Jeong

    2014-01-01

    Objectives We examined whether arginase inhibition influences hepatic metabolic pathways and whole body adiposity in diet-induced obesity. Methods and Results After obesity induction by a high fat diet (HFD), mice were fed either the HFD or the HFD with an arginase inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA). Nor-NOHA significantly prevented HFD-induced increases in body, liver, and visceral fat tissue weight, and ameliorated abnormal lipid profiles. Furthermore, nor-NOHA treatment reduced lipid accumulation in oleic acid-induced hepatic steatosis in vitro. Arginase inhibition increased hepatic nitric oxide (NO) in HFD-fed mice and HepG2 cells, and reversed the elevated mRNA expression of hepatic genes in lipid metabolism. Expression of phosphorylated 5′ AMPK-activated protein kinase α was increased by arginase inhibition in the mouse livers and HepG2 cells. Conclusions Arginase inhibition ameliorated obesity-induced hepatic lipid abnormalities and whole body adiposity, possibly as a result of increased hepatic NO production and subsequent activation of metabolic pathways involved in hepatic triglyceride metabolism and mitochondrial function. PMID:25057910

  11. Differences of first-pass effect in the liver and intestine contribute to the stereoselective pharmacokinetics of rhynchophylline and isorhynchophylline epimers in rats.

    Science.gov (United States)

    Wang, Xin; Zheng, Mei; Liu, Jia; Huang, Zhifeng; Bai, Yidan; Ren, Zhuoying; Wang, Ziwen; Tian, Yangli; Qiao, Zhou; Liu, Wenyuan; Feng, Feng

    2017-09-14

    Uncaria rhynchophylla (Miq.) Miq. ex Havil., is a plant species used in traditional Chinese medicine to treat cardiovascular and central nervous system diseases. Rhynchophylline (RIN) and isorhynchophylline (IRN), a pair of epimers, are major alkaloids isolated from U. rhynchophylla and exhibit diverse pharmacological effects. Our previous study demonstrated that the pharmacokinetics of these epimers existed stereoselectivity after oral administration; however, the specific mechanism remains unknown and merits investigation. In the present study, the aim was to elucidate the mechanism underlying stereoselective pharmacokinetic characteristics of RIN and IRN in rats. The total (F), hepatic (F h ) and intestinal (F a ·F g ) bioavailabilities of each epimer were measured using portal vein cannulated rats following different dosing routes (intravenous, intraportal and intraduodenal) to assess individual contributions of the liver and intestine in stereoselective pharmacokinetics. Then the differences of first-pass metabolism in the liver and intestine between two epimers were evaluated by in vitro incubation with rat liver microsomes, intestinal S9 and gastrointestinal (GI) content solutions, respectively. Meanwhile, the membrane permeability and efflux by P-glycoprotein (P-gp) were examined by in situ single-pass intestinal perfusion with and without P-gp inhibitor verapamil. The configurational interconversion at different pH values and the excretions via feces and urine were also examined. Pharmacokinetic data showed that the total bioavailability of RIN was 5.9 folds higher than that of IRN (23.4% vs. 4.0%). The hepatic availability of RIN was 4.6 folds higher than that of IRN (46.9% vs. 10.3%), whereas the intestinal availability of RIN (48.1%) was comparable to that of IRN (42.7%). In addition, intestinal perfusion showed that IRN possessed higher intestinal permeability than RIN and co-perfusion with verapamil could affect absorption process of RIN but not IRN

  12. Hepatic Steatosis as a Marker of Metabolic Dysfunction

    Science.gov (United States)

    Fabbrini, Elisa; Magkos, Faidon

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the liver manifestation of the complex metabolic derangements associated with obesity. NAFLD is characterized by excessive deposition of fat in the liver (steatosis) and develops when hepatic fatty acid availability from plasma and de novo synthesis exceeds hepatic fatty acid disposal by oxidation and triglyceride export. Hepatic steatosis is therefore the biochemical result of an imbalance between complex pathways of lipid metabolism, and is associated with an array of adverse changes in glucose, fatty acid, and lipoprotein metabolism across all tissues of the body. Intrahepatic triglyceride (IHTG) content is therefore a very good marker (and in some cases may be the cause) of the presence and the degree of multiple-organ metabolic dysfunction. These metabolic abnormalities are likely responsible for many cardiometabolic risk factors associated with NAFLD, such as insulin resistance, type 2 diabetes mellitus, and dyslipidemia. Understanding the factors involved in the pathogenesis and pathophysiology of NAFLD will lead to a better understanding of the mechanisms responsible for the metabolic complications of obesity, and hopefully to the discovery of novel effective treatments for their reversal. PMID:26102213

  13. Extensive intestinal first-pass metabolism of arctigenin: evidenced by simultaneous monitoring of both parent drug and its major metabolites.

    Science.gov (United States)

    Gao, Qiong; Zhang, Yufeng; Wo, Siukwan; Zuo, Zhong

    2014-03-01

    The current study aims to investigate intestinal absorption and metabolism of arctigenin (AR) through simultaneous monitoring of AR and its major metabolites in rat plasma. An UPLC/MS/MS assay was developed with chromatographic separation of all analytes achieved by a C18 Column (3.9mm×150mm, 3.5μm) and a gradient elution with acetonitrile and 0.1% formic acid within 9min. Sample extraction with acetonitrile was optimized to achieve satisfactory recovery for both AR and its major metabolites. The lower limit of quantification (LLOQ) for all analytes was 25ng/ml. The intra-day and inter-day precision and accuracy of each analyte at LLOQ and three quality control (QC) concentrations (low, middle and high) in rat plasma was within 15.0% RSD and 15.0% bias. The extraction recoveries were within the range of 83.8-94.0% for all analytes. The developed and validated assay was then applied to the absorption study of AR in both Caco-2 cell monolayer model and in situ single-pass rat intestinal perfusion model. High absorption permeability of AR was demonstrated in both models with Papp of (1.76±0.48)×10(-5) (A→B) (Caco-2) and Pblood of (8.6±3.0)×10(-6)cm/s (intestinal perfusion). Extensive first-pass metabolism of AR to arctigenic acid (AA) and arctigenin-4'-O-glucuronide (AG) was identified in rat intestinal perfusion study with Cummins's extraction ratios of 0.458±0.012 and 0.085±0.013, respectively. The current assay method demonstrated to be a practical tool for pharmacokinetics investigation of AR with complicated metabolism pathways and multiple metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A model to study intestinal and hepatic metabolism of propranolol in the dog.

    Science.gov (United States)

    Mills, P C; Siebert, G A; Roberts, M S

    2004-02-01

    A model to investigate hepatic drug uptake and metabolism in the dog was developed for this study. Catheters were placed in the portal and hepatic veins during exploratory laparotomy to collect pre- and posthepatic blood samples at defined intervals. Drug concentrations in the portal vein were taken to reflect intestinal uptake and metabolism of an p.o. administered drug (propranolol), while differences in drug and metabolite concentrations between portal and hepatic veins reflected hepatic uptake and metabolism. A significant difference in propranolol concentration between hepatic and portal veins confirmed a high hepatic extraction of this therapeutic agent in the dog. This technically uncomplicated model may be used experimentally or clinically to determine hepatic function and metabolism of drugs that may be administered during anaesthesia and surgery.

  15. Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats

    Science.gov (United States)

    Barve, Avantika; Chen, Chi; Hebbar, Vidya; Desiderio, Joseph; Saw, Constance Lay-Lay; Kong, Ah-Ng

    2012-01-01

    The purpose of this study was to compare the hepatic and small intestinal metabolism, and examine bioavailability and gastro-intestinal first-pass effects of Kaempferol in the rats. Liver and small intestinal microsomes fortified with either NADPH or UDPGA were incubated with varying concentrations of Kaempferol for upto 120 minutes. Based on the values of the kinetic constants (Km and Vmax), the propensity for UDPGA-dependent conjugation as compared to NADPH-dependent oxidative metabolism was higher for both hepatic and small intestinal microsomes. Male Sprague-Dawley rats were administered Kaempferol intravenously (IV) (10, 25 mg/kg) or orally (100, 250 mg/kg). Gastro-intestinal first pass effects were observed by collecting portal blood after oral administration of 100 mg/kg Kaempferol. Pharmacokinetic parameters were obtained by Noncompartmental analysis using WinNonlin. After IV administration, the plasma concentration-time profiles for 10 and 25 mg/kg were consistent with high clearance (~ 3 L/hr/kg) and large volumes of distribution (8-12 L/kg). The disposition was characterized by a terminal half-life value of 3-4 hours. After oral administration the plasma concentration-time profiles demonstrated fairly rapid absorption (tmax ~ 1-2 hours). The area under the curve (AUC) values after IV and oral doses increased proportional to the dose. The bioavailability (F) was poor at ~ 2%. Analysis of portal plasma after oral administration revealed low to moderate absorption. Taken together, the low F of Kaempferol is attributed in part to extensive first-pass metabolism by glucuronidation and other metabolic pathways in the gut and in the liver. PMID:19722166

  16. Direct measurement of first-pass ileal clearance of a bile acid in humans

    International Nuclear Information System (INIS)

    Galatola, G.; Jazrawi, R.P.; Bridges, C.; Joseph, A.E.; Northfield, T.C.

    1991-01-01

    The purpose of this study was to develop and validate a method of directly measuring ileal bile acid absorption efficiency during a single enterohepatic cycle (first-pass ileal clearance). This has become feasible for the first time because of the availability of the synthetic gamma-labeled bile acid 75Selena-homocholic acid-taurine (75SeHCAT). Together with the corresponding natural bile acid cholic acid-taurine (labeled with 14C), SeHCAT was infused distal to an occluding balloon situated beyond the ampulla of Vater in six healthy subjects. Completion of a single enterohepatic cycle was assessed by obtaining a plateau for 75SeHCAT activity proximal to the occluding balloon, which prevented further cycles. Unabsorbed 75SeHCAT was collected after total gut washout, which was administered distal to the occluding balloon. 75SeHCAT activity in the rectal effluent measured by gamma counter was compared with that of absorbed 75SeHCAT level measured by gamma camera and was used to calculate first-pass ileal clearance. This was very efficient (mean value, 96%) and showed very little variation in the six subjects studied (range, 95%-97%). A parallel time-activity course in hepatic bile for 14C and 75Se during a single enterohepatic cycle, together with a ratio of unity for 14C/75Se in samples obtained at different time intervals, suggests that 75SeHCAT is handled by the ileum like the natural bile acid cholic acid-taurine. Extrapolation of 75SeHCAT first-pass ileal clearance to that of the natural bile acid therefore seems justifiable. In a subsidiary experiment, ileal absorption efficiency per day for 75SeHCAT was also measured by scanning the gallbladder area on 5 successive days after the measurement of first-pass ileal clearance. In contrast with absorption efficiency per cycle, absorption efficiency per day varied widely (49%-86%)

  17. Mouse myocardial first-pass perfusion MR imaging

    NARCIS (Netherlands)

    Coolen, Bram F.; Moonen, Rik P. M.; Paulis, Leonie E. M.; Geelen, Tessa; Nicolay, Klaas; Strijkers, Gustav J.

    2010-01-01

    A first-pass myocardial perfusion sequence for mouse cardiac MRI is presented. A segmented ECG-triggered acquisition combined with parallel imaging acceleration was used to capture the first pass of a Gd-DTPA bolus through the mouse heart with a temporal resolution of 300-400 msec. The method was

  18. Mouse myocardial first-pass perfusion MR imaging

    NARCIS (Netherlands)

    Coolen, B.F.; Moonen, R.P.M.; Paulis, L.E.M.; Geelen, T.; Nicolay, K.; Strijkers, G.J.

    2010-01-01

    A first-pass myocardial perfusion sequence for mouse cardiac MRI is presented. A segmented ECG-triggered acquisition combined with parallel imaging acceleration was used to capture the first pass of a Gd-DTPA bolus through the mouse heart with a temporal resolution of 300–400 msec. The method was

  19. Increased hepatic nicotine elimination after phenobarbital induction in the conscious rat

    International Nuclear Information System (INIS)

    Foth, H.; Walther, U.I.; Kahl, G.F.

    1990-01-01

    Elimination parameters of [14C]nicotine in conscious rats receiving nicotine (0.3 mg/kg) either intravenously or orally were studied. The oral availability of unchanged nicotine, derived by comparison of the respective areas under the concentration vs time curves (AUC), was 89%, indicating low hepatic extraction ratios of about 10%. Pretreatment of rats with phenobarbital (PB) markedly increased hepatic first-pass extraction of nicotine. The oral availability of unchanged nicotine in plasma dropped to 1.4% of the corresponding values obtained from PB-treated rats receiving nicotine iv. After PB pretreatment, the clearance of iv nicotine was increased approximately twofold over controls, much less than the observed more than ninefold increase of hepatic first-pass extraction. It is assumed that extrahepatic metabolism contributed significantly to the rapid removal of nicotine from the plasma. The elimination of cotinine, originating from nicotine administered either po or iv, was significantly increased by PB pretreatment, as determined by the ratio of corresponding AUCs. The pattern of nicotine metabolites in urine also indicated an increase in the rate of cotinine metabolic turnover. The amount of norcotinine in the organic extract of urine paralleled PB microsomal enzyme induction. The ratio between urinary concentrations of the normetabolite and cotinine correlated strongly with the PB-induced state of rat liver. This may be a suitable indicator of PB-inducible hepatic cytochrome P450 isoenzyme(s). Since smoking habits in man are feedback-regulated by nicotine plasma concentrations, a similar increase of nicotine elimination by microsomal enzyme induction in man may be of relevance for tobacco consumption

  20. Interaction between udenafil and tamsulosin in rats: non-competitive inhibition of tamsulosin metabolism by udenafil via hepatic CYP3A1/2

    Science.gov (United States)

    Kang, HE; Bae, SK; Yoo, M; Lee, DC; Kim, YG; Lee, MG

    2009-01-01

    Background and purpose: Orthostatic hypotension has been observed when PDE 5 (cGMP-specific phosphodiesterase type 5) inhibitors are co-administered with α-adrenoceptor antagonists. Here we assessed the pharmacokinetic and haemodynamic interactions between udenafil and tamsulosin in rats, as both drugs are metabolized via rat hepatic cytochrome P450 3A1/2. Experimental approach: Interactions between the two drugs were evaluated in rats after simultaneous 1 or 15 min i.v. infusion or after p.o. administration of udenafil (30 mg·kg−1) and/or tamsulosin (1 mg·kg−1). In vitro metabolism of tamsulosin with udenafil was measured to obtain the inhibition constant (Ki) and [I]/Ki ratio of udenafil. Key results: The total area under the plasma concentration–time curve from time zero to time infinity (AUC)s (or AUC0–4h) of tamsulosin were significantly greater after 15 min of i.v. infusion or after oral administration with udenafil, compared with tamsulosin alone. The hepatic first-pass metabolism of tamsulosin was inhibited by udenafil, and the inhibition in vitro was in a non-competitive mode. The arterial systolic blood pressure was significantly lower at 5, 10 and 60 min after oral co-administration of the drugs. Conclusions and implications: The significantly greater AUC of tamsulosin after i.v. and p.o. administration of both drugs may be attributable to non-competitive inhibition of cytochrome P450 3A1/2-mediated hepatic tamsulosin metabolism by udenafil. The inhibition was also observed in human liver S9 fractions, suggesting that a reassessment of the oral dosage of tamsulosin is necessary when udenafil and tamsulosin are co-administered to patients with benign prostatic hyperplasia. PMID:19254278

  1. A First-Order One-Pass CPS Transformation

    DEFF Research Database (Denmark)

    Danvy, Olivier; Nielsen, Lasse Reichstein

    2002-01-01

    We present a new transformation of call-by-value lambdaterms into continuation-passing style (CPS). This transformation operates in one pass and is both compositional and first-order. Because it operates in one pass, it directly yields compact CPS programs that are comparable to what one would...... write by hand. Because it is compositional, it allows proofs by structural induction. Because it is first-order, reasoning about it does not require the use of a logical relation. This new CPS transformation connects two separate lines of research. It has already been used to state a new and simpler...... correctness proof of a direct-style transformation, and to develop a new and simpler CPS transformation of control-flow information....

  2. Hepatitis C Virus Life Cycle and Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Costin-Ioan Popescu

    2014-12-01

    Full Text Available Hepatitis C Virus (HCV infects over 150 million people worldwide. In most cases HCV infection becomes chronic, causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. HCV affects the cholesterol homeostasis and at the molecular level, every step of the virus life cycle is intimately connected to lipid metabolism. In this review, we present an update on the lipids and apolipoproteins that are involved in the HCV infectious cycle steps: entry, replication and assembly. Moreover, the result of the assembly process is a lipoviroparticle, which represents a peculiarity of hepatitis C virion. This review illustrates an example of an intricate virus-host interaction governed by lipid metabolism.

  3. Right Ventricular Ejection Fraction using ECG-Gated First Pass Cardioangiography

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Young Hee; Lee, Hae Giu; Lee, Sung Yong; Park, Suk Min; Chung, Soo Kyo; Yim, Jeong Ik; Bahk, Yong Whee; Shinn, Kyung Sub; Kim, Young Gyun; Kwon, Soon Seog [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1993-03-15

    Radionuclide cardioangiography has been widely applied and has played major roles in moninvasive assessment of cardiac function. Three techniques, first-pass gated first and gated equilibrium methods have commonly been used to evaluate right ventricular ejection fraction which usually abnormal in the patients with cardiopulmonary disease. It has been known that the gated first pass method is most accurate method among the three techniques in assessment of fight ventricular ejection fraction. The radionuclide right ventricular ejection fraction values were determined in 13 normal subjects and in 15 patients with chronic obstructive pulmonary disease by the gated first pass method and compared with those of the first pass method because there has been no published data of fight ejection fraction by the gated first pass method were compared with the defects from the pulmonary function test performed in the patients with chronic obstructive pulmomary disease. The results were as follows; 1) The values of fight ventricular ejection fraction by the gated first pass method were 50.1 +- 6.1% in normal subjects and 38.5 +- 8.5 in the patients with chronic obstructive pulmonary disease. There was statistically significant difference between the right ventricular ejection fraction of each of the two groups (p<0.05) 2) The right ventricular ejection fraction by the gated first pass method was not linearly correlated ith FEV{sub 1}, VC. DLCO. and FVC as well as P{sub a}O2 and P{sub a}CO2 of the patients with chronic obstructive pulmonary disease. We concluded that right ventricular ejection fraction by the gated first pass method using radionuclide cardioangiography may be useful in clinical assessment of the right ventricular function.

  4. A First-Order One-Pass CPS Transformation

    DEFF Research Database (Denmark)

    Danvy, Olivier; Nielsen, Lasse Reichstein

    2001-01-01

    We present a new transformation of λ-terms into continuation-passing style (CPS). This transformation operates in one pass and is both compositional and first-order. Previous CPS transformations only enjoyed two out of the three properties of being first-order, one-pass, and compositional......, but the new transformation enjoys all three properties. It is proved correct directly by structural induction over source terms instead of indirectly with a colon translation, as in Plotkin's original proof. Similarly, it makes it possible to reason about CPS-transformed terms by structural induction over...... source terms, directly.The new CPS transformation connects separately published approaches to the CPS transformation. It has already been used to state a new and simpler correctness proof of a direct-style transformation, and to develop a new and simpler CPS transformation of control-flow information....

  5. A First-Order One-Pass CPS Transformation

    DEFF Research Database (Denmark)

    Danvy, Olivier; Nielsen, Lasse Reichstein

    2003-01-01

    We present a new transformation of λ-terms into continuation-passing style (CPS). This transformation operates in one pass and is both compositional and first-order. Previous CPS transformations only enjoyed two out of the three properties of being first-order, one-pass, and compositional......, but the new transformation enjoys all three properties. It is proved correct directly by structural induction over source terms instead of indirectly with a colon translation, as in Plotkin's original proof. Similarly, it makes it possible to reason about CPS-transformed terms by structural induction over...... source terms, directly.The new CPS transformation connects separately published approaches to the CPS transformation. It has already been used to state a new and simpler correctness proof of a direct-style transformation, and to develop a new and simpler CPS transformation of control-flow information....

  6. Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism

    DEFF Research Database (Denmark)

    Perry, Rachel J; Borders, Candace B; Cline, Gary W

    2016-01-01

    /tandem-mass spectrometry (LC-MS/MS) method to directly assess pyruvate cycling relative to mitochondrial pyruvate metabolism (VPyr-Cyc/VMito) in vivo using [3-(13)C]lactate as a tracer. Using this approach, VPyr-Cyc/VMito was only 6% in overnight fasted rats. In contrast, when propionate was infused simultaneously...... at doses previously used as a tracer, it increased VPyr-Cyc/VMito by 20-30-fold, increased hepatic TCA metabolite concentrations 2-3-fold, and increased endogenous glucose production rates by 20-100%. The physiologic stimuli, glucagon and epinephrine, both increased hepatic glucose production, but only...... tracer to assess hepatic glycolytic, gluconeogenic, and mitochondrial metabolism in vivo....

  7. Comprehensive insights into microcystin-LR effects on hepatic lipid metabolism using cross-omics technologies

    International Nuclear Information System (INIS)

    Zhang, Zongyao; Zhang, Xu-Xiang; Wu, Bing; Yin, Jinbao; Yu, Yunjiang; Yang, Liuyan

    2016-01-01

    Highlights: • Use of cross-omics technologies to evaluate toxic effects of microcystin-LR. • Disturbance of hepatic lipid metabolism by oral exposure to microcystin-LR. • Crucial roles of gut microbial community shift in the metabolic disturbance induced by microcystin-LR. - Abstract: Microcystin-LR (MC-LR) can induce hepatic tissue damages and molecular toxicities, but its effects on lipid metabolism remain unknown. This study investigated the effects of MC-LR exposure on mice lipid metabolism and uncovered the underlying mechanism through metabonomic, transcriptomic and metagenomic analyses after administration of mice with MC-LR by gavage for 28 d. Increased liver weight and abdominal fat weight, and evident hepatic lipid vacuoles accumulation were observed in the mice fed with 0.2 mg/kg/d MC-LR. Serum nuclear magnetic resonance analysis showed that MC-LR treatment altered the levels of serum metabolites including triglyceride, unsaturated fatty acid (UFA) and very low density lipoprotein. Digital Gene Expression technology was used to reveal differential expression of hepatic transcriptomes, demonstrating that MC-LR treatment disturbed hepatic UFA biosynthesis and activated peroxisome proliferator-activated receptor (PPAR) signaling pathways via Pparγ, Fabp1 and Fabp2 over-expression. Metagenomic analyses of gut microbiota revealed that MC-LR exposure also increased abundant ratio of Firmicutes vs. Bacteroidetes in gut and altered biosynthetic pathways of various microbial metabolic and pro-inflammatory molecules. In conclusion, oral MC-LR exposure can induce hepatic lipid metabolism disorder mediated by UFA biosynthesis and PPAR activation, and gut microbial community shift may play an important role in the metabolic disturbance.

  8. Comprehensive insights into microcystin-LR effects on hepatic lipid metabolism using cross-omics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zongyao [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Zhang, Xu-Xiang, E-mail: zhangxx@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Wu, Bing; Yin, Jinbao [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Yu, Yunjiang [Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Yang, Liuyan, E-mail: yangly@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2016-09-05

    Highlights: • Use of cross-omics technologies to evaluate toxic effects of microcystin-LR. • Disturbance of hepatic lipid metabolism by oral exposure to microcystin-LR. • Crucial roles of gut microbial community shift in the metabolic disturbance induced by microcystin-LR. - Abstract: Microcystin-LR (MC-LR) can induce hepatic tissue damages and molecular toxicities, but its effects on lipid metabolism remain unknown. This study investigated the effects of MC-LR exposure on mice lipid metabolism and uncovered the underlying mechanism through metabonomic, transcriptomic and metagenomic analyses after administration of mice with MC-LR by gavage for 28 d. Increased liver weight and abdominal fat weight, and evident hepatic lipid vacuoles accumulation were observed in the mice fed with 0.2 mg/kg/d MC-LR. Serum nuclear magnetic resonance analysis showed that MC-LR treatment altered the levels of serum metabolites including triglyceride, unsaturated fatty acid (UFA) and very low density lipoprotein. Digital Gene Expression technology was used to reveal differential expression of hepatic transcriptomes, demonstrating that MC-LR treatment disturbed hepatic UFA biosynthesis and activated peroxisome proliferator-activated receptor (PPAR) signaling pathways via Pparγ, Fabp1 and Fabp2 over-expression. Metagenomic analyses of gut microbiota revealed that MC-LR exposure also increased abundant ratio of Firmicutes vs. Bacteroidetes in gut and altered biosynthetic pathways of various microbial metabolic and pro-inflammatory molecules. In conclusion, oral MC-LR exposure can induce hepatic lipid metabolism disorder mediated by UFA biosynthesis and PPAR activation, and gut microbial community shift may play an important role in the metabolic disturbance.

  9. Drug metabolism and ageing.

    Science.gov (United States)

    Wynne, Hilary

    2005-06-01

    Older people are major consumers of drugs and because of this, as well as co-morbidity and age-related changes in pharmacokinetics and pharmacodynamics, are at risk of associated adverse drug reactions. While age does not alter drug absorption in a clinically significant way, and age-related changes in volume of drug distribution and protein binding are not of concern in chronic therapy, reduction in hepatic drug clearance is clinically important. Liver blood flow falls by about 35% between young adulthood and old age, and liver size by about 24-35% over the same period. First-pass metabolism of oral drugs avidly cleared by the liver and clearance of capacity-limited hepatically metabolized drugs fall in parallel with the fall in liver size, and clearance of drugs with a high hepatic extraction ratio falls in parallel with the fall in hepatic blood flow. In normal ageing, in general, activity of the cytochrome P450 enzymes is preserved, although a decline in frail older people has been noted, as well as in association with liver disease, cancer, trauma, sepsis, critical illness and renal failure. As the contribution of age, co-morbidity and concurrent drug therapy to altered drug clearance is impossible to predict in an individual older patient, it is wise to start any drug at a low dose and increase this slowly, monitoring carefully for beneficial and adverse effects.

  10. CTRP3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism.

    Science.gov (United States)

    Peterson, Jonathan M; Seldin, Marcus M; Wei, Zhikui; Aja, Susan; Wong, G William

    2013-08-01

    CTRP3 is a secreted plasma protein of the C1q family that helps regulate hepatic gluconeogenesis and is downregulated in a diet-induced obese state. However, the role of CTRP3 in regulating lipid metabolism has not been established. Here, we used a transgenic mouse model to address the potential function of CTRP3 in ameliorating high-fat diet-induced metabolic stress. Both transgenic and wild-type mice fed a high-fat diet showed similar body weight gain, food intake, and energy expenditure. Despite similar adiposity to wild-type mice upon diet-induced obesity (DIO), CTRP3 transgenic mice were strikingly resistant to the development of hepatic steatosis, had reduced serum TNF-α levels, and demonstrated a modest improvement in systemic insulin sensitivity. Additionally, reduced hepatic triglyceride levels were due to decreased expression of enzymes (GPAT, AGPAT, and DGAT) involved in triglyceride synthesis. Importantly, short-term daily administration of recombinant CTRP3 to DIO mice for 5 days was sufficient to improve the fatty liver phenotype, evident as reduced hepatic triglyceride content and expression of triglyceride synthesis genes. Consistent with a direct effect on liver cells, recombinant CTRP3 treatment reduced fatty acid synthesis and neutral lipid accumulation in cultured rat H4IIE hepatocytes. Together, these results establish a novel role for CTRP3 hormone in regulating hepatic lipid metabolism and highlight its protective function and therapeutic potential in attenuating hepatic steatosis.

  11. The Impact of Host Metabolic Factors on Treatment Outcome in Chronic Hepatitis C

    Directory of Open Access Journals (Sweden)

    Savvidou Savvoula

    2012-01-01

    Full Text Available Background. Recent data suggest that chronic hepatitis C has to be considered a metabolic disease further to a viral infection. The aim of this study was to elaborate on the complex interactions between hepatitis C virus, host metabolic factors, and treatment response. Methods. Demographic, virological, and histological data from 356 consecutive patients were analyzed retrospectively. Hepatic steatosis, obesity, and insulin resistance were examined in relation to their impact on treatment outcome. Comparison between genotype 1 and 3 patients was performed to identify differences in the determinants of hepatic steatosis. Results. Histological evidence of hepatic steatosis was found in 113 patients, distributed in 20.3%, 9.0%, and 2.5% for grades I, II, and III, respectively. Hepatic steatosis was associated with past alcohol abuse (P=0.003 and histological evidence of advanced fibrosis (P<0.001. Older age (OR 2.51, P=0.002, genotype (OR 3.28, P<0.001, cirrhosis (OR 4.23, P=0.005, and hepatic steatosis (OR 2.48, P=0.001 were independent predictors for nonresponse. Correlations of hepatic steatosis with alcohol, insulin resistance, and fibrosis stage were found similar for both genotypes 1 and 3. Conclusions. Host metabolic factors may predict treatment outcome, and this impact remains significant even in genotype 3, where steatosis has been believed to be exclusively virus related.

  12. Modeling Inborn Errors of Hepatic Metabolism Using Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Pournasr, Behshad; Duncan, Stephen A

    2017-11-01

    Inborn errors of hepatic metabolism are because of deficiencies commonly within a single enzyme as a consequence of heritable mutations in the genome. Individually such diseases are rare, but collectively they are common. Advances in genome-wide association studies and DNA sequencing have helped researchers identify the underlying genetic basis of such diseases. Unfortunately, cellular and animal models that accurately recapitulate these inborn errors of hepatic metabolism in the laboratory have been lacking. Recently, investigators have exploited molecular techniques to generate induced pluripotent stem cells from patients' somatic cells. Induced pluripotent stem cells can differentiate into a wide variety of cell types, including hepatocytes, thereby offering an innovative approach to unravel the mechanisms underlying inborn errors of hepatic metabolism. Moreover, such cell models could potentially provide a platform for the discovery of therapeutics. In this mini-review, we present a brief overview of the state-of-the-art in using pluripotent stem cells for such studies. © 2017 American Heart Association, Inc.

  13. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

    International Nuclear Information System (INIS)

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska; Levels, Johannes H.M.; Quax, Paul H.A.; Meijers, Joost C.M.; Pannekoek, Hans; Groen, Albert K.; Vries, Carlie J.M. de

    2008-01-01

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor, and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

  14. Liver fat content in type 2 diabetes: relationship with hepatic perfusion and substrate metabolism

    NARCIS (Netherlands)

    Rijzewijk, Luuk J.; van der Meer, Rutger W.; Lubberink, Mark; Lamb, Hildo J.; Romijn, Johannes A.; de Roos, Albert; Twisk, Jos W.; Heine, Robert J.; Lammertsma, Adriaan A.; Smit, Johannes W. A.; Diamant, Michaela

    2010-01-01

    Hepatic steatosis is common in type 2 diabetes. It is causally linked to the features of the metabolic syndrome, liver cirrhosis, and cardiovascular disease. Experimental data have indicated that increased liver fat may impair hepatic perfusion and metabolism. The aim of the current study was to

  15. Hepatic ABC transporters and triglyceride metabolism.

    Science.gov (United States)

    Parks, John S; Chung, Soonkyu; Shelness, Gregory S

    2012-06-01

    Elevated plasma triglyceride and reduced HDL concentrations are prominent features of metabolic syndrome and type 2 diabetes. Individuals with Tangier disease also have elevated plasma triglyceride concentrations and very low HDL, resulting from mutations in ATP-binding cassette transporter A1 (ABCA1), an integral membrane protein that facilitates nascent HDL particle assembly. Past studies attributed the inverse relationship between plasma HDL and triglyceride to intravascular lipid exchange and catabolic events. However, recent studies also suggest that hepatic signaling and lipid mobilization and secretion may explain how HDL affects plasma triglyceride concentrations. Hepatocyte-specific ABCA1 knockout mice have markedly reduced plasma HDL and a two-fold increase in triglyceride due to failure to assemble nascent HDL particles by hepatocytes, causing increased catabolism of HDL apolipoprotein A-I and increased hepatic production of triglyceride-enriched VLDL. In-vitro studies suggest that nascent HDL particles may induce signaling to decrease triglyceride secretion. Inhibition of microRNA 33 expression in nonhuman primates augments hepatic ABCA1, genes involved in fatty acid oxidation, and decreases expression of lipogenic genes, causing increased plasma HDL and decreased triglyceride levels. New evidence suggests potential mechanisms by which hepatic ABCA1-mediated nascent HDL formation regulates VLDL-triglyceride production and contributes to the inverse relationship between plasma HDL and triglyceride.

  16. Exercise Intensity Modulation of Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Fábio S. Lira

    2012-01-01

    Full Text Available Lipid metabolism in the liver is complex and involves the synthesis and secretion of very low density lipoproteins (VLDL, ketone bodies, and high rates of fatty acid oxidation, synthesis, and esterification. Exercise training induces several changes in lipid metabolism in the liver and affects VLDL secretion and fatty acid oxidation. These alterations are even more conspicuous in disease, as in obesity, and cancer cachexia. Our understanding of the mechanisms leading to metabolic adaptations in the liver as induced by exercise training has advanced considerably in the recent years, but much remains to be addressed. More recently, the adoption of high intensity exercise training has been put forward as a means of modulating hepatic metabolism. The purpose of the present paper is to summarise and discuss the merit of such new knowledge.

  17. PPAR-alpha dependent regulation of vanin-1 mediates hepatic lipid metabolism

    NARCIS (Netherlands)

    Diepen, van J.A.; Jansen, P.A.; Ballak, D.B.; Hijmans, A.; Hooiveld, G.J.E.J.; Rommelaere, S.; Kersten, A.H.; Stienstra, R.

    2014-01-01

    Background & Aims Peroxisome proliferator-activated receptor alpha (PPARa) is a key regulator of hepatic fat oxidation that serves as an energy source during starvation. Vanin-1 has been described as a putative PPARa target gene in liver, but its function in hepatic lipid metabolism is unknown.

  18. Hepatic Aryl hydrocarbon Receptor Nuclear Translocator (ARNT regulates metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Christopher H Scott

    Full Text Available Aryl hydrocarbon Receptor Nuclear Translocator (ARNT and its partners hypoxia-inducible factors (HIF-1α and HIF-2α are candidate factors for the well-known link between the liver, metabolic dysfunction and elevation in circulating lipids and glucose. Methods: Hepatocyte-specific ARNT-null (LARNT, HIF-1α-null (LHIF1α and HIF-2α-null (LHIF2α mice were created.LARNT mice had increased fasting glucose, impaired glucose tolerance, increased glucose production, raised post-prandial serum triglycerides (TG and markedly lower hepatic ATP versus littermate controls. There was increased expression of G6Pase, Chrebp, Fas and Scd-1 mRNAs in LARNT animals. Surprisingly, LHIF1α and LHIF2α mice exhibited no alterations in any metabolic parameter assessed.These results provide convincing evidence that reduced hepatic ARNT can contribute to inappropriate hepatic glucose production and post-prandial dyslipidaemia. Hepatic ARNT may be a novel therapeutic target for improving post-prandial hypertriglyceridemia and glucose homeostasis.

  19. DDT increases hepatic testosterone metabolism in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Santoyo, Adolfo; Albores, Arnulfo; Cebrian, Mariano E. [Cinvestav-IPN, Seccion de Toxicologia, Mexico (Mexico); Hernandez, Manuel [Cinvestav-IPN, Departamento de Biologia Celular (Mexico)

    2005-01-01

    DDT and its metabolites are considered as endocrine disruptors able to promote hormone-dependent pathologies. We studied the effects of technical-grade DDT on hepatic testosterone metabolism and testosterone hydroxylase activity ratios in the rat. Male and female Wistar rats were treated by gavage with a single dose of technical-grade DDT (0, 0.1, 1, 10, and 100 mg/kg body weight) and killed 24 h later. Hepatic microsomes were incubated with [4-{sup 14}C]-testosterone and the metabolites were separated by thin-layer chromatography and quantified by radio scanning. DDT increased testosterone biotransformation and modified the profile of metabolites produced in a sex-dependent manner. Males treated with a representative dose (10 mg/kg) produced relatively less androstenedione (AD), 2{alpha}-hydroxytestosterone (OHT), and 16{alpha}-OHT but higher 6{beta}-OHT whereas treated females produced less 7{alpha}-OHT and AD but higher 6{beta}-OHT and 6{alpha}-OHT than their respective controls. In both sexes DDT decreased the relative proportion of AD and increased that of 6{beta}-OHT suggesting that the androgen-saving pathway was affected. The testosterone 6{alpha}-/15{alpha}-OHT ratio, a proposed indicator of demasculinization, was increased in treated males. This effect was in agreement with the demasculinizing ability proposed for DDT. The effects on 6{alpha}-/16{alpha}-OHT and 6-dehydrotestosterone/16{alpha}-OHT ratios followed a similar tendency, with the ratio 6{alpha}-/16{alpha}-OHT being the most sensitive marker. Interestingly, these ratios were reduced in treated females suggesting that technical-grade DDT shifted testosterone hydroxylations toward a more masculine pattern. Thus, technical-grade DDT altered the hepatic sexual dimorphism in testosterone metabolism and decreased the metabolic differences between male and female rats. (orig.)

  20. The Use of Budesonide in the Treatment of Autoimmune Hepatitis in Canada

    Directory of Open Access Journals (Sweden)

    Iman Zandieh

    2008-01-01

    Full Text Available BACKGROUND: Autoimmune hepatitis (AIH is a chronic inflammatory disease that is successfully treated with prednisone and/or azathioprine immunosuppressive therapy in 70% to 80% of patients. The remaining patients are intolerant or refractory to these standard medications. Budesonide, a synthetic glucocorticoid, undergoes a high degree of first-pass metabolism, reducing its systemic bioavailability, and has a 15-fold greater affinity for the glucocorticoid receptor than prednisolone. Budesonide may be a potentially useful systemic steroid-sparing immunosuppressive agent in the treatment of AIH.

  1. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo

    International Nuclear Information System (INIS)

    Chen, P.-J.; Padgett, William T.; Moore, Tanya; Winnik, Witold; Lambert, Guy R.; Thai, Sheau-Fung; Hester, Susan D.; Nesnow, Stephen

    2009-01-01

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  2. Biochanin A improves hepatic steatosis and insulin resistance by regulating the hepatic lipid and glucose metabolic pathways in diet-induced obese mice.

    Science.gov (United States)

    Park, Hee-Sook; Hur, Haeng Jeon; Kim, Soon-Hee; Park, Su-Jin; Hong, Moon Ju; Sung, Mi Jeong; Kwon, Dae Young; Kim, Myung-Sunny

    2016-09-01

    Natural compounds that regulate peroxisome proliferator-activated receptor alpha (PPARα) have been reported to have beneficial effects in obesity-mediated metabolic disorders. In this study, we demonstrated that biochanin A (BA), an agonist of PPAR-α, improved hepatic steatosis and insulin resistance by regulating hepatic lipid and glucose metabolism. C57BL/6 mice were fed a normal chow diet, a high-fat diet (HFD), and an HFD supplemented with 0.05% BA for 12 weeks. Histological and biochemical examinations indicated that BA prevented obesity-induced hepatic steatosis and insulin resistance in HFD-fed mice. BA stimulated the transcriptional activation of PPAR-α in vitro and increased the expression of PPAR-α and its regulatory proteins in the liver. CE-TOF/MS analyses indicated that BA administration promoted the recovery of metabolites involved in phosphatidylcholine synthesis, lipogenesis, and beta-oxidation in the livers of obese mice. BA also suppressed the levels of gluconeogenesis-related metabolites and the expression of the associated enzymes, glucose 6-phosphatase and pyruvate kinase. Taken together, these results showed that BA ameliorated metabolic disorders such as hepatic steatosis and insulin resistance by modulating lipid and glucose metabolism in diet-induced obesity. Thus, BA may be a potential therapeutic agent for the prevention of obesity-mediated hepatic steatosis and insulin resistance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tribbles-1: a novel regulator of hepatic lipid metabolism in humans.

    Science.gov (United States)

    Bauer, Robert C; Yenilmez, Batuhan O; Rader, Daniel J

    2015-10-01

    The protein tribbles-1, encoded by the gene TRIB1, is increasingly recognized as a major regulator of multiple cellular and physiological processes in humans. Recent human genetic studies, as well as molecular biological approaches, have implicated this intriguing protein in the aetiology of multiple human diseases, including myeloid leukaemia, Crohn's disease, non-alcoholic fatty liver disease (NAFLD), dyslipidaemia and coronary artery disease (CAD). Genome-wide association studies (GWAS) have repeatedly identified variants at the genomic TRIB1 locus as being significantly associated with multiple plasma lipid traits and cardiovascular disease (CVD) in humans. The involvement of TRIB1 in hepatic lipid metabolism has been validated through viral-mediated hepatic overexpression of the gene in mice; increasing levels of TRIB1 decreased plasma lipids in a dose-dependent manner. Additional studies have implicated TRIB1 in the regulation of hepatic lipogenesis and NAFLD. The exact mechanisms of TRIB1 regulation of both plasma lipids and hepatic lipogenesis remain undetermined, although multiple signalling pathways and transcription factors have been implicated in tribbles-1 function. Recent reports have been aimed at developing TRIB1-based lipid therapeutics. In summary, tribbles-1 is an important modulator of human energy metabolism and metabolic syndromes and worthy of future studies aimed at investigating its potential as a therapeutic target. © 2015 Authors; published by Portland Press Limited.

  4. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs.

    Science.gov (United States)

    Hara, Akira; Endo, Satoshi; Matsunaga, Toshiyuki; El-Kabbani, Ossama; Miura, Takeshi; Nishinaka, Toru; Terada, Tomoyuki

    2017-08-15

    Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, reduces a variety of carbonyl compounds including endogenous isatin, prostaglandin E 2 and 4-oxo-2-nonenal. It is also a major non-cytochrome P450 enzyme in the phase I metabolism of carbonyl-containing drugs, and is highly expressed in the intestine. In this study, we found that long-chain fatty acids and their CoA ester derivatives inhibit CBR1. Among saturated fatty acids, myristic, palmitic and stearic acids were inhibitory, and stearic acid was the most potent (IC 50 9µM). Unsaturated fatty acids (oleic, elaidic, γ-linolenic and docosahexaenoic acids) and acyl-CoAs (palmitoyl-, stearoyl- and oleoyl-CoAs) were more potent inhibitors (IC 50 1.0-2.5µM), and showed high inhibitory selectivity to CBR1 over its isozyme CBR3 and other SDR superfamily enzymes (DCXR and DHRS4) with CBR activity. The inhibition by these fatty acids and acyl-CoAs was competitive with respect to the substrate, showing the K i values of 0.49-1.2µM. Site-directed mutagenesis of the substrate-binding residues of CBR1 suggested that the interactions between the fatty acyl chain and the enzyme's Met141 and Trp229 are important for the inhibitory selectivity. We also examined CBR1 inhibition by oleic acid in cellular levels: The fatty acid effectively inhibited CBR1-mediated 4-oxo-2-nonenal metabolism in colon cancer DLD1 cells and increased sensitivity to doxorubicin in the drug-resistant gastric cancer MKN45 cells that highly express CBR1. The results suggest a possible new food-drug interaction through inhibition of CBR1-mediated intestinal first-pass drug metabolism by dietary fatty acids. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes

    NARCIS (Netherlands)

    Rijzewijk, Luuk J.; Jonker, Jacqueline T.; van der Meer, Rutger W.; Lubberink, Mark; de Jong, Hugo W.; Romijn, Johannes A.; Bax, Jeroen J.; de Roos, Albert; Heine, Robert J.; Twisk, Jos W.; Windhorst, Albert D.; Lammertsma, Adriaan A.; Smit, Johannes W. A.; Diamant, Michaela; Lamb, Hildo J.

    2010-01-01

    The purpose of this study was to investigate the relationship between hepatic triglyceride content and both myocardial function and metabolism in type 2 diabetes mellitus (T2DM). Heart disease is the leading cause of mortality in T2DM. Central obesity and hepatic steatosis, both hallmark

  6. Hepatic arachidonic acid metabolism is disrupted after hexachlorobenzene treatment

    International Nuclear Information System (INIS)

    Billi de Catabbi, Silvia C.; Faletti, Alicia; Fuentes, Federico; San Martin de Viale, Leonor C.; Cochon, Adriana C.

    2005-01-01

    Hexaclorobenzene (HCB), one of the most persistent environmental pollutants, can cause a wide range of toxic effects including cancer in animals, and hepatotoxicity and porphyria both in humans and animals. In the present study, liver microsomal cytochrome P450 (CYP)-dependent arachidonic acid (AA) metabolism, hepatic PGE production, and cytosolic phospholipase A 2 (cPLA 2 ) activity were investigated in an experimental model of porphyria cutanea tarda induced by HCB. Female Wistar rats were treated with a single daily dose of HCB (100 mg kg -1 body weight) for 5 days and were sacrificed 3, 10, 17, and 52 days after the last dose. HCB treatment induced the accumulation of hepatic porhyrins from day 17 and increased the activities of liver ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), and aminopyrine N-demethylase (APND) from day 3 after the last dose. Liver microsomes from control and HCB-treated rats generated, in the presence of NADPH, hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs), 11,12-Di HETE, and ω-OH/ω-1-OH AA. HCB treatment caused an increase in total NADPH CYP-dependent AA metabolism, with a higher response at 3 days after the last HCB dose than at the other time points studied. In addition, HCB treatment markedly enhanced PGE production and release in liver slices. This HCB effect was time dependent and reached its highest level after 10 days. At this time cPLA 2 activity was shown to be increased. Unexpectedly, HCB produced a significant decrease in cPLA 2 activity on the 17th and 52nd day. Our results demonstrated for the first time that HCB induces both the cyclooxygenase and CYP-dependent AA metabolism. The effects of HCB on AA metabolism were previous to the onset of a marked porphyria and might contribute to different aspects of HCB-induced liver toxicity such as alterations of membrane fluidity and membrane-bound protein function. Observations also suggested that a possible role of cPLA 2 in

  7. Leucine metabolism in patients with Hepatic Encephalopathy

    International Nuclear Information System (INIS)

    McGhee, A.S.; Kassouny, M.E.; Matthews, D.E.; Millikan, W.

    1986-01-01

    A primed continuous infusion of [ 15 N, 1- 13 C]leucine was used to determine whether increased oxidation and/or protein synthesis of leucine occurs in patients with cirrhosis. Five controls and patients were equilibrated on a metabolic balance diet [0.6 g protein per kg ideal body weight (IBW)]. An additional four patients were equilibrated in the same manner with the same type of diet with a protein level of 0.75 g per kg IBW. Plasma leucine and breath CO 2 enrichments were measured by mass spectrometry. Protein synthesis and leucine metabolism were identical in controls and patients when both were fed a diet with 0.6 g protein/kg IBW. Results indicate that systemic derangements of leucine metabolism are not the cause of Hepatic Encephalopathy

  8. Quantitative assessment of the hepatic metabolic volume product in patients with diffuse hepatic steatosis and normal controls through use of FDG-PET and MR imaging: a novel concept.

    Science.gov (United States)

    Bural, Gonca G; Torigian, Drew A; Burke, Anne; Houseni, Mohamed; Alkhawaldeh, Khaled; Cucchiara, Andrew; Basu, Sandip; Alavi, Abass

    2010-06-01

    The aim of this study was to compare hepatic standardized uptake values (SUVs) and hepatic metabolic volumetric products (HMVP) between patients of diffuse hepatic steatosis and control subjects with normal livers. Twenty-seven subjects were included in the study (13 men and 14 women; age range, 34-72 years). All had 18F-2-fluoro-2-D-deoxyglucose-positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) scans with an interscan interval of 0-5 months. Twelve of 27 subjects had diffuse hepatic steatosis on MRI. The remaining 15 were selected as age-matched controls based on normal liver parenchyma on MRI. Mean and maximum hepatic SUVs were calculated for both patient groups on FDG-PET images. Hepatic volumes were measured from MRI. HMVP in each subject was subsequently calculated by multiplication of hepatic volume by mean hepatic SUV. HMVPs as well as mean and maximum hepatic SUVs were compared between the two study groups. HMVPs, mean hepatic SUVs, and maximum hepatic SUVs were greater (statistically significant, p < 0.05) in subjects with diffuse hepatic steatosis compared to those in the control group. The increase in HMVP is the result of increased hepatic metabolic activity likely related to the diffuse hepatic steatosis. The active inflammatory process related to the diffuse hepatic steatosis is the probable explanation for the increase in hepatic metabolic activity on FDG-PET study.

  9. A switch in hepatic cortisol metabolism across the spectrum of non alcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Adeeba Ahmed

    Full Text Available Non alcoholic fatty liver disease (NAFLD is the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of liver disease ranging from reversible hepatic steatosis, to non alcoholic steato-hepatitis (NASH and cirrhosis. The potential role of glucocorticoids (GC in the pathogenesis of NAFLD is highlighted in patients with GC excess, Cushing's syndrome, who develop central adiposity, insulin resistance and in 20% of cases, NAFLD. Although in most cases of NAFLD, circulating cortisol levels are normal, hepatic cortisol availability is controlled by enzymes that regenerate cortisol (F from inactive cortisone (E (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1, or inactivate cortisol through A-ring metabolism (5α- and 5β-reductase, 5αR and 5βR.In vitro studies defined 11β-HSD1 expression in normal and NASH liver samples. We then characterised hepatic cortisol metabolism in 16 patients with histologically proven NAFLD compared to 32 obese controls using gas chromatographic analysis of 24 hour urine collection and plasma cortisol generation profile following oral cortisone.In patients with steatosis 5αR activity was increased, with a decrease in hepatic 11β-HSD1 activity. Total cortisol metabolites were increased in this group consistent with increased GC production rate. In contrast, in patients with NASH, 11β-HSD1 activity was increased both in comparison to patients with steatosis, and controls. Endorsing these findings, 11β-HSD1 mRNA and immunostaining was markedly increased in NASH patients in peri septal hepatocytes and within CD68 positive macrophages within inflamed cirrhotic septa.Patients with hepatic steatosis have increased clearance and decreased hepatic regeneration of cortisol and we propose that this may represent a protective mechanism to decrease local GC availability to preserve hepatic metabolic phenotype. With progression to NASH, increased 11β-HSD1 activity and consequent cortisol regeneration may

  10. A switch in hepatic cortisol metabolism across the spectrum of non alcoholic fatty liver disease.

    Science.gov (United States)

    Ahmed, Adeeba; Rabbitt, Elizabeth; Brady, Theresa; Brown, Claire; Guest, Peter; Bujalska, Iwona J; Doig, Craig; Newsome, Philip N; Hubscher, Stefan; Elias, Elwyn; Adams, David H; Tomlinson, Jeremy W; Stewart, Paul M

    2012-01-01

    Non alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of liver disease ranging from reversible hepatic steatosis, to non alcoholic steato-hepatitis (NASH) and cirrhosis. The potential role of glucocorticoids (GC) in the pathogenesis of NAFLD is highlighted in patients with GC excess, Cushing's syndrome, who develop central adiposity, insulin resistance and in 20% of cases, NAFLD. Although in most cases of NAFLD, circulating cortisol levels are normal, hepatic cortisol availability is controlled by enzymes that regenerate cortisol (F) from inactive cortisone (E) (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1), or inactivate cortisol through A-ring metabolism (5α- and 5β-reductase, 5αR and 5βR). In vitro studies defined 11β-HSD1 expression in normal and NASH liver samples. We then characterised hepatic cortisol metabolism in 16 patients with histologically proven NAFLD compared to 32 obese controls using gas chromatographic analysis of 24 hour urine collection and plasma cortisol generation profile following oral cortisone. In patients with steatosis 5αR activity was increased, with a decrease in hepatic 11β-HSD1 activity. Total cortisol metabolites were increased in this group consistent with increased GC production rate. In contrast, in patients with NASH, 11β-HSD1 activity was increased both in comparison to patients with steatosis, and controls. Endorsing these findings, 11β-HSD1 mRNA and immunostaining was markedly increased in NASH patients in peri septal hepatocytes and within CD68 positive macrophages within inflamed cirrhotic septa. Patients with hepatic steatosis have increased clearance and decreased hepatic regeneration of cortisol and we propose that this may represent a protective mechanism to decrease local GC availability to preserve hepatic metabolic phenotype. With progression to NASH, increased 11β-HSD1 activity and consequent cortisol regeneration may serve to

  11. Hepatic ACAT2 knock down increases ABCA1 and modifies HDL metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Matteo Pedrelli

    Full Text Available OBJECTIVES: ACAT2 is the exclusive cholesterol-esterifying enzyme in hepatocytes and enterocytes. Hepatic ABCA1 transfers unesterified cholesterol (UC to apoAI, thus generating HDL. By changing the hepatic UC pool available for ABCA1, ACAT2 may affect HDL metabolism. The aim of this study was to reveal whether hepatic ACAT2 influences HDL metabolism. DESIGN: WT and LXRα/β double knockout (DOKO mice were fed a western-type diet for 8 weeks. Animals were i.p. injected with an antisense oligonucleotide targeted to hepatic ACAT2 (ASO6, or with an ASO control. Injections started 4 weeks after, or concomitantly with, the beginning of the diet. RESULTS: ASO6 reduced liver cholesteryl esters, while not inducing UC accumulation. ASO6 increased hepatic ABCA1 protein independently of the diet conditions. ASO6 affected HDL lipids (increased UC only in DOKO, while it increased apoE-containing HDL in both genotypes. In WT mice ASO6 led to the appearance of large HDL enriched in apoAI and apoE. CONCLUSIONS: The use of ASO6 revealed a new pathway by which the liver may contribute to HDL metabolism in mice. ACAT2 seems to be a hepatic player affecting the cholesterol fluxes fated to VLDL or to HDL, the latter via up-regulation of ABCA1.

  12. Parallel imaging for first-pass myocardial perfusion

    NARCIS (Netherlands)

    Irwan, Roy; Lubbers, Daniel D.; van der Vleuten, Pieter A.; Kappert, Peter; Gotte, Marco J. W.; Sijens, Paul E.

    Two parallel imaging methods used for first-pass myocardial perfusion imaging were compared in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and image artifacts. One used adaptive Time-adaptive SENSitivity Encoding (TSENSE) and the other used GeneRalized Autocalibrating

  13. Hepatic NPC1L1 overexpression ameliorates glucose metabolism in diabetic mice via suppression of gluconeogenesis.

    Science.gov (United States)

    Kurano, Makoto; Hara, Masumi; Satoh, Hiroaki; Tsukamoto, Kazuhisa

    2015-05-01

    Inhibition of intestinal NPC1L1 by ezetimibe has been demonstrated to improve glucose metabolism in rodent models; however, the role of hepatic NPC1L1 in glucose metabolism has not been elucidated. In this study, we analyzed the effects of hepatic NPC1L1 on glucose metabolism. We overexpressed NPC1L1 in the livers of lean wild type mice, diet-induced obesity mice and db/db mice with adenoviral gene transfer. We found that in all three mouse models, hepatic NPC1L1 overexpression lowered fasting blood glucose levels as well as blood glucose levels on ad libitum; in db/db mice, hepatic NPC1L1 overexpression improved blood glucose levels to almost the same as those found in lean wild type mice. A pyruvate tolerance test revealed that gluconeogenesis was suppressed by hepatic NPC1L1 overexpression. Further analyses revealed that hepatic NPC1L1 overexpression decreased the expression of FoxO1, resulting in the reduced expression of G6Pase and PEPCK, key enzymes in gluconeogenesis. These results indicate that hepatic NPC1L1 might have distinct properties of suppressing gluconeogenesis via inhibition of FoxO1 pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A mathematical analysis of adaptations to the metabolic fate of fructose in essential fructosuria subjects.

    Science.gov (United States)

    Allen, R J; Musante, Cynthia J

    2018-04-17

    Fructose is a major component of Western diets and is implicated in the pathogenesis of obesity and type 2 diabetes. In response to an oral challenge, the majority of fructose is cleared during "first-pass" liver metabolism, primarily via phosphorylation by ketohexokinase (KHK). A rare benign genetic deficiency in KHK, called essential fructosuria (EF), leads to altered fructose metabolism. The only reported symptom of EF is the appearance of fructose in the urine following either oral or intravenous fructose administration. Here we develop and use a mathematical model to investigate the adaptations to altered fructose metabolism in people with EF. Firstly, the model is calibrated to fit available data in normal healthy subjects. Then, to mathematically represent EF subjects we systematically implement metabolic adaptations such that model simulations match available data for this phenotype. We hypothesize that these modifications represent the major metabolic adaptations present in these subjects. This modeling approach suggests that several other aspects of fructose metabolism, beyond hepatic KHK deficiency, are altered and contribute to the etiology of this benign condition. Specifically, we predict that fructose absorption into the portal vein is altered, peripheral metabolism is slowed, renal re-absorption of fructose is mostly ablated and that alternate pathways for hepatic metabolism of fructose are up-regulated. Moreover, these findings have implications for drug discovery and development, suggesting that the therapeutic targeting of fructose metabolism could lead to unexpected metabolic adaptations, potentially due to a physiological response to high fructose conditions.

  15. A novel square-root domain realization of first order all-pass filter

    OpenAIRE

    ÖLMEZ, Sinem; ÇAM, Uğur

    2010-01-01

    In this paper, a new square-root domain, first order, all-pass filter based on the MOSFET square law is presented. The proposed filter is designed by using nonlinear mapping on the state variables of a state space description of the transfer function. To the best knowledge of the authors, the filter is the first square-root domain first order all-pass structure designed by using state space synthesis method in the literature. The center frequency of the all-pass filter is not only a...

  16. Use of first-pass radionuclide angiography for evaluating left-sided heart regurgitation

    International Nuclear Information System (INIS)

    Mantel, J.; Freidin, M.; Willens, H.; Rubenfire, M.; Bahl, R.; Ruskin, R.; Cascade, P.

    1986-01-01

    The first-pass radionuclide technique can be used to evaluate valvular regurgitation. Sixty-three patients were studied with cardiac catheterization and first-pass radionuclide angiography. The degree of regurgitation by cardiac catheterization was evaluated by using a ranking scale of 0-4, where 4 is severe regurgitation. The results were as follows: for nine patients, rank = 0, and percentage of regurgitation (mean +- SD) = 3.6 +- 5; for five patients, rank = 1 and percentage regurgitation = 15.8 +- 3; for 13 patients, rank = 2 and percentage regurgitation = 28.5 +- 14; for 16 patients, rank = 3 and percentage regurgitation = 41.5 +- 10; and for 19 patients, rank = 4 and percentage regurgitation 54.9 +- 13. A correlation coefficient of .90 between cardiac catheterization and the first-pass technique was calculated. The authors conclude that first-pass radionuclide angiography can quantitate valvular regurgitation and accurately differentiate between no, minimal, moderate, and severe valvular regurgitation

  17. Metabolic and improved organ scan studies. III. 13N-ammonia metabolic studies in hepatic encephalopathy

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Results are reported from an investigation into the nature of hepatic encephalopathy, through study of the uptake and metabolism of 13 N-labeled ammonia by the brain in relation to liver function, in order to develop improved methods for the management of patients with this condition

  18. Ontogeny of hepatic energy metabolism genes in mice as revealed by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    Helen J Renaud

    Full Text Available The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age. The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5-Day 5 (perinatal-enriched, Day 10-Day 20 (pre-weaning-enriched, and Day 25-Day 60 (adolescence/adulthood-enriched. Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty

  19. Comprehensive analysis of PPARa-dependent regulation of hepatic lipid metabolism by expression profiling

    NARCIS (Netherlands)

    Rakhshandehroo, Maryam; Sanderson-Kjellberg, L.M.; Matilainen, Merja; Stienstra, Rinke; Carlberg, Carsten; Groot, de Philip; Muller, Michael; Kersten, Sander

    2007-01-01

    PPARalpha is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARalpha in hepatic lipid metabolism, many PPARalpha-dependent pathways and genes have yet to be discovered. In order to

  20. Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450

    International Nuclear Information System (INIS)

    Marinello, A.J.; Bansal, S.K.; Paul, B.; Koser, P.L.; Love, J.; Struck, R.F.; Gurtoo, H.L.

    1984-01-01

    The hepatic cytochrome P-450-mediated metabolism and metabolic activation of [chloroethyl-3H]cyclophosphamide [( chloroethyl-3H]CP) and [4-14C]cyclophosphamide [( 4-14C]CP) were investigated in vitro in the reconstituted system containing cytochrome P-450 isolated from phenobarbital-treated rats. In addition, hepatic microsomal binding and the hepatic microsome-mediated metabolism of [14C]acrolein, a metabolite of [4-14C]CP, were also investigated. The metabolism of [chloroethyl-3H]CP and [4-14C]CP to polar metabolites was found to depend on the presence of NADPH and showed concentration dependence with respect to cytochrome P-450 and NADPH:cytochrome P-450 reductase. Km and Vmax values were essentially similar. The patterns of inhibition by microsomal mixed-function oxidase inhibitors, anti-cytochrome P-450 antibody, and heat denaturation of the cytochrome P-450 were essentially similar, with subtle differences between [4-14C]CP and [chloroethyl-3H]CP metabolism. The in vitro metabolic activation of CP in the reconstituted system demonstrated predominant binding of [chloroethyl-3H]CP to nucleic acids and almost exclusive binding of [4-14C]CP to proteins. Gel electrophoresis-fluorography of the proteins in the reconstituted system treated with [4-14C]CP demonstrated localization of the 14C label in the cytochrome P-450 region. To examine this association further, hepatic microsomes were modified with [14C]acrolein in the presence and the absence of NADPH. The results confirmed covalent association between [14C]acrolein and cytochrome P-450 in the microsomes and also demonstrated further metabolism of [14C]acrolein, apparently to an epoxide, which is capable of binding covalently to proteins. The results of these investigations not only confirm the significance of primary metabolism but also emphasize the potential role of the secondary metabolism of cyclophosphamide in some of its toxic manifestations

  1. Lack of evidence for metabolism of p-phenylenediamine by human hepatic cytochrome P450 enzymes

    International Nuclear Information System (INIS)

    Stanley, Lesley A.; Skare, Julie A.; Doyle, Edward; Powrie, Robert; D'Angelo, Diane; Elcombe, Clifford R.

    2005-01-01

    p-Phenylenediamine (PPD) is a widely used ingredient in permanent hair dyes; however, little has been published on its metabolism, especially with respect to hepatic cytochrome P450 (CYP)-mediated oxidation. This is regarded as a key step in the activation of carcinogenic arylamines that ultimately leads to the development of bladder cancer. Most epidemiology studies show no significant association between personal use of hair dyes and bladder cancer, but one recent study reported an increased risk of bladder cancer in women who were frequent users of permanent hair dyes. The aim of the present study was to use intact human hepatocytes, human liver microsomes, and heterologously expressed human CYPs to determine whether PPD is metabolised by hepatic CYPs to form an N-hydroxylamine. p-Phenylenediamine was N-acetylated by human hepatocytes to form N-acetylated metabolites, but there was no evidence for the formation of mono-oxygenated metabolites or for enzyme-mediated covalent binding of 14 C-PPD to microsomal protein. In contrast, 2-aminofluorene underwent CYP-mediated metabolism to ≥4 different hydroxylated metabolites. The lack of evidence for hepatic CYP-mediated metabolism of PPD is inconsistent with the hypothesis that this compound plays a causal role in the development of bladder cancer via a mode of action involving hepatic metabolism to an N-hydroxyarylamine

  2. Metabolism of tributyltin and triphenyltin by rat, hamster and human hepatic microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Ohhira, Shuji; Watanabe, Masatomo; Matsui, Hisao [Department of Hygiene, Dokkyo University School of Medicine, Mibu-machi, 321-0293, Tochigi (Japan)

    2003-03-01

    Tributyltin and triphenyltin are metabolized by cytochrome P-450 system enzymes, and their metabolic fate may contribute to the toxicity of the chemicals. In the current study, the in vitro metabolism of tributyltin and triphenyltin by rat, hamster and human hepatic microsomes was investigated to elucidate the metabolic competence for these compounds in humans. The metabolic reaction using microsome-NADPH system that is usually conducted was not applicable to in vitro metabolism of organotins, especially triphenyltin. We therefore examined the effects of dithiothreitol (DTT), one of the antioxidants for sulfhydryl groups, to determine the in vitro metabolism of tributyltin and triphenyltin. As a result, the treatment with 0.1 mM DTT in vitro increased the activity of the microsomal monooxygenase system for metabolism of tributyltin as well as triphenyltin; the total yield of tributyltin and triphenyltin metabolites as tin increased, respectively, by approximately 1.8 and 8.9 times for rat, 2.1 and 1.2 times for hamster, and 1.6 and 1.5 times for human. It is suggested that the organotins directly inactivate cytochrome P-450 because of the interaction with critical sulfhydryl groups of the hemoprotein. We confirmed the utility of this in vitro metabolic system using DTT in the hepatic microsomes of phenobarbital (PB)-pretreated and untreated hamsters. Thus, the in vitro metabolic system described here was applied to a comparative study of the metabolism of organotins in rats, hamsters and humans. Tributyltin was metabolized more readily than triphenyltin in all the species. In humans, the in vitro metabolic pattern resembled that of hamsters, which were susceptible to in vivo triphenyltin toxicity because of incompetent metabolism. It is possible that the hamster is a qualitatively and quantitatively suitable animal model for exploring the influence of tributyltin and triphenyltin in humans. (orig.)

  3. Hepatitis C: Sex and Sexuality

    Science.gov (United States)

    ... with Hepatitis » Sex and Sexuality: Entire Lesson Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... hepatitis C virus through sex. Can you pass hepatitis C to a sex partner? Yes, but it ...

  4. Hepatic farnesoid X-receptor isoforms α2 and α4 differentially modulate bile salt and lipoprotein metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Marije Boesjes

    Full Text Available The nuclear receptor FXR acts as an intracellular bile salt sensor that regulates synthesis and transport of bile salts within their enterohepatic circulation. In addition, FXR is involved in control of a variety of crucial metabolic pathways. Four FXR splice variants are known, i.e. FXRα1-4. Although these isoforms show differences in spatial and temporal expression patterns as well as in transcriptional activity, the physiological relevance hereof has remained elusive. We have evaluated specific roles of hepatic FXRα2 and FXRα4 by stably expressing these isoforms using liver-specific self-complementary adeno-associated viral vectors in total body FXR knock-out mice. The hepatic gene expression profile of the FXR knock-out mice was largely normalized by both isoforms. Yet, differential effects were also apparent; FXRα2 was more effective in reducing elevated HDL levels and transrepressed hepatic expression of Cyp8b1, the regulator of cholate synthesis. The latter coincided with a switch in hydrophobicity of the bile salt pool. Furthermore, FXRα2-transduction caused an increased neutral sterol excretion compared to FXRα4 without affecting intestinal cholesterol absorption. Our data show, for the first time, that hepatic FXRα2 and FXRα4 differentially modulate bile salt and lipoprotein metabolism in mice.

  5. Genetic signatures in choline and 1-carbon metabolism are associated with the severity of hepatic steatosis

    Science.gov (United States)

    Corbin, Karen D.; Abdelmalek, Manal F.; Spencer, Melanie D.; da Costa, Kerry-Ann; Galanko, Joseph A.; Sha, Wei; Suzuki, Ayako; Guy, Cynthia D.; Cardona, Diana M.; Torquati, Alfonso; Diehl, Anna Mae; Zeisel, Steven H.

    2013-01-01

    Choline metabolism is important for very low-density lipoprotein secretion, making this nutritional pathway an important contributor to hepatic lipid balance. The purpose of this study was to assess whether the cumulative effects of multiple single nucleotide polymorphisms (SNPs) across genes of choline/1-carbon metabolism and functionally related pathways increase susceptibility to developing hepatic steatosis. In biopsy-characterized cases of nonalcoholic fatty liver disease and controls, we assessed 260 SNPs across 21 genes in choline/1-carbon metabolism. When SNPs were examined individually, using logistic regression, we only identified a single SNP (PNPLA3 rs738409) that was significantly associated with severity of hepatic steatosis after adjusting for confounders and multiple comparisons (P=0.02). However, when groupings of SNPs in similar metabolic pathways were defined using unsupervised hierarchical clustering, we identified groups of subjects with shared SNP signatures that were significantly correlated with steatosis burden (P=0.0002). The lowest and highest steatosis clusters could also be differentiated by ethnicity. However, unique SNP patterns defined steatosis burden irrespective of ethnicity. Our results suggest that analysis of SNP patterns in genes of choline/1-carbon metabolism may be useful for prediction of severity of steatosis in specific subsets of people, and the metabolic inefficiencies caused by these SNPs should be examined further.—Corbin, K. D., Abdelmalek, M. F., Spencer, M. D., da Costa, K.-A., Galanko, J. A., Sha, W., Suzuki, A., Guy, C. D., Cardona, D. M., Torquati, A., Diehl, A. M., Zeisel, S. H. Genetic signatures in choline and 1-carbon metabolism are associated with the severity of hepatic steatosis. PMID:23292069

  6. Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy

    DEFF Research Database (Denmark)

    Iversen, Peter; Mouridsen, Kim; Hansen, Mikkel B

    2014-01-01

    In patients with impaired liver function and hepatic encephalopathy (HE), consistent elevations of blood ammonia concentration suggest a crucial role in the pathogenesis of HE. Ammonia and acetate are metabolized in brain both primarily in astrocytes. Here, we used dynamic [(11)C]acetate PET...... of the brain to measure the contribution of astrocytes to the previously observed reduction of brain oxidative metabolism in patients with liver cirrhosis and HE, compared to patients with cirrhosis without HE, and to healthy subjects. We used a new kinetic model to estimate uptake from blood to astrocytes...

  7. ER-tethered Transcription Factor CREBH Regulates Hepatic Lipogenesis, Fatty Acid Oxidation, and Lipolysis upon Metabolic Stress

    OpenAIRE

    Zhang, Chunbin; Wang, Guohui; Zheng, Ze; Maddipati, Krishna Rao; Zhang, Xuebao; Dyson, Gregory; Williams, Paul; Duncan, Stephen A.; Kaufman, Randal J.; Zhang, Kezhong

    2012-01-01

    CREBH is a liver-specific transcription factor that is localized in the endoplasmic reticulum (ER) membrane. Our previous work demonstrated that CREBH is activated by ER stress or inflammatory stimuli to induce an acute-phase hepatic inflammation. Here we demonstrate that CREBH is a key metabolic regulator of hepatic lipogenesis, fatty acid (FA) oxidation, and lipolysis under metabolic stress. Saturated FA, insulin signals, or an atherogenic high-fat diet can induce CREBH activation in the li...

  8. Effects of a glucokinase activator on hepatic intermediary metabolism: study with 13C-isotopomer-based metabolomics

    OpenAIRE

    Nissim, Itzhak; Horyn, Oksana; Nissim, Ilana; Daikhin, Yevgeny; Wehrli, Suzanne L.; Yudkoff, Marc; Matschinsky, Franz M.

    2012-01-01

    GKAs (glucokinase activators) are promising agents for the therapy of Type 2 diabetes, but little is known about their effects on hepatic intermediary metabolism. We monitored the fate of 13C-labelled glucose in both a liver perfusion system and isolated hepatocytes. MS and NMR spectroscopy were deployed to measure isotopic enrichment. The results demonstrate that the stimulation of glycolysis by GKA led to numerous changes in hepatic metabolism: (i) augmented flux through the TCA (tricarboxy...

  9. Structural and metabolic heterogeneity of plasma low density lipoproteins in nonhuman primates

    International Nuclear Information System (INIS)

    Marzetta, C.A.

    1986-01-01

    To test the hypothesis that a variety of precursor particles secreted by the liver could result in heterogeneity of LDL products in plasma, the metabolic fate of selected radiolabeled hepatic lipoproteins evaluated was determined in vivo. The hepatic lipoproteins evaluated were isolated from liver perfusate and were triglyceride-rich VLDL (d < 1.006 or d < 1.017) and phospholipid-rich LDL (1.017 < d < 1.049 or 1.030 < d < 1.063). Radiolabeled autologous plasma LDL were injected into recipient animals together with the radiolabeled hepatic lipoproteins. Density gradient ultracentrifugation and gel filtration were used to characterize the distribution of radiolabeled lipoproteins in the plasma at selected times after injection. A variety of hepatic lipoproteins were precursors to lipoproteins that resembled plasma LDL. Between 22 to 80% of the injected dose of radiolabeled hepatic lipoprotein apo B-100 was converted to plasma LDL-like particles, regardless of the type of hepatic lipoprotein injected. A kinetic model was generated to describe the metabolic behavior of hepatic VLDL-derived and plasma LDL-derived apo B-100 radioactivity. Both models required multiple metabolic pools to fit the data. Hepatic VLDL-derived apo B-100 radioactivity was metabolized rapidly into various kinds of LDL subfractions. This rapid conversion of hepatic VLDL apo B-100 to LDL apo B-100 may be analogous to the portion of plasma VLDL that gets converted to LDL without passing through the delipidation cascade that has been described in humans and has been termed direct LDL production

  10. Comprehensive analysis of PPARα-dependent regulation of hepatic lipid metabolism by expression profiling - 5

    NARCIS (Netherlands)

    Rakhshandehroo, Maryam; Sanderson-Kjellberg, L.M.; Matilainen, Merja; Stienstra, Rinke; Carlberg, Carsten; Groot, de Philip; Muller, Michael; Kersten, Sander

    2007-01-01

    PPARα is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARα in hepatic lipid metabolism, many PPARα-dependent pathways and genes have yet to be discovered. In order to obtain an

  11. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    International Nuclear Information System (INIS)

    Shlomai, Amir; Shaul, Yosef

    2009-01-01

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1α coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1α coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4α and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1α coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1α, implying that FOXO1 is a target for PGC-1α coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  12. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model.

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Li

    Full Text Available Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.

  13. Lactoferrin dampens high-fructose corn syrup-induced hepatic manifestations of the metabolic syndrome in a murine model.

    Science.gov (United States)

    Li, Yi-Chieh; Hsieh, Chang-Chi

    2014-01-01

    Hepatic manifestations of the metabolic syndrome are related obesity, type 2 diabetes/insulin resistance and non-alcoholic fatty liver disease. Here we investigated how the anti-inflammatory properties of lactoferrin can protect against the onset of hepatic manifestations of the metabolic syndrome by using a murine model administered with high-fructose corn syrup. Our results show that a high-fructose diet stimulates intestinal bacterial overgrowth and increases intestinal permeability, leading to the introduction of endotoxin into blood circulation and liver. Immunohistochemical staining of Toll-like receptor-4 and thymic stromal lymphopoietin indicated that lactoferrin can modulate lipopolysaccharide-mediated inflammatory cascade. The important regulatory roles are played by adipokines including interleukin-1β, interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, and adiponectin, ultimately reducing hepatitis and decreasing serum alanine aminotransferase release. These beneficial effects of lactoferrin related to the downregulation of the lipopolysaccharide-induced inflammatory cascade in the liver. Furthermore, lactoferrin reduced serum and hepatic triglycerides to prevent lipid accumulation in the liver, and reduced lipid peroxidation, resulting in 4-hydroxynonenal accumulation. Lactoferrin reduced oral glucose tolerance test and homeostasis model assessment-insulin resistance. Lactoferrin administration thus significantly lowered liver weight, resulting from a decrease in the triglyceride and cholesterol synthesis that activates hepatic steatosis. Taken together, these results suggest that lactoferrin protected against high-fructose corn syrup induced hepatic manifestations of the metabolic syndrome.

  14. Relationship between the murine Ah locus and 2,3,7,8-tetrachlorodibenzo-p-dioxin hepatic metabolism, enzyme induction, and toxicity

    International Nuclear Information System (INIS)

    Shen, E.S.

    1988-01-01

    The influence of the Ah locus and hepatic microsomal enzyme induction on 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) metabolism and hepatotoxicity was investigated using C57BL/6J (C57) and DBA/2J (DBA) mice. C57 mice are more sensitive to toxic and enzyme inductive effects of 2,3,7,8-TCDD than DBA mice. Characterization of interstrain differences in hepatic enzyme induction, 2,3,7,8-TCDD metabolism, and hepatotoxicity may aid in identifying the mechanism(s) of 2,3,7,8-TCDD toxicity. The hepatic uptake and metabolism of [ 14 C]2,3,7,8-TCDD were studied using isolated hepatocytes from control and 2,3,7,8-TCDD-pretreated C57 and DBA mice. Pretreated mice were injected with 2,3,7,8-TCDD at doses that maximally induce aryl hydrocarbon hydroxylase activity or at doses that approach the LD 50 value. Despite the induction of hepatic 7-ethoxyresorufin O-deethylase activity and benzo[a]pyrene metabolism, all 2,3,7,8-TCDD pretreatment doses failed to increase the rate of [ 14 C]2,3,7,8-TCDD metabolism for both C57 and DBA mice. These results suggest that the uptake and rate of hepatic metabolism of 2,3,7,8-TCDD do not correlate with genetic differences at the murine Ah locus

  15. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    Torsten Schröder

    2016-04-01

    Full Text Available Objective: Non-alcoholic fatty liver disease (NAFLD is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH. However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. Methods: To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mtFVB/N mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T of the mitochondrial ATP synthase protein 8 (mt-ATP8. Results: At baseline conditions, C57BL/6J-mtFVB/N mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS. Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mtFVB/N mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. Conclusions: We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial

  16. Interaction Between the Central and Peripheral Effects of Insulin in Controlling Hepatic Glucose Metabolism in the Conscious Dog

    Science.gov (United States)

    Ramnanan, Christopher J.; Kraft, Guillaume; Smith, Marta S.; Farmer, Ben; Neal, Doss; Williams, Phillip E.; Lautz, Margaret; Farmer, Tiffany; Donahue, E. Patrick; Cherrington, Alan D.; Edgerton, Dale S.

    2013-01-01

    The importance of hypothalamic insulin action to the regulation of hepatic glucose metabolism in the presence of a normal liver/brain insulin ratio (3:1) is unknown. Thus, we assessed the role of central insulin action in the response of the liver to normal physiologic hyperinsulinemia over 4 h. Using a pancreatic clamp, hepatic portal vein insulin delivery was increased three- or eightfold in the conscious dog. Insulin action was studied in the presence or absence of intracerebroventricularly mediated blockade of hypothalamic insulin action. Euglycemia was maintained, and glucagon was clamped at basal. Both the molecular and metabolic aspects of insulin action were assessed. Blockade of hypothalamic insulin signaling did not alter the insulin-mediated suppression of hepatic gluconeogenic gene transcription but blunted the induction of glucokinase gene transcription and completely blocked the inhibition of glycogen synthase kinase-3β gene transcription. Thus, central and peripheral insulin action combined to control some, but not other, hepatic enzyme programs. Nevertheless, inhibition of hypothalamic insulin action did not alter the effects of the hormone on hepatic glucose flux (production or uptake). These data indicate that brain insulin action is not a determinant of the rapid (<4 h) inhibition of hepatic glucose metabolism caused by normal physiologic hyperinsulinemia in this large animal model. PMID:23011594

  17. Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression.

    Science.gov (United States)

    Donepudi, Ajay C; Cheng, Qiuqiong; Lu, Zhenqiang James; Cherrington, Nathan J; Slitt, Angela L

    2016-04-01

    Metabolic syndrome is a multifactorial disease associated with obesity, insulin resistance, diabetes, and the alteration of multiple metabolic hormones. Obesity rates have been rising worldwide, which increases our need to understand how this population will respond to drugs and exposure to other chemicals. The purpose of this study was to determine in lean and obese mice the ontogeny of clinical biomarkers such as serum hormone and blood glucose levels as well as the physiologic markers that correlate with nuclear receptor- and transporter-related pathways. Livers from male and female wild-type (WT) (C57BL/6) and ob/ob mice littermates were collected before, during, and after the onset of obesity. Serum hormone and mRNA levels were analyzed. Physiologic changes and gene expression during maturation and progression to obesity were performed and correlation analysis was performed using canonical correlations. Significant ontogenic changes in both WT and ob/ob mice were observed and these ontogenic changes differ in ob/ob mice with the development of obesity. In males and females, the ontogenic pattern of the expression of genes such as Abcc3, 4, Abcg2, Cyp2b10, and 4a14 started to differ from week 3, and became significant at weeks 4 and 8 in ob/ob mice compared with WT mice. In obese males, serum resistin, glucagon, and glucose levels correlated with the expression of most hepatic ATP-binding cassette (Abc) transporters, whereas in obese females, serum glucagon-like peptide 1 levels were correlated with most hepatic uptake transporters and P450 enzymes. Overall, the correlation between physiologic changes and gene expression indicate that metabolism-related hormones may play a role in regulating the genes involved in drug metabolism and transport. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  18. From whole body to cellular models of hepatic triglyceride metabolism: man has got to know his limitations.

    Science.gov (United States)

    Green, Charlotte J; Pramfalk, Camilla; Morten, Karl J; Hodson, Leanne

    2015-01-01

    The liver is a main metabolic organ in the human body and carries out a vital role in lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, encompassing a spectrum of conditions from simple fatty liver (hepatic steatosis) through to cirrhosis. Although obesity is a known risk factor for hepatic steatosis, it remains unclear what factor(s) is/are responsible for the primary event leading to retention of intrahepatocellular fat. Studying hepatic processes and the etiology and progression of disease in vivo in humans is challenging, not least as NAFLD may take years to develop. We present here a review of experimental models and approaches that have been used to assess liver triglyceride metabolism and discuss their usefulness in helping to understand the aetiology and development of NAFLD. Copyright © 2015 the American Physiological Society.

  19. Effects of naturally occurring coumarins on hepatic drug-metabolizing enzymes inmice

    International Nuclear Information System (INIS)

    Kleiner, Heather E.; Xia, Xiaojun; Sonoda, Junichiro; Zhang, Jun; Pontius, Elizabeth; Abey, Jane; Evans, Ronald M.; Moore, David D.; DiGiovanni, John

    2008-01-01

    Cytochromes P450 (P450s) and glutathione S-transferases (GSTs) constitute two important enzyme families involved in carcinogen metabolism. Generally, P450s play activation or detoxifying roles while GSTs act primarily as detoxifying enzymes. We previously demonstrated that oral administration of the linear furanocoumarins, isopimpinellin and imperatorin, modulated P450 and GST activities in various tissues of mice. The purpose of the present study was to compare a broader range of naturally occurring coumarins (simple coumarins, and furanocoumarins of the linear and angular type) for their abilities to modulate hepatic drug-metabolizing enzymes when administered orally to mice. We now report that all of the different coumarins tested (coumarin, limettin, auraptene, angelicin, bergamottin, imperatorin and isopimpinellin) induced hepatic GST activities, whereas the linear furanocoumarins possessed the greatest abilities to induce hepatic P450 activities, in particular P450 2B and 3A. In both cases, this corresponded to an increase in protein expression of the enzymes. Induction of P4502B10, 3A11, and 2C9 by xenobiotics often is a result of activation of the pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR). Using a pregnane X receptor reporter system, our results demonstrated that isopimpinellin activated both PXR and its human ortholog SXR by recruiting coactivator SRC-1 in transfected cells. In CAR transfection assays, isopimpinellin counteracted the inhibitory effect of androstanol on full-length mCAR, a Gal4-mCAR ligand-binding domain fusion, and restored coactivator binding. Orally administered isopimpinellin induced hepatic mRNA expression of Cyp2b10, Cyp3a11, and GSTa in CAR(+/+) wild-type mice. In contrast, the induction of Cyp2b10 mRNA by isopimpinellin was attenuated in the CAR(-/-) mice, suggesting that isopimpinellin induces Cyp2b10 via the CAR receptor. Overall, the current data indicate that naturally occurring coumarins have

  20. Incremental first pass technique to measure left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Kocak, R.; Gulliford, P.; Hoggard, C.; Critchley, M.

    1980-01-01

    An incremental first pass technique was devised to assess the acute effects of any drug on left ventricular ejection fraction (LVEF) with or without a physiological stress. In particular, the effects of the vasodilater isosorbide dinitrate on LVEF before and after exercise were studied in 11 patients who had suffered cardiac failure. This was achieved by recording the passage of sup(99m)Tc pertechnetate through the heart at each stage of the study using a gamma camera computer system. Consistent values for four consecutive first pass values without exercise or drug in normal subjects illustrated the reproducibility of the technique. There was no significant difference between LVEF values obtained at rest and exercise before or after oral isosorbide dinitrate with the exception of one patient with gross mitral regurgitation. The advantages of the incremental first pass technique are that the patient need not be in sinus rhythm, the effects of physiological intervention may be studied and tests may also be repeated at various intervals during long term follow-up of patients. A disadvantage of the method is the limitation in the number of sequential measurements which can be carried out due to the amount of radioactivity injected. (U.K.)

  1. NRG1-Fc improves metabolic health via dual hepatic and central action.

    Science.gov (United States)

    Zhang, Peng; Kuang, Henry; He, Yanlin; Idiga, Sharon O; Li, Siming; Chen, Zhimin; Yang, Zhao; Cai, Xing; Zhang, Kezhong; Potthoff, Matthew J; Xu, Yong; Lin, Jiandie D

    2018-03-08

    Neuregulins (NRGs) are emerging as an important family of signaling ligands that regulate glucose and lipid homeostasis. NRG1 lowers blood glucose levels in obese mice, whereas the brown fat-enriched secreted factor NRG4 protects mice from high-fat diet-induced insulin resistance and hepatic steatosis. However, the therapeutic potential of NRGs remains elusive, given the poor plasma half-life of the native ligands. Here, we engineered a fusion protein using human NRG1 and the Fc domain of human IgG1 (NRG1-Fc) that exhibited extended half-life in circulation and improved potency in receptor signaling. We evaluated its efficacy in improving metabolic parameters and dissected the mechanisms of action. NRG1-Fc treatment triggered potent AKT activation in the liver, lowered blood glucose, improved insulin sensitivity, and suppressed food intake in obese mice. NRG1-Fc acted as a potent secretagogue for the metabolic hormone FGF21; however, the latter was largely dispensable for its metabolic effects. NRG1-Fc directly targeted the hypothalamic POMC neurons to promote membrane depolarization and increase firing rate. Together, NRG1-Fc exhibits improved pharmacokinetic properties and exerts metabolic benefits through dual inhibition of hepatic gluconeogenesis and caloric intake.

  2. Hepatic Metabolism of Perfluorinated Carboxylic Acids: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1995-01-17

    Reo, C. M. Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic...SUBTITLE 7C 5. FUNDING NUMBERS" Hepatic Metabolism of Perfluorinated Carboxylic Acids : A Nuclear Magnetic Resonance Investigation in Vivo G-AFOSR-90-0148 6...octanoic acid (PFOA) and perfluoro-n-decanoic acid (PFDA). These Air Force chemicals belong to a class of CU’. compounds known as peroxisome

  3. Hepatic and cerebral energy metabolism after neonatal canine alimentation.

    Science.gov (United States)

    Kliegman, R M; Miettinen, E L; Morton, S K

    1983-04-01

    Intrahepatic and intracerebral metabolic responses to neonatal fasting or enteric carbohydrate alimentation were investigated among newborn dogs. Pups were either fasted or given an intravenous glucose infusion (alimented) before an enteric feeding of physiologic quantities of either glucose or galactose. These pups were also compared to another group which was completely starved throughout the study period. Gastrointestinal carbohydrate feeding resulted in enhanced hepatic glycogen content among pups after a prior state of fasting. Though there were no differences of glycogen content between glucose or galactose feeding in this previously fasted group, combined intravenous glucose and enteric galactose administration produced the greatest effect on hepatic glycogen synthesis. Intrahepatic fructose 1, 6-diphosphate and phosphoenolpyruvate levels were increased among previously fasted pups fed enteric monosaccharides compared to completely starved control pups, whereas intrahepatic phosphoenolpyruvate and pyruvate levels were elevated after combined intravenous and enteric carbohydrate administration. Of greater interest was the observation that hepatic levels of ATP were significantly elevated among all groups given exogenous carbohydrates compared to the completely starved control group. In contrast to the augmented hepatic glycogen and ATP levels, there were no alterations of cerebral glycogen or ATP after alimentation. Nevertheless, cerebral pyruvate and/or phosphoenolpyruvate concentrations were elevated after enteric or combined intravenous and enteric alimentation compared to the totally starved control pups.

  4. The association between donor genetic variations in one-carbon metabolism pathway genes and hepatitis B recurrence after liver transplantation.

    Science.gov (United States)

    Lu, Di; Zhuo, Jianyong; Yang, Modan; Wang, Chao; Linhui, Pan; Xie, Haiyang; Xu, Xiao; Zheng, Shusen

    2018-04-05

    Hepatitis B recurrence adversely affects patients' survival after liver transplantation. This study aims to find association between donor gene variations of one carbon metabolism and post-transplant hepatitis B recurrence. This study enrolled 196 patients undergoing liver transplantation for HBV related end-stage liver diseases. We detected 11 single nucleotide polymorphisms (SNP) of 7 one-carbon metabolism pathway genes (including MTHFR, MTR, MTRR, ALDH1L1, GART, SHMT1 and CBS) in donor livers and analyzed their association with HBV reinfection after liver transplantation. Hepatitis B recurrence was observed in 19 of the 196 patients (9.7%) undergoing liver transplantation. Hepatitis B recurrence significantly affected post-transplant survival in the 196 patients (p = 0.018), and correlate with tumor recurrence in the subgroup of HCC patients (n = 99, p = 0.006). Among the 11 SNPs, donor liver mutation in rs1979277 (G > A) was adversely associated with post-transplant hepatitis B recurrence (p = 0.042). In the subgroup of HCC patients, survival analysis showed donor liver mutations in rs1801133 (G > A) and rs1979277 (G > A) were risk factors for hepatitis B recurrence (p B recurrence in non-HCC patients (n = 97, p > 0.05). Hepatitis B recurrence impaired post-transplant survival. Donor liver genetic variations in one-carbon metabolism pathway genes were significantly associated with post-transplant hepatitis B recurrence. Copyright © 2017. Published by Elsevier B.V.

  5. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    Science.gov (United States)

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Cocoa butter and safflower oil elicit different effects on hepatic gene expression and lipid metabolism in rats.

    Science.gov (United States)

    Gustavsson, Carolina; Parini, Paolo; Ostojic, Jovanca; Cheung, Louisa; Hu, Jin; Zadjali, Fahad; Tahir, Faheem; Brismar, Kerstin; Norstedt, Gunnar; Tollet-Egnell, Petra

    2009-11-01

    The aim of this study was to compare the effects of cocoa butter and safflower oil on hepatic transcript profiles, lipid metabolism and insulin sensitivity in healthy rats. Cocoa butter-based high-fat feeding for 3 days did not affect plasma total triglyceride (TG) levels or TG-rich VLDL particles or hepatic insulin sensitivity, but changes in hepatic gene expression were induced that might lead to increased lipid synthesis, lipotoxicity, inflammation and insulin resistance if maintained. Safflower oil increased hepatic beta-oxidation, was beneficial in terms of circulating TG-rich VLDL particles, but led to reduced hepatic insulin sensitivity. The effects of safflower oil on hepatic gene expression were partly overlapping with those exerted by cocoa butter, but fewer transcripts from anabolic pathways were altered. Increased hepatic cholesterol levels and increased expression of hepatic CYP7A1 and ABCG5 mRNA, important gene products in bile acid production and cholesterol excretion, were specific effects elicited by safflower oil only. Common effects on gene expression included increased levels of p8, DIG-1 IGFBP-1 and FGF21, and reduced levels of SCD-1 and SCD-2. This indicates that a lipid-induced program for hepatic lipid disposal and cell survival was induced by 3 days of high-fat feeding, independent on the lipid source. Based on the results, we speculate that hepatic TG infiltration leads to reduced expression of SCD-1, which might mediate either neutral, beneficial or unfavorable effects on hepatic metabolism upon high-fat feeding, depending on which fatty acids were provided by the diet.

  7. Metabolism of oxycodone in human hepatocytes from different age groups and prediction of hepatic plasma clearance

    Directory of Open Access Journals (Sweden)

    Timo eKorjamo

    2012-01-01

    Full Text Available Oxycodone is commonly used to treat severe pain in adults and children. It is extensively metabolized in the liver in adults, but the maturation of metabolism is not well understood. Our aim was to study the metabolism of oxycodone in cryopreserved human hepatocytes from different age groups (3 days, 2 and 5 months, 4 years, adult pool and predict hepatic plasma clearance of oxycodone using these data. Oxycodone (0.1, 1 and 10 µM was incubated with hepatocytes for 4 hours, and 1 µM oxycodone also with CYP3A inhibitor ketoconazole (1 µM. Oxycodone and noroxycodone concentrations were determined at several time points with liquid chromatography-mass spectrometry. In vitro clearance of oxycodone was used to predict hepatic plasma clearance, using the well-stirred model and published physiological parameters. Noroxycodone was the major metabolite in all batches and ketoconazole inhibited the metabolism markedly in most cases. A clear correlation between in vitro oxycodone clearance and CYP3A4 activity was observed. The predicted hepatic plasma clearances were typically much lower than the published median total plasma clearance from pharmacokinetic studies. In general, this in vitro to in vivo extrapolation method provides valuable information on the maturation of oxycodone metabolism that can be utilized in the design of clinical pharmacokinetic studies in infants and young children.

  8. Academic performance and pass rates: Comparison of three first ...

    African Journals Online (AJOL)

    First year students' academic performance in three Life Science courses (Botany, Zoology and Bioscience) was compared. Pass rates, as well as the means and distributions of final marks were analysed. Of the three components (coursework, practical and theory examinations) contributing to the final mark of each course, ...

  9. Age dependent in vitro metabolism of bifenthrin in rat and human hepatic microsomes.

    Science.gov (United States)

    Nallani, Gopinath C; Chandrasekaran, Appavu; Kassahun, Kelem; Shen, Li; ElNaggar, Shaaban F; Liu, Zhiwei

    2018-01-01

    Bifenthrin, a pyrethroid insecticide, undergoes oxidative metabolism leading to the formation of 4'-hydroxy-bifenthrin (4'-OH-BIF) and hydrolysis leading to the formation of TFP acid in rat and human hepatic microsomes. In this study, age-dependent metabolism of bifenthrin in rats and humans were determined via the rates of formation of 4'-OH-BIF and TFP acid following incubation of bifenthrin in juvenile and adult rat (PND 15 and PND 90) and human (18years) liver microsomes. Furthermore, in vitro hepatic intrinsic clearance (CL int ) of bifenthrin was determined by substrate consumption method in a separate experiment. The mean V max (±SD) for the formation of 4'-OH-BIF in juvenile rat hepatic microsomes was 25.0±1.5pmol/min/mg which was significantly lower (pbifenthrin occurs primarily via oxidative pathway with relatively lesser contribution (~30%) from hydrolytic pathway in both rat and human liver microsomes. The CL int values for bifenthrin, determined by monitoring the consumption of substrate, in juvenile and adult rat liver microsomes fortified with NADPH were 42.0±7.2 and 166.7±20.5μl/min/mg, respectively, and the corresponding values for human liver microsomes were 76.0±4.0 and 21.3±1.2μl/min/mg, respectively. The data suggest a major species difference in the age dependent metabolism of bifenthrin. In human liver microsomes, bifenthrin is metabolized at a much higher rate in juveniles than in adults, while the opposite appears to be true in rat liver microsomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The role of hepatic mitochondria in the regulation of glucose metabolism in BHE rats

    International Nuclear Information System (INIS)

    Kim, M.J.C.

    1988-01-01

    The interacting effects of dietary fat source and thyroxine treatment on the hepatic mitochondrial function and glucose metabolism were studied. In the first study, three different sources of dietary fatty acids and thyroxine treatment were used to investigate the hepatic mitochondrial thermotropic behavior in two strains of rat. The NIDDM BHE and Sprague-Dawley rats were used. Feeding coconut oil increased serum T 4 levels and T 4 treatment increased serum T 3 levels in the BHE rats. In the mitochondria from BHE rats fed coconut oil and treated with T 4 , the transition temperature disappeared due to a decoupling of succinate supported respiration. This was not observed in the Sprague-Dawley rats. In the second study, two different sources of dietary fat and T 4 treatment were used to investigate hepatic mitochondrial function. Coconut oil feeding increased Ca ++ Mg ++ ATPase and Mg ++ ATPase. T 4 treatment had potentiated this effect. T 4 increased the malate-aspartate shuttle and α-glycerophosphate shuttle activities. In the third study, the glucose turnover rate from D-[ 14 C-U]/[6- 3 H]-glucose and gluconeogeneis from L-[ 14 C-U]-alanine was examined. Dietary fat or T 4 did not affect the glucose mass. T 4 increased the irreversible fractional glucose turnover rate

  11. Human hepatic carbohydrate metabolism. Dynamic observation using 13C MRS without proton decoupling

    International Nuclear Information System (INIS)

    Ikehira, H.; Obata, T.; Koga, M.; Yoshida, K.

    1997-01-01

    Purpose: Dynamic natural-abundance 13 C MR spectroscopy (MRS) studies without proton decoupling were performed in the human liver using commercial 1.5 T MR equipment. Material and methods: A single tuned custom-made circular surface coil with an OD of 20 cm operating at 16.04 MHz was used for the 13 C study. Seventy-five grams of glucose dissolved in water was administered for the natural-abundance 13 C-MRS dynamic study which lasted for approximately 40 to 60 min. Data acquisition was broken into 20-min and 1.7-min blocks. Localized proton shimming with a whole-body coil was performed with sufficient volume to include the observing area of the surface coil; the line width of the water signal was less than 20 Hz. Results and Conclusion: The glucose and glycogen spectra were clearly visible at 80 to 120 ppm after oral administration of the glucose solution. These data demonstrate that dynamic hepatic carbohydrate metabolism can be observed with commercially available MR equipment. Given that the human hepatic glycogen pool reaches maximum level within less than 10 min, this technique should provide a direct diagnosis of hepatic carbohydrate metabolic disorders. (orig.)

  12. Isocaloric high-fat feeding directs hepatic metabolism to handling of nutrient imbalance promoting liver fat deposition

    KAUST Repository

    Diaz Rua, Ruben; Van Schothorst, E. M.; Keijer, J.; Palou, A.; Oliver, P.

    2016-01-01

    Background/Objectives: Consumption of fat-rich foods is associated with obesity and related alterations. However, there is a group of individuals, the metabolically obese normal-weight (MONW) subjects, who present normal body weight but have metabolic features characteristic of the obese status, including fat deposition in critical tissues such as liver, recognized as a major cause for the promotion of metabolic diseases. Our aim was to better understand metabolic alterations present in liver of MONW rats applying whole genome transcriptome analysis. Methods: Wistar rats were chronically fed a high-fat diet isocaloric relative to Control animals to avoid the hyperphagia and overweight and to mimic MONW features. Liver transcriptome analysis of both groups was performed. Results: Sustained intake of an isocaloric high-fat diet had a deep impact on the liver transcriptome, mainly affecting lipid metabolism. Although serum cholesterol levels were not affected, circulating triacylglycerols were lower, and metabolic adaptations at gene expression level indicated adaptation toward handling the increased fat content of the diet, an increased triacylglycerol and cholesterol deposition in liver of MONW rats was observed. Moreover, gene expression pointed to increased risk of liver injury. One of the top upregulated genes in this tissue was Krt23, a marker of hepatic disease in humans that was also increased at the protein level.Conclusion:Long-term intake of a high-fat diet, even in the absence of overweight/obesity or increase in classical blood risk biomarkers, promotes a molecular environment leading to hepatic lipid accumulation and increasing the risk of suffering from hepatic diseases.

  13. Isocaloric high-fat feeding directs hepatic metabolism to handling of nutrient imbalance promoting liver fat deposition

    KAUST Repository

    Diaz Rua, Ruben

    2016-03-22

    Background/Objectives: Consumption of fat-rich foods is associated with obesity and related alterations. However, there is a group of individuals, the metabolically obese normal-weight (MONW) subjects, who present normal body weight but have metabolic features characteristic of the obese status, including fat deposition in critical tissues such as liver, recognized as a major cause for the promotion of metabolic diseases. Our aim was to better understand metabolic alterations present in liver of MONW rats applying whole genome transcriptome analysis. Methods: Wistar rats were chronically fed a high-fat diet isocaloric relative to Control animals to avoid the hyperphagia and overweight and to mimic MONW features. Liver transcriptome analysis of both groups was performed. Results: Sustained intake of an isocaloric high-fat diet had a deep impact on the liver transcriptome, mainly affecting lipid metabolism. Although serum cholesterol levels were not affected, circulating triacylglycerols were lower, and metabolic adaptations at gene expression level indicated adaptation toward handling the increased fat content of the diet, an increased triacylglycerol and cholesterol deposition in liver of MONW rats was observed. Moreover, gene expression pointed to increased risk of liver injury. One of the top upregulated genes in this tissue was Krt23, a marker of hepatic disease in humans that was also increased at the protein level.Conclusion:Long-term intake of a high-fat diet, even in the absence of overweight/obesity or increase in classical blood risk biomarkers, promotes a molecular environment leading to hepatic lipid accumulation and increasing the risk of suffering from hepatic diseases.

  14. Methodologic Considerations for Quantitative 18F-FDG PET/CT Studies of Hepatic Glucose Metabolism in Healthy Subjects.

    Science.gov (United States)

    Trägårdh, Malene; Møller, Niels; Sørensen, Michael

    2015-09-01

    PET with the glucose analog (18)F-FDG is used to measure regional tissue metabolism of glucose. However, (18)F-FDG may have affinities different from those of glucose for plasma membrane transporters and intracellular enzymes; the lumped constant (LC) can be used to correct these differences kinetically. The aims of this study were to investigate the feasibility of measuring human hepatic glucose metabolism with dynamic (18)F-FDG PET/CT and to determine an operational LC for (18)F-FDG by comparison with (3)H-glucose measurements. Eight healthy human subjects were included. In all studies, (18)F-FDG and (3)H-glucose were mixed in saline and coadministered. A 60-min dynamic PET recording of the liver was performed for 180 min with blood sampling from catheters in a hepatic vein and a radial artery (concentrations of (18)F-FDG and (3)H-glucose in blood). Hepatic blood flow was determined by indocyanine green infusion. First, 3 subjects underwent studies comparing bolus administration and constant-infusion administration of tracers during hyperinsulinemic-euglycemic clamping. Next, 5 subjects underwent studies comparing fasting and hyperinsulinemic-euglycemic clamping with tracer infusions. Splanchnic extraction fractions of (18)F-FDG (E*) and (3)H-glucose (E) were calculated from concentrations in blood, and the LC was calculated as ln(1 - E*)/ln(1 - E). Volumes of interest were drawn in the liver tissue, and hepatic metabolic clearance of (18)F-FDG (mL of blood/100 mL of liver tissue/min) was estimated. For bolus versus infusion, E* values were always negative when (18)F-FDG was administered as a bolus and were always positive when it was administered as an infusion. For fasting versus clamping, E* values were positive in 4 of 5 studies during fasting and were always positive during clamping. Negative extraction fractions were ascribed to the tracer distribution in the large volume of distribution in the prehepatic splanchnic bed. The LC ranged from 0.43 to 2

  15. The relative importance of kinetic mechanisms and variable enzyme abundances for the regulation of hepatic glucose metabolism--insights from mathematical modeling.

    Science.gov (United States)

    Bulik, Sascha; Holzhütter, Hermann-Georg; Berndt, Nikolaus

    2016-03-02

    Adaptation of the cellular metabolism to varying external conditions is brought about by regulated changes in the activity of enzymes and transporters. Hormone-dependent reversible enzyme phosphorylation and concentration changes of reactants and allosteric effectors are the major types of rapid kinetic enzyme regulation, whereas on longer time scales changes in protein abundance may also become operative. Here, we used a comprehensive mathematical model of the hepatic glucose metabolism of rat hepatocytes to decipher the relative importance of different regulatory modes and their mutual interdependencies in the hepatic control of plasma glucose homeostasis. Model simulations reveal significant differences in the capability of liver metabolism to counteract variations of plasma glucose in different physiological settings (starvation, ad libitum nutrient supply, diabetes). Changes in enzyme abundances adjust the metabolic output to the anticipated physiological demand but may turn into a regulatory disadvantage if sudden unexpected changes of the external conditions occur. Allosteric and hormonal control of enzyme activities allow the liver to assume a broad range of metabolic states and may even fully reverse flux changes resulting from changes of enzyme abundances alone. Metabolic control analysis reveals that control of the hepatic glucose metabolism is mainly exerted by enzymes alone, which are differently controlled by alterations in enzyme abundance, reversible phosphorylation, and allosteric effects. In hepatic glucose metabolism, regulation of enzyme activities by changes of reactants, allosteric effects, and reversible phosphorylation is equally important as changes in protein abundance of key regulatory enzymes.

  16. Nonalcoholic fatty liver disease and hepatic cirrhosis: Comparison with viral hepatitis-associated steatosis.

    Science.gov (United States)

    Haga, Yuki; Kanda, Tatsuo; Sasaki, Reina; Nakamura, Masato; Nakamoto, Shingo; Yokosuka, Osamu

    2015-12-14

    Nonalcoholic fatty liver disease (NAFLD) including nonalcoholic steatohepatitis (NASH) is globally increasing and has become a world-wide health problem. Chronic infection with hepatitis B virus or hepatitis C virus (HCV) is associated with hepatic steatosis. Viral hepatitis-associated hepatic steatosis is often caused by metabolic syndrome including obesity, type 2 diabetes mellitus and/or dyslipidemia. It has been reported that HCV genotype 3 exerts direct metabolic effects that lead to hepatic steatosis. In this review, the differences between NAFLD/NASH and viral hepatitis-associated steatosis are discussed.

  17. Basis of aggravated hepatic lipid metabolism by chronic stress in high-fat diet-fed rat.

    Science.gov (United States)

    Han, Ying; Lin, Min; Wang, Xiaobin; Guo, Keke; Wang, Shanshan; Sun, Mengfei; Wang, Jiao; Han, Xiaoyu; Fu, Ting; Hu, Yang; Fu, Jihua

    2015-03-01

    Our previous study has demonstrated that long-term stress, known as chronic stress (CS), can aggravate nonalcoholic fatty liver disease in high-fat diet (HFD)-fed rat. In this study, we tried to figure out which lipid metabolic pathways were impacted by CS in the HFD-fed rat. Male Sprague-Dawley rats (6 weeks of age, n = 8 per group) were fed with either standard diet or HFD with or without CS exposure for 8 weeks. Hepatic lipidosis, biochemical, hormonal, and lipid profile markers in serum and liver, and enzymes involved in de novo lipogenesis (DNL) of fatty acids (FAs) and cholesterol, β-oxidation, FAs uptake, triglycerides synthesis, and very low-density lipoprotein (VLDL) assembly in the liver were detected. CS exposure reduced hepatic lipidosis but further elevated hepatic VLDL content with aggravated dyslipidemia in the HFD-fed rats. There was a synergism between CS and HFD on VLDL production and dyslipidemia. PCR and western blot assays showed that CS exposure significantly promoted hepatic VLDL assembly in rats, especially in the HFD-fed rats, while it had little impact on DNL, β-oxidation, FAs uptake, and triglycerides synthesis in the HFD-fed rats. This phenomenon was in accordance with elevated serum glucocorticoid level. The critical influence of CS exposure on hepatic lipid metabolism in the HFD-fed rats is VLDL assembly which might be regulated by glucocorticoid.

  18. Weekend ethanol consumption and high-sucrose diet: resveratrol effects on energy expenditure, substrate oxidation, lipid profile, oxidative stress and hepatic energy metabolism.

    Science.gov (United States)

    Rocha, Katiucha Karolina Honório Ribeiro; Souza, Gisele Aparecida; Seiva, Fábio Rodrigues Ferreira; Ebaid, Geovana Xavier; Novelli, Ethel Lourenzi Barbosa

    2011-01-01

    The present study analyzed the association between weekend ethanol and high-sucrose diet on oxygen consumption, lipid profile, oxidative stress and hepatic energy metabolism. Because resveratrol (RS, 3,5,4'-trans-trihydroxystilbene) has been implicated as a modulator of alcohol-independent cardiovascular protection attributed to red wine, we also determined whether RS could change the damage done by this lifestyle. Male Wistar 24 rats receiving standard chow were divided into four groups (n = 6/group): (C) water throughout the experimental period; (E) 30% ethanol 3 days/week, water 4 days/week; (ES) a mixture of 30% ethanol and 30% sucrose 3 days/week, drinking 30% sucrose 4 days/week; (ESR) 30% ethanol and 30% sucrose containing 6 mg/l RS 3 days/week, drinking 30% sucrose 4 days/week. After 70 days the body weight was highest in ESR rats. E rats had higher energy expenditure (resting metabolic rate), oxygen consumption (VO(2)), fat oxidation, serum triacylglycerol (TG) and very low-density lipoprotein (VLDL) than C. ES rats normalized calorimetric parameters and enhanced carbohydrate oxidation. ESR ameliorated calorimetric parameters, reduced TG, VLDL and lipid hydroperoxide/total antioxidant substances, as well enhanced high-density lipoprotein (HDL) and HDL/TG ratio. Hepatic hydroxyacyl coenzyme-A dehydrogenase (OHADH)/citrate synthase ratio was lower in E and ES rats than in C. OHADH was highest in ESR rats. The present study brought new insights on weekend alcohol consumption, demonstrating for the first time, that this pattern of ethanol exposure induced dyslipidemic profile, calorimetric and hepatic metabolic changes which resemble that of the alcoholism. No synergistic effects were found with weekend ethanol and high-sucrose intake. RS was advantageous in weekend drinking and high-sucrose intake condition ameliorating hepatic metabolism and improving risk factors for cardiovascular damage.

  19. Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients

    Directory of Open Access Journals (Sweden)

    Cedric Simillion

    2017-10-01

    Full Text Available About one in 15 of the world’s population is chronically infected with either hepatitis virus B (HBV or C (HCV, with enormous public health consequences. The metabolic alterations caused by these infections have never been directly compared and contrasted. We investigated groups of HBV-positive, HCV-positive, and uninfected healthy controls using gas chromatography-mass spectrometry analyses of their plasma and urine. A robust regression analysis of the metabolite data was conducted to reveal correlations between metabolite pairs. Ten metabolite correlations appeared for HBV plasma and urine, with 18 for HCV plasma and urine, none of which were present in the controls. Metabolic perturbation networks were constructed, which permitted a differential view of the HBV- and HCV-infected liver. HBV hepatitis was consistent with enhanced glucose uptake, glycolysis, and pentose phosphate pathway metabolism, the latter using xylitol and producing threonic acid, which may also be imported by glucose transporters. HCV hepatitis was consistent with impaired glucose uptake, glycolysis, and pentose phosphate pathway metabolism, with the tricarboxylic acid pathway fueled by branched-chain amino acids feeding gluconeogenesis and the hepatocellular loss of glucose, which most probably contributed to hyperglycemia. It is concluded that robust regression analyses can uncover metabolic rewiring in disease states.

  20. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism.

    Science.gov (United States)

    Li, Jian; Yu, Haiyang; Wang, Sijian; Wang, Wei; Chen, Qian; Ma, Yanmin; Zhang, Yi; Wang, Tao

    2018-01-01

    Imbalanced hepatic glucose homeostasis is one of the critical pathologic events in the development of metabolic syndromes (MSs). Therefore, regulation of imbalanced hepatic glucose homeostasis is important in drug development for MS treatment. In this review, we discuss the major targets that regulate hepatic glucose homeostasis in human physiologic and pathophysiologic processes, involving hepatic glucose uptake, glycolysis and glycogen synthesis, and summarize their changes in MSs. Recent literature suggests the necessity of multitarget drugs in the management of MS disorder for regulation of imbalanced glucose homeostasis in both experimental models and MS patients. Here, we highlight the potential bioactive compounds from natural products with medicinal or health care values, and focus on polypharmacologic and multitarget natural products with effects on various signaling pathways in hepatic glucose metabolism. This review shows the advantage and feasibility of discovering multicompound-multitarget drugs from natural products, and providing a new perspective of ways on drug and functional food development for MSs.

  1. Evaluation of the protein metabolism during hepatic coma evidenced by 15N tracer data

    International Nuclear Information System (INIS)

    Matkowitz, R.; Hartig, W.; Junghans, P.; Jung, K.; Hirschberg, K.; Bornhak, H.

    1983-01-01

    In patients in coma hepaticum as well as in pigs with experimental hepatic coma the protein metabolism was studied under conditions of parenteral application of an amino acid diet using 15 N-glycine as tracer

  2. Lysine Acetylation of CREBH Regulates Fasting-Induced Hepatic Lipid Metabolism

    Science.gov (United States)

    Kim, Hyunbae; Mendez, Roberto; Chen, Xuequn; Fang, Deyu

    2015-01-01

    Cyclic AMP-responsive element-binding protein 3-like 3, hepatocyte specific (CREBH), is a hepatic transcription factor that functions as a key regulator of energy homeostasis. Here, we defined a regulatory CREBH posttranslational modification process, namely, lysine-specific acetylation, and its functional involvement in fasting-induced hepatic lipid metabolism. Fasting induces CREBH acetylation in mouse livers in a time-dependent manner, and this event is critical for CREBH transcriptional activity in regulating hepatic lipid homeostasis. The histone acetyltransferase PCAF-mediated acetylation and the deacetylase sirtuin-1-mediated deacetylation coexist to maintain CREBH acetylation states under fasting conditions. Site-directed mutagenesis and functional analyses revealed that the lysine (K) residue at position 294 (K294) within the bZIP domain of the CREBH protein is the site where fasting-induced acetylation/deacetylation occurs. Introduction of the acetylation-deficient (K294R) or acetylation-mimicking (K294Q) mutation inhibited or enhanced CREBH transcriptional activity, respectively. Importantly, CREBH acetylation at lysine 294 was required for the interaction and synergy between CREBH and peroxisome proliferator-activated receptor α (PPARα) in activating their target genes upon fasting or glucagon stimulation. Introduction of the CREBH lysine 294 mutation in the liver leads to hepatic steatosis and hyperlipidemia in animals under prolonged fasting. In summary, our study reveals a molecular mechanism by which fasting or glucagon stimulation modulates lipid homeostasis through acetylation of CREBH. PMID:26438600

  3. Obesity and Hepatic Steatosis Are Associated with Elevated Serum Amyloid Beta in Metabolically Stressed APPswe/PS1dE9 Mice.

    Directory of Open Access Journals (Sweden)

    Feng-Shiun Shie

    Full Text Available Diabesity-associated metabolic stresses modulate the development of Alzheimer's disease (AD. For further insights into the underlying mechanisms, we examine whether the genetic background of APPswe/PS1dE9 at the prodromal stage of AD affects peripheral metabolism in the context of diabesity. We characterized APPswe/PS1dE9 transgenic mice treated with a combination of high-fat diet with streptozotocin (HFSTZ in the early stage of AD. HFSTZ-treated APPswe/PS1dE9 transgenic mice exhibited worse metabolic stresses related to diabesity, while serum β-amyloid levels were elevated and hepatic steatosis became apparent. Importantly, two-way analysis of variance shows a significant interaction between HFSTZ and genetic background of AD, indicating that APPswe/PS1dE9 transgenic mice are more vulnerable to HFSTZ treatment. In addition, body weight gain, high hepatic triglyceride, and hyperglycemia were positively associated with serum β-amyloid, as validated by Pearson's correlation analysis. Our data suggests that the interplay between genetic background of AD and HFSTZ-induced metabolic stresses contributes to the development of obesity and hepatic steatosis. Alleviating metabolic stresses including dysglycemia, obesity, and hepatic steatosis could be critical to prevent peripheral β-amyloid accumulation at the early stage of AD.

  4. Hepatitis C, human immunodeficiency virus and metabolic syndrome: interactions.

    Science.gov (United States)

    Kotler, Donald P

    2009-03-01

    Significant concerns have been raised about the metabolic effects of antiretroviral medication, including the classic triad of dyslipidaemia, insulin resistance (IR) and characteristic alterations in fat distribution (lipoatrophy and lipohypertrophy). Co-infection with hepatitis C appears to exacerbate IR, reduce serum lipids and induce prothrombotic changes in the treated human immunodeficiency virus patient. The effects of co-infection are complex. While combination antiretroviral therapy has been shown to be associated with an increased risk of cardiovascular events through promotion of dyslipidaemia, IR and fat redistribution, co-infection exacerbates IR while reducing serum lipids. Co-infection also promotes a prothrombotic state characterized by endothelial dysfunction and platelet activation, which may enhance risk for cardiovascular disease. Consideration must be given to selection of appropriate treatment regimens and timing of therapy in co-infected patients to minimize metabolic derangements and, ultimately, reduce cardiovascular risk.

  5. Dietary fat and hepatic lipogenesis: mitochondrial citrate carrier as a sensor of metabolic changes.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-05-01

    Citrate carrier (CIC) is an integral protein of the inner mitochondrial membrane that has a fundamental role in hepatic intermediary metabolism. Its primary function is to catalyze the transport of citrate from mitochondria, where this molecule is formed, to cytosol, where this molecule is used for fatty acid (FA) and cholesterol synthesis. Therefore, mitochondrial CIC acts upstream of cytosolic lipogenic reactions, and its regulation is particularly important in view of the modulation of hepatic lipogenesis. Although a great deal of data are currently available on the dietary modulation of cytosolic lipogenic enzymes, little is known about the nutritional regulation of CIC transport activity. In this review, we describe the differential effects of distinct FAs present in the diet on the activity of mitochondrial CIC. In particular, polyunsaturated FAs were powerful modulators of the activity of mitochondrial CIC by influencing its expression through transcriptional and posttranscriptional mechanisms. On the contrary, saturated and monounsaturated FAs did not influence mitochondrial CIC activity. Moreover, variations in CIC activity were connected to similar alterations in the metabolic pathways to which the transported citrate is channeled. Therefore, CIC may be considered as a sensor for changes occurring inside the hepatocyte and may represent an important target for the regulation of hepatic lipogenesis. The crucial role of this protein is reinforced by the recent discovery of its involvement in other cellular processes, such as glucose-stimulated insulin secretion, inflammation, tumorigenesis, genome stability, and sperm metabolism. © 2014 American Society for Nutrition.

  6. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in vito

    Science.gov (United States)

    1994-01-06

    L. Narayanan. and B. M. Jamot. ’Effects of Peulluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic Phosphorus Metabolism in...pathways and examined the impact of perfluorocarboxylic acid exposure. This investigative strategy will delineate the metabolic effices exerted by...Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo Principal Investigator: Nicholas V. Reo

  7. Hepatic metabolism affects the atropselective disposition of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) in mice.

    Science.gov (United States)

    Wu, Xianai; Barnhart, Christopher; Lein, Pamela J; Lehmler, Hans-Joachim

    2015-01-06

    To understand the role of hepatic vs extrahepatic metabolism in the disposition of chiral PCBs, we studied the disposition of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) and its hydroxylated metabolites (HO-PCBs) in mice with defective hepatic metabolism due to the liver-specific deletion of cytochrome P450 oxidoreductase (KO mice). Female KO and congenic wild type (WT) mice were treated with racemic PCB 136, and levels and chiral signatures of PCB 136 and HO-PCBs were determined in tissues and excreta 3 days after PCB administration. PCB 136 tissue levels were higher in KO compared to WT mice. Feces was a major route of PCB metabolite excretion, with 2,2',3,3',6,6'-hexachlorobiphenyl-5-ol being the major metabolite recovered from feces. (+)-PCB 136, the second eluting PCB 136 atropisomers, was enriched in all tissues and excreta. The second eluting atropisomers of the HO-PCBs metabolites were enriched in blood and liver; 2,2',3,3',6,6'-hexachlorobiphenyl-5-ol in blood was an exception and displayed an enrichment of the first eluting atropisomers. Fecal HO-PCB levels and chiral signatures changed with time and differed between KO and WT mice, with larger HO-PCB enantiomeric fractions in WT compared to KO mice. Our results demonstrate that hepatic and, possibly, extrahepatic cytochrome P450 (P450) enzymes play a role in the disposition of PCBs.

  8. Cerebral hemodynamic and metabolic changes in fulminant hepatic failure

    Directory of Open Access Journals (Sweden)

    Fernando Mendes Paschoal Junior

    Full Text Available ABSTRACT Intracranial hypertension and brain swelling are a major cause of morbidity and mortality of patients suffering from fulminant hepatic failure (FHF. The pathogenesis of these complications has been investigated in man, in experimental models and in isolated cell systems. Currently, the mechanism underlying cerebral edema and intracranial hypertension in the presence of FHF is multi-factorial in etiology and only partially understood. The aim of this paper is to review the pathophysiology of cerebral hemodynamic and metabolism changes in FHF in order to improve understanding of intracranial dynamics complication in FHF.

  9. A hepatic amino acid/mTOR/S6K-dependent signalling pathway modulates systemic lipid metabolism via neuronal signals.

    Science.gov (United States)

    Uno, Kenji; Yamada, Tetsuya; Ishigaki, Yasushi; Imai, Junta; Hasegawa, Yutaka; Sawada, Shojiro; Kaneko, Keizo; Ono, Hiraku; Asano, Tomoichiro; Oka, Yoshitomo; Katagiri, Hideki

    2015-08-13

    Metabolism is coordinated among tissues and organs via neuronal signals. Levels of circulating amino acids (AAs), which are elevated in obesity, activate the intracellular target of rapamycin complex-1 (mTORC1)/S6kinase (S6K) pathway in the liver. Here we demonstrate that hepatic AA/mTORC1/S6K signalling modulates systemic lipid metabolism via a mechanism involving neuronal inter-tissue communication. Hepatic expression of an AA transporter, SNAT2, activates the mTORC1/S6K pathway, and markedly elevates serum triglycerides (TGs), while downregulating adipose lipoprotein lipase (LPL). Hepatic Rheb or active-S6K expression have similar metabolic effects, whereas hepatic expression of dominant-negative-S6K inhibits TG elevation in SNAT2 mice. Denervation, pharmacological deafferentation and β-blocker administration suppress obesity-related hypertriglyceridemia with adipose LPL upregulation, suggesting that signals are transduced between liver and adipose tissue via a neuronal pathway consisting of afferent vagal and efferent sympathetic nerves. Thus, the neuronal mechanism uncovered here serves to coordinate amino acid and lipid levels and contributes to the development of obesity-related hypertriglyceridemia.

  10. Hepatic glucose-6-phosphatase-α deficiency leads to metabolic reprogramming in glycogen storage disease type Ia.

    Science.gov (United States)

    Cho, Jun-Ho; Kim, Goo-Young; Mansfield, Brian C; Chou, Janice Y

    2018-04-15

    Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC), a key enzyme in endogenous glucose production. This autosomal recessive disorder is characterized by impaired glucose homeostasis and long-term complications of hepatocellular adenoma/carcinoma (HCA/HCC). We have shown that hepatic G6Pase-α deficiency-mediated steatosis leads to defective autophagy that is frequently associated with carcinogenesis. We now show that hepatic G6Pase-α deficiency also leads to enhancement of hepatic glycolysis and hexose monophosphate shunt (HMS) that can contribute to hepatocarcinogenesis. The enhanced hepatic glycolysis is reflected by increased lactate accumulation, increased expression of many glycolytic enzymes, and elevated expression of c-Myc that stimulates glycolysis. The increased HMS is reflected by increased glucose-6-phosphate dehydrogenase activity and elevated production of NADPH and the reduced glutathione. We have previously shown that restoration of hepatic G6Pase-α expression in G6Pase-α-deficient liver corrects metabolic abnormalities, normalizes autophagy, and prevents HCA/HCC development in GSD-Ia. We now show that restoration of hepatic G6Pase-α expression normalizes both glycolysis and HMS in GSD-Ia. Moreover, the HCA/HCC lesions in L-G6pc-/- mice exhibit elevated levels of hexokinase 2 (HK2) and the M2 isoform of pyruvate kinase (PKM2) which play an important role in aerobic glycolysis and cancer cell proliferation. Taken together, hepatic G6Pase-α deficiency causes metabolic reprogramming, leading to enhanced glycolysis and elevated HMS that along with impaired autophagy can contribute to HCA/HCC development in GSD-Ia. Published by Elsevier Inc.

  11. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    Science.gov (United States)

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  12. Evaluation of allograft perfusion by radionuclide first-pass study in renal failure following renal transplantation

    International Nuclear Information System (INIS)

    Baillet, G.; Ballarin, J.; Urdaneta, N.; Campos, H.; Vernejoul, P. de; Fermanian, J.; Kellershohn, C.; Kreis, H.

    1986-01-01

    To assess the diagnostic value of indices measured on a first-pass curve, we performed 72 radionuclide renal first-pass studies (RFP) in 21 patients during the early weeks following renal allograft transplantation. The diagnosis was based on standard clinical and biochemical data and on fine needle aspiration biopsy (FNAB) of the transplant. Aortic and renal first-pass curves were filtered using a true low-pass filter and five different indices of renal perfusion were computed, using formulae from the literature. Statistical analysis performed on the aortic and renal indices indicated excellent reproducibility of the isotopic study. Although renal indices presented a rather large scatter, they all discriminated well between normal and rejection. Three indices have a particularly good diagnostic value. In the discrimination between rejection and Acute Tubular Necrosis (ATN), only one index gave satisfying results. The indices, however, indicate that there are probably ATN with an alternation of renal perfusion and rejection episodes where perfusion is almost intact. We conclude that radionuclide first-pass study allows accurate and reproducible quantitation of renal allograft perfusion. The measured parameters are helpful to follow up the course of a post-transplantation renal failure episode and to gain more insight into renal ischemia following transplantation. (orig.)

  13. The utility of first-pass perfusion CT in hyperacute ischemic stroke: early experience

    International Nuclear Information System (INIS)

    Lee, Tae Jin; Lee, Myeong Sub; Kim, Myung Soon; Hong, In Soo; Lee, Young Han; Lee, Ji Yong; Whang, Kum

    2003-01-01

    To evaluate the findings of first-pass perfusion CT in hyperacute stroke patients and to determine the relationship between a perfusion map and final infarct outcome. Thirty-five patients admitted with ischemic stroke within six hours of the onset of symptoms underwent conventional cerebral CT immediately followed by first-pass perfusion CT. Nineteen underwent follow-up CT or MRI, and three types of dynamic perfusion map-cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT) - were evaluated by two radiologists. In these 19 patients, initial perfusion maps correlated with final infarct size, determined during follow-up studies. In all 35 patients, major large vessel perfusion abnormalities [middle cerebral artery - MCA MCA and anterior cerebral artery - ACA (n=2); posterior cerebral artery - PCA (n=8)] were detected. On first-pass perfusion maps depicting CBF and MTT, all lesions were detected, and CBF and delayed MTT values were recorded. CBV maps showed variable findings. In all 19 patients who were followed up, the final infarct size of perfusion abnormalities was less than that depicted on CBF and MTT maps, and similar to or much greater than that seen on CBV maps. First-pass perfusion CT scanning is a practical, rapid and advanced imaging technique. In hyperacute stroke patients, it provides important and reliable hemodynamic information as to which brain tissue is salvageable by thrombolytic therapy, and predicts outcome of such treatment

  14. Ubiquitin-Specific Protease 2 Regulates Hepatic Gluconeogenesis and Diurnal Glucose Metabolism Through 11β-Hydroxysteroid Dehydrogenase 1

    Science.gov (United States)

    Molusky, Matthew M.; Li, Siming; Ma, Di; Yu, Lei; Lin, Jiandie D.

    2012-01-01

    Hepatic gluconeogenesis is important for maintaining steady blood glucose levels during starvation and through light/dark cycles. The regulatory network that transduces hormonal and circadian signals serves to integrate these physiological cues and adjust glucose synthesis and secretion by the liver. In this study, we identified ubiquitin-specific protease 2 (USP2) as an inducible regulator of hepatic gluconeogenesis that responds to nutritional status and clock. Adenoviral-mediated expression of USP2 in the liver promotes hepatic glucose production and exacerbates glucose intolerance in diet-induced obese mice. In contrast, in vivo RNA interference (RNAi) knockdown of this factor improves systemic glycemic control. USP2 is a target gene of peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), a coactivator that integrates clock and energy metabolism, and is required for maintaining diurnal glucose homeostasis during restricted feeding. At the mechanistic level, USP2 regulates hepatic glucose metabolism through its induction of 11β-hydroxysteroid dehydrogenase 1 (HSD1) and glucocorticoid signaling in the liver. Pharmacological inhibition and liver-specific RNAi knockdown of HSD1 significantly impair the stimulation of hepatic gluconeogenesis by USP2. Together, these studies delineate a novel pathway that links hormonal and circadian signals to gluconeogenesis and glucose homeostasis. PMID:22447855

  15. Okara, a By-Product of Tofu Manufacturing, Modifies Triglyceride Metabolism at the Intestinal and Hepatic Levels.

    Science.gov (United States)

    Nagata, Yasuo; Yamasaki, Shiho; Torisu, Norihiro; Suzuki, Taishi; Shimamoto, Saya; Tamaru, Shizuka; Tanaka, Kazunari

    2016-01-01

    Irrespective of a well-known hypocholesterolemic action, a few studies have shown a hypotriglyceridemic potential of okara, a by-product of tofu manufacturing. Okara was fed to rats at the level of 2.5 and 5.0% as dietary protein for 4 wk, and serum and hepatic lipid levels were determined. In addition, soy flour, which has a well-known hypolipidemic action, was used to compare effects on lipid metabolism. Mechanisms of action were further evaluated by measuring hepatic enzyme activity, gene expression of lipid metabolism-related proteins and fecal excretion of lipids. Feeding the okara diets resulted in a significantly lower weight of the liver and adipose tissue in a dose-dependent manner. Serum triglyceride levels were more than 50% lower in rats fed the okara diets compared to those fed the control diet. Enzyme activities of fatty acid synthesis were significantly lowered by the okara diet. Fecal weight was significantly higher in the okara group than in the control group, and fecal excretion of steroids tended to be higher. Therefore, a relatively low amount of okara may exert hypotriglyceridemic action in rats in part through decreased hepatic triglyceride synthesis. The present study also suggests an involvement of intestinal events in altered lipid metabolism in rats fed the okara diets.

  16. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Ventura, Gabrielle; Sarfati, Gilles; Nubret, Esther; Kapel, Nathalie; Waligora-Dupriet, Anne-Judith; Bergheim, Ina; Cynober, Luc; De-Bandt, Jean-Pascal

    2016-02-01

    Fructose diets have been shown to induce insulin resistance and to alter liver metabolism and gut barrier function, ultimately leading to non-alcoholic fatty liver disease. Citrulline, Glutamine and Arginine may improve insulin sensitivity and have beneficial effects on gut trophicity. Our aim was to evaluate their effects on liver and gut functions in a rat model of fructose-induced non-alcoholic fatty liver disease. Male Sprague-Dawley rats (n = 58) received a 4-week fructose (60%) diet or standard chow with or without Citrulline (0.15 g/d) or an isomolar amount of Arginine or Glutamine. All diets were made isonitrogenous by addition of non-essential amino acids. At week 4, nutritional and metabolic status (plasma glucose, insulin, cholesterol, triglycerides and amino acids, net intestinal absorption) was determined; steatosis (hepatic triglycerides content, histological examination) and hepatic function (plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin) were assessed; and gut barrier integrity (myeloperoxidase activity, portal endotoxemia, tight junction protein expression and localization) and intestinal and hepatic inflammation were evaluated. We also assessed diets effects on caecal microbiota. In these experimental isonitrogenous fructose diet conditions, fructose led to steatosis with dyslipidemia but without altering glucose homeostasis, liver function or gut permeability. Fructose significantly decreased Bifidobacterium and Lactobacillus and tended to increase endotoxemia. Arginine and Glutamine supplements were ineffective but Citrulline supplementation prevented hypertriglyceridemia and attenuated liver fat accumulation. While nitrogen supply alone can attenuate fructose-induced non-alcoholic fatty liver disease, Citrulline appears to act directly on hepatic lipid metabolism by partially preventing hypertriglyceridemia and steatosis. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition

  17. First report of hepatic hematoma after presumed Bothrops envenomation

    Directory of Open Access Journals (Sweden)

    Fernanda Cristina Cunha

    2015-10-01

    Full Text Available ABSTRACTIn Latin America, Bothrops envenomation is responsible for the majority of accidents caused by venomous snakes. Patients usually present local edema, bleeding and coagulopathy. Visceral hemorrhage is extremely rare and considered a challenge for diagnosis and management. We report the first case of hepatic hematoma owing to the bothropic envenomation in a 66-year-old man who was bitten in the left leg. He presented local edema, coagulopathy, and acute kidney injury. Radiological findings suggested hepatic hematoma, with a volume of almost 3 liters. The hepatic hematoma was gradually absorbed without the need for surgical intervention with complete resolution in 8 months.

  18. Interaction of IFNL3 with insulin resistance, steatosis and lipid metabolism in chronic hepatitis C virus infection.

    Science.gov (United States)

    Eslam, Mohammed; Booth, David R; George, Jacob; Ahlenstiel, Golo

    2013-11-07

    Metabolic changes are inextricably linked to chronic hepatitis C (CHC). Recently polymorphisms in the IFNL3 (IL28B) region have been shown to be strongly associated with spontaneous and treatment induced recovery from hepatitis C virus (HCV) infection. Further, circumstantial evidence suggests a link between IFNL3 single nucleotide polymorphisms and lipid metabolism, steatosis and insulin resistance in CHC. The emerging picture suggests that the responder genotypes of IFNL3 polymorphisms are associated with a higher serum lipid profile, and less frequent steatosis and insulin resistance. This review analyzes the current data regarding this interaction and its meaning for HCV pathogenesis and disease progression.

  19. Outcomes, Approaches, and Challenges to Developing and Passing a Countywide Mandatory Vaccination Policy: St. Louis County's Experience with Hepatitis A Vaccine for Food Service Personnel.

    Science.gov (United States)

    Rebmann, Terri; Wilson, Kristin D; Loux, Travis; Iqbal, Ayesha Z; Peters, Eleanor B; Peavler, Olivia

    2016-01-01

    In the early 1990s, St. Louis County had multiple foodservice worker-related hepatitis A outbreaks uncontrolled by standard outbreak interventions. Restaurant interest groups and the general public applied political pressure to local public health officials for more stringent interventions, including a mandatory vaccination policy. Local health departments can enact mandatory vaccination policies, but this has rarely been done. The study objectives were to describe the approach used to pass a mandatory vaccination policy at the local jurisdiction level and illustrate the outcome from this ordinance 15 years later. A case study design was used. In-depth, semi-structured interviews using guided questions were conducted in spring, 2015, with six key informants who had direct knowledge of the mandatory vaccination policy process. Meeting minutes and/or reports were also analyzed. A Poisson distribution analysis was used to calculate the rate of outbreaks before and after mandatory vaccination policy implementation. The policy appears to have reduced the number of hepatitis A outbreaks, lowering the morbidity and economic burden in St. Louis County. The lessons learned by local public health officials in passing a mandatory hepatitis A vaccination policy are important and relevant in today's environment. The experience and lessons learned may assist other local health departments when faced with the potential need for mandatory policies for any vaccine preventable disease.

  20. Effect of ethylene glycol monomethyl ether and diethylene glycol monomethyl ether on hepatic metabolizing enzymes.

    Science.gov (United States)

    Kawamoto, T; Matsuno, K; Kayama, F; Hirai, M; Arashidani, K; Yoshikawa, M; Kodama, Y

    1990-06-01

    Glycol ethers have been extensively used in industry over the past 40-50 years. Numerous studies on the toxicity of glycol ethers have been performed, however, the effects of glycol ethers on the hepatic drug metabolizing enzymes are still unknown. We studied the changes of the putative metabolic enzymes, that is, the hepatic microsomal mixed function oxidase system and cytosolic alcohol dehydrogenase, by the oral administration of diEGME and EGME. Adult male Wistar rats were used. DiEGME was administered orally; 500, 1000, 2000 mg/kg for 1, 2, 5 or 20 days and EGME was 100, 300 mg/kg for 1, 2, 5 or 20 days. Decreases in liver weights were produced by highest doses of diEGME (2000 mg/kg body wt/day for 20 days) and EGME (300 mg/kg body wt/day for 20 days). DiEGME increased hepatic microsomal protein contents and induced cytochrome P-450, but not cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was not affected by diEGME administration. On the other hand, EGME did not change cytochrome P-450, cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was increased by repeated EGME treatment. Therefore it is suspected that the enzyme which takes part in the metabolism of diEGME is different from that of EGME, although diEGME is a structural homologue of EGME.

  1. Dietary Fat and Hepatic Lipogenesis: Mitochondrial Citrate Carrier as a Sensor of Metabolic Changes1

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    Citrate carrier (CIC) is an integral protein of the inner mitochondrial membrane that has a fundamental role in hepatic intermediary metabolism. Its primary function is to catalyze the transport of citrate from mitochondria, where this molecule is formed, to cytosol, where this molecule is used for fatty acid (FA) and cholesterol synthesis. Therefore, mitochondrial CIC acts upstream of cytosolic lipogenic reactions, and its regulation is particularly important in view of the modulation of hepatic lipogenesis. Although a great deal of data are currently available on the dietary modulation of cytosolic lipogenic enzymes, little is known about the nutritional regulation of CIC transport activity. In this review, we describe the differential effects of distinct FAs present in the diet on the activity of mitochondrial CIC. In particular, polyunsaturated FAs were powerful modulators of the activity of mitochondrial CIC by influencing its expression through transcriptional and posttranscriptional mechanisms. On the contrary, saturated and monounsaturated FAs did not influence mitochondrial CIC activity. Moreover, variations in CIC activity were connected to similar alterations in the metabolic pathways to which the transported citrate is channeled. Therefore, CIC may be considered as a sensor for changes occurring inside the hepatocyte and may represent an important target for the regulation of hepatic lipogenesis. The crucial role of this protein is reinforced by the recent discovery of its involvement in other cellular processes, such as glucose-stimulated insulin secretion, inflammation, tumorigenesis, genome stability, and sperm metabolism. PMID:24829468

  2. Regional Myocardial Blood Volume and Flow: First-Pass MR Imaging with Polylysine-Gd-DTPA

    Science.gov (United States)

    Wilke, Norbert; Kroll, Keith; Merkle, Hellmut; Wang, Ying; Ishibashi, Yukata; Xu, Ya; Zhang, Jiani; Jerosch-Herold, Michael; Mühler, Andreas; Stillman, Arthur E.; Bassingthwaighte, James B.; Bache, Robert; Ugurbil, Kamil

    2010-01-01

    The authors investigated the utility of an intravascular magnetic resonance (MR) contrast agent, poly-L-lysine-gadolinium diethylenetriaminepentaacetic acid (DTPA), for differentiating acutely ischemic from normally perfused myocardium with first-pass MR imaging. Hypoperfused regions, identified with microspheres, on the first-pass images displayed significantly decreased signal intensities compared with normally perfused myocardium (P < .0007). Estimates of regional myocardial blood content, obtained by measuring the ratio of areas under the signal intensity-versus-time curves in tissue regions and the left ventricular chamber, averaged 0.12 mL/g ± 0.04 (n = 35), compared with a value of 0.11 mL/g ± 0.05 measured with radiolabeled albumin in the same tissue regions. To obtain MR estimates of regional myocardial blood flow, in situ calibration curves were used to transform first-pass intensity-time curves into content-time curves for analysis with a multiple-pathway, axially distributed model. Flow estimates, obtained by automated parameter optimization, averaged 1.2 mL/min/g ± 0.5 [n = 29), compared with 1.3 mL/min/g ± 0.3 obtained with tracer microspheres in the same tissue specimens at the same time. The results represent a combination of T1-weighted first-pass imaging, intravascular relaxation agents, and a spatially distributed perfusion model to obtain absolute regional myocardial blood flow and volume. PMID:7766986

  3. Effects of model traumatic injury on hepatic drug metabolism in the rat. IV. Glucuronidation.

    Science.gov (United States)

    Griffeth, L K; Rosen, G M; Rauckman, E J

    1985-01-01

    A previously validated small mammal trauma model, hind-limb ischemia secondary to infrarenal aortic ligation in the rat, was utilized to investigate the effects of traumatic injury on hepatic glucuronidation activity. As was previously observed with hepatic oxidative drug metabolism, model trauma resulted in a significant decrease in the in vivo glucuronidation of chloramphenicol, with a 23% drop in clearance of this drug. The effect on in vivo pharmacokinetics appeared to result from a complex interaction between trauma's differential influences on conjugating enzyme(s), deconjugating enzyme(s), and hepatic UDP-glucuronic acid levels, as well as the relative physiological importance of these variables. Hepatic UDP-glucuronyltransferase activities towards both p-nitrophenol and chloramphenicol were elevated (44-54%) after model injury when measured in native hepatic microsomes. However, microsomes which had been "activated" by treatment with Triton X-100 showed no significant difference between control and traumatized animals. Serum beta-glucuronidase activities were elevated by 58%, while hepatic beta-glucuronidase rose by about 16%. Nevertheless, in vivo deconjugation showed no significant change. Model trauma also resulted in a 46% decrease in hepatic UDP-glucuronic acid content. Thus, the observed post-traumatic depression of in vivo chloramphenicol glucuronidation could be due either to a diminished availability of a necessary cofactor (UDP-glucuronic acid) or to an alteration in enzyme kinetics or function in vivo.

  4. First-pass myocardial perfusion MR imaging with gadolinium-enhanced turbo FLASH

    International Nuclear Information System (INIS)

    Teresi, L.M.; Smith, C.; Messenger, J.; Watanabe, A.; Herbst, M.; O'Sullivan, R.M.; Lee, R.; Remer, J.; Rappaport, A.; Bradley, W.G.

    1990-01-01

    This paper determines the efficacy of MR first-pass myocardial perfusion imaging using gadolinium-enhanced Turbo--fast low-angle shot (FLASH) ultrafast imaging combined with MR systolic wall thickening data for the determination of myocardial viability. Five normal volunteers and five patients with remote myocardial infarction were studied on a 1.5-T imaging system (Siemans, Ehrlangen, NJ). Turbo-FLASH imaging utilized a 180 degrees inversion pulse followed by a rapid gradient-echo sequence (TI 400 msec, TE2 msec, TR 4.9 msec, FA 8 degrees) with a complete 64 x 64 matrix image (300 mm FOV) being acquired in 300 msec. First-pass myocardial perfusion imaging was performed in the short-axis and long-axis oblique projections with a concantenated series of Turbo-FLASH images triggered to end-systole acquired immediately before and during a rapid bolus injection of 5cc gadolinium-DTPA

  5. Hepatic fascioliasis in Mashhad, Northeast Iran: first report.

    Science.gov (United States)

    Badirzadeh, Alireza; Sabzevari, Sadaf

    2017-01-01

    Fascioliasis is a zoonotic disease caused by a leaf-like worm (fluke) called Fasciola. Herein, we present a case of human hepatic fascioliasis. A 57-year-old man was referred to the hospital for ambiguous gastrointestinal symptoms with suspected hemangioma. Hepatic fascioliasis was diagnosed using abdominal computed tomography and serology. He tested positive for the IgG antibody against Fasciola hepatica. The patient was treated successfully with triclabendazole. This is the first published report on the occurrence of fascioliasis in Northeast Iran, a non-endemic area for fascioliasis. Our results suggest the emergence of a new focus in the region.

  6. Dynamic regulation of hepatic lipid droplet properties by diet.

    Science.gov (United States)

    Crunk, Amanda E; Monks, Jenifer; Murakami, Aya; Jackman, Matthew; Maclean, Paul S; Ladinsky, Mark; Bales, Elise S; Cain, Shannon; Orlicky, David J; McManaman, James L

    2013-01-01

    Cytoplasmic lipid droplets (CLD) are organelle-like structures that function in neutral lipid storage, transport and metabolism through the actions of specific surface-associated proteins. Although diet and metabolism influence hepatic CLD levels, how they affect CLD protein composition is largely unknown. We used non-biased, shotgun, proteomics in combination with metabolic analysis, quantitative immunoblotting, electron microscopy and confocal imaging to define the effects of low- and high-fat diets on CLD properties in fasted-refed mice. We found that the hepatic CLD proteome is distinct from that of CLD from other mammalian tissues, containing enzymes from multiple metabolic pathways. The hepatic CLD proteome is also differentially affected by dietary fat content and hepatic metabolic status. High fat feeding markedly increased the CLD surface density of perilipin-2, a critical regulator of hepatic neutral lipid storage, whereas it reduced CLD levels of betaine-homocysteine S-methyltransferase, an enzyme regulator of homocysteine levels linked to fatty liver disease and hepatocellular carcinoma. Collectively our data demonstrate that the hepatic CLD proteome is enriched in metabolic enzymes, and that it is qualitatively and quantitatively regulated by diet and metabolism. These findings implicate CLD in the regulation of hepatic metabolic processes, and suggest that their properties undergo reorganization in response to hepatic metabolic demands.

  7. Outcomes, Approaches, and Challenges to Developing and Passing a Countywide Mandatory Vaccination Policy: St. Louis County’s Experience with Hepatitis A Vaccine for Food Service Personnel

    Directory of Open Access Journals (Sweden)

    Kristin D. Wilson

    2016-03-01

    Full Text Available In the early 1990s, St. Louis County had multiple foodservice worker-related hepatitis A outbreaks uncontrolled by standard outbreak interventions. Restaurant interest groups and the general public applied political pressure to local public health officials for more stringent interventions, including a mandatory vaccination policy. Local health departments can enact mandatory vaccination policies, but this has rarely been done. The study objectives were to describe the approach used to pass a mandatory vaccination policy at the local jurisdiction level and illustrate the outcome from this ordinance 15 years later. A case study design was used. In-depth, semi-structured interviews using guided questions were conducted in spring, 2015, with six key informants who had direct knowledge of the mandatory vaccination policy process. Meeting minutes and/or reports were also analyzed. A Poisson distribution analysis was used to calculate the rate of outbreaks before and after mandatory vaccination policy implementation. The policy appears to have reduced the number of hepatitis A outbreaks, lowering the morbidity and economic burden in St. Louis County. The lessons learned by local public health officials in passing a mandatory hepatitis A vaccination policy are important and relevant in today’s environment. The experience and lessons learned may assist other local health departments when faced with the potential need for mandatory policies for any vaccine preventable disease.

  8. Non-alcoholic fatty liver disease and subclinical atherosclerosis: A comparison of metabolically- versus genetically-driven excess fat hepatic storage.

    Science.gov (United States)

    Di Costanzo, Alessia; D'Erasmo, Laura; Polimeni, Licia; Baratta, Francesco; Coletta, Paola; Di Martino, Michele; Loffredo, Lorenzo; Perri, Ludovica; Ceci, Fabrizio; Montali, Anna; Girelli, Gabriella; De Masi, Bruna; Angeloni, Antonio; Catalano, Carlo; Maranghi, Marianna; Del Ben, Maria; Angelico, Francesco; Arca, Marcello

    2017-02-01

    Non-alcoholic fatty liver disease (NAFLD) is frequently associated with atherosclerosis. However, it is unclear whether this association is related to excess fat liver storage per se or to metabolic abnormalities that typically accompany NAFLD. To investigate this, we compared individuals with hepatic steatosis driven by metabolic disturbances to those with hepatic steatosis associated with the rs738409 GG genotype in the patatin-like phospholipase domain-containing 3 gene (PNPLA3). Carotid intima-media thickness (CIMT), as a surrogate marker of subclinical atherosclerosis, was measured in 83 blood donors with the mutant GG genotype (group G), 100 patients with features of metabolic syndrome (MetS) but the wildtype CC genotype (group M), and 74 blood donors with the wildtype CC genotype (controls). Fatty liver was evaluated by ultrasonography and hepatic fat fraction (HFF) was measured using magnetic resonance (MRS/MRI) in 157 subjects. Compared with group G and controls, group M subjects were older and had increased adiposity indices, dyslipidemia, insulin resistance and elevated transaminase levels (all p hepatic steatosis), the median CIMT in group M (0.84 [0.70-0.95] mm) was significantly greater than that in group G (0.66 [0.55-0.74] mm; p < 0.001), which was similar to that in controls (0.70 [0.64-0.81] mm). Results were similar in the subgroup evaluated using MRS/MRI. Excess liver fat accumulation appeared to increase the burden of subclinical atherosclerosis only when it is associated with metabolic abnormalities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Hepatically-metabolized and -excreted artificial oxygen carrier, hemoglobin vesicles, can be safely used under conditions of hepatic impairment

    International Nuclear Information System (INIS)

    Taguchi, Kazuaki; Miyasato, Mayumi; Ujihira, Hayato; Watanabe, Hiroshi; Kadowaki, Daisuke; Sakai, Hiromi; Tsuchida, Eishun; Horinouchi, Hirohisa; Kobayashi, Koichi; Maruyama, Toru; Otagiri, Masaki

    2010-01-01

    The hemoglobin vesicle (HbV) is an artificial oxygen carrier in which a concentrated Hb solution is encapsulated in lipid vesicles. Our previous studies demonstrated that HbV is metabolized by the mononuclear phagocyte system, and the lipid components are excreted from the liver. It is well-known that many hepatically-metabolized and -excreted drugs show altered pharmaceutics under conditions of liver impairment, which results in adverse effects. The aim of this study was to determine whether the administration of HbV causes toxicity in rats with carbon tetrachloride induced liver cirrhosis. Changes in plasma biochemical parameters, histological staining and the pharmacokinetic distribution of HbV were evaluated after an HbV injection of the above model rats at a putative clinical dose (1400 mgHb/kg). Plasma biochemical parameters were not significantly affected, except for a transient elevation of lipase, lipid components and bilirubin, which recovered within 14 days after an HbV infusion. Negligible morphological changes were observed in the kidney, liver, spleen, lung and heart. Hemosiderin, a marker of iron accumulation in organs, was observed in the liver and spleen up to 14 days after HbV treatment, but no evidence of oxidative stress in the plasma and liver were observed. HbV is mainly distributed in the liver and spleen, and the lipid components are excreted into feces within 7 days. In conclusion, even under conditions of hepatic cirrhosis, HbV and its components exhibit the favorable metabolic and excretion profile at the putative clinical dose. These findings provide further support for the safety and effectiveness of HbV in clinical settings.

  10. Quantification of hepatic and visceral fat by CT and MR imaging: relevance to the obesity epidemic, metabolic syndrome and NAFLD.

    Science.gov (United States)

    Graffy, Peter M; Pickhardt, Perry J

    2016-06-01

    Trends in obesity have continued to increase in the developed world over the past few decades, along with related conditions such as metabolic syndrome, which is strongly associated with this epidemic. Novel and innovative methods to assess relevant obesity-related biomarkers are needed to determine the clinical significance, allow for surveillance and intervene if appropriate. Aggregations of specific types of fat, specifically hepatic and visceral adiposity, are now known to be correlated with these conditions, and there are a variety of imaging techniques to identify and quantify their distributions and provide diagnostic information. These methods are particularly salient for metabolic syndrome, which is related to both hepatic and visceral adiposity but currently not defined by it. Simpler non-specific fat measurements, such as body weight, abdominal circumference and body mass index are more frequently used but lack the ability to characterize fat location. In addition, non-alcoholic fatty liver disease (NAFLD) is a related condition that carries relevance not only for obesity-related diseases but also for the progression of the liver-specific disease, including non-alcoholic steatohepatitis and cirrhosis, albeit at a much lower frequency. Recent CT and MRI techniques have emerged to potentially optimize diagnosing metabolic syndrome and NAFLD through non-invasive quantification of visceral fat and hepatic steatosis with high accuracy. These imaging modalities should aid us in further understanding the relationship of hepatic and visceral fat to the obesity-related conditions such as metabolic syndrome, NAFLD and cardiovascular disease.

  11. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    Science.gov (United States)

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (pPea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (ppea protein-fed rats than in rats fed casein (ppea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes.

  12. Hepatic fascioliasis in Mashhad, Northeast Iran: first report

    Directory of Open Access Journals (Sweden)

    Alireza Badirzadeh

    Full Text Available Abstract Fascioliasis is a zoonotic disease caused by a leaf-like worm (fluke called Fasciola. Herein, we present a case of human hepatic fascioliasis. A 57-year-old man was referred to the hospital for ambiguous gastrointestinal symptoms with suspected hemangioma. Hepatic fascioliasis was diagnosed using abdominal computed tomography and serology. He tested positive for the IgG antibody against Fasciola hepatica. The patient was treated successfully with triclabendazole. This is the first published report on the occurrence of fascioliasis in Northeast Iran, a non-endemic area for fascioliasis. Our results suggest the emergence of a new focus in the region.

  13. First-Pass Processing of Value Cues in the Ventral Visual Pathway.

    Science.gov (United States)

    Sasikumar, Dennis; Emeric, Erik; Stuphorn, Veit; Connor, Charles E

    2018-02-19

    Real-world value often depends on subtle, continuously variable visual cues specific to particular object categories, like the tailoring of a suit, the condition of an automobile, or the construction of a house. Here, we used microelectrode recording in behaving monkeys to test two possible mechanisms for category-specific value-cue processing: (1) previous findings suggest that prefrontal cortex (PFC) identifies object categories, and based on category identity, PFC could use top-down attentional modulation to enhance visual processing of category-specific value cues, providing signals to PFC for calculating value, and (2) a faster mechanism would be first-pass visual processing of category-specific value cues, immediately providing the necessary visual information to PFC. This, however, would require learned mechanisms for processing the appropriate cues in a given object category. To test these hypotheses, we trained monkeys to discriminate value in four letter-like stimulus categories. Each category had a different, continuously variable shape cue that signified value (liquid reward amount) as well as other cues that were irrelevant. Monkeys chose between stimuli of different reward values. Consistent with the first-pass hypothesis, we found early signals for category-specific value cues in area TE (the final stage in monkey ventral visual pathway) beginning 81 ms after stimulus onset-essentially at the start of TE responses. Task-related activity emerged in lateral PFC approximately 40 ms later and consisted mainly of category-invariant value tuning. Our results show that, for familiar, behaviorally relevant object categories, high-level ventral pathway cortex can implement rapid, first-pass processing of category-specific value cues. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Chlamydia pneumoniae acute liver infection affects hepatic cholesterol and triglyceride metabolism in mice.

    Science.gov (United States)

    Marangoni, Antonella; Fiorino, Erika; Gilardi, Federica; Aldini, Rita; Scotti, Elena; Nardini, Paola; Foschi, Claudio; Donati, Manuela; Montagnani, Marco; Cevenini, Monica; Franco, Placido; Roda, Aldo; Crestani, Maurizio; Cevenini, Roberto

    2015-08-01

    Chlamydia pneumoniae has been linked to atherosclerosis, strictly associated with hyperlipidemia. The liver plays a central role in the regulation of lipid metabolism. Since in animal models C. pneumoniae can be found at hepatic level, this study aims to elucidate whether C. pneumoniae infection accelerates atherosclerosis by affecting lipid metabolism. Thirty Balb/c mice were challenged intra-peritoneally with C. pneumoniae elementary bodies and thirty with Chlamydia trachomatis, serovar D. Thirty mice were injected with sucrose-phosphate-glutamate buffer, as negative controls. Seven days after infection, liver samples were examined both for presence of chlamydia and expression of genes involved in inflammation and lipid metabolism. C. pneumoniae was isolated from 26 liver homogenates, whereas C. trachomatis was never re-cultivated (P triglycerides levels compared both with negative controls (P metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Correction of metabolic abnormalities in a rodent model of obesity, metabolic syndrome, and type 2 diabetes mellitus by inhibitors of hepatic protein kinase C-ι

    Science.gov (United States)

    Sajan, Mini P.; Nimal, Sonali; Mastorides, Stephen; Acevedo-Duncan, Mildred; Kahn, C. Ronald; Fields, Alan P.; Braun, Ursula; Leitges, Michael; Farese, Robert V.

    2013-01-01

    Excessive activity of hepatic atypical protein kinase (aPKC) is proposed to play a critical role in mediating lipid and carbohydrate abnormalities in obesity, the metabolic syndrome, and type 2 diabetes mellitus. In previous studies of rodent models of obesity and type 2 diabetes mellitus, adenoviral-mediated expression of kinase-inactive aPKC rapidly reversed or markedly improved most if not all metabolic abnormalities. Here, we examined effects of 2 newly developed small-molecule PKC-ι/λ inhibitors. We used the mouse model of heterozygous muscle-specific knockout of PKC-λ, in which partial deficiency of muscle PKC-λ impairs glucose transport in muscle and thereby causes glucose intolerance and hyperinsulinemia, which, via hepatic aPKC activation, leads to abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. One inhibitor, 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)], binds to the substrate-binding site of PKC-λ/ι, but not other PKCs. The other inhibitor, aurothiomalate, binds to cysteine residues in the PBl-binding domains of aPKC-λ/ι/ζ and inhibits scaffolding. Treatment with either inhibitor for 7 days inhibited aPKC, but not Akt, in liver and concomitantly improved insulin signaling to Akt and aPKC in muscle and adipocytes. Moreover, both inhibitors diminished excessive expression of hepatic, aPKC-dependent lipogenic, proinflammatory, and gluconeogenic factors; and this was accompanied by reversal or marked improvements in hyperglycemia, hyperinsulinemia, abdominal obesity, hepatosteatosis, hypertriglyceridemia, and hypercholesterolemia. Our findings highlight the pathogenetic importance of insulin signaling to hepatic PKC-ι in obesity, the metabolic syndrome, and type 2 diabetes mellitus and suggest that 1H-imidazole-4-carboxamide, 5-amino-1-[2,3-dihydroxy-4-[(phosphonooxy)methyl]cyclopentyl-[1R-(1a,2b,3b,4a)] and aurothiomalate or similar agents that

  16. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polycholorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1993-01-14

    I14JAN93 Annual Technical Report 15DEC91-1ý+JAN9 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Hepatic Metabolism of Perfluorinated Carboxylic Acids and G-FS...13. ABSTRACT (Maximum 200 words) This report describes our studies of the effects of perfluorooctanoic acid (PFOA) and perfluorodecanolc acid (PFDA) on...metabolism. 31 p NMR was used to examine the effects of PFDA. PFOA. and clofibrate (C LOF) in both rats and guinea pigs. A unique effect is revealed in

  17. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Science.gov (United States)

    Li, Songtao; Liao, Xilu; Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  18. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Directory of Open Access Journals (Sweden)

    Songtao Li

    Full Text Available BACKGROUND: Non-alcoholic fatty liver disease (NAFLD is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA, an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD-induced obese non-alcoholic fatty liver disease (NAFLD rat model. METHODOLOGY/PRINCIPAL FINDINGS: Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. CONCLUSIONS/SIGNIFICANCE: These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  19. Freshwater Clam Extract Ameliorates Triglyceride and Cholesterol Metabolism through the Expression of Genes Involved in Hepatic Lipogenesis and Cholesterol Degradation in Rats

    Directory of Open Access Journals (Sweden)

    Thomas Laurent

    2013-01-01

    Full Text Available The freshwater clam (Corbicula spp. is a popular edible bivalve and has been used as a folk remedy for liver disease in Asia. As a Chinese traditional medicine, it is said that freshwater clam ameliorates alcoholic intoxication and cholestasis. In this study, to estimate the practical benefit of freshwater clam extract (FCE, we compared the effects of FCE and soy protein isolate (SPI on triglyceride and cholesterol metabolism in rats. FCE and SPI lowered serum cholesterol, and FCE tended to reduce serum triglycerides. FCE enhanced fecal sterol excretion and hepatic mRNA levels of CYP7A1 and ABCG5 more substantially than SPI; however, both diets reduced hepatic cholesterol. Both of the diets similarly suppressed liver lipids improved Δ9-desaturated fatty acid profile, and FCE was associated with a reduction in FAS and SCD1 mRNA levels. Hepatic transcriptome analysis revealed that inhibition of lipogenesis-related gene expression may contribute to downregulation of hepatic triglycerides by FCE. FCE would have better potential benefits for preventing metabolic disorders, through greater improvement of metabolism of triglycerides and cholesterol, likely through a mechanism similar to SPI.

  20. Assessment of right ventricular function with nonimaging first pass ventriculography and comparison of results with gamma camera studies.

    Science.gov (United States)

    Zhang, Z; Liu, X J; Liu, Y Z; Lu, P; Crawley, J C; Lahiri, A

    1990-08-01

    A new technique has been developed for measuring right ventricular function by nonimaging first pass ventriculography. The right ventricular ejection fraction (RVEF) obtained by non-imaging first pass ventriculography was compared with that obtained by gamma camera first pass and equilibrium ventriculography. The data has demonstrated that the correlation of RVEFs obtained by the nonimaging nuclear cardiac probe and by gamma camera first pass ventriculography in 15 subjects was comparable (r = 0.93). There was also a good correlation between RVEFs obtained by the nonimaging nuclear probe and by equilibrium gated blood pool studies in 33 subjects (r = 0.89). RVEF was significantly reduced in 15 patients with right ventricular and/or inferior myocardial infarction compared to normal subjects (28 +/- 9% v. 45 +/- 9%). The data suggests that nonimaging probes may be used for assessing right ventricular function accurately.

  1. Hepatic Metabolism Affects the Atropselective Disposition of 2,2′,3,3′,6,6′-Hexachlorobiphenyl (PCB 136) in Mice

    Science.gov (United States)

    2015-01-01

    To understand the role of hepatic vs extrahepatic metabolism in the disposition of chiral PCBs, we studied the disposition of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) and its hydroxylated metabolites (HO-PCBs) in mice with defective hepatic metabolism due to the liver-specific deletion of cytochrome P450 oxidoreductase (KO mice). Female KO and congenic wild type (WT) mice were treated with racemic PCB 136, and levels and chiral signatures of PCB 136 and HO-PCBs were determined in tissues and excreta 3 days after PCB administration. PCB 136 tissue levels were higher in KO compared to WT mice. Feces was a major route of PCB metabolite excretion, with 2,2′,3,3′,6,6′-hexachlorobiphenyl-5-ol being the major metabolite recovered from feces. (+)-PCB 136, the second eluting PCB 136 atropisomers, was enriched in all tissues and excreta. The second eluting atropisomers of the HO-PCBs metabolites were enriched in blood and liver; 2,2′,3,3′,6,6′-hexachlorobiphenyl-5-ol in blood was an exception and displayed an enrichment of the first eluting atropisomers. Fecal HO-PCB levels and chiral signatures changed with time and differed between KO and WT mice, with larger HO-PCB enantiomeric fractions in WT compared to KO mice. Our results demonstrate that hepatic and, possibly, extrahepatic cytochrome P450 (P450) enzymes play a role in the disposition of PCBs. PMID:25420130

  2. Helping Students with Difficult First Year Subjects through the PASS Program

    Science.gov (United States)

    Sultan, Fauziah K. P. D.; Narayansany, Kannaki S.; Kee, Hooi Ling; Kuan, Chin Hoay; Palaniappa Manickam, M. Kamala; Tee, Meng Yew

    2013-01-01

    The purpose of this action research was to find out if participants of a pilot PASS program found it to be helpful. The program was implemented for the first time in an institute of higher learning in Malaysia. An action research design guided the study, with surveys, documents, and reflections as primary data sources. The findings were largely…

  3. Low trans structured fat from flaxseed oil improves plasma and hepatic lipid metabolism in apo E(-/-) mice.

    Science.gov (United States)

    Cho, Yun-Young; Kwon, Eun-Young; Kim, Hye-Jin; Park, Yong-Bok; Lee, Ki-Teak; Park, Taesun; Choi, Myung-Sook

    2009-07-01

    The objective of this study was to explicate the effects of feeding low trans structured fat from flaxseed oil (LF) on plasma and hepatic lipid metabolism involved in apo E(-/-) mice. The animals were fed a commercial shortening (CS), commercial low trans fat (CL) and LF diet based on AIN-76 diet (10% fat) for 12 weeks. LF supplementation exerted a significant suppression in hepatic lipid accumulation with the concomitant decrease in liver weight. The LF significantly lowered plasma total cholesterol and free fatty acid whereas it significantly increased HDL-C concentration and the HDL-C/total-C ratio compared to the CS group. Reduction of hepatic lipid levels in the LF group was related with the suppression of hepatic enzyme activities for fatty acid and triglyceride synthesis, and cholesterol regulating enzyme activity compared to the CS and CL groups. Accordingly, low trans structured fat from flaxseed oil is highly effective for improving hyperlipidemia and hepatic lipid accumulation in apo E(-/-) mice.

  4. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Transdermal hormone therapy in postmenopausal women: A review of metabolic effects and drug delivery technologies

    Directory of Open Access Journals (Sweden)

    Nathan W Kopper

    2008-10-01

    Full Text Available Nathan W Kopper, Jennifer Gudeman, Daniel J ThompsonKV Pharmaceutical, St. Louis, MO, USAAbstract: Vasomotor symptoms (VMS associated with menopause can cause significant discomfort and decrease the quality of life for women in the peri-menopausal and post-menopausal stages of life. Hormone therapy (HT is the mainstay of treatment for menopausal symptoms and is currently the only therapy proven effective for VMS. Numerous HT options are available to treat VMS, including estrogen-only and estrogen-progestogen combination products to meet the needs of both hysterectomized and nonhysterectomized women. In addition to selecting an appropriate estrogen or estrogen-progestogen combination, consideration should be given to the route of administration to best suit the needs of the patient. Delivery systems for hormone therapy include oral tablets, transdermal patches, transdermal topical (nonpatch products, and intravaginal preparations. Oral is currently the most commonly utilized route of administration in the United States. However, evidence suggests that oral delivery may lead to some undesirable physiologic effects caused by significant gut and hepatic metabolism. Transdermal drug delivery may mitigate some of these effects by avoiding gut and hepatic first-pass metabolism. Advantages of transdermal delivery include the ability to administer unmetabolized estradiol directly to the blood stream, administration of lower doses compared to oral products, and minimal stimulation of hepatic protein production. Several estradiol transdermal delivery technologies are available, including various types of patches, topical gels, and a transdermal spray.Keywords: estradiol, hormone therapy, menopause, transdermal drug delivery, vasomotor symptoms

  6. Effects of atrazine on hepatic metabolism and endocrine homeostasis in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Salaberria, Iurgi; Hansen, Bjorn Henrik; Asensio, Vega; Olsvik, Pal A.; Andersen, Rolf A.; Jenssen, Bjorn Munro

    2009-01-01

    The herbicide atrazine (ATZ) is one of the most widely used pesticides in the world and is now under scrutiny for its alleged capacity to disrupt the endocrine system. Exhibiting negligible interaction with the estrogen receptor (ER), ATZ's mode of action remains to be elucidated. ATZ may act as an inducer of the enzyme aromatase, which converts androgens to estrogens, although other mechanisms should also be taken into consideration such as impairment of hepatic metabolism. Therefore we administered juvenile rainbow trout (Oncorhynchus mykiss) a dose of either 2 or 200 μg ATZ/kg, or of carrier control phosphate buffered saline (PBS) and we measured plasma concentrations of testosterone (T), 17beta-estradiol (E2) and vitellogenin (Vtg) 6 days after exposure. Simultaneously we analyzed hepatic gene expression of cytochrome P450 (CYP) 1A and pi-class glutathione S-transferase (GST-P), and catalase (CAT) activity. Although sex steroid levels showed no significant alterations, we found a dose-dependent increase in Vtg and a concomitant decrease in CYP1A. There was no effect of ATZ on GST-P mRNA levels but GST-P was positively correlated with CYP1A. Also, CYP1A was negatively correlated with liver CAT and E2, and varied with T concentrations in a hormetic manner. The results showed that ATZ can alter hepatic metabolism, induce estrogenic effects and oxidative stress in vivo, and that these effects are linked

  7. Differentiating benign and malignant breast lesions with T2*-weighted first pass perfusion imaging

    International Nuclear Information System (INIS)

    Kvistad, K.A.; Smenes, E.; Haraldseth, O.; Lundgren, S.; Fjoesne, H.E.; Smethurst, H.B.

    1999-01-01

    Purpose: Invasive breast carcinomas and fibroadenomas are often difficult to differentiate in dynamic contrast-enhanced T1-weighted MR imaging of the breast, because both tumors can enhance strongly after contrast injection. The purpose of this study was to evaluate whether the addition of T2*-weighted first pass perfusion imaging can increase the differentiation of malignant from benign lesions. Material and Methods: Nine patients with invasive carcinomas and 10 patients with contrast enhancing fibroadenomas were examined by a dynamic contrast-enhanced T1-weighted 3D sequence immediately followed by a single slice T2*-weighted first pass perfusion sequence positioned in the contrast-enhancing lesion. Results: The carcinomas and the fibroadenomas were impossible to differentiate based on the contrast enhancement characteristics in the T1-weighted sequence. The signal loss in the T2*-weighted perfusion sequence was significantly stronger in the carcinomas than in the fibroadenomas (p=0.0004). Conclusion: Addition of a T2*-weighted first pass perfusion sequence with a high temporal resolution can probably increase the differentiation of fibroadenomas from invasive carcinomas in contrast-enhanced MR imaging of the breast. (orig.)

  8. Evaluation of pulmonary hypertension using first-pass radionuclide angiography in patients with valvular heart disease

    International Nuclear Information System (INIS)

    Wang Xuemei; Shi Rongfang; Pan Shiwei; Fang Wei; Wang Daoyu; Wang Qi; Zhang Hailong

    2003-01-01

    Objective: To evaluate pulmonary hypertension (PH) using first-pass radionuclide angiography in patients with valvular heart disease. Methods: One hundred and forty patients (54 males, 86 females, average age of 44.75±10.84) with valvular disease were included in this study. Swan-Ganz thermodilution catheterization, echocardiography and first-pass radionuclide angiography were performed on all patients before surgery. Patients were divided into four groups: pulmonary artery pressure (PAP) normal group [mean PAP (MPAP)<20 mm Hg(1mm Hg=0.133 kPa)]; PAP slightly risen group (20 mm Hg≤MPAP<30 mm Hg); PAP moderately risen group (30 mm Hg≤MPAP<50 mm Hg); PAP highly risen group (MPAP≥50 mm Hg). Thirteen subjects with coronary heart disease and 40 normal subjects (36 males, 17 females, average age of 46.30±11.19) were included as control group. First-pass radionuclide angiography was performed on these subjects, Swan-Ganz thermodilution catheterization was performed on patients with coronary heart disease. Results: 1) Lung equilibrium time (LET) values by first-pass radionuclide angiography were (16.88±5.12), (15.89±4.69), (18.56±3.04), (25.37±5.89), (37.69±6.25) and (61.33±10.14) s in coronary heart disease group, normal subject group and four valvular heart disease groups, respectively. The differences were significant among four valvular heart disease groups; and among control group, PAP slightly risen group, PAP moderately risen group, PAP highly risen group (P<0.001). 2) Correlation coefficient between LET and MPAP from the afloat catheter manometer was 0.88 and between systolic PAP (SPAP) from echocardiography and SPAP from the afloat catheter manometer was 0.64. 3) Agreement was 71%, 78%, 81%, 100% between LET and MPAP in four valvular heart disease groups, respectively. 4) Sensitivity, specificity and accuracy of PAP using LET measuring was 85%, 79% and 83%, respectively. Conclusion: First-pass radionuclide angiography is an accurate and noninvasive

  9. Association between Leptin and Complement in Hepatitis C Patients with Viral Clearance: Homeostasis of Metabolism and Immunity.

    Science.gov (United States)

    Chang, Ming-Ling; Kuo, Chia-Jung; Huang, Hsin-Chih; Chu, Yin-Yi; Chiu, Cheng-Tang

    2016-01-01

    The association between leptin and complement in hepatitis C virus (HCV) infection remains unknown. A prospective study was conducted including 474 (250 genotype 1, 224 genotype 2) consecutive chronic hepatitis C (CHC) patients who had completed an anti-HCV therapy course and undergone pre-therapy and 24-week post-therapy assessments of interferon λ3-rs12979860 and HCV RNA/genotypes, anthropometric measurements, metabolic and liver profiles, and complement component 3 (C3), C4, and leptin levels. Of the 474 patients, 395 had a sustained virological response (SVR). Pre-therapy leptin levels did not differ between patients with and without an SVR. Univariate and multivariate analyses showed that sex (pre- and post-therapy, pimmune and metabolic homeostasis through association with C4 and TC. Positive alterations in C4 and TC levels reflect viral clearance after therapy in CHC patients.

  10. Metformin and metabolic diseases: a focus on hepatic aspects

    Science.gov (United States)

    Woo, Shih-Lung; Hu, Xiang; Botchlett, Rachel; Chen, Lulu; Huo, Yuqing

    2015-01-01

    Metformin has been widely used as a first-line anti-diabetic medicine for the treatment of type 2 diabetes (T2D). As a drug that primarily targets the liver, metformin suppresses hepatic glucose production (HGP), serving as the main mechanism by which metformin improves hyperglycemia of T2D. Biochemically, metformin suppresses gluconeogenesis and stimulates glycolysis. Metformin also inhibits glycogenolysis, which is a pathway that critically contributes to elevated HGP. While generating beneficial effects on hyperglycemia, metformin also improves insulin resistance and corrects dyslipidemia in patients with T2D. These beneficial effects of metformin implicate a role for metformin in managing non-alcoholic fatty liver disease. As supported by the results from both human and animal studies, metformin improves hepatic steatosis and suppresses liver inflammation. Mechanistically, the beneficial effects of metformin on hepatic aspects are mediated through both adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways. In addition, metformin is generally safe and may also benefit patients with other chronic liver diseases. PMID:25676019

  11. Variation in genes related to hepatic lipid metabolism and changes in waist circumference and body weight

    DEFF Research Database (Denmark)

    Meidtner, Karina; Fisher, Eva; Angquist, Lars

    2014-01-01

    We analysed single nucleotide polymorphisms (SNPs) tagging the genetic variability of six candidate genes (ATF6, FABP1, LPIN2, LPIN3, MLXIPL and MTTP) involved in the regulation of hepatic lipid metabolism, an important regulatory site of energy balance for associations with body mass index (BMI...

  12. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD).

    Science.gov (United States)

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment.

  13. Relationship between murine Ah phenotype and the hepatic metabolism of 2,3,7,8-tetrachlorodibenzo-P-dioxin (TCDD)

    International Nuclear Information System (INIS)

    Shen, E.S.; Olson, J.R.

    1986-01-01

    The Ah receptor has been correlated with the toxic effects of TCDD in C57BL/6J (B6) and DBA/2J (D2) mice. The B6 strain, which has a high affinity cytosolic Ah receptor, is more sensitive to TCDD than the D2 strain, which lacks this receptor. The metabolism of TCDD was studied by incubating 14 C-TCDD (2.2 μM) with hepatocytes from control and TCDD-pretreated B6 and D2 mice. Mice were pretreated with TCDD at doses that maximally induce ethoxyresorufin-O-deethylase (EROD) activity, a measure of Ah locus responsiveness to TCDD (B6, 3μg/kg, ip;D2, 30μg/kg, ip). Similar cytochrome P-450 content was detected in control B6 and D2 hepatocytes, however, TCDD pretreatment increased P-450 content 400% in B6 and 300% in D2 mice. No difference in hepatic EROD activity was found between control B6 and D2 mice (81.7 and 101.7 pmol/min/nmol P-450, respectively), but EROD activity was increased 17-fold in B6 and 10-fold in D2 mice after TCDD administration. The average rate of hepatic TCDD metabolism over two hours was similar in control B6 and D2 mice (1.103 and 0.945 pmol/hr/mg cell protein, respectively), although some qualitative differences in the metabolites were detected by HPLC. TCDD pretreatment produced no quantitative or qualitative changes in TCDD metabolism. These results suggest that the rate of hepatic TCDD metabolism does not correlate with genetic differences at the Ah locus

  14. Effects of Arctium lappa aqueous extract on lipid profile and hepatic enzyme levels of sucrose-induced metabolic syndrome in female rats

    Directory of Open Access Journals (Sweden)

    Akram Ahangarpour

    Full Text Available ABSTRACT Arctium lappa is known to have antioxidant and antidiabetic effects in traditional medicine. Objectives: The aim of this paper was to study the effects of A. lappa root extract (AE on lipid profile and hepatic enzyme levels in sucrose-induced metabolic syndrome (MS in female rats. The study used 40 adult female Wistar rats weighing 150 g-250 g randomly divided into five groups: control, metabolic syndrome (MS, metabolic syndrome+AE at 50,100, 200 mg/kg. MS was induced by administering 50% sucrose in drinking water for 6 weeks. AE was intra-peritoneally administered daily at doses of 50,100, and 200 mg/kg for two sequential weeks at the end of the fourth week in metabolic syndrome rats. Twenty-four hours after the last administration of AE, blood was collected and centrifuged, and then the serum was used for the measurement of lipid profile and hepatic enzyme. Serum glucose, insulin, fasting insulin resistance index, body weight, water intake, lipid profile, and hepatic enzymes were significantly increased although food intake was decreased in MS rats compared to the control rats. The lipids and liver enzymes were reduced by AE extracts in the MS group. This study showed that the A. lappa root aqueous extract exhibits a hypolipidemic activity of hyperlipidemic rats. This activity is practically that of a triple-impact antioxidant, hypolipidemic, and hepatoprotective.

  15. No oxygen delivery limitation in hepatic encephalopathy

    DEFF Research Database (Denmark)

    Gjedde, Albert; Keiding, Susanne; Vilstrup, Hendrik

    2010-01-01

    to choose between cause and effect in three groups of volunteers, including healthy control subjects (HC), patients with cirrhosis of the liver without hepatic encephalopathy (CL), and patients with cirrhosis with acute hepatic encephalopathy. Compared to HC subjects, blood flow and energy metabolism had......Hepatic encephalopathy is a condition of reduced brain functioning in which both blood flow and brain energy metabolism declined. It is not known whether blood flow or metabolism is the primary limiting factor of brain function in this condition. We used calculations of mitochondrial oxygen tension...

  16. Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis

    International Nuclear Information System (INIS)

    Martins, Sandra Fernandes; Amorim, Ricardo; Viana-Pereira, Marta; Pinheiro, Céline; Costa, Ricardo Filipe Alves; Silva, Patrícia; Couto, Carla; Alves, Sara; Fernandes, Sara; Vilaça, Sónia; Falcão, Joaquim; Marques, Herlander; Pardal, Fernando; Rodrigues, Mesquita; Preto, Ana; Reis, Rui Manuel; Longatto-Filho, Adhemar; Baltazar, Fátima

    2016-01-01

    Colorectal cancer (CRC) is one of the most common malignancies and a leading cause of cancer death worldwide. Most cancer cells display high rates of glycolysis with production of lactic acid, which is then exported to the microenvironment by monocarboxylate transporters (MCTs). The main aim of this study was to evaluate the significance of MCT expression in a comprehensive series of primary CRC cases, lymph node and hepatic metastasis. Expressions of MCT1, MCT4, CD147 and GLUT1 were studied in human samples of CRC, lymph node and hepatic metastasis, by immunohistochemistry. All proteins were overexpressed in primary CRC, lymph node and hepatic metastasis, when compared with non-neoplastic tissue, with exception of MCT1 in lymph node and hepatic metastasis. MCT1 and MCT4 expressions were associated with CD147 and GLUT1 in primary CRC. These markers were associated with clinical pathological features, reflecting the putative role of these metabolism-related proteins in the CRC setting. These findings provide additional evidence for the pivotal role of MCTs in CRC maintenance and progression, and support the use of MCTs as biomarkers and potential therapeutic targets in primary and metastatic CRC

  17. A Role for Timp3 in Microbiota-Driven Hepatic Steatosis and Metabolic Dysfunction

    Directory of Open Access Journals (Sweden)

    Maria Mavilio

    2016-07-01

    Full Text Available The effect of gut microbiota on obesity and insulin resistance is now recognized, but the underlying host-dependent mechanisms remain poorly undefined. We find that tissue inhibitor of metalloproteinase 3 knockout (Timp3−/− mice fed a high-fat diet exhibit gut microbiota dysbiosis, an increase in branched chain and aromatic (BCAA metabolites, liver steatosis, and an increase in circulating soluble IL-6 receptors (sIL6Rs. sIL6Rs can then activate inflammatory cells, such as CD11c+ cells, which drive metabolic inflammation. Depleting the microbiota through antibiotic treatment significantly improves glucose tolerance, hepatic steatosis, and systemic inflammation, and neutralizing sIL6R signaling reduces inflammation, but only mildly impacts glucose tolerance. Collectively, our results suggest that gut microbiota is the primary driver of the observed metabolic dysfunction, which is mediated, in part, through IL-6 signaling. Our findings also identify an important role for Timp3 in mediating the effect of the microbiota in metabolic diseases.

  18. Evaluation of left ventricular ejection fraction by first pass radionuclide cardioangiography

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, T; Imai, Y; Kagawa, M; Hayashi, M; Kozuka, T [National Cardiovascular Center, Suita, Osaka (Japan)

    1980-02-01

    The left ventricular ejection fraction can be assessed by recording the passage of peripherally administered radioactive bolus through the heart which is first pass method. In this study, the accuracy and validity of first pass method were examined in the patients with cardiac catheterization. After sup(99m)Tc-HSA as a bolus was injected intravenouslly, the time-activity curve was recorded with a scintillation camera and online minicomputer system. The ejection fraction was calculated by the average of three cardiac cycles which corresponded to the left ventricular volume changes during each cardiac cycles. The results correlated well with those obtained by biplane cineangiography in the twenty patients without arrythmias (r = 0.89) and moreover, this technique was applied to the fifteen patients with atrial fibrillation such as mitral valvular diseases, congestive cardiomyopathy, Good correlation of the ejection fraction (r = 0.84) was obtained. The findings, however, demonstrated that the time-activity curve must be generated from the region of interest which fits the left ventricular blood pool precisely and must be corrected for the contribution arizing from noncardiac background structures (two matrix method). In conclusion, this noninvasive method appears particularly useful for serial evaluation of the patients with cardiac dysfunctions and would be available for the routine examination of ventricular functions.

  19. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin administration and high-fat diet on the body weight and hepatic estrogen metabolism in female C3H/HeN mice

    International Nuclear Information System (INIS)

    Zhu Baoting; Gallo, Michael A.; Burger, Conney W.; Meeker, Robert J.; Cai, May Xiaoxin; Xu Shiyao; Conney, Allan H.

    2008-01-01

    We studied the effect of administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by i.p. injection once every 2 weeks in combination with a high-fat (HF) diet for 8 or 16 weeks on the body and organ weight changes as well as on the hepatic enzyme activity for estrogen metabolism in C3H/HeN female mice. Administration of TCDD at 100 μg/kg b.w. once every 2 weeks for 8 weeks increased the body weight by 46% in the HF diet-fed animals, but not in the regular diet-fed animals. This is the first observation suggesting that TCDD at a high dose (100 μg/kg b.w.), but not at lower doses (1 or 10 μg/kg b.w.), may have a strong obesity-inducing effect in C3H/HeN mice fed an HF diet. While TCDD increased liver weight and decreased thymus weight in animals, these effects were enhanced by feeding animals an HF diet. Metabolism studies showed that TCDD administration for 8 or 16 weeks increased the liver microsomal activity for the 2- and 4-hydroxylation of 17β-estradiol in animals fed a control diet, but surprisingly not in animals fed an HF diet. Treatment with TCDD dose-dependently increased the hepatic activity for the O-methylation of catechol estrogens in both control and HF diet-fed animals, and it also decreased the levels of liver microsomal sulfatase activity for hydrolysis of estrone-3-sulfate. TCDD did not significantly affect the hepatic enzyme activity for the glucuronidation or esterification of endogenous estrogens. It is suggested that enhanced metabolic inactivation of endogenous estrogens by hepatic estrogen-metabolizing enzymes in TCDD-treated, control diet-fed animals contributes importantly to the reduced incidence of estrogen-associated tumors in animals treated with TCDD

  20. Solubility and Permeability Studies of Aceclofenac in Different Oils

    African Journals Online (AJOL)

    assess the in vivo bioavailability of the drug [1]. Forty percent of ... administration with hepatic first-pass metabolism. [11]. Due its ... suitable oils that would improve solubility and in .... Baboota S, Faisal MS, Ali J, Ahuja A. Effect of poloxamer.

  1. Hepatic steatosis : metabolic consequences

    NARCIS (Netherlands)

    Boer, Adriana Maria den

    2006-01-01

    In this thesis we focused on the causes and consequences of hepatic steatosis. Epidemiological studies in humans, as well as experimental studies in animal models, have shown an association between visceral obesity and dyslipidemia, insulin resistance and type 2 diabetes mellitus. The mechanism

  2. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Laia; Rebollo, Alba; Adalsteisson, Gunnar S [Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona (Spain); Alegret, Marta; Merlos, Manuel; Roglans, Nuria [Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona (Spain); IBUB - Institute of Biomedicine, University of Barcelona, Barcelona (Spain); CIBERobn, [Center for Biomedical Investigation Network in Obesity and Nutrition Physiopathology; Spain; Laguna, Juan C., E-mail: jclagunae@ub.edu [Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona (Spain); IBUB -Institute of Biomedicine, University of Barcelona, Barcelona (Spain); CIBERobn, [Center for Biomedical Investigation Network in Obesity and Nutrition Physiopathology; Spain

    2011-02-15

    Consumption of beverages that contain fructose favors the increasing prevalence of metabolic syndrome alterations in humans, including non-alcoholic fatty liver disease (NAFLD). Although the only effective treatment for NAFLD is caloric restriction and weight loss, existing data show that atorvastatin, a hydroxymethyl-glutaryl-CoA reductase inhibitor, can be used safely in patients with NAFLD and improves hepatic histology. To gain further insight into the molecular mechanisms of atorvastatin's therapeutic effect on NAFLD, we used an experimental model that mimics human consumption of fructose-sweetened beverages. Control, fructose (10% w/v solution) and fructose + atorvastatin (30 mg/kg/day) Sprague-Dawley rats were sacrificed after 14 days. Plasma and liver tissue samples were obtained to determine plasma analytes, liver histology, and the expression of liver proteins that are related to fatty acid synthesis and catabolism, and inflammatory processes. Fructose supplementation induced hypertriglyceridemia and hyperleptinemia, hepatic steatosis and necroinflammation, increased the expression of genes related to fatty acid synthesis and decreased fatty acid {beta}-oxidation activity. Atorvastatin treatment completely abolished histological signs of necroinflammation, reducing the hepatic expression of metallothionein-1 and nuclear factor kappa B binding. Furthermore, atorvastatin reduced plasma (x 0.74) and liver triglyceride (x 0.62) concentrations, decreased the liver expression of carbohydrate response element binding protein transcription factor (x0.45) and its target genes, and increased the hepatic activity of the fatty acid {beta}-oxidation system (x 1.15). These effects may be related to the fact that atorvastatin decreased the expression of fructokinase (x 0.6) in livers of fructose-supplemented rats, reducing the metabolic burden on the liver that is imposed by continuous fructose ingestion. - Graphical Abstract: Display Omitted Research Highlights

  3. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment

    International Nuclear Information System (INIS)

    Vila, Laia; Rebollo, Alba; Adalsteisson, Gunnar S.; Alegret, Marta; Merlos, Manuel; Roglans, Nuria; Laguna, Juan C.

    2011-01-01

    Consumption of beverages that contain fructose favors the increasing prevalence of metabolic syndrome alterations in humans, including non-alcoholic fatty liver disease (NAFLD). Although the only effective treatment for NAFLD is caloric restriction and weight loss, existing data show that atorvastatin, a hydroxymethyl-glutaryl-CoA reductase inhibitor, can be used safely in patients with NAFLD and improves hepatic histology. To gain further insight into the molecular mechanisms of atorvastatin's therapeutic effect on NAFLD, we used an experimental model that mimics human consumption of fructose-sweetened beverages. Control, fructose (10% w/v solution) and fructose + atorvastatin (30 mg/kg/day) Sprague-Dawley rats were sacrificed after 14 days. Plasma and liver tissue samples were obtained to determine plasma analytes, liver histology, and the expression of liver proteins that are related to fatty acid synthesis and catabolism, and inflammatory processes. Fructose supplementation induced hypertriglyceridemia and hyperleptinemia, hepatic steatosis and necroinflammation, increased the expression of genes related to fatty acid synthesis and decreased fatty acid β-oxidation activity. Atorvastatin treatment completely abolished histological signs of necroinflammation, reducing the hepatic expression of metallothionein-1 and nuclear factor kappa B binding. Furthermore, atorvastatin reduced plasma (x 0.74) and liver triglyceride (x 0.62) concentrations, decreased the liver expression of carbohydrate response element binding protein transcription factor (x0.45) and its target genes, and increased the hepatic activity of the fatty acid β-oxidation system (x 1.15). These effects may be related to the fact that atorvastatin decreased the expression of fructokinase (x 0.6) in livers of fructose-supplemented rats, reducing the metabolic burden on the liver that is imposed by continuous fructose ingestion. - Graphical Abstract: Display Omitted Research Highlights:

  4. Leptin and Adiponectin Levels in Patients with Chronic Hepatitis C with Carbohydrate and Lipid Metabolism Disorders

    Directory of Open Access Journals (Sweden)

    T. V. Antonova

    2014-01-01

    Full Text Available Aim: to analyze leptin and adiponectin serum levels in patients with chronic hepatitis C in comparison with metabolic syndrome components, biochemical features and stage of hepatitis.Materials and methods: In 93 patients with chronic HCV in age 20-55 with a few symptomatic HCV-infection and minimal liver fibrosis stage serum leptin and adiponectin was measured. Associations between leptin, adiponectin and metabolic abnormalities, biochemical features, and hepatic fibrosis were determined.Results: Abdominal obesity was revealed at 40% patients, overweight – at 41%, insulin resistance – at 36,6% cases. The leptin and adiponectin levels were within normal limits range at most patients. Patients with minimal liver fibrosis had higher index of leptin by comparison to patients with moderate and severe fibrosis (r= – 0,402, р= 0,018. In patients with HCV genotype 3a the adiponectin level was below, than in HCV genotype 1b. Patients with abdominal obesity and overweight had higher leptin and lower adiponectin indexes by comparison to patients without these metabolic abnormalities. Direct cross-correlation between the leptin level and body mass index (r=0,358, p=0,001, waist circumference (r=0,292, p=0,01; negative cross-correlation between the adiponectin level and body mass index (r=- 0,435, р <0,021, waist circumference (r=- 0,386, р =0,001 were displayed.Conclusion: Leptin and adiponectin blood levels in HCVpatientis associated with abdominal obesity and overweight. The connection of leptin level and liver fibrosis stage was revealed. Difference of adiponectin level in HCV-patients with 3a and 1b genotypes of virus was found.

  5. Determination of right ventricular ejection fraction from reprojected gated blood pool SPET: comparison with first-pass ventriculography

    International Nuclear Information System (INIS)

    Bartlett, M.L.; Seaton, D.; McEwan, L.; Fong, W.

    2001-01-01

    Gated blood pool (GBP) studies are widely available and relatively inexpensive. We have previously published a simple and convenient method for measuring left ventricle ejection fraction (EF) with increased accuracy from single-photon emission tomography (SPET) GBP scans. This paper describes an extension of this method by which right ventricular EF may also be measured. Gated SPET images of the blood pool are acquired and re-oriented in short-axis slices. Counts from the left ventricle are excluded from the short-axis slices, which are then reprojected to give horizontal long-axis images. Time-activity curves are generated from each pixel around the right ventricle, and an image is created with non-ventricular pixels ''greyed out''. This image is used as a guide in drawing regions of interest around the right ventricle on the end-diastolic and end-systolic long-axis images. In 28 patients, first-pass ventriculography studies were acquired followed by SPET GBP scans. The first-pass images were analysed a total of four times by two observers and the SPET images were analysed three times each by two observers. The agreement between the two techniques was good, with a correlation coefficient of 0.72 and a mean absolute difference between first-pass and reprojected SPET EFs of 4.8 EF units. Only four of the 28 patients had a difference of greater than 8 EF units. Variability was also excellent for SPET right ventricular EF values. Intra-observer variability was significantly lower for SPET than for first-pass EFs: standard error of the estimate (SEE)=5.1 and 7.3 EF units, respectively (P<0.05). Inter-observer variability was comparable in the two techniques (SEE=5.2 and 6.9 EF units for SPET and first-pass ventriculography, respectively). (orig.)

  6. Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life.

    Science.gov (United States)

    Vasas, Vera; Szathmáry, Eörs; Santos, Mauro

    2010-01-26

    A basic property of life is its capacity to experience Darwinian evolution. The replicator concept is at the core of genetics-first theories of the origin of life, which suggest that self-replicating oligonucleotides or their similar ancestors may have been the first "living" systems and may have led to the evolution of an RNA world. But problems with the nonenzymatic synthesis of biopolymers and the origin of template replication have spurred the alternative metabolism-first scenario, where self-reproducing and evolving proto-metabolic networks are assumed to have predated self-replicating genes. Recent theoretical work shows that "compositional genomes" (i.e., the counts of different molecular species in an assembly) are able to propagate compositional information and can provide a setup on which natural selection acts. Accordingly, if we stick to the notion of replicator as an entity that passes on its structure largely intact in successive replications, those macromolecular aggregates could be dubbed "ensemble replicators" (composomes) and quite different from the more familiar genes and memes. In sharp contrast with template-dependent replication dynamics, we demonstrate here that replication of compositional information is so inaccurate that fitter compositional genomes cannot be maintained by selection and, therefore, the system lacks evolvability (i.e., it cannot substantially depart from the asymptotic steady-state solution already built-in in the dynamical equations). We conclude that this fundamental limitation of ensemble replicators cautions against metabolism-first theories of the origin of life, although ancient metabolic systems could have provided a stable habitat within which polymer replicators later evolved.

  7. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    International Nuclear Information System (INIS)

    Kim, Young C.; Yim, Hye K.; Jung, Young S.; Park, Jae H.; Kim, Sung Y.

    2007-01-01

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards

  8. Attributes of Candidates Passing the ABS Certifying Examination on the First Attempt-Program Directors׳ Perspective.

    Science.gov (United States)

    Sheikh, Mohd Raashid; Hulme, Michael

    2016-01-01

    The American Board of Surgery Certifying Examination (CE) is a pivotal event in a surgeon's career development, as it is the last challenge before achieving Board certification. First-time pass rate on the CE is one of the key metrics of surgery residency programs. The overall pass rate on the CE has declined significantly in recent years. The goal of this study was the identification of attributes of general surgery residents that are associated with passing the CE at the first attempt. The modified Delphi process was used to survey general surgery program directors. The study was conducted in 2 rounds in the interest of time available for surgical education research fellowship project. All 259 program directors were contacted in each round of surveys. In all, 49 (19%) responded to the first round and 54 (21%) responded to the second round of survey. The characteristics of a successful resident on CE include confidence, self-motivation, sound knowledge base, strong performance on the Board's training examination (American Board of Surgery In-Training Examination), and mock orals, and good communication skills. Postgraduate years 4 and 5 are the most likely resident levels at which failure could be predicted. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  9. Urinary porphyrin excretion in hepatitis C infection

    OpenAIRE

    Vogeser, Michael; Jacob, Karl; Zachoval, Reinhart

    1999-01-01

    A high prevalence of hepatitis C virus infection in porphyria cutanea tarda in some populations suggests a close link between viral hepatitis and alteration of porphyrin metabolism. Moreover, there is evidence of a role of porphyrinopathies in hepatocarcinogenesis. The aim of our study was to obtain data on the prevalence and patterns of heme metabolism alterations in patients with chronic hepatitis C virus infection. Urinary porphyrin excretion was prospectively studied in 100 consecutive ou...

  10. Direct-acting antiviral agents against hepatitis C virus and lipid metabolism.

    Science.gov (United States)

    Kanda, Tatsuo; Moriyama, Mitsuhiko

    2017-08-21

    Hepatitis C virus (HCV) infection induces steatosis and is accompanied by multiple metabolic alterations including hyperuricemia, reversible hypocholesterolemia and insulin resistance. Total cholesterol, low-density lipoprotein-cholesterol and triglyceride levels are increased by peginterferon and ribavirin combination therapy when a sustained virologic response (SVR) is achieved in patients with HCV. Steatosis is significantly more common in patients with HCV genotype 3 but interferon-free regimens are not always effective for treating HCV genotype 3 infections. HCV infection increases fatty acid synthase levels, resulting in the accumulation of fatty acids in hepatocytes. Of note, low-density lipoprotein receptor, scavenger receptor class B type I and Niemann-Pick C1-like 1 proteins are candidate receptors that may be involved in HCV. They are also required for the uptake of cholesterol from the external environment of hepatocytes. Among HCV-infected patients with or without human immunodeficiency virus infection, changes in serum lipid profiles are observed during interferon-free treatment and after the achievement of an SVR. It is evident that HCV affects cholesterol metabolism during interferon-free regimens. Although higher SVR rates were achieved with interferon-free treatment of HCV, special attention must also be paid to unexpected adverse events based on host metabolic changes including hyperlipidemia.

  11. The g0/g1 switch gene 2 is an important regulator of hepatic triglyceride metabolism.

    Science.gov (United States)

    Wang, Yinfang; Zhang, Yahui; Qian, Hang; Lu, Juan; Zhang, Zhifeng; Min, Xinwen; Lang, Mingjian; Yang, Handong; Wang, Nanping; Zhang, Peng

    2013-01-01

    Nonalcoholic fatty liver disease is associated with obesity and insulin resistance. Factors that regulate the disposal of hepatic triglycerides contribute to the development of hepatic steatosis. G0/G1 switch gene 2 (G0S2) is a target of peroxisome proliferator-activated receptors and plays an important role in regulating lipolysis in adipocytes. Therefore, we investigated whether G0S2 plays a role in hepatic lipid metabolism. Adenovirus-mediated expression of G0S2 (Ad-G0S2) potently induced fatty liver in mice. The liver mass of Ad-G0S2-infected mice was markedly increased with excess triglyceride content compared to the control mice. G0S2 did not change cellular cholesterol levels in hepatocytes. G0S2 was found to be co-localized with adipose triglyceride lipase at the surface of lipid droplets. Hepatic G0S2 overexpression resulted in an increase in plasma Low-density lipoprotein (LDL)/Very-Low-density (VLDL) lipoprotein cholesterol level. Plasma High-density lipoprotein (HDL) cholesterol and ketone body levels were slightly decreased in Ad-G0S2 injected mice. G0S2 also increased the accumulation of neutral lipids in cultured HepG2 and L02 cells. However, G0S2 overexpression in the liver significantly improved glucose tolerance in mice. Livers expressing G0S2 exhibited increased 6-(N-(7-nitrobenz-2-oxa-1-3-diazol-4-yl) amino)-6-deoxyglucose uptake compared with livers transfected with control adenovirus. Taken together, our results provide evidence supporting an important role for G0S2 as a regulator of triglyceride content in the liver and suggest that G0S2 may be a molecular target for the treatment of insulin resistance and other obesity-related metabolic disorders.

  12. Evaluation of hepatic metabolism and pharmacokinetics of ibuprofen in rats under chronic hypobaric hypoxia for targeted therapy at high altitude.

    Science.gov (United States)

    Gola, Shefali; Gupta, Asheesh; Keshri, Gaurav K; Nath, Madhu; Velpandian, Thirumurthy

    2016-03-20

    With studies indicative of altered drug metabolism and pharmacokinetics (DMPK) under high altitude (HA)-induced hypobaric hypoxia, consideration of better therapeutic approaches has continuously been aimed in research for HA related illness management. DMPK of drugs like ibuprofen may get affected under hypoxia which establishes the requirement of different therapeutic dose regimen to ensure safe and effective therapy at HA. This study examined the effects of the chronic hypobaric hypoxia (CHH) on hepatic DMPK of ibuprofen in rats. Experimental animals were exposed to simulated altitude of 7620 m (∼25,000 ft) for CHH exposure (7 or 14 days) in decompression chamber and administered with ibuprofen (80 mg/kg, body weight, p.o.). Results demonstrated that CHH significantly altered PK variables of ibuprofen and activities of both phase-I and II hepatic metabolic enzymes as compared to the animals under normoxic conditions. Hepatic histopathological observations also revealed marked alterations. Increase in pro-inflammatory cytokines/chemokines viz. IL-1β, IL-2, IFN-γ, TNF-α exhibited close relevance with diminished CYP2C9 expression under CHH. Moreover, the down-regulated CYP2C9 level further supported the underlying mechanism for reduced metabolism of ibuprofen and as a result, increased retention of parent drug in the system. Increased mean retention time, Vd, T½ of ibuprofen, and decreased AUC, Cmax and clearance during CHH further strengthened the present findings. In conclusion, CHH exposure significantly affects hepatic DMPK of ibuprofen, which may further influence the usual therapeutic dose-regimen. Further, there is requirement of human studies to evaluate their susceptibility toward hypobaric hypoxia. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Early Life Exposure to Fructose Alters Maternal, Fetal and Neonatal Hepatic Gene Expression and Leads to Sex-Dependent Changes in Lipid Metabolism in Rat Offspring

    Science.gov (United States)

    Clayton, Zoe E.; Vickers, Mark H.; Bernal, Angelica; Yap, Cassandra; Sloboda, Deborah M.

    2015-01-01

    Aim Fructose consumption is associated with altered hepatic function and metabolic compromise and not surprisingly has become a focus for perinatal studies. We have previously shown that maternal fructose intake results in sex specific changes in fetal, placental and neonatal outcomes. In this follow-up study we investigated effects on maternal, fetal and neonatal hepatic fatty acid metabolism and immune modulation. Methods Pregnant rats were randomised to either control (CON) or high-fructose (FR) diets. Fructose was given in solution and comprised 20% of total caloric intake. Blood and liver samples were collected at embryonic day 21 (E21) and postnatal day (P)10. Maternal liver samples were also collected at E21 and P10. Liver triglyceride and glycogen content was measured with standard assays. Hepatic gene expression was measured with qPCR. Results Maternal fructose intake during pregnancy resulted in maternal hepatic ER stress, hepatocellular injury and increased levels of genes that favour lipogenesis. These changes were associated with a reduction in the NLRP3 inflammasome. Fetuses of mothers fed a high fructose diet displayed increased hepatic fructose transporter and reduced fructokinase mRNA levels and by 10 days of postnatal age, also have hepatic ER stress, and elevated IL1β mRNA levels. At P10, FR neonates demonstrated increased hepatic triglyceride content and particularly in males, associated changes in the expression of genes regulating beta oxidation and the NLRP3 inflammasome. Further, prenatal fructose results in sex-dependant changes in levels of key clock genes. Conclusions Maternal fructose intake results in age and sex-specific alterations in maternal fetal and neonatal free fatty acid metabolism, which may be associated in disruptions in core clock gene machinery. How these changes are associated with hepatic inflammatory processes is still unclear, although suppression of the hepatic inflammasome, as least in mothers and male neonates may

  14. A nonalcoholic fatty liver disease cirrhosis model in gerbil : the dynamic relationship between hepatic lipid metabolism and cirrhosis

    NARCIS (Netherlands)

    Li, Wei; Guan, Zheng; Brisset, Jean C.; Shi, Qiaojuan; Lou, Qi; Ma, Yue; Suriguga, Su; Ying, Huazhong; Sa, Xiaoying; Chen, Zhenwen; Quax, Wim J.; Chu, Xiaofeng

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD) usually takes decades to develop into cirrhosis, which limits the longitudinal study of NAFLD. This work aims at developing a NAFLD-caused cirrhosis model in gerbil and examining the dynamic relationship between hepatic lipid metabolism and cirrhosis. We fed

  15. Assessment of injection bolus in first-pass radionuclide angiography. Evaluation of injection site and needle size

    International Nuclear Information System (INIS)

    Tonami, Syuichi; Inagaki, Syoichi; Yasui, Masakazu; Sugishita, Kouki; Yoshita, Hisashi; Nakamura, Mamoru; Kuranishi, Makoto

    1996-01-01

    First-pass radionuclide angiography (FPRNA) using a multi-crystal gamma camera can correctly provide many quantitative and qualitative indices of left ventricular function as well as anatomic information. A compact injection bolus of radiotracer is, however, essential to the first-pass study since the temporal separation of cardiac chambers is required for the first-pass acquisition. To examine which factors affect the quality of an injection bolus, 327 patients who had FPRNA in the anterior projection were randomized for injection site of radiotracer (right or left external jugular veins, and right antecubital vein) and needle size (19- or 21-gauge). The injected bolus was assessed from the full width at half maximum (FWHM) of the bolus time-activity curve in the superior vena cava. As to injection site using a 19-gauge needle, an attemption through right external jugular vein (EJV) revealed the shortest FWHM of an injection bolus, followed by left EJV and right antecubital vein (AV). In right EJV 91% of injected bolus FWHM was less than 1.5 sec, which was significantly higher (p<0.001) than those of the other sites (left EJV: 70%. right AV: 65%). Approximately 7% of injection from left EJV and right AV, showed a split bolus of radiotracer. However, no split bolus was observed from right EJV. There was no significant difference in FWHM of an injection bolus between 19- and 21-gauge needle from EJV. Our present study demonstrated that the quality of an injection bolus from left EJV and AV was affected by RVEF in a case of low right ventricular function. In conclusion, right EJV is the first choice of injection site to obtain a compact bolus of radiotracer for the first-pass cardiac study. A 21-gauge needle can also be inserted from the external jugular vein to perform a good bolus injection. (author)

  16. Assessment of injection bolus in first-pass radionuclide angiography. Evaluation of injection site and needle size

    Energy Technology Data Exchange (ETDEWEB)

    Tonami, Syuichi; Inagaki, Syoichi; Yasui, Masakazu; Sugishita, Kouki; Yoshita, Hisashi; Nakamura, Mamoru; Kuranishi, Makoto [Toyama Medical and Pharmaceutical Univ. (Japan). Hospital

    1996-09-01

    First-pass radionuclide angiography (FPRNA) using a multi-crystal gamma camera can correctly provide many quantitative and qualitative indices of left ventricular function as well as anatomic information. A compact injection bolus of radiotracer is, however, essential to the first-pass study since the temporal separation of cardiac chambers is required for the first-pass acquisition. To examine which factors affect the quality of an injection bolus, 327 patients who had FPRNA in the anterior projection were randomized for injection site of radiotracer (right or left external jugular veins, and right antecubital vein) and needle size (19- or 21-gauge). The injected bolus was assessed from the full width at half maximum (FWHM) of the bolus time-activity curve in the superior vena cava. As to injection site using a 19-gauge needle, an attemption through right external jugular vein (EJV) revealed the shortest FWHM of an injection bolus, followed by left EJV and right antecubital vein (AV). In right EJV 91% of injected bolus FWHM was less than 1.5 sec, which was significantly higher (p<0.001) than those of the other sites (left EJV: 70%. right AV: 65%). Approximately 7% of injection from left EJV and right AV, showed a split bolus of radiotracer. However, no split bolus was observed from right EJV. There was no significant difference in FWHM of an injection bolus between 19- and 21-gauge needle from EJV. Our present study demonstrated that the quality of an injection bolus from left EJV and AV was affected by RVEF in a case of low right ventricular function. In conclusion, right EJV is the first choice of injection site to obtain a compact bolus of radiotracer for the first-pass cardiac study. A 21-gauge needle can also be inserted from the external jugular vein to perform a good bolus injection. (author)

  17. Modifiable variables in physical therapy education programs associated with first-time and three-year National Physical Therapy Examination pass rates in the United States

    Directory of Open Access Journals (Sweden)

    Chad Cook

    2015-09-01

    Full Text Available Purpose: This study aimed to examine the modifiable programmatic characteristics reflected in the Commission on Accreditation in Physical Therapy Education (CAPTE Annual Accreditation Report for all accredited programs that reported pass rates on the National Physical Therapist Examination, and to build a predictive model for first-time and three-year ultimate pass rates. Methods: This observational study analyzed programmatic information from the 185 CAPTE-accredited physical therapy programs in the United States and Puerto Rico out of a total of 193 programs that provided the first-time and three-year ultimate pass rates in 2011. Fourteen predictive variables representing student selection and composition, clinical education length and design, and general program length and design were analyzed against first-time pass rates and ultimate pass rates on the NPTE. Univariate and multivariate multinomial regression analysis for first-time pass rates and logistic regression analysis for three-year ultimate pass rates were performed. Results: The variables associated with the first-time pass rate in the multivariate analysis were the mean undergraduate grade point average (GPA and the average age of the cohort. Multivariate analysis showed that mean undergraduate GPA was associated with the three-year ultimate pass rate. Conclusions: Mean undergraduate GPA was found to be the only modifiable predictor for both first-time and three-year pass rates among CAPTE-accredited physical therapy programs.

  18. Involvement of KLF11 in hepatic glucose metabolism in mice via suppressing of PEPCK-C expression.

    Directory of Open Access Journals (Sweden)

    Huabing Zhang

    Full Text Available Abnormal hepatic gluconeogenesis is related to hyperglycemia in mammals with insulin resistance. Despite the strong evidences linking Krüppel-like factor 11 (KLF11 gene mutations to development of Type 2 diabetes, the precise physiological functions of KLF11 in vivo remain largely unknown.In current investigation, we showed that KLF11 is involved in modulating hepatic glucose metabolism in mice. Overexpression of KLF11 in primary mouse hepatocytes could inhibit the expression of gluconeogenic genes, including phosphoenolpyruvate carboxykinase (cytosolic isoform, PEPCK-C and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, subsequently decreasing the cellular glucose output. Diabetic mice with overexpression of KLF11 gene in livers significantly ameliorated hyperglycemia and glucose intolerance; in contrast, the knockdown of KLF11 expression in db/m and C57BL/6J mice livers impaired glucose tolerance.Our data strongly indicated the involvement of KLF11 in hepatic glucose homeostasis via modulating the expression of PEPCK-C.

  19. Academic Performance and Pass Rates: Comparison of Three First-Year Life Science Courses

    Science.gov (United States)

    Downs, C. T.

    2009-01-01

    First year students' academic performance in three Life Science courses (Botany, Zoology and Bioscience) was compared. Pass rates, as well as the means and distributions of final marks were analysed. Of the three components (coursework, practical and theory examinations) contributing to the final mark of each course, students performed best in the…

  20. Characterization of Timed Changes in Hepatic Copper Concentrations, Methionine Metabolism, Gene Expression, and Global DNA Methylation in the Jackson Toxic Milk Mouse Model of Wilson Disease

    Directory of Open Access Journals (Sweden)

    Anh Le

    2014-05-01

    Full Text Available Background: Wilson disease (WD is characterized by hepatic copper accumulation with progressive liver damage to cirrhosis. This study aimed to characterize the toxic milk mouse from The Jackson Laboratory (Bar Harbor, ME, USA (tx-j mouse model of WD according to changes over time in hepatic copper concentrations, methionine metabolism, global DNA methylation, and gene expression from gestational day 17 (fetal to adulthood (28 weeks. Methods: Included liver histology and relevant biochemical analyses including hepatic copper quantification, S-adenosylmethionine (SAM and S-adenosylhomocysteine (SAH liver levels, qPCR for transcript levels of genes relevant to methionine metabolism and liver damage, and DNA dot blot for global DNA methylation. Results: Hepatic copper was lower in tx-j fetuses but higher in weanling (three weeks and adult tx-j mice compared to controls. S-adenosylhomocysteinase transcript levels were significantly lower at all time points, except at three weeks, correlating negatively with copper levels and with consequent changes in the SAM:SAH methylation ratio and global DNA methylation. Conclusion: Compared to controls, methionine metabolism including S-adenosylhomocysteinase gene expression is persistently different in the tx-j mice with consequent alterations in global DNA methylation in more advanced stages of liver disease. The inhibitory effect of copper accumulation on S-adenosylhomocysteinase expression is associated with progressively abnormal methionine metabolism and decreased methylation capacity and DNA global methylation.

  1. Hepatic metabolism of 11C-methionine and secretion of 11C-protein measured by PET in pigs

    DEFF Research Database (Denmark)

    Horsager, Jacob; Lausten, Susanne Bach; Bender, Dirk

    2017-01-01

    Hepatic amino acid metabolism and protein secretion are essential liver functions that may be altered during metabolic stress, e.g. after surgery. We wished to develop a dynamic liver PET method using the radiolabeled amino acid 11C-methionine to examine this question. Eleven 40-kg pigs were...... allocated to either laparotomy or pneumoperitoneum. 24 hours after surgery a 70-min dynamic PET scanning of the liver with arterial blood sampling was performed immediately after intravenous injection of 11C-methionine. Time course of arterial plasma 11C-methionine concentration was used as input function...

  2. Metabolic syndrome in patients with chronic hepatitis C virus genotype 1 infection who do not have obesity or type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Lucivalda Pereira Magalhães Oliveira

    2012-01-01

    Full Text Available OBJECTIVE: The individual components of metabolic syndrome may be independent predictors of mortality in patients with liver disease. We aimed to evaluate the prevalence of metabolic syndrome and its related components in hepatitis C virus-infected patients who are not obese and do not have type 2 diabetes. METHODS: This cross-sectional study included 125 patients infected with hepatitis C virus genotype 1. Metabolic syndrome was defined according to the International Diabetes Federation. Anthropometric data were measured according to standardized procedures. Bioimpedance analysis was performed on all patients. RESULTS: Metabolic syndrome was diagnosed in 21.6% of patients. Of the subjects with metabolic syndrome, 59.3% had hypertension, 77.8% had insulin resistance, 85.2% were overweight, 48.1% had a high waist circumference, 85.2% had an increased body fat percentage, and 92.3% had an elevated waist:hip ratio. In the bivariate analysis, female sex (OR 2.58; 95% CI: 1.09-6.25, elevated gamma-glutamyl transferase (γGT (OR 2.63; 95% CI: 1.04-7.29, elevated fasting glucose (OR 8.05; 95% CI: 3.17-21.32, low HDL cholesterol (OR 2.80; 95% CI: 1.07-7.16, hypertriglyceridemia (OR 7.91; 95% CI: 2.88-22.71, elevated waist circumference (OR 10.33; 95% CI: 3.72-30.67, overweight (OR 11.33; 95% CI: 3.97-41.07, and increased body fat percentage (OR 8.34; 95% CI: 2.94-30.08 were independent determinants of metabolic syndrome. Using the final multivariate regression model, similar results were observed for abdominal fat (OR 9.98; 95% CI: 2.63-44.41 and total body fat percentage (OR 8.73; 95% CI: 2.33-42.34. However, metabolic syndrome risk was also high for those with blood glucose >5.55 mmol/L or HDL cholesterol <0.9 mmol/L (OR 16.69; 95% CI: 4.64-76.35; OR 7.23; 95% CI: 1.86-32.63, respectively. CONCLUSION: Metabolic syndrome is highly prevalent among hepatitis C virus-infected patients without type 2 diabetes or obesity. Metabolic syndrome was

  3. RNA-sequencing and pathway analysis reveal alteration of hepatic steroid biosynthesis and retinol metabolism by tributyltin exposure in male rare minnow (Gobiocypris rarus).

    Science.gov (United States)

    Zhang, Jiliang; Zhang, Chunnuan; Sun, Ping; Huang, Maoxian; Fan, Mingzhen; Liu, Min

    2017-07-01

    Tributyltin (TBT) is widely spread in aquatic ecosystems. Although adverse effects of TBT on reproduction and lipogenesis are observed in fishes, the underlying mechanisms, especially in livers, are still scarce and inconclusive. Thus, RNA-sequencing runs were performed on the hepatic libraries of adult male rare minnow (Gobiocypris rarus) after TBT exposure for 60d. After differentially expressed genes were identified, enrichment analysis and validation by quantitative real-time PCR were conducted. The results showed that TBT up-regulated the profile of hepatic genes in the steroid biosynthesis pathway and down-regulated the profile of hepatic genes in the retinol metabolism pathway. In the hepatic steroid biosynthesis pathway, TBT might induce biosynthesis of cholesterol, which could affect the bioavailability of steroid hormones. More important, 3beta-hydroxysteroid 3-dehydrogenase, a key enzyme in the biosynthesis of all active steroid hormones, was up-regulated by TBT exposure. In the hepatic retinol metabolism pathway, TBT impaired retinoic acid homeostasis which plays essential roles in both reproduction and lipogenesis. The results of two pathways offered new mechanisms underlying the toxicology of TBT and represented a starting point from which detailed mechanistic links should be explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hepatic glutathione and glutathione S-transferase in selenium deficiency and toxicity in the chick

    International Nuclear Information System (INIS)

    Kim, Y. S.

    1989-01-01

    First, the hepatic activity of GSH-T CDNB was increased only under conditions of severe oxidative stress produced by combined Se- and vitamin E (VE)-deficiency, indicating that VE also affects GSH metabolism. Second, the incorporation of 35 S-methionine into GSH and protein was about 4- and 2-fold higher, respectively, in Se- and VE-deficient chick hepatocytes as compared to controls. Third, chicks injected with the glutathione peroxidase (SeGSHpx) inhibitor, aurothioglucose (AuTG), showed increase hepatic GSH-T CDNB activity and plasma GSH concentration regardless of their Se status. Fourth, the effect of ascorbic acid (AA), on GSH metabolism was studied. Chicks fed 1000 ppm AA showed decreased hepatic GSH concentration compared to chicks fed no AA in a Se- and VE-deficient diet. Fifth, chicks fed excess Se showed increase hepatic activity of GSH-T CDNB and GSH concentration regardless of VE status

  5. Hepatic metabolism of anaesthetized growing pigs during acute portal infusion of volatile fatty acids and hydroxy-methyl butyrate

    DEFF Research Database (Denmark)

    Theil, Peter Kappel; Larsen, Uffe Krogh; Bjerre-Harpøth, Vibeke

    2016-01-01

    ABSTRACT: The objective of the experiment was to study hepatic metabolism during infusion of volatile fatty acids (VFA) differing in amounts and composition or infusion of HMB. Three fasted (20 h) pigs (mean BW ± SE; 58 kg ± 1) were fitted with indwelling catheters in the portal vein, hepatic vein......, respectively, for Inf2 and Inf3, or 65%, 20%, and 10% of acetate, propionate, and butyrate, respectively, for Inf4 and Inf5. In addition, for Inf5, HMB was infused at 2 mmol/h. Statistical analysis included fixed effects of infusion and interaction between infusion and samplings within infusion while...

  6. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism

    Directory of Open Access Journals (Sweden)

    Katsumi Iizuka

    2017-02-01

    Full Text Available Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase, fructolysis (Glut5, ketohexokinase, and lipogenesis (acetyl CoA carboxylase, fatty acid synthase. ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome.

  7. Detection and characterization of the hepatitis C virus

    NARCIS (Netherlands)

    L-J. van Doorn (Leendert-Jan)

    1994-01-01

    textabstractThe term hepatitis literally means 'inflammation of the liver', Hepatitis can be caused by toxic substances. metabolic disorders or viral infections. Most clinical hepatitis cases have a viral etiology. Viral hepatitis appears to be an ancient disease (Deinhardt, 1991) and has

  8. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism.

    Science.gov (United States)

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H; Blesso, Christopher N; Fernandez, Maria Luz

    2017-06-22

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group ( p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group ( p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls ( p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  9. A Prospective Evaluation of T2-Weighted First-Pass Perfusion MR Imaging In Diagnosing Breast Neoplasms

    Institute of Scientific and Technical Information of China (English)

    XiaoJuanUu; RenyouZhai; TaoJiang; LiWang

    2004-01-01

    OBJECTIVE To compare the results from breast cancer patients who undergo T2-weighted first-pass perfusion imaging after dynamic contrast-enhanced T1-weighted imaging during the same examination,and to evaluate if T2-weighted imaging can provide additional diagnostic information over that obtained with Tl-weiahted imaaina.METHODS Twenty-nine patients with breast lesions verified by pathology (benign 12, malignant 17) underwent MR imaging with dynamic contrast-enhanced Tl-weighted imaging of the entire breasts,immediately followed by 6-sections of T2-weighted first-pass perfusion imaging of the lesions. The diagnostic indices were acquired by individual 3D Tl-weighted enhancement rate criterion and the T2 signalintensity loss rate criterion. The sensitivity and specificity were calculated and the 2 methods were compared.RESULTS With the dynamic contrast-enhanced T1-weighted imaging there was a significant differences breast lesions (t=2.563, P=0.016)overlap between the signal intensitybetween the benign and malignant However we found a considerable increase in the carcinomas and thatin the benign lesions, for a sensitivity of 94% and a specificity of 25%.With T2-weighted first-pass perfusion imaging, there was a very significant difference between the benign and malignant breast lesions(t=4.777,P<0.001), and the overlap between the signal intensity decrease in the carcinomas and that of the benign lesions on the T2-weighted images was less pronounced than the overlap in the T1-weighted images, for a sensitivity of 88% and a specificity of 75%.CONCLUSION T2-weighted first-pass perfusion imaging may help differentiate between benign and malignant breast lesions with a higher level of specificity. The combination of T1-weighted and T2-weighted imaging is feasible in a single patient examination and may improve breast MR imaging.

  10. Metabolic and hormonal alterations in cats with hepatic lipidosis.

    Science.gov (United States)

    Brown, B; Mauldin, G E; Armstrong, J; Moroff, S D; Mauldin, G N

    2000-01-01

    Hepatic lipidosis in cats is a commonly diagnosed hepatobiliary disease of unknown cause. The purpose of this prospective study was to characterize the blood hormone and lipid status of cats with hepatic lipidosis, and to compare this status to that of cats with other types of liver disease and to control cats. Twenty-three cats with hepatic disease were assigned to 1 of 2 groups on the basis of cytopathologic or histopathologic examination of the liver: group 1, hepatic lipidosis (n = 18); or group 2, cholangiohepatitis (n = 5). Ten healthy young adult cats were used as controls. Food was withheld from control animals for 24 hours before blood collection. Concentrations of plasma glucagon and serum insulin, cortisol, thyroxine, triglycerides, cholesterol, phospholipids, and nonesterified fatty acids (NEFAs) were determined in all cats, in addition to routine hematologic and serum biochemical testing. Cats with hepatic lipidosis had higher serum NEFA concentrations than cats with cholangiohepatitis or control cats (P lipidosis or control cats (P hepatic lipidosis. Serum insulin concentrations were significantly higher in control cats than in diseased cats (P hepatic disease. The high concentration of NEFAs in cats with hepatic lipidosis suggests that at least 1 factor in the pathogenesis of this syndrome may involve the regulation of hormone-sensitive lipase.

  11. Quantification of the first-order high-pass filter's influence on the automatic measurements of the electrocardiogram.

    Science.gov (United States)

    Isaksen, Jonas; Leber, Remo; Schmid, Ramun; Schmid, Hans-Jakob; Generali, Gianluca; Abächerli, Roger

    2017-02-01

    The first-order high-pass filter (AC coupling) has previously been shown to affect the ECG for higher cut-off frequencies. We seek to find a systematic deviation in computer measurements of the electrocardiogram when the AC coupling with a 0.05 Hz first-order high-pass filter is used. The standard 12-lead electrocardiogram from 1248 patients and the automated measurements of their DC and AC coupled version were used. We expect a large unipolar QRS-complex to produce a deviation in the opposite direction in the ST-segment. We found a strong correlation between the QRS integral and the offset throughout the ST-segment. The coefficient for J amplitude deviation was found to be -0.277 µV/(µV⋅s). Potential dangerous alterations to the diagnostically important ST-segment were found. Medical professionals and software developers for electrocardiogram interpretation programs should be aware of such high-pass filter effects since they could be misinterpreted as pathophysiology or some pathophysiology could be masked by these effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Causation and the origin of life. Metabolism or replication first?

    Science.gov (United States)

    Pross, Addy

    2004-06-01

    The conceptual gulf that separates the 'metabolism first' and 'replication first' mechanisms for the emergence of life continues to cloud the origin of life debate. In the present paper we analyze this aspect of the origin of life problem and offer arguments in favor of the 'replication first' school. Utilizing Wicken's two-tier approach to causation we argue that a causal connection between replication and metabolism can only be demonstrated if replication would have preceded metabolism. In conjunction with existing empirical evidence and theoretical reasoning, our analysis concludes that there is no substantive evidence for a 'metabolism first' mechanism for life's emergence, while a coherent case can be made for the 'replication first' group of mechanisms. The analysis reaffirms our conviction that life is an extreme expression of kinetic control, and that the emergence of metabolic pathways can be understood by considering life as a manifestation of 'replicative chemistry'.

  13. Associations of pass-fail outcomes with psychological health of first-year medical students in a malaysian medical school.

    Science.gov (United States)

    Yusoff, Muhamad S B

    2013-02-01

    The demanding and intense environment of medical training can create excessive pressures on medical students that eventually lead to unfavorable consequences, either at a personal or professional level. These consequences can include poor academic performance and impaired cognitive ability. This study was designed to explore associations between pass-fail outcome and psychological health parameters (i.e. stress, anxiety, and depression symptoms). A cross-sectional study was conducted on a cohort of first-year medical students in a Malaysian medical school. The depression anxiety stress scale 21-item assessment (DASS-21) was administered to them right after the final paper of the first-year final examination. Their final examination outcomes (i.e. pass or fail) were traced by using their student identity code (ID) through the Universiti Sains Malaysia academic office. A total of 194 (98.0%) of medical students responded to the DASS-21. An independent t-test showed that students who passed had significantly lower stress, anxiety, and depression symptoms than those who failed the first-year final examination (P passed the examination. Those who experienced high stress levels were more likely to fail than those who did not. Reducing the psychological distress of medical students prior to examination may help them to perform better in the examination.

  14. Effects of ovariectomy and exercise training intensity on energy substrate and hepatic lipid metabolism, and spontaneous physical activity in mice.

    Science.gov (United States)

    Tuazon, Marc A; Campbell, Sara C; Klein, Dylan J; Shapses, Sue A; Anacker, Keith R; Anthony, Tracy G; Uzumcu, Mehmet; Henderson, Gregory C

    2018-06-01

    Menopause is associated with fatty liver, glucose dysregulation, increased body fat, and impaired bone quality. Previously, it was demonstrated that single sessions of high-intensity interval exercise (HIIE) are more effective than distance- and duration-matched continuous exercise (CE) on altering hepatic triglyceride (TG) metabolism and very-low density lipoprotein-TG (VLDL-TG) secretion. Six weeks training using these modalities was examined for effects on hepatic TG metabolism/secretion, glucose tolerance, body composition, and bone mineral density (BMD) in ovariectomized (OVX) and sham-operated (SHAM) mice. OVX and SHAM were assigned to distance- and duration-matched CE and HIIE, or sedentary control. Energy expenditure during exercise was confirmed to be identical between CE and HIIE and both similarly reduced post-exercise absolute carbohydrate oxidation and spontaneous physical activity (SPA). OVX vs. SHAM displayed impaired glucose tolerance and greater body fat despite lower hepatic TG, and these outcomes were not affected by training. Only HIIE increased hepatic AMPK in OVX and SHAM, but neither training type impacted VLDL-TG secretion. As expected, BMD was lower in OVX, and training did not affect long bones. The results reveal intensity-dependent effects on hepatic AMPK expression and general exercise effects on subsequent SPA and substrate oxidation that is independent of estrogen status. These findings support the notion that HIIE can impact aspects of liver physiology in females while the effects of exercise on whole body substrate selection appear to be independent of training intensity. However, neither exercise approach mitigated the impairment in glucose tolerance and elevated body fat occurring in OVX mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Beneficial mechanisms of aerobic exercise on hepatic lipid metabolism in non-alcoholic fatty liver disease.

    Science.gov (United States)

    Guo, Rui; Liong, Emily C; So, Kwok Fai; Fung, Man-Lung; Tipoe, George L

    2015-04-01

    Non-alcoholic fatty liver disease (NAFLD) refers to any fatty liver disease that is not due to excessive use of alcohol. NAFLD probably results from abnormal hepatic lipid metabolism and insulin resistance. Aerobic exercise is shown to improve NAFLD. This review aimed to evaluate the molecular mechanisms involved in the beneficial effects of aerobic exercise on NAFLD. We searched articles in English on the role of aerobic exercise in NAFLD therapy in PubMed. The mechanisms of chronic aerobic exercise in regulating the outcome of NAFLD include: (i) reducing intrahepatic fat content by down-regulating sterol regulatory element-binding protein-1c and up-regulating peroxisome proliferator-activated receptor gamma expression levels; (ii) decreasing hepatic oxidative stress through modulating the reactive oxygen species, and enhancing antioxidant enzymes such as catalase and glutathione peroxidase; (iii) ameliorating hepatic inflammation via the inhibition of pro-inflammatory mediators such as tumor necrosis factor-alpha and interleukin-1 beta; (iv) attenuating mitochondrial dependent apoptosis by reducing cytochrome C released from the mitochondria to the cytosol; and (v) inducing hepato-protective autophagy. Aerobic exercise, via different mechanisms, significantly decreases the fat content of the liver and improves the outcomes of patients with NAFLD.

  16. Mangiferin Improves Hepatic Lipid Metabolism Mainly Through Its Metabolite-Norathyriol by Modulating SIRT-1/AMPK/SREBP-1c Signaling

    Directory of Open Access Journals (Sweden)

    Jian Li

    2018-03-01

    Full Text Available Objective: Mangiferin (MGF is a natural xanthone, with regulation effect on lipid metabolism. However, the molecular mechanism remains unclear. We purposed after oral administration, MGF is converted to its active metabolite(s, which contributes to the effects on lipid metabolism.Methods: KK-Ay mice were used to validate the effects of MGF on lipid metabolic disorders. Liver biochemical indices and gene expressions were determined. MGF metabolites were isolated from MGF administrated rat urine. Mechanism studies were carried out using HepG2 cells treated by MGF and its metabolite with or without inhibitors or small interfering RNA (siRNA. Western blot and immunoprecipitation methods were used to determine the lipid metabolism related gene expression. AMP/ATP ratios were measured by HPLC. AMP-activated protein kinase (AMPK activation were identified by homogeneous time resolved fluorescence (HTRF assays.Results: MGF significantly decreased liver triglyceride and free fatty acid levels, increased sirtuin-1 (SIRT-1 and AMPK phosphorylation in KK-Ay mice. HTRF studies indicated that MGF and its metabolites were not direct AMPK activators. Norathyriol, one of MGF’s metabolite, possess stronger regulating effect on hepatic lipid metabolism than MGF. The mechanism was mediated by activation of SIRT-1, liver kinase B1, and increasing the intracellular AMP level and AMP/ATP ratio, followed by AMPK phosphorylation, lead to increased phosphorylation level of sterol regulatory element-binding protein-1c.Conclusion: These results provided new insight into the molecular mechanisms of MGF in protecting against hepatic lipid metabolic disorders via regulating SIRT-1/AMPK pathway. Norathyriol showed potential therapeutic in treatment of non-alcoholic fatty liver disease.

  17. Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Redwood Simon

    2009-08-01

    Full Text Available Abstract Background The presence and extent of microvascular obstruction (MO after acute myocardial infarction can be measured by first-pass gadolinium-enhanced perfusion cardiovascular magnetic resonance (CMR or after gadolinium injection with early or late enhancement (EGE/LGE imaging. The volume of MO measured by these three methods may differ because contrast agent diffusion into the MO reduces its apparent extent over time. Theoretically, first-pass perfusion CMR should be the most accurate method to measure MO, but this technique has been limited by lower spatial resolution than EGE and LGE as well as incomplete cardiac coverage. These limitations of perfusion CMR can be overcome using spatio-temporal undersampling methods. The purpose of this study was to compare the extent of MO by high resolution first-pass k-t SENSE accelerated perfusion, EGE and LGE. Methods 34 patients with acute ST elevation myocardial infarction, treated successfully with primary percutaneous coronary intervention (PPCI, underwent CMR within 72 hours of admission. k-t SENSE accelerated first-pass perfusion MR (7 fold acceleration, spatial resolution 1.5 mm × 1.5 mm × 10 mm, 8 slices acquired over 2 RR intervals, 0.1 mmol/kg Gd-DTPA, EGE (1–4 minutes after injection with a fixed TI of 440 ms and LGE images (10–12 minutes after injection, TI determined by a Look-Locker scout were acquired. MO volume was determined for each technique by manual planimetry and summation of discs methodology. Results k-t SENSE first-pass perfusion detected more cases of MO than EGE and LGE (22 vs. 20 vs. 14, respectively. The extent of MO imaged by first-pass perfusion (median mass 4.7 g, IQR 6.7 was greater than by EGE (median mass 2.3 g, IQR 7.1, p = 0.002 and LGE (median mass 0.2 g, IQR 2.4, p = 0.0003. The correlation coefficient between MO mass measured by first-pass perfusion and EGE was 0.91 (p Conclusion The extent of MO following acute myocardial infarction appears larger on

  18. Regulation of hepatic PPARγ2 and lipogenic gene expression by melanocortin

    International Nuclear Information System (INIS)

    Poritsanos, Nicole J.; Wong, Davie; Vrontakis, Maria E.; Mizuno, Tooru M.

    2008-01-01

    The central melanocortin system regulates hepatic lipid metabolism. Hepatic lipogenic gene expression is regulated by transcription factors including sterol regulatory element-binding protein 1c (SREBP-1c), carbohydrate responsive element-binding protein (ChREBP), and peroxisome proliferator-activated receptor γ2 (PPARγ2). However, it is unclear if central melanocortin signaling regulates hepatic lipogenic gene expression through the activation of these transcription factors. To delineate the molecular mechanisms by which the melanocortin system regulates hepatic lipid metabolism, we examined the effect of intracerebroventricular injection of SHU9119, a melanocortin receptor antagonist, on hepatic expression levels of genes involved in lipid metabolism in mice. SHU9119 treatment increased hepatic triglyceride content and mRNA levels of lipogenic genes, SREBP-1c, and PPARγ2, whereas it did not cause any changes in hepatic ChREBP mRNA levels. These findings suggest that reduced central melanocortin signaling increases hepatic lipid deposition by stimulating hepatic lipogenic gene expression at least partly through the activation of SREBP-1c and PPARγ2

  19. Hepatitis C virus nonstructural protein 5A favors upregulation of gluconeogenic and lipogenic gene expression leading towards insulin resistance: a metabolic syndrome.

    Science.gov (United States)

    Parvaiz, Fahed; Manzoor, Sobia; Iqbal, Jawed; McRae, Steven; Javed, Farrakh; Ahmed, Qazi Laeeque; Waris, Gulam

    2014-05-01

    Chronic hepatitis C is a lethal blood-borne infection often associated with a number of pathologies such as insulin resistance and other metabolic abnormalities. Insulin is a key hormone that regulates the expression of metabolic pathways and favors homeostasis. In this study, we demonstrated the molecular mechanism of hepatitis C virus (HCV) nonstructural protein 5A (NS5A)-induced metabolic dysregulation. We showed that transient expression of HCV NS5A in human hepatoma cells increased lipid droplet formation through enhanced lipogenesis. We also showed increased transcriptional expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and diacylglycerol acyltransferase-1 (DGAT-1) in NS5A-expressing cells. On the other hand, there was significantly reduced transcriptional expression of microsomal triglyceride transfer protein (MTP) and peroxisome proliferator-activated receptor γ (PPARγ) in cells expressing HCV NS5A. Furthermore, increased gluconeogenic gene expression was observed in HCV-NS5A-expressing cells. In addition, it was also shown that HCV-NS5A-expressing hepatoma cells show serine phosphorylation of IRS-1, thereby hampering metabolic activity and contributing to insulin resistance. Therefore, this study reveals that HCV NS5A is involved in enhanced gluconeogenic and lipogenic gene expression, which triggers metabolic abnormality and impairs insulin signaling pathway.

  20. Activation and detoxification metabolism of urban air pollutants 2-nitrobenzanthrone and carcinogenic 3-nitrobenzanthrone by rat and mouse hepatic microsomes.

    Science.gov (United States)

    Stiborova, Marie; Cechova, Tereza; Borek-Dohalska, Lucie; Moserova, Michaela; Frei, Eva; Schmeiser, Heinz H; Paca, Jan; Arlt, Volker M

    2012-01-01

    , 3-ABA, was found only in the microsomal systems of control rats, the rats treated with β-NF and PB, and microsomes of WT and HRN mice, all hepatic microsomes tested in the study were capable of activating this carcinogen under the reductive conditions to form DNA adducts. A stability of a reactive intermediate of 3-NBA, N-hydroxy-3-aminobenzanthrone that is formed during 3-NBA reduction to 3-ABA, to form nitrenium (and/or carbenium) ions binding to DNA in individual microsomes as well as binding of these ions to proteins of these microsomes, might be the reasons explaining this phenomenon. In contrast to 3-NBA, its isomer 2-NBA was not metabolized by any of the used enzymatic systems both under the anaerobic and aerobic conditions. Likewise, no DNA adducts were detectable after reaction of 2-NBA in these systems with DNA. The results found in this study, the first report on the metabolism of 2-NBA and 3-NBA by rat and mouse hepatic microsomes demonstrate that 3-NBA, in contrast to 2-NBA, is reductively activated to form 3-NBA-derived DNA adducts by these enzymatic systems. NADPH:CYP reductase can be responsible for formation of these DNA adducts in rat livers, while NADH:cytochrome b5 reductase can contribute to this process in livers of HRN mice.

  1. Alcoholic Hepatitis Markedly Decreases the Capacity for Urea Synthesis.

    Directory of Open Access Journals (Sweden)

    Emilie Glavind

    Full Text Available Data on quantitative metabolic liver functions in the life-threatening disease alcoholic hepatitis are scarce. Urea synthesis is an essential metabolic liver function that plays a key regulatory role in nitrogen homeostasis. The urea synthesis capacity decreases in patients with compromised liver function, whereas it increases in patients with inflammation. Alcoholic hepatitis involves both mechanisms, but how these opposite effects are balanced remains unclear. Our aim was to investigate how alcoholic hepatitis affects the capacity for urea synthesis. We related these findings to another measure of metabolic liver function, the galactose elimination capacity (GEC, as well as to clinical disease severity.We included 20 patients with alcoholic hepatitis and 7 healthy controls. The urea synthesis capacity was quantified by the functional hepatic nitrogen clearance (FHNC, i.e., the slope of the linear relationship between the blood α-amino nitrogen concentration and urea nitrogen synthesis rate during alanine infusion. The GEC was determined using blood concentration decay curves after intravenous bolus injection of galactose. Clinical disease severity was assessed by the Glasgow Alcoholic Hepatitis Score and Model for End-Stage Liver Disease (MELD score.The FHNC was markedly decreased in the alcoholic hepatitis patients compared with the healthy controls (7.2±4.9 L/h vs. 37.4±6.8 L/h, P<0.01, and the largest decrease was observed in those with severe alcoholic hepatitis (4.9±3.6 L/h vs. 9.9±4.9 L/h, P<0.05. The GEC was less markedly reduced than the FHNC. A negative correlation was detected between the FHNC and MELD score (rho = -0.49, P<0.05.Alcoholic hepatitis markedly decreases the urea synthesis capacity. This decrease is associated with an increase in clinical disease severity. Thus, the metabolic failure in alcoholic hepatitis prevails such that the liver cannot adequately perform the metabolic up-regulation observed in other stressful

  2. Hepatic encephalopathy is associated with decreased cerebral oxygen metabolism and blood flow, not increased ammonia uptake

    DEFF Research Database (Denmark)

    Dam, Gitte; Keiding, Susanne; Munk, Ole Lajord

    2013-01-01

    Studies have shown decreased cerebral oxygen metabolism (CMRO(2)) and blood flow (CBF) in patients with cirrhosis with hepatic encephalopathy (HE). It remains unclear, however, whether these disturbances are associated with HE or with cirrhosis itself and how they may relate to arterial blood...... associated with HE rather than the liver disease as such. The changes in CMRO(2) and CBF could not be linked to blood ammonia concentration or CMRA....

  3. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Science.gov (United States)

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H.; Blesso, Christopher N.; Fernandez, Maria Luz

    2017-01-01

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group (p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group (p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver. PMID:28640194

  4. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Manal Mused Almatrafi

    2017-06-01

    Full Text Available To investigate the mechanisms by which Moringa oleifera leaves (ML modulate hepatic lipids, guinea pigs were allocated to either control (0% ML, 10% Low Moringa (LM or 15% High Moringa (HM diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH and triglyceride (TG metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG with the lowest concentrations in the HM group (p < 0.001, consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL-1β and interferon-γ, were lowest in the HM group (p < 0.005. Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01. This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  5. Metabolic profiles and bile acid extraction rate in the liver of cows with fasting-induced hepatic lipidosis.

    Science.gov (United States)

    Mohamed, T; Oikawa, S; Iwasaki, Y; Mizunuma, Y; Takehana, K; Endoh, D; Kurosawa, T; Sato, H

    2004-04-01

    This study was designed to monitor lipid profile in the portal and hepatic blood of cows with fasting-induced hepatic lipidosis, and to compare the results with those in the jugular blood. The work was also carried out to investigate bile acid (BA) in these vessels, and further to investigate BA extraction rate in the liver. Five cows were equipped with catheters in the portal, hepatic and jugular veins (day 0), fasted for 4 days (day 1-day 4) and then refed (day 5-day 11). Before morning feeding, blood was sampled before, during and after fasting from the catheterized vessels. In the portal blood, the concentration of non-esterified fatty acids (NEFA) showed a progressive increase and at day 5 there was an approximate twofold rise. Increased NEFA concentrations were also found similarly in the other two veins. At day 5, beta-hydroxybutyrate (BHBA) in the portal, hepatic and jugular blood rose to 197, 190 and 186% of the pre-fasting value, respectively. However, the concentrations of NEFA and BHBA in the three veins gradually returned to pre-fasting concentration during the refeeding period. Compared with the pre-fasting value at day 0, the content of liver triglyceride (TG) increased significantly at day 5 (P hepatic extraction rate of BA dropped from 3.1 times pre-fasting to 2.2 times during fasting. There were no significant differences in the concentrations of glucose, TG, total cholesterol, cholesterol esters, free cholesterol and phospholipids. The results of the current study show that metabolic alterations occur in the portal, hepatic and jugular veins during induction of hepatic lipidosis in cows, and mostly metabolites, with exception of BA concentration, run parallel. The decreased BA extraction rate in the liver of fasted cows was considered to reflect hepatic cell impairment caused by TG accumulation. Hopefully, the findings, at least in part, contribute to the explanation of the pathophysiology of hepatic lipidosis in dairy cows.

  6. 13C MRS Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Corin O. Miller

    2017-06-01

    Full Text Available Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well-known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs using 13C MRS.Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal, along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion half way through the study on the second study session.Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e., monotonic increases in the 13C-glycogen NMR signal was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen

  7. The fatty liver dystrophy (fld) mutation: Developmentally related alterations in hepatic triglyceride metabolism and protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Reue, K.; Rehnmark, S.; Cohen, R.D.; Leete, T.H.; Doolittle, M.H. [West Los Angeles VA Medical Center, CA (United States). Lipid Research Lab.]|[Univ. of California, Los Angeles, CA (United States). Dept. of Medicine; Giometti, C.S.; Mishler, K. [Argonne National Lab., IL (United States); Slavin, B.G. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-07-01

    Fatty liver dystrophy (fld) is an autosomal recessive mutation in mice characterized by hypertriglyceridemia and development of a fatty liver in the early neonatal period. Also associated with the fld phenotype is a tissue-specific deficiency in the expression of lipoprotein lipase and hepatic lipase, as well as elevations in hepatic apolipoprotein A-IV and apolipoprotein C-II mRNA levels. Although these lipid abnormalities resolve at the age of weaning, adult mutant mice exhibit a peripheral neuropathy associated with abnormal myelin formation. The fatty liver in fld/fld neonates is characterized by the accumulation of large triglyceride droplets within the parenchymal cells, and these droplets persist within isolated hepatocytes maintained in culture for several days. To identify the metabolic defect that leads to lipid accumulation, the authors investigated several aspects of cellular triglyceride metabolism. The mutant mice exhibited normal activity of acid triacylglycerol lipase, an enzyme thought to be responsible for hydrolysis of dietary triglycerides in the liver. Metabolic labeling studies performed with oleic acid revealed that free fatty acids accumulate in the liver of 3 day old fld/fld mice, but not in adults. This accumulation in liver was mirrored by elevated free fatty acid levels in plasma of fld/fld neonates, with levels highest in very young mice and returning to normal by the age of one month. Quantitation of fatty acid oxidation in cells isolated from fld/fld neonates revealed that oxidation rate is reduced 60% in hepatocytes and 40% in fibroblasts; hepatocytes from adult fld/fld mice exhibited an oxidation rate similar to those from wild-type mice.

  8. Multiple stable isotope tracer technique for studying the metabolic kinetics of amino acids in hepatic failure

    Energy Technology Data Exchange (ETDEWEB)

    Zongqin, Xia; Tengchang, Dai; Jianhua, Zhang; Yaer, Hu; Bingyao, Yu; Xingrong, Xu; Guanlu, Huang; Gengrong, Shen; Yaqiu, Zhou; Hong, Yu

    1987-08-01

    In order to study the mechanism of the imbalance of amino acid metabolism during hepatic failure, a stable isotope tracer method for observing simultaneously the metabolic kinetics of several amino acids has been established. /sup 15/N-L-Ala, (2,3-D/sub 3/)-Leu and (2,3-D/sub 3/)-Phe were chosen as nonessential, branched chain and aromatic amino acids. A single iv injection of 40 mg N-Ala, 20 mg deuterated Leu and 20 mg deuterated Phe was given to each human subject. Blood samples were taken just before and at different times (up to 60 min) after the injection. Total free amino acids were isolated from the plasma with a small dowex 50 x 8 column and converted to trifluoroacetyl derivatives. Their abundances were then analyzed with a GC-MS system and typical double exponential time course curves were found for all the three labelled amino acids. A two-pool model was designed and applied for compartmental analysis. Significant changes were found in the kinetic parameters of Phe and Leu in patients with fulminant hepatitis or heptic cirrhosis. The half-lives of both Phe pools were longer and the pool sizes were larger than normal subjects, while the half-lives and pool sizes of Leu changes in the opposite direction. No marked change was found in Ala. The significance of intracellular imbalance of Phe and Leu metabolism was discussed. It is evident that the combination of GCMS technique and multiple-tracers labelled with stable isotopes is of great potential for similar purposes.

  9. Comparison of first-pass and second-bolus dynamic susceptibility perfusion MRI in brain tumors

    International Nuclear Information System (INIS)

    Spampinato, M.V.; Besenski, Nada; Rumboldt, Zoran; Wooten, Caroline; Dorlon, Margaret

    2006-01-01

    Our goal was to evaluate whether the T1 shortening effect caused by contrast leakage into brain tumors, a well-known confounding effect in the quantification of relative cerebral blood volume (rCBV) measurements, may be corrected by the administration of a predose of gadolinium-DTPA. As part of their presurgical imaging protocol, 25 patients with primary brain tumors underwent two consecutive dynamic susceptibility-weighted contrast-enhanced (DSC) perfusion MR studies. Intratumoral rCBV measurements and normalized rCBV values obtained during the first-pass and second-bolus studies were compared (Wilcoxon signed-ranks test). The frequency of relatively increased rCBV ratios on the second-bolus study was compared between enhancing and non-enhancing neoplasms (Fisher's exact test). Postprocessing perfusion studies were evaluated for image quality on a scale of 0-3 (Wilcoxon signed-ranks test). Four studies were excluded due to unacceptable image quality. Mean normalized rCBVs were 9.04 (SD 4.64) for the first-pass and 7.99 (SD 3.84) for the second-bolus study. There was no statistically significant difference between the two perfusion studies in either intratumoral rCBV (P=0.237) or rCBV ratio (P=0.181). Five enhancing and four non-enhancing tumors showed a relative increase in rCBV ratio on the second-bolus study, without a significant difference between the groups. Image quality was not significantly different between perfusion studies. Our results did not demonstrate a significant difference between first-pass and second-bolus rCBV measurements in DSC perfusion MR imaging. The administration of a predose of gadolinium-DTPA does not appear to be an efficient way of compensating for the underestimation of intratumoral rCBV values due to the T1 shortening effect. (orig.)

  10. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake.

    Directory of Open Access Journals (Sweden)

    Lídia Cedó

    Full Text Available Human hepatic lipase (hHL is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT. In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL-mediated free fatty acid (FFA lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.

  11. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake.

    Science.gov (United States)

    Cedó, Lídia; Santos, David; Roglans, Núria; Julve, Josep; Pallarès, Victor; Rivas-Urbina, Andrea; Llorente-Cortes, Vicenta; Laguna, Joan Carles; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles

    2017-01-01

    Human hepatic lipase (hHL) is mainly localized on the hepatocyte cell surface where it hydrolyzes lipids from remnant lipoproteins and high density lipoproteins and promotes their hepatic selective uptake. Furthermore, hepatic lipase (HL) is closely associated with obesity in multiple studies. Therefore, HL may play a key role on lipid homeostasis in liver and white adipose tissue (WAT). In the present study, we aimed to evaluate the effects of hHL expression on hepatic and white adipose triglyceride metabolism in vivo. Experiments were carried out in hHL transgenic and wild-type mice fed a Western-type diet. Triglyceride metabolism studies included β-oxidation and de novo lipogenesis in liver and WAT, hepatic triglyceride secretion, and adipose lipoprotein lipase (LPL)-mediated free fatty acid (FFA) lipolysis and influx. The expression of hHL promoted hepatic triglyceride accumulation and de novo lipogenesis without affecting triglyceride secretion, and this was associated with an upregulation of Srebf1 as well as the main genes controlling the synthesis of fatty acids. Transgenic mice also exhibited more adiposity and an increased LPL-mediated FFA influx into the WAT without affecting glucose tolerance. Our results demonstrate that hHL promoted hepatic steatosis in mice mainly by upregulating de novo lipogenesis. HL also upregulated WAT LPL and promoted triglyceride-rich lipoprotein hydrolysis and adipose FFA uptake. These data support the important role of hHL in regulating hepatic lipid homeostasis and confirm the broad cardiometabolic role of HL.

  12. The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1α Transcriptional Coactivator*

    OpenAIRE

    Tavares, Clint D. J.; Sharabi, Kfir; Dominy, John E.; Lee, Yoonjin; Isasa, Marta; Orozco, Jose M.; Jedrychowski, Mark P.; Kamenecka, Theodore M.; Griffin, Patrick R.; Gygi, Steven P.; Puigserver, Pere

    2016-01-01

    Methionine is an essential sulfur amino acid that is engaged in key cellular functions such as protein synthesis and is a precursor for critical metabolites involved in maintaining cellular homeostasis. In mammals, in response to nutrient conditions, the liver plays a significant role in regulating methionine concentrations by altering its flux through the transmethylation, transsulfuration, and transamination metabolic pathways. A comprehensive understanding of how hepatic methionine metabol...

  13. Xenobiotic-contaminated diets affect hepatic lipid metabolism: Implications for liver steatosis in Sparus aurata juveniles

    Energy Technology Data Exchange (ETDEWEB)

    Maradonna, F.; Nozzi, V. [Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona (Italy); Santangeli, S. [Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona (Italy); INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Traversi, I. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università di Genova, 16132 Genova (Italy); Gallo, P. [INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Napoli (Italy); Fattore, E. [Dipartimento Ambiente e Salute, IRCCS–Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano (Italy); Mita, D.G. [INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Mandich, A. [INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università di Genova, 16132 Genova (Italy); Carnevali, O., E-mail: o.carnevali@univpm.it [Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona (Italy); INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy)

    2015-10-15

    Highlights: • Diets contaminated with NP, BPA, or t-OP affect lipid metabolism. • Xenobiotic-contaminated diets induce metabolic disorders. • Hepatic metabolic disorders may be related to environmental pollution. - Abstract: The metabolic effects induced by feed contaminated with a lower or a higher concentration of -nonylpnenol (NP), 4-tert-octylphenol (t-OP) or bisphenol A (BPA), three environmental endocrine disruptors, were assessed in juvenile sea bream liver. Histological analysis demonstrated that all these three xenobiotics induced hepatic lipid accumulation and steatosis. These findings prompted analysis of the expression of the major molecules involved in lipid metabolism: peroxisome proliferator activated receptors (which is encoded by ppars), fatty acid synthase (encoded by fas), lipoprotein lipase (encoded by lpl) and hormone-sensitive lipase (encoded by hsl). The enzymes encoded by ppars and fas are in fact responsible for lipid accumulation, whereas lpl- and hsl- encoded proteins play a pivotal role in fat mobilization. The three xenobiotics modulated ppar mRNA expression: pparα mRNA expression was induced by the higher dose of each contaminant; pparβ mRNA expression was upregulated by the lower doses and in BPA2 fish ppary mRNA overexpression was induced by all pollutants. These data agreed with the lipid accumulation profiles documented by histology. Fas mRNA levels were modulated by the two NP doses and the higher BPA concentration. Lpl mRNA was significantly upregulated in all experimental groups except for BPA1 fish while hsl mRNA was significantly downregulated in all groups except for t-OP2 and BPA1 fish. The plasma concentrations of cortisol, the primary stress biomarker, were correlated with the levels of pepck mRNA level. This gene encodes phosphoenolpyruvate carboxykinase which is one of the key enzymes of gluconeogenesis. Pepck mRNA was significantly overexpressed in fish exposed to NP2 and both t-OP doses. Finally, the genes

  14. Xenobiotic-contaminated diets affect hepatic lipid metabolism: Implications for liver steatosis in Sparus aurata juveniles

    International Nuclear Information System (INIS)

    Maradonna, F.; Nozzi, V.; Santangeli, S.; Traversi, I.; Gallo, P.; Fattore, E.; Mita, D.G.; Mandich, A.; Carnevali, O.

    2015-01-01

    Highlights: • Diets contaminated with NP, BPA, or t-OP affect lipid metabolism. • Xenobiotic-contaminated diets induce metabolic disorders. • Hepatic metabolic disorders may be related to environmental pollution. - Abstract: The metabolic effects induced by feed contaminated with a lower or a higher concentration of -nonylpnenol (NP), 4-tert-octylphenol (t-OP) or bisphenol A (BPA), three environmental endocrine disruptors, were assessed in juvenile sea bream liver. Histological analysis demonstrated that all these three xenobiotics induced hepatic lipid accumulation and steatosis. These findings prompted analysis of the expression of the major molecules involved in lipid metabolism: peroxisome proliferator activated receptors (which is encoded by ppars), fatty acid synthase (encoded by fas), lipoprotein lipase (encoded by lpl) and hormone-sensitive lipase (encoded by hsl). The enzymes encoded by ppars and fas are in fact responsible for lipid accumulation, whereas lpl- and hsl- encoded proteins play a pivotal role in fat mobilization. The three xenobiotics modulated ppar mRNA expression: pparα mRNA expression was induced by the higher dose of each contaminant; pparβ mRNA expression was upregulated by the lower doses and in BPA2 fish ppary mRNA overexpression was induced by all pollutants. These data agreed with the lipid accumulation profiles documented by histology. Fas mRNA levels were modulated by the two NP doses and the higher BPA concentration. Lpl mRNA was significantly upregulated in all experimental groups except for BPA1 fish while hsl mRNA was significantly downregulated in all groups except for t-OP2 and BPA1 fish. The plasma concentrations of cortisol, the primary stress biomarker, were correlated with the levels of pepck mRNA level. This gene encodes phosphoenolpyruvate carboxykinase which is one of the key enzymes of gluconeogenesis. Pepck mRNA was significantly overexpressed in fish exposed to NP2 and both t-OP doses. Finally, the genes

  15. First-pass uptake and oxidation of glucose by the splanchnic tissue in young goats fed soy protein-based milk diets with or without amino acid supplementation: glucose metabolism in goat kids after soy feeding.

    Science.gov (United States)

    Schönhusen, U; Junghans, P; Flöter, A; Steinhoff-Wagner, J; Görs, S; Schneider, F; Metges, C C; Hammon, H M

    2013-04-01

    The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects glucose metabolism in young goats and whether effects may be ameliorated by supplementation of those AA known to be lower concentrated in soy than in CN. Goat kids (d 20 of age) were fed comparable milk protein diets, in which 50% of the crude protein was either CN (control, CON), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 62 of age, a single bolus dose of d-[(13)C6]glucose (10mg/kg of BW) was given with the morning diet, and simultaneously, a single bolus dose of d-[6,6-(2)H2]glucose (5mg/kg of BW) was injected into a jugular vein. Blood samples were collected between -30 and +420 min relative to the tracer administration to measure the (13)C and (2)H enrichments of plasma glucose and the (13)C enrichment of blood CO2. Glucose first-pass uptake by the splanchnic tissues was calculated from the rate of appearance of differentially labeled glucose tracer in plasma. Glucose oxidation was calculated from (13)C enrichment in blood CO2. In addition, plasma concentrations of triglycerides, nonesterified fatty acids, glucose, insulin, and glucagon were measured. On d 63 of age, kids were killed and jejunal mucosa and liver samples were collected to measure lactase mRNA levels and lactase and maltase activities in the jejunum and activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. Basal plasma glucose concentration tended to be higher in the CON than the SPIA group, whereas basal insulin was higher in the CON group than the SPI and SPIA groups, and glucagon was higher in the CON than the SPIA group. Plasma glucose and insulin concentrations increased during the first hour after feeding, whereas plasma glucagon increased immediately after feeding and after 1h of feeding. First-pass uptake and glucose oxidation were not affected by diet. Maltase

  16. Single DV-DXCCII Based Voltage Controlled First Order All-pass Filter with Inverting and Non-inverting responses

    Directory of Open Access Journals (Sweden)

    B Chaturvedi

    2015-12-01

    Full Text Available In this paper, a new voltage controlled first order all-pass filter is presented. The proposed circuit employs a single differential voltage dual-X second generation current conveyor (DV-DXCCII and a grounded capacitor only. The proposed all-pass filter provides both inverting and non inverting voltage-mode outputs from the same configuration simultaneously without any matching condition. Non-ideal analysis along with sensitivity analysis is also investigated. The proposed circuit has low active and passive sensitivities. As an application the proposed all-pass filter is connected in cascade to get higher order filter. The theoretical results are validated thorough PSPICE simulations using TSMC 0.18µm CMOS process parameters.

  17. Associated Factors for Metabolic Syndrome in the Older Adults with Chronic Virus Hepatitis in the Community.

    Directory of Open Access Journals (Sweden)

    Yuan-Hung Kuo

    Full Text Available This study was to evaluate the association between metabolic syndrome (MetS and chronic virus hepatitis elders in the community. Those subjects with positive hepatitis B surface antigen (HBsAg and/or anti-hepatitis C virus (anti-HCV screened in the community before were invited to this study and 451 responded. All participants underwent anthropometric measurements, blood tests, ultrasound and fibroscan examinations. The cut-off of liver stiffness measurement-liver cirrhosis (LSM-LC was 10 kPa for chronic hepatitis B (CHB patients and 12 kPa for chronic hepatitis C (CHC patients, respectively. Among 451 responders, 56 were excluded due to negative HBsAg or anti-HCV. Three hundreds and ninety-five subjects included 228 CHB patients, 156 CHC patients and 11 dual hepatitis patients, had a mean age of 62±12.6 years. Fifty-four (23.7% CHB patients coexisted with MetS whereas 40 (25.6% CHC patients also had MetS. Those patients with MetS had more LSM-LC cases than those without (20.4% vs 9.8%, p = 0.04 in CHB patients; 28.2% vs 13.5%, p = 0.037 in CHC patients, respectively. In multivariate logistic analysis, detectable viremia was reversely associated with MetS in CHB patients after adjustment for age, gender and body mass index (odds ratio (OR: 0.42; 95% confidence interval (CI: 0.18-0.99; p = 0.047. Regarding CHC patients, higher LSM level was the only factor contributed to MetS (OR: 1.1; 95% CI: 1.02-1.19; p = 0.012. In conclusion, elder CHB patients coexisted with MetS might experience an inactive virus replication but have an advanced liver fibrosis. In elder CHC patients, only higher LSM level was associated with MetS.

  18. Analysis of hepatic transcriptome demonstrates altered lipid metabolism following Lactobacillus johnsonii BS15 prevention in chickens with subclinical necrotic enteritis.

    Science.gov (United States)

    Qing, Xiaodan; Zeng, Dong; Wang, Hesong; Ni, Xueqin; Lai, Jing; Liu, Lei; Khalique, Abdul; Pan, Kangcheng; Jing, Bo

    2018-04-20

    Subclinical necrotic enteritis (SNE) widely outbreaks in chickens which inflicted growth-slowing, causing enormous social and economic burdens. To better understand the molecular underpinnings of SNE on lipid metabolism and explore novel preventative strategies against SNE, we studied the regulatory mechanism of a potential probiotic, Lactobacillus johnsonii BS15 on the lipid metabolism pathways involved in chickens with SNE. One hundred eighty one-day-old chickens were randomly divided into three groups and arranged with basal diet (control and SNE group). Added with BS15 (1 × 10 6  cfu/g) or Man Rogosa Sharpe (MRS) liquid medium for 28 days. The hepatic gene expression of each group was then measured using high-throughput analysis methods (RNA-Seq). Quantitative real-time PCR (qRT-PCR) was used to detect the expression changes of the related genes. The results showed that there are eleven lipid metabolic pathways were found during the prevention of BS15 treatment in SNE chickens by RNA-Seq, including the peroxisome proliferator-activated receptor (PPAR) signaling pathway and arachidonic acid metabolism. BS15 notably facilitated the expressions of fatty acid binding protein 2 (FABP2), acyl-CoA synthetase bubblegum family member 1 (ACSBG1), perilipin 1 (PLIN1) and perilipin 2 (PLIN2), which were involved in PPAR signaling pathway of SNE chickens. Besides, suppression of phospholipase A2 group IVA (PLA2G4A) in arachidonic acid metabolism was observed in SNE chickens after BS15 prevention. The expression patterns of FABP2, ACSBG1, PLIN1, PLIN2 and PLA24G in qRT-PCR validation were consistent with RNA-Seq results. These findings indicate that SNE may affect the hepatic lipid metabolism of chickens. Meanwhile, BS15 pretreatment may provide a prospective natural prophylaxis strategy against SNE through improving the PPAR signaling pathway and arachidonic acid metabolism.

  19. Curcumin Attenuates Lipopolysaccharide-Induced Hepatic Lipid Metabolism Disorder by Modification of m6 A RNA Methylation in Piglets.

    Science.gov (United States)

    Lu, Na; Li, Xingmei; Yu, Jiayao; Li, Yi; Wang, Chao; Zhang, Lili; Wang, Tian; Zhong, Xiang

    2018-01-01

    N 6 -methyladenosine (m 6 A) regulates gene expression and affects cellular metabolism. In this study, we checked whether the regulation of lipid metabolism by curcumin is associated with m 6 A RNA methylation. We investigated the effects of dietary curcumin supplementation on lipopolysaccharide (LPS)-induced liver injury and lipid metabolism disorder, and on m 6 A RNA methylation in weaned piglets. A total of 24 Duroc × Large White × Landrace piglets were randomly assigned to control, LPS, and CurL (LPS challenge and 200 mg/kg dietary curcumin) groups (n = 8/group). The results showed that curcumin reduced the increase in relative liver weight as well as the concentrations of aspartate aminotransferase and lactate dehydrogenase induced by LPS injection in the plasma and liver of weaning piglets (p < 0.05). The amounts of total cholesterol and triacylglycerols were decreased by curcumin compared to that by the LPS injection (p < 0.05). Additionally, curcumin reduced the expression of Bcl-2 and Bax mRNA, whereas it increased the p53 mRNA level in the liver (p < 0.05). Curcumin inhibited the enhancement of SREBP-1c and SCD-1 mRNA levels induced by LPS in the liver. Notably, dietary curcumin affected the expression of METTL3, METTL14, ALKBH5, FTO, and YTHDF2 mRNA, and increased the abundance of m 6 A in the liver of piglets. In conclusion, the protective effect of curcumin in LPS-induced liver injury and hepatic lipid metabolism disruption might be due to the increase in m 6 A RNA methylation. Our study provides mechanistic insights into the effect of curcumin in protecting against hepatic injury during inflammation and metabolic diseases. © 2018 AOCS.

  20. A relative quantitative assessment of myocardial perfusion by first-pass technique: animal study

    Science.gov (United States)

    Chen, Jun; Zhang, Zhang; Yu, Xuefang; Zhou, Kenneth J.

    2015-03-01

    The purpose of this study is to quantitatively assess the myocardial perfusion by first-pass technique in swine model. Numerous techniques based on the analysis of Computed Tomography (CT) Hounsfield Unit (HU) density have emerged. Although these methods proposed to be able to assess haemodynamically significant coronary artery stenosis, their limitations are noticed. There are still needs to develop some new techniques. Experiments were performed upon five (5) closed-chest swine. Balloon catheters were placed into the coronary artery to simulate different degrees of luminal stenosis. Myocardial Blood Flow (MBF) was measured using color microsphere technique. Fractional Flow Reserve (FFR) was measured using pressure wire. CT examinations were performed twice during First-pass phase under adenosine-stress condition. CT HU Density (HUDCT) and CT HU Density Ratio (HUDRCT) were calculated using the acquired CT images. Our study presents that HUDRCT shows a good (y=0.07245+0.09963x, r2=0.898) correlation with MBF and FFR. In receiver operating characteristic (ROC) curve analyses, HUDRCT provides excellent diagnostic performance for the detection of significant ischemia during adenosine-stress as defined by FFR indicated by the value of Area Under the Curve (AUC) of 0.927. HUDRCT has the potential to be developed as a useful indicator of quantitative assessment of myocardial perfusion.

  1. Tunable First-Order Resistorless All-Pass Filter with Low Output Impedance

    Directory of Open Access Journals (Sweden)

    Parveen Beg

    2014-01-01

    Full Text Available This paper presents a voltage mode cascadable single active element tunable first-order all-pass filter with a single passive component. The active element used to realise the filter is a new building block termed as differential difference dual-X current conveyor with a buffered output (DD-DXCCII. The filter is thus realized with the help of a DD-DXCCII, a capacitor, and a MOS transistor. By exploiting the low output impedance, a higher order filter is also realized. Nonideal and parasitic study is also carried out on the realised filters. The proposed DD-DXCCII filters are simulated using TSMC the 0.25 µm technology.

  2. Tunable first-order resistorless all-pass filter with low output impedance.

    Science.gov (United States)

    Beg, Parveen

    2014-01-01

    This paper presents a voltage mode cascadable single active element tunable first-order all-pass filter with a single passive component. The active element used to realise the filter is a new building block termed as differential difference dual-X current conveyor with a buffered output (DD-DXCCII). The filter is thus realized with the help of a DD-DXCCII, a capacitor, and a MOS transistor. By exploiting the low output impedance, a higher order filter is also realized. Nonideal and parasitic study is also carried out on the realised filters. The proposed DD-DXCCII filters are simulated using TSMC the 0.25 µm technology.

  3. Metabolic syndrome in chronic hepatitis C infection: does it still matter in the era of directly acting antiviral therapy?

    Directory of Open Access Journals (Sweden)

    Lim TR

    2014-12-01

    Full Text Available TR Lim Centre for Liver Research and NIHR Biomedical Research Unit in Liver Disease, University of Birmingham and Liver and Hepatobiliary Unit, Queen Elizabeth Hospital Birmingham, UK Abstract: Metabolic syndrome is prevalent in patients with hepatitis C virus (HCV infection. Given the pandemic spread of HCV infection and metabolic syndrome, the burden of their interaction is a major public health issue. The presence of metabolic syndrome accelerates the progression of liver disease in patients with HCV infection. New drug development in HCV has seen an unprecedented rise in the last year, which resulted in better efficacy, better tolerance, and a shorter treatment duration. This review describes the underlying mechanisms and clinical effects of metabolic syndrome in HCV infection, as well as their importance in the era of new directly acting antiviral therapy. Keywords: HCV, genotype 3, metabolic syndrome, steatosis, directly acting antiviral agents

  4. Exposure to a northern contaminant mixture (NCM alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    Full Text Available Non-alcoholic fatty liver disease (NAFLD, defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to 10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with

  5. Lipopolysaccharide significantly influences the hepatic triglyceride metabolism in growing pigs.

    Science.gov (United States)

    Liu, Zhiqing; Liu, Weifeng; Huang, Yanping; Guo, Jun; Zhao, Ruqian; Yang, Xiaojing

    2015-06-30

    In the practical commercial pig farms, inflammation is a perennial problem, yet most of studies on inflammation are focused on immune response. Actually, inflammation can induce body metabolism disorder which will finally influence animals' growth. In this study, we investigated the effect of acute inflammation on the triglyceride (TG) metabolism in the liver of growing pigs and the possible underlying mechanisms. Twelve male growing pigs were randomly divided into two groups, a control group (received saline) and a LPS group (intramuscular injected with 15 μg/kg LPS). Six hours after LPS injection, the pigs were euthanized and sampled. Biochemical indexes, inflammation factors, lipid metabolism related parameters and mitochondrial function were evaluated. The relationship between glucocorticoid receptor (GR) and the key enzymes of de novo lipogenesis were also investigated by chromatin immunoprecipitation assay (ChIP). LPS induced a serious inflammation in the liver of growing pigs proved by liver morphologic changes, the up-regulated plasma cortisol, tumor necrosis factor-α (TNF-α) content and gene expression of inflammation related genes in liver. For de novo lipogenesis, LPS significantly decreased the gene expression of fatty acid synthase (FAS), Acetyl-CoA carboxylase-1 (ACC-1) and Stearoyl-CoA desaturase-1 (SCD-1), and the protein expression of ACC-1 and SCD-1. For lipolysis, only the gene expression of adipose triglyceride lipase (ATGL) was decreased. LPS did nothing to the gene expression of hormone-sensitive lipase (HSL) and the lipolytic enzymes activities. For β-oxidation, LPS significantly increased the protein expression of CPT-1α, but the gene expression of mitochondrial DNA-encoded genes and the activities of mitochondrial complex IV and V demonstrated no obviously changes. Furthermore, ChIP results showed that LPS significantly decreased the level of GR binding to ACC-1 promoter. LPS infection has a profound impact on hepatic TG metabolism

  6. Radionuclide angiocardiography in the normal dog: first-pass studies

    Energy Technology Data Exchange (ETDEWEB)

    Brom, W.E. van den; Stokhof, A.A. (Utrecht Univ. (Netherlands). Dept. of Clinical Sciences of Companion Animals)

    1989-11-01

    The first pass of a bolus of radioactivity ({sup 99m}Tc) through the heart and lungs was studied in 27 anaesthetised healthy adult mongrel dogs, using a gamma camera with a computer on-line. Bodyweights ranged from 9 to 60 kg, heart rate from 108 to 150 beats min{sup -1}. Quantitative analysis revealed that the distribution volume (DV) of the labelled blood, the cardiac output (CO), the stroke volume (SV) and pulmonary blood volume (PBV) were almost proportional to the bodyweight. Specific results were: DV 120 ml kg{sup -1}, CO 136 ml kg{sup -1}, SV 1.11 ml kg{sup -1}, PBV 6.9 ml kg{sup -1}. The pulmonary transit time varied between 1.0 and 3.6 seconds. Clinical applicability of the method, including visual inspection of camera images and quantitative analysis of a time-activity curve of the lung, was demonstrated for one dog with an aortic stenosis and another with a left-to-right shunt. (author).

  7. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism.

    Science.gov (United States)

    Pathak, Preeti; Liu, Hailiang; Boehme, Shannon; Xie, Cen; Krausz, Kristopher W; Gonzalez, Frank; Chiang, John Y L

    2017-06-30

    The bile acid-activated receptors, nuclear farnesoid X receptor (FXR) and the membrane Takeda G-protein receptor 5 (TGR5), are known to improve glucose and insulin sensitivity in obese and diabetic mice. However, the metabolic roles of these two receptors and the underlying mechanisms are incompletely understood. Here, we studied the effects of the dual FXR and TGR5 agonist INT-767 on hepatic bile acid synthesis and intestinal secretion of glucagon-like peptide-1 (GLP-1) in wild-type, Fxr -/- , and Tgr5 -/- mice. INT-767 efficaciously stimulated intracellular Ca 2+ levels, cAMP activity, and GLP-1 secretion and improved glucose and lipid metabolism more than did the FXR-selective obeticholic acid and TGR5-selective INT-777 agonists. Interestingly, INT-767 reduced expression of the genes in the classic bile acid synthesis pathway but induced those in the alternative pathway, which is consistent with decreased taurocholic acid and increased tauromuricholic acids in bile. Furthermore, FXR activation induced expression of FXR target genes, including fibroblast growth factor 15, and unexpectedly Tgr5 and prohormone convertase 1/3 gene expression in the ileum. We identified an FXR-responsive element on the Tgr5 gene promoter. Fxr -/- and Tgr5 -/- mice exhibited reduced GLP-1 secretion, which was stimulated by INT-767 in the Tgr5 -/- mice but not in the Fxr -/- mice. Our findings uncovered a novel mechanism in which INT-767 activation of FXR induces Tgr5 gene expression and increases Ca 2+ levels and cAMP activity to stimulate GLP-1 secretion and improve hepatic glucose and lipid metabolism in high-fat diet-induced obese mice. Activation of both FXR and TGR5 may therefore represent an effective therapy for managing hepatic steatosis, obesity, and diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Yearly growth and metabolic changes in earthen pond-cultured meagre Argyrosomus regius

    Directory of Open Access Journals (Sweden)

    Luis Vargas-Chacoff

    2014-06-01

    Full Text Available Metabolic modifications associated with natural environmental conditions were assessed in the meagre Argyrosomus regius cultured in earthen ponds under natural photoperiod and temperature. Juvenile specimens (90-100 g initial weight were sampled (plasma, liver and muscle every two months for 18 months (between December 2004 and May 2006. Specimens showed seasonal variations in growth rate, with the highest values in spring and summer. Plasmatic, hepatic and muscular metabolite levels and hepatic and muscular metabolic enzymes also showed significant variations throughout the year. Enzymatic activity related to carbohydrate metabolism in the liver (HK, FBPase and G6PDH showed great modifications in summer, increasing glycogenogenic pathways, while amino acid metabolism (GDH and GOT activity was enhanced in spring and summer. However lipid-related (G3PDH activity metabolic enzymes did not show a clear seasonal pattern. In muscle, enzymatic activity related to amino acid, lipid and lactate metabolism (LDH-O activity, but not carbohydrate metabolism, showed seasonal changes in parallel with changes in growth rate. Thus A. regius specimens showed a trend to grow in summer months and mobilize their energy reserves in winter. Differences in the hepatic level were observed between the first and the second year of the study, suggesting the possible existence of metabolic changes related to specimen age or size. Our results indicate that growth and metabolic responses in A. regius are environmentally dependent and that this species is a very good candidate for diversification in aquaculture.

  9. Model-Based Evaluation of Higher Doses of Rifampin Using a Semimechanistic Model Incorporating Autoinduction and Saturation of Hepatic Extraction.

    Science.gov (United States)

    Chirehwa, Maxwell T; Rustomjee, Roxana; Mthiyane, Thuli; Onyebujoh, Philip; Smith, Peter; McIlleron, Helen; Denti, Paolo

    2016-01-01

    Rifampin is a key sterilizing drug in the treatment of tuberculosis (TB). It induces its own metabolism, but neither the onset nor the extent of autoinduction has been adequately described. Currently, the World Health Organization recommends a rifampin dose of 8 to 12 mg/kg of body weight, which is believed to be suboptimal, and higher doses may potentially improve treatment outcomes. However, a nonlinear increase in exposure may be observed because of saturation of hepatic extraction and hence this should be taken into consideration when a dose increase is implemented. Intensive pharmacokinetic (PK) data from 61 HIV-TB-coinfected patients in South Africa were collected at four visits, on days 1, 8, 15, and 29, after initiation of treatment. Data were analyzed by population nonlinear mixed-effects modeling. Rifampin PKs were best described by using a transit compartment absorption and a well-stirred liver model with saturation of hepatic extraction, including a first-pass effect. Autoinduction was characterized by using an exponential-maturation model: hepatic clearance almost doubled from the baseline to steady state, with a half-life of around 4.5 days. The model predicts that increases in the dose of rifampin result in more-than-linear drug exposure increases as measured by the 24-h area under the concentration-time curve. Simulations with doses of up to 35 mg/kg produced results closely in line with those of clinical trials. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Vascular and hepatic impact of short-term intermittent hypoxia in a mouse model of metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Wojciech Trzepizur

    Full Text Available Experimental models of intermittent hypoxia (IH have been developed during the last decade to investigate the consequences of obstructive sleep apnea. IH is usually associated with detrimental metabolic and vascular outcomes. However, paradoxical protective effects have also been described depending of IH patterns and durations applied in studies. We evaluated the impact of short-term IH on vascular and metabolic function in a diet-induced model of metabolic syndrome (MS.Mice were fed either a standard diet or a high fat diet (HFD for 8 weeks. During the final 14 days of each diet, animals were exposed to either IH (1 min cycle, FiO2 5% for 30s, FiO2 21% for 30s; 8 h/day or intermittent air (FiO2 21%. Ex-vivo vascular reactivity in response to acetylcholine was assessed in aorta rings by myography. Glucose, insulin and leptin levels were assessed, as well as serum lipid profile, hepatic mitochondrial activity and tissue nitric oxide (NO release.Mice fed with HFD developed moderate markers of dysmetabolism mimicking MS, including increased epididymal fat, dyslipidemia, hepatic steatosis and endothelial dysfunction. HFD decreased mitochondrial complex I, II and IV activities and increased lactate dehydrogenase (LDH activity in liver. IH applied to HFD mice induced a major increase in insulin and leptin levels and prevented endothelial dysfunction by restoring NO production. IH also restored mitochondrial complex I and IV activities, moderated the increase in LDH activity and liver triglyceride accumulation in HFD mice.In a mouse model of MS, short-term IH increases insulin and leptin levels, restores endothelial function and mitochondrial activity and limits liver lipid accumulation.

  11. Automated processing of first-pass radionuclide angiocardiography by factor analysis of dynamic structures.

    Science.gov (United States)

    Cavailloles, F; Bazin, J P; Capderou, A; Valette, H; Herbert, J L; Di Paola, R

    1987-05-01

    A method for automatic processing of cardiac first-pass radionuclide study is presented. This technique, factor analysis of dynamic structures (FADS) provides an automatic separation of anatomical structures according to their different temporal behaviour, even if they are superimposed. FADS has been applied to 76 studies. A description of factor patterns obtained in various pathological categories is presented. FADS provides easy diagnosis of shunts and tricuspid insufficiency. Quantitative information derived from the factors (cardiac output and mean transit time) were compared to those obtained by the region of interest method. Using FADS, a higher correlation with cardiac catheterization was found for cardiac output calculation. Thus compared to the ROI method, FADS presents obvious advantages: a good separation of overlapping cardiac chambers is obtained; this operator independant method provides more objective and reproducible results. A number of parameters of the cardio-pulmonary function can be assessed by first-pass radionuclide angiocardiography (RNA) [1,2]. Usually, they are calculated using time-activity curves (TAC) from regions of interest (ROI) drawn on the cardiac chambers and the lungs. This method has two main drawbacks: (1) the lack of inter and intra-observers reproducibility; (2) the problem of crosstalk which affects the evaluation of the cardio-pulmonary performance. The crosstalk on planar imaging is due to anatomical superimposition of the cardiac chambers and lungs. The activity measured in any ROI is the sum of the activity in several organs and 'decontamination' of the TAC cannot easily be performed using the ROI method [3]. Factor analysis of dynamic structures (FADS) [4,5] can solve the two problems mentioned above. It provides an automatic separation of anatomical structures according to their different temporal behaviour, even if they are superimposed. The resulting factors are estimates of the time evolution of the activity in each

  12. 13C Mrs Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields

    Science.gov (United States)

    Miller, Corin O.; Cao, Jin; Zhu, He; Chen, Li M.; Wilson, George; Kennan, Richard; Gore, John C.

    2017-06-01

    Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs) using 13C MRS. Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz) NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys) were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal), along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion) half way through the study on the second study session. Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e. monotonic increases in the 13C-glycogen NMR signal) was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen synthesis

  13. Evolution of hepatic glucose metabolism: liver-specific glucokinase deficiency explained by parallel loss of the gene for glucokinase regulatory protein (GCKR.

    Directory of Open Access Journals (Sweden)

    Zhao Yang Wang

    Full Text Available Glucokinase (GCK plays an important role in the regulation of carbohydrate metabolism. In the liver, phosphorylation of glucose to glucose-6-phosphate by GCK is the first step for both glycolysis and glycogen synthesis. However, some vertebrate species are deficient in GCK activity in the liver, despite containing GCK genes that appear to be compatible with function in their genomes. Glucokinase regulatory protein (GCKR is the most important post-transcriptional regulator of GCK in the liver; it participates in the modulation of GCK activity and location depending upon changes in glucose levels. In experimental models, loss of GCKR has been shown to associate with reduced hepatic GCK protein levels and activity.GCKR genes and GCKR-like sequences were identified in the genomes of all vertebrate species with available genome sequences. The coding sequences of GCKR and GCKR-like genes were identified and aligned; base changes likely to disrupt coding potential or splicing were also identified.GCKR genes could not be found in the genomes of 9 vertebrate species, including all birds. In addition, in multiple mammalian genomes, whereas GCKR-like gene sequences could be identified, these genes could not predict a functional protein. Vertebrate species that were previously reported to be deficient in hepatic GCK activity were found to have deleted (birds and lizard or mutated (mammals GCKR genes. Our results suggest that mutation of the GCKR gene leads to hepatic GCK deficiency due to the loss of the stabilizing effect of GCKR.

  14. Control of Hepatic Glucose Metabolism by Islet and Brain

    Science.gov (United States)

    Rojas, Jennifer M.; Schwartz, Michael W.

    2014-01-01

    Dysregulation of hepatic glucose uptake (HGU) and inability of insulin to suppress hepatic glucose production (HGP), both contribute to hyperglycemia in patients with type 2 diabetes (T2D). Growing evidence suggests that insulin can inhibit HGP not only through a direct effect on the liver, but also via a mechanism involving the brain. Yet the notion that insulin action in the brain plays a physiological role in the control of HGP continues to be controversial. Although studies in dogs suggest that the direct hepatic effect of insulin is sufficient to explain day-to-day control of HGP, a surprising outcome has been revealed by recent studies in mice investigating whether the direct hepatic action of insulin is necessary for normal HGP: when hepatic insulin signaling pathway was genetically disrupted, HGP was maintained normally even in the absence of direct input from insulin. Here we present evidence that points to a potentially important role of the brain in the physiological control of both HGU and HGP in response to input from insulin as well as other hormones and nutrients. PMID:25200294

  15. Genetic determinants of hepatic steatosis in man

    OpenAIRE

    Hooper, Amanda J.; Adams, Leon A.; Burnett, John R.

    2011-01-01

    Hepatic steatosis is one of the most common liver disorders in the general population. The main cause of hepatic steatosis is nonalcoholic fatty liver disease (NAFLD), representing the hepatic component of the metabolic syndrome, which is characterized by type 2 diabetes, obesity, and dyslipidemia. Insulin resistance and excess adiposity are considered to play key roles in the pathogenesis of NAFLD. Although the risk factors for NAFLD are well established, the genetic basis of hepatic steatos...

  16. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism

    DEFF Research Database (Denmark)

    Caesar, Robert; Nygren, Heli; Orešič, Matej

    2016-01-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene...... of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl...... esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota...

  17. Correlation between liver function tests and metabolic syndrome in hepatitis-free elderly

    Directory of Open Access Journals (Sweden)

    Hung-Sheng Shang

    2015-01-01

    Full Text Available Background: We aimed to investigate the relationship between liver function tests (LFTs and metabolic syndrome (MetS as several studies have shown positive correlations between some of the LFTs, including alanine aminotransferase (ALT and γ-glutamyl transpeptidase (γ-GT, and MetS but have not fully explored the same in the elderly. Owing to the progress in public health, the aging of the general population becomes a major issue. Design: We enrolled subjects aged over 60 years who underwent routine health checkups in a Health Screening Center after excluding subjects with a history of hepatitis B or C infection, excessive alcohol consumption, liver fibrosis, cirrhosis, acute hepatitis, diabetes, hypertension, dyslipidemia, cardiovascular disease, or receiving medications for these diseases. Finally, 9,282 participants were eligible for analysis. Statistical Analysis: All data were tested for normal distribution with the Kolmogorov-Smirnov test and for homogeneity of variances with the Levene′s test. A t-test was used to evaluate the differences between the two groups. Univariate and multivariate regressions were used to observe correlations between different parameters. Receiver operating characteristic curves of each LFT were used to predict MetS. Areas under curves and 95% confidence interval were also estimated and compared. Results: With the exception of aspartate aminotransferase and α-fetal protein, the results of LFTs, including total and direct bilirubin, alkaline phosphatase (ALP, ALT, and γ-GT, were altered in the group with MetS. Furthermore, the levels of γ-GT in men and ALP in women were independently associated with all MetS components and had the highest areas under receiver operating characteristic curves. Conclusion: Abnormal LFTs are highly correlated with MetS in the hepatitis-free elderly, with levels of γ-GT in men and ALP in women being the most important factors. LFTs may represent an auxiliary tool for the

  18. Tomographic ventricular reconstruction using multiple view first-pass radionuclide angiography

    International Nuclear Information System (INIS)

    Lacy, J.L.; Ball, M.E.; Verani, M.S.; Wiles, H.; Roberts, R.

    1985-01-01

    In first-pass radionuclide angiography (FPRA) images of both left and right ventricles are uncontaminated by adjacent structures. Thus, the problem of tomographic reconstruction is vastly simplified compared to equilibrium blood pool imaging in which all structures are imaged simultaneously. Tomographic reconstruction from a limited number of views may thus be possible. A simple filtered interpolative back-projection reconstruction technique was employed. In this technique interpolation was used between sectional distributions at successive angles. Interpolations yielding 9 and 13 back projection angles of 22.5 0 and 15 0 were evaluated. Ventricular borders were obtained in each back-projected tomographic slice by location of the intensity level which provided correct total ventricular volume. Cast cross sections were quantitatively well represented by these borders. This ventricular border definition algorithm forms the basis for applications of the technique in animals and humans

  19. Associations of Pass-Fail Outcomes with Psychological Health of First-Year Medical Students in a Malaysian Medical School

    Directory of Open Access Journals (Sweden)

    Muhamad S. B. Yusoff

    2013-02-01

    Full Text Available Objectives: The demanding and intense environment of medical training can create excessive pressures on medical students that eventually lead to unfavorable consequences, either at a personal or professional level. These consequences can include poor academic performance and impaired cognitive ability. This study was designed to explore associations between pass-fail outcome and psychological health parameters (i.e. stress, anxiety, and depression symptoms. Methods: A cross-sectional study was conducted on a cohort of first-year medical students in a Malaysian medical school. The depression anxiety stress scale 21-item assessment (DASS-21 was administered to them right after the final paper of the first-year final examination. Their final examination outcomes (i.e. pass or fail were traced by using their student identity code (ID through the Universiti Sains Malaysia academic office. Results: A total of 194 (98.0% of medical students responded to the DASS-21. An independent t-test showed that students who passed had significantly lower stress, anxiety, and depression symptoms than those who failed the first-year final examination (P <0.05. Those who experienced moderate to high stress were at 2.43 times higher risk for failing the examination than those who experienced normal to mild stress. Conclusion: Medical students whofailed in the final examination had higher psychological distress than those who passed the examination. Those who experienced high stress levels were more likely to fail than those who did not. Reducing the psychological distress of medical students prior to examination may help them to perform better in the examination.

  20. First-pass perfusion disturbance of coronary artery stenosis: an experimental study using MR imaging with Gd-DTPA enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung Il; Lee, Young Ju [Ajou Univ. College of Medicine, Seoul (Korea, Republic of); Lim, Tae Hwan [Ulsan Univ. College of Medicine, Ulsan (Korea, Republic of)] [and others

    1997-11-01

    In order to determine the value of first-pass MR imaging in the diagnosis of myocardial ischemia, first-pass perfusion abnormality of coronary artery stenosis was observed in MRI after gadopentate dimeglumine(GD-DTPA) enhancement. The left anterior descending(LAD) coronary arteries of six dogs were subjected to approximately 70% stenosis confirmed by coronary angiography. Half an hour after adenosine and {sup 99m}Tc-sestamibi infusion, Gd-DTPA(0.2mmol/kg) and methylene blue were administered and termination was induced with potassium chloride. SE T1-weighted and single-photon emission computed tomography(SPECT) images were subsequently obtained and the findings of perfusion defect compared with specimen stain. Three dimensionally reconstructed MR images were used to measure signal intensity(SI) of normal myocardium and perfusion defect from their sectional and total volume. Five of six dogs with LAD artey stenosis ranging from 66% to 73% displayed perfusion defect on MRI, SPECT, and specimen stain, but the remaining dog with stenosis of 58% showed no such defect. MRI showed the perfusion defect as distinct low SI, enabling the measurement of percentage perfusion defect(24.4{+-}5.4%), which increased inferiorly. SI of normal myocardium and perfusion defect decreased inferiorly; their difference indicated stenosis-induced perfusion loss according to section location. Volumetric SI of normal myocardium and perfusion defect were 3.42{+-}0.52 and 2.16{+-}0.45, respectively(p<0.05). Gd-DTPA enhanced MRI displayed first-pass perfusion abnormality of coronary artery stenosis as perfusion defect with distinct low SI; this enabled the measurement of its volume and SI changes according to section location, and thus indicated the value of first-pass MR imaging in the diagnosis of myocardial ischemia.

  1. First-pass perfusion disturbance of coronary artery stenosis: an experimental study using MR imaging with Gd-DTPA enhancement

    International Nuclear Information System (INIS)

    Chung, Kyung Il; Lee, Young Ju; Lim, Tae Hwan

    1997-01-01

    In order to determine the value of first-pass MR imaging in the diagnosis of myocardial ischemia, first-pass perfusion abnormality of coronary artery stenosis was observed in MRI after gadopentate dimeglumine(GD-DTPA) enhancement. The left anterior descending(LAD) coronary arteries of six dogs were subjected to approximately 70% stenosis confirmed by coronary angiography. Half an hour after adenosine and 99m Tc-sestamibi infusion, Gd-DTPA(0.2mmol/kg) and methylene blue were administered and termination was induced with potassium chloride. SE T1-weighted and single-photon emission computed tomography(SPECT) images were subsequently obtained and the findings of perfusion defect compared with specimen stain. Three dimensionally reconstructed MR images were used to measure signal intensity(SI) of normal myocardium and perfusion defect from their sectional and total volume. Five of six dogs with LAD artey stenosis ranging from 66% to 73% displayed perfusion defect on MRI, SPECT, and specimen stain, but the remaining dog with stenosis of 58% showed no such defect. MRI showed the perfusion defect as distinct low SI, enabling the measurement of percentage perfusion defect(24.4±5.4%), which increased inferiorly. SI of normal myocardium and perfusion defect decreased inferiorly; their difference indicated stenosis-induced perfusion loss according to section location. Volumetric SI of normal myocardium and perfusion defect were 3.42±0.52 and 2.16±0.45, respectively(p<0.05). Gd-DTPA enhanced MRI displayed first-pass perfusion abnormality of coronary artery stenosis as perfusion defect with distinct low SI; this enabled the measurement of its volume and SI changes according to section location, and thus indicated the value of first-pass MR imaging in the diagnosis of myocardial ischemia

  2. β-Carotene-9′,10′-Oxygenase Status Modulates the Impact of Dietary Tomato and Lycopene on Hepatic Nuclear Receptor–, Stress-, and Metabolism-Related Gene Expression in Mice123

    Science.gov (United States)

    Tan, Hsueh-Li; Moran, Nancy E.; Cichon, Morgan J.; Riedl, Ken M.; Schwartz, Steven J.; Erdman, John W.; Pearl, Dennis K.; Thomas-Ahner, Jennifer M.; Clinton, Steven K.

    2014-01-01

    Tomato and lycopene (ψ, ψ-carotene) consumption is hypothesized to protect against nonalcoholic steatohepatitis and hepatocarcinogenesis, processes that may depend upon diet and gene interactions. To investigate the interaction of tomato or lycopene feeding with β-carotene-9′,10′-monooxygenase (Bco2) on hepatic metabolic and signaling pathways, male wild-type (WT) and Bco2−/− mice (3-wk-old; n = 36) were fed semi-purified control, 10% tomato powder–containing, or 0.25% lycopene beadlet–containing diets for 3 wk. Serum lycopene concentrations were higher in lycopene- and tomato-fed Bco2−/− mice compared with WT (P = 0.03). Tomato- and lycopene-fed mice had detectable hepatic apolipoprotein (apo)-6′-, apo-8′-, and apo-12′-lycopenal concentrations. Hepatic expression of β-carotene-15,15’-monooxygenase was increased in Bco2−/− mice compared with WT (P = 0.02), but not affected by diet. Evaluation of hepatic gene expression by focused quantitative reverse transcriptase-polymerase chain reaction arrays for nuclear receptors and coregulators (84 genes) and stress and metabolism (82 genes) genes indicates that tomato feeding affected 31 genes (≥1.5-fold, P lycopene feeding affected 19 genes, 16 of which were affected by both diets. Lycopene down-regulation of 7 nuclear receptors and coregulators, estrogen-related receptor-α, histone deacetylase 3, nuclear receptor coactivator 4, RevErbA-β, glucocorticoid receptor, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ, coactivator 1 β was dependent upon interaction with Bco2 status. Lycopene and tomato feeding induced gene expression patterns consistent with decreased lipid uptake, decreased cell proliferation and mitosis, down-regulated aryl hydrocarbon receptor signaling, and decreased expression of genes involved in retinoid X receptor heterodimer activation. Tomato feeding also caused expression changes consistent with down-regulation of DNA synthesis and terpenoid

  3. Sequential Participation in a Multi-Institutional Mock Oral Examination Is Associated With Improved American Board of Surgery Certifying Examination First-Time Pass Rate.

    Science.gov (United States)

    Fingeret, Abbey L; Arnell, Tracey; McNelis, John; Statter, Mindy; Dresner, Lisa; Widmann, Warren

    We sought to determine whether sequential participation in a multi-institutional mock oral examination affected the likelihood of passing the American Board of Surgery Certifying Examination (ABSCE) in first attempt. Residents from 3 academic medical centers were able to participate in a regional mock oral examination in the fall and spring of their fourth and fifth postgraduate year from 2011 to 2014. Candidate׳s highest composite score of all mock orals attempts was classified as risk for failure, intermediate, or likely to pass. Factors including United States Medical Licensing Examination steps 1, 2, and 3, number of cases logged, American Board of Surgery In-Training Examination performance, American Board of Surgery Qualifying Examination (ABSQE) performance, number of attempts, and performance in the mock orals were assessed to determine factors predictive of passing the ABSCE. A total of 128 mock oral examinations were administered to 88 (71%) of 124 eligible residents. The overall first-time pass rate for the ABSCE was 82%. There was no difference in pass rates between participants and nonparticipants. Of them, 16 (18%) residents were classified as at risk, 47 (53%) as intermediate, and 25 (29%) as likely to pass. ABSCE pass rate for each group was as follows: 36% for at risk, 84% for intermediate, and 96% for likely pass. The following 4 factors were associated with first-time passing of ABSCE on bivariate analysis: mock orals participation in postgraduate year 4 (p = 0.05), sequential participation in mock orals (p = 0.03), ABSQE performance (p = 0.01), and best performance on mock orals (p = 0.001). In multivariable logistic regression, the following 3 factors remained associated with ABSCE passing: ABSQE performance, odds ratio (OR) = 2.9 (95% CI: 1.3-6.1); mock orals best performance, OR = 1.7 (1.2-2.4); and participation in multiple mock oral examinations, OR = 1.4 (1.1-2.7). Performance on a multi-institutional mock oral examination can identify

  4. Effect of taurine supplementation on hepatic metabolism and alleviation of cadmium toxicity and bioaccumulation in a marine teleost, red sea bream, Pagrus major.

    Science.gov (United States)

    Hano, Takeshi; Ito, Katsutoshi; Kono, Kumiko; Ito, Mana; Ohkubo, Nobuyuki; Mochida, Kazuhiko

    2017-02-01

    This study was performed to unravel the mechanism of the beneficial action of taurine on marine teleost fish, red sea bream (Pagrus major), by analyzing the hepatic metabolism. Moreover, the ameliorative effects of the nutrient against cadmium toxicity and bioaccumulation were further evaluated. The fish were fed a diet containing 0 % (TAU0 %), 0.5 % (TAU0.5 %), or 5.0 % (TAU5.0 %) taurine for 40-55 days (d) and subjected to cadmium acute toxicity and bioaccumulation tests. Taurine deficiency in feed severely affected growth and the hepatic metabolic profiles of the fish, including a remarkable increase in myo-inositol, aspartate, and ß-alanine in the TAU0 % group, which indicates a complementary physiological response to taurine deficiency. For the acute toxicity test, fish were fed the test diets for 55 d and were then exposed to different dose of cadmium ranging from 0 to 5.6 mg/L for 96 h. Fish fed taurine had a higher tolerance to cadmium than those not fed taurine. For the bioaccumulation test, fish were fed the test diets for 40 d and then were chronically exposed to 0.2 mg/L of cadmium for 28 d followed by depuration for 21 d. Cadmium concentrations in the liver and muscle of fish fed TAU5.0 % were significantly lower than those of fish fed TAU0 % for the first 7 d of exposure and the first 7 d of elimination. Our findings suggest a possible mechanism for the beneficial role played by taurine and that the inclusion of taurine in fish aquaculture feed may reduce cadmium contamination of fish intended for human consumption.

  5. Prevalence of Anti-Hepatitis E Virus Antibodies and First Detection of Hepatitis E Virus in Wild Boar in Slovenia.

    Science.gov (United States)

    Žele, Diana; Barry, Aline F; Hakze-van der Honing, Renate W; Vengušt, Gorazd; van der Poel, Wim H M

    2016-01-01

    Hepatitis E is an emerging zoonotic disease caused by hepatitis E virus (HEV). In this study, we investigated HEV presence in a wild boar (Sus scrofa) population of Slovenia. A total of 288 wild boar serum samples were collected throughout the country, and HEV infection was investigated by serology, using enzyme-linked immunosorbent assay (ELISA) and by HEV RNA detection using a real-time PCR assay. Antibodies against HEV were detected in 30.2% (87/288) of animals tested, whereas HEV RNA was detected in only one sample. This is the first evidence of HEV presence in the wild boar population in Slovenia, and these results suggest that these animals are part of the HEV epidemiological cycle in the country.

  6. Investigating the Effects of the 0.05 Hz First-order High-pass Filter on the Electrocardiogram

    DEFF Research Database (Denmark)

    Isaksen, Jonas; Leber, Remo; Schmid, Ramun

    2016-01-01

    Background: A thorough review is needed for the first-order 0.05 Hz high-pass filter, which was introduced almost fifty years ago before modern techniques were available. We quantify the effectiveness of inverse filtering and assess the changes that the filter imposes on the electrocardiogram (ECG...

  7. Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.

    Science.gov (United States)

    Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2010-11-01

    Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.

  8. Accelerated second-degree nursing students: predictors of graduation and NCLEX-RN first-time pass rates.

    Science.gov (United States)

    Penprase, Barbara B; Harris, Margaret A

    2013-01-01

    It is important to understand and identify factors that affect students' academic performance before entry into a nursing program and as they progress through the program. The authors discuss a study, and its outcomes, that assessed accelerated second-degree nursing students' prenursing and core nursing grades that served to predict their success at completing the nursing program and passing NCLEX-RN on first attempt. Strategies were identified to help at-risk students to be successful in the program and with first-time passage of NCLEX-RN.

  9. Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2016-12-01

    Full Text Available An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32 were allocated to two equal treatment groups: Fed basal diet (control or fed basal diet with additional 200 mg/kg niacin supplementation (niacin. The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p0.05. However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05. In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.

  10. Control of leptin by metabolic state and its regulatory interactions with pituitary growth hormone and hepatic growth hormone receptors and insulin like growth factors in the tilapia (Oreochromis mossambicus).

    Science.gov (United States)

    Douros, Jonathan D; Baltzegar, David A; Mankiewicz, Jamie; Taylor, Jordan; Yamaguchi, Yoko; Lerner, Darren T; Seale, Andre P; Grau, E Gordon; Breves, Jason P; Borski, Russell J

    2017-01-01

    Leptin is an important cytokine for regulating energy homeostasis, however, relatively little is known about its function and control in teleost fishes or other ectotherms, particularly with regard to interactions with the growth hormone (GH)/insulin-like growth factors (IGFs) growth regulatory axis. Here we assessed the regulation of LepA, the dominant paralog in tilapia (Oreochromis mossambicus) and other teleosts under altered nutritional state, and evaluated how LepA might alter pituitary growth hormone (GH) and hepatic insulin-like growth factors (IGFs) that are known to be disparately regulated by metabolic state. Circulating LepA, and lepa and lepr gene expression increased after 3-weeks fasting and declined to control levels 10days following refeeding. This pattern of leptin regulation by metabolic state is similar to that previously observed for pituitary GH and opposite that of hepatic GHR and/or IGF dynamics in tilapia and other fishes. We therefore evaluated if LepA might differentially regulate pituitary GH, and hepatic GH receptors (GHRs) and IGFs. Recombinant tilapia LepA (rtLepA) increased hepatic gene expression of igf-1, igf-2, ghr-1, and ghr-2 from isolated hepatocytes following 24h incubation. Intraperitoneal rtLepA injection, on the other hand, stimulated hepatic igf-1, but had little effect on hepatic igf-2, ghr1, or ghr2 mRNA abundance. LepA suppressed GH accumulation and gh mRNA in pituitaries in vitro, but had no effect on GH release. We next sought to test if abolition of pituitary GH via hypophysectomy (Hx) affects the expression of hepatic lepa and lepr. Hypophysectomy significantly increases hepatic lepa mRNA abundance, while GH replacement in Hx fish restores lepa mRNA levels to that of sham controls. Leptin receptor (lepr) mRNA was unchanged by Hx. In in vitro hepatocyte incubations, GH inhibits lepa and lepr mRNA expression at low concentrations, while higher concentration stimulates lepa expression. Taken together, these findings

  11. Fish oil alleviated high-fat diet-induced non-alcoholic fatty liver disease via regulating hepatic lipids metabolism and metaflammation: a transcriptomic study.

    Science.gov (United States)

    Yuan, Fahu; Wang, Hualin; Tian, Yu; Li, Qi; He, Lei; Li, Na; Liu, Zhiguo

    2016-02-01

    Intake of fish oil rich in n-3 polyunsaturated fatty acids (PUFAs) is believed to be beneficial against development of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms remain unclear. This study was to gain further understanding of the potential mechanisms of the protective effects of fish oil against NAFLD. Ten male Sprague-Dawley rats were fed a control diet (CON), a Western style high-fat and high-cholesterol diet (WD), or a WD diet containing fish oil (FOH) for 16 weeks respectively. The development of liver steatosis and fibrosis were verified by histological and biochemical examination. Hepatic transcriptome were extracted for RNA-seq analysis, and particular results were confirmed by real-time polymerase chain reaction (PCR). The consumption of fish oil significantly ameliorated WD-induced dyslipidemia, transaminase elevation, hepatic steatosis, inflammatory infiltration, and fibrosis. Hepatic RNA-Seq analysis showed that long-term intake of fish oil restored the expression of circadian clock-related genes per2 and per3, which were reduced in WD fed animals. Fish oil consumption also corrected the expression levels of genes involved in fatty acid and cholesterol metabolism, such as Srebf1, Fasn, Scd1, Insig2, Cd36, Cyp7a1, Abcg5, Abcg8 and Pcsk9. Moreover, the expression levels of pro-inflammation genes Mcp1, Socs2, Sema4a, and Cd44 in the FOH group were lower than that of WD group, implying that fish oil protects the liver against WD-induced hepatic inflammation. The present study demonstrates fish oil protects against WD-induced NALFD via improving lipid metabolism and ameliorating hepatic inflammation. Our findings add to the current understanding on the benefits of n-3 PUFAs against NAFLD.

  12. Identification of microRNAs controlling hepatic mRNA levels for metabolic genes during the metabolic transition from embryonic to posthatch development in the chicken.

    Science.gov (United States)

    Hicks, Julie A; Porter, Tom E; Liu, Hsiao-Ching

    2017-09-05

    The transition from embryonic to posthatch development in the chicken represents a massive metabolic switch from primarily lipolytic to primarily lipogenic metabolism. This metabolic switch is essential for the chick to successfully transition from the metabolism of stored egg yolk to the utilization of carbohydrate-based feed. However, regulation of this metabolic switch is not well understood. We hypothesized that microRNAs (miRNAs) play an important role in the metabolic switch that is essential to efficient growth of chickens. We used high-throughput RNA sequencing to characterize expression profiles of mRNA and miRNA in liver during late embryonic and early posthatch development of the chicken. This extensive data set was used to define the contributions of microRNAs to the metabolic switch during development that is critical to growth and nutrient utilization in chickens. We found that expression of over 800 mRNAs and 30 miRNAs was altered in the embryonic liver between embryonic day 18 and posthatch day 3, and many of these differentially expressed mRNAs and miRNAs are associated with metabolic processes. We confirmed the regulation of some of these mRNAs by miRNAs expressed in a reciprocal pattern using luciferase reporter assays. Finally, through the use of yeast one-hybrid screens, we identified several proteins that likely regulate expression of one of these important miRNAs. Integration of the upstream regulatory mechanisms governing miRNA expression along with monitoring the downstream effects of this expression will ultimately allow for the construction of complete miRNA regulatory networks associated with the hepatic metabolic switch in chickens. Our findings support a key role for miRNAs in controlling the metabolic switch that occurs between embryonic and posthatch development in the chicken.

  13. Hepatic JAK2 protects against atherosclerosis through circulating IGF-1.

    Science.gov (United States)

    Sivasubramaniyam, Tharini; Schroer, Stephanie A; Li, Angela; Luk, Cynthia T; Shi, Sally Yu; Besla, Rickvinder; Dodington, David W; Metherel, Adam H; Kitson, Alex P; Brunt, Jara J; Lopes, Joshua; Wagner, Kay-Uwe; Bazinet, Richard P; Bendeck, Michelle P; Robbins, Clinton S; Woo, Minna

    2017-07-20

    Atherosclerosis is considered both a metabolic and inflammatory disease; however, the specific tissue and signaling molecules that instigate and propagate this disease remain unclear. The liver is a central site of inflammation and lipid metabolism that is critical for atherosclerosis, and JAK2 is a key mediator of inflammation and, more recently, of hepatic lipid metabolism. However, precise effects of hepatic Jak2 on atherosclerosis remain unknown. We show here that hepatic Jak2 deficiency in atherosclerosis-prone mouse models exhibited accelerated atherosclerosis with increased plaque macrophages and decreased plaque smooth muscle cell content. JAK2's essential role in growth hormone signalling in liver that resulted in reduced IGF-1 with hepatic Jak2 deficiency played a causal role in exacerbating atherosclerosis. As such, restoring IGF-1 either pharmacologically or genetically attenuated atherosclerotic burden. Together, our data show hepatic Jak2 to play a protective role in atherogenesis through actions mediated by circulating IGF-1 and, to our knowledge, provide a novel liver-centric mechanism in atheroprotection.

  14. Control of Hepatic Gluconeogenesis by the Promyelocytic Leukemia Zinc Finger Protein

    Science.gov (United States)

    Chen, Siyu; Qian, Jinchun; Shi, Xiaoli; Gao, Tingting; Liang, Tingming

    2014-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein is involved in major biological processes including energy metabolism, although its role remains unknown. In this study, we demonstrated that hepatic PLZF expression was induced in fasted or diabetic mice. PLZF promoted gluconeogenic gene expression and hepatic glucose output, leading to hyperglycemia. In contrast, hepatic PLZF knockdown improved glucose homeostasis in db/db mice. Mechanistically, peroxisome proliferator-activated receptor γ coactivator 1α and the glucocorticoid receptor synergistically activated PLZF expression. We conclude that PLZF is a critical regulator of hepatic gluconeogenesis. PLZF manipulation may benefit the treatment of metabolic diseases associated with gluconeogenesis. PMID:25333514

  15. Effects of an oral insulin nanoparticle administration on hepatic glucose metabolism assessed by 13C and 2H isotopomer analysis

    NARCIS (Netherlands)

    Reis, C.P.; Neufeld, R.; Veiga, F.; Figueiredo, I.V.; Jones, J.; Soares, A.F.; Nunes, P.M.; Damg\\'e, C.; Carvalho, R.A.

    2012-01-01

    The purpose of this study was to evaluate hepatic glucose metabolism of diabetic induced rats after a daily oral load of insulin nanoparticles over 2 weeks. After the 2-week treatment, an oral glucose tolerance test was performed with [U-��C] glucose and �H2O. Plasma glucose �H and ��C enrichments

  16. Eicosapentaenoic Acid-Enriched Phosphatidylcholine Attenuated Hepatic Steatosis Through Regulation of Cholesterol Metabolism in Rats with Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Liu, Yanjun; Shi, Di; Tian, Yingying; Liu, Yuntao; Zhan, Qiping; Xu, Jie; Wang, Jingfeng; Xue, Changhu

    2017-02-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. Disturbed cholesterol metabolism plays a crucial role in the development of NAFLD. The present study was conducted to evaluate the effects of EPA-PC extracted from sea cucumber on liver steatosis and cholesterol metabolism in NAFLD. Male Wistar rats were randomly divided into seven groups (normal control group, model group, lovastatin group, low- and high-dose EPA groups, and low- and high-dose EPA-PC groups). Model rats were established by administering a diet containing 1% orotic acid. To determine the possible cholesterol metabolism promoting mechanism of EPA-PC, we analyzed the transcription of key genes and transcriptional factors involved in hepatic cholesterol metabolism. EPA-PC dramatically alleviated hepatic lipid accumulation, reduced the serum TC concentration, and elevated HDLC levels in NAFLD rats. Fecal neutral cholesterol excretion was also promoted by EPA-PC administration. Additionally, EPA-PC decreased the mRNA expression of hydroxymethyl glutaric acid acyl (HMGR) and cholesterol 7α-hydroxylase (CYP7A), and increased the transcription of sterol carrying protein 2 (SCP2). Moreover, EPA-PC stimulated the transcription of peroxisome proliferators-activated receptor α (PPARα) and adenosine monophosphate activated protein kinase (AMPK) as well as its modulators, liver kinase B1 (LKB1) and Ca 2+ /calmodulin-dependent kinase kinase (CAMKK). Based on the results, the promoting effects of EPA-PC on NAFLD may be partly associated with the suppression of cholesterol synthesis via HMGR inhibition and the enhancement of fecal cholesterol excretion through increased SCP2 transcription. The underlying mechanism may involve stimulation of PPARα and AMPK.

  17. Distinct changing profiles of hepatitis A and E virus infection among patients with acute hepatitis in Mongolia: The first report of the full genome sequence of a novel genotype 1 hepatitis E virus strain.

    Science.gov (United States)

    Tsatsralt-Od, Bira; Primadharsini, Putu Prathiwi; Nishizawa, Tsutomu; Ohnishi, Hiroshi; Nagashima, Shigeo; Takahashi, Masaharu; Jirintai, Suljid; Nyamkhuu, Dulmaa; Okamoto, Hiroaki

    2018-01-01

    In January 2012, Mongolia started a hepatitis A vaccination program, which has not yet been evaluated. The first occurrence of autochthonous acute hepatitis E in 2013, caused by genotype 4 hepatitis E virus (HEV), suggests the need for a routine study to monitor its prevalence. One hundred fifty-four consecutive patients who were clinically diagnosed with acute hepatitis between 2014 and 2015 in Ulaanbaatar, Mongolia were studied. By serological and molecular testing followed by sequencing and phylogenetic analysis, only one patient (0.6%) was diagnosed with acute hepatitis A, caused by genotype IA hepatitis A virus (HAV), and 32 (20.8%) patients were diagnosed with acute hepatitis E, caused by genotype 1 HEV. The 32 HEV isolates obtained in this study shared 99.5-100% nucleotide identity and were grouped into a cluster separated from those of subtypes 1a to 1f. Upon comparison of p-distances over the entire genome, the distances between one representative HEV isolate (MNE15-072) and 1a-1f strains were 0.071-0.137, while those between 1b and 1c were 0.062-0.070. In conclusion, the prevalence of acute hepatitis A has decreased in Mongolia since the start of the vaccination program, while the monophyletic genotype 1 HEV strain of a probably novel subtype has been prevalent. © 2017 Wiley Periodicals, Inc.

  18. Hepatic cholesterol metabolism following a chronic ingestion of cesium-137 starting at fetal stage in rats

    International Nuclear Information System (INIS)

    Racine, R.; Grandcolas, L.; Blanchardon, E.; Gourmelon, P.; Souidi, M.; Veyssiere, G.

    2010-01-01

    The Chernobyl accident released many radionuclides in the environment. Some are still contaminating the ground and thus the people through dietary intake. The long-term sanitary consequences of this disaster are still unclear and several biological systems remain to be investigated. Cholesterol metabolism is of particular interest, with regard to the link established between atherosclerosis and exposure to high-dose ionizing radiations. This study assesses the effect of cesium-137 on cholesterol metabolism in rats, after a chronic exposure since fetal life. To achieve this, rat dams were contaminated with cesium-137-supplemented water from two weeks before mating until the weaning of the pups. Thereafter, the weaned rats were given direct access to the contaminated drinking water until the age of 9 months. After the sacrifice, cholesterol metabolism was investigated in the liver at gene expression and protein level. The cholesterolemia was preserved, as well as the cholesterol concentration in the liver. At molecular level, the gene expressions of ACAT 2 (a cholesterol storage enzyme), of Apolipoprotein A-I and of RXR (a nuclear receptor involved in cholesterol metabolism) were significantly decreased. In addition, the enzymatic activity of CYP27A1, which catabolizes cholesterol, was increased. The results indicate that the rats seem to adapt to the cesium-137 contamination and display modifications of hepatic cholesterol metabolism only at molecular level and within physiological range. (author)

  19. Pharmacogenetics of ribavirin-induced anemia in hepatitis C.

    Science.gov (United States)

    Ampuero, Javier; Romero-Gómez, Manuel

    2016-09-01

    Pharmacogenetics assesses inherited genetic differences in drug metabolic pathways and its role in medicine is growing. Ribavirin (RBV) and peginterferon were the standard of care therapy in hepatitis C virus infection during 15 years, with the addition of first-generation protease inhibitors at the beginning of 2010s. New direct-acting agents are the new standard of care, but RBV remains important in some scenarios. The main adverse effect of RBV is anemia, which requires dose reduction and even stopping treatment in some patients. Pharmacogenetics has identified ITPA and SLC28/29 genes to be closely related to RBV-induced anemia. The routine evaluation of these genes could help to identify those patients at risk of developing anemia during the hepatitis C virus treatment.

  20. Metabolic syndrome is associated with poor treatment response to antiviral therapy in chronic hepatitis C genotype 3 patients.

    Science.gov (United States)

    Aziz, Hafsa; Gill, Uzma; Raza, Abida; Gill, Muzaffar L

    2014-05-01

    Hepatitis C viral (HCV) infection is caused by an RNA virus. HCV infection is considered to induce systemic disease that causes steatosis, alters lipid metabolism, and results in metabolic syndrome. This study aimed to investigate the therapeutic outcome in HCV genotype 3 patients with metabolic syndrome. A total of 621 HCV-positive patients who visited the hospital for treatment were screened. Among these, 441 patients were enrolled for antiviral therapy. These enrolled patients were assessed for metabolic syndrome according to the International Diabetes Federation criteria. Group A included patients with metabolic syndrome and group B included patients without metabolic syndrome. All patients received peginterferon-α2a (180 μg/week) and ribavirin (10 mg/kg/day) for 6 months. The prevalence of metabolic syndrome in chronic HCV patients was 37.9%. We observed that metabolic syndrome was more common among female compared with male participants (43.9 vs. 28.8%, P=0.005). It was found that sustained virologic response (SVR) rates were significantly higher in the patients in group B (without metabolic syndrome) compared with the patients in group A who had metabolic syndrome (72.2 vs. 43.7%, Pmetabolic syndrome and a correlation of metabolic syndrome with nonresponse to antiviral therapy was observed. An interesting correlation among metabolic syndrome, age, and SVR was found: with age, SVR decreases, while metabolic syndrome increases. Metabolic syndrome has an influence on therapeutic outcomes in terms of SVR. Moreover, this information can identify patients who might have a low chance of attaining an SVR and a timely decision may protect the patients from the adverse effects of therapy.

  1. Aeromonas caviae inhibits hepatic enzymes of the phosphotransfer network in experimentally infected silver catfish: Impairment on bioenergetics.

    Science.gov (United States)

    Baldissera, M D; Souza, C F; Verdi, C M; Dos Santos, K L M; Da Veiga, M L; da Rocha, M I U M; Santos, R C V; Vizzotto, B S; Baldisserotto, B

    2018-03-01

    Several studies have been demonstrated that phosphotransfer network, through the adenylate kinase (AK) and pyruvate kinase (PK) activities, allows for new perspectives leading to understanding of disease conditions associated with disturbances in energy metabolism, metabolic monitoring and signalling. In this sense, the aim of this study was to evaluate whether experimental infection by Aeromonas caviae alters hepatic AK and PK activities of silver catfish Rhamdia quelen. Hepatic AK and PK activities decreased in infected animals compared to uninfected animals, as well as the hepatic adenosine triphosphate (ATP) levels. Also, a severe hepatic damage was observed in the infected animals due to the presence of dilation and congestion of vessels, degeneration of hepatocytes and loss of liver parenchyma architecture and sinusoidal structure. Therefore, we have demonstrated, for the first time, that experimental infection by A. caviae inhibits key enzymes linked to the communication between sites of ATP generation and ATP utilization. Moreover, the absence of a reciprocal compensatory mechanism between these enzymes contributes directly to hepatic damage and for a severe energetic imbalance, which may contribute to disease pathophysiology. © 2017 John Wiley & Sons Ltd.

  2. Berberine Attenuates Development of the Hepatic Gluconeogenesis and Lipid Metabolism Disorder in Type 2 Diabetic Mice and in Palmitate-Incubated HepG2 Cells through Suppression of the HNF-4α miR122 Pathway.

    Science.gov (United States)

    Wei, Shengnan; Zhang, Ming; Yu, Yang; Lan, Xiaoxin; Yao, Fan; Yan, Xin; Chen, Li; Hatch, Grant M

    2016-01-01

    Berberine (BBR) has been shown to exhibit protective effects against diabetes and dyslipidemia. Previous studies have indicated that BBR modulates lipid metabolism and inhibits hepatic gluconeogensis by decreasing expression of Hepatocyte Nuclear Factor-4α (HNF-4α). However, the mechanism involved in this process was unknown. In the current study, we examined the mechanism of how BBR attenuates hepatic gluconeogenesis and the lipid metabolism alterations observed in type 2 diabetic (T2D) mice and in palmitate (PA)-incubated HepG2 cells. Treatment with BBR for 4 weeks improve all biochemical parameters compared to T2D mice. Treatment of T2D mice for 4 weeks or treatment of PA-incubated HepG2 cells for 24 h with BBR decreased expression of HNF-4α and the microRNA miR122, the key gluconeogenesis enzymes Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) and the key lipid metabolism proteins Sterol response element binding protein-1 (SREBP-1), Fatty acid synthase-1 (FAS-1) and Acetyl-Coenzyme A carboxylase (ACCα) and increased Carnitine palmitoyltransferase-1(CPT-1) compared to T2D mice or PA-incubated HepG2 cells. Expression of HNF-4α in HepG2 cells increased expression of gluconeogenic and lipid metabolism enzymes and BBR treatment or knock down of miR122 attenuated the effect of HNF-4α expression. In contrast, BBR treatment did not alter expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. In addition, miR122 mimic increased expression of gluconeogenic and lipid metabolism enzymes in HepG2 cells with knockdown of HNF-4α. These data indicate that miR122 is a critical regulator in the downstream pathway of HNF-4α in the regulation of hepatic gluconeogenesis and lipid metabolism in HepG2 cells. The effect of BBR on hepatic gluconeogenesis and lipid metabolism is mediated through HNF-4α and is regulated downstream of miR122. Our data provide new evidence to support HNF-4α and miR122

  3. The characterization and metabolism of rat hepatic nascent HLD subfractions

    International Nuclear Information System (INIS)

    Winkler, K.E.

    1988-01-01

    Nascent HDL was isolated from recirculating rat liver perfusates and separated by heparin-sepharose chromatography into a non-retained fraction (A) and a fraction (B) that eluted with 0.5 M NaCl. Fractions A and B contained 70% and 30% of the nascent HDL protein, respectively. Livers perfused by the single-pass technique produced fractions A and B in the same ratio as livers perfused by recirculation. The apolipoprotein compositions were similar to those in the recirculating perfusion; however, both fractions A and B had more triglyceride (greater than 50% of total lipid). In a preliminary study designed to investigate whether nascent HDL-apo E was secreted by Kupffer cells or hepatocytes, label was targeted to Kupffer cells by perfusing rat livers with 3 H-acetylated LDL or 3 H-amino acids incorporated into large multilamellar vesicles. For metabolic studies, nascent HDL and nascent VLDL were isolated from rat livers that had been perfused with 3 H-glycerol to label the triglyceride

  4. Gene expression variability in human hepatic drug metabolizing enzymes and transporters.

    Directory of Open Access Journals (Sweden)

    Lun Yang

    Full Text Available Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.

  5. Peretinoin, an Acyclic Retinoid, Inhibits Hepatitis B Virus Replication by Suppressing Sphingosine Metabolic Pathway In Vitro

    Directory of Open Access Journals (Sweden)

    Kazuhisa Murai

    2018-01-01

    Full Text Available Hepatocellular carcinoma (HCC frequently develops from hepatitis C virus (HCV and hepatitis B virus (HBV infection. We previously reported that peretinoin, an acyclic retinoid, inhibits HCV replication. This study aimed to examine the influence of peretinoin on the HBV lifecycle. HBV-DNA and covalently closed circular DNA (cccDNA were evaluated by a qPCR method in HepG2.2.15 cells. Peretinoin significantly reduced the levels of intracellular HBV-DNA, nuclear cccDNA, and HBV transcript at a concentration that did not induce cytotoxicity. Conversely, other retinoids, such as 9-cis, 13-cis retinoic acid (RA, and all-trans-retinoic acid (ATRA, had no effect or rather increased HBV replication. Mechanistically, although peretinoin increased the expression of HBV-related transcription factors, as observed for other retinoids, peretinoin enhanced the binding of histone deacetylase 1 (HDAC1 to cccDNA in the nucleus and negatively regulated HBV transcription. Moreover, peretinoin significantly inhibited the expression of SPHK1, a potential inhibitor of HDAC activity, and might be involved in hepatic inflammation, fibrosis, and HCC. SPHK1 overexpression in cells cancelled the inhibition of HBV replication induced by peretinoin. This indicates that peretinoin activates HDAC1 and thereby suppresses HBV replication by inhibiting the sphingosine metabolic pathway. Therefore, peretinoin may be a novel therapeutic agent for HBV replication and chemoprevention against HCC.

  6. Feline idiopathic hepatic lipidosis.

    Science.gov (United States)

    Dimski, D S; Taboada, J

    1995-03-01

    Feline IHL is a severe hepatopathy that can be treated by aggressive nutritional support. Until the underlying mechanisms of protein and lipid metabolism are understood in both healthy and ill cats, dietary therapy remains supportive. It is likely that the pathogenesis of IHL in cats is multifactorial, involving both increased fatty acid mobilization to the liver and a defect in oxidation of fatty acids or removal of VLDL. It is also possible that individual variation may play a role in the development of this disease in cats undergoing starvation. Continued studies will focus on the unique pathways of hepatic metabolism in the cat, and how these pathways are altered, leading to hepatic lipid accumulation and clinical disease. Hopefully, these studies can be applied to the prevention or treatment of IHL in cats.

  7. First evidence of pyrrolizidine alkaloid N-oxide-induced hepatic sinusoidal obstruction syndrome in humans.

    Science.gov (United States)

    Yang, Mengbi; Ruan, Jianqing; Gao, Hong; Li, Na; Ma, Jiang; Xue, Junyi; Ye, Yang; Fu, Peter Pi-Cheng; Wang, Jiyao; Lin, Ge

    2017-12-01

    Pyrrolizidine alkaloids (PAs) are among the most potent phytotoxins widely distributed in plant species around the world. PA is one of the major causes responsible for the development of hepatic sinusoidal obstruction syndrome (HSOS) and exerts hepatotoxicity via metabolic activation to form the reactive metabolites, which bind with cellular proteins to generate pyrrole-protein adducts, leading to hepatotoxicity. PA N-oxides coexist with their corresponding PAs in plants with varied quantities, sometimes even higher than that of PAs, but the toxicity of PA N-oxides remains unclear. The current study unequivocally identified PA N-oxides as the sole or predominant form of PAs in 18 Gynura segetum herbal samples ingested by patients with liver damage. For the first time, PA N-oxides were recorded to induce HSOS in human. PA N-oxide-induced hepatotoxicity was further confirmed on mice orally dosed of herbal extract containing 170 μmol PA N-oxides/kg/day, with its hepatotoxicity similar to but potency much lower than the corresponding PAs. Furthermore, toxicokinetic study after a single oral dose of senecionine N-oxide (55 μmol/kg) on rats revealed the toxic mechanism that PA N-oxides induced hepatotoxicity via their biotransformation to the corresponding PAs followed by the metabolic activation to form pyrrole-protein adducts. The remarkable differences in toxicokinetic profiles of PAs and PA N-oxides were found and attributed to their significantly different hepatotoxic potency. The findings of PA N-oxide-induced hepatotoxicity in humans and rodents suggested that the contents of both PAs and PA N-oxides present in herbs and foods should be regulated and controlled in use.

  8. Influence of depleted uranium on hepatic cholesterol metabolism in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Souidi, M; Racine, R; Grandcolas, L; Grison, S; Stefani, J; Gourmelon, P; Lestaevel, P

    2012-04-01

    Depleted uranium (DU) is uranium with a lower content of the fissile isotope U-235 than natural uranium. It is a radioelement and a waste product from the enrichment process of natural uranium. Because of its very high density, it is used in the civil industry and for military purposes. DU exposure can affect many vital systems in the human body, because in addition to being weakly radioactive, uranium is a toxic metal. It should be emphasized that, to be exposed to radiation from DU, you have to eat, drink, or breathe it, or get it on your skin. This particular study is focusing on the health effects of DU for the cholesterol metabolism. Previous studies on the same issue have shown that the cholesterol metabolism was modulated at molecular level in the liver of laboratory rodents contaminated for nine months with DU. However, this modulation was not correlated with some effects at organs or body levels. It was therefore decided to use a "pathological model" such as hypercholesterolemic apolipoprotein E-deficient laboratory mice in order to try to clarify the situation. The purpose of the present study is to assess the effects of a chronic ingestion (during 3 months) of a low level DU-supplemented water (20 mg L(-1)) on the above mentioned mice in order to determine a possible contamination effect. Afterwards the cholesterol metabolism was studied in the liver especially focused on the gene expressions of cholesterol-catabolising enzymes (CYP7A1, CYP27A1 and CYP7B1), as well as those of associated nuclear receptors (LXRα, FXR, PPARα, and SREBP 2). In addition, mRNA levels of other enzymes of interest were measured (ACAT 2, as well as HMGCoA Reductase and HMGCoA Synthase). The gene expression study was completed with SRB1 and LDLr, apolipoproteins A1 and B and membrane transporters ABC A1, ABC G5. The major effect induced by a low level of DU contamination in apo-E deficient mice was a decrease in hepatic gene expression of the enzyme CYP7B1 (-23%) and nuclear

  9. Fibroblast growth factor 21 participates in adaptation to endoplasmic reticulum stress and attenuates obesity-induced hepatic metabolic stress.

    Science.gov (United States)

    Kim, Seong Hun; Kim, Kook Hwan; Kim, Hyoung-Kyu; Kim, Mi-Jeong; Back, Sung Hoon; Konishi, Morichika; Itoh, Nobuyuki; Lee, Myung-Shik

    2015-04-01

    Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-diabetic and anti-obesity activity. FGF21 expression is increased in patients with and mouse models of obesity or nonalcoholic fatty liver disease (NAFLD). However, the functional role and molecular mechanism of FGF21 induction in obesity or NAFLD are not clear. As endoplasmic reticulum (ER) stress is triggered in obesity and NAFLD, we investigated whether ER stress affects FGF21 expression or whether FGF21 induction acts as a mechanism of the unfolded protein response (UPR) adaptation to ER stress induced by chemical stressors or obesity. Hepatocytes or mouse embryonic fibroblasts deficient in UPR signalling pathways and liver-specific eIF2α mutant mice were employed to investigate the in vitro and in vivo effects of ER stress on FGF21 expression, respectively. The in vivo importance of FGF21 induction by ER stress and obesity was determined using inducible Fgf21-transgenic mice and Fgf21-null mice with or without leptin deficiency. We found that ER stressors induced FGF21 expression, which was dependent on a PKR-like ER kinase-eukaryotic translation factor 2α-activating transcription factor 4 pathway both in vitro and in vivo. Fgf21-null mice exhibited increased expression of ER stress marker genes and augmented hepatic lipid accumulation after tunicamycin treatment. However, these changes were attenuated in inducible Fgf21-transgenic mice. We also observed that Fgf21-null mice with leptin deficiency displayed increased hepatic ER stress response and liver injury, accompanied by deteriorated metabolic variables. Our results suggest that FGF21 plays an important role in the adaptive response to ER stress- or obesity-induced hepatic metabolic stress.

  10. Novel Interactions between Gut Microbiome and Host Drug-Processing Genes Modify the Hepatic Metabolism of the Environmental Chemicals Polybrominated Diphenyl Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cindy Yanfei; Lee, Soowan; Cade, Sara; Kuo, Li-Jung; Schultz, Irvin R.; Bhatt, Deepak K.; Prasad, Bhagwat; Bammler, Theo K.; Cui, Julia Yue

    2017-09-01

    The gut microbiome is a novel frontier in xenobiotic metabolism. Polybrominated diphenyl ethers (PBDEs), especially BDE-47 and BDE-99, are among the most abundant and persistent environmental contaminants that produce a variety of toxicities. Little is known about how the gut microbiome affects the hepatic metabolism of PBDEs and the PBDE-mediated regulation of drug-processing genes (DPGs) in vivo. The goal of this study was to determine the role of gut microbiome in modulating the hepatic biotransformation of PBDEs. Nine-week-old male C57BL/6J conventional (CV) or germ free (GF) mice were treated with vehicle, BDE-47 or BDE-99 (100 μmol/kg) for four days. Following BDE-47 treatment, GF mice had higher level of 5-OH-BDE-47 but lower levels of 4 other metabolites in liver than CV mice; whereas following BDE-99 treatment, GF mice had lower levels of 4 minor metabolites in liver than CV mice. RNA- Seq demonstrated that the hepatic expression of DPGs was regulated by both PBDEs and enterotypes. Under basal condition, the lack of gut microbiome up-regulated the Cyp2c subfamily but down-regulated the Cyp3a subfamily. Following PBDE exposure, certain DPGs were differentially regulated by PBDEs in a gut microbiome-dependent manner. Interestingly, the lack of gut microbiome augmented PBDE-mediated up- regulation of many DPGs, such as Cyp1a2 and Cyp3a11 in mouse liver, which was further confirmed by targeted metabolomics. The lack of gut microbiome also augmented the Cyp3a enzyme activity in liver. In conclusion, our study has unveiled a novel interaction between gut microbiome and the hepatic biotransformation of PBDEs.

  11. The Adverse Effects of Alcohol on Vitamin A Metabolism

    Directory of Open Access Journals (Sweden)

    William S. Blaner

    2012-05-01

    Full Text Available The objective of this review is to explore the relationship between alcohol and the metabolism of the essential micronutrient, vitamin A; as well as the impact this interaction has on alcohol-induced disease in adults. Depleted hepatic vitamin A content has been reported in human alcoholics, an observation that has been confirmed in animal models of chronic alcohol consumption. Indeed, alcohol consumption has been associated with declines in hepatic levels of retinol (vitamin A, as well as retinyl ester and retinoic acid; collectively referred to as retinoids. Through the use of animal models, the complex interplay between alcohol metabolism and vitamin A homeostasis has been studied; the reviewed research supports the notion that chronic alcohol consumption precipitates a decline in hepatic retinoid levels through increased breakdown, as well as increased export to extra-hepatic tissues. While the precise biochemical mechanisms governing alcohol’s effect remain to be elucidated, its profound effect on hepatic retinoid status is irrefutable. In addition to a review of the literature related to studies on tissue retinoid levels and the metabolic interactions between alcohol and retinoids, the significance of altered hepatic retinoid metabolism in the context of alcoholic liver disease is also considered.

  12. The Dual Role of Nrf2 in Nonalcoholic Fatty Liver Disease: Regulation of Antioxidant Defenses and Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Sílvia S. Chambel

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a progressive liver disease with ever-growing incidence in the industrialized world. It starts with the simple accumulation of lipids in the hepatocyte and can progress to the more severe nonalcoholic steatohepatitis (NASH, which is associated with inflammation, fibrosis, and cirrhosis. There is increasing awareness that reactive oxygen species and electrophiles are implicated in the pathogenesis of NASH. Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2 is a positive regulator of the expression of a battery of genes involved in the protection against oxidative/electrophilic stress. In rodents, Nrf2 is also known to participate in hepatic fatty acid metabolism, as a negative regulator of genes that promote hepatosteatosis. We review relevant evidence in the literature that these two mechanisms may contribute to the protective role of Nrf2 in the development of hepatic steatosis and in the progression to steatohepatitis, particularly in young animals. We propose that age may be a key to explain contradictory findings in the literature. In summary, Nrf2 mediates the crosstalk between lipid metabolism and antioxidant defense mechanisms in experimental models of NAFLD, and the nutritional or pharmacological induction of Nrf2 represents a promising potential new strategy for its prevention and treatment.

  13. Effect of dietary fat on hepatic liver X receptor expression in P-glycoprotein deficient mice: implications for cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Lee Stephen D

    2008-06-01

    Full Text Available Abstract Pgp (P-glycoprotein, MDR1, ABCB1 is an energy-dependent drug efflux pump that is a member of the ATP-binding cassette (ABC family of proteins. Preliminary studies have reported that nonspecific inhibitors of Pgp affect synthesis and esterification of cholesterol, putatively by blocking trafficking of cholesterol from the plasma membrane to the endoplasmic reticulum, and that relative increases in Pgp within a given cell type are associated with increased accumulation of cholesterol. Several key efflux proteins involved in the cholesterol metabolic pathway are transcriptionally regulated by the nuclear hormone liver X receptor (LXR. Therefore, to examine the interplay between P-glycoprotein and the cholesterol metabolic pathway, we utilized a high fat, normal cholesterol diet to upregulate LXRα without affecting dietary cholesterol. Our research has demonstrated that mice lacking in P-glycoprotein do not exhibit alterations in hepatic total cholesterol storage, circulating plasma total cholesterol levels, or total cholesterol concentration in the bile when compared to control animals on either a normal (25% calories from dietary fat or high fat (45% calories from dietary fat diet. However, p-glycoprotein deficient mice (Mdr1a-/-/1b-/- exhibit increased hepatic LXRα protein expression and an elevation in fecal cholesterol concentration when compared to controls.

  14. First-pass cardioangiography with the new radionuclide gold-195m

    International Nuclear Information System (INIS)

    Schad, N.; Nickel, O.; Schoen, H.; Le Thi, O.; Bruzzone, F.

    1985-01-01

    Experiences with 500 injections of gold-195m in 251 patients are reported. By shortening the outlet tubing of the generator, the same average count rate could be obtained for the first day of use as with technetium-99m, i.e., maximum counts during first pass averaged 300,000 counts/sec before background subtraction. But, after dead-time and nonuniformity correction and with 1-in. collimation, over the left ventricle an average of 10,000 total counts were determined at the end-diastolic image after background subtraction. By selecting patients weighing <80 kg, for the second day one could achieve 10,000 counts over the left ventricle at end-diastole. Thus for cardiac studies the generator can be used on two consecutive days. Because of the short half-time of 30 sec, several consecutive injections can be used. Ejection fractions and cardiac indexes correspond to those measured with /sup 99m/Tc. After myocardial infarction (MI) the LAO view permitted differentiating between severe septal and posterior or lateral dysfunction, e.g., in four of 30 MI cases, only the LAO view was diagnostic of a serious posterior or posterolateral functional disorder. Two injections are routinely used in children. Functional analysis occurs on different functional images such as regional ejection fractions, ejection rates, and so-called systolic mean transit times

  15. Genetic determinants of hepatic steatosis in man

    Science.gov (United States)

    Hooper, Amanda J.; Adams, Leon A.; Burnett, John R.

    2011-01-01

    Hepatic steatosis is one of the most common liver disorders in the general population. The main cause of hepatic steatosis is nonalcoholic fatty liver disease (NAFLD), representing the hepatic component of the metabolic syndrome, which is characterized by type 2 diabetes, obesity, and dyslipidemia. Insulin resistance and excess adiposity are considered to play key roles in the pathogenesis of NAFLD. Although the risk factors for NAFLD are well established, the genetic basis of hepatic steatosis is largely unknown. Here we review recent progress on genomic variants and their association with hepatic steatosis and discuss the potential impact of these genetic studies on clinical practice. Identifying the genetic determinants of hepatic steatosis will lead to a better understanding of the pathogenesis and progression of NAFLD. PMID:21245030

  16. Clinical features of male patients with alcoholic liver cirrhosis or hepatitis B cirrhosis complicated by abnormal glucose metabolism

    Directory of Open Access Journals (Sweden)

    CHEN Qidan

    2016-02-01

    Full Text Available ObjectiveTo investigate the clinical features of male patients with alcoholic liver cirrhosis (ALC or hepatitis B cirrhosis (HBC complicated by abnormal glucose metabolism. MethodsA total of 287 patients with liver cirrhosis who were admitted to Guangzhou Panyu Central Hospital from January 2008 to September 2013 were selected. Among these patients, 74 had ALC and were all male, including 54 with abnormal glucose metabolism; the other 213 had HBC, including 97 with abnormal glucose metabolism (69 male patients and 28 female patients. A controlled study was performed for the clinical data of ALC and HBC patients with abnormal glucose metabolism, to investigate the association of patients′ clinical manifestations with the indices for laboratory examination, insulin resistance index, incidence rate of abnormal glucose metabolism, and Child-Pugh class. The t-test was applied for comparison of continuous data between groups, the chi-square test was applied for comparison of categorical data between groups, and the Spearman rank correlation was applied for correlation analysis. ResultsCompared with HBC patients, ALC patients had significantly higher incidence rates of abnormal glucose metabolism (730% vs 32.4%, hepatogenous diabetes (35.1% vs 14.6%, fasting hypoglycemia (27.0% vs 10.3%, and impaired glucose tolerance (31.1% vs 14.1% (χ2=4.371, 3.274, 4.784, and 1.633, all P<0.05. The Spearman correlation analysis showed that in ALC and HBC patients, the incidence rate of abnormal glucose metabolism was positively correlated with Child-Pugh class (rs=0.41, P<005. Compared with the HBC patients with abnormal glucose metabolism, the ALC patients with abnormal glucose metabolism had a significantly higher incidence rate of Child-Pugh class A (χ2=7.520, P=0.001, and a significantly lower incidence rate of Child-Pugh class C (χ2=6.542, P=0.003. There were significant differences in the incidence rates of dim complexion, telangiectasia of the

  17. Lipids in hepatic glycogen storage diseases: pathophysiology, monitoring of dietary management and future directions.

    Science.gov (United States)

    Derks, Terry G J; van Rijn, Margreet

    2015-05-01

    Hepatic glycogen storage diseases (GSD) underscore the intimate relationship between carbohydrate and lipid metabolism. The hyperlipidemias in hepatic GSD reflect perturbed intracellular metabolism, providing biomarkers in blood to monitor dietary management. In different types of GSD, hyperlipidemias are of a different origin. Hypertriglyceridemia is most prominent in GSD type Ia and associated with long-term outcome morbidity, like pancreatitis and hepatic adenomas. In the ketotic subtypes of GSD, hypertriglyceridemia reflects the age-dependent fasting intolerance, secondary lipolysis and increased mitochondrial fatty acid oxidation. The role of high protein diets is established for ketotic types of GSD, but non-traditional dietary interventions (like medium-chain triglycerides and the ketogenic diet) in hepatic GSD are still controversial and necessitate further studies. Patients with these rare inherited disorders of carbohydrate metabolism meet several criteria of the metabolic syndrome, therefore close monitoring for cardiovascular diseases in ageing GSD patients may be justified.

  18. Evaluation of the synergistic effect of Allium sativum, Eugenia jambolana, Momordica charantia, Ocimum sanctum and Psidium guajav on hepatic and intestinal drug metabolizing enzymes in rats

    Directory of Open Access Journals (Sweden)

    Devendra Kumar

    2016-12-01

    Full Text Available Aims/Background: Present study investigated the synergistic effect of polyherbal formulations (PHF of Allium sativum L Eugenia jambolana Lam., Momordica charantia L., Ocimum sanctum Linn and Psidium guajava L. in the inhibition/induction of hepatic and intestinal CYPs and Phase-II conjugated drug metabolizing enzymes. Consumption of these herbal remedy has been extensively documented for diabetes treatment in Auyureda. Methodology: PHF of these five herbs was prepared and different doses were orally administered to Sprague Dawley rats of different groups except control group. Expression of mRNA and activity of drug metabolizing enzymes were examined by RT-PCR and HPLC in isolated liver and intestine microsomes in PHF pretreated rats. Results: Activities of hepatic and intestinal Phase-II enzyme levels increased along with mRNA levels except CYP3A mRNA level. PHF administration increases the activity of hepatic and intestinal UDPGT and GST in response to dose and time; however, activity of hepatic SULT increased at higher doses. Conclusions: CYPs and Phase-II conjugated enzymes levels can be modulated in dose and time dependent manner. Observations suggest that poly herbal formulation might be a possible cause of herb-drug interaction, due to changes in pharmacokinetic of crucial CYPs and Phase-II substrate drug. [J Complement Med Res 2016; 5(4.000: 372-382

  19. Effects of taurine supplementation on hepatic markers of inflammation and lipid metabolism in mothers and offspring in the setting of maternal obesity.

    Science.gov (United States)

    Li, Minglan; Reynolds, Clare M; Sloboda, Deborah M; Gray, Clint; Vickers, Mark H

    2013-01-01

    Maternal obesity is associated with obesity and metabolic disorders in offspring. However, intervention strategies to reverse or ameliorate the effects of maternal obesity on offspring health are limited. Following maternal undernutrition, taurine supplementation can improve outcomes in offspring, possibly via effects on glucose homeostasis and insulin secretion. The effects of taurine in mediating inflammatory processes as a protective mechanism has not been investigated. Further, the efficacy of taurine supplementation in the setting of maternal obesity is not known. Using a model of maternal obesity, we examined the effects of maternal taurine supplementation on outcomes related to inflammation and lipid metabolism in mothers and neonates. Time-mated Wistar rats were randomised to either: 1) control : control diet during pregnancy and lactation (CON); 2) CON supplemented with 1.5% taurine in drinking water (CT); 3) maternal obesogenic diet (high fat, high fructose) during pregnancy and lactation (MO); or 4) MO supplemented with taurine (MOT). Maternal and neonatal weights, plasma cytokines and hepatic gene expression were analysed. A MO diet resulted in maternal hyperinsulinemia and hyperleptinemia and increased plasma glucose, glutamate and TNF-α concentrations. Taurine normalised maternal plasma TNF-α and glutamate concentrations in MOT animals. Both MO and MOT mothers displayed evidence of fatty liver accompanied by alterations in key markers of hepatic lipid metabolism. MO neonates displayed a pro-inflammatory hepatic profile which was partially rescued in MOT offspring. Conversely, a pro-inflammatory phenotype was observed in MOT mothers suggesting a possible maternal trade-off to protect the neonate. Despite protective effects of taurine in MOT offspring, neonatal mortality was increased in CT neonates, indicating possible adverse effects of taurine in the setting of normal pregnancy. These data suggest that maternal taurine supplementation may

  20. Runinal and Intermediary Metabolism of Propylene Glycol in Lactating Holstein Cows

    DEFF Research Database (Denmark)

    Kristensen, Niels Bastian; Raun, Birgitte Marie Løvendahl

    2007-01-01

    Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG).......Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG)....

  1. Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes.

    Science.gov (United States)

    Jeong, Hyunyoung

    2010-06-01

    Medication use during pregnancy is prevalent, but pharmacokinetic information of most drugs used during pregnancy is lacking in spite of known effects of pregnancy on drug disposition. Accurate pharmacokinetic information is essential for optimal drug therapy in mother and fetus. Thus, understanding how pregnancy influences drug disposition is important for better prediction of pharmacokinetic changes of drugs in pregnant women. Pregnancy is known to affect hepatic drug metabolism, but the underlying mechanisms remain unknown. Physiological changes accompanying pregnancy are probably responsible for the reported alteration in drug metabolism during pregnancy. These include elevated concentrations of various hormones such as estrogen, progesterone, placental growth hormones and prolactin. This review covers how these hormones influence expression of drug-metabolizing enzymes (DMEs), thus potentially responsible for altered drug metabolism during pregnancy. The reader will gain a greater understanding of the altered drug metabolism in pregnant women and the regulatory effects of pregnancy hormones on expression of DMEs. In-depth studies in hormonal regulatory mechanisms as well as confirmatory studies in pregnant women are warranted for systematic understanding and prediction of the changes in hepatic drug metabolism during pregnancy.

  2. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by (1)H-NMR-based metabonomics.

    Science.gov (United States)

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-04-14

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC.

  3. Effects of a combined intervention with a lentil protein hydrolysate and a mixed training protocol on the lipid metabolism and hepatic markers of NAFLD in Zucker rats.

    Science.gov (United States)

    Martínez, Rosario; Kapravelou, Garyfallia; Donaire, Ana; Lopez-Chaves, Carlos; Arrebola, Francisco; Galisteo, Milagros; Cantarero, Samuel; Aranda, Pilar; Porres, Jesus M; López-Jurado, María

    2018-02-21

    Metabolic syndrome is a cluster of metabolic alterations characterized by central obesity, dyslipidemia, elevated plasma glucose, insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD). In this study, a combined intervention of a lentil protein hydrolysate and a mixed training protocol was assessed in an animal experimental model of genetic obesity and metabolic syndrome. Thirty-two male obese and 32 lean Zucker rats were divided into eight different experimental groups. Rats performed a mixed exercise protocol or had a sedentary lifestyle and were administered a lentil protein hydrolysate or placebo. Daily food intake, weekly body weight gain, plasma parameters of glucose and lipid metabolisms, body composition, hepatic weight, total fat content and fatty acid profile, as well as gene expression of lipogenic and lipolytic nuclear transcription factors and their target genes were measured. Obese Zucker rats exhibited higher body and liver weight and fat content than did their lean counterparts. Such alterations were related to modifications in aerobic capacity, plasma biochemical parameters of glucose and lipid metabolisms, hepatic fatty acid profile and gene expression of nuclear transcription factors SREBP1c, PPARα, LXR and associated lipogenic and lipolytic enzymes. The interventions tested did not affect body weight gain but improved aerobic capacity, reduced hepatomegalia and steatosis associated with NAFLD and relieved the adverse effects produced by this condition in glucose and lipid metabolisms through the modulation in the expression of different genes involved in diverse metabolic pathways.

  4. Hepatic apo B-100 lipoproteins and plasma LDL heterogeneity in African green monkeys

    International Nuclear Information System (INIS)

    Murthy, V.N.; Marzetta, C.A.; Rudel, L.L.; Zech, L.A.; Foster, D.M.

    1990-01-01

    The contribution of hepatic apolipoprotein (apo) B-100 lipoproteins to plasma low-density lipoprotein (LDL) metabolic heterogeneity was examined in African green monkeys. Hepatic 3H-labeled very low-density lipoproteins (VLDL) (d less than 1.006, where d is density in g/ml) or hepatic 131I-labeled LDL (1.030 less than d less than 1.063) were isolated from perfused livers and injected simultaneously with autologous plasma 125I-LDL into African green monkeys. Serial blood samples were taken, and the distribution of radioactivity among various subfractions of apo B-100 lipoproteins was determined using density-gradient ultracentrifugation. Compartmental models were developed to describe simultaneously the kinetics of hepatic lipoproteins and plasma LDL. In five of seven studies, the metabolic behavior of LDL derived from radiolabeled hepatic lipoprotein precursors differed from the metabolic behavior of radiolabeled autologous plasma LDL. These differences could be described by different models supporting two hypotheses with different physiological interpretations: (1) lipoproteins of donor and recipient animals are kinetically distinct, and/or (2) plasma LDL derived from various potential sources are kinetically distinct. Compartmental modeling was used to test these hypotheses, which were not accessible to testing by conventional experimental methodologies. The kinetic analyses of these studies suggest that plasma LDL may be derived from a variety of precursors, including hepatic VLDL and hepatic LDL, with each source giving rise to metabolically distinct plasma LDL

  5. Insights in the pathogenesis of Dobermann hepatitis

    NARCIS (Netherlands)

    Mandigers, Paulus Justinus Johannes

    2005-01-01

    The pathogenesis of Dobermann hepatitis has been under debate for several years. In this thesis two hypotheses were formulated and discussed. Hypothesis 1: In Dobermann dogs exists an autosomal genetic error in metabolism that leads to an abnormal copper metabolism which results in an increased

  6. Energy metabolism in the liver.

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases. © 2014 American Physiological Society.

  7. Evaluation of renal first pass blood flow with a functional image technique in hypertensive patients

    International Nuclear Information System (INIS)

    Ishibashi, Masatoshi; Morita, Seiichiro; Umezaki, Noriyoshi; Ohtake, Hisashi

    1988-01-01

    The renal circulation of patients with essential hypertension and renovascular hypertension was evaluated using 99m Tc-DTPA. The first renal peak count (the first C max ; FC max ), time phase distribution (the first T max ; FT max ), and blood velocity (the FC max /FT max ) were calculated by digital imaging. This yields a visual image of the renal circulation. We consider that the increase in the renal first pass blood flow in patients with essential hypertension is best observed pixel by pixel. The FC max and FC max /FT max images before and after treatment by percutaneous transluminal renal angioplasty in patients with renovascular hypertension clearly show its therapeutic effect. The FI technique, therefore, has the advantage that it can be performed at the same time as the conventional routine examinations of renal function. This makes it very useful clinically. (orig.)

  8. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling.

    Science.gov (United States)

    Softic, Samir; Gupta, Manoj K; Wang, Guo-Xiao; Fujisaka, Shiho; O'Neill, Brian T; Rao, Tata Nageswara; Willoughby, Jennifer; Harbison, Carole; Fitzgerald, Kevin; Ilkayeva, Olga; Newgard, Christopher B; Cohen, David E; Kahn, C Ronald

    2017-11-01

    Overconsumption of high-fat diet (HFD) and sugar-sweetened beverages are risk factors for developing obesity, insulin resistance, and fatty liver disease. Here we have dissected mechanisms underlying this association using mice fed either chow or HFD with or without fructose- or glucose-supplemented water. In chow-fed mice, there was no major physiological difference between fructose and glucose supplementation. On the other hand, mice on HFD supplemented with fructose developed more pronounced obesity, glucose intolerance, and hepatomegaly as compared to glucose-supplemented HFD mice, despite similar caloric intake. Fructose and glucose supplementation also had distinct effects on expression of the lipogenic transcription factors ChREBP and SREBP1c. While both sugars increased ChREBP-β, fructose supplementation uniquely increased SREBP1c and downstream fatty acid synthesis genes, resulting in reduced liver insulin signaling. In contrast, glucose enhanced total ChREBP expression and triglyceride synthesis but was associated with improved hepatic insulin signaling. Metabolomic and RNA sequence analysis confirmed dichotomous effects of fructose and glucose supplementation on liver metabolism in spite of inducing similar hepatic lipid accumulation. Ketohexokinase, the first enzyme of fructose metabolism, was increased in fructose-fed mice and in obese humans with steatohepatitis. Knockdown of ketohexokinase in liver improved hepatic steatosis and glucose tolerance in fructose-supplemented mice. Thus, fructose is a component of dietary sugar that is distinctively associated with poor metabolic outcomes, whereas increased glucose intake may be protective.

  9. In vitro hepatic microsomal metabolism of meloxicam in koalas (Phascolarctos cinereus), brushtail possums (Trichosurus vulpecula), ringtail possums (Pseudocheirus peregrinus), rats (Rattus norvegicus) and dogs (Canis lupus familiaris).

    Science.gov (United States)

    Kimble, B; Li, K M; Valtchev, P; Higgins, D P; Krockenberger, M B; Govendir, M

    2014-04-01

    Quantitative and qualitative aspects of in vitro metabolism of the non-steroidal anti-inflammatory drug meloxicam, mediated via hepatic microsomes of specialized foliage (Eucalyptus) eating marsupials (koalas and ringtail possums), a generalized foliage eating marsupial (brushtail possum), rats, and dogs, are described. Using a substrate depletion method, intrinsic hepatic clearance (in vitro Clint) was determined. Significantly, rates of oxidative transformation of meloxicam, likely mediated via cytochromes P450 (CYP), were higher in marsupials compared to rats or dogs. The rank order of apparent in vitro Clint was brushtail possums (n=3) (mean: 394μL/min/mg protein), >koalas (n=6) (50), >ringtail possums (n=2) (36) (with no significant difference between koalas and ringtail possums), >pooled rats (3.2)>pooled dogs (in which the rate of depletion, as calculated by the ratio of the substrate remaining was <20% and too slow to determine). During the depletion of meloxicam, at a first-order rate constant, 5-hydroxymethyl metabolite (M1) was identified in the brushtail possums and the rat as the major metabolite. However, multiple hydroxyl metabolites were observed in the koala (M1, M2, and M3) and the ringtail possum (M1 and M3) indicating that these specialized foliage-eating marsupials have diverse oxidation capacity to metabolize meloxicam. Using a well-stirred model, the apparent in vitro Clint of meloxicam for koalas and the rat was further scaled to compare with published in vivo Cl. The closest in vivo Cl prediction from in vitro data of koalas was demonstrated with scaled hepatic Cl(total) (average fold error=1.9) excluding unbound fractions in the blood and microsome values; whereas for rats, the in-vitro scaled hepatic Cl fu(blood, mic), corrected with unbound fractions in the blood and microsome values, provided the best prediction (fold error=1.86). This study indicates that eutherians such as rats or dogs serve as inadequate models for dosage

  10. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro.

    Science.gov (United States)

    Manwaring, John; Rothe, Helga; Obringer, Cindy; Foltz, David J; Baker, Timothy R; Troutman, John A; Hewitt, Nicola J; Goebel, Carsten

    2015-09-01

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis-Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte Km and Vmax values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and Cmax was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. Copyright © 2015. Published by Elsevier Inc.

  11. Hepatic metabolism of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the rat and guinea pig

    International Nuclear Information System (INIS)

    Wroblewski, V.J.; Olson, J.R.

    1985-01-01

    Marked interspecies variability exists in the acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), with the rat having an LD 50 about 25-fold greater than the guinea pig. The metabolism of TCDD was examined by incubating hepatocytes isolated from these animals with purified [ 14 C]TCDD (2.2 microM) for 8 hr. Over the 8-hr incubation, cytochrome P-450 content and ethoxyresorufin O-deethylase and benzphetamine N-demethylase activities were well maintained, indicating the functional viability of the hepatocytes. Quantitative differences were observed in the rate of [ 14 C]TCDD metabolism, with hepatocytes from control rats metabolizing TCDD at a rate 2.8-fold greater than hepatocytes from control guinea pigs. The role of the hepatic cytochrome P-450-448-dependent monooxygenase system in the metabolism of TCDD was examined through the use of hepatocytes isolated from animals pretreated with either TCDD or phenobarbital. The rate of [ 14 C]TCDD metabolite formation in hepatocytes from TCDD pretreated guinea pigs (0.26 +/- 0.14 pmol mg cell protein-1 hr-1) was unchanged from the control rate, while the rate in hepatocytes from TCDD pretreated rats was 3.2-fold greater than control and nine times greater than in hepatocytes from TCDD-pretreated guinea pigs. On the other hand, phenobarbital pretreatment produced little change in the rate of [ 14 C]TCDD metabolism in rat hepatocytes. These results suggest that TCDD may be metabolized by a TCDD inducible form of cytochrome P-448 which is expressed in the rat but not in the guinea pig

  12. Biochemical studies of effects of alcohol consumption on fat and carbohydrate metabolism in rats fed different levels of proteins

    International Nuclear Information System (INIS)

    Shalan, M.G.M.

    1996-01-01

    Alcohol, ethanol and ethyl alcohol are synonymously used during the present dissertation. Alcohol probably was among the first psychoactive substances to be used by man (Winger et al., 1992). Ethanol is mainly oxidized to acetaldehyde in the liver (Ugarte and Peresa, 1978) by alcohol dehydrogenase (ADH). Alcohol is associated with many metabolic disorders inside the body (Thayer and Rubin, 1979; Forsander and Poso, 1988; Poso and Hirsimaki, 1991; Bernal, et al., 1992). The nutritional factors which received little attention have an important role in alcoholic metabolizing alterations. Morphologically and biochemically, an increase in hepatic lipid was demonstrated when ethanol was given either as a supplement or as an iso caloric substitute for carbohydrate together with an otherwise nutritionally adequate diet. Low-protein diets have been shown to diminish hepatic alcohol dehydrogenase (ADH) levels in rats and to slow down the metabolism of ethanol considerably (Wilson et al., 1986). Hepatic steatosis was produced, even with a high-protein, vitamin-supplemented diet and was accompanied by major ultrastructural liver changes and by elevations of hepatic transaminases in blood (Lieber et al., 1963 and 1965 and Lane and Lieber, 1966). If dietary fat was reduced from 35 to 25% of total calories, hepatic triglyceride accumulation greatly decreased (Lieber and DeCarli, 970)

  13. Absence of Middle Hepatic Vein Combined with Retro-Aortic Left Renal Vein: a Very Rare Case Report

    Directory of Open Access Journals (Sweden)

    Sezer Akçer

    2012-06-01

    Full Text Available The hepatic and renal veins drain into the inferior vena cava. The upper group of hepatic veins consists of three veins which extend to the posterior face of the liver to join the inferior cava. The left renal vein passes anterior to the aorta just below the origin of the superior mesenteric artery. We detected a variation in the hepatic and renal veins in a multislice CT angiogram of a nine-year-old male patient in the Radiology Department of Afyon Kocatepe University Medical School. The upper group hepatic veins normally drains into the inferior vena cava as three separate trunks, namely the right, left and middle. In our case, we found that only the right and left hepatic veins existed and the middle hepatic vein was absent. Furthermore, the left renal vein, which normally passes anterior to the abdominal aorta, was retro-aortic. Left renal vein variations are of great importance in planning retroperitoneal surgery and vascular interventions. Knowledge of a patient’s hepatic vein and renovascular anatomy and determining their variations and anomalies are of critical importance to abdominal operations, transplantations and preoperative evaluation of endovascular interventions.

  14. [Hepatitis A and E enterically transmitted virus infections of the liver].

    Science.gov (United States)

    Siegl, G

    2004-08-01

    Hepatitis A virus (a picornavirus) and hepatitis E virus (so far unclassified) are small, non-enveloped and relatively stable RNA viruses with many similar, yet, not identical characteristics. Both viruses are transmitted preferentially by the fecal-oral route. Consequently, their spread is favoured by poor personal hygiene and inappropriate sanitary conditions. Infection can pass subclinically, take an acute and self limiting course, and can also manifest as fulminant hepatitis with liver failure. True chronic disease is unknown. Laboratory diagnosis is preferentially performed by serology, but can also be complemented by assay for viral RNA in stool or serum. Resolution of infection leads to immunity which, in the case of hepatitis A, is known to be fully protective and most likely lifelong. Available hepatitis A vaccines are able to induce a similar state of protection. Vaccines for hepatitis E are under development. Specific antiviral treatment is not yet available, neither for hepatitis A nor for hepatitis E.

  15. MR first pass perfusion of benign and malignant cardiac tumours - significant differences and diagnostic accuracy

    International Nuclear Information System (INIS)

    Bauner, K.U.; Picciolo, M.; Theisen, D.; Sandner, T.A.; Reiser, M.F.; Huber, A.M.; Sourbron, S.; Schmitz, C.

    2012-01-01

    To determine the diagnostic value of magnetic resonance (MR) first pass perfusion in the differentiation of benign and malignant cardiac tumours. 24 patients with cardiac tumours (11 malignant, histopathological correlation present in all cases) were examined using MRI. In addition to morphological sequences a saturation-recovery T1w-GRE technique was implemented for tumour perfusion. The maximum relative signal enhancement (RSE[%]) and the slope of the RSE t -curve (slopeRSE[%/s]) of tumour tissue were assessed. A t-test was used to identify significant differences between benign and malignant tumours. Sensitivities and specificities were calculated for detection of malignant lesions and were compared with the sensitivity and specificity based on solely morphological image assessment. The RSE and slopeRSE of malignant cardiac tumours were significantly higher compared with benign lesions (p < 0.001 and p < 0.001). The calculated sensitivities and specificities of RSE and slopeRSE for identification of malignant lesions were 100% and 84.6% and 100% and 92.3%, respectively with cut-off values of 80% and 6%/s. The sensitivity and specificity for identification of malignant lesions on the basis of morphological imaging alone were 90.9% and 69.2%. With first pass perfusion, malignant cardiac masses can be identified with higher sensitivity and specificity compared with morphological image assessment alone. (orig.)

  16. "The first shot": the context of first injection of illicit drugs, ongoing injecting practices, and hepatitis C infection in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Aguiar Oliveira

    Full Text Available The context of first drug injection and its association with ongoing injecting practices and HCV (hepatitis C virus infection were investigated. Injection drug users (IDUs (N = 606 were recruited in "drug scenes" (public places, bars in Rio de Janeiro, Brazil, interviewed, and tested for HCV. Sharing of needles/syringes was more prevalent at the first injection (51.3% than at the baseline interview (36.8%. Those who shared syringes/needles at first injection were more likely to be currently engaged in direct/indirect sharing practices. Among young injectors (< 30 years, those reporting sharing of needles/ syringes at the first injection were about four times more likely to have been infected by HCV. Hepatitis C virus prevalence among active IDUs (n = 272 was 11%. Prison history and longer duration of drug injection were identified as independent predictors of HCV infection. To effectively curb HCV transmission among IDUs and minimize harms associated with risk behaviors, preventive strategies should target individuals initiating drug injection beginning with their very first injection and discourage the transition from non-injecting use to the self-injection of illicit drugs.

  17. Modulation of hepatic steatosis by dietary fatty acids

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) describes a range of conditions caused by fat deposition within liver cells. Liver fat content reflects the equilibrium between several metabolic pathways involved in triglyceride synthesis and disposal, such as lipolysis in adipose tissue and de novo lipogenesis, triglyceride esterification, fatty acid oxidation and very-low-density lipoprotein synthesis/secretion in hepatic tissue. In particular, it has been demonstrated that hepatic de novo lipogenesis plays a significant role in NAFLD pathogenesis. It is widely known that the fatty acid composition of the diet influences hepatic lipogenesis along with other metabolic pathways. Therefore, dietary fat may not only be involved in the pathogenesis of hepatic steatosis, but may also prevent and/or reverse hepatic fat accumulation. In this review, major data from the literature about the role of some dietary fats as a potential cause of hepatic fat accumulation or as a potential treatment for NAFLD are described. Moreover, biochemical mechanisms responsible for an increase or decrease in hepatic lipid content are critically analyzed. It is noteworthy that both quantitative and qualitative aspects of dietary fat influence triglyceride deposition in the liver. A high-fat diet or the dietary administration of conjugated linoleic acids induced hepatic steatosis. In contrast, supplementation of the diet with krill oil or pine nut oil helped in the prevention and/or in the treatment of steatotic liver. Quite interesting is the “case” of olive oil, since several studies have often provided different and⁄or conflicting results in animal models. PMID:24587652

  18. Modulation of hepatic steatosis by dietary fatty acids.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-02-21

    Non-alcoholic fatty liver disease (NAFLD) describes a range of conditions caused by fat deposition within liver cells. Liver fat content reflects the equilibrium between several metabolic pathways involved in triglyceride synthesis and disposal, such as lipolysis in adipose tissue and de novo lipogenesis, triglyceride esterification, fatty acid oxidation and very-low-density lipoprotein synthesis/secretion in hepatic tissue. In particular, it has been demonstrated that hepatic de novo lipogenesis plays a significant role in NAFLD pathogenesis. It is widely known that the fatty acid composition of the diet influences hepatic lipogenesis along with other metabolic pathways. Therefore, dietary fat may not only be involved in the pathogenesis of hepatic steatosis, but may also prevent and/or reverse hepatic fat accumulation. In this review, major data from the literature about the role of some dietary fats as a potential cause of hepatic fat accumulation or as a potential treatment for NAFLD are described. Moreover, biochemical mechanisms responsible for an increase or decrease in hepatic lipid content are critically analyzed. It is noteworthy that both quantitative and qualitative aspects of dietary fat influence triglyceride deposition in the liver. A high-fat diet or the dietary administration of conjugated linoleic acids induced hepatic steatosis. In contrast, supplementation of the diet with krill oil or pine nut oil helped in the prevention and/or in the treatment of steatotic liver. Quite interesting is the "case" of olive oil, since several studies have often provided different and/or conflicting results in animal models.

  19. Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis.

    Directory of Open Access Journals (Sweden)

    Xiwen Xiong

    Full Text Available Forkhead transcription factors FoxO1/3/4 have pleiotrophic functions including anti-oxidative stress and metabolism. With regard to glucose metabolism, most studies have been focused on FoxO1. To further investigate their hepatic functions, we generated liver-specific FoxO1/3/4 knockout mice (LTKO and examined their collective impacts on glucose homeostasis under physiological and pathological conditions. As compared to wild-type mice, LTKO mice had lower blood glucose levels under both fasting and non-fasting conditions and they manifested better glucose and pyruvate tolerance on regular chow diet. After challenged by a high-fat diet, wild-type mice developed type 2 diabetes, but LTKO mice remained euglycemic and insulin-sensitive. To understand the underlying mechanisms, we examined the roles of SIRT6 (Sirtuin 6 and Gck (glucokinase in the FoxO-mediated glucose metabolism. Interestingly, ectopic expression of SIRT6 in the liver only reduced gluconeogenesis in wild-type but not LTKO mice whereas knockdown of Gck caused glucose intolerance in both wild-type and LTKO mice. The data suggest that both decreased gluconeogenesis and increased glycolysis may contribute to the overall glucose phenotype in the LTKO mice. Collectively, FoxO1/3/4 transcription factors play important roles in hepatic glucose homeostasis.

  20. Peculiarities of One-Carbon Metabolism in the Strict Carnivorous Cat and the Role in Feline Hepatic Lipidosis

    Directory of Open Access Journals (Sweden)

    Marica Bakovic

    2013-07-01

    Full Text Available Research in various species has indicated that diets deficient in labile methyl groups (methionine, choline, betaine, folate produce fatty liver and links to steatosis and metabolic syndrome, but also provides evidence of the importance of labile methyl group balance to maintain normal liver function. Cats, being obligate carnivores, rely on nutrients in animal tissues and have, due to evolutionary pressure, developed several physiological and metabolic adaptations, including a number of peculiarities in protein and fat metabolism. This has led to specific and unique nutritional requirements. Adult cats require more dietary protein than omnivorous species, maintain a consistently high rate of protein oxidation and gluconeogenesis and are unable to adapt to reduced protein intake. Furthermore, cats have a higher requirement for essential amino acids and essential fatty acids. Hastened use coupled with an inability to conserve certain amino acids, including methionine, cysteine, taurine and arginine, necessitates a higher dietary intake for cats compared to most other species. Cats also seemingly require higher amounts of several B-vitamins compared to other species and are predisposed to depletion during prolonged inappetance. This carnivorous uniqueness makes cats more susceptible to hepatic lipidosis.

  1. Peculiarities of one-carbon metabolism in the strict carnivorous cat and the role in feline hepatic lipidosis.

    Science.gov (United States)

    Verbrugghe, Adronie; Bakovic, Marica

    2013-07-19

    Research in various species has indicated that diets deficient in labile methyl groups (methionine, choline, betaine, folate) produce fatty liver and links to steatosis and metabolic syndrome, but also provides evidence of the importance of labile methyl group balance to maintain normal liver function. Cats, being obligate carnivores, rely on nutrients in animal tissues and have, due to evolutionary pressure, developed several physiological and metabolic adaptations, including a number of peculiarities in protein and fat metabolism. This has led to specific and unique nutritional requirements. Adult cats require more dietary protein than omnivorous species, maintain a consistently high rate of protein oxidation and gluconeogenesis and are unable to adapt to reduced protein intake. Furthermore, cats have a higher requirement for essential amino acids and essential fatty acids. Hastened use coupled with an inability to conserve certain amino acids, including methionine, cysteine, taurine and arginine, necessitates a higher dietary intake for cats compared to most other species. Cats also seemingly require higher amounts of several B-vitamins compared to other species and are predisposed to depletion during prolonged inappetance. This carnivorous uniqueness makes cats more susceptible to hepatic lipidosis.

  2. "Which pass is better?" Novel approaches to assess passing effectiveness in elite soccer.

    Science.gov (United States)

    Rein, Robert; Raabe, Dominik; Memmert, Daniel

    2017-10-01

    Passing behaviour is a key property of successful performance in team sports. Previous investigations however have mainly focused on notational measurements like total passing frequencies which provide little information about what actually constitutes successful passing behaviour. Consequently, this has hampered the transfer of research findings into applied settings. Here we present two novel approaches to assess passing effectiveness in elite soccer by evaluating their effects on majority situations and space control in front of the goal. Majority situations are assessed by calculating the number of defenders between the ball carrier and the goal. Control of space is estimated using Voronoi-diagrams based on the player's positions on the pitch. Both methods were applied to position data from 103 German First division games from the 2011/2012, 2012/2013 and 2014/2015 seasons using a big data approach. The results show that both measures are significantly related to successful game play with respect to the number of goals scored and to the probability of winning a game. The results further show that on average passes from the mid-field into the attacking area are most effective. The presented passing efficiency measures thereby offer new opportunities for future applications in soccer and other sports disciplines whilst maintaining practical relevance with respect to tactical training regimes or game performances analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Metabolic profile at first-time schizophrenia diagnosis

    DEFF Research Database (Denmark)

    Horsdal, Henriette Thisted; Benros, Michael Eriksen; Köhler-Forsberg, Ole

    2017-01-01

    Region. Information on metabolic parameters was obtained from a clinical laboratory information system. Associations were calculated using Wilcoxon rank-sum tests, chi-square tests, logistic regression, and Spearman's correlation coefficients. RESULTS: A total of 2,452 people with a first...... in the early phase of schizophrenia emphasize the need for increased monitoring and management....

  4. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Manwaring, John, E-mail: manwaring.jd@pg.com [Procter & Gamble Inc., Mason Business Center, Mason, OH 45040 (United States); Rothe, Helga [Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65823 Schwalbach am Taunus (Germany); Obringer, Cindy; Foltz, David J.; Baker, Timothy R.; Troutman, John A. [Procter & Gamble Inc., Mason Business Center, Mason, OH 45040 (United States); Hewitt, Nicola J. [SWS, Erzhausen (Germany); Goebel, Carsten [Procter & Gamble Service GmbH, Sulzbacher Str. 40, 65823 Schwalbach am Taunus (Germany)

    2015-09-01

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte K{sub m} and V{sub max} values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and C{sub max} was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in human

  5. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro

    International Nuclear Information System (INIS)

    Manwaring, John; Rothe, Helga; Obringer, Cindy; Foltz, David J.; Baker, Timothy R.; Troutman, John A.; Hewitt, Nicola J.; Goebel, Carsten

    2015-01-01

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte K m and V max values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and C max was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in human skin explants and

  6. Diabetes and Hepatitis B Vaccination

    Science.gov (United States)

    Diabetes and Hepatitis B Vaccination Information for Diabetes Educators What is hepatitis B? Hepatitis B is a contagious liver disease that results from infection with the hepatitis B virus. When first infected, a person can develop ...

  7. Head First PMP A Brain-Friendly Guide to Passing the Project Management Professional Exam

    CERN Document Server

    Greene, Jennifer

    2009-01-01

    Learn the latest principles and certification objectives in The PMBOK Guide, Fourth Edition, in a unique and inspiring way with Head First PMP . The second edition of this book helps you prepare for the PMP certification exam using a visually rich format designed for the way your brain works. You'll find a full-length sample exam included inside the book. More than just proof of passing a test, a PMP certification means that you have the knowledge to solve most common project problems. But studying for a difficult four-hour exam on project management isn't easy, even for experienced project

  8. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Xuan Xia

    2011-02-01

    Full Text Available Berberine (BBR is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French. It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK and Glucose-6-phosphatase (G6Pase, were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1, sterol regulatory element-binding protein 1c (SREBP1 and carbohydrate responsive element-binding protein (ChREBP were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway.

  9. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis.

    Science.gov (United States)

    Kim, Hyunbae; Zheng, Ze; Walker, Paul D; Kapatos, Gregory; Zhang, Kezhong

    2017-07-15

    Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. Copyright © 2017 American Society for Microbiology.

  10. Impairments of hepatic gluconeogenesis and ketogenesis in PPARα-deficient neonatal mice.

    Science.gov (United States)

    Cotter, David G; Ercal, Baris; d'Avignon, D André; Dietzen, Dennis J; Crawford, Peter A

    2014-07-15

    Peroxisome proliferator activated receptor-α (PPARα) is a master transcriptional regulator of hepatic metabolism and mediates the adaptive response to fasting. Here, we demonstrate the roles for PPARα in hepatic metabolic adaptations to birth. Like fasting, nutrient supply is abruptly altered at birth when a transplacental source of carbohydrates is replaced by a high-fat, low-carbohydrate milk diet. PPARα-knockout (KO) neonatal mice exhibit relative hypoglycemia due to impaired conversion of glycerol to glucose. Although hepatic expression of fatty acyl-CoA dehydrogenases is imparied in PPARα neonates, these animals exhibit normal blood acylcarnitine profiles. Furthermore, quantitative metabolic fate mapping of the medium-chain fatty acid [(13)C]octanoate in neonatal mouse livers revealed normal contribution of this fatty acid to the hepatic TCA cycle. Interestingly, octanoate-derived carbon labeled glucose uniquely in livers of PPARα-KO neonates. Relative hypoketonemia in newborn PPARα-KO animals could be mechanistically linked to a 50% decrease in de novo hepatic ketogenesis from labeled octanoate. Decreased ketogenesis was associated with diminished mRNA and protein abundance of the fate-committing ketogenic enzyme mitochondrial 3-hydroxymethylglutaryl-CoA synthase (HMGCS2) and decreased protein abundance of the ketogenic enzyme β-hydroxybutyrate dehydrogenase 1 (BDH1). Finally, hepatic triglyceride and free fatty acid concentrations were increased 6.9- and 2.7-fold, respectively, in suckling PPARα-KO neonates. Together, these findings indicate a primary defect of gluconeogenesis from glycerol and an important role for PPARα-dependent ketogenesis in the disposal of hepatic fatty acids during the neonatal period. Copyright © 2014 the American Physiological Society.

  11. Decreased hepatic RBP4 secretion is correlated with reduced hepatic glucose production but is not associated with insulin resistance in patients with liver cirrhosis

    NARCIS (Netherlands)

    Bahr, Matthias J.; Boeker, Klaus H. W.; Manns, Michael P.; Tietge, Uwe J. F.

    Patients with liver cirrhosis have a high incidence of insulin resistance and diabetes. This study was designed to determine circulating levels and hepatic production of retinol-binding protein 4 (RBP4) in relation to parameters of hepatic and systemic metabolism in patients with liver cirrhosis.

  12. Transwomen and the Metabolic Syndrome: Is Orchiectomy Protective?

    Science.gov (United States)

    Nelson, Michael D.; Szczepaniak, Lidia S.; Wei, Janet; Szczepaniak, Edward; Sánchez, Francisco J.; Vilain, Eric; Stern, Jennifer H.; Bergman, Richard N.; Bairey Merz, C. Noel; Clegg, Deborah J.

    2016-01-01

    Abstract Background: Male-to-female transsexual women or transwomen who undergo cross-sex hormone treatments experience increased health-related risks (e.g., increased rates of cardiovascular disease and premature death). Yet, the exact mechanism by which altering biochemistry leads to metabolic impairment remains unclear. While much attention has been paid to cross-sex hormone therapy, little is known about the metabolic risk associated with orchiectomy. Methods: To address the above limitation, we prospectively enrolled 12 transwomen: 4 who had undergone bi-lateral orchiectomy and 8 who had not. Both groups were using cross-sex hormones. Glucose tolerance was assessed using a standard 75g oral glucose tolerance test. Hepatic steatosis was assessed by 1H magnetic resonance spectroscopy. The amount of subcutaneous and visceral abdominal fat was determined from a single abdominal axial image at the level between the vertebral L2 and L3 bodies. Baseline venous fasting blood sampling was performed for measurement of hemoglobin A1c, glucose, insulin, sex hormones, and sex hormone binding globulin. Results: The major novel findings were: (1) orchiectomy and cross-sex hormone therapy is associated with less hepatic steatosis and insulin resistance; (2) orchiectomy may be metabolically protective, and (3) circulating concentrations of sex hormones may be a major determinant of metabolic health in transwomen. Conclusions: To our knowledge, this is the first study to suggest an independent and protective role of orchiectomy on the metabolic health of transwomen. PMID:29159307

  13. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK

    Directory of Open Access Journals (Sweden)

    Santiago Vernia

    2016-03-01

    Full Text Available The cJun NH2-terminal kinase (JNK-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21 is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.

  14. Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR knockout mice: implications on anti-glucagon therapies for diabetes

    Directory of Open Access Journals (Sweden)

    Molloy Mark P

    2011-06-01

    Full Text Available Abstract Background Glucagon is an important hormone in the regulation of glucose homeostasis, particularly in the maintenance of euglycemia and prevention of hypoglycemia. In type 2 Diabetes Mellitus (T2DM, glucagon levels are elevated in both the fasted and postprandial states, which contributes to inappropriate hyperglycemia through excessive hepatic glucose production. Efforts to discover and evaluate glucagon receptor antagonists for the treatment of T2DM have been ongoing for approximately two decades, with the challenge being to identify an agent with appropriate pharmaceutical properties and efficacy relative to potential side effects. We sought to determine the hepatic & systemic consequence of full glucagon receptor antagonism through the study of the glucagon receptor knock-out mouse (Gcgr-/- compared to wild-type littermates. Results Liver transcriptomics was performed using Affymetric expression array profiling, and liver proteomics was performed by iTRAQ global protein analysis. To complement the transcriptomic and proteomic analyses, we also conducted metabolite profiling (~200 analytes using mass spectrometry in plasma. Overall, there was excellent concordance (R = 0.88 for changes associated with receptor knock-out between the transcript and protein analysis. Pathway analysis tools were used to map the metabolic processes in liver altered by glucagon receptor ablation, the most notable being significant down-regulation of gluconeogenesis, amino acid catabolism, and fatty acid oxidation processes, with significant up-regulation of glycolysis, fatty acid synthesis, and cholesterol biosynthetic processes. These changes at the level of the liver were manifested through an altered plasma metabolite profile in the receptor knock-out mice, e.g. decreased glucose and glucose-derived metabolites, and increased amino acids, cholesterol, and bile acid levels. Conclusions In sum, the results of this study suggest that the complete ablation

  15. Metabolic profile at first-time schizophrenia diagnosis: a population-based cross-sectional study

    Directory of Open Access Journals (Sweden)

    Horsdal HT

    2017-02-01

    Full Text Available Henriette Thisted Horsdal,1,2 Michael Eriksen Benros,2,3 Ole Köhler-Forsberg,2–4 Jesper Krogh,3 Christiane Gasse1,2,5 1National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus BSS, Aarhus University, Aarhus, 2The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, 3Faculty of Health Sciences, Mental Health Centre Copenhagen, University of Copenhagen, Copenhagen, 4Psychosis Research Unit, Aarhus University Hospital, Risskov, 5Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark Objective: Schizophrenia and/or antipsychotic drug use are associated with metabolic abnormalities; however, knowledge regarding metabolic status and physician’s monitoring of metabolic status at first schizophrenia diagnosis is sparse. We assessed the prevalence of monitoring for metabolic blood abnormalities and characterized the metabolic profiles in people with a first-time schizophrenia diagnosis. Methods: This is a population-based cross-sectional study including all adults born in Denmark after January 1, 1955, with their first schizophrenia diagnosis between 2000 and 2012 in the Central Denmark Region. Information on metabolic parameters was obtained from a clinical laboratory information system. Associations were calculated using Wilcoxon rank-sum tests, chi-square tests, logistic regression, and Spearman’s correlation coefficients. Results: A total of 2,452 people with a first-time schizophrenia diagnosis were identified, of whom 1,040 (42.4% were monitored for metabolic abnormalities. Among those monitored, 58.4% had an abnormal lipid profile and 13.8% had an abnormal glucose profile. People who had previously filled prescription(s for antipsychotic drugs were more likely to present an abnormal lipid measure (65.7% vs 46.8%, P<0.001 and abnormal glucose profile (16.4% vs 10.1%, P=0.01. Conclusion: Metabolic abnormalities are common at first

  16. RECENT THEORIES OF PATHOGENESIS OF HEPATIC ENCEPHALOPATHY IN HEPATITIS C VIRAL INFECTION

    Directory of Open Access Journals (Sweden)

    Lidija Popović Dragonjić

    2013-01-01

    Full Text Available Hepatic encephalopathy is potentially reversible, or progressive neuropsychiatric syndrome characterized by changes in cognitive function, behavior and personality changes, and transient neurologic symptoms and characteristic electroencephalographic patterns associated with acute and chronic liver failure. For some time, there has been controversy regarding the origin of toxins responsible for the change of mental state. It was found that the occurrence of hepatic encephalopathy is responsible for multiple organ peripheral changes (intestinal changes, abnormalities of portal-systemic circulation, liver failure, loss of muscle tissue, changes in brain intracellular communication (osmotic changes, astrocytes and axonal abnormalities in communication, changes in cerebral perfusion and ammonia, endogenous benzodiazepines, gamma amino butyric acid, derivatives of methionine and false neurotransmitters. The aforementioned metabolic factors that contribute to the development of hepatic encephalopathy are not mutually exclusive and multiple factors may be present at the same time.

  17. First-Pass Meconium Samples from Healthy Term Vaginally-Delivered Neonates: An Analysis of the Microbiota.

    Directory of Open Access Journals (Sweden)

    Richard Hansen

    Full Text Available Considerable effort has been made to categorise the bacterial composition of the human gut and correlate findings with gastrointestinal disease. The infant gut has long been considered sterile at birth followed by rapid colonisation; however, this view has recently been challenged. We examined first-pass meconium from healthy term infants to confirm or refute sterility.Healthy mothers were approached following vaginal delivery. First-pass meconium stools within 24 hours of delivery were obtained from healthy, breastfed infants with tight inclusion/exclusion criteria including rejecting any known antibiotic exposure - mother within 7 days preceding delivery or infant after birth. Stools were processed in triplicate for fluorescent in-situ hybridisation (FISH with 16S rRNA-targeted probes including Bifidobacterium; Bacteroides-Prevotella; Lactobacillaceae/Enterococcaceae; Enterobacteriaceae; Streptococcaceae; Staphylococcaceae and Enterococcaceae. Absolute counts of all bacteria and proportional identification of each bacterial group were calculated. Confirmation of bacterial presence by PCR was undertaken on FISH-positive samples.The mothers of 31 newborn infants were recruited, 15 met inclusion/exclusion criteria and provided a sample within 24 hours of birth, processed in the lab within 4 hours. All babies were 37-40 weeks gestation. 8/15 were male, mean birth weight was 3.4 kg and mean maternal age was 32 years. Meconium samples from 10/15 (66% infants had evidence of bacteria based on FISH analysis. Of these, PCR was positive in only 1. Positive FISH counts ranged from 2.2-41.8 x 10(4 cells/g with a mean of 15.4 x 10(4 cells/g. (The limit of detection for automated counting is 10(6 cells/g. Cell counts were too low to allow formal diversity analysis. Amplification by PCR was not possible despite positive spiked samples demonstrating the feasibility of reaction. One baby was dominated by Enterobacteriaceae. The others contained 2-5 genera

  18. Free fatty acids increase hepatic glycogen content in obese males

    NARCIS (Netherlands)

    Allick, G.; Sprangers, F.; Weverling, G. J.; Ackermans, M. T.; Meijer, A. J.; Romijn, J. A.; Endert, E.; Bisschop, P. H.; Sauerwein, H. P.

    2004-01-01

    Obesity is associated with increased hepatic glycogen content. In vivo and in vitro data suggest that plasma free fatty acids (FFA) may cause this increase. In this study we investigated the effect of physiological plasma FFA levels on hepatic glycogen metabolism by studying intrahepatic glucose

  19. Development of polymer-bound fast-dissolving metformin buccal film with disintegrants

    OpenAIRE

    Sheela, A; Haque,Sk Ershadul

    2015-01-01

    Shaikh Ershadul Haque, Angappan Sheela Materials Chemistry Division, Centre for Nanomaterials, School of Advanced Sciences, VIT University, Vellore, India Abstract: Fast-dissolving drug-delivery systems are considered advantageous over the existing conventional oral dosage forms like tablets, capsules, and syrups for being patient friendly. Buccal films are one such system responsible for systemic drug delivery at the desired site of action by avoiding hepatic first-pass metabolism. Metform...

  20. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome

    DEFF Research Database (Denmark)

    Liaset, Bjørn; Hao, Qin; Jørgensen, Henry Johs. Høgh

    2011-01-01

    Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated by e...... metabolism can be modulated by diet and that such modulation may prevent/ameliorate the characteristic features of the metabolic syndrome.......Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated...... with induction of genes involved in energy metabolism and uncoupling, Dio2, Pgc-1a, and Ucp1, in interscapular brown adipose tissue. Interestingly, the same transcriptional pattern was found in white adipose tissue depots of both abdominal and subcutaneous origin. Accordingly, rats fed SPH-based diet exhibited...

  1. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice.

    Science.gov (United States)

    Lerat, Hervé; Imache, Mohamed Rabah; Polyte, Jacqueline; Gaudin, Aurore; Mercey, Marion; Donati, Flora; Baudesson, Camille; Higgs, Martin R; Picard, Alexandre; Magnan, Christophe; Foufelle, Fabienne; Pawlotsky, Jean-Michel

    2017-08-04

    Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Prevalence of hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis D virus and hepatitis E virus as causes of acute viral hepatitis in North India: a hospital based study.

    Science.gov (United States)

    Jain, P; Prakash, S; Gupta, S; Singh, K P; Shrivastava, S; Singh, D D; Singh, J; Jain, A

    2013-01-01

    Acute viral hepatitis (AVH) is a major public health problem and is an important cause of morbidity and mortality. The aim of the present study is to determine the prevalence of hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis D virus (HDV) and hepatitis E virus (HEV) as causes of AVH in a tertiary care hospital of North India. Blood samples and clinical information was collected from cases of AVH referred to the Grade I viral diagnostic laboratory over a 1-year period. Samples were tested for hepatitis B surface antigen, anti-HCV total antibodies, anti-HAV immunoglobulin M (IgM) and anti-HEV IgM by the enzyme-linked immunosorbent assay. PCR for nucleic acid detection of HBV and HCV was also carried out. Those positive for HBV infection were tested for anti-HDV antibodies. Fisher's exact test was used and a P hepatitis cases, 62 (23.22%) patients presented as acute hepatic failure. HAV (26.96%) was identified as the most common cause of acute hepatitis followed by HEV (17.97%), HBV (16.10%) and HCV (11.98%). Co-infections with more than one virus were present in 34 cases; HAV-HEV co-infection being the most common. HEV was the most important cause of acute hepatic failure followed by co-infection with HAV and HEV. An indication towards epidemiological shift of HAV infection from children to adults with a rise in HAV prevalence was seen. To the best of our knowledge, this is the first report indicating epidemiological shift of HAV in Uttar Pradesh.

  3. Pathogenesis and Prevention of Hepatic Steatosis

    Science.gov (United States)

    Nassir, Fatiha; Rector, R. Scott; Hammoud, Ghassan M.

    2015-01-01

    Hepatic steatosis is defined as intrahepatic fat of at least 5% of liver weight. Simple accumulation of triacylglycerols in the liver could be hepatoprotective; however, prolonged hepatic lipid storage may lead to liver metabolic dysfunction, inflammation, and advanced forms of nonalcoholic fatty liver disease. Nonalcoholic hepatic steatosis is associated with obesity, type 2 diabetes, and dyslipidemia. Several mechanisms are involved in the accumulation of intrahepatic fat, including increased flux of fatty acids to the liver, increased de novo lipogenesis, and/or reduced clearance through β-oxidation or very-low-density lipoprotein secretion. This article summarizes the mechanisms involved in the accumulation of triacylglycerols in the liver, the clinical implications, and the prevention of hepatic steatosis, with a focus on the role of mitochondrial function and lifestyle modifications. PMID:27099587

  4. Hepatic oxidative stress, genotoxicity and vascular dysfunction in lean or obese zucker rats

    DEFF Research Database (Denmark)

    Løhr, Mille; Folkmann, Janne Kjærsgaard; Sheykhzade, Majid

    2015-01-01

    Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24 an......-generated DNA damage despite substantial hepatic steatosis.......Metabolic syndrome is associated with increased risk of cardiovascular disease, which could be related to oxidative stress. Here, we investigated the associations between hepatic oxidative stress and vascular function in pressurized mesenteric arteries from lean and obese Zucker rats at 14, 24...... and 37 weeks of age. Obese Zucker rats had more hepatic fat accumulation than their lean counterparts. Nevertheless, the obese rats had unaltered age-related level of hepatic oxidatively damaged DNA in terms of formamidopyrimidine DNA glycosylase (FPG) or human oxoguanine DNA glycosylase (hOGG1...

  5. The first childhood case with coexisting Hashimoto thyroiditis, vitiligo and autoimmune hepatitis.

    Science.gov (United States)

    Keskin, Melikşah; Savaş-Erdeve, Şenay; Özbay-Hoşnut, Ferda; Kurnaz, Erdal; Çetinkaya, Semra; Aycan, Zehra

    2016-01-01

    Hashimoto thyroiditis (HT) is the most common pediatric autoimmune endocrine disorder. It results in autoimmune-mediated thyroid gland destruction and is an organ-specific, typical autoimmune disease. The presence of antithyroid antibodies and the typical pattern on ultrasonography indicate the diagnosis. It is also frequently seen together with other autoimmune disorders including type 1 insulin-dependent diabetes, celiac disease, alopecia and vitiligo. Autoimmune hepatitis (AIH) is a chronic type of liver injury with an immune etiology that can frequently cause end-stage liver disease if left untreated. Autoimmune hepatitis patients may present with hepatitis, and the laboratory tests in the absence of other etiology usually reveal a positive immune serology together with elevated immunoglobulins and abnormal liver histology. It is interesting that HT and AIH are rarely seen together although both have an autoimmune etiology. 14-year-old male who was being followed-up for vitiligo presented with symptoms of a swelling at the neck and fatigue. He was diagnosed with HT after the tests and the liver enzymes were found to be high. The patient was also diagnosed with AIH after tests revealed that the liver enzyme elevation had continued for longer than six months. The thyroid functions and liver enzymes returned to normal and the symptoms decreased after sodium L-thyroxine replacement together with steroid and azathioprine treatment. We present this case as we believe it is the first pediatric patient diagnosed with HT, AIH and vitiligo.

  6. Metabolic basis of ethanol-induced cytotoxicity in recombinant HepG2 cells: Role of nonoxidative metabolism

    International Nuclear Information System (INIS)

    Wu Hai; Cai Ping; Clemens, Dahn L.; Jerrells, Thomas R.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2006-01-01

    Chronic alcohol abuse, a major health problem, causes liver and pancreatic diseases and is known to impair hepatic alcohol dehydrogenase (ADH). Hepatic ADH-catalyzed oxidation of ethanol is a major pathway for the ethanol disposition in the body. Hepatic microsomal cytochrome P450 (CYP2E1), induced in chronic alcohol abuse, is also reported to oxidize ethanol. However, impaired hepatic ADH activity in a rat model is known to facilitate a nonoxidative metabolism resulting in formation of nonoxidative metabolites of ethanol such as fatty acid ethyl esters (FAEEs) via a nonoxidative pathway catalyzed by FAEE synthase. Therefore, the metabolic basis of ethanol-induced cytotoxicity was determined in HepG2 cells and recombinant HepG2 cells transfected with ADH (VA-13), CYP2E1 (E47) or ADH + CYP2E1 (VL-17A). Western blot analysis shows ADH deficiency in HepG2 and E47 cells, compared to ADH-overexpressed VA-13 and VL-17A cells. Attached HepG2 cells and the recombinant cells were incubated with ethanol, and nonoxidative metabolism of ethanol was determined by measuring the formation of FAEEs. Significantly higher levels of FAEEs were synthesized in HepG2 and E47 cells than in VA-13 and VL-17A cells at all concentrations of ethanol (100-800 mg%) incubated for 6 h (optimal time for the synthesis of FAEEs) in cell culture. These results suggest that ADH-catalyzed oxidative metabolism of ethanol is the major mechanism of its disposition, regardless of CYP2E1 overexpression. On the other hand, diminished ADH activity facilitates nonoxidative metabolism of ethanol to FAEEs as found in E47 cells, regardless of CYP2E1 overexpression. Therefore, CYP2E1-mediated oxidation of ethanol could be a minor mechanism of ethanol disposition. Further studies conducted only in HepG2 and VA-13 cells showed lower ethanol disposition and ATP concentration and higher accumulation of neutral lipids and cytotoxicity (apoptosis) in HepG2 cells than in VA-13 cells. The apoptosis observed in HepG2 vs

  7. Message passing for quantified Boolean formulas

    International Nuclear Information System (INIS)

    Zhang, Pan; Ramezanpour, Abolfazl; Zecchina, Riccardo; Zdeborová, Lenka

    2012-01-01

    We introduce two types of message passing algorithms for quantified Boolean formulas (QBF). The first type is a message passing based heuristics that can prove unsatisfiability of the QBF by assigning the universal variables in such a way that the remaining formula is unsatisfiable. In the second type, we use message passing to guide branching heuristics of a Davis–Putnam–Logemann–Loveland (DPLL) complete solver. Numerical experiments show that on random QBFs our branching heuristics give robust exponential efficiency gain with respect to state-of-the-art solvers. We also manage to solve some previously unsolved benchmarks from the QBFLIB library. Apart from this, our study sheds light on using message passing in small systems and as subroutines in complete solvers

  8. Use of deuterium labelled glucose in evaluating the pathway of hepatic glycogen synthesis

    International Nuclear Information System (INIS)

    Goodman, M.N.; Masuoka, L.K.; deRopp, J.S.; Jones, A.D.

    1989-01-01

    Deuterium labelled glucose has been used to study the pathway of hepatic glycogen synthesis during the fasted-refed transition in rats. Deuterium enrichment of liver glycogen was determined using nuclear magnetic resonance as well as mass spectroscopy. Sixty minutes after oral administration of deuterated glucose to fasted rats, the portal vein blood was fully enriched with deuterated glucose. Despite this, less than half of the glucose molecules incorporated into liver glycogen contained deuterium. The loss of deuterium label from glucose is consistent with hepatic glycogen synthesis by an indirect pathway requiring prior metabolism of glucose. The use of deuterium labelled glucose may prove to be a useful probe to study hepatic glycogen metabolism. Its use may also find application in the study of liver glycogen metabolism in humans by a noninvasive means

  9. Nanomechanical characterization by double-pass force-distance mapping

    Energy Technology Data Exchange (ETDEWEB)

    Dagdas, Yavuz S; Tekinay, Ayse B; Guler, Mustafa O; Dana, Aykutlu [UNAM Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Necip Aslan, M, E-mail: aykutlu@unam.bilkent.edu.tr [Department of Physics, Istanbul Technical University, Istanbul (Turkey)

    2011-07-22

    We demonstrate high speed force-distance mapping using a double-pass scheme. The topography is measured in tapping mode in the first pass and this information is used in the second pass to move the tip over the sample. In the second pass, the cantilever dither signal is turned off and the sample is vibrated. Rapid (few kHz frequency) force-distance curves can be recorded with small peak interaction force, and can be processed into an image. Such a double-pass measurement eliminates the need for feedback during force-distance measurements. The method is demonstrated on self-assembled peptidic nanofibers.

  10. Nanomechanical characterization by double-pass force-distance mapping

    International Nuclear Information System (INIS)

    Dagdas, Yavuz S; Tekinay, Ayse B; Guler, Mustafa O; Dana, Aykutlu; Necip Aslan, M

    2011-01-01

    We demonstrate high speed force-distance mapping using a double-pass scheme. The topography is measured in tapping mode in the first pass and this information is used in the second pass to move the tip over the sample. In the second pass, the cantilever dither signal is turned off and the sample is vibrated. Rapid (few kHz frequency) force-distance curves can be recorded with small peak interaction force, and can be processed into an image. Such a double-pass measurement eliminates the need for feedback during force-distance measurements. The method is demonstrated on self-assembled peptidic nanofibers.

  11. Postprandial regulation of hepatic microRNAs predicted to target the insulin pathway in rainbow trout.

    Directory of Open Access Journals (Sweden)

    Jan A Mennigen

    Full Text Available Rainbow trout are carnivorous fish and poor metabolizers of carbohydrates, which established this species as a model organism to study the comparative physiology of insulin. Following the recent characterisation of key roles of several miRNAs in the insulin action on hepatic intermediary metabolism in mammalian models, we investigated the hypothesis that hepatic miRNA expression is postprandially regulated in the rainbow trout and temporally coordinated in the context of insulin-mediated regulation of metabolic gene expression in the liver. To address this hypothesis, we used a time-course experiment in which rainbow trout were fed a commercial diet after short-term fasting. We investigated hepatic miRNA expression, activation of the insulin pathway, and insulin regulated metabolic target genes at several time points. Several miRNAs which negatively regulate hepatic insulin signaling in mammalian model organisms were transiently increased 4 h after the meal, consistent with a potential role in acute postprandial negative feed-back regulation of the insulin pathway and attenuation of gluconeogenic gene expression. We equally observed a transient increase in omy- miRNA-33 and omy-miRNA-122b 4 h after feeding, whose homologues have potent lipogenic roles in the liver of mammalian model systems. A concurrent increase in the activity of the hepatic insulin signaling pathway and the expression of lipogenic genes (srebp1c, fas, acly was equally observed, while lipolytic gene expression (cpt1a and cpt1b decreased significantly 4 h after the meal. This suggests lipogenic roles of omy-miRNA-33 and omy-miRNA-122b may be conserved between rainbow trout and mammals and that these miRNAs may furthermore contribute to acute postprandial regulation of de novo hepatic lipid synthesis in rainbow trout. These findings provide a framework for future research of miRNA regulation of hepatic metabolism in trout and will help to further elucidate the metabolic

  12. NFIL3 is a negative regulator of hepatic gluconeogenesis.

    Science.gov (United States)

    Kang, Geon; Han, Hye-Sook; Koo, Seung-Hoi

    2017-12-01

    Nuclear factor interleukin-3 regulated (NFIL3) has been known as an important transcriptional regulator of the development and the differentiation of immune cells. Although expression of NFIL3 is regulated by nutritional cues in the liver, the role of NFIL3 in the glucose metabolism has not been extensively studied. Thus, we wanted to explore the potential role of NFIL3 in the control of hepatic glucose metabolism. Mouse primary hepatocytes were cultured to perform western blot analysis, Q-PCR and chromatin immunoprecipitation assay. 293T cells were cultured to perform luciferase assay. Male C57BL/6 mice (fed a normal chow diet or high fat diet for 27weeks) as well as ob/ob mice were used for experiments with adenoviral delivery. We observed that NFIL3 reduced glucose production in hepatocytes by reducing expression of gluconeogenic gene transcription. The repression by NFIL3 required its basic leucine zipper DNA binding domain, and it competed with CREB onto the binding of cAMP response element in the gluconeogenic promoters. The protein levels of hepatic NFIL3 were decreased in the mouse models of genetic- and diet-induced obesity and insulin resistance, and ectopic expression of NFIL3 in the livers of insulin resistant mice ameliorated hyperglycemia and glucose intolerance, with concomitant reduction in expression of hepatic gluconeogenic genes. Finally, we witnessed that knockdown of NFIL3 in the livers of normal chow-fed mice promoted elevations in the glucose levels and expression of hepatic gluconeogenic genes. In this study, we showed that NFIL3 functions as an important regulator of glucose homeostasis in the liver by limiting CREB-mediated hepatic gluconeogenesis. Thus, enhancement of hepatic NFIL3 activity in insulin resistant state could be potentially beneficial in relieving glycemic symptoms in the metabolic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Enantioselective metabolism of hydroxychloroquine employing rats and mice hepatic microsomes

    Directory of Open Access Journals (Sweden)

    Carmem Dickow Cardoso

    2009-12-01

    Full Text Available Hydroxychloroquine (HCQ is an important chiral drug used, mainly, in the treatment of rheumatoid arthritis, systemic lupus erythematosus and malaria, and whose pharmacokinetic and pharmacodynamic properties look to be stereoselective. Respecting the pharmacokinetic properties, some previous studies indicate that the stereoselectivity could express itself in the processes of metabolism, distribution and excretion and that the stereoselective metabolism looks to be a function of the studied species. So, the in vitro metabolism of HCQ was investigated using hepatic microsomes of rats and mice. The microsomal fraction of livers of Wistar rats and Balb-C mice was separated by ultracentrifugation and 500 μL were incubated for 180 minutes with 10 μL of racemic HCQ 1000 μg mL-1. Two stereospecific analytical methods, high performance liquid chromatography (HPLC and capillary electrophoresis (CE, were used to separate and quantify the formed metabolites. It was verified that the main formed metabolite is the (--(R-desethyl hydroxychloroquine for both animal species.A hidroxicloroquina (HCQ é um importante fármaco quiral usado, principalmente, no tratamento de artrite reumatóide, lupus eritematoso sistêmico e malária e cujas propriedades farmacocinéticas e farmacodinâmicas parecem ser estereosseletivas. Em relação às propriedades farmacocinéticas, alguns estudos prévios indicam que a estereosseletividade pode se expressar nos processos de metabolismo, distribuição e excreção e que o metabolismo estereosseletivo parece ser função da espécie estudada. Sendo assim, o metabolismo in vitro da HCQ foi investigado usando microssomas de fígado de ratos e de camundongos. A fração microssômica de fígados de ratos Wistar e de camundongos Balb-C foi isolada por ultracentrifugação e 500 μL foram incubados por 180 minutos com 10 μL de HCQ racêmica 1000 μg mL-1. Dois métodos analíticos estereoespecíficos, por cromatografia líquida de

  14. Effect of thiabendazole on some rat hepatic xenobiotic metabolising enzymes

    NARCIS (Netherlands)

    Price, R.J.; Scott, M.P.; Walters, D.G.; Stierum, R.H.; Groten, J.P.; Meredith, C.; Lake, B.G.

    2004-01-01

    The effect of thiabendazole (TB) on some rat hepatic xenobiotic metabolising enzymes has been investigated. Male Sprague-Dawley rats were fed control diet or diets containing 102-5188 ppm TB for 28 days. As a positive control for induction of hepatic xenobiotic metabolism, rats were also fed diets

  15. First Report of Hepatitis E Virus Infection in Sika Deer in China

    Directory of Open Access Journals (Sweden)

    Xiao-Xuan Zhang

    2015-01-01

    Full Text Available Hepatitis E virus (HEV, a single stranded RNA, nonenveloped virus, belongs to the genus Hepevirus, in the family of Hepeviridae. In this study, 46 (5.43% out of the 847 serum samples from sika deer (Cervus nippon were detected as seropositive with hepatitis E virus (HEV by enzyme linked immunosorbent assay (ELISA. These samples were collected from Inner Mongolia and Jilin and Heilongjiang provinces in China, between October 2012 and October 2013. Seroprevalence of HEV infection in male and female deer was 4.82% and 6.52%, respectively. HEV seroprevalence in sika deer from different geographical locations varied from 3.13% to 6.73%. There was no significant difference in HEV seroprevalence between sika deer collected in autumn (5.65% and winter (4.85%. This is the first report of HEV seroprevalence in sika deer in China, which will provide foundation information for estimating the effectiveness of future measures to control HEV infection in sika deer in China and assessing the potential risk of humans infected with HEV after consumption of undercooked or raw meat from infected sika deer.

  16. First report of hepatitis E virus infection in sika deer in China.

    Science.gov (United States)

    Zhang, Xiao-Xuan; Qin, Si-Yuan; Zhang, Yuan; Meng, Qing-Feng; Jiang, Jing; Yang, Gui-Lian; Zhao, Quan; Zhu, Xing-Quan

    2015-01-01

    Hepatitis E virus (HEV), a single stranded RNA, nonenveloped virus, belongs to the genus Hepevirus, in the family of Hepeviridae. In this study, 46 (5.43%) out of the 847 serum samples from sika deer (Cervus nippon) were detected as seropositive with hepatitis E virus (HEV) by enzyme linked immunosorbent assay (ELISA). These samples were collected from Inner Mongolia and Jilin and Heilongjiang provinces in China, between October 2012 and October 2013. Seroprevalence of HEV infection in male and female deer was 4.82% and 6.52%, respectively. HEV seroprevalence in sika deer from different geographical locations varied from 3.13% to 6.73%. There was no significant difference in HEV seroprevalence between sika deer collected in autumn (5.65%) and winter (4.85%). This is the first report of HEV seroprevalence in sika deer in China, which will provide foundation information for estimating the effectiveness of future measures to control HEV infection in sika deer in China and assessing the potential risk of humans infected with HEV after consumption of undercooked or raw meat from infected sika deer.

  17. Regorafenib induced severe toxic hepatitis: characterization and discussion.

    Science.gov (United States)

    Sacré, Anne; Lanthier, Nicolas; Dano, Hélène; Aydin, Selda; Leggenhager, Daniela; Weber, Achim; Dekairelle, Anne-France; De Cuyper, Astrid; Gala, Jean-Luc; Humblet, Yves; Sempoux, Christine; Van den Eynde, Marc

    2016-11-01

    Regorafenib is the first small-molecule multikinase inhibitor which showed survival benefits in pretreated metastatic colorectal cancer (mCRC) patients. Besides classical adverse events of this drug class, hepatotoxicity has been described as a frequent side effect. Patients with refractory mCRC treated with regorafenib in our institution were reviewed. Severe treatment-related liver toxicity was investigated. Clinical history, liver histology and genetic assessment (sequence analysis) of cytochrome P3A4 (CYP3A4) and uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) involved in regorafenib metabolization were here reported for patients with severe hepatotoxicity. Among the 93 reviewed patients, 3 presented severe and icteric toxic hepatitis which was fatal for 1 patient. Histopathological liver lesions were different depending on the onset of hepatotoxicity (acute or subacute): acinar zone 3 necrosis in case of acute symptoms, and portal tract inflammation with porto-central bridging and fibrosis in the delayed presentation. None of the patients had CYP3A4 gene mutations. Similar polymorphisms in UGT1A9 gene promoter region (UGT1A9 variant -118T 9>10 [rs3832043]) were found in both patients who presented acute hepatitis. Moreover, it appears retrospectively that both of them already experienced significant toxicity under irinotecan-based chemotherapy. This is the first report of severe hepatotoxicity with available liver histology and genetic assessment of enzymes involved in regorafenib metabolization. This report also reminds the importance of close liver tests monitoring during regorafenib treatment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Automated processing of first-pass radionuclide angiocardiography by factor analysis of dynamic structures

    Energy Technology Data Exchange (ETDEWEB)

    Cavailloles, F.; Valette, H.; Hebert, J.-L.; Bazin, J.-P.; Di Paola, R.; Capderou, A.

    1987-05-01

    A method for automatic processing of cardiac first-pass radionuclide study is presented. This technique, factor analysis of dynamic structures (FADS) provides an automatic separation of anatomical structures according to their different temporal behaviour, even if they are superimposed. FADS has been applied to 76 studies. A description of factor patterns obtained in various pathological categories is presented. FADS provides easy diagnosis of shunts and tricuspid insufficiency. Quantitative information derived from the factors (cardiac output and mean transit time) were compared to those obtained by the region of interest method. Using FADS, a higher correlation with cardiac catheterization was found for cardiac output calculation. Thus compared to the ROI method, FADS presents obvious advantages: a good separation of overlapping cardiac chambers is obtained; this operator independent method provides more objective and reproducible results.

  19. Automated processing of first-pass radionuclide angiocardiography by factor analysis of dynamic structures

    International Nuclear Information System (INIS)

    Cavailloles, F.; Valette, H.; Hebert, J.-L.; Bazin, J.-P.; Di Paola, R.; Capderou, A.

    1987-01-01

    A method for automatic processing of cardiac first-pass radionuclide study is presented. This technique, factor analysis of dynamic structures (FADS) provides an automatic separation of anatomical structures according to their different temporal behaviour, even if they are superimposed. FADS has been applied to 76 studies. A description of factor patterns obtained in various pathological categories is presented. FADS provides easy diagnosis of shunts and tricuspid insufficiency. Quantitative information derived from the factors (cardiac output and mean transit time) were compared to those obtained by the region of interest method. Using FADS, a higher correlation with cardiac catheterization was found for cardiac output calculation. Thus compared to the ROI method, FADS presents obvious advantages: a good separation of overlapping cardiac chambers is obtained; this operator independent method provides more objective and reproducible results. (author)

  20. [Meeting Report: 20 years after the First International Symposium on hepatitis C virus and related viruses].

    Science.gov (United States)

    Carnero, Elena; Díez, Juana; Fortes, Purificación; Gastaminza, Pablo; Majano, Pedro; Martínez, Miguel Angel; Pérez-del-Pulgar, Sofía; Quer, Josep; López-Labrador, F Xavier

    2013-12-01

    The hepatitis C virus (HCV) was discovered by the team of Michael Houghton at Chiron Corporation in 1989 and the first symposium on HCV and related viruses was held in Venice, Italy, shortly after, in 1992. This conference was organized to advance knowledge on what then was a mysterious virus responsible for most cases of «non-A, non-B» hepatitis. During the 20 years since the first conference, the scientific quality of presentations has steadily increased, together with the tremendous advances in basic and clinical research and epidemiology. What started as a small conference on a new virus, about which there were very few data, has today become a first-in-class congress: a meeting place for basic researchers, clinicians, epidemiologists, public health experts, and industry members to present the most important advances and their application to HCV treatment and control. The nineteenth HCV symposium was held in September 2012, once again in Venice. Copyright © 2013 Elsevier España, S.L. and AEEH y AEG. All rights reserved.

  1. Effect of burn and first-pass splanchnic leucine extraction on protein kinetics in rats

    International Nuclear Information System (INIS)

    Karlstad, M.D.; DeMichele, S.J.; Istfan, N.; Blackburn, G.L.; Bistrian, B.R.

    1988-01-01

    The effects of burn and first-pass splanchnic leucine extraction (FPE) on protein kinetics and energy expenditure were assessed by measuring O 2 consumption, CO 2 production, nitrogen balance, leucine kinetics, and tissue fractional protein synthetic rates (FSR-%/day) in enterally fed rats. Anesthetized male rats (200 g) were scalded on their dorsum with boiling water (25-30% body surface area) and enterally fed isovolemic diets that provided 60 kcal/day and 2.4 g of amino acids/day for 3 days. Controls were not burned. An intravenous or intragastric infusion of L-[1- 14 C]leucine was used to assess protein kinetics on day 3. FPE was taken as the ratio of intragastric to intravenous plasma leucine specific activity. There was a 69% reduction in cumulative nitrogen balance (P less than 0.001) and a 17-19% increase in leucine oxidation (P less than 0.05) and total energy expenditure (P less than 0.01) in burned rats. A 15% decrease in plasma leucine clearance (P less than 0.05) was accompanied by a 20% increase in plasma [leucine] (P less than 0.01) in burned rats. Burn decreased rectus muscle FSR from 5.0 +/- 0.4 to 3.5 +/- 0.5 (P less than 0.05) and increased liver FSR from 19.0 +/- 0.5 to 39.2 +/- 3.4 (P less than 0.01). First pass extraction of dietary leucine by the splanchnic bed was 8% in controls and 26% in burned rats. Leucine kinetics corrected for FPE showed increased protein degradation with burn that was not evident without FPE correction. This hypermetabolic burn model can be useful in the design of enteral diets that optimize rates of protein synthesis and degradation

  2. Hepatic and extra-hepatic metabolism of neurotensin

    International Nuclear Information System (INIS)

    Shulkes, A.; Brook, C.W.; Sewell, R.B.; Smallwood, R.A.

    1986-01-01

    Neurotensin (NT), released into the portal circulation from N cells in the ileum, is detected in the systemic circulation primarily as N-terminal immunoreactivity (N-NT), although it is the C-terminal end which is essential for NT bioactivity. The authors have examined the potential role of the liver in NT clearance using the isolated perfused rat liver model (IPRL) in a recycling system. With N-terminal and C-terminal directed radioimmunoassays and high performance liquid chromatography (HPLC), they demonstrated rapid metabolism of intact NT to inactive N-terminal fragments. C-terminal immunoreactivity (C-NT) elimination was rapid (t1/2 of 20.4 +/- 6.0 min) and significantly faster than for N-NT elimination (t1/2 of 82.7 +/- 7 min). HPLC demonstrated that C-NT was in the form of intact NT (no free C-terminal fragments) whereas N-NT was intact NT initially and predominantly N terminal fragments at 60 min. To assess whether this NT disappearance might be due to metabolism within the perfusate itself by a peptidase released from liver, the authors further incubated NT in perfusate previously circulated through liver. A rapid and progressive breakdown of intact NT to N-terminal fragments was again shown. These data demonstrate that NT is efficiently degraded to inactive N-terminal fragments by the IPRL and that a substantial proportion of this attributable to release of a peptidase by the liver into the circulation

  3. Isoflavonoid-based bone-sparing treatments exert a low activity on reproductive organs and on hepatic metabolism of estradiol in ovariectomized rats

    International Nuclear Information System (INIS)

    Phrakonkham, Pascal; Chevalier, Joelle; Desmetz, Catherine; Pinnert, Marie-France; Berges, Raymond; Jover, Emmanuel; Davicco, Marie-Jeanne; Bennetau-Pelissero, Catherine; Coxam, Veronique; Artur, Yves; Canivenc-Lavier, Marie-Chantal

    2007-01-01

    The use of soy isoflavones is a potential alternative to hormone replacement therapy in post-menopausal bone-loss prevention. Nevertheless, phytoestrogens can target other organs and may disrupt cell proliferation, or could modify endogenous steroid hormone metabolism. These mechanisms could be linked to an increased risk of developing cancer. We therefore studied the possible side effects of such treatments in an experimental model of menopause. Forty adult female Wistar rats were ovariectomized and fed with a genistein-, daidzein- or equol-supplemented diet at bone-sparing levels (10 mg/kg BW/day) for 3 months. The estrogenic effects were assessed by histological and molecular analyses on reproductive organs. The impact on the oxidative metabolism of estradiol and on associated cytochrome P450 (CYP) activities was evaluated in liver microsomes. The relative wet weights of both the uterus and the vagina were increased in the equol group, but no significant changes in proliferating cell nuclear antigen or hormone receptor mRNA expression were noticed. In contrast, genistein and daidzein did not induce uterotrophy but caused an overexpression of estrogen receptor α mRNA which could correspond to a long-lasting effect of physiological concentrations of estrogens. The hepatic metabolism of estradiol was influenced by daidzein which increased the synthesis of putative mutagenic derivatives. At the same time, genistein favored estrogen 2-hydroxylation, and equol decreased 4-hydroxyestrogen production. Surprisingly, no significant alteration in hepatic CYP activities was detected. Taken together, these results demonstrate that isoflavonoid-based bone-sparing treatments are able to cause side effects on other estrogen-sensitive target organs when given in the long-term

  4. Functional proteomic analysis of corticosteroid pharmacodynamics in rat liver: Relationship to hepatic stress, signaling, energy regulation, and drug metabolism.

    Science.gov (United States)

    Ayyar, Vivaswath S; Almon, Richard R; DuBois, Debra C; Sukumaran, Siddharth; Qu, Jun; Jusko, William J

    2017-05-08

    Corticosteroids (CS) are anti-inflammatory agents that cause extensive pharmacogenomic and proteomic changes in multiple tissues. An understanding of the proteome-wide effects of CS in liver and its relationships to altered hepatic and systemic physiology remains incomplete. Here, we report the application of a functional pharmacoproteomic approach to gain integrated insight into the complex nature of CS responses in liver in vivo. An in-depth functional analysis was performed using rich pharmacodynamic (temporal-based) proteomic data measured over 66h in rat liver following a single dose of methylprednisolone (MPL). Data mining identified 451 differentially regulated proteins. These proteins were analyzed on the basis of temporal regulation, cellular localization, and literature-mined functional information. Of the 451 proteins, 378 were clustered into six functional groups based on major clinically-relevant effects of CS in liver. MPL-responsive proteins were highly localized in the mitochondria (20%) and cytosol (24%). Interestingly, several proteins were related to hepatic stress and signaling processes, which appear to be involved in secondary signaling cascades and in protecting the liver from CS-induced oxidative damage. Consistent with known adverse metabolic effects of CS, several rate-controlling enzymes involved in amino acid metabolism, gluconeogenesis, and fatty-acid metabolism were altered by MPL. In addition, proteins involved in the metabolism of endogenous compounds, xenobiotics, and therapeutic drugs including cytochrome P450 and Phase-II enzymes were differentially regulated. Proteins related to the inflammatory acute-phase response were up-regulated in response to MPL. Functionally-similar proteins showed large diversity in their temporal profiles, indicating complex mechanisms of regulation by CS. Clinical use of corticosteroid (CS) therapy is frequent and chronic. However, current knowledge on the proteome-level effects of CS in liver and

  5. Application of an in vivo hepatic triacylglycerol production method in the setting of a high fat diet in mice

    Science.gov (United States)

    High fat (HF) diets typically promote diet-induced obesity (DIO) and metabolic dysfunction (i.e., insulin resistance, hypertriglyceridemia, and hepatic steatosis). Changes in TAG metabolism contribute to the development of hepatic steatosis including changes in production rate from de novo lipogenes...

  6. Auto-immune hepatitis following delivery.

    Science.gov (United States)

    Saini, Vandana; Gupta, Mamta; Mishra, S K

    2013-05-01

    Auto-immune hepatitis first presenting in the early postpartum period is rare. Immunosuppressive effects of pregnancy result in delayed manifestation of auto-immune hepatitis, and in established cases, the spontaneous improvements are there. Auto-immune hepatitis should be considered in the differential diagnosis of liver dysfunction first presenting in the early postpartum period. A case of postpartum hepatitis of auto-immune aetiology is being presented here. It is disease of unknown aetiology, characterised by inflammation of liver (as evidenced by raised serum transaminases, presence of interface hepatitis on histological examination), hypergammaglobulinaemia (> 1.5 times normal), presence of auto-antibodies [(antinuclear antibodies (ANA)], smooth muscle antibody (SMA) and antibody to liver-kidney microsome type 1 (LKM1) in the absence of viral markers ie, hepatitis B (HBsAg) and C (AntiHCV) and excellent response to corticosteroid therapy.

  7. IDH2 Deficiency Aggravates Fructose-Induced NAFLD by Modulating Hepatic Fatty Acid Metabolism and Activating Inflammatory Signaling in Female Mice

    Directory of Open Access Journals (Sweden)

    Jeong Hoon Pan

    2018-05-01

    Full Text Available Fructose is a strong risk factor for non-alcoholic fatty liver disease (NAFLD, resulting from the disruption of redox systems by excessive reactive oxygen species production in the liver cells. Of note, recent epidemiological studies indicated that women are more prone to developing metabolic syndrome in response to fructose-sweetened beverages. Hence, we examined whether disruption of the redox system through a deletion of NADPH supplying mitochondrial enzyme, NADP+-dependent isocitrate dehydrogenase (IDH2, exacerbates fructose-induced NAFLD conditions in C57BL/6 female mice. Wild-type (WT and IDH2 knockout (KO mice were treated with either water or 34% fructose water over six weeks. NAFLD phenotypes and key proteins and mRNAs involved in the inflammatory pathway (e.g., NF-κB p65 and IL-1β were assessed. Hepatic lipid accumulation was significantly increased in IDH2 KO mice fed fructose compared to the WT counterpart. Neutrophil infiltration was observed only in IDH2 KO mice fed fructose. Furthermore, phosphorylation of NF-κB p65 and expression of IL-1β was remarkably upregulated in IDH2 KO mice fed fructose, and expression of IκBα was decreased by fructose treatment in both WT and IDH2 KO groups. For the first time, we report our novel findings that IDH2 KO female mice may be more susceptible to fructose-induced NAFLD and the associated inflammatory response, suggesting a mechanistic role of IDH2 in metabolic diseases.

  8. Effect on oxidative stress, hepatic chemical metabolizing parameters, and genotoxic damage of mad honey intake in rats.

    Science.gov (United States)

    Eraslan, G; Kanbur, M; Karabacak, M; Arslan, K; Siliğ, Y; Soyer Sarica, Z; Tekeli, M Y; Taş, A

    2017-01-01

    A total of 66 male Wistar rats were used and six groups (control: 10 animals and experimental: 12 animals) were formed. While a separate control group was established for each study period, mad honey application to the animals in the experimental group was carried out with a single dose (12.5 g kg -1 body weight (b.w.); acute stage), at a dose of 7.5 g kg -1 b.w. for 21 days (subacute stage), and at a dose of 5 g kg -1 b.w. for 60 days (chronic stage). Tissue and blood oxidative stress markers (malondialdehyde (MDA), nitric oxide (NO), 4-hydroxynonenal (HNE), superoxide dismutase, catalase, glutathione (GSH) peroxidase, and glucose-6-phosphate dehydrogenase), hepatic chemical metabolizing parameters in the liver (cytochrome P450 2E1, nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase, nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome c reductase (CYTC), GSH S-transferase (GST), and GSH), and micronucleus and comet test in some samples were examined. Findings from the study showed that single and repeated doses given over the period increased MDA, NO, and HNE levels while decreasing/increasing tissue and blood antioxidant enzyme activities. From hepatic chemical metabolizing parameters, GST activity increased in the subacute and chronic stages and CYTC activity increased in the acute period, whereas GSH level decreased in the subacute stage. Changes in tail and head intensities were found in most of the comet results. Mad honey caused oxidative stresses for each exposure period and made some significant changes on the comet test in certain periods for some samples obtained. In other words, according to the available research results obtained, careless consumption of mad honey for different medical purposes is not appropriate.

  9. Magnesium isoglycyrrhizinate blocks fructose-induced hepatic NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder.

    Science.gov (United States)

    Zhao, Xiao-Juan; Yang, Yan-Zi; Zheng, Yan-Jing; Wang, Shan-Chun; Gu, Hong-Mei; Pan, Ying; Wang, Shui-Juan; Xu, Hong-Jiang; Kong, Ling-Dong

    2017-08-15

    Magnesium isoglycyrrhizinate as a hepatoprotective agent possesses immune modulation and anti-inflammation, and treats liver diseases. But its effects on immunological-inflammatory and metabolic profiles for metabolic syndrome with liver injury and underlying potential mechanisms are not fully understood. In this study, magnesium isoglycyrrhizinate alleviated liver inflammation and lipid accumulation in fructose-fed rats with metabolic syndrome. It also suppressed hepatic inflammatory signaling activation by reducing protein levels of phosphorylation of nuclear factor-kappa B p65 (p-NF-κB p65), inhibitor of nuclear factor kappa-B kinase α/β (p-IKKα/β) and inhibitor of NF-κB α (p-IκBα) as well as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and Caspase-1 in rats, being consistent with its reduction of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 levels. Furthermore, magnesium isoglycyrrhizinate modulated lipid metabolism-related genes characterized by up-regulating peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase-1 (CPT-1), and down-regulating sensor for fatty acids to control-1 (SREBP-1) and stearoyl-CoA desaturase 1 (SCD-1) in the liver of fructose-fed rats, resulting in the reduction of triglyceride and total cholesterol levels. These effective actions were further confirmed in fructose-exposed BRL-3A and HepG2 cells. The molecular mechanisms underpinning these observations suggest that magnesium isoglycyrrhizinate may inhibit NF-κB/NLRP3 inflammasome activation to reduce immunological-inflammatory response, which in turn may prevent liver lipid metabolic disorder and accumulation under high fructose condition. Thus, blockade of NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder by magnesium isoglycyrrhizinate may be the potential therapeutic approach for improving fructose-induced liver injury with

  10. Trends in mortality burden of hepatocellular carcinoma, cirrhosis, and fulminant hepatitis before and after roll-out of the first pilot vaccination program against hepatitis B in Peru: An analysis of death certificate data.

    Science.gov (United States)

    Ramírez-Soto, Max Carlos; Ortega-Cáceres, Gutia; Cabezas, César

    2017-07-05

    The first pilot vaccination program against hepatitis B in Peru was implemented in the hyperendemic Abancay province in 1991. To assess the impact of vaccination on mortality rates of hepatitis B-related hepatocellular carcinoma (HCC), cirrhosis, and fulminant hepatitis, we compared mortality trends before (1960-1990) and after (1991-2012) roll-out of the vaccination program, using death certificate data from the Municipalidad Provincial de Abancay. Our results showed that, following program roll-out, the overall mortality rates (per 100,000 population) decreased from 9.20 to 3.30 for HCC (95% CI, 1.28-10.48%; P<0.014), from 16.0 to 6.3 for cirrhosis (95% CI, 3.20-16.10%; P<0.004), and from 34.80 to 1.28 for fulminant hepatitis (95% CI, 16.70-50.30%; P<0.001). The absolute number of deaths attributable to cirrhosis (10 [8.80%] vs. 0.0%; P<0.001) and fulminant hepatitis (83 [40.0%] vs. 5 [19.20%]; P<0.026) decreased in 5-14-year-old children following vaccination. These findings showed reduced mortality rates of hepatitis B-related liver diseases, particularly cirrhosis and fulminant hepatitis in children under 15years, following implementation of the vaccination program against hepatitis B. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The sweet path to metabolic demise: fructose and lipid synthesis

    Science.gov (United States)

    Herman, Mark A.; Samuel, Varman T.

    2016-01-01

    Epidemiological studies link fructose consumption with metabolic disease, an association attributable in part to fructose mediated lipogenesis. The mechanisms governing fructose-induced lipogenesis and disease remain debated. Acutely, fructose increases de novo lipogenesis through the efficient and uninhibited action of Ketohexokinase and Aldolase B, which yields substrates for fatty-acid synthesis. Chronic fructose consumption further enhances the capacity for hepatic fructose metabolism via activation of several key transcription factors (i.e. SREBP1c and ChREBP), which augment expression of lipogenic enzymes, increasing lipogenesis, further compounding hypertriglyceridemia, and hepatic steatosis. Hepatic insulin resistance develops from diacylglycerol-PKCε mediated impairment of insulin signaling and possibly additional mechanisms. Initiatives that decrease fructose consumption and therapies that block fructose mediated lipogenesis are needed to avert future metabolic pandemics. PMID:27387598

  12. Alternative Cell Sources to Adult Hepatocytes for Hepatic Cell Therapy.

    Science.gov (United States)

    Pareja, Eugenia; Gómez-Lechón, María José; Tolosa, Laia

    2017-01-01

    Adult hepatocyte transplantation is limited by scarce availability of suitable donor liver tissue for hepatocyte isolation. New cell-based therapies are being developed to supplement whole-organ liver transplantation, to reduce the waiting-list mortality rate, and to obtain more sustained and significant metabolic correction. Fetal livers and unsuitable neonatal livers for organ transplantation have been proposed as potential useful sources of hepatic cells for cell therapy. However, the major challenge is to use alternative cell sources for transplantation that can be derived from reproducible methods. Different types of stem cells with hepatic differentiation potential are eligible for generating large numbers of functional hepatocytes for liver cell therapy to treat degenerative disorders, inborn hepatic metabolic diseases, and organ failure. Clinical trials are designed to fully establish the safety profile of such therapies and to define target patient groups and standardized protocols.

  13. Hepatitis C, innate immunity and alcohol: friends or foes?

    Science.gov (United States)

    Osna, Natalia A; Ganesan, Murali; Kharbanda, Kusum K

    2015-02-05

    Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling-a crucial point for activation of anti-viral genes to protect cells from virus-and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  14. Hepatitis C, Innate Immunity and Alcohol: Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Natalia A. Osna

    2015-02-01

    Full Text Available Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling—a crucial point for activation of anti-viral genes to protect cells from virus—and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  15. Bezafibrate ameliorates diabetes via reduced steatosis and improved hepatic insulin sensitivity in diabetic TallyHo mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-03-01

    Full Text Available Objective: Recently, we have shown that Bezafibrate (BEZ, the pan-PPAR (peroxisome proliferator-activated receptor activator, ameliorated diabetes in insulin deficient streptozotocin treated diabetic mice. In order to study whether BEZ can also improve glucose metabolism in a mouse model for fatty liver and type 2 diabetes, the drug was applied to TallyHo mice. Methods: TallyHo mice were divided into an early (ED and late (LD diabetes progression group and both groups were treated with 0.5% BEZ (BEZ group or standard diet (SD group for 8 weeks. We analyzed plasma parameters, pancreatic beta-cell morphology, and mass as well as glucose metabolism of the BEZ-treated and control mice. Furthermore, liver fat content and composition as well as hepatic gluconeogenesis and mitochondrial mass were determined. Results: Plasma lipid and glucose levels were markedly reduced upon BEZ treatment, which was accompanied by elevated insulin sensitivity index as well as glucose tolerance, respectively. BEZ increased islet area in the pancreas. Furthermore, BEZ treatment improved energy expenditure and metabolic flexibility. In the liver, BEZ ameliorated steatosis, modified lipid composition and increased mitochondrial mass, which was accompanied by reduced hepatic gluconeogenesis. Conclusions: Our data showed that BEZ ameliorates diabetes probably via reduced steatosis, enhanced hepatic mitochondrial mass, improved metabolic flexibility and elevated hepatic insulin sensitivity in TallyHo mice, suggesting that BEZ treatment could be beneficial for patients with NAFLD and impaired glucose metabolism. Keywords: Bezafibrate, Glucose metabolism, Insulin resistance, Lipid metabolism, NAFLD

  16. Visualization of a Small Ventricular Septal Defect at First-pass Contrast-enhanced Cardiac Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Francesco Secchi

    2013-01-01

    Full Text Available Ventricular septal defect (VSD is a congenital heart disease that accounts for up to 40% of all congenital cardiac malformations. VSD is a connection between right and left ventricle, through the ventricular septum. Echocardiography and magnetic resonance imaging (MRI help identify this entity. This case presents a 12-year-old male diagnosed with a small muscular apical VSD of 3 mm in diameter, at echocardiography. Cardiac MRI using first-pass perfusion sequence, combining the right plane of acquisition with a short bolus of contrast material, clearly confirmed the presence of VSD.

  17. The metabolic sensors FXRα, PGC-1α, and SIRT1 cooperatively regulate hepatitis B virus transcription.

    Science.gov (United States)

    Curtil, Claire; Enache, Liviu S; Radreau, Pauline; Dron, Anne-Gaëlle; Scholtès, Caroline; Deloire, Alexandre; Roche, Didier; Lotteau, Vincent; André, Patrice; Ramière, Christophe

    2014-03-01

    Hepatitis B virus (HBV) genome transcription is highly dependent on liver-enriched, metabolic nuclear receptors (NRs). Among others, NR farnesoid X receptor α (FXRα) enhances HBV core promoter activity and pregenomic RNA synthesis. Interestingly, two food-withdrawal-induced FXRα modulators, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and deacetylase SIRT1, have been found to be associated with HBV genomes ex vivo. Whereas PGC-1α induction was shown to increase HBV replication, the effect of SIRT1 on HBV transcription remains unknown. Here, we showed that, in hepatocarcinoma-derived Huh-7 cells, combined activation of FXRα by GW4064 and SIRT1 by activator 3 increased HBV core promoter-controlled luciferase expression by 25-fold, compared with a 10-fold increase with GW4064 alone. Using cell lines differentially expressing FXRα in overexpression and silencing experiments, we demonstrated that SIRT1 activated the core promoter in an FXRα- and PGC-1α-dependent manner. Maximal activation (>150-fold) was observed in FXRα- and PGC-1α-overexpressing Huh-7 cells treated with FXRα and SIRT1 activators. Similarly, in cells transfected with full-length HBV genomes, maximal induction (3.5-fold) of core promoter-controlled synthesis of 3.5-kb RNA was observed in the same conditions of transfection and treatments. Thus, we identified a subnetwork of metabolic factors regulating HBV replication, strengthening the hypothesis that transcription of HBV and metabolic genes is similarly controlled.

  18. Vitamin D Signaling Through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models

    Directory of Open Access Journals (Sweden)

    Danmei Su

    2016-11-01

    Full Text Available Metabolic syndrome (MetS, characterized as obesity, insulin resistance, and non-alcoholic fatty liver diseases (NAFLD,is associated with vitamin D insufficiency/deficiency in epidemiological studies, while the underlying mechanism is poorly addressed. On the other hand, disorder of gut microbiota, namely dysbiosis, is known to cause MetS and NAFLD. It is also known that systemic inflammation blocks insulin signaling pathways, leading to insulin resistance and glucose intolerance, which are the driving force for hepatic steatosis. Vitamin D receptor (VDR is highly expressed in the ileum of the small intestine,which prompted us to test a hypothesis that vitamin D signaling may determine the enterotype of gut microbiota through regulating the intestinal interface. Here, we demonstrate that high-fat-diet feeding (HFD is necessary but not sufficient, while additional vitamin D deficiency (VDD as a second hit is needed, to induce robust insulin resistance and fatty liver. Under the two hits (HFD+VDD, the Paneth cell-specific alpha-defensins including α-defensin 5 (DEFA5, MMP7 which activates the pro-defensins, as well as tight junction genes, and MUC2 are all suppressed in the ileum, resulting in mucosal collapse, increased gut permeability, dysbiosis, endotoxemia, systemic inflammation which underlie insulin resistance and hepatic steatosis. Moreover, under the vitamin D deficient high fat feeding (HFD+VDD, Helicobacter hepaticus, a known murine hepatic-pathogen, is substantially amplified in the ileum, while Akkermansia muciniphila, a beneficial symbiotic, is diminished. Likewise, the VD receptor (VDR knockout mice exhibit similar phenotypes, showing down regulation of alpha-defensins and MMP7 in the ileum, increased Helicobacter hepaticus and suppressed Akkermansia muciniphila. Remarkably, oral administration of DEFA5 restored eubiosys, showing suppression of Helicobacter hepaticus and increase of Akkermansia muciniphila in association with

  19. Hepatic overexpression of steroid sulfatase ameliorates mouse models of obesity and type 2 diabetes through sex-specific mechanisms.

    Science.gov (United States)

    Jiang, Mengxi; He, Jinhan; Kucera, Heidi; Gaikwad, Nilesh W; Zhang, Bin; Xu, Meishu; O'Doherty, Robert M; Selcer, Kyle W; Xie, Wen

    2014-03-21

    The steroid sulfatase (STS)-mediated desulfation is a critical metabolic mechanism that regulates the chemical and functional homeostasis of endogenous and exogenous molecules. In this report, we first showed that the liver expression of Sts was induced in both the high fat diet (HFD) and ob/ob models of obesity and type 2 diabetes and during the fed to fasting transition. In defining the functional relevance of STS induction in metabolic disease, we showed that overexpression of STS in the liver of transgenic mice alleviated HFD and ob/ob models of obesity and type 2 diabetes, including reduced body weight, improved insulin sensitivity, and decreased hepatic steatosis and inflammation. Interestingly, STS exerted its metabolic benefit through sex-specific mechanisms. In female mice, STS may have increased hepatic estrogen activity by converting biologically inactive estrogen sulfates to active estrogens and consequently improved the metabolic functions, whereas ovariectomy abolished this protective effect. In contrast, the metabolic benefit of STS in males may have been accounted for by the male-specific decrease of inflammation in white adipose tissue and skeletal muscle as well as a pattern of skeletal muscle gene expression that favors energy expenditure. The metabolic benefit in male STS transgenic mice was retained after castration. Treatment with the STS substrate estrone sulfate also improved metabolic functions in both the HFD and ob/ob models. Our results have uncovered a novel function of STS in energy metabolism and type 2 diabetes. Liver-specific STS induction or estrogen/estrogen sulfate delivery may represent a novel approach to manage metabolic syndrome.

  20. Sex specific differences in hepatic and plasma lipid profiles in healthy cats pre and post spaying and neutering: relationship with feline hepatic lipidosis.

    Science.gov (United States)

    Valtolina, Chiara; Vaandrager, Arie B; Favier, Robert P; Tuohetahuntila, Maidina; Kummeling, Anne; Jeusette, Isabelle; Rothuizen, Jan; Robben, Joris H

    2017-08-08

    A link between lipid metabolism and disease has been recognized in cats. Since hepatic lipidosis is a frequent disorder in cats, the aim of the current study was to evaluate liver and plasma lipid dimorphism in healthy cats and the effects of gonadectomy on lipid profiling. From six female and six male cats plasma and liver lipid profiles before and after spaying/neutering were assessed and compared to five cats (three neutered male and two spayed female) diagnosed with hepatic lipidosis. Intact female cats had a significantly lower level of plasma triacylglycerides (TAG) and a higher liver level of the long chain polyunsaturated fatty acid arachidonic acid (AA) compared to their neutered state. Both male and female cats with lipidosis had a higher liver, but not plasma TAG level and an increased level of plasma and liver sphingomyelin compared to the healthy cats. Although lipid dimorphism in healthy cats resembles that of other species, intact female cats show differences in metabolic configuration that could predispose them to develop hepatic lipidosis. The increased sphingomyelin levels in cats with lipidosis could suggest a potential role in the pathogenesis of hepatic lipidosis in cats.

  1. Prehepatocholedochal proper hepatic artery. Rare anatomical variant. Surgical considerations. Case report.

    Science.gov (United States)

    Ardeleanu, V; Chicoş, S; Tutunaru, D; Georgescu, C

    2014-01-01

    In classical anatomic variants, the proper hepatic artery (PHA)continues the common hepatic artery (CHA) after the gastroduodenal artery (GDA) detaches itself and divides into the right hepatic artery (RHA) and left hepatic artery (LHA), the proper hepatic artery being located to the left of the hepatocholedochal duct (HCD). This paper presents an abnormal positioning of the PHA placed before the HCD with an increased diameter of about 5-7 mm, which could be confused with the HCD. We present the case of a 57 year-old woman diagnosed with acute lithiasic cholecystitis, associated with hypersplenism and hypertension. The literature mentions manifold anatomical variants of arterial liver vascularization,including PHA. For this reason, this paper presents an overview of similar cases that can be found in medical literature. The aforementioned case is a rare topographic anatomy for the PHA that can easily pass for HCD especially during celioscopy, therefore it is crucial for this to be acknowledged by all surgeons. Celsius.

  2. Results of steroid-based therapy for the hepatitis C-autoimmune hepatitis overlap syndrome.

    Science.gov (United States)

    Schiano, T D; Te, H S; Thomas, R M; Hussain, H; Bond, K; Black, M

    2001-10-01

    Overlap syndromes in which persons manifest clinical, histological, or immunological features of both hepatitis C infection and autoimmune hepatitis are well described. The discordant forms of treatment for hepatitis C and autoimmune hepatitis have made medical management of these patients difficult. We report our experience in using corticosteroids as first line therapy for the hepatitis C-autoimmune hepatitis overlap syndrome. Seven patients with this overlap syndrome (diagnosis based on the presence of serum hepatitis C antibody by RIBA and serum hepatitis C RNA by polymerase chain reaction, and serum hypergammaglobulinemia, elevated ANA or ASMA titers, or histological findings consistent with autoimmune hepatitis) were treated with prednisone with or without azathioprine or cyclosporine, and followed for a median duration of 44.5 months. Five patients (71%) showed improvement of median serum ALT level from 162 U/L to 38 U/L (p = 0.04) and median serum gamma-globulin from 2.1 g/dl to 1.4 g/dl (p = 0.04) by 6 months of therapy. The mean modified histological activity index score also decreased from 11.4 +/- 2.5 to 6.6 +/- 2.6 (p = 0.04) by at least 1 yr of therapy. One patient discontinued prednisone while taking azathioprine and experienced a rebound elevation of serum ALT that did not respond to retreatment with prednisone. Antiviral therapy was subsequently administered and resulted in biochemical and virologic response. Hepatitis C virus RNA remained detectable in all other patients. Corticosteroids are beneficial as a first line therapy for some patients with the hepatitis C-autoimmune overlap syndrome, resulting in appreciable biochemical and histological response but without viral eradication.

  3. Hepatic Elimination of Drugs in Gestational Diabetes.

    Science.gov (United States)

    Gonzalez, Claudio Daniel; Alvarinas, Jorge; Bolanos, Ricardo; Di Girolamo, Guillermo

    2018-03-25

    The liver is the major metabolic clearance organ for chemical agents from the human body. Pregnancy is associated with several physiological changes that may affect one or more of these factors, and also induces changes in the hepatic clearance of certain drugs.The aim of this paper was to review some of the currently available information in the field to provide some insights about the relevance of these changes on the clearance of some drugs. A comprehensive literature search was carried out to identify eligible studies from MEDLINE/PubMed, EMBASE and SCIELO databases through 1970 first semester. Gestational Diabetes Mellitus (GDM) is a frequent disease commonly associated with other entities as obesity, hypertension, dyslipidemia, non-alcoholic fatty liver disease, pro-thrombotic conditions, changes in intestinal microbioma. These entities, together with the glycemic fluctuations associated with GDM might affect the determinants for the hepatic clearance (hepatic blood flow, the unbound fraction of drugs, and the hepatic intrinsic clearance). GDM is frequently associated with multi-drug treatments. While many of these drugs are cleared by the liver, little is known about the clinical relevance of these GDM associated pharmacokinetic changes. Considering the frequency of the disease and the effects that these pharmacokinetic changes might have on the mother and child, the need for further research seems advisable. In the meantime, cautious clinical judgment in the management of drug administration in women affected by this disease is recommended. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Physiologic and Metabolic Benefits of Formulated Diets and Mangifera indica in Fluoride Toxicity.

    Science.gov (United States)

    Karn, Sanjay S; Narasimhacharya, A V R L

    2015-06-01

    Fluorosis is a major health problem affecting normal physiological and metabolic functions in people living in endemic fluoride areas. The present work was aimed at investigating the role of basal, high carbohydrate low protein (HCLP) and high protein low carbohydrate (HPLC) diets and Mangifera indica fruit powder as a food supplement in fluoride-induced metabolic toxicity. Exposure to fluoride resulted in elevation of plasma glucose levels, ACP, ALP, SGPT, SGOT, and hepatic G-6-Pase activities, plasma and hepatic lipid profiles with decreased plasma protein, HDL-C, hepatic glycogen content and hexokinase activity in basal, HCLP and HPLC diet fed albino rats. However among the three diets tested, HPLC diet was found to be relatively, a better metabolic regulator. All the three formulated diets (basal, HCLP and HPLC) supplemented with mango fruit powder (5 and 10 g), decreased plasma glucose content, ACP, ALP, SGPT, SGOT and hepatic G-6-Pase activities and plasma as well as hepatic lipid profiles. These diets also elevated the hepatic glycogen content and hexokinase activities. These effects however, were prominent with the HPLC diet supplemented with mango fruit powder and, among the two doses of mango fruit powder, the higher dose (10 g) yielded more promising results. It is surmised that the micronutrients and phytochemicals present in the diets and the mango fruit could be responsible for attenuation of fluoride-induced metabolic toxicity.

  5. Early childhood transmission of hepatitis B prior to the first hepatitis B vaccine dose is rare among babies born to HIV-infected and non-HIV infected mothers in Gulu, Uganda.

    Science.gov (United States)

    Seremba, E; Van Geertruyden, J P; Ssenyonga, R; Opio, C K; Kaducu, J M; Sempa, J B; Colebunders, R; Ocama, P

    2017-05-19

    Hepatitis B (HBV) in sub-Saharan Africa is believed to be horizontally acquired. However, because of the high HBV prevalence in northern Uganda, no hepatitis B vaccination at birth and no access to HBV immunoglobulin, we hypothesize that vertical transmission also could also play an important role. We therefore investigated the incidence of HBV among babies presenting for their first HBV vaccine dose in Gulu, Uganda. We recruited mothers and their babies (at least 6-week old) presenting for their postnatal care and first HBV vaccine dose respectively. Socio-demographic and risk factors for HBV transmission were recorded. Mothers were tested for Hepatitis B core antibody (anti-HBc-IgG) and hepatitis B surface antigen (HBsAg). HBsAg-positive sera were tested for hepatitis B e antigen (HBeAg) and HBV viral load (HBVDNA). Babies were tested for HBsAg at presentation and at the last immunization visit. A sample of HBsAg-negative babies were tested for HBVDNA. Incident HBV infection was defined by either a positive HBsAg or HBVDNA test. Chi-square or fisher's exact tests were utilized to investigate associations and t-tests or Wilcoxon rank-sum test for continuous differences. We recruited 612 mothers, median age 23years (IQR 20-28). 53 (8.7%) were HBsAg-positive and 339 (61.5%) were anti-HBc-IgG-positive. Ten (18.9%) of the HBsAg-positive mothers were HBeAg-positive. Median HBVDNA levels of HBV-infected mothers was 5.7log (IQR 4.6-7.0) IU/mL with 9 (17.6%) having levels≥10 5 IU/mL. Eighty (13.3%) mothers were HIV-infected of whom 9 (11.5%) were co-infected with HBV. No baby tested HBsAg or HBVDNA positive. Vertical transmission does not seem to contribute substantially to the high HBV endemicity in northern Uganda. The current practice of administering the first HBV vaccine to babies in Uganda at six weeks of age may be adequate in control of HBV transmission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Spanish validation of the Premorbid Adjustment Scale (PAS-S).

    Science.gov (United States)

    Barajas, Ana; Ochoa, Susana; Baños, Iris; Dolz, Montse; Villalta-Gil, Victoria; Vilaplana, Miriam; Autonell, Jaume; Sánchez, Bernardo; Cervilla, Jorge A; Foix, Alexandrina; Obiols, Jordi E; Haro, Josep Maria; Usall, Judith

    2013-02-01

    The Premorbid Adjustment Scale (PAS) has been the most widely used scale to quantify premorbid status in schizophrenia, coming to be regarded as the gold standard of retrospective assessment instruments. To examine the psychometric properties of the Spanish version of the PAS (PAS-S). Retrospective study of 140 individuals experiencing a first episode of psychosis (n=77) and individuals who have schizophrenia (n=63), both adult and adolescent patients. Data were collected through a socio-demographic questionnaire and a battery of instruments which includes the following scales: PAS-S, PANSS, LSP, GAF and DAS-sv. The Cronbach's alpha was performed to assess the internal consistency of PAS-S. Pearson's correlations were performed to assess the convergent and discriminant validity. The Cronbach's alpha of the PAS-S scale was 0.85. The correlation between social PAS-S and total PAS-S was 0.85 (p<0.001); while for academic PAS-S and total PAS-S it was 0.53 (p<0.001). Significant correlations were observed between all the scores of each age period evaluated across the PAS-S scale, with a significance value less than 0.001. There was a relationship between negative symptoms and social PAS-S (0.20, p<0.05) and total PAS-S (0.22, p<0.05), but not with academic PAS-S. However, there was a correlation between academic PAS-S and general subscale of the PANSS (0.19, p<0.05). Social PAS-S was related to disability measures (DAS-sv); and academic PAS-S showed discriminant validity with most of the variables of social functioning. PAS-S did not show association with the total LSP scale (discriminant validity). The Spanish version of the Premorbid Adjustment Scale showed appropriate psychometric properties in patients experiencing a first episode of psychosis and who have a chronic evolution of the illness. Moreover, each domain of the PAS-S (social and academic premorbid functioning) showed a differential relationship to other characteristics such as psychotic symptoms, disability

  7. Treatment of type 2 diabetes mellitus by viral eradication in chronic hepatitis C: Myth or reality?

    Science.gov (United States)

    Vanni, Ester; Bugianesi, Elisabetta; Saracco, Giorgio

    2016-02-01

    Chronic hepatitis C is a systemic disease inducing metabolic alterations leading to extrahepatic consequences. In particular, hepatitis C virus (HCV) infection seems to increase the risk of incident type 2 diabetes mellitus in predisposed individuals, independently of liver disease stage. The mechanisms through which hepatitis C induces T2DM involve direct viral effects, insulin resistance, pro-inflammatory cytokines and other immune-mediated processes. Many studies have reported the clinical consequences of type 2 diabetes mellitus on hepatitis C outcome, but very few studies have addressed the issue of microangiopathic complications among patients with hepatitis C only, who develop type 2 diabetes mellitus. Moreover, clinical trials in HCV-positive patients have reported improvement in glucose metabolism after antiviral treatment; recent studies have suggested that this metabolic amelioration might have a clinical impact on type 2 diabetes mellitus-related complications. These observations raise the question as to whether the HCV eradication may also have an impact on the future morbidity and mortality due to type 2 diabetes mellitus. The scope of this review is to summarise the current evidence linking successful antiviral treatment and the prevention of type 2 diabetes mellitus and its complications in hepatitis C-infected patients. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  8. Effect of abomasal glucose infusion on splanchnic and whole-body glucose metabolism in periparturient dairy cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2009-01-01

    Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism.......Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism....

  9. Tributyltin promoted hepatic steatosis in zebrafish (Danio rerio) and the molecular pathogenesis involved.

    Science.gov (United States)

    Zhang, Jiliang; Sun, Ping; Kong, Tao; Yang, Fan; Guan, Wenchao

    2016-01-01

    Endocrine disruptor effects of tributyltin (TBT) are well established in fish. However, the adverse effects on lipid metabolism are less well understood. Since the liver is the predominant site of de novo synthesis of lipids, the present study uses zebrafish (Danio rerio) to examine lipid accumulation in the livers and hepatic gene expression associated with lipid metabolism pathways. After exposure for 90 days, we found that the livers in fish exposed to TBT were yellowish in appearance and with accumulation of lipid droplet, which is consistent with the specific pathological features of steatosis. Molecular analysis revealed that TBT induced hepatic steatosis by increasing the gene expression associated with lipid transport, lipid storage, lipiogenic enzymes and lipiogenic factors in the livers. Moreover, TBT enhanced hepatic caspase-3 activity and up-regulated genes related to apoptosis and cell-death, which indicated steatotic livers of fish exposed to TBT and the subsequent liver damage were likely due to accelerated hepatocyte apoptosis or cell stress. In short, TBT can produce multiple and complex alterations in transcriptional activity of lipid metabolism and cell damage, which provides potential molecular evidence of TBT on hepatic steatosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Sorafenib metabolism is significantly altered in the liver tumor tissue of hepatocellular carcinoma patient.

    Directory of Open Access Journals (Sweden)

    Ling Ye

    Full Text Available BACKGROUND: Sorafenib, the drug used as first line treatment for hepatocellular carcinoma (HCC, is metabolized by cytochrome P450 (CYP 3A4-mediated oxidation and uridine diphosphate glucuronosyl transferase (UGT 1A9-mediated glucuronidation. Liver diseases are associated with reduced CYP and UGT activities, which can considerably affect drug metabolism, leading to drug toxicity. Thus, understanding the metabolism of therapeutic compounds in patients with liver diseases is necessary. However, the metabolism characteristic of sorafenib has not been systematically determined in HCC patients. METHODS: Sorafenib metabolism was tested in the pooled and individual tumor hepatic microsomes (THLMs and adjacent normal hepatic microsomes (NHLMs of HCC patients (n = 18. Commercial hepatic microsomes (CHLMs were used as a control. In addition, CYP3A4 and UGT1A9 protein expression in different tissues were measured by Western blotting. RESULTS: The mean rates of oxidation and glucuronidation of sorafenib were significantly decreased in the pooled THLMs compared with those in NHLMs and CHLMs. The maximal velocity (Vmax of sorafenib oxidation and glucuronidation were approximately 25-fold and 2-fold decreased in the pooled THLMs, respectively, with unchanged Km values. The oxidation of sorafenib in individual THLMs sample was significantly decreased (ranging from 7 to 67-fold than that in corresponding NHLMs sample. The reduction of glucuronidation in THLMs was observed in 15 out of 18 patients' samples. Additionally, the level of CYP3A4 and UGT1A9 expression were both notably decreased in the pooled THLMs. CONCLUSIONS: Sorafenib metabolism was remarkably decreased in THLMs. This result was associated with the down regulation of the protein expression of CYP3A4 and UGT1A9.

  11. A Computational Model of Hepatic Energy Metabolism: Understanding Zonated Damage and Steatosis in NAFLD

    Science.gov (United States)

    Ashworth, William B.; Bogle, I. David L.

    2016-01-01

    In non-alcoholic fatty liver disease (NAFLD), lipid build-up and the resulting damage is known to occur more severely in pericentral cells. Due to the complexity of studying individual regions of the sinusoid, the causes of this zone specificity and its implications on treatment are largely ignored. In this study, a computational model of liver glucose and lipid metabolism is presented which treats the sinusoid as the repeating unit of the liver rather than the single hepatocyte. This allows for inclusion of zonated enzyme expression by splitting the sinusoid into periportal to pericentral compartments. By simulating insulin resistance (IR) and high intake diets leading to the development of steatosis in the model, we identify key differences between periportal and pericentral cells accounting for higher susceptibility to pericentral steatosis. Secondly, variation between individuals is seen in both susceptibility to steatosis and in its development across the sinusoid. Around 25% of obese individuals do not show excess liver fat, whilst 16% of lean individuals develop NAFLD. Furthermore, whilst pericentral cells tend to show higher lipid levels, variation is seen in the predominant location of steatosis from pericentral to pan-sinusoidal or azonal. Sensitivity analysis was used to identify the processes which have the largest effect on both total hepatic triglyceride levels and on the sinusoidal location of steatosis. As is seen in vivo, steatosis occurs when simulating IR in the model, predominantly due to increased uptake, along with an increase in de novo lipogenesis. Additionally, concentrations of glucose intermediates including glycerol-3-phosphate increased when simulating IR due to inhibited glycogen synthesis. Several differences between zones contributed to a higher susceptibility to steatosis in pericentral cells in the model simulations. Firstly, the periportal zonation of both glycogen synthase and the oxidative phosphorylation enzymes meant that the

  12. A Computational Model of Hepatic Energy Metabolism: Understanding Zonated Damage and Steatosis in NAFLD.

    Directory of Open Access Journals (Sweden)

    William B Ashworth

    2016-09-01

    Full Text Available In non-alcoholic fatty liver disease (NAFLD, lipid build-up and the resulting damage is known to occur more severely in pericentral cells. Due to the complexity of studying individual regions of the sinusoid, the causes of this zone specificity and its implications on treatment are largely ignored. In this study, a computational model of liver glucose and lipid metabolism is presented which treats the sinusoid as the repeating unit of the liver rather than the single hepatocyte. This allows for inclusion of zonated enzyme expression by splitting the sinusoid into periportal to pericentral compartments. By simulating insulin resistance (IR and high intake diets leading to the development of steatosis in the model, we identify key differences between periportal and pericentral cells accounting for higher susceptibility to pericentral steatosis. Secondly, variation between individuals is seen in both susceptibility to steatosis and in its development across the sinusoid. Around 25% of obese individuals do not show excess liver fat, whilst 16% of lean individuals develop NAFLD. Furthermore, whilst pericentral cells tend to show higher lipid levels, variation is seen in the predominant location of steatosis from pericentral to pan-sinusoidal or azonal. Sensitivity analysis was used to identify the processes which have the largest effect on both total hepatic triglyceride levels and on the sinusoidal location of steatosis. As is seen in vivo, steatosis occurs when simulating IR in the model, predominantly due to increased uptake, along with an increase in de novo lipogenesis. Additionally, concentrations of glucose intermediates including glycerol-3-phosphate increased when simulating IR due to inhibited glycogen synthesis. Several differences between zones contributed to a higher susceptibility to steatosis in pericentral cells in the model simulations. Firstly, the periportal zonation of both glycogen synthase and the oxidative phosphorylation

  13. [Clinical-diagnostic estimation of carbohydrates metabolism in obturation jaundice].

    Science.gov (United States)

    Nychytaĭlo, M Iu; Malyk, S V

    2004-07-01

    Complex examination of 175 patients with obturation jaundice was conducted, peculiar attention was spared to the carbohydrates metabolism changes, characterizing hepatic state. It was established, that in obturation jaundice in the liver there are occurring inflammatory changes and disturbances of all kinds of metabolism, including that of carbohydrates, severity of which depends on duration of jaundice, the concurrent diseases presence, they shows lowering of the glucose and glycogen level in the blood, as well as the hepatic glycogen content, that's why they may be applied as a complex of prognostic criterions for the disease course. An early conduction of operative treatment, elimination of the biliary ducts impassability promote the rehabilitation period shortening and the hepatic functional activity normalization.

  14. [Hepatic cell transplantation: a new therapy in liver diseases].

    Science.gov (United States)

    Pareja, Eugenia; Cortés, Miriam; Martínez, Amparo; Vila, Juan José; López, Rafael; Montalvá, Eva; Calzado, Angeles; Mir, José

    2010-07-01

    Liver transplantation has been remarkably effective in the treatment in patients with end-stage liver disease. However, disparity between solid-organ supply and increased demand is the greatest limitation, resulting in longer waiting times and increase in mortality of transplant recipients. This situation creates the need to seek alternatives to orthotopic liver transplantation.Hepatocyte transplantation or liver cell transplantation has been proposed as the best method to support patients. The procedure consists of transplanting individual cells to a recipient organ in sufficient quantity to survive and restore the function. The capacity of hepatic regeneration is the biological basis of hepatocyte transplantation. This therapeutic option is an experimental procedure in some patients with inborn errors of metabolism, fulminant hepatic failure and acute and chronic liver failure, as a bridge to orthotopic liver transplantation. In the Hospital La Fe of Valencia, we performed the first hepatocyte transplantation in Spain creating a new research work on transplant program. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  15. Usefulness of screening ultrasonography for hepatocellular carcinoma detection: chronic hepatitis versus hepatic cirrhosis caused by hepatitis B virus

    International Nuclear Information System (INIS)

    Chang, Sam Uel; Choi, Don Gil; Lim, Jae Hoon

    2004-01-01

    To evaluate the usefulness of screening liver ultrasonography (US) for hepatocellular carcinoma (HCC) detection in patients with chronic hepatitis or hepatic cirrhosis caused by hepatitis B virus (HBV). A retrospective study was performed with 1,189 patients with clinical hepatopathy caused by HBV who underwent screening liver US for HCC detection at least twice. All patients were followed up with liver US examinations (mean, 8.3 times), CT, or MR for at least 3 months (range, 3-102 months; mean, 47 months) for the detection of HCC. The study population was divided into two groups: chronic hepatitis (n=492) and hepatic cirrhosis (n=697), which was further divided into two groups with (n=156) or without (n=541) evident shrinkage. The radiologic examinations that had detected HCC for the first time were analyzed and compared between the groups. Among 20 (4.1%) patients with chronic hepatitis and 132 (18.9%) patients with hepatic cirrhosis diagnosed as HCC, screening US was the modality of detection in 17 (85.0%) of 20 patients with chronic hepatitis and 76 (57.6%) of 132 patients with hepatic cirrhosis (p=0.038, Chi-square test). The detection rate of HCC on screening US between the chronic hepatitis and hepatic cirrhosis with evident shrinkage (51.4%, 19/37) showed a significant difference (p=0.027, Chi-square test). For chronic liver disease caused by HBV, screening US for HCC detection is more useful in patients with chronic hepatitis than with hepatic cirrhosis with evident shrinkage

  16. Effects of Castration on Expression of Lipid Metabolism Genes in the Liver of Korean Cattle

    Directory of Open Access Journals (Sweden)

    Myunggi Baik

    2015-01-01

    Full Text Available Castration induces the accumulation of body fat and deposition of intramuscular fat in Korean cattle, resulting in improved beef quality. However, little is known about the metabolic adaptations in the liver following castration. To understand changes in lipid metabolism following castration, hepatic expression levels of lipid metabolism genes were compared between Korean bulls and steers. Steers had higher (p<0.001 hepatic lipids contents and higher (p<0.01 mRNA levels of lipogenic acetyl-CoA carboxylase. This differential gene expression may, in part, contribute to increased hepatic lipid content following the castration of bulls. However, we found no differences in the hepatic expression levels of genes related to triglyceride synthesis (mitochondrial glycerol-3-phosphate acyltransferase, diacylglycerol O-acyltransferase 1 and 2 and fatty acid (FA oxidation (carnitine palmitoyltransferase 1A, C-4 to C-12 straight chain acyl-CoA dehydrogenase, very long chain acyl-CoA dehydrogenase between bulls and steers. No differences in gene expression for very-low-density lipoprotein (VLDL secretion, including apolipoprotein B mRNA and microsomal triglyceride transfer protein (MTTP protein, were observed in the liver although MTTP mRNA levels were higher in steers compared to bulls. In conclusion, FA synthesis may contribute to increased hepatic lipid deposition in steers following castration. However, hepatic lipid metabolism, including triglyceride synthesis, FA oxidation, and VLDL secretion, was not significantly altered by castration. Our results suggest that hepatic lipid metabolism does not significantly contribute to increased body fat deposition in steers following castration.

  17. Time-varying exchange rate pass-through: experiences of some industrial countries

    OpenAIRE

    Toshitaka Sekine

    2006-01-01

    This paper estimates exchange rate pass-through of six major industrial countries using a time-varying parameter with stochastic volatility model. Exchange rate pass-through is divided into impacts of exchange rate fluctuations to import prices (first-stage pass-through) and those of import price movements to consumer prices (second-stage pass-through). The paper finds that both stages of pass-through have declined over time for all the sample countries. The decline in second-stage pass-throu...

  18. Control of alanine metabolism in rat liver by transport processes or cellular metabolism.

    OpenAIRE

    Fafournoux, P; Rémésy, C; Demigné, C

    1983-01-01

    1. Factors governing hepatic utilization of alanine were studied in vivo and in vitro in rats adapted to increasing dietary protein. 2. Hepatic alanine utilization was enhanced 5-fold with a 90%-casein diet, compared with a 13%-casein diet. The increased uptake resulted from enhanced fractional extraction in the presence of high concentrations of alanine in the portal vein. 3. The increase in alanine metabolism on high-protein diets was associated with an increase in alanine aminotransferase ...

  19. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    International Nuclear Information System (INIS)

    Keith, Dove; Finlay, Liam; Butler, Judy; Gómez, Luis; Smith, Eric; Moreau, Régis; Hagen, Tory

    2014-01-01

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks

  20. Lipoic acid entrains the hepatic circadian clock and lipid metabolic proteins that have been desynchronized with advanced age

    Energy Technology Data Exchange (ETDEWEB)

    Keith, Dove; Finlay, Liam; Butler, Judy [Linus Pauling Institute, Oregon State University (United States); Gómez, Luis; Smith, Eric [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States); Moreau, Régis [Linus Pauling Institute, Oregon State University (United States); Hagen, Tory [Linus Pauling Institute, Oregon State University (United States); Biochemistry Biophysics Department, Oregon State University (United States)

    2014-07-18

    Highlights: • 24 month old rats were supplemented with 0.2% lipoic acid in the diet for 2 weeks. • Lipoic acid shifts phase of core circadian clock proteins. • Lipoic acid corrects age-induced desynchronized lipid metabolism rhythms. - Abstract: It is well established that lipid metabolism is controlled, in part, by circadian clocks. However, circadian clocks lose temporal precision with age and correlates with elevated incidence in dyslipidemia and metabolic syndrome in older adults. Because our lab has shown that lipoic acid (LA) improves lipid homeostasis in aged animals, we hypothesized that LA affects the circadian clock to achieve these results. We fed 24 month old male F344 rats a diet supplemented with 0.2% (w/w) LA for 2 weeks prior to sacrifice and quantified hepatic circadian clock protein levels and clock-controlled lipid metabolic enzymes. LA treatment caused a significant phase-shift in the expression patterns of the circadian clock proteins Period (Per) 2, Brain and Muscle Arnt-Like1 (BMAL1), and Reverse Erythroblastosis virus (Rev-erb) β without altering the amplitude of protein levels during the light phase of the day. LA also significantly altered the oscillatory patterns of clock-controlled proteins associated with lipid metabolism. The level of peroxisome proliferator-activated receptor (PPAR) α was significantly increased and acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were both significantly reduced, suggesting that the LA-supplemented aged animals are in a catabolic state. We conclude that LA remediates some of the dyslipidemic processes associated with advanced age, and this mechanism may be at least partially through entrainment of circadian clocks.

  1. Current concepts in the assessment and treatment of hepatic encephalopathy.

    LENUS (Irish Health Repository)

    Cash, W J

    2012-02-01

    Hepatic encephalopathy (HE) is defined as a metabolically induced, potentially reversible, functional disturbance of the brain that may occur in acute or chronic liver disease. Standardized nomenclature has been proposed but a standardized approach to the treatment, particularly of persistent, episodic and recurrent encephalopathy associated with liver cirrhosis has not been proposed. This review focuses on the pathogenesis and treatment of HE in patients with cirrhosis. The pathogenesis and treatment of hepatic encephalopathy in fulminant hepatic failure is quite different and is reviewed elsewhere.

  2. Inhibited Carnitine Synthesis Causes Systemic Alteration of Nutrient Metabolism in Zebrafish.

    Science.gov (United States)

    Li, Jia-Min; Li, Ling-Yu; Qin, Xuan; Degrace, Pascal; Demizieux, Laurent; Limbu, Samwel M; Wang, Xin; Zhang, Mei-Ling; Li, Dong-Liang; Du, Zhen-Yu

    2018-01-01

    Impaired mitochondrial fatty acid β-oxidation has been correlated with many metabolic syndromes, and the metabolic characteristics of the mammalian models of mitochondrial dysfunction have also been intensively studied. However, the effects of the impaired mitochondrial fatty acid β-oxidation on systemic metabolism in teleost have never been investigated. In the present study, we established a low-carnitine zebrafish model by feeding fish with mildronate as a specific carnitine synthesis inhibitor [0.05% body weight (BW)/d] for 7 weeks, and the systemically changed nutrient metabolism, including carnitine and triglyceride (TG) concentrations, fatty acid (FA) β-oxidation capability, and other molecular and biochemical assays of lipid, glucose, and protein metabolism, were measured. The results indicated that mildronate markedly decreased hepatic carnitine concentrations while it had no effect in muscle. Liver TG concentrations increased by more than 50% in mildronate-treated fish. Mildronate decreased the efficiency of liver mitochondrial β-oxidation, increased the hepatic mRNA expression of genes related to FA β-oxidation and lipolysis, and decreased the expression of lipogenesis genes. Mildronate decreased whole body glycogen content, increased glucose metabolism rate, and upregulated the expression of glucose uptake and glycolysis genes. Mildronate also increased whole body protein content and hepatic mRNA expression of mechanistic target of rapamycin ( mtor ), and decreased the expression of a protein catabolism-related gene. Liver, rather than muscle, was the primary organ targeted by mildronate. In short, mildronate-induced hepatic inhibited carnitine synthesis in zebrafish caused decreased mitochondrial FA β-oxidation efficiency, greater lipid accumulation, and altered glucose and protein metabolism. This reveals the key roles of mitochondrial fatty acid β-oxidation in nutrient metabolism in fish, and this low-carnitine zebrafish model could also be

  3. Inhibited Carnitine Synthesis Causes Systemic Alteration of Nutrient Metabolism in Zebrafish

    Directory of Open Access Journals (Sweden)

    Jia-Min Li

    2018-05-01

    Full Text Available Impaired mitochondrial fatty acid β-oxidation has been correlated with many metabolic syndromes, and the metabolic characteristics of the mammalian models of mitochondrial dysfunction have also been intensively studied. However, the effects of the impaired mitochondrial fatty acid β-oxidation on systemic metabolism in teleost have never been investigated. In the present study, we established a low-carnitine zebrafish model by feeding fish with mildronate as a specific carnitine synthesis inhibitor [0.05% body weight (BW/d] for 7 weeks, and the systemically changed nutrient metabolism, including carnitine and triglyceride (TG concentrations, fatty acid (FA β-oxidation capability, and other molecular and biochemical assays of lipid, glucose, and protein metabolism, were measured. The results indicated that mildronate markedly decreased hepatic carnitine concentrations while it had no effect in muscle. Liver TG concentrations increased by more than 50% in mildronate-treated fish. Mildronate decreased the efficiency of liver mitochondrial β-oxidation, increased the hepatic mRNA expression of genes related to FA β-oxidation and lipolysis, and decreased the expression of lipogenesis genes. Mildronate decreased whole body glycogen content, increased glucose metabolism rate, and upregulated the expression of glucose uptake and glycolysis genes. Mildronate also increased whole body protein content and hepatic mRNA expression of mechanistic target of rapamycin (mtor, and decreased the expression of a protein catabolism-related gene. Liver, rather than muscle, was the primary organ targeted by mildronate. In short, mildronate-induced hepatic inhibited carnitine synthesis in zebrafish caused decreased mitochondrial FA β-oxidation efficiency, greater lipid accumulation, and altered glucose and protein metabolism. This reveals the key roles of mitochondrial fatty acid β-oxidation in nutrient metabolism in fish, and this low-carnitine zebrafish model

  4. Effects of strain and age on hepatic gene expression profiles in murine models of HFE-associated hereditary hemochromatosis.

    Science.gov (United States)

    Lee, Seung-Min; Loguinov, Alexandre; Fleming, Robert E; Vulpe, Christopher D

    2015-01-01

    Hereditary hemochromatosis is an iron overload disorder most commonly caused by a defect in the HFE gene. While the genetic defect is highly prevalent, the majority of individuals do not develop clinically significant iron overload, suggesting the importance of genetic modifiers. Murine hfe knockout models have demonstrated that strain background has a strong effect on the severity of iron loading. We noted that hepatic iron loading in hfe-/- mice occurs primarily over the first postnatal weeks (loading phase) followed by a timeframe of relatively static iron concentrations (plateau phase). We thus evaluated the effects of background strain and of age on hepatic gene expression in Hfe knockout mice (hfe-/-). Hepatic gene expression profiles were examined using cDNA microarrays in 4- and 8-week-old hfe-/- and wild-type mice on two different genetic backgrounds, C57BL/6J (C57) and AKR/J (AKR). Genes differentially regulated in all hfe-/- mice groups, compared with wild-type mice, including those involved in cell survival, stress and damage responses and lipid metabolism. AKR strain-specific changes in lipid metabolism genes and C57 strain-specific changes in cell adhesion and extracellular matrix protein genes were detected in hfe-/- mice. Mouse strain and age are each significantly associated with hepatic gene expression profiles in hfe-/- mice. These affects may underlie or reflect differences in iron loading in these mice.

  5. Effects of castration on expression of lipid metabolism genes in the liver of korean cattle.

    Science.gov (United States)

    Baik, Myunggi; Nguyen, Trang Hoa; Jeong, Jin Young; Piao, Min Yu; Kang, Hyeok Joong

    2015-01-01

    Castration induces the accumulation of body fat and deposition of intramuscular fat in Korean cattle, resulting in improved beef quality. However, little is known about the metabolic adaptations in the liver following castration. To understand changes in lipid metabolism following castration, hepatic expression levels of lipid metabolism genes were compared between Korean bulls and steers. Steers had higher (pcastration of bulls. However, we found no differences in the hepatic expression levels of genes related to triglyceride synthesis (mitochondrial glycerol-3-phosphate acyltransferase, diacylglycerol O-acyltransferase 1 and 2) and fatty acid (FA) oxidation (carnitine palmitoyltransferase 1A, C-4 to C-12 straight chain acyl-CoA dehydrogenase, very long chain acyl-CoA dehydrogenase) between bulls and steers. No differences in gene expression for very-low-density lipoprotein (VLDL) secretion, including apolipoprotein B mRNA and microsomal triglyceride transfer protein (MTTP) protein, were observed in the liver although MTTP mRNA levels were higher in steers compared to bulls. In conclusion, FA synthesis may contribute to increased hepatic lipid deposition in steers following castration. However, hepatic lipid metabolism, including triglyceride synthesis, FA oxidation, and VLDL secretion, was not significantly altered by castration. Our results suggest that hepatic lipid metabolism does not significantly contribute to increased body fat deposition in steers following castration.

  6. Epidemiological Investigation of an Outbreak of Viral Hepatitis.

    Science.gov (United States)

    Singh, Pmp; Handa, S K; Banerjee, A

    2006-10-01

    There was a rise in the number of viral hepatitis cases in a regimental training centre in Mar 2003 and an epidemic of viral hepatitis was suspected. The clinical case sheets and preliminary investigations carried out in the local military hospital (MH) were reviewed. A cross sectional descriptive epidemiological study was undertaken with survey odf the suspected sewage and water pipelines. A total of 36 cases occurred from Mar 2003 to Apr 2003. There was clustering in time and space suggesting common source epidemic. All the 36 serum samples tested for IgM anti HEV antibodies were positive. Exploration of the water pipelines revealed sewage contamination due to leakage in the pipeline passing close to the sewage line. The overall attack rate was 1.44%. The outbreak of viral hepatitis in the regimental training centre occurred due to sewage contamination of drinking water pipeline.

  7. Increased concentrations of plasma IL-18 in patients with hepatic dysfunction after hepatectomy.

    Science.gov (United States)

    Shibata, M; Hirota, M; Nozawa, F; Okabe, A; Kurimoto, M; Ogawa, M

    2000-10-01

    We investigated the dynamic aspects of circulatory IL-18 and other inflammatory cytokines in patients who underwent a hepatectomy. In patients with post-operative hepatic dysfunction, plasma concentrations of these cytokines increased, reflecting severe surgical trauma. IL-6, IL-10 and IFN-gamma increased in the early phase, while IL-18 increased in the later phase after 1 week. Interestingly, the increase in the plasma IL-18 concentration was correlated with that in serum bilirubin levels in hepatectomized patients. Hence, the decrease in the hepatic metabolism of IL-18 may cause the plasma accumulation of IL-18. This mechanism was confirmed using rat experiments. Intravenously administered human IL-18 was excreted into bile. Furthermore, the plasma clearance of human IL-18 was prolonged in bile duct-ligated rats. These results suggest that IL-18 is metabolized in the liver and excreted into bile, and an increase in plasma IL-18 in patients with hepatic dysfunction reflects the decreased metabolism in the liver. Copyright 2000 Academic Press.

  8. MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity.

    Science.gov (United States)

    Vaitheesvaran, B; LeRoith, D; Kurland, I J

    2010-10-01

    Recent work has shown that there can be significant differences when glucose disposal is assessed for high-fat induced insulin resistance by static clamp methods vs dynamic assessment during a stable isotope i.p. glucose tolerance test. MKR mice, though lean, have severe insulin resistance and decreased muscle fatty acid oxidation. Our goal was to assess dynamic vs static glucose disposal in MKR mice, and to correlate glucose disposal and muscle-adipose-liver flux interactions with metabolic flexibility (indirect calorimetry) and muscle characteristics. Stable isotope flux phenotyping was performed using [6,6-(2)H(2)]glucose, [U-(13)C(6)]glucose and [2-(13)C]glycerol. Muscle triacylglycerol (TAG) and diacylglycerol (DAG) content was assessed by thin layer chromatography, and histological determination of fibre type and cytochrome c activity performed. Metabolic flexibility was assessed by indirect calorimetry. Indirect calorimetry showed that MKR mice used more glucose than FVB/N mice during fasting (respiratory exchange ratio [RER] 0.88 vs 0.77, respectively). Compared with FVB/N mice, MKR mice had faster dynamic glucose disposal, despite increased whole-muscle DAG and TAG, and similar hepatic glucose production with higher fasting insulin and unchanged basal glucose. Fed MKR muscle had more glycogen, and increased levels of GLUT1 and GLUT4 than FVB/N muscle. Histology indicated that MKR soleus had mildly decreased cytochrome c activity overall and more type II (glycolytic) fibres compared with that in FVB/N mice. MKR muscle adapts to using glucose, with more type II fibres present in red muscle. Fasting RER is elevated and glucose disposal during an i.p. glucose tolerance test is accelerated despite increased muscle DAG and TAG. Metabolic inflexibility may result from the compensatory use of fuel that can be best utilised for energy requirements; static vs dynamic glucose disposal assessments may measure complementary aspects of metabolic flexibility and insulin

  9. Changes in hepatic glucose and lipid metabolism-related parameters in domestic pigeon (Columba livia) during incubation and chick rearing.

    Science.gov (United States)

    Wan, X P; Xie, P; Bu, Z; Zou, X T

    2018-04-01

    This study aimed to evaluate the hepatic glucose and lipid metabolism-related parameters of adult male and female White King pigeons (Columba livia) during incubation and chick rearing. At day 4 (I4), 10 (I10) and 17 (I17) of incubation and day 1 (R1), 7 (R7), 15 (R15) and 25 (R25) of chick rearing, livers were sampled from six pigeons for each sex. Glycogen and fat contents, activities of glycolytic enzymes (hexokinase, HK; 6-phosphofructokinase, 6-PFK), and genes expressions of key enzymes involved in glycolysis (pyruvate kinase, PK; glucokinase, GK), gluconeogenesis (phosphoenolpyruvate carboxykinase cytosolic, PCK1; fructose-1,6-bisphosphatase, FBP1; glucose-6-phosphatase, G6Pase), fatty acid synthesis (fatty acid synthase, FAS; acetyl-CoA carboxylase, ACC) and fatty acid β-oxidation (carnitine palmitoyltransferase 1, CPT1; acyl-CoA 1, ACO) were measured. In male and female pigeon livers, glycogen content and HK activity dramatically increased after I17 and after R1, respectively; expressions of FBP1 and G6Pase genes were maximized at R15; activity of 6-PFK and expressions of PK and CPT1 genes were highest at R7; fat content and expressions of FAS and ACC genes steeply increased from I10 to R1. In females, hepatic expressions of GK and PCK1 genes were greatest at R7 and I17, respectively; however, in males, both of them were maximized at R15. Hepatic expression of ACO gene was significantly enhanced at R1 compared to I17 and R7 in males, whereas it was notably up-regulated at I17 and R7 in females. Furthermore, expressions of PCK1, GK, FAS and ACC genes were in significant relation to fat content in the livers of female pigeons, while fat content in male pigeons was highly correlated with expression of PCK1, ACC, CPT1 and ACO genes. In conclusion, regulations of glucose and lipid metabolic processes were enhanced in parent pigeon livers from terminal phases of incubation to mid phase of chick rearing with sexual effects. © 2017 Blackwell Verlag GmbH.

  10. Prevalence of Anti-Hepatitis E Virus Antibodies and First Detection of Hepatitis E Virus in Wild Boar in Slovenia

    NARCIS (Netherlands)

    Žele, Diana; Fernandes Barry, Aline; Honing-Hakze, van der Renate; Vengušt, Gorazd; Poel, Van Der W.H.M.

    2016-01-01

    Hepatitis E is an emerging zoonotic disease caused by hepatitis E virus (HEV). In this study, we investigated HEV presence in a wild boar (Sus scrofa) population of Slovenia. A total of 288 wild boar serum samples were collected throughout the country, and HEV infection was investigated by

  11. Obesity-induced hepatic hypoperfusion primes for hepatic dysfunction after resuscitated hemorrhagic shock.

    Science.gov (United States)

    Matheson, Paul J; Hurt, Ryan T; Franklin, Glen A; McClain, Craig J; Garrison, R Neal

    2009-10-01

    Obese patients (BMI>35) after blunt trauma are at increased risk compared to non-obese for organ dysfunction, prolonged hospital stay, infection, prolonged mechanical ventilation, and mortality. Obesity and non-alcoholic fatty liver disease (NAFLD) produce a low grade systemic inflammatory response syndrome (SIRS) with compromised hepatic blood flow, which increases with body mass index. We hypothesized that obesity further aggravates liver dysfunction by reduced hepatic perfusion following resuscitated hemorrhagic shock (HEM). Age-matched Zucker rats (Obese, 314-519 g & Lean, 211-280 g) were randomly assigned to 4 groups (n = 10-12/group): (1) Lean-Sham; (2) Lean, HEM, and resuscitation (HEM/RES); (3) Obese-Sham; and (4) Obese-HEM/RES. HEM was 40% of mean arterial pressure (MAP) for 60 min; RES was return of shed blood/5 min and 2 volumes of saline/25 min. Hepatic blood flow (HBF) using galactose clearance, liver enzymes and complete metabolic panel were measured over 4 h after completion of RES. Obese rats had increased MAP, heart rate, and fasting blood glucose and BUN concentrations compared to lean controls, required less blood withdrawal (mL/g) to maintain 40% MAP, and RES did not restore BL MAP. Obese rats had decreased HBF at BL and during HEM/RES, which persisted 4 h post RES. ALT and BUN were increased compared to Lean-HEM/RES at 4 h post-RES. These data suggest that obesity significantly contributes to trauma outcomes through compromised vascular control or through fat-induced sinusoidal compression to impair hepatic blood flow after HEM/RES resulting in a greater hepatic injury. The pro-inflammatory state of NAFLD seen in obesity appears to prime the liver for hepatic ischemia after resuscitated hemorrhagic shock, perhaps intensified by insidious and ongoing hepatic hypoperfusion established prior to the traumatic injury or shock.

  12. Endothelial activation markers (VCAM-1, vWF in patients with chronic hepatitis C and insulin resistance

    Directory of Open Access Journals (Sweden)

    T. V. Antonova

    2012-01-01

    Full Text Available Blood markers of endothelial activation (sVCAM-1, vWF: Ag in patients with chronic hepatitis C in the presence of insulin resistance, metabolic syndrome and its components had been evaluated. The study included 69 patients with chronic hepatitis C with oligosymptomatic the disease. In one third of cases of chronic hepatitis C (33.3% showed improvement in the blood content of sVCAM-1 and / or vWF: Ag. In patients with chronic hepatitis C with insulin resistance, metabolic syndrome significantly more often found signs adhesion of endothelial dysfunction (increased blood concentrations of sVCAM-1 than in patients without these disorders. Found that in patients with severe hepatic fibrosis in patients with chronic hepatitis C blood concentration sVCAM-1 is significantly higher compared to patients with early stages of fibrosis (F0-F2, including those in patients without insulin resistance. These data suggest the multivariate development of endothelial dysfunction in chronic hepatitis C.

  13. Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production

    OpenAIRE

    Lam, Tony K.T.

    2007-01-01

    Brain glucose-sensing mechanisms are implicated in the regulation of feeding behavior and hypoglycemic-induced hormonal counter-regulation. This commentary discusses recent findings indicating that the brain senses glucose to regulate both hepatic glucose and lipid production.

  14. Citrus Flavonoids as Regulators of Lipoprotein Metabolism and Atherosclerosis.

    Science.gov (United States)

    Mulvihill, Erin E; Burke, Amy C; Huff, Murray W

    2016-07-17

    Citrus flavonoids are polyphenolic compounds with significant biological properties. This review summarizes recent advances in understanding the ability of citrus flavonoids to modulate lipid metabolism, other metabolic parameters related to the metabolic syndrome, and atherosclerosis. Citrus flavonoids, including naringenin, hesperitin, nobiletin, and tangeretin, have emerged as potential therapeutics for the treatment of metabolic dysregulation. Epidemiological studies reveal an association between the intake of citrus flavonoid-containing foods and a decreased incidence of cardiovascular disease. Studies in cell culture and animal models, as well as a limited number of clinical studies, reveal the lipid-lowering, insulin-sensitizing, antihypertensive, and anti-inflammatory properties of citrus flavonoids. In animal models, supplementation of rodent diets with citrus flavonoids prevents hepatic steatosis, dyslipidemia, and insulin resistance primarily through inhibition of hepatic fatty acid synthesis and increased fatty acid oxidation. Citrus flavonoids blunt the inflammatory response in metabolically important tissues including liver, adipose, kidney, and the aorta. The mechanisms underlying flavonoid-induced metabolic regulation have not been completely established, although several potential targets have been identified. In mouse models, citrus flavonoids show marked suppression of atherogenesis through improved metabolic parameters as well as through direct impact on the vessel wall. Recent studies support a role for citrus flavonoids in the treatment of dyslipidemia, insulin resistance, hepatic steatosis, obesity, and atherosclerosis. Larger human studies examining dose, bioavailability, efficacy, and safety are required to promote the development of these promising therapeutic agents.

  15. Immune and Metabolic Regulation Mechanism of Dangguiliuhuang Decoction against Insulin Resistance and Hepatic Steatosis

    Directory of Open Access Journals (Sweden)

    Hui Cao

    2017-07-01

    Full Text Available Dangguiliuhuang decoction (DGLHD is a traditional Chinese medicine (TCM formula, which mainly consists of angelica, radix rehmanniae, radix rehmanniae praeparata, scutellaria baicalensis, coptis chinensis, astragalus membranaceus, and golden cypress, and used for the treatment of diabetes and some autoimmune diseases. In this study, we explored the potential mechanism of DGLHD against insulin resistance and fatty liver in vivo and in vitro. Our data revealed that DGLHD normalized glucose and insulin level, increased the expression of adiponectin, diminished fat accumulation and lipogenesis, and promoted glucose uptake. Metabolomic analysis also demonstrated that DGLHD decreased isoleucine, adenosine, and cholesterol, increased glutamine levels in liver and visceral adipose tissue (VAT of ob/ob mice. Importantly, DGLHD promoted the shift of pro-inflammatory to anti-inflammatory cytokines, suppressed T lymphocytes proliferation, and enhanced regulatory T cells (Tregs differentiation. DGLHD also inhibited dendritic cells (DCs maturation, attenuated DCs-stimulated T cells proliferation and secretion of IL-12p70 cytokine from DCs, and promoted the interaction of DCs with Tregs. Further studies indicated that the changed PI3K/Akt signaling pathway and elevated PPAR-γ expression were not only observed with the ameliorated glucose and lipid metabolism in adipocytes and hepatocytes, but also exhibited in DCs and T cells by DGLHD. Collectively, our results suggest that DGLHD exerts anti-insulin resistant and antisteatotic effects by improving abnormal immune and metabolic homeostasis. And DGLHD may be a novel approach to the treatment of obesity-related insulin resistance and hepatic steatosis.

  16. Interplay of drug metabolism and transport: a real phenomenon or an artifact of the site of measurement?

    Science.gov (United States)

    Endres, Christopher J; Endres, Michael G; Unadkat, Jashvant D

    2009-01-01

    The interdependence of both transport and metabolism on the disposition of drugs has recently gained heightened attention in the literature, and has been termed the "interplay of transport and metabolism". Such "interplay" is observed when inhibition of biliary clearance of a drug results in an "apparent" increase in the metabolic clearance of the drug or vice versa. In this manuscript, we derived and explored through simulations a physiological-based pharmacokinetic model that integrates both transport and metabolism and explains the "apparent" dependence of hepatic clearance on both these processes. In addition, we show that the phenomenon of hepatic "transport-metabolism interplay" is a result of using the plasma concentration as a point of reference when calculating metabolic or biliary clearance, and this interplay is maximal when the drug is actively transported into the hepatocytes (i.e., hepatocyte sinusoidal influx clearance is greater than the sinusoidal efflux clearance). When the hepatic drug concentration is used as a reference point to calculate metabolic or biliary clearance, this interplay ceases to exist. A mechanistic understanding of this interplay phenomenon can be used to explain the somewhat paradoxical results that may be observed in drug-drug interaction studies when a drug is cleared by both metabolism and biliary excretion. That is, when one of these two pathways is inhibited, the other pathway appears to be induced or activated. This interplay results in an increase in hepatic drug concentrations and therefore has implications for the hepatic efficacy and toxicity of a drug.

  17. Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders

    Directory of Open Access Journals (Sweden)

    Priscila Silva Figueiredo

    2017-10-01

    Full Text Available Obesity and its associated disorders, such as insulin resistance, dyslipidemia, metabolic inflammation, dysbiosis, and non-alcoholic hepatic steatosis, are involved in several molecular and inflammatory mechanisms that alter the metabolism. Food habit changes, such as the quality of fatty acids in the diet, are proposed to treat and prevent these disorders. Some studies demonstrated that saturated fatty acids (SFA are considered detrimental for treating these disorders. A high fat diet rich in palmitic acid, a SFA, is associated with lower insulin sensitivity and it may also increase atherosclerosis parameters. On the other hand, a high intake of eicosapentaenoic (EPA and docosahexaenoic (DHA fatty acids may promote positive effects, especially on triglyceride levels and increased high-density lipoprotein (HDL levels. Moreover, polyunsaturated fatty acids (PUFAs and monounsaturated fatty acids (MUFAs are effective at limiting the hepatic steatosis process through a series of biochemical events, such as reducing the markers of non-alcoholic hepatic steatosis, increasing the gene expression of lipid metabolism, decreasing lipogenic activity, and releasing adiponectin. This current review shows that the consumption of unsaturated fatty acids, MUFA, and PUFA, and especially EPA and DHA, which can be applied as food supplements, may promote effects on glucose and lipid metabolism, as well as on metabolic inflammation, gut microbiota, and hepatic metabolism.

  18. Automated processing of first-pass radioisotope ventriculography data to determine essential central circulation parameters

    Science.gov (United States)

    Krotov, Aleksei; Pankin, Victor

    2017-09-01

    The assessment of central circulation (including heart function) parameters is vital in the preventive diagnostics of inherent and acquired heart failures and during polychemotherapy. The protocols currently applied in Russia do not fully utilize the first-pass assessment (FPRNA) and that results in poor data formalization, while the FPRNA is the one of the fastest, affordable and compact methods among other radioisotope diagnostics protocols. A non-imaging algorithm basing on existing protocols has been designed to use the readings of an additional detector above vena subclavia to determine the total blood volume (TBV), not requiring blood sampling in contrast to current protocols. An automated processing of precordial detector readings is presented, in order to determine the heart strike volume (SV). Two techniques to estimate the ejection fraction (EF) of the heart are discussed.

  19. TRT Barrel milestones passed

    CERN Multimedia

    Ogren, H

    2004-01-01

    The barrel TRT detector passed three significant milestones this spring. The Barrel Support Structure (BSS) was completed and moved to the SR-1 building on February 24th. On March 12th the first module passed the quality assurance testing in Building 154 and was transported to the assembly site in the SR-1 building for barrel assembly. Then on April 21st the final production module that had been scanned at Hampton University was shipped to CERN. TRT Barrel Module Production The production of the full complement of barrel modules (96 plus 9 total spares) is now complete. This has been a five-year effort by Duke University, Hampton University, and Indiana University. Actual construction of the modules in the United States was completed in the first part of 2004. The production crews at each of the sites in the United States have now completed their missions. They are shown in the following pictures. Duke University: Production crew with the final completed module. Indiana University: Module producti...

  20. Energy Metabolism in the Liver

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial β oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD). PMID:24692138

  1. Cortisol metabolism in healthy young adults: sexual dimorphism in activities of A-ring reductases, but not 11beta-hydroxysteroid dehydrogenases.

    Science.gov (United States)

    Finken, M J; Andrews, R C; Andrew, R; Walker, B R

    1999-09-01

    Cortisol is metabolized irreversibly by A-ring reductases (5alpha- and 5beta-reductases) and reversibly (to cortisone) by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). In rats, estradiol down-regulates 11betaHSD1 expression. In humans, ratios of urinary cortisol/cortisone metabolites differ in men and women. In this study, urinary cortisol metabolites and hepatic 11betaHSD1 activity were measured in healthy young men and women at different phases of the menstrual cycle. Ten men and 10 women with regular menstrual cycles collected a 24-h urine sample, took 250 microg oral dexamethasone at 2300 h, took 25 mg oral cortisone at 0900 h (after fasting), and had blood sampled for plasma cortisol estimation over the subsequent 150 min. Women repeated the tests in random order in menstrual, follicular, and luteal phases. Women excreted disproportionately less A-ring-reduced metabolites of cortisol [median 5alpha-tetrahydrocortisol, 1811 (interquartile range, 1391-2300) microg/day in menstrual phase vs. 2723 (interquartile range, 2454-3154) in men (P = 0.01); 5beta-tetrahydrocortisol, 1600 (interquartile range, 1419-1968) vs. 2197 (interquartile range, 1748-2995; P = 0.03)] but similar amounts of cortisol, cortisone, and tetrahydrocortisone. Analogous differences were observed in urinary excretion of androgen metabolites. Conversion of cortisone to cortisol on hepatic first pass metabolism was not different (peak plasma cortisol, 733 +/- 60 nmol/L in women vs. 684 +/- 53 nmol/L in men; mean +/- SEM; P = 0.55). There were no differences in cortisol or androgen metabolism between phases of the menstrual cycle. We conclude that sexual dimorphism in cortisol metabolite excretion is attributable to less A-ring reduction of cortisol in women, rather than less reactivation of cortisone to cortisol by 11betaHSD1. This difference is not influenced acutely by gonadal steroids. 11BetaHSD1 has been suggested to modulate insulin sensitivity and body fat distribution, but caution

  2. Associations between Zinc Deficiency and Metabolic Abnormalities in Patients with Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    Takashi Himoto

    2018-01-01

    Full Text Available Zinc (Zn is an essential trace element which has favorable antioxidant, anti-inflammatory, and apoptotic effects. The liver mainly plays a crucial role in maintaining systemic Zn homeostasis. Therefore, the occurrence of chronic liver diseases, such as chronic hepatitis, liver cirrhosis, or fatty liver, results in the impairment of Zn metabolism, and subsequently Zn deficiency. Zn deficiency causes plenty of metabolic abnormalities, including insulin resistance, hepatic steatosis and hepatic encephalopathy. Inversely, metabolic abnormalities like hypoalbuminemia in patients with liver cirrhosis often result in Zn deficiency. Recent studies have revealed the putative mechanisms by which Zn deficiency evokes a variety of metabolic abnormalities in chronic liver disease. Zn supplementation has shown beneficial effects on such metabolic abnormalities in experimental models and actual patients with chronic liver disease. This review summarizes the pathogenesis of metabolic abnormalities deriving from Zn deficiency and the favorable effects of Zn administration in patients with chronic liver disease. In addition, we also highlight the interactions between Zn and other trace elements, vitamins, amino acids, or hormones in such patients.

  3. Genetic parameters of product quality and hepatic metabolism in fattened mule ducks.

    Science.gov (United States)

    Marie-Etancelin, C; Basso, B; Davail, S; Gontier, K; Fernandez, X; Vitezica, Z G; Bastianelli, D; Baéza, E; Bernadet, M-D; Guy, G; Brun, J-M; Legarra, A

    2011-03-01

    Genetic parameters of traits related to hepatic lipid metabolism, carcass composition, and product quality of overfed mule ducks were estimated on both parental lines of this hybrid: the common duck line for the maternal side and the Muscovy line for the paternal side. The originality of the statistical model was to include simultaneously the additive genetic effect of the common ducks and that of the Muscovy ducks, revealing a greater genetic determinism in common than in Muscovy. Plasma metabolic indicators (glucose, triglyceride, and cholesterol contents) were heritable, in particular at the end of the overfeeding period, and heritabilities increased with the overfeeding stage. Carcass composition traits were highly heritable in the common line, with values ranging from 0.15 for liver weight, 0.21 for carcass weight, and 0.25 for abdominal fat weight to 0.32 for breast muscle weight. Heritabilities of technological outputs were greater for the fatty liver (0.19 and 0.08, respectively, on common and Muscovy sides for liver melting rate) than for the pectoralis major muscle (between 0.02 and 0.05 on both parental sides for cooking losses). Fortunately, the processing industry is mainly facing problems in liver quality, such as too high of a melting rate, than in meat quality. The meat quality appraisal criteria (such as texture and cooking losses), usually dependent on pH and the rate of decline of pH, were also very lowly heritable. This study demonstrated that genetic determinism of meat quality and ability of overfeeding is not similar in the common population and in the Muscovy population; traits related to fattening, muscle development, and BW have heritability values from 2 to 4 times greater on the common line than on the Muscovy line, which is relevant for considering different selection strategies.

  4. Hepatic biotransformation pathways and ruminal metabolic stability of the novel anthelmintic monepantel in sheep and cattle.

    Science.gov (United States)

    Ballent, M; Virkel, G; Maté, L; Viviani, P; Lanusse, C; Lifschitz, A

    2016-10-01

    Monepantel (MNP) is a new amino-acetonitrile derivative anthelmintic drug used for the treatment of gastrointestinal (GI) nematodes in sheep. The present work investigated the main enzymatic pathways involved in the hepatic biotransformation of MNP in sheep and cattle. The metabolic stability in ruminal fluid of both the parent drug and its main metabolite (monepantel sulphone, MNPSO2 ) was characterized as well. Additionally, the relative distribution of both anthelmintic molecules between the fluid and particulate phases of the ruminal content was studied. Liver microsomal fractions from six (6) rams and five (5) steers were incubated with a 40 μm of MNP. Heat pretreatment (50 °C for 2 min) of liver microsomes was performed for inactivation of the flavin-monooxygenase (FMO) system. Additionally, MNP was incubated in the presence of 4, 40, and 80 μm of methimazole (MTZ), a FMO inhibitor, or equimolar concentrations of piperonyl butoxide (PBx), a well-known general cytochrome P450 (CYP) inhibitor. In both ruminant species, MNPSO2 was the main metabolite detected after MNP incubation with liver microsomes. The conversion rate of MNP into MNPSO2 was fivefold higher (P ruminal contents of both species showed a high chemical stability without evident metabolism and/or degradation as well as an extensive degree of adsorption (83% to 90%) to the solid phase of the ruminal content. Overall, these results are a further contribution to the understanding of the metabolic fate of this anthelmintic drug in ruminants. © 2016 John Wiley & Sons Ltd.

  5. Resistance to the Beneficial Metabolic Effects and Hepatic Antioxidant Defense Actions of Fibroblast Growth Factor 21 Treatment in Growth Hormone-Overexpressing Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Ravneet K. Boparai

    2015-01-01

    Full Text Available Fibroblast growth factor 21 (FGF21 modulates a diverse range of biological functions, including glucose and lipid metabolism, adaptive starvation response, and energy homeostasis, but with limited mechanistic insight. FGF21 treatment has been shown to inhibit hepatic growth hormone (GH intracellular signaling. To evaluate GH axis involvement in FGF21 actions, transgenic mice overexpressing bovine GH were used. Expectedly, in response to FGF21 treatment control littermates showed metabolic improvements whereas GH transgenic mice resisted most of the beneficial effects of FGF21, except an attenuation of the innate hyperinsulinemia. Since FGF21 is believed to exert its effects mostly at the transcriptional level, we analyzed and observed significant upregulation in expression of various genes involved in carbohydrate and lipid metabolism, energy homeostasis, and antioxidant defense in FGF21-treated controls, but not in GH transgenics. The resistance of GH transgenic mice to FGF21-induced changes underlines the necessity of normal GH signaling for the beneficial effects of FGF21.

  6. Microbial Regulation of Glucose Metabolism and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Silke Crommen

    2017-12-01

    Full Text Available Type 2 diabetes is a combined disease, resulting from a hyperglycemia and peripheral and hepatic insulin resistance. Recent data suggest that the gut microbiota is involved in diabetes development, altering metabolic processes including glucose and fatty acid metabolism. Thus, type 2 diabetes patients show a microbial dysbiosis, with reduced butyrate-producing bacteria and elevated potential pathogens compared to metabolically healthy individuals. Furthermore, probiotics are a known tool to modulate the microbiota, having a therapeutic potential. Current literature will be discussed to elucidate the complex interaction of gut microbiota, intestinal permeability and inflammation leading to peripheral and hepatic insulin resistance. Therefore, this review aims to generate a deeper understanding of the underlying mechanism of potential microbial strains, which can be used as probiotics.

  7. Evaluation of contrast wash-in and peak enhancement in adenosine first pass perfusion CMR in patients post bypass surgery

    Directory of Open Access Journals (Sweden)

    Schnackenburg Bernhard

    2010-05-01

    Full Text Available Abstract Background Adenosine first pass perfusion cardiovascular magnetic resonance (CMR yields excellent results for the detection of significant coronary artery disease (CAD. In patients with coronary artery bypass grafts (CABG the kinetics of a contrast bolus may by altered only due to different distances through the bypass grafts compared to native vessels, thereby possibly imitating a perfusion defect. The aim of the study was to evaluate semiquantitative perfusion parameters in order to assess possible differences in epicardial contrast kinetics in areas supplied by native coronaries and CABG, both without significant stenosis. Methods Twenty patients with invasive exclusion of significant CAD (control group and 38 patients with CABG without angiographically significant (≥50% stenosis in unbypassed coronaries or grafts were retrospectively included in the study. They underwent adenosine first pass (0.05 mmol/kg Gd-DTPA perfusion (3 short axis views/heart beat and late gadolinium enhancement (LGE imaging 1 day before invasive coronary angiography. Areas perfused by native coronaries and/or the different bypasses were identified in X-ray angiography using the 16 segment model. In each of these areas upslope and maximal signal intensity (SImax relative to the left ventricular parameters, time to 50% maximal signal intensity (TSI50%max and time to maximal signal intensity (TSImax were calculated. Results In areas perfused by coronary arteries with bypasses compared to native coronaries relative upslope and relative SImax did not show a significant difference. TSI50%max and TSImax in native coronaries and bypasses were 7.2s ± 1.9s vs. 7.5s ± 1.9s (p max resulted in a significant (p Conclusion Adenosine perfusion CMR in patients post CABG may be associated with a short delay in contrast arrival. However, once the contrast is in the myocardium there is similar wash-in kinetics and peak enhancement. Therefore, since the delay is only short

  8. Modelling modulation perception : modulation low-pass filter or modulation filter bank?

    NARCIS (Netherlands)

    Dau, T.; Kollmeier, B.; Kohlrausch, A.G.

    1995-01-01

    In current models of modulation perception, the stimuli are first filtered and nonlinearly transformed (mostly half-wave rectified). In order to model the low-pass characteristic of measured modulation transfer functions, the next stage in the models is a first-order low-pass filter with a typical

  9. Hepatitis B and Hepatitis C virus in women with first pregnancy

    International Nuclear Information System (INIS)

    Jadoon, S.M.; Adeel, M.

    2017-01-01

    Hepatitis B and Hepatitis C are amongst the leading causes of morbidity and mortality in pregnant women throughout the globe. This study is aimed at determining the frequency of these infections among primigravid females and the common factors that make them prone to these infections. Methods: This cross-sectional study was conducted at Ayub Teaching Hospital, Abbottabad from December 2015 to May 2016. A total of 174 jaundiced primigravida patients were included in the study through non-probability consecutive sampling. Blood samples were sent for HBsAg and anti-HCV ELISA. Samples were analysed by the pathologist with more than 5 years clinical experience. All data will be analysed using SPSS-16. Results: The mean age of the subjects was 24±5.7 years. Six (3.4%) patients were HBsAg positive and 13 (7.5%) were anti-HCV positive. About 9% of patients had undergone surgery in their life and 1.7% reported having received blood transfusion during their life. Thirty-two of them had history of intravenous or intramuscular injections. History of piercing of body part mostly ear-piercing for ornaments was present in 170 (97.7%) respondents. However, the frequency of blood transfusion, surgery and body piercing was not statistically significantly between HBsAg positive, HBsAg negative, and anti-HCV positive and negative patients (p>0.05). Conclusion: The incidence of these viral infections in our community is on the rise. It emphasizes the need of routine antenatal screening in pregnant ladies for these viruses and to educate the public about preventive measures against these infections. (author)

  10. A prototype for the PASS Permanent All Sky Survey

    Science.gov (United States)

    Deeg, H. J.; Alonso, R.; Belmonte, J. A.; Horne, K.; Alsubai, K.; Collier Cameron, A.; Doyle, L. R.

    2004-10-01

    A prototype system for the Permanent All Sky Survey (PASS) project is presented. PASS is a continuous photometric survey of the entire celestial sphere with a high temporal resolution. Its major objectives are the detection of all giant-planet transits (with periods up to some weeks) across stars up to mag 10.5, and to deliver continuously photometry that is useful for the study of any variable stars. The prototype is based on CCD cameras with short focal length optics on a fixed mount. A small dome to house it at Teide Observatory, Tenerife, is currently being constructed. A placement at the antarctic Dome C is also being considered. The prototype will be used for a feasibility study of PASS, to define the best observing strategies, and to perform a detailed characterization of the capabilities and scope of the survey. Afterwards, a first partial sky surveying will be started with it. That first survey may be able to detect transiting planets during its first few hundred hours of operation. It will also deliver a data set around which software modules dealing with the various scientific objectives of PASS will be developed. The PASS project is still in its early phase and teams interested in specific scientific objectives, in providing technical expertise, or in participating with own observations are invited to collaborate.

  11. Carbonated soft drinks alter hepatic cytochrome P450 isoform expression in Wistar rats.

    Science.gov (United States)

    Alkhedaide, Adel; Soliman, Mohamed Mohamed; Ibrahim, Zein Shaban

    2016-11-01

    The aim of the current study was to examine the effects of chronic consumption of soft drinks (SDs) on hepatic oxidative stress and cytochrome P450 enzymes (CYPs) expression in the livers of Wistar rats. For 3 consecutive months, the rats had free access to three different soft drinks, Coca-Cola, Pepsi-Cola and 7-UP. The rats were subsequently compared with control group rats that had consumed water. Blood and hepatic tissue samples were assayed for the changes in antioxidants, liver function biomarkers and hepatic gene expression for different isoforms of hepatic CYP. The results indicated that SD consumption (SDC) decreased serum antioxidant levels and increased malondialdehyde secretion, and increased liver biomarkers (glutamate pyruvate transaminase and glutamate oxaloacetate). SD induced alterations in mRNA expression of hepatic antioxidants and cytochrome isoforms. The expression of peroxidase, catalase, CYP1A2, CYP3A2 and CYP2C11 in the liver were upregulated following SDC. By contrast, CYP2B1 was downregulated after 3 months of SDC in liver tissue samples. Thus, the present findings indicate that SDs induced oxidative stress in the liver of Wistar rats and for the first time, to the best of our knowledge, indicate that SDC disrupts hepatic CYP enzymes that may affect drug metabolism. Therefore, drug-dosing programs should be carefully designed to take these novel findings into consideration for the treatment of diseases.

  12. Realisation of low-voltage square-root-domain all-pass filters

    Directory of Open Access Journals (Sweden)

    Farooq A. Khanday

    2013-10-01

    Full Text Available Novel l ow-voltage first-order and second-order square-root-domain all-pass filters derived systematically by means of transfer function decomposition and state -space synthesis techniques are proposed. The employment of only a few geometric-mean cells and grounded capacitors permits the circuits to absorb shunt parasitic capacitances, which is desirable for production in monolithic form . The circuits enjoy the features of electronic adjustment of frequency characteristics, wider dynamic range and low-voltage environment operation. The filters are employed to design high-order all-pass filters using cascade approach. First-order low-pass and second-order band-pass filters, being the inherited building blocks of the proposed low-order all-pass filters are also discussed. The behaviour of the filters is evaluated through simulations using Taiwan semiconductor manufacturing company 0.25 μm level-3 complementary metal oxide semiconductor process parameters, where the most important performance factors are considered.

  13. [History of viral hepatitis].

    Science.gov (United States)

    Fonseca, José Carlos Ferraz da

    2010-01-01

    The history of viral hepatitis goes back thousands of years and is a fascinating one. When humans were first infected by such agents, a natural repetitive cycle began, with the capacity to infect billions of humans, thus decimating the population and causing sequelae in thousands of lives. This article reviews the available scientific information on the history of viral hepatitis. All the information was obtained through extensive bibliographic review, including original and review articles and consultations on the internet. There are reports on outbreaks of jaundice epidemics in China 5,000 years ago and in Babylon more than 2,500 years ago. The catastrophic history of great jaundice epidemics and pandemics is well known and generally associated with major wars. In the American Civil War, 40,000 cases occurred among Union troops. In 1885, an outbreak of catarrhal jaundice affected 191 workers at the Bremen shipyard (Germany) after vaccination against smallpox. In 1942, 28,585 soldiers became infected with hepatitis after inoculation with the yellow fever vaccine. The number of cases of hepatitis during the Second World War was estimated to be 16 million. Only in the twentieth century were the main agents causing viral hepatitis identified. The hepatitis B virus was the first to be discovered. In this paper, through reviewing the history of major epidemics caused by hepatitis viruses and the history of discovery of these agents, singular peculiarities were revealed. Examples of this include the accidental or chance discovery of the hepatitis B and D viruses.

  14. PASS-Predicted Hepatoprotective Activity of Caesalpinia sappan in Thioacetamide-Induced Liver Fibrosis in Rats

    Directory of Open Access Journals (Sweden)

    Farkaad A. Kadir

    2014-01-01

    Full Text Available The antifibrotic effects of traditional medicinal herb Caesalpinia sappan (CS extract on liver fibrosis induced by thioacetamide (TAA and the expression of transforming growth factor β1 (TGF-β1, α-smooth muscle actin (αSMA, and proliferating cell nuclear antigen (PCNA in rats were studied. A computer-aided prediction of antioxidant and hepatoprotective activities was primarily performed with the Prediction Activity Spectra of the Substance (PASS Program. Liver fibrosis was induced in male Sprague Dawley rats by TAA administration (0.03% w/v in drinking water for a period of 12 weeks. Rats were divided into seven groups: control, TAA, Silymarin (SY, and CS 300 mg/kg body weight and 100 mg/kg groups. The effect of CS on liver fibrogenesis was determined by Masson’s trichrome staining, immunohistochemical analysis, and western blotting. In vivo determination of hepatic antioxidant activities, cytochrome P450 2E1 (CYP2E1, and matrix metalloproteinases (MPPS was employed. CS treatment had significantly increased hepatic antioxidant enzymes activity in the TAA-treated rats. Liver fibrosis was greatly alleviated in rats when treated with CS extract. CS treatment was noted to normalize the expression of TGF-β1, αSMA, PCNA, MMPs, and TIMP1 proteins. PASS-predicted plant activity could efficiently guide in selecting a promising pharmaceutical lead with high accuracy and required antioxidant and hepatoprotective properties.

  15. Human Placenta Extract Therapy for Feline Hepatic Lipidosis

    OpenAIRE

    2018-01-01

    Feline hepatic lipidosis (HL), the most common hepatobiliary disease in cats, is characterized by the accumulation of excessive triglycerides (TGs) in more than 80% of hepatocytes. Forced oral feeding is recommended as the only therapy for this disease but the prognosis is often poor. As human placenta extract (Laennec) has been used to improve hepatic metabolism, we investigated the efficacy of this drug for the treatment of cats with HL. Ten cats diagnosed with HL in this study were treated...

  16. Nitazoxanide for chronic hepatitis C

    DEFF Research Database (Denmark)

    Nikolova, Kristiana; Gluud, Christian; Grevstad, Berit

    2014-01-01

    BACKGROUND: Hepatitis C infection is a disease of the liver caused by the hepatitis C virus. The estimated number of chronically infected people with hepatitis C virus worldwide is about 150 million people. Every year, another three to four million people acquire the infection. Chronic hepatitis C......) and ribavirin was the approved standard treatment for chronic hepatitis C. In 2011, first-generation direct-acting antivirals (DAAs) have been licensed, for use in combination with peginterferon and ribavirin for treating hepatitis C virus genotype 1 infection. Nitazoxanide is another antiviral drug with broad...... antiviral activity and may have potential as an effective alternative, or an addition to standard treatment for the treatment of the hepatitis C virus. OBJECTIVES: To assess the benefits and harms of nitazoxanide in people with chronic hepatitis C virus infection. SEARCH METHODS: We searched The Cochrane...

  17. Analysis of branching patterns of middle hepatic artery using A-P and oblique view hepatic angiography

    International Nuclear Information System (INIS)

    Han, Kun Soo; Chang, Jae Chun; Park, Bok Hwan

    1992-01-01

    A study on branching patterns of middle hepatic artery was performed in 109 patients with A-P and oblique view hepatic angiogram, which refereed to size and location of quadrate lobe in CT and SMA photography. We could analyze the branching patterns of middle hepatic artery (MHA) in 100 among 109 patients. MHA arising as a first branch of left hepatic artery was the most common pattern (50%), and MHA arising from proper hepatic artery separately on from left hepatic artery was the next common pattern (35%). MHA originating from left gastric artery, or from anterior or posterior of the right hepatic artery was not seen. MHA was not found as an accessory or replaced artery except as replaced common hepatic artery

  18. Hepatic lipase: a pro- or anti-atherogenic protein?

    NARCIS (Netherlands)

    H. Jansen (Hans); A.J.M. Verhoeven (Adrie); E.J.G. Sijbrands (Eric)

    2002-01-01

    textabstractHepatic lipase (HL) plays a role in the metabolism of pro- and anti-atherogenic lipoproteins affecting their plasma level and composition. However, there is controversy regarding whether HL accelerates or retards atherosclerosis. Its effects on different

  19. Aberrant hepatic lipid storage and metabolism in canine portosystemic shunts.

    Science.gov (United States)

    Van den Bossche, Lindsay; Schoonenberg, Vivien A C; Burgener, Iwan A; Penning, Louis C; Schrall, Ingrid M; Kruitwagen, Hedwig S; van Wolferen, Monique E; Grinwis, Guy C M; Kummeling, Anne; Rothuizen, Jan; van Velzen, Jeroen F; Stathonikos, Nikolas; Molenaar, Martijn R; Helms, Bernd J; Brouwers, Jos F H M; Spee, Bart; van Steenbeek, Frank G

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a poorly understood multifactorial pandemic disorder. One of the hallmarks of NAFLD, hepatic steatosis, is a common feature in canine congenital portosystemic shunts. The aim of this study was to gain detailed insight into the pathogenesis of steatosis in this large animal model. Hepatic lipid accumulation, gene-expression analysis and HPLC-MS of neutral lipids and phospholipids in extrahepatic (EHPSS) and intrahepatic portosystemic shunts (IHPSS) was compared to healthy control dogs. Liver organoids of diseased dogs and healthy control dogs were incubated with palmitic- and oleic-acid, and lipid accumulation was quantified using LD540. In histological slides of shunt livers, a 12-fold increase of lipid content was detected compared to the control dogs (EHPSS Plipid-related genes to steatosis in portosystemic shunting was corroborated using gene-expression profiling. Lipid analysis demonstrated different triglyceride composition and a shift towards short chain and omega-3 fatty acids in shunt versus healthy dogs, with no difference in lipid species composition between shunt types. All organoids showed a similar increase in triacylglycerols after free fatty acids enrichment. This study demonstrates that steatosis is probably secondary to canine portosystemic shunts. Unravelling the pathogenesis of this hepatic steatosis might contribute to a better understanding of steatosis in NAFLD.

  20. Topical Drugs for Pain Relief

    Directory of Open Access Journals (Sweden)

    Anjali Srinivasan

    2015-03-01

    Full Text Available Topical therapy helps patients with oral and perioral pain problems such as ulcers, burning mouth syndrome, temporomandibular disorders, neuromas, neuropathies and neuralgias. Topical drugs used in the field of dentistry are topical anaesthetics, topical analgesics, topical antibiotics and topical corticosteroids. It provides symptomatic/curative effect. Topical drugs are easy to apply, avoids hepatic first pass metabolism and more sites specific. But it can only be used for medications that require low plasma concentrations to achieve a therapeutic effect.

  1. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Sunny, Nishanth E; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J; Nautiyal, Manisha; Mathew, Justin T; Williams, Caroline M; Cusi, Kenneth

    2015-08-15

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD.

  2. Estrogens regulate the hepatic effects of growth hormone, a hormonal interplay with multiple fates

    DEFF Research Database (Denmark)

    Fernández-Pérez, Leandro; Guerra, Borja; Díaz-Chico, Juan C

    2013-01-01

    The liver responds to estrogens and growth hormone (GH) which are critical regulators of body growth, gender-related hepatic functions, and intermediate metabolism. The effects of estrogens on liver can be direct, through the direct actions of hepatic ER, or indirect, which include the crosstalk...

  3. Restriction on an energy-dense diet improves markers of metabolic health and cellular aging in mice through decreasing hepatic mTOR activity.

    Science.gov (United States)

    Schloesser, Anke; Campbell, Graeme; Glüer, Claus-Christian; Rimbach, Gerald; Huebbe, Patricia

    2015-02-01

    Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum-fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5'-adenosine monophosphate-activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation.

  4. White Pitaya (Hylocereus undatus) Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    Science.gov (United States)

    Song, Haizhao; Zheng, Zihuan; Wu, Jianan; Lai, Jia; Chu, Qiang; Zheng, Xiaodong

    2016-01-01

    Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ) on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis) in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2) but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos). In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism.

  5. Short-term hepatic effects of depleted uranium on xenobiotic and bile acid metabolizing cytochrome P450 enzymes in the rat

    International Nuclear Information System (INIS)

    Gueguen, Y.; Souidi, M.; Baudelin, C.; Dudoignon, N.; Grison, S.; Dublineau, I.; Marquette, C.; Voisin, P.; Gourmelon, P.; Aigueperse, J.

    2006-01-01

    The toxicity of uranium has been demonstrated in different organs, including the kidneys, skeleton, central nervous system, and liver. However, few works have investigated the biological effects of uranium contamination on important metabolic function in the liver. In vivo studies were conducted to evaluate its effects on cytochrome P450 (CYP) enzymes involved in the metabolism of cholesterol and xenobiotics in the rat liver. The effects of depleted uranium (DU) contamination on Sprague-Dawley were measured at 1 and 3 days after exposure. Biochemical indicators characterizing liver and kidney functions were measured in the plasma. The DU affected bile acid CYP activity: 7α-hydroxycholesterol plasma level decreased by 52% at day 3 whereas microsomal CYP7A1 activity in the liver did not change significantly and mitochondrial CYP27A1 activity quintupled at day 1. Gene expression of the nuclear receptors related to lipid metabolism (FXR and LXR) also changed, while PPARα mRNA levels did not. The increased mRNA levels of the xenobiotic-metabolizing CYP3A enzyme at day 3 may be caused by feedback up-regulation due to the decreased CYP3A activity at day 1. CAR mRNA levels, which tripled on day 1, may be involved in this up-regulation, while mRNA levels of PXR did not change. These results indicate that high levels of depleted uranium, acting through modulation of the CYP enzymes and some of their nuclear receptors, affect the hepatic metabolism of bile acids and xenobiotics. (orig.)

  6. [Abnormal hepatic function tests in pregnancy: causes and consequences].

    Science.gov (United States)

    Nemesánszky, Elemér

    2013-07-21

    The well-known normal ranges of laboratory parameters are altered due to the broad spectrum of physiological changes as well as proinflammatory and procoagulant effects of pregnancy. Hepatic disorders of any aetiology can cause potential problems during gravidity. Most frequently toxic-effects, hepatotrop viruses (such as hepatitis B and C), metabolic syndrome and diseases with autoimmune background can be observed. When dealing with "pregnancy-specific hepatic syndromes", it is very important to consider the "timing-factors" of pathologic changes and deterioration of clinical pictures as well. Due to the progress in cholestasis management, early termination of pregnancy can be avoided in many cases. As the overlap is really broad between various hepatic disorders, a multidisciplinary cooperation of different sub-disciplines is emphasized in order to achieve proper diagnosis and curative measures at early phase.

  7. Open solar flux estimates from near-Earth measurements of the interplanetary magnetic field: comparison of the first two perihelion passes of the Ulysses spacecraft

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    2004-04-01

    Full Text Available Results from all phases of the orbits of the Ulysses spacecraft have shown that the magnitude of the radial component of the heliospheric field is approximately independent of heliographic latitude. This result allows the use of near-Earth observations to compute the total open flux of the Sun. For example, using satellite observations of the interplanetary magnetic field, the average open solar flux was shown to have risen by 29% between 1963 and 1987 and using the aa geomagnetic index it was found to have doubled during the 20th century. It is therefore important to assess fully the accuracy of the result and to check that it applies to all phases of the solar cycle. The first perihelion pass of the Ulysses spacecraft was close to sunspot minimum, and recent data from the second perihelion pass show that the result also holds at solar maximum. The high level of correlation between the open flux derived from the various methods strongly supports the Ulysses discovery that the radial field component is independent of latitude. We show here that the errors introduced into open solar flux estimates by assuming that the heliospheric field's radial component is independent of latitude are similar for the two passes and are of order 25% for daily values, falling to 5% for averaging timescales of 27 days or greater. We compare here the results of four methods for estimating the open solar flux with results from the first and second perehelion passes by Ulysses. We find that the errors are lowest (1–5% for averages over the entire perehelion passes lasting near 320 days, for near-Earth methods, based on either interplanetary magnetic field observations or the aa geomagnetic activity index. The corresponding errors for the Solanki et al. (2000 model are of the order of 9–15% and for the PFSS method, based on solar magnetograms, are of the order of 13–47%. The model of Solanki et al. is based on the continuity equation of open flux, and uses the

  8. Influence of welding passes on grain orientation – The example of a multi-pass V-weld

    International Nuclear Information System (INIS)

    Ye, Jing; Moysan, Joseph; Song, Sung-Jin; Kim, Hak-Joon; Chassignole, Bertrand; Gueudré, Cécile; Dupond, Olivier

    2012-01-01

    The accurate modelling of grain orientations in a weld is important, when accurate ultrasonic test predictions of a welded assembly are needed. To achieve this objective, Electricité de France (EDF) and the Laboratoire de Caractérisation Non Destructive (LCND) have developed a dedicated code, which makes use of information recorded in the welding procedure. Among the welding parameters recorded, although the order in which the welding passes are made is of primary importance in the welding process, this information is not always well known or accurately described. In the present paper we analyse in greater detail the influence of the order of welding passes, using data obtained from the Centre for Advanced Non Destructive Evaluation (CANDE), derived from a dissimilar metal weld (DMW) with buttering. Comparisons are made using grain orientation measurements on a macrograph. - Highlights: ► Influence of welding process on grain structure is studied using the MINA model. ► For the first time the importance of a slight slope of the layers is evaluated. ► Two orders of passes are compared for the modelling approach. ► A major effect is observed due to a change in the order of passes.

  9. The triglyceride content in skeletal muscle is associated with hepatic but not peripheral insulin resistance in elderly twins

    DEFF Research Database (Denmark)

    Grunnet, L G; Laurila, Esa; Hansson, Ola

    2012-01-01

    Total muscle triglyceride (MT) content has been associated with insulin resistance. We investigated the predictors and impact of MT on relevant metabolic parameters including peripheral and hepatic insulin resistance in elderly twins.......Total muscle triglyceride (MT) content has been associated with insulin resistance. We investigated the predictors and impact of MT on relevant metabolic parameters including peripheral and hepatic insulin resistance in elderly twins....

  10. Impact of high altitude on the hepatic fatty acid oxidation and synthesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Qian [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China); Department of Pediatrics, Lanzhou University Second Hospital, Lanzhou (China); Shao, Yuan; Wang, Ying Zhen [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China); Jing, Yu Hong [Institute of Anatomy, School of Basic Medicine, Lanzhou University, Lanzhou (China); Zhang, You Cheng, E-mail: zhangychmd@126.com [Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou (China)

    2014-04-04

    Highlights: • Acute exposure to high altitude (HA) increased hepatic fatty acid (FA) β-oxidation. • Acute exposure of rats to HA increased hepatic FA synthesis. • PPARα and AMPK can regulate the FA metabolism. • FA may be a key energy fuel and a compensation for CHO during acute exposure to HA. • The acute changes of FA metabolism may be a mechanism of acclimatization. - Abstract: High altitude (HA) affects energy metabolism. The impact of acute and chronic HA acclimatization on the major metabolic pathways is still controversial. In this study, we aimed to unveil the impact of HA on the key enzymes involved in the fatty acid (FA) metabolism in liver. Rats were exposed to an altitude of 4300 m for 30 days and the expressions of two key proteins involved in FA β-oxidation (carnitine palmitoyl transferase I, CPT-I; and peroxisome proliferator-activated receptor alpha, PPARα), two proteins involved in FA synthesis (acetyl CoA carboxylase-1, ACC-1; and AMP-activated protein kinase, AMPK), as well as the total ketone body in the liver and the plasma FFAs were examined. Rats without HA exposure were used as controls. We observed that the acute exposure of rats to HA (3 days) led to a significant increase in the expressions of CPT-I and PPARα and in the total hepatic ketone body. Longer exposure (15 days) caused a marked decrease in the expression of CPT-I and PPARα. By 30 days after HA exposure, the expression levels of CPT-I and PPARα returned to the control level. The hepatic ACC-1 level showed a significant increase in rats exposed to HA for 1 and 3 days. In contrast, the hepatic level of AMPK showed a significant reduction throughout the experimental period. Plasma FFA concentrations did not show any significant changes following HA exposure. Thus, increased hepatic FA oxidation and synthesis in the early phase of HA exposure may be among the important mechanisms for the rats to respond to the hypoxic stress in order to acclimatize themselves to the

  11. Impact of high altitude on the hepatic fatty acid oxidation and synthesis in rats

    International Nuclear Information System (INIS)

    Ni, Qian; Shao, Yuan; Wang, Ying Zhen; Jing, Yu Hong; Zhang, You Cheng

    2014-01-01

    Highlights: • Acute exposure to high altitude (HA) increased hepatic fatty acid (FA) β-oxidation. • Acute exposure of rats to HA increased hepatic FA synthesis. • PPARα and AMPK can regulate the FA metabolism. • FA may be a key energy fuel and a compensation for CHO during acute exposure to HA. • The acute changes of FA metabolism may be a mechanism of acclimatization. - Abstract: High altitude (HA) affects energy metabolism. The impact of acute and chronic HA acclimatization on the major metabolic pathways is still controversial. In this study, we aimed to unveil the impact of HA on the key enzymes involved in the fatty acid (FA) metabolism in liver. Rats were exposed to an altitude of 4300 m for 30 days and the expressions of two key proteins involved in FA β-oxidation (carnitine palmitoyl transferase I, CPT-I; and peroxisome proliferator-activated receptor alpha, PPARα), two proteins involved in FA synthesis (acetyl CoA carboxylase-1, ACC-1; and AMP-activated protein kinase, AMPK), as well as the total ketone body in the liver and the plasma FFAs were examined. Rats without HA exposure were used as controls. We observed that the acute exposure of rats to HA (3 days) led to a significant increase in the expressions of CPT-I and PPARα and in the total hepatic ketone body. Longer exposure (15 days) caused a marked decrease in the expression of CPT-I and PPARα. By 30 days after HA exposure, the expression levels of CPT-I and PPARα returned to the control level. The hepatic ACC-1 level showed a significant increase in rats exposed to HA for 1 and 3 days. In contrast, the hepatic level of AMPK showed a significant reduction throughout the experimental period. Plasma FFA concentrations did not show any significant changes following HA exposure. Thus, increased hepatic FA oxidation and synthesis in the early phase of HA exposure may be among the important mechanisms for the rats to respond to the hypoxic stress in order to acclimatize themselves to the

  12. Non-Alcoholic Fatty Liver Disease and Extra-Hepatic Cancers

    Directory of Open Access Journals (Sweden)

    Claudia Sanna

    2016-05-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a leading cause of chronic liver disease but the second cause of death among NAFLD patients are attributed to malignancies at both gastrointestinal (liver, colon, esophagus, stomach, and pancreas and extra-intestinal sites (kidney in men, and breast in women. Obesity and related metabolic abnormalities are associated with increased incidence or mortality for a number of cancers. NAFLD has an intertwined relationship with metabolic syndrome and significantly contributes to the risk of hepatocellular carcinoma (HCC, but recent evidence have fuelled concerns that NAFLD may be a new, and added, risk factor for extra-hepatic cancers, particularly in the gastrointestinal tract. In this review we critically appraise key studies on NAFLD-associated extra-hepatic cancers and speculate on how NAFLD may influence carcinogenesis at these sites.

  13. The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish.

    Directory of Open Access Journals (Sweden)

    Angeliki Lyssimachou

    Full Text Available Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT, which causes imposex in gastropod snails, induces an "obesogenic" phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR and peroxisome proliferator-activated receptor gamma (PPARγ. In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound.

  14. The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish.

    Science.gov (United States)

    Lyssimachou, Angeliki; Santos, Joana G; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C Marisa R; Teixeira, Catarina; Castro, L Filipe C; Santos, Miguel M

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an "obesogenic" phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound.

  15. Sapucaia nuts ( Lecythis pisonis ) modulate the hepatic ...

    African Journals Online (AJOL)

    Sapucaia nuts ( Lecythis pisonis ) modulate the hepatic inflammatory and antioxidant metabolism activity in rats fed high-fat diets. ... that “sapucaia” could serve as a potential source of antioxidants and as a protector agent for the examined animals. Keywords: Sapucaia nuts, inflammation, oxidative stress, gene expression ...

  16. CT and MRI diagnosis of acute hepatic injury

    International Nuclear Information System (INIS)

    Wang Rengui; Fumio Yamamoto; Pu Yonglin; Gao Yujie.

    1997-01-01

    To evaluate and compare MR and CT in diagnosis of acute traumatic hepatic laceration, ten patients with acute hepatic rupture underwent CT scan and/or MRI in the first 24 hours after injury. The injury was graded as mild ( 50% of one lobe). In the first 24 hours after injury, 33.3% (3/9) and 28.6%(2/7) of the hepatic injury demonstrated isodensity and isointensity on plain CT scan and T 1 -weighted images. All the lesions (100%) were clearly identified as marked hyperintensity on T 2 -weighted images. On T 2 WI, T 1 WI and non-contrast CT, 100%, 57.1% and 55.6% of the acute hepatic injuries could be graded respectively. Delayed complications occurred in four patients with deep hepatic injury about 1 to 3 weeks after injury. T 2 -weighted MR imaging is more sensitive and useful for detection of the type and severity of acute hepatic rupture. Follow-up MRI or CT within the first few weeks after injury is needed in patients with deep hepatic injury for detection of delayed complications

  17. Hepatic esterase activity is increased in hepatocyte-like cells derived from human embryonic stem cells using a 3D culture system.

    Science.gov (United States)

    Choi, Young-Jun; Kim, Hyemin; Kim, Ji-Woo; Yoon, Seokjoo; Park, Han-Jin

    2018-05-01

    The aim of the study is to generate a spherical three-dimensional (3D) aggregate of hepatocyte-like cells (HLCs) differentiated from human embryonic stem cells and to investigate the effect of the 3D environment on hepatic maturation and drug metabolism. Quantitative real-time PCR analysis indicated that gene expression of mature hepatocyte markers, drug-metabolizing enzymes, and hepatic transporters was significantly higher in HLCs cultured in the 3D system than in those cultured in a two-dimensional system (p formation, were increased in HLCs cultured in the 3D system. In particular, 3D spheroidal culture increased expression of CES1 and BCHE, which encode hepatic esterases (p 3D spheroidal culture enhances the maturation and drug metabolism of stem cell-derived HLCs, and this may help to optimize hepatic differentiation protocols for hepatotoxicity testing.

  18. Aberrant hepatic lipid storage and metabolism in canine portosystemic shunts.

    Directory of Open Access Journals (Sweden)

    Lindsay Van den Bossche

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a poorly understood multifactorial pandemic disorder. One of the hallmarks of NAFLD, hepatic steatosis, is a common feature in canine congenital portosystemic shunts. The aim of this study was to gain detailed insight into the pathogenesis of steatosis in this large animal model. Hepatic lipid accumulation, gene-expression analysis and HPLC-MS of neutral lipids and phospholipids in extrahepatic (EHPSS and intrahepatic portosystemic shunts (IHPSS was compared to healthy control dogs. Liver organoids of diseased dogs and healthy control dogs were incubated with palmitic- and oleic-acid, and lipid accumulation was quantified using LD540. In histological slides of shunt livers, a 12-fold increase of lipid content was detected compared to the control dogs (EHPSS P<0.01; IHPSS P = 0.042. Involvement of lipid-related genes to steatosis in portosystemic shunting was corroborated using gene-expression profiling. Lipid analysis demonstrated different triglyceride composition and a shift towards short chain and omega-3 fatty acids in shunt versus healthy dogs, with no difference in lipid species composition between shunt types. All organoids showed a similar increase in triacylglycerols after free fatty acids enrichment. This study demonstrates that steatosis is probably secondary to canine portosystemic shunts. Unravelling the pathogenesis of this hepatic steatosis might contribute to a better understanding of steatosis in NAFLD.

  19. Shared genetic effects between hepatic steatosis and fibrosis: A prospective twin study

    Science.gov (United States)

    Cui, Jeffrey; Chen, Chi-Hua; Lo, Min-Tzu; Schork, Nicholas; Bettencourt, Ricki; Gonzalez, Monica P; Bhatt, Archana; Hooker, Jonathan; Shaffer, Katherine; Nelson, Karen E; Long, Michelle T; Brenner, David A; Sirlin, Claude B; Loomba, Rohit

    2016-01-01

    Introduction Nonalcoholic fatty liver disease (NAFLD) is associated with metabolic risk factors including hypertension and dyslipidemia, and may progress to liver fibrosis. Previous studies have shown that hepatic steatosis and fibrosis are heritable but whether they have a significant shared gene effect is unknown. This study aimed to examine the shared gene effects between hepatic steatosis, fibrosis, and their associations with metabolic risk factors. Methods This is a cross-sectional analysis of a prospective cohort of well-characterized, community-dwelling twins (45 monozygotic, 20 dizygotic twin pairs, 130 total subjects) from Southern California. Hepatic steatosis was assessed with MRI-proton density fat fraction (MRI-PDFF) and hepatic fibrosis was assessed with magnetic resonance elastography (MRE). A standard bivariate twin AE model was used to estimate the proportion of phenotypic variance between two phenotypes accounted for by additive genetic effects (A) and individual-specific environmental effects (E). Genetic correlations (rG) estimated from this model represent the degree to which the genetic determinants of two phenotypes overlap. Results The mean (±SD) age and BMI were 47.1 (±21.9) years and 26.9 (±6.5) kg/m2, respectively. 20% (26/130) of the cohort had hepatic steatosis (MRI-PDFF ≥5%) and 8.2% (10/122) had hepatic fibrosis (MRE ≥3Kpa). Blood pressure (systolic and diastolic), triglycerides, glucose, homeostatic model assessment of insulin resistance (HOMA-IR), insulin, hemoglobin A1c (HbA1c), and low high-density lipoprotein (HDL) had significant shared gene effects with hepatic steatosis. Triglycerides, glucose, HOMA-IR, insulin, HbA1c, and low HDL had significant shared gene effects with hepatic fibrosis. Hepatic steatosis and fibrosis had a highly significant shared gene effect of 0.756 (95% CI: 0.716–1, psteatosis pathogenesis may also be involved with fibrosis pathogenesis. PMID:27315352

  20. Chemotherapy in patients with hepatic failure

    International Nuclear Information System (INIS)

    Roldán, G.; Sosa, A.

    2004-01-01

    The toxicity of chemotherapy in the liver may manifest as hepatocyte dysfunction with chemical hepatitis, veno-occlusive disease or chronic fibrosis. The hepatocyte dysfunction is caused by direct effect of the drug or its metabolites evidencing by increased bilirubin and liver enzymes (Sgot, SGPT). Prolonged effect leads to cholestasis and fatty infiltration. This dysfunction is concomitant enhanced by viral infection, liver metastases and other drugs as antiemetics. The vast majority of the indicated drugs in a cancer patient, cytostatics, antiemetics, analgésios, anticonvulsants, etc, are metabolized in the liver. The evidence of abnormal hepatocyte function in a patient in which involves chemotherapy raises the need for dose modification indicated and / or discontinuation. The aim of this paper is to review existing information on the use of cytostatics in cancer patients with hepatic impairment, classifying drugs according to their potential hepato toxicity and recommended dose modification in patients with hepatic dysfunction

  1. Phase changes caused by hyperventilation stress in spastic angina pectoris analyzed by first-pass radionuclide ventriculography

    International Nuclear Information System (INIS)

    Wu, Jin; Takeda, Tohoru; Ajisaka, Ryuichi; Masuoka, Takeshi; Watanabe, Sigeyuki; Sato, Motohiro; Itai, Yuji; Toyama, Hinako; Ishikawa, Nobuyoshi

    1999-01-01

    To understand the effect of hyperventilation (HV) stress in patients with spastic angina, left ventricular (LV) contraction was analyzed by quantitative phase analysis. The study was performed on 36 patients with spastic angina pectoris, including vasospastic angina pectoris (VspAP: 16 patients) and variant angina pectoris (VAP: 20 patients). First-pass radionuclide ventriculography (first-pass RNV) was performed at rest and after HV stress, and standard deviation of the LV phase distribution (SD) was analyzed. The SD was lower in patients with VspAP than in VAP(12.8±1.4 degrees vs. 14.6±2.2 degrees, p<0.005) at rest. After HV stress, the SD (HVSD) tended to increase in VspAP patients (62.5%), whereas the SD decreased in VAP patients (70%). Due to HV stress, the percentage change in SD (%SD) in VspAP patients was 8.9±23.7% whereas that in VAP patients was -9.1±17.3% (p<0.01). Moreover, phase histograms were divided into HVSD increase and HVSD decrease groups. The HVSD increase group had a decrease of HVEF, but the HVSD decrease group tended to have more decreased HVEF than the HVSD increase group. These results indicate that spastic angina pectoris patients show various responses to HV stress. The HVSD increase group might have additional myocardial ischemia due to regional coronary spasm. In contrast, in the HVSD decrease group severe LV dysfunction or diffuse wall motion abnormality might have been generated, and this caused a reduction in the SD value. Phase analysis would therefore add new information regarding electrocardiographically silent myocardial ischemia due to coronary spasm, and HV stress might increase sensitivity for the detection of abnormalities in quantitative phase analysis, especially in VspAP patients. (author)

  2. Phase changes caused by hyperventilation stress in spastic angina pectoris analyzed by first-pass radionuclide ventriculography

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin; Takeda, Tohoru; Ajisaka, Ryuichi; Masuoka, Takeshi; Watanabe, Sigeyuki; Sato, Motohiro; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Toyama, Hinako; Ishikawa, Nobuyoshi

    1999-02-01

    To understand the effect of hyperventilation (HV) stress in patients with spastic angina, left ventricular (LV) contraction was analyzed by quantitative phase analysis. The study was performed on 36 patients with spastic angina pectoris, including vasospastic angina pectoris (VspAP: 16 patients) and variant angina pectoris (VAP: 20 patients). First-pass radionuclide ventriculography (first-pass RNV) was performed at rest and after HV stress, and standard deviation of the LV phase distribution (SD) was analyzed. The SD was lower in patients with VspAP than in VAP(12.8{+-}1.4 degrees vs. 14.6{+-}2.2 degrees, p<0.005) at rest. After HV stress, the SD (HVSD) tended to increase in VspAP patients (62.5%), whereas the SD decreased in VAP patients (70%). Due to HV stress, the percentage change in SD (%SD) in VspAP patients was 8.9{+-}23.7% whereas that in VAP patients was -9.1{+-}17.3% (p<0.01). Moreover, phase histograms were divided into HVSD increase and HVSD decrease groups. The HVSD increase group had a decrease of HVEF, but the HVSD decrease group tended to have more decreased HVEF than the HVSD increase group. These results indicate that spastic angina pectoris patients show various responses to HV stress. The HVSD increase group might have additional myocardial ischemia due to regional coronary spasm. In contrast, in the HVSD decrease group severe LV dysfunction or diffuse wall motion abnormality might have been generated, and this caused a reduction in the SD value. Phase analysis would therefore add new information regarding electrocardiographically silent myocardial ischemia due to coronary spasm, and HV stress might increase sensitivity for the detection of abnormalities in quantitative phase analysis, especially in VspAP patients. (author)

  3. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A 13C NMR study using [U-13C]fructose

    International Nuclear Information System (INIS)

    Gopher, A.; Lapidot, A.; Vaisman, N.; Mandel, H.

    1990-01-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-[U- 13 C]fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of 13 C NMR spectra of plasma glucose. Significantly lower values (∼3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitative determination of the metabolic pathways of fructose conversion to glucose was derived from 13 C NMR measurement of plasma [ 13 C]glucose isotopomer populations. The finding of isotopomer populations of three adjacent 13 C atoms at glucose C-4 ( 13 C 3 - 13 C 4 - 13 C 5 ) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only ∼50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of [ 13 C]glucose formation from a trace amount of [U- 13 C]fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism

  4. Central effects of humanin on hepatic triglyceride secretion.

    Science.gov (United States)

    Gong, Zhenwei; Su, Kai; Cui, Lingguang; Tas, Emir; Zhang, Ting; Dong, H Henry; Yakar, Shoshana; Muzumdar, Radhika H

    2015-08-01

    Humanin (HN) is an endogenous mitochondria-associated peptide that has been shown to protect against various Alzheimer's disease-associated insults, myocardial ischemia-reperfusion injury, and reactive oxygen species-induced cell death. We have shown previously that HN improves whole body glucose homeostasis by improving insulin sensitivity and increasing glucose-stimulated insulin secretion (GSIS) from the β-cells. Here, we report that intraperitoneal treatment with one of HN analogs, HNG, decreases body weight gain, visceral fat, and hepatic triglyceride (TG) accumulation in high-fat diet-fed mice. The decrease in hepatic TG accumulation is due to increased activity of hepatic microsomal triglyceride transfer protein (MTTP) and increased hepatic TG secretion. Both intravenous (iv) and intracerebroventricular (icv) infusion of HNG acutely increase TG secretion from the liver. Vagotomy blocks the effect on both iv and icv HNG on TG secretion, suggesting that the effects of HNG on hepatic TG flux are centrally mediated. Our data suggest that HN is a new player in central regulation of peripheral lipid metabolism. Copyright © 2015 the American Physiological Society.

  5. Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats

    Directory of Open Access Journals (Sweden)

    Chien-Chun Li

    2018-01-01

    Full Text Available The essential oil from a lemongrass variety of Cymbopogon flexuosus [lemongrass oil (LO] is used in various food and aroma industry products and exhibits biological activities, such as anticancer and antimicrobial activities. To investigate the effects of 200 LO (200 mg/kg and 400 LO (400 mg/kg and its major component, citral (240 mg/kg, on drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in the liver, male Sprague-Dawley rats were fed a pelleted diet and administered LO or citral by gavage for 2 weeks. After 2 weeks of feeding, the effects of LO and citral on the metabolism and toxicity of acetaminophen were determined. The results showed that rats treated with 400 LO or citral had significantly reduced hepatic testosterone 6β-hydroxylation and ethoxyresorufin O-deethylation activities. In addition, NAD(PH:quinone oxidoreductase 1 activity was significantly increased by citral, and Uridine 5′-diphospho (UDP glucurosyltransferase activity was significantly increased by 400 LO in the rat liver. Treatment with 400 LO or citral reduced lipid peroxidation and reactive oxygen species levels in the liver. After acetaminophen treatment, however, LO and citral treatment resulted in little or no change in plasma alanine aminotransferase activity and acetaminophen-protein adducts content in the liver. Our results indicate that LO and citral may change the activities of drug-metabolizing enzymes and reduce oxidative stress in the liver. However, LO and citral may not affect the detoxification of acetaminophen.

  6. How to pass higher English colour

    CERN Document Server

    Bridges, Ann

    2009-01-01

    How to Pass is the Number 1 revision series for Scottish qualifications across the three examination levels of Standard Grade, Intermediate and Higher! Second editions of the books present all of the material in full colour for the first time.

  7. CO-DELIVERY OF NATURAL METABOLIC INHIBITORS IN A SELF-MICROEMULSIFYING DRUG DELIVERY SYSTEM FOR IMPROVED ORAL BIOAVAILABILITY OF CURCUMIN

    OpenAIRE

    Grill, Alex E.; Koniar, Brenda; Panyam, Jayanth

    2014-01-01

    In spite of its well-documented anticancer chemopreventive and therapeutic activity, the clinical development of curcumin has been limited by its poor oral bioavailability. Curcumin has low aqueous solubility and undergoes extensive first pass metabolism following oral dosing. We hypothesized that oral bioavailability of curcumin can be enhanced by increasing its absorption and decreasing its metabolic clearance simultaneously. To test this hypothesis, we formulated curcumin with naturally oc...

  8. Security analysis and improvements to the PsychoPass method.

    Science.gov (United States)

    Brumen, Bostjan; Heričko, Marjan; Rozman, Ivan; Hölbl, Marko

    2013-08-13

    In a recent paper, Pietro Cipresso et al proposed the PsychoPass method, a simple way to create strong passwords that are easy to remember. However, the method has some security issues that need to be addressed. To perform a security analysis on the PsychoPass method and outline the limitations of and possible improvements to the method. We used the brute force analysis and dictionary attack analysis of the PsychoPass method to outline its weaknesses. The first issue with the Psychopass method is that it requires the password reproduction on the same keyboard layout as was used to generate the password. The second issue is a security weakness: although the produced password is 24 characters long, the password is still weak. We elaborate on the weakness and propose a solution that produces strong passwords. The proposed version first requires the use of the SHIFT and ALT-GR keys in combination with other keys, and second, the keys need to be 1-2 distances apart. The proposed improved PsychoPass method yields passwords that can be broken only in hundreds of years based on current computing powers. The proposed PsychoPass method requires 10 keys, as opposed to 20 keys in the original method, for comparable password strength.

  9. GLP-1 Elicits an Intrinsic Gut-Liver Metabolic Signal to Ameliorate Diet-Induced VLDL Overproduction and Insulin Resistance.

    Science.gov (United States)

    Khound, Rituraj; Taher, Jennifer; Baker, Christopher; Adeli, Khosrow; Su, Qiaozhu

    2017-12-01

    Perturbations in hepatic lipid and very-low-density lipoprotein (VLDL) metabolism are involved in the pathogenesis of obesity and hepatic insulin resistance. The objective of this study is to delineate the mechanism of subdiaphragmatic vagotomy in preventing obesity, hyperlipidemia, and insulin resistance. By subjecting the complete subdiaphragmatic vagotomized mice to various nutritional conditions and investigating hepatic de novo lipogenesis pathway, we found that complete disruption of subdiaphragmatic vagal signaling resulted in a significant decrease of circulating VLDL-triglyceride compared with the mice obtained sham procedure. Vagotomy further prevented overproduction of VLDL-triglyceride induced by an acute fat load and a high-fat diet-induced obesity, hyperlipidemia, hepatic steatosis, and glucose intolerance. Mechanistic studies revealed that plasma glucagon-like peptide-1 was significantly raised in the vagotomized mice, which was associated with significant reductions in mRNA and protein expression of SREBP-1c (sterol regulatory element-binding protein 1c), SCD-1 (stearoyl-CoA desaturase-1), and FASN (fatty acid synthase), as well as enhanced hepatic insulin sensitivity. In vitro, treating mouse primary hepatocytes with a glucagon-like peptide-1 receptor agonist, exendin-4, for 48 hours inhibited free fatty acid, palmitic acid treatment induced de novo lipid synthesis, and VLDL secretion from hepatocytes. Elevation of glucagon-like peptide-1 in vagotomized mice may prevent VLDL overproduction and insulin resistance induced by high-fat diet. These novel findings, for the first time, delineate an intrinsic gut-liver regulatory circuit that is mediated by glucagon-like peptide-1 in regulating hepatic energy metabolism. © 2017 American Heart Association, Inc.

  10. A deuterium and carbon nuclear magnetic resonance spectroscopic investigation of blood flow and carbohydrate metabolism

    International Nuclear Information System (INIS)

    Bosch, C.S.E.

    1988-01-01

    The purpose of this study is the development and application of nuclear magnetic resonance (NMR) spectroscopic techniques for this study of whole tissue metabolism, tissue perfusion and blood flow. The feasibility of spin imaging deuterium-enriched tissue water is demonstrated in cat brain in vivo and in situ. The potential application of D 2 O administration to deuterium-flow-imaging is considered. NMR investigations of hepatic carbohydrate metabolism were performed in rat liver in vivo and in situ. A coaxial, double-surface-coil, double-resonance probe was developed for carbon detection while decoupling neighboring proton scalar interactions ( 13 C-[ 1 H]) in hepatic tissue within the living animal. Hormonal and substrate regulation of hepatic glucose and glycogen metabolism was investigated by monitoring the metabolic fate of an administered c-dose of [1- 13 C]glucose. Label flux was directed primarily into newly-synthesized 13 C-labeled glycogen. A multiple resonance ( 1 H, 13 C, 31 P) liver perfusion probe was designed for complimentary carbohydrate metabolic studies in rat liver in vitro. A description of the 13 C-[ 1 H]/ 31 P NMR perfusion probe is given. The surgical technique used for liver excision and peripheral life-support apparatus required to maintain hepatic function are also detailed

  11. Influence of frequently used industrial solvents and monomers of plastics on xenobiotic metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Gut, I. (Institut Hygieny a Epidemiologie, Prague (Czechoslovakia))

    1983-11-01

    In male Wistar rats, inhalation of benzene, toluene, or styrene induced a dose-dependent increase of the in vitro hepatic microsomal metabolism of benzene, but toluene metabolism and microsomal cytochrome P-450 level were little affected. In phenobarbital pretreated rats the solvents induced increased biotransformation of benzene metabolism toluene, but relatively less than in controls, and benzene and toluene inhalation actually caused an apparent destruction of cytochrome P-450. In vivo rates of metabolism of toluene and styrene were in good agreement with the in vitro hepatic microsomal biotransformation of benzene or toluene, but benzene metabolism not due to inhibition of benzene metabolism in vivo caused by benzene metabolites. In simultaneously administered two solvents, toluene, styrene or xylene markedly inhibited metabolism of benzene-/sup 14/C, but toluene-/sup 14/C metabolsim was little affected by coadministered benzene, styrene or xylene. Various industrial solvents inhibited metabolism of acrylonitrile along the oxidative pathway leading to thiocyanate, but actually increased the rate of the conjugative pathway beginning with cyanoethylation of glutathion and the final products. Various derivatives of benzene had low inhibiting effect on antipyrine metabolism and clinical significance of such effect is of little significance. Inhibition of benzene metabolism by toluene followed in significantly decreased myelotoxicity of benzene, but the modification of acrylonitrile metabolism and pharmacokinetics by organic solvents given at low doses markedly increased lethal effects of acrylonitrile. The prediction of in vivo rates of metabolism based on the in vitro rates of hepatic microsomal metabolism is therefore possible, provided the inhibiting potency of the xenobiotic and/or its metabolites, self-induction of their metabolism, as well as differences in their pharmacokinetics are considered.

  12. Sex specific differences in hepatic and plasma lipid profiles in healthy cats pre and post spaying and neutering: relationship with feline hepatic lipidosis

    OpenAIRE

    Valtolina, Chiara; Vaandrager, Arie B.; Favier, Robert P.; Tuohetahuntila, Maidina; Kummeling, Anne; Jeusette, Isabelle; Rothuizen, Jan; Robben, Joris H.

    2017-01-01

    BACKGROUND: A link between lipid metabolism and disease has been recognized in cats. Since hepatic lipidosis is a frequent disorder in cats, the aim of the current study was to evaluate liver and plasma lipid dimorphism in healthy cats and the effects of gonadectomy on lipid profiling. From six female and six male cats plasma and liver lipid profiles before and after spaying/neutering were assessed and compared to five cats (three neutered male and two spayed female) diagnosed with hepatic li...

  13. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    Science.gov (United States)

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Astragalus membranaceus-Polysaccharides Ameliorates Obesity, Hepatic Steatosis, Neuroinflammation and Cognition Impairment without Affecting Amyloid Deposition in Metabolically Stressed APPswe/PS1dE9 Mice

    Directory of Open Access Journals (Sweden)

    Yung-Cheng Huang

    2017-12-01

    Full Text Available Astragalus membranaceus is commonly used in traditional Chinese medicine for strengthening the host defense system. Astragalus membranaceus-polysaccharides is an effective component with various important bioactivities, such as immunomodulation, antioxidant, anti-diabetes, anti-inflammation and neuroprotection. In the present study, we determine the effects of Astragalus membranaceus-polysaccharides on metabolically stressed transgenic mice in order to develop this macromolecules for treatment of sporadic Alzheimer’s disease, a neurodegenerative disease with metabolic risk factors. Transgenic mice, at 10 weeks old prior to the appearance of senile plaques, were treated in combination of administrating high-fat diet and injecting low-dose streptozotocin to create the metabolically stressed mice model. Astragalus membranaceus-polysaccharides was administrated starting at 14 weeks for 7 weeks. We found that Astragalus membranaceus-polysaccharides reduced metabolic stress-induced increase of body weight, insulin and insulin and leptin level, insulin resistance, and hepatic triglyceride. Astragalus membranaceus-polysaccharides also ameliorated metabolic stress-exacerbated oral glucose intolerance, although the fasting blood glucose was only temporally reduced. In brain, metabolic stress-elicited astrogliosis and microglia activation in the vicinity of plaques was also diminished by Astragalus membranaceus-polysaccharides administration. The plaque deposition, however, was not significantly affected by Astragalus membranaceus-polysaccharides administration. These findings suggest that Astragalus membranaceus-polysaccharides may be used to ameliorate metabolic stress-induced diabesity and the subsequent neuroinflammation, which improved the behavior performance in metabolically stressed transgenic mice.

  15. White Pitaya (Hylocereus undatus Juice Attenuates Insulin Resistance and Hepatic Steatosis in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Haizhao Song

    Full Text Available Insulin resistance and hepatic steatosis are the most common complications of obesity. Pitaya is an important source of phytochemicals such as polyphenols, flavonoid and vitamin C which are related to its antioxidant activity. The present study was conducted to evaluate the influence of white pitaya juice (WPJ on obesity-related metabolic disorders (e.g. insulin resistance and hepatic steatosis in high-fat diet-fed mice. Forty-eight male C57BL/6J mice were assigned into four groups and fed low-fat diet with free access to water or WPJ, or fed high-fat diet with free access to water or WPJ for 14 weeks. Our results showed that administration of WPJ improved high-fat diet-induced insulin resistance, hepatic steatosis and adipose hypertrophy, but it exerted no influence on body weight gain in mice. Hepatic gene expression analysis indicated that WPJ supplement not only changed the expression profile of genes involved in lipid and cholesterol metabolism (Srebp1, HMGCoR, Cpt1b, HL, Insig1 and Insig2 but also significantly increased the expression levels of FGF21-related genes (Klb, FGFR2, Egr1 and cFos. In conclusion, WPJ protected from diet-induced hepatic steatosis and insulin resistance, which was associated with the improved FGF21 resistance and lipid metabolism.

  16. Corrective effects of hepatotoxicity by hepatic Dyrk1a gene delivery in mice with intermediate hyperhomocysteinemia

    Directory of Open Access Journals (Sweden)

    Alizée Latour

    2015-03-01

    Full Text Available Hyperhomocysteinemia results from hepatic metabolism dysfunction and is characterized by a high plasma homocysteine level, which is also an independent risk factor for cardiovascular disease. Elevated levels of homocysteine in plasma lead to hepatic lesions and abnormal lipid metabolism. Therefore, lowering homocysteine levels might offer therapeutic benefits. Recently, we were able to lower plasma homocysteine levels in mice with moderate hyperhomocysteinemia using an adenoviral construct designed to restrict the expression of DYRK1A, a serine/threonine kinase involved in methionine metabolism (and therefore homocysteine production, to hepatocytes. Here, we aimed to extend our previous findings by analyzing the effect of hepatocyte-specific Dyrk1a gene transfer on intermediate hyperhomocysteinemia and its associated hepatic toxicity and liver dysfunction. Commensurate with decreased plasma homocysteine and alanine aminotransferase levels, targeted hepatic expression of DYRK1A in mice with intermediate hyperhomocysteinemia resulted in elevated plasma paraoxonase-1 and lecithin:cholesterol acyltransferase activities and apolipoprotein A–I levels. It also rescued hepatic apolipoprotein E, J, and D levels. Further, Akt/GSK3/cyclin D1 signaling pathways in the liver of treated mice were altered, which may help prevent homocysteine-induced cell cycle dysfunction. DYRK1A gene therapy could be useful in the treatment of hyperhomocysteinemia in populations, such as end-stage renal disease patients, who are unresponsive to B-complex vitamin therapy.

  17. Hepatic steatosis in hepatitis B virus infected patients: meta-analysis of risk factors and comparison with hepatitis C infected patients.

    Science.gov (United States)

    Machado, Mariana V; Oliveira, António G; Cortez-Pinto, Helena

    2011-09-01

    Although hepatic steatosis (HS) has an association with hepatitis C virus (HCV) infection, an association with hepatitis B virus (HBV) is controversial. We performed a meta-analysis to evaluate HS prevalence and risk factors, in HBV infection. Standard guidelines for performance of meta-analyses were followed. Studies with HS assessed by histology were included. Pooled odd ratios (OR) and standardized mean differences (SMD) were obtained with the random-effects model and DerSimonian-Laid method. Seventeen out of 21 studies were included, comprising 4100 HBV infected patients. Overall HS prevalence was 29.6%. Eight studies also included 945 HCV infected patients, showing decreased risk of HS in HBV versus HCV patients (OR 0.55, 95%CI [0.45-0.67], P SMD 2.17, 95%CI [1.23, 3.11], P SMD 0.84, 95%CI [0.00, 1.67], P = 0.049), triglycerides (SMD 1.18, 95%CI [0.48, 1.89], P = 0.001), cholesterol (SMD 0.88, 95%CI [0.31, 1.45], P = 0.003), moderate alcohol consumption (OR 1.54, 95%CI [1.10-2.15], P = 0.011) and negatively with HBV DNA (SMD -74.12, 95%CI [-82.93, -65.31], P infected patients, relating to metabolic factors but not with hepatic histology severity. A puzzling strong negative association between viral load and HS, may even suggest a protective effect of the virus on HS. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  18. Serum Leptin Levels in Post-Hepatitis Band C Liver Cirrhosis

    International Nuclear Information System (INIS)

    Nosseir, N.M.; Abdel-Messeih, Ph.L.; Ismael, N.E.R.

    2010-01-01

    A healthy liver is able to regenerate most of its own cells when they become damaged, with the end stage cirrhosis the liver no longer replace damaged cells. Leptin is a hormone that plays a key role in regulating energy intake and expenditure including appetite and metabolism. This study was done to investigate serum Leptin level in liver cirrhosis (post hepatitis B and post-hepatitis C cirrhosis), as well as to determine its level in relation to liver functions in cirrhotic patients. In this study, serum Leptin level was significantly lower in post-hepatitis B cirrhosis than controls and insignificant changes were observed in patients with post-hepatitis C cirrhosis. Also a significant reduction in leptin level was observed as liver functions worsen as indicated by albumin decrease.

  19. Computational Methods to Work as First-Pass Filter in Deleterious SNP Analysis of Alkaptonuria

    Directory of Open Access Journals (Sweden)

    R. Magesh

    2012-01-01

    Full Text Available A major challenge in the analysis of human genetic variation is to distinguish functional from nonfunctional SNPs. Discovering these functional SNPs is one of the main goals of modern genetics and genomics studies. There is a need to effectively and efficiently identify functionally important nsSNPs which may be deleterious or disease causing and to identify their molecular effects. The prediction of phenotype of nsSNPs by computational analysis may provide a good way to explore the function of nsSNPs and its relationship with susceptibility to disease. In this context, we surveyed and compared variation databases along with in silico prediction programs to assess the effects of deleterious functional variants on protein functions. In other respects, we attempted these methods to work as first-pass filter to identify the deleterious substitutions worth pursuing for further experimental research. In this analysis, we used the existing computational methods to explore the mutation-structure-function relationship in HGD gene causing alkaptonuria.

  20. Computational Methods to Work as First-Pass Filter in Deleterious SNP Analysis of Alkaptonuria

    Science.gov (United States)

    Magesh, R.; George Priya Doss, C.

    2012-01-01

    A major challenge in the analysis of human genetic variation is to distinguish functional from nonfunctional SNPs. Discovering these functional SNPs is one of the main goals of modern genetics and genomics studies. There is a need to effectively and efficiently identify functionally important nsSNPs which may be deleterious or disease causing and to identify their molecular effects. The prediction of phenotype of nsSNPs by computational analysis may provide a good way to explore the function of nsSNPs and its relationship with susceptibility to disease. In this context, we surveyed and compared variation databases along with in silico prediction programs to assess the effects of deleterious functional variants on protein functions. In other respects, we attempted these methods to work as first-pass filter to identify the deleterious substitutions worth pursuing for further experimental research. In this analysis, we used the existing computational methods to explore the mutation-structure-function relationship in HGD gene causing alkaptonuria. PMID:22606059

  1. CLINICAL CASE OF CO-INFECTION CAUSED BY HEPATITIS B АND D IN A CHILD OF THE FIRST YEAR OF LIFE

    Directory of Open Access Journals (Sweden)

    T. V. Cherednychenko

    2014-01-01

    Full Text Available The article presents a case of own observation of a child in the first year of life with co-infection of hepatitis viruses B and D. The child was born to a mother with chronic hepatitis B and D. The co-infection was typical and mild. The treatment was carried out with interferon-α2b — viferon (rectal suppositories in a daily dose of 1 mio IU during 6 months. The outcome of the disease was recovery with elimination of the pathogen. 

  2. Hepatic unsaturated fatty acids in patients with non-alcoholic fatty liver disease assessed by 3.0 T MR spectroscopy

    International Nuclear Information System (INIS)

    Werven, J.R. van; Schreuder, T.C.M.A.; Nederveen, A.J.; Lavini, C.; Jansen, P.L.M.; Stoker, J.

    2010-01-01

    Rationale and objective: Non-alcoholic fatty liver disease (NAFLD) is related to the metabolic syndrome and obesity. Proton magnetic resonance spectroscopy ( 1 H MRS) is a non-invasive technique to assess hepatic triglyceride content (HTGC) and allows assessment of unsaturated fatty acids (UFA). There is increasing evidence that hepatic UFA are associated with the development of NAFLD. Therefore the objective of this study was to assess hepatic UFA in patients with NAFLD using 1 H MRS. Materials and methods: We included 26 consecutive patients with deranged liver enzymes, with and without type 2 diabetes mellitus (DM2), suspected for NAFLD. Liver function and metabolic parameters were assessed. 1 H MRS measurements were performed at 3.0 T. From the 1 H MR spectra two ratios were calculated: ratio 1 (UFA); unsaturated fatty acid peak vs. reference water peak and ratio 2 (HTGC); total fatty acid peak vs. reference water peak. Results: Twenty-six patients were included. In these patients hepatic UFA (ratio 1) correlated with AST/ALT ratio (r = -0.46, p = 0.02), glucose levels (r = 0.46, p = 0.018), HOMA-IR (r = 0.59, p = 0.004) and HTGC (r = 0.81, p 1 H MRS. 1 H MRS determined hepatic UFA correlate with clinical and metabolic parameters associated with NAFLD. Hepatic UFA are increased in patients with DM2. This study provides evidence for the use of non-invasive 1 H MRS to assess hepatic UFA in vivo.

  3. The why and wherefore of hepatic encephalopathy

    Directory of Open Access Journals (Sweden)

    Grover VPB

    2015-12-01

    Full Text Available Vijay PB Grover, Joshua M Tognarelli, Nicolas Massie, Mary ME Crossey, Nicola A Cook, Simon D Taylor-Robinson Liver Unit, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, UK Abstract: Hepatic encephalopathy is a common neuropsychiatric abnormality, which complicates the course of patients with liver disease. It was probably first described by Hippocrates over 2000 years ago, who said that "those whose madness arises from phlegm are quiet and neither shout nor make a disturbance, while those whose madness arises from bile shout, play tricks and will not keep still, but are always up to some mischief". He was presumably describing the differences between patients with pneumonia and acute liver failure. Despite the fact that the syndrome was probably first recognized thousands of years ago, the exact pathogenesis still remains unclear. Furthermore, a precise definition of the syndrome is lacking, as are definitive methods of diagnosing this condition. It is important as both patients with cirrhosis and the general population with whom they interact may be affected as a consequence. At a minimum, the individual may be affected by impaired quality of life, impaired ability to work, and slowed reaction times, which are relevant to the population at large if affected individuals operate heavy machinery or drive a car. Pathogenic mechanisms, diagnostic tools, and treatment options are discussed. Keywords: hepatic encephalopathy, cirrhosis, ammonia, pathology, treatment, rifaximin, lactulose

  4. Effect of isolated hepatic ischemia on organic anion clearance and oxidative metabolism.

    Science.gov (United States)

    Minard, G; Bynoe, R; Wood, G C; Fabian, T C; Croce, M; Kudsk, K A

    1992-04-01

    Hepatic failure is frequently seen following severe hemorrhagic shock, sepsis, and trauma. Clearance of various drugs has been used to evaluate hepatocellular dysfunction, including indocyanine green (ICG), an organic anionic dye that is transported similarly to bilirubin, and antipyrine (AP), a marker of oxidative phosphorylation. Previous investigators have noted a decrease in ICG excretion following systemic hemorrhage. The effect of isolated hepatic ischemia on the clearances of ICG and AP was studied in 16 pigs after 90 minutes of vascular occlusion to the liver. Antipyrine clearance decreased almost 50% from baseline values at 24 and 72 hours after the ischemia procedure, indicating a significant depression in the cytochrome P-450 system. On the other hand, ICG clearance did not change significantly. In conclusion, ICG clearance is not depressed after isolated hepatic ischemia in pigs. Changes in organic anion clearance after systemic hemorrhage may be because of release of toxic products from ischemic peripheral tissue.

  5. Insulin resistance, adipokine profile and hepatic expression of SOCS-3 gene in chronic hepatitis C.

    Science.gov (United States)

    Wójcik, Kamila; Jabłonowska, Elżbieta; Omulecka, Aleksandra; Piekarska, Anna

    2014-08-14

    To analyze adipokine concentrations, insulin resistance and hepatic expression of suppressor of cytokine signaling 3 (SOCS-3) in patients with chronic hepatitis C genotype 1 with normal body weight, glucose and lipid profile. The study group consisted of 31 patients with chronic hepatitis C and 9 healthy subjects. Total levels of adiponectin, leptin, resistin, visfatin, omentin, osteopontin and insulin were measured using an ELISA kit. The hepatic expression of SOCS-3 was determined by the use of the reverse transcription polymerase chain reaction method. Homeostasis model assessment for insulin resistance (HOMA-IR) values were significantly higher in hepatitis C virus (HCV) infected patients without metabolic disorders compared to healthy controls (2.24 vs 0.59, P = 0.0003). Hepatic steatosis was observed in 32.2% of patients with HCV infection and was found in patients with increased HOMA-IR index (2.81 vs 1.99, P = 0.05) and reduced adiponectin level (5.96 vs 8.37, P = 0.04). Inflammatory activity (G ≥ 2) was related to increased osteopontin concentration (34.04 vs 23.35, P = 0.03). Advanced liver fibrosis (S ≥ 2) was associated with increased levels of omentin and osteopontin (436.94 vs 360.09, P = 0.03 and 32.84 vs 20.29, P = 0.03) and reduced resistin concentration (1.40 vs 1.74, P = 0.047). No correlations were reported between adipokine profile, HOMA-IR values and hepatic expression of the SOCS-3 gene. We speculated that no relationship between adipokines and HOMA-IR values may indicate that HCV can induce insulin resistance itself. Some adipokines appear to be biochemical markers of steatosis, inflammation and fibrosis in patients with chronic HCV infection. © 2014 Baishideng Publishing Group Inc. All rights reserved.

  6. Paternal B Vitamin Intake Is a Determinant of Growth, Hepatic Lipid Metabolism and Intestinal Tumor Volume in Female Apc1638N Mouse Offspring.

    Directory of Open Access Journals (Sweden)

    Julia A Sabet

    Full Text Available The importance of maternal nutrition to offspring health and risk of disease is well established. Emerging evidence suggests paternal diet may affect offspring health as well.In the current study we sought to determine whether modulating pre-conception paternal B vitamin intake alters intestinal tumor formation in offspring. Additionally, we sought to identify potential mechanisms for the observed weight differential among offspring by profiling hepatic gene expression and lipid content.Male Apc1638N mice (prone to intestinal tumor formation were fed diets containing replete (control, CTRL, mildly deficient (DEF, or supplemental (SUPP quantities of vitamins B2, B6, B12, and folate for 8 weeks before mating with control-fed wild type females. Wild type offspring were euthanized at weaning and hepatic gene expression profiled. Apc1638N offspring were fed a replete diet and euthanized at 28 weeks of age to assess tumor burden.No differences in intestinal tumor incidence or burden were found between male Apc1638N offspring of different paternal diet groups. Although in female Apc1638N offspring there were no differences in tumor incidence or multiplicity, a stepwise increase in tumor volume with increasing paternal B vitamin intake was observed. Interestingly, female offspring of SUPP and DEF fathers had a significantly lower body weight than those of CTRL fed fathers. Moreover, hepatic trigylcerides and cholesterol were elevated 3-fold in adult female offspring of SUPP fathers. Weanling offspring of the same fathers displayed altered expression of several key lipid-metabolism genes. Hundreds of differentially methylated regions were identified in the paternal sperm in response to DEF and SUPP diets. Aside from a few genes including Igf2, there was a striking lack of overlap between these genes differentially methylated in sperm and differentially expressed in offspring.In this animal model, modulation of paternal B vitamin intake prior to mating

  7. Tissue distribution, excretion and hepatic biotransformation of microcystin-LR in mice

    International Nuclear Information System (INIS)

    Robinson, N.A.; Pace, J.G.; Matson, C.F.; Miura, G.A.; Lawrence, W.B.

    1991-01-01

    The distribution, excretion and hepatic metabolism of [3H]microcystin-LR (sublethal i.v.) were measured in mice. Plasma elimination was biexponential with alpha- and beta-phase half-lives of 0.8 and 6.9 min, respectively. At 60 min, liver contained 67 +/- 4% of dose. Through the 6-day study the amount of hepatic radioactivity did not change whereas 23.7 +/- 1.7% of the dose was excreted; 9.2 +/- 1.0% in urine and 14.5 +/- 1.1% in feces. Approximately 60% of the urine and fecal radiolabel 6 and 12 hr postinjection was the parent toxin. Hepatic cytosol, which contained 70 +/- 2% of the hepatic radiolabel (1 hr through 6 days), was prepared for high-performance liquid chromatography analysis by heat denaturation, pronase digestion and C18 Sep Pak extraction. At 1 hr, 35 +/- 2% of the radiolabel was insoluble or C18 Sep Pak-bound; 43 +/- 3% was associated with a peak of retention time (rt) 6.6 min, and 16 +/- 3% with the parent toxin (rt 9.4 min). After 6 days, 8 +/- 1% was C18 Sep Pak-bound or insoluble; 5 +/- 0% occurred at rt 6.6 min, 17 +/- 1% with parent and 60 +/- 2% was associated with rt 8.1 min. Two other peaks, rt 4.9 and 5.6 min, appeared transiently. Analysis of hepatic cytosol by desalting chromatography under nondenaturing and denaturing conditions revealed that all of the radiolabel was associated with cytosolic components, and 83 +/- 5% was bound covalently through 1 day. By day 6 the amount of covalently bound isotope decreased to 42 +/- 11%. This is the first study to describe the long-term hepatic retention of microcystin toxin and documents putative detoxication products

  8. Battle of Kasserine Pass: Defeat is a Matter of Scale

    Science.gov (United States)

    2016-05-26

    a ga inst Germany in World War II ; some historians even go so far as to anticipate defeat in the first battles of all major Ameri can wars. Martin ...the battle of Kasserine Pass prove the conventional wisdom that America is doomed to defeat in its first battles? Martin Blumenson, a prominent...Much study of the battle of Kasserine Pass has been done since Martin Blumenson wrote the original history in 1966. The ULTRA and MAGIC intercepts

  9. A computer model simulating human glucose absorption and metabolism in health and metabolic disease states [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Richard J. Naftalin

    2016-04-01

    Full Text Available A computer model designed to simulate integrated glucose-dependent changes in splanchnic blood flow with small intestinal glucose absorption, hormonal and incretin circulation and hepatic and systemic metabolism in health and metabolic diseases e.g. non-alcoholic fatty liver disease, (NAFLD, non-alcoholic steatohepatitis, (NASH and type 2 diabetes mellitus, (T2DM demonstrates how when glucagon-like peptide-1, (GLP-1 is synchronously released into the splanchnic blood during intestinal glucose absorption, it stimulates superior mesenteric arterial (SMA blood flow and by increasing passive intestinal glucose absorption, harmonizes absorption with its distribution and metabolism. GLP-1 also synergises insulin-dependent net hepatic glucose uptake (NHGU. When GLP-1 secretion is deficient post-prandial SMA blood flow is not increased and as NHGU is also reduced, hyperglycaemia follows. Portal venous glucose concentration is also raised, thereby retarding the passive component of intestinal glucose absorption.   Increased pre-hepatic sinusoidal resistance combined with portal hypertension leading to opening of intrahepatic portosystemic collateral vessels are NASH-related mechanical defects that alter the balance between splanchnic and systemic distributions of glucose, hormones and incretins.The model reveals the latent contribution of portosystemic shunting in development of metabolic disease. This diverts splanchnic blood content away from the hepatic sinuses to the systemic circulation, particularly during the glucose absorptive phase of digestion, resulting in inappropriate increases in insulin-dependent systemic glucose metabolism.  This hastens onset of hypoglycaemia and thence hyperglucagonaemia. The model reveals that low rates of GLP-1 secretion, frequently associated with T2DM and NASH, may be also be caused by splanchnic hypoglycaemia, rather than to intrinsic loss of incretin secretory capacity. These findings may have therapeutic

  10. The Mammalian “Obesogen” Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish

    Science.gov (United States)

    Lyssimachou, Angeliki; Santos, Joana G.; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C. Marisa R.; Teixeira, Catarina; Castro, L. Filipe C.; Santos, Miguel M.

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an “obesogenic” phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound. PMID:26633012

  11. Metabolic changes and induction of hepatic lipidosis during feed restriction in llamas.

    Science.gov (United States)

    Tornquist, S J; Cebra, C K; Van Saun, R J; Smith, B B; Mattoon, J S

    2001-07-01

    To determine whether feed restriction induces hepatic lipidosis (HL) in llamas and to evaluate the metabolic changes that develop during feed restriction. 8 healthy adult female llamas. Llamas were fed grass hay at a rate of 0.25% of their body weight per day for 13 to 28 days. Llamas were monitored by use of clinical observation, serum biochemical analyses, and ultrasound-guided liver biopsies. All 8 llamas lost weight and mobilized fat. Five llamas developed HL, including 4 that were nursing crias. During the period of feed restriction, mean serum concentration of bile acids and activities of aspartate aminotransferase (AST), sorbitol dehydrogenase (SDH), and gamma-glutamyl transferase (GGT) were significantly higher in llamas that developed HL, compared with llamas that did not. Mean insulin-to-cortisol concentration ratios were lower in llamas with HL before and up to 7 days of feed restriction, compared with those that did not develop HL. HL in llamas may be induced by severe feed restriction, particularly in the face of increased energy demand. Llamas with weight loss attributable to inadequate dietary intake may develop biochemical evidence of hepatopathy and HL. Increases in serum concentration of bile acids and activities of GGT, AST, and SDH may indicate the development of HL in llamas and identify affected animals for aggressive therapeutic intervention.

  12. The number of metabolic abnormalities associated with the risk of gallstones in a non-diabetic population.

    Directory of Open Access Journals (Sweden)

    Chung-Hung Tsai

    Full Text Available AIM: To evaluate whether metabolic syndrome is associated with gallstones, independent of hepatitis C infection or chronic kidney disease (CKD, in a non-diabetic population. MATERIALS AND METHODS: A total of 8,188 Chinese adult participants that underwent a self-motivated health examination were recruited into the final analysis after excluding the subjects who had a history of cholecystectomy, diabetes mellitus, or were currently using antihypertensive or lipid-lowering agents. Gallstones were defined by the presence of strong intraluminal echoes that were gravity-dependent or that attenuated ultrasound transmission. RESULTS: A total of 447 subjects (5.5% had gallstones, with 239 (5.1% men and 208 (6.0% women. After adjusting for age, gender, obesity, education level, and lifestyle factors, included current smoking, alcohol drinking, regular exercise, hepatitis B, hepatitis C, and CKD, there was a positive association between metabolic syndrome and gallstones. Moreover, as compared to subjects without metabolic abnormalities, subjects with one, two, and three or more suffered from a 35, 40, and 59% higher risk of gallstones, respectively. CONCLUSIONS: Non-diabetic subjects with metabolic syndrome had a higher risk of gallstones independent of hepatitis C or CKD, and a dose-dependent effect of metabolic abnormalities also exists.

  13. "The first shot": the context of first injection of illicit drugs, ongoing injecting practices, and hepatitis C infection in Rio de Janeiro, Brazil.

    Science.gov (United States)

    Oliveira, Maria de Lourdes Aguiar; Hacker, Mariana A; Oliveira, Sabrina Alberti Nóbrega de; Telles, Paulo Roberto; O, Kycia Maria Rodrigues do; Yoshida, Clara Fumiko Tachibana; Bastos, Francisco I

    2006-04-01

    The context of first drug injection and its association with ongoing injecting practices and HCV (hepatitis C virus) infection were investigated. Injection drug users (IDUs) (N = 606) were recruited in "drug scenes" (public places, bars) in Rio de Janeiro, Brazil, interviewed, and tested for HCV. Sharing of needles/syringes was more prevalent at the first injection (51.3%) than at the baseline interview (36.8%). Those who shared syringes/needles at first injection were more likely to be currently engaged in direct/indirect sharing practices. Among young injectors (drug injection were identified as independent predictors of HCV infection. To effectively curb HCV transmission among IDUs and minimize harms associated with risk behaviors, preventive strategies should target individuals initiating drug injection beginning with their very first injection and discourage the transition from non-injecting use to the self-injection of illicit drugs.

  14. Hepatitis E: A Newcomer to the Hepatitis Alphabet – Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Karl Weiss

    1995-01-01

    Full Text Available The first Canadian case of hepatitis E is described in a patient who travelled to Asia for a six-month period and spent most of his time in India. Hepatitis E shares some similarities with hepatitis A, notably the mode of transmission and the absence of chronic course. However, a few important differences have been noted, including a higher mortality rate and a high fatality rate in pregnant women. Hepatitis E is very common in developing countries and should be suspected more often in individuals with gastrointestinal complaints returning from endemic areas.

  15. Increasing levels of dietary crystalline methionine affect plasma methionine profiles, ammonia excretion, and the expression of genes related to the hepatic intermediary metabolism in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Rolland, Marine; Skov, Peter Vilhelm; Larsen, Bodil Katrine

    2016-01-01

    Strictly carnivorous fish with high requirements for dietary protein, such as rainbow trout (Oncorhynchus mykiss) are interesting models for studying the role of amino acids as key regulators of intermediary metabolism. Methionine is an essential amino acid for rainbow trout, and works as a signa......Strictly carnivorous fish with high requirements for dietary protein, such as rainbow trout (Oncorhynchus mykiss) are interesting models for studying the role of amino acids as key regulators of intermediary metabolism. Methionine is an essential amino acid for rainbow trout, and works...... as a signalling factor in different metabolic pathways. The study investigated the effect of increasing dietary methionine intake on the intermediary metabolism in the liver of juvenile rainbow trout. For this purpose, five diets were formulated with increasing methionine levels from 0.60 to 1.29% dry matter....... The diets were fed in excess for six weeks before three sampling campaigns carried out successively to elucidate (i) the hepatic expression of selected genes involved in lipid, glucose and amino acid metabolism; (ii) the postprandial ammonia excretion; and (iii) the postprandial plasma methionine...

  16. Plasma hydroxy-metronidazole/ metronidazole ratio in hepatitis C virus-induced liver disease

    Directory of Open Access Journals (Sweden)

    M.A.M. Marchioretto

    2005-03-01

    Full Text Available It has been suggested that the measurement of metronidazole clearance is a sensitive method for evaluating liver function. The aim of this study was to evaluate the usefulness of plasma hydroxy-metronidazole/metronidazole ratios as indicators of dynamic liver function to detect changes resulting from the various forms of chronic hepatitis C virus (HCV infection. A total of 139 individuals were studied: 14 healthy volunteers, 22 healthy, asymptomatic, consecutive anti-HCV-positive HCV-RNA negative subjects, 81 patients with chronic hepatitis C (49 with moderate/severe chronic hepatitis and 34 with mild hepatitis, and 20 patients with cirrhosis of the liver. HCV status was determined by the polymerase chain reaction. Plasma concentrations of metronidazole and its hydroxy-metabolite were measured by reverse-phase high-performance liquid chromatography with ultraviolet detection in a blood sample collected 10 min after the end of a metronidazole infusion. Anti-HCV-positive HCV-RNA-negative individuals demonstrated a significantly reduced capacity to metabolize intravenously infused metronidazole compared to healthy individuals (0.0478 ± 0.0044 vs 0.0742 ± 0.0232. Liver cirrhosis patients also had a reduced plasma hydroxy-metronidazole/metronidazole ratio when compared to the other groups of anti-HCV-positive individuals (0.0300 ± 0.0032 vs 0.0438 ± 0.0027 (moderate/severe chronic hepatitis vs 0.0455 ± 0.0026 (mild chronic hepatitis and vs 0.0478 ± 0.0044 (anti-HCV-positive, HCV-RNA-negative individuals. These results suggest an impairment of the metronidazole metabolizing system induced by HCV infection that lasts after viral clearance. In those patients with chronic hepatitis C, this impairment is paralleled by progression of the disease to liver cirrhosis.

  17. Epidemiology of hepatitis B virus infection in first-time blood donors in the southwestern region of Goiás, central Brazil

    Directory of Open Access Journals (Sweden)

    Giulena Rosa Leite Cardoso dos Anjos

    2011-02-01

    Full Text Available INTRODUCTION: Little is known about the epidemiology of hepatitis B virus (HBV infection in populations from inner cities, especially in Central Brazil. Thus the objective of this study was to estimate the prevalence of HBV infection, and to analyze the factors associated with HBV infection, in a population of first-time blood donors in the southwestern region of Goiás, Central Brazil. METHODS: A total of 984 individuals were interviewed and gave blood samples to detect serological markers of HBV (HBsAg, anti-HBs, and anti-HBc by enzyme linked immunosorbent assays. RESULTS: An overall prevalence of 6.9% was found for HBV, with constituent prevalence rates of 3.6% and 11.6%, in subjects classified as fit and unfit to donate blood according the epidemiological screening, respectively. Only three individuals were positive for anti-HBs alone, suggesting previous vaccination against HBV. The variables of prior blood transfusion (OR = 2.3, tattoo/piercing (OR = 2.1, illicit drug use (OR = 2.3, sex with a partner with hepatitis (OR = 14.7, and history of sexually transmitted diseases (OR = 2.9 were independently associated with HBV-positivity. These data suggested a low endemicity of hepatitis B in the studied population. CONCLUSION: The findings of low hepatitis B immunization coverage and the association of hepatitis B with risky behavior highlight that there is a need to intensify hepatitis B prevention programs in the southwest region of Goiás.

  18. Aspects involved in the (patho)physiology of the metabolic syndrome

    NARCIS (Netherlands)

    Duivenvoorden, Ilse

    2006-01-01

    The metabolic syndrome is an increasing problem in our Western society. Many of the features of the metabolic syndrome, like obesity, insulin resistance, dyslipidemia, and hepatic steatosis are established risk factors for cardiovascular disease. Growing evidence supports the important role of body

  19. Whole tumour first-pass perfusion using a low-dose method with 64-section multidetector row computed tomography in oesophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Chen Tianwu; Yang Zhigang; Dong Zhihui; Li Yuan; Yao Jin; Wang Qiling; Qian Lingling

    2011-01-01

    Purpose: To propose a low-dose method at tube current-time product of 50 mAs for whole tumour first-pass perfusion of oesophageal squamous cell carcinoma using 64-section multidetector row computed tomography (MDCT), and to assess the original image quality and accuracy of perfusion parameters. Materials and methods: Fifty-nine consecutive patients with confirmed oesophageal squamous cell carcinomas were enrolled into our study, and underwent whole tumour first-pass perfusion scan with 64-section MDCT at 50 mAs. Image data were statistically reviewed focusing on original image quality demonstrated by image-quality scores and signal-to-noise (S/N) ratios; and perfusion parameters including perfusion (PF, in ml/min/ml), peak enhanced density (PED, in HU), time to peak (TTP, in seconds) and blood volume (BV, in ml/100 g) for the tumour. To test the interobserver agreement of perfusion measurements, perfusion analyses were repeatedly performed. Results: Original image-quality scores were 4.71 ± 0.49 whereas S/N ratios were 5.21 ± 2.05, and the scores were correlated with the S/N ratios (r = 0.465, p < 0.0001). Mean values for PF, PED, TTP and BV of the tumour were 33.27 ± 24.15 ml/min/ml, 24.06 ± 9.87 HU, 29.42 ± 8.61 s, and 12.45 ± 12.22 ml/100 g, respectively. Intraclass correlation coefficient between the replicated measurements of each perfusion parameter was greater than 0.99, and mean difference of the replicated measurements of each parameter was close to zero. Conclusion: Whole tumour first-pass perfusion with 64-section MDCT at low-dose radiation could be reproducible to assess microcirculation in oesophageal squamous cell carcinoma without compromising subjective original image quality of the tumour.

  20. Hepatic Insulin Resistance and Altered Gluconeogenic Pathway in Premature Baboons.

    Science.gov (United States)

    McGill-Vargas, Lisa; Gastaldelli, Amalia; Liang, Hanyu; Anzueto Guerra, Diana; Johnson-Pais, Teresa; Seidner, Steven; McCurnin, Donald; Muscogiuri, Giovanna; DeFronzo, Ralph; Musi, Nicolas; Blanco, Cynthia

    2017-05-01

    Premature infants have altered glucose regulation early in life and increased risk for diabetes in adulthood. Although prematurity leads to an increased risk of diabetes and metabolic syndrome in adult life, the role of hepatic glucose regulation and adaptation to an early extrauterine environment in preterm infants remain unknown. The purpose of this study was to investigate developmental differences in glucose metabolism, hepatic protein content, and gene expression of key insulin-signaling/gluconeogenic molecules. Fetal baboons were delivered at 67%, 75%, and term gestational age and euthanized at birth. Neonatal baboons were delivered prematurely (67% gestation), survived for two weeks, and compared with similar postnatal term animals and underwent serial hyperinsulinemic-euglycemic clamp studies. Premature baboons had decreased endogenous glucose production (EGP) compared with term animals. Consistent with these results, the gluconeogenic molecule, phosphoenolpyruvate carboxykinase messenger RNA, was decreased in preterm baboons compared with terms. Hepatic insulin signaling was altered by preterm birth as evidenced by decreased insulin receptor-β, p85 subunit of phosphoinositide 3-kinase, phosphorylated insulin receptor substrate 1, and Akt-1 under insulin-stimulated conditions. Furthermore, preterm baboons failed to have the normal increase in glycogen synthase kinase-α from fetal to postnatal life. The blunted responses in hepatic insulin signaling may contribute to the hyperglycemia of prematurity, while impaired EGP leads to hypoglycemia of prematurity. Copyright © 2017 Endocrine Society.

  1. Nutritional support for treatment of hepatic lipidosis in a llama.

    Science.gov (United States)

    Van Saun, R J; Callihan, B R; Tornquist, S J

    2000-11-15

    A 3-year-old female llama that was 3 months into her first lactation and 10 weeks pregnant was evaluated for anorexia of 24 hours' duration. On physical examination, the llama was in lateral recumbency, bradycardic, tachypneic, and hyperthermic. Palpation per rectum confirmed the presence of a possible dry fecal mass in the spiral colon. A tissue biopsy specimen of the liver was obtained, and histologic examination revealed moderate diffuse lipid accumulation within the hepatocytes. Lactated Ringer's solution was administered for rehydration, and partial parenteral nutrition was then initiated. Hepatic lipidosis is a disease characterized by abnormal accumulation of lipid in the liver and is associated with high mortality in camelids. Anorexia associated with hepatic lipidosis promotes further lipid mobilization and fatty infiltration of the liver. Partial parenteral nutrition with enteral supplementation may be used to maintain adequate energy intake and minimize further lipid mobilization. The distinctive metabolism of camelids may require higher amino acid supplementation relative to nonprotein calories in parenteral solutions than those traditionally provided to other species. Treatment with insulin may be effective

  2. Hemodialysis does not alter in vitro hepatic CYP3A4 and CYP2D6 metabolic activity in uremic serum

    Directory of Open Access Journals (Sweden)

    Decker BS

    2013-12-01

    Full Text Available Brian S Decker,1,2 Kalisha D O'Neill,1,2 Mary A Chambers,1,2 James E Slaven,3 Zhangsheng Yu,3 David R Jones,2,4 Sharon M Moe1,21Division of Nephrology, 2Department of Medicine, 3Department of Biostatistics, 4Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, USAAbstract: There is a paucity of studies evaluating the change in liver metabolism in subjects receiving hemodialysis. The purpose of this study was to compare the effect of uremic toxins on hepatic cytochrome P450 (CYP3A4 and CYP2D6 metabolism before and after a 4-hour hemodialysis session. Midazolam and dextromethorphan were incubated with uremic serum collected from subjects before and after the 4-hour hemodialysis session. Analysis and quantification of the 1'-OH-midazolam and 4-OH-midazolam and dextrorphan metabolites were performed by high-pressure liquid chromatography/mass spectrometry. Statistical analysis using the Student's t-test (paired was used to compare the amount of metabolite formed. The mean amount of 1'-OH-midazolam, 4-OH-midazolam, and dextrorphan metabolites formed before and after hemodialysis did not significantly differ. There was no significant difference in CYP3A4 and CYP2D6 metabolic activity in uremic serum before and after hemodialysis.Keywords: hemodialysis, uremia, CYP3A4, CYP2D6, metabolism

  3. The role of exogenous insulin in the complex of hepatic lipidosis and ketosis associated with insulin resistance phenomenon in postpartum dairy cattle.

    Science.gov (United States)

    Hayirli, A

    2006-10-01

    As a result of a marked decline in dry matter intake (DMI) prior to parturition and a slow rate of increase in DMI relative to milk production after parturition, dairy cattle experience a negative energy balance. Changes in nutritional and metabolic status during the periparturient period predispose dairy cattle to develop hepatic lipidosis and ketosis. The metabolic profile during early lactation includes low concentrations of serum insulin, plasma glucose, and liver glycogen and high concentrations of serum glucagon, adrenaline, growth hormone, plasma beta-hydroxybutyrate and non-esterified fatty acids, and liver triglyceride. Moreover, during late gestation and early lactation, flow of nutrients to fetus and mammary tissues are accorded a high degree of metabolic priority. This priority coincides with lowered responsiveness and sensitivity of extrahepatic tissues to insulin, which presumably plays a key role in development of hepatic lipidosis and ketosis. Hepatic lipidosis and ketosis compromise production, immune function, and fertility. Cows with hepatic lipidosis and ketosis have low tissue responsiveness to insulin owing to ketoacidosis. Insulin has numerous roles in metabolism of carbohydrates, lipids and proteins. Insulin is an anabolic hormone and acts to preserve nutrients as well as being a potent feed intake regulator. In addition to the major replacement therapy to alleviate severity of negative energy balance, administration of insulin with concomitant delivery of dextrose increases efficiency of treatment for hepatic lipidosis and ketosis. However, data on use of insulin to prevent these lipid-related metabolic disorders are limited and it should be investigated.

  4. Exercise training modulates the hepatic renin-angiotensin system in fructose-fed rats.

    Science.gov (United States)

    Frantz, Eliete Dalla Corte; Medeiros, Renata Frauches; Giori, Isabele Gomes; Lima, Juliana Bittencourt Silveira; Bento-Bernardes, Thais; Gaique, Thaiane Gadioli; Fernandes-Santos, Caroline; Fernandes, Tiago; Oliveira, Edilamar Menezes; Vieira, Carla Paulo; Conte-Junior, Carlos Adam; Oliveira, Karen Jesus; Nobrega, Antonio Claudio Lucas

    2017-09-01

    What is the central question of this study? What are the effects of exercise training on the hepatic renin-angiotensin system and their contribution to damage resulting from fructose overload in rats? What is the main finding and its importance? Exercise training attenuated the deleterious actions of the angiotensin-converting enzyme/angiotensin II/angiotensin II type 1 receptor axis and increased expression of the counter-regulatory (angiotensin-converting enzyme 2/angiotensin (1-7)/Mas receptor) axis in the liver. Therefore, our study provides evidence that exercise training modulates the hepatic renin-angiotensin system, which contributes to reducing the progression of metabolic dysfunction and non-alcoholic fatty liver disease in fructose-fed rats. The renin-angiotensin system (RAS) has been implicated in the development of metabolic syndrome. We investigated whether the hepatic RAS is modulated by exercise training and whether this modulation improves the deleterious effects of fructose overload in rats. Male Wistar rats were divided into (n = 8 each) control (CT), exercise control (CT-Ex), high-fructose (HFr) and exercise high-fructose (HFr-Ex) groups. Fructose-drinking rats received d-fructose (100 g l -1 ). After 2 weeks, CT-Ex and HFr-Ex rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min day -1 , 4 days per week). We assessed body mass, glucose and lipid metabolism, hepatic histopathology, angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity, the angiotensin concentration and the expression profile of proteins affecting the hepatic RAS, gluconeogenesis and inflammation. Neither fructose overload nor exercise training influenced body mass gain and serum ACE and ACE2 activity. The HFr group showed hyperinsulinaemia, but exercise training normalized this parameter. Exercise training was effective in preventing hepatic steatosis and in preventing triacylglycerol and

  5. MicroRNAs in Metabolism

    DEFF Research Database (Denmark)

    Vienberg, Sara; Geiger, Julian; Madsen, Søren

    2017-01-01

    roles in cholesterol and lipid metabolism, whereas miR-103 and -107 regulates hepatic insulin sensitivity. In muscle tissue a defined number of miRNAs (miR-1, miR-133, mir-206) control myofiber type switch and induce myogenic differentiation programs. Similarly, in adipose tissue a defined number of mi...

  6. Common pass decentered annular ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, D. A.; Waite, T. R.

    1985-04-30

    An optical resonator having an annular cylindrical gain region for use in a chemical laser or the like in which two ring-shaped mirrors having substantially conical reflecting surfaces are spaced apart along a common axis of revolution of the respective conical surfaces. A central conical mirror reflects incident light directed along said axis radially outwardly to the reflecting surface of a first one of the ring-shaped mirrors. The radial light rays are reflected by the first ring mirror to the second ring mirror within an annular cylindrical volume concentric with said common axis and forming a gain region. Light rays impinging on the second ring mirror are reflected to diametrically opposite points on the same conical mirror surfaces and back to the first ring mirror through the same annular cylindrical volume. The return rays are then reflected by the conical mirror surface of the first ring mirror back to the central conical mirror. The mirror surfaces are angled such that the return rays are reflected back along the common axis by the central mirror in a concentric annular cylindrical volume. A scraper mirror having a central opening centered on said axis and an offset opening reflects all but the rays passing through the two openings in an output beam. The rays passing through the second opening are reflected back through the first opening to provide feedback.

  7. INVESTIGATION OF SINGLE-PASS/DOUBLE-PASS TECHNIQUES ON FRICTION STIR WELDING OF ALUMINIUM

    Directory of Open Access Journals (Sweden)

    N.A.A. Sathari

    2014-12-01

    Full Text Available The aim of this research is to study the effects of single-pass/ double-pass techniques on friction stir welding of aluminium. Two pieces of AA1100 with a thickness of 6.0 mm were friction stir welded using a CNC milling machine at rotational speeds of 1400 rpm, 1600 rpm and 1800 rpm respectively for single-pass and double-pass. Microstructure observations of the welded area were studied using an optical microscope. The specimens were tested by using a tensile test and Vickers hardness test to evaluate their mechanical properties. The results indicated that, at low rotational speed, defects such as ‘surface lack of fill’ and tunnels in the welded area contributed to a decrease in mechanical properties. Welded specimens using double-pass techniques show increasing values of tensile strength and hardness. From this investigation it is found that the best parameters of FSW welded aluminium AA1100 plate were those using double-pass techniques that produce mechanically sound joints with a hardness of 56.38 HV and 108 MPa strength at 1800 rpm compared to the single-pass technique. Friction stir welding, single-pass/ double-pass techniques, AA1100, microstructure, mechanical properties.

  8. Variable liver fat concentration as a proxy for body fat mobilization postpartum has minor effects on insulin-induced changes in hepatic gene expression related to energy metabolism in dairy cows.

    Science.gov (United States)

    Weber, C; Schäff, C T; Kautzsch, U; Börner, S; Erdmann, S; Bruckmaier, R M; Röntgen, M; Kuhla, B; Hammon, H M

    2017-02-01

    The liver plays a central role in adaptation for energy requirements around calving, and changes in the effects of insulin on hepatic energy metabolism contribute to metabolic adaptation in dairy cows. Hepatic insulin effects may depend on body fat mobilization. The objective of this study was to investigate the effects of insulin on the hepatic gene expression of enzymes involved in energy metabolism and factors related to nutrition partitioning in cows with high and low total liver fat concentration (LFC) after calving. Holstein cows were retrospectively grouped according to their LFC after calving as a proxy for body fat mobilization. Cows were classified as low (LLFC; LFC 24.4% fat/dry matter; n = 10) fat-mobilizing after calving. Euglycemic-hyperinsulinemic clamps [6 mU/(kg × min) of insulin for 6 h] were performed in wk 5 antepartum (ap) and wk 3 postpartum (pp). Before and at the end of the euglycemic-hyperinsulinemic clamps, liver biopsies were taken to measure the mRNA abundance of enzymes involved in carbohydrate and lipid metabolism, expression related to the somatotropic axis, and adrenergic and glucocorticoid receptors. The mRNA abundance of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase (PEPCK; PCK1), acyl-CoA-dehydrogenase very long chain (ACADVL), and hydroxyl-methyl-glutaryl-CoA-synthase 1 increased, but the mRNA abundance of solute carrier family 2 (SLC2A2 and SLC2A4), growth hormone receptor 1A (GHR1A), insulin-like growth factor 1 (IGF1), sterol regulatory element binding factor 1, adrenoceptor α 1A, and glucocorticoid receptor decreased from ap to pp. Insulin treatment was associated with decreased PCK1, mitochondrial PEPCK, glucose-6-phosphatase, propionyl-CoA-carboxylase α, carnitine-palmitoyl-transferase 1A, ACADVL, and insulin receptor mRNA, but increased IGF1 and SLC2A4 mRNA ap and pp and GHR1A mRNA pp. The mRNA abundance of SLC2A4 was greater, and the mRNA abundance of GHR1A and IGF1 tended to be lower in LLFC than

  9. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism.

    Science.gov (United States)

    Shin, Andrew C; Fasshauer, Martin; Filatova, Nika; Grundell, Linus A; Zielinski, Elizabeth; Zhou, Jian-Ying; Scherer, Thomas; Lindtner, Claudia; White, Phillip J; Lapworth, Amanda L; Ilkayeva, Olga; Knippschild, Uwe; Wolf, Anna M; Scheja, Ludger; Grove, Kevin L; Smith, Richard D; Qian, Wei-Jun; Lynch, Christopher J; Newgard, Christopher B; Buettner, Christoph

    2014-11-04

    Circulating branched-chain amino acid (BCAA) levels are elevated in obesity/diabetes and are a sensitive predictor for type 2 diabetes. Here we show in rats that insulin dose-dependently lowers plasma BCAA levels through induction of hepatic protein expression and activity of branched-chain α-keto acid dehydrogenase (BCKDH), the rate-limiting enzyme in the BCAA degradation pathway. Selective induction of hypothalamic insulin signaling in rats and genetic modulation of brain insulin receptors in mice demonstrate that brain insulin signaling is a major regulator of BCAA metabolism by inducing hepatic BCKDH. Short-term overfeeding impairs the ability of brain insulin to lower BCAAs in rats. High-fat feeding in nonhuman primates and obesity and/or diabetes in humans is associated with reduced BCKDH protein in liver. These findings support the concept that decreased hepatic BCKDH is a major cause of increased plasma BCAAs and that hypothalamic insulin resistance may account for impaired BCAA metabolism in obesity and diabetes. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Circular RNA Profiling and Bioinformatic Modeling Identify Its Regulatory Role in Hepatic Steatosis.

    Science.gov (United States)

    Guo, Xing-Ya; He, Chong-Xin; Wang, Yu-Qin; Sun, Chao; Li, Guang-Ming; Su, Qing; Pan, Qin; Fan, Jian-Gao

    2017-01-01

    Circular RNAs (circRNAs) exhibit a wide range of physiological and pathological activities. To uncover their role in hepatic steatosis, we investigated the expression profile of circRNAs in HepG2-based hepatic steatosis induced by high-fat stimulation. Differentially expressed circRNAs were subjected to validation using QPCR and functional analyses using principal component analysis, hierarchical clustering, target prediction, gene ontology (GO), and pathway annotation, respectively. Bioinformatic integration established the circRNA-miRNA-mRNA regulatory network so as to identify the mechanisms underlying circRNAs' metabolic effect. Here we reported that hepatic steatosis was associated with a total of 357 circRNAs. Enrichment of transcription-related GOs, especially GO: 0006355, GO: 004589, GO: 0045944, GO: 0045892, and GO: 0000122, demonstrated their specific actions in transcriptional regulation. Lipin 1 (LPIN1) was recognized to mediate the transcriptional regulatory effect of circRNAs on metabolic pathways. circRNA-miRNA-mRNA network further identified the signaling cascade of circRNA_021412/miR-1972/LPIN1, which was characterized by decreased level of circRNA_021412 and miR-1972-based inhibition of LPIN1. LPIN1-induced downregulation of long chain acyl-CoA synthetases (ACSLs) expression finally resulted in the hepatosteatosis. These findings identify circRNAs to be important regulators of hepatic steatosis. Transcription-dependent modulation of metabolic pathways may underlie their effects, partially by the circRNA_021412/miR-1972/LPIN1 signaling.

  11. Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats.

    Science.gov (United States)

    Li, Chien-Chun; Yu, Hsiang-Fu; Chang, Chun-Hua; Liu, Yun-Ta; Yao, Hsien-Tsung

    2018-01-01

    The essential oil from a lemongrass variety of Cymbopogon flexuosus [lemongrass oil (LO)] is used in various food and aroma industry products and exhibits biological activities, such as anticancer and antimicrobial activities. To investigate the effects of 200 LO (200 mg/kg) and 400 LO (400 mg/kg) and its major component, citral (240 mg/kg), on drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in the liver, male Sprague-Dawley rats were fed a pelleted diet and administered LO or citral by gavage for 2 weeks. After 2 weeks of feeding, the effects of LO and citral on the metabolism and toxicity of acetaminophen were determined. The results showed that rats treated with 400 LO or citral had significantly reduced hepatic testosterone 6β-hydroxylation and ethoxyresorufin O-deethylation activities. In addition, NAD(P)H:quinone oxidoreductase 1 activity was significantly increased by citral, and Uridine 5'-diphospho (UDP) glucurosyltransferase activity was significantly increased by 400 LO in the rat liver. Treatment with 400 LO or citral reduced lipid peroxidation and reactive oxygen species levels in the liver. After acetaminophen treatment, however, LO and citral treatment resulted in little or no change in plasma alanine aminotransferase activity and acetaminophen-protein adducts content in the liver. Our results indicate that LO and citral may change the activities of drug-metabolizing enzymes and reduce oxidative stress in the liver. However, LO and citral may not affect the detoxification of acetaminophen. Copyright © 2017. Published by Elsevier B.V.

  12. Long-term intake of a high prebiotic fiber diet but not high protein reduces metabolic risk after a high fat challenge and uniquely alters gut microbiota and hepatic gene expression.

    Science.gov (United States)

    Saha, Dolan C; Reimer, Raylene A

    2014-09-01

    A mismatch between early developmental diet and adulthood may increase obesity risk. Our objective was to determine the effects of re-matching rats to their weaning diets high in protein or fiber after transient high-fat/high-sucrose challenge in adulthood. We hypothesize that a long-term high fiber diet will be associated with a gut microbiota and hepatic gene expression reflective of reduced adiposity. Wistar rat pups were fed a control (C), high prebiotic fiber (HF), or high protein (HP) diet from 3-15 weeks of age; a high-fat/high-sucrose diet from 15-21 weeks; their respective C, HF, or HP diets from 21-25 weeks. Gut microbiota of cecal contents and hepatic gene expression were measured when rats were terminated at 25 weeks of age. HF rats had higher total bacteria, bifidobacteria and Bacteroides/Prevotella spp than C and HP at 25 weeks (P diet attenuated the typical increase in Firmicutes:Bacteroidetes ratio associated with consumption of a high fat diet. Lower hepatic cholesterol with long-term HF diet intake may be related to alterations in gut microbiota and hepatic lipid metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress cardiac MRI for the detection of myocardial ischemia

    NARCIS (Netherlands)

    Lubbers, Daniel D.; Janssen, Caroline H. C.; Kuijpers, Dirkjan; Van Dijkman, Paul R. M.; Overbosch, Jelle; Willems, Tineke P.; Oudkerk, Matthijs

    Purpose of this study was to assess the additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress Cardiac-MR (CMR). Dobutamine Stress CMR was performed in 115 patients with an inconclusive diagnosis of myocardial ischemia on a 1.5 T system (Magnetom Avanto,

  14. First Report of Hepatitis E Virus Infection in Sika Deer in China

    OpenAIRE

    Zhang, Xiao-Xuan; Qin, Si-Yuan; Zhang, Yuan; Meng, Qing-Feng; Jiang, Jing; Yang, Gui-Lian; Zhao, Quan; Zhu, Xing-Quan

    2015-01-01

    Hepatitis E virus (HEV), a single stranded RNA, nonenveloped virus, belongs to the genus Hepevirus, in the family of Hepeviridae. In this study, 46 (5.43%) out of the 847 serum samples from sika deer (Cervus nippon) were detected as seropositive with hepatitis E virus (HEV) by enzyme linked immunosorbent assay (ELISA). These samples were collected from Inner Mongolia and Jilin and Heilongjiang provinces in China, between October 2012 and October 2013. Seroprevalence of HEV infection in male a...

  15. Withdrawal from high-carbohydrate, high-saturated-fat diet changes saturated fat distribution and improves hepatic low-density-lipoprotein receptor expression to ameliorate metabolic syndrome in rats.

    Science.gov (United States)

    Hazarika, Ankita; Kalita, Himadri; Kalita, Mohan Chandra; Devi, Rajlakshmi

    2017-06-01

    The "lipid hypothesis" determined that saturated fatty acid (SFA) raises low-density lipoprotein cholesterol, thereby increasing the risk for metabolic syndrome (MetS). The aim of this study was to investigate the effect of subchronic withdrawal from a high-carbohydrate, high-saturated fat (HCHF) diet during MetS with reference to changes in deleterious SFA (C12:0, lauric acid; C14:0, myristic acid; C16:0, palmitic acid; C18:0, stearic acid) distribution in liver, white adipose tissue (WAT), and feces. MetS induced by prolonged feeding of an HCHF diet in Wistar albino rat is used as a model of human MetS. The MetS-induced rats were withdrawn from the HCHF diet and changed to a basal diet for final 4 wk of the total experimental duration of 16 wk. SFA distribution in target tissues and hepatic low-density lipoprotein receptor (LDLr) expression were analyzed. Analyses of changes in SFA concentration of target tissues indicate that C16:0 and C18:0 reduced in WAT and liver after withdrawal of the HCHF diet. There was a significant (P < 0.001) decrease in fecal C12:0 with HCHF feeding, which significantly (P < 0.01) increased after withdrawal of this diet. Also, an improvement in expression of hepatic LDLr was observed after withdrawal of HCHF diet. The prolonged consumption of an HCHF diet leads to increased SFA accumulation in liver and WAT, decreased SFA excretion, and reduced hepatic LDLr expression during MetS, which is prominently reversed after subchronic withdrawal of the HCHF diet. This can contribute to better understanding of the metabolic fate of dietary SFA during MetS and may apply to the potential reversal of complications by the simple approach of nutritional modification. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Acute and perinatal-programming effects of a fat-rich diet on rat muscle mitochondrial function and hepatic lipid accumulation

    DEFF Research Database (Denmark)

    Hellgren, Lars; Jensen, Runa I.; Waterstradt, Michelle S. G.

    2014-01-01

    respiratory control ratio with pyruvate, increased post weaning (p hepatic steatosis......Objective. Maternal high-fat intake during pregnancy may have long-term consequences in the offspring. Since this might relate to the capacity of mitochondrial metabolic adaptation and hepatic lipid metabolism, we investigated how maternal high-fat intake affected mitochondrial function and hepatic...... steatosis in the offspring. Design. Sprague–Dawley rats were fed a high-fat (20% w/w) or a control diet (chow, C) from 10 days before pregnancy and throughout lactation. At weaning the litters were split into two groups; one was continued on the maternal diet and the other was fed low-fat chow. Sample...

  17. The regulatory effects of fish oil and chitosan on hepatic lipogenic signals in high-fat diet-induced obese rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chang, Tien-Chia; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-10-01

    The present study investigated the regulatory effects of fish oil and chitosan on the signals of hepatic lipid metabolism and the postulated mechanism in high-fat diet-induced obese rats. Diet supplementation of chitosan and fish oil efficiently suppressed the increased weights in body and livers of high-fat diet-fed rats. Supplementation of chitosan and fish oil significantly decreased the activities of hepatic lipid biosynthesis-related enzymes and efficiently regulated plasma lipoprotein homeostasis. Both chitosan and fish oil significantly ameliorated the alterations in the protein expressions of hepatic lipogenic transcription factors (LXRα and PPARα), and could also significantly regulate the downstream hepatic lipogenic genes (FAS, HMGCR, CYP7A1, FATP, FABP, AOX, and ABCA) expressions in high-fat diet-fed rats. These results suggest that both fish oil and chitosan exerts downregulative effects on hepatic lipid metabolism in high-fat diet-induced obese rats via the LXRα inhibition and PPARα activation, which further affect the expressions of hepatic lipogenesis-associated genes. Copyright © 2017. Published by Elsevier B.V.

  18. Anti-IL-17 Antibody Improves Hepatic Steatosis by Suppressing Interleukin-17-Related Fatty Acid Synthesis and Metabolism

    Directory of Open Access Journals (Sweden)

    Weidong Shi

    2013-01-01

    Full Text Available To investigate the relationship between interleukin-17 and proteins involved in fatty acid metabolism with respect to alcoholic liver disease, male ICR mice were randomized into five groups: control, alcoholic liver disease (ALD at 4 weeks, 8 weeks, and 12 weeks, and anti-IL-17 antibody treated ALD. A proteomic approach was adopted to investigate changes in liver proteins between control and ALD groups. The proteomic analysis was performed by two-dimensional difference gel electrophoresis. Spots of interest were subsequently subjected to nanospray ionization tandem mass spectrometry (MS/MS for protein identification. Additionally, expression levels of selected proteins were confirmed by western blot. Transcriptional levels of some selected proteins were determined by RT-PCR. Expression levels of 95 protein spots changed significantly (ratio >1.5, P<0.05 during the development of ALD. Sterol regulatory element-binding protein-lc (SREBP-1c, carbohydrate response element binding protein (ChREBP, enoyl-coenzyme A hydratase (ECHS1, and peroxisome proliferator-activated receptor alpha (PPAR-α were identified by MS/MS among the proteins shown to vary the most; increased IL-17 elevated the transcription of SREBP-1c and ChREBP but suppressed ECHS1 and PPAR-α. The interleukin-17 signaling pathway is involved in ALD development; anti-IL-17 antibody improved hepatic steatosis by suppressing interleukin-17-related fatty acid metabolism.

  19. Speech overlap detection in a two-pass speaker diarization system

    NARCIS (Netherlands)

    Huijbregts, M.A.H.; Leeuwen, D.A. van; Jong, F. M. G de

    2009-01-01

    In this paper we present the two-pass speaker diarization system that we developed for the NIST RT09s evaluation. In the first pass of our system a model for speech overlap detection is gen- erated automatically. This model is used in two ways to reduce the diarization errors due to overlapping

  20. Speech overlap detection in a two-pass speaker diarization system

    NARCIS (Netherlands)

    Huijbregts, M.; Leeuwen, D.A. van; Jong, F.M.G. de

    2009-01-01

    In this paper we present the two-pass speaker diarization system that we developed for the NIST RT09s evaluation. In the first pass of our system a model for speech overlap detection is generated automatically. This model is used in two ways to reduce the diarization errors due to overlapping