WorldWideScience

Sample records for hepatic enzymatic activities

  1. Epigallocatechin-3-gallate enhances key enzymatic activities of hepatic thioredoxin and glutathione systems in selenium-optimal mice but activates hepatic Nrf2 responses in selenium-deficient mice

    Ruixia Dong

    2016-12-01

    Full Text Available Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(PH:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system.

  2. Renal failure affects the enzymatic activities of the three first steps in hepatic heme biosynthesis in the acute intermittent porphyria mouse.

    Carmen Unzu

    Full Text Available Chronic kidney disease is a long-term complication in acute intermittent porphyria (AIP. The pathophysiological significance of hepatic overproduction of the porphyrin precursors aminolevulinate acid (ALA and porphobilinogen (PBG in chronic kidney disease is unclear. We have investigated the effect of repetitive acute attacks on renal function and the effect of total or five-sixth nephrectomy causing renal insufficiency on hepatic heme synthesis in the porphobilinogen deaminase (PBGD-deficient (AIP mouse. Phenobarbital challenge in the AIP-mice increased urinary porphyrin precursor excretion. Successive attacks throughout 14 weeks led to minor renal lesions with no impact on renal function. In the liver of wild type and AIP mice, 5/6 nephrectomy enhanced transcription of the first and rate-limiting ALA synthase. As a consequence, urinary PBG excretion increased in AIP mice. The PBG/ALA ratio increased from 1 in sham operated AIP animals to over 5 (males and over 13 (females in the 5/6 nephrectomized mice. Total nephrectomy caused a rapid decrease in PBGD activity without changes in enzyme protein level in the AIP mice but not in the wild type animals. In conclusion, high concentration of porphyrin precursors had little impact on renal function. However, progressive renal insufficiency aggravates porphyria attacks and increases the PBG/ALA ratio, which should be considered a warning sign for potentially life-threatening impairment in AIP patients with signs of renal failure.

  3. Detection of extracellular enzymatic activity in microorganisms ...

    sunny t

    2015-09-18

    Sep 18, 2015 ... microorganisms with all three enzymatic activities, thereby establishing these techniques as ... supplemented at 1% with vegetable oils, including olive (OLI) ..... cepacia lipase for biodiesel fuel production from soybean oil.

  4. Detection of extracellular enzymatic activity in microorganisms ...

    Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies. Eugenia G. Ortiz Lechuga, Isela Quintero Zapata, Katiushka Arévalo Niño ...

  5. Heavy metal pollution and soil enzymatic activity

    Tyler, G

    1974-01-01

    The activity of hydrolytic soil enzymes was studied on spruce mor, polluted with Cu and Zn from a brass foundry in Sweden. Approximately straight regression lines were obtained between enzymatic activity or respiration rate and log Cu + Zn concentration, with highly significant negative regression coefficients for urease and acid phosphatase activity as well as respiration rate, whereas US -glucosidase activity was not measurably lower at high concentrations of Cu + Zn. 17 references, 5 figures.

  6. Enzymatic activity of fungi isolated from crops

    Wioletta A. Żukiewicz-Sobczak

    2016-12-01

    Full Text Available Aim: To detect and assess the activity of extracellular hydrolytic enzymes and to find differences in enzymograms between fungi isolated from wheat and rye samples and grown on Czapek-Dox Broth and Sabouraud Dextrose Broth enriched with cereal (wheat or rye. Isolated strains were also classified in the scale of biosafety levels (BSL. Material and methods: The study used 23 strains of fungi cultured from samples of wheat and rye (grain, grain dust obtained during threshing and soil collected in the Lublin region (eastern Poland. API ZYM test (bioMérieux was carried out according to the manufacturer’s instructions. Classification of BSL (Biosafety levels was based on the current literature. Results : High enzymatic activity was found in strains cultured in media containing 1% of wheat grain ( Bipolaris holmi, Penicillium decumbens and with an addition of 1% of rye grain ( Cladosporium herbarum, Aspergillus versicolor, Alternaria alternata . The total number of enzymes varied depending on the type of media, and in most cases it was higher in the culture where an addition of cereal grains was used. Conclusions : Isolated strains of fungi reveal differences in the profiles of the enzyme assay. It can be assumed that the substrate enriched in grains stimulate the higher activity of mold enzymes. Key words: enzymatic activity, mold fungi, zymogram, biohazards.

  7. Enzymatic activity of the cellulolytic complex produced by trichoderma reesei. Enzymatic hydrolysis of cellulose

    Alfonsel Jaen, M.; Negro, M.J.; Saez, R.; Martin Moreno, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reese QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass from Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars productions, have been selected. Previous studies on enzymatic hydrolysis of O. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (author). 10 figs.; 10 refs

  8. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    Alfonsel J, M.; Negro A, M. J.; Saez A, R.; Martin M, C.

    1986-01-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  9. Study of hepatitis B virus gene mutations with enzymatic colorimetry-based DNA microarray.

    Mao, Hailei; Wang, Huimin; Zhang, Donglei; Mao, Hongju; Zhao, Jianlong; Shi, Jian; Cui, Zhichu

    2006-01-01

    To establish a modified microarray method for detecting HBV gene mutations in the clinic. Site-specific oligonucleotide probes were immobilized to microarray slides and hybridized to biotin-labeled HBV gene fragments amplified from two-step PCR. Hybridized targets were transferred to nitrocellulose membranes, followed by intensity measurement using BCIP/NBT colorimetry. HBV genes from 99 Hepatitis B patients and 40 healthy blood donors were analyzed. Mutation frequencies of HBV pre-core/core and basic core promoter (BCP) regions were found to be significantly higher in the patient group (42%, 40% versus 2.5%, 5%, P colorimetry method exhibited the same level of sensitivity and reproducibility. An enzymatic colorimetry-based DNA microarray assay was successfully established to monitor HBV mutations. Pre-core/core and BCP mutations of HBV genes could be major causes of HBV infection in HBeAg-negative patients and could also be relevant to chronicity and aggravation of hepatitis B.

  10. Enzymatic Activity Detection via Electrochemistry for Enceladus

    Studemeister, Lucy; Koehne, Jessica; Quinn, Richard

    2017-01-01

    Electrochemical detection of biological molecules is a pertinent topic and application in many fields such as medicine, environmental spills, and life detection in space. Proteases, a class of molecules of interest in the search for life, catalyze the hydrolysis of peptides. Trypsin, a specific protease, was chosen to investigate an optimized enzyme detection system using electrochemistry. This study aims at providing the ideal functionalization of an electrode that can reliably detect a signal indicative of an enzymatic reaction from an Enceladus sample.

  11. Malondialdehyde level and some enzymatic activities in subclinical ...

    The purpose of this study was to evaluate the changes occurring in milk malondialdehyde (MDA) level and some enzymatic activities as a result of subclinical mastitis (SCM) in dairy cows. A total of 124 milk samples were collected from 124 lactating cows from the same herd in the period between the 2nd week after calving ...

  12. Enzymatic activities of Azotobacter chroococcum and survival in ...

    Enzymatic activities of Azotobacter chroococcum and survival in schloropyrifos amended sterile and non-sterile. M Shukla, V Kumar, RL Thakur, N Narula. Abstract. No Abstract. Cameroon Journal of Experimental Biology Vol. 2 (2) 2006: pp. 88-94. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for ...

  13. Metformin inhibits glutaminase activity and protects against hepatic encephalopathy.

    Javier Ampuero

    Full Text Available AIM: To investigate the influence of metformin use on liver dysfunction and hepatic encephalopathy in a retrospective cohort of diabetic cirrhotic patients. To analyze the impact of metformin on glutaminase activity and ammonia production in vitro. METHODS: Eighty-two cirrhotic patients with type 2 diabetes were included. Forty-one patients were classified as insulin sensitizers experienced (metformin and 41 as controls (cirrhotic patients with type 2 diabetes mellitus without metformin treatment. Baseline analysis included: insulin, glucose, glucagon, leptin, adiponectin, TNFr2, AST, ALT. HOMA-IR was calculated. Baseline HE risk was calculated according to minimal hepatic encephalopathy, oral glutamine challenge and mutations in glutaminase gene. We performed an experimental study in vitro including an enzymatic activity assay where glutaminase inhibition was measured according to different metformin concentrations. In Caco2 cells, glutaminase activity inhibition was evaluated by ammonia production at 24, 48 and 72 hours after metformina treatment. RESULTS: Hepatic encephalopathy was diagnosed during follow-up in 23.2% (19/82: 4.9% (2/41 in patients receiving metformin and 41.5% (17/41 in patients without metformin treatment (logRank 9.81; p=0.002. In multivariate analysis, metformin use [H.R.11.4 (95% CI: 1.2-108.8; p=0.034], age at diagnosis [H.R.1.12 (95% CI: 1.04-1.2; p=0.002], female sex [H.R.10.4 (95% CI: 1.5-71.6; p=0.017] and HE risk [H.R.21.3 (95% CI: 2.8-163.4; p=0.003] were found independently associated with hepatic encephalopathy. In the enzymatic assay, glutaminase activity inhibition reached 68% with metformin 100 mM. In Caco2 cells, metformin (20 mM decreased glutaminase activity up to 24% at 72 hours post-treatment (p<0.05. CONCLUSIONS: Metformin was found independently related to overt hepatic encephalopathy in patients with type 2 diabetes mellitus and high risk of hepatic encephalopathy. Metformin inhibits glutaminase

  14. Enzymatic characterization of a human acyltransferase activity.

    Akihiko Ozawa

    Full Text Available Non-histone protein acylation is increasingly recognized as an important posttranslational modification, but little is known as to the biochemical properties of protein serine acylating enzymes.We here report that we have identified a metal-stimulated serine octanoyltransferase activity in microsomes from human erythroleukemic (HEL cells. The HEL acylating enzyme was linear with respect to time and protein, exhibited a neutral pH optimum (stimulated by cobalt and zinc, and inhibited by chelating reagents. Hydroxylamine treatment removed most, but not all, of the attached radioactivity. A salt extract of microsomal membranes contained the major portion of enzyme activity, indicating that this acyltransferase is not an integral membrane protein. Sucrose density fractionation showed that the acyltransferase activity is concentrated in the endoplasmic reticulum. In competition experiments, the acyltransferase was well inhibited by activated forms of fatty acids containing at least eight to fourteen carbons, but not by acetyl CoA. The zinc-stimulated HEL acyltransferase did not octanoylate proenkephalin, proopiomelanocortin, His-tagged proghrelin, or proghrelin lacking the amino-terminal His-tag stub of Gly-Ala-Met. The peptides des-acyl ghrelin and ACTH were also not acylated; however, des-acyl ghrelin containing the N-terminal tripeptide Gly-Ala-Met was acylated. Mutagenesis studies indicated a requirement for serine five residues from the amino terminus, reminiscent of myristoyl transferase, but not of ghrelin acylation. However, recombinant myristoyl transferase could not recapitulate the hydroxylamine sensitivity, zinc-stimulation, nor EDTA inhibition obtained with HEL acyltransferase, properties preserved in the HEL cell enzyme purified through four sequential chromatographic steps.In conclusion, our data demonstrate the presence of a zinc-stimulated acyltransferase activity concentrated in the endoplasmic reticulum in HEL cells which is likely

  15. Clinical monitoring of 'autoimmune' chronic active hepatitis

    Hoek, Bart van

    1989-01-01

    This thesis describes the outcome- survival of a large group of 186 consecutive patients with chronic active hepatitis of variouse tiologies, and describes in detail the progress of 21 patients from this group with 'autoimmunie' chronic active hepatitis maintained on standardized immunosuppressive

  16. ASPECTS CONCERNING THE ENZYMATIC ACTIVITY IN SEVERAL THERMOACTINOMYCETE STRAINS

    Simona Dunca

    2003-08-01

    Full Text Available In the thermoactinomycete strains subjected to examination the values of their recorded enzymatic activities (i.e. α-amy lase, protease, exo-β-1,4 – glucanase, endo -β-1,4 – glucanase and β-glucosidase were lower in the stationary cultures as compared to the stirred ones. The strain Thermomonospora fusca BB255 was found to be highly cellulase- producing and at the same time able to synthesize α-amy lases and proteases.

  17. Influence of season, environment and feeding habits on the enzymatic activity of peptidase and β-glucosidase in the gastrointestinal tract of two Siluriformes fishes (Teleostei

    Silvana Duarte

    2013-06-01

    Full Text Available The enzymatic activities involved in the digestion of proteins and carbohydrates were compared among three organs of the digestive track of two Siluriformes fish species, and between two areas: a reservoir, and an area downriver of it. Our aim was to test the hypothesis that the digestive organs of species with varied feeding habits have different enzymatic activities, and that the enzymatic activity differs among seasons and environmental conditions. The iliophagous/herbivorous species Hypostomus auroguttatus Kner, 1854 had higher trypsin-like, chymotrypsin-like peptidase and β-glucosidase activity in the intestine when compared with the omnivorous species Pimelodus maculatus Lacepède, 1803, whereas the latter had more hepatic trypsin-like activity than the former. The peak of activity of the three enzymes in H. auroguttatus was recorded in the winter and spring. On the other hand, P. maculatus tended to have the more prominent peptidase and β-glucosidase activity in the summer, and the smallest in the winter. The intestine of H. auroguttatus had higher enzymatic (trypsin, chymotrypsin and β-glucosidase activity than the stomach and the liver. For P. maculatus, the highest β-glucosidase activity was found in the liver. The enzymatic activity of H. aurogutattus did not differ between lotic and lentic systems, whereas P. maculatus had comparatively higher stomach and hepatic trypsin levels and hepatic chymotrypsin-like activities in the reservoir than down in the river. These findings indicate that, in H. auroguttatus, most digestive activity occurs in the intestine, which is long and adapted for the digestion of bottom-river vegetable matter and detritus. The seasons and the type of the system (lentic vs. lotic seem to affect the enzymatic activity for these two species differently, a likely consequence of their different lifestyles.

  18. Measure of enzymatic activity coincident with 2450 MHz microwave exposure

    Ward, T R; Allis, J W; Elder, J A

    1975-09-01

    Enzyme preparations were exposed to microwave radiation at 2450 MHz and enzymatic activity was simultaneously monitored spectrophotometrically with a crossed-beam exposure detection system. Enzymes studied were glucose 6-phosphate dehydrogenase from human red blood cells and yeast, adenylate kinase from rat liver mitochondria and rabbit muscle, and rat liver microsomal NADPH cytochrome c reductase. No difference was found between the specific activity at 25/sup 0/C of unirradiated controls and enzyme preparations irradiated at an absorbed dose rate of 42 W/kg.

  19. PARP1 Val762Ala polymorphism reduces enzymatic activity

    Wang Xiaogan; Wang Zhaoqi; Tong Weimin; Shen Yan

    2007-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1) modifies a variety of nuclear proteins by poly(ADP-ribosyl)ation, and plays diverse roles in molecular and cellular processes. A common PARP1 single nucleotide polymorphism (SNP) at codon 762, resulting in the substitution of alanine (Ala) for valine (Val) in the catalytic domain has been implicated in susceptibility to cancer. To characterize the functional effect of this polymorphism on PARP1, we performed in vitro enzymatic analysis on PARP1-Ala762 and PARP1-Val762. We found that PARP1-Ala762 displayed 57.2% of the activity of PARP1-Val762 for auto-poly(ADP-ribosyl)ation and 61.9% of the activity of PARP1-Val762 for trans-poly(ADP-ribosyl)ation of histone H1. The kinetic characterization revealed that the K m of PARP1-Ala762 was increased to a 1.2-fold of the K m of PARP1-Val762 for trans-poly(ADP-ribosyl)ation. Thus, the PARP1 Val762Ala polymorphism reduces the enzymatic activity of PARP1 by increasing K m . This finding suggests that different levels of poly(ADP-ribosyl)ation by PARP1 might aid in understanding Cancer risk of carriers of the PARP1 Val762Ala polymorphism

  20. Rapid tryptic mapping using enzymatically active mass spectrometer probe tips

    Dogruel, D.; Williams, P.; Nelson, R.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-12-01

    A method has been developed for rapid, sensitive, and accurate tryptic mapping of polypeptides using matrix-assisted laser desorption/ionization time-of-flight mass analysis. The technique utilizes mass spectrometer probe tips which have been activated through the covalent immobilization of trypsin. The enzymatically active probe tips were used for the tryptic mapping of chicken egg lysozyme and the results compared with those obtained using either free trypsin or agarose-immobilized trypsin. A significant increase in the overall sensitivity of the process was observed using the active probe tips, as well as the production of more characteristic proteolytic fragments and the elimination of background signals due to the autolysis of the trypsin. Further, probe tip digestions were found to be rapid and convenient. 19 refs., 6 figs., 2 tabs.

  1. Metabolic activation of pyrrolizidine alkaloids: insights into the structural and enzymatic basis.

    Ruan, Jianqing; Yang, Mengbi; Fu, Peter; Ye, Yang; Lin, Ge

    2014-06-16

    Pyrrolizidine alkaloids (PAs) are natural toxins widely distributed in plants. The toxic potencies of different PAs vary significantly. PAs are mono- or diesters of necine acids with a necine base. On the basis of the necine bases, PAs are classified into three types: retronecine-type, otonecine-type, and platynecine-type. Hepatotoxic PAs contain an unsaturated necine base. PAs exert hepatotoxicity through metabolic activation by hepatic cytochromes P450s (CYPs) to generate reactive intermediates which form pyrrole-protein adducts. These adducts provide a mechanism-based biomarker to assess PA toxicity. In the present study, metabolic activation of 12 PAs from three structural types was investigated first in mice to demonstrate significant variations in hepatic metabolic activation of different PAs. Subsequently, the structural and enzymatic factors affecting metabolic activation of these PAs were further investigated by using human liver microsomes and recombinant human CYPs. Pyrrole-protein adducts were detected in the liver and blood of mice and the in vitro systems treated with toxic retronecine-type and otonecine-type PAs having unsaturated necine bases but not with a platynecine-type PA containing a saturated necine base. Retronecine-type PAs produced more pyrrole-protein adducts than otonecine-type PAs with similar necine acids, demonstrating that the structure of necine base affected PA toxic potency. Among retronecine-type PAs, open-ring diesters generated the highest amount of pyrrole-protein adducts, followed by macrocyclic diesters, while monoesters produced the least. Only CYP3A4 and CYP3A5 activated otonecine-type PAs, while all 10 CYPs studied showed the ability to activate retronecine-type PAs. Moreover, the contribution of major CYPs involved also varied significantly among retronecine-type PAs. In conclusion, our findings provide a scientific basis for predicting the toxicities of individual PAs in biological systems based on PA structural

  2. Enzymatic treatment of duck hepatitis B virus: Topology of the surface proteins for virions and noninfectious subviral particles

    Franke, Claudia; Matschl, Urte; Bruns, Michael

    2007-01-01

    The large surface antigen L of duck hepatitis B virus exhibits a mixed topology with the preS domains of the protein alternatively exposed to the particles' interior or exterior. After separating virions from subviral particles (SVPs), we compared their L topologies and showed that both particle types exhibit the same amount of L with the following differences: 1-preS of intact virions was enzymatically digested with chymotrypsin, whereas in SVPs only half of preS was accessible, 2-phosphorylation of L at S118 was completely removed by phosphatase treatment only in virions, 3-iodine-125 labeling disclosed a higher ratio of exposed preS to S domains in virions compared to SVPs. These data point towards different surface architectures of virions and SVPs. Because the preS domain acts in binding to a cellular receptor of hepatocytes, our findings implicate the exclusion of SVPs as competitors for the receptor binding and entry of virions

  3. Plasmin enzymatic activity in the presence of actin

    Yusova E. I.

    2015-10-01

    Full Text Available Aim. To study the changes in the plasmin activity towards substrates with high and low molecular mass in the presence of actin. Methods. The proteins used for this investigation were obtained by affinity chromatography and gel-filtration. The plasmin enzymatic activity was determined by a turbidimetric assay and a chromogenic substrate-based assay. The enzyme linked immunosorbent assay and biotin-avidin-phosphatase system were used to study the interaction of plasminogen and its fragments with actin. Results. It was shown that G-actin causes 1.5-fold decrease in the rate of polymeric fibrin hydrolysis by plasmin and Glu-plasminogen activated by the tissue plasminogen activator. However, actin did not impede plasmin autolysis and had no influence on its amidase activity. We have studied an interaction of biotinylated Glu-plasminogen and its fragments (kringle 1-3, kringle 4 and mini-plasminogen with immobilized G-actin. Glu-plasminogen and kringle 4 had a high affinity towards actin (C50 is 113 and 117 nM correspondingly. Mini-plasminogen and kringe 4 did not bind to actin. A similar affinity of Glu-plasminogen and kringle 1-3 towards actin proves the involvement of the kringle 1-3 lysine-binding sites of the native plasminogen form in the actin interaction. Conclusions. Actin can modulate plasmin specificity towards high molecular mass substrates through its interaction with lysine-binding sites of the enzyme kringle domains. Actin inhibition of the fibrinolytic activity of plasmin is due to its competition with fibrin for thelysine binding sites of plasminogen/plasmin.

  4. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  5. Haematology, genotoxicity, enzymatic activity and histopathology as biomarkers of metal pollution in the shrew Crocidura russula

    Sanchez-Chardi, A.; Marques, C.C.; Gabriel, S.I.; Capela-Silva, F.; Cabrita, A.S.; Lopez-Fuster, M.J.; Nadal, J.; Mathias, M.L.

    2008-01-01

    Haematological (WBC, RBC, Hgb and Hct) and genotoxicity (MNT) parameters, hepatic enzymatic activities (GST, GPx and GR), and a histopathological evaluation of liver, kidneys and gonads were assessed as general biomarkers of metal pollution in the shrew Crocidura russula inhabiting a pyrite mining area. Specimens exposed to metals presented a few significant alterations when compared with reference animals: GST activity decreased; micronuclei increased; and evident liver alterations related to metal exposure were observed. On the basis of all the parameters studied, age was an important factor that partly explained the observed variation, whereas sex was the least important factor. Significant correlations were also found between heavy metal concentrations and biomarkers evaluated, demonstrating the great influence of these metals in the metabolic alterations. To the best of our knowledge, these data constitute the first measurements of a battery of biomarkers in shrews from a mine site and are among the few available for insectivorous mammals. - Metals from an abandoned pyrite mine produce alterations in haematological parameters, GST, MNT, and histopathology in shrews

  6. Hepatitis C virus infection can mimic type 1 (antinuclear antibody positive) autoimmune chronic active hepatitis.

    Pawlotsky, J M; Deforges, L; Bretagne, S; André, C; Métreau, J M; Thiers, V; Zafrani, E S; Goossens, M; Duval, J; Mavier, J P

    1993-01-01

    Hepatitis C virus (HCV) has been shown to induce anti-liver-kidney microsomal-1 (LKM1) antibody positive chronic active hepatitis, simulating type 2 autoimmune chronic active hepatitis. The cases of five patients presenting with features of type 1 (antinuclear antibody positive) autoimmune chronic active hepatitis and extrahepatic autoimmune manifestations, in whom immunosuppressive treatment had no effect on liver disease are presented. In these patients, HCV infection could be shown by the presence in serum of anti-HCV antibodies and HCV-RNA detected by polymerase chain reaction. These cases suggest the following: (a) chronic HCV infection can mimic type 1, as well as type 2, autoimmune chronic active hepatitis; (b) HCV infection might be systematically sought in patients presenting with features of type 1 autoimmune chronic active hepatitis, with special care in patients who are unresponsive to immunosuppressive treatment. Images Figure PMID:7686122

  7. The effects of xylitol and sorbitol on lysozyme- and peroxidase-related enzymatic and candidacidal activities.

    Kim, Bum-Soo; Chang, Ji-Youn; Kim, Yoon-Young; Kho, Hong-Seop

    2015-07-01

    To investigate whether xylitol and sorbitol affect enzymatic and candidacidal activities of lysozyme, the peroxidase system, and the glucose oxidase-mediated peroxidase system. Xylitol and sorbitol were added to hen egg-white lysozyme, bovine lactoperoxidase, glucose oxidase-mediated peroxidase, and whole saliva in solution and on hydroxyapatite surfaces. The enzymatic activities of lysozyme, peroxidase, and glucose oxidase-mediated peroxidase were determined by the turbidimetric method, the NbsSCN assay, and production of oxidized o-dianisidine, respectively. Candidacidal activities were determined by comparing colony forming units using Candida albicans ATCC strains 10231, 11006, and 18804. While xylitol and sorbitol did not affect the enzymatic activity of hen egg-white lysozyme both in solution and on hydroxyapatite surfaces, they did inhibit the enzymatic activity of salivary lysozyme significantly in solution, but not on the surfaces. Xylitol and sorbitol enhanced the enzymatic activities of both bovine lactoperoxidase and salivary peroxidase significantly in a dose-dependent manner in solution, but not on the surfaces. Sorbitol, but not xylitol, inhibited the enzymatic activity of glucose oxidase-mediated peroxidase significantly. Both xylitol and sorbitol did not affect candidacidal activities of hen egg-white lysozyme, the bovine lactoperoxidase system, or the glucose oxidase-mediated bovine lactoperoxidase system. Xylitol and sorbitol inhibited salivary lysozyme activity, but enhanced both bovine lactoperoxidase and salivary peroxidase activities significantly in solution. Xylitol and sorbitol did not augment lysozyme- and peroxidase-related candidacidal activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Enzymatic browning control in cut apples (Red delicious through a system of active packaging

    Felipe Jadán Piedra

    2017-03-01

    Full Text Available Enzymatic browning is one of the most relevant mechanisms of deterioration that take place in fresh-cut fruit and vegetables, as a consequence of the activity of the polyphenol oxidase enzyme on the phenolic compounds release after cellular lysis . This work is focused on the reduction of these enzymatic activity by an active packaging technology, which make use of a material that incorporates antioxidant active agents. Thus, films of ethylene-vynil alcohol copolymer (EVOH containing a typical food antioxidant, such as ascorbic acid and a polyphenol oxidase-inhibiting agent, the 4-hexylresorcinol have been developed and used to wrap apple slices. The evolution of color, the enzymatic activity and the kinetic of agents release to food simulants were monitored. The results showed an improvement of apple slice color stability and a reduction of the enzymatic activity. The film with 10 % of agents in 3/1 ratio (4-hexylresorcinol/ascorbic acid provided the best results.

  9. Antimicrobial and enzymatic activity of anemophilous fungi of a public university in Brazil

    LAUREANA V. SOBRAL

    2017-10-01

    Full Text Available ABSTRACT To the fungal microbiota the UFPE and biotechnological potential enzymatic and antimicrobial production. Air conditioned environments were sampled using a passive sedimentation technique, the air I ratio and the presence of aflatoxigenic strains evaluated for ANVISA. Icelles were to determine the enzymatic activity of lipase, amylase and protease metabolic liquids to determine antimicrobial activity. Diversity was observed in all CAV environments, CFU/m3 ranged from 14 to 290 and I/E ratio from 0.1 to 1.5. The of the fungal genera were: Aspergillus (50%, Penicillium (21%, Talaromyces (14%, Curvularia and Paecilomyces (7% each. Aspergillus sydowii (Bainier & Sartory Thom & Church presented enzymatic activity and the Talaromyces purpureogenus Samson, Yilmaz, Houbraken, Spierenb., Seifert, Peterson, Varga & Frisvad presented antibacterial activity against all bacteria that all environments present fungal species biodiversity no toxigenic or pathogenic fungi were found, according to ANVISA legislation for conditioned environments and airborne filamentous fungi present potential for enzymatic and antimicrobial activity.

  10. First results on enzymatic activities in two salt marsh soils under different hydromorphic level and vegetation

    Carmen Trasar-Cepeda

    2015-12-01

    Full Text Available Salt-marsh soils are soils characterized by non-permanent hydric saturation that, depending on factors like duration of submersion periods, are dominated by different salt-tolerant plant species. The composition of microbial communities is an essential component in trophic dynamics and biogeochemical processes in salt marshes, and determines the level of enzymatic activities, which catalyze the conversion of complex molecules into simpler ones. Despite of this, the enzymatic activities in marsh-soils has not yet been investigated. The aim of this study was to analyze the enzymatic activities in two soil profiles of marsh-soils under different water saturation level and dominated by different plant species [Juncus maritimus Lam and Spartina maritima (Curtis Fernald (Sp]. In both soils, the enzymatic activities were much lower than the levels typically found in terrestrial ecosystems. The enzymatic activities were measured both in air-dried and in re-moistened and incubated soil samples. In air-dried samples, the enzymatic activities were higher in Juncus than in Spartina soil and tended to decrease with depth, being sharper the decrease in Juncus than in Spartina soil. Re-moistened and pre-incubated soils showed a general increase in all the enzymatic activities and throughout the whole soil profile, especially in Spartina soils. Hydrolase activities showed a strong and positive relationship with organic matter content both in air-dried and in re-moistened soil samples, higher in these latter. In general, oxidoreductase activities only showed this relationship in re-moistened soil samples. More studies, preferably using freshly collected soil samples, are needed to understand the relationship between enzymatic activities and these environmental conditions.

  11. Hepatic and erythrocytic glutathione peroxidase activity in liver diseases.

    Cordero, R; Ortiz, A; Hernández, R; López, V; Gómez, M M; Mena, P

    1996-09-01

    Hepatic and erythrocytic glutathione peroxidase activity, together with malondialdehyde levels, were determined as indicators of peroxidation in 83 patients from whom liver biopsies had been taken for diagnostic purposes. On histological study, the patients were classified into groups as minimal changes (including normal liver), steatosis, alcoholic hepatitis, hepatic cirrhosis, light to moderately active chronic hepatitis, and severe chronic active hepatitis. The glutathione peroxidase activity in erythrocytes showed no significant changes in any liver disease group. In the hepatic study, an increased activity was observed in steatosis with respect to the minimal changes group, this increased activity induced by the toxic agent in the initial stages of the alcoholic hepatic disease declining as the hepatic damage progressed. There was a negative correlation between the levels of hepatic malondialdehyde and hepatic glutathione peroxidase in subjects with minimal changes. This suggested the existence of an oxidative equilibrium in this group. This equilibrium is broken in the liver disease groups as was manifest in a positive correlation between malondialdehyde and glutathione peroxidase activity.

  12. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Alfonsel, M; Negro, M J; Saez, R; Martin, C

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  13. Variations in Enzymatic Activities of Shoots and Roots as an Indicator for Irradiated Seeds

    Abdelbbaary, N.A.; Elagamay, M.R.

    2005-01-01

    Germinated seedlings from oil seeds (sesame and sunflower) and legumes (Trigonella, Haricot, broad bean and cow pea) were irradiated with gamma rays at doses of 0, 0.2, 0.4, 0.8 and 1 kGy and the data were collected from shoots and roots. Enzymatic activities appeared to be correlated with gamma irradiation dose. The enzymatic activities of irradiated seeds understudy were significantly higher than controls. The peroxidase activities were nearly similar in both roots and shoots, while acid phosphatase activities in roots were higher than in shoots. Also protein contents were higher in roots. The peroxidase and acid phosphatase specific activities in roots were similar. Shoots peroxidase enzymatic activity increased with increased gamma doses. The seedling under study showed two different levels of peroxidase activity, higher as sesame, Trigonella and Sunflower, and lower such as all other legumes understudy. Similar tendency have been also noticed in roots-enzymatic activity, positive correlation between gamma doses treatment and peroxidase enzymatic activity, again two groups higher activity cow pea, broad bean, bean and Trigonella lower such as sesame, such as sesame, sunflower and haircut

  14. Relation between laboratory test results and histological hepatitis activity in individuals positive for hepatitis B surface antigen and antibodies to hepatitis B e antigen

    ter Borg, F.; ten Kate, F. J.; Cuypers, H. T.; Leentvaar-Kuijpers, A.; Oosting, J.; Wertheim-van Dillen, P. M.; Honkoop, P.; Rasch, M. C.; de Man, R. A.; van Hattum, J.; Chamuleau, R. A.; Reesink, H. W.; Jones, E. A.

    1998-01-01

    BACKGROUND: Hepatitis B surface antigen (HBsAg) and antibodies to hepatitis B e antigen (anti-HBe) commonly coexist, and laboratory tests are often requested to assess histological hepatitis activity. An optimum panel of tests has not been found and the usefulness of hepatitis B virus (HBV) DNA

  15. Impact of herbaceous vegetation on the enzymatic activity of coal mining wastes

    Osmanczyk, D

    1980-01-01

    Differences in the enzymatic activity of reclaimed and crude dump wastes after coal mining were investigated. Due to the increased activity of six investigated enzymes (dehydrogenase, catalase, saccharase, BETA-glucosidase, urease and asparaginase), a favourable impact of herbaceous vegetation on the biological activation of the breeding-ground was noticed. Particularly in the case of sacharase and BETA-glucosidase, an increase of the enzymatic activity at a rate of several times or even more than ten times speaks not only for an adequate increase of the metabolic rate of carbohydrates but also for specific properties of the habitat which favours an adsorption of these enzymes. (6 refs.) (In Polish)

  16. Differentiation of enzymatic activity of yeasts and yeast-like microorganisms isolated from various environments

    Elżbieta Bogusławska-Wąs

    2014-08-01

    Full Text Available The aim of study was to determinate enzymatic activity of yeast-like organisms - Candida lipolytica, Rhodotorula rubra, Trichosporon beigelii, Zygosaccharomyces sp. - isolated from the Szczecin Lagoon and herring salads. We have shown that lipolytic activity was higher than protcolytic for every strain tested. The lowest activity level was found out for amylolytic hydrolases. The results also demonstrated that yeast-like organisms isolated from the Szczecin Lagoon revealed much higher average enzymatic activity compared to tbe same species isolated from herring salads, excepting C. lipolytica.

  17. Enzymatic Synthesis and Anti-Allergic Activities of Curcumin Oligosaccharides

    Kei Shimoda

    2010-01-01

    Full Text Available Curcumin 4‘- O -glucooligosaccharides were synthesized by a two step-enzymatic method using almond β-glucosidase and cyclodextrin glucanotransferase (CGTase. Curcumin was glucosylated to curcumin 4‘- O -β-D-glucopyranoside by almond β-glucosidase in 19% yield. Curcumin 4‘- O -β-D-glucopyranoside was converted into curcumin 4‘- O -β-glucooligosaccharides, i.e. 4‘- O -β-maltoside (51% and 4‘- O -β-maltotrioside (25%, by further CGTase-catalyzed glycosylation. Curcumin 4‘- O -β-glycosides showed suppressive action on IgE antibody formation and inhibitory effects on histamine release from rat peritoneal mast cells.

  18. Effects of ionizing radiation on the activity of the major hepatic enzymes implicated in bile acid biosynthesis in the rat

    Souidi, M.; Scanff, P.; Grison, St.; Gourmelon, P.; Aigueperse, J.

    2007-01-01

    In the days following high-dose radiation exposure, damage to small intestinal mucosa is aggravated by changes in the bile acid pool reaching the gut. Intestinal bile acid malabsorption, as described classically, may be associated with altered hepatic bile acid biosynthesis, which was the objective of this work. The activity of the main rate-limiting enzymes implicated in the bile acid biosynthesis were evaluated in the days following an 8-Gy γ Co 60 total body irradiation of rats, with concomitant determination of biliary bile acid profiles and intestinal bile acid content. Modifications of biliary bile acid profiles, observed as early as the first post-irradiation day, were most marked at the third and fourth day, and resulted in an increased hydrophobicity index. In parallel, the intestinal bile acids' content was enhanced and hepatic enzymatic activities leading to bile acids were changed. A marked increase of sterol 12-hydroxylase and decrease of oxy-sterol 7-hydroxylase activity was observed at day 3, whereas both cholesterol 7-hydroxylase and oxy-sterol 7-hydroxylase activities were decreased at day 4 after irradiation. These results show, for the first time, radiation-induced modifications of hepatic enzymatic activities implicated in bile acid biosynthesis and suggest that they are mainly a consequence of radiation-altered intestinal absorption, which induces a physiological response of the entero-hepatic bile acid recirculation. (authors)

  19. Epigenetic Changes during Hepatic Stellate Cell Activation.

    Silke Götze

    Full Text Available Hepatic stellate cells (HSC, which can participate in liver regeneration and fibrogenesis, have recently been identified as liver-resident mesenchymal stem cells. During their activation HSC adopt a myofibroblast-like phenotype accompanied by profound changes in the gene expression profile. DNA methylation changes at single genes have been reported during HSC activation and may participate in the regulation of this process, but comprehensive DNA methylation analyses are still missing. The aim of the present study was to elucidate the role of DNA methylation during in vitro activation of HSC.The analysis of DNA methylation changes by antibody-based assays revealed a strong decrease in the global DNA methylation level during culture-induced activation of HSC. To identify genes which may be regulated by DNA methylation, we performed a genome-wide Methyl-MiniSeq EpiQuest sequencing comparing quiescent and early culture-activated HSC. Approximately 400 differentially methylated regions with a methylation change of at least 20% were identified, showing either hypo- or hypermethylation during activation. Further analysis of selected genes for DNA methylation and expression were performed revealing a good correlation between DNA methylation changes and gene expression. Furthermore, global DNA demethylation during HSC activation was investigated by 5-bromo-2-deoxyuridine assay and L-mimosine treatment showing that demethylation was independent of DNA synthesis and thereby excluding a passive DNA demethylation mechanism.In summary, in vitro activation of HSC initiated strong DNA methylation changes, which were associated with gene regulation. These results indicate that epigenetic mechanisms are important for the control of early HSC activation. Furthermore, the data show that global DNA demethylation during activation is based on an active DNA demethylation mechanism.

  20. Enzymatic Activity of Free-Prostate-Specific Antigen (f-PSA) Is Not Required for Some of its Physiological Activities

    Chadha, Kailash C.; Nair, Bindukumar B.; Chakravarthi, Srikant; Zhou, Rita; Godoy, Alejandro; Mohler, James L.; Aalinkeel, Ravikumar; Schwartz, Stanley A.; Smith, Gary J.

    2015-01-01

    BACKGROUND Prostate specific antigen (PSA) is a well known biomarker for early diagnosis and management of prostate cancer. Furthermore, PSA has been documented to have anti-angiogenic and anti-tumorigenic activities in both in vitro and in vivo studies. However, little is known about the molecular mechanism(s) involved in regulation of these processes, in particular the role of the serine-protease enzymatic activity of PSA. METHODS Enzymatic activity of PSA isolated directly from seminal plasma was inhibited specifically (>95%) by incubation with zinc2+. Human umbilical vein endothelial cells (HUVEC) were utilized to compare/contrast the physiological effects of enzymatically active versus inactive PSA. RESULTS Equimolar concentrations of enzymatically active PSA and PSA enzymatically inactivated by incubation with Zn2+ had similar physiological effects on HUVEC, including inhibiting the gene expression of pro-angiogenic growth factors, like VEGF and bFGF, and up-regulation of expression of the anti-angiogenic growth factor IFN-γ; suppression of mRNA expression for markers of blood vessel development, like FAK, FLT, KDR, TWIST-1; P-38; inhibition of endothelial tube formation in the in vitro Matrigel Tube Formation Assay; and inhibition of endothelial cell invasion and migration properties. DISCUSSION Our data provides compelling evidence that the transcriptional regulatory and the anti-angiogenic activities of human PSA are independent of the innate enzymatic activity PMID:21446007

  1. Enzymatic activity measured by microcalorimetry in soil amended with organic residues

    Karina Cenciani

    2011-08-01

    Full Text Available Enzymatic activity is an important property for soil quality evaluation. Two sequences of experiments were carried out in order to evaluate the enzymatic activity in a soil (Rhodic Eutrudox amended with cattle manure, earthworm casts, or sewage sludges from the municipalities of Barueri and Franca. The activity of commercial enzymes was measured by microcalorimetry in the same soil samples after sterilization. In the first experiment, the enzyme activities of cellulase, protease, and urease were determined in the soil samples during a three month period. In the second sequence of experiments, the thermal effect of the commercial enzymes cellulase, protease, and urease on sterilized soil samples under the same tretaments was monitored for a period of 46 days. The experimental design was randomized and arranged as factorial scheme in five treatments x seven samplings with five replications. The treatment effects were statistically evaluated by one-way analysis of variance. Tukey´s test was used to compare means at p < 0.05. The presence of different sources of organic residues increased the enzymatic activity in the sampling period. Cattle manure induced the highest enzymatic activity, followed by municipal sewage sludge, whereas earthworm casts induced the lowest activity, but differed from control treatment. The thermal effect on the enzyme activity of commercial cellulase, protease, and urease showed a variety of time peaks. These values probably oscillated due to soil physical-chemical factors affecting the enzyme activity on the residues.

  2. Modelling the Effects of Ageing Time of Starch on the Enzymatic Activity of Three Amylolytic Enzymes

    Guerra, Nelson P.; Pastrana Castro, Lorenzo

    2012-01-01

    The effect of increasing ageing time (t) of starch on the activity of three amylolytic enzymes (Termamyl, San Super, and BAN) was investigated. Although all the enzymatic reactions follow michaelian kinetics, v max decreased significantly (P enzymes and the release of the reaction products to the medium. A similar effect was observed when the enzymatic reactions were carried out with unaged starches supplemented with different concentrations of gelatine [G]. The inhibition in the amylolytic activities was best mathematically described by using three modified forms of the Michaelis-Menten model, which included a term to consider, respectively, the linear, exponential, and hyperbolic inhibitory effects of t and [G]. PMID:22666116

  3. Diagnosis of chronic active hepatitis in a miniature schnauzer.

    Hendrix, Alana D

    2004-09-01

    A 12-year-old male castrated miniature schnauzer was presented with a history of abdominal distension. Serum biochemical analysis and abdominal ultrasonography indicated hepatic disease. A wedge biopsy provided a diagnosis of chronic active hepatitis. A therapeutic regime was initiated to improve the quality of life and slow the progression of this disease is described.

  4. Diagnosis of chronic active hepatitis in a miniature schnauzer

    Hendrix, Alana D.

    2004-01-01

    A 12-year-old male castrated miniature schnauzer was presented with a history of abdominal distension. Serum biochemical analysis and abdominal ultrasonography indicated hepatic disease. A wedge biopsy provided a diagnosis of chronic active hepatitis. A therapeutic regime was initiated to improve the quality of life and slow the progression of this disease is described.

  5. PARTIAL CHARACTERIZATION OF ENZYMATIC ACTIVITIES PRODUCED BY A WILD STRAIN OF A. NIGER

    María Martos

    2012-12-01

    Full Text Available Aspergillus niger, isolated from decay citrus peels in the province of Misiones, was able to produce pectinases by submerged fermentation. The enzymatic extract exhibited polygalacturonase, pectinesterase and lyase activities. Others enzymes capable of degrading cell wall polymers were also detected in the enzymatic extract such as cellulases and xylanases. Polygalacturonase was an endo-polygalacturonase. The enzyme exhibited a maximal activity at pH range between 4.5 to 5.0, was stable in the pH range from 2.5 to 5.5 and remained unchanged when was incubated at temperatures lower than 50 ºC. The fungi produced three PG isoenzymes. The enzymatic extract was able to clarify apple juice. The results observed make the pectinolytic enzymes produced by A. niger appropriate for future application in fruit juice processing industries.

  6. Plant oligoadenylates: enzymatic synthesis, isolation, and biological activities

    Devash, Y.; Reichman, M.; Sela, I.; Reichenbach, N.L.; Suhadolnik, R.J.

    1985-01-01

    An enzyme that converts [ 3 H, 32 P]ATP, with a 3 H: 32 P ratio of 1:1, to oligoadenylates with the same 3 H: 32 P ratio was increased in plants following treatment with human leukocyte interferon or plant antiviral factor or inoculation with tobacco mosaic virus. The enzyme was extracted from tobacco leaves, callus tissue cultures, or cell suspension cultures. The enzyme, a putative plant oligoadenylate synthetase, was immobilized on poly(rI) . poly(rC)-agarose columns and converted ATP into plant oligoadenylates. These oligoadenylates were displaced from DEAE-cellulose columns with 350 mM KCl buffer, dialyzed, and further purified by high-performance liquid chromatography (HPLC) and DEAE-cellulose gradient chromatography. In all steps of purification, the ratio of 3 H: 32 P in the oligoadenylates remained 1:1. The plant oligoadenylates isolated by displacement with 350 mM KCl had a molecular weight greater than 1000. The plant oligoadenylates had charges of 5- and 6-. HPLC resolved five peaks, three of which inhibited protein synthesis in reticulocyte and wheat germ systems. Partial structural elucidation of the plant oligoadenylates has been determined by enzymatic and chemical treatments. An adenylate with a 3',5'-phosphodiester and/or a pyrophosphoryl linkage with either 3'- or 5'-terminal phosphates is postulated on the basis of treatment of the oligoadenylates with T2 RNase, snake venom phosphodiesterase, and bacterial alkaline phosphatase and acid and alkaline hydrolyses. The plant oligoadenylates at 8 X 10(-7) M inhibit protein synthesis by 75% in lysates from rabbit reticulocytes and 45% in wheat germ cell-free systems

  7. Synthesis of stable isotopically labeled peptides with filter-assisted enzymatic labeling for the diagnosis of hepatitis B virus infection utilizing mass spectrometry-based proteomics strategy

    Tsai, Hsing-Fen; Hsiao, He-Hsuan

    2017-01-01

    A facile method for the preparation of stable isotopically labeled peptides was developed by means of filter-assisted tryptic "1"6O/"1"8O water labeling, which could be directly applied to the determination of hepatitis B virus infection from human serum with tandem mass spectrometry. Tryptic peptides of hepatitis B surface antigen or hepatitis B e antigen from different subtypes of hepatitis B virus were synthesized with traditional solid-phase peptide synthesis as potential biomarkers. Trypsin catalyzed oxygen-18 exchange at their amidated c-terminus of arginine or lysine residue. The protease catalyzed oxygen-18 to oxygen-16 back exchange reaction was eliminated due to the complete removal of trypsin by the centrifugal filter containing a thin membrane associated with molecular weight cut-off of 10 KDa. The synthetic isotopic peptides were spiked into trichloroacetic acid/acetone precipitated human serum as internal standards and were selectively detected with multiplexed parallel reaction monitoring on a hybrid quadrupole-orbitrap mass spectrometer. The limit of detection for all synthetic peptides were in the range of 0.09 fmol–1.13 fmol. The results indicated that the peptide YLWEWASVR derived from hepatitis B surface antigen was quantified approximately 200 fmol per μl serum and may serve as a diagnostic biomarker for the detection of hepatitis B virus infected disease. - Highlights: • Facile synthesis of an inexpensive and highly reproducible stable isotopically labeled peptides. • Complete incorporation of two "1"8O atoms into synthesized peptides with filter-assisted enzymatic labeling. • Targeted analysis with parallel reaction monitoring assay for the disease diagnosis.

  8. Synthesis of stable isotopically labeled peptides with filter-assisted enzymatic labeling for the diagnosis of hepatitis B virus infection utilizing mass spectrometry-based proteomics strategy

    Tsai, Hsing-Fen; Hsiao, He-Hsuan, E-mail: hhhsiao@dragon.nchu.edu.tw

    2017-03-01

    A facile method for the preparation of stable isotopically labeled peptides was developed by means of filter-assisted tryptic {sup 16}O/{sup 18}O water labeling, which could be directly applied to the determination of hepatitis B virus infection from human serum with tandem mass spectrometry. Tryptic peptides of hepatitis B surface antigen or hepatitis B e antigen from different subtypes of hepatitis B virus were synthesized with traditional solid-phase peptide synthesis as potential biomarkers. Trypsin catalyzed oxygen-18 exchange at their amidated c-terminus of arginine or lysine residue. The protease catalyzed oxygen-18 to oxygen-16 back exchange reaction was eliminated due to the complete removal of trypsin by the centrifugal filter containing a thin membrane associated with molecular weight cut-off of 10 KDa. The synthetic isotopic peptides were spiked into trichloroacetic acid/acetone precipitated human serum as internal standards and were selectively detected with multiplexed parallel reaction monitoring on a hybrid quadrupole-orbitrap mass spectrometer. The limit of detection for all synthetic peptides were in the range of 0.09 fmol–1.13 fmol. The results indicated that the peptide YLWEWASVR derived from hepatitis B surface antigen was quantified approximately 200 fmol per μl serum and may serve as a diagnostic biomarker for the detection of hepatitis B virus infected disease. - Highlights: • Facile synthesis of an inexpensive and highly reproducible stable isotopically labeled peptides. • Complete incorporation of two {sup 18}O atoms into synthesized peptides with filter-assisted enzymatic labeling. • Targeted analysis with parallel reaction monitoring assay for the disease diagnosis.

  9. Hepatitis

    ... most common types of viral hepatitis. What Is Hepatitis A? For kids, hep A is the most common ... they recover, it does not come back. Can Hepatitis A Be Prevented? The following will help keep people ...

  10. Enzymatic Activity of Candida spp. from Oral Cavity and Urine in Children with Nephrotic Syndrome.

    Olczak-Kowalczyk, Dorota; Roszkowska-Blaim, Maria; Dąbkowska, Maria; Swoboda-Kopeć, Ewa; Gozdowski, Dariusz; Mizerska-Wasiak, Małgorzata; Demkow, Urszula; Pańczyk-Tomaszewska, Małgorzata

    2017-01-01

    Oral colonization with Candida spp. is not synonymous with a systemic active infection. The aim of the study was to evaluate enzymatic activity of Candida strains isolated from the oral cavity in patients with nephrotic syndrome (NS) and to compare it with the activity determined in urine. We studied 32 children with NS and 26 control healthy children. Children with NS were treated with glucocorticosteroids, cyclosporin A, mycophenolate mofetil or azathioprine. In all children, API-ZYM enzymatic tests were performed to evaluate hydrolytic enzymes of Candida isolated from the oral cavity and in urine. Candida spp. were isolated from the oral cavity in 11 patients with NS (34.4%), all receiving immunosuppressive treatment. All strains produced valine arylamidase, 9 alpha-glucosidase (E16), and 9 N-acetyl-beta-glucosaminidase (E18). A positive correlation between the presence of Candida in the oral cavity and E16 and E18 enzymatic activity in both oral cavity and urine was found. A dose of cyclosporin A had an effect on the enzymatic activity (p Candida invasion. The results of this study suggest that oral candida infection should be monitored in children with nephrotic syndrome, particularly those treated with immunosuppressive agents.

  11. Effects of Polyelectrolyte Complex Micelles and Their Components on the Enzymatic Activity of Lipase

    Lindhoud, Saskia; Norde, Willem; Cohen Stuart, Martinus Abraham

    2010-01-01

    The enzymatic activity of Hl-lipase embedded in complexes of poly-2-methylvinylpyridinium-co-poly(ethylene oxide) (P2MVP41−PEO205) and poly(acrylic acid)(PAA139) is studied as a function of the PAA139 + P2MVP41−PEO205 complex composition. The measurements revealed that there are several factors that

  12. Effects of Polyelectrolyte Complex Micelles and Their Components on the Enzymatic Activity of Lipase

    Lindhoud, Saskia; Norde, Willem; Stuart, Martien Cohen

    2010-01-01

    The enzymatic activity of Hi-lipase embedded in complexes of poly-2-methylvinylpyridinium-co-poly(ethylene oxide) (P2MVP(41)-PEG(205)) and poly(acrylic acid)(PAA(139)) is studied as a function of the PAA(139) + P2MVP(41) - PEO(205) complex composition. The measurements revealed that there are

  13. The variations of enzymatic activity of pepsin preparation by γ-irradiation

    Kimura, Syojiro; Taimatsu, Meiko; Kanbashi, Toshitaka; Okamoto, Shinichi; Ohnishi, Tokuhiro.

    1993-01-01

    Effect of γ-irradiation on the enzymatic activity of raw pepsin and some saccharated pepsin preparations were studied in the dose range from 0 to 300 kGy. As a result, the apparent reduction rate of saccharated pepsin preparations is less than of raw pepsin. K values of raw and saccharated pepsins were 0.014 and 0.0040-0.0061, and G values of raw and saccharated pepsins were 3.98 and 1.13-1.73, respectively. The lower K and G values of saccharated pepsin than those of raw pepsin seem to be due to radiolytic products of lactose in the preparations as an excipient. Retention rates of enzymatic activity of irradiated preparations at the dose of 25 kGy, which is a complete sterilization dose of pharmaceutical materials, were estimated to be 83% for raw pepsin, and 86% and 93% for saccharated pepsin preparations. At the dose of 10 kGy suggested for food irradiation the retention rates were more than 93% for all pepsins. Therefore, this method is applicable considering the stability of the enzymatic activity after irradiation in the proper range of dose. However, it is necessary to consider the fact that radiolytic products of lactose affect the measurement of enzymatic activity. (author)

  14. Enzymatic Hydrolysis of Oleuropein from Olea europea (Olive Leaf Extract and Antioxidant Activities

    Jiao-Jiao Yuan

    2015-02-01

    Full Text Available Oleuropein (OE, the main polyphenol in olive leaf extract, is likely to decompose into hydroxytyrosol (HT and elenolic acid under the action of light, acid, base, high temperature. In the enzymatic process, the content of OE in olive leaf extract and enzyme are key factors that affect the yield of HT. A selective enzyme was screened from among 10 enzymes with a high OE degradation rate. A single factor (pH, temperature, time, enzyme quantity optimization process and a Box-Behnken design were studied for the enzymatic hydrolysis of 81.04% OE olive leaf extract. Additionally, enzymatic hydrolysis results with different substrates (38.6% and 81.04% OE were compared and the DPPH antioxidant properties were also evaluated. The result showed that the performance of hydrolysis treatments was best using hemicellulase as a bio-catalyst, and the high purity of OE in olive extract was beneficial to biotransform OE into HT. The optimal enzymatic conditions for achieving a maximal yield of HT content obtained by the regression were as follows: pH 5, temperature 55 °C and enzyme quantity 55 mg. The experimental result was 11.31% ± 0.15%, and the degradation rate of OE was 98.54%. From the present investigation of the antioxidant activity determined by the DPPH method, the phenol content and radical scavenging effect were both decreased after enzymatic hydrolysis by hemicellulase. However, a high antioxidant activity of the ethyl acetate extract enzymatic hydrolysate (IC50 = 41.82 μg/mL was demonstated. The results presented in this work suggested that hemicellulase has promising and attractive properties for industrial production of HT, and indicated that HT might be a valuable biological component for use in pharmaceutical products and functional foods.

  15. [Chronic active hepatitis: clinical, biochemical, and histopathologic correlation].

    Subauste, M C

    1989-01-01

    A retrospective study over 26 female patients with chronic active hepatitis was made. The mean age was 39 years old, the mean length of illness of 8 months; 5 patients had positive markers for hepatitis B. Patients were selected with the grade of histological activity: 8 patients had a mild form from disease (2A) and 16 with a severe one (2B). The predominant group was 2B. Severe inflammatory infiltration was the hallmark and multiobulillar necrosis, bridging, eosinophils and hiperplasia of kuppfer cells were found only in this group. Clinical features range from hepatic manifestations to systemic ones. Chronic active hepatitis may present with cholestasis, but the latter is not always related with the grade of activity. Group 2B had elevated aminotransferases and a low concentration for protrobine.

  16. Effect of restricted motion in high temperature on enzymatic activity of the pancreas

    Abdusattarov, A.; Smirnova, G. I.

    1980-01-01

    Effects of 30 day hypodynamia coupled with high temperature (35-36 C) on enzymatic activity of the pancreas of male adult rats were studied. The test animals were divided into four groups. Group one served as controls (freedom of movement and a temperature of 25-26 C, considered optimal). The remaining animals were divided into three additional groups: Group two freedom of movement but high temperature (35-36 C); group three hypodynamia but an optimal temperature; group four hypodynamia and 35-36 C. Considerable change in the enzymatic activity in the pancreas of the four groups is observed in three experimental groups (two, three, and four) as compared to the control (group one). The results indicate that adaption of the organism to the thermal factor and restricted movement is accompanied by a change in the enzymatic spectrum of the pancreas. With the combined effect of these two stresses under conditions of the adaption of the organism especially sharp shifts occur in the enzymatic activity.

  17. Quantitation of Na+, K+-atpase Enzymatic Activity in Tissues of the Mammalian Vestibular System

    Kerr, T. P.

    1985-01-01

    In order to quantify vestibular Na(+), K(+)-ATPase, a microassay technique was developed which is sufficiently sensitive to measure the enzymatic activity in tissue from a single animal. The assay was used to characterize ATPase in he vestibular apparatus of the Mongolian gerbil. The quantitative procedure employs NPP (5 mM) as synthetic enzyme substrate. The assay relies upon spectrophotometric measurement (410 nm) of nitrophenol (NP) released by enzymatic hydrolysis of the substrate. Product formation in the absence of ouabain reflects both specific (Na(+), K(+)-ATPase) and non-specific (Mg(++)-ATPase) enzymatic activity. By measuring the accumulation of reaction product (NP) at three-minute intervals during the course of incubation, it is found that the overall enzymatic reaction proceeds linearly for at least 45 minutes. It is therefore possible to determine two separate reaction rates from a single set of tissues. Initial results indicate that total activity amounts to 53.3 + or - 11.2 (S.E.M.) nmol/hr/mg dry tissue, of which approximately 20% is ouabain-sensitive.

  18. Synthetic Polymer with a Structure-Driven Hepatic Deposition and Curative Pharmacological Activity in Hepatic Cells

    Riber, Camilla Frich; Halling Folkmar Andersen, Anna; Anegaard Rolskov, Lærke

    2017-01-01

    Synthetic polymers make strong contributions as tools for delivery of biological drugs and chemotherapeutics. The most praised characteristic of polymers in these applications is complete lack of pharmacological function such as to minimize the side effects within the human body. In contrast......, synthetic polymers with curative pharmacological activity are truly rare. Moreover, such activity is typically nonspecific rather than structure-defined. In this work, we present the discovery of poly(ethylacrylic acid) (PEAA) as a polymer with a suit of structure-defined, unexpected, pharmacological......, and pharmacokinetic properties not observed in close structural analogues. Specifically, PEAA reveals capacity to bind to albumin with ensuing natural hepatic deposition in vivo and exhibits concurrent inhibitory activity against the hepatitis C virus and inflammation in hepatic cells. Our findings provide a view...

  19. Secreted phospholipase A2 of Clonorchis sinensis activates hepatic stellate cells through a pathway involving JNK signalling.

    Wu, Yinjuan; Li, Ye; Shang, Mei; Jian, Yu; Wang, Caiqin; Bardeesi, Adham Sameer A; Li, Zhaolei; Chen, Tingjin; Zhao, Lu; Zhou, Lina; He, Ai; Huang, Yan; Lv, Zhiyue; Yu, Xinbing; Li, Xuerong

    2017-03-16

    Secreted phospholipase A2 (sPLA2) is a protein secreted by Clonorchis sinensis and is a component of excretory and secretory products (CsESPs). Phospholipase A2 is well known for its role in liver fibrosis and inhibition of tumour cells. The JNK signalling pathway is involved in hepatic stellate cells (HSCs) activation. Blocking JNK activity with SP600125 inhibits HSCs activation. In a previous study, the protein CssPLA2 was expressed in insoluble inclusion bodies. Therefore, it's necessary to express CssPLA2 in water-soluble form and determine whether the enzymatic activity of CssPLA2 or cell signalling pathways is involved in liver fibrosis caused by clonorchiasis. Balb/C mice were given an abdominal injection of MBP-CssPLA2. Liver sections with HE and Masson staining were observed to detect accumulation of collagen. Western blot of mouse liver was done to detect the activation of JNK signalling pathway. In vitro, HSCs were incubated with MBP-CssPLA2 to detect the activation of HSCs as well as the activation of JNK signalling pathway. The mutant of MBP-CssPLA2 without enzymatic activity was constructed and was also incubated with HSCs to check whether activation of the HSCs was related to the enzymatic activity of MBP-CssPLA2. The recombinant protein MBP-CssPLA2 was expressed soluble and of good enzymatic activity. A mutant of CssPLA2, without enzymatic activity, was also constructed. In vivo liver sections of Balb/C mice that were given an abdominal injection of 50 μg/ml MBP-CssPLA2 showed an obvious accumulation of collagen and a clear band of P-JNK1 could be seen by western blot of the liver tissue. In vitro, MBP-CssPLA2, as well as the mutant, was incubated with HSCs and it was proved that activation of HSCs was related to activation of the JNK signalling pathway instead of the enzymatic activity of MBP-CssPLA2. Activation of HSCs by CssPLA2 is related to the activation of the JNK signalling pathway instead of the enzymatic activity of CssPLA2. This finding

  20. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    We used post-mortem magnetic resonance imaging (MRI) guidance to obtain paired biopsies from the brains of four patients with clinical definite multiple sclerosis (MS). Samples were analyzed for the immunoreactivity (IR) of the three nitric oxide (NO) synthase isoforms [inducible, neuronal......NOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age...

  1. Activation of Hsp90 Enzymatic Activity and Conformational Dynamics through Rationally Designed Allosteric Ligands.

    Sattin, Sara; Tao, Jiahui; Vettoretti, Gerolamo; Moroni, Elisabetta; Pennati, Marzia; Lopergolo, Alessia; Morelli, Laura; Bugatti, Antonella; Zuehlke, Abbey; Moses, Mike; Prince, Thomas; Kijima, Toshiki; Beebe, Kristin; Rusnati, Marco; Neckers, Len; Zaffaroni, Nadia; Agard, David A; Bernardi, Anna; Colombo, Giorgio

    2015-09-21

    Hsp90 is a molecular chaperone of pivotal importance for multiple cell pathways. ATP-regulated internal dynamics are critical for its function and current pharmacological approaches block the chaperone with ATP-competitive inhibitors. Herein, a general approach to perturb Hsp90 through design of new allosteric ligands aimed at modulating its functional dynamics is proposed. Based on the characterization of a first set of 2-phenylbenzofurans showing stimulatory effects on Hsp90 ATPase and conformational dynamics, new ligands were developed that activate Hsp90 by targeting an allosteric site, located 65 Å from the active site. Specifically, analysis of protein responses to first-generation activators was exploited to guide the design of novel derivatives with improved ability to stimulate ATP hydrolysis. The molecules' effects on Hsp90 enzymatic, conformational, co-chaperone and client-binding properties were characterized through biochemical, biophysical and cellular approaches. These designed probes act as allosteric activators of the chaperone and affect the viability of cancer cell lines for which proper functioning of Hsp90 is necessary. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Binding of Nickel to Testicular Glutamate–Ammonia Ligase Inhibits Its Enzymatic Activity

    SUN, YINGBIAO; OU, YOUNG; CHENG, MIN; RUAN, YIBING; VAN DER HOORN, FRANS A.

    2016-01-01

    SUMMARY Exposure to nickel has been shown to cause damage to the testis in several animal models. It is not known if the testis expresses protein(s) that can bind nickel. To test this, we used a nickel-binding assay to isolate testicular nickel-binding proteins. We identified glutamate–ammonia ligase (GLUL) as a prominent nickel-binding protein by mass spectrometry. Protein analysis and reverse transcriptase polymerase chain reaction showed that GLUL is expressed in the testis, predominantly in interstitial cells. We determined that GLUL has a higher affinity for nickel than for its regular co-factor manganese. We produced an enzymatically active, recombinant GLUL protein. Upon binding, nickel interferes with the manganese-catalyzed enzymatic activity of recombinant GLUL protein. We also determined that GLUL activity in testes of animals exposed to nickel sulfate is reduced. Our results identify testicular GLUL as the first testicular protein shown to be affected by nickel exposure. PMID:21254280

  3. Immobilization of inorganic pyrophosphatase on nanodiamond particles retaining its high enzymatic activity.

    Rodina, Elena V; Valueva, Anastasiya V; Yakovlev, Ruslan Yu; Vorobyeva, Nataliya N; Kulakova, Inna I; Lisichkin, Georgy V; Leonidov, Nikolay B

    2015-12-21

    Nanodiamond (ND) particles are popular platforms for the immobilization of molecular species. In the present research, enzyme Escherichia coli inorganic pyrophosphatase (PPase) was immobilized on detonation ND through covalent or noncovalent bonding and its enzymatic activity was characterized. Factors affecting adsorption of PPase such as ND size and surface chemistry were studied. The obtained material is a submicron size association of ND particles and protein molecules in approximately equal amounts. Both covalently and noncovalently immobilized PPase retains a significant enzymatic activity (up to 95% of its soluble form) as well as thermostability. The obtained hybrid material has a very high enzyme loading capacity (∼1 mg mg(-1)) and may be considered as a promising delivery system of biologically active proteinaceous substances, particularly in the treatment of diseases such as calcium pyrophosphate crystal deposition disease and related pathologies. They can also be used as recoverable heterogeneous catalysts in the traditional uses of PPase.

  4. Chemical Characterization, Antioxidant and Enzymatic Activity of Brines from Scandinavian Marinated Herring Products

    Gringer, Nina; Osman, Ali; Nielsen, Henrik Hauch

    2014-01-01

    Brines generated during the last marination step in the production of marinated herring (Clupea harengus) were chemically characterized and analyzed for antioxidant and enzyme activities. The end-products were vinegar cured, spice cured and traditional barrel-salted herring with either salt...... or spices. The chemical characterization encompassed pH, dry matter, ash, salt, fatty acids, protein, polypeptide pattern, iron and nitrogen. The antioxidant activity was tested with three assays measuring: iron chelation, reducing power and radical scavenging activity. The enzymatic activity for peroxidase...

  5. Impact of Heavy Metals in Enzymatic Activity of Soils from Hidalgo, Mexico

    Reyes-Ortigoza, A. L.; Reyes-Solis, I. E.; Galicia-Palacios, M. S.; Montiel-Arteaga, S.

    2009-01-01

    The soils from Valle of Mezquital, Hidalgo, Mexico have been irrigated with waste waters from Mexico City for more than 88 years. the present investigation was made in order to know the relationship between heavy metal contents and time of irrigation with waste waters and production of CO 2 and enzymatic activity in soils from Valle Mezquital for knowing the disponibility of nutrients and degradation of soils. (Author)

  6. Effect of aflatoxin B1 on growth and enzymatic activity of a native strain of Bacillus sp

    Alex Sáez Vega

    2004-01-01

    Full Text Available The effect of different aflatoxin B1 (AFAB1 concentrations on alkaline protease growth and enzymatic activity was evaluated; a native strain of alkalophilic Bacillus sp cultivated in CSL (Corn Steep Liquor was used. It was found that the effect of AFAB1 on the strain inhibited its growth and enzymatic activity to 1 ppm, showing that the strain is highly sensible to AFAB1, meaning that medium obtained f rom Colombian corn contaminated with this mycotoxin cannot be easily used. Concentrations less than 0.1 ppm did not affect growth and enzymatic activity. Key words: Bacillus, aflatoxin, alkaline proteases.

  7. Rapid estimation of compost enzymatic activity by spectral analysis method combined with machine learning.

    Chakraborty, Somsubhra; Das, Bhabani S; Ali, Md Nasim; Li, Bin; Sarathjith, M C; Majumdar, K; Ray, D P

    2014-03-01

    The aim of this study was to investigate the feasibility of using visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) as an easy, inexpensive, and rapid method to predict compost enzymatic activity, which traditionally measured by fluorescein diacetate hydrolysis (FDA-HR) assay. Compost samples representative of five different compost facilities were scanned by DRS, and the raw reflectance spectra were preprocessed using seven spectral transformations for predicting compost FDA-HR with six multivariate algorithms. Although principal component analysis for all spectral pretreatments satisfactorily identified the clusters by compost types, it could not separate different FDA contents. Furthermore, the artificial neural network multilayer perceptron (residual prediction deviation=3.2, validation r(2)=0.91 and RMSE=13.38 μg g(-1) h(-1)) outperformed other multivariate models to capture the highly non-linear relationships between compost enzymatic activity and VisNIR reflectance spectra after Savitzky-Golay first derivative pretreatment. This work demonstrates the efficiency of VisNIR DRS for predicting compost enzymatic as well as microbial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield

    Mierzwa-Hersztek, Monika; Gondek, Krzysztof; Klimkowicz-Pawlas, Agnieszka; Baran, Agnieszka

    2017-07-01

    The variety of technological conditions and raw materials from which biochar is produced is the reason why its soil application may have different effects on soil properties and plant growth. The aim of this study was to evaluate the effect of the addition of wheat straw and Miscanthus giganteus straw (5 t DM ha-1) and biochar obtained from this materials in doses of 2.25 and 5 t DM ha-1 on soil enzymatic activity, soil ecotoxicity, and plant yield (perennial grass mixture with red clover). The research was carried out under field conditions on soil with the granulometric composition of loamy sand. No significant effect of biochar amendment on soil enzymatic activity was observed. The biochar-amended soil was toxic to Vibrio fischeri and exhibited low toxicity to Heterocypris incongruens. Application of wheat straw biochar and M. giganteus straw biochar in a dose of 5 t DM ha-1 contributed to an increase in plant biomass production by 2 and 14%, respectively, compared to the soil with mineral fertilisation. Biochars had a more adverse effect on soil enzymatic activity and soil ecotoxicity to H. incongruens and V. fischeri than non-converted wheat straw and M. giganteus straw, but significantly increased the grass crop yield.

  9. Blood parameters and enzymatic and oxidative activity in the liver of chickens fed with calcium anacardate

    Carlos Eduardo Braga Cruz

    Full Text Available ABSTRACT The aim of this research was to evaluate the inclusion of calcium anacardate (CAC as a source of anacardic acid in the diet of broiler chickens on blood parameters, and enzymatic and oxidative activity in the liver. A total of 840 male chicks, one day old, were kept in a completely randomised experimental design, with six treatments and seven replications of 20 birds, totalling 140 birds per treatment. The treatments consisted of feed without the addition of growth promoter (GP, feed with GP, and feed with no GP and the addition of CAC at levels of 0.25, 0.50, 0.75 and 1%. The biochemical blood variables to be analysed were uric acid, total cholesterol, HDL, LDL, creatinine, AST, ALT, triglycerides, total erythrocytes, haemoglobin, haematocrit, mean corpuscular volume, corpuscular haemoglobin concentration, total plasma protein, total leukocytes, heterophils, lymphocytes, platelets and heterophil/lymphocyte ratio. The concentrations of superoxide dismutase, glutathione peroxidase and malondialdehyde were analysed for the enzymatic and oxidative parameters in the liver. There were no significant differences between treatments in the blood parameters or the enzymatic and oxidative activity in the liver of the chickens, demonstrating that the use of calcium anacardate as a source of anacardic acid is non-toxic, and does not affect these parameters.

  10. Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines.

    Hanavan, Paul D; Borges, Chad R; Katchman, Benjamin A; Faigel, Douglas O; Ho, Thai H; Ma, Chen-Ting; Sergienko, Eduard A; Meurice, Nathalie; Petit, Joachim L; Lake, Douglas F

    2015-07-30

    Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a "proof-of-principle" that enzymatic inhibition of QSOX1 may have clinical relevancy.

  11. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. Copyright © 2013 American Dairy Science Association

  13. Warming and organic matter sources impact the proportion of dissolved to total activities in marine extracellular enzymatic rates

    Baltar, Federico; Moran, Xose Anxelu G.; Lø nborg, Christian

    2017-01-01

    Extracellular enzymatic activities (EEAs) are the rate-limiting step in the degradation of organic matter. Extracellular enzymes can be found associated to cells or dissolved in the surrounding water. The proportion of cell-free EEA constitutes

  14. Blocked Enzymatic Etching of Gold Nanorods: Application to Colorimetric Detection of Acetylcholinesterase Activity and Its Inhibitors.

    Saa, Laura; Grinyte, Ruta; Sánchez-Iglesias, Ana; Liz-Marzán, Luis M; Pavlov, Valeri

    2016-05-04

    The anisotropic morphology of gold nanorods (AuNRs) has been shown to lead to nonuniform ligand distribution and preferential etching through their tips. We have recently demonstrated that this effect can be achieved by biocatalytic oxidation with hydrogen peroxide, catalyzed by the enzyme horseradish peroxidase (HRP). We report here that modification of AuNRs with thiol-containing organic molecules such as glutathione and thiocholine hinders enzymatic AuNR etching. Higher concentrations of thiol-containing molecules in the reaction mixture gradually decrease the rate of enzymatic etching, which can be monitored by UV-vis spectroscopy through changes in the AuNR longitudinal plasmon band. This effect can be applied to develop novel optical assays for acetylcholinesterase (AChE) activity. The biocatalytic hydrolysis of acetylthiocholine by AChE yields thiocholine, which prevents enzymatic AuNR etching in the presence of HRP. Additionally, the same bioassay can be used for the detection of nanomolar concentrations of AChE inhibitors such as paraoxon and galanthamine.

  15. Methods for determining enzymatic activity comprising heating and agitation of closed volumes

    Thompson, David Neil; Henriksen, Emily DeCrescenzo; Reed, David William; Jensen, Jill Renee

    2016-03-15

    Methods for determining thermophilic enzymatic activity include heating a substrate solution in a plurality of closed volumes to a predetermined reaction temperature. Without opening the closed volumes, at least one enzyme is added, substantially simultaneously, to the closed volumes. At the predetermined reaction temperature, the closed volumes are agitated and then the activity of the at least one enzyme is determined. The methods are conducive for characterizing enzymes of high-temperature reactions, with insoluble substrates, with substrates and enzymes that do not readily intermix, and with low volumes of substrate and enzyme. Systems for characterizing the enzymes are also disclosed.

  16. The enzymatic activity of the VEGFR2 receptor for the biosynthesis of dinucleoside polyphosphates.

    Jankowski, Vera; Schulz, Anna; Kretschmer, Axel; Mischak, Harald; Boehringer, Falko; van der Giet, Markus; Janke, Doreen; Schuchardt, Mirjam; Herwig, Ralf; Zidek, Walter; Jankowski, Joachim

    2013-09-01

    The group of dinucleoside polyphosphates encompasses a large number of molecules consisting of two nucleosides which are connected by a phosphate chain of variable length. While the receptors activated by dinucleoside polyphosphates as well as their degradation have been studied in detail, its biosynthesis has not been elucidated so far. Since endothelial cells released the dinucleoside polyphosphate uridine adenosine tetraphosphate (Up4A), we tested cytosolic proteins of human endothelial cells obtained from dermal vessels elicited for enzymatic activity. When incubated with ADP and UDP, these cells showed increasing concentrations of Up4A. The underlying enzyme was isolated by chromatography and the mass spectrometric analysis revealed that the enzymatic activity was caused by the vascular endothelial growth factor receptor 2 (VEGFR2). Since VEGFR2 but neither VEGFR1 nor VEGFR3 were capable to synthesise dinucleoside polyphosphates, Tyr-1175 of VEGFR2 is most likely essential for the enzymatic activity of interest. Further, VEGFR2-containing cells like HepG2, THP-1 and RAW264.7 were capable of synthesising dinucleoside polyphosphates. VEGFR2-transfected HEK 293T/17 but not native HEK 293T/17 cells synthesised dinucleoside polyphosphates in vivo too. The simultaneous biosynthesis of dinucleoside polyphosphates could amplify the response to VEGF, since dinucleoside polyphosphates induce cellular growth via P2Y purinergic receptors. Thus the biosynthesis of dinucleoside polyphosphates by VEGFR2 may enhance the proliferative response to VEGF. Given that VEGFR2 is primarily expressed in endothelial cells, the biosynthesis of dinucleoside polyphosphates is mainly located in the vascular system. Since the vasculature is also the main site of action of dinucleoside polyphosphates, activating vascular purinoceptors, blood vessels appear as an autocrine system with respect to dinucleoside polyphosphates. We conclude that VEGFR2 receptor is capable of synthesising

  17. Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: relationship with wine volatile composition.

    Maturano, Yolanda Paola; Assof, Mariela; Fabani, María Paula; Nally, María Cristina; Jofré, Viviana; Rodríguez Assaf, Leticia Anahí; Toro, María Eugenia; Castellanos de Figueroa, Lucía Inés; Vazquez, Fabio

    2015-11-01

    During certain wine fermentation processes, yeasts, and mainly non-Saccharomyces strains, produce and secrete enzymes such as β-glucosidases, proteases, pectinases, xylanases and amylases. The effects of enzyme activity on the aromatic quality of wines during grape juice fermentation, using different co-inoculation strategies of non-Saccharomyces and Saccharomyces cerevisiae yeasts, were assessed in the current study. Three strains with appropriate enological performance and high enzymatic activities, BSc562 (S. cerevisiae), BDv566 (Debaryomyces vanrijiae) and BCs403 (Candida sake), were assayed in pure and mixed Saccharomyces/non-Saccharomyces cultures. β-Glucosidase, pectinase, protease, xylanase and amylase activities were quantified during fermentations. The aromatic profile of pure and mixed cultures was determined at the end of each fermentation. In mixed cultures, non-Saccharomyces species were detected until day 4-5 of the fermentation process, and highest populations were observed in MSD2 (10% S. cerevisiae/90% D. vanrijiae) and MSC1 (1% S. cerevisiae/99% C. sake). According to correlation and multivariate analysis, MSD2 presented the highest concentrations of terpenes and higher alcohols which were associated with pectinase, amylase and xylanase activities. On the other hand, MSC1 high levels of β-glucosidase, proteolytic and xylanolytic activities were correlated to esters and fatty acids. Our study contributes to a better understanding of the effect of enzymatic activities by yeasts on compound transformations that occur during wine fermentation.

  18. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting.

    Nikaeen, Mahnaz; Nafez, Amir Hossein; Bina, Bijan; Nabavi, BiBi Fatemeh; Hassanzadeh, Akbar

    2015-05-01

    The objective of this work was to study the evolution of physico-chemical and microbial parameters in the composting process of sewage sludge (SS) with pruning wastes (PW) in order to compare these parameters with respect to their applicability in the evaluation of organic matter (OM) stabilization. To evaluate the composting process and organic matter stability, different microbial activities were compared during composting of anaerobically digested SS with two volumetric ratios, 1:1 and 3:1 of PW:SS and two aeration techniques including aerated static piles (ASP) and turned windrows (TW). Dehydrogenase activity, fluorescein diacetate hydrolysis, and specific oxygen uptake rate (SOUR) were used as microbial activity indices. These indices were compared with traditional parameters, including temperature, pH, moisture content, organic matter, and C/N ratio. The results showed that the TW method and 3:1 (PW:SS) proportion was superior to the ASP method and 1:1 proportion, since the former accelerate the composting process by catalyzing the OM stabilization. Enzymatic activities and SOUR, which reflect microbial activity, correlated well with temperature fluctuations. Based on these results it appears that SOUR and the enzymatic activities are useful parameters to monitor the stabilization of SS compost. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    Zan, Yanlu [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Yuxia, E-mail: yzhang@wehi.edu.au [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Tien, Po, E-mail: tienpo@sun.im.ac.cn [Center for Molecular Virology, CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2013-06-07

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs.

  20. Hepatitis B virus e antigen induces activation of rat hepatic stellate cells

    Zan, Yanlu; Zhang, Yuxia; Tien, Po

    2013-01-01

    Highlights: •HBeAg expression in HSCs induced production of ECM protein and liver fibrotic markers. •The activation and proliferation of HSCs were mediated by TGF-β. •HBeAg protein purified from cell medium directly activated HSCs. -- Abstract: Chronic hepatitis B virus infection is a major cause of hepatic fibrosis, leading to liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus e antigen (HBeAg) is an accessory protein of HBV, not required for viral replication but important for natural infection in vivo. Hepatic stellate cells (HSCs) are the major producers of excessive extracellular matrix during liver fibrogenesis. Therefore, we examined the influence of HBeAg on HSCs. The rat HSC line HSC-T6 was transfected with HBeAg plasmids, and expression of α-smooth muscle actin, collagen I, transforming growth factor-β1 (TGF-β), and tissue inhibitors of metalloproteinase 1 (TIMP-1) was investigated by quantitative real-time PCR. The proliferation of HSCs was determined by MTS analysis. HBeAg transduction induced up-regulation of these fibrogenic genes and proliferation of HSCs. We found that HBeAg induced TGF-β secretion in HSCs, and the activation of HSCs was prevented by a neutralizing anti-TGF-β antibody. Depletion and addition of HBeAg protein in conditioned medium from HSC-T6 cells transduced with HBeAg indicated that HBeAg directly induced the activation and proliferation of rat primary HSCs. Taken together, HBeAg induces the activation and proliferation of HSCs, mainly mediated by TGF-β, and HBeAg protein purified from cell medium can directly activate HSCs

  1. Hepatitis A virus: a test method for virucidal activity.

    Wolff, M H; Schmitt, J; Rahaus, M; König, A

    2001-08-01

    Hepatitis A virus (HAV) is closely related to the genus enterovirus. HAV is very stable and resistant to acid pH and elevated temperature, as well as to chemicals and environmental influences. Human poliovirus is still one of the model viruses for testing disinfectants but there are discussions about changing to hepatitis A virus. The purpose of this study was to develop a method for using adapted hepatitis A virus to test hand disinfectants. Using HAV strains HM175/24a and FRhK-4 cytopathic effects were visible rarely, and not before 14 days. To verify virus growth in cells a RT-PCR was developed. Two disinfectants tested did not show the required virucidal activity to satisfy current German guidelines.

  2. Oculocutaneous albinism type 1: link between mutations, tyrosinase conformational stability, and enzymatic activity.

    Dolinska, Monika B; Kus, Nicole J; Farney, S Katie; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V

    2017-01-01

    Oculocutaneous albinism type 1 (OCA1) is an autosomal recessive disorder caused by mutations in the tyrosinase gene. Two subtypes of OCA1 have been described: severe OCA1A with complete absence of tyrosinase activity and less severe OCA1B with residual tyrosinase activity. Here, we characterize the recombinant human tyrosinase intramelanosomal domain and mutant variants, which mimic genetic changes in both subtypes of OCA1 patients. Proteins were prepared using site-directed mutagenesis, expressed in insect larvae, purified by chromatography, and characterized by enzymatic activities, tryptophan fluorescence, and Gibbs free energy changes. The OCA1A mutants showed very low protein expression and protein yield and are enzymatically inactive. Mutants mimicking OCA1B were biochemically similar to the wild type, but exhibited lower specific activities and protein stabilities. The results are consistent with clinical data, which indicates that OCA1A mutations inactivate tyrosinase and result in severe phenotype, while OCA1B mutations partially inactivate tyrosinase and result in OCA1B albinism. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  3. Gamma radiation effect on biological activity and enzymatic properties of snake venoms

    Herrera, E.; Yarleque, A.; Campos, S.; Zavaleta, A.

    1986-01-01

    The effect of gamma radiation, from Co-60, on the biological activity and on some enzymatic activities, present in the venoms of Lachesis muta and Bothrops atrox, using samples of dried venom that had been irradiated at a dose of 0.1, 0.5 and 1.0 Mrad have been studied. Variations in the degree of hemorrhage and local necrosis were observed in albino mice injected subcutaneously with venoms of both types. The reduction of the biological activity was greater for the local hemorrhagic effect and was dependent on the doses of irradiation. The specific activity of various enzymes, present in both venoms, is affected by the gamma radiation, at a dose of 0.1 Mrad the order of increasing inactivation being: exonuclease (4%), phospholipase (24%), caseinolytic enzyme (20%), tamesterase (33%), a thrombine-like enzyme (40%), fibrinolytic enzyme (41%), 5'-nucleotidase (50%) and endonuclease (55%). The enzymatic inactivation was augmented by 0.5 and 1.0 Mrad, without maintaining an arithmetic relation. The enzyme of major resistance to the radiation was exonuclease, whereas 5'-nucleotidase and endonuclease were the most sensitive. No significant changes were observed in the spectrum of UV absorbtion (range 260 to 290 nm) nor in the contents of L-tyrosine in the irradiated venoms

  4. EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis.

    Galeano, E; Barroso, A A M; Vasconcelos, T S; López-Rubio, A; Albrecht, A J P; Victoria Filho, R; Carrer, H

    2016-08-12

    Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance.

  5. The antihyperlipidemic activities of enzymatic and acidic intracellular polysaccharides by Termitomyces albuminosus.

    Zhao, Huajie; Li, Shangshang; Zhang, Jianjun; Che, Gen; Zhou, Meng; Liu, Min; Zhang, Chen; Xu, Nuo; Lin, Lin; Liu, Yu; Jia, Le

    2016-10-20

    Two polysaccharides, EIPS and AIPS were obtained by the hydrolysis of IPS from Termitomyces albuminosus, and their pharmacological effects on blood lipid profiles metabolism and oxidative stress were investigated. The results demonstrated that EIPS was superior to IPS and AIPS on reducing hepatic lipid levels and preventing oxidative stress by improving serum enzyme activities (ALT, AST, and ALP), serum lipid levels (TC, TG, HDL-C, LDL-C and VLDL-C), hepatic lipid levels (TC and TG), and antioxidant status (SOD, GSH-Px, CAT, T-AOC, MDA, and LPO). These conclusions indicated that EIPS, AIPS and IPS might be suitable for functional foods and natural drugs on preventing the high-fat emulsion-induced hyperlipidemia. In addition, the monosaccharide compositions of IPS and its hydrolyzate were also processed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Analysis of Enzymatic Activity of Matrix Metalloproteinase (MMP) by Collagen Zymography in Melanoma.

    Walia, Vijay; Samuels, Yardena

    2018-01-01

    Protein zymography is the most commonly used technique to study the enzymatic activity of matrix metalloproteinases (MMPs) and their inhibitors. MMPs are proteolytic enzymes that promote extracellular matrix degradation. MMPs are frequently mutated in malignant melanomas as well as other cancers and are linked to increasing incidence of tumor metastasis. Substrate zymography characterizes MMP activity by their ability to degrade preferred substrates. Here we describe the collagen zymography technique to measure the active or latent form of MMPs using MMP-8 as an example, which is a frequently mutated MMP family member in malignant melanomas. The same technique can be used with the modification of substrate to detect metalloproteinase activity of other MMPs. Both wild-type and mutated forms of MMPs can be analyzed using a single gel using this method.

  7. The effects of different uranium concentrations on soil microbial populations and enzymatic activities

    Bagherifam, S.; Lakziyan, A.; Ahmadi, S. J.; Fotovvat, A.; Rahimi, M. F.

    2010-01-01

    Uranium is an ubiquitous constituent of natural environment with an average concentration of 4 mg/kg in earth crust. However, in local areas it may exceed the normal concentration due to human activities resulting in radionuclide contamination in groundwater and surface soil. The effect of six levels of uranium concentration (0, 50, 100,250. 500 and 1000 mg kg -1 ) on soil phosphatase activities and microbial populations were studied in a completely randomized design as a factorial experiment with three replications. The results showed a significant decrease in phosphatase activity. The result of the experiment suggests that soil microbial populations (bacteria, funji and actinomycetes) decrease by increasing the uranium levels in the soil. Therefore, assessment of soil enzymatic activities and microbial populations can be helpful as a useful index for a better management of uranium and radioactive contaminated soils.

  8. Quinolone resistance-associated amino acid substitutions affect enzymatic activity of Mycobacterium leprae DNA gyrase.

    Yamaguchi, Tomoyuki; Yokoyama, Kazumasa; Nakajima, Chie; Suzuki, Yasuhiko

    2017-07-01

    Quinolones are important antimicrobials for treatment of leprosy, a chronic infectious disease caused by Mycobacterium leprae. Although it is well known that mutations in DNA gyrase are responsible for quinolone resistance, the effect of those mutations on the enzymatic activity is yet to be studied in depth. Hence, we conducted in vitro assays to observe supercoiling reactions of wild type and mutated M. leprae DNA gyrases. DNA gyrase with amino acid substitution Ala91Val possessed the highest activity among the mutants. DNA gyrase with Gly89Cys showed the lowest level of activity despite being found in clinical strains, but it supercoiled DNA like the wild type does if applied at a sufficient concentration. In addition, patterns of time-dependent conversion from relaxed circular DNA into supercoiled DNA by DNA gyrases with clinically unreported Asp95Gly and Asp95Asn were observed to be distinct from those by the other DNA gyrases.

  9. Destruction of enzymatic activities of corn and soybean leaves exposed to ozone

    Leffler, H R; Cherry, J H

    1974-01-01

    Experiments were conducted to determine the effects of a single ozone exposure on selected enzymatic activities and chlorophyll contents of corn and soybean seedlings. Both nitrite reductase activity and chlorophyll content of the seedlings were found to be quite sensitive to ozonation and were seen to decrease as much as 50% after exposure to 80 parts per hundred million (pphm) ozone. After exposure to lower levels of ozone, less-pronounced decreases were observed. Nitrate reductase activity was reduced only after exposure to seedling leaf tissues to high concentrations of ozone. These results are discussed in relation to the concept of a two-phase response to oxidant exposure. The first phase is at the chloroplast level and is quite sensitive to the low as well as the high concentrations of ozone; the second is at the cellular level and is relatively resistant to all but the highest ozone concentrations. 27 references, 2 tables.

  10. The influence of conformational fluctuations on enzymatic activity: modelling the functional motion of β-secretase

    Neri, M; Cascella, M; Micheletti, C

    2005-01-01

    Considerable insight into the functional activity of proteins and enzymes can be obtained by studying the low energy conformational distortions that the biopolymer can sustain. We carry out the characterization of these large scale structural changes for a protein of considerable pharmaceutical interest, the human β-secretase. Starting from the crystallographic structure of the protein, we use the recently introduced β-Gaussian model to identify, with negligible computational expenditure, the most significant distortions occurring in thermal equilibrium and the associated timescales. The application of this strategy helps us to gain considerable insight into the putative functional movements and, furthermore, allows us to identify a handful of key regions in the protein which have an important mechanical influence on the enzymatic activity despite being spatially distant from the active site. The results obtained within the Gaussian model are validated through an extensive comparison against an all-atom molecular dynamics simulation

  11. Enzymatic digestive activity and absorption efficiency in Tagelus dombeii upon Alexandrium catenella exposure

    Fernández-Reiriz, M. J.; Navarro, J. M.; Cisternas, B. A.; Babarro, J. M. F.; Labarta, U.

    2013-12-01

    We analyzed absorption efficiency (AE) and digestive enzyme activity (amylase, cellulase complex, and laminarinase) of the infaunal bivalve Tagelus dombeii originating from two geographic sites, Corral-Valdivia and Melinka-Aysén, which have different long-term paralytic shellfish poisoning (PSP) exposure rates. We report the effects of past feeding history (origin) on T. dombeii exposed to a mixed diet containing the toxic dinoflagellate Alexandrium catenella and another dinoflagellate-free control diet over a 12-day period in the laboratory. Absorption efficiency values of T. dombeii individuals that experienced PSP exposure in their habitat (Melinka-Aysén) remained unchanged during exposure to toxic food in the laboratory. In contrast, T. dombeii from a non-PSP exposure field site (Corral-Valdivia) showed a significant reduction in AE with toxic exposure time. This study established that the amylase and cellulase complexes were the most important enzymes in the digestive glands of Tagelus from both sites. The temporal evolution of enzymatic activity under toxic diet was fitted to exponential (amylase and cellulase) and to a logarithmic (laminarinase) models. In all fits, we found significant effect of origin in the model parameters. At the beginning of the experiment, higher enzymatic activity was observed for clams from Corral-Valdivia. The amylase activity decreased with time exposure for individuals from Corral and increased for individuals from Melinka. Cellulase activity did not vary over time for clams from Corral, but increased for individuals from Melinka and laminarinase activity decreased over time for individuals from Corral and remained unchanged over time for Melinka. A feeding history of exposure to the dinoflagellate A. catenella was reflected in the digestive responses of both T. dombeii populations.

  12. An Investigation of the Changes in Enzymatic and Non-Enzymatic Salivary Antioxidants Caused by Exhausting Aerobic Activity in Non-Athletic Men

    Yazgaldi Nazari

    2016-12-01

    Full Text Available Background and Objectives: In the present study, the effect of acute aerobic exercise on enzymatic and non-enzymatic salivary antioxidants variations in non-athlete men, was investigated. Methods: In this experimental study, 25 male non-athlete collegiates (age, 21.2±1.6 years; weight, 68.62±10.1kg; body fat, 16.75±2.9%; and Vo2 max, 37.54±2.4ml/kg/min participated voluntarily in this study. Saliva samples were collected in three phases (before, immediately, and 1 hour after running on treadmill according to Astrand test. The activity of peroxidase and catalase, and concentration of uric acid were measured by laboratory methods. Then, to assess the obtained changes, repeated measures statistical test, and in case of significance, post-hoc Bonferroni test were used for pairwise comparing of the measuring phases at the significance level of p≤0.05 used.  Results: The activity of peroxidase significantly increased immediately and 1 hour after exercise compared to the baseline; Also, the concentration of uric acid significantly increased after aerobic exercise, but catalase enzyme activity significantly decreased after aerobic exercise (p<0.05. No significant change was observed in saliva flow rate after exercise. Conclusion: According to the findings of this study, aerobic exercise causes the production of free radicals, and salivary antioxidant system increases as the body biological response to neutralize and counteract the damaging effects of free radicals.

  13. Decreased enzymatic activity of 5,10-methylene tetrahydrofolate reductase affects the development of several diseases

    Maša Vidmar

    2016-07-01

    Full Text Available The importance of folates in human physiology is well known, as are various pathologies associated with low folate status. Folate deficiency can occur due to low dietary intake, genetic predisposition or treatment with medicines affecting the folate status. The aim of this paper is to explore the importance of determining genetic polymorphisms which influence the levels of biologically active folate. MTHFR is involved in the transformation of 5,10-methylene-THF to 5-methyl-THF. Polymorphisms of the MTHRF gene are associated with decreased enzymatic activity.Only 9.3 % of the population in Slovenia displays full activity of the MTHFR enzyme; these subjects are non-mutated homozygotes (wild-type alleles. In contrast, the average enzymatic activity in subjects with mutated alleles is between 50 and 60 %. MTHFR polymorphism is associated with an increased risk of hyperhomocysteinemia and cardiovascular diseases, neurological disorders and various types of cancer. There is also an increased risk for congenital malformations. Folic acid food fortification was introduced in some countries in order to assure an adequate folate status in the population. However, this approach does not address the decreased activity of MTHFR.Polymorphism in the key enzymes of the folate cycle is common. Determination of the genetic predisposition is therefore plausible in the most vulnerable groups of the population, such as pregnant women and patients receiving medicines influencing the folate cycle in various ways, e.g. 5-fluorouracil, methotrexate and 6-mercaptopurine. Genotyping would allow the identification of patients at high risk for suboptimal folate status.

  14. Relationship between Porcine Sperm Motility and Sperm Enzymatic Activity using Paper-based Devices

    Matsuura, Koji; Huang, Han-Wei; Chen, Ming-Cheng; Chen, Yu; Cheng, Chao-Min

    2017-04-01

    Mammalian sperm motility has traditionally been analyzed to determine fertility using computer-assisted semen analysis (CASA) systems. To develop low-cost and robust male fertility diagnostics, we created a paper-based MTT assay and used it to estimate motile sperm concentration. When porcine sperm motility was inhibited using sperm enzyme inhibitors for sperm enzymes related to mitochondrial activity and glycolysis, we simultaneously recorded sperm motility and enzymatic reactivity using a portable motility analysis system (iSperm) and a paper-based MTT assay, respectively. When using our paper-based MTT-assay, we calculated the area mean value signal intensity (AMV) to evaluate enzymatic reactivity. Both sperm motility and AMV decreased following treatment with iodoacetamide (IODO) and 3-bromopyruvic acid (3BP), both of which are inhibitors of glycolytic enzymes including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We found a correlation between recorded motility using iSperm and AMV from our paper-based assay (P Based on this inhibitor study, sperm motility can be estimated using our paper-based MTT-assay.

  15. Chemical interaction of disulfiram with nitrosodimethylamine after in vitro enzymatic activation

    Tacchi, A.M.; Bertram, B.; Wiessler, M.

    1984-01-01

    The in vitro reaction between disulfiram (DSF) and N-nitroso[ 14 C]dimethylamine [( 14 C]NDMA) was studied. Incubations of DSF with [ 14 C]NDMA were carried out in the presence of rat liver microsomes, control 9000 g (S9) supernatant fraction and phenobarbital-induced S9 fraction. HPLC analysis and liquid scintillation measurement provided evidence for the formation of methyldiethyldithiocarbamate (MeDDTC) as a product of the reaction between diethyldithiocarbamate (DDTC), the main active metabolite of DSF and the 'methyl-cation' released by NDMA after enzymatic activation. The amount of MeDDTC found here was consistent with the rate of oxidation of NDMA to formaldehyde. Scintillation counting confirmed that other radioactive peaks, not due to MeDDTC, were unrelated to the methylation of L-cysteine by [ 14 C]NDMA

  16. Ectomycorrhizal Fungal Communities and Enzymatic Activities Vary across an Ecotone between a Forest and Field.

    Rúa, Megan A; Moore, Becky; Hergott, Nicole; Van, Lily; Jackson, Colin R; Hoeksema, Jason D

    2015-08-28

    Extracellular enzymes degrade macromolecules into soluble substrates and are important for nutrient cycling in soils, where microorganisms, such as ectomycorrhizal (ECM) fungi, produce these enzymes to obtain nutrients. Ecotones between forests and fields represent intriguing arenas for examining the effect of the environment on ECM community structure and enzyme activity because tree maturity, ECM composition, and environmental variables may all be changing simultaneously. We studied the composition and enzymatic activity of ECM associated with loblolly pine (Pinus taeda) across an ecotone between a forest where P. taeda is established and an old field where P. taeda saplings had been growing for <5 years. ECM community and environmental characteristics influenced enzyme activity in the field, indicating that controls on enzyme activity may be intricately linked to the ECM community, but this was not true in the forest. Members of the Russulaceae were associated with increased phenol oxidase activity and decreased peroxidase activity in the field. Members of the Atheliaceae were particularly susceptible to changes in their abiotic environment, but this did not mediate differences in enzyme activity. These results emphasize the complex nature of factors that dictate the distribution of ECM and activity of their enzymes across a habitat boundary.

  17. Glycosylation site-targeted PEGylation of glucose oxidase retains native enzymatic activity.

    Ritter, Dustin W; Roberts, Jason R; McShane, Michael J

    2013-04-10

    Targeted PEGylation of glucose oxidase at its glycosylation sites was investigated to determine the effect on enzymatic activity, as well as the bioconjugate's potential in an optical biosensing assay. Methoxy-poly(ethylene glycol)-hydrazide (4.5kDa) was covalently coupled to periodate-oxidized glycosylation sites of glucose oxidase from Aspergillus niger. The bioconjugate was characterized using gel electrophoresis, liquid chromatography, mass spectrometry, and dynamic light scattering. Gel electrophoresis data showed that the PEGylation protocol resulted in a drastic increase (ca. 100kDa) in the apparent molecular mass of the protein subunit, with complete conversion to the bioconjugate; liquid chromatography data corroborated this large increase in molecular size. Mass spectrometry data proved that the extent of PEGylation was six poly(ethylene glycol) chains per glucose oxidase dimer. Dynamic light scattering data indicated the absence of higher-order oligomers in the PEGylated GOx sample. To assess stability, enzymatic activity assays were performed in triplicate at multiple time points over the course of 29 days in the absence of glucose, as well as before and after exposure to 5% w/v glucose for 24h. At a confidence level of 95%, the bioconjugate's performance was statistically equivalent to native glucose oxidase in terms of activity retention over the 29 day time period, as well as following the 24h glucose exposure. Finally, the bioconjugate was entrapped within a poly(2-hydroxyethyl methacrylate) hydrogel containing an oxygen-sensitive phosphor, and the construct was shown to respond approximately linearly with a 220±73% signal change (n=4, 95% confidence interval) over the physiologically-relevant glucose range (i.e., 0-400mg/dL); to our knowledge, this represents the first demonstration of PEGylated glucose oxidase incorporated into an optical biosensing assay. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica

    Aline B. M Vaz

    2011-09-01

    Full Text Available The diversity of yeasts collected from different sites in Antarctica (Admiralty Bay, King George Island and Port Foster Bay and Deception Island and their ability to produce extracellular enzymes and mycosporines were studied. Samples were collected during the austral summer season, between November 2006 and January 2007, from the rhizosphere of Deschampsia antarctica, ornithogenic (penguin guano soil, soil, marine and lake sediments, marine water and freshwater from lakes. A total of 89 isolates belonging to the following genera were recovered: Bensingtonia, Candida, Cryptococcus, Debaryomyces, Dioszegia, Exophiala, Filobasidium, Issatchenkia (Pichia, Kodamaea, Leucosporidium, Leucosporidiella, Metschnikowia, Nadsonia, Pichia, Rhodotorula, and Sporidiobolus, and the yeast-like fungi Aureobasidium, Leuconeurospora and Microglossum. Cryptococcus victoriae was the most frequently identified species. Several species isolated in our study have been previously reported to be Antarctic psychophilic yeasts, including Cr. antarcticus, Cr. victoriae, Dioszegia hungarica and Leucosporidium scottii. The cosmopolitan yeast species A. pullulans, C. zeylanoides, D. hansenii, I. orientalis, K. ohmeri, P. guilliermondii, Rh. mucilaginosa, and S. salmonicolor were also isolated. Five possible new species were identified. Sixty percent of the yeasts had at least one detectable extracellular enzymatic activity. Cryptococcus antarcticus, D. aurantiaca, D. crocea, D. hungarica, Dioszegia sp., E. xenobiotica, Rh. glaciales, Rh. laryngis, Microglossum sp. 1 and Microglossum sp. 2 produced mycosporines. Of the yeast isolates, 41.7% produced pigments and/or mycosporines and could be considered adapted to survive in Antarctica. Most of the yeasts had extracellular enzymatic activities at 4ºC and 20ºC, indicating that they could be metabolically active in the sampled substrates.

  19. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis

    Muhammad, Nurul Nadia; Babji, Abdul Salam; Ayub, Mohd Khan

    2015-09-01

    Edible bird's nest protein hydrolysates (EBN) were prepared via enzymatic hydrolysis to investigate its antioxidant activity. Two types of enzyme (alcalase and papain) were used in this study and EBN had been hydrolysed with different hydrolysis time (30, 60, 90 and 120 min). Antioxidant activities in EBN protein hydrolysate were measured using DPPH, ABTS+ and Reducing Power Assay. From this study, increased hydrolysis time from 30 min to 120 min contributed to higher DH, as shown by alcalase (40.59%) and papain (24.94%). For antioxidant assay, EBN hydrolysed with papain showed higher scavenging activity and reducing power ability compared to alcalase. The highest antioxidant activity for papain was at 120 min hydrolysis time with ABTS (54.245%), DPPH (49.78%) and Reducing Power (0.0680). Meanwhile for alcalase, the highest antioxidant activity was at 30 min hydrolysis time. Even though scavenging activity for EBN protein hydrolysates were high, the reducing power ability was quite low as compared to BHT and ascorbic Acid. This study showed that EBN protein hydrolysate with alcalase and papain treatments potentially exhibit high antioxidant activity which have not been reported before.

  20. Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay

    Ding, Caiping; Yan, Yinghan; Zhang, Cuiling; Xian, Yuezhong; Xiang, Dongshan

    2016-01-01

    Greigite magnetic nanoparticles (Fe 3 S 4 -MNPs) were prepared and reveal a peroxidase-like activity. Kinetic studies revealed a pseudo-enzymatic activity that is much higher than that of other magnetic nanomaterial-based enzyme mimetics. This finding was exploited to design a photometric enzymatic glucose assay based on the formation of H 2 O 2 during enzymatic oxidation of glucose by glucose oxidase, and the formation of a blue product from an enzyme substrate that is catalytically oxidized by H 2 O 2 in the presence of Fe 3 S 4 -MNPs. Glucose can be detected in the 2 to 100 μM concentration range, and the low detection limit is 0.16 μM. The method was applied to quantify glucose in human serum. In our perception, this enzyme mimetic has a large potential in that it may be used in other oxidase based assays, but also in ELISAs. (author)

  1. Specific inflammatory response of Anemonia sulcata (Cnidaria) after bacterial injection causes tissue reaction and enzymatic activity alteration.

    Trapani, M R; Parisi, M G; Parrinello, D; Sanfratello, M A; Benenati, G; Palla, F; Cammarata, M

    2016-03-01

    The evolution of multicellular organisms was marked by adaptations to protect against pathogens. The mechanisms for discriminating the ''self'' from ''non-self" have evolved into a long history of cellular and molecular strategies, from damage repair to the co-evolution of host-pathogen interactions. We investigated the inflammatory response in Anemonia sulcata (Cnidaria: Anthozoa) following injection of substances that varied in type and dimension, and observed clear, strong and specific reactions, especially after injection of Escherichia coli and Vibrio alginolyticus. Moreover, we analyzed enzymatic activity of protease, phosphatase and esterase, showing how the injection of different bacterial strains alters the expression of these enzymes and suggesting a correlation between the appearance of the inflammatory reaction and the modification of enzymatic activities. Our study shows for the first time, a specific reaction and enzymatic responses following injection of bacteria in a cnidarian. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Enzymatic activities of the GB virus-B RNA-dependent RNA polymerase

    Ranjith-Kumar, C.T.; Santos, Jan Lee; Gutshall, Lester L.; Johnston, Victor K.; Juili, L.-G.; Kim, M.-J.; Porter, David J.; Maley, Derrick; Greenwood, Cathy; Earnshaw, David L.; Baker, Audrey; Gu Baohua; Silverman, Carol; Sarisky, Robert T.; Kao Cheng

    2003-01-01

    The GB virus-B (GBV-B) nonstructural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp) with greater than 50% sequence similarity to the hepatitis C virus (HCV) NS5B. Recombinant GBV-B NS5B was reported to possess RdRp activity (W. Zhong et al., 2000, J. Viral Hepat. 7, 335-342). In this study, the GBV-B RdRp was examined more thoroughly for different RNA synthesis activities, including primer-extension, de novo initiation, template switch, terminal nucleotide addition, and template specificity. The results can be compared with previous characterizations of the HCV RdRp. The two RdRps share similarities in terms of metal ion and template preference, the abilities to add nontemplated nucleotides, perform both de novo initiation and extension from a primer, and switch templates. However, several differences in RNA synthesis between the GBV-B and HCV RdRps were observed, including (i) optimal temperatures for activity, (ii) ranges of Mn 2+ concentration tolerated for activity, and (iii) cation requirements for de novo RNA synthesis and terminal transferase activity. To assess whether the recombinant GBV-B RdRp may represent a relevant surrogate system for testing HCV antiviral agents, two compounds demonstrated to be active at nanomolar concentrations against HCV NS5B were tested on the GBV RdRp. A chain terminating nucleotide analog could prevent RNA synthesis, while a nonnucleoside HCV inhibitor was unable to affect RNA synthesis by the GBV RdRp

  3. The effect of chlorsulfurone and MCPB-Na on the enzymatic activity of microorganisms

    Filimon Marioara Nicoleta

    2014-01-01

    Full Text Available herbicides, have a broad spectrum effect on weeds, in relatively low doses and with a much reduced toxicity on livestock. In this study were used two herbicides: dacsulfuron with the active substance chlorsulfuron (0.005 - 0.035 μg/g soil and butoxone with the active substance MCPB-Na (0.005 - 0.035 mg/L/g soil. The samples were collected from a depth of 0-20 cm from chernozem soil. The effect of herbicide was estimated by measuring the activity of catalase, actual and potential dehydrogenase, urease and cellulase activities. All samples being incubated for 10 days at 27°C using Sapp medium for isolation and study of cellulosolytic bacteria. The inhibitory effect of the tested herbicides was the most intense for the urease and dehydrogenase enzymatic activities. The most resistant cellulosolytic bacteria to the effects of dacsulfuron were Cellfalcicula fusca, Cellfalcicula viridis, Cellvibrio fulvus and Fuseaux veris and for butoxone Cellfalcicula mucosa, C. viridis and C. fulvus.

  4. Urease immobilized polymer hydrogel: Long-term stability and enhancement of enzymatic activity.

    Kutcherlapati, S N Raju; Yeole, Niranjan; Jana, Tushar

    2016-02-01

    A method has been developed in which an enzyme namely urease was immobilized inside hydrogel matrix to study the stability and enzymatic activity in room temperature (∼27-30°C). This urease coupled hydrogel (UCG) was obtained by amine-acid coupling reaction and this procedure is such that it ensured the wider opening of mobile flap of enzyme active site. A systematic comparison of urea-urease assay and the detailed kinetic data clearly revealed that the urease shows activity for more than a month when stored at ∼27-30°C in case of UCG whereas it becomes inactive in case of free urease (enzyme in buffer solution). The aqueous microenvironment inside the hydrogel, unusual morphological features and thermal behaviour were believed to be the reasons for unexpected behaviour. UCG displayed enzyme activity at basic pH and up to 60°C. UCG showed significant enhancement in activity against thermal degradation compared to free urease. In summary, this method is a suitable process to stabilize the biomacromolecules in standard room temperature for many practical uses. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels.

    Peng, Huan; Rübsam, Kristin; Jakob, Felix; Schwaneberg, Ulrich; Pich, Andrij

    2016-11-14

    the enzyme. The biohybrid nanogels demonstrated significantly improved stability in preserving enzymatic activity compared with free cellulase. The functional biohybrid nanogels with tunable enzymatic activity and improved stability are promising candidates for applications in biocatalysis, biomass conversion, or energy utilization fields.

  6. Aminotransferase elevation in HIV/hepatitis B virus co-infected patients treated with two active hepatitis B virus drugs.

    Jain, Mamta K; Parekh, Nimisha K; Hester, Jill; Lee, William M

    2006-12-01

    Discerning drug hepatotoxicity from viral hepatitis flares remains an ongoing problem unique to patients coinfected with HIV and hepatitis B (HBV). We present three such coinfected patients who have been on two anti-HBV agents, lamivudine and tenofovir disoproxil fumarate simultaneously, as part of highly active antiretroviral therapy (HAART). All three developed significant aminotransferase elevations 6-12 weeks after initiation of HAART despite being on two active HBV drugs. Two of the three patients were initially thought to have drug-related hepatotoxicity from HIV medications. It seems more likely that all three patients demonstrated hepatitis B reactivation of differing severity as the result of varying degrees of immune recovery. Distinguishing clearly between drug-related hepatotoxicity and hepatitis reactivation may be difficult but is important as their clinical management differs.

  7. Enzymatic and viability RT-qPCR assays for evaluation of enterovirus, hepatitis A virus and norovirus inactivation: Implications for public health risk assessment.

    Monteiro, S; Santos, R

    2018-04-01

    To assess the potential of a viability dye and an enzymatic reverse transcription quantitative PCR (RT-qPCR) pretreatment to discriminate between infectious and noninfectious enteric viruses. Enterovirus (EntV), norovirus (NoV) GII.4 and hepatitis A virus (HAV) were inactivated at 95°C for 10 min, and four methods were used to compare the efficiency of inactivation: (i) cell culture plaque assay for HAV and EntV, (ii) RT-qPCR alone, (iii) RT-qPCR assay preceded by RNase treatment, and (iv) pretreatment with a viability dye (reagent D (RD)) followed by RT-qPCR. In addition, heat-inactivated NoV was treated with RD coupled with surfactants to increase the efficiency of the viability dye. No treatment was able to completely discriminate infectious from noninfectious viruses. RD-RT-qPCR reduced more efficiently the detection of noninfectious viruses with little to no removal observed with RNase. RD-RT-qPCR method was the closest to cell culture assay. The combination of surfactants and RD did not show relevant improvements on the removal of inactivated viruses signal compared with viability RT-qPCR, with the exception of Triton X-100. The use of surfactant/RD-RT-qPCR, although not being able to completely remove the signal from noninfectious viral particles, yielded a better estimation of viral infectivity. Surfactant/RD-RT-qPCR may be an advantageous tool for a better detection of infectious viruses with potential significant impact in the risk assessment of the presence of enteric viruses. © 2017 The Society for Applied Microbiology.

  8. Effect of enzymatic mash treatment and storage on phenolic composition, antioxidant activity, and turbidity of cloudy apple juice.

    Oszmiański, Jan; Wojdylo, Aneta; Kolniak, Joanna

    2009-08-12

    The effects of different commercial enzymatic mash treatments on yield, turbidity, color, and polyphenolic and sediment of procyanidins content of cloudy apple juice were studied. Addition of pectolytic enzymes to mash treatment had positive effect on the production of cloud apple juices by improving polyphenolic contents, especially procyanidins and juice yields (68.3% in control samples to 77% after Pectinex Yield Mash). As summary of the effect of enzymatic mash treatment, polyphenol contents in cloudy apple juices significantly increased after Pectinex Yield Mash, Pectinex Smash XXL, and Pectinex XXL maceration were applied but no effect was observed after Pectinex Ultra-SPL I Panzym XXL use, compared to the control samples. The content of polymeric procyanidins represented 50-70% of total polyphenols, but in the present study, polymeric procyanidins were significantly lower in juices than in fruits and also affected by enzymatic treatment (Pectinex AFP L-4 and Panzym Yield Mash) compared to the control samples. The enzymatic treatment decreased procyanidin content in most sediment with the exception of Pectinex Smash XXL and Pectinex AFP L-4. Generally in samples that were treated by pectinase, radical scavenging activity of cloudy apple juices was increased compared to the untreated reference samples. The highest radical scavenging activity was associated with Pectinex Yield Mash, Pectinex Smash XXL, and Pectinex XXL enzyme and the lowest activity with Pectinex Ultra SP-L and Pectinex APFL-4. However, in the case of enzymatic mash treatment cloudy apple juices showed instability of turbidity and low viscosity. These results must be ascribed to the much higher hydrolysis of pectin by enzymatic preparation which is responsible for viscosity. During 6 months of storage at 4 degrees C small changes in analyzed parameters of apple juices were observed.

  9. Proximity-activated nanoparticles: in vitro performance of specific structural modification by enzymatic cleavage

    Adam Smith, R; Sewell, Sarah L; Giorgio, Todd D

    2008-01-01

    The development and in vitro performance of a modular nanoscale system capable of specific structural modification by enzymatic activity is described in this work. Due to its small physical size and adaptable characteristics, this system has the potential for utilization in targeted delivery systems and biosensing. Nanoparticle probes were synthesized containing two distinct fluorescent species including a quantum dot base particle and fluorescently labeled cleavable peptide substrate. Activity of these probes was monitored by gel electrophoresis with quantitative cleavage measurements made by fluorometric analysis. The model proximity-activated nanoparticles studied here exhibit significant susceptibility to cleavage by matrix metalloprotease-7 (MMP-7) at physiologically relevant concentrations, with nearly complete cleavage of available substrate molecules after 24 hours. This response is specific to MMP-7 enzyme activity, as cleavage is completely inhibited with the addition of EDTA. Utilization of enzyme-specific modification is a sensitive approach with broad applications for targeted therapeutics and biosensing. The versatility of this nanoparticle system is highlighted in its modular design, as it has the capability to integrate characteristics for detection, biosensing, targeting, and payload delivery into a single, multifunctional nanoparticle structure. PMID:18488420

  10. Impacts of dissolved organic matter on aqueous behavior of nano/micron-titanium nitride and their induced enzymatic/non-enzymatic antioxidant activities in Scenedesmus obliquus.

    Zhang, Xin; Wang, Zhuang; Wang, Se; Fang, Hao; Zhang, Fan; Wang, De-Gao

    2017-01-02

    Freshwater dispersion stability and ecotoxicological effects of titanium nitride (TiN) with particle size of 20 nm, 50 nm, and 2-10 μm in the presence of dissolved organic matter (DOM) at various concentrations were studied. The TiN particles that had a more negative zeta potential and smaller hydrodynamic size showed more stable dispersion in an aqueous medium when DOM was present than when DOM was absent. Biochemical assays indicated that relative to the control, the TiN particles in the presence of DOM alleviated to some extent the antioxidative stress enzyme activity in Scenedesmus obliquus. In addition, it was found that the TiN with a primary size of 50 nm at a high concentration presented a significant impact on non-enzymatic antioxidant defense in algal cells.

  11. Enzymatic Activity of the Mycelium Compared with Oospore Development During Infection of Pea Roots by Aphanomyces euteiches

    Kjøller, Rasmus; Rosendahl, Søren

    1998-01-01

    To describe the disease cycle of the root pathogen Aphanomyces euteiches, enzymatic activity in the mycelium was compared with the development of oospores in pea roots. Plants were inoculated with two zoospore concentrations to achieve different disease levels. Hyphae were stained for fungal...

  12. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity.

    Petzold, Christine; Marceau, Aimee H; Miller, Katherine H; Marqusee, Susan; Keck, James L

    2015-06-05

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity*

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L.

    2015-01-01

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome. PMID:25903123

  14. STUDY ON QUALITY PARAMETERS AND ENZYMATIC ACTIVITY OF GRAIN MILL PRODUCTS REGION IN TRANSYLVANIA

    Glevitzky Mirel

    2011-07-01

    Full Text Available This paper aims at determining the main quality parameters of grain mill products in the Transylvania region, also studying and emphasizing the enzymatic activity of flour. Determination of quality characteristics of grain mill products entails establishing physical, chemical and sensory parameters and assessing them against the limits imposed by law. Analysis was performed on samples formed by mixing basic medium extracted from different batches. Incremental size, sampling tools, how to extract them, the training sample and laboratory environments, packaging and labeling of samples were performed according to STAS 1068 69. Determination of the fall (Falling Number, an empirical test that relies on the ability of endogenous ?-amylase to reduce viscosity of the treated warm flour suspension is used, large scale milling and bakery industry to predict and assess the Baking quality of flour. In sprouted wheat, characterised by a low Falling number, dextrin produced by the action of ?-amylase leads to a sticky bread core. Experiments suggest that the values fall turnover (FN does not shrink in direct proportion to the percentage of germinating seeds. Amylolytic activity depends on the stage of sprouting of grains. Lack of ?-amylase activity can be corrected by adding malt grain ?-amylase or fungal ?-amylase.

  15. Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity.

    Humenik, Martin; Mohrand, Madeleine; Scheibel, Thomas

    2018-04-18

    The recombinant spider silk protein eADF4(C16) was genetically fused either with esterase 2 (EST2) or green fluorescent protein (GFP). The fusions EST-eADF4(C16) and GFP-eADF4(C16) were spectroscopically investigated and showed native structures of EST and GFP. The structural integrity was confirmed by the enzymatic activity of EST and the fluorescence of GFP. The spider silk moiety retained its intrinsically unstructured conformation in solution and the self-assembly into either nanofibrils or nanoparticles could be controlled by the concentration of phosphate. Particles, however, showed significantly lower activity of the EST and GFP domains likely caused by a steric hindrance. However, upon self-assembly of EST-eADF4(C16) and GFP-eADF4(C16) into fibrils the protein activities were retained. In general, the fusion of globular enzymes with the spider silk domain allows the generation of fibrous biomaterials with catalytic or light emitting properties.

  16. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata).

    Wu, Hao; Zhu, Junxiang; Diao, Wenchao; Wang, Chengrong

    2014-11-26

    An efficient ultrasound-assisted enzymatic extraction (UAEE) of Cucurbita moschata polysaccharides (CMCP) was established and the CMCP antioxidant activities were studied. The UAEE operating parameters (extraction temperature, ultrasonic power, pH, and liquid-to-material ratio) were optimized using the central composite design (CCD) and the mass transfer kinetic study in UAEE procedure was used to select the optimal extraction time. Enzymolysis and ultrasonication that were simultaneously conducted was selected as the UAEE synergistic model and the optimum extraction conditions with a maximum polysaccharide yield of 4.33 ± 0.15% were as follows: extraction temperature, 51.5 °C; ultrasonic power, 440 W; pH, 5.0; liquid-to-material ratio, 5.70:1 mL/g; and extraction time, 20 min. Evaluation of the antioxidant activity in vitro suggested that CMCP has good potential as a natural antioxidant used in the food or medicine industry because of their high reducing power and positive radical scavenging activity for DPPH radical. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. New Biocatalyst with Multiple Enzymatic Activities for Treatment of Complex Food Wastewaters

    Olga Senko

    2008-01-01

    Full Text Available The cells of filamentous fungus R. oryzae entrapped in the polyvinyl alcohol cryogelare capable of producing various extracellular hydrolytic enzymes (proteases, amylases, lipases and are used for the treatment of complex wastewaters of food industry. Five types of media simulating the wastewater of various food enterprises were treated under batch conditions for 600 h. Fats containing mostly residues of unsaturated fatty acids, as well as casein, glucose, sucrose, starch, soybean flour and various salts were the main components of the treated wastewaters. The immobilized cells concurrently possessed lipolytic, amylolytic and proteolytic activities. The level of each enzymatic activity depended on the wastewater content. The physiological state of immobilized cells was monitored by bioluminescent method. The intracellular adenosine triphosphate (ATP concentration determined in the granules with immobilized cells was high enough and almost constant for all the period of biocatalyst application confirming thereby the active metabolic state of the cells. The study of mechanical strength of biocatalyst granules allowed revealing the differences in the values of modulus of biocatalyst elasticity at the beginning and at the end of its use for the wastewater treatment. The decrease in chemical oxygen demand of the tested media after their processing by immobilized biocatalyst was 68–79 % for one working cycle.

  18. Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols.

    Zhang, Zhengke; Huber, Donald J; Qu, Hongxia; Yun, Ze; Wang, Hui; Huang, Zihui; Huang, Hua; Jiang, Yueming

    2015-03-15

    'Guiwei' litchi fruit were treated with 5 ga.i. L(-1) apple polyphenols (APP) and then stored at 25°C to investigate the effects on pericarp browning. APP treatment effectively reduced pericarp browning and retarded the loss of red colour. APP-treated fruit exhibited higher levels of anthocyanins and cyanidin-3-rutinoside, which correlated with suppressed anthocyanase activity. APP treatment also maintained membrane integrity and reduced oxidative damage, as indicated by a lower relative leakage rate, malondialdehyde content, and reactive oxygen species (ROS) generation. The data suggest that decompartmentalisation of peroxidase and polyphenoloxidase and respective browning substrates was reduced. In addition, APP treatment enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase), as well as non-enzymatic antioxidant capacity (DPPH radical-scavenging activity and reducing power), which might be beneficial in scavenging ROS. We propose that APP treatment is a promising safe strategy for controlling postharvest browning of litchi fruit. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Topical formulations with superoxide dismutase: influence of formulation composition on physical stability and enzymatic activity.

    Di Mambro, Valéria M; Borin, Maria F; Fonseca, Maria J V

    2003-04-24

    Three different topical formulations were supplemented with superoxide dismutase (SOD) and evaluated concerning physical and chemical stabilities in order to determine the most stable formulation that would maintain SOD activity. Physical stability was evaluated by storing the formulation at room temperature, and at 37 and 45 degrees C for 28 days. Samples were collected at 7-day intervals for assessment of rheological behavior. Chemical stability was evaluated by the measurement of enzymatic activity in formulations stored at room temperature and at 45 degrees C for 75 days. The formulations showed a pseudoplastic behavior, with a flow index of less than 1. There was no significant difference in the initial values of flow index, hysteresis loop or minimum apparent viscosity. The simple emulsion and the one stabilized with hydroxyethylcellulose showed decreased viscosity by the 21st day and with higher temperature, but no significant changes concerning the presence of SOD. Although there were no significant changes concerning storage time or temperature, the formulation stabilized with hydroxyethylcellulose showed a marked loss of SOD activity. The addition of SOD to the formulations studied did not affect their physical stability. Simple emulsions or emulsions stabilized with carboxypolymethylene seem to be better bases for enzyme addition than emulsion stabilized with hydroxyethylcellulose.

  20. D-Amino acid oxidase bio-functionalized platforms: Toward an enhanced enzymatic bio-activity

    Herrera, Elisa; Valdez Taubas, Javier; Giacomelli, Carla E.

    2015-11-01

    The purpose of this work is to study the adsorption process and surface bio-activity of His-tagged D-amino acid oxidase (DAAO) from Rhodotorula gracilis (His6-RgDAAO) as the first step for the development of an electrochemical bio-functionalized platform. With such a purpose this work comprises: (a) the His6-RgDAAO bio-activity in solution determined by amperometry, (b) the adsorption mechanism of His6-RgDAAO on bare gold and carboxylated modified substrates in the absence (substrate/COO-) and presence of Ni(II) (substrate/COO- + Ni(II)) determined by reflectometry, and (c) the bio-activity of the His6-RgDAAO bio-functionalized platforms determined by amperometry. Comparing the adsorption behavior and bio-activity of His6-RgDAAO on these different solid substrates allows understanding the contribution of the diverse interactions responsible for the platform performance. His6-RgDAAO enzymatic performance in solution is highly improved when compared to the previously used pig kidney (pk) DAAO. His6-RgDAAO exhibits an amperometrically detectable bio-activity at concentrations as low as those expected on a bio-functional platform; hence, it is a viable bio-recognition element of D-amino acids to be coupled to electrochemical platforms. Moreover, His6-RgDAAO bio-functionalized platforms exhibit a higher surface activity than pkDAAO physically adsorbed on gold. The platform built on Ni(II) modified substrates present enhanced bio-activity because the surface complexes histidine-Ni(II) provide with site-oriented, native-like enzymes. The adsorption mechanism responsible of the excellent performance of the bio-functionalized platform takes place in two steps involving electrostatic and bio-affinity interactions whose prevalence depends on the degree of surface coverage.

  1. Vancomycin analogues containing monosaccharides exhibit improved antibiotic activity: a combined one-pot enzymatic glycosylation and chemical diversification strategy.

    Thayer, Desiree A; Wong, Chi-Huey

    2006-09-18

    Many natural products contain carbohydrate moieties that contribute to their biological activity. Manipulation of the carbohydrate domain of natural products through multiple glycosylations to identify new derivatives with novel biological activities has been a difficult and impractical process. We report a practical one-pot enzymatic approach with regeneration of cosubstrates to synthesize analogues of vancomycin that contain an N-alkyl glucosamine, which exhibited marked improvement in antibiotic activity against a vancomycin-resistant strain of Enterococcus.

  2. Properties of latent and thiol-activated rat hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase and regulation of enzyme activity.

    Dotan, I; Shechter, I

    1983-10-15

    The effect of the thiols glutathione (GSH), dithiothreitol (DTT), and dithioerythritol (DTE) on the conversion of an inactive, latent form (El) of rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, EC 1.1.1.34) to a catalyticaly active form (Ea) is examined. Latent hepatic microsomal HMG-CoA reductase is activated to a similar degree of activation by DTT and DTE and to a lower extent by GSH. All three thiols affect both Km and Vmax values of the enzyme toward HMG-CoA and NADPH. Studies of the effect of DTT on the affinity binding of HMG-CoA reductase to agarose-hexane-HMG-CoA (AG-HMG-CoA) resin shows that thiols are necessary for the binding of the enzyme to the resin. Removal of DTT from AG-HMG-CoA-bound soluble Ea (active enzyme) does not cause dissociation of the enzyme from the resin at low salt concentrations. Substitution of DTT by NADPH does not promote binding of soluble El (latent enzyme) to AG-HMG-CoA. The enzymatic activity of Ea in the presence of DTT and GSH indicates that these thiols compete for the same binding site on the enzyme. Diethylene glycol disulfide (ESSE) and glutathione disulfide (GSSG) inhibit the activity of Ea. ESSE is more effective for the inhibition of Ea than GSSG, causing a higher degree of maximal inhibition and affecting the enzymatic activity at lower concentrations. A method is described for the rapid conversion of soluble purified Ea to El using gel-filtration chromatography on Bio-Gel P-4 columns. These combined results point to the importance of the thiol/disulfide ratio for the modulation of hepatic HMG-CoA reductase activity.

  3. Enzymatically active 2',5'-oligoadenylate synthetases are widely distributed among Metazoa, including protostome lineage.

    Päri, Mailis; Kuusksalu, Anne; Lopp, Annika; Kjaer, Karina Hansen; Justesen, Just; Kelve, Merike

    2014-02-01

    2',5'-Oligoadenylate synthetases (OASs) belong to the nucleotidyl transferase family together with poly(A) polymerases, CCA-adding enzymes and the recently discovered cyclic-GMP-AMP synthase (cGAS). Mammalian OASs have been thoroughly characterized as components of the interferon-induced antiviral system. The OAS activity and the respective genes were also discovered in marine sponges where the interferon system is absent. In this study the recombinant OASs from several multicellular animals and their closest unicellular relative, a choanoflagellate, were expressed in a bacterial expression system and their enzymatic activities were examined. We demonstrated 2-5A synthesizing activities of OASs from the marine sponge Tedania ignis, a representative of the phylogenetically oldest metazoan phylum (Porifera), from an invertebrate of the protostome lineage, the mollusk Mytilus californianus (Mollusca), and from a vertebrate species, a cartilaginous fish Leucoraja erinacea (Chordata). However, the expressed proteins from an amphibian, the salamander Ambystoma mexicanum (Chordata), and from a protozoan, the marine choanoflagellate Monosiga brevicollis (Choanozoa), did not show 2-5A synthesizing activity. Differently from other studied OASs, OAS from the marine sponge T. ignis was able to catalyze the formation of oligomers having both 2',5'- and 3',5'-phosphodiester linkages. Our data suggest that OASs from sponges and evolutionarily higher animals have similar activation mechanisms which still include different affinities and possibly different structural requirements for the activating RNAs. Considering their 2'- and 3'-specificities, sponge OASs could represent a link between evolutionarily earlier nucleotidyl transferases and 2'-specific OASs from higher animals. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Constraints imposed by transmembrane domains affect enzymatic activity of membrane-associated human CD39/NTPDase1 mutants.

    Musi, Elgilda; Islam, Naziba; Drosopoulos, Joan H F

    2007-05-01

    Human CD39/NTPDase1 is an endothelial cell membrane-associated nucleotidase. Its large extracellular domain rapidly metabolizes nucleotides, especially ADP released from activated platelets, inhibiting further platelet activation/recruitment. Previous studies using our recombinant soluble CD39 demonstrated the importance of residues S57, D54, and D213 for enzymatic/biological activity. We now report effects of S57A, D54A, and D213A mutations on full-length (FL)CD39 function. Enzymatic activity of alanine modified FLCD39s was less than wild-type, contrasting the enhanced activity of their soluble counterparts. Furthermore, conservative substitutions D54E and D213E led to enzymes with activities greater than the alanine modified FLCD39s, but less than wild-type. Reductions in mutant activities were primarily associated with reduced catalytic rates. Differences in enzymatic activity were not attributable to gross changes in the nucleotide binding pocket or the enzyme's ability to multimerize. Thus, composition of the active site of wild-type CD39 appears optimized for ADPase function in the context of the transmembrane domains.

  5. Peroxisome proliferator-activated receptor α activation induces hepatic steatosis, suggesting an adverse effect.

    Fang Yan

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is characterized by hepatic triglyceride accumulation, ranging from steatosis to steatohepatitis and cirrhosis. NAFLD is a risk factor for cardiovascular diseases and is associated with metabolic syndrome. Antihyperlipidemic drugs are recommended as part of the treatment for NAFLD patients. Although fibrates activate peroxisome proliferator-activated receptor α (PPARα, leading to the reduction of serum triglyceride levels, the effects of these drugs on NAFLD remain controversial. Clinical studies have reported that PPARα activation does not improve hepatic steatosis. In the present study, we focused on exploring the effect and mechanism of PPARα activation on hepatic triglyceride accumulation and hepatic steatosis. Male C57BL/6J mice, Pparα-null mice and HepG2 cells were treated with fenofibrate, one of the most commonly used fibrate drugs. Both low and high doses of fenofibrate were administered. Hepatic steatosis was detected through oil red O staining and electron microscopy. Notably, in fenofibrate-treated mice, the serum triglyceride levels were reduced and the hepatic triglyceride content was increased in a dose-dependent manner. Oil red O staining of liver sections demonstrated that fenofibrate-fed mice accumulated abundant neutral lipids. Fenofibrate also increased the intracellular triglyceride content in HepG2 cells. The expression of sterol regulatory element-binding protein 1c (SREBP-1c and the key genes associated with lipogenesis were increased in fenofibrate-treated mouse livers and HepG2 cells in a dose-dependent manner. However, the effect was strongly impaired in Pparα-null mice treated with fenofibrate. Fenofibrate treatment induced mature SREBP-1c expression via the direct binding of PPARα to the DR1 motif of the SREBP-1c gene. Taken together, these findings indicate the molecular mechanism by which PPARα activation increases liver triglyceride accumulation and suggest an

  6. Determination of myoglobin based on its enzymatic activity by stopped-flow spectrophotometry

    Zheng, Qi; Liu, Zhihong; Cai, Ruxiu

    2005-04-01

    A new method has been developed for the determination of myoglobin (Mb) based on its enzymatic activity for the oxidation of o-phenylenediamine (OPDA) with hydrogen peroxide. Stopped-flow spectrophotometry was used to study the kinetic behavior of the oxidation reaction. The catalytic activity of Mb was compared to other three kinds of catalyst. The time dependent absorbance of the reaction product, 2,3-diamimophenazine (DAPN), at a wavelength of 426 nm was recorded. The initial reaction rate obtained at 40 °C was found to be proportional to the concentration of Mb in the range of 1.0 × 10 -6 to 4.0 × 10 -9 mol L -1. The detection limit of Mb was found to be 9.93 × 10 -10 mol L -1. The relative standard deviations were within 5% for the determination of different concentrations of Mb. Excess of bovine serum albumin (BSA), Ca(II), Mg(II), Cu(II), glucose, caffeine, lactose and uric acid did not interfere.

  7. Effect of enzymatic treatment of extracted sunflower proteins on solubility, amino acid composition, and surface activity.

    Conde, José Miñones; Escobar, María del Mar Yust; Pedroche Jiménez, Justo J; Rodríguez, Francisco Millán; Rodríguez Patino, Juan M

    2005-10-05

    Industrial proteins from agriculture of either animal or vegetable origin, including their peptide derivatives, are of great importance, from the qualitative and quantitative point of view, in food formulations (emulsions and foams). A fundamental understanding of the physical, chemical, and functional properties of these proteins is essential if the performance of proteins in foods is to be improved and if underutilized proteins, such as plant proteins (and their hydrolysates and peptides derivatives), are to be increasingly used in traditional and new processed food products (safe, high-quality, health foods with good nutritional value). In this contribution we have determined the main physicochemical characteristics (solubility, composition, and analysis of amino acids) of a sunflower protein isolate (SPI) and its hydrolysates with low (5.62%), medium (23.5%), and high (46.3%) degrees of hydrolysis. The hydrolysates were obtained by enzymatic treatment with Alcalase 2.4 L for DH 5.62 and 23.5% and with Alcalase 2.4 L and Flavorzyme 1000 MG sequentially for DH 46.3%. The protein concentration dependence on surface pressure (surface pressure isotherm), a measure of the surface activity of the products (SPI and its hydrolysates), was obtained by tensiometry. We have observed that the degree of hydrolysis has an effect on solubility, composition, and content of the amino acids of the SPI and its hydrolysates. The superficial activity and the adsorption efficiency were also affected by the degree of hydrolysis.

  8. Assessment of Napropamide Dissipation and its Effect on Soil Enzymatic Activity

    Mirosław Onyszko

    2017-11-01

    Full Text Available This paper assesses the dissipation of napropamide and its impact on the activity of dehydrogenases, alkaline phosphatase, acid phosphatase, and urease in sandy clay loam. The experiment was carried out on soil samples with organic carbon content of 12.08 g·kg-1, total nitrogen content of 0.97 g·kg-1, and pH 5.24 with the following variable factors: (a dose of Devrinol 450 SC formation (containing 450 g of napropamide in dm3: 0 (control, 0.5, 1, 2, 4, 8, and 16-fold hold of field dose; (b day of experiment: 1, 7, 14, 28, 56, and 112. The half-life of napropamide ranged from 33.50 to 71.42 days. The use of napropamide at the dose recommended by the manufacturer and at the dose reduced by half appeared to exhibit low toxicity in relation to enzymes determined. In contrast, the application of elevated napropamide doses decreased the values of biochemical parameters of the soil in most cases. The Pearson correlation coefficients showed statistically significant negative correlation between the content of napropamide residues and the enzymatic activity of the soil.

  9. Phenylpropanoid Glycoside Analogues: Enzymatic Synthesis, Antioxidant Activity and Theoretical Study of Their Free Radical Scavenger Mechanism

    López-Munguía, Agustín; Hernández-Romero, Yanet; Pedraza-Chaverri, José; Miranda-Molina, Alfonso; Regla, Ignacio; Martínez, Ana; Castillo, Edmundo

    2011-01-01

    Phenylpropanoid glycosides (PPGs) are natural compounds present in several medicinal plants that have high antioxidant power and diverse biological activities. Because of their low content in plants (less than 5% w/w), several chemical synthetic routes to produce PPGs have been developed, but their synthesis is a time consuming process and the achieved yields are often low. In this study, an alternative and efficient two-step biosynthetic route to obtain natural PPG analogues is reported for the first time. Two galactosides were initially synthesized from vanillyl alcohol and homovanillyl alcohol by a transgalactosylation reaction catalyzed by Kluyveromyces lactis β-galactosidase in saturated lactose solutions with a 30%–35% yield. To synthesize PPGs, the galactoconjugates were esterified with saturated and unsaturated hydroxycinnamic acid derivatives using Candida antarctica Lipase B (CaL-B) as a biocatalyst with 40%–60% yields. The scavenging ability of the phenolic raw materials, intermediates and PPGs was evaluated by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) method. It was found that the biosynthesized PPGs had higher scavenging abilities when compared to ascorbic acid, the reference compound, while their antioxidant activities were found similar to that of natural PPGs. Moreover, density functional theory (DFT) calculations were used to determine that the PPGs antioxidant mechanism proceeds through a sequential proton loss single electron transfer (SPLET). The enzymatic process reported in this study is an efficient and versatile route to obtain PPGs from different phenylpropanoid acids, sugars and phenolic alcohols. PMID:21674039

  10. Apamin suppresses biliary fibrosis and activation of hepatic stellate cells.

    Kim, Jung-Yeon; An, Hyun-Jin; Kim, Woon-Hae; Park, Yoon-Yub; Park, Kyung Duck; Park, Kwan-Kyu

    2017-05-01

    Cholestatic liver disease is characterized by the progressive destruction of biliary epithelial cells (BECs) followed by fibrosis, cirrhosis and liver failure. Activated hepatic stellate cells (HSCs) and portal fibroblasts are the major cellular effectors of enhanced collagen deposition in biliary fibrosis. Apamin, an 18 amino acid peptide neurotoxin found in apitoxin (bee venom), is known to block Ca2+-activated K+ channels and prevent carbon tetrachloride-induced liver fibrosis. In the present study, we aimed to ascertain whether apamin inhibits biliary fibrosis and the proliferation of HSCs. Cholestatic liver fibrosis was established in mouse models with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding. Cellular assays were performed on HSC-T6 cells (rat immortalized HSCs). DDC feeding led to increased hepatic damage and proinflammtory cytokine levels. Notably, apamin treatment resulted in decreased liver injury and proinflammatory cytokine levels. Moreover, apamin suppressed the deposition of collagen, proliferation of BECs and expression of fibrogenic genes in the DDC-fed mice. In HSCs, apamin suppressed activation of HSCs by inhibiting the Smad signaling pathway. These data suggest that apamin may be a potential therapeutic target in cholestatic liver disease.

  11. Enzymatic activity of anthropogenic proto-organic soils in soilless farming

    Bireescu, Geanina; Dazzi, Carmelo; Laudicina, Vito Armando; Lo Papa, Giuseppe

    2017-04-01

    In soilless agriculture and horticulture coir is the more used substratum to grow plants because it is widely available and more environmentally friendly than sphagnum or peat. In Italy, soilless agriculture concerns an area of about 1,000 hectares, particularly concentrated in Sicily. The southern coastal belt of this region is the area interested by the most significant experiences in the application of techniques of soilless cultivation that, recently, has been used also for growing table grapes. Starting from the above consideration we suppose that the features of the coconut fiber underlay an evident transformation and that even after few years of table grape cultivation, such organic material undergone to a transformation that allows for the formation of a proto-organic soil (a proto-Histosol, we supposed). If this is true, we believe that, in this case, to speak about soilless cultivation is for sure misleading for the common people, as we should define this cultivation "on anthropogenic soils" instead. To fit the aims of this survey we used a big greenhouse devoted to soilless cultivation of table grape in a farm in the Southern Sicily We have considered the enzymatic activity that characterized the coconut fiber after 3 cycles of cultivation of table grapes. We used as a control the coconut fiber that the farmer used to prepare pots for soilless cultivation and coconut fiber of: 6 pots at the end of the first productive cycle 6 pots at the end of the second cycle and 3 pots at the end of the third cycle. On these organic samples we investigated three enzymes, belonging to oxydoreductase (catalase and dehydrogenase) and hydrolase (urease) classes. Statistical analysis of the investigated enzymes was developed using IBM Statistic SPSS v20 by ANOVA, Tukey test HSD for p ≤ 0.01 and Multivariate Statistical Analysis. Results have shown significant differences in enzymes content and quality among coir tests. The use of the coco fiber, as nutritive substratum

  12. Activity of the Respiratory Chain Enzymes of Blood Leucocytes’ Mitochondria Under the Conditions of Toxic Hepatitis Induced Against the Background Alimentary Deprivation of Protein

    O.N. Voloshchuk

    2015-12-01

    Full Text Available Full functioning of the leucocytes’ energy supply system is one of the essential factors for the immune surveillance system effective work. The pivotal enzymes of the leucocytes’ energy biotransformation system are NADH-ubiquitin reductase, a marker of the Complex I of respiratory chain activity, and succinate dehydrogenase, key enzyme of the Complex II of respiratory chain. The aim of research – to study the NADH-ubiquitin reductase and succinate dehydrogenase activity of the blood leucocytes’ mitochondria under the conditions of toxic hepatitis induced against the background alimentary deprivation of protein. It is shown, that under the conditions of acetaminophen-induced hepatitis a reduction of the NADH-ubiquitin reductase enzymatic activity is observed on the background activation of the succinate-dependent way of the mitochondrial oxidation. Conclusion was made that alimentary deprivation or protein is a factor, aggravating the misbalance of the energy biotransformation system in the leucocytes of rats with toxic hepatitis. Established activity changes of the leucocytes’ mitochondria respiratory chain key enzymes may be considered as one of the mechanisms, directed on the maintenance of leucocytes energy supply on a level, sufficient for their functioning. Research results may be used for the biochemical rationale of the therapeutic approaches to the elimination and correction of the leucocytes’ energy metabolism disturbances consequences under the conditions of acetaminophen-induced hepatitis, aggravated by the alimentary protein deprivation.

  13. DNA-Based Sensor for Real-Time Measurement of the Enzymatic Activity of Human Topoisomerase I

    Marcussen, Lærke Bay; Jepsen, Morten Leth; Kristoffersen, Emil Laust

    2013-01-01

    Sensors capable of quantitative real-time measurements may present the easiest and most accurate way to study enzyme activities. Here we present a novel DNA-based sensor for specific and quantitative real-time measurement of the enzymatic activity of the essential human enzyme, topoisomerase I....... The basic design of the sensor relies on two DNA strands that hybridize to form a hairpin structure with a fluorophore-quencher pair. The quencher moiety is released from the sensor upon reaction with human topoisomerase I thus enabling real-time optical measurement of enzymatic activity. The sensor....... The cytotoxic effect of camptothecins correlates directly with the intracellular topoisomerase I activity. We therefore envision that the presented sensor may find use for the prediction of cellular drug response. Moreover, inhibition of topoisomerase I by camptothecin is readily detectable using the presented...

  14. Imbalanced nutrient recycling in a warmer ocean driven by differential response of extracellular enzymatic activities

    Ayo, Begoñ a; Abad, Naiara; Artolozaga, Itxaso; Azua, Iñ igo; Bañ a, Zuriñ e; Unanue, Marian; Gasol, Josep M.; Duarte, Carlos M.; Iriberri, Juan

    2017-01-01

    Ocean oligotrophication concurrent with warming weakens the capacity of marine primary producers to support marine food webs and act as a CO2 sink, and is believed to result from reduced nutrient inputs associated to the stabilization of the thermocline. However, nutrient supply in the oligotrophic ocean is largely dependent on the recycling of organic matter. This involves hydrolytic processes catalyzed by extracellular enzymes released by bacteria, which temperature-dependence has not yet been evaluated. Here we report a global assessment of the temperature-sensitivity, as represented by the activation energies (Ea ), of extracellular β-glucosidase (βG), leucine aminopeptidase (LAP) and alkaline phosphatase (AP) enzymatic activities, which enable the uptake by bacteria of substrates rich in carbon, nitrogen and phosphorus, respectively. These Ea were calculated from two different approaches, temperature experimental manipulations and a space-for-time substitution approach, which generated congruent results. The three activities showed contrasting Ea in the subtropical and tropical ocean, with βG increasing the fastest with warming, followed by LAP, while AP showed the smallest increase. The estimated activation energies predict that the hydrolysis products under projected warming scenarios will have higher C:N, C:P and N:P molar ratios than those currently generated, and suggest that the warming of oceanic surface waters leads to a decline in the nutrient supply to the microbial heterotrophic community relative to that of carbon, particularly so for phosphorus, slowing down nutrient recycling and contributing to further ocean oligotrophication. This article is protected by copyright. All rights reserved.

  15. Modulation of Enzymatic Activities of Dual Functional Peroxiredoxin by Gamma Irradiation

    Hong, Sung Hyun; Lee, Seung Sik; Park, Chul Hong; Chung, Byung Yeoup

    2012-01-01

    Recently, enzymes have frequently been used as catalysts in various bio-industrial, commercial, and pharmaceutical applications, because they are more stable, more efficient, and less toxic than the synthetic catalysts. However, one of their major disadvantages is their low thermostability, which leads the researchers to develop new forms of industrially important enzymes with increased resistance to inactivation and aggregation. This study describes a strategy for modifying the molecular chaperone activity of peroxiredoxin (Prx) by using gamma irradiation. Prxs are a ubiquitous family of antioxidant enzymes. Upon oxidation of their peroxidatic Cys, the molecules undergo a structural conversion from a low-molecular-weight (LMW) species acting as a peroxidase to a high-molecular-weight (HMW) complex functioning as a chaperone. In the present study, we examined the effect of gamma irradiation on PP1084 with respect to its protein structure and enzymatic function. The use of gamma irradiation as a physical treatment can increase the cohesive strength of the protein by forming cross-links. The aims of the present work were (1) to improve the chaperone activity of PP1084 by gamma irradiation, (2) to identify the 'optimal' intensity of gamma irradiation, and (3) to investigate the influence of gamma irradiation on protein hydrophobicity as related to chaperone function. Following PP1084 treatment with 30 kGy gamma irradiation, the PP1084 chaperone activity enhanced by about 3-4-fold compared with nonirradiated PP1084, while the peroxidase activity decreased. Ongoing research efforts are addressing the physical modifications of PP1084 protein by gamma irradiation

  16. Imbalanced nutrient recycling in a warmer ocean driven by differential response of extracellular enzymatic activities

    Ayo, Begoña

    2017-06-08

    Ocean oligotrophication concurrent with warming weakens the capacity of marine primary producers to support marine food webs and act as a CO2 sink, and is believed to result from reduced nutrient inputs associated to the stabilization of the thermocline. However, nutrient supply in the oligotrophic ocean is largely dependent on the recycling of organic matter. This involves hydrolytic processes catalyzed by extracellular enzymes released by bacteria, which temperature-dependence has not yet been evaluated. Here we report a global assessment of the temperature-sensitivity, as represented by the activation energies (Ea ), of extracellular β-glucosidase (βG), leucine aminopeptidase (LAP) and alkaline phosphatase (AP) enzymatic activities, which enable the uptake by bacteria of substrates rich in carbon, nitrogen and phosphorus, respectively. These Ea were calculated from two different approaches, temperature experimental manipulations and a space-for-time substitution approach, which generated congruent results. The three activities showed contrasting Ea in the subtropical and tropical ocean, with βG increasing the fastest with warming, followed by LAP, while AP showed the smallest increase. The estimated activation energies predict that the hydrolysis products under projected warming scenarios will have higher C:N, C:P and N:P molar ratios than those currently generated, and suggest that the warming of oceanic surface waters leads to a decline in the nutrient supply to the microbial heterotrophic community relative to that of carbon, particularly so for phosphorus, slowing down nutrient recycling and contributing to further ocean oligotrophication. This article is protected by copyright. All rights reserved.

  17. Altered enzymatic activity and allele frequency of OMI/HTRA2 in Alzheimer's disease

    Westerlund, Marie; Behbahani, Homira; Gellhaar, Sandra; Forsell, Charlotte; Belin, Andrea Carmine; Anvret, Anna; Zettergren, Anna; Nissbrandt, Hans; Lind, Charlotta; Sydow, Olof; Graff, Caroline; Olson, Lars; Ankarcrona, Maria; Galter, Dagmar

    2011-01-01

    The serine-protease OMI/HTRA2, required for several cellular processes, including mitochondrial function, autophagy, chaperone activity, and apoptosis, has been implicated in the pathogenesis of both Alzheimer's disease (AD) and Parkinson's disease (PD). Western blot quantification of OMI/HTRA2 in frontal cortex of patients with AD (n=10) and control subjects (n=10) in two separate materials indicated reduced processed (active, 35 kDa) OMI/HTRA2 levels, whereas unprocessed (50 kDa) enzyme levels were not significantly different between the groups. Interestingly, the specific protease activity of OMI/HTRA2 was found to be significantly increased in patients with AD (n=10) compared to matched control subjects (n=10) in frontal cortex in two separate materials. Comparison of OMI/HTRA2 mRNA levels in frontal cortex and hippocampus, two brain areas particularly affected by AD, indicated similar levels in patients with AD (n=10) and matched control subjects (n=10). In addition, we analyzed the occurrence of the OMI/HTRA2 variants A141S and G399S in Swedish case-control materials for AD and PD and found a weak association of A141S with AD, but not with PD. In conclusion, our genetic, histological, and biochemical findings give further support to an involvement of OMI/HTRA2 in the pathology of AD; however, further studies are needed to clarify the role of this gene in neurodegeneration.—Westerlund, M., Behbahani, H., Gellhaar, S., Forsell, C., Carmine Belin, A., Anvret, A., Zettergren, A., Nissbrandt, H., Lind, C., Sydow, O., Graff, C., Olson, L., Ankarcrona, M., Galter, D. Altered enzymatic activity and allele frequency of OMI/HTRA2 in Alzheimer's disease. PMID:21163861

  18. Imbalanced nutrient recycling in a warmer ocean driven by differential response of extracellular enzymatic activities.

    Ayo, Begoña; Abad, Naiara; Artolozaga, Itxaso; Azua, Iñigo; Baña, Zuriñe; Unanue, Marian; Gasol, Josep M; Duarte, Carlos M; Iriberri, Juan

    2017-10-01

    Ocean oligotrophication concurrent with warming weakens the capacity of marine primary producers to support marine food webs and act as a CO 2 sink, and is believed to result from reduced nutrient inputs associated to the stabilization of the thermocline. However, nutrient supply in the oligotrophic ocean is largely dependent on the recycling of organic matter. This involves hydrolytic processes catalyzed by extracellular enzymes released by bacteria, which temperature dependence has not yet been evaluated. Here, we report a global assessment of the temperature-sensitivity, as represented by the activation energies (E a ), of extracellular β-glucosidase (βG), leucine aminopeptidase (LAP) and alkaline phosphatase (AP) enzymatic activities, which enable the uptake by bacteria of substrates rich in carbon, nitrogen, and phosphorus, respectively. These E a were calculated from two different approaches, temperature experimental manipulations and a space-for-time substitution approach, which generated congruent results. The three activities showed contrasting E a in the subtropical and tropical ocean, with βG increasing the fastest with warming, followed by LAP, while AP showed the smallest increase. The estimated activation energies predict that the hydrolysis products under projected warming scenarios will have higher C:N, C:P and N:P molar ratios than those currently generated, and suggest that the warming of oceanic surface waters leads to a decline in the nutrient supply to the microbial heterotrophic community relative to that of carbon, particularly so for phosphorus, slowing down nutrient recycling and contributing to further ocean oligotrophication. © 2017 John Wiley & Sons Ltd.

  19. Enzymatic Detoxication, Conformational Selection, and the Role of Molten Globule Active Sites*

    Honaker, Matthew T.; Acchione, Mauro; Zhang, Wei; Mannervik, Bengt; Atkins, William M.

    2013-01-01

    The role of conformational ensembles in enzymatic reactions remains unclear. Discussion concerning “induced fit” versus “conformational selection” has, however, ignored detoxication enzymes, which exhibit catalytic promiscuity. These enzymes dominate drug metabolism and determine drug-drug interactions. The detoxication enzyme glutathione transferase A1–1 (GSTA1–1), exploits a molten globule-like active site to achieve remarkable catalytic promiscuity wherein the substrate-free conformational ensemble is broad with barrierless transitions between states. A quantitative index of catalytic promiscuity is used to compare engineered variants of GSTA1–1 and the catalytic promiscuity correlates strongly with characteristics of the thermodynamic partition function, for the substrate-free enzymes. Access to chemically disparate transition states is encoded by the substrate-free conformational ensemble. Pre-steady state catalytic data confirm an extension of the conformational selection model, wherein different substrates select different starting conformations. The kinetic liability of the conformational breadth is minimized by a smooth landscape. We propose that “local” molten globule behavior optimizes detoxication enzymes. PMID:23649628

  20. Encapsulation and covalent binding of molecular payload in enzymatically activated micellar nanocarriers.

    Rosenbaum, Ido; Harnoy, Assaf J; Tirosh, Einat; Buzhor, Marina; Segal, Merav; Frid, Liat; Shaharabani, Rona; Avinery, Ram; Beck, Roy; Amir, Roey J

    2015-02-18

    The high selectivity and often-observed overexpression of specific disease-associated enzymes make them extremely attractive for triggering the release of hydrophobic drug or probe molecules from stimuli-responsive micellar nanocarriers. Here we utilized highly modular amphiphilic polymeric hybrids, composed of a linear hydrophilic polyethylene glycol (PEG) and an esterase-responsive hydrophobic dendron, to prepare and study two diverse strategies for loading of enzyme-responsive micelles. In the first type of micelles, hydrophobic coumarin-derived dyes were encapsulated noncovalently inside the hydrophobic core of the micelle, which was composed of lipophilic enzyme-responsive dendrons. In the second type of micellar nanocarrier the hydrophobic molecular cargo was covalently linked to the end-groups of the dendron through enzyme-cleavable bonds. These amphiphilic hybrids self-assembled into micellar nanocarriers with their cargo covalently encapsulated within the hydrophobic core. Both types of micelles were highly responsive toward the activating enzyme and released their molecular cargo upon enzymatic stimulus. Importantly, while faster release was observed with noncovalent encapsulation, higher loading capacity and slower release rate were achieved with covalent encapsulation. Our results clearly indicate the great potential of enzyme-responsive micellar delivery platforms due to the ability to tune their payload capacities and release rates by adjusting the loading strategy.

  1. Cloning, expression, and enzymatic activity evaluation of cholesterol oxidase gene isolated from a native Rhodococcus sp.

    Hamed Esmaeil Lashgarian

    2016-10-01

    Full Text Available Cholesterol oxidase (CHO is one of the valuable enzymes that play an important role in: measurement of serum cholesterol, food industry as a biocatalyst and agriculture as a biological larvicide. This enzyme was produced by several bacterial strains. Wild type enzyme produced by Rhodococcus sp. secret two forms of CHO enzyme: extra cellular and membrane bound type which its amount is low and unstable. The goal of the study was cloning, expression, and enzymatic activity evaluation of cholesterol oxidase gene isolated from a native Rhodococcus sp. CHO gene was isolated from native bacteria and cloned into pET23a. In the next step, the construct was expressed in E.coli BL21 and induced by different concentration of IPTG ranges from 0.1 - 0.9 mM. This gene contains 1642 bp and encodes a protein consists of 533 amino acids. It has about 96 % homology with CHO gene isolated from Rhodococcus equi. The high expression was obtained in 0.5 mM concentration of IPTG after 4 hour induction. This recombinant enzyme had a molecular weight of 55 kDa, that secretion of intra cellular type is much more than extracellular form. The optimum pH and temperature conditions for the recombinant enzyme were 7.5 and 45°C, respectively. CHO enzyme obtained from Rhodococcus sp. is a cheap enzyme with medical and industrial applications that can be produced easily and purified in large scale with simple methods.

  2. Changes in the amino acid profiles and free radical scavenging activities of Tenebrio molitor larvae following enzymatic hydrolysis.

    Tang, Yujiao; Debnath, Trishna; Choi, Eun-Ju; Kim, Young Wook; Ryu, Jung Pyo; Jang, Sejin; Chung, Sang Uk; Choi, Young-Jin; Kim, Eun-Kyung

    2018-01-01

    Tenebrio molitor (T. molitor) larvae provide food at low environmental cost and contribute positively to livelihoods. In this research, we compared the amino acids compositions and antioxidant activities of various extracts of T. molitor to enhance their quality as food. For the comparison, distilled water extracts, enzymatic hydrolysates, and condensed enzymatic hydrolysates of T. molitor larvae were prepared. Their amino acids (AAs) profiles and antioxidant activities, including ferric-reducing antioxidant power, oxygen radical absorption capacity, and DPPH, hydroxyl radical, and hydrogen peroxide radical scavenging properties assay were analyzed. DW extracts had the lowest AAs contents and antioxidant activity compared with enzymatic extracts. Condensed hydrolysates with a combination of alcalase and flavourzyme (C-A+F) exhibited the highest levels of total free AAs (11.1759 g/100 g). C-A+F produced higher total hydrolyzed AAs (32.5292 g/100 g) compared with the other groups. The C-A+F possessed the strongest antioxidant activity. Notably, the antioxidant activities of the hydrolysates and the total hydrolyzed AAs amount were correlated. Taken together, our findings showed that C-A+F was a promising technique for obtaining extracts of T. molitor larvae with antioxidant activity as potential nutritious functional food.

  3. Bioactive lysophospholipids generated by hepatic lipase degradation of lipoproteins lead to complement activation via the classical pathway.

    Ma, Wanchao; Paik, David C; Barile, Gaetano R

    2014-09-09

    We determined bioactivity of lysophospholipids generated by degradation of the low-density (LDL), very low-density (VLDL), and high-density (HDL) lipoproteins with hepatic lipase (HL), cholesterol esterase (CE), and lipoprotein-associated phospholipase A2 (Lp-PLA2). The LDL, VLDL, and HDL were treated with HL, CE, and Lp-PLA2 after immobilization on plates, and complement activation studies were performed with diluted human serum. Complement component 3 (C3) fixation, a marker for complement activation, was determined with a monoclonal anti-human C3d antibody. Enzymatic properties of HL and CE were assayed with triglyceride and phosphatidylcholine substrates for triglyceride hydrolase and phospholipase A activities. The ARPE-19 cells were used for viability studies. The HL degradation of human lipoproteins LDL, VLDL, or HDL results in the formation of modified lipoproteins that can activate the complement pathway. Complement activation is dose- and time-dependent upon HL and occurs via the classical pathway. Enzymatic studies suggest that the phospholipase A1 activity of HL generates complement-activating lysophospholipids. C-reactive protein (CRP), known to simultaneously interact with complement C1 and complement factor H (CFH), further enhances HL-induced complement activation. The lysophospholipids, 1-Palmitoyl-sn-glycero-3-phosphocholine and 1-Oleoyl-sn-glycero-3-phosphocholine, can be directly cytotoxic to ARPE-19 cells. The HL degradation of lipoproteins, known to accumulate in the outer retina and in drusen, can lead to the formation of bioactive lysophospholipids that can trigger complement activation and induce RPE cellular dysfunction. Given the known risk associations for age-related macular degeneration (AMD) with HL, CRP, and CFH, this study elucidates a possible damage pathway for age-related macular degeneration (AMD) in genetically predisposed individuals, that HL activity may lead to accumulation of lysophospholipids to initiate complement

  4. Mutation of Asn28 Disrupts the Dimerization and Enzymatic Activity of SARS 3CL

    Barrila, J.; Gabelli, S; Bacha, U; Amzel, M; Freire, E

    2010-01-01

    Coronaviruses are responsible for a significant proportion of annual respiratory and enteric infections in humans and other mammals. The most prominent of these viruses is the severe acute respiratory syndrome coronavirus (SARS-CoV) which causes acute respiratory and gastrointestinal infection in humans. The coronavirus main protease, 3CL{sup pro}, is a key target for broad-spectrum antiviral development because of its critical role in viral maturation and high degree of structural conservation among coronaviruses. Dimerization is an indispensable requirement for the function of SARS 3CL{sup pro} and is regulated through mechanisms involving both direct and long-range interactions in the enzyme. While many of the binding interactions at the dimerization interface have been extensively studied, those that are important for long-range control are not well-understood. Characterization of these dimerization mechanisms is important for the structure-based design of new treatments targeting coronavirus-based infections. Here we report that Asn28, a residue 11 {angstrom} from the closest residue in the opposing monomer, is essential for the enzymatic activity and dimerization of SARS 3CLpro. Mutation of this residue to alanine almost completely inactivates the enzyme and results in a 19.2-fold decrease in the dimerization K{sub d}. The crystallographic structure of the N28A mutant determined at 2.35 {angstrom} resolution reveals the critical role of Asn28 in maintaining the structural integrity of the active site and in orienting key residues involved in binding at the dimer interface and substrate catalysis. These findings provide deeper insight into complex mechanisms regulating the activity and dimerization of SARS 3CL{sup pro}.

  5. Effect of the exposure to suspended solids on the enzymatic activity in the bivalve Sinonovacula constricta

    Guojun Yang

    2017-01-01

    Full Text Available Aquatic animals are susceptible to sudden changes of their living environment but they adopt strategies to cope with adverse environmental challenges. Contamination by suspended solids, often associated with a dramatic change in the concentrations of important water-quality variables is a frequent occurrence in China's coastal waters and estuaries. Here we studied the impact of suspended solids on the activities of the antioxidant enzymes superoxide dismutase (SOD and catalase (CAT, as well as adenosine triphosphates (including Na+ K+-ATPase, Mg+ +-ATPase, Ca+ +-ATPase and H+ K+-ATPase in the gills and visceral mass tissues of the molluscan bivalve Sinonovacula constricta exposed (4, 8, 12, 16, 20, and 24 days to various concentrations of suspended solids. Our results showed that the antioxidant enzymes cooperated closely to effectively scavenge superoxide anion free radicals and H2O2 (which can ultimately inhibit gill activity through the modification of SOD and/or CAT enzymatic activities. ATPases activity (considered to be a sensitive indicator of toxicity could play an effective role in the maintenance of functional integrity of the plasma membranes as well as some other intracellular functions. After the exposure, a decrease in the Na+ K+-ATPase, Mg+ +-ATPase, and Ca+ +-ATPase activity of the gills was observed suggesting that they were inhibited by the treatments. These results also indicated that, from day 4 to day 16, exposure to high concentrations of suspended solids had an inhibitory effect on the activity of H+-K+-ATPase in the visceral mass of S. constricta. However, after a period of adaptation the H+-K+-ATPase activity was restored to original levels. Our results suggest that long-term exposure to high levels of suspended solids disturb osmoregulation, gastric acid secretion and digestion, cause oxidative damage, as a consequence of antioxidant enzymes inactivation which eventually damages the gills, affect the food intake

  6. Comparison of enzymatic activities in different Candida species isolated from women with vulvovaginitis.

    Fatahinia, M; Halvaeezadeh, M; Rezaei-Matehkolaei, A

    2017-06-01

    Comparing the activities of secreted enzymes in different fungal species can improve our understanding of their pathogenic role. Secretion of various enzymes by Candida species has been considered for determination of their virulence in different Candida infections including vulvovaginitis. The aim of this study was to determine and compare the activity of secreted enzymes in Candidia strains isolated from women suspected to vulvovaginal candidiasis (VVC) and referred to some health centers in Khuzestan, Southwestern Iran. The vaginal secretion samples were taken by swap from 250 suspected women with symptoms of vulvovaginal candidiasis and cultured on CHROMagar Candida medium. Identification of the isolated Candida from culture positive samples performed by the color of colonies and some standard mycological procedures. Activities of phospholipase, hemolysin-α, hemolysin-β, esterase and proteinase were measured in vitro by standard laboratory protocols. The enzymatic activity index (EAI) was calculated for each enzyme in accordance to relevant protocols. Totally in eighty cases (32%), a Candida strain was isolated which found to be as 52 (65%) Candida albicans; 12 (15%) C. glabrata; 10 (12.5%) C. dubliniensis; 4 (5%) C. krusei, C. tropicalis and C. parapsilosis species (each=1; 1.3%). Among C. albicans strains, 89.1% produced all studied enzymes, while 86% of C. glabrata strains failed to produce proteinase and phospholipase. The EAIs in decreasing order were as hemolysin-β=0.2895, hemolysin-α=0.5420, esterase=0.5753, proteinase=0.7413, and phospholipase=0.7446, respectively. Activity of phospholipase, esterase and proteinase secreted by C. albicans and C. dubliniensis were significantly more than those released by C. glabrata and C. krusei, while 86% of C. glabrata strains did not show esterase activity. On the other hand, the activity rates of hemolysin α and β among all studied isolates were almost similar. In the present study, the prevalence

  7. Increased serum cortisol binding in chronic active hepatitis

    Orbach, O.; Schussler, G.C.

    1989-01-01

    A high serum cortisol concentration, apparently due to increased cortisol-binding globulin (CBG), was found in a patient (index case) with chronic active hepatitis (CAH). We therefore performed further studies to determine whether increased cortisol binding is generally associated with CAH. Serum samples were obtained from 15 hospitalized patients with long-term liver function test elevations but no evidence of cirrhosis, 15 normal subjects without a history of hepatitis, four healthy pregnant women, and 10 alcoholic patients with stigmata of cirrhosis. Serum cortisol binding was measured by an adaptation of a previously described charcoal uptake method. Thyroxine-binding globulin (TBG) and sex hormone-binding globulin were determined by radioimmunoassays. Charcoal uptake of 125I cortisol from sera of normal subjects and additional patients with CAH revealed that increased serum cortisol binding by a saturable site, presumably CBG, was associated with CAH. Cortisol binding was significantly correlated with immunoassayable TBG, suggesting that in CAH, similar mechanisms may be responsible for increasing the serum concentrations of CBG and TBG

  8. Dissipation of S-metolachlor in plant and soil and effect on enzymatic activities.

    Wołejko, Elżbieta; Kaczyński, Piotr; Łozowicka, Bożena; Wydro, Urszula; Borusiewicz, Andrzej; Hrynko, Izabela; Konecki, Rafał; Snarska, Krystyna; Dec, Dorota; Malinowski, Paweł

    2017-07-01

    The present study aimed at evaluating the dissipation of S-metolachlor (S-MET) at three doses in maize growing on diverse physico-chemical properties of soil. The effect of herbicide on dehydrogenase (DHA) and acid phosphatase (ACP) activity was estimated. A modified QuEChERS method using LC-MS/MS has been developed. The limit of quantification (0.001 mg kg -1 ) and detection (0.0005 mg kg -1 ) were very low for soil and maize samples. The mean recoveries and RSDs for the six spiked levels (0.001-0.5 mg kg -1 ) were 91.3 and 5.8%. The biggest differences in concentration of S-MET in maize were observed between the 28th and 63rd days. The dissipation of S-MET in the alkaline soil was the slowest between the 2nd and 7th days, and in the acidic soil between the 5th and 11th days. DT 50 of S-MET calculated according to the first-order kinetics model was 11.1-14.7 days (soil) and 9.6-13.9 days (maize). The enzymatic activity of soil was higher in the acidic environment. One observed the significant positive correlation of ACP with pH of soil and contents of potassium and magnesium and negative with contents of phosphorus and organic carbon. The results indicated that at harvest time, the residues of S-MET in maize were well below the safety limit for maize. The findings of this study will foster the research on main parameters influencing the dissipation in maize ecosystems.

  9. Characterization of Amino Acid Profile and Enzymatic Activity in Adult Rat Astrocyte Cultures.

    Souza, Débora Guerini; Bellaver, Bruna; Hansel, Gisele; Arús, Bernardo Assein; Bellaver, Gabriela; Longoni, Aline; Kolling, Janaina; Wyse, Angela T S; Souza, Diogo Onofre; Quincozes-Santos, André

    2016-07-01

    Astrocytes are multitasking players in brain complexity, possessing several receptors and mechanisms to detect, participate and modulate neuronal communication. The functionality of astrocytes has been mainly unraveled through the study of primary astrocyte cultures, and recently our research group characterized a model of astrocyte cultures derived from adult Wistar rats. We, herein, aim to characterize other basal functions of these cells to explore the potential of this model for studying the adult brain. To characterize the astrocytic phenotype, we determined the presence of GFAP, GLAST and GLT 1 proteins in cells by immunofluorescence. Next, we determined the concentrations of thirteen amino acids, ATP, ADP, adenosine and calcium in astrocyte cultures, as well as the activities of Na(+)/K(+)-ATPase and acetylcholine esterase. Furthermore, we assessed the presence of the GABA transporter 1 (GAT 1) and cannabinoid receptor 1 (CB 1) in the astrocytes. Cells demonstrated the presence of glutamine, consistent with their role in the glutamate-glutamine cycle, as well as glutamate and D-serine, amino acids classically known to act as gliotransmitters. ATP was produced and released by the cells and ADP was consumed. Calcium levels were in agreement with those reported in the literature, as were the enzymatic activities measured. The presence of GAT 1 was detected, but the presence of CB 1 was not, suggesting a decreased neuroprotective capacity in adult astrocytes under in vitro conditions. Taken together, our results show cellular functionality regarding the astrocytic role in gliotransmission and neurotransmitter management since they are able to produce and release gliotransmitters and to modulate the cholinergic and GABAergic systems.

  10. Conformational change results in loss of enzymatic activity of jack bean urease on its interaction with silver nanoparticle.

    Ponnuvel, Shobana; Subramanian, Balakumar; Ponnuraj, Karthe

    2015-10-01

    Urease is an enzyme produced by microbes such as bacteria, yeast and fungi. Plants also produce this enzyme. Urease action splits urea into ammonia and carbamate. This action is having important implications in agro-chemical, medicinal and environment. Therefore there is always a constant search for new and novel compounds which could inhibit this enzyme. Here we have studied the interaction of jack bean urease (JBU) with silver nanoparticle to analyze the influence of the resultant protein corona formation on the catalytic property of JBU. Several techniques like UV-Vis, gel shift assay and CD spectroscopy have been used to characterize this interaction. Urease activity assay suggests that the protein corona formation inhibits the enzymatic action of JBU. The loss of enzymatic action could be either due to the nanoparticle blocking the active site of JBU or a conformational change in the protein. The CD spectra of JBU-AgNP complexes clearly revealed significant changes in the secondary structural composition of the JBU and this could be the reason for the loss of enzymatic activity of JBU. This study revealed an interesting observation, where the interaction of AgNP with JBU resulted destabilization of hexameric nature of JBU which is otherwise highly stable. The results of the present study could be useful in the development of nanoparticle based material for inhibiting the ureolytic activity of ureases in different fields.

  11. Hepatic protein synthetic activity in vivo after ethanol administration

    Donohue, T.M. Jr.; Sorrell, M.F.; Tuma, D.J.

    1987-01-01

    Hepatic protein synthetic activity in vivo was measured by the incorporation of [ 3 H]puromycin into elongating nascent polypeptides of rat liver to form peptidyl-[ 3 H]puromycin. Our initial experiments showed that saturating doses of [ 3 H]puromycin were achieved at 3-6 mumol/100 g body weight, and that maximum labeling of nascent polypeptides was obtained 30 min after injection of the labeled precursor. Labeled puromycin was found to be suitable for measuring changes in the status of protein synthesis, since the formation of the peptidyl-[ 3 H]puromycin was decreased in fasted animals and was increased in rats pretreated with L-tryptophan. [ 3 H]Puromycin incorporation into polypeptides was then measured after acute ethanol administration as well as after prolonged consumption of ethanol which was administered as part of a liquid diet for 31 days. Acute alcohol treatment caused no significant change in [ 3 H]puromycin incorporation into liver polypeptides. In rats exposed to chronic ethanol feeding, peptidyl-[3H]puromycin formation, when expressed per mg of protein, was slightly lower compared to pair-fed controls, but was unchanged compared to chow-fed animals. When the data were expressed per mg of DNA or per 100 g body wt, no differences in protein synthetic activity were observed among the three groups. These findings indicate that neither acute nor chronic alcohol administration significantly affects protein synthetic activity in rat liver. They further suggest that accumulation of protein in the liver, usually seen after prolonged ethanol consumption, is apparently not reflected by an alteration of hepatic protein synthesis

  12. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5.

    Kalb, Suzanne R; Baudys, Jakub; Smith, Theresa J; Smith, Leonard A; Barr, John R

    2014-04-01

    Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum.

  13. IMPACT OF ALTITUDES ON SOIL CHARACTERISTICS AND ENZYMATIC ACTIVITIES IN FOREST AND FALLOW LANDS OF ALMORA DISTRICT OF CENTRAL HIMALAYA

    B. R. Maurya; Vimal Singh; P. P. Dhyani

    2014-01-01

    Abstract: Altitude is one of the major topographical factors which influence the fertility status of soil. Population explosion has rooted deforestation at different altitudes to bring more area under cultivation leading to fallow lands. Objective of this study was to assess the impact of altitude on electro-chemical properties and enzymatic activities of forest and fallow land soils of Almora district of Central Himalaya. Seventy soil samples were collected from different altitudes of forest...

  14. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P pulmonary hypertension.

  15. Activation and detoxification metabolism of urban air pollutants 2-nitrobenzanthrone and carcinogenic 3-nitrobenzanthrone by rat and mouse hepatic microsomes.

    Stiborova, Marie; Cechova, Tereza; Borek-Dohalska, Lucie; Moserova, Michaela; Frei, Eva; Schmeiser, Heinz H; Paca, Jan; Arlt, Volker M

    2012-01-01

    2-Nitrobenzanthrone (2-NBA) has recently been detected in ambient air particulate matter. Its isomer 3-nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust. Understanding which enzymes are involved in metabolism of these toxicants is important in the assessment of individual susceptibility. Here, metabolism of 2-NBA and 3-NBA by rat and mouse hepatic microsomes containing cytochromes P450 (CYPs), their reductase (NADPH:CYP reductase), and NADH:cytochrome b5 reductase was investigated under anaerobic and aerobic conditions. In addition, using the same microsomal systems, 2-NBA and 3-NBA were evaluated to be enzymatically activated under anaerobic conditions to species generating 2-NBA- and 3-NBA-derived DNA adducts. High performance liquid chromatography (HPLC) with ultraviolet (UV) detection was employed for the separation and characterization of 2-NBA and 3-NBA metabolites formed by hepatic microsomes of rats and mice under the anaerobic and aerobic conditions. Microsomal systems isolated from the liver of the control (untreated) rats and rats pretreated with Sudan I, β-naphthoflavone (β-NF), phenobarbital (PB), ethanol and pregnenolon 16α-carbonitrile (PCN), the inducers of cytochromes P450 (CYP) 1A1, 1A1/2, 2B, 2E1 and 3A, respectively, were used in this study. Microsomes of mouse models, a control mouse line (wild-type, WT) and Hepatic Cytochrome P450 Reductase Null (HRN) mice with deleted gene of NADPH:CYP reductase in the liver, thus absenting this enzyme in their livers, were also employed. To detect and quantify the 2-NBA- and 3-NBA-derived DNA adducts, the 32P postlabeling technique was used. Both reductive metabolite of 3-NBA, 3-aminobenzanthrone (3-ABA), found to be formed predominantly under the anaerobic conditions, and two 3-NBA oxidative metabolites, whose structures have not yet been investigated, were formed by several microsomal systems used in the study. Whereas a 3-NBA reductive metabolite

  16. Enhanced enzymatic activity of glycerol-3-phosphate dehydrogenase from the cryophilic Saccharomyces kudriavzevii.

    Oliveira, Bruno M; Barrio, Eladio; Querol, Amparo; Pérez-Torrado, Roberto

    2014-01-01

    During the evolution of the different species classified within the Saccharomyces genus, each one has adapted to live in different environments. One of the most important parameters that have influenced the evolution of Saccharomyces species is the temperature. Here we have focused on the study of the ability of certain species as Saccharomyces kudriavzevii to grow at low temperatures, in contrast to Saccharomyces cerevisiae. We observed that S. kudriavzevii strains isolated from several regions are able to synthesize higher amounts of glycerol, a molecule that has been shown to accumulate in response to freeze and cold stress. To explain this observation at the molecular level we studied the expression of glycerol biosynthetic pathway genes and we observed a higher expression of GPD1 gene in S. kudriavzevii compared to S. cerevisiae in micro-vinification conditions. We observed higher enzymatic activity of Gpd1p in S. kudriavzevii in response to osmotic and cold stress. Also, we determined that S. kudriavzevii Gpd1p enzyme presents increased catalytic properties that will contribute to increase glycerol production. Finally, we evaluated the glycerol production with S. cerevisiae, S. kudriavzevii or a recombinant Gpd1p variant in the same background and observed that the S. kudriavzevii enzyme produced increased glycerol levels at 12 or 28°C. This suggests that glycerol is increased in S. kudriavzevii mainly due to increased V max of the Gpd1p enzyme. All these differences indicate that S. kudriavzevii has changed the metabolism to promote the branch of the glycolytic pathway involved in glycerol production to adapt to low temperature environments and maintain the NAD(+)/NADH ratio in alcoholic fermentations. This knowledge is industrially relevant due to the potential use, for example, of S. cerevisiae-S. kudriavzevii hybrids in the wine industry where glycerol content is an important quality parameter.

  17. Antioxidant Activity of Purified Active Peptide Derived from Spirulina platensis Enzymatic Hydrolysates

    Nur Maulida Safitri; Endang Yuli Herawati; Jue Liang Hsu

    2017-01-01

    The aim of this study is to isolate the antioxidative peptide from Spirulina platensis. Peptide was obtained by proteolytic digestion, ultrafiltration, fractionation by RP-HPLC, identified by LC-MS/MS—MASCOT Distiller and measured its antioxidant activity by DPPH (2.2-Diphenyl-1-picrylhydrazyl) assay. Results showed that thermolysin was the most effective enzyme to digest this algae. The active peptide Phe-Ser-Glu-Ser-Ser-Ala-Pro-Glu-Gln-His-Tyr (m/z 1281.51) was identified and synthetized, w...

  18. NADH:ubiquinone reductase and succinate dehydrogenase activity in the liver of rats with acetaminophen-induced toxic hepatitis on the background of alimentary protein deficiency

    G. P. Kopylchuk

    2015-02-01

    Full Text Available The ratio between the redox forms of the nicotinamide coenzymes and key enzymatic activity of the I and II respiratory chain complexes in the liver cells mitochondria of rats with acetaminophen-induced hepatitis under the conditions of alimentary deprivation of protein was studied. It was estimated, that under the conditions of acute acetaminophen-induced hepatitis of rats kept on a low-protein diet during 4 weeks a significant decrease of the NADH:ubiquinone reductase and succinate dehydrogenase activity with simultaneous increase of the ratio between redox forms of the nicotinamide coenzymes (NAD+/NADН is observed compared to the same indices in the liver cells of animals with experimental hepatitis kept on the ration balanced by all nutrients. Results of research may become basic ones for the biochemical rationale for the approaches directed to the correction and elimination of the consequences­ of energy exchange in the toxic hepatitis, induced on the background of protein deficiency.

  19. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel†

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2012-01-01

    The enzymatic preparation of biodiesel has been hampered by the lack of suitable solvents with desirable properties such as high lipase compatibility, low cost, low viscosity, high biodegradability, and ease of product separation. Recent interest in using ionic liquids (ILs) as advanced reaction media has led to fast reaction rates and high yields in the enzymatic synthesis of biodiesel. However, conventional (i.e., cation–anion paired) ILs based on imidazolium and other quaternary ammonium salts remain too expensive for wide application at industrial scales. In this study, we report on newly-synthesized eutectic ILs derived from choline acetate or choline chloride coupled with biocompatible hydrogen-bond donors, such as glycerol. These eutectic solvents have favorable properties including low viscosity, high biodegradability, and excellent compatibility with Novozym® 435, a commercial immobilized Candida antarctica lipase B. Furthermore, in a model biodiesel synthesis system, we demonstrate high reaction rates for the enzymatic transesterification of Miglyol® oil 812 with methanol, catalyzed by Novozym® 435 in choline acetate/glycerol (1 : 1.5 molar ratio). The high conversion (97%) of the triglyceride obtained within 3 h, under optimal conditions, suggests that these novel eutectic solvents warrant further exploration as potential media in the enzymatic production of biodiesel. PMID:21283901

  20. The enzymatic activity of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) is enhanced by NPM-ALK

    Boccalatte, Francesco E; Voena, Claudia; Riganti, Chiara

    2009-01-01

    . A well-defined set of ALK-associated tyrosine phospho-peptides, including metabolic enzymes, kinases, ribosomal and cytoskeletal proteins was identified. Validation studies confirmed that VASP and ATIC associated with NPM-ALK and their phosphorylation required ALK activity. ATIC phosphorylation was also...... documented in cell lines and primary tumors carrying ALK proteins and other tyrosine kinases, including TPR-Met and wild type c-Met. Functional analyses revealed that ALK-mediated ATIC phosphorylation enhanced its enzymatic activity, dampering the methotrexate-mediated transformylase activity inhibition...

  1. Elevated Levels of Endocannabinoids in Chronic Hepatitis C May Modulate Cellular Immune Response and Hepatic Stellate Cell Activation

    Eleonora Patsenker

    2015-03-01

    Full Text Available The endocannabinoid (EC system is implicated in many chronic liver diseases, including hepatitis C viral (HCV infection. Cannabis consumption is associated with fibrosis progression in patients with chronic hepatitis C (CHC, however, the role of ECs in the development of CHC has never been explored. To study this question, anandamide (AEA and 2-arachidonoyl glycerol (2-AG were quantified in samples of HCV patients and healthy controls by gas and liquid chromatography mass spectrometry. Fatty acid amide hydrolase (FAAH and monoaclyglycerol lipase (MAGL activity was assessed by [3H]AEA and [3H]2-AG hydrolysis, respectively. Gene expression and cytokine release were assayed by TaqMan PCR and ELISpot, respectively. AEA and 2-AG levels were increased in plasma of HCV patients, but not in liver tissues. Hepatic FAAH and MAGL activity was not changed. In peripheral blood mononuclear cells (PBMC, ECs inhibited IFN-γ, TNF-α, and IL-2 secretion. Inhibition of IL-2 by endogenous AEA was stronger in PBMC from HCV patients. In hepatocytes, 2-AG induced the expression of IL-6, -17A, -32 and COX-2, and enhanced activation of hepatic stellate cells (HSC co-cultivated with PBMC from subjects with CHC. In conclusion, ECs are increased in plasma of patients with CHC and might reveal immunosuppressive and profibrogenic effects.

  2. Antioxidant Activity of Purified Active Peptide Derived from Spirulina platensis Enzymatic Hydrolysates

    Nur Maulida Safitri

    2017-08-01

    Full Text Available The aim of this study is to isolate the antioxidative peptide from Spirulina platensis. Peptide was obtained by proteolytic digestion, ultrafiltration, fractionation by RP-HPLC, identified by LC-MS/MS—MASCOT Distiller and measured its antioxidant activity by DPPH (2.2-Diphenyl-1-picrylhydrazyl assay. Results showed that thermolysin was the most effective enzyme to digest this algae. The active peptide Phe-Ser-Glu-Ser-Ser-Ala-Pro-Glu-Gln-His-Tyr (m/z 1281.51 was identified and synthetized, which exhibited 45.98 ± 1.7% at concentration 128.15 µg/mL. Therefore, S. platensis is indicated as a potential therapeutic source for combating oxidative stress.

  3. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. Published by Elsevier B.V.

  4. Improving enzymatic activities and thermostability of a tri-functional enzyme with SOD, catalase and cell-permeable activities.

    Luangwattananun, Piriya; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Isarankura Na Ayudhya, Chartchalerm; Prachayasittikul, Virapong; Yainoy, Sakda

    2017-04-10

    Synergistic action of major antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) is known to be more effective than the action of any single enzyme. Recently, we have engineered a tri-functional enzyme, 6His-MnSOD-TAT/CAT-MnSOD (M-TAT/CM), with SOD, CAT and cell-permeable activities. The protein actively internalized into the cells and showed superior protection against oxidative stress-induced cell death over native enzymes fused with TAT. To improve its molecular size, enzymatic activity and stability, in this study, MnSOD portions of the engineered protein were replaced by CuZnSOD, which is the smallest and the most heat resistant SOD isoform. The newly engineered protein, CAT-CuZnSOD/6His-CuZnSOD-TAT (CS/S-TAT), had a 42% reduction in molecular size and an increase in SOD and CAT activities by 22% and 99%, respectively. After incubation at 70°C for 10min, the CS/S-TAT retained residual SOD activity up to 54% while SOD activity of the M-TAT/CM was completely abolished. Moreover, the protein exhibited a 5-fold improvement in half-life at 70°C. Thus, this work provides insights into the design and synthesis of a smaller but much more stable multifunctional antioxidant enzyme with ability to enter mammalian cells for further application as protective/therapeutic agent against oxidative stress-related conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Role of low density lipoprotein in the activation of plasma lysolecithin acyltransferase activity. Effect of chemical and enzymatic modifications of the lipoprotein on enzyme activity.

    Subbaiah, P V; Chen, C H; Bagdade, J D; Albers, J J

    1985-01-01

    The effect of various chemical and enzymatic modifications of low density lipoprotein (LDL) on its ability to activate the isolated human plasma lysolecithin acyltransferase (LAT) was studied. Removal of all lipids from LDL resulted in the complete loss of LAT activation. Removal of only neutral lipids by extraction with heptane retained up to 50% of the original activity, which was not increased further by reconstitution of the LDL with the extracted lipids. Hydrolysis of the diacylphosphoglycerides of the LDL with phospholipases resulted in complete loss of LAT activation which was partially restored by the addition of egg lecithin. Hydrolysis of more than 4% of LDL protein by trypsin led to a linear decrease in activity with complete loss of activity occurring when about 25% of the LDL protein is hydrolyzed. Modification of the arginine groups of LDL reversibly inhibited the activation of LAT. Modification of lysine residues of LDL by acetylation, acetoacetylation or succinylation also abolished its ability to activate lysolecithin acylation.

  6. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies.

    Koch, Claudia; Eber, Fabian J; Azucena, Carlos; Förste, Alexander; Walheim, Stefan; Schimmel, Thomas; Bittner, Alexander M; Jeske, Holger; Gliemann, Hartmut; Eiben, Sabine; Geiger, Fania C; Wege, Christina

    2016-01-01

    monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing 'systems-on-a-chip'.

  7. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

    Claudia Koch

    2016-04-01

    , e.g., for monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing 'systems-on-a-chip'.

  8. Antiviral activity of glycyrrhizin against hepatitis C virus in vitro.

    Yoshihiro Matsumoto

    Full Text Available Glycyrrhizin (GL has been used in Japan to treat patients with chronic viral hepatitis, as an anti-inflammatory drug to reduce serum alanine aminotransferase levels. GL is also known to exhibit various biological activities, including anti-viral effects, but the anti-hepatitis C virus (HCV effect of GL remains to be clarified. In this study, we demonstrated that GL treatment of HCV-infected Huh7 cells caused a reduction of infectious HCV production using cell culture-produced HCV (HCVcc. To determine the target step in the HCV lifecycle of GL, we used HCV pseudoparticles (HCVpp, replicon, and HCVcc systems. Significant suppressions of viral entry and replication steps were not observed. Interestingly, extracellular infectivity was decreased, and intracellular infectivity was increased. By immunofluorescence and electron microscopic analysis of GL treated cells, HCV core antigens and electron-dense particles had accumulated on endoplasmic reticulum attached to lipid droplet (LD, respectively, which is thought to act as platforms for HCV assembly. Furthermore, the amount of HCV core antigen in LD fraction increased. Taken together, these results suggest that GL inhibits release of infectious HCV particles. GL is known to have an inhibitory effect on phospholipase A2 (PLA2. We found that group 1B PLA2 (PLA2G1B inhibitor also decreased HCV release, suggesting that suppression of virus release by GL treatment may be due to its inhibitory effect on PLA2G1B. Finally, we demonstrated that combination treatment with GL augmented IFN-induced reduction of virus in the HCVcc system. GL is identified as a novel anti-HCV agent that targets infectious virus particle release.

  9. Comprehensive analysis to explain reduced or increased SOD1 enzymatic activity in ALS patients and their relatives.

    Keskin, Isil; Birve, Anna; Berdynski, Mariusz; Hjertkvist, Karin; Rofougaran, Reza; Nilsson, Torbjörn K; Glass, Jonathan D; Marklund, Stefan L; Andersen, Peter M

    2017-08-01

    To characterise stabilities in erythrocytes of mutant SOD1 proteins, compare SOD1 enzymatic activities between patients with different genetic causes of ALS and search for underlying causes of deviant SOD1 activities in individuals lacking SOD1 mutations. Blood samples from 4072 individuals, ALS patients with or without a SOD1 mutation, family members and controls were studied. Erythrocyte SOD1 enzymatic activities normalised to haemoglobin content were determined, and effects of haemoglobin disorders on dismutation assessed. Coding SOD1 sequences were analysed by Sanger sequencing, exon copy number variations by fragment length analysis and by TaqMan Assay. Of the 44 SOD1 mutations found, 75% caused severe destabilisation of the mutant protein but in 25% it was physically stable. Mutations producing structural changes caused halved erythrocyte SOD1 activities. There were no differences in SOD1 activities between patients without a SOD1 mutation and control individuals or carriers of TBK1 mutations and C9orf72 HRE . In the low and high SOD1 activity groups no deviations were found in exon copy numbers and intron gross structures. Thalassemias and iron deficiency were associated with increased SOD1 activity/haemoglobin ratios. Adjunct erythrocyte SOD1 activity analysis reliably signals destabilising SOD1 mutations including intronic mutations that are missed by exon sequencing.

  10. Dietary effects of marine food intake on intestinal and hepatic enzyme activities in rats.

    González, M; Caride, B; Lamas, A; Taboada, C

    2001-03-01

    Dietary effects of two diets high in protein from two marine species (Haliotis tuberculata and Anemonia viridis) as compared to a high-quality patron protein such as casein (or casein supplemented with olive oil) on intestinal and hepatic enzymes were studied. After 23 days, the two marine species as diet compared to casein increased the disaccharidase and alkaline phosphatase activities. Feeding Haliotis tuberculata meal produced a decrease on intestinal leucine aminopeptidase activity. The hepatic gamma-glutamyltranspeptidase activity decreased slightly in animals fed Haliotis tuberculata meal. Supplementation of casein with olive oil tended to decrease the intestinal and hepatic enzyme activity.

  11. Antiviral activity of Dianthus superbusn L. against hepatitis B virus in ...

    Background: Hepatitis is a viral infection of hepatitis B virus (HBV). Limitations of drug used in the management of it opens the interest related to alternative medicine. The given study deals with the antiviral activity of Dianthus superbusn L. (DSL) against HBV in vitro & in vivo. Material and Methods: In vitro study liver cell line ...

  12. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  13. Enzymatic synthesis of dimeric glycomimetic ligands of NK cell activation receptors

    Drozdová, Anna; Bojarová, Pavla; Křenek, Karel; Weignerová, Lenka; Hensen, B.; Elling, L.; Christensen, H.; Jensen, H.H.; Pelantová, Helena; Kuzma, Marek; Bezouška, Karel; Krupová, Monika; Adámek, David; Slámová, Kristýna; Křen, Vladimír

    2011-01-01

    Roč. 346, č. 12 (2011), s. 1599-1609 ISSN 0008-6215 R&D Projects: GA ČR GP203/09/P024; GA ČR GD305/09/H008; GA ČR GA303/09/0477 Institutional research plan: CEZ:AV0Z50200510 Keywords : beta-N-Acetylhexosaminidase * alactosyltransferase * Enzymatic glycosylation Subject RIV: CE - Biochemistry Impact factor: 2.332, year: 2011

  14. Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities

    Martinez Alfredo

    2008-05-01

    Full Text Available Abstract Background A metabolic regulation study was performed, based upon measurements of enzymatic activities, fermentation performance, and RT-PCR analysis of pathways related to central carbon metabolism, in an ethanologenic Escherichia coli strain (CCE14 derived from lineage C. In comparison with previous engineered strains, this E coli derivative has a higher ethanol production rate in mineral medium, as a result of the elevated heterologous expression of the chromosomally integrated genes encoding PDCZm and ADHZm (pyruvate decarboxylase and alcohol dehydrogenase from Zymomonas mobilis. It is suggested that this behavior might be due to lineage differences between E. coli W and C. Results This study demonstrated that the glycolytic flux is controlled, in this case, by reactions outside glycolysis, i.e., the fermentative pathways. Changes in ethanol production rate in this ethanologenic strain result in low organic acid production rates, and high glycolytic and ethanologenic fluxes, that correlate with enhanced transcription and enzymatic activity levels of PDCZm and ADHZm. Furthermore, a higher ethanol yield (90% of the theoretical in glucose-mineral media was obtained with CCE14 in comparison with previous engineered E. coli strains, such as KO11, that produces a 70% yield under the same conditions. Conclusion Results suggest that a higher ethanol formation rate, caused by ahigher PDCZm and ADHZm activities induces a metabolic state that cells compensate through enhanced glucose transport, ATP synthesis, and NAD-NADH+H turnover rates. These results show that glycolytic enzymatic activities, present in E. coli W and C under fermentative conditions, are sufficient to contend with increases in glucose consumption and product formation rates.

  15. Ship-borne measurements of microbial enzymatic activity: A rapid biochemical indicator for microbial water quality monitoring

    Stadler, Philipp; Loken, Luke; Crawford, John; Schramm, Paul; Sorsa, Kirsti; Kuhn, Catherine; Savio, Domenico; Striegl, Rob; Butman, David; Stanley, Emily; Farnleitner, Andreas H.; Zessner, Matthias

    2017-04-01

    Contamination of aquatic ecosystems by human and animal wastes is a global concern for water quality. Disclosing fate and transport processes of fecal indicator organism (FIO) in large water bodies is a big challenge due to material intensive and time consuming methods used in microbiological water quality monitoring. In respect of utilization of large surface water resources there is a dearth of rapid microbiological methods that allow a near-real time health related water quality monitoring to be implemented into early warning systems. The detection of enzymatic activities has been proposed as a rapid surrogate for microbiological pollution monitoring of water and water resources (Cabral, 2010; Farnleitner et al., 2001, 2002). Methods such as the beta-D-Glucuronidase assay (GLUC), targeting FIO such as E. coli, were established. New automated enzymatic assays have been implemented during the last years into on-site monitoring stations, ranging from ground- to surface waters (Ryzinska-Paier et al., 2014; Stadler et al., 2017, 2016). While these automated enzymatic methods cannot completely replace assays for culture-based FIO enumeration, they yielded significant information on pollution events and temporal dynamics on a catchment specific basis, but were restricted to stationary measurements. For the first time we conducted ship-borne and automated measurements of enzymatic GLUC activity on large fresh water bodies, including the Columbia River, the Mississippi River and Lake Mendota. Not only are automated enzymatic assays technically feasible from a mobile vessel, but also can be used to localize point sources of potential microbial fecal contamination, such as tributaries or storm drainages. Spatial and temporal patterns of enzymatic activity were disclosed and the habitat specific correlation with microbiological standard assays for FIO determined due to reference samples. The integration of rapid and automated enzymatic assays into well-established systems

  16. Pressure Modulation of the Enzymatic Activity of Phospholipase A2, A Putative Membrane-Associated Pressure Sensor.

    Suladze, Saba; Cinar, Suleyman; Sperlich, Benjamin; Winter, Roland

    2015-10-07

    Phospholipases A2 (PLA2) catalyze the hydrolysis reaction of sn-2 fatty acids of membrane phospholipids and are also involved in receptor signaling and transcriptional pathways. Here, we used pressure modulation of the PLA2 activity and of the membrane's physical-chemical properties to reveal new mechanistic information about the membrane association and subsequent enzymatic reaction of PLA2. Although the effect of high hydrostatic pressure (HHP) on aqueous soluble and integral membrane proteins has been investigated to some extent, its effect on enzymatic reactions operating at the water/lipid interface has not been explored, yet. This study focuses on the effect of HHP on the structure, membrane binding and enzymatic activity of membrane-associated bee venom PLA2, covering a pressure range up to 2 kbar. To this end, high-pressure Fourier-transform infrared and high-pressure stopped-flow fluorescence spectroscopies were applied. The results show that PLA2 binding to model biomembranes is not significantly affected by pressure and occurs in at least two kinetically distinct steps. Followed by fast initial membrane association, structural reorganization of α-helical segments of PLA2 takes place at the lipid water interface. FRET-based activity measurements reveal that pressure has a marked inhibitory effect on the lipid hydrolysis rate, which decreases by 75% upon compression up to 2 kbar. Lipid hydrolysis under extreme environmental conditions, such as those encountered in the deep sea where pressures up to the kbar-level are encountered, is hence markedly affected by HHP, rendering PLA2, next to being a primary osmosensor, a good candidate for a sensitive pressure sensor in vivo.

  17. Quantitative Collection and Enzymatic Activity of Glucose Oxidase Nanotubes Fabricated by Templated Layer-by-Layer Assembly.

    Zhang, Shouwei; Demoustier-Champagne, Sophie; Jonas, Alain M

    2015-08-10

    We report on the fabrication of enzyme nanotubes in nanoporous polycarbonate membranes via the layer-by-layer (LbL) alternate assembly of polyethylenimine (PEI) and glucose oxidase (GOX), followed by dissolution of the sacrificial template in CH2Cl2, collection, and final dispersion in water. An adjuvant-assisted filtration methodology is exploited to extract quantitatively the nanotubes without loss of activity and morphology. Different water-soluble CH2Cl2-insoluble adjuvants are tested for maximal enzyme activity and nanotube stability; whereas NaCl disrupts the tubes by screening electrostatic interactions, the high osmotic pressure created by fructose also contributes to loosening the nanotubular structures. These issues are solved when using neutral, high molar mass dextran. The enzymatic activity of intact free nanotubes in water is then quantitatively compared to membrane-embedded nanotubes, showing that the liberated nanotubes have a higher catalytic activity in proportion to their larger exposed surface. Our study thus discloses a robust and general methodology for the fabrication and quantitative collection of enzymatic nanotubes and shows that LbL assembly provides access to efficient enzyme carriers for use as catalytic swarming agents.

  18. Hepatic intestinal uptake and release of catecholamines in alcoholic cirrhosis. Evidence of enhanced hepatic intestinal sympathetic nervous activity

    Henriksen, Jens Henrik; Ring-Larsen, H; Christensen, N J

    1987-01-01

    clearance of 3H-NA equal in the two groups (1.6 v 1.7 l/min, ns), while as the overall appearance rate of NA was significantly higher in alcoholic cirrhosis (4.2 v 2.6 nmol/min, p less than 0.02) indicating an enhanced sympathoadrenal activity in this group. The hepatic intestinal clearances of A, NA, and 3...

  19. Enzyme-immobilized SiO2-Si electrode: Fast interfacial electron transfer with preserved enzymatic activity

    Wang, Gang; Yau, Siu-Tung

    2005-12-01

    The enzyme, glucose oxidase (GOx), is immobilized using electrostatic interaction on the native oxide of heavily doped n-type silicon. Voltammetric measurement shows that the immobilized GOx gives rise to a very fast enzyme-silicon interfacial electron transfer rate constant of 7.9s-1. The measurement also suggests that the enzyme retains its native conformation when immobilized on the silicon surface. The preserved native conformation of GOx is further confirmed by testing the enzymatic activity of the immobilized GOx using glucose. The GOx-immobilized silicon is shown to behave as a glucose sensor that detects glucose with concentrations as low as 50μM.

  20. Effect of Different Calcium Sources Application on Antioxidant, Enzymatic Activity and Qualitative Characteristics of Apple (Malus domestic)

    MirHassan Rasouli-Sadaghiani; Mohammad Moghaddas Gerani; Sanaz Ashrafi Saeidlou; Ebrahim Sepehr

    2017-01-01

    In order to determine the effect of different Ca sources, in improving enzymatic activity and some qualitative properties of red apple (Malusdomestica) an experiment was carried out in a completely randomized design. Apple trees were sprayed 5 times with CaCl2, CaO, Ca-EDTA and Ca(NO3)2 salts with an interval of 20 days from late June until early October. After harvesting fruits were kept in cold storage at standard condition for 150 days. Nitrogen, phosphorus, potassium, calcium, magnesium, ...

  1. Contrasting effects of untreated textile wastewater onto the soil available nitrogen-phosphorus and enzymatic activities in aridisol.

    Arif, Muhammad Saleem; Riaz, Muhammad; Shahzad, Sher Muhammad; Yasmeen, Tahira; Buttler, Alexandre; Garcıa-Gil, Juan Carlos; Roohi, Mahnaz; Rasool, Akhtar

    2016-02-01

    Water shortage and soil qualitative degradation are significant environmental problems in arid and semi-arid regions of the world. The increasing demand for water in agriculture and industry has resulted in the emergence of wastewater use as an alternative in these areas. Textile wastewater is produced in surplus amounts which poses threat to the environment as well as associated flora and fauna. A 60-day incubation study was performed to assess the effects of untreated textile wastewater at 0, 25, 50, 75, and 100% dilution levels on the physico-chemical and some microbial and enzymatic properties of an aridisol soil. The addition of textile wastewater provoked a significant change in soil pH and electrical conductivity and soil dehydrogenase and urease activities compared to the distilled-water treated control soil. Moreover, compared to the control treatment, soil phosphomonoesterase activity was significantly increased from 25 to 75% application rates, but decreased at 100% textile wastewater application rate. Total and available soil N contents increased significantly in response to application of textile wastewater. Despite significant increases in the soil total P contents after the addition of textile wastewater, soil available P content decreased with increasing concentration of wastewater. Changes in soil nutrient contents and related enzymatic activities suggested a dynamic match between substrate availability and soil N and P contents. Aridisols have high fixation and low P availability, application of textile wastewater to such soils should be considered only after careful assessment.

  2. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils

    Mohsenzadeh Fariba

    2012-12-01

    Full Text Available Abstract Background Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. Methods In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w. Results Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected as the most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed the highest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp., Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively. Conclusions Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  3. Evaluation of Oil Removal Efficiency and Enzymatic Activity in Some fungal Strains for Bioremediation of Petroleum-Polluted Soils

    Fariba Mohsenzadeh

    2012-12-01

    Full Text Available Background: Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation.Methods: In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w.Results: Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected asthe most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed thehighest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp.,Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively.Conclusions: Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  4. Hepatitis C virus translation preferentially depends on active RNA replication.

    Helene Minyi Liu

    Full Text Available Hepatitis C virus (HCV RNA initiates its replication on a detergent-resistant membrane structure derived from the endoplasmic reticulum (ER in the HCV replicon cells. By performing a pulse-chase study of BrU-labeled HCV RNA, we found that the newly-synthesized HCV RNA traveled along the anterograde-membrane traffic and moved away from the ER. Presumably, the RNA moved to the site of translation or virion assembly in the later steps of viral life cycle. In this study, we further addressed how HCV RNA translation was regulated by HCV RNA trafficking. When the movement of HCV RNA from the site of RNA synthesis to the Golgi complex was blocked by nocodazole, an inhibitor of ER-Golgi transport, HCV protein translation was surprisingly enhanced, suggesting that the translation of viral proteins occurred near the site of RNA synthesis. We also found that the translation of HCV proteins was dependent on active RNA synthesis: inhibition of viral RNA synthesis by an NS5B inhibitor resulted in decreased HCV viral protein synthesis even when the total amount of intracellular HCV RNA remained unchanged. Furthermore, the translation activity of the replication-defective HCV replicons or viral RNA with an NS5B mutation was greatly reduced as compared to that of the corresponding wildtype RNA. By performing live cell labeling of newly synthesized HCV RNA and proteins, we further showed that the newly synthesized HCV proteins colocalized with the newly synthesized viral RNA, suggesting that HCV RNA replication and protein translation take place at or near the same site. Our findings together indicate that the translation of HCV RNA is coupled to RNA replication and that the both processes may occur at the same subcellular membrane compartments, which we term the replicasome.

  5. Chromophoric dissolved organic matter and microbial enzymatic activity. A biophysical approach to understand the marine carbon cycle.

    Gonnelli, Margherita; Vestri, Stefano; Santinelli, Chiara

    2013-12-01

    This study reports the first information on extracellular enzymatic activity (EEA) combined with a study of DOM dynamics at the Arno River mouth. DOM dynamics was investigated from both a quantitative (dissolved organic carbon, DOC) and a qualitative (absorption and fluorescence of chromophoric DOM, CDOM) perspective. The data here reported highlight that the Arno River was an important source of both DOC and CDOM for this coastal area. CDOM optical properties suggested that terrestrial DOM did not undergo simple dilution at the river mouth but, other physical-chemical and biological processes were probably at work to change its molecular characteristics. This observation was further supported by the "potential" enzymatic activity of β-glucosidase (BG) and leucine aminopeptidase (LAP). Their Vmax values were markedly higher in the river water than in the seawater and their ratio suggested that most of the DOM used by microbes in the Arno River was polysaccharide-like, while in the seawater it was mainly protein-like. © 2013. Published by Elsevier B.V. All rights reserved.

  6. Mitochondrial intermediate peptidase: Expression in Escherichia coli and improvement of its enzymatic activity detection with FRET substrates

    Marcondes, Marcelo F.; Torquato, Ricardo J.S.; Assis, Diego M.; Juliano, Maria A.; Hayashi, Mirian A.F.; Oliveira, Vitor

    2010-01-01

    In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, and enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.

  7. Beneficial effect of mixture of additives amendment on enzymatic activities, organic matter degradation and humification during biosolids co-composting.

    Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Awasthi, Sanjeev Kumar; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Zhang, Zengqiang

    2018-01-01

    The objective of this study was to identify the effect of mixture of additives to improve the enzymatic activities, organic matter humification and diminished the bioavailability of heavy metals (HMs) during biosolids co-composting. In this study, zeolite (Z) (10%, 15% and 30%) with 1%lime (L) (dry weight basis of biosolids) was blended into the mixture of biosolids and wheat straw, respectively. The without any amendment and 1%lime applied treatments were run for comparison (Control). The Z+L addition resulted rapid organic matter degradation and humification with maximum enzymatic activities. In addition, higher dosage of Z+1%L amendment reduced the bioavailability of HMs (Cu and Zn) and improved the end product quality as compared to control and 1%L applied treatments. However, the 30%Z+1%L applied treatment showed maximum humification and low bioavailability of HMs but considering the economic feasibility and compost quality results, the treatment with 10%Z+1%L is recommended for biosolids co-composting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bacterial Production and Enzymatic Activities in Deep-Sea Sediments of the Pacific Ocean: Biogeochemical Implications of Different Temperature Constraints

    Danovaro, R.; Corinaldesi, C.; dell'Anno, A.

    2002-12-01

    The deep-sea bed, acting as the ultimate sink for organic material derived from the upper oceans primary production, is now assumed to play a key role in biogeochemical cycling of organic matter on global scale. Early diagenesis of organic matter in marine sediments is dependent upon biological processes (largely mediated by bacterial activity) and by molecular diffusion. Organic matter reaching the sea floor by sedimentation is subjected to complex biogeochemical transformations that make organic matter largely unsuitable for direct utilization by benthic heterotrophs. Extracellular enzymatic activities in the sediment is generally recognized as the key step in the degradation and utilization of organic polymers by bacteria and a key role in biopolymeric carbon mobilization is played by aminopeptidase, alkaline phosphatase and glucosidase activities. In the present study we investigated bacterial density, bacterial C production and exo-enzymatic activities (aminopeptidase, glucosidase and phosphatase activity) in deep-sea sediments of the Pacific Ocean in relation with the biochemical composition of sediment organic matter (proteins, carbohydrates and lipids), in order to gather information on organic matter cycling and diagenesis. Benthic viral abundance was also measured to investigate the potential role of viruses on microbial loop functioning. Sediment samples were collected at eight stations (depth ranging from 2070-3100 m) along two transects located at the opposite side (north and south) of ocean seismic ridge Juan Fernandez (along latitudes 33° 20' - 33° 40'), constituted by the submerged vulcanoes, which connects the Chilean coasts to Rapa Nui Island. Since the northern and southern sides of this ridge apparently displayed small but significant differences in deep-sea temperature (related to the general ocean circulation), this sampling strategy allowed also investigating the role of different temperature constraints on bacterial activity and

  9. Oxymatrine attenuates hepatic steatosis in non-alcoholic fatty liver disease rats fed with high fructose diet through inhibition of sterol regulatory element binding transcription factor 1 (Srebf1) and activation of peroxisome proliferator activated receptor alpha (Pparα).

    Shi, Li-juan; Shi, Lei; Song, Guang-yao; Zhang, He-fang; Hu, Zhi-juan; Wang, Chao; Zhang, Dong-hui

    2013-08-15

    The aim of this study was to examine the therapeutic effect of oxymatrine, a monomer isolated from the medicinal plant Sophora flavescens Ait, on the hepatic lipid metabolism in non-alcoholic fatty liver (NAFLD) rats and to explore the potential mechanism. Rats were fed with high fructose diet for 8 weeks to establish the NAFLD model, then were given oxymatrine treatment (40, 80, and 160 mg/kg, respectively) for another 8 weeks. Body weight gain, liver index, serum and liver lipids, and histopathological evaluation were measured. Enzymatic activity and gene expression of the key enzymes involved in the lipogenesis and fatty acid oxidation were assayed. The results showed that oxymatrine treatment reduced body weight gain, liver weight, liver index, dyslipidemia, and liver triglyceride level in a dose dependant manner. Importantly, the histopathological examination of liver confirmed that oxymatrine could decrease the liver lipid accumulation. The treatment also decreased the fatty acid synthase (FAS) enzymatic activity and increased the carnitine palmitoyltransferase 1A (CPT1A) enzymatic activity. Besides, oxymatrine treatment decreased the mRNA expression of sterol regulatory element binding transcription factor 1(Srebf1), fatty acid synthase (Fasn), and acetyl CoA carboxylase (Acc), and increased the mRNA expression of peroxisome proliferator activated receptor alpha (Pparα), carnitine palmitoyltransferase 1A (Cpt1a), and acyl CoA oxidase (Acox1) in high fructose diet induced NAFLD rats. These results suggested that the therapeutic effect of oxymatrine on the hepatic steatosis in high fructose diet induced fatty liver rats is partly due to down-regulating Srebf1 and up-regulating Pparα mediated metabolic pathways simultaneously. © 2013 Elsevier B.V. All rights reserved.

  10. Enzymatic processing of pigmented and non pigmented rice bran on changes in oryzanol, polyphenols and antioxidant activity.

    Prabhu, Ashish A; Jayadeep, A

    2015-10-01

    Bran from different rice varieties is a treasure of nutrients and nutraceuticals, and its use is limited due to the poor sensory and functional properties. Application of enzymes can alter the functional and phytochemical properties. So the effect of endo-xylanase, cellulase and their combination on microstructural, nutraceutical and antioxidant properties of pigmented (Jyothi) and non-pigmented (IR64) rice bran were investigated. Scanning electron micrograph revealed micro structural changes in fibre structures on processing. All the enzymatic processing methods resulted in an increase in the content of oryzanol, soluble, bound and total polyphenols, flavonoid and tannin. It also showed an increase in the bioactivity with respect to free radical scavenging activity and total antioxidant activity. However, extent of the increase in bio-actives varied with the type of bran and enzyme application method. Endo-xylanase showed higher percentage difference compared to controls of Jyothi and IR64 bran extracts respectively in the content of the bound (10 & 19 %) and total (20 & 14 %) polyphenols. Combination of both the enzymes resulted in higher percentage increase of bioactive components and properties. It resulted in greater percentage difference compared to controls of Jyothi and IR64 extracts respectively in the content of soluble (58 & 17 %) and total (21 & 14 %) polyphenols, flavonoids (12 & 38 %), γ-oryzanol (10 & 12 %), free radical scavenging activity (64 & 30 %) and total antioxidant activity (82 & 136 %). It may be concluded that enzymatic bio-processing of bran with cellulose and hemicellulose degrading enzymes can improve its nutraceutical properties, and it may be used for development of functional foods.

  11. Remission of active diabetic hepatitis after correction of hyperglycemia

    Tak, P. P.; ten Kate, F. J.

    1993-01-01

    A 60-year-old obese woman with type II diabetes mellitus and hepatomegaly exhibited progression of steatosis to hepatitis and cirrhosis. The patient was treated with large amounts of insulin combined with sulfonylurea, resulting in correction of the hyperglycemia. In the subsequent 9 months, weight

  12. Variability of human hepatic UDP-glucuronosyltransferase activity

    Little, JM; Lester, R; Kuipers, F; Vonk, R; Mackenzie, PI; Drake, RR; Frame, L; Radominska-Pandya, A

    1999-01-01

    The availability of a unique series of liver samples from human subjects, both control patients (9) and those with liver disease (6; biliary atresia (2), retransplant, chronic tyrosinemia type I, tyrosinemia, Wilson's disease) allowed us to characterize human hepatic UDP-glucuronosyltransferases

  13. Chronic active hepatitis at Baragwanath Hospital | Asvat | South ...

    Systemic features such as skin rashes (acne, urticaria), bacterial infections and congestive cardiac failure were prominent in the auto-immune type of CAH. The liver was enlarged in the majority of cases. Hepatitis B virus-related CAH showed an absence of tissue nonspecific auto-antibodies. Cirrhosis was present in ...

  14. Bioconversion and enzymatic activities of neurospora sitophila grown under solid state and submerged fermentation on Sago Hamps

    Shojaosadati, S. A.; Vikineswary, S.; Looi, C. C.

    2000-01-01

    N.Sitophila was grown under controlled conditions of solid state and submerged fermentation on Sago Hampas. The optimum conditions of protein enrichment previously established for sugar beet pulp was used for this study. Under this condition the protein content of Sago Hampas under solid state increased from 1.4 to 14.45% (W/W) whereas for Sago Hampas and Sago starch, the protein content under submerged condition increased from 1.4% (W/W) and 0.7% (W/W) to 18.56% (W/W) and 43/16% (W/W) based on dry weight of product respectively. The cellulase, a-amylase and glucoamylase activities of N.Sitophila under solid state condition on Sago Hampas were, 9.0, 0.6 and 11.8 U/g of wet fermented solid respectively. the enzymatic activities were also measured under submerged fermentation using both Sago Hampas and Sago starch as substrate

  15. AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development.

    Boudaba, Nadia; Marion, Allison; Huet, Camille; Pierre, Rémi; Viollet, Benoit; Foretz, Marc

    2018-02-01

    Nonalcoholic fatty liver disease is a highly prevalent component of disorders associated with disrupted energy homeostasis. Although dysregulation of the energy sensor AMP-activated protein kinase (AMPK) is viewed as a pathogenic factor in the development of fatty liver its role has not been directly demonstrated. Unexpectedly, we show here that liver-specific AMPK KO mice display normal hepatic lipid homeostasis and are not prone to fatty liver development, indicating that the decreases in AMPK activity associated with hepatic steatosis may be a consequence, rather than a cause, of changes in hepatic metabolism. In contrast, we found that pharmacological re-activation of downregulated AMPK in fatty liver is sufficient to normalize hepatic lipid content. Mechanistically, AMPK activation reduces hepatic triglyceride content both by inhibiting lipid synthesis and by stimulating fatty acid oxidation in an LKB1-dependent manner, through a transcription-independent mechanism. Furthermore, the effect of the antidiabetic drug metformin on lipogenesis inhibition and fatty acid oxidation stimulation was enhanced by combination treatment with small-molecule AMPK activators in primary hepatocytes from mice and humans. Overall, these results demonstrate that AMPK downregulation is not a triggering factor in fatty liver development but in contrast, establish the therapeutic impact of pharmacological AMPK re-activation in the treatment of fatty liver disease. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. The metabolic activator FOXO1 binds hepatitis B virus DNA and activates its transcription

    Shlomai, Amir; Shaul, Yosef

    2009-01-01

    Hepatitis B virus (HBV) is a small DNA virus that targets the liver and infects humans worldwide. Recently we have shown that the metabolic regulator PGC-1α coactivates HBV transcription thereby rendering the virus susceptible to fluctuations in the nutritional status of the liver. PGC-1α coactivation of HBV is mediated through the liver-enriched nuclear receptor HNF4α and through another yet unknown transcription factor(s). Here we show that the forkhead transcription factor FOXO1, a known target for PGC-1α coactivation and a central mediator of glucose metabolism in the liver, binds HBV core promoter and activates its transcription. This activation is further enhanced in the presence of PGC-1α, implying that FOXO1 is a target for PGC-1α coactivation of HBV transcription. Thus, our results identify another key metabolic regulator as an activator of HBV transcription, thereby supporting the principle that HBV gene expression is regulated in a similar way to key hepatic metabolic genes.

  17. Cryptococcus gattii urease as a virulence factor and the relevance of enzymatic activity in cryptococcosis pathogenesis.

    Feder, Vanessa; Kmetzsch, Lívia; Staats, Charley Christian; Vidal-Figueiredo, Natalia; Ligabue-Braun, Rodrigo; Carlini, Célia Regina; Vainstein, Marilene Henning

    2015-04-01

    Ureases (EC 3.5.1.5) are Ni(2+) -dependent metalloenzymes produced by plants, fungi and bacteria that hydrolyze urea to produce ammonia and CO2 . The insertion of nickel atoms into the apo-urease is better characterized in bacteria, and requires at least three accessory proteins: UreD, UreF, and UreG. Our group has demonstrated that ureases possess ureolytic activity-independent biological properties that could contribute to the pathogenicity of urease-producing microorganisms. The presence of urease in pathogenic bacteria strongly correlates with pathogenesis in some human diseases. Some medically important fungi also produce urease, including Cryptococcus neoformans and Cryptococcus gattii. C. gattii is an etiological agent of cryptococcosis, most often affecting immunocompetent individuals. The cryptococcal urease might play an important role in pathogenesis. It has been proposed that ammonia produced via urease action might damage the host endothelium, which would enable yeast transmigration towards the central nervous system. To analyze the role of urease as a virulence factor in C. gattii, we constructed knockout mutants for the structural urease-coding gene URE1 and for genes that code the accessory proteins Ure4 and Ure6. All knockout mutants showed reduced multiplication within macrophages. In intranasally infected mice, the ure1Δ (lacking urease protein) and ure4Δ (enzymatically inactive apo-urease) mutants caused reduced blood burdens and a delayed time of death, whereas the ure6Δ (enzymatically inactive apo-urease) mutant showed time and dose dependency with regard to fungal burden. Our results suggest that C. gattii urease plays an important role in virulence, in part possibly through enzyme activity-independent mechanism(s). © 2015 FEBS.

  18. Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats.

    Soo Jin Yang

    Full Text Available BACKGROUND: Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ on hepatic steatosis. METHODS: To investigate the effect of RGZ on hepatic steatosis, rats were treated with RGZ (4 mg·kg⁻¹·day⁻¹ by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes. RESULTS: RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α and Forkhead box O1 (Foxo1 in rat livers. AMP-activated protein kinase (AMPK phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035, suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects. CONCLUSION: Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis.

  19. Lactogenic Activity of an Enzymatic Hydrolysate from Octopus vulgaris and Carica papaya in SD Rats.

    Cai, Bingna; Chen, Hua; Sun, Han; Sun, Huili; Wan, Peng; Chen, Deke; Pan, Jianyu

    2015-11-01

    The traditional Chinese medicine theory believes that octopus papaya soup can stimulate milk production in lactating women. The objective of this study was to determine whether dietary supplementation with an enzymatic hydrolysate of Octopus vulgaris and Carica papaya (EHOC) could increase milk production and nutritional indexes in Sprague Dawley (SD) rats. Female SD rats (n = 24) were fed a control diet (n = 8), EHOC-supplemented diet, or a positive control diet (Shengruzhi) from day 10 of pregnancy to day 10 of lactation. Maternal serum, mammary gland (day 10 of lactation), milk, and pup weight (daily) were collected for analysis. Results showed that the EHOC diet obviously elevated daily milk yield and pup weight compared to the control group (P < .05). The EHOC diet was found to increase the concentration of prolactin (PRL), progesterone (P), estradiol (E2), and growth hormone (GH) significantly in the circulation and mammary gland. Mammary glands of EHOC-treated dams showed clear lobuloalveolar development and proliferation of myoepithelial cells, but no striking variations were observed among the groups. Furthermore, the nutrition content and immune globulin concentration in the milk of EHOC-supplemented dams were higher than those of the control group, especially the cholesterol, glucose, and IgG were higher by 44.98% (P < .001), 42.76% (P < .01), and 42.23% (P < .01), respectively. In conclusion, this article demonstrates that EHOC administration has beneficial effects on milk production in the dams and on performance of the dam and pup. These results indicate that EHOC could be explored as a potentially lactogenic nutriment for lactating women.

  20. PPARα ligands activate antioxidant enzymes and suppress hepatic fibrosis in rats

    Toyama, Tetsuya; Nakamura, Hideki; Harano, Yuichi; Yamauchi, Norihito; Morita, Atsuhiro; Kirishima, Toshihiko; Minami, Masahito; Itoh, Yoshito; Okanoue, Takeshi

    2004-01-01

    Oxidative stress is a major pathogenetic factor in hepatic fibrosis. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor which is known to affect oxidative stress and PPARα ligands may have rescue effects on hepatic fibrosis. We tested this hypothesis using rat thioacetamide (TAA) models of liver cirrhosis. Rats were given intraperitoneal injection of TAA and treated with a diet containing one of the two PPARα ligands, Wy-14,643 (WY) or fenofibrate. WY treatment dramatically reduced hepatic fibrosis and also prevented the inhibition catalase of mRNA expression caused by TAA. Correspondingly, catalase activity increased in the TAA + WY group but decreased in the control TAA group. The antifibrotic action of fenofibrate in the TAA model was comparable with that of WY. PPARα ligands have an antifibrotic action in the rat TAA model of liver cirrhosis, probably due to an antioxidant effect of enhanced catalase expression and activity in the liver

  1. Hepatic Insulin Resistance Following Chronic Activation of the CREB Coactivator CRTC2

    Hogan, Meghan F; Ravnskjaer, Kim; Matsumura, Shigenobu

    2015-01-01

    and dephosphorylation of the cAMP regulated CREB coactivators CRTC2 and CRTC3. In parallel, decreases in circulating insulin also increase gluconeogenic gene expression via the de-phosphorylation and activation of the forkhead transcription factor FOXO1. Hepatic gluconeogenesis is increased in insulin resistance where...... increased gluconeogenic gene expression under fasting as well as feeding conditions. Circulating glucose concentrations were constitutively elevated in CRTC2S171,275A expressing mice, leading to compensatory increases in circulating insulin concentrations that enhance FOXO1 phosphorylation. Despite...... accompanying decreases in FOXO1 activity, hepatic gluconeogenic gene expression remained elevated in CRTC2S171,275A mice demonstrating that chronic increases in CRTC2 activity in the liver are indeed sufficient to promote hepatic insulin resistance and to disrupt glucose homeostasis....

  2. Protein-Rich Fraction of Cnidoscolus urens (L. Arthur Leaves: Enzymatic Characterization and Procoagulant and Fibrinogenolytic Activities

    Yamara A. S. de Menezes

    2014-03-01

    Full Text Available Proteolytic enzymes are important macromolecules in the regulation of biochemical processes in living organisms. Additionally, these versatile biomolecules have numerous applications in the industrial segment. In this study we have characterized a protein-rich fraction of Cnidoscolus urens (L. Arthur leaves, rich in proteolytic enzymes, and evaluated its effects on the coagulation cascade. Three protein-rich fractions were obtained from the crude extract of C. urens leaves by precipitation with acetone. Fraction F1.0 showed higher proteolytic activity upon azocasein, and thus, was chosen for subsequent tests. The proteolytic activity of F1.0 on fibrinogen was dose-dependent and time-dependent. The extract demonstrated procoagulant activity on citrated plasma and reduced the APTT, not exerting effects on PT. Despite the fibrin(ogenolytic activity, F1.0 showed no defibrinogenating activity in vivo. The fraction F1.0 did not express hemorrhagic nor hemolytic activities. The proteolytic activity was inhibited by E-64, EDTA and in the presence of metal ions, and increased when pretreated with reducing agents, suggesting that the observed activity was mostly due to cysteine proteases. Several bands with proteolytic activity were detected by zymography with gelatin, albumin and fibrinogen. The optimal enzymatic activity was observed in temperature of 60 °C and pH 5.0, demonstrating the presence of acidic proteases. In conclusion, these results could provide basis for the pharmacological application of C. urens proteases as a new source of bioactive molecules to treat bleeding and thrombotic disorders.

  3. Effect of selected natural products, thioproline and pegasys on hepatic platelet activating factor (PAF) in CCL4-induced hepatic fibrosis in rats

    Badria, Farid A.

    2007-01-01

    This study aimed to estimate hepatic levels of platelet activating factor (PAF) in liver fibrosis induced by CCl4 in rats. A group of selected natural products; boswellic acids, curcumin and glycrrhizin (preparation named OMNI; a drug under clinical trials for treatment of hepatitis C virus), Mirazid (a commercially available schistomicidal drug), Thioproline (a commercially available hepatoprotective agent) and Pegasys (peg interferon alpha-2a; a commercially available therapy for treatment of Hepatitis C virus) were examined for their effect on hepatic PAF groups each comprised 9 rats. Group 1 was treated only with CCl4, group 2 to 5 were treated with OMNI, Mirazid, Thioproline and Pegasys, respectively whereas the 6th group was the normal control group (with no treatment, except an injection of the vehicle). Liver damage was induced in all groups except normal control group (groups 1 to 5) by i.p. injection of 40% CCl4 in corn oil (0.375 ml/kg) 3 times a week for 3 weeks. One week after CCl4 intoxication, all tested drugs were injected i.p. daily for 3 weeks. Hepatic PAF concentration was estimated by HPTLC (high performance thin layer chromatography), while levels of serum transminases (ALT, AST), hepatic hydroxyproline (as marker of liver fibrosis), serum malondialdehyde and catalase (as markers of oxidative stress) were estimated sepctrophotometrically. The hepatic PAF levels were significantly higher in CCl4 group (24.24+-2.01 pmol equiv. /mg) (p<0.001). Treatment with OMNI, Mirazid, Thioproline and Pegasys reduced hepatic PAF significantly to be 11.84+-0.22, 14.5+-1.00, 13.17+-0, 54 and 14.26+-1.09pmol equiv. /mg respectively. This study may add further rational to the anti-fibrotic activity of the tested drugs via reduction of hepatic PAF. (author)

  4. Influence of Different Lignocellulose Sources on Endo-1,4-β-Glucanase Gene Expression and Enzymatic Activity of Bacillus amyloliquefaciens B31C

    Rosangela Di Pasqua

    2014-01-01

    Full Text Available Conversion of cellulose into fermentable sugars for ethanol production is currently performed by enzymatic hydrolysis catalyzed by cellulases. The cellulases are produced by a wide variety of microorganisms, playing a major role in the recycling of biomass. The endo-1,4-β-glucanase (CelB31C from Bacillus amyloliquefaciens B31C, isolated from compost and previously selected on the basis of highest cellulase activity levels among Bacillus isolated, was characterized as being a potential candidate for a biocatalyst in lignocellulose conversion for second-generation bioethanol production. The aim of this work was to evaluate the changes in production of enzymatic activity of the endo-1,4-β-glucanase (CelB31C and the expression of its gene (bglC using a carboxymethylcellulase activity assay and qRT-PCR analysis, respectively, during growth of B. amyloliquefaciens B31C on different cellulose sources: carboxymethylcellulose (CMC, pure cellulose from Arundo donax, pretreated Arundo donax biomass (Chemtex, and microcrystalline cellulose (Avicel. The results showed that both the expression of bglC gene and the enzymatic activity production are related to the type of cellulose source. The strain showed a high enzymatic activity on lignocellulosic biomass and on microcrystalline cellulose. Furthermore, the highest gene expression occurred during the exponential phase of growth, except in the presence of Avicel.

  5. Site-Specific Bioconjugation of an Organometallic Electron Mediator to an Enzyme with Retained Photocatalytic Cofactor Regenerating Capacity and Enzymatic Activity

    Sung In Lim

    2015-04-01

    Full Text Available Photosynthesis consists of a series of reactions catalyzed by redox enzymes to synthesize carbohydrates using solar energy. In order to take the advantage of solar energy, many researchers have investigated artificial photosynthesis systems mimicking the natural photosynthetic enzymatic redox reactions. These redox reactions usually require cofactors, which due to their high cost become a key issue when constructing an artificial photosynthesis system. Combining a photosensitizer and an Rh-based electron mediator (RhM has been shown to photocatalytically regenerate cofactors. However, maintaining the high concentration of cofactors available for efficient enzymatic reactions requires a high concentration of the expensive RhM; making this process cost prohibitive. We hypothesized that conjugation of an electron mediator to a redox enzyme will reduce the amount of electron mediators necessary for efficient enzymatic reactions. This is due to photocatalytically regenerated NAD(PH being readily available to a redox enzyme, when the local NAD(PH concentration near the enzyme becomes higher. However, conventional random conjugation of RhM to a redox enzyme will likely lead to a substantial loss of cofactor regenerating capacity and enzymatic activity. In order to avoid this issue, we investigated whether bioconjugation of RhM to a permissive site of a redox enzyme retains cofactor regenerating capacity and enzymatic activity. As a model system, a RhM was conjugated to a redox enzyme, formate dehydrogenase obtained from Thiobacillus sp. KNK65MA (TsFDH. A RhM-containing azide group was site-specifically conjugated to p-azidophenylalanine introduced to a permissive site of TsFDH via a bioorthogonal strain-promoted azide-alkyne cycloaddition and an appropriate linker. The TsFDH-RhM conjugate exhibited retained cofactor regenerating capacity and enzymatic activity.

  6. Dapper1 attenuates hepatic gluconeogenesis and lipogenesis by activating PI3K/Akt signaling.

    Kuang, Jian-Ren; Zhang, Zhi-Hui; Leng, Wei-Ling; Lei, Xiao-Tian; Liang, Zi-Wen

    2017-05-15

    Studies have shown that hepatic insulin resistance, a disorder of glucose and lipid metabolism, plays a vital role in type 2 diabetes (T2D). To clarify the function of Dapper1 in glucose and lipid metabolism in the liver, we investigated the relationships between Dapper1 and adenosine triphosphate (ATP)- and Ca 2+ -mediated activation of PI3K/Akt. We observed a reduction in hepatic Dapper1 in db/db (mice that are homozygous for a spontaneous diabetes mutation) and HFD-induced diabetic mice with T2D. Hepatic overexpression of Dapper1 improved hyperglycemia, insulin resistance, and fatty liver. It also increased Akt (pAkt) signaling and repressed both gluconeogenesis and lipogenesis. Conversely, Ad-shDapper1-induced knockdown of hepatic Dapper1 promoted gluconeogenesis and lipogenesis. Furthermore, Dapper1 activated PI3K p110α/Akt in an insulin-independent manner by inducing ATP production and secretion in vitro. Blockade of P2 ATP receptors, the downstream phospholipase C (PLC), or the inositol triphosphate receptor (IP3R all reduced the Dapper1-induced increase in cytosolic free calcium and Dapper1-mediated PI3K/Akt activation, as did removal of calcium in the medium. In conclusion, Dapper1 attenuates hepatic gluconeogenesis and lipogenesis in T2D. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Polyphenol Content, Physicochemical Properties, Enzymatic Activity, Anthocyanin Profiles, and Antioxidant Capacity of Cerasus humilis (Bge. Sok. Genotypes

    Suwen Liu

    2018-01-01

    Full Text Available Seven varieties of Chinese dwarf cherries were evaluated and compared with respect to their weight, diameter, titratable acidity, total soluble solids, color, polyphenol contents, ascorbic acid levels, anthocyanin profiles, enzymatic activity, and antioxidant capacity. The fruits are rich in phenolic content (339.07–770.30 mg/100 g fresh weight. Nine anthocyanins were obtained from fruits after chromatographic separation and their structures analyzed using HPLC-ESI-MS/MS. Cyanidin-3-glucoside was the major anthocyanin with 50.36–78.39% concentration. Three anthocyanins were reported for the first time in these cherries. They exhibit low polyphenol oxidase and peroxidase activities, but their superoxide dismutase activity is high (572.75–800.17 U/g FW. The highest amounts of soluble solid content (15.67 Brix %, total titratable acid (1.90%, ascorbic acid (18.47 mg/100 g FW, and total anthocyanin (152.66 mg/100 g FW were observed. Three methods (DPPH-scavenging ability, oxygen radical absorbance capacity assay, and cellular antioxidant activity assay were employed to evaluate the antioxidant capacity of the phenolic extracts of these cherries. Number 5 has the highest values of ORAC and CAA of 205.68 μmol TE/g DM and 99.67 μmol QE/100 g FW, respectively.

  8. Warming and organic matter sources impact the proportion of dissolved to total activities in marine extracellular enzymatic rates

    Baltar, Federico

    2017-04-19

    Extracellular enzymatic activities (EEAs) are the rate-limiting step in the degradation of organic matter. Extracellular enzymes can be found associated to cells or dissolved in the surrounding water. The proportion of cell-free EEA constitutes in many marine environments more than half of the total activity. This high proportion causes an uncoupling between hydrolysis rates and the actual bacterial activity. However, we do not know what factors control the proportion of dissolved relative to total EEA, nor how this may change in the future ocean. To resolve this, we performed laboratory experiments with water from the Great Barrier Reef (Australia) to study the effects of temperature and dissolved organic matter sources on EEA and the proportion of dissolved EEA. We found that warming increases the rates of organic matter hydrolysis and reduces the proportion of dissolved relative to total EEA. This suggests a potential increase of the coupling between organic matter hydrolysis and heterotrophic activities with increasing ocean temperatures, although strongly dependent on the organic matter substrates available. Our study suggests that local differences in the organic matter composition in tropical coastal ecosystems will strongly affect the proportion of dissolved EEA in response to ocean warming.

  9. Activating transcription factor 3 is a target molecule linking hepatic steatosis to impaired glucose homeostasis.

    Kim, Ji Yeon; Park, Keon Jae; Hwang, Joo-Yeon; Kim, Gyu Hee; Lee, DaeYeon; Lee, Yoo Jeong; Song, Eun Hyun; Yoo, Min-Gyu; Kim, Bong-Jo; Suh, Young Ho; Roh, Gu Seob; Gao, Bin; Kim, Won; Kim, Won-Ho

    2017-08-01

    Non-alcoholic fatty liver disease (NAFLD) contributes to impaired glucose tolerance, leading to type 2 diabetes (T2D); however, the precise mechanisms and target molecules that are involved remain unclear. Activating transcription factor 3 (ATF3) is associated with β-cell dysfunction that is induced by severe stress signals in T2D. We aimed to explore the exact functional role of ATF3 as a mechanistic link between hepatic steatosis and T2D development. Zucker diabetic fatty (ZDF) rats were utilized for animal experiments. An in vivo-jetPEI siRNA delivery system against ATF3 was used for loss-of-function experiments. We analyzed the baseline cross-sectional data derived from the biopsy-proven NAFLD registry (n=322). Human sera and liver tissues were obtained from 43 patients with biopsy-proven NAFLD and from seven healthy participants. ATF3 was highly expressed in the livers of ZDF rats and in human participants with NAFLD and/or T2D. Insulin resistance and hepatic steatosis were associated with increased ATF3 expression and decreased fatty acid oxidation via mitochondrial dysfunction and were attenuated by in vivo ATF3 silencing. Knockdown of ATF3 also ameliorated glucose intolerance, impaired insulin action, and inflammatory responses in ZDF rats. In patients with NAFLD and/or T2D, a significant positive correlation was observed between hepatic ATF3 expression and surrogate markers of T2D, mitochondrial dysfunction, and macrophage infiltration. Increased hepatic ATF3 expression is closely associated with hepatic steatosis and incident T2D; therefore, ATF3 may serve as a potential therapeutic target for NAFLD and hepatic steatosis-induced T2D. Hepatic activating transcription factor 3 (ATF3) may play an important role in oxidative stress-mediated hepatic steatosis and the development of type 2 diabetes (T2D) in a Zucker diabetic fatty (ZDF) rat model and in human patients with non-alcoholic fatty liver disease (NAFLD). Therefore, ATF3 may be a useful biomarker for

  10. Longitudinal changes in PON1 enzymatic activities in Mexican-American mothers and children with different genotypes and haplotypes

    Huen, Karen; Harley, Kim; Bradman, Asa; Eskenazi, Brenda; Holland, Nina

    2010-01-01

    The paraoxonase 1 (PON1) enzyme prevents low-density lipoprotein oxidation and also detoxifies the oxon derivatives of certain neurotoxic organophosphate (OP) pesticides. PON1 activity in infants is low compared to adults, rendering them with lower metabolic and antioxidant capacities. We made a longitudinal comparison of the role of genetic variability on control of PON1 phenotypes in Mexican-American mothers and their children at the time of delivery (n = 388 and 338, respectively) and again 7 years later (n = 280 and 281, respectively) using generalized estimating equations models. At age 7, children's mean PON1 activities were still lower than those of mothers. This difference was larger in children with genotypes associated with low PON1 activities (PON1 -108TT , PON1 192QQ , and PON1 -909CC ). In mothers, PON1 activities were elevated at delivery and during pregnancy compared to 7 years later when they were not pregnant (p < 0.001). In non-pregnant mothers, PON1 polymorphisms and haplotypes accounted for almost 2-fold more variation of arylesterase (AREase) and chlorpyrifos-oxonase (CPOase) activity than in mothers at delivery. In both mothers and children, the five PON1 polymorphisms (192, 55, -108, -909, -162) explained a noticeably larger proportion of variance of paraoxonase activity (62-78%) than AREase activity (12.3-26.6%). Genetic control of PON1 enzymatic activity varies in children compared to adults and is also affected by pregnancy status. In addition to known PON1 polymorphisms, unidentified environmental, genetic, or epigenetic factors may also influence variability of PON1 expression and therefore susceptibility to OPs and oxidative stress.

  11. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system.

    Zeng, Lu S; Liao, Min; Chen, Cheng L; Huang, Chang Y

    2007-05-01

    The effect of lead (Pb) treatment on the soil enzymatic activities, soil microbial biomass, rice physiological indices and rice biomass were studied in a greenhouse pot experiment. Six levels of Pb viz. 0(CK), 100, 300, 500, 700, 900 mg/kg soil were applied in two types of paddy soils. The results showed that Pb treatment had a stimulating effect on soil enzymatic activities and microbial biomass carbon (Cmic) at low concentration and an inhibitory influence at higher concentration. The degree of influence on enzymatic activities and Cmic by Pb was related to the clay and organic matter contents of the soils. When the Pb treatment was raised to the level of 500 mg/kg, ecological risk appeared both to soil microorganisms and plants. The results also revealed a consistent trend of increased chlorophyll contents and rice biomass initially, maximum at a certain Pb treatment, and then decreased gradually with the increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. Therefore, it was concluded that soil enzymatic activities, Cmic and rice physiological indices, could be sensitive indicators to reflect environmental stress in soil-lead-rice system.

  12. The Membrane-anchored Serine Protease Prostasin (CAP1/PRSS8) Supports Epidermal Development and Postnatal Homeostasis Independent of Its Enzymatic Activity

    Peters, Diane E; Szabo, Roman; Friis, Stine

    2014-01-01

    The membrane-anchored serine protease prostasin (CAP1/PRSS8) is part of a cell surface proteolytic cascade that is essential for epithelial barrier formation and homeostasis. Here, we report the surprising finding that prostasin executes these functions independent of its own enzymatic activity. ...

  13. Enzymatic activities for lignin monomer intermediates highlight the biosynthetic pathway of syringyl monomers in Robinia pseudoacacia.

    Shigeto, Jun; Ueda, Yukie; Sasaki, Shinya; Fujita, Koki; Tsutsumi, Yuji

    2017-01-01

    Most of the known 4-coumarate:coenzyme A ligase (4CL) isoforms lack CoA-ligation activity for sinapic acid. Therefore, there is some doubt as to whether sinapic acid contributes to sinapyl alcohol biosynthesis. In this study, we characterized the enzyme activity of a protein mixture extracted from the developing xylem of Robinia pseudoacacia. The crude protein mixture contained at least two 4CLs with sinapic acid 4-CoA ligation activity. The crude enzyme preparation displayed negligible sinapaldehyde dehydrogenase activity, but showed ferulic acid 5-hydroxylation activity and 5-hydroxyferulic acid O-methyltransferase activity; these activities were retained in the presence of competitive substrates (coniferaldehyde and 5-hydroxyconiferaldehyde, respectively). 5-Hydroxyferulic acid and sinapic acid accumulated in the developing xylem of R. pseudoacacia, suggesting, in part at least, sinapic acid is a sinapyl alcohol precursor in this species.

  14. Conformational changes in a hyperthermostable glycoside hydrolase: enzymatic activity is a consequence of the loop dynamics and protonation balance.

    Leandro C de Oliveira

    Full Text Available Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5 was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105. In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features.

  15. Paraoxonase activity in patients with chronic renal failure and hepatic insufficiency

    Jamal, S.; Ishaq, M.; Hussain, S.M.W.; Alam, J.A.; Hussain, S.

    2010-01-01

    Paraoxonase (PON), a high density lipoprotein (HDL) associated enzyme, is believed to protect against the oxidation of low density lipoprotein (LDL) and hence affects the risk of vascular disease. PON is sensitive to oxidants and is inactivated by oxidized lipids, and thus it can be postulated that increased oxidative stress may decrease plasma PON activity in patients with chronic renal failure (CRF) and hepatic insufficiency (HI). Moreover, in CRF and HI patients, in contrast to normal individuals, higher levels of plasma biochemical parameters and liver enzymes had an inverse correlation with PON activity. In this study we aimed to investigate PON activity, total bilirubin, creatinine, urea and liver enzymes alanine aminotransferase and alkaline phosphatase that are the index of renal and hepatic insufficiency. We have analyzed plasma from pre-dialysis patients and compared the results with the normal individuals. We observed a positive association of PON activity with that of the disease state i.e. the activity of this enzyme was significantly lower in the patients (p < 0.001). Furthermore, the indicators of renal and hepatic insufficiency were significantly elevated as compared to the normal subjects. Based on our results we conclude that in CRF and HI, in contrast to normal individuals, higher levels of plasma biochemical parameters and liver enzymes had inverse correlation with PON activity. Collectively, these findings may add details to the understanding of the role that PON plays in chronic renal failure and hepatic insufficiency. (author)

  16. Does bilirubin prevent hepatic steatosis through activation of the PPARα nuclear receptor?

    Hinds, Terry D; Adeosun, Samuel O; Alamodi, Abdulhadi A; Stec, David E

    2016-10-01

    Several large population studies have demonstrated a negative correlation between serum bilirubin levels and the development of obesity, hepatic steatosis, and cardiovascular disease. Despite the strong correlative data demonstrating the protective role of bilirubin, the mechanism by which bilirubin can protect against these pathologies remains unknown. Bilirubin has long been known as a powerful antioxidant and also has anti-inflammatory actions, each of which may contribute to the protection afforded by increased levels. We have recently described a novel function of bilirubin as a ligand for the peroxisome proliferator-activated receptor-alpha (PPARα), which we show specifically binds to the nuclear receptor. Bilirubin may function as a selective PPAR modulator (SPPARM) to control lipid accumulation and blood glucose. However, it is not known to what degree bilirubin activation of PPARα is responsible for the protection afforded to reduce hepatic steatosis. We hypothesize that bilirubin, acting as a novel SPPARM, increases hepatic fatty acid metabolism through a PPARα-dependent mechanism which reduces hepatic lipid accumulation and protects against hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska; Levels, Johannes H.M.; Quax, Paul H.A.; Meijers, Joost C.M.; Pannekoek, Hans; Groen, Albert K.; Vries, Carlie J.M. de

    2008-01-01

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor, and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

  18. Experimental primers containing synthetic and natural compounds reduce enzymatic activity at the dentin–adhesive interface under cyclic loading

    Sousa, Ana Beatriz Silva; de Mattos Pimenta Vidal, Cristina; Leme-Kraus, Ariene Arcas; de Carvalho Panzeri Pires-de-Souza, Fernanda; Bedran-Russo, Ana K.

    2016-01-01

    Objective To evaluate the effect of experimental primers (chlorhexidine, enriched mixture of proanthocyanidins and doxycycline) on the adhesive properties and gelatinolytic activity at dentin-resin interfaces of occlusal Class I restorations. Methods The inactivation of enzymes by the experimental primers was assessed by fluorescence assay and gelatin zymography. To assess the adhesive properties, occlusal Class I cavities were prepared in sound human molars, etched with phosphoric acid and restored with one of the primers and an etch-and-rinse adhesive system (Adper Single Bond Plus - 3M ESPE). After the restorative procedures, the specimens were divided into two subgroups (n = 6) consisting of storage in incubation buffer or axial cyclic loading at 50 N and 1,000,000 cycles. Then, the sectioned and sliced specimens were assigned to in situ zymography assay and microtensile bond strength (TBS) test. Results Fluorescence assay and gelatin zymography revealed that the experimental primers inactivated rMMPs. In situ zymography (2-way ANOVA, Tukey, p 0.05). Significance The use of experimental primers impaired the enzymatic activity at the dentin-adhesive interface after cyclic loading and the activity of rMMPs. Cyclic loading did not have a significant effect on the bond strength. PMID:27524231

  19. Interaction with Single-stranded DNA-binding Protein Stimulates Escherichia coli Ribonuclease HI Enzymatic Activity

    Petzold, Christine; Marceau, Aimee H.; Miller, Katherine H.; Marqusee, Susan; Keck, James L. (UW-MED); (UCB)

    2015-04-22

    Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.

  20. The effect of ultraviolet treatment on enzymatic activity and total phenolic content of minimally processed potato slices.

    Teoh, Li Shing; Lasekan, Ola; Adzahan, Noranizan Mohd; Hashim, Norhashila

    2016-07-01

    In this work, potato slices were exposed to different doses of UV-C irradiation (i.e. 2.28, 6.84, 11.41, and 13.68 kJ m -2 ) with or without pretreatment [i.e. ascorbic acid and calcium chloride (AACCl) dip] and stored at 4 ± 1 °C. Changes in enzymatic activities of polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonia lyase (PAL), as well as total phenolic content (TPC) were investigated after 0, 3, 7 and 10 days of storage. Results showed that untreated and UV-C treated potato slices at 13.68 kJ m -2 dosage level showed significantly higher PPO, POD and PAL activities. Conversely, untreated potato slices showed the lowest TPC during storage period. Potato slices subjected to AACCl dip plus UV-C at 6.84 kJ m -2 produced lower PPO, POD and PAL activities, as well as maintained a high TPC during storage.

  1. beta-carotene does not change markers of enzymatic and nonenzymatic antioxidant activity in human blood

    Castenmiller, J.J.M.; Lauridsen, Søren T.; Dragsted, Lars O.

    1999-01-01

    and erythrocyte enzyme activities were assessed, and differences among experimental groups were tested. Consumption of spinach resulted in greater (P catalase activity and serum alpha-tocopherol concentration compared...... to an increased carotenoid (lutein and zeaxanthin) intake, but beta-carotene is unlikely to be a causative factor. Lower erythrocyte catalase activity after intervention with spinach products may be related to other constituents in spinach such as flavonoids....

  2. Endogenous n-3 polyunsaturated fatty acids attenuate T cell-mediated hepatitis via autophagy activation

    Yanli Li

    2016-09-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFAs exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A was administered intravenously to wild-type (WT and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase (ALT activity, and inhibited production of pro-inflammatory cytokines (e.g. TNF-α, IL-6, IL-17A and IFN-γ. In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism, and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  3. Hepatic Encephalopathy

    Full Text Available ... Disease Type 1 (von Gierke) Hemochromatosis Hepatic Encephalopathy Hepatitis A Hepatitis B Hepatitis C Intrahepatic Cholestasis of Pregnancy ( ... Disease Type 1 (von Gierke) Hemochromatosis Hepatic Encephalopathy Hepatitis A Hepatitis B Hepatitis C Intrahepatic Cholestasis of Pregnancy ( ...

  4. Fluoranthene induced changes in photosynthetic pigments, biochemical compounds and enzymatic activities in two microalgal species: Chlorella vulgaris Beijerinck and Desmodesmus subspicatus Chodat

    Miral Patel

    2014-02-01

    Full Text Available The photosynthetic pigments, biochemical and enzymatic activities in two freshwater microalgal species, Chlorella vulgaris and Desmodesmus subspicatus at different fluoranthene concentrations were compared with the control conditions. During 16-days of incubation period when treated with fluoranthene, both microalgal species exhibited variable amount of photosynthetic pigment, biochemical compounds and enzymatic activities. The addition of fluoranthene at concentrations ranged from 1.5 mg l-1; to 10 mg l-1; to microalgal cultures led to changes in all different metabolites but the patterns varied from species to species. Among the two species tested, pigment, biochemical and enzymatic contents were remarkably declined from 7 % to 95% in C. vulgaris. Moreover, all metabolites in D. subspicatus also diminishing significantly by 3% to 88% of fluoranthene doses (10ppm. These results suggest that fluoranthene-induced changes of pigments, biochemical and enzymatic variations in test microalgae, D. subspicatus and C. vulgaris, might reveal its resistance and ability to metabolize PAHs. At the same time, the PAH impact changes on different metabolic activities were higher at 12 and 16 days than at 4 and 8 days in treated microalgae. DOI: http://dx.doi.org/10.3126/ije.v3i1.9941 International Journal of Environment Vol.3(1 2014: 41-55

  5. Aldehyde PEGylation of laccase from Trametes versicolor in route to increase its stability: effect on enzymatic activity.

    Mayolo-Deloisa, Karla; González-González, Mirna; Simental-Martínez, Jesús; Rito-Palomares, Marco

    2015-03-01

    Laccase is a multicopper oxidase that catalyzes the oxidation of phenolic compounds. Laccase can be used in bioremediation, beverage (wine, fruit juice, and beer) processing, ascorbic acid determination, sugar beet pectin gelation baking, and as a biosensor. Recently, the antiproliferative activity of laccase toward tumor cells has been reported. Because of the potential applications of this enzyme, the efforts for enhancing and stabilizing its activity have increased. Thus, the PEGylation of laccase can be an alternative. PEGylation is the covalent attachment of one or more molecules of methoxy poly(ethylene glycol) (mPEG) to a protein. Normally, during the PEGylation reaction, the activity is reduced but the stability increases; thus, it is important to minimize the loss of activity. In this work, the effects of molar ratio (1:4, 1:8, and 1:12), concentration of laccase (6 and 12 mg/ml), reaction time (4 and 17 h), molecular weight, and type of mPEG (20, 30, 40 kDa and 40 kDa-branched) were analyzed. The activity was measured using three substrates: ABTS, 2,6-dimethoxyphenol, and syringaldazine. The best conditions for laccase PEGylation were 12 mg/ml of laccase, molar ratio 1:4, and 4 h reaction time. Under these conditions, the enzyme was able to maintain nearly 100% of its enzymatic activity with ABTS. The PEGylation of laccase has not been extensively explored, so it is important to analyze the effects of this bioconjugation in route to produce a robust modified enzyme. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Enzymatic activity of granulations tissues under low doses of radiation. Biochemical analysis in rats

    Tosoni, Guilherme Monteiro; Boscolo, Frab Norberto; Cury, Jaime Aparecido; Watanabe, Plauto Christopher Aranha

    1994-01-01

    This paper was designed to investigate in the rat subcutaneous sponge-induced granulation tissue under low doses of X-ray, the activity of alkaline phosphatase, 5'nucleotide phosphodiesterase and adenosine triphosphatase (ATPase) enzymes. One hundred and fourteen Wistar rats were divided into three groups, as follows: Group I as control, Group II that received single 7,14 R in split-dosis immediately after sponge-implantation at the third and fifth days postoperatively. Biopsies were taken after 7, 11, 14, 21 and 28 days and the activity of the three enzymes was determined. The results have shown that in Group II alkaline phosphatase had higher activity in the 14th day of tissue evolution when compared to Groups I and III . The 5'nucleotide phosphodiesterase activity in Group I was similar in all days checked, although in Group II the enzyme showed higher activity in 7th day and lower in 21st. In Group III the activity was higher after 14 and 7 days and lower after 28 and 21 days. There was no observation of changing in adenosine triphosphatase (ATPase) activity when the three groups were compared. (author)

  7. Methods, microfluidic devices, and systems for detection of an active enzymatic agent

    Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

    2014-10-28

    Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.

  8. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid.

    Yan Huang

    Full Text Available Glutamate decarboxylase (GAD catalyzes the irreversible decarboxylation of L-glutamate to the valuable food supplement γ-aminobutyric acid (GABA. In this study, GAD from Escherichia coli K12, a pyridoxal phosphate (PLP-dependent enzyme, was overexpressed in E. coli. The GAD produced in media supplemented with 0.05 mM soluble vitamin B6 analog pyridoxine hydrochloride (GAD-V activity was 154.8 U mL-1, 1.8-fold higher than that of GAD obtained without supplementation (GAD-C. Purified GAD-V exhibited increased activity (193.4 U mg-1, 1.5-fold higher than that of GAD-C, superior thermostability (2.8-fold greater than that of GAD-C, and higher kcat/Km (1.6-fold higher than that of GAD-C. Under optimal conditions in reactions mixtures lacking added PLP, crude GAD-V converted 500 g L-1 monosodium glutamate (MSG to GABA with a yield of 100%, and 750 g L-1 MSG with a yield of 88.7%. These results establish the utility of pyridoxine supplementation and lay the foundation for large-scale enzymatic production of GABA.

  9. Mapping Local Cytosolic Enzymatic Activity in Human Esophageal Mucosa with Porous Silicon Nanoneedles.

    Chiappini, Ciro; Campagnolo, Paola; Almeida, Carina S; Abbassi-Ghadi, Nima; Chow, Lesley W; Hanna, George B; Stevens, Molly M

    2015-09-16

    Porous silicon nanoneedles can map Cathepsin B activity across normal and tumor human esophageal mucosa. Assembling a peptide-based Cathepsin B cleavable sensor over a large array of nano-needles allows the discrimination of cancer cells from healthy ones in mixed culture. The same sensor applied to tissue can map Cathepsin B activity with high resolution across the tumor margin area of esophageal adenocarcinoma. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enzymatic activity of a novel halotolerant lipase from Haloarcula hispanica 2TK2

    Ozgen Melis

    2016-06-01

    Full Text Available A strain of Haloarcula hispanica isolated from Tuzkoy salt mine, Turkey exhibited extracellular lipolytic activity. Important parameters such as carbon sources and salt concentration for lipase production were investigated. Optimal conditions for the enzyme production from Haloarcula hispanica 2TK2 were determined. It was observed that the lipolytic activity of Haloarcula hispanica was stimulated by some of the carbon sources. The high lipase acitivity values were obtained in the presence of 2% (v/v walnut oil (6.16 U/ml, 1% (v/v fish oil (5.07 U/ml, 1% (v/v olive oil (4.52 U/ml and 1% (w/v stearic acid (4.88 U/ml at 4M NaCl concentration. Lipase was partially purified by ammonium sulfate precipitation and ultrafiltration. Optimal temperature and pH values were determined as 45°C and 8.0, respectively. Lipase activity decreased with the increasing salt concentration, but 85% activity of the enzyme was maintained at 5M NaCl concentration. The enzyme preserved 41% of its relative activity at 90°C. The partially purified lipase maintained its activity in the presence of surfactants such as Triton X-100 and SDS. Therefore, the lipase which is an extremozyme may have potential applications especially in detergent industry.

  11. Absorption of enzymatically active 125I-labeled bovine milk xanthine oxidase fed to rabbits

    Rzucidlo, S.J.; Zikakis, J.P.

    1990-01-01

    Rabbits fed a regular laboratory diet supplemented with a high-fat milk containing xanthine oxidase (XO) were studied to determine the presence of active XO in the blood. A pilot feeding study, where rabbits consumed a high-fat diet containing xanthine oxidase, showed a correlation between dairy food consumption and XO activity in the blood. Antibody to dietary XO was also found. In a second study, rabbits were fed ad libitum the high-fat milk and blood serum samples were tested weekly for XO activity. No elevation in serum XO activity was found. A third study showed that serum XO activity was increased when rabbits were force fed the high-fat milk. The final study consisted of force feeding 125 I-labeled XO to one rabbit to ascertain whether the observed increase in serum XO was due to dietary or endogenous XO. Isoelectric focusing of sera collected from the test rabbit strongly suggested that at least a portion of the serum XO contained the radioactive label. This is the first direct evidence showing the uptake of dietary active XO from the gut

  12. Irradiation effect on enzymatic activity of papain with 60Co-γ rays

    Furuta, Masakazu; Ohashi, Isao; Oka, Masahito; Hayashi, Toshio

    1998-01-01

    An investigation was made on the durability of enzyme activity against 60 Co-γ irradiation at a dose up to 55 kGy/h using dry powder and aqueous solution of papain preparations on the market. Hybrid materials including bioactive molecules combined with biocompatible synthetic polymers are expected to have biocompatible properties and also biomimetic functions as a component of artificial organs for human body. The activity of papain in an aqueous solution was rapidly decreased at the early stage of irradiation through oxidation of SH group at its active site with active oxygen produced by the irradiation and then, partially recovered since SH group was reproduced in an anoxic state after O 2 consumption in the solution irradiated at a high dose. A usual radiation method for sterilization was found applicable to decontamination of dry and frozen preparations of papain. When suitable conditions for radiation were chosen and N 2 gas was purged to suppress the formation of free radicals, it was possible to keep the enzyme activity at more than 50% of the initial activity after radiation at 30 kGy. (M.N.)

  13. Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells.

    Caligiuri, Alessandra; Bertolani, Cristiana; Guerra, Cristina Tosti; Aleffi, Sara; Galastri, Sara; Trappoliere, Marco; Vizzutti, Francesco; Gelmini, Stefania; Laffi, Giacomo; Pinzani, Massimo; Marra, Fabio

    2008-02-01

    Adiponectin limits the development of liver fibrosis and activates adenosine monophosphate-activated protein kinase (AMPK). AMPK is a sensor of the cellular energy status, but its possible modulation of the fibrogenic properties of hepatic stellate cells (HSCs) has not been established. In this study, we investigated the role of AMPK activation in the biology of activated human HSCs. A time-dependent activation of AMPK was observed in response to a number of stimuli, including globular adiponectin, 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), or metformin. All these compounds significantly inhibited platelet-derived growth factor (PDGF)-stimulated proliferation and migration of human HSCs and reduced the secretion of monocyte chemoattractant protein-1. In addition, AICAR limited the secretion of type I procollagen. Knockdown of AMPK by gene silencing increased the mitogenic effects of PDGF, confirming the negative modulation exerted by this pathway on HSCs. AMPK activation did not reduce PDGF-dependent activation of extracellular signal-regulated kinase (ERK) or Akt at early time points, whereas a marked inhibition was observed 24 hours after addition of PDGF, reflecting a block in cell cycle progression. In contrast, AICAR blocked short-term phosphorylation of ribosomal S6 kinase (p70(S6K)) and 4E binding protein-1 (4EBP1), 2 downstream effectors of the mammalian target of rapamycin (mTOR) pathway, by PDGF. The ability of interleukin-a (IL-1) to activate nuclear factor kappa B (NF-kappaB) was also reduced by AICAR. Activation of AMPK negatively modulates the activated phenotype of HSCs.

  14. Effects of treated industrial wastewaters and temperatures on growth and enzymatic activities of duckweed (Lemna minor L.).

    Basiglini, E; Pintore, M; Forni, C

    2018-05-30

    The efficacy of the removal of contaminants from wastewater depends on physico-chemical properties of pollutants and the efficiency of treatment plant. Sometimes, low amounts of toxic compounds can be still present in the treated sewage. In this work we considered the effects of contaminant residues in treated wastewaters and of temperatures on Lemna minor L. Treated effluent waters were collected, analyzed and used as duckweed growth medium. In order to better understand the effects of micropollutants and seasonal variation, the plants were grown under ambient conditions for seven days in summer and winter. Relative growth rate, pigments and phenolic compounds concentrations were determined, as well as the activities of catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (G-POD) and polyphenol oxidase (PPO). The pollutant concentrations varied in the two seasons, depending on the industrial and municipal activities and efficiency of treatments. Treated waters contained heavy metals, nitrogenous and phosphorus compounds, surfactants and hydrocarbons. Compared to the control, duckweed growth of treated plants decreased by 25% in summer, while in the winter due to the lower temperatures and the presence of pollutants was completely impeded. The amounts of photosynthetic pigments of treated plants were not significantly affected in the summer, while they were higher than the control in the winter when the effluent had a high nitrogen amount. High CAT activity was registered in both seasons. Treated plants had significantly lower APX activity in the summer (53%) and winter (59%) respect to the controls. The observed inhibition of the peroxidase activities in the exposed plants, confirms the controversy existing in the literature about the variability of enzymatic response in stress condition. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Peroxisome Proliferator-Activated Receptors and Hepatitis C Virus-Induced Insulin Resistance

    Francesco Negro

    2009-01-01

    Full Text Available Insulin resistance and type 2 diabetes are associated with hepatitis C virus infection. A wealth of clinical and experimental data suggests that the virus is directly interfering with the insulin signalling in hepatocytes. In the case of at least one viral genotype (the type 3a, insulin resistance seems to be directly mediated by the downregulation of the peroxisome proliferator-activated receptor γ. Whether and how this interaction may be manipulated pharmacologically, in order to improve the responsiveness to antivirals of insulin resistant chronic hepatitis C, patients remain to be fully explored.

  16. Prevalence and risk factors of previous or active Hepatitis B infection ...

    Background: Hepatitis B Virus (HBV) and HIV spread in the same manner, but HBV is more infectious than HIV-1. Active HBV requires modification of HIV-1 therapy and is associated with increased risk for sexual transmission of HBV. Objective: To determine the prevalence and knowledge of HBV among HIV-1 discordant ...

  17. Melatonin suppresses activation of hepatic stellate cells through ROR alpha-mediated inhibition of 5-lipoxygenase

    Shajari, Shiva; Laliena, Almudena; Heegsma, Janette; Jesus Tunon, Maria; Moshage, Han; Faber, Klaas Nico

    2015-01-01

    Liver fibrosis is scar tissue resulting from an uncontrolled wound-healing process in response to chronic liver injury. Liver damage generates an inflammatory reaction that activates hepatic stellate cells (HSC) that transdifferentiate from quiescent cells that control retinol metabolism to

  18. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARγ

    Kim, Kook Hwan; Hong, Sung Pyo; Kim, KyeongJin; Park, Min Jung; Kim, Kwang Jin; Cheong, JaeHun

    2007-01-01

    Hepatic steatosis is a common feature in patients with chronic hepatitis C virus (HCV) infection. HCV core protein plays an important role in the development of hepatic steatosis in HCV infection. Because SREBP1 (sterol regulatory element binding protein 1) and PPARγ (peroxisome proliferators-activated receptor γ) are involved in the regulation of lipid metabolism of hepatocyte, we sought to determine whether HCV core protein may impair the expression and activity of SREBP1 and PPARγ. In this study, it was demonstrated that HCV core protein increases the gene expression of SREBP1 not only in Chang liver, Huh7, and HepG2 cells transiently transfected with HCV core protein expression plasmid, but also in Chang liver-core stable cells. Furthermore, HCV core protein enhanced the transcriptional activity of SREBP1. In addition, HCV core protein elevated PPARγ transcriptional activity. However, HCV core protein had no effect on PPARγ gene expression. Finally, we showed that HCV core protein stimulates the genes expression of lipogenic enzyme and fatty acid uptake associated protein. Therefore, our finding provides a new insight into the mechanism of hepatic steatosis by HCV infection

  19. Thermodependence of growth and enzymatic activities implicated in pathogenicity of two Erwinia carotovora subspecies (Pectobacterium spp.).

    Smadja, Bruno; Latour, Xavier; Trigui, Sameh; Burini, Jean François; Chevalier, Sylvie; Orange, Nicole

    2004-01-01

    Erwinia carotovora subsp. atroseptica and Erwinia carotovora subsp. carotovora can cause substantial damage to economically important plant crops and stored products. The occurrence of the disease and the scale of the damage are temperature dependent. Disease development consists first of active multiplication of the bacteria in the infection area and then production of numerous extracellular enzymes. We investigated the effects of various temperatures on these two steps. We assayed the specific growth rate and the pectate lyase and protease activities for eight strains belonging to E. carotovora subsp. atroseptica and E. carotovora subsp. carotovora in vitro. The temperature effect on growth rate and on pectate lyase activity is different for the two subspecies, but protease activity appears to be similarly thermoregulated. Our results are in agreement with ecological data implicating E. carotovora subsp. atroseptica in disease when the temperature is below 20 degrees C. The optimal temperature for pathogenicity appears to be different from the optimal growth temperature but seems to be a compromise between this temperature and temperatures at which lytic activities are maximal.

  20. Antioxidant activity of camel milk casein before and after in vitro simulated enzymatic digestion

    Zeineb Jrad

    2014-11-01

    Full Text Available The effect of a successive in vitro hydrolysis by pepsin and pancreatin on the free radical scavenging activity of camel milk casein was investigated in order to assess the effect of gastro-intestinal digestion. Hydrolysis of camel casein was controlled by reversed-phase high performance liquid chromatography. Anti-oxidant activity was measured by the 2,2’-azino-bis-(3-ethylbensothiazoline-6- sulfonic acid (ABTS method. The Trolox equivalent antioxidant capacity (TEAC values of camel casein and its hydrolysate were 1.6±0.12 μmol TE/mg protein and 0.25 μmol TE/μmol eq. NH2, respectively. After digestion, the scavenging activity of the casein peptides was more efficient than those reported in the literature regarding digestive hydrolysates of camel milk, colostrum and whey proteins.

  1. Neuronal CCL2 is upregulated during hepatic encephalopathy and contributes to microglia activation and neurological decline.

    McMillin, Matthew; Frampton, Gabriel; Thompson, Michelle; Galindo, Cheryl; Standeford, Holly; Whittington, Eric; Alpini, Gianfranco; DeMorrow, Sharon

    2014-07-10

    Acute liver failure leads to systemic complications with one of the most dangerous being a decline in neurological function, termed hepatic encephalopathy. Neurological dysfunction is exacerbated by an increase of toxic metabolites in the brain that lead to neuroinflammation. Following various liver diseases, hepatic and circulating chemokines, such as chemokine ligand 2 (CCL2), are elevated, though their effects on the brain following acute liver injury and subsequent hepatic encephalopathy are unknown. CCL2 is known to activate microglia in other neuropathies, leading to a proinflammatory response. However, the effects of CCL2 on microglia activation and the pathogenesis of hepatic encephalopathy following acute liver injury remain to be determined. Hepatic encephalopathy was induced in mice via injection of azoxymethane (AOM) in the presence or absence of INCB 3284 dimesylate (INCB), a chemokine receptor 2 inhibitor, or C 021 dihydrochloride (C021), a chemokine receptor 4 inhibitor. Mice were monitored for neurological decline and time to coma (loss of all reflexes) was recorded. Tissue was collected at coma and used for real-time PCR, immunoblots, ELISA, or immunostaining analyses to assess the activation of microglia and consequences on pro-inflammatory cytokine expression. Following AOM administration, microglia activation was significantly increased in AOM-treated mice compared to controls. Concentrations of CCL2 in the liver, serum, and cortex were significantly elevated in AOM-treated mice compared to controls. Systemic administration of INCB or C021 reduced liver damage as assessed by serum liver enzyme biochemistry. Administration of INCB or C021 significantly improved the neurological outcomes of AOM-treated mice, reduced microglia activation, reduced phosphorylation of ERK1/2, and alleviated AOM-induced cytokine upregulation. These findings suggest that CCL2 is elevated systemically following acute liver injury and that CCL2 is involved in both the

  2. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Dolinska, Monika B; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V

    2014-01-01

    Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. The intra-melanosomal domain of human tyrosinase (residues 19-469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  3. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Monika B Dolinska

    Full Text Available Tyrosinase (TYR catalyzes the rate-limiting, first step in melanin production and its gene (TYR is mutated in many cases of oculocutaneous albinism (OCA1, an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes.The intra-melanosomal domain of human tyrosinase (residues 19-469 and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure.The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  4. Enzymatic degradation of cellulose for thermophilic actinomycete: isolation, characterization and cellulolytic activity determination

    Pablo Ramírez

    2013-06-01

    Full Text Available One hundred and forty five cellulolytic thermophilic actinomycete strains were isolated from 71 compost, soil, hay and dung samples. Streptomyces sp. (50,63%, Thermomonospora curvata (15,82%, T. chromogena (13,92%, and other species were identified. Endoglucanase, exoglucanase and β-glucosidase activities were evaluated from 10 cellulolytic actinomycete strains. Among these the Streptomyces sp. 7CMC10 strain showed the biggest activity levels corresponding to 20,14; 2,61 and 5,40 UI/mg of protein, respectively.

  5. Microbial functional diversity and enzymatic activity of soil degraded by sulphur mining reclaimed with various waste

    Joniec, Jolanta; Frąc, Magdalena

    2017-10-01

    The aim of the study was to evaluate microbial functional diversity based on community level physiological profiling and β-glucosidase activity changes in soil degraded by sulphur mining and subjected to reclamation with various waste. The experiment was set up in the area of the former `Jeziórko' Sulphur Mine (Poland), on a soilless substrate with a particle size distribution of slightly loamy sand. The experimental variants included the application of post-flotation lime, sewage sludge and mineral wool. The analyses of soil samples included the assessment of the following microbiological indices: β-glucosidase activity and functional diversity average well color development and richness). The results indicate that sewage sludge did not exert a significant impact on the functional diversity of microorganisms present in the reclaimed soil. In turn, the application of other types of waste contributed to a significant increase in the parameters of total metabolic activity and functional diversity of the reclaimed soil. However, the temporal analysis of the metabolic profile of soil microorganisms demonstrated that a single application of waste did not yield a durable, stable metabolic profile in the reclaimed soil. Still, there was an increase in β-glucosidase activity, especially in objects treated with sewage sludge.

  6. Insecticidal effects of Moroccan plant extracts on development, energy reserves and enzymatic activities of Plodia interpunctella

    Bouayard, N.; Rharrabe, K.; Ghailani, N. N.; Jbilou, R.; Castanera, P.; Ortego, F.

    2013-05-01

    The aim of this work was to study the effects of methanol extracts of ten plant species used in traditional medicine in Morocco (Peganum harmala, Ajuga iva, Rosmarinus officinalis, Lavandula stoechas, Lavandula dentata, Cistus ladanifer, Cistus salviaefolius, Cistus monspeliensis, Centaurium erythraea and Launaea arborescens) on Plodia interpunctella Hubner (Lepidoptera: Pyralidae) larvae. Firstly, we studied the effects of the ingestion of these extracts at 500 ppm on post-embryonic development parameters. Most plant extracts provoked a notable decrease of larval weight 8 days after treatment (up to 33% weight loss with C. erythraea) and caused significant alterations on pupation (ranging from 5% to 85%) and adult emergence (below 2.5% with R. officinalis, C. erythraea and A. iva). The plant extracts that showed strongest effects on post-embryonic development were selected to test their effects on the following physiological parameters: larval reserve substances (at 500 ppm); and midgut activities of hydrolytic and detoxification enzymes (at 500, 750 and 1000 ppm). All treatments provoked a significant reduction of protein and carbon hydrate larval contents, the inhibition of proteases and {alpha}-amylase activities in a dose depended manner, and the induction of glutathione S-transferase and esterase (using MtB as substrate) activities, whereas the activity of cytochrome P450 monooxygenases and esterases (using 1-NA as substrate) increase or decrease depending on the extract concentration and the plant analyzed. (Author) 65 refs.

  7. Insecticidal effects of Moroccan plant extracts on development, energy reserves and enzymatic activities of Plodia interpunctella

    N. Bouayad

    2012-10-01

    Full Text Available The aim of this work was to study the effects of methanol extracts of ten plant species used in traditional medicine in Morocco (Peganum harmala, Ajuga iva, Rosmarinus officinalis, Lavandula stoechas, Lavandula dentata, Cistus ladanifer, Cistus salviaefolius, Cistus monspeliensis, Centaurium erythraea and Launaea arborescens on Plodia interpunctella Hübner (Lepidoptera: Pyralidae larvae. Firstly, we studied the effects of the ingestion of these extracts at 500 ppm on post-embryonic development parameters. Most plant extracts provoked a notable decrease of larval weight 8 days after treatment (up to 33% weight loss with C. erythraea and caused significant alterations on pupation (ranging from 5% to 85% and adult emergence (below 2.5% with R. officinalis, C. erythraea and A. iva. The plant extracts that showed strongest effects on post-embryonic development were selected to test their effects on the following physiological parameters: larval reserve substances (at 500 ppm; and midgut activities of hydrolytic and detoxification enzymes (at 500, 750 and 1000 ppm. All treatments provoked a significant reduction of protein and carbon hydrate larval contents, the inhibition of proteases and α-amylase activities in a dose depended manner, and the induction of glutathione S-transferase and esterase (using MtB as substrate activities, whereas the activity of cytochrome P450 monooxygenases and esterases (using 1-NA as substrate increase or decrease depending on the extract concentration and the plant analyzed.

  8. Influence of gallic and tannic acids on enzymatic activity and growth ...

    The effect of phenolic acids (gallic and tannic acids) on growth of Pectobacterium chrysanhemi, and its protease and pectate lyase activities was tested. The results obtained showed a significant inhibiting effect of the tannic and gallic acids on the growth of this strain. The growth rate decreases in the presence of 400 g/ml ...

  9. The enzymatic degradation of excess activated sludge : A tale of worms

    De Valk, S.L.

    2013-01-01

    The activated sludge process is the most used process to remove organic carbon, nutrients and other pollutants from sewage and also from many industrial waste waters. The organic fraction of waste water is aerobically respired and partly converted into biomass. The surplus biomass is a by-product of

  10. Soil nitrogen mineralization and enzymatic activities in fire and fire surrogate treatments in California

    J. R. Miesel; R. E. J. Boerner; C. N. Skinner

    2011-01-01

    Forest thinning and prescribed fire are management strategies used to reduce hazardous fuel loads and catastrophic wildfires in western mixed-conifer forests. We evaluated effects of thinning (Thin) and prescribed fire (Burn), alone and in combination (Thin+Burn), on N transformations and microbial enzyme activities relative to an untreated control (Control) at 1 and 3...

  11. Impact of potato cultivation and cattle farming on physicochemical parameters and enzymatic activities of Neotropical high Andean Páramo ecosystem soils.

    Avellaneda-Torres, Lizeth Manuela; León Sicard, Tomás Enrique; Torres Rojas, Esperanza

    2018-08-01

    The Andean Páramos are high mountain ecosystems whose soils are essential for the management of South American water resources, but research on anthropic impacts to these soils is currently minimal and insufficient. The objective of this study was to evaluate the impacts of potato (Solanum tuberosum) cultivation and livestock on the physicochemical parameters and enzymatic activities that determine the soil quality of the Neotropical high Andean Páramo ecosystem in the Nevados National Natural Park (Nevados NNP) in Colombia. It was hypothesised that sites with potato crops and livestock farming would exhibit significant changes in soil physicochemical parameters and enzymatic activities compared with Páramo sites that have been conserved without agriculture. Samples were collected from soils under potato cultivation, livestock and Páramo (subject to the lowest degree of human intervention possible), on three farms in the El Bosque District at three different altitudes (Buenos Aires, El Edén and La Secreta) during two seasons (dry and rainy). The results showed that none of the physical parameters under study presented statistically significant differences due to the type of use (livestock, potato crop or Páramo), season of sampling (dry or rainy season) or altitude (different farms). The chemical parameters that statistically significantly differed due to land use were organic carbon, cation exchange capacity, calcium, potassium, and ammonium and those that showed statistically significant differences associated with the sampling timing were organic carbon, nitrogen, cation exchange capacity, total carbon, C/N and nitrate. Additionally, there were differences in organic carbon due to the altitude of the farms. With respect to enzymatic activities, those of β-glucosidase, phosphodiesterase and urease significantly decreased in soils under potato cultivation and livestock relative to those of Páramo, but those of acid phosphatase and protease increased

  12. Expression of the enzymatically active legumain-like cysteine proteinase TvLEGU-1 of Trichomonas vaginalis in Pichia pastoris.

    Reséndiz-Cardiel, Gerardo; Arroyo, Rossana; Ortega-López, Jaime

    2017-06-01

    The legumain-like cysteine proteinase TvLEGU-1 from Trichomonas vaginalis plays a major role in trichomonal cytoadherence. However, its structure-function characterization has been limited by the lack of a reliable recombinant expression platform to produce this protein in its native folded conformation. TvLEGU-1 has been expressed in Escherichia coli as inclusion bodies and all efforts to refold it have failed. Here, we describe the expression of the synthetic codon-optimized tvlegu-1 (tvlegu-1-opt) gene in Pichia pastoris strain X-33 (Mut+) under the inducible AOX1 promoter. The active TvLEGU-1 recombinant protein (rTvLEGU-1) was secreted into the medium when tvlegu-1-opt was fused to the Aspergillus niger alpha-amylase signal peptide. The rTvLEGU-1 secretion was influenced by the gene copy number and induction temperature. Data indicate that increasing tvlegu-1-opt gene copy number was detrimental for heterologous expression of the enzymatically active TvLEGU-1. Indeed, expression of TvLEGU-1 had a greater impact on cell viability for those clones with 26 or 29 gene copy number, and cell lysis was observed when the induction was carried out at 30 °C. The enzyme activity in the medium was higher when the induction was carried out at 16 °C and in P. pastoris clones with lower gene copy number. The results presented here suggest that both copy number and induction temperature affect the rTvLEGU-1 expression in its native-like and active conformation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Plant Sterols: Chemical and Enzymatic Structural Modifications and Effects on Their Cholesterol-Lowering Activity.

    He, Wen-Sen; Zhu, Hanyue; Chen, Zhen-Yu

    2018-03-28

    Plant sterols have attracted increasing attention due to their excellent cholesterol-lowering activity. However, free plant sterols have some characteristics of low oil solubility, water insolubility, high melting point, and low bioavailability, which greatly limit their application in foods. Numerous studies have been undertaken to modify their chemical structures to improve their chemical and physical properties in meeting the needs of various applications. The present review is to summarize the literature and update the progress on structural modifications of plant sterols in the following aspects: (i) synthesis of plant sterol esters by esterification and transesterification with hydrophobic fatty acids and triacylglycerols to improve their oil solubility, (ii) synthesis of plant sterol derivatives by coupling with various hydrophilic moieties to enhance their water solubility, and (iii) mechanisms by which plant sterols reduce plasma cholesterol and the effect of structural modifications on plasma cholesterol-lowering activity of plant sterols.

  14. Does limited virucidal activity of biocides include duck hepatitis B virucidal action?

    Sauerbrei Andreas

    2012-10-01

    Full Text Available Abstract Background There is agreement that the infectivity assay with the duck hepatitis B virus (DHBV is a suitable surrogate test to validate disinfectants for hepatitis B virucidal activity. However, since this test is not widely used, information is necessary whether disinfectants with limited virucidal activity also inactivate DHBV. In general, disinfectants with limited virucidal activity are used for skin and sensitive surfaces while agents with full activity are more aggressive. The present study compares the activity of five different biocides against DHBV and the classical test virus for limited virucidal activity, the vaccinia virus strain Lister Elstree (VACV or the modified vaccinia Ankara strain (MVA. Methods Virucidal assay was performed as suspension test according to the German DVV/RKI guideline. Duck hepatitis B virus obtained from congenitally infected Peking ducks was propagated in primary duck embryonic hepatocytes and was detected by indirect immunofluorescent antigen staining. Results The DHBV was inactivated by the use of 40% ethanol within 1-min and 30% isopropanol within 2-min exposure. In comparison, 40% ethanol within 2-min and 40% isopropanol within 1-min exposure were effective against VACV/MVA. These alcohols only have limited virucidal activity, while the following agents have full activity. 0.01% peracetic acid inactivated DHBV within 2 min and a concentration of 0.005% had virucidal efficacy against VACV/MVA within 1 min. After 2-min exposure, 0.05% glutardialdehyde showed a comparable activity against DHBV and VACV/MVA. This is also the case for 0.7% formaldehyde after a contact time of 30 min. Conclusions Duck hepatitis B virus is at least as sensitive to limited virucidal activity as VACV/MVA. Peracetic acid is less effective against DHBV, while the alcohols are less effective against VACV/MVA. It can be expected that in absence of more direct tests the results may be extrapolated to HBV.

  15. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    Balasingham, Seetha V; Zegeye, Ephrem Debebe; Homberset, Håvard; Rossi, Marie L; Laerdahl, Jon K; Bohr, Vilhelm A; Tønjum, Tone

    2012-01-01

    XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+)/Mn(2+). Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  16. Enzymatic activities and DNA substrate specificity of Mycobacterium tuberculosis DNA helicase XPB.

    Seetha V Balasingham

    Full Text Available XPB, also known as ERCC3 and RAD25, is a 3' → 5' DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB, a 3'→5' DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg(2+/Mn(2+. Consistent with the 3'→5' polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3' overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3' DNA tail, it was not active on substrates containing a 3' RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB.

  17. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities

    Liu Feng [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.co [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Tao Ran; Zhao Jianliang; Yang Jifeng [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Zhao Lanfeng [College of Resource and Environmental Science, South China Agricultural University, Guangzhou 510642 (China)

    2009-05-15

    The potential impact of six antibiotics (chlortetracycline, tetracycline and tylosin; sulfamethoxazole, sulfamethazine and trimethoprim) on plant growth and soil quality was studied by using seed germination test on filter paper and plant growth test in soil, soil respiration and phosphatase activity tests. The phytotoxic effects varied between the antibiotics and between plant species (sweet oat, rice and cucumber). Rice was most sensitive to sulfamethoxazole with the EC10 value of 0.1 mg/L. The antibiotics tested inhibited soil phosphatase activity during the 22 days' incubation. Significant effects on soil respiration were found for the two sulfonamides (sulfamethoxazole and sulfamethazine) and trimethoprim, whereas little effects were observed for the two tetracyclines and tylosin. The effective concentrations (EC10 values) for soil respiration in the first 2 days were 7 mg/kg for sulfamethoxazole, 13 mg/kg for sulfamethazine and 20 mg/kg for trimethoprim. Antibiotic residues in manure and soils may affect soil microbial and enzyme activities. - Terrestrial ecotoxicological effects of antibiotics are related to their sorption and degradation behavior in soil.

  18. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities

    Liu Feng; Ying Guangguo; Tao Ran; Zhao Jianliang; Yang Jifeng; Zhao Lanfeng

    2009-01-01

    The potential impact of six antibiotics (chlortetracycline, tetracycline and tylosin; sulfamethoxazole, sulfamethazine and trimethoprim) on plant growth and soil quality was studied by using seed germination test on filter paper and plant growth test in soil, soil respiration and phosphatase activity tests. The phytotoxic effects varied between the antibiotics and between plant species (sweet oat, rice and cucumber). Rice was most sensitive to sulfamethoxazole with the EC10 value of 0.1 mg/L. The antibiotics tested inhibited soil phosphatase activity during the 22 days' incubation. Significant effects on soil respiration were found for the two sulfonamides (sulfamethoxazole and sulfamethazine) and trimethoprim, whereas little effects were observed for the two tetracyclines and tylosin. The effective concentrations (EC10 values) for soil respiration in the first 2 days were 7 mg/kg for sulfamethoxazole, 13 mg/kg for sulfamethazine and 20 mg/kg for trimethoprim. Antibiotic residues in manure and soils may affect soil microbial and enzyme activities. - Terrestrial ecotoxicological effects of antibiotics are related to their sorption and degradation behavior in soil.

  19. Enzymatic activities associated with arm regeneration and calcification in the starfish Asterias forbesi

    Donachy, J.E.

    1988-01-01

    The enzymes studied include Ka + , K + -ATPase, Ca 2+ -ATPase, Mg 2+ -ATPase, alkaline phosphatase and carbonic anhydrase. Each enzyme was examined for change in specific activity during salinity acclimation and arm regeneration. The effect of enzyme inhibition on 45 Ca deposition onto the calcified ossicles was examined and the enzymes were localized at the electron microscopic level. A. forbesi lacks a ouabain sensitive, Mg 2+ -dependent Ka + , K + -ATPase but possesses Mg 2+ -ATPase. Mg 2+ -ATPase was not affected by salinity and did not change during arm regeneration. A high affinity Ca 2+ -ATPase is also lacking in this starfish, but a low affinity form is present. Ca 2+ -ATPase is not involved in salinity acclimation of calcification, but may be involved in the would healing phase of arm regeneration. Alkaline phosphatase activity is not affected by salinity. Inhibition of this enzyme results in a significant increase in 45 Ca deposition onto the ossicles. During the early phase of arm regeneration, alkaline phosphatase activity increased significantly but gradually returned to control levels by 60 days post-autotomy

  20. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  1. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  2. pCO2 and enzymatic activity in a river floodplain system of the Danube under different hydrological settings.

    Sieczko, Anna; Demeter, Katalin; Mayr, Magdalena; Meisterl, Karin; Peduzzi, Peter

    2014-05-01

    Surface waters may serve as either sinks or sources of CO2. In contrast to rivers, which are typically sources of CO2 to the atmosphere, the role of fringing floodplains in CO2 flux is largely understudied. This study was conducted in a river-floodplain system near Vienna (Austria). The sampling focused on changing hydrological situations, particularly on two distinct flood events: a typical 1-year flood in 2012 and an extraordinary 100-year flood in 2013. One objective was to determine partial pressure of CO2 (pCO2) in floodplain lakes with different degree of connectivity to the main channel, and compare the impact of these two types of floods. Another aim was to decipher which fraction of the dissolved organic matter (DOM) pool contributed to pCO2 by linking pCO2 with optical properties of DOM and extracellular enzymatic activity (EEA) of microbes. The EEA is a valuable tool, especially for assessing the non-chromophoric but rapidly utilized DOM-fraction during floods. In 2012 and 2013, the floodplain lakes were dominated by supersaturated pCO2 conditions, which indicates that they served as CO2 sources. Surprisingly, there were no significant differences in pCO2 between the two types of flood. Our findings imply that the extent of the flood had minor impact on pCO2, but the general occurrence of a flood appears to be important. During the flood in 2013 significantly more dissolved organic carbon (DOC) (pcarbohydrates.

  3. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor.

    Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D

    2014-09-01

    The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst.

    Jose L S Lopes

    Full Text Available Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required.

  5. Comparison of mitochondrial and nucleolar RNase MRP reveals identical RNA components with distinct enzymatic activities and protein components.

    Lu, Qiaosheng; Wierzbicki, Sara; Krasilnikov, Andrey S; Schmitt, Mark E

    2010-03-01

    RNase MRP is a ribonucleoprotein endoribonuclease found in three cellular locations where distinct substrates are processed: the mitochondria, the nucleolus, and the cytoplasm. Cytoplasmic RNase MRP is the nucleolar enzyme that is transiently relocalized during mitosis. Nucleolar RNase MRP (NuMRP) was purified to homogeneity, and we extensively purified the mitochondrial RNase MRP (MtMRP) to a single RNA component identical to the NuMRP RNA. Although the protein components of the NuMRP were identified by mass spectrometry successfully, none of the known NuMRP proteins were found in the MtMRP preparation. Only trace amounts of the core NuMRP protein, Pop4, were detected in MtMRP by Western blot. In vitro activity of the two enzymes was compared. MtMRP cleaved only mitochondrial ORI5 substrate, while NuMRP cleaved all three substrates. However, the NuMRP enzyme cleaved the ORI5 substrate at sites different than the MtMRP enzyme. In addition, enzymatic differences in preferred ionic strength confirm these enzymes as distinct entities. Magnesium was found to be essential to both enzymes. We tested a number of reported inhibitors including puromycin, pentamidine, lithium, and pAp. Puromycin inhibition suggested that it binds directly to the MRP RNA, reaffirming the role of the RNA component in catalysis. In conclusion, our study confirms that the NuMRP and MtMRP enzymes are distinct entities with differing activities and protein components but a common RNA subunit, suggesting that the RNA must be playing a crucial role in catalytic activity.

  6. Enzymatic activity and gene expression changes in zebrafish embryos and larvae exposed to pesticides diazinon and diuron.

    Velki, Mirna; Meyer-Alert, Henriette; Seiler, Thomas-Benjamin; Hollert, Henner

    2017-12-01

    The zebrafish as a test organism enables the investigation of effects on a wide range of biological levels from molecular level to the whole-organism level. The use of fish embryos represents an attractive model for studies aimed at understanding toxic mechanisms and the environmental risk assessment of chemicals. In the present study, a zebrafish (Danio rerio) in vivo model was employed in order to assess the effects of two commonly used pesticides, the insecticide diazinon and the herbicide diuron, on zebrafish early life stages. Since it was previously established that diazinon and diuron cause effects at the whole-organism level, this study assessed the suborganismic responses to exposure to these pesticides and the enzymatic responses (biochemical level) and the gene expression changes (molecular level) were analyzed. Different exposure scenarios were employed and the following endpoints measured: acetylcholinesterase (AChE), carboxylesterase (CES), ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), catalase (CAT) and glutathione peroxidase (GPx) activities; and gene expressions of the corresponding genes: acetylcholinesterase (ache), carboxylesterase (ces2), cytochrome P450 (cyp1a), glutathione-S-transferase (gstp1), catalase (cat), glutathione peroxidase (gpx1a) and additionally glutathione reductase (gsr). Significant changes at both the biochemical and the molecular level were detected. In addition, different sensitivities of different developmental stages of zebrafish were determined and partial recovery of the enzyme activity 48h after the end of the exposure was observed. The observed disparity between gene expression changes and alterations in enzyme activities points to the necessity of monitoring changes at different levels of biological organization. Different exposure scenarios, together with a comparison of the responses at the biochemical and molecular level, provide valuable data on the effects of diazinon and diuron on low

  7. Oral administration of Saccharomyces boulardii alters duodenal morphology, enzymatic activity and cytokine production response in broiler chickens.

    Sun, Yajing; Rajput, Imran Rashid; Arain, Muhammad Asif; Li, Yanfei; Baloch, Dost Muhammad

    2017-08-01

    The present study evaluated the effects of Saccharomyces boulardii on duodenal digestive enzymes, morphology and cytokine induction response in broiler chicken. A total of 200 birds were allotted into two groups (n = 100) and each group divided into five replications (n = 20). The control group was fed basal diet in addition to antibiotic (virginiamycin 20 mg/kg), and treatment group received (1 × 10 8  colony-forming units/kg feed) S. boulardii in addition to basal diet lasting for 72 days. The results compared to control group revealed that adenosine triphosphatase, gamma glutamyl transpeptidase, lipase and trypsin activities were higher, while, no significant improvement was observed in amylase activities in the duodenum of the treatment group. Moreover, morphological findings showed that villus height, width and number of goblet cells markedly increased. Additionally, transmission electron microscopy visualized that villus height, width and structural condensation significantly increased in the treatment group. The immunohistological observations showed increased numbers of immunoglobulin A (IgA)-positive cells in the duodenum of the treatment group. Meanwhile, cytokine production levels of tumor necrosis factor-α, interleukin (IL)-10, transforming growth factor-β and secretory IgA markedly increased, and IL-6 statistically remained unchanged as compared to the control group. These findings illustrated that initial contact of S. boulardii to the duodenum has significant impact in improving enzymatic activity, intestinal morphology and cytokine response in broiler chicken. © 2016 Japanese Society of Animal Science.

  8. Ionone Derivatives from the Mycelium of Phellinus linteus and the Inhibitory Effect on Activated Rat Hepatic Stellate Cells

    Shiow-Chyn Huang

    2016-05-01

    Full Text Available Three new γ-ionylideneacetic acid derivatives, phellinulins A–C (1–3, were characterized from the mycelium extract of Phellinus linteus. The chemical structures were established based on the spectroscopic analysis. In addition, phellinulin A (1 was subjected to the examination of effects on activated rat hepatic stellate cells and exhibited significant inhibition of hepatic fibrosis.

  9. Screening for Genes Coding for Putative Antitumor Compounds, Antimicrobial and Enzymatic Activities from Haloalkalitolerant and Haloalkaliphilic Bacteria Strains of Algerian Sahara Soils

    Okba Selama

    2014-01-01

    Full Text Available Extreme environments may often contain unusual bacterial groups whose physiology is distinct from those of normal environments. To satisfy the need for new bioactive pharmaceuticals compounds and enzymes, we report here the isolation of novel bacteria from an extreme environment. Thirteen selected haloalkalitolerant and haloalkaliphilic bacteria were isolated from Algerian Sahara Desert soils. These isolates were screened for the presence of genes coding for putative antitumor compounds using PCR based methods. Enzymatic, antibacterial, and antifungal activities were determined by using cultural dependant methods. Several of these isolates are typical of desert and alkaline saline soils, but, in addition, we report for the first time the presence of a potential new member of the genus Nocardia with particular activity against the yeast Saccharomyces cerevisiae. In addition to their haloalkali character, the presence of genes coding for putative antitumor compounds, combined with the antimicrobial activity against a broad range of indicator strains and their enzymatic potential, makes them suitable for biotechnology applications.

  10. The mechanism of action of lymphokines. IX. The enzymatic basis of hydrogen peroxide production by lymphokine-activated macrophages.

    Freund, M; Pick, E

    1986-08-15

    The purpose of this study was to elucidate the biochemical basis of the enhanced hydrogen peroxide (H2O2) production by guinea pig peritoneal macrophages (MP) cultured in lymphokine (LK)-containing medium. The markedly augmented H2O2 generation by these cells, demonstrable by the horseradish peroxidase (HRP)-catalyzed oxidation of phenol red, is distinguished by its lack of dependence on a second stimulus. We demonstrate that H2O2 production is truly spontaneous and is not caused by a stimulant present among the H2O2 assay reagents. The principal candidate for such a role was HRP type II (a mixture of five isoenzymes) that was reported to be capable of eliciting an oxidative burst in MP. Four distinct HRP isoenzymes that were found incapable of provoking an oxidative response were nevertheless adequate for demonstrating H2O2 production by LK-activated MP. Blocking the MP receptor for mannose by the addition of mannan to the assay system resulted in enhanced detection of H2O2 by low concentrations of HRP type II and by three out of four HRP isoenzymes. Treatment of MP with LK-containing medium for 72 hr did not result in a significant change in the activity of cellular superoxide dismutase (SOD) compared with MP cultured for the same length of time in control medium. By using the specific inhibitor of copper, zinc-containing SOD, sodium diethyldithiocarbamate (DDC), and the universal SOD inhibitor, sodium nitroprusside, we found that the predominant enzyme in guinea pig peritoneal MP is probably manganese-containing SOD. Incubation of LK-activated MP with nitroprusside resulted in almost total inhibition of H2O2 production and a simultaneous switch to superoxide (O2-) liberation. Similar exposure to DDC had no effect. These data indicate that H2O2 produced by LK-activated MP is derived exclusively by enzymatic dismutation of O2- mediated by a manganese-containing SOD. The increase in spontaneous H2O2 production induced by LK is therefore secondary to augmented O2

  11. Evolution of Enzymatic Activities in the Enolase Superfamily: L-Rhamnonate Dehydratase

    Rakus,J.; Fedorov, A.; Fedorov, E.; Glaner, M.; Hubbard, B.; Delli, J.; Babbitt, P.; Almo, S.; Gerlt, J.

    2008-01-01

    The l-rhamnonate dehydratase (RhamD) function was assigned to a previously uncharacterized family in the mechanistically diverse enolase superfamily that is encoded by the genome of Escherichia coli K-12. We screened a library of acid sugars to discover that the enzyme displays a promiscuous substrate specificity: l-rhamnonate (6-deoxy-l-mannonate) has the 'best' kinetic constants, with l-mannonate, l-lyxonate, and d-gulonate dehydrated less efficiently. Crystal structures of the RhamDs from both E. coli K-12 and Salmonella typhimurium LT2 (95% sequence identity) were obtained in the presence of Mg2+; the structure of the RhamD from S. typhimurium was also obtained in the presence of 3-deoxy-l-rhamnonate (obtained by reduction of the product with NaBH4). Like other members of the enolase superfamily, RhamD contains an N-terminal a + {beta} capping domain and a C-terminal ({beta}/a)7{beta}-barrel (modified TIM-barrel) catalytic domain with the active site located at the interface between the two domains. In contrast to other members, the specificity-determining '20s loop' in the capping domain is extended in length and the '50s loop' is truncated. The ligands for the Mg2+ are Asp 226, Glu 252 and Glu 280 located at the ends of the third, fourth and fifth {beta}-strands, respectively. The active site of RhamD contains a His 329-Asp 302 dyad at the ends of the seventh and sixth {beta}-strands, respectively, with His 329 positioned to function as the general base responsible for abstraction of the C2 proton of l-rhamnonate to form a Mg2+-stabilized enediolate intermediate. However, the active site does not contain other acid/base catalysts that have been implicated in the reactions catalyzed by other members of the MR subgroup of the enolase superfamily. Based on the structure of the liganded complex, His 329 also is expected to function as the general acid that both facilitates departure of the 3-OH group in a syn-dehydration reaction and

  12. Evolution of Enzymatic Activities in the Enolase Superfamily: L-Fuconate Dehydratase from Xanthomonas campestris

    Yew,W.; Fedorov, A.; Fedorov, E.; Rakus, J.; Pierce, R.; Almo, S.; Gerlt, J.

    2006-01-01

    Many members of the mechanistically diverse enolase superfamily have unknown functions. In this report the authors use both genome (operon) context and screening of a library of acid sugars to assign the L-fuconate dehydratase (FucD) function to a member of the mandelate racemase (MR) subgroup of the superfamily encoded by the Xanthomonas campestris pv. campestris str. ATCC 33913 genome (GI: 21233491). Orthologues of FucD are found in both bacteria and eukaryotes, the latter including the rTS beta protein in Homo sapiens that has been implicated in regulating thymidylate synthase activity. As suggested by sequence alignments and confirmed by high-resolution structures in the presence of active site ligands, FucD and MR share the same active site motif of functional groups: three carboxylate ligands for the essential Mg2+ located at the ends of th third, fourth, and fifth-strands in the (/)7-barrel domain (Asp 248, Glu 274, and Glu 301, respectively), a Lys-x-Lys motif at the end of the second-strand (Lys 218 and Lys 220), a His-Asp dyad at the end of the seventh and sixth-strands (His 351 and Asp 324, respectively), and a Glue at the end of the eighth-strand (Glu 382). The mechanism of the FucD reaction involves initial abstraction of the 2-proton by Lys 220, acid catalysis of the vinylogous-elimination of the 3-OH group by His 351, and stereospecific ketonization of the resulting 2-keto-3-deoxy-L-fuconate product. Screening of the library of acid sugars revealed substrate and functional promiscuity: In addition to L-fuconate, FucD also catalyzes the dehydration of L-galactonate, D-arabinonate, D-altronate, L-talonate, and D-ribonate. The dehydrations of L-fuconate, L-galactonate, and D-arabinonate are initiated by abstraction of the 2-protons by Lys 220. The dehydrations of L-talonate and D-ribonate are initiated by abstraction of the 2-protons by His 351; however, protonation of the enediolate intermediates by the conjugate acid of Lys 220 yields L

  13. Development of Targeted, Enzyme-Activated Nano-Conjugates for Hepatic Cancer Therapy

    Kuruvilla, Sibu Philip

    Hepatocellular carcinoma (HCC) is the 5th most commonly-occurring cancer worldwide and the 2nd highest cause for cancer-related deaths globally. The current treatment strategy is the direct injection of a chemotherapeutic agent (e.g. doxorubicin; DOX) into the hepatic artery, through a process called hepatic arterial infusion (HAI). Unfortunately, HAI is severely hindered by limited therapeutic efficacy against the tumor and high systemic toxicity to surrounding organs (e.g. cardiotoxicity). This thesis focuses on the development of a targeted, nanoparticle-based drug delivery system aimed to improve the clinical treatment of HCC. In particular, we employ generation 5 (G5) poly(amido amine) (PAMAM) dendrimers targeted to hepatic cancer cells via N-acetylgalactosamine (NAcGal) ligands attached to the surface through a poly(ethylene glycol) (PEG) brush. DOX is attached to the G5 surface through two different enzyme-sensitive linkages, L3 or L4, to achieve controllable release of the drug inside hepatic cancer cells. The combination of NAcGal-PEG targeting branches with either L3- or L4-DOX linkages led to the development of P1 and P2 particles, respectively. In Part 1, we discuss the development of these particles and measure their ability to target and kill hepatic cancer cells in vitro. In Part 2, we investigate the antitumor activity of P1 and P2 particles in tumor-bearing mice in comparison to the free drug, and we measure the cardiac function of mice undergoing treatment to assess differences in DOX-induced cardiotoxicity. Finally, in Part 3, we explore multi-valent targeting of G5 dendrimers in pursuit of further improving their specificity to hepatic cancer cells. Ultimately, this thesis provides insight into the utility of nanoparticle-based drug delivery systems that can potentially be translated to the clinic to improve cancer therapy.

  14. Enzymatic Activity Enhancement of Non-Covalent Modified Superoxide Dismutase and Molecular Docking Analysis

    Fa-Jun Song

    2012-03-01

    Full Text Available The enzyme activity of superoxide dismutase was improved in the pyrogallol autoxidation system by about 27%, after interaction between hydroxypropyl-β-cyclo- dextrin and superoxide dismutase. Fluorescence spectrometry was used to study the interaction between hydroxypropyl-β-cyclodextrin and superoxide dismutase at different temperatures. By doing this, it can be found that these interactions increase fluorescence sensitivity. In the meantime, the synchronous fluorescence intensity revealed the interaction sites to be close to the tryptophan (Trp and tyrosine (Tyr residues of superoxide dismutase. Furthermore, molecular docking was applied to explore the binding mode between the ligands and the receptor. This suggested that HP-β-CD interacted with the B ring, G ring and the O ring and revealed that the lysine (Lys residues enter the nanocavity. It was concluded that the HP-β-CD caused specific conformational changes in SOD by non-covalent modification.

  15. Benzoic Acid Derivatives with Trypanocidal Activity: Enzymatic Analysis and Molecular Docking Studies toward Trans-Sialidase

    Muhammad Kashif

    2017-10-01

    Full Text Available Chagas, or American trypanosomiasis, remains an important public health problem in developing countries. In the last decade, trans-sialidase has become a pharmacological target for new anti-Chagas drugs. In this work, the aims were to design and find a new series of benzoic acid derivatives as trans-sialidase (TS inhibitors and anti-trypanosomal agents. Three compounds (14, 18, and 19 sharing a para-aminobenzoic acid moiety showed more potent trypanocidal activity than the commercially available drugs nifurtimox and benznidazole in both strains: the lysis concentration of 50% of the population (LC50 was <0.15 µM on the NINOA strain, and LC50 < 0.22 µM on the INC-5 strain. Additionally, compound 18 showed a moderate inhibition (47% on the trans-sialidase enzyme and a binding model similar to DANA (pattern A.

  16. Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase.

    Murata, Takayuki; Isomura, Hiroki; Yamashita, Yoriko; Toyama, Shigenori; Sato, Yoshitaka; Nakayama, Sanae; Kudoh, Ayumi; Iwahori, Satoko; Kanda, Teru; Tsurumi, Tatsuya

    2009-06-20

    The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.

  17. PLASMA INSULIN AND IGF-1 AND HEPATIC ACTIVITY IN SAANEN GOAT KIDS, AROUND WEANING

    Damiano Magistrelli

    2009-02-01

    Full Text Available Weaning is a crucial event in the life of young ruminants. At weaning ruminal and digestive activity are still incomplete, so weaning may coincide with a period of growth stasis. Since insulin and insulin-like growth factor 1 (IGF-1 can play a fundamental role in post-natal development, the aim of the present study was to evaluate plasma variations of insulin and IGF-1 levels and their relationships with the hepatic activity, around weaning.For this purpose, eleven 3-days-old Saanen goat kids were randomly divided into MILK (6 animals and WMIX (5 animals groups. All kids were fed goat milk to age 29 days. After that, MILK kids continued to receive milk, while WMIX ones underwent weaning, based on the progressive replacement of milk with solid feed. WMIX kids were completely weaned on day 48. Blood samples were weekly analyzed for metabolic traits, insulin and IGF-1 levels, alanine aminotransferase (ALT and aspartate aminotransferase (AST activities. On day 50, all animals were slaughtered, liver weight was recorded and liver samples were analyzed for DNA, RNA, phospholipids, glicogen and soluble protein content, ALT and AST activity.On day 50, plasma insulin and IGF-1 were lower in WMIX group, as possible consequence of the lower plasma glucose and amino acids levels. Liver weight was not different between groups, but liver weight expressed as percentage of body weight was lower in WMIX kids and highly correlated to plasma IGF-1. Liver glycogen was also lower in WMIX kids, as possible consequence of the lower plasma glucose.Hepatic ALT and AST activities were not different between groups and both were strongly correlated to plasma insulin. Moreover, insulin was positively correlated to the proteosynthetic capability per cell (RNA/DNA of the liver.Our results indicate that the adopted livestock practice permitted the normal development of the animal used, avoiding growth stasis. Anyway, weaning altered plasma insulin and IGF-1, without affecting

  18. E. coli-Derived L-Asparaginase Retains Enzymatic and Cytotoxic Activity In Vitro for Canine and Feline Lymphoma after Cold Storage

    Jackie M. Wypij

    2013-01-01

    Full Text Available Background. L-asparaginase is effective in treating canine and feline lymphoma, however chemotherapy poses a significant financial cost to veterinary clients, limiting therapy for many pets. Single dose vials result in significant drug wastage, and drug shortages limit consistent availability for pets. Hypothesis. E. coli-derived asparaginase retains enzymatic and antineoplastic activity in canine and feline lymphoma cells after cold storage. Methods. E. coli-derived asparaginase was cold-stored: refrigeration (7–14 days and freezing (14 days–six months, one to three freeze/thaw cycles. Enzymatic activity of asparaginase was measured via a modified asparagine assay. Effects of cold-stored asparaginase on cell proliferation and cytotoxicity were measured in feline (MYA-1, F1B and canine (17–71, OSW lymphoma cells. Results. Cold-stored E. coli-derived asparaginase retains antineoplastic activity in all four cell lines tested. Cold-stored E. coli-derived L-asparaginase depletes asparagine and retains enzymatic activity. Duration of refrigeration, duration of freezing, and number of freeze-thaw cycles have minimal effect on asparaginase enzyme activity. Conclusions and Clinical Importance. This study establishes a scientific basis for long-term cold storage of reconstituted E. coli-derived asparaginase that may result in better utilization of limited drug resources and improve financial feasibility of E. coli-derived asparaginase as a therapeutic option for pets with lymphoma.

  19. Phospholipase C produced by Clostridium botulinum types C and D: comparison of gene, enzymatic, and biological activities with those of Clostridium perfringens alpha-toxin.

    Fatmawati, Ni Nengah Dwi; Sakaguchi, Yoshihiko; Suzuki, Tomonori; Oda, Masataka; Shimizu, Kenta; Yamamoto, Yumiko; Sakurai, Jun; Matsushita, Osamu; Oguma, Keiji

    2013-01-01

    Clostridium botulinum type C and D strains recently have been found to produce PLC on egg yolk agar plates. To characterize the gene, enzymatic and biological activities of C. botulinum PLCs (Cb-PLCs), the cb-plc genes from 8 strains were sequenced, and 1 representative gene was cloned and expressed as a recombinant protein. The enzymatic and hemolytic activities of the recombinant Cb-PLC were measured and compared with those of the Clostridium perfringens alpha-toxin. Each of the eight cb-plc genes encoded a 399 amino acid residue protein preceded by a 27 residue signal peptide. The protein consists of 2 domains, the N- and C-domains, and the overall amino acid sequence identity between Cb-PLC and alpha-toxin was greater than 50%, suggesting that Cb-PLC is homologous to the alpha-toxin. The key residues in the N-domain were conserved, whereas those in the C-domain which are important in membrane interaction were different than in the alpha-toxin. As expected, Cb-PLC could hydrolyze egg yolk phospholipid, p-nitrophenylphosphorylcholine, and sphingomyelin, and also exhibited hemolytic activity;however, its activities were about 4- to over 200-fold lower than those of alpha-toxin. Although Cb-PLC showed weak enzymatic and biological activities, it is speculated that Cb-PLC might play a role in the pathogenicity of botulism or for bacterial survival.

  20. A mini-review of anti-hepatitis B virus activity of medicinal plants

    Manzer H. Siddiqui

    2017-01-01

    Full Text Available Medicinal plants are of undoubted value, as they have been used for centuries to treat various diseases and health disorders in almost every part of the world. In several studies, the use of medicinal plants was found effective in treatment of infectious and non-infectious diseases. The World Health Organization has been working for many years to identify all surviving medicinal plants on the earth. An important step has also been taken by the Natural Health Product Regulation of Canada for promotion and usages of natural products. At present, the rapidly growing population of the world is facing many challenges from various infectious diseases that are associated with hepatitis A, B and C virus, human immunodeficiency virus, influenza virus, dengue virus and new emerging viruses. Hepatitis B virus causes a severe and frequently transmittable disease of the liver. Millions of people worldwide suffer from hepatitis B virus (HBV infection. The drugs available on the market for the treatment of hepatitis B are not sufficient and also cause side effects in patients suffering from HBV infection. The pharmaceutical companies are searching for suitable alternative and natural inhibitors of HBV. Therefore, it is important to explore and use plants as a source of new medicines to treat this infectious disease, because single plants contain a priceless pool of active ingredients which could help in the production of pharmaceutical-grade peptides or proteins. However, the knowledge of the antiviral activity of medicinal plants is still limited.

  1. Rotation of nucleotide sites is not required for the enzymatic activity of chloroplast coupling factor

    Musier, K.M.; Hammes, G.G.

    1987-09-22

    New heterobifunctional photoaffinity cross-linking reagents, 6-maleimido-N-(4-benzoylphenyl)hexanamide, 12-maleimido-N-(4-benzoylphenyl)dodecanamide, and 12-(/sup 14/C)maleimido-N-(4-benzoylphenyo)dodecanamide, were synthesized to investigate the mechanism of ATP hydrolysis by chloroplast coupling factor 1. These reagents react with sulfhydryl groups on the ..gamma..-polypeptide. Subsequent photolysis cross-links the ..gamma..-polypeptide covalently to ..cap alpha..- and ..beta..-polypeptides. The cross-linkers prevent major movements of the ..gamma..-polypeptide with respect to the ..cap alpha..- and ..beta..-polypeptides but are sufficiently long to permit some flexibility in the enzyme structure. When approx. 50% of the ..gamma..-polypeptide was cross-linked to a ..cap alpha..- and ..beta..-polypeptides, a 7% loss in ATPase activity was observed for the longer cross-linker and a 12% loss for the shorter. These results indicate that large movements of ..cap alpha..- and ..beta..-polypeptides with respect to the ..gamma..-polypeptide are not essential for catalysis. In particular, rotation of the polypeptide chains to crease structurally equivalent sites during catalysis is not a required feature of the enzyme mechanism.

  2. Enzymatic studies on phosphorus availability from phosphate compounds by microbial activities using nuclear techniques

    Abou Seer, A.M.M.

    2002-01-01

    the present study aimed to evaluate to evaluate the of phosphate solubilizing bacteria (PSB) and vesicular arbuscular mycorrhizae(VAM) as microbiological mean to convert the sparingly soluble P into available from utilized by plant through excretion of acid and alkaline phosphatase. rock phosphate as natural and a cheap source of P- fertilizer was applied in the present study. To trace the effect of microbial activity and phosphatase enzymes on phosphate availability from its compounds , set of experiments were conducted either in the lab. or green house. The obtained results could be summarized as following:- 1- phosphate solubilizing bacteria(PSB) w isolated from samples of fertile soil, 16 colonies showed positive reaction were chosen .2- bacteria , which exhibited high phosphate clearing zone (PCZ) selected to detect their efficiencies for dissolving rock phospate and select the effective one (most potent) on the basis of highest production of phosphatase and phosphorus solubilization.3- identification of the most potent (pseudomonas aeruginosa) 4- effective environmental and nutritional factors on phosphatase production by pseudomonas aeruginosa were discussed.green-house experiment: inoculation of wheat (triticum aestivum cv.sakha 8) with either PSB and /or VAM with or without rock-P fertilization was under taken. dual inoculation with psb (pseudomonas aeruginosa) and VAM improved the dry matter yield and N and P uptake by wheat as compared to other treatments. application of psb as well as VAM increased the availability of rock phosphate to be utilized by wheat

  3. Coculture of Bifidobacterium longum and Bifidobacterium breve alters their protein expression profiles and enzymatic activities.

    Ruiz, Lorena; Sánchez, Borja; de Los Reyes-Gavilán, Clara G; Gueimonde, Miguel; Margolles, Abelardo

    2009-07-31

    Some strains of the genus Bifidobacterium are probiotic bacteria commonly added to functional dairy products. The influence of coculturing Bifidobacterium longum NCIMB8809 and Bifidobacterium breve NCIMB8807 on their physiology was studied. 2DE separation of protein extracts, coupled to MS protein analysis allowed the identification of 16 proteins whose expression drastically changed when cells were grown in compartmentalized coculture, compared to monoculture. These included ribosomal proteins and proteins involved in carbohydrate metabolism, gene regulation, cell envelope biogenesis and transport processes. Significant changes in some glycoside-hydrolysing activities (beta-d-xylopyranosidase, alpha-l-arabinofuranosidase and beta-d-glucopyranosidase) were also detected. Furthermore, qRT-PCR experiments using as targets the B. breve genes clgR (transcriptional regulator) clpP1, clpP2 and clpC (chaperone- and protease-encoding genes positively regulated by clgR) supported the proteomic results, the four genes displaying a higher expression level in coculture. This study provides new insights to understand the communication among Bifidobacterium species.

  4. Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil.

    He, Wenxiang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-07-01

    Perfluorooctanoic acid (PFOA) is a widespread persistent organic contaminant in the environment that has recently raised much of regulatory and public concern. Therefore, assessment of its ecological risk is a top priority research. Hence, this study investigated the toxicity of PFOA to beneficial microbial processes in the soil such as activities of dehydrogenase, urease and potential nitrification in addition to earthworm survival, weight loss and PFOA bioaccumulation in two contrasting soils. In general, PFOA caused inhibition of all the measured microbial processes in a dose-dependent manner and the inhibition was higher in Williamtown (WT) soil than Edinburgh (EB) soil. Thus, WT soil being sandy in nature with low clay content showed higher PFOA bioavailability and hence showed higher toxicity. There was no mortality in earthworms exposed up to 100 mg PFOA/kilogram soil in both the soils; however, there was a significant weight loss from 25 mg/kg onwards. This study clearly demonstrates that soil contamination of PFOA can lead to adverse effects on soil health.

  5. Correlation between the dielectric properties and biological activities of human ex vivo hepatic tissue

    Wang, Hang; You, Fusheng; Fu, Feng; Dong, Xiuzhen; Shi, Xuetao; He, Yong; Yang, Min; Yan, Qingguo

    2015-01-01

    Dielectric properties are vital biophysical features of biological tissues, and biological activity is an index to ascertain the active state of tissues. This study investigated the potential correlation between the dielectric properties and biological activities of human hepatic tissue with prolonged ex vivo time through correlation and regression analyses. The dielectric properties of 26 cases of normal human hepatic tissue at 10 Hz to 100 MHz were measured from 15 min after isolation to 24 h at 37 °C with 90% humidity. Cell morphologies, including nucleus area (NA) and alteration rate of intercellular area (ICAR), were analyzed as indicators of biological activities. Conductivity, complex resistivity, and NA exhibited opposing changes 1 h after isolation. Relative permittivity and ex vivo time were not closely correlated (p > 0.05). The dielectric properties measured at low frequencies (i.e. <1 MHz) were more sensitive than those measured at high frequencies in reflecting the biological activity of ex vivo tissue. Highly significant correlations were found between conductivity, resistivity and the ex vivo time (p < 0.05) as well as conductivity and the cell morphology (p < 0.05). The findings indicated that establishing the correlation between the dielectric properties and biological activities of human hepatic tissue is of great significance for promoting the role of dielectric properties in biological science, particularly in human biology. (paper)

  6. Induction of mast cell accumulation by chymase via an enzymatic activity- and intercellular adhesion molecule-1-dependent mechanism.

    Zhang, Huiyun; Wang, Junling; Wang, Ling; Zhan, Mengmeng; Li, Shigang; Fang, Zeman; Xu, Ciyan; Zheng, Yanshan; He, Shaoheng

    2018-02-01

    Chymase is a unique, abundant secretory product of mast cells and a potent chemoattractant for eosinophils, monocytes and neutrophils, but little is known of its influence on mast cell accumulation. A mouse peritoneal inflammation model, cell migration assay and flowcytometry analysis, were used to investigate the role of chymase in recruiting mast cells. Chymase increased, by up to 5.4-fold, mast cell numbers in mouse peritoneum. Inhibitors of chymase, heat-inactivation of the enzyme, sodium cromoglycate and terfenadine, and pretreatment of mice with anti-intercellular adhesion molecule 1, anti-L-selectin, anti-CD11a and anti-CD18 antibodies dramatically diminished the chymase-induced increase in mast cell accumulation. These findings indicate that this effect of chymase is dependent on its enzymatic activity and activation of adhesion molecules. In addition, chymase provoked a significant increase in 5-HT and eotaxin release (up to 1.8- and 2.2-fold, respectively) in mouse peritoneum. Since 5-HT, eotaxin and RANTES can induce marked mast cell accumulation, these indirect mechanisms may also contribute to chymase-induced mast cell accumulation. Moreover, chymase increased the trans-endothelium migration of mast cells in vitro indicating it also acts as a chemoattractant. The finding that mast cells accumulate in response to chymase implies further that chymase is a major pro-inflammatory mediator of mast cells. This effect of chymase, a major product of mast cell granules, suggests a novel self-amplification mechanism for mast cell accumulation in allergic inflammation. Mast cell stabilizers and inhibitors of chymase may have potential as a treatment of allergic disorders. © 2017 The British Pharmacological Society.

  7. Common HEXB polymorphisms reduce serum HexA and HexB enzymatic activities, potentially masking Tay-Sachs disease carrier identification.

    Vallance, Hilary; Morris, Tara J; Coulter-Mackie, Marion; Lim-Steele, Joyce; Kaback, Michael

    2006-02-01

    A DNA-proven Tay-Sachs disease (TSD) carrier and his brother were found to have serum percent Hexosaminidase A (%HexA) enzymatic activities in the non-carrier range, while the leukocyte %HexA profiles clearly identified them as TSD heterozygotes. Both their serum HexA and HexB enzymatic activities were below reference range, suggesting inheritance of mutations in both the HEXA (alpha-subunit) and HEXB (beta-subunit) genes. DNA sequencing revealed that both individuals, carried the common HEXA 1277_1278insTATC mutation, and two common HEXB polymorphisms: [619A>G (+) delTG]. To determine if these HEXB polymorphisms reduce HexA and HexB enzymatic activities, 69 DNA samples from subjects previously screened enzymatically in both serum and leukocytes for TSD carrier status were selected for either high, mid-range or low serum Total Hex (defined as the sum of HexA and HexB) activities and were tested for the HEXB mutations. Further, three additional TSD carriers ascertained by the atypical pattern of normal serum %HexA but carrier leukocyte %HexA, were found to have the [delTG (+) 619A>G] genotype. In addition, the frequency of the [delTG (+) 619A>G] genotype was significantly higher (P G] haplotype in the Ashkenazi Jewish population (approximately 10%), up to 10% of TSD carriers may have normal serum %HexA values with low total Hex. Accordingly, serum %HexA should not be the sole criterion used for carrier status determination. Where total Hex activity is reduced, further testing with leukocyte Hex profiles is indicated.

  8. Evaluation of the Protective Role of Vitamin C on the Metabolic and Enzymatic Activities of the Liver in the Male Rats After Exposure to 2.45 GHz Of Wi-Fi Routers

    Shekoohi-Shooli F.

    2016-09-01

    Full Text Available Background: The use of devices emitted microwave radiation such as mobile phones, wireless fidelity (Wi-Fi routers, etc. is increased rapidly. It has caused a great concern; the researchers should identify its effects on people’s health. We evaluated the protective role of Vitamin C on the metabolic and enzymatic activities of the liver after exposure to Wi-Fi routers. Material and Methods: 70 male Wistar rats weighing 200-250 g were randomly divided into 7 groups (10 rats in each group.The first stage one –day test: Group A (received vitamin C 250 mg/kg/day orally together with 8- hour/day Wi-Fi exposure. Group B (exposed to Wi-Fi radiation. Group C (received vitamin C. Group D or Control (was neither exposed to radiation of Wi-Fi modem nor did receive vitamin C. The second phase of experiment had done for five consecutive days. It involved Group E (received vitamin C, Group F (exposed to Wi-Fi radiation, Group G (received vitamin C together with Wi-Fi radiation. The distance between animals’ restrainers was 20 cm away from the router antenna. Finally, blood samples were collected and assayed the level of hepatic enzymes including alkaline phosphatase(ALP, alanine amino transferase(ALT aspartate amino transferase (ASL, gamma glutamyl transferase (GGT and the concentration of Blood Glucose, Cholesterol , Triglyceride(TG,High density lipoprotein (HDLand low density lipoprotein (LDL. Results: Data obtained from the One day test showed an increase in concentration of blood glucose, decrease in Triglyceride level and GGT factor (P<0.05, however no observed significant difference on the Cholesterol , HDL , LDL level and hepatic enzymes activities in compare to control group. Groups of the five-day test showed reduction in the amount of blood glucose, elevation of cholesterol level and LDL relative to control group(P<0.05. Conclusion: WiFi exposure may exert alternations on the metabolic parameters and hepatic enzymes activities through stress

  9. Evolution of Enzymatic Activities in the Enolase Superfamily: D-Mannonate Dhydratase from Novosphingobium aromaticivorans

    Rakus,J.; Fedorov, A.; Fedorov, E.; Glasner, M.; Vick, J.; Babbitt, P.; Almo, S.; Gerlt, J.

    2007-01-01

    The d-mannonate dehydratase (ManD) function was assigned to a group of orthologous proteins in the mechanistically diverse enolase superfamily by screening a library of acid sugars. Structures of the wild type ManD from Novosphingobium aromaticivorans were determined at pH 7.5 in the presence of Mg2+ and also in the presence of Mg2+ and the 2-keto-3-keto-d-gluconate dehydration product; the structure of the catalytically active K271E mutant was determined at pH 5.5 in the presence of the d-mannonate substrate. As previously observed in the structures of other members of the enolase superfamily, ManD contains two domains, an N-terminal a+{beta} capping domain and a ({beta}/a)7{beta}-barrel domain. The barrel domain contains the ligands for the essential Mg2+, Asp 210, Glu 236, and Glu 262, at the ends of the third, fourth, and fifth {beta}-strands of the barrel domain, respectively. However, the barrel domain lacks both the Lys acid/base catalyst at the end of the second {beta}-strand and the His-Asp dyad acid/base catalyst at the ends of the seventh and sixth {beta}-strands, respectively, that are found in many members of the superfamily. Instead, a hydrogen-bonded dyad of Tyr 159 in a loop following the second {beta}-strand and Arg 147 at the end of the second {beta}-strand are positioned to initiate the reaction by abstraction of the 2-proton. Both Tyr 159 and His 212, at the end of the third {beta}-strand, are positioned to facilitate both syn-dehydration and ketonization of the resulting enol intermediate to yield the 2-keto-3-keto-d-gluconate product with the observed retention of configuration. The identities and locations of these acid/base catalysts as well as of cationic amino acid residues that stabilize the enolate anion intermediate define a new structural strategy for catalysis (subgroup) in the mechanistically diverse enolase superfamily. With these differences, we provide additional evidence that the ligands for the essential Mg2+ are the only

  10. Hepatic steatosis development with four weeks of physical inactivity in previously active, hyperphagic OLETF rats.

    Linden, Melissa A; Meers, Grace M; Ruebel, Meghan L; Jenkins, Nathan T; Booth, Frank W; Laughlin, M Harold; Ibdah, Jamal A; Thyfault, John P; Rector, R Scott

    2013-05-01

    Physical activity-induced prevention of hepatic steatosis is maintained during short-term (7-day) transitions to an inactive state; however, whether these protective effects are present under a longer duration of physical inactivity is largely unknown. Here, we sought to determine whether previous physical activity had protective effects on hepatic steatosis and metabolic health following 4 wk of physical inactivity. Four-week old, hyperphagic, male Otsuka Long-Evans Tokushima fatty (OLETF) rats were randomly assigned to either a sedentary group for 16 wk (OLETF-SED), given access to running wheels for 16 wk with wheels locked 5 h (OLETF-WL5hr) or given access to running wheels for 12 wk with wheels locked 4 wk (OLETF-WL4wk) prior to death. Four weeks of physical inactivity caused hepatic steatosis development, but liver triglycerides remained 60% lower than OLETF-SED (P inactivity, whereas markers of fatty acid uptake and lipogenesis remained relatively suppressed following 4 wk of inactivity. In addition, 4 wk of inactivity caused a complete loss of activity-induced increases in serum IL-6 and reductions in regulated upon activation, normal T-cell expressed, and secreted (RANTES), and a partial loss in reductions in leptin, monocyte chemoattractant protein-1, and TNF-α. In conclusion, 4 wk of physical inactivity does not result in a complete loss in physical activity-induced benefits but does cause deterioration in the liver phenotype and overall metabolic health in hyperphagic OLETF rats.

  11. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  12. Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice

    Korsheninnikova, E.; van der Zon, G. C. M.; Voshol, P. J.; Janssen, G. M.; Havekes, L. M.; Grefhorst, A.; Kuipers, F.; Reijngoud, D.-J.; Romijn, J. A.; Ouwens, D. M.; Maassen, J. A.

    2006-01-01

    Activation of nutrient sensing through mammalian target of rapamycin (mTOR) has been linked to the pathogenesis of insulin resistance. We examined activation of mTOR-signalling in relation to insulin resistance and hepatic steatosis in mice. Chronic hepatic steatosis and hepatic insulin resistance

  13. Joint toxicity of sediment-associated permethrin and cadmium to Chironomus dilutus: The role of bioavailability and enzymatic activities

    Chen, Xin; Li, Huizhen; You, Jing

    2015-01-01

    Pyrethroid insecticides and metals commonly co-occurred in sediment and caused toxicity to benthic organisms jointly. To improve accuracy in assessing risk of the sediments contaminated by insecticides and metals, it is of great importance to understand interaction between the contaminants and reasons for the interaction. In the current study, permethrin and cadmium were chosen as representative contaminants to study joint toxicity of pyrethroids and metals to a benthic invertebrate Chironomus dilutus. A median effect/combination index-isobologram was applied to evaluate the interaction between sediment-bound permethrin and cadmium at three dose ratios. Antagonistic interaction was observed in the midges for all treatments. Comparatively, cadmium-dominated group (the ratio of toxicity contribution from permethrin and cadmium was 1:3) showed stronger antagonism than equitoxicity (1:1) and permethrin-dominated groups (3:1). The reasons for the observed antagonism were elucidated from two aspects, including bioavailability and enzymatic activity. The bioavailability of permethrin, expressed as the freely dissolved concentrations in sediment porewater and measured by solid phase microextraction, was not altered by the addition of cadmium, suggesting the change in permethrin bioavailability was not the reason for the antagonism. On the other hand, the activities of metabolic enzymes, glutathione S-transferase and carboxylesterase in the midges which were exposed to mixtures of permethrin and cadmium were significantly higher than those in the midges exposed to permethrin solely. Cadmium considerably enhanced the detoxifying processes of permethrin in the midges, which largely explained the observed antagonistic interaction between permethrin and cadmium. - Highlights: • Sediment-bound permethrin and cadmium acted antagonistically to Chironomus dilutus. • Antagonism of permethrin and cadmium to the midges was noted at various dose ratios. • Addition of cadmium did

  14. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays

    Zhu, Yuan-Ting; Ren, Xiao-Yun; Liu, Yi-Ming; Wei, Ying; Qing, Lin-Sen; Liao, Xun

    2014-01-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe 3 O 4 –SiO 2 ) possessed three dimensional core–shell structures with an average diameter of ∼ 20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50 mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g −1 . The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The K m and the V max values (0.02 mM, 6.40 U·mg −1 enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg −1 enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. - Highlights: • Porcine pancreatic lipase was firstly covalently immobilized onto carboxylated MNPs. • Immobilized porcine pancreatic lipase (PPL) was characterized by various techniques. • MNPs-PPL showed higher activity, reusability, and thermo-stability than

  15. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays

    Zhu, Yuan-Ting [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ren, Xiao-Yun [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Liu, Yi-Ming [Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS 39217 (United States); Wei, Ying [Changzhi Medical College, Changzhi 046000 (China); Qing, Lin-Sen [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Liao, Xun, E-mail: liaoxun@cib.ac.cn [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China)

    2014-05-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe{sub 3}O{sub 4}–SiO{sub 2}) possessed three dimensional core–shell structures with an average diameter of ∼ 20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50 mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g{sup −1}. The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The K{sub m} and the V{sub max} values (0.02 mM, 6.40 U·mg{sup −1} enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg{sup −1} enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. - Highlights: • Porcine pancreatic lipase was firstly covalently immobilized onto carboxylated MNPs. • Immobilized porcine pancreatic lipase (PPL) was characterized by various techniques. • MNPs-PPL showed higher activity

  16. Differential coral bleaching-Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress.

    Krueger, Thomas; Hawkins, Thomas D; Becker, Susanne; Pontasch, Stefanie; Dove, Sophie; Hoegh-Guldberg, Ove; Leggat, William; Fisher, Paul L; Davy, Simon K

    2015-12-01

    Mass coral bleaching due to thermal stress represents a major threat to the integrity and functioning of coral reefs. Thermal thresholds vary, however, between corals, partly as a result of the specific type of endosymbiotic dinoflagellate (Symbiodinium sp.) they harbour. The production of reactive oxygen species (ROS) in corals under thermal and light stress has been recognised as one mechanism that can lead to cellular damage and the loss of their symbiont population (Oxidative Theory of Coral Bleaching). Here, we compared the response of symbiont and host enzymatic antioxidants in the coral species Acropora millepora and Montipora digitata at 28°C and 33°C. A. millepora at 33°C showed a decrease in photochemical efficiency of photosystem II (PSII) and increase in maximum midday excitation pressure on PSII, with subsequent bleaching (declining photosynthetic pigment and symbiont density). M. digitata exhibited no bleaching response and photochemical changes in its symbionts were minor. The symbiont antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and catalase peroxidase showed no significant upregulation to elevated temperatures in either coral, while only catalase was significantly elevated in both coral hosts at 33°C. Increased host catalase activity in the susceptible coral after 5days at 33°C was independent of antioxidant responses in the symbiont and preceded significant declines in PSII photochemical efficiencies. This finding suggests a potential decoupling of host redox mechanisms from symbiont photophysiology and raises questions about the importance of symbiont-derived ROS in initiating coral bleaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Direct electrocatalytic reduction of coenzyme NAD{sup +} to enzymatically-active 1,4-NADH employing an iridium/ruthenium-oxide electrode

    Ullah, Nehar, E-mail: nehar.ullah@mail.mcgill.ca; Ali, Irshad; Omanovic, Sasha

    2015-01-15

    A thermally prepared iridium/ruthenium-oxide coating (Ir{sub 0.8}Ru{sub 0.2}-oxide) formed on a titanium substrate was investigated as a possible electrode for direct electrochemical regeneration of enzymatically-active 1,4-NADH from its oxidized form NAD{sup +}, at various electrode potentials, in a batch electrochemical reactor. The coating surface was characterized by ‘cracked mud’ morphology, yielding a high surface roughness. The NADH regeneration results showed that the percentage of enzymatically-active 1,4-NADH present in the product mixture (i.e. recovery) is strongly dependent on the electrode potential, reaching a maximum (88%) at −1.70 V vs. MSE. The relatively high recovery was explained on the basis of availability of adsorbed ‘active’ hydrogen (H{sub ads}) on the Ir/Ru-oxide surface, i.e. on the basis of electrochemical hydrogenation. - Highlights: • Ir{sub 0.8}Ru{sub 0.2}-oxide coating was formed thermally on a Ti substrate. • Electrochemical regeneration of enzymatically-active 1,4-NADH was investigated. • The 1,4-NADH recovery percentage is strongly dependent on the electrode potential. • A highest recovery, 88%, was obtained at −1.70 V vs. MSE. • The NADH regeneration process involved electrochemical hydrogenation.

  18. Comparative analysis of disease activity in patients of chronic hepatitis B virus, with and without super infection with hepatitis D virus; an experience at tertiary care centre

    Hassan, K.D.; Mahmood, T.; Farooq, M.U.

    2008-01-01

    The hepatitis D virus super-infection contributes significantly to the morbidity and mortality of hepatitis B virus infection. The objectives were to describe the incidence of Hepatitis D virus and comparative analysis of disease activity in patients of chronic hepatitis B virus, with and without super-infection of hepatitis D virus. This Cross-sectional comparative study was conducted at Department of Medicine and Gastroenterology Clinic Jinnah Postgraduate Medical Centre, Karachi, Pakistan from February 2007 to July 2007. HBsAg positive patients who attended our Gastroenterology clinic were selected for the study. After screening for Anti-HDV these patients were segregated in to Anti-HDV positive and negative groups. Data was analyzed on SPSS 12. Eighty-four patients were selected. Seventy-three patients who fulfilled the inclusion criteria were enrolled in to the study. Anti-HDV was positive in 23 (31.5%) patients. Among these 23 anti-HDV positive, HDV-RNA was detected in 15 (75%) patients. The differences of age, gender, marital status and area of residence whether rural or urban were not significant between the two groups. HBV-DNA was significantly suppressed in majority of anti- HDV positive patients (p=0.019). Mean serum ALT levels were significantly higher in patients who had HDV infection (p=0.014). HDV infection was common in this series of patients with a frequency of 31.5%. All patients of chronic HBV should be screened for HDV whether they are asymptomatic HBV carriers or have chronic active hepatitis particularly when they have raised serum ALT. (author)

  19. Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure

    B.D. Abhijith

    2016-10-01

    Conclusion: The results of the present investigation suggest that gill is the most sensitive organ to MP toxicity. The alterations of the enzymatic parameters can be effectively used as potential biomarkers for monitoring of the organophosphorus pesticides in aquatic environment. Further, MP should be used with caution in order to protect natural waters and aquatic organisms.

  20. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death

    Dunning, Sandra; Rehman, Atta Ur; Tiebosch, Marjolein H.; Hannivoort, Rebekka A.; Haijer, Floris W.; Woudenberg, Jannes; van den Heuvel, Fiona A. J.; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han

    2013-01-01

    Background: In chronic liver disease, hepatic stellate cells (HSCs) are activated, highly proliferative and produce excessive amounts of extracellular matrix, leading to liver fibrosis. Elevated levels of toxic reactive oxygen species (ROS) produced during chronic liver injury have been implicated

  1. Survey of surveillance systems and select prevention activities for hepatitis B and C, European Union/European Economic Area, 2009.

    Duffell, E F; van de Laar, M J

    2015-04-02

    Hepatitis B and C viral infections are leading causes of hepatic cirrhosis and cancer. The incidence and prevalence of both hepatitis B and C varies across European countries. European wide surveillance data help to understand the dynamic epidemiology of hepatitis B and C, which is important for the implementation and effectiveness of prevention and control activities.Comparison of surveillance data between countries in Europe is hampered by the differences in national healthcare and reporting systems. This report presents the results of a survey in 2009 which was undertaken to collect baseline information on surveillance systems and core prevention programmes for hepatitis B and C in individual European Union/ European Economic Area countries. The results provide key information to aid the interpretation of surveillance data, and while indicating heterogeneity in national surveillance systems and programmes, they highlight the potential of these systems. This resource has supported the implementation of a standardised European enhanced surveillance programme.

  2. Ultrasonic-assisted enzymatic extraction of phenolics from broccoli (Brassica oleracea L. var. italica) inflorescences and evaluation of antioxidant activity in vitro.

    Wu, Hao; Zhu, Junxiang; Yang, Long; Wang, Ran; Wang, Chengrong

    2015-06-01

    An efficient ultrasonic-assisted enzymatic extraction technique was applied to extracting phenolics from broccoli inflorescences without organic solvents. The synergistic model of enzymolysis and ultrasonication simultaneously was selected, and the enzyme combination was optimized by orthogonal test: cellulase 7.5 mg/g FW (fresh weight), pectinase 10 mg/g FW, and papain 1.0 mg/g FW. The operating parameters in ultrasonic-assisted enzymatic extraction were optimized with response surface methodology using Box-Behnken design. The optimal extraction conditions were as follows: ultrasonic power, 440 W; liquid to material ratio, 7.0:1 mL/g; pH value of 6.0 at 54.5 ℃ for 10 min. Under these conditions, the extraction yield of phenolics achieved 1.816 ± 0.0187 mg gallic acid equivalents/gram FW. The free radical scavenging activity of ultrasonic-assisted enzymatic extraction extracts was determined by 1,1-diphenyl-2-picrylhydrazyl·assay with EC50 values of 0.25, and total antioxidant activity was determined by ferric reducing antioxidant power assay with ferric reducing antioxidant power value of 0.998 mmol FeSO4/g compared with the referential ascorbic acid of 1.184 mmol FeSO4/g. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Portal inflammation during NAFLD is frequent and associated with the early phases of putative hepatic progenitor cell activation.

    Carotti, Simone; Vespasiani-Gentilucci, Umberto; Perrone, Giuseppe; Picardi, Antonio; Morini, Sergio

    2015-11-01

    We investigated whether portal tract inflammation observed in non-alcoholic fatty liver disease (NAFLD) is associated with hepatic progenitor cell compartment activation, as thoroughly evaluated with different markers of the staminal lineage. Fifty-two patients with NAFLD were studied. NAFLD activity score, fibrosis and portal inflammation were histologically evaluated. Putative hepatic progenitor cells, intermediate hepatobiliary cells and bile ductules/interlobular bile ducts were evaluated by immunohistochemistry for cytokeratin (CK)-7, CK-19 and epithelial cell adhesion molecule (EpCAM), and a hepatic progenitor cell compartment score was derived. Hepatic stellate cell and myofibroblast activity was determined by immunohistochemistry for α-smooth muscle actin. Portal inflammation was absent in a minority of patients, mild in 40% of cases and more than mild in about half of patients, showing a strong correlation with fibrosis (r=0.76, pcells (r=0.48, pcells (r=0.6, pcell compartment activation were associated with portal inflammation by univariate analysis. In the multivariate model, the only variable independently associated with portal inflammation was hepatic progenitor cell compartment activation (OR 3.7, 95% CI 1.1 to 12.6). Portal inflammation is frequent during NAFLD and strongly associated with activation of putative hepatic progenitor cells since the first steps of their differentiation, portal myofibroblast activity and fibrosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Antiviral activity of the dichloromethane extracts from Artocarpus heterophyllus leaves against hepatitis C virus

    Achmad Fuad Hafid; Chie Aoki-Utsubo; Adita Ayu Permanasari; Myrna Adianti; Lydia Tumewu; Aty Widyawaruyanti; Sri Puji Astuti Wahyuningsih; Tutik Sri Wahyuni; Maria Inge Lusida; Soetjipto; Hak Hotta

    2017-01-01

    Objective: To determine anti-viral activities of three Artocarpus species: Artocarpus altilis, Artocarpus camansi, and Artocarpus heterophyllus (A. heterophyllus) against Hepatitis C Virus (HCV). Methods: Antiviral activities of the crude extracts were examined by cell culture method using Huh7it-1 cells and HCV genotype 2a strain JFH1. The mode of action for anti-HCV activities was determined by time-of-addition experiments. The effect on HCV RNA replication and HCV accumulation in cells ...

  5. PBDE: Structure-Activity Studies for the Inhibition of Hepatitis C Virus NS3 Helicase

    Kazi Abdus Salam

    2014-04-01

    Full Text Available The helicase portion of the hepatitis C virus nonstructural protein 3 (NS3 is considered one of the most validated targets for developing direct acting antiviral agents. We isolated polybrominated diphenyl ether (PBDE 1 from a marine sponge as an NS3 helicase inhibitor. In this study, we evaluated the inhibitory effects of PBDE (1 on the essential activities of NS3 protein such as RNA helicase, ATPase, and RNA binding activities. The structure-activity relationship analysis of PBDE (1 against the HCV ATPase revealed that the biphenyl ring, bromine, and phenolic hydroxyl group on the benzene backbone might be a basic scaffold for the inhibitory potency.

  6. Frequency and significance of antibodies to liver/kidney microsome type 1 in adults with chronic active hepatitis.

    Czaja, A J; Manns, M P; Homburger, H A

    1992-10-01

    To assess the frequency of antibodies to liver/kidney microsome type 1 (anti-LKM1) in patients with chronic active hepatitis, 131 such patients were tested by an indirect immunofluorescence assay. Of 62 patients with type 1 autoimmune hepatitis, none were seropositive. In contrast, 3 of 11 patients with autoimmune hepatitis and antimitochondrial antibodies (27%) were seropositive for anti-LKM1. Each had responded to corticosteroid therapy, and retesting of sera confirmed that each had been misclassified as antimitochondrial antibody positive. None of the patients with chronic active hepatitis B (14 patients) or C (24 patients) had anti-LKM1. Similarly, none of the 20 patients with cryptogenic disease had these antibodies. It is concluded that anti-LKM1 is specific for type 2 autoimmune hepatitis and is infrequent in adult patients seen at a referral center in the United States for chronic active hepatitis. Anti-LKM1 reactivity may be misinterpreted as antimitochondrial antibody reactivity by indirect immunofluorescence. Chronic hepatitis B and C virus infections are not important stimuli for the production of anti-LKM1, and testing for anti-LKM 1 is unlikely to clarify the nature of cryptogenic disease.

  7. Antibody to liver cytosol (anti-LC1) in patients with autoimmune chronic active hepatitis type 2.

    Martini, E; Abuaf, N; Cavalli, F; Durand, V; Johanet, C; Homberg, J C

    1988-01-01

    A new autoantibody was detected by immunoprecipitation in the serum of 21 patients with chronic active hepatitis. The antibody reacted against a soluble cytosolic antigen in liver. The antibody was organ specific but not species specific and was therefore called anti-liver cytosol antibody Type 1 (anti-LC1). In seven of 21 cases, no other autoantibody was found; the remaining 14 cases had anti-liver/kidney microsome antibody Type 1 (anti-LKM1). With indirect immunofluorescence, a distinctive staining pattern was observed with the seven sera with anti-LC1 and without anti-LKM1. The antibody stained the cytoplasm of hepatocytes from four different animal species and spared the cellular layer around the central veins of mouse and rat liver that we have called juxtavenous hepatocytes. The immunofluorescence pattern disappeared after absorption of sera by a liver cytosol fraction. The 14 sera with both antibodies displayed anti-LC1 immunofluorescent pattern after absorption of anti-LKM1 by the liver microsomal fraction. The anti-LC1 was found in the serum only in patients with chronic active hepatitis of unknown cause. Anti-LC1 antibody was not found in sera from 100 patients with chronic active hepatitis associated with anti-actin antibody classic chronic active hepatitis Type 1, 100 patients with primary biliary cirrhosis, 157 patients with drug-induced hepatitis and a large number of patients with liver and nonliver diseases. This new antibody was considered a second marker of chronic active hepatitis associated with anti-LKM1 (anti-LKM1 chronic active hepatitis) or autoimmune chronic active hepatitis Type 2.

  8. A novel collaborative representation and SCAD based classification method for fibrosis and inflammatory activity analysis of chronic hepatitis C

    Cai, Jiaxin; Chen, Tingting; Li, Yan; Zhu, Nenghui; Qiu, Xuan

    2018-03-01

    In order to analysis the fibrosis stage and inflammatory activity grade of chronic hepatitis C, a novel classification method based on collaborative representation (CR) with smoothly clipped absolute deviation penalty (SCAD) penalty term, called CR-SCAD classifier, is proposed for pattern recognition. After that, an auto-grading system based on CR-SCAD classifier is introduced for the prediction of fibrosis stage and inflammatory activity grade of chronic hepatitis C. The proposed method has been tested on 123 clinical cases of chronic hepatitis C based on serological indexes. Experimental results show that the performance of the proposed method outperforms the state-of-the-art baselines for the classification of fibrosis stage and inflammatory activity grade of chronic hepatitis C.

  9. Hepatitis C

    ... Workshops Follow Us Home Health Information Liver Disease Hepatitis (Viral) Hepatitis C Related Topics English English Español Section Navigation Hepatitis (Viral) What Is Viral Hepatitis? Hepatitis A Hepatitis B ...

  10. Complexity of the HVR-1 quasispecies and disease activity in patients with hepatitis C.

    Kumagai, N; Kaneko, F; Tsunematsu, S; Tsuchimoto, K; Tada, S; Saito, H; Hibi, T

    2007-07-01

    Hepatitis C virus (HCV) easily undergoes genomic changes, especially in the hypervariable region (HVR) in the N-terminus of the E2/NS1 region. The quasispecies nature of HCV may have important biological implications in relation to viral persistence; however, the relationship between disease activity of chronic HCV infection and development of the genomic complexity have yielded conflicting results. We explored the changes in the complexity of the HVR-1 in the natural course of chronic HCV infection with and without elevation of serum alanine transaminase (ALT) levels. Ten patients with chronic hepatitis C proven by liver biopsy, who showed persistent elevation of the serum ALT levels, and 15 patients with chronic HCV infection and persistently normal serum ALT levels (PNAL) were enrolled in this study. The number of the HCV quasispecies was determined twice for each patient at an interval of mean 2.5 years by fluorescence single-strand conformation polymorphism and sequence analysis. There was no significant difference in the changes in the number of quasispecies during the follow-up period between chronic hepatitis C and PNAL. There was also no significant difference in the change in the number of variable nucleotides sites between the two groups. In these patients, the number of quasispecies and the diversity of HVR-1 were correlated with platelet counts and serum hyaluronic acid levels previously shown to be associated with disease progression. Our results suggested that the disease activity is not always related to the generation of the HVR-1 quasispecies complexity.

  11. Novel Radiolytic Rotenone Derivative, Rotenoisin B with Potent Anti-Carcinogenic Activity in Hepatic Cancer Cells

    Srilatha Badaboina

    2015-07-01

    Full Text Available Rotenone, isolated from roots of derris plant, has been shown to possess various biological activities, which lead to attempting to develop a potent drug against several diseases. However, recent studies have demonstrated that rotenone has the potential to induce several adverse effects such as a neurodegenerative disease. Radiolytic transformation of the rotenone with gamma-irradiation created a new product, named rotenoisin B. The present work was designed to investigate the anticancer activity of rotenoisin B with low toxicity and its molecular mechanism in hepatic cancer cells compared to a parent compound, rotenone. Our results showed rotenoisin B inhibited hepatic cancer cells’ proliferation in a dose dependent manner and increased in apoptotic cells. Interestingly, rotenoisin B showed low toxic effects on normal cells compared to rotenone. Mitochondrial transmembrane potential has been decreased, which leads to cytochrome c release. Down regulation of anti-apoptotic Bcl-2 levels as well as the up regulation of proapoptotic Bax levels were observed. The cleaved PARP (poly ADP-ribose polymerase level increased as well. Moreover, phosphorylation of extracellular signal regulated kinase (ERK and p38 slightly up regulated and intracellular reactive oxygen species (ROS increased as well as cell cycle arrest predominantly at the G2/M phase observed. These results suggest that rotenoisin B might be a potent anticancer candidate similar to rotenone in hepatic cancer cells with low toxicity to normal cells even at high concentrations compared to rotenone.

  12. Evidence of active transport of cadmium complexing dithiocarbamates into renal and hepatic cells in vivo

    Gale, G.R.; Smith, A.B.; Jones, M.M.; Singh, P.K.

    1992-01-01

    A study was made of the effects of certain inhibitors of transport systems on the actions of four cadmium (Cd) complexing N,N-disubstituted dithiocarbamates (DTCs) in mobilizing murine renal and hepatic Cd in vivo. Probenecid, the prototypical antagonist of organic anion transport in the kidney, when given 1 hr prior to each DTC, sharply suppressed the DTC-induced reduction of renal Cd but was virtually without effect on mobilization of Cd from liver. Sulfinpyrazone, which blocks tubular reabsorption of uric acid and also inhibits transport of a variety of organic acids, inhibited markedly the mobilization of both renal and hepatic Cd by DTCs. Phlorizin, an inhibitor of tubular sugar reabsorption, did not affect the Cd mobilizing actions of DTCs in any consistent fashion. We propose that the high degree of selectivity of DTCs in mobilizing renal hepatic Cd is dependent, at lest in part, upon active transport of DTCs into these tissues via the organic anion transport systems. This report presents the first evidence that compounds of the (R) 2 NCSS - class may gain access to intracellular space by an active, carrier-mediated process. (au)

  13. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons

    Shi, Xuemei; Zhou, Fuguo; Li, Xiaojie; Chang, Benny; Li, Depei; Wang, Yi; Tong, Qingchun; Xu, Yong; Fukuda, Makoto; Zhao, Jean J.; Li, Defa; Burrin, Douglas G.; Chan, Lawrence; Guan, Xinfu

    2013-01-01

    Glucagon-like peptides (GLP-1/2) are co-produced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We show that mice lacking GLP-2 receptor (GLP-2R) in POMC neurons display glucose intolerance and hepatic insulin resistance. GLP-2R activation in POMC neurons is required for GLP-2 to enhance insulin-mediated suppression of hepatic glucose production (HGP) and gluconeogenesis. GLP-2 directly modulates excitability of POMC neurons in GLP-2R- and PI3K-dependent manners. GLP-2 initiates GLP-2R-p85α interaction and facilitates PI3K-Akt-dependent FoxO1 nuclear exclusion in POMC neurons. Central GLP-2 suppresses basal HGP and enhances insulin sensitivity, which are abolished in POMC-p110α KO mice. Thus, CNS GLP-2 plays a key physiological role in the control of hepatic glucose production through activating PI3K-dependent modulation of membrane excitability and nuclear transcription of POMC neurons in the brain. PMID:23823479

  14. Replacement of Retinyl Esters by Polyunsaturated Triacylglycerol Species in Lipid Droplets of Hepatic Stellate Cells during Activation

    Testerink, Nicole; Ajat, Mokrish; Houweling, Martin; Brouwers, Jos F.; Pully, Vishnu V.; van Manen, Henk-Jan; Otto, Cees; Helms, J. Bernd; Vaandrager, Arie B.

    2012-01-01

    Activation of hepatic stellate cells has been recognized as one of the first steps in liver injury and repair. During activation, hepatic stellate cells transform into myofibroblasts with concomitant loss of their lipid droplets (LDs) and production of excessive extracellular matrix. Here we aimed to obtain more insight in the dynamics and mechanism of LD loss. We have investigated the LD degradation processes in rat hepatic stellate cells in vitro with a combined approach of confocal Raman microspectroscopy and mass spectrometric analysis of lipids (lipidomics). Upon activation of the hepatic stellate cells, LDs reduce in size, but increase in number during the first 7 days, but the total volume of neutral lipids did not decrease. The LDs also migrate to cellular extensions in the first 7 days, before they disappear. In individual hepatic stellate cells. all LDs have a similar Raman spectrum, suggesting a similar lipid profile. However, Raman studies also showed that the retinyl esters are degraded more rapidly than the triacylglycerols upon activation. Lipidomic analyses confirmed that after 7 days in culture hepatic stellate cells have lost most of their retinyl esters, but not their triacylglycerols and cholesterol esters. Furthermore, we specifically observed a large increase in triacylglycerol-species containing polyunsaturated fatty acids, partly caused by an enhanced incorporation of exogenous arachidonic acid. These results reveal that lipid droplet degradation in activated hepatic stellate cells is a highly dynamic and regulated process. The rapid replacement of retinyl esters by polyunsaturated fatty acids in LDs suggests a role for both lipids or their derivatives like eicosanoids during hepatic stellate cell activation. PMID:22536341

  15. Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation.

    Nicole Testerink

    Full Text Available Activation of hepatic stellate cells has been recognized as one of the first steps in liver injury and repair. During activation, hepatic stellate cells transform into myofibroblasts with concomitant loss of their lipid droplets (LDs and production of excessive extracellular matrix. Here we aimed to obtain more insight in the dynamics and mechanism of LD loss. We have investigated the LD degradation processes in rat hepatic stellate cells in vitro with a combined approach of confocal Raman microspectroscopy and mass spectrometric analysis of lipids (lipidomics. Upon activation of the hepatic stellate cells, LDs reduce in size, but increase in number during the first 7 days, but the total volume of neutral lipids did not decrease. The LDs also migrate to cellular extensions in the first 7 days, before they disappear. In individual hepatic stellate cells. all LDs have a similar Raman spectrum, suggesting a similar lipid profile. However, Raman studies also showed that the retinyl esters are degraded more rapidly than the triacylglycerols upon activation. Lipidomic analyses confirmed that after 7 days in culture hepatic stellate cells have lost most of their retinyl esters, but not their triacylglycerols and cholesterol esters. Furthermore, we specifically observed a large increase in triacylglycerol-species containing polyunsaturated fatty acids, partly caused by an enhanced incorporation of exogenous arachidonic acid. These results reveal that lipid droplet degradation in activated hepatic stellate cells is a highly dynamic and regulated process. The rapid replacement of retinyl esters by polyunsaturated fatty acids in LDs suggests a role for both lipids or their derivatives like eicosanoids during hepatic stellate cell activation.

  16. PTP1B confers liver fibrosis by regulating the activation of hepatic stellate cells

    Chen, Pei-Jie; Cai, Shuang-Peng; Yang, Yang; Li, Wan-Xia; Huang, Cheng; Meng, Xiao-Ming; Li, Jun, E-mail: lj@ahmu.edu.cn

    2016-02-01

    Liver fibrosis is a reversible wound-healing response to chronic hepatic injuries. Activation of hepatic stellate cells (HSCs) plays a pivotal role in the development of hepatic fibrosis. The currently accepted mechanism for the resolution of liver fibrosis is the apoptosis and inactivation of activated HSCs. Protein tyrosine phosphatase 1B (PTP1B), a prototype of non-receptor protein tyrosine phosphatase, is proved to be a vital modulator in cardiac fibrogenesis. However, the precise role of PTP1B on liver fibrosis and HSC activation is still unclear. Our study showed that the expression of PTP1B was elevated in fibrotic liver but reduced after spontaneous recovery. Moreover, stimulation of HSC-T6 cells with transforming growth factor-β1 (TGF-β1) resulted in a dose/time-dependent increase of PTP1B mRNA and protein. Co-incubation of HSC-T6 cells with PTP1B-siRNA inhibited the cell proliferation and activation induced by TGF-β1. Additionally, both mRNA and protein of PTP1B were dramatically decreased in inactivated HSCs after treated with adipogenic differentiation mixture (MDI). Over-expression of PTP1B hindered the inactivation of HSC-T6 cells induced by MDI. These observations revealed a regulatory role of PTP1B in liver fibrosis and implied PTP1B as a potential therapeutic target. - Highlights: • The expression of PTP1B in the fibrotic livers and recovery livers • The expression of PTP1B in activated and inactivated HSCs • Blockade of PTP1B inhibited the TGF-β1-induced proliferation and activation of HSCs. • Over-expression of PTP1B abolished the inactivation of HSCs induced by MDI.

  17. PTP1B confers liver fibrosis by regulating the activation of hepatic stellate cells

    Chen, Pei-Jie; Cai, Shuang-Peng; Yang, Yang; Li, Wan-Xia; Huang, Cheng; Meng, Xiao-Ming; Li, Jun

    2016-01-01

    Liver fibrosis is a reversible wound-healing response to chronic hepatic injuries. Activation of hepatic stellate cells (HSCs) plays a pivotal role in the development of hepatic fibrosis. The currently accepted mechanism for the resolution of liver fibrosis is the apoptosis and inactivation of activated HSCs. Protein tyrosine phosphatase 1B (PTP1B), a prototype of non-receptor protein tyrosine phosphatase, is proved to be a vital modulator in cardiac fibrogenesis. However, the precise role of PTP1B on liver fibrosis and HSC activation is still unclear. Our study showed that the expression of PTP1B was elevated in fibrotic liver but reduced after spontaneous recovery. Moreover, stimulation of HSC-T6 cells with transforming growth factor-β1 (TGF-β1) resulted in a dose/time-dependent increase of PTP1B mRNA and protein. Co-incubation of HSC-T6 cells with PTP1B-siRNA inhibited the cell proliferation and activation induced by TGF-β1. Additionally, both mRNA and protein of PTP1B were dramatically decreased in inactivated HSCs after treated with adipogenic differentiation mixture (MDI). Over-expression of PTP1B hindered the inactivation of HSC-T6 cells induced by MDI. These observations revealed a regulatory role of PTP1B in liver fibrosis and implied PTP1B as a potential therapeutic target. - Highlights: • The expression of PTP1B in the fibrotic livers and recovery livers • The expression of PTP1B in activated and inactivated HSCs • Blockade of PTP1B inhibited the TGF-β1-induced proliferation and activation of HSCs. • Over-expression of PTP1B abolished the inactivation of HSCs induced by MDI.

  18. Contrast-enhanced ultrasound imaging of active bleeding associated with hepatic and splenic trauma.

    Lv, F; Tang, J; Luo, Y; Li, Z; Meng, X; Zhu, Z; Li, T

    2011-10-01

    The aim of this study was to evaluate contrast-enhanced ultrasound (CEUS) imaging of active bleeding from hepatic and splenic trauma. Three hundred and ninety-two patients with liver or/and spleen trauma (179 liver and 217 spleen injuries), who underwent CEUS examinations following contrast-enhanced computed tomography (CT), were enrolled in this retrospective study over a period of >4 years. CEUS detected contrast medium extravasation or pooling in 16% (63/396) of liver or spleen lesions in 61 patients, which was confirmed by contrast-enhanced CT. Special attention was paid to observing the presence, location, and characteristics of the extravasated or pooled contrast medium. The CEUS detection rate for active bleeding was not different from that of contrast-enhanced CT (p=0.333). Information from surgery, minimally invasive treatment and conservative treatment was used as reference standard, and the sensitivities of the two techniques were not different (p=0.122). Of 63 lesions in 61 patients, CEUS showed that 74.6% (47/63) (21 liver lesions and 26 spleen lesions) presented contrast medium extravasation or pooling, both in the organ and out the capsule, in 14.3% (9/63) and only outside the capsule in 11.1% (7/63). CEUS imaging of active bleeding from hepatic and splenic trauma presented various characteristics, and the sizes and shapes of the active bleeding due to contrast medium extravasation or pooling were variable. CEUS can show the active bleeding associated with hepatic and splenic trauma with various imaging characteristics, thus making it possible to diagnose active bleeding using CEUS.

  19. Plasticizers May Activate Human Hepatic Peroxisome Proliferator-Activated Receptor α Less Than That of a Mouse but May Activate Constitutive Androstane Receptor in Liver

    Ito, Yuki; Nakamura, Toshiki; Yanagiba, Yukie; Ramdhan, Doni Hikmat; Yamagishi, Nozomi; Naito, Hisao; Kamijima, Michihiro; Gonzalez, Frank J.; Nakajima, Tamie

    2012-01-01

    Dibutylphthalate (DBP), di(2-ethylhexyl)phthalate (DEHP), and di(2-ethylhexyl)adipate (DEHA) are used as plasticizers. Their metabolites activate peroxisome proliferator-activated receptor (PPAR) α, which may be related to their toxicities. However, species differences in the receptor functions between rodents and human make it difficult to precisely extrapolate their toxicity from animal studies to human. In this paper, we compared the species differences in the activation of mouse and human hepatic PPARα by these plasticizers using wild-type (mPPARα) and humanized PPARα (hPPARα) mice. At 12 weeks old, each genotyped male mouse was classified into three groups, and fed daily for 2 weeks per os with corn oil (vehicle control), 2.5 or 5.0 mmol/kg DBP (696, 1392 mg/kg), DEHP (977, 1953 mg/kg), and DEHA (926, 1853 mg/kg), respectively. Generally, hepatic PPARα of mPPARα mice was more strongly activated than that of hPPARα mice when several target genes involving β-oxidation of fatty acids were evaluated. Interestingly, all plasticizers also activated hepatic constitutive androstane receptor (CAR) more in hPPARα mice than in mPPARα mice. Taken together, these plasticizers activated mouse and human hepatic PPARα as well as CAR. The activation of PPARα was stronger in mPPARα mice than in hPPARα mice, while the opposite was true of CAR. PMID:22792086

  20. Plasticizers May Activate Human Hepatic Peroxisome Proliferator-Activated Receptor α Less Than That of a Mouse but May Activate Constitutive Androstane Receptor in Liver

    Yuki Ito

    2012-01-01

    Full Text Available Dibutylphthalate (DBP, di(2-ethylhexylphthalate (DEHP, and di(2-ethylhexyladipate (DEHA are used as plasticizers. Their metabolites activate peroxisome proliferator-activated receptor (PPAR α, which may be related to their toxicities. However, species differences in the receptor functions between rodents and human make it difficult to precisely extrapolate their toxicity from animal studies to human. In this paper, we compared the species differences in the activation of mouse and human hepatic PPARα by these plasticizers using wild-type (mPPARα and humanized PPARα (hPPARα mice. At 12 weeks old, each genotyped male mouse was classified into three groups, and fed daily for 2 weeks per os with corn oil (vehicle control, 2.5 or 5.0 mmol/kg DBP (696, 1392 mg/kg, DEHP (977, 1953 mg/kg, and DEHA (926, 1853 mg/kg, respectively. Generally, hepatic PPARα of mPPARα mice was more strongly activated than that of hPPARα mice when several target genes involving β-oxidation of fatty acids were evaluated. Interestingly, all plasticizers also activated hepatic constitutive androstane receptor (CAR more in hPPARα mice than in mPPARα mice. Taken together, these plasticizers activated mouse and human hepatic PPARα as well as CAR. The activation of PPARα was stronger in mPPARα mice than in hPPARα mice, while the opposite was true of CAR.

  1. Modulation of the pharmacological effects of enzymatically-active PLA2 by BTL-2, an isolectin isolated from the Bryothamnion triquetrum red alga

    Nagano Celso S

    2008-06-01

    Full Text Available Abstract Background An interaction between lectins from marine algae and PLA2 from rattlesnake was suggested some years ago. We, herein, studied the effects elicited by a small isolectin (BTL-2, isolated from Bryothamnion triquetrum, on the pharmacological and biological activities of a PLA2 isolated from rattlesnake venom (Crotalus durissus cascavella, to better understand the enzymatic and pharmacological mechanisms of the PLA2 and its complex. Results This PLA2 consisted of 122 amino acids (approximate molecular mass of 14 kDa, its pI was estimated to be 8.3, and its amino acid sequence shared a high degree of similarity with that of other neurotoxic and enzymatically-active PLA2s. BTL-2 had a molecular mass estimated in approximately 9 kDa and was characterized as a basic protein. In addition, BTL-2 did not exhibit any enzymatic activity. The PLA2 and BTL-2 formed a stable heterodimer with a molecular mass of approximately 24–26 kDa, estimated by molecular exclusion HPLC. In the presence of BTL-2, we observed a significant increase in PLA2 activity, 23% higher than that of PLA2 alone. BTL-2 demonstrated an inhibition of 98% in the growth of the Gram-positive bacterial strain, Clavibacter michiganensis michiganensis (Cmm, but only 9.8% inhibition of the Gram-negative bacterial strain, Xanthomonas axonopodis pv passiflorae (Xap. PLA2 decreased bacterial growth by 27.3% and 98.5% for Xap and Cmm, respectively, while incubating these two proteins with PLA2-BTL-2 inhibited their growths by 36.2% for Xap and 98.5% for Cmm. PLA2 significantly induced platelet aggregation in washed platelets, whereas BTL-2 did not induce significant platelet aggregation in any assay. However, BTL-2 significantly inhibited platelet aggregation induced by PLA2. In addition, PLA2 exhibited strong oedematogenic activity, which was decreased in the presence of BTL-2. BTL-2 alone did not induce oedema and did not decrease or abolish the oedema induced by the 48

  2. Hepatic amebiasis

    Salles José Maria

    2003-01-01

    Full Text Available Amebiasis can be considered the most aggressive disease of the human intestine, responsible in its invasive form for clinical syndromes, ranging from the classic dysentery of acute colitis to extra-intestinal disease, with emphasis on hepatic amebiasis, unsuitably named amebic liver abscess. Found worldwide, with a high incidence in India, tropical regions of Africa, Mexico and other areas of Central America, it has been frequently reported in Amazonia. The trophozoite reaches the liver through the portal system, provoking enzymatic focal necrosis of hepatocytes and multiple micro-abscesses that coalesce to develop a single lesion whose central cavity contains a homogeneous thick liquid, with typically reddish brown and yellow color similar to "anchovy paste". Right upper quadrant pain, fever and hepatomegaly are the predominant symptoms of hepatic amebiasis. Jaundice is reported in cases with multiple lesions or a very large abscess, and it affects the prognosis adversely. Besides chest radiography, ultrasonography and computerized tomography have brought remarkable contributions to the diagnosis of hepatic abscesses. The conclusive diagnosis is made however by the finding of Entamoeba histolytica trophozoites in the pus and by the detection of serum antibodies to the amoeba. During the evolution of hepatic amebiasis, in spite of the availability of highly effective drugs, some important complications may occur with regularity and are a result of local perforation with extension into the pleural and pericardium cavities, causing pulmonary abscesses and purulent pericarditis, respectively The ruptures into the abdominal cavity may lead to subphrenic abscesses and peritonitis. The treatment of hepatic amebiasis is made by medical therapy, with metronidazole as the initial drug, followed by a luminal amebicide. In patients with large abscesses, showing signs of imminent rupture, and especially those who do not respond to medical treatment, a

  3. Hepatic amebiasis

    José Maria Salles

    Full Text Available Amebiasis can be considered the most aggressive disease of the human intestine, responsible in its invasive form for clinical syndromes, ranging from the classic dysentery of acute colitis to extra-intestinal disease, with emphasis on hepatic amebiasis, unsuitably named amebic liver abscess. Found worldwide, with a high incidence in India, tropical regions of Africa, Mexico and other areas of Central America, it has been frequently reported in Amazonia. The trophozoite reaches the liver through the portal system, provoking enzymatic focal necrosis of hepatocytes and multiple micro-abscesses that coalesce to develop a single lesion whose central cavity contains a homogeneous thick liquid, with typically reddish brown and yellow color similar to "anchovy paste". Right upper quadrant pain, fever and hepatomegaly are the predominant symptoms of hepatic amebiasis. Jaundice is reported in cases with multiple lesions or a very large abscess, and it affects the prognosis adversely. Besides chest radiography, ultrasonography and computerized tomography have brought remarkable contributions to the diagnosis of hepatic abscesses. The conclusive diagnosis is made however by the finding of Entamoeba histolytica trophozoites in the pus and by the detection of serum antibodies to the amoeba. During the evolution of hepatic amebiasis, in spite of the availability of highly effective drugs, some important complications may occur with regularity and are a result of local perforation with extension into the pleural and pericardium cavities, causing pulmonary abscesses and purulent pericarditis, respectively The ruptures into the abdominal cavity may lead to subphrenic abscesses and peritonitis. The treatment of hepatic amebiasis is made by medical therapy, with metronidazole as the initial drug, followed by a luminal amebicide. In patients with large abscesses, showing signs of imminent rupture, and especially those who do not respond to medical treatment, a

  4. Ezetimibe decreased nonalcoholic fatty liver disease activity score but not hepatic steatosis.

    Lee, Hyo Young; Jun, Dae Won; Kim, Hyun Jung; Oh, Hyunwoo; Saeed, Waqar Khalid; Ahn, Hyeongsik; Cheung, Ramsey C; Nguyen, Mindie H

    2018-03-20

    A number of clinical trials reported varying effects of cholesterol lowering agents in nonalcoholic fatty liver disease (NAFLD) patients. We, therefore, assessed the changes in hepatic steatosis and NAFLD activity score (NAS) after treatment with cholesterol lowering agents in NAFLD patients by metaanalysis. The Cochrane Library, the MEDLINE, and the Embase databases were searched until May 2015, without any language restrictions, for randomized controlled trials (RCTs) and nonrandomized studies (NRSs). Additional references were obtained from review of bibliography of relevant articles. The quality of evidence was assessed using the grading of recommendations assessment, development and evaluation guidelines. Three RCTs (n = 98) and two NRSs (n = 101) met our study inclusion criteria (adult, NAFLD, liver biopsy). Liver biopsy was performed in all five studies, but only the three studies reported NAS. Ezetimibe significantly decreased NAS (standardized mean difference [SMD], -0.30; 95% confidence interval [CI], -0.57 to -0.03) but not hepatic steatosis in RCT (SMD, -0.1; 95% CI, -0.53 to 0.32), while the effect was significant for both NAS and intrahepatic content in NRSs (SMD, -3.0; 95% CI, -6.9 to 0.91). Ezetimibe decreased NAS without improving hepatic steatosis.

  5. Catabolite regulation of enzymatic activities in a white pox pathogen and commensal bacteria during growth on mucus polymers from the coral Acropora palmata.

    Krediet, Cory J; Ritchie, Kim B; Teplitski, Max

    2009-11-16

    Colonization of host mucus surfaces is one of the first steps in the establishment of coral-associated microbial communities. Coral mucus contains a sulfated glycoprotein (in which oligosaccharide decorations are connected to the polypeptide backbone by a mannose residue) and molecules that result from its degradation. Mucus is utilized as a growth substrate by commensal and pathogenic organisms. Two representative coral commensals, Photobacterium mandapamensis and Halomonas meridiana, differed from a white pox pathogen Serratia marcescens PDL100 in the pattern with which they utilized mucus polymers of Acropora palmata. Incubation with the mucus polymer increased mannopyranosidase activity in S. marcescens, suggestive of its ability to cleave off oligosaccharide side chains. With the exception of glucosidase and N-acetyl galactosaminidase, glycosidases in S. marcescens were subject to catabolite regulation by galactose, glucose, arabinose, mannose and N-acetyl-glucosamine. In commensal P. mandapamensis, at least 10 glycosidases were modestly induced during incubation on coral mucus. Galactose, arabinose, mannose, but not glucose or N-acetyl-glucosamine had a repressive effect on glycosidases in P. mandapamensis. Incubation with the mucus polymers upregulated 3 enzymatic activities in H. meridiana; glucose and galactose appear to be the preferred carbon source in this bacterium. Although all these bacteria were capable of producing the same glycosidases, the differences in the preferred carbon sources and patterns of enzymatic activities induced during growth on the mucus polymer in the presence of these carbon sources suggest that to establish themselves within the coral mucus surface layer commensals and pathogens rely on different enzymatic activities.

  6. Ligand activation of peroxisome proliferator-activated receptor-β/δ suppresses liver tumorigenesis in hepatitis B transgenic mice

    Balandaram, Gayathri; Kramer, Lance R.; Kang, Boo-Hyon; Murray, Iain A.; Perdew, Gary H.; Gonzalez, Frank J.; Peters, Jeffrey M.

    2016-01-01

    Highlights: • The role of PPARβ/δ in HBV-induced liver cancer was examined. • PPARβ/δ inhibits steatosis, inflammation, tumor multiplicity and promotes apoptosis. • Kupffer cell PPARβ/δ mediates these effects independent of DNA binding. - Abstract: Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) inhibits steatosis and inflammation, known risk factors for liver cancer. In this study, the effect of ligand activation of PPARβ/δ in modulating liver tumorigenesis in transgenic hepatitis B virus (HBV) mice was examined. Activation of PPARβ/δ in HBV mice reduced steatosis, the average number of liver foci, and tumor multiplicity. Reduced expression of hepatic CYCLIN D1 and c-MYC, tumor necrosis factor alpha (Tnfa) mRNA, serum levels of alanine aminotransaminase, and an increase in apoptotic signaling was also observed following ligand activation of PPARβ/δ in HBV mice compared to controls. Inhibition of Tnfa mRNA expression was not observed in wild-type hepatocytes. Ligand activation of PPARβ/δ inhibited lipopolysaccharide (LPS)-induced mRNA expression of Tnfa in wild-type, but not in Pparβ/δ-null Kupffer cells. Interestingly, LPS-induced expression of Tnfa mRNA was also inhibited in Kupffer cells from a transgenic mouse line that expressed a DNA binding mutant form of PPARβ/δ compared to controls. Combined, these results suggest that ligand activation of PPARβ/δ attenuates hepatic tumorigenesis in HBV transgenic mice by inhibiting steatosis and cell proliferation, enhancing hepatocyte apoptosis, and modulating anti-inflammatory activity in Kupffer cells.

  7. Effects of a glucokinase activator on hepatic intermediary metabolism: study with 13C-isotopomer-based metabolomics

    Nissim, Itzhak; Horyn, Oksana; Nissim, Ilana; Daikhin, Yevgeny; Wehrli, Suzanne L.; Yudkoff, Marc; Matschinsky, Franz M.

    2012-01-01

    GKAs (glucokinase activators) are promising agents for the therapy of Type 2 diabetes, but little is known about their effects on hepatic intermediary metabolism. We monitored the fate of 13C-labelled glucose in both a liver perfusion system and isolated hepatocytes. MS and NMR spectroscopy were deployed to measure isotopic enrichment. The results demonstrate that the stimulation of glycolysis by GKA led to numerous changes in hepatic metabolism: (i) augmented flux through the TCA (tricarboxy...

  8. Endothelial activation markers (VCAM-1, vWF in patients with chronic hepatitis C and insulin resistance

    T. V. Antonova

    2012-01-01

    Full Text Available Blood markers of endothelial activation (sVCAM-1, vWF: Ag in patients with chronic hepatitis C in the presence of insulin resistance, metabolic syndrome and its components had been evaluated. The study included 69 patients with chronic hepatitis C with oligosymptomatic the disease. In one third of cases of chronic hepatitis C (33.3% showed improvement in the blood content of sVCAM-1 and / or vWF: Ag. In patients with chronic hepatitis C with insulin resistance, metabolic syndrome significantly more often found signs adhesion of endothelial dysfunction (increased blood concentrations of sVCAM-1 than in patients without these disorders. Found that in patients with severe hepatic fibrosis in patients with chronic hepatitis C blood concentration sVCAM-1 is significantly higher compared to patients with early stages of fibrosis (F0-F2, including those in patients without insulin resistance. These data suggest the multivariate development of endothelial dysfunction in chronic hepatitis C.

  9. PPARβ/δ modulates ethanol-induced hepatic effects by decreasing pyridoxal kinase activity

    Goudarzi, Maryam; Koga, Takayuki; Khozoie, Combiz; Mak, Tytus D.; Kang, Boo-Hyon; Jr, Albert J. Fornace; Peters, Jeffrey M.

    2013-01-01

    Because of the significant morbidity and lethality caused by alcoholic liver disease (ALD), there remains a need to elucidate the regulatory mechanisms that can be targeted to prevent and treat ALD. Toward this goal, minimally invasive biomarker discovery represents an outstanding approach for these purposes. The mechanisms underlying ALD include hepatic lipid accumulation. As the peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) has been shown to inhibit steatosis, the present study examined the role of PPARβ/δ in ALD coupling metabolomic, biochemical and molecular biological analyses. Wild-type and Pparβ/δ-null mice were fed either a control or 4% ethanol diet and examined after 4–7 months of treatment. Ethanol fed Pparβ/δ-null mice exhibited steatosis after short-term treatment compared to controls, the latter effect appeared to be due to increased activity of sterol regulatory element binding protein 1c (SREBP1c). The wild-type and Pparβ/δ-null mice fed the control diet showed clear differences in their urinary metabolomic profiles. In particular, metabolites associated with arginine and proline metabolism, and glycerolipid metabolism, were markedly different between genotypes suggesting a constitutive role for PPARβ/δ in the metabolism of these amino acids. Interestingly, urinary excretion of taurine was present in ethanol-fed wild-type mice but markedly lower in similarly treated Pparβ/δ-null mice. Evidence suggests that PPARβ/δ modulates pyridoxal kinase activity by altering K m , consistent with the observed decreased in urinary taurine excretion. These data collectively suggest that PPARβ/δ prevents ethanol-induced hepatic effects by inhibiting hepatic lipogenesis, modulation of amino acid metabolism, and altering pyridoxal kinase activity

  10. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  11. Impact of the redox-cycling herbicide diquat on transcript expression and antioxidant enzymatic activities of the freshwater snail Lymnaea stagnalis

    Bouetard, Anthony, E-mail: anthony.bouetard@rennes.inra.fr [INRA, UMR INRA-Agrocampus Ouest ESE 0985, Equipe Ecotoxicologie et Qualite des Milieux Aquatiques, 65 rue de Saint-Brieuc, 35042 Rennes cedex (France); Besnard, Anne-Laure; Vassaux, Daniele; Lagadic, Laurent; Coutellec, Marie-Agnes [INRA, UMR INRA-Agrocampus Ouest ESE 0985, Equipe Ecotoxicologie et Qualite des Milieux Aquatiques, 65 rue de Saint-Brieuc, 35042 Rennes cedex (France)

    2013-01-15

    The presence of pesticides in the environment results in potential unwanted effects on non-target species. Freshwater organisms inhabiting water bodies adjacent to agricultural areas, such as ditches, ponds and marshes, are good models to test such effects as various pesticides may reach these habitats through several ways, including aerial drift, run-off, and drainage. Diquat is a non-selective herbicide used for crop protection or for weed control in such water bodies. In this study, we investigated the effects of diquat on a widely spread aquatic invertebrate, the holarctic freshwater snail Lymnaea stagnalis. Due to the known redox-cycling properties of diquat, we studied transcript expression and enzymatic activities relative to oxidative and general stress in the haemolymph and gonado-digestive complex (GDC). As diquat is not persistent, snails were exposed for short times (5, 24, and 48 h) to ecologically relevant concentrations (22.2, 44.4, and 222.2 {mu}g l{sup -1}) of diquat dibromide. RT-qPCR was used to quantify the transcription of genes encoding catalase (cat), a cytosolic superoxide dismutase (Cu/Zn-sod), a selenium-dependent glutathione peroxidase (gpx), a glutathione reductase (gred), the retinoid X receptor (rxr), two heat shock proteins (hsp40 and hsp70), cortactin (cor) and the two ribosomal genes r18S and r28s. Enzymatic activities of SOD, Gpx, Gred and glutathione S-transferase (GST) were investigated in the GDC using spectrophoto/fluorometric methods. Opposite trends were obtained in the haemolymph depending on the herbicide concentration. At the lowest concentration, effects were mainly observed after 24 h of exposure, with over-transcription of cor, hsp40, rxr, and sod, whereas higher concentrations down-regulated the expression of most of the studied transcripts, especially after 48 h of exposure. In the GDC, earlier responses were observed and the fold-change magnitude was generally much higher: transcription of all target genes increased

  12. Regulation of hepatitis B virus ENI enhancer activity by hepatocyte-enriched transcription factor HNF3.

    Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H

    1994-11-15

    Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.

  13. Activity of a potent hepatitis C virus polymerase inhibitor in the chimpanzee model.

    Chen, Chih-Ming; He, Yupeng; Lu, Liangjun; Lim, Hock Ben; Tripathi, Rakesh L; Middleton, Tim; Hernandez, Lisa E; Beno, David W A; Long, Michelle A; Kati, Warren M; Bosse, Todd D; Larson, Daniel P; Wagner, Rolf; Lanford, Robert E; Kohlbrenner, William E; Kempf, Dale J; Pilot-Matias, Tami J; Molla, Akhteruzzaman

    2007-12-01

    A-837093 is a potent and specific nonnucleoside inhibitor of the hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase. It possesses nanomolar potencies in both enzymatic and replicon-based cell culture assays. In rats and dogs this compound demonstrated an oral plasma half-life of greater than 7 h, and its bioavailability was >60%. In monkeys it had a half-life of 1.9 h and 15% bioavailability. Its antiviral efficacy was evaluated in two chimpanzees infected with HCV in a proof-of-concept study. The design included oral dosing of 30 mg per kg of body weight twice a day for 14 days, followed by a 14-day posttreatment observation. Maximum viral load reductions of 1.4 and 2.5 log(10) copies RNA/ml for genotype 1a- and 1b-infected chimpanzees, respectively, were observed within 2 days after the initiation of treatment. After this initial drop in the viral load, a rebound of plasma HCV RNA was observed in the genotype 1b-infected chimpanzee, while the genotype 1a-infected chimpanzee experienced a partial rebound that lasted throughout the treatment period. Clonal analysis of NS5B gene sequences derived from the plasma of A-837093-treated chimpanzees revealed the presence of several mutations associated with resistance to A-837093, including Y448H, G554D, and D559G in the genotype 1a-infected chimpanzee and C316Y and G554D in the genotype 1b-infected chimpanzee. The identification of resistance-associated mutations in both chimpanzees is consistent with the findings of in vitro selection studies, in which many of the same mutations were selected. These findings validate the antiviral efficacy and resistance development of benzothiadiazine HCV polymerase inhibitors in vivo.

  14. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L.; Santra, Amal

    2011-01-01

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 μg/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including α-smooth muscle actin, transforming growth factor-β1, PDGF-Rβ, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro(α) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  15. Inhibitory Effects of Ecklonia cava Extract on High Glucose-Induced Hepatic Stellate Cell Activation

    Akiko Kojima-Yuasa

    2011-12-01

    Full Text Available Nonalcoholic steatohepatitis (NASH is a disease closely associated with obesity and diabetes. A prevalence of type 2 diabetes and a high body mass index in cryptogenic cirrhosis may imply that obesity leads to cirrhosis. Here, we examined the effects of an extract of Ecklonia cava, a brown algae, on the activation of high glucose-induced hepatic stellate cells (HSCs, key players in hepatic fibrosis. Isolated HSCs were incubated with or without a high glucose concentration. Ecklonia cava extract (ECE was added to the culture simultaneously with the high glucose. Treatment with high glucose stimulated expression of type I collagen and α-smooth muscle actin, which are markers of activation in HSCs, in a dose-dependent manner. The activation of high glucose-treated HSCs was suppressed by the ECE. An increase in the formation of intracellular reactive oxygen species (ROS and a decrease in intracellular glutathione levels were observed soon after treatment with high glucose, and these changes were suppressed by the simultaneous addition of ECE. High glucose levels stimulated the secretion of bioactive transforming growth factor-β (TGF-β from the cells, and the stimulation was also suppressed by treating the HSCs with ECE. These results suggest that the suppression of high glucose-induced HSC activation by ECE is mediated through the inhibition of ROS and/or GSH and the downregulation of TGF-β secretion. ECE is useful for preventing the development of diabetic liver fibrosis.

  16. The 3D protein of duck hepatitis A virus type 1 binds to a viral genomic 3' UTR and shows RNA-dependent RNA polymerase activity.

    Zhang, Yu; Cao, Qianda; Wang, Mingshu; Jia, Renyong; Chen, Shun; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Zhao, Xinxin; Chen, Xiaoyue; Cheng, Anchun

    2017-12-01

    To explore the RNA-dependent RNA polymerase (RdRP) function of the 3D protein of duck hepatitis A virus type 1 (DHAV-1), the gene was cloned into the pET-32a(+) vector for prokaryotic expression. The 3' untranslated region (3' UTR) of DHAV-1 together with a T7 promoter was cloned into the pMD19-T vector for in vitro transcription of 3' UTR RNA, which was further used as a template in RNA-dependent RNA polymerization. In this study, three methods were applied to analyze the RdRP function of the 3D protein: (1) ammonium molybdate spectrophotometry to detect pyrophosphate produced during polymerization; (2) quantitative reverse transcription PCR (RT-qPCR) to investigate the changes in RNA quantity during polymerization; and (3) electrophoresis mobility shift assay to examine the interaction between the 3D protein and 3' UTR. The results showed the 3D protein was successfully expressed in bacteria culture supernatant in a soluble form, which could be purified by affinity chromatography. In 3D enzymatic activity assays, pyrophosphate and RNA were produced, the amounts of which increased based on approximative kinetics, and binding of the 3D protein to the 3' UTR was observed. These results indicate that prokaryotically expressed soluble DHAV-13D protein can bind to a viral genomic 3' UTR and exhibit RdRP activity.

  17. Hepatitis C virus NS5A protein is a substrate for the peptidyl-prolyl cis/trans isomerase activity of cyclophilins A and B.

    Hanoulle, Xavier; Badillo, Aurélie; Wieruszeski, Jean-Michel; Verdegem, Dries; Landrieu, Isabelle; Bartenschlager, Ralf; Penin, François; Lippens, Guy

    2009-05-15

    We report here a biochemical and structural characterization of domain 2 of the nonstructural 5A protein (NS5A) from the JFH1 Hepatitis C virus strain and its interactions with cyclophilins A and B (CypA and CypB). Gel filtration chromatography, circular dichroism spectroscopy, and finally NMR spectroscopy all indicate the natively unfolded nature of this NS5A-D2 domain. Because mutations in this domain have been linked to cyclosporin A resistance, we used NMR spectroscopy to investigate potential interactions between NS5A-D2 and cellular CypA and CypB. We observed a direct molecular interaction between NS5A-D2 and both cyclophilins. The interaction surface on the cyclophilins corresponds to their active site, whereas on NS5A-D2, it proved to be distributed over the many proline residues of the domain. NMR heteronuclear exchange spectroscopy yielded direct evidence that many proline residues in NS5A-D2 form a valid substrate for the enzymatic peptidyl-prolyl cis/trans isomerase (PPIase) activity of CypA and CypB.

  18. Independent Activation of Hepatitis B Virus Biosynthesis by Retinoids, Peroxisome Proliferators, and Bile Acids

    Reese, Vanessa C.; Oropeza, Claudia E.

    2013-01-01

    In the human hepatoma cell line HepG2, retinoic acid, clofibric acid, and bile acid treatment can only modestly increase hepatitis B virus (HBV) biosynthesis. Utilizing the human embryonic kidney cell line 293T, it was possible to demonstrate that the retinoid X receptor α (RXRα) plus its ligand can support viral biosynthesis independently of additional nuclear receptors. In addition, RXRα/peroxisome proliferator-activated receptor α (PPARα) and RXRα/farnesoid X receptor α (FXRα) heterodimeric nuclear receptors can also mediate ligand-dependent HBV transcription and replication when activated by clofibric acid and bile acid, respectively, independently of a requirement for the ligand-dependent activation of RXRα. These observations indicate that there are at least three possible modes of ligand-mediated activation of HBV transcription and replication existing within hepatocytes, suggesting that multiple independent mechanisms control viral production in the livers of infected individuals. PMID:23135717

  19. Hepatic oxidative stress in ovariectomized transgenic mice expressing the hepatitis C virus polyprotein is augmented through suppression of adenosine monophosphate-activated protein kinase/proliferator-activated receptor gamma co-activator 1 alpha signaling.

    Tomiyama, Yasuyuki; Nishina, Sohji; Hara, Yuichi; Kawase, Tomoya; Hino, Keisuke

    2014-10-01

    Oxidative stress plays an important role in hepatocarcinogenesis of hepatitis C virus (HCV)-related chronic liver diseases. Despite the evidence of an increased proportion of females among elderly patients with HCV-related hepatocellular carcinoma (HCC), it remains unknown whether HCV augments hepatic oxidative stress in postmenopausal women. The aim of this study was to determine whether oxidative stress was augmented in ovariectomized (OVX) transgenic mice expressing the HCV polyprotein and to investigate its underlying mechanisms. OVX and sham-operated female transgenic mice expressing the HCV polyprotein and non-transgenic littermates were assessed for the production of reactive oxygen species (ROS), expression of inflammatory cytokines and antioxidant potential in the liver. Compared with OVX non-transgenic mice, OVX transgenic mice showed marked hepatic steatosis and ROS production without increased induction of inflammatory cytokines, but there was no increase in ROS-detoxifying enzymes such as superoxide dismutase 2 and glutathione peroxidase 1. In accordance with these results, OVX transgenic mice showed less activation of peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α), which is required for the induction of ROS-detoxifying enzymes, and no activation of adenosine monophosphate-activated protein kinase-α (AMPKα), which regulates the activity of PGC-1α. Our study demonstrated that hepatic oxidative stress was augmented in OVX transgenic mice expressing the HCV polyprotein by attenuation of antioxidant potential through inhibition of AMPK/PGC-1α signaling. These results may account in part for the mechanisms by which HCV-infected women are at high risk for HCC development when some period has passed after menopause. © 2013 The Japan Society of Hepatology.

  20. PSA-alpha-2-macroglobulin complex is enzymatically active in the serum of patients with advanced prostate cancer and can degrade circulating peptide hormones.

    Kostova, Maya B; Brennen, William Nathaniel; Lopez, David; Anthony, Lizamma; Wang, Hao; Platz, Elizabeth; Denmeade, Samuel R

    2018-08-01

    Prostate cancer cells produce high levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the tumor microenvironment but is presumed to be enzymatically inactive in the blood due to complex formation with serum protease inhibitors α-1-antichymotrypsin and α-2-macroglobulin (A2M). PSA-A2M complexes cannot be measured by standard ELISA assays and are also rapidly cleared from the circulation. Thus the exact magnitude of PSA production by prostate cancer cells is not easily measured. The PSA complexed to A2M is unable to cleave proteins but maintains the ability to cleave small peptide substrates. Thus, in advanced prostate cancer, sufficient PSA-A2M may be in circulation to effect total A2M levels, levels of cytokines bound to A2M and hydrolyze small circulating peptide hormones. Total A2M levels in men with advanced prostate cancer and PSA levels above 1000 ng/mL were measured by ELISA and compared to controls. Additional ELISA assays were used to measure levels of IL-6 and TGF-beta which can bind to A2M. The ability of PSA-A2M complexes to hydrolyze protein and peptide substrates was analyzed ± PSA inhibitor. Enzymatic activity of PSA-A2M in serum of men with high PSA levels was also assayed. Serum A2M levels are inversely correlated with PSA levels in men with advanced prostate cancer. Il-6 Levels are significantly elevated in men with PSA >1000 ng/mL compared to controls with PSA PSA-A2M complex in serum of men with PSA levels >1000 ng/mL can hydrolyze small fluorescently labeled peptide substrates but not large proteins that are PSA substrates. PSA can hydrolyze small peptide hormones like PTHrP and osteocalcin. PSA complexed to A2M retains the ability to degrade PTHrP. In advanced prostate cancer with PSA levels >1000 ng/mL, sufficient PSA-A2M is present in circulation to produce enzymatic activity against circulating small peptide hormones. Sufficient PSA is produced in advanced prostate cancer to alter

  1. Hepatitis C virus core protein potentiates proangiogenic activity of hepatocellular carcinoma cells.

    Shao, Yu-Yun; Hsieh, Min-Shu; Wang, Han-Yu; Li, Yong-Shi; Lin, Hang; Hsu, Hung-Wei; Huang, Chung-Yi; Hsu, Chih-Hung; Cheng, Ann-Lii

    2017-10-17

    Increased angiogenic activity has been demonstrated in hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC), but the mechanism was unclear. To study the role of HCV core protein, we used tube formation and Matrigel plug assays to assess the proangiogenic activity of an HCC cell line, HuH7, and 2 of its stable clones-HuH7-core-high and HuH7-core-low, with high and low HCV core protein expression, respectively. In both assays, HuH7-core-high and HuH7-core-low cells dose-dependently induced stronger angiogenesis than control cells. HuH7 cells with HCV core protein expression showed increased mRNA and protein expression of vascular endothelial growth factor (VEGF). VEGF inhibition by bevacizumab reduced the proangiogenic activity of HuH7-core-high cells. The promotor region of VEGF contains the binding site of activator protein-1 (AP-1). Compared with controls, HuH7-core-high cells had an increased AP-1 activity and nuclear localization of phospho-c-jun. AP-1 inhibition using either RNA knockdown or AP-1 inhibitors reduced the VEGF mRNA expression and the proangiogenic activity of HuH7-core-high cells. Among 131 tissue samples from HCC patients, HCV-related HCC revealed stronger VEGF expression than did hepatitis B virus-related HCC. In conclusion, increased VEGF expression through AP-1 activation is a crucial mechanism underlying the proangiogenic activity of the HCV core protein in HCC cells.

  2. Enzymatic Browning: a practical class

    Maria Teresa Pedrosa Silva Clerici

    2014-10-01

    Full Text Available This paper presents a practical class about the enzymes polyphenol oxidases, which have been shown to be responsible for the enzymatic browning of fruits and vegetables. Vegetables samples were submitted to enzymatic inactivation process with chemical reagents, as well as by bleaching methods of applying heat by conventional oven and microwave oven. Process efficiency was assessed qualitatively by both observing the guaiacol peroxidase activity and after the storage period under refrigeration or freezing. The practical results obtained in this class allow exploring multidisciplinary knowledge in food science, with practical applications in everyday life.

  3. Rutin ameliorates glycemic index, lipid profile and enzymatic activities in serum, heart and liver tissues of rats fed with a combination of hypercaloric diet and chronic ethanol consumption.

    Chuffa, Luiz Gustavo A; Fioruci-Fontanelli, Beatriz A; Bordon, Juliana G; Pires, Rafaelle B; Braga, Camila P; Seiva, Fábio R F; Fernandes, Ana Angélica H

    2014-06-01

    Alcoholism and obesity are strongly associated with several disorders including heart and liver diseases. This study evaluated the effects of rutin treatment in serum, heart and liver tissues of rats subjected to a combination of hypercaloric diet (HD) and chronic ethanol consumption. Rats were divided into three groups: Control: rats fed a standard diet and drinking water ad libitum; G1: rats fed the HD and receiving a solution of 10% (v/v) ethanol; and G2: rats fed the HD and ethanol solution, followed by injections of 50 mg/kg(-1) rutin as treatment. After 53 days of HD and ethanol exposure, the rutin was administered every three days for nine days. At the end of the experimental period (95 days), biochemical analyses were carried out on sera, cardiac and hepatic tissues. Body weight gain and food consumption were reduced in both the G1 and G2 groups compared to control animals. Rutin effectively reduced the total lipids (TL), triglycerides (TG), total cholesterol (TC), VLDL, LDL-cholesterol and glucose levels, while it increased the HDL-cholesterol in the serum of G2 rats, compared to G1. Although rutin had no effect on total protein, albumin, uric acid and cretinine levels, it was able to restore serum activities of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatine kinase (CK) in animals fed HD and receiving ethanol. Glycogen stores were replenished in both hepatic and cardiac tissues after rutin treatment. Moreover, rutin consistently reduced hepatic levels of TG and TC and cardiac AST, ALT and CK activities. Thus, rutin treatment was effective in reducing the risk factors for cardiac and hepatic disease caused by both HD and chronic ethanol consumption.

  4. Hepatic Encephalopathy

    Full Text Available ... Related Liver Disease Alpha-1 Antitrypsin Deficiency Autoimmune Hepatitis Benign Liver Tumors Biliary Atresia Cirrhosis of the ... Disease Type 1 (von Gierke) Hemochromatosis Hepatic Encephalopathy Hepatitis A Hepatitis B Hepatitis C Intrahepatic Cholestasis of ...

  5. Hepatic Encephalopathy

    Full Text Available ... Hemochromatosis Hepatic Encephalopathy Hepatitis A Hepatitis B Hepatitis C Intrahepatic Cholestasis of Pregnancy (ICP) Jaundice In Newborns ... are the common causes of cirrhosis? Hepatitis B & C Alcohol-related Liver Disease Non-alcoholic Fatty Liver ...

  6. Perilipin-2 Deletion Impairs Hepatic Lipid Accumulation by Interfering with Sterol Regulatory Element-binding Protein (SREBP) Activation and Altering the Hepatic Lipidome*

    Libby, Andrew E.; Bales, Elise; Orlicky, David J.; McManaman, James L.

    2016-01-01

    Perilipin-2 (PLIN2) is a constitutively associated cytoplasmic lipid droplet coat protein that has been implicated in fatty liver formation in non-alcoholic fatty liver disease. Mice with or without whole-body deletion of perilipin-2 (Plin2-null) were fed either Western or control diets for 30 weeks. Perilipin-2 deletion prevents obesity and insulin resistance in Western diet-fed mice and dramatically reduces hepatic triglyceride and cholesterol levels in mice fed Western or control diets. Gene and protein expression studies reveal that PLIN2 deletion suppressed SREBP-1 and SREBP-2 target genes involved in de novo lipogenesis and cholesterol biosynthetic pathways in livers of mice on either diet. GC-MS lipidomics demonstrate that this reduction correlated with profound alterations in the hepatic lipidome with significant reductions in both desaturation and elongation of hepatic neutral lipid species. To examine the possibility that lipidomic actions of PLIN2 deletion contribute to suppression of SREBP activation, we isolated endoplasmic reticulum membrane fractions from long-term Western diet-fed wild type (WT) and Plin2-null mice. Lipidomic analyses reveal that endoplasmic reticulum membranes from Plin2-null mice are markedly enriched in ω-3 and ω-6 long-chain polyunsaturated fatty acids, which others have shown inhibit SREBP activation and de novo lipogenesis. Our results identify PLIN2 as a determinant of global changes in the hepatic lipidome and suggest the hypothesis that these actions contribute to SREBP-regulated de novo lipogenesis involved in non-alcoholic fatty liver disease. PMID:27679530

  7. Perilipin-2 Deletion Impairs Hepatic Lipid Accumulation by Interfering with Sterol Regulatory Element-binding Protein (SREBP) Activation and Altering the Hepatic Lipidome.

    Libby, Andrew E; Bales, Elise; Orlicky, David J; McManaman, James L

    2016-11-11

    Perilipin-2 (PLIN2) is a constitutively associated cytoplasmic lipid droplet coat protein that has been implicated in fatty liver formation in non-alcoholic fatty liver disease. Mice with or without whole-body deletion of perilipin-2 (Plin2-null) were fed either Western or control diets for 30 weeks. Perilipin-2 deletion prevents obesity and insulin resistance in Western diet-fed mice and dramatically reduces hepatic triglyceride and cholesterol levels in mice fed Western or control diets. Gene and protein expression studies reveal that PLIN2 deletion suppressed SREBP-1 and SREBP-2 target genes involved in de novo lipogenesis and cholesterol biosynthetic pathways in livers of mice on either diet. GC-MS lipidomics demonstrate that this reduction correlated with profound alterations in the hepatic lipidome with significant reductions in both desaturation and elongation of hepatic neutral lipid species. To examine the possibility that lipidomic actions of PLIN2 deletion contribute to suppression of SREBP activation, we isolated endoplasmic reticulum membrane fractions from long-term Western diet-fed wild type (WT) and Plin2-null mice. Lipidomic analyses reveal that endoplasmic reticulum membranes from Plin2-null mice are markedly enriched in ω-3 and ω-6 long-chain polyunsaturated fatty acids, which others have shown inhibit SREBP activation and de novo lipogenesis. Our results identify PLIN2 as a determinant of global changes in the hepatic lipidome and suggest the hypothesis that these actions contribute to SREBP-regulated de novo lipogenesis involved in non-alcoholic fatty liver disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Evaluation of Biological and Enzymatic Activity of Soil in a Tropical Dry Forest: Desierto de la Tatacoa (Colombia) with Potential in Mars Terraforming and Other Similar Planets

    Moreno Moreno, A. N.

    2009-12-01

    Desierto de la Tatacoa has been determined to be a tropical dry forest bioma, which is located at 3° 13" N 75° 13" W. It has a hot thermal floor with 440 msnm of altitude; it has a daily average of 28° C, and a maximum of 40° C, Its annual rainfall total can be upwards of 1250 mm. Its solar sheen has a daily average of 5.8 hours and its relative humidity is between 60% and 65%. Therefore, the life forms presents are very scant, and in certain places, almost void. It was realized a completely random sampling of soil from its surface down to 6 inches deep, of zones without vegetation and with soils highly loaded by oxides of iron in order to determine the number of microorganisms per gram and its subsequent identification. It was measured the soil basal respiration. Besides, it was determined enzymatic activity (catalase, dehydrogenase, phosphatase and urease). Starting with the obtained results, it is developes an alternative towards the study of soil genesis in Mars in particular, and recommendations for same process in other planets. Although the information found in the experiments already realized in Martian soil they demonstrate that doesnt exist any enzymatic activity, the knowledge of the same topic in the soil is proposed as an alternative to problems like carbonic fixing of the dense Martian atmosphere of CO2, the degradation of inorganic compounds amongst other in order to prepare the substratum for later colonization by some life form.

  9. Feeding indices and enzymatic activities of carob moth Ectomyelois ceratoniae (Zeller (Lepidoptera: pyrallidae on two commercial pistachio cultivars and an artificial diet

    Naeimeh Teimouri

    2015-01-01

    Full Text Available Feeding indices and enzymatic activities of Ectomyelois ceratoniae (Zeller were studied in a growth chamber under controlled conditions (29 ± 2 °C, relative humidity of 70 ± 5% and a photoperiod of 16:8 (L:D hours on two commercial Pistachio cultivars (Akbari and Kalequchi and an artificial diet. Feeding indices of E. ceratoniae larvae differed significantly on three hosts (P < 0.05. The relative consumption rate was calculated to be 5.36 ± 0.009, 11.10 ± 1.49 and 10.631 ± 0.599 (mg/mg/day on artificial diet, Akbari and Kalequchi cultivars, respectively. Carob moth larvae reared on Akbari cultivar showed the highest efficiency of conversion of digested food (ECD (5.64 ± 0.43. The highest amount of efficiency of conversion of ingested food (ECI was obtained on artificial diet but approximate digestibility (AD was the lowest on this diet. The highest enzymatic activities of alpha-amylase, general proteases and lipase were observed in the midgut of larvae reared on artificial diet. Total protein and lipid value were highest in larvae that were reared on artificial diet.

  10. Dual role of the carboxyl-terminal region of pig liver L-kynurenine 3-monooxygenase: mitochondrial-targeting signal and enzymatic activity.

    Hirai, Kumiko; Kuroyanagi, Hidehito; Tatebayashi, Yoshitaka; Hayashi, Yoshitaka; Hirabayashi-Takahashi, Kanako; Saito, Kuniaki; Haga, Seiich; Uemura, Tomihiko; Izumi, Susumu

    2010-12-01

    l-kynurenine 3-monooxygenase (KMO) is an NAD(P)H-dependent flavin monooxygenase that catalyses the hydroxylation of l-kynurenine to 3-hydroxykynurenine, and is localized as an oligomer in the mitochondrial outer membrane. In the human brain, KMO may play an important role in the formation of two neurotoxins, 3-hydroxykynurenine and quinolinic acid, both of which provoke severe neurodegenerative diseases. In mosquitos, it plays a role in the formation both of eye pigment and of an exflagellation-inducing factor (xanthurenic acid). Here, we present evidence that the C-terminal region of pig liver KMO plays a dual role. First, it is required for the enzymatic activity. Second, it functions as a mitochondrial targeting signal as seen in monoamine oxidase B (MAO B) or outer membrane cytochrome b(5). The first role was shown by the comparison of the enzymatic activity of two mutants (C-terminally FLAG-tagged KMO and carboxyl-terminal truncation form, KMOΔC50) with that of the wild-type enzyme expressed in COS-7 cells. The second role was demonstrated with fluorescence microscopy by the comparison of the intracellular localization of the wild-type, three carboxyl-terminal truncated forms (ΔC20, ΔC30 and ΔC50), C-terminally FLAG-tagged wild-type and a mutant KMO, where two arginine residues, Arg461-Arg462, were replaced with Ser residues.

  11. Modification of chemical properties, Cu fractionation and enzymatic activities in an acid vineyard soil amended with winery wastes: A field study.

    Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Calviño, David

    2017-11-01

    The effects of adding two winery wastes, perlite waste (PW) and bentonite waste (BW), to an acid vineyard soil were assessed using some chemical and biological soil properties in a field study that lasted 18 months. The addition of PW (up to 81 Mg ha -1 ) had neither significant nor permanent effects on soil characteristics such as the pH, organic matter content or nutrient concentrations, the amounts of copper or zinc, or the electrical conductivity. Moreover, no persistent negative effects were found on the enzymatic activities after PW application. In contrast, soil that was amended with up to 71 Mg BW ha -1 showed increases in its soil pH values, exchangeable potassium and water soluble potassium and phosphorus contents. In addition, it caused significant increases in the electrical conductivity and water-soluble Cu. In addition, the phosphomonoesterase enzymatic activity decreased significantly (up to 28%) in response to the amendment with 71 Mg BW ha -1 . These results showed that adding BW and PW to the soil may be a good agronomic practice for recycling these types of wastes. However, in the case of PW, its use as a soil amendment must be performed with caution to control its possible harmful effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. PPAR alpha-activation results in enhanced carnitine biosynthesis and OCTN2-mediated hepatic carnitine accumulation

    van Vlies, Naomi; Ferdinandusse, Sacha; Turkenburg, Marjolein; Wanders, Ronald J. A.; Vaz, Frédéric M.

    2007-01-01

    In fasted rodents hepatic carnitine concentration increases considerably which is not observed in PPAR alpha-/- mice, indicating that PPAR alpha is involved in carnitine homeostasis. To investigate the mechanisms underlying the PPAR alpha-dependent hepatic carnitine accumulation we measured

  13. Antiproliferative and cytotoxic effects of purple pitanga (Eugenia uniflora L.) extract on activated hepatic stellate cells.

    Denardin, Cristiane C; Parisi, Mariana M; Martins, Leo A M; Terra, Silvia R; Borojevic, Radovan; Vizzotto, Márcia; Perry, Marcos L S; Emanuelli, Tatiana; Guma, Fátima T C R

    2014-01-01

    The presence of phenolic compounds in fruit- and vegetable-rich diets has attracted researchers' attention due to their health-promoting effects. The objective of this study was to evaluate the effects of purple pitanga (Eugenia uniflora L.) extract on cell proliferation, viability, mitochondrial membrane potential, cell death and cell cycle in murine activated hepatic stellate cells (GRX). Cell viability by 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was significantly decreased on cells treated with 50 and 100 µg ml(-1) of purple pitanga extract for 48 and 72 h, and the percentage of dead cell stained with 7-amino-actinomycin D was significantly higher in treated cells. The reduction of cell proliferation was dose dependent, and we also observed alterations on cell cycle progression. At all times studied, GRX cells treated with 50 and 100 µg ml(-1) of purple pitanga showed a significant reduction in cellular mitochondrial content as well as a decrease in mitochondrial membrane potential. Furthermore, our results indicated that purple pitanga extract induces early and late apoptosis/necrosis and necrotic death in GRX cells. This is the first report describing the antiproliferative, cytotoxic and apoptotic activity for E. uniflora fruits in hepatic stellate cells. The present study provides a foundation for the prevention and treatment of liver fibrosis, and more studies will be carried to elucidate this effect. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin

    Paeshuyse, Jan; Coelmont, Lotte; Vliegen, Inge; Hemel, Johan van; Vandenkerckhove, Jan; Peys, Eric; Sas, Benedikt; Clercq, Erik De; Neyts, Johan

    2006-01-01

    We report that the antimalarial drug artemisinin inhibits hepatitis C virus (HCV) replicon replication in a dose-dependent manner in two replicon constructs at concentrations that have no effect on the proliferation of the exponentially growing host cells. The 50% effective concentration (EC 5 ) for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by artemisinin was 78 ± 21 μM. Hemin, an iron donor, was recently reported to inhibit HCV replicon replication [mediated by inhibition of the viral polymerase (C. Fillebeen, A.M. Rivas-Estilla, M. Bisaillon, P. Ponka, M. Muckenthaler, M.W. Hentze, A.E. Koromilas, K. Pantopoulos, Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus, J. Biol. Chem. 280 (2005) 9049-9057.)] at a concentration that had no adverse effect on the host cells. When combined, artemisinin and hemin resulted, over a broad concentration range, in a pronounced synergistic antiviral activity. Also at a concentration (2 μM) that alone had no effect on HCV replication, hemin still potentiated the anti-HCV activity of artemisinin

  15. Hemin potentiates the anti-hepatitis C virus activity of the antimalarial drug artemisinin

    Paeshuyse, Jan [Rega Institute for Medical Research, Minderbroedersstraat 10, KULeuven, B-3000 Leuven (Belgium); Coelmont, Lotte [Rega Institute for Medical Research, Minderbroedersstraat 10, KULeuven, B-3000 Leuven (Belgium); Vliegen, Inge [Rega Institute for Medical Research, Minderbroedersstraat 10, KULeuven, B-3000 Leuven (Belgium); Hemel, Johan van [Kemin Pharma, Atealaan 4H, B-2200 Herentals (Belgium); Vandenkerckhove, Jan [Kemin Pharma, Atealaan 4H, B-2200 Herentals (Belgium); Peys, Eric [Kemin Pharma, Atealaan 4H, B-2200 Herentals (Belgium); Sas, Benedikt [Kemin Pharma, Atealaan 4H, B-2200 Herentals (Belgium); Clercq, Erik De [Rega Institute for Medical Research, Minderbroedersstraat 10, KULeuven, B-3000 Leuven (Belgium); Neyts, Johan [Rega Institute for Medical Research, Minderbroedersstraat 10, KULeuven, B-3000 Leuven (Belgium)

    2006-09-15

    We report that the antimalarial drug artemisinin inhibits hepatitis C virus (HCV) replicon replication in a dose-dependent manner in two replicon constructs at concentrations that have no effect on the proliferation of the exponentially growing host cells. The 50% effective concentration (EC{sub 5}) for inhibition of HCV subgenomic replicon replication in Huh 5-2 cells (luciferase assay) by artemisinin was 78 {+-} 21 {mu}M. Hemin, an iron donor, was recently reported to inhibit HCV replicon replication [mediated by inhibition of the viral polymerase (C. Fillebeen, A.M. Rivas-Estilla, M. Bisaillon, P. Ponka, M. Muckenthaler, M.W. Hentze, A.E. Koromilas, K. Pantopoulos, Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus, J. Biol. Chem. 280 (2005) 9049-9057.)] at a concentration that had no adverse effect on the host cells. When combined, artemisinin and hemin resulted, over a broad concentration range, in a pronounced synergistic antiviral activity. Also at a concentration (2 {mu}M) that alone had no effect on HCV replication, hemin still potentiated the anti-HCV activity of artemisinin.

  16. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons.

    Shi, Xuemei; Zhou, Fuguo; Li, Xiaojie; Chang, Benny; Li, Depei; Wang, Yi; Tong, Qingchun; Xu, Yong; Fukuda, Makoto; Zhao, Jean J; Li, Defa; Burrin, Douglas G; Chan, Lawrence; Guan, Xinfu

    2013-07-02

    Glucagon-like peptides (GLP-1/GLP-2) are coproduced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We show that mice lacking GLP-2 receptor (GLP-2R) in POMC neurons display glucose intolerance and hepatic insulin resistance. GLP-2R activation in POMC neurons is required for GLP-2 to enhance insulin-mediated suppression of hepatic glucose production (HGP) and gluconeogenesis. GLP-2 directly modulates excitability of POMC neurons in GLP-2R- and PI3K-dependent manners. GLP-2 initiates GLP-2R-p85α interaction and facilitates PI3K-Akt-dependent FoxO1 nuclear exclusion in POMC neurons. Central GLP-2 suppresses basal HGP and enhances insulin sensitivity, which are abolished in POMC-p110α KO mice. Thus, CNS GLP-2 plays a key physiological role in the control of HGP through activating PI3K-dependent modulation of membrane excitability and nuclear transcription of POMC neurons in the brain. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Alcoholic liver disease patients’ perspective on coping and physical activity-oriented rehabilitation intervention after hepatic encephalopathy

    Mikkelsen, Maria Rudkjær; Hendriksen, Carsten; Schiødt, Frank

    2016-01-01

    Aim and objective: To identify and describe the impact of a coping and physical activity-oriented rehabilitation intervention on alcoholic liver disease patients after hepatic encephalopathy in terms of their interaction with professionals and relatives. Background: Patients who have experienced...... were conducted with 10 alcoholic liver disease patients who were diagnosed with hepatic encephalopathy and participated in a coping and physical activity-oriented rehabilitation intervention. Richard S. Lazarus's theory of stress and coping inspired the interview guide. Results: The significance...... of a coping and physical activity-oriented rehabilitation intervention on alcoholic liver disease patients’ ability to cope with problems after surviving alcohol-induced hepatic encephalopathy in terms of their interaction with professionals and relatives was characterised by the core category ‘regain control...

  18. Pituitary adenylate cyclase-activating polypeptide stimulates glucose production via the hepatic sympathetic innervation in rats.

    Yi, Chun-Xia; Sun, Ning; Ackermans, Mariette T; Alkemade, Anneke; Foppen, Ewout; Shi, Jing; Serlie, Mireille J; Buijs, Ruud M; Fliers, Eric; Kalsbeek, Andries

    2010-07-01

    The unraveling of the elaborate brain networks that control glucose metabolism presents one of the current challenges in diabetes research. Within the central nervous system, the hypothalamus is regarded as the key brain area to regulate energy homeostasis. The aim of the present study was to investigate the hypothalamic mechanism involved in the hyperglycemic effects of the neuropeptide pituitary adenylyl cyclase-activating polypeptide (PACAP). Endogenous glucose production (EGP) was determined during intracerebroventricular infusions of PACAP-38, vasoactive intestinal peptide (VIP), or their receptor agonists. The specificity of their receptors was examined by coinfusions of receptor antagonists. The possible neuronal pathway involved was investigated by 1) local injections in hypothalamic nuclei, 2) retrograde neuronal tracing from the thoracic spinal cord to hypothalamic preautonomic neurons together with Fos immunoreactivity, and 3) specific hepatic sympathetic or parasympathetic denervation to block the autonomic neuronal input to liver. Intracerebroventricular infusion of PACAP-38 increased EGP to a similar extent as a VIP/PACAP-2 (VPAC2) receptor agonist, and intracerebroventricular administration of VIP had significantly less influence on EGP. The PACAP-38 induced increase of EGP was significantly suppressed by preinfusion of a VPAC2 but not a PAC1 receptor antagonist, as well as by hepatic sympathetic but not parasympathetic denervation. In the hypothalamus, Fos immunoreactivity induced by PACAP-38 was colocalized within autonomic neurons in paraventricular nuclei projecting to preganglionic sympathetic neurons in the spinal cord. Local infusion of PACAP-38 directly into the PVN induced a significant increase of EGP. This study demonstrates that PACAP-38 signaling via sympathetic preautonomic neurons located in the paraventricular nucleus is an important component in the hypothalamic control of hepatic glucose production.

  19. ANTIVIRAL ACTIVITY OF DIANTHUS SUPERBUSN L. AGAINST HEPATITIS B VIRUS IN VITRO AND IN VIVO.

    Li, Wei-Guo; Wang, He-Qun

    2016-01-01

    Hepatitis is a viral infection of hepatitis B virus (HBV). Limitations of drug used in the management of it opens the interest related to alternative medicine. The given study deals with the antiviral activity of Dianthus superbusn L. (DSL) against HBV in vitro & in vivo . In vitro study liver cell line HepG2.2.15 was used by transinfected it with HBV. Cytotoxicity stduy was performed by using different concentrations of DSL such as 50, 100, 200, 500 & 1000 μg/ml. Anti HBV activity of DSL was estimated by assesing the concentration of HBsAg and HbeAg in cell culture medium by using ELISA. Whereas in vivo study was performed on ducklings and antiviral activity of DSL (100, 200, 400 mg/kg) was confirmed by estimating the serum concentration of HBV DNA and histopathology study of hepatocytes in HBV infected ducklings. Result of the study suggested that >500 μg/ml concentration of hydroalcoholic extract of DSL was found tobe cytotoxic. It was also observed that DSL significantly ( p <0.05) reduces the concentration of antigenes in cell culture media as per the concentration and days of treatment dependent. Moreover in vivo study confirms the anti viral activity of DSL (200 & 400 mg/kg) as it significantly ( p <0.05) decreases the serum concenetration of HBV DNA in HBV infected dukling compared to control group. Histopathology study was also reveals the hepatprotective effect of DSL in HBV infected ducklings. The given study concludes the antiviral activity DSL against HBV by in vitro and in vivo models.

  20. Nucleic Acid Polymers Are Active against Hepatitis Delta Virus Infection In Vitro.

    Beilstein, Frauke; Blanchet, Matthieu; Vaillant, Andrew; Sureau, Camille

    2018-02-15

    In this study, an in vitro infection model for the hepatitis delta virus (HDV) was used to evaluate the antiviral effects of phosphorothioate nucleic acid polymers (NAPs) and investigate their mechanism of action. The results show that NAPs inhibit HDV infection at concentrations less than 4 μM in cultures of differentiated human hepatoma cells. NAPs were shown to be active at viral entry but inactive postentry on HDV RNA replication. Inhibition was independent of the NAP nucleotide sequence but dependent on both size and amphipathicity of the polymer. NAP antiviral activity was effective against HDV virions bearing the main hepatitis B virus (HBV) immune escape substitutions (D144A and G145R) and was pangenomic with regard to HBV envelope proteins. Furthermore, similar to immobilized heparin, immobilized NAPs could bind HDV particles, suggesting that entry inhibition was due, at least in part, to preventing attachment of the virus to cell surface glycosaminoglycans. The results document NAPs as a novel class of antiviral compounds that can prevent HDV propagation. IMPORTANCE HDV infection causes the most severe form of viral hepatitis in humans and one of the most difficult to cure. Currently, treatments are limited to long-term administration of interferon at high doses, which provide only partial efficacy. There is thus an urgent need for innovative approaches to identify new antiviral against HDV. The significance of our study is in demonstrating that nucleic acid polymers (NAPs) are active against HDV by targeting the envelope of HDV virions. In an in vitro infection assay, NAP activity was recorded at concentrations less than 4 μM in the absence of cell toxicity. Furthermore, the fact that NAPs could block HDV at viral entry suggests their potential to control the spread of HDV in a chronically HBV-infected liver. In addition, NAP anti-HDV activity was pangenomic with regard to HBV envelope proteins and not circumvented by HBsAg substitutions associated

  1. Inactivated ORF virus shows antifibrotic activity and inhibits human hepatitis B virus (HBV) and hepatitis C virus (HCV) replication in preclinical models.

    Paulsen, Daniela; Urban, Andreas; Knorr, Andreas; Hirth-Dietrich, Claudia; Siegling, Angela; Volk, Hans-Dieter; Mercer, Andrew A; Limmer, Andreas; Schumak, Beatrix; Knolle, Percy; Ruebsamen-Schaeff, Helga; Weber, Olaf

    2013-01-01

    Inactivated orf virus (iORFV), strain D1701, is a potent immune modulator in various animal species. We recently demonstrated that iORFV induces strong antiviral activity in animal models of acute and chronic viral infections. In addition, we found D1701-mediated antifibrotic effects in different rat models of liver fibrosis. In the present study, we compare iORFV derived from two different strains of ORFV, D1701 and NZ2, respectively, with respect to their antifibrotic potential as well as their potential to induce an antiviral response controlling infections with the hepatotropic pathogens hepatitis C virus (HCV) and hepatitis B virus (HBV). Both strains of ORFV showed anti-viral activity against HCV in vitro and against HBV in a transgenic mouse model without signs of necro-inflammation in vivo. Our experiments suggest that the absence of liver damage is potentially mediated by iORFV-induced downregulation of antigen cross-presentation in liver sinus endothelial cells. Furthermore, both strains showed significant anti-fibrotic activity in rat models of liver fibrosis. iORFV strain NZ2 appeared more potent compared to strain D1701 with respect to both its antiviral and antifibrotic activity on the basis of dosages estimated by titration of active virus. These results show a potential therapeutic approach against two important human liver pathogens HBV and HCV that independently addresses concomitant liver fibrosis. Further studies are required to characterize the details of the mechanisms involved in this novel therapeutic principle.

  2. Inactivated ORF virus shows antifibrotic activity and inhibits human hepatitis B virus (HBV and hepatitis C virus (HCV replication in preclinical models.

    Daniela Paulsen

    Full Text Available Inactivated orf virus (iORFV, strain D1701, is a potent immune modulator in various animal species. We recently demonstrated that iORFV induces strong antiviral activity in animal models of acute and chronic viral infections. In addition, we found D1701-mediated antifibrotic effects in different rat models of liver fibrosis. In the present study, we compare iORFV derived from two different strains of ORFV, D1701 and NZ2, respectively, with respect to their antifibrotic potential as well as their potential to induce an antiviral response controlling infections with the hepatotropic pathogens hepatitis C virus (HCV and hepatitis B virus (HBV. Both strains of ORFV showed anti-viral activity against HCV in vitro and against HBV in a transgenic mouse model without signs of necro-inflammation in vivo. Our experiments suggest that the absence of liver damage is potentially mediated by iORFV-induced downregulation of antigen cross-presentation in liver sinus endothelial cells. Furthermore, both strains showed significant anti-fibrotic activity in rat models of liver fibrosis. iORFV strain NZ2 appeared more potent compared to strain D1701 with respect to both its antiviral and antifibrotic activity on the basis of dosages estimated by titration of active virus. These results show a potential therapeutic approach against two important human liver pathogens HBV and HCV that independently addresses concomitant liver fibrosis. Further studies are required to characterize the details of the mechanisms involved in this novel therapeutic principle.

  3. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    Iyer, Soumya C; Kannan, Anbarasu; Gopal, Ashidha; Devaraj, Niranjali; Halagowder, Devaraj

    2015-01-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy

  4. Receptor channel TRPC6 orchestrate the activation of human hepatic stellate cell under hypoxia condition

    Iyer, Soumya C, E-mail: chidambaram.soumya@gmail.com [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Kannan, Anbarasu [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Gopal, Ashidha [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Devaraj, Niranjali [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India); Halagowder, Devaraj [Unit of Biochemistry, Department of Zoology, School of Life Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu (India)

    2015-08-01

    Hepatic stellate cells (HSCs), a specialized stromal cytotype have a great impact on the biological behaviors of liver diseases. Despite this fact, the underlying mechanism that regulates HSC still remains poorly understood. The aim of the present study was to understand the role of TRPC6 signaling in regulating the molecular mechanism of HSCs in response to hypoxia. In the present study we showed that under hypoxia condition, the upregulated Hypoxia Inducible Factor 1α (HIF1α) increases NICD activation, which in turn induces the expression of transient receptor potential channel 6 (TRPC6) in HSC line lx-2. TRPC6 causes a sustained elevation of intracellular calcium which is coupled with the activation of the calcineurin-nuclear factor of activated T-cell (NFAT) pathway which activates the synthesis of extracellular matrix proteins. TRPC6 also activates SMAD2/3 dependent TGF-β signaling in facilitating upregulated expression of αSMA and collagen. As activated HSCs may be a suitable target for HCC therapy and targeting these cells rather than the HCC cells may result in a greater response. Collectively, our studies indicate for the first time the detailed mechanism of activation of HSC through TRPC6 signaling and thus being a promising therapeutic target. - Highlights: • HIF1α increases NICD, induces TRPC6 in lx2 cells. • TRPC6 a novel regulator in the activation of HSC. • HSCs as target for HCC therapy.

  5. Autoantibodies in Autoimmune Hepatitis.

    Muratori, Luigi; Deleonardi, Gaia; Lalanne, Claudine; Barbato, Erica; Tovoli, Alessandra; Libra, Alessia; Lenzi, Marco; Cassani, Fabio; Muratori, Paolo

    2015-01-01

    The detection of diagnostic autoantibodies such as antinuclear antibodies (ANA), anti-smooth muscle antibodies (SMA), anti-liver/kidney microsomal type 1 (anti-LKM1), anti-liver cytosol type 1 (anti-LC1) and anti-soluble liver antigen (anti-SLA) is historically associated with the diagnosis of autoimmune hepatitis. When autoimmune hepatitis is suspected, the detection of one or any combination of diagnostic autoantibodies, by indirect immunofluorescence or immuno-enzymatic techniques with recombinant antigens, is a pivotal step to reach a diagnostic score of probable or definite autoimmune hepatitis. Diagnostic autoantibodies (ANA, SMA, anti-LKM1, anti-LC1, anti-SLA) are a cornerstone in the diagnosis of autoimmune hepatitis. Other ancillary autoantibodies, associated with peculiar clinical correlations, appear to be assay-dependent and institution-specific, and validation studies are needed. © 2015 S. Karger AG, Basel.

  6. Enzymatic Modification of Sphingomyelin

    Due to its major role in maintaining the water-retaining properties of the epidermis, ceramide is of great commercial potential in cosmetic and pharmaceuticals such as hair and skin care products. Currently, chemical synthesis of ceramide is a costly process, and developments of alternative cost......-efficient, high yield production methods are of great interest. In the present study, the potential of producing ceramide through the enzymatic hydrolysis of sphingomyelin have been studied. sphingomyelin is a ubiquitous membrane-lipid and rich in dairy products or by-products. It has been verified...... that sphingomyelin modification gives a feasible approach to the potential production of ceramide. The reaction system has been improved through system evaluation and the optimization of several important factors, and phospholipase C from Clostridium perfringens shows higher activity towards the hydrolysis reaction...

  7. Enzymatic modification of starch

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... substrate concentration (30-40% dry matter (DM)) and high enzyme activity (750-2250 BE units (BEU)/g sample). Starches from various botanical sources, representing a broad range of properties, were used as substrates. The effects of the used conditions on the BE-reaction were evaluated by characterization...

  8. Similar potential ATP-P production and enzymatic activities in the microplankton community off Concepción (Chile) under oxic and suboxic conditions

    González, Rodrigo R.; Gutiérrez, Marcelo H.; Quiñones, Renato A.

    2007-11-01

    The effects of the oxygen minimum zone on the metabolism of the heterotrophic microplankton community (0.22-100 μm) in the Humboldt Current System, as well as the factors controlling its biomass production, remain unknown. Here we compare the effect of four sources of dissolved organic carbon (glucose, oxaloacetate, glycine, leucine) on microbial biomass production (such as ATP-P) and the potential enzymatic activities involved in catabolic pathways under oxic and suboxic conditions. Our results show significant differences ( p oxygen minimum zone has the same or greater potential growth than the community inhabiting more oxygenated strata of the water column and that malate dehydrogenase is the activity that best represents the metabolic potential of the community.

  9. The let-7/Lin28 axis regulates activation of hepatic stellate cells in alcoholic liver injury.

    McDaniel, Kelly; Huang, Li; Sato, Keisaku; Wu, Nan; Annable, Tami; Zhou, Tianhao; Ramos-Lorenzo, Sugeily; Wan, Ying; Huang, Qiaobing; Francis, Heather; Glaser, Shannon; Tsukamoto, Hidekazu; Alpini, Gianfranco; Meng, Fanyin

    2017-07-07

    The let-7/Lin28 axis is associated with the regulation of key cellular regulatory genes known as microRNAs in various human disorders and cancer development. This study evaluated the role of the let-7/Lin28 axis in regulating a mesenchymal phenotype of hepatic stellate cells in alcoholic liver injury. We identified that ethanol feeding significantly down-regulated several members of the let-7 family in mouse liver, including let-7a and let-7b. Similarly, the treatment of human hepatic stellate cells (HSCs) with lipopolysaccharide (LPS) and transforming growth factor-β (TGF-β) significantly decreased the expressions of let-7a and let-7b. Conversely, overexpression of let-7a and let-7b suppressed the myofibroblastic activation of cultured human HSCs induced by LPS and TGF-β, as evidenced by repressed ACTA2 (α-actin 2), COL1A1 (collagen 1A1), TIMP1 (TIMP metallopeptidase inhibitor 1), and FN1 (fibronectin 1); this supports the notion that HSC activation is controlled by let-7. A combination of bioinformatics, dual-luciferase reporter assay, and Western blot analysis revealed that Lin28B and high-mobility group AT-hook (HMGA2) were the direct targets of let-7a and let-7b. Furthermore, Lin28B deficiency increased the expression of let-7a/let-7b as well as reduced HSC activation and liver fibrosis in mice with alcoholic liver injury. This feedback regulation of let-7 by Lin28B is verified in hepatic stellate cells isolated by laser capture microdissection from the model. The identification of the let-7/Lin28 axis as an important regulator of HSC activation as well as its upstream modulators and down-stream targets will provide insights into the involvement of altered microRNA expression in contributing to the pathogenesis of alcoholic liver fibrosis and novel therapeutic approaches for human alcoholic liver diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Age-dependent Hepatic UDP-glucuronosyltransferase Gene Expression and Activity in Children

    Elizabeth Neumann

    2016-11-01

    Full Text Available ABSTRACTUDP-glucuronosyltransferases (UGTs are important phase II drug metabolism enzymes. The aim of this study was to explore the relationship between age and changes in mRNA expression and activity of major human hepatic UGTs, as well as to understand the potential regulatory mechanism underlying this relationship. Using previously generated data, we investigated age-dependent mRNA expression levels of 11 hepatic UGTs (UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17 and 16 transcription factors (AHR, AR, CAR, ESR2, FXR, GCCR, HNF1a, HNF3a, HNF3b, HNF4a, PPARA, PPARG, PPARGC, PXR, SP1, and STAT3 in liver tissue of donors (n = 38 ranging from 0 to 25 years of age. We also examined the correlation between age and microsomal activities using 14 known UGT drug substrates in the liver samples (n = 19 of children donors. We found a statistically significant increase (nominal p < 0.05 in the expression of UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT2B7 and UGT2B17, as well as glucuronidation activities of serotonin, testosterone, and vorinostat during the first 25 years of life. Expression of estrogen receptor 1 (ESR1 and pregnane X receptor (PXR, two strong UGT transcriptional regulators, were significantly correlated with both age and UGT mRNA expression (p ≤ 0.05. These results suggest that both UGT expression and activity increase during childhood and adolescence, possibly driven in part by hormonal signaling. Our findings may help explain inter-patient variability in response to medications among children.

  11. Diterpenes from buds of Wikstroemia chamaedaphne showing anti-hepatitis B virus activities.

    Li, Shi-Fei; Jiao, Ying-Ying; Zhang, Zhi-Qiang; Chao, Jian-Bin; Jia, Jie; Shi, Xun-Long; Zhang, Li-Wei

    2018-07-01

    Phytochemical study of the buds of Wikstroemia chamaedaphne Meisn. led to the isolation of seven previously undescribed diterpenes, including one tigliane diterpene (wikstchalide A), two daphnane diterpenes (wikstroelides W-X), and four lathyrane diterpenes (laurifoliosides A-B and 2-epi-laurifoliosides A-B), along with four known diterpenes. The structures of these compounds were established by extensive spectroscopic evidence and electronic circular dichroism (ECD) calculations. Wikstchalide A possesses a 5,6-epoxy ring in the tigliane skeleton. Two compounds exhibited potential anti-hepatitis B virus activities, with IC 50 values of 46.5 and 88.3 μg/mL against hepatitis B virus (HBV) surface antigen (HBsAg), and six compounds showed certain inhibitory effects on HBV-DNA replication with the inhibition ratios ranging from 2.0% to 33.0% at the concentrations ranging from 0.39 to 6.25 μg/mL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-01

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients

  13. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    Wu, Weibin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China); Zhu, Bo; Peng, Xiaomin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhou, Meiling, E-mail: meilingzhou2012@gmail.com [Department of Radiology, Zhongshan Hospital of Fudan University and Shanghai Institute of Medical Imaging, Shanghai 200032 (China); Jia, Dongwei, E-mail: jiadongwei@fudan.edu.cn [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Institutes of Biomedical Science, Fudan University, Shanghai 200032 (China)

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  14. Circulating macrophage activation markers, CD163 and CD206, are associated with disease severity and treatment response in patients with autoimmune hepatitis

    Grønbæk, Henning; Kazankov, Konstantin; Jessen, Niels

    Circulating macrophage activation markers, CD163 and CD206, are associated with disease severity and treatment response in patients with autoimmune hepatitis......Circulating macrophage activation markers, CD163 and CD206, are associated with disease severity and treatment response in patients with autoimmune hepatitis...

  15. Sustained activation of the mammalian target of rapamycin nutrient sensing pathway is associated with hepatic insulin resistance, but not with steatosis, in mice

    Korsheninnikova, E.; van der Zon, G. C. M.; Voshol, P. J.; Janssen, G. M.; Havekes, L. M.; Grefhorst, A.; Kuipers, F.; Reijngoud, D. -J.; Romijn, J. A.; Ouwens, D. M.; Maassen, J. A.

    2006-01-01

    Aims/hypothesis Activation of nutrient sensing through mammalian target of rapamycin (mTOR) has been linked to the pathogenesis of insulin resistance. We examined activation of mTOR-signalling in relation to insulin resistance and hepatic steatosis in mice. Materials and methods Chronic hepatic

  16. Association between CISH polymorphisms and spontaneous clearance of hepatitis B virus in hepatitis B extracellular antigen-positive patients during immune active phase.

    Song, Guangjun; Rao, Huiying; Feng, Bo; Wei, Lai

    2014-01-01

    Some hepatitis B extracellular antigen (HBeAg)-positive chronic hepatitis B (CHB) patients in their immune active phase can clear the virus spontaneously and enter into an inactive hepatitis B virus (HBV) carrier state, indicating a benign prognosis. In this study, the association between cytokine-inducible SRC homology 2 domain protein (CISH) gene polymorphisms at -292 (rs414171) and the spontaneous clearance of HBV in HBeAg-positive CHB patients in immune the active phase was investigated. Seventy HBeAg-positive CHB patients in the immune active phase were followed up for 76 weeks without antiviral therapy. The alanine transaminase, aspartate transaminase, HBV DNA, HBeAg and hepatitis B extracellular antibody levels were tested regularly. At week 76, 27 patients were classified into group A (HBV DNA level below 2 104 IU/ml and the value of HBeAg declined below 10% of the baseline at week 76), and 43 patients were classified into group B (HBV DNA level higher than 2×10(4) IU/ml or the value of HBeAg did not decline substantially at week 76). CISH (rs414171) polymorphisms were also tested using the iPLEX system. The HBV DNA levels at week 12 were significantly greater in group B compared with group A (group A: (6.87±1.40) log10IU/ml; group B: (7.61±1.38) log10IU/ml, P = 0.034) and the HBeAg values were greater in group B at week 28 compared with group A (P = 0.001). The differences in HBV DNA and HBeAg values increased between the groups over time. Sixteen patients in group A and 11 in group B were genotype AA. Those with genotype AT or TT included 11 in group A and 31 in group B (AA vs. AT and TT, odds ratio 4.10 (95% confidence interval: 1.462-11.491), P = 0.006). CISH gene polymorphisms at -292 (rs414171) are associated with HBV clearance in HBeAg-positive CHB patients in the immune active phase, and AA is a favorable genotype for this effect.

  17. A δ38 deletion variant of human transketolase as a model of transketolase-like protein 1 exhibits no enzymatic activity.

    Stefan Schneider

    Full Text Available Besides transketolase (TKT, a thiamin-dependent enzyme of the pentose phosphate pathway, the human genome encodes for two closely related transketolase-like proteins, which share a high sequence identity with TKT. Transketolase-like protein 1 (TKTL1 has been implicated in cancerogenesis as its cellular expression levels were reported to directly correlate with invasion efficiency of cancer cells and patient mortality. It has been proposed that TKTL1 exerts its function by catalyzing an unusual enzymatic reaction, a hypothesis that has been the subject of recent controversy. The most striking difference between TKTL1 and TKT is a deletion of 38 consecutive amino acids in the N-terminal domain of the former, which constitute part of the active site in authentic TKT. Our structural and sequence analysis suggested that TKTL1 might not possess transketolase activity. In order to test this hypothesis in the absence of a recombinant expression system for TKTL1 and resilient data on its biochemical properties, we have engineered and biochemically characterized a "pseudo-TKTL1" Δ38 deletion variant of human TKT (TKTΔ38 as a viable model of TKTL1. Although the isolated protein is properly folded under in vitro conditions, both thermal stability as well as stability of the TKT-specific homodimeric assembly are markedly reduced. Circular dichroism and NMR spectroscopic analysis further indicates that TKTΔ38 is unable to bind the thiamin cofactor in a specific manner, even at superphysiological concentrations. No transketolase activity of TKTΔ38 can be detected for conversion of physiological sugar substrates thus arguing against an intrinsically encoded enzymatic function of TKTL1 in tumor cell metabolism.

  18. The hepatitis B virus large surface protein (LHBs) is a transcriptional activator.

    Hildt, E; Saher, G; Bruss, V; Hofschneider, P H

    1996-11-01

    It has been shown that a C-terminally truncated form of the middle-sized hepatitis B virus (HBV) surface protein (MHBst) functions as a transcriptional activator. This function is dependent on the cytosolic orientation of the N-terminal PreS2 domain of MHBst, but in the case of wild-type MHBs, the PreS2 domain is contranslationally translocated into the ER lumen. Recent reports demonstrated that the PreS2 domain of the large HBV surface protein (LHBs) initially remains on the cytosolic side of the ER membrane after translation. Therefore, the question arose as to whether the LHBs protein exhibits the same transcriptional activator function as MHBst. We show that LHBs, like MHBst, is indeed able to activate a variety of promoter elements. There is evidence for a PKC-dependent activation of AP-1 and NF-kappa B by LHBs. Downstream of the PKC the functionality of c-Raf-1 kinase is a prerequisite for LHBs-dependent activation of AP-1 and NF-kappa B since inhibition of c-Raf-1 kinase abolishes LHBs-dependent transcriptional activation of AP-1 and NF-kappa B.

  19. Enzymatic activity of proteases and its isoenzymes in fermentation process in cultivars of cocoa (Theobroma cacao L. produced in southern Bahia, Brazil

    Luciane Santos SOUSA

    Full Text Available Abstract The fermentation of cocoa seeds envolves microbial processes and the action of enzymes. To identify the possible differences in the cocoa fermentation process, with regards to proteolysis, this study has the objective of determining protease activity (under predetermined conditions and its isoenzymes in two cocoa cultivars (PH-16 and HRT-1188 in different cocoa fermentation times, in addition to establishing the microbial load (molds and yeasts and aerobic mesophilic. Protease and its isoenzymes were extracted and partially purified and the enzymatic activities determined by spectrophotometry. The results showed that the proteases activity was higher at 66h of fermentation for both cultivars. When the isoenzymes activity was evaluated, the results demonstrated similar activity behavior for both cultivars, with regards to the isoenzymes aminopeptidase and carboxypeptidase, although the behavior of the endoprotease isoenzyme activity proved to be a little different for TSH-1188 cultivar. Concerning microbiological analyses, the results indicate that the period after molds and yeast counting reduction is consistent with the period of protease activity increase.

  20. The enzymatic activities of brain catechol-O-methyltransferase (COMT) and methionine sulphoxide reductase are correlated in a COMT Val/Met allele-dependent fashion.

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M; Hairston, Jenaqua; Bortolato, Marco

    2015-12-01

    The enzyme catechol-O-methyltransferase (COMT) plays a primary role in the metabolism of catecholamine neurotransmitters and is implicated in the modulation of cognitive and emotional responses. The best characterized single nucleotide polymorphism (SNP) of the COMT gene consists of a valine (Val)-to-methionine (Met) substitution at codon 108/158. The Met-containing variant confers a marked reduction in COMT catalytic activity. We recently showed that the activity of recombinant COMT is positively regulated by the enzyme Met sulphoxide reductase (MSR), which counters the oxidation of Met residues of proteins. The current study was designed to assess whether brain COMT activity may be correlated to MSR in an allele-dependent fashion. COMT and MSR activities were measured from post-mortem samples of prefrontal cortices, striata and cerebella of 32 subjects by using catechol and dabsyl-Met sulphoxide as substrates, respectively. Allelic discrimination of COMT Val(108/185) Met SNP was performed using the Taqman 5'nuclease assay. Our studies revealed that, in homozygous carriers of Met, but not Val alleles, the activity of COMT and MSR was significantly correlated throughout all tested brain regions. These results suggest that the reduced enzymatic activity of Met-containing COMT may be secondary to Met sulphoxidation and point to MSR as a key molecular determinant for the modulation of COMT activity. © 2015 British Neuropathological Society.

  1. MILD ALKALINE TREATMENT ACTIVATES SPRUCE WOOD FOR ENZYMATIC PROCESSING: A POSSIBLE STAGE IN BIO-REFINERY PROCESSES

    Yan Wang

    2011-05-01

    Full Text Available The structure of wood is so compact that enzymes are too large to penetrate into the structure and thereby attack the wood components for modifications that can be valuable for various purposes. Here we present a pretreatment method based on traditional kraft pulping, which opens the wood structure, so that enzymes are able to attack the wood components. To study this kind of chemical pretreatment, spruce wood samples were treated at similar conditions used in kraft cooking at varying intensities (H-factors. To verify if the structure was “opened” for enzymes, the pretreated wood samples were incubated with a cellulolytic culture filtrate, and the released reducing sugar concentration after the enzymatic hydrolysis was measured. The results indicated that un-pretreated wood fibers could not be attacked by the enzymes, but already relatively mild pretreatment was sufficient for letting the culture filtrate attack wood polysaccharides, and more intensive treatments opened the structure further. The mildest treatments did not cause any significant yield losses of lignin (Klason lignin. Some galactogluco-mannans were however lost during the pretreatments. The mechanisms behind the effect and the technical significance of the method are discussed.

  2. Melatonin mitigates thioacetamide-induced hepatic fibrosis via antioxidant activity and modulation of proinflammatory cytokines and fibrogenic genes.

    Lebda, Mohamed A; Sadek, Kadry M; Abouzed, Tarek K; Tohamy, Hossam G; El-Sayed, Yasser S

    2018-01-01

    The potential antifibrotic effects of melatonin against induced hepatic fibrosis were explored. Rats were allocated into four groups: placebo; thioacetamide (TAA) (200mg/kg bwt, i.p twice weekly for two months); melatonin (5mg/kgbwt, i.p daily for a week before TAA and continued for an additional two months); and melatonin plus TAA. Hepatic fibrotic changes were evaluated biochemically and histopathologically. Hepatic oxidative/antioxidative indices were assessed. The expression of hepatic proinflammatory cytokines (tumor necrosis factor-α, and interleukin-1β), fibrogenic-related genes (transforming growth factor-1β, collagen I, collagen, III, laminin, and autotaxin) and an antioxidant-related gene (thioredoxin-1) were detected by qRT-PCR. In fibrotic rats, melatonin lowered serum aspartate aminotransferase, alanine aminotransferase, and autotaxin activities, bilirubin, hepatic hydroxyproline and plasma ammonia levels. Melatonin displayed hepatoprotective and antifibrotic potential as indicated by mild hydropic degeneration of some hepatocytes and mild fibroplasia. In addition, TAA induced the depletion of glutathione, glutathione s-transferase, glutathione peroxidase, superoxide dismutase, catalase, and paraoxonase-1 (PON-1), while inducing the accumulation of malondialdehyde, protein carbonyl (C=O) and nitric oxide (NO), and DNA fragmentation. These effects were restored by melatonin pretreatment. Furthermore, melatonin markedly attenuated the expression of proinflammatory cytokines and fibrogenic genes via the upregulation of thioredoxin-1 mRNA transcripts. Melatonin exhibits potent anti-inflammatory, antioxidant and fibrosuppressive activities against TAA-induced hepatic fibrogenesis via the suppression of oxidative stress, DNA damage, proinflammatory cytokines and fibrogenic gene transcripts. In addition, we demonstrate that the antifibrotic activity of melatonin is mediated by the induction of thioredoxin-1 with attenuation of autotaxin expressions

  3. Activity of a crude extract formulation in experimental hepatic amoebiasis and in immunomodulation studies.

    Sohni, Y R; Bhatt, R M

    1996-11-01

    The activity of a crude extract formulation was evaluated in experimental amoebic liver abscess in golden hamsters and in immunomodulation studies. The formulation comprises the following five plants-Boerhavia diffusa, Tinospora cordifolia, Berberis aristata, Terminalia chebula and Zingiber officinale. The formulation had a maximum cure rate of 73% at a dose of 800 mg/kg/day in hepatic amoebiasis reducing the average degree of infection (ADI) to 1.3 as compared to 4.2 for sham-treated controls. In immunomodulation studies humoral immunity was enhanced as evidenced by the haemagglutination titre. The T-cell counts remained unaffected in the animals treated with the formulation but cell-mediated immune response was stimulated as observed in the leukocyte migration inhibition (LMI) tests.

  4. Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways

    Kim, Kyoung Mi; Kwon, Shi-Nae; Kang, Ju-Il; Lee, Song Hee; Jang, Sung Key; Ahn, Byung-Yoon; Kim, Yoon Ki

    2007-01-01

    Chronic infection of the hepatitis C virus (HCV) leads to liver cirrhosis and cancer. The mechanism leading to viral persistence and hepatocellular carcinoma, however, has not been fully understood. In this study, we show that the HCV infection activates cellular cAMP-dependent pathways. Expression of a luciferase reporter gene controlled by a basic promoter with the cAMP response element (CRE) was significantly elevated in human hepatoma Huh-7 cells infected with the HCV JFH1. Analysis with viral subgenomic replicons indicated that the HCV NS2 protein is responsible for the effect. Furthermore, the level of cellular transcripts whose stability is known to be regulated by cAMP was specifically reduced in cells harboring NS2-expressing replicons. These results allude to the HCV NS2 protein having a novel function of regulating cellular gene expression and proliferation through the cAMP-dependent pathway

  5. Use of [1,2-3 h] testosterone in 5 α- reductase enzymatic activity dosing in dermal fibroblast cultures from polycystic ovarian patients

    Matei, Lidia; Postolache, Cristian; Condac, Eduard

    2003-01-01

    Polycystic ovarian syndrome is an endocrine malady very frequent in women characterized by the presence of ovarian cysts, visible or not by ultrasonography, menstrual cycle deregulation and sometimes by high plasmatic concentrations of androgen hormones. Many cases of polycystic syndrome could not be easily diagnosed or had an erroneous diagnostic. Therefore, is useful to know the plasmatic androgen hormone profile. This profile could indicate the cause for observed clinical manifestations; this cause may be observed in ovarian, suprarenal glands or hypothalamo-hypophysis level. In vitro studies on dermal fibroblasts permit the detail determination of steroid hormones metabolism in target organs and offer important information regarding action mechanism. This study follows the identification of testosterone metabolites in fibroblasts and enzymatic activities of 5α-reductase using testosterone radioactively labeled with tritium. (authors)

  6. Atorvastatin dose-dependently decreases hepatic lipase activity in type 2 diabetes: effect of sex and the LIPC promoter variant

    I.I.L. Berk-Planken (Ingrid); N. Hoogerbrugge (Nicoline); R.P. Stolk (Ronald); A.H. Bootsma (Aart); H. Jansen (Hans)

    2003-01-01

    textabstractOBJECTIVE: Hepatic lipase (HL) is involved in the metabolism of several lipoproteins and may contribute to the atherogenic lipid profile in type 2 diabetes. Little is known about the effect of cholesterol synthesis inhibitors on HL activity in relation to sex and the

  7. Variation in metabolic enzymatic activity in white muscle and liver of blue tilapia, Oreochromis aureus, in response to long-term thermal acclimatization

    Younis, Elsayed M.

    2015-05-01

    The effects of rearing temperature on white muscle and hepatic phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were examined in fingerlings of blue tilapia, Oreochromis aureus. The experiment was conducted for 14 weeks at temperatures of 18, 22, 26, 30, and 34°C. The activity of the glycolytic enzymes PFK, PK, and LDH in white muscle increased significantly with increase in water temperature. A reverse trend was observed for these enzymes in the liver, except for LDH, which behaved in the same manner as in white muscle. Cytosolic AST and ALT activity increased in both white muscle and liver in response to warm thermal acclimatization, while a reduction in mitochondrial AST and ALT activity was noticed at high temperatures in comparison with those at a lower temperature.

  8. Discovery and structure-activity relationships study of thieno[2,3-b]pyridine analogues as hepatic gluconeogenesis inhibitors.

    Ma, Fei; Liu, Jian; Zhou, Tingting; Lei, Min; Chen, Jing; Wang, Xiachang; Zhang, Yinan; Shen, Xu; Hu, Lihong

    2018-05-25

    Type 2 diabetes mellitus (T2DM) is a chronic, complex and multifactorial metabolic disorder, and targeting gluconeogenesis inhibition is a promising strategy for anti-diabetic drug discovery. This study discovered a new class of thieno[2,3-b]pyridine derivatives as hepatic gluconeogenesis inhibitors. First, a hit compound (DMT: IC 50  = 33.8 μM) characterized by a thienopyridine core was identified in a cell-based screening of our privileged small molecule library. Structure activity relationships (SARs) study showed that replaced the CF 3 in the thienopyridine core could improve the potency and led to the discovery of 8e (IC 50  = 16.8 μM) and 9d (IC 50  = 12.3 μM) with potent inhibition of hepatic glucose production and good drug-like properties. Furthermore, the mechanism of 8e for the inhibition of hepatic glucose production was also identified, which could be effective through the reductive expression of the mRNA transcription level of gluconeogenic genes, including glucose-6-phosphatase (G6Pase) and hepatic phosphoenolpyruvate carboxykinase (PEPCK). Additionally, 8e could also reduce the fasting blood glucose and improve the oral glucose tolerance and pyruvate tolerance in db/db mice. The optimization of this class of derivatives had provided us a start point to develop new anti-hepatic gluconeogenesis agents. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Two proteins with reverse transcriptase activities associated with hepatitis B virus-like particles

    Bavand, M.R.; Laub, O.

    1988-01-01

    Recent studies suggest that hepatitis B virus (HBV), despite being a DNA virus, replicates via an RNA intermediate. The HBV life cycle is therefore a permuted version of the RNA retroviral life cycle. Sequence homology between retroviral reverse transcriptase and the putative HBV polymerase gene product suggests the presence of an HBV reverse transcriptase. As yet, there has been no direct evidence that reverse transcriptase activity is present in the viral particle. The authors used activity gel analysis to detect the in situ catalytic activities of DNA polymerases after sodium dodecyl sulfate-polyacrylamide gel electrophorsis. These studies demonstrated that HBV-like particles secreted by a differentiated human hepatoma cell line tranfected with genomic HBV DNA contain two major polymerase activities which migrate as ∼90- and ∼70-kilodalton (kDa) proteins. This demonstrated, for the first time, that HBV-like particles contain a novel DNA polymerase-reverse transcriptase activity. Furthermore, they propose that the 70-kDa reverse transcriptase may be produced by proteolytic self-cleavage of the 90-kDa precursor protein

  10. Apoenzyme of aspartate aminotransferase isozymes in serum and its diagnostic usefullness for hepatic diseases.

    Kamei, S; Ohkubo, A; Yamanaka, M

    1979-08-15

    Aspartate aminotransferase in the sera of normal subjects and of patients with hepatic diseases has been immunologically separated into two isoenzymes, cytosolic aspartate aminotransferase and mitochondrial aspartate aminotransferase. The activity of the isoenzymes was measured in three different buffer solutions with or without pyridoxal 5'-phosphate. To attain maximal activation, the apoenzyme of mitochondrial fraction must be preincubated with pyridoxal 5'-phosphate longer than that of the cytosolic fraction in either of the three reaction mixtures. In most sera the activity of both isoenzymes increased substantially in the presence of pyridoxal 5'-phosphate regardless of the type of buffer solutions. Both the apoenzymatic activity and the ratio of apo- to holo-enzymatic activity of each of the isoenzymes varied among samples from the patients with hepatic diseases. However, significantly high ratios of apo- to holo-enzymatic activity of both isoenzymes were observed in the patients with hepatoma in contrast with those with other hepatic diseases. These findings suggest that the simultaneous measurement of both apo- and holo-enzyme activities of aspartate aminotransferase isoenzymes may be useful in the clinical assessment of hepatic diseases.

  11. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-enzymatic Properties against Urease by an ESI-MS Based Assay

    Sherif T. S. Hassan

    2017-04-01

    Full Text Available For decades, Hibiscus sabdariffa L. and its phytochemicals have been shown to possess a wide range of pharmacologic properties. In this study, aqueous extract of Hibiscus sabdariffa (AEHS and its bioactive constituent protocatechuic acid (PCA, have been evaluated in vitro for their antiviral activity against HSV-2 clinical isolates and anti-enzymatic activity against urease. Antiherpetic activity was evaluated by the titer reduction assay in infected Vero cells, and cytotoxicity was evaluated by the neutral red dye-uptake method. Anti-urease activity was determined by a developed Electrospray Ionization-Mass Spectrometry (ESI-MS-based assay. PCA showed potent anti-HSV-2 activity compared with that of acyclovir, with EC50 values of 0.92 and 1.43 µg∙mL−1, respectively, and selectivity indices > 217 and > 140, respectively. For the first time, AEHS was shown to exert anti-urease inhibition activity, with an IC50 value of 82.4 µg∙mL−1. This, combined with its safety, could facilitate its use in practical applications as a natural urease inhibitor. Our results present Hibiscus sabdariffa L. and its bioactive compound PCA as potential therapeutic agents in the treatment of HSV-2 infection and the treatment of diseases caused by urease-producing bacteria.

  12. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-enzymatic Properties against Urease by an ESI-MS Based Assay.

    Hassan, Sherif T S; Švajdlenka, Emil; Berchová-Bímová, Kateřina

    2017-04-30

    For decades, Hibiscus sabdariffa L. and its phytochemicals have been shown to possess a wide range of pharmacologic properties. In this study, aqueous extract of Hibiscus sabdariffa (AEHS) and its bioactive constituent protocatechuic acid (PCA), have been evaluated in vitro for their antiviral activity against HSV-2 clinical isolates and anti-enzymatic activity against urease. Antiherpetic activity was evaluated by the titer reduction assay in infected Vero cells, and cytotoxicity was evaluated by the neutral red dye-uptake method. Anti-urease activity was determined by a developed Electrospray Ionization-Mass Spectrometry (ESI-MS)-based assay. PCA showed potent anti-HSV-2 activity compared with that of acyclovir, with EC 50 values of 0.92 and 1.43 µg∙mL -1 , respectively, and selectivity indices > 217 and > 140, respectively. For the first time, AEHS was shown to exert anti-urease inhibition activity, with an IC 50 value of 82.4 µg∙mL -1 . This, combined with its safety, could facilitate its use in practical applications as a natural urease inhibitor. Our results present Hibiscus sabdariffa L. and its bioactive compound PCA as potential therapeutic agents in the treatment of HSV-2 infection and the treatment of diseases caused by urease-producing bacteria.

  13. [Viral hepatitis in travellers].

    Abreu, Cândida

    2007-01-01

    Considering the geographical asymmetric distribution of viral hepatitis A, B and E, having a much higher prevalence in the less developed world, travellers from developed countries are exposed to a considerable and often underestimated risk of hepatitis infection. In fact a significant percentage of viral hepatitis occurring in developed countries is travel related. This results from globalization and increased mobility from tourism, international work, humanitarian and religious missions or other travel related activities. Several studies published in Europe and North America shown that more than 50% of reported cases of hepatitis A are travel related. On the other hand frequent outbreaks of hepatitis A and E in specific geographic areas raise the risk of infection in these restricted zones and that should be clearly identified. Selected aspects related with the distribution of hepatitis A, B and E are reviewed, particularly the situation in Portugal according to the published studies, as well as relevant clinical manifestations and differential diagnosis of viral hepatitis. Basic prevention rules considering enteric transmitted hepatitis (hepatitis A and hepatitis E) and parenteral transmitted (hepatitis B) are reviewed as well as hepatitis A and B immunoprophylaxis. Common clinical situations and daily practice "pre travel" advice issues are discussed according to WHO/CDC recommendations and the Portuguese National Vaccination Program. Implications from near future availability of a hepatitis E vaccine, a currently in phase 2 trial, are highlighted. Potential indications for travellers to endemic countries like India, Nepal and some regions of China, where up to 30% of sporadic cases of acute viral hepatitis are caused by hepatitis E virus, are considered. Continued epidemiological surveillance for viral hepatitis is essential to recognize and control possible outbreaks, but also to identify new viral hepatitis agents that may emerge as important global health

  14. Hepatic Encephalopathy

    Full Text Available ... A Hepatitis B Hepatitis C Intrahepatic Cholestasis of Pregnancy (ICP) Jaundice In Newborns Diseases of the Liver ... A Hepatitis B Hepatitis C Intrahepatic Cholestasis of Pregnancy (ICP) Jaundice In Newborns Diseases of the Liver ...

  15. Viral Hepatitis

    ... Home A-Z Health Topics Viral hepatitis Viral hepatitis > A-Z Health Topics Viral hepatitis (PDF, 90 ... liver. Source: National Cancer Institute Learn more about hepatitis Watch a video. Learn who is at risk ...

  16. Hepatitis B

    ... B Entire Lesson Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For Veterans and the Public Veterans ... in their blood (sometimes referred to as the hepatitis B viral load) and an unusually high level of a ...

  17. Different mechanisms of hepatitis C virus RNA polymerase activation by cyclophilin A and B in vitro.

    Weng, Leiyun; Tian, Xiao; Gao, Yayi; Watashi, Koichi; Shimotohno, Kunitada; Wakita, Takaji; Kohara, Michinori; Toyoda, Tetsuya

    2012-12-01

    Cyclophilins (CyPs) are cellular proteins that are essential to hepatitis C virus (HCV) replication. Since cyclosporine A was discovered to inhibit HCV infection, the CyP pathway contributing to HCV replication is a potential attractive stratagem for controlling HCV infection. Among them, CyPA is accepted to interact with HCV nonstructural protein (NS) 5A, although interaction of CyPB and NS5B, an RNA-dependent RNA polymerase (RdRp), was proposed first. CyPA, CyPB, and HCV RdRp were expressed in bacteria and purified using combination column chromatography. HCV RdRp activity was analyzed in vitro with purified CyPA and CyPB. CyPA at a high concentration (50× higher than that of RdRp) but not at low concentration activated HCV RdRp. CyPB had an allosteric effect on genotype 1b RdRp activation. CyPB showed genotype specificity and activated genotype 1b and J6CF (2a) RdRps but not genotype 1a or JFH1 (2a) RdRps. CyPA activated RdRps of genotypes 1a, 1b, and 2a. CyPB may also support HCV genotype 1b replication within the infected cells, although its knockdown effect on HCV 1b replicon activity was controversial in earlier reports. CyPA activated HCV RdRp at the early stages of transcription, including template RNA binding. CyPB also activated genotype 1b RdRp. However, their activation mechanisms are different. These data suggest that both CyPA and CyPB are excellent targets for the treatment of HCV 1b, which shows the greatest resistance to interferon and ribavirin combination therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Ginsenoside Compound K suppresses the hepatic gluconeogenesis via activating adenosine-5'monophosphate kinase: A study in vitro and in vivo.

    Wei, Shengnan; Li, Wei; Yu, Yang; Yao, Fan; A, Lixiang; Lan, Xiaoxin; Guan, Fengying; Zhang, Ming; Chen, Li

    2015-10-15

    Compound K (CK) is a final intestinal metabolite of protopanaxadiol-type ginsenoside. We have reported that CK presented anti-diabetic effect via diminishing the expressions of hepatic gluconeogenesis key enzyme. Here, we further explore the possible mechanism of CK on suppression hepatic gluconeogenesis via activation of adenosine-5'monophosphate kinase (AMPK) on type 2 diabetes mice in vivo and in HepG2 cells. Type 2 diabetes mice model was developed by high fat diet combined with STZ injection. 30mg/kg/d CK was orally administrated for 4weeks, the fasting blood glucose level and 2h OGTT were conducted, and the protein expression of AMPK, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase) were examined. The mechanism of Compound K on hepatic gluconeogenesis was further explored in HepG2 hepatocytes. Glucose production, the protein expression of AMPK, PEPCK, G6pase and PGC-1α, hepatic nuclear factor 4α (HNF-4α) and forkhead transcription factor O1 (FOXO1) were determined after Compound K treatment at the presence of AMPK inhibitor Compound C. We observed that CK inhibited the expression of PEPCK and G6Pase in the liver and in HepG2 hepatocytes. Meanwhile, CK treatment remarkably increased the activation of AMPK, while decreasing the expressions of PGC-1α, HNF-4α and FOXO1. However, AMPK inhibitor Compound C could reverse these effects of CK on gluconeogenesis in part. The results indicated that the effect of CK on suppression hepatic gluconeogenesis might be via the activation the AMPK activity. Copyright © 2015. Published by Elsevier Inc.

  19. Analysis of the link between the redox state and enzymatic activity of the HtrA (DegP protein from Escherichia coli.

    Tomasz Koper

    Full Text Available Bacterial HtrAs are proteases engaged in extracytoplasmic activities during stressful conditions and pathogenesis. A model prokaryotic HtrA (HtrA/DegP from Escherichia coli requires activation to cleave its substrates efficiently. In the inactive state of the enzyme, one of the regulatory loops, termed LA, forms inhibitory contacts in the area of the active center. Reduction of the disulfide bond located in the middle of LA stimulates HtrA activity in vivo suggesting that this S-S bond may play a regulatory role, although the mechanism of this stimulation is not known. Here, we show that HtrA lacking an S-S bridge cleaved a model peptide substrate more efficiently and exhibited a higher affinity for a protein substrate. An LA loop lacking the disulfide was more exposed to the solvent; hence, at least some of the interactions involving this loop must have been disturbed. The protein without S-S bonds demonstrated lower thermal stability and was more easily converted to a dodecameric active oligomeric form. Thus, the lack of the disulfide within LA affected the stability and the overall structure of the HtrA molecule. In this study, we have also demonstrated that in vitro human thioredoxin 1 is able to reduce HtrA; thus, reduction of HtrA can be performed enzymatically.

  20. Phytase production by Rhizopus microsporus var. microsporus biofilm: characterization of enzymatic activity after spray drying in presence of carbohydrates and nonconventional adjuvants.

    Sato, Vanessa Sayuri; Jorge, João Atílio; Oliveira, Wanderley Pereira; Souza, Claudia Regina Fernandez; Guimarães, Luis Henrique Souza

    2014-02-28

    Microbial phytases are enzymes with biotechnological interest for the feed industry. In this article, the effect of spray-drying conditions on the stability and activity of extracellular phytase produced by R. microsporus var. microsporus biofilm is described. The phytase was spray-dried in the presence of starch, corn meal (>150 μm), soy bean meal (SB), corn meal (drying adjuvants. The residual enzyme activity after drying ranged from 10.7% to 60.4%, with SB and CM standing out as stabilizing agents. Water concentration and residual enzyme activity were determined in obtained powders as a function of the drying condition. When exposed to different pH values, the SB and CM products were stable, with residual activity above 50% in the pH range from 4.5 to 8.5 for 60 min. The use of CM as drying adjuvant promoted the best retention of enzymatic activity compared with SB. Spray drying of the R. microsporus var. microsporus phytase using different drying adjuvants showed interesting results, being quite feasible with regards their biotechnological applications, especially for poultry diets.

  1. Serotonin Activated Hepatic Stellate Cells Contribute to Sex Disparity in Hepatocellular CarcinomaSummary

    Qiqi Yang

    2017-05-01

    Full Text Available Background & Aims: Hepatocellular carcinoma (HCC occurs more frequently and aggressively in men than in women. Although sex hormones are believed to play a critical role in this disparity, the possible contribution of other factors largely is unknown. We aimed to investigate the role of serotonin on its contribution of sex discrepancy during HCC. Methods: By using an inducible zebrafish HCC model through hepatocyte-specific transgenic krasV12 expression, differential rates of HCC in male and female fish were characterized by both pharmaceutical and genetic interventions. The findings were validated further in human liver disease samples. Results: Accelerated HCC progression was observed in krasV12-expressing male zebrafish and male fish liver tumors were found to have higher hepatic stellate cell (HSC density and activation. Serotonin, which is essential for HSC survival and activation, similarly were found to be synthesized and accumulated more robustly in males than in females. Serotonin-activated HSCs could promote HCC carcinogenesis and concurrently increase serotonin synthesis via transforming growth factor (Tgfb1 expression, hence contributing to sex disparity in HCC. Analysis of liver disease patient samples showed similar male predominant serotonin accumulation and Tgfb1 expression. Conclusions: In both zebrafish HCC models and human liver disease samples, a predominant serotonin synthesis and accumulation in males resulted in higher HSC density and activation as well as Tgfb1 expression, thus accelerating HCC carcinogenesis in males. Keywords: Liver Cancer, TGFB1, Kras, Zebrafish

  2. The G-250A polymorphism in the hepatic lipase gene promoter is associated with changes in hepatic lipase activity and LDL cholesterol: The KANWU Study

    Lindi, Virpi; Schwab, Ursula; Louheranta, Anne

    2007-01-01

    BACKGROUND AND AIMS: Hepatic lipase (HL) catalyzes the hydrolysis of triglycerides and phospholipids from lipoproteins, and promotes the hepatic uptake of lipoproteins. A common G-250A polymorphism in the promoter of the hepatic lipase gene (LIPC) has been described. The aim was to study...

  3. Human Papillomavirus 16 (HPV-16), HPV-18, and HPV-31 E6 Override the Normal Phosphoregulation of E6AP Enzymatic Activity.

    Thatte, Jayashree; Banks, Lawrence

    2017-11-15

    The human papillomavirus (HPV) E6 oncoproteins recruit the cellular ubiquitin ligase E6AP/UBE3A to target cellular substrates for proteasome-mediated degradation, and one consequence of this activity is the E6 stimulation of E6AP autoubiquitination and degradation. Recent studies identified an autism-linked mutation within E6AP at T485, which was identified as a protein kinase A phosphoacceptor site and which could directly regulate E6AP ubiquitin ligase activity. In this study, we have analyzed how T485-mediated regulation of E6AP might affect E6 targeting of some of its known substrates. We show that modulation of T485 has no effect on the ability of E6 to direct either p53 or Dlg for degradation. Furthermore, T485 regulation has no effect on HPV-16 or HPV-31 E6-induced autodegradation of E6AP but does affect HPV-18 E6-induced autodegradation of E6AP. In cells derived from cervical cancers, we find low levels of both phosphorylated and nonphosphorylated E6AP in the nucleus. However, ablation of E6 results in a dramatic accumulation of phospho-E6AP in the cytoplasm, whereas nonphosphorylated E6AP accumulates primarily in the nucleus. Interestingly, E6AP phosphorylation at T485 confers association with 14-3-3 proteins, and this interaction seems to be important, in part, for the ability of E6 to recruit phospho-E6AP into the nucleus. These results demonstrate that HPV E6 overrides the normal phosphoregulation of E6AP, both in terms of its enzymatic activity and its subcellular distribution. IMPORTANCE Recent reports demonstrate the importance of phosphoregulation of E6AP for its normal enzymatic activity. Here, we show that HPV E6 is capable of overriding this regulation and can promote degradation of p53 and Dlg regardless of the phosphorylation status of E6AP. Furthermore, E6 interaction with E6AP also significantly alters how E6AP is subject to autodegradation and suggests that this is not a simple stimulation of an already-existing activity but rather a

  4. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    Ngo, HT; Pham, Long; Kim, JW

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...... increased HCV IRES-mediated translation and MAPKAPK3-dependent HCV IRES activity was further increased by core protein. These data suggest that HCV core may modulate MAPKAPK3 to facilitate its own propagation....

  5. Expression of scavenger receptor‐AI promotes alternative activation of murine macrophages to limit hepatic inflammation and fibrosis

    Labonte, Adam C.; Sung, Sun‐Sang J.; Jennelle, Lucas T.; Dandekar, Aditya P.

    2016-01-01

    The liver maintains an immunologically tolerant environment as a result of continuous exposure to food and bacterial constituents from the digestive tract. Hepatotropic pathogens can take advantage of this niche and establish lifelong chronic infections causing hepatic fibrosis and hepatocellular carcinoma. Macrophages (Mϕ) play a critical role in regulation of immune responses to hepatic infection and regeneration of tissue. However, the factors crucial for Mϕ in limiting hepatic inflammation or resolving liver damage have not been fully understood. In this report, we demonstrate that expression of C‐type lectin receptor scavenger receptor‐AI (SR‐AI) is crucial for promoting M2‐like Mϕ activation and polarization during hepatic inflammation. Liver Mϕ uniquely up‐regulated SR‐AI during hepatotropic viral infection and displayed increased expression of alternative Mϕ activation markers, such as YM‐1, arginase‐1, and interleukin‐10 by activation of mer receptor tyrosine kinase associated with inhibition of mammalian target of rapamycin. Expression of these molecules was reduced on Mϕ obtained from livers of infected mice deficient for the gene encoding SR‐AI (msr1). Furthermore, in vitro studies using an SR‐AI‐deficient Mϕ cell line revealed impeded M2 polarization and decreased phagocytic capacity. Direct stimulation with virus was sufficient to activate M2 gene expression in the wild‐type (WT) cell line, but not in the knockdown cell line. Importantly, tissue damage and fibrosis were exacerbated in SR‐AI–/– mice following hepatic infection and adoptive transfer of WT bone‐marrow–derived Mϕ conferred protection against fibrosis in these mice. Conclusion: SR‐AI expression on liver Mϕ promotes recovery from infection‐induced tissue damage by mediating a switch to a proresolving Mϕ polarization state. (Hepatology 2017;65:32‐43). PMID:27770558

  6. Autosomal-dominant chronic mucocutaneous candidiasis with STAT1-mutation can be complicated with chronic active hepatitis and hypothyroidism.

    Hori, Tomohiro; Ohnishi, Hidenori; Teramoto, Takahide; Tsubouchi, Kohji; Naiki, Takafumi; Hirose, Yoshinobu; Ohara, Osamu; Seishima, Mariko; Kaneko, Hideo; Fukao, Toshiyuki; Kondo, Naomi

    2012-12-01

    To describe a case of autosomal-dominant (AD)-chronic mucocutaneous candidiasis (CMC) with a signal transducer and activator of transcription (STAT) 1 gene mutation, and some of the important complications of this disease such as chronic hepatitis. We present a 23-year-old woman with CMC, chronic active hepatitis, and hypothyroidism. Her father also had CMC. We performed several immunological analyses of blood and liver samples, and searched for gene mutations for CMC in the patient and her father. We identified the heterozygous substitution c.821 G > A (p.Arg274Gln) in the STAT1 gene of both the patient and her father. The level of β-glucan induced interferon (IFN)-γ in her blood cells was significantly low. Immunoblot analysis detected serum anti-interleukin (IL)-17 F autoantibody. She was found to have increased (low-titer) antibodies related to her hypothyroidism and hepatitis. Her serum IL-18 levels fluctuated with her AST and ALT levels. Liver biopsy revealed CD68-positive cell infiltration and IL-18 expression in the sinusoidal regions. These results suggest that the chronic active hepatitis in this patient may be exacerbated by the excessive IL-18 accumulation caused by recurrent mucocutaneous fungal infection, and decreased IFN-γ production. AD-CMC is known to be caused by a gain-of-function mutation of the STAT1 gene. Chronic active hepatitis is a rare complication of AD-CMC, with currently unknown pathogenesis. It seems that the clinical phenotype in this patient is modified by autoimmune mechanisms and cytokine dysregulation. AD-CMC can be complicated by various immune disorders including autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy.

  7. Susceptibility to antifungal agents and enzymatic activity of Candida haemulonii and Cutaneotrichosporon dermatis isolated from soft corals on the Brazilian reefs.

    Pagani, Danielle M; Heidrich, Daiane; Paulino, Gustavo V B; de Oliveira Alves, Karine; Dalbem, Paula T; de Oliveira, Caroline F; Andrade, Zélia M M; Silva, Carolini; Correia, Monica D; Scroferneker, Maria Lúcia; Valente, Patricia; Landell, Melissa Fontes

    2016-12-01

    Candida is a common fungus with the capacity to cause infections in humans. However, most studies have concentrated on clinical isolates and little is known about the identity, ecology and drug resistance of free living species/strains. Here, we isolate eight strains of Candida haemulonii and four strains of Cutaneotrichosporon dermatis from three marine cnidarian zoanthids species (Palythoa caribaeorum, Palythoa variabilis and Zoanthus sociatus) collected from Brazilian coral reefs. Strains were identified by sequencing of the D1/D2 domain LSU rDNA and ITS region. We tested these environmental isolates for their capacity to grow in media with increasing concentration of NaCl, capacity to grow in different temperatures, enzymatic activity and antifungal susceptibility. For C. haemulonii, all strains strongly produced gelatinase, esterase and albuminase and were either able to express lipase, phospholipase and keratinase, but not express urease and DNase. The strains were able to grow at 37 °C, but not at 39 °C, and except for LMS 40, all of them could grow in a 10 % NaCl medium. All isolates were resistant to all antifungals tested, with exception for ketoconazole and tioconazole (MIC = 2 µg/mL). For C. dermatis, all strains could grow at 39 °C and could not express phospholipase, keratinase or gelatinase. However, all were capable of expressing urease, lipase and esterase. Three out of four strains could grow in a 10 % NaCl medium, but none grew in a 30 % NaCl medium. The strains showed high values of minimal inhibitory concentration. LMPV 90 was resistant to tioconazole, terbinafine, fluconazole and posaconazole, and LMS 38 was resistant to all antifungal agents tested. We discuss the characterization of C. haemulonii and C. dermatis as a possible emerging pathogen due to its animal-related enzymatic arsenal and antifungal resistance.

  8. Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis.

    Gotoh, Saki; Negishi, Masahiko

    2015-09-22

    Statin therapy is known to increase blood glucose levels in humans. Statins utilize pregnane X receptor (PXR) and serum/glucocorticoid regulated kinase 2 (SGK2) to activate phosphoenolpyruvate carboxykinase 1 (PEPCK1) and glucose-6-phosphatase (G6Pase) genes, thereby increasing glucose production in human liver cells. Here, the novel statin/PXR/SGK2-mediated signaling pathway has now been characterized for hepatic gluconeogenesis. Statin-activated PXR scaffolds the protein phosphatase 2C (PP2C) and SGK2 to stimulate PP2C to dephosphorylate SGK2 at threonine 193. Non-phosphorylated SGK2 co-activates PXR-mediated trans-activation of promoters of gluconeogenic genes in human liver cells, thereby enhancing gluconeogenesis. This gluconeogenic statin-PXR-SGK2 signal is not present in mice, in which statin treatment suppresses hepatic gluconeogenesis. These findings provide the basis for statin-associated side effects such as an increased risk for Type 2 diabetes.

  9. Early postoperative erythromycin breath test correlates with hepatic cytochrome P4503A activity in liver transplant recipients

    Schmidt, L E; Olsen, A K; Stentoft, K

    2001-01-01

    BACKGROUND: Interindividual variation in the pharmacokinetics of the immunosuppressive agents cyclosporine (INN, ciclosporin) and tacrolimus may result from differences in the activity of cytochrome P4503A (CYP3A). The erythromycin breath test is an in vivo assay of hepatic CYP3A activity......, but the method has never been directly validated. The aim of the study was to investigate whether an early postoperative erythromycin breath test correlated with the hepatic CYP3A protein level and catalytic activity in liver transplant recipients. METHODS: In 18 liver transplant recipients, the erythromycin...... breath test was performed within 2 hours after transplantation. A graft biopsy was obtained during surgery and analyzed for the CYP3A protein level by Western blotting and for CYP3A activity with erythromycin demethylation and testosterone 6beta- hydroxylation assays. RESULTS: The erythromycin breath...

  10. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation

    Chen, Chao; Wu, Chao-Qun; Zhang, Zong-Qi; Yao, Ding-Kang; Zhu, Liang

    2011-01-01

    Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced α-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.

  11. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation

    Chen, Chao [Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200003 (China); Wu, Chao-Qun [Genetics Institute, Fudan University, No. 220 Handan Road, Shanghai 200433 (China); Zhang, Zong-Qi [Department of Cardiology, No. 3 Hospital, Shanghai Jiao Tong University Medical school, No.280 Mohe Road, Shanghai 201900 (China); Yao, Ding-Kang; Zhu, Liang, E-mail: 15900611429@163.com [Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200003 (China)

    2011-07-15

    Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced {alpha}-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.

  12. Relationship of angiotensin ase and vasopressin ase enzymatic activities between hypothalamus and plasma in an obese rat model by high-fat diet

    Domínguez-Vías, G.; Segarra Robles, A.B.; Ramirez-Sánchez, M.; Jiménez Serrano, S.

    2016-01-01

    High-fat diets are associated with the development of hypertension. However, a high intake of monounsaturated fat has been proposed to be a dietary factor that can decrease the incidence of hypertension. The renin-angiotensin system (RAS) and vasopressin interact to regulate blood pressure at central and peripheral level. In this study, we investigated the effect of different degrees of dietary fatty acid saturation in the control of RAS and vasopressin on brain-blood. To improve our understanding of their interaction and their relationship, we analyzed angiotensin- and vasopressin-metabolizing activities in hypothalamus and plasma, collected from Wistar rats fed during 24 weeks with diets enriched with extra virgin olive oil (monounsaturated fat) or butter plus cholesterol (saturated fat) compared with a standard diet. As results no angiotensinase and vasopressinase activities were found in hypothalamus and plasma, however significant correlations between enzymatic activities in both regions were noticed. They indicated that our results do not support the beneficial influence of extra virgin olive oil on central and systemic level to regulate blood pressure. Therefore, the substrates hydrolyzed by these activities as well as their functions may be similarly affected and suggest that these studies should be continued because of beneficial of Mediterranean diet, found previously in different works, which may also be an effective tool in the treatment of hypertension.

  13. Relationship of angiotensinase and vasopressinase enzymatic activities between hypothalamus and plasma in an obese rat model by high-fat diet

    Germán Domínguez-Vías

    2016-07-01

    Full Text Available High-fat diets are associated with the development of hypertension. However, a high intake of monounsaturated fat has been proposed to be a dietary factor that can decrease the incidence of hypertension. The renin-angiotensin system (RAS and vasopressin interact to regulate blood pressure at central and peripheral level. In this study, we investigated the effect of different degrees of dietary fatty acid saturation in the control of RAS and vasopressin on brain-blood. To improve our understanding of their interaction and their relationship, we analyzed angiotensin- and vasopressin-metabolizing activities in hypothalamus and plasma, collected from Wistar rats fed during 24 weeks with diets enriched with extra virgin olive oil (monounsaturated fat or butter plus cholesterol (saturated fat compared with a standard diet. As results no angiotensinase and vasopressinase activities were found in hypothalamus and plasma, however significant correlations between enzymatic activities in both regions were noticed. They indicated that our results do not support the beneficial influence of extra virgin olive oil on central and systemic level to regulate blood pressure. Therefore, the substrates hydrolyzed by these activities as well as their functions may be similarly affected and suggest that these studies should be continued because of beneficial of Mediterranean diet, found previously in different works, which may also be an effective tool in the treatment of hypertension.

  14. Relationship of angiotensin ase and vasopressin ase enzymatic activities between hypothalamus and plasma in an obese rat model by high-fat diet

    Domínguez-Vías, G.; Segarra Robles, A.B.; Ramirez-Sánchez, M.; Jiménez Serrano, S.

    2016-07-01

    High-fat diets are associated with the development of hypertension. However, a high intake of monounsaturated fat has been proposed to be a dietary factor that can decrease the incidence of hypertension. The renin-angiotensin system (RAS) and vasopressin interact to regulate blood pressure at central and peripheral level. In this study, we investigated the effect of different degrees of dietary fatty acid saturation in the control of RAS and vasopressin on brain-blood. To improve our understanding of their interaction and their relationship, we analyzed angiotensin- and vasopressin-metabolizing activities in hypothalamus and plasma, collected from Wistar rats fed during 24 weeks with diets enriched with extra virgin olive oil (monounsaturated fat) or butter plus cholesterol (saturated fat) compared with a standard diet. As results no angiotensinase and vasopressinase activities were found in hypothalamus and plasma, however significant correlations between enzymatic activities in both regions were noticed. They indicated that our results do not support the beneficial influence of extra virgin olive oil on central and systemic level to regulate blood pressure. Therefore, the substrates hydrolyzed by these activities as well as their functions may be similarly affected and suggest that these studies should be continued because of beneficial of Mediterranean diet, found previously in different works, which may also be an effective tool in the treatment of hypertension.

  15. Active hepatitis C infection and HCV genotypes prevalent among the IDUs of Khyber Pakhtunkhwa

    Uz Zaman Khaleeq

    2011-06-01

    Full Text Available Abstract Injection drug users (IDUs are considered as a high risk group to develop hepatitis C due to needle sharing. In this study we have examined 200 injection drug users from various regions of the Khyber Pakhtunkhwa province for the prevalence of active HCV infection and HCV genotypes by Immunochromatographic assays, RT-PCR and Type-specific PCR. Our results indicated that 24% of the IDUs were actively infected with HCV while anti HCV was detected among 31.5% cases. Prevalent HCV genotypes were HCV 2a, 3a, 4 and 1a. Majority of the IDUs were married and had attained primary or middle school education. 95% of the IDUs had a previous history of needle sharing. Our study indicates that the rate of active HCV infection among the IDUs is higher with comparatively more prevalence of the rarely found HCV types in KPK. The predominant mode of HCV transmission turned out to be needle sharing among the IDUs.

  16. Trans-activation function of a 3' truncated X gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues

    Takada, Shinako; Koike, Katsuro

    1990-01-01

    To investigate the expression and transactivation function of the X gene in integrated hepatitis B virus (HBV) DNA from chronic hepatitis tissues, a series of transfectants containing cloned integrated HBV DNAs was made and analyzed for X mRNA expression and trans-activation activity by using a chloramphenicol acetyltransferase assay. Most of the integrated HBV DNAs expressed X mRNA and encoded a product with trans-activation activity in spite of the loss of the 3' end region of the X gene due to integration. From cDNA cloning and sequence analysis of X mRNA transcribed from native or integrated HBV DNA, the X protein was found to be translated from the X open reading frame without splicing. For integrated HBV DNA, transcription was extended to a cellular flanking DNA and an X gene-cell fusion transcript was terminated by using a cellular poly(A) signal. The amino acid sequence deduced from an X-cell fusion transcript indicated truncation of the carboxyl-terminal five amino acids, but the upstream region of seven amino acids conserved among hepadnaviruses was retained in the integrated HBV DNA, suggesting that this conserved region is essential for the transactivation function of the X protein. These findings support the following explanation for hepatocarcinogenesis by HBV DNA integration: the expression of a cellular oncogene(s) is transactivated at the time of chronic infection by the increasing amounts of the integrated HBV gene product(s), such as the X-cell fusion product

  17. Activated rat hepatic stellate cells influence Th1/Th2 profile in vitro.

    Xing, Zhi-Zhi; Huang, Liu-Ye; Wu, Cheng-Rong; You, Hong; Ma, Hong; Jia, Ji-Dong

    2015-06-21

    To investigate the effects of activated rat hepatic stellate cells (HSCs) on rat Th1/Th2 profile in vitro. Growth and survival of activated HSCs and CD4(+) T lymphocytes cultured alone or together was assessed after 24 or 48 h. CD4(+) T lymphocytes were then cultured with or without activated HSCs for 24 or 48 h and the proportion of Th1 [interferon (IFN)-γ(+)] and Th2 [interleukin (IL)-4(+)] cells was assessed by flow cytometry. Th1 and Th2 cell apoptosis was assessed after 24 h of co-culture using a caspase-3 staining procedure. Differentiation rates of Th1 and Th2 cells from CD4(+) T lymphocytes that were positive for CD25 but did not express IFN-γ or IL-4 were also assessed after 48 h of co-culture with activated HSCs. Galectin-9 expression in HSCs was determined by immunofluorescence and Western blotting. ELISA was performed to assess galectin-9 secretion from activated HSCs. Co-culture of CD4(+) T lymphocytes with activated rat HSCs for 48 h significantly reduced the proportion of Th1 cells compared to culture-alone conditions (-1.73% ± 0.71%; P Th1/Th2 ratio was significantly decreased (-0.44 ± 0.13; P Th1 cells was decreased (-65.71 ± 9.67; P Th1 (12.27% ± 0.99%; P Th1 cell apoptosis rate was significantly higher than in Th2 cells (P Th1 and Th2 cells; however, the increase in the proportion of Th2 cells was significantly higher than that of Th1 cells (1.85% ± 0.48%; P Th1/Th2 profile, inhibiting the Th1 response and enhancing the Th2 response, and this may be a novel pathway for liver fibrogenesis.

  18. Changes in Enzymatic Activity of Fish and Slaughter Animals Meat after High Pressure Treatment at Subzero Temperatures

    Malinowska-Pańczyk Edyta

    2018-06-01

    Full Text Available The aim of this study was to determine changes in the activity of proteolytic enzymes and transglutaminase of fish and mammal meat after pressurization at subzero temperatures. The activity was measured at the optimal pHs determined for enzymes from particular types of tested meat. It was found that increasing the pressure in the range of 60-193 MPa, did not change significantly the activity of acidic proteases of cod flesh, while the activity of neutral and alkaline proteases decreased drastically. Proteolytic enzymes from salmon flesh were more resistant than those from cod flesh. They maintained or increased (neutral protease activity after pressurization. The activity of the endogenous enzymes of bovine meat increased with pressure increase, except for acidic proteases, the activity of which was reduced after treatment at 193 MPa to the level similar to unpressurized meat. Endogenous proteases of porcine meat were activated by high-pressure treatment. It has been shown that activity of TGase in unpressurized flesh from cod was 5 times higher than that from unpressurized salmon. Depending on the type of meat, these enzymes were also significantly different in their sensitivity to pressure. The pressure of 60 and 193 MPa led to a complete inactivation of the TGase in cod flesh, while the activity of salmon flesh TGase was decreased only by 15 and 21%, respectively.

  19. Direct organogenesis of Mandevilla illustris (Vell) Woodson and effects of its aqueous extract on the enzymatic and toxic activities of Crotalus durissus terrificus snake venom.

    Biondo, R; Soares, A M; Bertoni, B W; França, S C; Pereira, A M S

    2004-03-01

    In order to produce explants of Mandevilla illustris (Vell) Woodson for the "Cerrado in vitro", the Germplasm Bank of UNAERP, we carried out a micropropagation protocol using MS or MS/3 medium supplemented with different concentrations of 6-benzyladeninepurine (BA), Zeatin or 2-isopentenyladenine for nodal segment growth, and alpha-naphthaleneacetic acid, indole-3-butyric acid (IBA) or 1,4 dithiothreitol for rooting. For nodal segments, all the cytokinins tested yielded similar results. However, 2.22 micro M BA is more economical to use. MS/3 medium supplemented with 0.49 micro M IBA was the most appropriate medium for rooting, resulting in 29% rooted explants. The crude aqueous extract from the subterranean system (SS) of M. illustris was assayed for its inhibitory action on the enzymatic activity of Crotalus durissus terrificus snake venom, isolated basic phospholipase A2 (CB) and crotoxin. It totally inhibited the phospholipase activity of crude Cdt venom and CB toxin and inhibited the phospholipase activity of crotoxin by 49%. The toxic action of both the crude venom and crotoxin was partially inhibited-there was a prolonged survival time and a 40.0% decrease in lethality.

  20. Reconstruction of Oryza sativa indica Genome Scale Metabolic Model and Its Responses to Varying RuBisCO Activity, Light Intensity, and Enzymatic Cost Conditions

    Ankita Chatterjee

    2017-11-01

    Full Text Available To combat decrease in rice productivity under different stresses, an understanding of rice metabolism is needed. Though there are different genome scale metabolic models (GSMs of Oryza sativa japonica, no GSM with gene-protein-reaction association exist for Oryza sativa indica. Here, we report a GSM, OSI1136 of O.s. indica, which includes 3602 genes and 1136 metabolic reactions and transporters distributed across the cytosol, mitochondrion, peroxisome, and chloroplast compartments. Flux balance analysis of the model showed that for varying RuBisCO activity (Vc/Vo (i the activity of the chloroplastic malate valve increases to transport reducing equivalents out of the chloroplast under increased photorespiratory conditions and (ii glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase can act as source of cytosolic ATP under decreased photorespiration. Under increasing light conditions we observed metabolic flexibility, involving photorespiration, chloroplastic triose phosphate and the dicarboxylate transporters of the chloroplast and mitochondrion for redox and ATP exchanges across the intracellular compartments. Simulations under different enzymatic cost conditions revealed (i participation of peroxisomal glutathione-ascorbate cycle in photorespiratory H2O2 metabolism (ii different modes of the chloroplastic triose phosphate transporters and malate valve, and (iii two possible modes of chloroplastic Glu–Gln transporter which were related with the activity of chloroplastic and cytosolic isoforms of glutamine synthetase. Altogether, our results provide new insights into plant metabolism.

  1. Propeptide of carboxypeptidase Y provides a chaperone-like function as well as inhibition of the enzymatic activity

    Winther, Jakob R.; Sørensen, P

    1991-01-01

    The zymogen of the vacuolar carboxypeptidase Y from Saccharomyces cerevisiae was purified and characterized with respect to activation as well as refolding in vitro. The purified procarboxypeptidase Y has no detectable activity but can be efficiently activated by proteinase K from Tritirachium...... folding pathway. The relatively large number of charged amino acid residues and a high theoretical potential for alpha-helix formation in the carboxypeptidase Y propeptide suggest a structural similarity to a number of other propeptides and heat shock proteins....

  2. Enzymatically Active APOBEC3G Is Required for Efficient Inhibition of Human Immunodeficiency Virus Type 1▿

    Miyagi, Eri; Opi, Sandrine; Takeuchi, Hiroaki; Khan, Mohammad; Goila-Gaur, Ritu; Kao, Sandra; Strebel, Klaus

    2007-01-01

    APOBEC3G (APO3G) is a cellular cytidine deaminase with potent antiviral activity. Initial studies of the function of APO3G demonstrated extensive mutation of the viral genome, suggesting a model in which APO3G's antiviral activity is due to hypermutation of the viral genome. Recent studies, however, found that deaminase-defective APO3G mutants transiently expressed in virus-producing cells exhibited significant antiviral activity, suggesting that the antiviral activity of APO3G could be disso...

  3. In vitro evaluation of novel antiviral activities of 60 medicinal plants extracts against hepatitis B virus.

    Arbab, Ahmed Hassan; Parvez, Mohammad Khalid; Al-Dosari, Mohammed Salem; Al-Rehaily, Adnan Jathlan

    2017-07-01

    Currently, >35 Saudi Arabian medicinal plants are traditionally used for various liver disorders without a scientific rationale. This is the first experimental evaluation of the anti-hepatitis B virus (HBV) potential of the total ethanolic and sequential organic extracts of 60 candidate medicinal plants. The extracts were tested for toxicity on HepG2.2.15 cells and cytotoxicity concentration (CC 50 ) values were determined. The extracts were further investigated on HepG2.2.15 cells for anti-HBV activities by analyzing the inhibition of HBsAg and HBeAg production in the culture supernatants, and their half maximal inhibitory concentration (IC 50 ) and therapeutic index (TI) values were determined. Of the screened plants, Guiera senegalensis (dichloromethane extract, IC 50 =10.65), Pulicaria crispa (ethyl acetate extract, IC 50 =14.45), Coccinea grandis (total ethanol extract, IC 50 =31.57), Fumaria parviflora (hexane extract, IC 50 =35.44), Capparis decidua (aqueous extract, IC 50 =66.82), Corallocarpus epigeus (total ethanol extract, IC 50 =71.9), Indigofera caerulea (methanol extract, IC 50 =73.21), Abutilon figarianum (dichloromethane extract, IC 50 =99.76) and Acacia oerfota (total ethanol extract, IC 50 =101.46) demonstrated novel anti-HBV activities in a time- and dose-dependent manner. Further qualitative phytochemical analysis of the active extracts revealed the presence of alkaloids, tannins, flavonoids and saponins, which are attributed to antiviral efficacies. In conclusion, P. crispa, G. senegalensis and F. parviflora had the most promising anti-HBV potentials, including those of C. decidua , C. epigeus, A. figarianum , A. oerfota and I. caerulea with marked activities. However, a detailed phytochemical study of these extracts is essential to isolate the active principle(s) responsible for their novel anti-HBV potential.

  4. Effects of sh-reagents on rat hepatic aldehyde dehydrogenase activity

    Konoplitskaya, K.L.; Kuz' mina, G.I.; Grigor' yeva, M.V.; Poznyakova, T.N.

    The liver serves as the primary organ for the oxidation of ingested ethanol via a pathway involving alcohol- and aldehyde dehydrogenase. In view of the problem of alcoholism, three enzymes are of particular interest in understanding the biochemical mechanism that may be involved in alcohol addiction and in the formulation of therapeutic approaches. While alcohol dehydrogenase has been studied in considerable detail, current attention is centered on aldehyde dehydrogenase. A comparative analysis of the effects of a series of SH-active reagents - tetraethylthiuram disulfide (TETD), 5,5-dithiobisnitrobenzoic acid (DTNB), p-chloromercurybenzoate (PCMB), and N-ethylmaleimide (NEM) - were tested for their effects on the activity of aldehyde dehydrogenase of the hepatic mitochondrial (isozymes I and II) and microsomal (isozyme II) fractions of outbred albino rats. DTNB was found to be inhibited by 100 and 50% mitochondrial isozymes I and II, respectively, and by 20%, the microsomal enzyme under the conditions employed. DTNB and NEM inhibited by 30 and 50% isozymes I and II of the mitochondria, but had no effect on the microsomal isozyme. 24 references, 3 figures.

  5. Effects of perfluorodecanoic(PFDA) and perfluorooctanoic (PFOA) acids on hepatic carnitine palmitoyltransferase (CPT) activity in rats

    Vanden Heuvel, J.P.; Kuslikis, B.I.; Peterson, R.E.

    1990-01-01

    PFDA has been hypothesized to cause a diversion of fatty acids from oxidation toward esterification in rat liver. Normal regulation of this partitioning is exerted by CPT, an enzyme inhibited by several peroxisome proliferators. Effects of the peroxisome proliferators PFDA and PFOA on hepatic mitochondrial fatty acid oxidation and CPT activity were examined. PFDA or PFOA added to isolated rat liver mitochondria in concentrations of 0.2, 2, 20 and 200 μg per mg mitochondrial protein had no effect on CPT activity nor on mitochondrial oxidation of [1- 14 C] palmitoyl-CoA or [1- 14 C] palmitoyl-carnitine (quantitated by 14 CO 2 plus acid soluble 14 C production). Three days after rats were treated with PFDA or PFOA (37.5 or 150 μmol/kg, ip) or vehicle, liver mitochondria were isolated. Mitochondrial oxidation of [1- 14 C] palmitoyl-CoA or [1- 14 C]palmitoyl-carnitine was unaffected by PFDA and PFOA. CPT activity and inhibition of CPT activity by malonyl-CoA was also unaffected by PFDA and PFOA. Therefore, PFDA and PFOA did not have a major inhibitory effect on hepatic mitochondrial oxidation of palmitoyl-CoA or palmitoyl-carnitine, nor did they interfere with hepatic CPT activity either in vitro or in vivo

  6. Inflammatory stress increases hepatic CD36 translational efficiency via activation of the mTOR signalling pathway.

    Chuan Wang

    Full Text Available Inflammatory stress is an independent risk factor for the development of non-alcoholic fatty liver disease (NAFLD. Although CD36 is known to facilitate long-chain fatty acid uptake and contributes to NAFLD progression, the mechanisms that link inflammatory stress to hepatic CD36 expression and steatosis remain unclear. As the mammalian target of rapamycin (mTOR signalling pathway is involved in CD36 translational activation, this study was undertaken to investigate whether inflammatory stress enhances hepatic CD36 expression via mTOR signalling pathway and the underlying mechanisms. To induce inflammatory stress, we used tumour necrosis factor alpha (TNF-α and interleukin-6 (IL-6 stimulation of the human hepatoblastoma HepG2 cells in vitro and casein injection in C57BL/6J mice in vivo. The data showed that inflammatory stress increased hepatic CD36 protein levels but had no effect on mRNA expression. A protein degradation assay revealed that CD36 protein stability was not different between HepG2 cells treated with or without TNF-α or IL-6. A polysomal analysis indicated that CD36 translational efficiency was significantly increased by inflammatory stress. Additionally, inflammatory stress enhanced the phosphorylation of mTOR and its downstream translational regulators including p70S6K, 4E-BP1 and eIF4E. Rapamycin, an mTOR-specific inhibitor, reduced the phosphorylation of mTOR signalling pathway and decreased the CD36 translational efficiency and protein level even under inflammatory stress resulting in the alleviation of inflammatory stress-induced hepatic lipid accumulation. This study demonstrates that the activation of the mTOR signalling pathway increases hepatic CD36 translational efficiency, resulting in increased CD36 protein expression under inflammatory stress.

  7. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.

    Li, Yu; Li, Hong-Guan; Liu, Fu-Cheng

    2017-01-01

    Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had

  8. Distribution and enzymatic activity of heterotrophic bacteria decomposing selected macromolecular compounds in a Baltic Sea sandy beach

    Podgórska, B.; Mudryk, Z. J.

    2003-03-01

    The potential capability to decompose macromolecular compounds, and the level of extracellular enzyme activities were determined in heterotrophic bacteria isolated from a sandy beach in Sopot on the Southern Baltic Sea coast. Individual isolates were capable of hydrolysing a wide spectrum of organic macromolecular compounds. Lipids, gelatine, and DNA were hydrolyzed most efficiently. Only a very small percentage of strains were able to decompose cellulose, and no pectinolytic bacteria were found. Except for starch-hydrolysis, no significant differences in the intensity of organic compound decomposition were recorded between horizontal and vertical profiles of the studied beach. Of all the studied extracellular enzymes, alkaline phosphatase, esterase lipase, and leucine acrylaminidase were most active; in contrast, the activity α-fucosidase, α-galactosidase and β-glucouronidase was the weakest. The level of extracellular enzyme activity was similar in both sand layers.

  9. Impact of various storage conditions on enzymatic activity, biomass components and conversion to ethanol yields from sorghum biomass used as a bioenergy crop.

    Rigdon, Anne R; Jumpponen, Ari; Vadlani, Praveen V; Maier, Dirk E

    2013-03-01

    With increased mandates for biofuel production in the US, ethanol production from lignocellulosic substrates is burgeoning, highlighting the need for thorough examination of the biofuel production supply chain. This research focused on the impact storage has on biomass, particularly photoperiod-sensitive sorghum biomass. Biomass quality parameters were monitored and included biomass components, cellulose, hemicellulose and lignin, along with extra-cellular enzymatic activity (EEA) responsible for cellulose and hemicellulose degradation and conversion to ethanol yields. Analyses revealed dramatic decreases in uncovered treatments, specifically reduced dry matter content from 88% to 59.9%, cellulose content from 35.3% to 25%, hemicellulose content from 23.7% to 16.0% and ethanol production of 0.20 to 0.02gL(-1) after 6months storage along with almost double EEA activities. In contrast, biomass components, EEA and ethanol yields remained relatively stable in covered treatments, indicating covering of biomass during storage is essential for optimal substrate retention and ethanol yields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities

    Kajikawa, Takao; Kataoka, Kunishige [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Sakurai, Takeshi, E-mail: tsakurai@se.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Proton transfer pathway to dioxygen in CueO was identified. Black-Right-Pointing-Pointer Glu506 is the key amino acid to transport proton. Black-Right-Pointing-Pointer The Ala mutation at Glu506 formed a compensatory proton transfer pathway. Black-Right-Pointing-Pointer The Ile mutation at Glu506 shut down the hydrogen bond network. -- Abstract: CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate that an acidic amino acid residue at position 506 is essential for effective proton transport. The Ala mutation resulted in the formation of a compensatory hydrogen bond network with one or two extra water molecules. On the other hand, the Ile mutation resulted in the complete shutdown of the hydrogen bond network leading to loss of enzymatic activities of CueO. In contrast, the hydrogen bond network without the proton transport function was constructed by the Gln mutation. These results exerted on the hydrogen bond network in CueO are discussed in comparison with proton transfers in cytochrome oxidase.

  11. Expression of an enzymatically active Yb3 glutathione S-transferase in Escherichia coli and identification of its natural form in rat brain.

    Abramovitz, M; Ishigaki, S; Felix, A M; Listowsky, I

    1988-11-25

    Glutathione S-transferases containing Yb3 subunits are relatively uncommon forms that are expressed in a tissue-specific manner and have not been identified unequivocally or characterized. A cDNA clone containing the entire coding sequence of Yb3 glutathione S-transferase mRNA was incorporated into a pIN-III expression vector used to transform Escherichia coli. A fusion Yb3-protein containing 14 additional amino acid residues at its N terminus was purified to homogeneity. Recombinant Yb3 was enzymatically active with both 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrates but lacked glutathione peroxidase activity. Substrate specificity patterns of recombinant Yb3 were more limited than those of glutathione S-transferase isoenzymes containing Yb1- or Yb2-type subunits. Peptides corresponding to unique amino acid sequences of Yb3 as well as a peptide from a region of homology with Yb1 and Yb2 subunits were synthesized. These synthetic peptides were used to raise antibodies specific to Yb3 and others that cross-reacted with all Yb forms. Immunoblotting was utilized to identify the natural counterpart of recombinant Yb3 among rat glutathione transferases. Brain and testis glutathione S-transferases were rich in Yb3 subunits, but very little was found in liver or kidney. Physical properties, substrate specificities, and binding patterns of the recombinant protein paralleled properties of the natural isoenzyme isolated from brain.

  12. Mechanistic and Structural Studies of Protein-Only RNase P Compared to Ribonucleoproteins Reveal the Two Faces of the Same Enzymatic Activity

    Cédric Schelcher

    2016-06-01

    Full Text Available RNase P, the essential activity that performs the 5′ maturation of tRNA precursors, can be achieved either by ribonucleoproteins containing a ribozyme present in the three domains of life or by protein-only enzymes called protein-only RNase P (PRORP that occur in eukaryote nuclei and organelles. A fast growing list of studies has investigated three-dimensional structures and mode of action of PRORP proteins. Results suggest that similar to ribozymes, PRORP proteins have two main domains. A clear functional analogy can be drawn between the specificity domain of the RNase P ribozyme and PRORP pentatricopeptide repeat domain, and between the ribozyme catalytic domain and PRORP N4BP1, YacP-like Nuclease domain. Moreover, both types of enzymes appear to dock with the acceptor arm of tRNA precursors and make specific contacts with the corner of pre-tRNAs. While some clear differences can still be delineated between PRORP and ribonucleoprotein (RNP RNase P, the two types of enzymes seem to use, fundamentally, the same catalytic mechanism involving two metal ions. The occurrence of PRORP and RNP RNase P represents a remarkable example of convergent evolution. It might be the unique witness of an ongoing replacement of catalytic RNAs by proteins for enzymatic activities.

  13. Effect of ferrous chloride on biogas production and enzymatic activities during anaerobic fermentation of cow dung and Phragmites straw.

    Zhang, Huayong; Tian, Yonglan; Wang, Lijun; Mi, Xueyue; Chai, Yang

    2016-06-01

    The effect of ferrous (added as FeCl2) on the anaerobic co-digestion of Phragmites straw and cow dung was studied by investigating the biogas properties, pH values, organic matter degradation (COD) and enzyme activities (cellulase, protease and dehydrogenase) at different stages of mesophilic fermentation. The results showed that Fe(2+) addition increased the cumulative biogas yields by 18.1 % by extending the peak period with high daily biogas yields. Meanwhile, the methane (CH4) contents in the Fe(2+) added groups were generally higher than the control group before the 15th day. The pH values were not significantly impacted by Fe(2+) concentrations during the fermentation process. The COD concentrations, cellulase, protease and dehydrogenase activities varied with the added Fe(2+) concentrations and the stages of the fermentation process. At the beginning stage of fermentation (4th day), Fe(2+) addition increased the biogas production by improving the cellulase and dehydrogenase activities which caused a decline in COD. At the peak stage of fermentation (8th day), Fe(2+) addition enhanced the cellulase and protease activities, and resulted in lower COD contents than the control group. When the biogas yields decreased again (13th day), the COD contents varied similar with the protease and dehydrogenase activities, whilst cellulase activities were not sensitive to Fe(2+) concentrations. At the end of fermentation (26th day), Fe(2+) addition decreased the cellulase activities, led to lower COD contents and finally resulted the lower biogas yields than the control group. Taking the whole fermentation process into account, the promoting effect of Fe(2+) addition on biogas yields was mainly attributed to the extension of the gas production peak stage and the improvement of cellulase activities.

  14. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China); Wu, Jianguo, E-mail: jwu@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  15. Enzymatic, Antioxidant, Antimicrobial, and Insecticidal Activities of Pleurotus pulmonarius and Pycnoporus cinnabarinus Grown Separately in an Airlift Reactor

    Maura Téllez-Téllez

    2016-03-01

    Full Text Available Crude extract samples of Pleurotus pulmonarius and Pycnoporus cinnabarinus were taken during growth in liquid broth in an airlift reactor. Growth was monitored indirectly by sugar consumption and pH profile. During growth Pleurotus pulmonarius consumed glucose more slowly than Pycnoporus cinnabarinus, reaching a final pH of 8.0. In contrast, Pycnoporus cinnabarinus started consuming glucose faster from the beginning to the end with a pH of 3.6, suggesting the production of different metabolites while they grow in the same culture broth. Additionally, antioxidant activity, polyphenol and flavonoid contents, as well as laccase and hydrolase activities were quantified in the culture extracts during the fermentation. Pleurotus pulmonarius showed higher antioxidant activity than Pycnoporus cinnabarinus. Both fungi have a very low polyphenol and flavonoid content. Values of amylase and pectinase activities were similar in crude extracts of both fungi; however, cellulase, xylanase, invertase, and laccase activities showed higher levels in crude extract of Pleurotus pulmonarius. Antimicrobial and insecticidal activities were also evaluated in each crude extract. In fact, Pycnoporus cinnabarinus presented a very strong bacteriostatic and bactericidal effect against Escherichia coli and Staphylococcus aureus and reliably killed Diatraea magnifactella larvae, while Pleurotus pulmonarius did not showed any negative effect on the growth of these bacteria or larvae.

  16. Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro.

    Xu, Tianjiao; Pan, Zhi; Dong, Miaoxian; Yu, Chunlei; Niu, Yingcai

    2015-01-01

    Hepatic stellate cells (HSCs) are the primary source of matrix components in hepatic fibrosis. Ferulic acid (FA) has antifibrotic potential in renal and cardiac disease. However, whether FA comprises inhibitive effects of HSCs activation remains to be clarified. This study aims at evaluating the hypothesis that FA inhibits extracellular matrix (ECM)-related gene expression by the interruption of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) or/and Smad signaling pathways in HSC-T6. Our results indicated that FA significantly inhibited both viability and activation of HSC-T6 cells in vitro. In addition, we demonstrated, for the first time, that FA dramatically inhibited the expression of α1(I) collagen (Col-I) and fibronectin at levels of transcription and translation. Moreover, FA treatment inhibited Smad transcriptional activity, as evaluated by transient transfection with a plasmid construction containing SMAD response element and the luciferase reporter gene. Furthermore, FA inhibition of HSCs activation involved in both focal adhesion kinase (FAK)-dependent ERK1/2 and Smad signaling pathways with independent manner. Blocking transforming growth factor-β by a neutralizing antibody caused a marked reduction in both ERK1/2 and Smad signaling. These results support FA as an effective therapeutic agent for the prevention and treatment of hepatic fibrosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Label-free and sensitive detection of T4 polynucleotide kinase activity via coupling DNA strand displacement reaction with enzymatic-aided amplification.

    Cheng, Rui; Tao, Mangjuan; Shi, Zhilu; Zhang, Xiafei; Jin, Yan; Li, Baoxin

    2015-11-15

    Several fluorescence signal amplification strategies have been developed for sensitive detection of T4 polynucleotide kinase (T4 PNK) activity, but they need fluorescence dye labeled DNA probe. We have addressed the limitation and report here a label-free strategy for sensitive detection of PNK activity by coupling DNA strand displacement reaction with enzymatic-aided amplification. A hairpin oligonucleotide (hpDNA) with blunt ends was used as the substrate for T4 PNK phosphorylation. In the presence of T4 PNK, the stem of hpDNA was phosphorylated and further degraded by lambda exonuclease (λ exo) from 5' to 3' direction to release a single-stranded DNA as a trigger of DNA strand displacement reaction (SDR). The trigger DNA can continuously displace DNA P2 from P1/P2 hybrid with the help of specific cleavage of nicking endonuclease (Nt.BbvCI). Then, DNA P2 can form G-quadruplex in the presence of potassium ions and quadruplex-selective fluorphore, N-methyl mesoporphyrin IX (NMM), resulting in a significant increase in fluorescence intensity of NMM. Thus, the accumulative release of DNA P2 led to fluorescence signal amplification for determining T4 PNK activity with a detection limit of 6.6×10(-4) U/mL, which is superior or comparative with established approaches. By ingeniously utilizing T4 PNK-triggered DNA SDR, T4 PNK activity can be specifically and facilely studied in homogeneous solution containing complex matrix without any external fluorescence labeling. Moreover, the influence of different inhibitors on the T4 PNK activity revealed that it also can be explored to screen T4 PNK inhibitors. Therefore, this label-free amplification strategy presents a facile and cost-effective approach for nucleic acid phosphorylation related research. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Evaluation of the effects of a VEGFR-2 inhibitor compound on alanine aminotransferase gene expression and enzymatic activity in the rat liver.

    Fuentealba, Carmen; Bera, Monali; Jessen, Bart; Sace, Fred; Stevens, Greg J; Trajkovic, Dusko; Yang, Amy H; Evering, Winston

    2011-08-17

    Traditional assessment of drug-induced hepatotoxicity includes morphological examination of the liver and evaluation of liver enzyme activity in serum. The objective of the study was to determine the origin of drug-related elevation in serum alanine aminotransferase (ALT) activity in the absence of morphologic changes in the liver by utilizing molecular and immunohistochemical techniques. Sixteen female Sprague-Dawley rats were divided into 2 groups (control and treated, n = 4 per group) and treated rats were dosed orally twice daily (400 mg/kg/day) for 7 days with a VEGFR-2 compound (AG28262), which in a previous study caused ALT elevation without morphological changes. Serum of both treated and control animals were evaluated on day 3 of treatment and at day 8. Three separate liver lobes (caudate, right medial, and left lateral) were examined for determination of ALT tissue activity, ALT gene expression and morphological changes. ALT activity was significantly (p < 0.01) elevated on day 3 and further increased on day 8. Histologic changes or increase in TUNEL and caspase3 positive cells were not observed in the liver lobes examined. ALT gene expression in the caudate lobe was significantly up-regulated by 63%. ALT expression in the left lateral lobe was not significantly affected. Statistically significant increased liver ALT enzymatic activity occurred in the caudate (96%) and right medial (41%) lobes but not in the left lateral lobe. AG28262, a VEFG-r2 inhibitor, causes an increase in serum ALT, due in part to both gene up-regulation. Differences between liver lobes may be attributable to differential distribution of blood from portal circulation. Incorporation of molecular data, such as gene and protein expression, and sampling multiple liver lobes may shed mechanistic insight to the evaluation of hepatotoxicity.

  19. Enzymatic Processes in Marine Biotechnology.

    Trincone, Antonio

    2017-03-25

    In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses.

  20. Hepatic Encephalopathy

    Full Text Available ... 1 (von Gierke) Hemochromatosis Hepatic Encephalopathy Hepatitis A Hepatitis B Hepatitis C Intrahepatic Cholestasis of Pregnancy (ICP) Jaundice ... diseases. What are the common causes of cirrhosis? Hepatitis B & C Alcohol-related Liver Disease Non-alcoholic Fatty ...

  1. Modulation of Antioxidant Enzymatic Activities by Certain Antiepileptic Drugs (Valproic Acid, Oxcarbazepine, and Topiramate): Evidence in Humans and Experimental Models

    Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides III; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana

    2013-01-01

    It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress. PMID:24454986

  2. Modulation of Antioxidant Enzymatic Activities by Certain Antiepileptic Drugs (Valproic Acid, Oxcarbazepine, and Topiramate: Evidence in Humans and Experimental Models

    Noemí Cárdenas-Rodríguez

    2013-01-01

    Full Text Available It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity. This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS activation and the generation of reactive oxygen species (ROS. Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA, oxcarbazepine (OXC, and topiramate (TPM modulate oxidative stress.

  3. Glutamine synthetase activity in solanaceous cell suspensions accumulating alkaloids or not. 13C NMR and enzymatic assay

    Mesnard, F.; Marty, D.; Monti, J.P.; Gillet-Manceau, F.; Fliniaux, M.A.

    1999-01-01

    The metabolism of labelled pyruvate followed by 13 C NMR and the measure of glutamine synthetase (GS) showed, according to previous results, a high activity of this enzyme in suspension cells of Nicotiana plumbaginifolia. This activity could derive glutamate from the alkaloid synthesizing pathways. However, a recent work showed that the rate of the GS gene transcription was inversely proportional to the Gln/Glu ratio. The measures of Gln and Glu concentrations in Nicotiana plumbaginifolia cells revealed that high GS activity correlates with the weak value of Gln/Glu ratio. Therefore, the hypothesis of GS dysfunction for the non-biosynthesis of alkaloids in N. plumbaginifolia suspension cells can be discarded. This conclusion is strengthened by the results obtained when using a GS inhibitor. (author)

  4. Toward Enhancing the Enzymatic Activity of a Novel Fungal Polygalacturonase for Food Industry: Optimization and Biochemical Analyses.

    Shetaia, Yousseria M H; El-Baz, Ashraf F; ElMekawy, Ahmed M

    2017-08-11

    The review of literature and patents shows that enhancing the PG production and activity are still required to fulfill the increasing demands. A dual optimization process, which involved Plackett-Burman design (PBD), with seven factors, and response surface methodology, was applied to optimize the production of extracellular polygalacturonase (PG) enzyme produced by a novel strain of Aspergillus flavus isolated from rotten orange fruit. The fungal PG was purified and biochemically characterized. Three variables (harvesting time, pH and orange pomace concentration), that were verified to be significant by the PBD analysis, were comprehensively optimized via Box-Behnken design. According to this optimization, the highest PG activity (4073 U/mL) was obtained under pH 7 after 48 h using 40 g/L orange pomace as a substrate, with enhancement in PG activity by 51% compared to the first PBD optimization step. The specific activity of the purified PG was 1608 U/mg with polygalacturonic acid and its molecular weight was 55 kDa. The optimum pH was 5 with relative thermal stability (80%) at 50˚C after 30 min. The PG activity improved in the presence of Cu2+ and Ca2+, while Ba2+, Fe2+ and Zn2+ greatly inhibited the enzyme activity. The obvious Km and Vmax values were 0.8 mg/mL and 2000 µmol/min, respectively. This study is a starting point for initial research in the field of optimization and characterization of A. flavus PG. The statistical optimization of A. flavus PG and its biochemical characterization clearly revealed that this fungal strain can be a potential producer of PG which has a wide range of industrial applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Isolation and characterization of an RIP (ribosome-inactivating protein)-like protein from tobacco with dual enzymatic activity.

    Sharma, Neelam; Park, Sang-Wook; Vepachedu, Ramarao; Barbieri, Luigi; Ciani, Marialibera; Stirpe, Fiorenzo; Savary, Brett J; Vivanco, Jorge M

    2004-01-01

    Ribosome-inactivating proteins (RIPs) are N-glycosidases that remove a specific adenine from the sarcin/ricin loop of the large rRNA, thus arresting protein synthesis at the translocation step. In the present study, a protein termed tobacco RIP (TRIP) was isolated from tobacco (Nicotiana tabacum) leaves and purified using ion exchange and gel filtration chromatography in combination with yeast ribosome depurination assays. TRIP has a molecular mass of 26 kD as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and showed strong N-glycosidase activity as manifested by the depurination of yeast rRNA. Purified TRIP showed immunoreactivity with antibodies of RIPs from Mirabilis expansa. TRIP released fewer amounts of adenine residues from ribosomal (Artemia sp. and rat ribosomes) and non-ribosomal substrates (herring sperm DNA, rRNA, and tRNA) compared with other RIPs. TRIP inhibited translation in wheat (Triticum aestivum) germ more efficiently than in rabbit reticulocytes, showing an IC50 at 30 ng in the former system. Antimicrobial assays using highly purified TRIP (50 microg mL(-1)) conducted against various fungi and bacterial pathogens showed the strongest inhibitory activity against Trichoderma reesei and Pseudomonas solancearum. A 15-amino acid internal polypeptide sequence of TRIP was identical with the internal sequences of the iron-superoxide dismutase (Fe-SOD) from wild tobacco (Nicotiana plumbaginifolia), Arabidopsis, and potato (Solanum tuberosum). Purified TRIP showed SOD activity, and Escherichia coli Fe-SOD was observed to have RIP activity too. Thus, TRIP may be considered a dual activity enzyme showing RIP-like activity and Fe-SOD characteristics.

  6. Insulin Clearance Is Associated with Hepatic Lipase Activity and Lipid and Adiposity Traits in Mexican Americans.

    Artak Labadzhyan

    Full Text Available Reduction in insulin clearance plays an important role in the compensatory response to insulin resistance. Given the importance of this trait to the pathogenesis of diabetes, a deeper understanding of its regulation is warranted. Our goal was to identify metabolic and cardiovascular traits that are independently associated with metabolic clearance rate of insulin (MCRI. We conducted a cross-sectional analysis of metabolic and cardiovascular traits in 765 participants from the Mexican-American Coronary Artery Disease (MACAD project who had undergone blood sampling, oral glucose tolerance test, euglycemic-hyperinsulinemic clamp, dual-energy X-ray absorptiometry, and carotid ultrasound. We assessed correlations of MCRI with traits from seven domains, including anthropometry, biomarkers, cardiovascular, glucose homeostasis, lipase activity, lipid profile, and liver function tests. We found inverse independent correlations between MCRI and hepatic lipase (P = 0.0004, insulin secretion (P = 0.0002, alanine aminotransferase (P = 0.0045, total fat mass (P = 0.014, and diabetes (P = 0.03. MCRI and apolipoprotein A-I exhibited a positive independent correlation (P = 0.035. These results generate a hypothesis that lipid and adiposity associated traits related to liver function may play a role in insulin clearance.

  7. Entada phaseoloides extract suppresses hepatic gluconeogenesis via activation of the AMPK signaling pathway.

    Zheng, Tao; Hao, Xincai; Wang, Qibin; Chen, Li; Jin, Si; Bian, Fang

    2016-12-04

    The seed of Entada phaseoloides (L.) Merr. (Entada phaseoloides) has been long used as a folk medicine for the treatment of Diabetes mellitus by Chinese ethnic minorities. Recent reports have demonstrated that total saponins from Entada phaseoloides (TSEP) could reduce fasting blood glucose in type 2 diabetic rats. However, the mechanism has not been fully elucidated. The aim of this study was to explore the underlying mechanisms of TSEP on type 2 Diabetes mellitus (T2DM). Primary mouse hepatocytes and HepG2 cells were used to investigate the effects of TSEP on gluconeogenesis. After treatment with TSEP, glucose production, genes expression levels of Glucose-6-phosphatase (G6pase) and Phosphoenoylpyruvate carboxykinase (Pepck) were detected. The efficacy and underlying mechanism of TSEP on AMP-activated protein kinase (AMPK) signaling pathway were determinated. TSEP significantly inhibited glucose production and the gluconeogenic gene expression. Treatment with TSEP elevated the phosphorylation of AMPK, which in turn promoted the phosphorylation of acetyl coenzyme A (ACC) and Akt/glycogen synthase kinase 3β (GSK3β), respectively. Furthermore, TSEP reduced lipid accumulation and improved insulin sensitivity in hepatocytes. These findings provide evidence that TSEP exerts an antidiabetic effect by suppressing hepatic gluconeogenesis via the AMPK signaling pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Hepatic adverse events during highly active antiretroviral therapy containing nevirapine: a case report

    Yamazhan Tansu

    2002-09-01

    Full Text Available Abstract Background Hepatotoxicity is one of the most serious complications of highly active antiretroviral therapy (HAART. The aim of this report is to analyse an HIV infected patient on HAART including nevirapine and taking antidepressive agents, with acute toxic hepatitis. Case presentation A 39 year old patient diagnosed as HIV positive one month ago administered to the clinical ward of the Department of Infectious Diseases and Clinical Microbiology in Ege University Medical School with high fever, malaise, nausea, diarrheae and elevated liver enzymes (ALT 1558 U/L, AST 4288 U/L. He has been using HAART including zidovudine+lamivudine (2 × 1/day and nevirapine (2 × 200 mg/day, following dose escalation for 22 days, sertralin and diazepam for 12 days and lithium for 10 days. The patient was hospitalized. Antiretroviral and antidepressant treatments were stopped. The day after admission, his fever dropped and his symptoms improved. Clinical improvement continued on the following days. The patient was discharged upon his request on the 14th day of hospitalization. The liver function tests returned to normal levels in two weeks following discharge. Conclusion Close monitoring of liver enzymes during the first 12 weeks of nevirapine therapy is critical to prevent life threatening events.

  9. Hesperitin derivative-11 suppress hepatic stellate cell activation and proliferation by targeting PTEN/AKT pathway

    Li, Wan-xia; Chen, Xin; Yang, Yang; Huang, Hui-min; Li, Hai-di; Huang, Cheng; Meng, Xiao-ming; Li, Jun

    2017-01-01

    Hesperitin derivative (HD-11) is a monomeric compound derived from Hesperidin, which is a naturally occurring flavanone glycoside that exerts extensive clinical effects such as anti-inflammatory, anti-oxidant and anti-angiogenic. However, the role and fundamental mechanism of HD-11 in hepatic fibrosis are still unrevealed. In this study, HD-11 not only alleviates ECM deposition in rats with liver fibrosis, but also reduces the expression of α-SMA and col1a1 in TGF-β1-induced HSC-T6 cells. Moreover, it was demonstrated that HD-11 significantly promoted the expression of PTEN in vivo and in vitro. In order to evaluate the involvement of HD-11 in TGF-β1-induced HSC-T6 activation, a specific blocking agent of PTEN (bpv) and PTEN small interfering (si)-RNA-mediated silencing were used. Interestingly, HD-11 treatment couldn’t inhibit α-SMA and col1a1 expression on the basis of PTEN knockdown. On the contrary, over-expression of PTEN had an opposite effect on the expression of α-SMA and col1a1 in TGF-β1-induced HSC-T6 cells after treatment of HD-11. In addition, HD-11 remarkably inhibited the expression of p-AKT in vivo and in vitro. Taken together, all the above results indicate that HD-11 may play the part of an effective modulator of PTEN/AKT signaling pathway.

  10. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Nicholas D Weber

    Full Text Available Despite an existing effective vaccine, hepatitis B virus (HBV remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB, imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.

  11. Antismooth muscle and antiactin antibodies are indirect markers of histological and biochemical activity of autoimmune hepatitis.

    Couto, Claudia A; Bittencourt, Paulo L; Porta, Gilda; Abrantes-Lemos, Clarice P; Carrilho, Flair J; Guardia, Bianca D; Cançado, Eduardo L R

    2014-02-01

    Reactivity and titers of autoantibodies vary during the course of autoimmune hepatitis (AIH), and some autoantibodies have been associated with disease activity and adverse outcomes after treatment. The aim of this study was to assess the autoantibody behavior in AIH and its significance as predictors of biochemical and histological remission. A total of 117 patients with AIH (mean age 18.6 [4-69] years) were evaluated and tested for autoantibodies at disease onset and successively (mean 3.2 [2-6] times) after a mean follow-up evaluation of 70 [20-185] months. Antismooth muscle (ASMA), antiliver kidney microsome type 1 (anti-LKM1), antiliver cytosol type 1 (anti-LC1), antimitochondrial, antinuclear (ANA), and antiactin antibodies (AAA) were determined at disease onset and 379 other times during the follow-up evaluation through indirect immunofluorescence in rodent tissues, HEp-2 cells, and human fibroblasts. Anti-SLA/LP were assessed 45 times in the follow-up evaluation of 19 patients using enzyme-linked immunosorbent assay (ELISA). Upon admission, AIH types 1 and 2 were observed in 95 and 17 patients, respectively. Five subjects had AIH with anti-SLA/LP as the sole markers. Patients initially negative for AAA did not develop these antibodies thereafter. ANA were detected de novo in six and three subjects with AIH types 1 and 2, respectively. After treatment, only ASMA (>1:80) and AAA (>1:40) were significantly associated with biochemical (76.9% and 79.8%) and histological features (100% and 100%) of disease activity (P < 0.001). With the exception of ANA, the autoantibody profile does not markedly vary in the course of AIH. The persistence of high titers of ASMA and/or AAA in patients with AIH is associated with disease activity. © 2013 by the American Association for the Study of Liver Diseases.

  12. Alcoholic liver disease patients' perspective of a coping and physical activity-oriented rehabilitation intervention after hepatic encephalopathy.

    Mikkelsen, Maria Rudkjaer; Hendriksen, Carsten; Schiødt, Frank Vinholt; Rydahl-Hansen, Susan

    2016-09-01

    To identify and describe the impact of a coping and physical activity-oriented rehabilitation intervention on alcoholic liver disease patients after hepatic encephalopathy in terms of their interaction with professionals and relatives. Patients who have experienced alcohol-induced hepatic encephalopathy have reduced quality of life, multiple complications, and social problems, and rehabilitation opportunities for these patients are limited. A grounded theory study and an evaluation study of a controlled intervention study. Semi-structured interviews were conducted with 10 alcoholic liver disease patients who were diagnosed with hepatic encephalopathy and participated in a coping and physical activity-oriented rehabilitation intervention. Richard S. Lazarus's theory of stress and coping inspired the interview guide. The significance of a coping and physical activity-oriented rehabilitation intervention on alcoholic liver disease patients' ability to cope with problems after surviving alcohol-induced hepatic encephalopathy in terms of their interaction with professionals and relatives was characterised by the core category 'regain control over the diseased body'. This is subdivided into three separate categories: 'the experience of being physically strong', 'togetherness' and 'self-control', and they impact each other and are mutually interdependent. Alcoholic liver disease patients described the strength of the rehabilitation as regaining control over the diseased body. Professionals and relatives of patients with alcoholic liver disease may need to focus on strengthening and preserving patients' control of their diseased body by facilitating the experience of togetherness, self-control and physical strength when interacting with and supporting patients with alcoholic liver disease. A coping and physical activity-oriented rehabilitation intervention may help alcoholic liver disease patients to regain control over their diseased body and give patients the experience

  13. Effects of ovariectomy and exercise training intensity on energy substrate and hepatic lipid metabolism, and spontaneous physical activity in mice.

    Tuazon, Marc A; Campbell, Sara C; Klein, Dylan J; Shapses, Sue A; Anacker, Keith R; Anthony, Tracy G; Uzumcu, Mehmet; Henderson, Gregory C

    2018-06-01

    Menopause is associated with fatty liver, glucose dysregulation, increased body fat, and impaired bone quality. Previously, it was demonstrated that single sessions of high-intensity interval exercise (HIIE) are more effective than distance- and duration-matched continuous exercise (CE) on altering hepatic triglyceride (TG) metabolism and very-low density lipoprotein-TG (VLDL-TG) secretion. Six weeks training using these modalities was examined for effects on hepatic TG metabolism/secretion, glucose tolerance, body composition, and bone mineral density (BMD) in ovariectomized (OVX) and sham-operated (SHAM) mice. OVX and SHAM were assigned to distance- and duration-matched CE and HIIE, or sedentary control. Energy expenditure during exercise was confirmed to be identical between CE and HIIE and both similarly reduced post-exercise absolute carbohydrate oxidation and spontaneous physical activity (SPA). OVX vs. SHAM displayed impaired glucose tolerance and greater body fat despite lower hepatic TG, and these outcomes were not affected by training. Only HIIE increased hepatic AMPK in OVX and SHAM, but neither training type impacted VLDL-TG secretion. As expected, BMD was lower in OVX, and training did not affect long bones. The results reveal intensity-dependent effects on hepatic AMPK expression and general exercise effects on subsequent SPA and substrate oxidation that is independent of estrogen status. These findings support the notion that HIIE can impact aspects of liver physiology in females while the effects of exercise on whole body substrate selection appear to be independent of training intensity. However, neither exercise approach mitigated the impairment in glucose tolerance and elevated body fat occurring in OVX mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Activation of Basal Gluconeogenesis by Coactivator p300 Maintains Hepatic Glycogen Storage

    Cao, Jia; Meng, Shumei; Ma, Anlin; Radovick, Sally; Wondisford, Fredric E.

    2013-01-01

    Because hepatic glycogenolysis maintains euglycemia during early fasting, proper hepatic glycogen synthesis in the fed/postprandial states is critical. It has been known for decades that gluconeogenesis is essential for hepatic glycogen synthesis; however, the molecular mechanism remains unknown. In this report, we show that depletion of hepatic p300 reduces glycogen synthesis, decreases hepatic glycogen storage, and leads to relative hypoglycemia. We previously reported that insulin suppressed gluconeogenesis by phosphorylating cAMP response element binding protein-binding protein (CBP) at S436 and disassembling the cAMP response element-binding protein-CBP complex. However, p300, which is closely related to CBP, lacks the corresponding S436 phosphorylation site found on CBP. In a phosphorylation-competent p300G422S knock-in mouse model, we found that mutant mice exhibited reduced hepatic glycogen content and produced significantly less glycogen in a tracer incorporation assay in the postprandial state. Our study demonstrates the important and unique role of p300 in glycogen synthesis through maintaining basal gluconeogenesis. PMID:23770612

  15. Viral hepatitis A, active component, U.S. Armed Forces, 2007-2016.

    Stahlman, Shauna; Williams, Valerie F; Oetting, Alexis A

    2017-05-01

    During 2007-2016, there were 237 incident diagnoses of acute hepatitis A, with an overall incidence rate of 1.88 cases per 100,000 person-years (p-yrs). Crude overall rates of hepatitis A were highest among service members in the youngest age group, those in healthcare occupations, and among Air Force and Navy members. Service members of "other" or unknown race/ethnicity and non-Hispanic black service members had higher overall incidence rates of hepatitis A, compared to their non-Hispanic white and Hispanic counterparts. Annual incidence rates of hepatitis A were relatively stable until 2012 when rates peaked at 2.94 per 100,000. Rates dipped to 1.41 per 100,000 p-yrs in 2015 and then increased to 2.22 per 100,000 p-yrs in 2016. During the 10-year period, annual rates among male service members were relatively stable. The low rates of acute hepatitis A among U.S. service members overall reflect the widespread use of the hepatitis A virus vaccine.

  16. Comparison of the role that entropy has played in processes of non-enzymatic and enzymatic catalysis

    Dixon Pineda, Manuel Tomas

    2012-01-01

    The function that entropy has played is compared in processes of non-enzymatic and enzymatic catalysis. The processes followed are showed: the kinetics of the acid hydrolysis of 3-pentyl acetate and cyclopentyl acetate catalyzed by hydrochloric acid and enzymatic hydrolysis of ethyl acetate and γ-butyrolactone catalyzed by pig liver esterase. The activation parameters of Eyring were determined for each process and interpreted the contribution of the entropy of activation for catalysis in this type of model reactions. (author) [es

  17. Increased Tissue and Circulating Levels of Dipeptidyl Peptidase-IV Enzymatic Activity in Patients with Pancreatic Ductal Adenocarcinoma

    Bušek, P.; Vaníčková, Z.; Hrabal, P.; Brabec, Marek; Frič, P.; Zavoral, M.; Škrha, J.; Kmochová, K.; Laclav, M.; Bunganič, B.; Augustyns, K.; Van Der Veken, P.; Šedo, A.

    2016-01-01

    Roč. 16, č. 5 (2016), s. 829-838 ISSN 1424-3903 Grant - others:GA MZd(CZ) NT14254 Institutional support: RVO:67985807 Keywords : Diabetes mellitus * Fibroblast activation protein alpha * Peptide hydrolases * Plasma * Stromal cells Subject RIV: FD - Oncology ; Hematology Impact factor: 2.724, year: 2016

  18. Enzymatic activity of α-amylase in alimentary tract Spodoptera littoralis (Boisduval (Lepidoptera: Noctuidae: Characterization and Compartmentalization

    Ali Darvishzadeh

    2014-09-01

    Full Text Available The Egyptian cotton leafworm, Spodoptera littoralis (Boisduval (Lepidoptera: Noctuidae damages a wide variety of crops in Middle East. Their hosts include cotton, alfalfa, eggplant, tomato, lettuce, bean and some ornamental crops. The intensive use of broad-spectrum insecticides against S. littoralis has led to the development of resistance to many registered pesticides use for its control. The purpose of the present study is biochemical characterization of digestive enzymes of this pest to gain a better understanding of the digestive physiology. The physiology and biochemistry of the insect digestive enzyme had an important role in the study of novel insecticidal strategies. The Egyptian cotton leafworm alimentary canal consists of a short foregut, a long midgut and a short hindgut. Application of pH indicators showed that alimentary canal was alkaline. Our results showed that activities of gut α-amylase were different in three parts of the insect gut. Also shown the greatest activity of α-amylase observed in the midgut followed by hindgut and foregut, respectively. However, there were not significant differences in activity of the enzyme in the midgut and hindgut. The optimal pH α-amylase in foregut, midgut and hindgut were 10.0. Zymogram analysis of different part of gut showed four bands in midgut, hind gut and two bands in foregut. Therefore, in midgut of S. littoralis, four isoenzymes were present. These results explain why more amylase activity was seen in these regions in the spectrophotometric assay.

  19. Influence of Tableting on Enzymatic Activity of Papain along with Determination of Its Percolation Threshold with Microcrystalline Cellulose

    Sharma, Manu; Sharma, Vinay; Majumdar, Dipak K.

    2014-01-01

    The binary mixture tablets of papain and microcrystalline cellulose (MCC), dicalcium phosphate dihydrate (DCP), carrageenan, tragacanth, and agar were prepared by direct compression. Carrageenan, tragacanth, and agar provided maximum protection to enzyme activity compared to MCC and DCP. However, stability studies indicated highest loss of enzyme activity with carrageenan, tragacanth, and agar. Therefore, compression behaviour of different binary mixtures of papain with MCC at different compaction pressures, that is, 40–280 MPa, was studied according to Heckel equation. The compressibility studies of binary mixtures indicated brittle behavior of papain. The application of percolation theory on the relationship between critical density as a function of enzyme activity and mixture composition revealed the presence of percolation threshold for binary mixture. Papain-MCC mixture composition showed significant percolation threshold at 18.48% (w/w) papain loading. Microcrystalline cellulose provided higher protection during stability study. However, higher concentrations of microcrystalline cellulose, probably as dominant particles, do not protect the enzyme with their plastic deformation. Below the percolation threshold, that is, 18.48% (w/w) papain amount in mixture with plastic excipient, activity loss increases strongly because of higher shearing forces during compaction due to system dominance of plastic particles. This mixture range should therefore be avoided to get robust formulation of papain. PMID:27350972

  20. Effect of salinity on biomass production and activities of some key enzymatic antioxidants in kochia (kochia scoparia)

    Nabati, J.; Masoumi, A.; Mehrjerd, M.Z.; Kafi, M.; Nezami, A.; Moghaddam, P.R.

    2011-01-01

    Soil salinity is a major constraint to food production due to its negative impact on crop yield. Kochia (Kochia scoparia) is a salinity-resistant plant that can widely be used as emergency forage for livestock by using saline waters and soils in desert ecosystems. In order to investigate physiological mechanism, antioxidants activity and potential production of Kochia in response to different levels of salinity, an experiment was performed in a split plot based on randomized complete block design with three replications. Saline waters (5.2, 10.5 and 23.1 dS m/sup -1/) and three Kochia ecotypes (Birjand, Borujerd and Sabzevar) were allocated as main and sub plots, respectively. The results showed that salinity did not impose any significant effect on dry matter production but relative water content (RWC) and seed yield decreased by salinity stress. In general, no positive correlation coefficient was observed between dry matter production and physiological and biochemical parameters except superoxide dismutase (SOD) at 23.1 dS m/sup -1/. There was no significant difference among ecotypes in dry matter production and seed yield. Sabzevar ecotype showed the highest proline, total phenol content and peroxidase (POX) activity. Ascorbate peroxidase (APX), catalase (CTA), and superoxide dismutase (SOD) activity was higher in Borujerd ecotype, while highest soluble sugar, glutathione reductase (GR) activity and DPPH - radical scavenging activity was observed in Birjand ecotype. According to these results, Kochia has a reliable tolerance to elevated levels of salinities up to 23 dS m/sup -1/ and it seems that it can control oxidative stress by continuing growth. (author)

  1. Glutathione S-transferases in human renal cortex and neoplastic tissue: enzymatic activity, isoenzyme profile and immunohistochemical localization.

    Rodilla, V; Benzie, A A; Veitch, J M; Murray, G I; Rowe, J D; Hawksworth, G M

    1998-05-01

    1. Glutathione S-transferase (GST) activity in the cytosol of renal cortex and tumours from eight men and eight women was measured using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate. GST activities ranged from 685 to 2192 nmol/min/mg protein in cortex (median 1213) and from non-detectable (minimum 45) to 2424 nmol/min/mg protein in tumours (median 469). The activities in the tumours were lower than those in the normal cortices (p 0.05). 3. The age of the patients ranged from 42 to 81 years (median 62) and was not found to play a role in the levels of GST activity observed in cortex or in renal tumours from either sex. 4. Immunoblotting and immunohistochemical studies confirmed that GST-alpha was the predominant form expressed both in normal cortex and tumour and probably accounted for most of the GST activity present in these samples. GST-mu and GST-phi were expressed in both tumours and normal cortex and, while in some cases the level of expression in the cortices was higher than that found in the tumours, the reverse was also observed. Within the GST-mu class, GST M1/M2 was only detected in one sample (tumour), which showed the highest overall expression of GST-mu. GSTM3 was the predominant isoenzyme of the mu class in normal and tumour tissue, whereas GTM4 and GSTM5 were not detected. 5. These differences could have functional significance where xenobiotics or cytotoxic drugs are specific substrates for the different classes of GSTs.

  2. Photoelectrochemical enzymatic biosensors.

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-06-15

    Enzymatic biosensors have been valuable bioanalytical devices for analysis of diverse targets in disease diagnosis, biological and biomedical research, etc. Photoelectrochemical (PEC) bioanalysis is a recently emerged method that promptly becoming a subject of new research interests due to its attractive potential for future bioanalysis with high sensitivity and specificity. PEC enzymatic biosensors integrate the inherent sensitivities of PEC bioanalysis and the selectivity of enzymes and thus share their both advantages. Currently, PEC enzymatic biosensors have become a hot topic of significant research and the recent impetus has grown rapidly as demonstrated by increased research papers. Given the pace of advances in this area, this review will make a thorough discussion and survey on the fundamentals, sensing strategies, applications and the state of the art in PEC enzymatic biosensors, followed by future prospects based on our own opinions. We hope this work could provide an accessible introduction to PEC enzymatic biosensors for any scientist. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Influence of nitrogen additions on litter decomposition, nutrient dynamics, and enzymatic activity of two plant species in a peatland in Northeast China.

    Song, Yanyu; Song, Changchun; Ren, Jiusheng; Tan, Wenwen; Jin, Shaofei; Jiang, Lei

    2018-06-01

    Nitrogen (N) availability affects litter decomposition and nutrient dynamics, especially in N-limited ecosystems. We investigated the response of litter decomposition to N additions in Eriophorum vaginatum and Vaccinium uliginosum peatlands. These two species dominate peatlands in Northeast China. In 2012, mesh bags containing senesced leaf litter of Eriophorum vaginatum and Vaccinium uliginosum were placed in N addition plots and sprayed monthly for two years with NH 4 NO 3 solution at dose rates of 0, 6, 12, and 24gNm -2 year -1 (CK, N1, N2 and N3, respectively). Mass loss, N and phosphorus (P) content, and enzymatic activity were measured over time as litter decomposed. In the control plots, V. uliginosum litter decomposed faster than E. vaginatum litter. N1, N2, and N3 treatments increased the mass losses of V. uliginosum litter by 6%, 9%, and 4% respectively, when compared with control. No significant influence of N additions was found on the decomposition of E. vaginatum litter. However, N and P content in E. vaginatum litter and V. uliginosum litter significantly increased with N additions. Moreover, N additions significantly promoted invertase and β-glucosidase activity in E. vaginatum and V. uliginosum litter. However, only in V. uliginosum litter was polyphenol oxidase activity significantly enhanced. Our results showed that initial litter quality and polyphenol oxidase activity influence the response of plant litter to N additions in peatland ecosystems. Increased N availability may change peatland soil N and P cycling by enhancing N and P immobilization during litter decomposition. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Activated NKT cells facilitated functional switch of myeloid-derived suppressor cells at inflammation sites in fulminant hepatitis mice.

    Wu, Danxiao; Shi, Yu; Wang, Cheng; Chen, Hanwen; Liu, Qiaoyun; Liu, Jianhua; Zhang, Lihuang; Wu, Yihua; Xia, Dajing

    2017-02-01

    Myeloid-derived suppressor cells (MDSCs) confer immunosuppressive properties, but their roles in fulminant hepatitis have not been well defined. In this study, we systematically examined the distribution of MDSCs in bone marrow (BM), liver and spleen, and their functional and differentiation status in an acute fulminant hepatitis mouse model induced by lipopolysaccharide and D-galactosamine (LPS-GalN). Moreover, the interaction between NKT cells and MDSCs was determined. Our study revealed that BM contained the largest pool of MDSCs during pathogenesis of fulminant hepatitis compared with liver and spleen. MDSCs in liver/spleen expressed higher levels of chemokine receptors such as CCR2, CX3CR1 and CXCR2. At inflamed tissues such as liver or spleen, activated NKT cells induced differentiation of MDSCs through cell-cell interaction, which markedly dampened the immunosuppressive effects and promoted MDSCs to produce pro-inflammatory cytokines and activate inflammatory cells. Our findings thus demonstrated an unexpected pro-inflammatory state for MDSCs, which was mediated by the activated NKT cells that precipitated the differentiation and functional evolution of these MDSCs at sites of inflammation. Copyright © 2016. Published by Elsevier GmbH.

  5. Activated Hepatic Stellate Cells Induce Tumor Progression of Neoplastic Hepatocytes in a TGF-β Dependent Fashion

    MIKULA, M.; PROELL, V.; FISCHER, A.N.M.; MIKULITS, W.

    2010-01-01

    The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells. For both tumorigenesis and hepatic fibrogenesis, transforming growth factor (TGF)-β signaling executes key roles and therefore is considered as a hallmark of these pathological events. By employing cellular transplantation we show that the interaction of neoplastic MIM-R hepatocytes with the tumor microenvironment, containing either activated hepatic stellate cells (M1-4HSCs) or myofibroblasts derived thereof (M-HTs), induces progression in malignancy. Cotransplantation of MIM-R hepatocytes with M-HTs yielded strongest MIM-R generated tumor formation accompanied by nuclear localization of Smad2/3 as well as of β-catenin. Genetic interference with TGF-β signaling by gain of antagonistic Smad7 in MIM-R hepatocytes diminished epithelial dedifferentiation and tumor progression upon interaction with M1-4HSCs or M-HTs. Further analysis showed that tumors harboring disrupted Smad signaling are devoid of nuclear β-catenin accumulation, indicating a crosstalk between TGF-β and β-catenin signaling. Together, these data demonstrate that activated HSCs and myofibroblasts directly govern hepatocarcinogenesis in a TGF-β dependent fashion by inducing autocrine TGF-β signaling and nuclear β-catenin accumulation in neoplastic hepatocytes. These results indicate that intervention with TGF-β signaling is highly promising in liver cancer therapy. PMID:16883581

  6. Influence of γ-irradiation on the structure and enzymatic activity of nuclear membrane in pregnant rats and their embryos

    Mirakhmedov, A.K.; Mirkhamidova, P.; Shamsutdinova, G.T.; Filatova, L.S.; Khamidov, D.Kh.; Zbarskij, I.B.; AN SSSR, Moscow

    1992-01-01

    Morphological and biochemical investigations of pregnant rats and embryo liver cell nuclei after in vivo irradiation in the doses of 1 and 2 Gy revealed their high radiosnsitivity at all stages of gestation and embryonal development. At damaging effect of radiation, we managed to observe sharp accumulation of products of lipid peroxide oxidation and suppresion of the activities of such enzymes in liver nuclei of pregnant rats and embryos. The changes of such a kind are shown to intensify with the increasing of irradiation doses. The most profound inhibition of activities of these enzymes in liver nuclei of embryos irradiated in utero was observed during the period of organogenesis (the 13th day of the development) and in fetal period of embryogenesis (the 17th day of the development), as well as the 13th and 17th day of gestation. The morphological data also demonstate the high level of cell nucleus sensitivity to the action of radiation during gestattion and embryogenesis

  7. Ureases display biological effects independent of enzymatic activity: Is there a connection to diseases caused by urease-producing bacteria?

    D. Olivera-Severo

    2006-07-01

    Full Text Available Ureases are enzymes from plants, fungi and bacteria that catalyze the hydrolysis of urea to form ammonia and carbon dioxide. While fungal and plant ureases are homo-oligomers of 90-kDa subunits, bacterial ureases are multimers of two or three subunit complexes. We showed that some isoforms of jack bean urease, canatoxin and the classical urease, bind to glycoconjugates and induce platelet aggregation. Canatoxin also promotes release of histamine from mast cells, insulin from pancreatic cells and neurotransmitters from brain synaptosomes. In vivo it induces rat paw edema and neutrophil chemotaxis. These effects are independent of ureolytic activity and require activation of eicosanoid metabolism and calcium channels. Helicobacter pylori, a Gram-negative bacterium that colonizes the human stomach mucosa, causes gastric ulcers and cancer by a mechanism that is not understood. H. pylori produces factors that damage gastric epithelial cells, such as the vacuolating cytotoxin VacA, the cytotoxin-associated protein CagA, and a urease (up to 10% of bacterial protein that neutralizes the acidic medium permitting its survival in the stomach. H. pylori whole cells or extracts of its water-soluble proteins promote inflammation, activate neutrophils and induce the release of cytokines. In this paper we review data from the literature suggesting that H. pylori urease displays many of the biological activities observed for jack bean ureases and show that bacterial ureases have a secretagogue effect modulated by eicosanoid metabolites through lipoxygenase pathways. These findings could be relevant to the elucidation of the role of urease in the pathogenesis of the gastrointestinal disease caused by H. pylori.

  8. An enzymatic deconjugation method for the analysis of small molecule active drugs on antibody-drug conjugates.

    Li, Yi; Gu, Christine; Gruenhagen, Jason; Yehl, Peter; Chetwyn, Nik P; Medley, Colin D

    2016-01-01

    Antibody-drug conjugates (ADCs) are complex therapeutic agents that use the specific targeting properties of antibodies and the highly potent cytotoxicity of small molecule drugs to selectively eliminate tumor cells while limiting the toxicity to normal healthy tissues. Two critical quality attributes of ADCs are the purity and stability of the active small molecule drug linked to the ADC, but these are difficult to assess once the drug is conjugated to the antibody. In this study, we report a enzyme deconjugation approach to cleave small molecule drugs from ADCs, which allows the drugs to be subsequently characterized by reversed-phase high performance liquid chromatography. The model ADC we used in this study utilizes a valine-citrulline linker that is designed to be sensitive to endoproteases after internalization by tumor cells. We screened several proteases to determine the most effective enzyme. Among the 3 cysteine proteases evaluated, papain had the best efficiency in cleaving the small molecule drug from the model ADC. The deconjugation conditions were further optimized to achieve complete cleavage of the small molecule drug. This papain deconjugation approach demonstrated excellent specificity and precision. The purity and stability of the active drug on an ADC drug product was evaluated and the major degradation products of the active drug were identified. The papain deconjugation method was also applied to several other ADCs, with the results suggesting it could be applied generally to ADCs containing a valine-citrulline linker. Our results indicate that the papain deconjugation method is a powerful tool for characterizing the active small molecule drug conjugated to an ADC, and may be useful in ensuring the product quality, efficacy and the safety of ADCs.

  9. The influence of detergents on the bioproduction of organic matter and the enzymatic activity of two fungal species

    Stojanović Jelica; Veličković D.; Vučetić J.

    2002-01-01

    The effects of a detergent product (Merix, Merima, Krusevac) o the production of aminoacids and monosaccharides and the proteolytic enzyme activity of the fungi Alternariae tenuis am Trichotecium roseum were examined. After incubation for 8 days the concentrations of all aminoacids except for isoleucine in the case of A tenuis and alanine in the case of T. roseum, were found to be lower it media with 1 % detergent than in the control media without acfcfeo detergent. However, progressively inc...

  10. Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase from Enterobacter sp. Px6-4.

    Wen Gu

    Full Text Available Microbial ferulic acid decarboxylase (FADase catalyzes the transformation of ferulic acid to 4-hydroxy-3-methoxystyrene (4-vinylguaiacol via non-oxidative decarboxylation. Here we report the crystal structures of the Enterobacter sp. Px6-4 FADase and the enzyme in complex with substrate analogues. Our analyses revealed that FADase possessed a half-opened bottom β-barrel with the catalytic pocket located between the middle of the core β-barrel and the helical bottom. Its structure shared a high degree of similarity with members of the phenolic acid decarboxylase (PAD superfamily. Structural analysis revealed that FADase catalyzed reactions by an "open-closed" mechanism involving a pocket of 8 × 8 × 15 Å dimension on the surface of the enzyme. The active pocket could directly contact the solvent and allow the substrate to enter when induced by substrate analogues. Site-directed mutagenesis showed that the E134A mutation decreased the enzyme activity by more than 60%, and Y21A and Y27A mutations abolished the enzyme activity completely. The combined structural and mutagenesis results suggest that during decarboxylation of ferulic acid by FADase, Trp25 and Tyr27 are required for the entering and proper orientation of the substrate while Glu134 and Asn23 participate in proton transfer.

  11. Streptomyces pactum assisted phytoremediation in Zn/Pb smelter contaminated soil of Feng County and its impact on enzymatic activities

    Ali, Amjad; Guo, Di; Mahar, Amanullah; Ma, Fang; Li, Ronghua; Shen, Feng; Wang, Ping; Zhang, Zengqiang

    2017-04-01

    Anthropogenic activities, such as industrial expansion, smelting, mining and agricultural practices, have intensified the discharge of potentially toxic trace elements (PTEs) into the environment, threatening human health and other organisms. To assist phytoremediation by sorghum in soil contaminated by smelters/mines in Feng County (FC), a pot experiment was performed to examine the phytoremediation potential of Streptomyces pactum (Act12) + biochar. The results showed that root uptake of Zn and Cd was reduced by 45 and 22%, respectively, while the uptake of Pb and Cu increased by 17 and 47%, respectively. The shoot and root dry weight and chlorophyll content improved after Act12 inoculation. β-glucosidase, alkaline phosphatase and urease activities in soil improved and antioxidant activities (POD, PAL, PPO) decreased after application of Act12 + biochar due to a reduction in stress from PTEs. BCF, TF and MEA confirmed the role of Act12 in the amelioration and translocation of PTEs. PCA analysis showed a correlation between different factors that affect the translocation of PTEs. Overall, Act12 promoted the phytoremediation of PTEs. Field experiments on Act12 + biochar may provide new insights into the rehabilitation and restoration of soils contaminated by mines.

  12. Antioxidant activity of a novel synthetic hexa-peptide derived from an enzymatic hydrolysate of duck skin by-products.

    Lee, Seung-Jae; Cheong, Sun Hee; Kim, Yon-Suk; Hwang, Jin-Woo; Kwon, Hyuck-Ju; Kang, Seo-Hee; Moon, Sang-Ho; Jeon, Byong-Tae; Park, Pyo-Jam

    2013-12-01

    A peptide was synthesized on the basis of our previous study from solid phase peptide synthesis using ASP48S (Peptron Inc.) and identified by the reverse phase high-performance liquid chromatography (HPLC) using a Vydac Everest C18 column. The molecular mass of the peptide found to be 693.90 Da, and the amino acid sequences of the peptide was Trp-Tyr-Pro-Ala-Ala-Pro. The purpose of this study was to evaluate antioxidant effects of the peptide by electron spin resonance (ESR) spectrometer, and on t-BHP-induced liver cells damage in Chang cells. The antioxidative activity of the peptide was evaluated by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, alkyl and superoxide radical scavenging activity using an ESR spectrometer. The half maximal inhibitory concentration (IC50) value of the peptide for hydroxyl, DPPH, alkyl, and superoxide radical scavenging activity were 45.2, 18.5, 31.5, and 33.4 μM, respectively. In addition, the peptide inhibited productions of cell death against t-BHP-induced liver cell damage in Chang cells. It was presumed to be peptide involved in regulating the apoptosis-related gene expression in the cell environment. The present results indicate that the peptide substantially contributes to antioxidative properties in liver cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Structural characterization of the novel aminoglycoside phosphotransferase AphVIII from Streptomyces rimosus with enzymatic activity modulated by phosphorylation

    Boyko, Konstantin M., E-mail: kmb@inbi.ras.ru [Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt. 33, Bld. 2, 119071, Moscow (Russian Federation); National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182 (Russian Federation); Gorbacheva, Marina A.; Korzhenevskiy, Dmitry A. [National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182 (Russian Federation); Alekseeva, Maria G.; Mavletova, Dilara A.; Zakharevich, Natalia V.; Elizarov, Sergey M.; Rudakova, Natalia N.; Danilenko, Valery N. [Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow, 119333 (Russian Federation); Popov, Vladimir O. [Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt. 33, Bld. 2, 119071, Moscow (Russian Federation); National Research Center “Kurchatov Institute”, Kurchatov Complex of NBICS-technologies, Akad. Kurchatova sqr., 1, Moscow, 123182 (Russian Federation)

    2016-09-02

    Aminoglycoside phosphotransferases represent a broad class of enzymes that promote bacterial resistance to aminoglycoside antibiotics via the phosphorylation of hydroxyl groups in the latter. Here we report the spatial structure of the 3′-aminoglycoside phosphotransferase of novel VIII class (AphVIII) solved by X-ray diffraction method with a resolution of 2.15 Å. Deep analysis of APHVIII structure and its comparison with known structures of aminoglycoside phosphotransferases of various types reveals that AphVIII has a typical two-domain fold and, however, possesses some unique characteristics that distinguish the enzyme from its known homologues. The most important difference is the presence of the activation loop with unique Ser146 residue. We demonstrate that in the apo-state of the enzyme the activation loop does not interact with other parts of the enzyme and seems to adopt catalytically competent state only after substrate binding. - Highlights: • 3D structure of the novel aminoglycoside phosphotransferase AphVIII was obtained. • AphVIII activation loop is clearly identified in the electron density. • AphVIII has some unique structural features in its substrate C-ring binding pocket.

  14. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of Sorafenib in hepatocellular cancer cells.

    Lo Re, Oriana; Panebianco, Concetta; Porto, Stefania; Cervi, Carlo; Rappa, Francesca; Di Biase, Stefano; Caraglia, Michele; Pazienza, Valerio; Vinciguerra, Manlio

    2018-02-01

    Hepatocellular carcinoma (HCC) has a poor outcome. Most HCCs develop in the context of liver fibrosis and cirrhosis caused by chronic inflammation. Short-term fasting approaches enhance the activity of chemotherapy in preclinical cancer models, other than HCC. Multi-tyrosine kinase inhibitor Sorafenib is the mainstay of treatment in HCC. However, its benefit is frequently short-lived. Whether fasting can alleviate liver fibrosis and whether combining fasting with Sorafenib is beneficial remains unknown. A 24 hr fasting (2% serum, 0.1% glucose)-induced changes on human hepatic stellate cells (HSC) LX-2 proliferation/viability/cell cycle were assessed by MTT and flow cytometry. Expression of lypolysaccharide (LPS)-induced activation markers (vimentin, αSMA) was evaluated by qPCR and immunoblotting. Liver fibrosis and inflammation were evaluated in a mouse model of steatohepatitis exposed to cycles of fasting, by histological and biochemical analyses. A 24 hr fasting-induced changes were also analyzed on the proliferation/viability/glucose uptake of human HCC cells exposed to Sorafenib. An expression panel of genes involved in survival, inflammation, and metabolism was examined by qPCR in HCC cells exposed to fasting and/or Sorafenib. Fasting decreased the proliferation and the activation of HSC. Repeated cycles of short term starvation were safe in mice but did not improve fibrosis. Fasting synergized with Sorafenib in hampering HCC cell growth and glucose uptake. Finally, fasting normalized the expression levels of genes which are commonly altered by Sorafenib in HCC cells. Fasting or fasting-mimicking diet diets should be evaluated in preclinical studies as a mean to potentiate the activity of Sorafenib in clinical use. © 2017 Wiley Periodicals, Inc.

  15. Postprandial incretin and islet hormone responses and dipeptidyl-peptidase 4 enzymatic activity in patients with maturity onset diabetes of the young

    Østoft, Signe Harring; Bagger, Jonatan Ising; Hansen, Torben

    2015-01-01

    Objective: The role of the incretin hormones in the pathophysiology of maturity onset diabetes of the young (MODY) is unclear. Design: We studied the postprandial plasma responses of glucagon, incretin hormones (glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP......)), and dipeptidyl-peptidase 4 (DPP-4) enzymatic activity in patients with glucokinase (GCK)-diabetes (MODY2), hepatocyte nuclear factor 1α (HNF1A)-diabetes (MODY3), and in matched healthy individuals (CTRLs). Subjects and methods: Ten patients with GCK-diabetes (age: 43±5 years; BMI: 24±2 kg/m2; FPG: 7.1±0.3 mmol....../l: HbA1c: 6.6±0.2%), 10 patients with HNF1A-diabetes (age: 31±3 years (mean ± SEM); body mass index (BMI): 24±1 kg/m2; fasting plasma glucose (FPG): 8.9±0.8 mmol/l; haemoglobin A1c (HbA1c): 7.0±0.3%), and 10 CTRLs (age: 40±5 years; BMI: 24±1 kg/m2; FPG: 5.1±0.1 mmol/l; HbA1c: 5.3±0.1%) were examined...

  16. Role of Ca-bentonite to improve the humification, enzymatic activities, nutrient transformation and end product quality during sewage sludge composting.

    Awasthi, Mukesh Kumar; Awasthi, Sanjeev Kumar; Wang, Quan; Awasthi, Mrigendra Kumar; Zhao, Junchao; Chen, Hongyu; Ren, Xiuna; Wang, Meijing; Zhang, Zengqiang

    2018-04-10

    This study was aimed to examine the response of Ca-bentonite (CB) amendment to improve the sewage sludge (SS) composting along with wheat straw (WS) as bulking agent. Five treatments (SS + WS) were mixed with or without blending of discrepant concentration of CB (2%, 4%, 6%, and 10%), respectively, and without CB added treatment applied as the control. The results showed that compared to control and 2%CB blended treatments, while the 6-10%CB -amended treatment indicated maximum enzymatic activities with the composting progress and highest organic matter degradation and loss. The amendment of 6-10%CB increased the humic acid, HA/FA ratio, DON, NH 4 + -N, NO 3 and DOC but reduced the fulvic acids content and the maturity period by 2 weeks as compared to control. In addition, maturity parameters also confirmed that the highest seed germination was observed with the 10%CB applied compost followed by 6%CB, 4%CB and 2%CB applied treatments, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities.

    Jiao, Jiao; Li, Zhu-Gang; Gai, Qing-Yan; Li, Xiao-Juan; Wei, Fu-Yao; Fu, Yu-Jie; Ma, Wei

    2014-03-15

    Microwave-assisted aqueous enzymatic extraction (MAAEE) of pumpkin seed oil was performed in this study. An enzyme cocktail comprised of cellulase, pectinase and proteinase (w/w/w) was found to be the most effective in releasing oils. The highest oil recovery of 64.17% was achieved under optimal conditions of enzyme concentration (1.4%, w/w), temperature (44°C), time (66 min) and irradiation power (419W). Moreover, there were no significant variations in physicochemical properties of MAAEE-extracted oil (MAAEEO) and Soxhlet-extracted oil (SEO), but MAAEEO exhibited better oxidation stability. Additionally, MAAEEO had a higher content of linoleic acid (57.33%) than SEO (53.72%), and it showed stronger antioxidant activities with the