WorldWideScience

Sample records for hepatic cyp expression

  1. Altered Protein Expression of Cardiac CYP2J and Hepatic CYP2C, CYP4A, and CYP4F in a Mouse Model of Type II Diabetes—A Link in the Onset and Development of Cardiovascular Disease?

    Directory of Open Access Journals (Sweden)

    Benoit Drolet

    2017-10-01

    Full Text Available Arachidonic acid can be metabolized by cytochrome P450 (CYP450 enzymes in a tissue- and cell-specific manner to generate vasoactive products such as epoxyeicosatrienoic acids (EETs-cardioprotective and hydroxyeicosatetraenoic acids (HETEs-cardiotoxic. Type II diabetes is a well-recognized risk factor for developing cardiovascular disease. A mouse model of Type II diabetes (C57BLKS/J-db/db was used. After sacrifice, livers and hearts were collected, washed, and snap frozen. Total proteins were extracted. Western blots were performed to assess cardiac CYP2J and hepatic CYP2C, CYP4A, and CYP4F protein expression, respectively. Significant decreases in relative protein expression of cardiac CYP2J and hepatic CYP2C were observed in Type II diabetes animals compared to controls (CYP2J: 0.80 ± 0.03 vs. 1.05 ± 0.06, n = 20, p < 0.001; (CYP2C: 1.56 ± 0.17 vs. 2.21 ± 0.19, n = 19, p < 0.01. In contrast, significant increases in relative protein expression of both hepatic CYP4A and CYP4F were noted in Type II diabetes mice compared to controls (CYP4A: 1.06 ± 0.09 vs. 0.18 ± 0.01, n = 19, p < 0.001; (CYP4F: 2.53 ± 0.22 vs. 1.10 ± 0.07, n = 19, p < 0.001. These alterations induced by Type II diabetes in the endogenous pathway (CYP450 of arachidonic acid metabolism may increase the risk for cardiovascular disease by disrupting the fine equilibrium between cardioprotective (CYP2J/CYP2C-generated and cardiotoxic (CYP4A/CYP4F-generated metabolites of arachidonic acid.

  2. Dried chicory root modifies the activity and expression of porcine hepatic CYP3A but not 2C – Effect of in vitro and in vivo exposure

    DEFF Research Database (Denmark)

    Rasmussen, Martin Krøyer; Zamaratskaia, Galia; Andersen, Bente

    2012-01-01

    Hepatic cytochrome P450 expression and activity are dependent on many factors, including dietary ingredients. In the present study, we investigated the in vivo and in vitro effect of chicory root on hepatic CYP3A and 2C in male pigs. Chicory feeding increased the expression of CYP3A29 m......RNA but not CYP2C33. Correspondingly, CYP3A activity was increased by chicory feeding, while CYP2C activity was not affected. Additionally, the in vitro effect of chicory extract on the CYP3A activity was investigated. It was shown that CYP3A activity in the microsomes from male pigs was inhibited......, but this effect was eliminated by pre-incubation. In both male and female pigs the CYP3A activity was increased in the presence of chicory after pre-incubation. Furthermore, gender-related differences in mRNA expression and activity were observed. CYP3A mRNA expression was greater in female pigs...

  3. CYP2E1-dependent and leptin-mediated hepatic CD57 expression on CD8 + T cells aid progression of environment-linked nonalcoholic steatohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Seth, Ratanesh Kumar; Das, Suvarthi [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States); Kumar, Ashutosh [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Chanda, Anindya [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States); Kadiiska, Maria B. [Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Michelotti, Gregory [Division of Gastroenterology, Duke University, Durham, NC 27707 (United States); Manautou, Jose [Dept. of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092 (United States); Diehl, Anna Mae [Division of Gastroenterology, Duke University, Durham, NC 27707 (United States); Chatterjee, Saurabh, E-mail: schatt@mailbox.sc.edu [Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208 (United States)

    2014-01-01

    Environmental toxins induce a novel CYP2E1/leptin signaling axis in liver. This in turn activates a poorly characterized innate immune response that contributes to nonalcoholic steatohepatitis (NASH) progression. To identify the relevant subsets of T-lymphocytes in CYP2E1-dependent, environment-linked NASH, we utilized a model of diet induced obese (DIO) mice that are chronically exposed to bromodichloromethane. Mice deficient in CYP2E1, leptin (ob/ob mice), or both T and B cells (Pfp/Rag2 double knockout (KO) mice) were used to delineate the role of each of these factors in metabolic oxidative stress-induced T cell activation. Results revealed that elevated levels of lipid peroxidation, tyrosyl radical formation, mitochondrial tyrosine nitration and hepatic leptin as a consequence of metabolic oxidative stress caused increased levels of hepatic CD57, a marker of peripheral blood lymphocytes including NKT cells. CD8 + CD57 + cytotoxic T cells but not CD4 + CD57 + cells were significantly decreased in mice lacking CYP2E1 and leptin. There was a significant increase in the levels of T cell cytokines IL-2, IL-1β, and IFN-γ in bromodichloromethane exposed DIO mice but not in mice that lacked CYP2E1, leptin or T and B cells. Apoptosis as evidenced by TUNEL assay and levels of cleaved caspase-3 was significantly lower in leptin and Pfp/Rag2 KO mice and highly correlated with protection from NASH. The results described above suggest that higher levels of oxidative stress-induced leptin mediated CD8 + CD57 + T cells play an important role in the development of NASH. It also provides a novel insight of immune dysregulation and may be a key biomarker in NASH. - Highlights: • Metabolic oxidative stress caused increased levels of hepatic CD57 expression. • CD8+ CD57+ cytotoxic T cells were decreased in mice lacking CYP2E1 and leptin. • There was a significant increase in T cell cytokines in toxin-treated mice. • Apoptosis was significantly lower in leptin and Pfp

  4. Hepatic cytochrome P450 enzymes belonging to the CYP2C subfamily from an Australian marsupial, the koala (Phascolarctos cinereus).

    Science.gov (United States)

    Jones, Brett R; El-Merhibi, Adaweyah; Ngo, Suong N T; Stupans, Ieva; McKinnon, Ross A

    2008-09-01

    Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. We have previously reported that the obligate Eucalyptus feeder koala (Phascolarctos cinereus) exhibits a higher hepatic CYP2C activity as compared to non-Eucalyptus feeders human or rat, with stimulation of CYP2C activity by cineole. In the present study, we examine CYP2C expression by immunohistochemistry and describe the identification and cloning of koala CYP2Cs. Utilising anti-rat CYP2C6 antibody, the expression of CYP2C was found to be uniform across the hepatic sections, being consistent with that observed in human and rat. Two 1647 and 1638 bp koala liver CYP2C complete cDNAs, designated CYP2C47 and CYP2C48 respectively, were cloned by cDNA library screening. The koala CYP2C cDNAs encode a protein of 495 amino acids. Three additional partial CYP2C sequences were also identified from the koala, indicating the multiplicity of the CYP2C subfamily in this unique marsupial species. The results of this study demonstrate the presence of koala hepatic CYP2Cs that share several common features with other published CYP2Cs; however CYP2C47 and CYP2C48 contain four extra amino acid residues at the NH2-terminal, a transmembrane anchor which was reported being a fundamentally conserved structure core of all eukaryote CYP enzymes.

  5. Regulation of hepatic abcb4 and cyp3a65 gene expression and multidrug/multixenobiotic resistance (MDR/MXR) functional activity in the model teleost, Danio rerio (zebrafish).

    Science.gov (United States)

    Jackson, Jeremy S; Kennedy, Christopher J

    2017-10-01

    Multidrug/multixenobiotic resistance (MDR/MXR) confers resistance to a diverse range of potentially toxic pharmaceuticals and environmental contaminants through a cellular response that involves the coordinated induction and activity of the ATP-binding cassette (ABC) transporter P-glycoprotein (P-gp) and the Phase I metabolizing enzyme cytochrome P450 3A (CYP3A). In mammals, ligand-mediated pregnane X receptor (PXR) transcriptional activity regulates the induction of P-gp and CYP3A; however, this mechanism has not been well-characterized in piscine species. Zebrafish (Danio rerio) treated with the Pxr agonist pregnenolone 16α-carbonitrile (PCN) showed decreased P-gp (zebrafish Abcb4) and CYP3A (zebrafish Cyp3a65) mRNA levels after 48h exposure; however, treatment with PCN also resulted in increased hepatic MDR/MXR functional activity (i.e. increased Rhodamine 123 efflux) in vivo. Consistent with mammalian-like MDR/MXR regulated by PXR, the PCN-mediated modulation of hepatic Abcb4 and Cyp3a65 mRNA levels and MDR/MXR functional activity was attenuated by co-treatment with PCN and the mammalian PXR antagonist, ketoconazole (KTC). These results provide evidence that zebrafish Pxr may play a role in MDR/MXR through transcriptional regulation of abcb4 and cyp3a65 gene expression. Copyright © 2017. Published by Elsevier Inc.

  6. [Effect of jujube on the expression of CYP2E1 and TNF-alpha in the hepatic tissue of mice with alcoholic liver disease].

    Science.gov (United States)

    Shen, Jun-Hua; Li, Fang-Fang

    2014-04-01

    To observe the effect of jujube pretreatment on serum levels of AST and ALT, liver pathology, and the expression of cytochrome P4502e1 (CYP2E1) and tumor necrosis factor-alpha (TNF-alpha) in the liver tissue of alcoholic liver disease (ALD) mice. Totally 88 Kunming mice were randomly divided into the control group (n = 28), the model group (n = 32), and the jujube treatment group (n = 28). The animal model was prepared using intragastric alcoholism for mice in the model group and the jujube treatment group, while distilled water was intragastrically given to those in the control group. Extraction of jujube was intragastrically given to mice in the jujube treatment group at week 4, while equal volume of distilled water was intragastrically given to mice in the rest two groups. The therapeutic course lasted for 12 weeks. Serum levels of AST and ALT, liver pathology, and the expression of CYP2E1 and TNF-alpha in the liver tissue of ALD mice were observed after administration of jujube. Compared with the model group, serum levels of AST and ALT decreased, the liver pathology was improved, and the expression of CYP2E1 and TNF-alpha in the liver tissue decreased, showing statistical difference (P Jujube had certain effect in treating ALD.

  7. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice.

    Science.gov (United States)

    Kumar, Ramiya; Mota, Linda C; Litoff, Elizabeth J; Rooney, John P; Boswell, W Tyler; Courter, Elliott; Henderson, Charles M; Hernandez, Juan P; Corton, J Christopher; Moore, David D; Baldwin, William S

    2017-01-01

    Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and

  8. The molecular mechanism regulating 24-hour rhythm of CYP2E1 expression in the mouse liver

    National Research Council Canada - National Science Library

    Matsunaga, Naoya; Ikeda, Misaki; Takiguchi, Takako; Koyanagi, Satoru; Ohdo, Shigehiro

    2008-01-01

    .... In the present study, we investigated whether hepatic nuclear factor-1alpha (HNF-1alpha) and clock genes with a striking 24-hour rhythm in mouse liver contributed to the 24-hour regulation of CYP2E1 expression...

  9. Aromatase (CYP19) promoter gene polymorphism and risk of nonviral hepatitis-related hepatocellular carcinoma.

    Science.gov (United States)

    Koh, Woon-Puay; Yuan, Jian-Min; Wang, Renwei; Govindarajan, Sugantha; Oppenheimer, Rowena; Zhang, Zhen Quan; Yu, Mimi C; Ingles, Sue Ann

    2011-08-01

    Experimental studies suggest that sex hormones may induce or promote the development of hepatocellular carcinoma (HCC). Androgens are converted to estrogens by the CYP19 gene product, aromatase. Hepatic aromatase level and activity have been shown to be markedly elevated in HCC. Aromatase expression in liver tumors is driven by a promoter upstream of CYP19 exon I.6. First, the authors identified an A/C polymorphism in the exon I.6 promoter of the CYP19 gene. To determine whether allelic variants in the CYP19 I.6 promoter differ in their ability to drive gene expression, we carried out an in vitro reporter gene assay. Then, the authors studied the association between this polymorphism and HCC risk in 2 complementary case-control studies: 1 in high-risk southern Guangxi, China, and another in low-risk US non-Asians of Los Angeles County. Transcriptional activity was 60% higher for promoter vectors carrying the rs10459592 C allele compared with those carrying an A allele (P = .007). In both study populations, among subjects negative for at-risk serologic markers of hepatitis B or C, there was a dose-dependent association between number of high activity C allele and risk of HCC (P(trend) = .014). Risk of HCC was significantly higher (odds ratio [OR], 2.25; 95% confidence interval (CI), 1.18-4.31) in subjects homozygous for the C allele compared with those homozygous for the A allele. This study provides epidemiologic evidence for the role of hepatic aromatization of androgen into estrogen in the development of nonviral hepatitis-related HCC. Copyright © 2011 American Cancer Society.

  10. Impaired nuclear translocation of CAR in hepatic preneoplastic lesions: association with an attenuated CYP2B induction by phenobarbital.

    Science.gov (United States)

    Numazawa, Satoshi; Shindo, Sawako; Maruyama, Keiji; Chibana, Fumika; Kawahara, Yosuke; Ashino, Takashi; Tanaka, Sachiko; Yoshida, Takemi

    2005-07-04

    Phenobarbital (PB) induction of CYP2B, a representative target gene of constitutive androstane receptor (CAR), has been observed to be attenuated in preneoplastic lesions of rat liver; however, molecular basis for this attenuation is poorly understood. In this report, we provide evidence indicating that the CAR expressed in the hepatic preneoplastic lesions of rats and mice was resistant to nuclear translocation and transactivation of the PB-responsive enhancer module upon PB treatment. These observations suggest that the attenuation of the induction of CYP2B by PB in hepatic preneoplastic lesions is evidently a consequence of impaired nuclear translocation of CAR.

  11. Relationship between differential hepatic microRNA expression and decreased hepatic cytochrome P450 3A activity in cirrhosis.

    Directory of Open Access Journals (Sweden)

    Raj Vuppalanchi

    Full Text Available BACKGROUND AND AIM: Liver cirrhosis is associated with decreased hepatic cytochrome P4503A (CYP3A activity but the pathogenesis of this phenomenon is not well elucidated. In this study, we examined if certain microRNAs (miRNA are associated with decreased hepatic CYP3A activity in cirrhosis. METHODS: Hepatic CYP3A activity and miRNA microarray expression profiles were measured in cirrhotic (n=28 and normal (n=12 liver tissue. Hepatic CYP3A activity was measured via midazolam hydroxylation in human liver microsomes. Additionally, hepatic CYP3A4 protein concentration and the expression of CYP3A4 mRNA were measured. Analyses were conducted to identify miRNAs which were differentially expressed between two groups but also were significantly associated with lower hepatic CYP3A activity. RESULTS: Hepatic CYP3A activity in cirrhotic livers was 1.7-fold lower than in the normal livers (0.28 ± 0.06 vs. 0.47 ± 0.07mL* min(-1*mg protein(-1 (mean ± SEM, P=0.02. Six microRNAs (miR-155, miR-454, miR-582-5p, let-7f-1*, miR-181d, and miR-500 had >1.2-fold increase in cirrhotic livers and also had significant negative correlation with hepatic CYP3A activity (range of r = -0.44 to -0.52, P <0.05. Notably, miR-155, a known regulator of liver inflammation, had the highest fold increase in cirrhotic livers (2.2-fold, P=4.16E-08 and significantly correlated with hepatic CYP3A activity (r=-0.50, P=0.017. The relative expression (2(-ΔΔCt mean ± SEM of hepatic CYP3A4 mRNA was significantly higher in cirrhotic livers (21.76 ± 2.65 vs. 5.91 ± 1.29, P=2.04E-07 but their levels did not significantly correlate with hepatic CYP3A activity (r=-0.43, P=0.08. CONCLUSION: The strong association between certain miRNAs, notably miR-155, and lower hepatic CYP3A activity suggest that altered miRNA expression may regulate hepatic CYP3A activity.

  12. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 CYP4A15.

    Science.gov (United States)

    Ngo, Suong Ngoc Thi; McKinnon, Ross Allan; Stupans, Ieva

    2006-07-05

    In the present study, the cloning, expression and characterization of hepatic cytochrome P450 (CYP) CYP4A from koala (Phascolarctos cinereus), an obligate eucalyptus feeder, is described. It has been previously reported that microsomal lauric acid hydroxylase activity (a CYP4A marker) and CYP content were higher in koala liver in comparison to that in human, rat or wallaby, species that do not ingest eucalyptus leaves as food [Ngo, S., Kong, S., Kirlich, A., Mckinnon, R.A., Stupans, I., 2000. Cytochrome P450 4A, peroxisomal enzymes and nicotinamide cofactors in koala liver. Comp. Biochem. Physiol., C 127, 327-334]. A 1544 bp koala liver CYP4A cDNA, designated CYP4A15, was cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CYP4A15 cDNA encodes a protein of 500 amino acids and shares 69% nucleotide and 65% amino acid sequence identity to human CYP4A11. Transfection of the koala CYP4A15 cDNA into Cos-7 cells resulted in the expression of a protein with lauric acid hydroxylase activity. The koala CYP4A15 cDNA-expressed enzyme catalysed lauric acid hydroxylation at the rates of 0.45+/-0.18 nmol/min/mg protein and 4.79+/-1.91 nmol/min/nmol CYP (mean+/-SD, n=3), which were comparable to that of rat CYP4A subfamilies. Total CYP content for koala CYP4A15-expressed protein in Cos-7 cells was 0.094+/-0.001 nmol/mg protein (mean+/-SD, n=3) with negligible CYP content in untransfected Cos-7 cells lysate. Immunoblot analysis, using a sheep anti-rat CYP4A polyclonal antibody, detected multiple CYP4A immunoreactive bands in the liver from all species studied. The koala bands were found to be fainter and less confined but appeared much broader as compared to rat, human and wallaby. Northern blot analysis, utilising the koala CYP4A15 cDNA 417 bp probe, detected a mRNA species of approximately 2.6 kb in the koala liver and a mRNA species of approximately 2.4 kb in other species studied. Relative to the intensity of the beta

  13. Enzymatic characterization of in vitro-expressed Baikal seal cytochrome P450 (CYP) 1A1, 1A2, and 1B1: implication of low metabolic potential of CYP1A2 uniquely evolved in aquatic mammals.

    Science.gov (United States)

    Iwata, Hisato; Yamaguchi, Keisuke; Takeshita, Yoko; Kubota, Akira; Hirakawa, Shusaku; Isobe, Tomohiko; Hirano, Masashi; Kim, Eun-Young

    2015-05-01

    .2% and 83.7% of total CYP1s, respectively; bsCYP1B1 accounted for only 0.06%. Addition of anti-human CYP1A1 antibody in seal liver microsomes suppressed EROD activity more than did anti-human CYP1A2 antibody. Therefore, EROD may be catalyzed by hepatic bsCYP1A1 but not bsCYP1A2, consistent with the results of yeast-expressed bsCYP1A1 and 1A2. In silico substrate-docking models of bsCYP1s suggested that the defect in bsCYP1A2 enzymatic activities may be accounted for by the Pro substitution of highly conserved Thr in the I-helix, which is involved in formation of a hydrogen bond with the hydroperoxy intermediate on the heme. This Thr-Pro substitution is evolutionarily conserved across aquatic mammals and could explain their lower metabolic potential for persistent organic pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Bromuconazole-induced hepatotoxicity is accompanied by upregulation of PXR/CYP3A1 and downregulation of CAR/CYP2B1 gene expression.

    Science.gov (United States)

    Abdelhadya, Doaa H; El-Magd, Mohammed Abu; Elbialy, Zizy I; Saleh, Ayman A

    2017-09-01

    Despite widespread use of bromuconazole as a pesticide for food crops and fruits, limited studies have been done to evaluate its toxic effects. Here, we evaluated the hepatotoxic effect of bromuconazole using classical toxicological (biochemical analysis and histopathological examination) and gene-based molecular methods. Male rats were treated either orally or topically with bromuconazole at doses equal to no observed adverse effect level (NOAEL) and 1/10 LD50 for 90 d. Bromuconazole increased activities of liver enzymes (ALT, AST, ALP, and ACP), and levels of bilirubin. It also induced hepatic oxidative stress as evidenced by significant decrease in the activities of superoxide dismutase (SOD), and significant increase in levels of malondialdehyde (MDA) in liver. In addition, bromuconazole caused an increase in liver weights and necrobiotic changes (vacuolation and hepatocellular hypertrophy). It also strongly induced the expression of PXR and its downstream target CYP3A1 gene as well as the activity of CYP3A1. However, it inhibited the expression of CAR and its downstream target CYP2B1 gene without significant changing in CYP2B1 activity. Overall, the oral route showed higher hepatotoxic effect and molecular changes than the dermal route and all changes were dose dependent. This is the first investigation to report that bromuconazole-induced liver oxidative damage is accompanied by upregulation of PXR/CYP3A1 and downregulation of CAR/CYP2B1.

  15. Sex-dependent genetic markers of CYP3A4 expression and activity in human liver microsomes.

    Science.gov (United States)

    Schirmer, Markus; Rosenberger, Albert; Klein, Kathrin; Kulle, Bettina; Toliat, Mohammad R; Nürnberg, Peter; Zanger, Ulrich M; Wojnowski, Leszek

    2007-05-01

    To find genetic markers of the individual cytochrome P450 (CYP)3A expression. A large collection of liver samples phenotyped for CYP3A expression and activity was genotyped for CYP3A variants. Data were analyzed for associations between CYP3A phenotypes and genotypes, and for evidence of recent selection. We report associations between the hepatic CYP3A4 protein expression level, as well as its enzymatic activity, measured as verapamil N-dealkylation, and genetic polymorphisms from two regions within the CYP3A gene cluster. One region is defined by several variants, mostly located within CYP3A7, the other by a single nucleotide polymorphism in intron 7 of CYP3A4. The effects of these single nucleotide polymorphisms are sex-dependent. For example, female carriers of T alleles of the single nucleotide polymorphism rs4646437C>T in CYP3A4 intron 7 have, respectively, 5.1-fold and 2.7-fold higher expression and activity compared with male T-carriers, but only 2.2-fold and 1.4-fold higher expression and activity compared with males of genotype CC. A regression analysis indicates that the impact of these single nucleotide polymorphisms in men goes beyond the previously reported sex effect. The rs4646437C undergoes positive selection in Caucasians, as evidenced by its relative extended haplotype homozygosity value located within the uppermost percentile of a genome-wide test set of haplotypes in the same 5% frequency bin. Our findings reconcile the apparent contradiction between the evidence for the influence of the individual genetic makeup on CYP3A4 expression and activity suggested by clinical studies, and the failure to identify the responsible gene variants.

  16. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    Science.gov (United States)

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  17. HBx inhibits CYP2E1 gene expression via downregulating HNF4α in human hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Hongming Liu

    Full Text Available CYP2E1, one of the cytochrome P450 mixed-function oxidases located predominantly in liver, plays a key role in metabolism of xenobiotics including ethanol and procarcinogens. Recently, down-expression of CYP2E1 was found in hepatocellular carcinoma (HCC with the majority to be chronic hepatitis B virus (HBV carriers. In this study, we tested a hypothesis that HBx may inhibit CYP2E1 gene expression via hepatocyte nuclear factor 4α (HNF4α. By enforced HBx gene expression in cultured HepG2 cells, we determined the effect of HBx on CYP2E1 mRNA and protein expression. With a bioinformatics analysis, we found a consensus HNF-4α binding sequence located on -318 to -294 bp upstream of human CYP2E1 promoter. Using reporter gene assay and site-directed mutagenesis, we have shown that mutation of this site dramatically decreased CYP2E1 promoter activity. By silencing endogenous HNF-4α, we have further validated knockdown of HNF-4α significantly decreased CYP2E1 expression. Ectopic overexpression of HBx in HepG2 cells inhibits HNF-4α expression, and HNF-4α levels were inversely correlated with viral proteins both in HBV-infected HepG2215 cells and as well as HBV positive HCC liver tissues. Moreover, the HBx-induced CYP2E1 reduction could be rescued by ectopic supplement of HNF4α protein expression. Furthermore, human hepatoma cells C34, which do not express CYP2E1, shows enhanced cell growth rate compared to E47, which constitutively expresses CYP2E1. In addition, the significantly altered liver proteins in CYP2E1 knockout mice were detected with proteomics analysis. Together, HBx inhibits human CYP2E1 gene expression via downregulating HNF4α which contributes to promotion of human hepatoma cell growth. The elucidation of a HBx-HNF4α-CYP2E1 pathway provides novel insight into the molecular mechanism underlining chronic HBV infection associated hepatocarcinogenesis.

  18. NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I

    Energy Technology Data Exchange (ETDEWEB)

    Levova, Katerina; Moserova, Michaela [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic); Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati (United States); Phillips, David H. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King' s College London, London (United Kingdom); Frei, Eva [Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schmeiser, Heinz H. [Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg (Germany); Arlt, Volker M. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King' s College London, London (United Kingdom); Stiborova, Marie, E-mail: stiborov@natur.cuni.cz [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic)

    2012-12-15

    Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)—the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1(−/−), Cyp1a2(−/−) and Cyp1a1/1a2(−/−) knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential. Highlights: ► NAD(P)H:quinone oxidoreductase expression in Cyp1a knockout and humanized CYP1A mice ► Reductive activation of the nephrotoxic and carcinogenic aristolochic acid I (AAI) ► NAD(P)H:quinone oxidoreductase is induced in mice treated with AAI. ► Induced hepatic enzyme activity resulted in elevated AAI-DNA adduct levels.

  19. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  20. INFLUENCE OF TYPE II DIABETES, OBESITY, AND EXPOSURE TO 2, 3, 7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD) EXPOSURE ON THE EXPRESSION OF HEPATIC CYP1A2 IN A MURIN MODEL OF TYPE II DIABETES

    Science.gov (United States)

    Influence of type II diabetes, obesity and exposure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on the expression of hepatic CYPIA2 in a murine model of type II diabetes. SJ Godin', VM Richardson2, JJ Diliberto2, LS Birnbaum', MJ DeVito2; 'Curriculum In Toxicology, UNC-CH...

  1. A systematic evaluation of microRNAs in regulating human hepatic CYP2E1

    Science.gov (United States)

    Wang, Yong; Yu, Dianke; Tolleson, William H.; Yu, Li-Rong; Green, Bridgett; Zeng, Linjuan; Chen, Yinting; Chen, Si; Ren, Zhen; Guo, Lei; Tong, Weida; Guan, Huaijin; Ning, Baitang

    2017-01-01

    Cytochrome P450 2E1 (CYP2E1) is an important drug metabolizing enzyme for processing numerous xenobiotics in the liver, including acetaminophen and ethanol. Previous studies have shown that microRNAs (miRNAs) can suppress CYP2E1 expression by binding to the 3′-untranslated region (3′-UTR) of its transcript. However, a systematic analysis of CYP2E1 regulation by miRNAs has not been described. Here, we applied in silico, in vivo, and in vitro approaches to investigate miRNAs involved in the regulation of CYP2E1. Initially, potential miRNA binding sites in the CYP2E1 mRNA transcript were identified and screened using in silico methods. Next, inverse correlations were found in human liver samples between the expression of CYP2E1 mRNA and the levels of two miRNA species, hsa-miR-214-3p and hsa-miR-942-5p. In a HepG2-derived CYP2E1 over-expression cell model, hsa-miR-214-3p exhibited strong suppression of CYP2E1 expression by targeting the coding region of its mRNA transcript, but hsa-miR-942-5p did not inhibit CYP2E1 levels. Electrophoretic mobility shift assays confirmed that hsa-miR-214-3p recruited other cellular protein factors to form stable complexes with specific sequences present in the CYP2E1 mRNA open reading frame. Transfection of HepaRG cells with hsa-miR-214-3p mimics inhibited expression of the endogenous CYP2E1 gene. Further, hsa-miR-214-3p mimics partially blocked ethanol-dependent increases in CYP2E1 mRNA and protein levels in HepG2 cells and they reduced the release of alanine aminotransferase from CYP2E1-overexpressing HepG2 cells exposed to acetaminophen. These results substantiate the suppressing effect of hsa-miR-214-3p on CYP2E1 expression. PMID:28438567

  2. Expression of CYP1C1 and CYP1A in Fundulus heteroclitus during PAH-induced carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lu [Pharmacology and Environmental Toxicology, University of Mississippi, University, MS (United States); Camus, Alvin C. [Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA (United States); Dong, Wu; Thornton, Cammi [Pharmacology and Environmental Toxicology, University of Mississippi, University, MS (United States); Willett, Kristine L., E-mail: kwillett@olemiss.edu [Pharmacology and Environmental Toxicology, University of Mississippi, University, MS (United States)

    2010-09-15

    CYP1C1 is a relatively newly identified member of the cytochrome P450 family 1 in teleost fish. However, CYP1C1's expression and physiological roles relative to the more recognized CYP1A in polycyclic aromatic hydrocarbons (PAHs) induced toxicities are unclear. Fundulus heteroclitus fry were exposed at 6-8 days post-hatch (dph) and again at 13-15 dph for 6 h to dimethyl sulfoxide (DMSO) control, 5 mg/L benzo[a]pyrene (BaP), or 5 mg/L dimethylbenzanthracene (DMBA). Fry were euthanized at 0, 6, 18, 24 and 30 h after the second exposure. In these groups, both CYP1A and CYP1C1 protein expression were induced within 6 h after the second exposure. Immunohistochemistry (IHC) results from fry revealed strongest CYP1C1 expression in renal tubular and intestinal epithelial cells. Additional fish were examined for liver lesions 8 months after initial exposure. Gross lesions were observed in 20% of the BaP and 35% of the DMBA-treated fish livers. Histopathologic findings included foci of cellular alteration and neoplasms, including hepatocellular adenoma, hepatocellular carcinoma and cholangioma. Strong CYP1A immunostaining was detected diffusely in altered cell foci and on the invading margin of hepatocelluar carcinomas. Lower CYP1A expression was seen in central regions of the neoplasms. In contrast, CYP1C1 was only detectable and highly expressed in proliferated bile duct epithelial cells. Our CYP1C1 results suggest the potential for tissue specific CYP1C1-mediated PAH metabolism but not a more chronic role in progression to liver hepatocellular carcinoma.

  3. Constitutive and inducible expression of cytochromes P4501A (CYP1A1 and CYP1A2) in normal prostate and prostate cancer cells.

    Science.gov (United States)

    Sterling, Kenneth M; Cutroneo, Kenneth R

    2004-02-01

    Constitutive and benzo[a]pyrene (B[a]P) inducible expression of CYP1A1 and CYP1A2 in prostate cancer and normal prostate epithelial cells were examined by immunoblotting. Androgen independent prostate cancer cell lines DU145 and PC3 have constitutive expression of CYP1A and CYP1A1 and CYP1A2, respectively. Four micromolar B[a]P did not appear to induce CYP1A1 or CYP1A2 expression in DU145 or PC3 cells. The androgen dependent prostate cancer cell line, LnCap, also has constitutive expression of CYP1A1 and CYP1A2. However, both CYP1A1 and CYP1A2 are induced by treatment of LnCap cells with 4 microM B[a]P. Untreated normal prostate and primary prostate tumor cells have no detectable CYP1A1 expression. Treatment with 4 microM B[a]P induced CYP1A1 expression in both normal and primary tumor prostate cells. Constitutive CYP1A2 expression was detected in normal prostate cells with little or no induction by exposure to 4 microM B[a]P. Primary prostate tumor cells did not show constitutive expression of CYP1A2. However, CYP1A2 was induced by 4 microM B[a]P in primary prostate tumor cells. These observations indicate that hormonal and cancer specific factors affect the expression and induction of the phase I metabolic enzymes, CYP1A1 and CYP1A2 in prostate cells. These observations may be related to the potential smoking-linked higher risk of prostate cancer development and morbidity of prostate cancer patients who smoke. Copyright 2003 Wiley-Liss, Inc.

  4. The molecular mechanism regulating 24-hour rhythm of CYP2E1 expression in the mouse liver.

    Science.gov (United States)

    Matsunaga, Naoya; Ikeda, Misaki; Takiguchi, Takako; Koyanagi, Satoru; Ohdo, Shigehiro

    2008-07-01

    Cytochrome P450 2E1 (CYP2E1) is clinically and toxicologically important and exhibits 24-hour periodicity in its activity. In the present study, we investigated whether hepatic nuclear factor-1alpha (HNF-1alpha) and clock genes with a striking 24-hour rhythm in mouse liver contributed to the 24-hour regulation of CYP2E1 expression. The results demonstrated that the expression of CYP2E1 messenger RNA (mRNA) in the liver was affected by HNF-1alpha and the circadian organization of molecular clocks. The mRNA levels of CYP2E1 in the liver increased from the late light phase to the early dark phase. Luciferase reporter gene analysis revealed that HNF-1alpha activated CYP2E1 promoter activity, which was restricted by CRY1, a member of the circadian organization of molecular clocks. Repressor activity of CRY1 was observed on the HNF-1alpha binding site of the CYP2E1 promoter region with mutated E-box. Serum shock induced approximately 24-hour oscillation in CYP2E1 mRNA in HepG2. Transfection of HNF-1alpha and CRY1 small interfering RNA dampened the oscillation of CYP2E1 mRNA in HepG2. Chromatin immunoprecipitation assay in the CYP2E1 promoter indicated that HNF-1alpha binding to the CYP2E1 promoter increased from the late light phase to the early dark phase. Using the chromatin immunoprecipitation reimmunoprecipitation assay, time-dependent differences were demonstrated for CRY1 protein interaction with HNF-1alpha transcriptional complexes, including coactivator p300 on the HNF-1alpha binding site in the CYP2E1 promoter. Our results suggest that the transcription activator of HNF-1alpha acts periodically and the negative limbs of molecular clocks periodically inhibit CYP2E1 transcription, resulting in the 24-hour rhythm of its mRNA expression.

  5. Targeting the Enterohepatic Bile Acid Signaling Induces Hepatic Autophagy via a CYP7A1–AKT–mTOR Axis in MiceSummary

    Directory of Open Access Journals (Sweden)

    Yifeng Wang

    2017-03-01

    Full Text Available Background & Aims: Hepatic cholesterol accumulation and autophagy defects contribute to hepatocyte injury in fatty liver disease. Bile acid synthesis is a major pathway for cholesterol catabolism in the liver. This study aims to understand the molecular link between cholesterol and bile acid metabolism and hepatic autophagy activity. Methods: The effects of cholesterol and cholesterol 7α-hydroxylase (CYP7A1 expression on autophagy and lysosome function were studied in cell models. The effects and mechanism of disrupting enterohepatic bile acid circulation on hepatic autophagy were studied in mice. Results: The results first showed differential regulation of hepatic autophagy by free cholesterol and cholesterol ester, whereby a modest increase of cellular free cholesterol, but not cholesterol ester, impaired lysosome function and caused marked autolysosome accumulation. We found that CYP7A1 induction, either by cholestyramine feeding in mice or adenovirus-mediated CYP7A1 expression in hepatocytes, caused strong autophagy induction. Mechanistically, we showed that CYP7A1 expression markedly attenuated growth factor/AKT signaling activation of mechanistic target of rapamycin (mTOR, but not amino acid signaling to mTOR in vitro and in vivo. Metabolomics analysis further found that CYP7A1 induction not only decreased hepatic cholesterol but also altered phospholipid and sphingolipid compositions. Collectively, these results suggest that CYP7A1 induction interferes with growth factor activation of AKT/mTOR signaling possibly by altering membrane lipid composition. Finally, we showed that cholestyramine feeding restored impaired hepatic autophagy and improved metabolic homeostasis in Western diet–fed mice. Conclusions: This study identified a novel CYP7A1–AKT–mTOR signaling axis that selectively induces hepatic autophagy, which helps improve hepatocellular integrity and metabolic homeostasis. Keywords: Cholesterol

  6. Effects of octylphenol on the expression of StAR, CYP17 and CYP19 in testis of Rana chensinensis.

    Science.gov (United States)

    Bai, Yao; Li, Xin-Yi; Liu, Zhi-Jun; Zhang, Yu-Hui

    2017-04-01

    It has been proposed that a decline in sperm quality is associated with exposure to environmental chemicals with estrogenic activity. Seeking possible explanations for this effect, this study investigated the effects of octylphenol (OP) on the synthesis of steroid hormones in amphibian. Rana chensinensis were exposed to 10(-8), 10(-7) and 10(-6)mol/L OP after 10, 20, 30 and 40 days. The cDNA fragments of StAR (274bp), CYP17 (303bp) and CYP19 (322bp) were cloned. In situ hybridization and immunohistochemistry revealed that positive signals of StAR, CYP17, CYP19 mRNA and proteins mainly in the Leydig cells of testes. Real-time PCR showed that up-regulation of StAR and CYP19, and down-regulation of CYP17 after exposure to 10(-8), 10(-7) and 10(-6)mol/L OP. The results suggest that OP can alter transcriptions of StAR, CYP17 and CYP19, thus disturb the expressions of StAR, P450c17 and P450arom, thereby adversely affect steroid synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. CYP1B1 expression, a potential risk factor for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Goth-Goldstein, Regine; Erdmann, Christine A.; Russell, Marion

    2001-05-31

    CYP1B1 expression in non-tumor breast tissue from breast cancer patients and cancer-free individuals was determined to test the hypothesis that high CYP1B1 expression is a risk factor for breast cancer. Large interindividual variations in CYP1B1 expression were found with CYP1B1 levels notably higher in breast cancer patients than cancer-free individuals. The results indicate that CYP1B1 might play a role in breast cancer either through increased PAH activation or through metabolism of endogenous estrogen to a carcinogenic derivative.

  8. Modulation of CYP1A1 and CYP1A2 Hepatic Enzymes after Oral Administration of Chios Mastic Gum to Male Wistar Rats

    Science.gov (United States)

    Katsanou, Efrosini S.; Kyriakopoulou, Katerina; Emmanouil, Christina; Fokialakis, Nikolas; Skaltsounis, Alexios-Leandros; Machera, Kyriaki

    2014-01-01

    Chios mastic gum (CMG), a resin derived from Pistacia lentiscus var. chia, is known since ancient times for its pharmacological activities. CYP1A1 and CYP1A2 enzymes are among the most involved in the biotransformation of chemicals and the metabolic activation of pro-carcinogens. Previous studies referring to the modulation of these enzymes by CMG have revealed findings of unclear biological and toxicological significance. For this purpose, the modulation of CYP1A1 and CYP1A2 enzymes in the liver of male Wistar rats following oral administration of CMG extract (CMGE), at the levels of mRNA and CYP1A1 enzyme activity, was compared to respective enzyme modulation following oral administration of a well-known bioactive natural product, caffeine, as control compound known to involve hepatic enzymes in its metabolism. mRNA levels of Cyp1a1 and Cyp1a2 were measured by reverse transcription real-time polymerase chain reaction and their relative quantification was calculated. CYP1A1 enzyme induction was measured through the activity of ethoxyresorufin-O-deethylase (EROD). The results indicated that administration of CMGE at the recommended pharmaceutical dose does not induce significant transcriptional modulation of Cyp1a1/2 and subsequent enzyme activity induction of CYP1A1 while effects of the same order of magnitude were observed in the same test system following the administration of caffeine at the mean daily consumed levels. The outcome of this study further confirms the lack of any toxicological or biological significance of the specific findings on liver following the administration of CMGE. PMID:24950217

  9. Modulation of CYP1A1 and CYP1A2 hepatic enzymes after oral administration of Chios mastic gum to male Wistar rats.

    Directory of Open Access Journals (Sweden)

    Efrosini S Katsanou

    Full Text Available Chios mastic gum (CMG, a resin derived from Pistacia lentiscus var. chia, is known since ancient times for its pharmacological activities. CYP1A1 and CYP1A2 enzymes are among the most involved in the biotransformation of chemicals and the metabolic activation of pro-carcinogens. Previous studies referring to the modulation of these enzymes by CMG have revealed findings of unclear biological and toxicological significance. For this purpose, the modulation of CYP1A1 and CYP1A2 enzymes in the liver of male Wistar rats following oral administration of CMG extract (CMGE, at the levels of mRNA and CYP1A1 enzyme activity, was compared to respective enzyme modulation following oral administration of a well-known bioactive natural product, caffeine, as control compound known to involve hepatic enzymes in its metabolism. mRNA levels of Cyp1a1 and Cyp1a2 were measured by reverse transcription real-time polymerase chain reaction and their relative quantification was calculated. CYP1A1 enzyme induction was measured through the activity of ethoxyresorufin-O-deethylase (EROD. The results indicated that administration of CMGE at the recommended pharmaceutical dose does not induce significant transcriptional modulation of Cyp1a1/2 and subsequent enzyme activity induction of CYP1A1 while effects of the same order of magnitude were observed in the same test system following the administration of caffeine at the mean daily consumed levels. The outcome of this study further confirms the lack of any toxicological or biological significance of the specific findings on liver following the administration of CMGE.

  10. CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jie; Krausz, Kristopher W. [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Li, Feng; Ma, Xiaochao [Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, 4089 KLSIC, MS 1018, 3901 Rainbow Boulevard, Kansas City, KS 66160 (United States); Gonzalez, Frank J., E-mail: fjgonz@helix.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-01-15

    Isoniazid is the first-line medication in the prevention and treatment of tuberculosis. Isoniazid is known to have a biphasic effect on the inhibition–induction of CYP2E1 and is also considered to be involved in isoniazid-induced hepatotoxicity. However, the full extent and mechanism of involvement of CYP2E1 in isoniazid-induced hepatotoxicity remain to be thoroughly investigated. In the current study, isoniazid was administered to wild-type and Cyp2e1-null mice to investigate the potential toxicity of isoniazid in vivo. The results revealed that isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice, but produced elevated serum cholesterol and triglycerides, and hepatic bile acids in wild-type mice, as well as decreased abundance of free fatty acids in wild-type mice and not in Cyp2e1-null mice. Metabolomic analysis demonstrated that production of isoniazid metabolites was elevated in wild-type mice along with a higher abundance of bile acids, bile acid metabolites, carnitine and carnitine derivatives; these were not observed in Cyp2e1-null mice. In addition, the enzymes responsible for bile acid synthesis were decreased and proteins involved in bile acid transport were significantly increased in wild-type mice. Lastly, treatment of targeted isoniazid metabolites to wild-type mice led to similar changes in cholesterol, triglycerides and free fatty acids. These findings suggest that while CYP2E1 is not involved in isoniazid-induced hepatotoxicity, while an isoniazid metabolite might play a role in isoniazid-induced cholestasis through enhancement of bile acid accumulation and mitochondria β-oxidation. -- Highlights: ► Isoniazid metabolites were elevated only in wild-type mice. ► Isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice. ► Isoniazid elevated serum cholesterol and triglycerides, and hepatic bile acids. ► Bile acid transporters were significantly decreased in isoniazid-treated mice.

  11. Epigallocatechin gallate induces a hepatospecific decrease in the CYP3A expression level by altering intestinal flora.

    Science.gov (United States)

    Ikarashi, Nobutomo; Ogawa, Sosuke; Hirobe, Ryuta; Kon, Risako; Kusunoki, Yoshiki; Yamashita, Marin; Mizukami, Nanaho; Kaneko, Miho; Wakui, Nobuyuki; Machida, Yoshiaki; Sugiyama, Kiyoshi

    2017-03-30

    In previous studies, we showed that a high-dose intake of green tea polyphenol (GP) induced a hepatospecific decrease in the expression and activity of the drug-metabolizing enzyme cytochrome P450 3A (CYP3A). In this study, we examined whether this decrease in CYP3A expression is induced by epigallocatechin gallate (EGCG), which is the main component of GP. After a diet containing 1.5% EGCG was given to mice, the hepatic CYP3A expression was measured. The level of intestinal bacteria of Clostridium spp., the concentration of lithocholic acid (LCA) in the feces, and the level of the translocation of pregnane X receptor (PXR) to the nucleus in the liver were examined. A decrease in the CYP3A expression level was observed beginning on the second day of the treatment with EGCG. The level of translocation of PXR to the nucleus was significantly lower in the EGCG group. The fecal level of LCA was clearly decreased by the EGCG treatment. The level of intestinal bacteria of Clostridium spp. was also decreased by the EGCG treatment. It is clear that the hepatospecific decrease in the CYP3A expression level observed after a high-dose intake of GP was caused by EGCG. Because EGCG, which is not absorbed from the intestine, causes a decrease in the level of LCA-producing bacteria in the colon, the level of LCA in the liver decreases, resulting in a decrease in the nuclear translocation of PXR, which in turn leads to the observed decrease in the expression level of CYP3A. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Flavonoids exhibit diverse effects on CYP11B1 expression and cortisol synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Li-Chuan; Li, Lih-Ann, E-mail: lihann@nhri.org.tw

    2012-02-01

    CYP11B1 catalyzes the final step of cortisol biosynthesis. The effects of flavonoids on transcriptional expression and enzyme activity of CYP11B1 were investigated using the human adrenocortical H295R cell model. All tested nonhydroxylated flavones including 3′,4′-dimethoxyflavone, α-naphthoflavone, and β-naphthoflavone upregulated CYP11B1 expression and cortisol production, whereas apigenin and quercetin exhibited potent cytotoxicity and CYP11B1 repression at high concentrations. Nonhydroxylated flavones stimulated CYP11B1-catalyzed cortisol formation at transcriptional level. Resveratrol increased endogenous and substrate-supported cortisol production like nonhydroxylated flavones tested, but it had no effect on CYP11B1 gene expression and enzyme activity. Resveratrol appeared to alter cortisol biosynthesis at an earlier step. The Ad5 element situated in the − 121/− 106 region was required for basal and flavone-induced CYP11B1 expression. Overexpression of COUP-TFI did not improve the responsiveness of Ad5 to nonhydroxylated flavones. Although COUP-TFI overexpression increased CYP11B1 and CYP11B2 promoter activation, its effect was not mediated through the common Ad5 element. Treating cells with PD98059 (a flavone-type MEK1 inhibitor) increased CYP11B1 promoter activity, but not involving ERK signaling because phosphorylation of ERK1/2 remained unvarying throughout the course of treatment. Likewise, AhR was not responsible for the CYP11B1-modulating effects of flavonoids because inconsistency with their effects on AhR activation. 3′,4′-dimethoxyflavone and 8-Br-cAMP additively activated CYP11B1 promoter activity. H-89 reduced 3′,4′-dimethoxyflavone-induced CYP11B1 promoter activation but to a lesser extent as compared to its inhibition on cAMP-induced transactivation. Our data suggest that constant exposure to nonhydroxylated flavones raises a potential risk of high basal and cAMP-induced cortisol synthesis in consequence of increased CYP11B1

  13. Reprint of: CYP1A protein expression and catalytic activity in double-crested cormorants experimentally exposed to Deepwater Horizon Mississippi Canyon 252 oil.

    Science.gov (United States)

    Alexander, Courtney R; Hooper, Michael J; Cacela, Dave; Smelker, Kim D; Calvin, Caleshia S; Dean, Karen M; Bursian, Steve J; Cunningham, Fred L; Hanson-Dorr, Katie C; Horak, Katherine E; Isanhart, John P; Link, Jane; Shriner, Susan A; Godard-Codding, Céline A J

    2017-12-01

    Double-crested cormorants (Phalacrocorax auritus, DCCO) were orally exposed to Deepwater Horizon Mississippi Canyon 252 (DWH) oil to investigate oil-induced toxicological impacts. Livers were collected for multiple analyses including cytochrome P4501A (CYP1A) enzymatic activity and protein expression. CYP1A enzymatic activity was measured by alkoxyresorufin O-dealkylase (AROD) assays. Activities specific to the O-dealkylation of four resorufin ethers are reported: benzyloxyresorufin O-debenzylase (BROD), ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), and pentoxyresorufin O-depentylase (PROD). CYP1A protein expression was measured by western blot analysis with a CYP1A1 mouse monoclonal antibody. In study 1, hepatic BROD, EROD, and PROD activities were significantly induced in DCCO orally exposed to 20ml/kg body weight (bw) oil as a single dose or daily for 5 days. Western blot analysis revealed hepatic CYP1A protein induction in both treatment groups. In study 2 (5ml/kg bw oil or 10ml/kg bw oil, 21day exposure), all four hepatic ARODs were significantly induced. Western blots showed an increase in hepatic CYP1A expression in both treatment groups with a significant induction in birds exposed to 10ml/kg oil. Significant correlations were detected among all 4 AROD activities in both studies and between CYP1A protein expression and both MROD and PROD activities in study 2. EROD activity was highest for both treatment groups in both studies while BROD activity had the greatest fold-induction. While PROD activity values were consistently low, the fold-induction was high, usually 2nd highest to BROD activity. The observed induced AROD profiles detected in the present studies suggest both CYP1A4/1A5 DCCO isoforms are being induced after MC252 oil ingestion. A review of the literature on avian CYP1A AROD activity levels and protein expression after exposure to CYP1A inducers highlights the need for species-specific studies to accurately evaluate

  14. CYP1A protein expression and catalytic activity in double-crested cormorants experimentally exposed to deepwater Horizon Mississippi Canyon 252 oil.

    Science.gov (United States)

    Alexander, Courtney R; Hooper, Michael J; Cacela, Dave; Smelker, Kim D; Calvin, Caleshia S; Dean, Karen M; Bursian, Steve J; Cunningham, Fred L; Hanson-Dorr, Katie C; Horak, Katherine E; Isanhart, John P; Link, Jane; Shriner, Susan A; Godard-Codding, Céline A J

    2017-04-05

    Double-crested cormorants (Phalacrocorax auritus, DCCO) were orally exposed to Deepwater Horizon Mississippi Canyon 252 (DWH) oil to investigate oil-induced toxicological impacts. Livers were collected for multiple analyses including cytochrome P4501A (CYP1A) enzymatic activity and protein expression. CYP1A enzymatic activity was measured by alkoxyresorufin O-dealkylase (AROD) assays. Activities specific to the O-dealkylation of four resorufin ethers are reported: benzyloxyresorufin O-debenzylase (BROD), ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), and pentoxyresorufin O-depentylase (PROD). CYP1A protein expression was measured by western blot analysis with a CYP1A1 mouse monoclonal antibody. In study 1, hepatic BROD, EROD, and PROD activities were significantly induced in DCCO orally exposed to 20ml/kg body weight (bw) oil as a single dose or daily for 5 days. Western blot analysis revealed hepatic CYP1A protein induction in both treatment groups. In study 2 (5ml/kg bw oil or 10ml/kg bw oil, 21day exposure), all four hepatic ARODs were significantly induced. Western blots showed an increase in hepatic CYP1A expression in both treatment groups with a significant induction in birds exposed to 10ml/kg oil. Significant correlations were detected among all 4 AROD activities in both studies and between CYP1A protein expression and both MROD and PROD activities in study 2. EROD activity was highest for both treatment groups in both studies while BROD activity had the greatest fold-induction. While PROD activity values were consistently low, the fold-induction was high, usually 2nd highest to BROD activity. The observed induced AROD profiles detected in the present studies suggest both CYP1A4/1A5 DCCO isoforms are being induced after MC252 oil ingestion. A review of the literature on avian CYP1A AROD activity levels and protein expression after exposure to CYP1A inducers highlights the need for species-specific studies to accurately evaluate

  15. Expression of cyp1a protein in the freshwater clam Corbicula fluminea (Müller

    Directory of Open Access Journals (Sweden)

    Vranković Jelena

    2011-01-01

    Full Text Available We investigated the expression of CYP1A in the foot, gill and visceral mass of the freshwater clam Corbicula fluminea in relation to polychlorinated biphenyls (PCBs exposure. Different PCBs congeners were found in the foot and visceral mass, while the expression of CYP1A was observed only in the visceral mass. However the level of CYP1A expression in the visceral mass was not related to the level of PCBs present in the tissue. Our results indicate a higher rate of biotransformation and lower threshold of CYP1A induction in the visceral mass compared with other tissues.

  16. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  17. The expression levels of CYP3A4 and CYP3A5 serve as potential prognostic biomarkers in lung adenocarcinoma.

    Science.gov (United States)

    Qixing, Mao; Juqing, Xu; Yajing, Wang; Gaochao, Dong; Wenjie, Xia; Run, Shi; Anpeng, Wang; Lin, Xu; Feng, Jiang; Jun, Wang

    2017-04-01

    Lung adenocarcinoma remains to be a high-mortality disease with few effective prognostic biomarkers. Novel biomarkers are urgently demanded to supplement the current prognostic biomarkers. Here, we explored the prognostic value of CYP3A4 and CYP3A5 in lung adenocarcinoma. The tissue microarray was made up of lung adenocarcinoma samples and corresponding normal lung tissues from Nanjing Medical University affiliated Cancer Hospital Tissue Bank. The expression of CYP3A4, together with CYP3A5, was detected by the chip data from Gene Expression Omnibus datasets and immunohistochemistry staining of the tissue microarray. Then, we assessed the relationships between CYP3A4 or CYP3A5 expression level and clinicopathological factors to estimate the clinical significance. Kaplan-Meier curves were applied to analyze the prognosis. Univariate and multivariate Cox analyses were subsequently applied to identify the independent prognostic factors. Immunohistochemistry staining results showed that by comparison with matched normal tissues, CYP3A4 was frequently hyper-expressed in lung adenocarcinoma tissues while CYP3A5 was hypo-expressed, which was consistent with the Gene Expression Omnibus analysis. Kaplan-Meier analysis indicated that high-CYP3A4 or low-CYP3A5 expression level predicted poor survival in lung adenocarcinoma patients. Multivariate Cox analysis found that hypo-expression of CYP3A5 was an independent prognostic factor. Further study revealed that combination of these two markers exhibited a more powerful predictor of poor prognosis, which could target to more accurate survival of lung adenocarcinoma. Our findings indicate that combination of CYP3A4 and CYP3A5 may serve as a novel prognostic biomarker in lung adenocarcinoma, which contribute to the precision of predicting the survival in lung adenocarcinoma.

  18. Lack of Indinavir Effects on Methadone Disposition Despite Inhibition of Hepatic and Intestinal Cytochrome P4503A (CYP3A)

    Science.gov (United States)

    Kharasch, Evan D.; Bedynek, Pamela Sheffels; Hoffer, Christine; Walker, Alysa; Whittington, Dale

    2013-01-01

    Background Methadone disposition and pharmacodynamics are highly susceptible to interactions with antiretroviral drugs. Methadone clearance and drug interactions have been attributed to cytochrome P4503A4 (CYP3A4), but actual mechanisms are unknown. Drug interactions can be both clinically and mechanistically informative. This investigation assessed effects of the protease inhibitor indinavir on methadone pharmacokinetics and pharmacodynamics, hepatic and intestinal CYP3A4/5 activity (using alfentanil), and intestinal transporter activity (using fexofenadine). Methods Twelve healthy volunteers underwent a sequential crossover. On three consecutive days they received oral alfentanil plus fexofenadine, intravenous alfentanil, and intravenous plus oral (deuterium-labeled) methadone. This was repeated after 2 weeks of indinavir. Plasma and urine analytes were measured by mass spectrometry. Opioid effects were measured by miosis. Results Indinavir significantly inhibited hepatic and first-pass CYP3A activity. Intravenous alfentanil systemic clearance and hepatic extraction were reduced to 40-50% of control, apparent oral clearance to 30% of control, and intestinal extraction decreased by half, indicating 50% and 70% inhibition of hepatic and first-pass CYP3A activity. Indinavir increased fexofenadine area under the plasma concentration-time curve 3-fold, suggesting significant P-glycoprotein inhibition. Indinavir had no significant effects on methadone plasma concentrations, methadone N-demethylation, systemic or apparent oral clearance, renal clearance, hepatic extraction or clearance, or bioavailability. Methadone plasma concentration-effect relationships were unaffected by indinavir. Conclusions Despite significant inhibition of hepatic and intestinal CYP3A activity, indinavir had no effect on methadone N-demethylation and clearance, suggesting little or no role for CYP3A in clinical disposition of single-dose methadone. Inhibition of gastrointestinal transporter

  19. Effects of Trolox on the activity and gene expression of cytochrome P450 in hepatic ischemia/reperfusion

    Science.gov (United States)

    Eum, Hyun-Ae; Lee, Sun-Mee

    2004-01-01

    The aim of this study was to investigate the effect of Trolox on hepatic microsomal cytochrome P450 (CYP) activity and gene expression during ischemia and reperfusion (I/R). Rats were subjected to 60 min of hepatic ischemia, and 5 h (acute phase) and 24 h (subacute phase) of reperfusion. Rats were treated intravenously with Trolox (2.5 mg kg−1) or vehicle, 5 min before reperfusion. The serum alanine aminotransferase level and lipid peroxidation were increased as a result of I/R. These increases were attenuated by Trolox. Reduced glutathione concentration decreased in I/R group, and this decrease was inhibited by Trolox. Both total hepatic CYP content and NADPH-cytochrome P450 reductase activity decreased after I/R, which were restored by Trolox. CYP1A1 activity and its protein level decreased 24 h after reperfusion; decreases which were prevented by Trolox. Both the activity and mRNA expression of CYP1A2 decreased 24 h after reperfusion. The decrease in CYP1A2 mRNA was prevented by Trolox. CYP2B1 activity and mRNA expression decreased 5 h after reperfusion. The decrease in CYP2B1 activity was prevented by Trolox. In contrast, the CYP2E1 activity and its protein level increased 5 h after reperfusion and this increase was prevented by Trolox. The expression of TNF-α and iNOS mRNAs increased after I/R. Trolox inhibited increase in iNOS mRNA expression. Trolox ameliorates hepatic drug-metabolizing dysfunction, as indicated by abnormalities in CYP isoforms during I/R, and this protection is likely due to the scavenging of reactive oxygen species. PMID:15051625

  20. Intestinal flora induces the expression of Cyp3a in the mouse liver.

    Science.gov (United States)

    Toda, T; Saito, N; Ikarashi, N; Ito, K; Yamamoto, M; Ishige, A; Watanabe, K; Sugiyama, K

    2009-04-01

    In order to determine the effects of intestinal flora on the expression of cytochrome P450 (CYP), the mRNA expression of CYP was compared between specific pathogen-free (SPF) and germ-free (GF) mice. Most of the major CYP isozymes showed higher expression in the livers of SPF mice compared with GF mice. Nuclear factors such as pregnane X receptor (PXR) and constitutive androstane receptor (CAR), as well as transporters and conjugation enzymes involved in the detoxification of lithocholic acid (LCA), also showed higher expression in SPF mice. The findings suggest that in the livers of SPF mice, LCA produced by intestinal flora increases the expression of CYPs via activation of PXR and CAR. Drugs such as antibiotics, some diseases and ageing, etc. are known to alter intestinal flora. The present findings suggest that such changes also affect CYP and are one of the factors responsible for individual differences in pharmacokinetics.

  1. Estimation of fractions metabolized by hepatic CYP enzymes using a concept of inter-system extrapolation factors (ISEFs) - a comparison with the chemical inhibition method.

    Science.gov (United States)

    Umehara, Ken-Ichi; Huth, Felix; Gu, Helen; Schiller, Hilmar; Heimbach, Tycho; He, Handan

    2017-12-20

    For estimation of fractions metabolized (fm) by different hepatic recombinant human CYP enzymes (rhCYP), calculation of inter-system extrapolation factors (ISEFs) has been proposed. ISEF values for CYP1A2, CYP2C19 and CYP3A4/5 were measured. A CYP2C9 ISEF was taken from a previous report. Using a set of compounds, fractions metabolized by CYP enzymes (fm,CYP) values calculated with the ISEFs based on rhCYP data were compared with those from the chemical inhibition data. Oral pharmacokinetics (PK) profiles of midazolam were simulated using the physiologically based pharmacokinetics (PBPK) model with the CYP3A ISEF. For other CYPs, the in vitro fm,CYP values were compared with the reference fm,CYP data back-calculated with, e.g. modeling of test substrates by feeding clinical PK data. In vitro-in vitro fm,CYP3A4 relationship between the results from rhCYP incubation and chemical inhibition was drawn as an exponential correlation with R2=0.974. A midazolam PBPK model with the CYP3A4/5 ISEFs simulated the PK profiles within twofold error compared to the clinical observations. In a limited number of cases, the in vitro methods could not show good performance in predicting fm,CYP1A2, fm,CYP2C9 and fm,CYP2C19 values as reference data. The rhCYP data with the measured ISEFs provided reasonable calculation of fm,CYP3A4 values, showing slight over-estimation compared to chemical inhibition.

  2. Three new shRNA expression vectors targeting the CYP3A4 coding sequence to inhibit its expression

    Directory of Open Access Journals (Sweden)

    Siyun Xu

    2014-10-01

    Full Text Available RNA interference (RNAi is useful for selective gene silencing. Cytochrome P450 3A4 (CYP3A4, which metabolizes approximately 50% of drugs in clinical use, plays an important role in drug metabolism. In this study, we aimed to develop a short hairpin RNA (shRNA to modulate CYP3A4 expression. Three new shRNAs (S1, S2 and S3 were designed to target the coding sequence (CDS of CYP3A4, cloned into a shRNA expression vector, and tested in different cells. The mixture of three shRNAs produced optimal reduction (55% in CYP3A4 CDS-luciferase activity in both CHL and HEK293 cells. Endogenous CYP3A4 expression in HepG2 cells was decreased about 50% at both mRNA and protein level after transfection of the mixture of three shRNAs. In contrast, CYP3A5 gene expression was not altered by the shRNAs, supporting the selectivity of CYP3A4 shRNAs. In addition, HepG2 cells transfected with CYP3A4 shRNAs were less sensitive to Ginkgolic acids, whose toxic metabolites are produced by CYP3A4. These results demonstrate that vector-based shRNAs could modulate CYP3A4 expression in cells through their actions on CYP3A4 CDS, and CYP3A4 shRNAs may be utilized to define the role of CYP3A4 in drug metabolism and toxicity.

  3. AHR and CYP1A expression link historical contamination events to modern day developmental effects in the American alligator.

    Science.gov (United States)

    Hale, Matthew D; Galligan, Thomas M; Rainwater, Thomas R; Moore, Brandon C; Wilkinson, Philip M; Guillette, Louis J; Parrott, Benjamin B

    2017-11-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that initiates a transcriptional pathway responsible for the expression of CYP1A subfamily members, key to the metabolism of xenobiotic compounds. Toxic planar halogenated aromatic hydrocarbons, including dioxin and PCBs, are capable of activating the AHR, and while dioxin and PCB inputs into the environment have been dramatically curbed following strict regulatory efforts in the United States, they persist in the environment and exposures remain relevant today. Little is known regarding the effects that long-term chronic exposures to dioxin or dioxin-like compounds might have on the development and subsequent health of offspring from exposed individuals, nor is much known regarding AHR expression in reptilians. Here, we characterize AHR and CYP1A gene expression in embryonic and juvenile specimen of a long-lived, apex predator, the American alligator (Alligator mississippiensis), and investigate variation in gene expression profiles in offspring collected from sites conveying differential exposures to environmental contaminants. Both age- and tissue-dependent patterning of AHR isoform expression are detected. We characterize two downstream transcriptional targets of the AHR, CYP1A1 and CYP1A2, and describe conserved elements of their genomic architecture. When comparisons across different sites are made, hepatic expression of CYP1A2, a direct target of the AHR, appears elevated in embryos from a site associated with a dioxin point source and previously characterized PCB contamination. Elevated CYP1A2 expression is not persistent, as site-specific variation was absent in juveniles originating from field-collected eggs but reared under lab conditions. Our results illustrate the patterning of AHR gene expression in a long-lived environmental model species, and indicate a potential contemporary influence of historical contamination. This research presents a novel opportunity to link

  4. Identification and expression analysis of CYP4G25 gene from the ...

    African Journals Online (AJOL)

    A CYP4G25 gene of P450 family was cloned from Antheraea pernyi using reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE-PCR). Sequence analysis revealed that this ... (IPTG) concentration. Key words: Antheraea pernyi, CYP4G25, expression, cytochrome P450.

  5. CYP2B6 non-coding variation associated with smoking cessation is also associated with differences in allelic expression, splicing, and nicotine metabolism independent of common amino-acid changes.

    Directory of Open Access Journals (Sweden)

    A Joseph Bloom

    Full Text Available The Cytochrome P450 2B6 (CYP2B6 enzyme makes a small contribution to hepatic nicotine metabolism relative to CYP2A6, but CYP2B6 is the primary enzyme responsible for metabolism of the smoking cessation drug bupropion. Using CYP2A6 genotype as a covariate, we find that a non-coding polymorphism in CYP2B6 previously associated with smoking cessation (rs8109525 is also significantly associated with nicotine metabolism. The association is independent of the well-studied non-synonymous variants rs3211371, rs3745274, and rs2279343 (CYP2B6*5 and *6. Expression studies demonstrate that rs8109525 is also associated with differences in CYP2B6 mRNA expression in liver biopsy samples. Splicing assays demonstrate that specific splice forms of CYP2B6 are associated with haplotypes defined by variants including rs3745274 and rs8109525. These results indicate differences in mRNA expression and splicing as potential molecular mechanisms by which non-coding variation in CYP2B6 may affect enzymatic activity leading to differences in metabolism and smoking cessation.

  6. Change in pharmacokinetic behavior of intravenously administered midazolam due to increased CYP3A2 expression in rats treated with menthol.

    Science.gov (United States)

    Nagai, Katsuhito; Suzuki, Sho; Yamamura, Ayumi; Konishi, Hiroki

    2015-04-01

    Menthol is used widely as a constituent of functional foods and chemical drugs. The present study investigated changes in the pharmacokinetic behavior of intravenously administered midazolam (MDZ), a probe for CYP3A, when rats were treated with menthol. The study also examined which isoforms of CYP3A1 and 3A2 were menthol-inducible and contributed to the altered disposition of midazolam. Menthol was administered intraperitoneally to rats once daily for 3 days at a dose of 10 mg/kg, while the control rats received vehicle alone. The pharmacokinetic examination of i.v. administered midazolam revealed that serum midazolam concentrations at each sampling point were lower in the menthol-treated rats than in the control rats. Regarding the pharmacokinetic parameters of the menthol-treated group, the area under the curve (AUC) was decreased significantly and, correspondingly, the elimination rate constant at terminal phase (ke) was increased significantly without significant changes in the volume of distribution at steady state (Vdss). The metabolic production of the 1'-hydroxylated and 4'-hydroxylated forms of MDZ by hepatic microsomes was significantly greater in the menthol-treated rats than in the control rats. The expression levels of mRNA and protein for hepatic CYP3A2 were more than 2.5-fold higher than the control levels when the rats were treated with menthol, whereas no changes were observed in the expression levels of CYP3A1. These results indicate that menthol enhanced the elimination clearance of midazolam by inducing hepatic CYP3A2 and that careful attention should be paid when menthol is ingested in combination with drugs that act as substrates for CYP3A. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5.

    Science.gov (United States)

    Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2014-01-01

    Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2(-⧸-)) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2(-⧸-) mouse livers were lower than that in wild-type mouse livers. Nrf2(-⧸-) mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.

  8. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5☆

    Science.gov (United States)

    Ashino, Takashi; Ohkubo-Morita, Haruyo; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2014-01-01

    Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2)–deficient (Nrf2−⧸−) mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(P)H-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2−⧸− mouse livers were lower than that in wild-type mouse livers. Nrf2−⧸− mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression. PMID:24494203

  9. Possible involvement of nuclear factor erythroid 2-related factor 2 in the gene expression of Cyp2b10 and Cyp2a5

    Directory of Open Access Journals (Sweden)

    Takashi Ashino

    2014-01-01

    Full Text Available Cytochrome P450 gene expression is altered by various chemical compounds. In this study, we used nuclear factor erythroid 2-related factor 2 (Nrf2–deficient (Nrf2−⧸− mice to investigate the involvement of Nrf2 in Cyp2b10 and Cyp2a5 gene expression. Phorone, an Nrf2 activator, strongly increased Cyp2b10 and Cyp2a5 mRNA as well as Nrf2 target genes, including NAD(PH-quinone oxidoreductase-1 and heme oxygenase-1, in wild-type mouse livers 8 h after treatment. The phorone-induced mRNA levels in Nrf2−⧸− mouse livers were lower than that in wild-type mouse livers. Nrf2−⧸− mice showed attenuated Cyp2b10 and Cyp2a5 induction by phenobarbital, a classical Cyp2b inducer. These findings suggest that the Nrf2 pathway is involved in Cyp2b10 and Cyp2a5 gene expression.

  10. The expression, induction and pharmacological activity of CYP1A2 are post-transcriptionally regulated by microRNA hsa-miR-132-5p.

    Science.gov (United States)

    Chen, Yinting; Zeng, Linjuan; Wang, Yong; Tolleson, William H; Knox, Bridgett; Chen, Si; Ren, Zhen; Guo, Lei; Mei, Nan; Qian, Feng; Huang, Kaihong; Liu, David; Tong, Weida; Yu, Dianke; Ning, Baitang

    2017-12-01

    Cytochrome P450 1A2 (CYP1A2) is one of the most abundant and important drug metabolizing enzymes in human liver. However, little is known about the post-transcriptional regulation of CYP1A2, especially the mechanisms involving microRNAs (miRNAs). This study applied a systematic approach to investigate the post-transcriptional regulation of CYP1A2 by miRNAs. Candidate miRNAs targeting the 3'-untranslated region (3'-UTR) of CYP1A2 were screened in silico, resulting in the selection of sixty-two potential miRNAs for further analysis. The levels of two miRNAs, hsa-miR-132-5p and hsa-miR-221-5p, were inversely correlated with the expression of CYP1A2 mRNA transcripts in normal human liver tissue samples represented in The Cancer Genome Atlas (TCGA) dataset. The interactions between these miRNAs and cognate CYP1A2 mRNA sequences were evaluated using luciferase reporter gene studies and electrophoretic mobility shift assays, by which a direct interaction was confirmed involving hsa-miR-132-5p and a cognate binding site present in the CYP1A2 3'-UTR. Experiments by which hsa-miR-132-5p or random miRNA controls were introduced into HepG2, Huh-7 and HepaRG hepatic cell lines showed that only hsa-miR-132-5p suppressed the endogenous and lansoprazole-induced expression of CYP1A2, at biological activity, protein production, and mRNA transcript levels. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and lactate dehydrogenase (LDH) assays showed that hsa-miR-132-5p attenuates CYP1A2-mediated, lansoprazole-enhanced, flutamide-induced hepatic cell toxicity. Results from multilayer experiments demonstrate that hsa-miR-132-5p suppresses the expression of CYP1A2 and that this suppression is able to decrease the extent of an adverse drug-drug interaction involving lansoprazole and flutamide. Published by Elsevier Inc.

  11. CYP1B1 expression in ovarian cancer in the laying hen Gallusdomesticus.

    Science.gov (United States)

    Zhuge, Yan; Lagman, Jo Ann J; Ansenberger, Kristine; Mahon, Cassandra J; Daikoku, Takiko; Dey, Sudhansu K; Bahr, Janice M; Hales, Dale B

    2009-01-01

    Ovarian carcinoma is the most lethal gynecological malignancy. The genetic and molecular mechanisms that cause it still remain largely unknown. CYP1B1 is a cytochrome P450 enzyme that catalyzes the conversion of estrogens to genotoxic catechol estrogens which may cause DNA mutations and initiate ovarian epithelial cancer. Our objectives were to evaluate CYP1B1 expression, distribution and localization in the hen ovary and to determine if there is an increased CYP1B1 expression associated with, and possibly involved in the initiation of ovarian cancer. Two groups of hens were used: 1. young (50 weeks of age; devoid of cancer) and 2. old (165 weeks of age; divided into two groups: age-matched normal and ovarian cancer). CYP1B1 mRNA and protein expression were analyzed in cancerous ovaries, ovaries of age-matched normal and/or young hens by quantitative real-time PCR (qRT-PCR), in situ hybridization (ISH) and immunohistochemistry (IHC). RNA was extracted from tissue preserved in RNAlater for qRT-PCR. Tissue frozen in liquid nitrogen was used for ISH. Tissue fixed in neutral buffered formalin was subjected to IHC. Higher expression of CYP1B1 mRNA was observed in cancerous ovaries as compared to ovaries of young and age-matched normal hens by qRT-PCR. ISH and IHC confirmed that the expression of CYP1B1 was much higher in ovarian tumors compared to ovaries of age-matched normal hens. CYP1B1 mRNA and protein were distributed extensively throughout the carcinoma, while primarily localized to the granulosa layer surrounding the follicle in age-matched normal hens. IHC also showed nuclear localization of CYP1B1. Highly expressed CYP1B1 was found in POF-3 from young and age-matched normal hens as compared to POF-1 and POF-2 by qRT-PCR. No significant difference was found in the expression of CYP1B1 between the distal (site of rupture) and the proximal (site of attachment to the ovary) of POF-1 from young and age-matched normal hens. High expression of CYP1B1 in the hen ovary

  12. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Akira [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Bainy, Afonso C.D. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil); Woodin, Bruce R.; Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2013-10-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  13. CYP11A1 expression in bone is associated with aromatase inhibitor-related bone loss.

    Science.gov (United States)

    Rodríguez-Sanz, M; García-Giralt, N; Prieto-Alhambra, D; Servitja, S; Balcells, S; Pecorelli, R; Díez-Pérez, A; Grinberg, D; Tusquets, I; Nogués, X

    2015-08-01

    Aromatase inhibitors (AIs) used as adjuvant therapy in postmenopausal women with hormone receptor-positive breast cancer cause diverse musculoskeletal side effects that include bone loss and its associated fracture. About half of the 391 patients treated with AIs in the Barcelona-Aromatase induced bone loss in early breast cancer cohort suffered a significant bone loss at lumbar spine (LS) and/or femoral neck (FN) after 2 years on AI-treatment. In contrast, up to one-third (19.6% LS, 38.6% FN) showed no decline or even increased bone density. The present study aimed to determine the genetic basis for this variability. SNPs in candidate genes involved in vitamin D and estrogen hormone-response pathways (CYP11A1, CYP17A1, HSD3B2, HSD17B3, CYP19A1, CYP2C19, CYP2C9, ESR1, DHCR7, GC, CYP2R1, CYP27B1, VDR and CYP24A1) were genotyped for association analysis with AI-related bone loss (AIBL). After multiple testing correction, 3 tag-SNPs (rs4077581, s11632698 and rs900798) located in the CYP11A1 gene were significantly associated (Pbone tissue and primary osteoblasts was demonstrated by RT-PCR. Both common isoforms of human cholesterol side-chain cleavage enzyme (encoded by CYP11A1 gene) were detected in osteoblasts by western blot. In conclusion, the genetic association of CYP11A1 gene with AIBL and its expression in bone tissue reveals a potential local function of this enzyme in bone metabolism regulation, offering a new vision of the steroidogenic ability of this tissue and new understanding of AI-induced bone loss. © 2015 Society for Endocrinology.

  14. Rhythmic expression of cytochrome P450 epoxygenases CYP4x1 and CYP2c11 in the rat brain and vasculature.

    Science.gov (United States)

    Carver, Koryn A; Lourim, David; Tryba, Andrew K; Harder, David R

    2014-12-01

    Mammals have circadian variation in blood pressure, heart rate, vascular tone, thrombotic tendency, and cerebral blood flow (CBF). These changes may be in part orchestrated by circadian variation in clock gene expression within cells comprising the vasculature that modulate blood flow (e.g., fibroblasts, cerebral vascular smooth muscle cells, astrocytes, and endothelial cells). However, the downstream mechanisms that underlie circadian changes in blood flow are unknown. Cytochrome P450 epoxygenases (Cyp4x1 and Cyp2c11) are expressed in the brain and vasculature and metabolize arachidonic acid (AA) to form epoxyeicosatrienoic acids (EETs). EETs are released from astrocytes, neurons, and vascular endothelial cells and act as potent vasodilators, increasing blood flow. EETs released in response to increases in neural activity evoke a corresponding increase in blood flow known as the functional hyperemic response. We examine the hypothesis that Cyp2c11 and Cyp4x1 expression and EETs production vary in a circadian manner in the rat brain and cerebral vasculature. RT-PCR revealed circadian/diurnal expression of clock and clock-controlled genes as well as Cyp4x1 and Cyp2c11, within the rat hippocampus, middle cerebral artery, inferior vena cava, hippocampal astrocytes and rat brain microvascular endothelial cells. Astrocyte and endothelial cell culture experiments revealed rhythmic variation in Cyp4x1 and Cyp2c11 gene and protein expression with a 12-h period and parallel rhythmic production of EETs. Our data suggest there is circadian regulation of Cyp4x1 and Cyp2c11 gene expression. Such rhythmic EETs production may contribute to circadian changes in blood flow and alter risk of adverse cardiovascular events throughout the day.

  15. Hepatic CYP1A induction by chlorinated dioxins and related compounds in the endangered black-footed albatross from the North Pacific.

    Science.gov (United States)

    Kubota, Akira; Watanabe, Mafumi; Kunisue, Tatsuya; Kim, Eun-Young; Tanabe, Shinsuke; Iwata, Hisato

    2010-05-01

    The present study assesses effects of dioxins and related compounds (DRCs) including polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls (DL-PCBs) on cytochrome P450 1A (CYP1A) expression level in liver of black-footed albatrosses (Phoebastria nigripes) collected from the North Pacific. Total 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-T(4)CDD) toxic equivalents (TEQs) derived from toxic equivalency factor for birds proposed by World Health Organization were in the range of 2100 to 10 000 pg/g lipid wt (120-570 pg/g wet wt). Simultaneously, microsomal alkoxyresorufin O-dealkylase (AROD) activities, including methoxy-, ethoxy-, pentoxy-, and benzyloxy-resorufin O-dealkylase activities were also measured in the same specimens. Total TEQs and TEQ (on wet wt basis) from some individual DRC congeners had significant positive correlations with AROD activities, suggesting induction of CYP1A by DRCs. Congeners like 2,3,7,8-T(4)CDD and most of the DL-PCBs that showed no significant positive correlations between the concentrations and AROD activities, exhibited significant negative correlations between AROD activities and the concentration ratio of the congener to a recalcitrant CB169, suggesting preferential metabolism of these congeners by induced CYP1A. As far as we know, this is the first direct evidence revealing that hepatic CYP1A level is elevated with the accumulation of DRCs in the wild black-footed albatross population. The present study gives more robust estimate of impacts of DRCs on CYP1A induction in this rare pelagic species than indexes like hazard quotient and TEQ-threshold comparison that have been so far carried out.

  16. Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papilio polyxenes (Lepidoptera: Papilionidae).

    Science.gov (United States)

    Petersen, R A; Zangerl, A R; Berenbaum, M R; Schuler, M A

    2001-04-27

    The CYP6B1 and CYP6B3 cytochrome P450 monooxygenases in the midgut of the black swallowtail participate in the metabolism of toxic furanocoumarins present in its host plants. In this study, biochemical analyses indicate that the fat body metabolizes significant amounts of the linear furanocoumarins bergapten and xanthotoxin after larvae feed on xanthotoxin. Northern analyses of the combined CYP6B1/3 transcript expression patterns indicate that transcripts in this P450 subfamily are induced in the midgut and fat body by xanthotoxin. Semi-quantitative RT-PCR analyses of individual CYP6B1/CYP6B3 mRNAs indicate that CYP6B1 transcripts are induced by xanthotoxin in all tissues examined and that CYP6B3 transcripts are induced in the fat body only. These results indicate that the fat body participates in the P450-mediated metabolism of excess furanocoumarins unmetabolized by the midgut. Although transcripts of both genes were detected and CYP6B1 transcripts were induced by xanthotoxin in the integument, furanocoumarin metabolism was not detected. Comparison of these P450 promoters with the promoters of alcohol dehydrogenase genes expressed in the fat bodies of several Drosophila species suggest that the xanthotoxin inducibilities of these P450 genes in fat bodies are regulated by elements other than those modulating expression of Adh genes.

  17. Dynamic modulation of Cyp21a1 (21-hydroxylase) expression sites in the mouse developing lung.

    Science.gov (United States)

    Gilbert, Catherine; Provost, Pierre R; Tremblay, Yves

    2017-04-01

    21-hydroxylase is expressed in the developing lung where it is proposed as a local source of glucocorticoids playing important roles in lung development. We have studied the precise sites of Cyp21a1 expression in the developing mouse lung from the pseudoglandular stage (gestation day (GD) 15.5) to the alveolar stage (postnatal day (PND) 15) by in situ hybridization. Cyp21a1-mRNA was found mainly in epithelial cells from GD 15.5 to PND 5, but the precise site of expression shifted from the distal epithelium during the pseudoglandular and the canalicular stages including the distal epithelium without lumina, to the proximal epithelium and the wall of developing saccules during the perinatal period (GD 19.5 and PND 0), and to the wall of developing saccules and septa, most probably in type I pneumonocytes (PTI), on PND 5. Cyp21a1 expression changed from PTI cells to capillary endothelial cells of the same distal structures during alveolarization. The mesenchyme was generally negative. Endothelial cells forming large vessels were negative. However the tunica adventitia surrounding arteries was Cyp21a1-positive, while several veins were surrounded by a Cyp21a1-positive layer. In conclusion, Cyp21a1 remains expressed in the most distal structure of the developing lung even though these structures are changing, but its expression is not restricted to these areas. Taken together, our data show the highly dynamic modulation of Cyp21a1 expression sites, consistent with the evolving structures of the developing lung. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Effects of artificial sweeteners on the AhR- and GR-dependent CYP1A1 expression in primary human hepatocytes and human cancer cells.

    Science.gov (United States)

    Kamenickova, Alzbeta; Pecova, Michaela; Bachleda, Petr; Dvorak, Zdenek

    2013-12-01

    Food constituents may cause a phenomenon of food-drug interactions. In the current study, we examined the effects of artificial sweeteners (aspartame, acesulfame, cyclamate, saccharin) on the aryl hydrocarbon receptor (AhR) and glucocorticoid receptor (GR)-dependent expression of CYP1A1 in human hepatocytes, hepatic HepG2 and intestinal LS174T cancer cell lines. Sweeteners were tested in concentrations up to those occurring in non-alcoholic beverages. Basal and ligand-inducible AhR- and GR-dependent reporter gene activation in stably transfected HepG2 and HeLa cells, respectively, were not affected by either of the sweeteners tested after 24h of incubation. The expression of CYP1A1 mRNA and protein in primary cultures of human hepatocytes and in LS174T and HepG2 cells was not induced by any of the tested sweeteners. Overall, aspartame, acesulfame, saccharin and cyclamate had no effects on CYP1A1 expression and transcriptional activities of AhR and GR. These data imply the safety of artificial sweeteners in terms of interference with AhR, GR and CYP1A1. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Cloning and expression of SgCYP450-4 from Siraitia grosvenorii

    Directory of Open Access Journals (Sweden)

    Dongping Tu

    2016-10-01

    Full Text Available CYP450 plays an essential role in the development and growth of the fruits of Siraitia grosvenorii. However, little is known about the SgCYP450-4 gene in S. grosvenorii. Here, based on transcriptome data, a full-length cDNA sequence of SgCYP450-4 was cloned by reverse transcriptase-polymerase chain reaction (RT-PCR and rapid-amplification of cDNA ends (RACE strategies. SgCYP450-4 is 1677 bp in length (GenBank accession No. AEM42985.1 and contains a complete open reading frame (ORF of 1422 bp. The deduced protein was composed of 473 amino acids, the molecular weight is 54.01 kDa, the theoretical isoelectric point (PI is 8.8, and the protein was predicted to possess cytochrome P450 domains. SgCYP450-4 gene was highly expressed in root, diploid fruit and fruit treated with hormone and pollination. At 10 days after treatment with pollination and hormones, the expression of SgCYP450-4 had the highest level and then decreased over time, which was consistent with the development of fruits of S. Grosvenorii. Hormonal treatment could significantly induce the expression of SgCYP450-4. These results provide a reference for regulation of fruit development and the use of parthenocarpy to generate seedless fruit, and provide a scientific basis for the production of growth regulator application agents.

  20. The synthesis of chalcones as anticancer prodrugs and their bioactivation in CYP1 expressing breast cancer cells.

    Science.gov (United States)

    Ruparelia, Ketan; Zeka, Keti; Arroo, Randolph R; Beresford, Kenneth J M

    2018-01-12

    Although the expression levels of many P450s differ between tumour and corresponding normal tissue, CYP1B1 is one of the few CYP subfamilies which is significantly and consistently overexpressed in tumours. CYP1B1 has been shown to be active within tumours and is capable of metabolising a structurally diverse range of anticancer drugs. Because of this, and its role in the activation of procarcinogens, CYP1B1 is seen as an important target for anticancer drug development. To synthesise a series of chalcone derivatives based on the chemopreventative agent DMU-135 and investigate their antiproliferative activities in human breast cancer cell lines which express CYP1B1 and CYP1A1. A series of chalcones were synthesised in yields of 43-94% using the Claisen-Schmidt condensation reaction. These were screened using a MTT assay against a panel of breast cancer cell lines which have been characterised for CYP1 expression. A number of derivatives showed promising antiproliferative activities in human breast cancer cell lines which express CYP1B1 and CYP1A1, while showing significantly lower toxicity towards a non-tumour breast cell line with no CYP expression. Experiments using the CYP1 inhibitors acacetin and α-naphthoflavone provided supporting evidence for the involvement of CYP1 enzymes in the bioactivation of these compounds. Chalcones show promise as anticancer agents with evidence suggesting that CYP1 activation of these compounds may be involved . Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Inhibition and stimulation of intestinal and hepatic CYP3A activity: studies in humanized CYP3A4 transgenic mice using triazolam.

    NARCIS (Netherlands)

    Waterschoot, R.A. van; Rooswinkel, R.W.; Sparidans, R.W.; Herwaarden, A.E. van; Beijnen, J.H.; Schinkel, A.H.

    2009-01-01

    CYP3A4 is an important determinant of drug-drug interactions. In this study, we evaluated whether cytochrome P450 3A knockout mice [Cyp3a(-/-)] and CYP3A4 transgenic (CYP3A4-Tg) mice can be used to study drug-drug interactions in the liver and intestine. Triazolam was used as a probe drug because it

  2. Co-treatment with indole-3-carbinol and resveratrol modify porcine CYP1A and CYP3A activities and expression.

    Science.gov (United States)

    Zamaratskaia, Galia; Thøgersen, Rebekka; Čandek-Potokar, Marjeta; Rasmussen, Martin Krøyer

    2018-03-01

    1. Humans and animals are commonly exposed to indole-3-carbinol (I3C) and resveratrol (RES) via food or beverages. Moreover, these compounds have been demonstrated to potentially cause food-drug interactions. However, information about their combined effects is limited. Therefore, we investigated the effects of I3C and RES, both as single compounds and in combination, on cytochrome P450 1A and 3A activity and gene expression. 2. Using porcine microsomes, we demonstrated that RES caused non-competitive inhibition of CYP1A activity and un-competitive inhibition of CYP3A activity. Compared to the effect of single compounds, co-treatment with I3C and RES increased a degree of inhibition of CYP1A activity. 3. In porcine primary hepatocytes, treatment with I3C and RES resulted in induction of CYP1A1, CYP1A2 and CYP3A29 mRNA expression. 4. In conclusion, we demonstrated that both RES and I3C could cause food-drug interactions and that the combined effect could be more potent in doing so.

  3. Response of CYP1A Gene expression in fish liver of catfish (Ariopsis felis) from Gulf of Mexico and their relationship with the genetic variability.

    Science.gov (United States)

    Zapata-Perez, Omar; Sanchez-Teyer, Lorenzo F; Perez-Nunez, Maria T; Arroyo-Herrera, Ana L; Moreno, Adriana Quiroz; Albores-Medina, Arnulfo

    2010-01-01

    We determined the hepatic Cytochrome P4501A (CYP1A) mRNA and Ethoxyresorufin-O-deethylase (EROD) activities in the fish, Ariopsis felis, from highly polluted to relatively pristine regions in the southwest Gulf of Mexico and their relationship with the genetic polymorphisms of the same fish. We hypothesized that a high genetic variation reflects interindividual variability in levels of CYP1A mRNA underlying the pathway culminating in EROD induction caused by the environmental contaminants. Catfish from Laguna de Mecoacan exhibited marked induction of CYP1A mRNA and high levels of hepatic EROD activities, whereas fish from Laguna de Celestun showed no induction of CYP1A mRNA and moderately low levels of EROD activities. In contrast, the similarity index considering all samples varied from 0.4 to 0.87, showing a wide range of variation. A dendrogram showed a clear grouping of fish collected from the Laguna de Terminos, Rio Coatzacoalcos and Laguna de Celestun, with discrete subgroups according to region. In contrast, fish from Laguna de Mecoacan were grouped together completely separate from the rest of the fish. Despite the low number of fish from Mecoacan (a high bootstrap support was observed in this group), the results indicated a significant genetic variability in comparison with the other ecosystems included. The differential level of expression of CYP1A and the EROD activity observed among the ecosystems analyzed could be due to the high range of genetic variation, with special emphasis on fish collected in Mecoacan where it is possible to find a subspecies of Ariopsis felis.

  4. Mouse Spermatocytes Express CYP2E1 and Respond to Acrylamide Exposure

    Science.gov (United States)

    Nixon, Belinda J.; Katen, Aimee L.; Stanger, Simone J.; Schjenken, John E.; Nixon, Brett; Roman, Shaun D.

    2014-01-01

    Metabolism of xenobiotics by cytochrome P450s (encoded by the CYP genes) often leads to bio-activation, producing reactive metabolites that interfere with cellular processes and cause DNA damage. In the testes, DNA damage induced by xenobiotics has been associated with impaired spermatogenesis and adverse effects on reproductive health. We previously reported that chronic exposure to the reproductive toxicant, acrylamide, produced high levels of DNA damage in spermatocytes of Swiss mice. CYP2E1 metabolises acrylamide to glycidamide, which, unlike acrylamide, readily forms adducts with DNA. Thus, to investigate the mechanisms of acrylamide toxicity in mouse male germ cells, we examined the expression of the CYP, CYP2E1, which metabolises acrylamide. Using Q-PCR and immunohistochemistry, we establish that CYP2E1 is expressed in germ cells, in particular in spermatocytes. Additionally, CYP2E1 gene expression was upregulated in these cells following in vitro acrylamide exposure (1 µM, 18 h). Spermatocytes were isolated and treated with 1 µM acrylamide or 0.5 µM glycidamide for 18 hours and the presence of DNA-adducts was investigated using the comet assay, modified to detect DNA-adducts. Both compounds produced significant levels of DNA damage in spermatocytes, with a greater response observed following glycidamide exposure. A modified comet assay indicated that direct adduction of DNA by glycidamide was a major source of DNA damage. Oxidative stress played a small role in eliciting this damage, as a relatively modest effect was found in a comet assay modified to detect oxidative adducts following glycidamide exposure, and glutathione levels remained unchanged following treatment with either compound. Our results indicate that the male germ line has the capacity to respond to xenobiotic exposure by inducing detoxifying enzymes, and the DNA damage elicited by acrylamide in male germ cells is likely due to the formation of glycidamide adducts. PMID:24788432

  5. Structural characterization of CYP144A1 - a cytochrome P450 enzyme expressed from alternative transcripts in Mycobacterium tuberculosis

    Science.gov (United States)

    Chenge, Jude; Kavanagh, Madeline E.; Driscoll, Max D.; McLean, Kirsty J.; Young, Douglas B.; Cortes, Teresa; Matak-Vinkovic, Dijana; Levy, Colin W.; Rigby, Stephen E. J.; Leys, David; Abell, Chris; Munro, Andrew W.

    2016-05-01

    Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis (TB). The virulent Mtb H37Rv strain encodes 20 cytochrome P450 (CYP) enzymes, many of which are implicated in Mtb survival and pathogenicity in the human host. Bioinformatics analysis revealed that CYP144A1 is retained exclusively within the Mycobacterium genus, particularly in species causing human and animal disease. Transcriptomic annotation revealed two possible CYP144A1 start codons, leading to expression of (i) a “full-length” 434 amino acid version (CYP144A1-FLV) and (ii) a “truncated” 404 amino acid version (CYP144A1-TRV). Computational analysis predicted that the extended N-terminal region of CYP144A1-FLV is largely unstructured. CYP144A1 FLV and TRV forms were purified in heme-bound states. Mass spectrometry confirmed production of intact, His6-tagged forms of CYP144A1-FLV and -TRV, with EPR demonstrating cysteine thiolate coordination of heme iron in both cases. Hydrodynamic analysis indicated that both CYP144A1 forms are monomeric. CYP144A1-TRV was crystallized and the first structure of a CYP144 family P450 protein determined. CYP144A1-TRV has an open structure primed for substrate binding, with a large active site cavity. Our data provide the first evidence that Mtb produces two different forms of CYP144A1 from alternative transcripts, with CYP144A1-TRV generated from a leaderless transcript lacking a 5‧-untranslated region and Shine-Dalgarno ribosome binding site.

  6. Osthol regulates hepatic PPAR alpha-mediated lipogenic gene expression in alcoholic fatty liver murine.

    Science.gov (United States)

    Sun, Fan; Xie, Mei-lin; Xue, Jie; Wang, Heng-bin

    2010-07-01

    Our previous studies found that osthol, an active constituent isolated from Cnidium monnieri (L.) Cusson (Apiaceae), could ameliorate the accumulation of lipids and decrease the lipid levels in serum and hepatic tissue in alcohol-induced fatty liver mice and rats. The objective of this study was to investigate its possible mechanism of the lipid-lowering effect. A mouse model with alcoholic fatty liver was induced by orally feeding 52% erguotou wine by gavage when they were simultaneously treated with osthol 10, 20, 40 mg/kg for 4 weeks. The BRL cells (rat hepatocyte line) were cultured and treated with osthol at 25, 50, 100, 200 microg/ml for 24h. The mRNA expressions of peroxisome proliferator-activated receptor (PPAR) alpha, diacylglycerol acyltransferase (DGAT), 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and cholesterol 7 alpha-hydroxylase (CYP7A) in mouse hepatic tissue or cultured hepatocytes were determined by reverse transcription polymerase chain reaction (RT-PCR). After treatment with osthol, the PPAR alpha mRNA expression in mouse liver and cultured hepatocytes was increased in dose dependent manner, while its related target genes for mRNA expression, e.g., DGAT and HMG-CoA reductase, were decreased, the CYP7A was inversely increased. And osthol-regulated mRNA expressions of DGAT, HMG-CoA reductase and CYP7A in the cultured hepatocytes were abrogated after pretreatment with specific inhibitor of PPAR alpha, MK886. It was concluded that osthol might regulate the gene expressions of DGAT, HMG-CoA reductase and CYP7A via increasing the PPAR alpha mRNA expression. (c) 2009 Elsevier GmbH. All rights reserved.

  7. CYP1A1 expression in breast milk cells of Japanese population

    Energy Technology Data Exchange (ETDEWEB)

    Yonemoto, Junzo; Shiizaki, Kazuhiro; Sone, Hideko; Morita, Masatosi [National Institute for Environmental Studies, Tsukuba (Japan); Uechi, Hiroto [Uechi Obstetrics and Gynecology Clinic, Utsunomiya (Japan); Masuzaki, Yuko; Koizumi, Atsuko; Matzumura, Toru [Metocean Environment Inc., Ohigawa (Japan)

    2004-09-15

    Dioxins are persistent, lipophilic compounds that are ubiquitous in the environment. Concern over the reproductive and developmental toxicity of dioxins has been growing since they have endocrine-disrupting properties and have adversely affected the health of offspring in experimental and epidemiological studies. Monitoring of maternal body burdens of dioxins and their biological responses to dioxin exposure is needed to estimate the potential health risk to their offspring. Breast milk has been used for monitoring dioxins in humans for decades. Breast milk has some advantages in exposure monitoring. Sampling is non-invasive, and dioxin levels are relatively high because of the high lipid content. It is assumed that mammary glands are exposed to a higher level of dioxins than other tissues since mammary glands synthesize and store milk fat. Breast milk contains leukocytes and exfoliated ductal epithelial cells. If these cells responded to dioxins and expressed CYP enzymes, a sensitive biomarker for dioxin exposure, they would be useful as biomarkers for dioxin exposure. In the present study, the expression of CYP enzymes in intact milk cells or cells cultured with TCDD was investigated. In addition, breast milk samples were collected from mothers within one week of childbearing, and the expression of CYP1A1 mRNA in milk cells was determined. The relationship between CYP1A1 mRNA expression in milk cells and dioxin levels in the cream layer of breast milk was analyzed.

  8. Sensitivity of intravenous and oral alfentanil and pupillary miosis as minimal and noninvasive probes for hepatic and first-pass CYP3A induction.

    Science.gov (United States)

    Kharasch, E D; Francis, A; London, A; Frey, K; Kim, T; Blood, J

    2011-07-01

    Systemic and oral clearances of alfentanil (ALF) are in vivo probes for hepatic and first-pass cytochrome P450 (CYP) 3A. Both ALF single-point plasma concentrations and miosis are surrogates for area under the concentration-time curve (AUC) and clearance and are minimal and noninvasive CYP3A probes. This investigation determined ALF sensitivity for detecting graded CYP3A induction and compared it with that of midazolam (MDZ). Twelve volunteers (sequential crossover) received 0, 5, 10, 25, or 75 mg oral rifampin for 5 days. MDZ and ALF were given intravenously and orally on sequential days. Dark-adapted pupil diameter was measured with blood sampling. Graded rifampin decreased plasma MDZ AUCs to 83, 76, 62, and 59% (intravenous (i.v.)) and 78, 66, 39, and 24% (oral) of control. Hepatic and first-pass CYP3A induction were detected comparably by plasma MDZ and ALF AUCs. Single ALF concentrations detected all CYP3A induction, whereas MDZ was less sensitive. ALF miosis detected induction of first-pass but not hepatic CYP3A.

  9. Elevated CYP2C19 expression is associated with depressive symptoms and hippocampal homeostasis impairment.

    Science.gov (United States)

    Jukić, M M; Opel, N; Ström, J; Carrillo-Roa, T; Miksys, S; Novalen, M; Renblom, A; Sim, S C; Peñas-Lledó, E M; Courtet, P; Llerena, A; Baune, B T; de Quervain, D J; Papassotiropoulos, A; Tyndale, R F; Binder, E B; Dannlowski, U; Ingelman-Sundberg, M

    2017-08-01

    The polymorphic CYP2C19 enzyme metabolizes psychoactive compounds and is expressed in the adult liver and fetal brain. Previously, we demonstrated that the absence of CYP2C19 is associated with lower levels of depressive symptoms in 1472 Swedes. Conversely, transgenic mice carrying the human CYP2C19 gene (2C19TG) have shown an anxious phenotype and decrease in hippocampal volume and adult neurogenesis. The aims of this study were to: (1) examine whether the 2C19TG findings could be translated to humans, (2) evaluate the usefulness of the 2C19TG strain as a tool for preclinical screening of new antidepressants and (3) provide an insight into the molecular underpinnings of the 2C19TG phenotype. In humans, we found that the absence of CYP2C19 was associated with a bilateral hippocampal volume increase in two independent healthy cohorts (N=386 and 1032) and a lower prevalence of major depressive disorder and depression severity in African-Americans (N=3848). Moreover, genetically determined high CYP2C19 enzymatic capacity was associated with higher suicidality in depressed suicide attempters (N=209). 2C19TG mice showed high stress sensitivity, impaired hippocampal Bdnf homeostasis in stress, and more despair-like behavior in the forced swim test (FST). After the treatment with citalopram and 5-HT 1A receptor agonist 8OH-DPAT, the reduction in immobility time in the FST was more pronounced in 2C19TG mice compared with WTs. Conversely, in the 2C19TG hippocampus, metabolic turnover of serotonin was reduced, whereas ERK1/2 and GSK3β phosphorylation was increased. Altogether, this study indicates that elevated CYP2C19 expression is associated with depressive symptoms, reduced hippocampal volume and impairment of hippocampal serotonin and BDNF homeostasis.

  10. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2010-07-01

    Full Text Available Abstract Background Plant cytochrome P450 monooxygenases (CYP mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. Results Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS in the upstream region and three candidate polyadenylation (PolyA sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. Conclusions This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression

  11. Circadian expression of the steroid 15 alpha-hydroxylase (Cyp2a4) and coumarin 7-hydroxylase (Cyp2a5) genes in mouse liver is regulated by the PAR leucine zipper transcription factor DBP.

    Science.gov (United States)

    Lavery, D J; Lopez-Molina, L; Margueron, R; Fleury-Olela, F; Conquet, F; Schibler, U; Bonfils, C

    1999-10-01

    To study the molecular mechanisms of circadian gene expression, we have sought to identify genes whose expression in mouse liver is regulated by the transcription factor DBP (albumin D-site-binding protein). This PAR basic leucine zipper protein accumulates according to a robust circadian rhythm in nuclei of hepatocytes and other cell types. Here, we report that the Cyp2a4 gene, encoding the cytochrome P450 steroid 15alpha-hydroxylase, is a novel circadian expression gene. This enzyme catalyzes one of the hydroxylation reactions leading to further metabolism of the sex hormones testosterone and estradiol in the liver. Accumulation of CYP2A4 mRNA in mouse liver displays circadian kinetics indistinguishable from those of the highly related CYP2A5 gene. Proteins encoded by both the Cyp2a4 and Cyp2a5 genes also display daily variation in accumulation, though this is more dramatic for CYP2A4 than for CYP2A5. Biochemical evidence, including in vitro DNase I footprinting on the Cyp2a4 and Cyp2a5 promoters and cotransfection experiments with the human hepatoma cell line HepG2, suggests that the Cyp2a4 and Cyp2a5 genes are indeed regulated by DBP. These conclusions are corroborated by genetic studies, in which the circadian amplitude of CYP2A4 and CYP2A5 mRNAs and protein expression in the liver was significantly impaired in a mutant mouse strain homozygous for a dbp null allele. These experiments strongly suggest that DBP is a major factor controlling circadian expression of the Cyp2a4 and Cyp2a5 genes in the mouse liver.

  12. Nine co-localized cytochrome P450 genes of the CYP2N, CYP2AD, and CYP2P gene families in the mangrove killifish Kryptolebias marmoratus genome: Identification and expression in response to B[α]P, BPA, OP, and NP.

    Science.gov (United States)

    Puthumana, Jayesh; Kim, Bo-Mi; Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Jung, Jee-Hyun; Kim, Il-Chan; Hwang, Un-Ki; Lee, Jae-Seong

    2017-06-01

    The CYP2 genes are the largest and most diverse cytochrome P450 (CYP) subfamily in vertebrates. We have identified nine co-localized CYP2 genes (∼55kb) in a new cluster in the genome of the highly resilient ecotoxicological fish model Kryptolebias marmoratus. Molecular characterization, temporal and tissue-specific expression pattern, and response to xenobiotics of these genes were examined. The CYP2 gene clusters were characterized and designated CYP2N22-23, CYP2AD12, and CYP2P16-20. Gene synteny analysis confirmed that the cluster in K. marmoratus is similar to that found in other teleost fishes, including zebrafish. A gene duplication event with diverged catalytic function was observed in CYP2AD12. Moreover, a high level of divergence in expression was observed among the co-localized genes. Phylogeny of the cluster suggested an orthologous relationship with similar genes in zebrafish and Japanese medaka. Gene expression analysis showed that CYP2P19 and CYP2N20 were consecutively expressed throughout embryonic development, whereas CYP2P18 was expressed in all adult tissues, suggesting that members of each CYP2 gene family have different physiological roles even though they are located in the same cluster. Among endocrine-disrupting chemicals (EDCs), benzo[α]pyrene (B[α]P) induced expression of CYP2N23, bisphenol A (BPA) induced CYP2P18 and CYP2P19, and 4-octylphenol (OP) induced CYP2AD12, but there was no significant response to 4-nonylphenol (NP), implying differential catalytic roles of the enzyme. In this paper, we identify and characterize a CYP2 gene cluster in the mangrove killifish K. marmoratus with differing catalytic roles toward EDCs. Our findings provide insights on the roles of nine co-localized CYP2 genes and their catalytic functions for better understanding of chemical-biological interactions in fish. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. CROSS-REACTIVITY OF MONOCLONAL ANTIBODIES AGAINST PEPTIDE 277-294 OF RAINBOW TROUT CYP1A1 WITH HEPATIC CYP1A AMONG FISH. (R823881)

    Science.gov (United States)

    AbstractExposure to a variety of xenobiotics, including polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), results in the induction of CYP1A and related biological activity. Historically, antibodies against purified CYP1A have been raised...

  14. A pilot evaluation of alfentanil-induced miosis as a noninvasive probe for hepatic cytochrome P450 3A4 (CYP3A4) activity in humans.

    Science.gov (United States)

    Phimmasone, S; Kharasch, E D

    2001-12-01

    The opioid alfentanil is a CYP3A4 substrate whose plasma clearance depends exclusively on hepatic CYP3A4 activity. Alfentanil clearance is an excellent in vivo probe for hepatic CYP3A4 activity and drug interactions in humans. However, such pharmacokinetic studies are invasive and time-consuming, and they require extensive analytical effort. This investigation tested the hypothesis that alfentanil-induced miosis (drug effect) can be used as a surrogate measure for alfentanil plasma concentrations and that alfentanil effect clearance will reflect plasma clearance; thus alfentanil can serve as a noninvasive probe for hepatic CYP3A4. Six healthy volunteers were studied in a 3-way randomized crossover design. Each volunteer received 1 mg intravenous midazolam, followed 1 hour later by 15 microg/kg intravenous alfentanil, after CYP3A4 induction (rifampin [INN, rifampicin]), CYP3A4 inhibition (troleandomycin), and control. Dark-adapted pupil diameter and dynamic light response were measured coincident with venous blood sampling for up to 8 hours. Midazolam and alfentanil were quantified by gas chromatography-mass spectrometry. Plasma concentrations of alfentanil and midazolam (an additional CYP3A4 probe) and pupil diameter versus time data were analyzed by use of noncompartmental modeling. Pupil diameter change was analyzed analogously to determine the area under the alfentanil effect (miosis)-time curve (AUEC), effect clearance (CL(miosis)), and effect half-time. Compared with control, CYP3A4 induction and inhibition significantly altered the clearances of alfentanil (2.8 +/- 1.4, 5.3 +/- 1.0, and 0.42 +/- 0.1 ml/kg/min, respectively; P miosis was significantly altered by CYP3A4 modulation, and log(diameter(0) - diameter(t)) versus time curves resembled alfentanil plasma disposition. AUEC(infinity) values after control, CYP3A4 induction, and inhibition were 280 +/- 150, 120 +/- 22, and 1030 +/- 240 mm x min, respectively (P miosis)) were 4.2 +/- 1.3, 8.8 +/- 2.4, and 1

  15. Expression of a Splice Variant of CYP26B1 in Betel Quid-Related Oral Cancer

    Directory of Open Access Journals (Sweden)

    Ping-Ho Chen

    2014-01-01

    Full Text Available Betel quid (BQ is a psychostimulant, an addictive substance, and a group 1 carcinogen that exhibits the potential to induce adverse health effects. Approximately, 600 million users chew a variety of BQ. Areca nut (AN is a necessary ingredient in BQ products. Arecoline is the primary alkaloid in the AN and can be metabolized through the cytochrome P450 (CYP superfamily by inducing reactive oxygen species (ROS production. Full-length CYP26B1 is related to the development of oral pharyngeal cancers. We investigated whether a splice variant of CYP26B1 is associated with the occurrence of ROS related oral and pharyngeal cancer. Cytotoxicity assays were used to measure the effects of arecoline on cell viability in a dose-dependent manner. In vitro and in vivo studies were conducted to evaluate the expression of the CYP26B1 splice variant. The CYP26B1 splice variant exhibited lower expression than did full-length CYP26B1 in the human gingival fibroblast-1 and Ca9-22 cell models. Increased expression of the CYP26B1 splice variant was observed in human oral cancer tissue compared with adjacent normal tissue, and increased expression was observed in patients at a late tumor stage. Our results suggested that the CYP26B1 splice variant is associated with the occurrence of BQ-related oral cancer.

  16. Gastrectomy increases the expression of hepatic cytochrome P450 3A by increasing lithocholic acid-producing enteric bacteria in mice.

    Science.gov (United States)

    Ishii, Makoto; Toda, Takahiro; Ikarashi, Nobutomo; Kusunoki, Yoshiki; Kon, Risako; Ochiai, Wataru; Machida, Yoshiaki; Sugiyama, Kiyoshi

    2014-01-01

    We had previously revealed that drug metabolism, as well as the expression level of hepatic CYP3A, a drug-metabolizing enzyme, increase 12 weeks after gastrectomy in mice. In this study, we elucidated the mechanism of the increased CYP3A expression. The levels of lithocholic acid (LCA)-producing bacteria (Bacteroides fragilis) and LCA in the colon did not show a significant increase up to 4 weeks after gastrectomy compared to the sham operation group. In contrast, at 12 and 24 weeks post-gastrectomy, the levels of Bacteroides fragilis and LCA were significantly higher in the gastrectomy group than in the sham operation group. At 12 and 24 weeks after gastrectomy, the hepatic nuclear translocation of pregnane X receptor (PXR) had also increased. The hepatic CYP3A11 mRNA expression and nuclear translocation of PXR after intraperitoneal administration of LCA to normal mice was significantly higher than those of the control group. The intraperitoneal administration of taurolithocholic acid (TLCA), a taurine conjugate of LCA, caused no change in the expression level of CYP3A11. We suggest that the increase in the expression level of CYP3A after gastrectomy is caused by an increase in the nuclear translocation of PXR, which is triggered by an increase in LCA-producing bacteria.

  17. Expression of the retinoic acid catabolic enzyme CYP26B1 in the human brain to maintain signaling homeostasis.

    Science.gov (United States)

    Stoney, Patrick N; Fragoso, Yara D; Saeed, Reem Bu; Ashton, Anna; Goodman, Timothy; Simons, Claire; Gomaa, Mohamed S; Sementilli, Angelo; Sementilli, Leonardo; Ross, Alexander W; Morgan, Peter J; McCaffery, Peter J

    2016-07-01

    Retinoic acid (RA) is a potent regulator of gene transcription via its activation of a set of nuclear receptors controlling transcriptional activation. Precise maintenance of where and when RA is generated is essential and achieved by local expression of synthetic and catabolic enzymes. The catabolic enzymes Cyp26a1 and Cyp26b1 have been studied in detail in the embryo, where they limit gradients of RA that form patterns of gene expression, crucial for morphogenesis. This paracrine role of RA has been assumed to occur in most tissues and that the RA synthetic enzymes release RA at a site distant from the catabolic enzymes. In contrast to the embryonic CNS, relatively little is known about RA metabolism in the adult brain. This study investigated the distribution of Cyp26a1 and Cyp26b1 transcripts in the rat brain, identifying several novel regions of expression, including the cerebral cortex for both enzymes and striatum for Cyp26b1. In vivo use of a new and potent inhibitor of the Cyp26 enzymes, ser 2-7, demonstrated a function for endogenous Cyp26 in the brain and that hippocampal RA levels can be raised by ser 2-7, altering the effect of RA on differential patterning of cell proliferation in the hippocampal region of neurogenesis, the subgranular zone. The expression of CYP26A1 and CYP26B1 was also investigated in the adult human brain and colocalization of CYP26A1 and the RA synthetic enzyme RALDH2 indicated a different, autocrine role for RA in human hippocampal neurons. Studies with the SH-SY5Y human neuroblastoma cell line implied that the co-expression of RA synthetic and catabolic enzymes maintains retinoid homeostasis within neurons. This presents a novel view of RA in human neurons as part of an autocrine, intracellular signaling system.

  18. Fluorescence in situ hybridization techniques (FISH) to detect changes in CYP19a gene expression of Japanese medaka (Oryzias latipes).

    Science.gov (United States)

    Park, June-Woo; Tompsett, Amber; Zhang, Xiaowei; Newsted, John L; Jones, Paul D; Au, Doris; Kong, Richard; Wu, Rudolf S S; Giesy, John P; Hecker, Markus

    2008-10-15

    The aim of this study was to develop a sensitive in situ hybridization methodology using fluorescence-labeled riboprobes (FISH) that allows for the evaluation of gene expression profiles simultaneously in multiple target tissues of whole fish sections of Japanese medaka (Oryzias latipes). To date FISH methods have been limited in their application due to autofluorescence of tissues, fixatives or other components of the hybridization procedure. An optimized FISH method, based on confocal fluorescence microscopy was developed to reduce the autofluorescence signal. Because of its tissue- and gender-specific expression and relevance in studies of endocrine disruption, gonadal aromatase (CYP19a) was used as a model gene. The in situ hybridization (ISH) system was validated in a test exposure with the aromatase inhibitor fadrozole. The optimized FISH method revealed tissue-specific expression of the CYP19a gene. Furthermore, the assay could differentiate the abundance of CYP19a mRNA among cell types. Expression of CYP19a was primarily associated with early stage oocytes, and expression gradually decreased with increasing maturation. No expression of CYP19a mRNA was observed in other tissues such as brain, liver, or testes. Fadrozole (100 microg/L) caused up-regulation of CYP19a expression, a trend that was confirmed by RT-PCR analysis on excised tissues. In a combination approach with gonad histology, it could be shown that the increase in CYP19a expression as measured by RT-PCR on a whole tissue basis was due to a combination of both increases in numbers of CYP19a-containing cells and an increase in the amount of CYP19a mRNA present in the cells.

  19. Liver Receptor Homolog-1 Is Critical for Adequate Up-regulation of Cyp7a1 Gene Transcription and Bile Salt Synthesis During Bile Salt Sequestration

    NARCIS (Netherlands)

    Out, Carolien; Hageman, Jurre; Bloks, Vincent W.; Gerrits, Han; Gelpke, Maarten D. Sollewijn; Bos, Trijnie; Havinga, Rick; Smit, Martin J.; Kuipers, Folkert; Groen, Albert K.

    Liver receptor homolog-1 (LRH-1) is a nuclear receptor that controls a variety of metabolic pathways. In cultured cells, LRH-1 induces the expression of CYP7A1 and CYP8B1, key enzymes in bile salt synthesis. However, hepatic Cyp7a1 mRNA levels were not reduced upon hepatocyte-specific Lrh-1 deletion

  20. Response of last instar Helicoverpa armígera larvae to Bt toxin ingestion: changes in the development and in the CYP6AE14, CYP6B2 and CYP9A12 gene expression.

    Science.gov (United States)

    Muñoz, Pilar; López, Carmen; Moralejo, Marian; Pérez-Hedo, Meritxell; Eizaguirre, Matilde

    2014-01-01

    Bt crops are able to produce Cry proteins, which were originally present in Bacillus thuringiensis bacteria. Although Bt maize is very efficient against corn borers, Spanish crops are also attacked by the earworm H. armigera, which is less susceptible to Bt maize. Many mechanisms could be involved in this low susceptibility to the toxin, including the insect's metabolic resistance to toxins due to cytochrome P450 monooxygenases. This paper examines the response of last instar H. armigera larvae to feeding on a diet with Bt and non-Bt maize leaves in larval development and in the gene expression of three P450 cytochromes: CYP6AE14, CYP6B2 and CYP9A12. Larvae fed on sublethal amounts of the Bt toxin showed reduced food ingestion and reduced growth and weight, preventing most of them from achieving the critical weight and pupating; additionally, after feeding for one day on the Bt diet the larvae showed a slight increase in juvenile hormone II in the hemolymp. Larvae fed on the non-Bt diet showed the highest CYP6AE14, CYP6B2 and CYP9A12 expression one day after feeding on the non-Bt diet, and just two days later the expression decreased abruptly, a finding probably related to the developmental programme of the last instar. Moreover, although the response of P450 genes to plant allelochemicals and xenobiotics has been related in general to overexpression in the resistant insect, or induction of the genes when feeding takes place, the expression of the three genes studied was suppressed in the larvae feeding on the Bt toxin. The unexpected inhibitory effect of the Cry1Ab toxin in the P450 genes of H. armigera larvae should be thoroughly studied to determine whether this response is somehow related to the low susceptibility of the species to the Bt toxin.

  1. Response of last instar Helicoverpa armigera larvae to Bt toxin ingestion: changes in the development and in the CYP6AE14, CYP6B2 and CYP9A12 gene expression.

    Directory of Open Access Journals (Sweden)

    Pilar Muñoz

    Full Text Available Bt crops are able to produce Cry proteins, which were originally present in Bacillus thuringiensis bacteria. Although Bt maize is very efficient against corn borers, Spanish crops are also attacked by the earworm H. armigera, which is less susceptible to Bt maize. Many mechanisms could be involved in this low susceptibility to the toxin, including the insect's metabolic resistance to toxins due to cytochrome P450 monooxygenases. This paper examines the response of last instar H. armigera larvae to feeding on a diet with Bt and non-Bt maize leaves in larval development and in the gene expression of three P450 cytochromes: CYP6AE14, CYP6B2 and CYP9A12. Larvae fed on sublethal amounts of the Bt toxin showed reduced food ingestion and reduced growth and weight, preventing most of them from achieving the critical weight and pupating; additionally, after feeding for one day on the Bt diet the larvae showed a slight increase in juvenile hormone II in the hemolymp. Larvae fed on the non-Bt diet showed the highest CYP6AE14, CYP6B2 and CYP9A12 expression one day after feeding on the non-Bt diet, and just two days later the expression decreased abruptly, a finding probably related to the developmental programme of the last instar. Moreover, although the response of P450 genes to plant allelochemicals and xenobiotics has been related in general to overexpression in the resistant insect, or induction of the genes when feeding takes place, the expression of the three genes studied was suppressed in the larvae feeding on the Bt toxin. The unexpected inhibitory effect of the Cry1Ab toxin in the P450 genes of H. armigera larvae should be thoroughly studied to determine whether this response is somehow related to the low susceptibility of the species to the Bt toxin.

  2. Avian cytochrome P450 (CYP 1-3 family genes: isoforms, evolutionary relationships, and mRNA expression in chicken liver.

    Directory of Open Access Journals (Sweden)

    Kensuke P Watanabe

    Full Text Available Cytochrome P450 (CYP of chicken and other avian species have been studied primarily with microsomes or characterized by cloning and protein expression. However, the overall existing isoforms in avian CYP1-3 families or dominant isoforms in avian xenobiotic metabolism have not yet been elucidated. In this study, we aimed to clarify and classify all of the existing isoforms of CYP1-3 in avian species using available genome assemblies for chicken, zebra finch, and turkey. Furthermore, we performed qRT-PCR assay to identify dominant CYP genes in chicken liver. Our results suggested that avian xenobiotic-metabolizing CYP genes have undergone unique evolution such as CYP2C and CYP3A genes, which have undergone avian-specific gene duplications. qRT-PCR experiments showed that CYP2C45 was the most highly expressed isoform in chicken liver, while CYP2C23b was the most highly induced gene by phenobarbital. Considering together with the result of further enzymatic characterization, CYP2C45 may have a dominant role in chicken xenobiotic metabolism due to the constitutive high expression levels, while CYP2C23a and CYP2C23b can be greatly induced by chicken xenobiotic receptor (CXR activators. These findings will provide not only novel insights into avian xenobiotic metabolism, but also a basis for the further characterization of each CYP gene.

  3. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    Energy Technology Data Exchange (ETDEWEB)

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Kang, Wonku [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  4. Effects of Trolox on the activity and gene expression of cytochrome P450 in hepatic ischemia/reperfusion

    OpenAIRE

    Eum, Hyun-Ae; Lee, Sun-Mee

    2004-01-01

    The aim of this study was to investigate the effect of Trolox on hepatic microsomal cytochrome P450 (CYP) activity and gene expression during ischemia and reperfusion (I/R).Rats were subjected to 60 min of hepatic ischemia, and 5 h (acute phase) and 24 h (subacute phase) of reperfusion. Rats were treated intravenously with Trolox (2.5 mg kg−1) or vehicle, 5 min before reperfusion.The serum alanine aminotransferase level and lipid peroxidation were increased as a result of I/R. These increases...

  5. Expression level of the cytochrome P450c21 (CYP21) protein correlating to drip loss in pigs.

    Science.gov (United States)

    Kaewkot, Aungsuma; Boonkaewwan, Chaiwat; Noosud, Jatuporn; Kayan, Autchara

    2017-11-01

    Drip loss is an important meat quality trait of fresh meat affecting economic losses. The cytochrome P450c21 (CYP21) protein has a role on cortisol production and depends on stress. This might affect meat quality. The present study aimed to investigate the expression of CYP21 protein in correlation with drip loss. The samples were taken from the Longissimus dorsi muscle to evaluate drip loss (n = 300). Five muscles per group (low and high drip loss) were selected to evaluate CYP21 protein expression levels. Statistical analysis revealed that CYP21 protein expression levels were significantly difference between the drip loss groups. The high drip loss group had higher CYP21 protein expression levels than the low drip loss group (P loss group had higher optical density values of the CYP21 protein band than the low drip loss group (P loss in pork. Further study is warranted to validate these results in other populations. © 2017 Japanese Society of Animal Science.

  6. Expression and inducibility of CYP1A1, 1A2, 1B1 by β-naphthoflavone and CYP2B22, CYP3As by rifampicin in heart regions and coronary arteries of pig.

    Science.gov (United States)

    Messina, Andrea; Puccinelli, Emanuela; Gervasi, Pier Giovanni; Longo, Vincenzo

    2013-02-01

    In this study, the constitutive and inducible expression of the CYP genes (1A1, 1A2, 1B1, 2B22, 3A22, 3A29 and 3A46), related transcriptional factors (AhR, CAR, PXR, and Nrf2) and the antioxidant enzymes SOD, catalase, GSSH-reductase and GSH-peroxidase were investigated in the liver, heart regions and coronary arteries of control pigs and pigs treated with β-naphthoflavone (βNF) or with rifampicin (RIF). Real-time PCR experiments and enzymatic or immunoblot assays showed that CYP1A1 was predominantly enhanced by βNF in a similar manner in all the heart regions, whereas antioxidant enzyme activity was not affected. The rifampicin treatment resulted in an induction of CYP2B22 and CYP3As, at the transcriptional, activity and protein level in liver but not in heart nor in the coronary arteries, despite the expression of CAR and PXR in the cardiac tissues. These results obtained in vivo suggest that pig cardiac tissues may represent a useful model for humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Variation in CYP2A6 Activity and Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Julie-Anne Tanner

    2017-12-01

    Full Text Available The cytochrome P450 2A6 (CYP2A6 enzyme metabolizes several clinically relevant substrates, including nicotine—the primary psychoactive component in cigarette smoke. The gene that encodes the CYP2A6 enzyme is highly polymorphic, resulting in extensive interindividual variation in CYP2A6 enzyme activity and the rate of metabolism of nicotine and other CYP2A6 substrates including cotinine, tegafur, letrozole, efavirenz, valproic acid, pilocarpine, artemisinin, artesunate, SM-12502, caffeine, and tyrosol. CYP2A6 expression and activity are also impacted by non-genetic factors, including induction or inhibition by pharmacological, endogenous, and dietary substances, as well as age-related changes, or interactions with other hepatic enzymes, co-enzymes, and co-factors. As variation in CYP2A6 activity is associated with smoking behavior, smoking cessation, tobacco-related lung cancer risk, and with altered metabolism and resulting clinical responses for several therapeutics, CYP2A6 expression and enzyme activity is an important clinical consideration. This review will discuss sources of variation in CYP2A6 enzyme activity, with a focus on the impact of CYP2A6 genetic variation on metabolism of the CYP2A6 substrates.

  8. CYP24A1 exacerbated activity during diabetes contributes to kidney tubular apoptosis via caspase-3 increased expression and activation.

    Directory of Open Access Journals (Sweden)

    Alexandre Tourigny

    Full Text Available Decreases in circulating 25,hydroxyl-vitamin D3 (25 OH D3 and 1,25,dihydroxyl-vitamin D3 (1,25 (OH2 D3 have been extensively documented in patients with type 2 diabetes. Nevertheless, the molecular reasons behind this drop, and whether it is a cause or an effect of disease progression is still poorly understood. With the skin and the liver, the kidney is one of the most important sites for vitamin D metabolism. Previous studies have also shown that CYP24A1 (an enzyme implicated in vitamin D metabolism, might play an important role in furthering the progression of kidney lesions during diabetic nephropathy. In this study we show a link between CYP24A1 increase and senescence followed by apoptosis induction in the renal proximal tubules of diabetic kidneys. We show that CYP24A1 expression was increased during diabetic nephropathy progression. This increase derived from protein kinase C activation and increased H(2O(2 cellular production. CYP24A1 increase had a major impact on cellular phenotype, by pushing cells into senescence, and later into apoptosis. Our data suggest that control of CYP24A1 increase during diabetes has a beneficial effect on senescence induction and caspase-3 increased expression. We concluded that diabetes induces an increase in CYP24A1 expression, destabilizing vitamin D metabolism in the renal proximal tubules, leading to cellular instability and apoptosis, and thereby accelerating tubular injury progression during diabetic nephropathy.

  9. Development of Caco-2 cells co-expressing CYP3A4 and NADPH-cytochrome P450 reductase using a human artificial chromosome for the prediction of intestinal extraction ratio of CYP3A4 substrates.

    Science.gov (United States)

    Takenaka, Toru; Kazuki, Kanako; Harada, Naomoto; Kuze, Jiro; Chiba, Masato; Iwao, Takahiro; Matsunaga, Tamihide; Abe, Satoshi; Oshimura, Mitsuo; Kazuki, Yasuhiro

    2017-02-01

    The Caco-2 cells co-expressing cytochrome P450 (CYP) 3A4 and NADPH-cytochrome P450 reductase (CPR) were developed using a human artificial chromosome (HAC) vector. The CYP3A4 and CPR genes were cloned into the HAC vector in CHO cells using the Cre-loxP system, and the microcell-mediated chromosome transfer technique was used to transfer the CYP3A4-CPR-HAC vector to Caco-2 cells. After seeding onto semipermeable culture inserts, the CYP3A4-CPR-HAC/Caco-2 cells were found to form tight monolayers, similar to the parental cells, as demonstrated by the high transepithelial electrical resistance (TEER) value and comparable permeability of non-CYP3A4 substrates between parent and CYP3A4-CPR-HAC/Caco-2 cell monolayers. The metabolic activity of CYP3A4 (midazolam 1'-hydroxylase activity) in the CYP3A4-CPR-HAC/Caco-2 cells was constant from 22 to 35 passages, indicating that HAC vectors conferred sufficient and sustained CYP3A4 activity to CYP3A4-CPR-HAC/Caco-2 cells. The strong relationship between the metabolic extraction ratios (ER) obtained from the CYP3A4-CPR-HAC/Caco-2 cells and calculated intestinal extraction ratios in humans (Eg) from reported intestinal availability (Fg) was found for 17 substrates of CYP3A4 (r2 = 0.84). The present study suggests that the CYP3A4-CPR-HAC/Caco-2 cell monolayer can serve as an in vitro tool that facilitates the prediction of intestinal extraction ratio (or availability) in humans. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  10. The revised human liver cytochrome P450 "Pie": absolute protein quantification of CYP4F and CYP3A enzymes using targeted quantitative proteomics.

    Science.gov (United States)

    Michaels, Scott; Wang, Michael Zhuo

    2014-08-01

    The CYP4F subfamily of enzymes has been identified recently to be involved in the metabolism of endogenous compounds (arachidonic acid and leukotriene B4), nutrients (vitamins K1 and E), and xenobiotics (pafuramidine and fingolimod). CYP4F2 and CYP4F3B are reported to be expressed in the human liver. However, absolute concentrations of these enzymes in human liver microsomes (HLMs) and their interindividual variability have yet to be determined because of the lack of specific antibodies. Here, an liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based targeted quantitative proteomic approach was employed to determine the absolute protein concentrations of CYP4F2 and CYP4F3B compared with CYP3A in two panels of HLMs (n = 31). As a result, the human hepatic cytochrome P450 (P450) "pie" has been revised to include the contribution of CYP4F enzymes, which amounts to 15% of the total hepatic cytochrome P450 enzymes. CYP4F3B displayed low interindividual variability (3.3-fold) in the HLM panels whereas CYP4F2 displayed large variability (21-fold). However, CYP4F2 variability decreased to 3.4-fold if the two donors with the lowest expression were excluded. In contrast, CYP3A exhibited 29-fold interindividual variability in the same HLM panels. The proposed marker reaction for CYP4F enzymes pafuramidine/DB289 M1 formation did not correlate with CYP4F protein content, suggesting alternate metabolic pathways for DB289 M1 formation in HLMs. In conclusion, CYP4F enzymes are highly expressed in the human liver and their physiologic and pharmacologic roles warrant further investigation. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Effects of meal composition and meal timing on the expression of genes involved in hepatic drug metabolism in rats.

    Science.gov (United States)

    de Vries, E M; Oosterman, J E; Eggink, H M; de Goede, P; Sen, S; Foppen, E; Boudzovitch-Surovtseva, O; Boelen, A; Romijn, J A; laFleur, S E; Kalsbeek, A

    2017-01-01

    With chronotherapy, drug administration is synchronized with daily rhythms in drug clearance and pharmacokinetics. Daily rhythms in gene expression are centrally mastered by the suprachiasmatic nucleus of the hypothalamus as well as by tissue clocks containing similar molecular mechanisms in peripheral organs. The central timing system is sensitive to changes in the external environment such as those of the light-dark cycle, meal timing and meal composition. We investigated how changes in diet composition and meal timing would affect the daily hepatic expression rhythms of the nuclear receptors PXR and CAR and of enzymes involved in P450 mediated drug metabolism, as such changes could have consequences for the practice of chronotherapy. Rats were subjected to either a regular chow or a free choice high-fat-high-sugar (fcHFHS) diet. These diets were provided ad libitum, or restricted to either the light phase or the dark phase. In a second experiment, rats had access to chow either ad libitum or in 6 meals equally distributed over 24 hours. Pxr, Alas1 and Por displayed significant day-night rhythms under ad libitum chow fed conditions, which for Pxr was disrupted under fcHFHS diet conditions. Although no daily rhythms were detected in expression of CAR, Cyp2b2 and Cyp3a2, the fcHFHS diet did affect basal expression of these genes. In chow fed rats, dark phase feeding induced a diurnal rhythm in Cyp2b2 expression while light phase feeding induced a diurnal rhythm in Car expression and completely shifted the peak expression of Pxr, Car, Cyp2b2, Alas1 and Por. The 6-meals-a-day feeding only abolished the Pxr rhythm but not the rhythms of the other genes. We conclude that although nuclear receptors and enzymes involved in the regulation of hepatic drug metabolism are sensitive to meal composition, changes in meal timing are mainly effectuated via changes in the molecular clock.

  12. CYP1A1 and CYP1A2 expression: Comparing ‘humanized’ mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    Science.gov (United States)

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-01-01

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how “human-like” can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1_CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)_severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs. PMID:19285097

  13. UV-induced CYP1A1 gene expression in human cells is mediated by tryptophan.

    Science.gov (United States)

    Wei, Y D; Rannug, U; Rannug, A

    1999-04-01

    Induction of cytochrome P-4501A1 (CYP1A1) activity by UV has been observed earlier in animal studies via a mechanism that has not yet been resolved. Our previous data have indicated that formylated indolocarbazoles which are formed by UV irradiation of tryptophan solutions are very potent Ah-receptor agonists. To evaluate the effect of UV light on cytochrome P4501A1 gene expression, we studied the induction of CYP1A1 mRNA by UV irradiation of cultured human keratinocytes (HaCaT cell line), primary human blood lymphocytes and mouse Hepa-1 cells. The cells were exposed to UV light delivered by a bank of 6 Philips TL20/12RS sun lamps emitting primarily in the UVB range in the absence and presence of tryptophan. A semiquantitative reverse transcriptase-linked polymerase chain reaction (RT-PCR) was used for analysis of gene expression in the treated cells. The results show that the CYP1A1 mRNA level induced by UV in the presence of tryptophan was higher than that induced by UV alone in both HaCaT cells and lymphocytes after 3 h of incubation post-UV irradiation. To find out if the induction by UV light is caused by the formation of an Ah receptor ligand, Hepa-1 wild-type and Ah receptor deficient c12 cell lines were applied. Wild-type (wt) cells were inducible either by the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) or by UV-irradiation but very low or undetectable levels were observed in the c12 cells. This shows that the induction of gene expression by FICZ and UV is Ah receptor dependent. Together, these results indicate that UV-induced CYP1A1 gene expression in mammalian cells is mediated by an Ah receptor ligand formed from tryptophan. Thus, the photoproducts of tryptophan are suggested to be mediators of light via binding to the Ah receptor and as such also could have a role in light-regulated biological rhythms.

  14. Effect of interleukin-6 neutralization on CYP3A11 and metallothionein-1/2 expressions in arthritic mouse liver.

    Science.gov (United States)

    Ashino, Takashi; Arima, Yoshiko; Shioda, Seiji; Iwakura, Yoichiro; Numazawa, Satoshi; Yoshida, Takemi

    2007-03-08

    Rheumatoid arthritis is characterized by chronic inflammation of the synovial tissue. We examined the effect of interleukin (IL)-6 neutralization on the expression of cytochrome P450 or metallothionein-1/2 (metallothionein) during chronic phase inflammatory disease using rheumatoid arthritis model mice, human T-cell leukemia virus type I (HTLV-I) transgenic mice. Serum IL-6 concentrations of arthritis-developed HTLV-I transgenic mice were 129.9+/-26.1 pg/ml. Moreover, signal transducer and activator of transcription (STAT) 1/3 phosphorylations was observed in arthritic HTLV-I transgenic mouse livers. CYP3A11 mRNA was more strongly reduced by the development of arthritis in HTLV-I transgenic mouse livers as compared with CYP2C29 or CYP2E1 mRNAs. CYP3A protein and testosterone 6beta-hydroxylation activity also changed in a similar manner to the corresponding CYP3A11 mRNA level. On the other hand, metallothionein mRNA was significantly induced as compared with that of wild-type or non-arthritic mice. CYP3A suppression and metallothionein mRNA overexpression activity seen in the developed arthritic mice returned to the gene conditions of the non-arthritic HTLV-I transgenic mice by IL-6 antibody at 48 h after treatment. The present study has revealed that CYP3A11 and metallothionein expressions are affected by the release of IL-6 by arthritis and its systemic circulation, and neutralization of IL-6 recovered from the down-regulation of CYP3A11 mRNA and the induction of metallothionein mRNA in arthritic HTLV-I transgenic mice.

  15. Suppressive effects of RXR agonist PA024 on adrenal CYP11B2 expression, aldosterone secretion and blood pressure.

    Directory of Open Access Journals (Sweden)

    Dai Suzuki

    Full Text Available The effects of retinoids on adrenal aldosterone synthase gene (CYP11B2 expression and aldosterone secretion are still unknown. We therefore examined the effects of nuclear retinoid X receptor (RXR pan-agonist PA024 on CYP11B2 expression, aldosterone secretion and blood pressure, to elucidate its potential as a novel anti-hypertensive drug. We demonstrated that PA024 significantly suppressed angiotensin II (Ang II-induced CYP11B2 mRNA expression, promoter activity and aldosterone secretion in human adrenocortical H295R cells. Human CYP11B2 promoter functional analyses using its deletion and point mutants indicated that the suppression of CYP11B2 promoter activity by PA024 was in the region from -1521 (full length to -106 including the NBRE-1 and the Ad5 elements, and the Ad5 element may be mainly involved in the PA024-mediated suppression. PA024 also significantly suppressed the Ang II-induced mRNA expression of transcription factors NURR1 and NGFIB that bind to and activate the Ad5 element. NURR1 overexpression demonstrated that the decrease of NURR1 expression may contribute to the PA024-mediated suppression of CYP11B2 transcription. PA024 also suppressed the Ang II-induced mRNA expression of StAR, HSD3β2 and CYP21A2, a steroidogenic enzyme group involved in aldosterone biosynthesis. Additionally, the PA024-mediated CYP11B2 transcription suppression was shown to be exerted via RXRα. Moreover, the combination of PPARγ agonist pioglitazone and PA024 caused synergistic suppressive effects on CYP11B2 mRNA expression. Finally, PA024 treatment significantly lowered both the systolic and diastolic blood pressure in Tsukuba hypertensive mice (hRN8-12 x hAG2-5. Thus, RXR pan-agonist PA024 may be a candidate anti-hypertensive drugs that acts via the suppression of aldosterone synthesis and secretion.

  16. Cytochrome P450 CYP3A in marsupials: cloning and characterisation of the second identified CYP3A subfamily member, isoform 3A78 from koala (Phascolarctos cinereus).

    Science.gov (United States)

    El-Merhibi, Adaweyah; Ngo, Suong N T; Crittenden, Tamara A; Marchant, Ceilidh L; Stupans, Ieva; McKinnon, Ross A

    2011-11-01

    Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of xenobiotics and endogenous substrates. Previously, we cloned and characterised the CYP2C, CYP4A, and CYP4B gene subfamilies from marsupials and demonstrated important species-differences in both activity and tissue expression of these CYP enzymes. Recently, we isolated the Eastern grey kangaroo CYP3A70. Here we have cloned and characterised the second identified member of marsupial CYP3A gene subfamily, CYP3A78 from the koala (Phascolarctos cinereus). In addition, we have examined the gender-differences in microsomal erythromycin N-demethylation activity (a CYP3A marker) and CYP3A protein expression across test marsupial species. Significant differences in hepatic erythromycin N-demethylation activity were observed between male and female koalas, with the activity detected in female koalas being 2.5-fold higher compared to that in male koalas (pkoala, tammar wallaby, and Eastern grey kangaroo, with no gender-differences detected across test marsupials. A 1610 bp koala hepatic CYP3A complete cDNA, designated CYP3A78, was cloned by reverse transcription-polymerase chain reaction approaches. It displays 64% nucleotide and 57% amino acid sequence identity to the Eastern grey kangaroo CYP3A70. The CYP3A78 cDNA encodes a protein of 515 amino acids, shares approximately 68% nucleotide and 56% amino acid sequence identity to human CYP3A4, and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Collectively, this study provides primary molecular data regarding koala hepatic CYP3A78 gene and enables further functional analyses of CYP3A enzymes in marsupials. Given the significant role that CYP3A enzymes play in the metabolism of both endogenous and exogenous compounds, the clone provides an important step in elucidating the metabolic capacity of marsupials. Copyright © 2011

  17. Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2

    DEFF Research Database (Denmark)

    Mikkelsen, M.D.; Fuller, V.L.; Hansen, Bjarne Gram

    2009-01-01

    Indole-3-acetaldoxime (IAOx) is a key branching point between primary and secondary metabolism. IAOx serves as an intermediate in the biosynthesis of indole glucosinolates (I-GLSs), camalexin and the plant hormone indole-3-acetic acid (IAA). The cytochrome P450s CYP79B2 and CYP79B3 catalyze......OH)-inducible CYP79B2 construct into double (cyp79b2 cyp79b3) or triple (cyp79b2 cyp79b3 cyp83b1) mutant lines. We show EtOH-dependent induction of camalexin and identify a number of candidate IAA homeostasis- or defense-related genes by clustered microarray analysis. The transgenic mutant lines are thus promising...

  18. [Effects of intestinal flora on the expression of cytochrome P450 3A in the liver].

    Science.gov (United States)

    Ishii, Makoto; Toda, Takahiro; Ikarashi, Nobutomo; Ochiai, Wataru; Sugiyama, Kiyoshi

    2012-01-01

    Living organisms eliminate foreign low-antigenic substances, such as drugs and environmental pollutants, by detoxification mediated by metabolizing cytochrome P450 (CYP). We have examined the possible regulation of CYP expression by enteric bacteria. Cyp mRNA expression levels, Cyp3a protein expression level, and the activity of Cyp3a in hepatic microsomal fractions were compared in germ-free (GF) and specific pathogen-free (SPF) mice. We evaluated hepatic Cyp3a11 mRNA expression levels and Cyp3a metabolic activity in GF and SPF mice after five days of antibiotic administration. The fecal levels of lithocholic acid (LCA)-producing bacteria and hepatic taurolithocholic acid (TLCA) were also measured. Cyp mRNA expression levels, Cyp3a protein expression level, and the activity of Cyp3a in SPF mice were higher than those in GF mice, indicating that enteric bacteria increases hepatic Cyp3a expression. The effects of enteric bacteria-reducing antibiotics on Cyp3a expression were examined. We observed that decreasing enteric bacteria with antibiotics in SPF mice caused a significant decrease in the hepatic Cyp3a11 mRNA expression, TLCA, and fecal LCA-producing bacteria compared to the group that did not receive antibiotics. No change in Cyp3a11 expression was observed in GF mice that were treated with antibiotics. Administration of LCA to GF mice showed an increase in Cyp3a11 expression similar to that of SPF mice. The enzymes of the enteric bacteria are believed to metabolize and detoxify drugs by either reduction or hydrolysis. The results of this study indicate that changes in enteric bacteria may alter the expression and activity of hepatic drug metabolizing enzymes and pharmacokinetics. Therefore, enteric bacteria should be closely monitored to ensure the safe use of drugs.

  19. A non-lethal method to estimate CYP1A expression in laboratory and wild Atlantic salmon (Salmo salar)

    Science.gov (United States)

    Rees, C.B.; McCormick, S.D.; Li, W.

    2005-01-01

    Expression of cytochrome P4501A (CYP1A) has been used as a biomarker for possible exposure to contaminants such as PCBs and dioxins in teleost fish. Using a quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR) and a non-lethal gill biopsy, we estimated levels of CYP1A mRNA expression in Atlantic salmon (Salmo salar). Groups of ten Atlantic salmon juveniles (48–76 g) received an intraperitoneal injection of 50 μg g− 1 β-naphthoflavone (BNF) or vehicle. Their gill tissues were repeatedly sampled by non-lethal biopsies on day 0, 1, 2 and 7. Control fish expressed basal levels of CYP1A over the duration of sampling. BNF-treated salmon demonstrated similar levels of CYP1A to control fish at day 0 and higher levels over the course of each additional sampling point. Gill biopsies from wild salmon sampled from Millers River (South Royalston, Worcester County, MA, USA), known to contain PCBs, showed significantly higher CYP1A levels over an uncontaminated reference stream, Fourmile Brook (Northfield, Franklin County, MA, USA). We conclude that gill biopsies coupled with Q-RT-PCR analysis is a valuable tool in environmental assessment of wild Atlantic salmon populations and has the potential to be applied to other populations of fish as well.

  20. UV-dependent production of 25-hydroxyvitamin D2 in the recombinant yeast cells expressing human CYP2R1.

    Science.gov (United States)

    Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi; Kamakura, Masaki; Ohta, Miho; Sakaki, Toshiyuki

    2013-05-03

    CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D3 or vitamin D2 was added to the cell suspension of CYP2R1-expressing yeast cells in a buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D2 was produced without additional vitamin D2. Endogenous ergosterol was likely converted into vitamin D2 by UV irradiation and thermal isomerization, and then the resulting vitamin D2 was converted to 25-hydroxyvitamin D2 by CYP2R1. This novel method for producing 25-hydroxyvitamin D2 without a substrate could be useful for practical purposes. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Comparative evaluation of phenobarbital-induced CYP3A and CYP2H1 gene expression by quantitative RT-PCR in Bantam, Bantamized White Leghorn and White Leghorn chicks.

    Science.gov (United States)

    Goriya, Harshad V; Kalia, Anil; Bhavsar, Shailesh K; Joshi, Chaitanya G; Rank, Dharamshibhai N; Thaker, Aswin M

    2005-12-01

    The present work was to study induction of cytochrome P450 (CYP)3A and CYP2H1 gene by reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative RTPCR in Bantam, Bantamized White Leghorn and White Leghorn chicks. Out of 18 chicks total 3 from each group (Bantam, Bantamized White Leghorn and White Leghorn) were treated intraperitoneal with phenobarbital at the dose rate of 12 mg/100 g (body weight) while the control group was treated with the saline. Total RNA was extracted from the liver samples using Tri Reagent based method. First strand cDNA was synthesized using one step RT-PCR kit. The PCR was performed and the product was subjected to agarose gel electrophoresis. Quantitative RT-PCR was conducted to quantify gene expression level of CYP3A and CYP2H1 genes. Relative expression ratio of CYP3A and CYP2H1 genes was calculated using relative expression software tool (REST). It was found that CYP3A is up regulated by factor of 1.34, 14.51 and 1.00 in Bantam, Bantamized White Leghorn and White Leghorn chicks, respectively. In Bantam and Bantamized White Leghorn chicks CYP2H1 gene was up regulated by factor 1.50 and 80.87, respectively but down regulated by a factor of 1.97 in White Leghorn chicks. The PCR efficiency ranged from 1.30 to 1.70, 0.86 to 1.70 and 0.91 to 1.58 for CYP3A, CYP2H1 and beta-actin, respectively in Bantam, Bantamized White Leghorn and White Leghorn chicks.

  2. Increased maternal and fetal cholesterol efflux capacity and placental CYP27A1 expression in preeclampsia.

    Science.gov (United States)

    Mistry, Hiten D; Kurlak, Lesia O; Mansour, Yosef T; Zurkinden, Line; Mohaupt, Markus G; Escher, Geneviève

    2017-06-01

    Preeclampsia is a pregnancy-specific condition that leads to increased cardiovascular risk in later life. A decrease in cholesterol efflux capacity is linked to CVD. We hypothesized that in preeclampsia there would be a disruption of maternal/fetal plasma to efflux cholesterol, as well as differences in the concentrations of both placental sterol 27-hydroxylase (CYP27A1) and apoA1 binding protein (AIBP). Total, HDL-, and ABCA1-mediated cholesterol effluxes were performed with maternal and fetal plasma from women with preeclampsia and normotensive controls (both n = 17). apoA1 and apoE were quantified by chemiluminescence, and 27-hydroxycholesterol (27-OHC) by GC-MS. Immunohistochemistry was used to determine placental expression/localization of CYP27A1, AIBP, apoA1, apoE, and SRB1. Maternal and fetal total and HDL-mediated cholesterol efflux capacities were increased in preeclampsia (by 10-20%), but ABCA1-mediated efflux was decreased (by 20-35%; P preeclampsia. Fetal plasma 27-OHC levels were decreased in preeclamptic samples ( P preeclampsia ( P = 0.04). Placental 27-OHC concentrations were also raised in preeclampsia ( P preeclampsia, to remove cholesterol from cells to limit lipid peroxidation and increase placental angiogenesis. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  3. T-2 toxin induces the expression of porcine CYP3A22 via the upregulation of the transcription factor, NF-Y.

    Science.gov (United States)

    Liu, Xin; Wen, Jikai; Chen, Ruohong; Zhang, Tingting; Jiang, Jun; Deng, Yiqun

    2016-10-01

    T-2 toxin is one of the major pollutants in crops and feedstuffs. CYP3A22, one of hCYP3A4 homologs, detoxifies T-2 toxin in pigs. We investigated the mechanisms of expression activation of CYP3A22 under basal and induced conditions. Based on MatInspector analysis, several mutations in the CYP3A22 promoter were assayed by dual luciferase reporter to identify the function of cis elements in the region. EMSA experiments were used to assess the binding of transcription factors to the cis elements. The mRNA and protein levels of CYP3A22 and the transcription factors were measured by RT-qPCR and Western blot. The enhancement of NF-Y binding to the CYP3A22 promoter was assayed by ChIP. As predicted, two cis DNA elements in the CYP3A22 promoter, a CCAAT box and GC box, were confirmed to be crucial in the activation of CYP3A22 transcription. These two DNA motifs recruited two transcription factors, NF-Y and Sp1, which are involved in the activation of the basal transcription of CYP3A22. More interestingly, CYP3A22 expression was induced in porcine primary hepatocytes by the treatment with 0.1μg/mL T-2 toxin. This induction of transcription by T-2 toxin was dominantly regulated by the binding of NF-Y to the CCAAT box, rather than GC box, which recruits Sp1 and functions only in the constitutive expression of CYP3A22. Our study reveals the regulatory mechanisms of both basal and inducible transactivation of CYP3A22 in pigs. In particular, we identified that the mechanism by which T-2 toxin induces CYP3A22 expression is mediated by the upregulation of NF-YA. Although porcine CYP3A22 is homologous to hCYP3A4, the regulation of basal and induced expression of CYP3A22 occurred via distinct mechanisms. This may account for the variety of CYP3A expression in animals and humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Mapping of gene expression reveals CYP27A1 as a susceptibility gene for sporadic ALS.

    Directory of Open Access Journals (Sweden)

    Frank P Diekstra

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive, neurodegenerative disease characterized by loss of upper and lower motor neurons. ALS is considered to be a complex trait and genome-wide association studies (GWAS have implicated a few susceptibility loci. However, many more causal loci remain to be discovered. Since it has been shown that genetic variants associated with complex traits are more likely to be eQTLs than frequency-matched variants from GWAS platforms, we conducted a two-stage genome-wide screening for eQTLs associated with ALS. In addition, we applied an eQTL analysis to finemap association loci. Expression profiles using peripheral blood of 323 sporadic ALS patients and 413 controls were mapped to genome-wide genotyping data. Subsequently, data from a two-stage GWAS (3,568 patients and 10,163 controls were used to prioritize eQTLs identified in the first stage (162 ALS, 207 controls. These prioritized eQTLs were carried forward to the second sample with both gene-expression and genotyping data (161 ALS, 206 controls. Replicated eQTL SNPs were then tested for association in the second-stage GWAS data to find SNPs associated with disease, that survived correction for multiple testing. We thus identified twelve cis eQTLs with nominally significant associations in the second-stage GWAS data. Eight SNP-transcript pairs of highest significance (lowest p = 1.27 × 10(-51 withstood multiple-testing correction in the second stage and modulated CYP27A1 gene expression. Additionally, we show that C9orf72 appears to be the only gene in the 9p21.2 locus that is regulated in cis, showing the potential of this approach in identifying causative genes in association loci in ALS. This study has identified candidate genes for sporadic ALS, most notably CYP27A1. Mutations in CYP27A1 are causal to cerebrotendinous xanthomatosis which can present as a clinical mimic of ALS with progressive upper motor neuron loss, making it a plausible

  5. Low Na intake suppresses expression of CYP2C23 and arachidonic acid-induced inhibition of ENaC.

    Science.gov (United States)

    Sun, Peng; Lin, Dao-Hong; Wang, Tong; Babilonia, Elisa; Wang, Zhijian; Jin, Yan; Kemp, Rowena; Nasjletti, Alberto; Wang, Wen-Hui

    2006-12-01

    We previously demonstrated that arachidonic acid (AA) inhibits epithelial Na channels (ENaC) through the cytochrome P-450 (CYP) epoxygenase-dependent pathway (34). In the present study, we tested the hypothesis that low Na intake suppresses the expression of CYP2C23, which is mainly responsible for converting AA to epoxyeicosatrienoic acid (EET) in the kidney (11) and attenuates the AA-induced inhibition of ENaC. Immunostaining showed that CYP2C23 is expressed in the Tamm-Horsfall protein (THP)-positive and aquaporin 2 (AQP2)-positive tubules. This suggests that CYP2C23 is expressed in the thick ascending limb (TAL) and collecting duct (CD). Na restriction significantly suppressed the expression of CYP2C23 in the TAL and CD. Western blot also demonstrated that the expression of CYP2C23 in renal cortex and outer medulla diminished in rats on Na-deficient diet (Na-D) but increased in those on high-Na diet (4%). Moreover, the content of 11,12-epoxyeicosatrienoic acid (EET) decreased in the isolated cortical CD from rats on Na-D compared with those on a normal-Na diet (0.5%). Patch-clamp study showed that application of 15 microM AA inhibited the activity of ENaC by 77% in the CCD of rats on a Na-D for 3 days. However, the inhibitory effect of AA on ENaC was significantly attenuated in rats on Na-D for 14 days. Furthermore, inhibition of CYP epoxygenase with MS-PPOH increased the ENaC activity in the CCD of rats on a control Na diet. We also used microperfusion technique to examine the effect of MS-PPOH on Na transport in the distal nephron. Application of MS-PPOH significantly increased Na absorption in the distal nephron of control rats but had no significant effect on Na absorption in rats on Na-D for 14 days. We conclude that low Na intake downregulates the activity and expression of CYP2C23 and attenuates the inhibitory effect of AA on Na transport.

  6. Expression Levels of PPARγ and CYP-19 in Polycystic Ovarian Syndrome Primary Granulosa Cells: Influence of ω-3 Fatty Acid

    Directory of Open Access Journals (Sweden)

    Mina Zaree

    2015-07-01

    Full Text Available Background: The omega-3 fatty acid (ω-3 fatty acid such as eicosapentaenoic acid (EPA is currently used in the clinic as a nutritional supplement in the treatment of polycystic ovarian syndrome (PCOS. The present study was designed to investigate the effect of EPA on the expression levels of peroxisome proliferator-activated receptor gamma (PPARγ and cytochrome P450 aromatase (encoded by the CYP-19 in primary cultured granulosa cells (GC from patients undergoing in vitro fertilization (IVF, and also to compare these effects with those in GC of PCOS patients. Materials and Methods: In this experimental study, human GC were isolated, primary cultured in vitro, exposed to a range of concentrations of the EPA and investigated with respect to gene expression levels of PPARγ and CYP-19 using real time-polymerase chain reaction (PCR. The participants (n=30 were the patients admitted to the IVF Center in February-March 2013 at Alzahra Hospital, Tabriz, Iran, who were divided into two groups as PCOS (n=15 and non-PCOS (n=15 women (controls. Results: All doses of the EPA significantly induced PPARγ mRNA gene expression level as compared to the control recombinant follicle stimulating hormone (rFSH alone condition. High doses of EPA in the presence of rFSH produced a stimulatory effect on expression level of PPARγ (2.15-fold, P=0.001 and a suppressive effect (0.56-fold, P=0.01 on the expression level of CYP-19, only in the PCOS GC. Conclusion: EPA and FSH signaling pathway affect differentially on the gene expression levels of PPARγ and CYP-19 in PCOS GC. Altered FSH-induced PPARγ activity in PCOS GC may modulate the CYP-19 gene expression in response to EPA, and possibly modulates the subsequent steroidogenesis of these cells.

  7. [Study on inhibitory effect of water extract of Polygonum multiflorum on CYP1A2 and CYP2E1 enzymatic activities and mRNA expressions in rat liver].

    Science.gov (United States)

    Li, Hao; Yang, Hong-li; Li, Deng-ke; Feng, Guang-yuan; Wei, Bao-hong; Zhang, Yuan-yuan; Zhang, Yu-jie; Sun, Zhen-xiao

    2015-04-01

    Rats were continuously given different doses of water extract of Polygonum multiflorum (1, 10 g x kg(-1)) for 7 days to prepare liver microsomes. Cocktail in vitro incubation approach and Real-time quantitative PCR technology were used to observe the effect of water extract of P. multiflorum on CYP450 enzymatic activities and mRNA expressions in rat liver. Compared with the blank control group, both 1, 10 g x kg(-1) water extract of P. multiflorum treated groups showed significant inhibitions in CYP2E1 enzymatic activities and mRNA expressions (enzymatic activities of CYP2E1, P < 0.01; mRNA expression of CYP2E1, P < 0.05 in 1 g x kg(-1) group, P < 0.01 in 10 g x kg(-1) group). They revealed a significant increase in the enzymatic activity of CYP3A1 (P < 0.01), but without significant change in mRNA expressions. The 10 g x kg(-1) group showed a significant inhibition in CYP1A2 enzymatic activities and mRNA expressions in rat livers (P < 0.01).

  8. Targeting of GFP-Cre to the mouse Cyp11a1 locus both drives cre recombinase expression in steroidogenic cells and permits generation of Cyp11a1 knock out mice.

    Directory of Open Access Journals (Sweden)

    Laura O'Hara

    Full Text Available To permit conditional gene targeting of floxed alleles in steroidogenic cell-types we have generated a transgenic mouse line that expresses Cre Recombinase under the regulation of the endogenous Cytochrome P450 side chain cleavage enzyme (Cyp11a1 promoter. Mice Carrying the Cyp11a1-GC (GFP-Cre allele express Cre Recombinase in fetal adrenal and testis, and adrenal cortex, testicular Leydig cells (and a small proportion of Sertoli cells, theca cells of the ovary, and the hindbrain in postnatal life. Circulating testosterone concentration is unchanged in Cyp11(+/GC males, suggesting steroidogenesis is unaffected by loss of one allele of Cyp11a1, mice are grossly normal, and Cre Recombinase functions to recombine floxed alleles of both a YFP reporter gene and the Androgen Receptor (AR in steroidogenic cells of the testis, ovary, adrenal and hindbrain. Additionally, when bred to homozygosity (Cyp11a1(GC/GC , knock-in of GFP-Cre to the endogenous Cyp11a1 locus results in a novel mouse model lacking endogenous Cyp11a1 (P450-SCC function. This unique dual-purpose model has utility both for those wishing to conditionally target genes within steroidogenic cell types and for studies requiring mice lacking endogenous steroid hormone production.

  9. Modulation of mRNA expression and activities of xenobiotic metabolizing enzymes, CYP1A1, CYP1A2, CYP2E1, GPx and GSTP1 by the Salicornia freitagii extract in HT-29 human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Altay Ahmet

    2017-01-01

    Full Text Available Phase I-II detoxification and antioxidant enzymes are responsible for the detoxification and elimination of activated carcinogens, acting as important biomarkers for chemoprevention. Among them, cytochrome P450s plays a prominent role in the metabolic activation of xenobiotics. The herb Salicornia freitagii (SF (Amaranthaceae is known for its anticancer, antioxidant, antidiabetic and antiinflammatory activities. In this study, we determined the bioactive phenolics in the SF methanol extract and investigated its antiproliferative potential in HT-29 human colon cancer cells. We also investigated the modulation of some phase I and II enzyme (CYP 1A1, 1A2, 2E1, GSTP1 and GPx mRNA expression and enzymatic activities by the SF extract and its major bioactive phenolic compounds. LC/MS-MS analysis showed that the main phenolic compounds of the methanolic SF extract are vanillic acid (48 μg/100g and p-coumaric acid (10.8 μg/100g. SF extract, vanillic acid and p-coumaric acid exhibited high antiproliferative activities in HT-29 cells, with IC50 values of 81.79μg/mL, 98.8 μM and 221.6 μM, respectively. The mRNA expression levels of CYP1A2 and CYP2E1 were decreased, while those of GSTP1 and GPx in HT-29 cells were increased after application of either the SF extract or vanillic acid. The SF extract by itself also increased the activities of GPx and GSTP1 enzymes 1.68- and 1.49-fold, respectively. Our data indicate that the SF extract and its major bioactive compound, vanillic acid, could exert a modulatory effect on the expression of enzymes that are involved in xenobiotic activation and detoxification pathways in the gastrointestinal tract. For this reason, SF can be considered as a natural source of chemopreventive agents.

  10. An in vitro system for measuring genotoxicity mediated by human CYP3A4 in Saccharomyces cerevisiae.

    Science.gov (United States)

    Fasullo, Michael; Freedland, Julian; St John, Nicholas; Cera, Cinzia; Egner, Patricia; Hartog, Matthew; Ding, Xinxin

    2017-05-01

    P450 activity is required to metabolically activate many chemical carcinogens, rendering them highly genotoxic. CYP3A4 is the most abundantly expressed P450 enzyme in the liver, accounting for most drug metabolism and constituting 50% of all hepatic P450 activity. CYP3A4 is also expressed in extrahepatic tissues, including the intestine. However, the role of CYP3A4 in activating chemical carcinogens into potent genotoxins is unclear. To facilitate efforts to determine whether CYP3A4, per se, can activate carcinogens into potent genotoxins, we expressed human CYP3A4 in the DNA-repair mutant (rad4 rad51) strain of budding yeast Saccharomyces cerevisiae and tested the novel, recombinant yeast strain for ability to report CYP3A4-mediated genotoxicity of a well-known genotoxin, aflatoxin B1 (AFB1 ). Yeast microsomes containing human CYP3A4, but not those that do not contain CYP3A4, were active in hydroxylation of diclofenac, a known CYP3A4 substrate drug, a result confirming CYP3A4 activity in the recombinant yeast strain. In cells exposed to AFB1 , the expression of CYP3A4 supported DNA adduct formation, chromosome rearrangements, cell death, and expression of the large subunit of ribonucleotide reductase, Rnr3, a marker of DNA damage. Expression of CYP3A4 also conferred sensitivity in rad4 rad51 mutants exposed to colon carcinogen, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). These data confirm the ability of human CYP3A4 to mediate the genotoxicity of AFB1 , and illustrate the usefulness of the CYP3A4-expressing, DNA-repair mutant yeast strain for screening other chemical compounds that are CYP3A4 substrates, for potential genotoxicity. Environ. Mol. Mutagen. 58:217-227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. MicroRNA hsa-miR-370-3p suppresses the expression and induction of CYP2D6 by facilitating mRNA degradation

    Science.gov (United States)

    Zeng, Linjuan; Chen, Yinting; Wang, Yong; Yu, Li-Rong; Knox, Bridgett; Chen, Jiwei; Shi, Tieliu; Chen, Si; Ren, Zhen; Guo, Lei; Wu, Yuanfeng; Liu, David; Huang, Kaihong; Tong, Weida; Yu, Dianke; Ning, Baitang

    2017-01-01

    Cytochrome P450 2D6 (CYP2D6) participates in the metabolism of approximately 20–25% of prescribed drugs. Genetic polymorphisms influence the expression and/or activity of CYP2D6, and inter-individual differences in drug activation and elimination caused by CYP2D6 genetic variants were reported. However, little is known about the potential modulation of CYP2D6 expression by microRNAs (miRNAs). In the current study, by using in silico prediction of the stabilities of miRNA/mRNA complexes, we screened 38 miRNA candidates that may interact with the transcript of CYP2D6. An inverse correlation between the expression of miRNA hsa-miR-370-3p and the expression of CYP2D6 was observed in human liver tissue samples. Electrophoretic mobility shift assays confirmed that hsa-miR-370-3p was able to directly bind to its cognate target within the coding region of the CYP2D6 transcript. The transfection of hsa-miR-370-3p mimics into the HepG2CYP2D6 cell line, a genetically modified cell line that overexpresses exogenous CYP2D6, was able to suppress the expression of CYP2D6 significantly at both mRNA and protein levels. The transfection of hsa-miR-370-3p mimics was also able to inhibit endogenous mRNA expression and/or protein production of CYP2D6 in HepaRG cells. Furthermore, in HepaRG, HepG2, and Huh7 cells, dexamethasone-induced expression of CYP2D6 was inhibited by hsa-miR-370-3p mimics. To investigate whether the miRNA mediated suppression is caused by inhibiting protein translation or promoting mRNA degradation, an actinomycin D assay was used to measure the stability of CYP2D6 transcripts. The results indicated that hsa-miR-370-3p mimics facilitated significantly the degradation of CYP2D6 mRNA. In addition, proteomics analyses of proteins isolated from the miRNA/mRNA/protein complex suggested that a group of multifunctional proteins facilitated the interaction between hsa-miR-370-3p and CYP2D6, thereby promoting mRNA degradation. PMID:28552654

  12. CYP3A4 expression in breast cancer and its association with risk factors in Mexican women.

    Science.gov (United States)

    Floriano-Sanchez, Esau; Rodriguez, Noemi Cardenas; Bandala, Cindy; Coballase-Urrutia, Elvia; Lopez-Cruz, Jaime

    2014-01-01

    In Mexico, breast cancer (BCa) is the leading type of cancer in women. Cytochrome P450 (CYP450) is a superfamily of major oxidative enzymes that metabolize carcinogens and many antineoplastic drugs. In addition, these enzymes have influence on tumor development and tumor response to therapy. In this report, we analyzed the protein expression in patients with BCa and in healthy women. Links with some clinic-pathological characteristic were also assessed. Immunohistochemical analyses were conducted on 48 sets of human breast tumors and normal breast tissues enrolled in Hospital Militar de Especialidades de la Mujer y Neonatologia and Hospital Central Militar, respectively, during the time period from 2010 to 2011. Informed consent was obtained from all participants. Statistical analysis was performed using χ2 or Fisher exact tests to estimate associations and the Mann Whitney U test for comparison of group means. We found a significant CYP3A4 overexpression in BCa stroma and gland regions in comparison with healthy tissue. A significant association between protein expression with smoking, alcoholism and hormonal contraceptives use was also observed. Additionally, we observed estrogen receptor (ER) and progesterone receptor (PR) positive association in BCa. We suggest that CYP3A4 expression promotes BCa development and can be used in the prediction of tumor response to different treatments. One therapeutic approach may thus be to block CYP3A4 function.

  13. Increased exposure of vitamin A by Chrysanthemum morifolium Ramat extract in rat was not via induction of CYP1A1, CYP1A2, and CYP2B1.

    Science.gov (United States)

    Wang, Ping; Pan, Xian; Chen, Guanming; Li, Jia; Liu, Li; Liu, Xiaodong; Jin, Shi; Xie, Lin; Wang, Guangji

    2012-06-01

    The aim of this study was to investigate the effect of Chrysanthemum morifolium Ramat (CM) extract on the pharmacokinetics of retinol and activities of cytochrome P450s (CYP450s) related to retinoid metabolism. Rats were treated with CM extract for 15 d. Plasma concentrations of retinol were measured following oral administration of retinol (45 mg/kg). Basal levels of retinol and retinoic acid in serum and liver were also measured. 7-Ethoxyresorufin-O-deethylase activity, phenacetin-O-deethylase activity, and 7-pentoxyresorufin-O-deethylase activities were used to assay the activities of CYP1A1, CYP1A2, and CYP2B1 in hepatic microsomes of rats, respectively. Protein expressions of the 3 CYP450s were measured by western blot. Our studies demonstrated that CM extract dose-dependently increased basal level of retinol in serum. In pharmacokinetic experiment, CM extract dose-dependently increased plasma concentrations of retinol after oral administration of retinol to rats treated with CM extract. But activities and expressions of CYP1A1, CYP1A2, and CYP2B1 in hepatic microsomes of rats were also induced by CM extract. © 2012 Institute of Food Technologists®

  14. Subacute Nicotine Co-exposure Has No Effect on 2,2′,3,5′,6-Pentachlorobiphenyl Disposition But Alters Hepatic Cytochrome P450 Expression in the Male Rat

    Science.gov (United States)

    Flannery, Brenna M.; Kania-Korwel, Izabela; Lehmler, Hans-Joachim; Lein, Pamela J.

    2015-01-01

    Polychlorinated biphenyls (PCBs) are metabolized by cytochrome P450 2B enzymes (CYP2B) and nicotine is reported to alter CYP2B activity in the brain and liver. To test the hypothesis that nicotine influences PCB disposition, 2,2′,3,5′,6-pentachlorobiphenyl (PCB 95) and its metabolites were quantified in tissues of adult male Wistar rats exposed to PCB 95 (6 mg/kg/d, p.o.) in the absence or presence of nicotine (1.0 mg/kg/d of the tartrate salt, s.c.) for 7 consecutive days. PCB 95 was enantioselectively metabolized to hydroxylated (OH-) PCB metabolites, resulting in a pronounced enrichment of E1-PCB 95 in all tissues investigated. OH-PCBs were detected in blood and liver tissue, but were below the detection limit in adipose, brain and muscle tissues. Co-exposure to nicotine did not change PCB 95 disposition. CYP2B1 mRNA and CYP2B protein were not detected in brain tissues but were detected in liver. Co-exposure to nicotine and PCB 95 increased hepatic CYP2B1 mRNA but did not change CYP2B protein levels relative to vehicle control animals. However, hepatic CYP2B protein in animals co-exposed to PCB 95 and nicotine were reduced compared to animals that received only nicotine. Quantification of CYP2B3, CYP3A2 and CYP1A2 mRNA identified significant effects of nicotine and PCB 95 co-exposure on hepatic CYP3A2 and hippocampal CYP1A2 transcripts. Our findings suggest that nicotine co-exposure does not significantly influence PCB 95 disposition in the rat. However, these studies suggest a novel influence of PCB 95 and nicotine co-exposure on hepatic cytochrome P450 (P450) expression that may warrant further attention due to the increasing use of e-cigarettes and related products. PMID:26463278

  15. Methadone Induces the Expression of Hepatic Drug-Metabolizing Enzymes through the Activation of Pregnane X Receptor and Constitutive Androstane Receptor

    Science.gov (United States)

    Tolson, Antonia H.; Li, Haishan; Eddington, Natalie D.; Wang, Hongbing

    2009-01-01

    Methadone (MD) is the most established substance abuse pharmacotherapy of choice for the management of heroin dependence. To date, drug-drug interactions involving MD have been characterized asymmetrically among existing reports, which describe how other drugs affect the metabolic or pharmacokinetic profiles of MD; however, limited information is available regarding the potential for MD to influence similar fates of coadministered drugs. Moreover, little to no mechanistic evidence has been explored. Here, we show that MD induces hepatic drug-metabolizing enzymes (DMEs) through the activation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Real-time polymerase chain reaction analysis of human hepatocyte cultures revealed that MD induces the mRNA expression of CYP2B6, CYP3A4, UGT1A1, and multidrug resistance 1 in a concentration-related manner, with the maximal induction of CYP2B6 challenging that of the induction by rifampicin. Furthermore, MD-mediated induction of CYP2B6 and CYP3A4 proteins was observed in Western blot analysis. In cell-based reporter assays, MD significantly increased human (h) PXR-mediated CYP2B6 reporter activities but exhibited minimal effect on hCAR activation as a result of the constitutive activity of hCAR in HepG2 cells. Further studies revealed that treatment with MD resulted in significant nuclear accumulation of adenovirus/enhanced yellow fluorescent protein tagged-hCAR in human hepatocytes, which has been regarded as the initial step of CAR activation. Additional analysis of the two enantiomers of MD, R-(–)-MD (active) and S-(+)-MD (inactive), indicates the lack of stereoselectivity pertaining to MD-mediated DME induction. Overall, our results show that MD induces the hepatic expression of multiple DMEs by activating PXR- and CAR-mediated pathways. PMID:19520773

  16. Expression of the vitamin D metabolizing enzyme CYP24A1 at the annulus of human spermatozoa may serve as a novel marker of semen quality

    DEFF Research Database (Denmark)

    Jensen, Martin Blomberg; Jørgensen, A; Nielsen, J E

    2012-01-01

    Vitamin D (VD) is important for male reproduction in mammals and the VD receptor (VDR) and VD-metabolizing enzymes are expressed in human spermatozoa. The VD-inactivating enzyme CYP24A1 titrates the cellular responsiveness to VD, is transcriptionally regulated by VD, and has a distinct expression......) detection of CYP24A1. Another 40 men (22 young, 18 subfertile) were tested for in vitro effects of 1,25(OH)(2) D(3) on intracellular calcium concentration ([Ca(2+) ](i) ) and sperm motility. Double ICC staining showed that CYP24A1 and VDR were either concomitantly expressed or absent in 80...

  17. Expression of aromatase in radial glial cells in the brain of the Japanese eel provides insight into the evolution of the cyp191a gene in Actinopterygians.

    Directory of Open Access Journals (Sweden)

    Shan-Ru Jeng

    Full Text Available The cyp19a1 gene that encodes aromatase, the only enzyme permitting conversion of C19 aromatizable androgens into estrogens, is present as a single copy in the genome of most vertebrate species, except in teleosts in which it has been duplicated. This study aimed at investigating the brain expression of a cyp19a1 gene expressed in both gonad and brain of Japanese eel, a basal teleost. By means of immunohistochemistry and in situ hybridization, we show that cyp19a1 is expressed only in radial glial cells of the brain and in pituitary cells. Treatments with salmon pituitary homogenates (female or human chorionic gonadotrophin (male, known to turn on steroid production in immature eels, strongly stimulated cyp19a1 messenger and protein expression in radial glial cells and pituitary cells. Using double staining studies, we also showed that aromatase-expressing radial glial cells exhibit proliferative activity in both the brain and the pituitary. Altogether, these data indicate that brain and pituitary expression of Japanese eel cyp19a1 exhibits characteristics similar to those reported for the brain specific cyp19a1b gene in teleosts having duplicated cyp19a1 genes. This supports the hypothesis that, despite the fact that eels also underwent the teleost specific genome duplication, they have a single cyp19a1 expressed in both brain and gonad. Such data also suggest that the intriguing features of brain aromatase expression in teleost fishes were not gained after the whole genome duplication and may reflect properties of the cyp19a1 gene of ancestral Actinopterygians.

  18. CYP1A and metallothionein expression in the hepatopancreas of Merluccius merluccius and Mullus barbatus from the Adriatic Sea

    Directory of Open Access Journals (Sweden)

    MIRJANA MIHAILOVIĆ

    2010-08-01

    Full Text Available The enzyme CYP1A is an established biomarker of fish exposure to polycyclic aromatic hydrocarbons (PAHs and polychlorinated biphenyls (PCBs. The metallothioneins (MT, a family of Cys-rich proteins, bind a wide range of metals and participate in their metabolism. The aim of the study was to examine the correlation between CYP1A and MT expression in commercially important fish species Mullus barbatus and Merluccius merluccius and contaminants (PAHs, PCBs, toxic metals in seawater and sediment from three localities with different level of contamination in the Adriatic Sea in winter, i.e., Platamuni, Valdanos and the port of Bar. The relative concentration of CYP1A was the highest in both fish species from Bar. Increased concentrations of PCBs in the seawater were observed only in Bar. A species-specific higher increase in the protein concentration of CYP1A was observed in Mullus barbatus compared to Merluccius merluccius. The levels of MT were the highest in Merluccius merluccius from Bar and in Mullus barbatus from Valdanos. The induction of MT correlated with the elevated concentrations of Cu and Pb determined by chemical analysis of the seawater from Bar and Valdanos, respectively. According to the chemical analysis of the seawater and the biological response of the fish, the Platamuni locality exhibited the lowest level of contamination.

  19. Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions Vitamin D pathways unbalanced in breast lesions

    Directory of Open Access Journals (Sweden)

    Lopes Nair

    2010-09-01

    Full Text Available Abstract Background Breast cancer is a heterogeneous disease associated with different patient prognosis and responses to therapy. Vitamin D has been emerging as a potential treatment for cancer, as it has been demonstrated that it modulates proliferation, apoptosis, invasion and metastasis, among others. It acts mostly through the Vitamin D receptor (VDR and the synthesis and degradation of this hormone are regulated by the enzymes CYP27B1 and CYP24A1, respectively. We aimed to study the expression of these three proteins by immunohistochemistry in a series of breast lesions. Methods We have used a cohort comprising normal breast, benign mammary lesions, carcinomas in situ and invasive carcinomas and assessed the expression of the VDR, CYP27B1 and CYP24A1 by immunohistochemistry. Results The results that we have obtained show that all proteins are expressed in the various breast tissues, although at different amounts. The VDR was frequently expressed in benign lesions (93.5% and its levels of expression were diminished in invasive tumours (56.2%. Additionally, the VDR was strongly associated with the oestrogen receptor positivity in breast carcinomas. CYP27B1 expression is slightly lower in invasive carcinomas (44.6% than in benign lesions (55.8%. In contrast, CYP24A1 expression was augmented in carcinomas (56.0% in in situ and 53.7% in invasive carcinomas when compared with that in benign lesions (19.0%. Conclusions From this study, we conclude that there is a deregulation of the Vitamin D signalling and metabolic pathways in breast cancer, favouring tumour progression. Thus, during mammary malignant transformation, tumour cells lose their ability to synthesize the active form of Vitamin D and respond to VDR-mediated Vitamin D effects, while increasing their ability to degrade this hormone.

  20. An investigation of cytochrome p450 (CYP) and glutathione S-transferase (GST) isoenzyme protein expression and related interactions with phototherapy in patients with psoriasis vulgaris.

    Science.gov (United States)

    Karadag, Ayse S; Uzunçakmak, Tuğba K; Ozkanli, Seyma; Oguztuzun, Serpil; Moran, Busra; Akbulak, Ozge; Ozlu, Emin; Zemheri, Itir E; Bilgili, Serap G; Akdeniz, Necmettin

    2017-02-01

    Oxidative stress may play an important role in the pathogenesis of psoriasis. Glutathione S-transferases (GSTs) make up a group of antioxidant enzymes. Cytochrome p450 (CYP) enzymes can influence oxidation and reduction reactions. We investigated the potential effects of GST and CYP enzymes in the pathogenesis of psoriasis. The study included 32 psoriasis patients and 22 healthy subjects. Psoriasis patients were administered 20 sessions of narrowband ultraviolet B phototherapy. Expressions of GST and CYP enzymes were assessed by immunohistochemical staining. Expression levels of GSTK1, GSTM1, and GSTT1 were significantly higher in psoriasis than in control tissues (P = 0.022, P = 0.001, and P = 0.006, respectively). Pre- and post-treatment expression was similar. Expression of CYP1A1 and CYP2E1 was significantly higher in pre- (P = 0.003 and P = 0.001, respectively) and post-treatment (P = 0.003 and P = 0.001, respectively) psoriatic tissues than in control tissues. No significant differences in CYP1B1 levels between the study and control groups were detected before treatment (P > 0.05). However, CYP1B1 levels were higher in post-treatment psoriatic tissue than in control tissue (P = 0.045). The significant increases in expression of GSTK1, GSTM1, and GSTT1 in psoriasis may reflect the increased activation of GST in response to excessive free radical formation from activated neutrophils or ultraviolet exposure to maintain antioxidant capacity in psoriasis. Furthermore, expressions of CYP1A1 and CYP2E1 represent important enzymatic systems in psoriasis. These findings suggest that psoriasis is an oxidative stress condition, although phototherapy does not affect these enzymatic systems. Further investigation is required. © 2016 The International Society of Dermatology.

  1. Metformin Represses Drug-Induced Expression of CYP2B6 by Modulating the Constitutive Androstane Receptor Signaling

    Science.gov (United States)

    Yang, Hui; Garzel, Brandy; Heyward, Scott; Moeller, Timothy; Shapiro, Paul

    2014-01-01

    Metformin is currently the most widely used drug for the treatment of type 2 diabetes. Mechanistically, metformin interacts with many protein kinases and transcription factors that alter the expression of numerous downstream target genes governing lipid metabolism, cell proliferation, and drug metabolism. The constitutive androstane receptor (CAR, NR1i3), a known xenobiotic sensor, has recently been recognized as a novel signaling molecule, in that its activation could be regulated by protein kinases in addition to the traditional ligand binding. We show that metformin could suppress drug-induced expression of CYP2B6 (a typical target gene of CAR) by modulating the phosphorylation status of CAR. In human hepatocytes, metformin robustly suppressed the expression of CYP2B6 induced by both indirect (phenobarbital) and direct CITCO [6-(4-chlorophenyl)imidazo[2,1-b]1,3thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime] activators of human CAR. Mechanistic investigation revealed that metformin specifically enhanced the phosphorylation of threonine-38 of CAR, which blocks CAR nuclear translocation and activation. Moreover, we showed that phosphorylation of CAR by metformin was primarily an AMP-activated protein kinase– and extracellular signal-regulated kinase 1/2–dependent event. Additional two-hybrid and coimmunoprecipitation assays demonstrated that metformin could also disrupt CITCO-mediated interaction between CAR and the steroid receptor coactivator 1 or the glucocorticoid receptor-interacting protein 1. Our results suggest that metformin is a potent repressor of drug-induced CYP2B6 expression through specific inhibition of human CAR activation. Thus, metformin may affect the metabolism and clearance of drugs that are CYP2B6 substrates. PMID:24252946

  2. Expression of CYP4V2 in human THP1 macrophages and its transcriptional regulation by peroxisome proliferator-activated receptor gamma.

    Science.gov (United States)

    Yi, Myeongjin; Shin, Jae-Gook; Lee, Su-Jun

    2017-09-01

    Because macrophages respond to a variety of pathological and pharmacological reagents, understanding the role of P450s in macrophages is important for therapeutic intervention. There has been a lack of research on CYP4 in macrophages, but fatty acid accumulation and lipid trafficking in macrophages have been suggested to be a main cause of atherosclerosis. All human CYP4 genes (n=12) were screened in THP1 macrophages by gene-specific reverse transcriptase-polymerase chain reaction (RT-PCR). Only CYP4V2 exhibited strong expression of both mRNA and protein. Expression levels of both CYP4V2 mRNA and protein were significantly reduced after treatment with peroxisome proliferator-activated receptor gamma (PPARγ) antagonist GW9662. However, the expression levels of CYP4V2 were not changed by PPARα antagonist (GW6471) and liver X receptor alpha antagonist (22-S hydroxycholesterol). A metabolite of the CYP4V2 enzyme, 12-hydroxydodecanoic acid, was detected in THP1 macrophages, and this metabolite was significantly decreased after treatment with the PPARγ inhibitor GW9662 (>80% decreased, pmacrophages, and its expression was regulated by PPARγ. Further study is required to understand the role of CYP4V2 with regard to fat accumulation in the activated macrophage and atherosclerotic plaque development. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effects of meal composition and meal timing on the expression of genes involved in hepatic drug metabolism in rats.

    Directory of Open Access Journals (Sweden)

    E M de Vries

    Full Text Available With chronotherapy, drug administration is synchronized with daily rhythms in drug clearance and pharmacokinetics. Daily rhythms in gene expression are centrally mastered by the suprachiasmatic nucleus of the hypothalamus as well as by tissue clocks containing similar molecular mechanisms in peripheral organs. The central timing system is sensitive to changes in the external environment such as those of the light-dark cycle, meal timing and meal composition. We investigated how changes in diet composition and meal timing would affect the daily hepatic expression rhythms of the nuclear receptors PXR and CAR and of enzymes involved in P450 mediated drug metabolism, as such changes could have consequences for the practice of chronotherapy.Rats were subjected to either a regular chow or a free choice high-fat-high-sugar (fcHFHS diet. These diets were provided ad libitum, or restricted to either the light phase or the dark phase. In a second experiment, rats had access to chow either ad libitum or in 6 meals equally distributed over 24 hours.Pxr, Alas1 and Por displayed significant day-night rhythms under ad libitum chow fed conditions, which for Pxr was disrupted under fcHFHS diet conditions. Although no daily rhythms were detected in expression of CAR, Cyp2b2 and Cyp3a2, the fcHFHS diet did affect basal expression of these genes. In chow fed rats, dark phase feeding induced a diurnal rhythm in Cyp2b2 expression while light phase feeding induced a diurnal rhythm in Car expression and completely shifted the peak expression of Pxr, Car, Cyp2b2, Alas1 and Por. The 6-meals-a-day feeding only abolished the Pxr rhythm but not the rhythms of the other genes.We conclude that although nuclear receptors and enzymes involved in the regulation of hepatic drug metabolism are sensitive to meal composition, changes in meal timing are mainly effectuated via changes in the molecular clock.

  4. Molecular cloning and expression profile of a Halloween gene encoding Cyp307A1 from the seabuckthorn carpenterworm, Holcocerus hippophaecolus.

    Science.gov (United States)

    Zhou, Jiao; Zhang, Haolin; Li, Juan; Sheng, Xia; Zong, Shixiang; Luo, Youqing; Nagaoka, Kentaro; Weng, Qiang; Watanabe, Gen; Taya, Kazuyoshi

    2013-01-01

    20-Hydroxyecdyone, an active form of ecdysteroid, is the key hormone in insect growth and development. Halloween genes encode ecdysteroidogenic enzymes, including cytochrome P450 monooxygenase. CYP307A1 (spook) is accepted as an enzyme acting in the so-called 'black box' that includes a series of hypothetical and unproven reactions that finally result in the oxidation of 7-dehydrocholesterol to diketol. In this study, the Holcocerus hippophaecolus Hua (Lepidoptera: Cossidae) CYP307A1 (HhSpo) gene was identified and characterized. The obtained cDNA sequence was 2084 base pairs with an open reading frame of 537 animo acids, in which existed conserved motifs of CYP450 enzymes. The transcript profiles of HhSpo were analyzed in various tissues of final instar larvae. The highest expression was observed in the prothoracic gland, while expression level was low but significant in other tissues. These results suggest that the sequence character and expression profile of HhSpo were well conserved and provided the basic information for its functional analysis.

  5. Increased CYP1A1 expression in human exfoliated urothelial cells of cigarette smokers compared to non-smokers

    Energy Technology Data Exchange (ETDEWEB)

    Doerrenhaus, Angelika; Roos, Peter H. [Institute for Occupational Physiology at the University Dortmund, Dortmund (Germany); Mueller, Tina [Institute for Occupational Physiology at the University Dortmund, Dortmund (Germany); University Dortmund, Department of Statistics, Mathematical Statistics with Applications in Biometrics, Dortmund (Germany)

    2007-01-15

    Polycyclic aromatic hydrocarbons, arylamines and nitrosamines, constituents of cigarette smoke, are known inducers of bladder cancer. The biochemical response of the target tissue, the bladder urothelium, following inhalation of cigarette smoke has not been studied so far. We used exfoliated transitional urothelial cells from human urine samples to analyze effects of smoking on induction of the cytochrome P450 enzyme CYP1A1. Samples of 40 subjects, including male and female smokers and non-smokers, were examined. A prerequisite for the immunofluorescence microscopic analysis of the cells was the enrichment of the urothelial cell population. This was achieved by a new method which is based on magnetic cell sorting exploiting specific binding of immobilized Griffonia simplicifolia lectin to the surface of urothelial cells. Immunostaining of the final cell preparation with a monoclonal antibody to CYP1A1 showed that about 6% of the urothelial cells of non-smokers stained positive for CYP1A1. However, this fraction of positive cells was more than 44% of the urothelial cells in samples from cigarette smokers. In spite of the individual variation, the difference was statistically significant. There were no gender-related differences in the portion of CYP1A1 expressing urothelial cells of smokers and non-smokers. In essence, we show for the first time that human urothelial cells respond to cigarette smoking by induction of CYP1A1. The approach opens new fields of mechanistic and biomarker research with respect to the pathogenetic processes of cancer development in the human bladder. (orig.)

  6. Classification of rice (oryza sativa l. japonica nipponbare) immunophilins (fkbps, cyps) and expression patterns under water stress

    Science.gov (United States)

    2010-01-01

    Background FK506 binding proteins (FKBPs) and cyclophilins (CYPs) are abundant and ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, which regulate much of metabolism through a chaperone or an isomerization of proline residues during protein folding. They are collectively referred to as immunophilin (IMM), being present in almost all cellular organs. In particular, a number of IMMs relate to environmental stresses. Results FKBP and CYP proteins in rice (Oryza sativa cv. Japonica) were identified and classified, and given the appropriate name for each IMM, considering the ortholog-relation with Arabidopsis and Chlamydomonas or molecular weight of the proteins. 29 FKBP and 27 CYP genes can putatively be identified in rice; among them, a number of genes can be putatively classified as orthologs of Arabidopsis IMMs. However, some genes were novel, did not match with those of Arabidopsis and Chlamydomonas, and several genes were paralogs by genetic duplication. Among 56 IMMs in rice, a significant number are regulated by salt and/or desiccation stress. In addition, their expression levels responding to the water-stress have been analyzed in different tissues, and some subcellular IMMs located by means of tagging with GFP protein. Conclusion Like other green photosynthetic organisms such as Arabidopsis (23 FKBPs and 29 CYPs) and Chlamydomonas (23 FKBs and 26 CYNs), rice has the highest number of IMM genes among organisms reported so far, suggesting that the numbers relate closely to photosynthesis. Classification of the putative FKBPs and CYPs in rice provides the information about their evolutional/functional significance when comparisons are drawn with the relatively well studied genera, Arabidopsis and Chlamydomonas. In addition, many of the genes upregulated by water stress offer the possibility of manipulating the stress responses in rice. PMID:21087465

  7. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Han, Eun Hee [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  8. Influence of vitamin D-related gene polymorphisms (CYP27B and VDR on the response to interferon/ribavirin therapy in chronic hepatitis C.

    Directory of Open Access Journals (Sweden)

    Elena García-Martín

    Full Text Available Vitamin D exerts immunomodulatory effects on the host response against infection with hepatitis C virus (HCV. This study was performed to assess the putative influence of polymorphisms in vitamin D-related genes on the response to antiviral therapy in patients with chronic hepatitis C (CHC.Single nucleotide polymorphisms (SNPs in CYP27B-1260 gene promoter (rs10877012AC and in vitamin D receptor (VDR gene rs2228570TC, rs1544410CT, rs7975232AC and rs731236AT were analyzed in a cohort of 238 Caucasian CHC patients treated with pegylated interferon (Peg-IFN plus ribavirin (RBV. Multivariate analyses were performed to exclude confounding effects of well-known baseline predictors of response to therapy (HCV genotype and load, IL28B genotype, age, and GGT and serum cholesterol.Three SNPs at the VDR gene (rs1544410, rs7975232 and rs731236 were in strong linkage disequilibrium, with the CCA haplotype predicting therapeutic failure [Odds ratio 2.743; (95% C.I. 1.313-5.731, p = 0.007]. The carrier state of the VDR rs2228570 T allele was inversely related to the probability of therapeutic failure [Odds ratio 0.438; 95 C.I. (0.204-0.882, p = 0.021]. No relation existed between CYP27B-1260 rs10877012 polymorphism and response to therapy. The area under the operating curve (AUROC based on the model including all variables significantly related to the response to therapy was 0.846 (95% confidence interval = 0.793-0.899.VDR gene polymorphisms are independently related to the response to Peg-IFN+RBV therapy in chronic hepatitis C and could be used as complementary biomarkers of response when included in a prediction algorithm in association with demographic, virologic, biochemical and genetic traits.

  9. Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression.

    Directory of Open Access Journals (Sweden)

    Li Zhao

    2011-04-01

    Full Text Available T helper cells that produce IL-17 (Th17 cells have recently been identified as the third distinct subset of effector T cells. Emerging data suggests that Th17 cells play an important role in the pathogenesis of many liver diseases by regulating innate immunity, adaptive immunity, and autoimmunity. In this study, we examine the role and mechanism of Th17 cells in the pathogenesis of autoimmune hepatitis (AIH. The serum levels of IL-17 and IL-23, as well as the frequency of IL-17+ cells in the liver, were significantly elevated in patients with AIH, compared to other chronic hepatitis and healthy controls. The hepatic expressions of IL-17, IL-23, ROR-γt, IL-6 and IL-1β in patients with AIH were also significantly increased and were associated with increased inflammation and fibrosis. IL-17 induces IL-6 expression via the MAPK signaling pathway in hepatocytes, which, in turn, may further stimulate Th17 cells and forms a positive feedback loop. In conclusion, Th17 cells are key effector T cells that regulate the pathogenesis of AIH, via induction of MAPK dependent hepatic IL-6 expression. Blocking the signaling pathway and interrupting the positive feedback loop are potential therapeutic targets for autoimmune hepatitis.

  10. Effects of Neonicotinoids on Promoter-Specific Expression and Activity of Aromatase (CYP19) in Human Adrenocortical Carcinoma (H295R) and Primary Umbilical Vein Endothelial (HUVEC) Cells.

    Science.gov (United States)

    Caron-Beaudoin, Élyse; Denison, Michael S; Sanderson, J Thomas

    2016-01-01

    The enzyme aromatase (CYP19; cytochrome P450 19) in humans undergoes highly tissue- and promoter-specific regulation. In hormone-dependent breast cancer, aromatase is over-expressed via several normally inactive promoters (PII, I.3, I.7). Aromatase biosynthesizes estrogens, which stimulate breast cancer cell proliferation. The placenta produces estrogens required for healthy pregnancy and the major placental CYP19 promoter is I.1. Exposure to certain pesticides, such as atrazine, is associated with increased CYP19 expression, but little is known about the effects of neonicotinoid insecticides on CYP19. We developed sensitive and robust RT-qPCR methods to detect the promoter-specific expression of CYP19 in human adrenocortical carcinoma (H295R) and primary umbilical vein endothelial (HUVEC) cells, and determined the potential promoter-specific disruption of CYP19 expression by atrazine and the commonly used neonicotinoids imidacloprid, thiacloprid, and thiamethoxam. In H295R cells, atrazine concentration-dependently increased PII- and I.3-mediated CYP19 expression and aromatase catalytic activity. Thiacloprid and thiamethoxam induced PII- and I.3-mediated CYP19 expression and aromatase activity at relatively low concentrations (0.1-1.0 µM), exhibiting non-monotonic concentration-response curves with a decline in gene induction and catalytic activity at higher concentrations. In HUVEC cells, atrazine slightly induced overall (promoter-indistinct) CYP19 expression (30 µM) and aromatase activity (≥ 3 µM), without increasing I.1 promoter activity. None of the neonicotinoids increased CYP19 expression or aromatase activity in HUVEC cells. Considering the importance of promoter-specific (over)expression of CYP19 in disease (breast cancer) or during sensitive developmental periods (pregnancy), our newly developed RT-qPCR methods will be helpful tools in assessing the risk that neonicotinoids and other chemicals may pose to exposed women. © The Author 2015

  11. Alteration in the Expression of Cytochrome P450s (CYP1A1, CYP2E1, and CYP3A11 in the Liver of Mouse Induced by Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Bangjun Zhang

    2015-03-01

    Full Text Available Microcystins (MCs are cyclic heptapeptide toxins and can accumulate in the liver. Cytochrome P450s (CYPs play an important role in the biotransformation of endogenous substances and xenobiotics in animals. It is unclear if the CYPs are affected by MCs exposure. The objective of this study was to evaluate the effects of microcystin-LR (MCLR on cytochrome P450 isozymes (CYP1A1, CYP2E1, and CYP3A11 at mRNA level, protein content, and enzyme activity in the liver of mice the received daily, intraperitoneally, 2, 4, and 8 µg/kg body weight of MCLR for seven days. The result showed that MCLR significantly decreased ethoxyresorufin-O-deethylase (EROD (CYP1A1 and erythromycin N-demthylase (ERND (CYP3A11 activities and increased aniline hydroxylase (ANH activity (CYP2E1 in the liver of mice during the period of exposure. Our findings suggest that MCLR exposure may disrupt the function of CYPs in liver, which may be partly attributed to the toxicity of MCLR in mice.

  12. Up-Regulation of CYP2C19 Expression by BuChang NaoXinTong via PXR Activation in HepG2 Cells.

    Directory of Open Access Journals (Sweden)

    Hong Sun

    Full Text Available Cytochrome P450 2C19 (CYP2C19 is an important drug-metabolizing enzyme (DME, which is responsible for the biotransformation of several kinds of drugs such as proton pump inhibitors, platelet aggregation inhibitors and antidepressants. Previous studies showed that Buchang NaoXinTong capsules (NXT increased the CYP2C19 metabolic activity in vitro and enhanced the antiplatelet effect of clopidogrel in vivo. However, the underlying molecular mechanism remained unclear. In the present study, we examined whether Pregnane X receptor (PXR plays a role in NXT-mediated regulation of CYP2C19 expression.We applied luciferase assays, real-time quantitative PCR (qPCR, Western blotting and cell-based analysis of metabolic activity experiments to investigate the NXT regulatory effects on the CYP2C19 promoter activity, the mRNA/ protein expression and the metabolic activity.Our results demonstrated that NXT significantly increased the CYP2C19 promoter activity when co-transfected with PXR in HepG2 cells. Mutations in PXR responsive element abolished the NXT inductive effects on the CYP2C19 promoter transcription. Additionally, NXT incubation (150 and 250μg/mL also markedly up-regulated endogenous CYP2C19 mRNA and protein levels in PXR-transfected HepG2 cells. Correspondingly, NXT leaded to a significant enhancement of the CYP2C19 catalytic activity in PXR-transfected HepG2 cells.In summary, this is the first study to suggest that NXT could induce CYP2C19 expression via PXR activation.

  13. Relative Expression of Vitamin D Hydroxylases, CYP27B1 and CYP24A1, and of Cyclooxygenase-2 and Heterogeneity of Human Colorectal Cancer in Relation to Age, Gender, Tumor Location, and Malignancy: Results from Factor and Cluster Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brozek, Wolfgang, E-mail: wolfgang.brozek@gmx.at; Manhardt, Teresa; Kállay, Enikö; Peterlik, Meinrad; Cross, Heide S. [Department of Pathophysiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)

    2012-07-26

    Previous studies on the significance of vitamin D insufficiency and chronic inflammation in colorectal cancer development clearly indicated that maintenance of cellular homeostasis in the large intestinal epithelium requires balanced interaction of 1,25-(OH){sub 2}D{sub 3} and prostaglandin cellular signaling networks. The present study addresses the question how colorectal cancer pathogenesis depends on alterations of activities of vitamin D hydroxylases, i.e., CYP27B1-encoded 25-hydroxyvitamin D-1α-hydroxylase and CYP24A1-encoded 25-hydroxyvitamin D-24-hydroxylase, and inflammation-induced cyclooxygenase-2 (COX-2). Data from 105 cancer patients on CYP27B1, VDR, CYP24A1, and COX-2 mRNA expression in relation to tumor grade, anatomical location, gender and age were fit into a multivariate model of exploratory factor analysis. Nearly identical results were obtained by the principal factor and the maximum likelihood method, and these were confirmed by hierarchical cluster analysis: Within the eight mutually dependent variables studied four independent constellations were found that identify different features of colorectal cancer pathogenesis: (i) Escape of COX-2 activity from restraints by the CYP27B1/VDR system can initiate cancer growth anywhere in the colorectum regardless of age and gender; (ii) variations in COX-2 expression are mainly responsible for differences in cancer incidence in relation to tumor location; (iii) advancing age has a strong gender-specific influence on cancer incidence; (iv) progression from well differentiated to undifferentiated cancer is solely associated with a rise in CYP24A1 expression.

  14. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus

    Energy Technology Data Exchange (ETDEWEB)

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon, E-mail: jeonghoon@skku.edu; Lee, Jae-Seong, E-mail: jslee2@skku.edu

    2017-03-15

    Highlights: • Impaired effects of UV-B on the copepod Tigriopus japonicus were examined. • Modulation of entire CYP genes were analyzed in response to UV-B. • CYP inhibitor (PBO) confirmed the role of CYP in UV-B induced mortality. • Low-dose UV-B found induce developmental delays, and higher doses cause reproductive impairments. • Study predicted the mechanistic effects of UV-B in copepods through the AhR-mediated up-regulation of CYP genes. - Abstract: To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P < 0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48 h LD10 and LD50 were 1.35 and 1.84 kJ/m{sup 2}, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5 kJ/m{sup 2}) induced developmental delays, and higher doses (6–18 kJ/m{sup 2}) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12 kJ/m{sup 2}) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.

  15. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis

    Science.gov (United States)

    Zhang, Xiaoyan; Li, Sha; Zhou, Yunfeng; Su, Wen; Ruan, Xiongzhong; Wang, Bing; Zheng, Feng; Warner, Margaret; Gustafsson, Jan-Åke; Guan, Youfei

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by simple hepatic steatosis (SS), nonalcoholic steatohepatitis (NASH), hepatic fibrosis, and cirrhosis. Dysregulated fatty acid metabolism in the liver plays a critical role in the pathogenesis of NAFLD. Cytochrome P450 omega-hydroxylase 4A14 (CYP4A14) is a homolog of human CYP4A hydroxylase that catalyzes omega-hydroxylation of medium-chain fatty acids and arachidonic acid in mice. The goal of this study was to determine the role of CYP4A14 in the development and the progression of NAFLD. Here, we showed that hepatic CYP4A expression was up-regulated in the livers of patients and three murine models of NAFLD. Adenovirus-mediated overexpression of CYP4A14 in the livers of C57BL/6 mice resulted in a fatty liver phenotype with a significant increase in hepatic fatty acid translocase (FAT/CD36) expression. In contrast, CYP4A14 gene-deficient mice fed a high-fat diet or a methionine and choline-deficient (MCD) diet exhibited attenuated liver lipid accumulation and reduced hepatic FAT/CD36 expression. In addition, hepatic inflammation and fibrosis was markedly ameliorated in MCD diet-fed CYP4A14-deficient mice. Collectively, CYP4A14 plays an important role in the pathogenesis of both SS and NASH and may represent a potential therapeutic target for the treatment of NAFLD. PMID:28270609

  16. UV-dependent production of 25-hydroxyvitamin D{sub 2} in the recombinant yeast cells expressing human CYP2R1

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi; Kamakura, Masaki [Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 (Japan); Ohta, Miho [Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, 4-4-1 Nanko-naka, Suminoe-ku, Osaka 559-0033 (Japan); Sakaki, Toshiyuki, E-mail: tsakaki@pu-toyama.ac.jp [Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 (Japan)

    2013-05-03

    Highlights: •We produce 25-hydroxyvitamin D in the recombinant yeast expressing human CYP2R1. •Vitamin D2 is produced in yeast from endogenous ergosterol with UV irradiation. •We produce 25-hydroxyvitamin D2 in the recombinant yeast without added substrate. -- Abstract: CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D{sub 3} or vitamin D{sub 2} was added to the cell suspension of CYP2R1-expressing yeast cells in a buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D{sub 2} was produced without additional vitamin D{sub 2}. Endogenous ergosterol was likely converted into vitamin D{sub 2} by UV irradiation and thermal isomerization, and then the resulting vitamin D{sub 2} was converted to 25-hydroxyvitamin D{sub 2} by CYP2R1. This novel method for producing 25-hydroxyvitamin D{sub 2} without a substrate could be useful for practical purposes.

  17. Engineering the metabolism of the phenylurea herbicide chlortoluron in genetically modified Arabidopsis thaliana plants expressing the mammalian cytochrome P450 enzyme CYP1A2.

    Science.gov (United States)

    Kebeish, Rashad; Azab, Ehab; Peterhaensel, Christoph; El-Basheer, Radwa

    2014-01-01

    Transgenic Arabidopsis thaliana plants were generated by introduction of the human P450 CYP1A2 gene, which metabolizes a number of herbicides, insecticides and industrial chemicals. Transgenic A. thaliana plants expressing CYP1A2 gene showed remarkable resistance to the phenylurea herbicide chlortoluron (CTU) supplemented either in plant growth medium or sprayed on foliar parts of the plants. HPLC analyses showed a strong reduction in CTU accumulation in planta supporting the tolerance of transgenic lines to high concentrations of CTU. Besides increased herbicide tolerance, expression of CYP1A2 resulted in no other visible phenotype in transgenic plants. Our data indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. Moreover, these transgenic plants appear to be useful for herbicide resistance as well as phytoremediation of environmental contaminants.

  18. Ciprofloxacin suppresses Cyp3a in mouse liver by reducing lithocholic acid-producing intestinal flora.

    Science.gov (United States)

    Toda, Takahiro; Ohi, Kanna; Kudo, Toshiyuki; Yoshida, Tomoyuki; Ikarashi, Nobutomo; Ito, Kiyomi; Sugiyama, Kiyoshi

    2009-01-01

    Ciprofloxacin (CPX), a new quinolone antibiotic, is reported to reduce CYP3A expression in the liver when administered to rats. The present study investigates whether the reduction in intestinal flora is involved in this reduction of CYP3A. While hepatic Cyp3a11 expression and triazolam metabolic activity were significantly reduced by CPX treatment of SPF mice, no significant changes were seen by CPX treatment of germ-free (GF) mice. Lithocholic acid (LCA)-producing bacteria in the feces as well as hepatic level of taurine conjugate of LCA were significantly reduced in CPX-treated SPF mice. Cyp3a11 expression in GF mice was significantly elevated when treated with LCA, known as an activator of fernesoid X receptor and pregnane X receptor. These results indicate that antibiotics such as CPX, having antimicrobial spectrums against LCA-producing bacteria, possibly cause decrease in LCA in the liver, resulting in lower CYP3A expression. The intestinal flora is reported to be altered also by stress, disease and age etc. The findings of the present study suggest that these changes in intestinal flora may modify CYP expression and contribute to individual differences in pharmacokinetics.

  19. Whole-cell hydroxylation of n-octane by Escherichia coli strains expressing the CYP153A6 operon.

    Science.gov (United States)

    Gudiminchi, Rama Krishna; Randall, Charlene; Opperman, Diederik J; Olaofe, Oluwafemi A; Harrison, Susan T L; Albertyn, Jacobus; Smit, Martha S

    2012-12-01

    CYP153A6 is a well-studied terminal alkane hydroxylase which has previously been expressed in Pseudomonas putida and Escherichia coli by using the pCom8 plasmid. In this study, CYP153A6 was successfully expressed in E. coli BL21(DE3) by cloning the complete operon from Mycobacterium sp. HXN-1500, also encoding the ferredoxin reductase and ferredoxin, into pET28b(+). LB medium with IPTG as well as auto-induction medium was used to express the proteins under the T7 promoter. A maximum concentration of 1.85 μM of active CYP153A6 was obtained when using auto-induction medium, while with IPTG induction of LB cultures, the P450 concentration peaked at 0.6-0.8 μM. Since more biomass was produced in auto-induction medium, the specific P450 content was often almost the same, 0.5-1.0 μmol P450 g (DCW)⁻¹, for both methods. Analytical scale whole-cell biotransformations of n-octane were conducted with resting cells, and it was found that high P450 content in biomass did not necessarily result in high octanol production. Whole cells from LB cultures induced with IPTG gave higher specific and volumetric octanol formation rates than biomass from auto-induction medium. A maximum of 8.7 g octanol L (BRM)⁻¹ was obtained within 24 h (0.34 g L (BRM)⁻¹  h⁻¹) with IPTG-induced cells containing only 0.20 μmol P450 g (DCW)⁻¹, when glucose (22 g L (BRM)⁻¹) was added for cofactor regeneration.

  20. Increased expression of interleukin (IL-6 family members and receptors in urinary bladder with cyclophosphamide (CYP-induced bladder inflammation in female rats

    Directory of Open Access Journals (Sweden)

    Beatrice eGirard

    2011-02-01

    Full Text Available Recent studies suggest that JAK-STAT signaling pathways contribute to increased voiding frequency and referred pain of CYP-induced cystitis in rats. Potential upstream chemical mediator(s that may be activated by CYP-induced cystitis to stimulate JAK/STAT signaling are not known in detail. In these studies, members of the interleukin (IL-6 family of cytokines including, leukemia inhibitory factor (LIF, IL-6 and ciliary neurotrophic factor (CNTF and associated receptors, IL-6 receptor (R α, LIFR and gp130 were examined in the urinary bladder in control and CYP-treated rats. Cytokine and receptor transcript and protein expression and distribution were determined in urinary bladder after cyclophosphamide (CYP-induced cystitis using quantitative, real-time polymerase chain reaction (Q-PCR, western blotting and immunohistochemistry. Acute (4 hr; 150 mg/kg; i.p., intermediate (48 hr; 150 mg/kg; i.p. or chronic (75 mg/kg; i.p., once every 3 days for 10 days cystitis was induced in adult, female Wistar rats with CYP treatment. Q-PCR analyses revealed significant (p ≤ 0.01 CYP duration- and tissue- (e.g., urothelium, detrusor dependent increases in LIF, IL-6, IL-6Rα, LIFR and gp130 mRNA expression. Western blotting demonstrated significant (p ≤ 0.01 increases in IL-6, LIF and gp130 protein expression in whole urinary bladder with CYP treatment. CYP-induced cystitis significantly (p ≤ 0.01 increased LIF-immunoreactivity (IR in urothelium, detrusor, and suburothelial plexus whereas increased gp130-IR was only observed in urothelium and detrusor. These studies suggest that IL-6 and LIF may be potential upstream chemical mediators that activate JAK/STAT signaling in urinary bladder pathways.

  1. Evolutionary changes in gene expression, coding sequence and copy-number at the Cyp6g1 locus contribute to resistance to multiple insecticides in Drosophila.

    Science.gov (United States)

    Harrop, Thomas W R; Sztal, Tamar; Lumb, Christopher; Good, Robert T; Daborn, Phillip J; Batterham, Philip; Chung, Henry

    2014-01-01

    Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogaster-D. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species.

  2. Evolutionary changes in gene expression, coding sequence and copy-number at the Cyp6g1 locus contribute to resistance to multiple insecticides in Drosophila.

    Directory of Open Access Journals (Sweden)

    Thomas W R Harrop

    Full Text Available Widespread use of insecticides has led to insecticide resistance in many populations of insects. In some populations, resistance has evolved to multiple pesticides. In Drosophila melanogaster, resistance to multiple classes of insecticide is due to the overexpression of a single cytochrome P450 gene, Cyp6g1. Overexpression of Cyp6g1 appears to have evolved in parallel in Drosophila simulans, a sibling species of D. melanogaster, where it is also associated with insecticide resistance. However, it is not known whether the ability of the CYP6G1 enzyme to provide resistance to multiple insecticides evolved recently in D. melanogaster or if this function is present in all Drosophila species. Here we show that duplication of the Cyp6g1 gene occurred at least four times during the evolution of different Drosophila species, and the ability of CYP6G1 to confer resistance to multiple insecticides exists in D. melanogaster and D. simulans but not in Drosophila willistoni or Drosophila virilis. In D. virilis, which has multiple copies of Cyp6g1, one copy confers resistance to DDT and another to nitenpyram, suggesting that the divergence of protein sequence between copies subsequent to the duplication affected the activity of the enzyme. All orthologs tested conferred resistance to one or more insecticides, suggesting that CYP6G1 had the capacity to provide resistance to anthropogenic chemicals before they existed. Finally, we show that expression of Cyp6g1 in the Malpighian tubules, which contributes to DDT resistance in D. melanogaster, is specific to the D. melanogaster-D. simulans lineage. Our results suggest that a combination of gene duplication, regulatory changes and protein coding changes has taken place at the Cyp6g1 locus during evolution and this locus may play a role in providing resistance to different environmental toxins in different Drosophila species.

  3. [Effect of processed Polygonum multiflorum on mRNA expression level of five subtypes of CYP450 enzymes in rat liver].

    Science.gov (United States)

    Huang, Chun-Lian; Fan, Xue-Mei; Li, Qian; Wang, Yi-Ming; Wang, Shu-Mei; Gong, Meng-Juan; Luo, Guo-An

    2017-01-01

    To observe the effect of processed Polygonum multiflorum on mRNA expression levels of five subtypes of CYP450 enzymes in rat liver. SD rats were randomly divided into the normal control group, processed P. multiflorum high dose and low dose groups (5.40 g•kg⁻¹ and 1.08 g•kg⁻¹). The rats in administration groups were continuously given with processed P. mutiflorum for 7 days by ig administration, and the rats in normal control group were given with the same volume of distilled water. After successive administration of 7 days, the serum biochemical indications were detected, and Real-time quantitative PCR technology was used to detect the mRNA expression levels of five subtypes of CYP450 enzymes in rat liver. Experimental results showed that AST was decreased significantly in both low and high dose groups. ALT was significantly decreased in low dose group and significantly increased in high dose group. The mRNA expression levels of five subtypes of CYP450 enzymes in rat liver were decreased in high dose and low dose groups in a dose-dependent manner. Especially the high dose processed P. multiflorum could significantly inhibit CYP1A2 and CYP2E1 mRNA expression levels in rats. The study showed that high dose P. multiflorum water extract had hepatotoxicity, and the degree of liver damage was increased with the increase of dose. It shall be noted that 5.40 g•kg⁻¹ water extract of P. multiflorum could significantly inhibit CYP1A2 and CYP2E1 mRNA expression levels in the liver of rats. Copyright© by the Chinese Pharmaceutical Association.

  4. Fasting-Induced Changes in Hepatic P450 Mediated Drug Metabolism Are Largely Independent of the Constitutive Androstane Receptor CAR.

    Directory of Open Access Journals (Sweden)

    E M de Vries

    Full Text Available Hepatic drug metabolism by cytochrome P450 enzymes is altered by the nutritional status of patients. The expression of P450 enzymes is partly regulated by the constitutive androstane receptor (CAR. Fasting regulates the expression of both P450 enzymes and CAR and affects hepatic drug clearance. We hypothesized that the fasting-induced alterations in P450 mediated drug clearance are mediated by CAR.To investigate this we used a drug cocktail validated in humans consisting of five widely prescribed drugs as probes for specific P450 enzymes: caffeine (CYP1A2, metoprolol (CYP2D6, omeprazole (CYP2C19, midazolam (CYP3A4 and s-warfarin (CYP2C9. This cocktail was administered to wild type (WT, C57Bl/6 mice or mice deficient for CAR (CAR-/- that were either fed ad libitum or fasted for 24 hours. Blood was sampled at predefined intervals and drug concentrations were measured as well as hepatic mRNA expression of homologous/orthologous P450 enzymes (Cyp1a2, Cyp2d22, Cyp3a11, Cyp2c37, Cyp2c38 and Cyp2c65.Fasting decreased Cyp1a2 and Cyp2d22 expression and increased Cyp3a11 and Cyp2c38 expression in both WT and CAR-/- mice. The decrease in Cyp1a2 was diminished in CAR-/- in comparison with WT mice. Basal Cyp2c37 expression was lower in CAR-/- compared to WT mice. Fasting decreased the clearance of all drugs tested in both WT and CAR-/- mice. The absence of CAR was associated with an decrease in the clearance of omeprazole, metoprolol and midazolam in fed mice. The fasting-induced reduction in clearance of s-warfarin was greater in WT than in CAR-/-. The changes in drug clearance correlated with the expression pattern of the specific P450 enzymes in case of Cyp1a2-caffeine and Cyp2c37-omeprazole.We conclude that CAR is important for hepatic clearance of several widely prescribed drugs metabolized by P450 enzymes. However the fasting-induced alterations in P450 mediated drug clearance are largely independent of CAR.

  5. Cytochrome P450 CYP3A in marsupials: cloning and identification of the first CYP3A subfamily member, isoform 3A70 from Eastern gray kangaroo (Macropus giganteus).

    Science.gov (United States)

    El-Merhibi, Adaweyah; Ngo, Suong N T; Marchant, Ceilidh L; Height, Tamara A; Stupans, Ieva; McKinnon, Ross A

    2012-09-15

    Australian marsupials are unique fauna that have evolved and adapted to unique environments and thus it is likely that their detoxification systems differ considerably from those of well-studied eutherian mammals. Knowledge of these processes in marsupials is therefore vital to understanding the consequences of exposure to xenobiotics. Cytochromes P450 (CYPs) are critically important in the oxidative metabolism of a diverse array of both xenobiotics and endogenous substrates. In this study we have cloned and characterized CYP3A70, the first identified member of the CYP3A gene subfamily from Eastern gray kangaroo (Macropus giganteus). A 1665 base pair kangaroo hepatic CYP3A complete cDNA, designated CYP3A70, was cloned by reverse transcription-polymerase chain reaction approaches, which encodes a protein of 506 amino acids. The CYP3A70 cDNA shares approximately 71% nucleotide and 65% amino acid sequence homology to human CYP3A4 and displays high sequence similarity to other published mammalian CYP3As from human, monkey, cow, pig, dog, rat, rabbit, mouse, hamster, and guinea pig. Transfection of the CYP3A70 cDNAs into 293T cells resulted in stable cell lines expressing a CYP3A immuno-reactive protein that was recognized by a goat anti-human CYP3A4 polyclonal antibody. The anti-human CYP3A4 antibody also detected immunoreactive proteins in liver microsomes from all test marsupials, including the kangaroo, koala, wallaby, and wombat, with multiple CYP3A immunoreactive bands observed in kangaroo and wallaby tissues. Relatively, very low CYP catalytic activity was detected for the kangaroo CYP3A70 cDNA-expressed proteins (19.6 relative luminescent units/μg protein), which may be due to low protein expression levels. Collectively, this study provides primary molecular data regarding the Eastern kangaroo hepatic CYP3A70 gene and enables further functional analyses of CYP3A enzymes in marsupials. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Regulation of Hepatic Paraoxonase-1 Expression

    Directory of Open Access Journals (Sweden)

    Bianca Fuhrman

    2012-01-01

    Full Text Available Serum paraoxonase-1 (PON1 is a member of the paraoxonases family (PON1, PON2, and PON3. PON1 is synthesized and secreted by the liver, and in circulation it is associated with HDL. PON1 has antioxidative properties, which are associated with the enzyme’s capability to decrease oxidative stress in atherosclerotic lesions and to attenuate atherosclerosis development. Epidemiological evidence demonstrates that low PON1 activity is associated with increased risk of cardiovascular events and cardiovascular disease and is an independent risk factor for coronary artery disease. Therefore, pharmacological modulation of PON1 activity or PON1 gene expression could constitute a useful approach for preventing atherosclerosis. A primary determinant of serum PON1 levels is the availability of the enzyme for release by the liver, the principal site of PON1 production. Together with the enzyme secretion rate, enzymatic turnover, and protein stability, the level of PON1 gene expression is a major determinant of PON1 status. This paper summarizes recent progress in understanding the regulation of PON1 expression in hepatocytes.

  7. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice

    Science.gov (United States)

    Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we ...

  8. Nephroblastoma overexpressed gene (NOV) expression in rat hepatic stellate cells.

    Science.gov (United States)

    Lee, Sung Hee; Seo, Geom Seog; Park, Young Nyun; Sohn, Dong Hwan

    2004-10-01

    Using the expression-profiling method, we identified nephroblastoma overexpressed gene (NOV) mRNA as one member of the mRNA population that was upregulated in cultured activated hepatic stellate cell (HSC). Northern analysis showed that NOV mRNA was increasingly expressed during progressive activation of cultured rat HSCs, and a significant increase was observed in both the carbon tetrachloride-induced and bile duct ligation/scission rat models of liver fibrosis. RT-PCR showed human NOV mRNA was increased in most fibrotic livers compared with normal livers. The expression of NOV protein in fibrotic rat and human livers was predominantly located in areas of ductular proliferation and HSC of the fibrous septa. HSCs stimulated with transforming growth factor beta1 showed increased expression of NOV protein without changing its mRNA levels. Dexamethasone stimulated the expression of NOV mRNA and protein. Furthermore, we demonstrated that bile acids have a modulating effect on the induction of NOV mRNA expression. In conclusion, this study suggests that NOV is expressed during liver fibrogenesis and HSCs may be an important source of hepatic NOV.

  9. Sex Differences in the Expression of Hepatic Drug Metabolizing Enzymes

    OpenAIRE

    Waxman, David J.; Holloway, Minita G.

    2009-01-01

    Sex differences in pharmacokinetics and pharmacodynamics characterize many drugs and contribute to individual differences in drug efficacy and toxicity. Sex-based differences in drug metabolism are the primary cause of sex-dependent pharmacokinetics and reflect underlying sex differences in the expression of hepatic enzymes active in the metabolism of drugs, steroids, fatty acids and environmental chemicals, including cytochromes P450 (P450s), sulfotransferases, glutat...

  10. CYP2W1 is highly expressed in adrenal glands and is positively associated with the response to mitotane in adrenocortical carcinoma.

    Science.gov (United States)

    Ronchi, Cristina L; Sbiera, Silviu; Volante, Marco; Steinhauer, Sonja; Scott-Wild, Vanessa; Altieri, Barbara; Kroiss, Matthias; Bala, Margarita; Papotti, Mauro; Deutschbein, Timo; Terzolo, Massimo; Fassnacht, Martin; Allolio, Bruno

    2014-01-01

    Adrenocortical tumors comprise frequent adenomas (ACA) and rare carcinomas (ACC). Human cytochrome P450 2W1 (CYP2W1) is highly expressed in some cancers holding the potential to activate certain drugs into tumor cytotoxins. To investigate the CYP2W1 expression in adrenal samples and its relationship with clinical outcome in ACC. CYP2W1 expression was investigated by qRT-PCR in 13 normal adrenal glands, 32 ACA, 25 ACC, and 9 different non-adrenal normal tissue samples and by immunohistochemistry in 352 specimens (23 normal adrenal glands, 33 ACA, 239 ACC, 67 non-adrenal normal or neoplastic samples). CYP2W1 mRNA expression was absent/low in normal non-adrenal tissues, but high in normal and neoplastic adrenal glands (all Padrenal normal tissues). Accordingly, CYP2W1 immunoreactivity was absent/low (H-score 0-1) in 72% of non-adrenal normal tissues, but high (H-score 2-3) in 44% of non-adrenal cancers, in 65% of normal adrenal glands, in 62% of ACAs and in 50% of ACCs (all Padrenal normal tissues), being significantly increased in steroid-secreting compared to non-secreting tumors. In ACC patients treated with mitotane only, high CYP2W1 immunoreactivity adjusted for ENSAT stage was associated with longer overall survival and time to progression (Padrenal glands making it a promising tool for targeted therapy in ACC. Furthermore, CYP2W1 may represent a new predictive marker for the response to mitotane treatment.

  11. Linking Cholesterol to Cancer: Circulating 27-Hydroxycholesterol and Breast Cancer Risk by Tumor Subtype and Expression of CYP27A1 and CYP7B1

    Science.gov (United States)

    2016-04-01

    information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE April...CYP27A1 and CYP7B1 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER S. Renée Turzanski Fortner 5e. TASK NUMBER E-Mail:r.fortner@dkfz.de 5f...Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg cohort. This study capitalizes on the availability of pre-diagnostic serum samples

  12. [Study of potential protective effects of blueberry on hepatic cytochrome P450 2E1 expression in rats with immune hepatic fibrosis].

    Science.gov (United States)

    Lu, Shuang; Cheng, Ming-liang; Li, Hong; Wu, Jun

    2012-07-01

    To study the protective effects of blueberry against rat immune hepatic fibrosis, specifically through the expression of hepatic cytochrome P450 2E1. Fifty Wistar rats were randomly divided into five study groups (n = 10 each): Group A: normal control group, Group B: hepatic fibrosis model group, Group C: preventive group administered blueberry juice, Group D: preventive group administered Fu-Fang-Bie-Jia-Ruan-Gan tablet, and Group E: preventive group administered a combination of blueberry juice and Fu-Fang-Bie-Jia-Ruan-Gan tablet. The hepatic fibrosis model was established by intraperitoneal injection of porcine serum once daily for 12 weeks. Simultaneously, rats in preventive groups (Groups C-E) were perfused with blueberry juice or Fu-Fang-Bie-Jia-Ruan-Gan tablet or combinations of blueberry juice and Fu-Fang-Bie-Jia-Ruan-Gan tablet, respectively, for 12 weeks. The normal control group was perfused with saline for 12 weeks. All animals were sacrificed at the end of the 12 weeks, and serum levels of alanine aminotransferase (ALT) were measured and activities of superoxide dismutase (SOD), malondialdehyde (MDA), and hydroxyproline (Hyp) in liver homogenates were determined. Pathology of hepatic fibrosis was evaluated by hematoxylin-eosin (HE) and Masson staining. Expression of CYP2E1 was detected by real-time RT-PCR, immunohistochemical techniques, and Western blotting. Serum ALT levels were not significantly different in the control and treatment groups (F=4.056, P more than 0.05): A: 37.87+/-4.53 U/L, B: 49.23+/-9.81 U/L, C: 39.94+/-6.32 U/L, D: 40.50+/-5.70 U/L, and E: 38.24+/-8.43 U/L. Compared with Group B, the pathological stages of hepatic fibrosis were significantly reduced in the prevention groups (C-E) (F=95.097, P less than 0.05). Hyp and MDA in liver homogenates of groups C-E were significantly lower than those of Group B (Hyp: C: 472.68+/-44.14 mug/g, D: 416.12+/-39.38 mug/g, E: 429.51+/-55.14 mug/g vs. B: 603.16+/-68.92 mug/g, F=39.315, P less than

  13. Expression of large hepatitis B envelope protein mutants using a new expression vector.

    Science.gov (United States)

    Korec, E; Gerlich, W H

    1992-01-01

    Aminoterminal deletion mutants of the gene encoding the large hepatitis B surface protein were expressed in COS cells using a new expression vector. The truncated protein showed the same intracellular retention like the wild type protein. The findings show that the secretion block of the protein is not due to its aminoterminal myristylation.

  14. Osthole improves fat milk-induced fatty liver in rats: modulation of hepatic PPAR-alpha/gamma-mediated lipogenic gene expression.

    Science.gov (United States)

    Zhang, Yan; Xie, Meilin; Xue, Jie; Gu, Zhenlun

    2007-07-01

    The objectives of this study were to determine the therapeutic effect of osthole, an active constituent isolated from Cnidium monnieri (L.) Cusson (Apiaceae), in hyperlipidemic fatty liver (HFL) rats and investigate the possible mechanism of the osthole treatment. The HFL rat model was established by feeding Sprague-Dawley rats with fat milk for 6 weeks. The experimental rats were then treated with a dose of osthole of 5 - 20 mg/kg for 6 weeks. After the treatment, total cholesterol (TC) and triglycerides (TG) in serum and hepatic tissue, as well as the coefficient of hepatic weight were measured. The results showed that the TC and TG in both serum and hepatic tissue and the coefficient of hepatic weight in the osthole-treated rats were lower as compared to those in the experimental group, respectively (P < 0.05 or P < 0.01). Moreover, as compared to the control group, the osthole treatment increased the PPARalpha/gamma mRNA expression by 58.0 - 84.0 % and 20.4 - 77.4 %, respectively. The related target genes for mRNA expression were also increased by osthole-treatment, e. g., 53.4 - 93.2 % for CYP7A, 21.1 - 63.2 % for L-FABP and 34.1 - 57.3 % for FATP4, while the DGAT mRNA expression was decreased by 26.0 - 44.4 %. The therapeutic effect of osthole was further confirmed by histological evaluation of the liver showing a dramatically decreased lipid accumulation and improved ultrastructure of hepatocytes. In conclusion, osthole exerts therapeutic effects on fat milk-induced fatty liver in rats, by regulating mRNA expression of the target genes of CYP7A, DGAT, L-FABP and FATP4 via increasing the PPARalpha/gamma mRNA expression.

  15. Pacific Ocean–Wide Profile of CYP1A1 Expression, Stable Carbon and Nitrogen Isotope Ratios, and Organic Contaminant Burden in Sperm Whale Skin Biopsies

    Science.gov (United States)

    Godard-Codding, Céline A.J.; Clark, Rebecca; Fossi, Maria Cristina; Marsili, Letizia; Maltese, Silvia; West, Adam G.; Valenzuela, Luciano; Rowntree, Victoria; Polyak, Ildiko; Cannon, John C.; Pinkerton, Kim; Rubio-Cisneros, Nadia; Mesnick, Sarah L.; Cox, Stephen B.; Kerr, Iain; Payne, Roger; Stegeman, John J.

    2011-01-01

    Background Ocean pollution affects marine organisms and ecosystems as well as humans. The International Oceanographic Commission recommends ocean health monitoring programs to investigate the presence of marine contaminants and the health of threatened species and the use of multiple and early-warning biomarker approaches. Objective We explored the hypothesis that biomarker and contaminant analyses in skin biopsies of the threatened sperm whale (Physeter macrocephalus) could reveal geographical trends in exposure on an oceanwide scale. Methods We analyzed cytochrome P450 1A1 (CYP1A1) expression (by immunohistochemistry), stable nitrogen and carbon isotope ratios (as general indicators of trophic position and latitude, respectively), and contaminant burdens in skin biopsies to explore regional trends in the Pacific Ocean. Results Biomarker analyses revealed significant regional differences within the Pacific Ocean. CYP1A1 expression was highest in whales from the Galapagos, a United Nations Educational, Scientific, and Cultural Organization World Heritage marine reserve, and was lowest in the sampling sites farthest away from continents. We examined the possible influence of the whales’ sex, diet, or range and other parameters on regional variation in CYP1A1 expression, but data were inconclusive. In general, CYP1A1 expression was not significantly correlated with contaminant burdens in blubber. However, small sample sizes precluded detailed chemical analyses, and power to detect significant associations was limited. Conclusions Our large-scale monitoring study was successful at identifying regional differences in CYP1A1 expression, providing a baseline for this known biomarker of exposure to aryl hydrocarbon receptor agonists. However, we could not identify factors that explained this variation. Future oceanwide CYP1A1 expression profiles in cetacean skin biopsies are warranted and could reveal whether globally distributed chemicals occur at biochemically

  16. Validation of reference genes for RT-qPCR analysis of CYP4T expression in crucian carp

    Directory of Open Access Journals (Sweden)

    Fei Mo

    2014-09-01

    Full Text Available Reference genes are commonly used for normalization of target gene expression during RT-qPCR analysis. However, no housekeeping genes or reference genes have been identified to be stable across different tissue types or under different experimental conditions. To identify the most suitable reference genes for RT-qPCR analysis of target gene expression in the hepatopancreas of crucian carp (Carassius auratus under various conditions (sex, age, water temperature, and drug treatments, seven reference genes, including beta actin (ACTB, beta-2 microglobulin (B2M, embryonic elongation factor-1 alpha (EEF1A, glyceraldehyde phosphate dehydrogenase (GAPDH, alpha tubulin (TUBA, ribosomal protein l8 (RPL8 and glucose-6-phosphate dehydrogenase (G6PDH, were evaluated in this study. The stability and ranking of gene expression were analyzed using three different statistical programs: GeNorm, Normfinder and Bestkeeper. The expression errors associated with selection of the genes were assessed by the relative quantity of CYP4T. The results indicated that all the seven genes exhibited variability under the experimental conditions of this research, and the combination of ACTB/TUBA/EEF1A or of ACTB/EEF1A was the best candidate that raised the accuracy of quantitative analysis of gene expression. The findings highlighted the importance of validation of housekeeping genes for research on gene expression under different conditions of experiment and species.

  17. Upregulation of CYP1B1 expression by inflammatory cytokines is mediated by the p38 MAP kinase signal transduction pathway.

    Science.gov (United States)

    Smerdová, Lenka; Šmerdová, Jana; Kabátková, Markéta; Kohoutek, Jiří; Blažek, Dalibor; Machala, Miroslav; Vondráček, Jan

    2014-11-01

    Cytochrome P450 1B1 (CYP1B1) is an enzyme that has a unique tumor-specific pattern of expression and is capable of bioactivating a wide range of carcinogenic compounds. We have reported previously that coordinated upregulation of CYP1B1 by inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and the aryl hydrocarbon receptor ligands, may increase bioactivation of promutagens, such as benzo[a]pyrene (BaP) in epithelial cells. Here, we extend those studies by describing a novel mechanism participating in the regulation of CYP1B1 expression, which involves activation of the p38 mitogen-activated protein kinase (p38) and mitogen- and stress-activated protein kinase 1 (MSK1). Using inhibitors of p38 and MSKs, as well as mouse embryonic cells derived from p38α-deficient and MSK1/2 double knockout mice, we show here that TNF-α potentiates CYP1B1 upregulation via the p38/MSK1 kinase cascade. Effects of this inflammatory cytokine on CYP1B1 expression further involve the positive transcription elongation factor b (P-TEFb). The inhibition of the P-TEFb subunit, cyclin-dependent kinase 9 (CDK9), which phosphorylates RNA polymerase II (RNAPII), prevented the enhanced CYP1B1 induction by a combination of BaP and inflammatory cytokine. Furthermore, using chromatin immunoprecipitation assays, we found that cotreatment of epithelial cells with TNF-α and BaP resulted in enhanced recruitment of both CDK9 and RNAPII to the Cyp1b1 gene promoter. Overall, these results have implications concerning the contribution of inflammatory factors to carcinogenesis, since enhanced CYP1B1 induction during inflammation may alter metabolism of exogenous carcinogens, as well as endogenous CYP1B1 substrates playing role in tumor development. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Regulation of Porcine Hepatic Cytochrome P450 — Implication for Boar Taint

    Science.gov (United States)

    Rasmussen, Martin Krøyer; Zamaratskaia, Galia

    2014-01-01

    Cytochrome P450 (CYP450) is the major family of enzymes involved in the metabolism of several xenobiotic and endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole), one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover, CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint. PMID:25408844

  19. Regulation of Porcine Hepatic Cytochrome P450 — Implication for Boar Taint

    Directory of Open Access Journals (Sweden)

    Martin Krøyer Rasmussen

    2014-09-01

    Full Text Available Cytochrome P450 (CYP450 is the major family of enzymes involved in the metabolism of several xenobiotic and endogenous compounds. Among substrates for CYP450 is the tryptophan metabolite skatole (3-methylindole, one of the major contributors to the off-odour associated with boar-tainted meat. The accumulation of skatole in pigs is highly dependent on the hepatic clearance by CYP450s. In recent years, the porcine CYP450 has attracted attention both in relation to meat quality and as a potential model for human CYP450. The molecular regulation of CYP450 mRNA expression is controlled by several nuclear receptors and transcription factors that are targets for numerous endogenously and exogenously produced agonists and antagonists. Moreover, CYP450 expression and activity are affected by factors such as age, gender and feeding. The regulation of porcine CYP450 has been suggested to have more similarities with human CYP450 than other animal models, including rodents. This article reviews the available data on porcine hepatic CYP450s and its implications for boar taint.

  20. The Effects of Exercise on Expression of CYP19 and StAR mRNA in Steroid-Induced Polycystic Ovaries of Female Rats.

    Science.gov (United States)

    Aghaie, Fatemeh; Khazali, Homayoun; Hedayati, Mehdi; Akbarnejad, Ali

    2018-01-01

    Polycystic ovarian syndrome (PCOS) is the most frequent female endocrine disorder that affects 5-10% of women. PCOS is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) mRNA in the ovaries of an estradiol valerate (EV)-induced PCOS rat model, and the effect of treadmill and running wheel (voluntary) exercise on these parameters. In this experimental study, we divided adult female Wistar rats that weighed approximately 220 ± 20 g initially into control (n=10) and PCOS (n=30). Subsequently, PCOS group were divided to PCOS, PCOS with treadmill exercise (P-ExT), and PCOS with running wheel exercise (P-ExR) groups (n=10 per group). The expressions of StAR and CYP19 mRNA in the ovaries were determined by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). Data were analyzed by one-way ANOVA using SPSS software, version 16. The data were assessed at α=0.05. There was significantly lower mRNA expression of CYP19 in the EV-induced PCOS, running wheel and treadmill exercise rats compared to the control group (PStAR in the ovaries of the PCOS group indicated an increasing trend compared to the control group, however this was not statistically significant (P=0.810). We observed that 8 weeks of running wheel and treadmill exercises could not statistically decrease StAR mRNA expression compared to the PCOS group (P=0.632). EV-induced PCOS in rats decreased CYP19 mRNA expression, but had no effect on StAR mRNA expression. We demonstrated that running wheel and moderate treadmill exercise could not modify CYP19 and StAR mRNA expressions.

  1. Transfected MDCK cell line with enhanced expression of CYP3A4 and P-glycoprotein as a model to study their role in drug transport and metabolism.

    Science.gov (United States)

    Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K

    2012-07-02

    The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drug of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Similar studies were also carried out in the presence of 50 μM naringin and 3 μM morphine. Samples were analyzed by HPLC for drug and its CYP3A4 metabolite. PCR, qPCR and Western blot studies confirmed the enhanced expression of the proteins in the transfected cells. The Vivid CYP3A4 assay and ketoconazole inhibition studies further confirmed the presence of active protein. Apical to basal transport of cortisol was found to be 10- and 3-fold lower in MMC as compared to MDCK-WT and MDCK-MDR1 respectively. Higher amount of metabolite was formed in MMC than in MDCK-WT, indicating enhanced expression of CYP3A4. Highest cortisol metabolite formation was observed in MMC cell line due to the combined activities of CYP3A4 and P-gp. Transport of cortisol increased 5-fold in the presence of naringin in MMC and doubled in MDCK-MDR1. Cortisol transport in MMC was significantly lower than that in MDCK-WT in the presence of naringin. The permeability increased 3-fold in the presence of morphine, which is a weaker inhibitor of CYP3A4. Formation of 6β-hydroxy cortisol was found to decrease in the presence of morphine and naringin. This new model cell line with its enhanced CYP3A4 and P-gp levels in addition to short culture time can serve as an invaluable model to study drug-drug interactions. This cell line can also be used to study the combined contribution of efflux transporter and metabolizing enzymes toward drug-drug interactions.

  2. Antibiotics suppress Cyp3a in the mouse liver by reducing lithocholic acid-producing intestinal flora.

    Science.gov (United States)

    Toda, Takahiro; Ohi, Kanna; Kudo, Toshiyuki; Yoshida, Tomoyuki; Ikarashi, Nobutomo; Ito, Kiyomi; Sugiyama, Kiyoshi

    2009-05-01

    We previously demonstrated that ciprofloxacin (CPX), a new quinolone antibiotic, suppresses Cyp3a in the mouse liver by reducing the hepatic level of lithocholic acid (LCA) produced by intestinal flora. The present study investigated the possibility that other antibiotics with antibacterial activity against LCA-producing bacteria also cause a decrease in the LCA level in the liver, leading to reduced expression of Cyp3a11. While the mRNA expression of Cyp3a11 in the liver was significantly reduced when SPF mice were administered antibiotics such as ampicillin, CPX, levofloxacin, or a combination of vancomycin and imipenem, no significant changes were observed after antibiotic treatment of GF mice lacking intestinal flora. LCA-producing bacteria in the feces as well as the hepatic level of the taurine conjugate of LCA were significantly reduced in the antibiotic-treated SPF mice, suggesting that the decrease in Cyp3a11 expression can be attributed to the reduction in LCA-producing intestinal flora following antibiotic administration. These results suggest that the administration of antibiotics with activity against LCA-producing bacteria can also cause a decrease in the LCA level in humans, which may lower CYP3A4 expression. The intestinal flora are reported to be altered not only by drugs, such as antibiotics, but also by stress, disease, and age. The findings of the present study suggest that these changes in intestinal flora could modify CYP expression and contribute to the individual differences in pharmacokinetics.

  3. Fipronil induces CYP isoforms in rats.

    Science.gov (United States)

    Caballero, M V; Ares, I; Martínez, M; Martínez-Larrañaga, M R; Anadón, A; Martínez, M A

    2015-09-01

    The goal of the present study was to evaluate fipronil effects on the activities of drug metabolizing enzymes in rat liver microsomes. Rats were orally treated with fipronil at doses of 1, 5, 10 and 15 mg/kg bw/day for 6 days. Determinations of cytochrome P450 (CYP) enzyme activities were carried out in hepatic microsomes isolated from treated rats. The activities of some members of CYP2E, CYP1A, CYP2A, CYP2B and CYP3A subfamilies significantly increased after fipronil treatment in a dose-dependent manner as compared to control. The major effects were observed in the O-deethylation of ethoxyresorufin and O-demethylation of methoxyresorufin (reflecting CYP1A1/2 activities), in the O-depenthylation of pentoxyresorufin and 16β-hydroxylation of testosterone (reflecting CYP2B1/2 activities), and in the N-demethylation of erythromycin and 6β-hydroxylation of testosterone (reflecting CYP3A1/2 activities). Immunoblot studies revealed that fipronil increased the apoprotein levels of CYP1A1. Our results suggest that fipronil is an inducer of hepatic phase I CYP enzymes, causing an increased potential to interact with a wide range of xenobiotics or endogenous chemicals that are substrates of the CYP1A, CYP2B and CYP3A subfamilies. Further investigations are required to in vivo evaluate the potential of the metabolite fipronil sulfone as an inducer of phase I CYP enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The cytochrome P450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Robert N Schuck

    Full Text Available Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs, which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH, our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted.

  5. Expression and Activity of CYP3A Enzymes in the Liver of Piglets Fed Dairy- or Soy-Based Formula in Comparison to Breast Feeding

    Science.gov (United States)

    We have published previous data showing that feeding soy protein isolate, the major protein source in soy-infant formula, to rats during early development results in increased expression and activity of the major liver enzyme involved in breakdown and removal of pediatric medications, CYP3A. This s...

  6. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

    Directory of Open Access Journals (Sweden)

    Nidal Ghosheh

    2016-01-01

    Full Text Available Human pluripotent stem cells- (hPSCs- derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4 which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models.

  7. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

    Science.gov (United States)

    Ghosheh, Nidal; Olsson, Björn; Edsbagge, Josefina; Küppers-Munther, Barbara; Van Giezen, Mariska; Asplund, Annika; Andersson, Tommy B.; Björquist, Petter; Carén, Helena; Simonsson, Stina; Sartipy, Peter; Synnergren, Jane

    2016-01-01

    Human pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models. PMID:26949401

  8. Genetic variation in the vitamin D pathway CYP2R1 gene predicts sustained HBeAg seroconversion in chronic hepatitis B patients treated with pegylated interferon: A multicenter study.

    Directory of Open Access Journals (Sweden)

    Kessarin Thanapirom

    Full Text Available Evidence of a role of vitamin D in the immune system is increasing. Low serum vitamin D is associated with increased hepatitis B virus replication. Genome-wide association study (GWAS data has revealed a number of the single nucleotide polymorphisms (SNPs within the vitamin D synthetic pathway that affect vitamin D functions. We aimed to determine the association between SNPs in the vitamin D gene cascade and response to pegylated interferon (PegIFN therapy in hepatitis B e-antigen (HBeAg-positive patients. One hundred and eleven patients treated for 48 weeks with PegIFN-alfa 2a at 13 hospitals were retrospectively evaluated. Thirteen SNPs derived from vitamin D cascade-related genes, including DHCR7 (rs12785878, CYP27B1 (rs10877012, CYP2R1 (rs2060793, rs12794714, GC (rs4588, rs7041, rs222020, rs2282679, and VDR (FokI, BsmI, Tru9I, ApaI, TaqI, were genotyped. Thirty-one patients (27.9% seroconverted to HBeAg after 24 weeks of treatment. Multivariate analysis found pretreatment qHBsAg 2 times the upper limit of normal (OR = 3.83, 95% CI: 1.31-11.22, P = 0.014 predicted sustained HBeAg seroconversion after completion of PegIFN treatment. HBV DNA during study period tended to be lower with the rs12794714 CYP2R1 TT than the non-TT genotype. The rs12794714 CYP2R1 polymorphism may be a useful pretreatment factor predictive of sustained HBeAg seroconversion after PegIFN therapy. This study provides evidence that not only vitamin D level but also genetic variation of CYP2R1 in the vitamin D cascade influences host immune response in chronic HBV infection.

  9. In Vitro Functional Characterisation of Cytochrome P450 (CYP) 2C19 Allelic Variants CYP2C19*23 and CYP2C19*24.

    Science.gov (United States)

    Lau, Pui Shen; Leong, Kenny Voon Gah; Ong, Chin Eng; Dong, Amelia Nathania Hui Min; Pan, Yan

    2017-02-01

    Cytochrome P450 (CYP) 2C19 is essential for the metabolism of clinically used drugs including omeprazole, proguanil, and S-mephenytoin. This hepatic enzyme exhibits genetic polymorphism with inter-individual variability in catalytic activity. This study aimed to characterise the functional consequences of CYP2C19*23 (271 G>C, 991 A>G) and CYP2C19*24 (991 A>G, 1004 G>A) in vitro. Mutations in CYP2C19 cDNA were introduced by site-directed mutagenesis, and the CYP2C19 wild type (WT) as well as variants proteins were subsequently expressed using Escherichia coli cells. Catalytic activities of CYP2C19 WT and those of variants were determined by high performance liquid chromatography-based essay employing S-mephenytoin and omeprazole as probe substrates. Results showed that the level of S-mephenytoin 4'-hydroxylation activity of CYP2C19*23 (V max 111.5 ± 16.0 pmol/min/mg, K m 158.3 ± 88.0 μM) protein relative to CYP2C19 WT (V max 101.6 + 12.4 pmol/min/mg, K m 123.0 ± 19.2 μM) protein had no significant difference. In contrast, the K m of CYP2C19*24 (270.1 ± 57.2 μM) increased significantly as compared to CYP2C19 WT (123.0 ± 19.2 μM) and V max of CYP2C19*24 (23.6 ± 2.6 pmol/min/mg) protein was significantly lower than that of the WT protein (101.6 ± 12.4 pmol/min/mg). In vitro intrinsic clearance (CLint = V max/K m) for CYP2C19*23 protein was 85.4 % of that of CYP2C19 WT protein. The corresponding CLint value for CYP2C19*24 protein reduced to 11.0 % of that of WT protein. These findings suggested that catalytic activity of CYP2C19 was not affected by the corresponding amino acid substitutions in CYP2C19*23 protein; and the reverse was true for CYP2C19*24 protein. When omeprazole was employed as the substrate, K m of CYP2C19*23 (1911 ± 244.73 μM) was at least 100 times higher than that of CYP2C19 WT (18.37 ± 1.64 μM) and V max of CYP2C19*23 (3.87 ± 0.74 pmol/min/mg) dropped to 13.4 % of the CYP2C19 WT (28.84 ± 0.61

  10. Isolation and Expression of Glucosinolate Synthesis Genes CYP83A1 and CYP83B1 in Pak Choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S.H. Lee Hanelt

    Directory of Open Access Journals (Sweden)

    Huasen Wang

    2012-05-01

    Full Text Available CYP83A1 and CYP83B1 are two key synthesis genes in the glucosinolate biosynthesis pathway. CYP83A1 mainly metabolizes the aliphatic oximes to form aliphatic glucosinolate and CYP83B1 mostly catalyzes aromatic oximes to synthesis corresponding substrates for aromatic and indolic glucosinolates. In this study, two CYP83A1 genes named BcCYP83A1-1 (JQ289997, BcCYP83A1-2 (JQ289996 respectively and one CYP83B1 (BcCYP83B1, HM347235 gene were cloned from the leaves of pak choi (Brassica rapa L. ssp. chinensis var. communis (N. Tsen & S.H. Lee Hanelt “Hangzhou You Dong Er” cultivar. Their ORFs were 1506, 1509 and 1500 bp in length, encoding 501, 502 and 499 amino acids, respectively. The predicted amino acid sequences of CYP83A1-1, CYP83A1-2 and CYP83B1 shared high sequence identity of 87.65, 86.48 and 95.59% to the corresponding ones in Arabidopsis, and 98.80, 98.61 and 98.80% to the corresponding ones in Brassica pekinensis (Chinese cabbage, respectively. Quantitative real-time PCR analysis indicated that both CYP83A1 and CYP83B1 expressed in roots, leaves and petioles of pak choi, while the transcript abundances of CYP83A1 were higher in leaves than in petioles and roots, whereas CYP83B1 showed higher abundances in roots. The expression levels of glucosinolate biosynthetic genes were consistent with the glucosinolate profile accumulation in shoots of seven cultivars and three organs. The isolation and characterization of the glucosinolate synthesis genes in pak choi would promote the way for further development of agronomic traits via genetic engineering.

  11. Expression of hepatitis B surface antigen in transgenic banana plants.

    Science.gov (United States)

    Kumar, G B Sunil; Ganapathi, T R; Revathi, C J; Srinivas, L; Bapat, V A

    2005-10-01

    Embryogenic cells of bananan cv. Rasthali (AAB) have been transformed with the 's' gene of hepatitis B surface antigen (HBsAg) using Agrobacterium mediated transformation. Four different expression cassettes (pHBS, pHER, pEFEHBS and pEFEHER) were utilized to optimize the expression of HBsAg in banana. The transgenic nature of the plants and expression of the antigen was confirmed by PCR, Southern hybridization and reverse transcription (RT)-PCR. The expression levels of the antigen in the plants grown under in vitro conditions as well as the green house hardened plants were estimated by ELISA for all the four constructs. Maximum expression level of 38 ng/g F.W. of leaves was noted in plants transformed with pEFEHBS grown under in vitro conditions, whereas pHER transformed plants grown in the green house showed the maximum expression level of 19.92 ng/g F.W. of leaves. Higher monoclonal antibody binding of 67.87% of the antigen was observed when it was expressed with a C-terminal ER retention signal. The buoyant density in CsCl of HBsAg derived from transgenic banana leaves was determined and found to be 1.146 g/ml. HBsAg obtained from transgenic banana plants is similar to human serum derived one in buoyant density properties. The transgenic plants were grown up to maturity in the green house and the expression of HBsAg in the fruits was confirmed by RT-PCR. These transgenic plants were multiplied under in vitro using floral apex cultures. Attempts were also made to enhance the expression of HBsAg in the leaves of transgenic banana plants by wounding and/or treatment with plant growth regulators. This is the first report on the expression of HBsAg in transgenic banana fruits.

  12. Expression and regulation of CYP17A1 and 3β-hydroxysteroid dehydrogenase in cells of the nervous system: Potential effects of vitamin D on brain steroidogenesis

    DEFF Research Database (Denmark)

    Emanuelsson, I; Almokhtar, M; Wikvall, K

    2017-01-01

    astrocytes and neurons. The current data suggest that neurons, contrary to some previous reports, are not involved in 3β-HSD reactions. Previous studies have shown that vitamin D can influence gene expression and hormone production by steroidogenic enzymes in some cells. We found that vitamin D suppressed...... potential effects on CYP17A1 and 3β-HSD by vitamin D, a compound previously shown to have regulatory effects in steroid hormone-producing cells outside the brain. The results of our study indicate that astrocytes are a major site for expression of 3β-HSD whereas expression of CYP17A1 is found in both...... CYP17A1-mediated activity by 20% in SH-SY5Ycells and astrocytes. Suppression of CYP17A1 mRNA levels was considerably stronger, about 50% in SH-SY5Y cells and 75% in astrocytes. In astrocytes 3β-HSD was also suppressed by vitamin D, about 20% at the enzyme activity level and 60% at the mRNA level...

  13. Altered cytochrome P450 activities and expression levels in the liver and intestines of the monosodium glutamate-induced mouse model of human obesity.

    Science.gov (United States)

    Tomankova, Veronika; Liskova, Barbora; Skalova, Lenka; Bartikova, Hana; Bousova, Iva; Jourova, Lenka; Anzenbacher, Pavel; Ulrichova, Jitka; Anzenbacherova, Eva

    2015-07-15

    Cytochromes P450 (CYPs) are enzymes present from bacteria to man involved in metabolism of endogenous and exogenous compounds incl. drugs. Our objective was to assess whether obesity leads to changes in activities and expression of CYPs in the mouse liver, small intestine and colon. An obese mouse model with repeated injection of monosodium glutamate (MSG) to newborns was used. Controls were treated with saline. All mice were sacrificed at 8 months. In the liver and intestines, levels of CYP mRNA and proteins were analyzed using RT-PCR and Western blotting. Activities of CYP enzymes were measured with specific substrates of human orthologous forms. At the end of the experiment, body weight, plasma insulin and leptin levels as well as the specific content of hepatic CYP enzymes were increased in obese mice. Among CYP enzymes, hepatic CYP2A5 activity, protein and mRNA expression increased most significantly in obese animals. Higher activities and protein levels of hepatic CYP2E1 and 3A in the obese mice were also found. No or a weak effect on CYPs 2C and 2D was observed. In the small intestine and colon, no changes of CYP enzymes were detected except for increased expression of CYP2E1 and decreased expression of CYP3A mRNAs in the colon of the obese mice. Results of our study suggest that the specific content and activities of some liver CYP enzymes (especially CYP2A5) can be increased in obese mice. Higher activity of CYP2A5 (CYP2A6 human ortholog) could lead to altered metabolism of drug substrates of this enzyme (valproic acid, nicotine, methoxyflurane). Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection.

    Science.gov (United States)

    Zhang, David Y; Goossens, Nicolas; Guo, Jinsheng; Tsai, Ming-Chao; Chou, Hsin-I; Altunkaynak, Civan; Sangiovanni, Angelo; Iavarone, Massimo; Colombo, Massomo; Kobayashi, Masahiro; Kumada, Hiromitsu; Villanueva, Augusto; Llovet, Josep M; Hoshida, Yujin; Friedman, Scott L

    2016-10-01

    We used an informatics approach to identify and validate genes whose expression is unique to hepatic stellate cells and assessed the prognostic capability of their expression in cirrhosis. We defined a hepatic stellate cell gene signature by comparing stellate, immune and hepatic transcriptome profiles. We then created a prognostic index using a combination of hepatic stellate cell signature expression and clinical variables. This signature was derived in a retrospective-prospective cohort of hepatitis C-related early-stage cirrhosis (prognostic index derivation set) and validated in an independent retrospective cohort of patients with postresection hepatocellular carcinoma (HCC). We then examined the association between hepatic stellate cell signature expression and decompensation, HCC development, progression of Child-Pugh class and survival. The 122-gene hepatic stellate cell signature consists of genes encoding extracellular matrix proteins and developmental factors and correlates with the extent of fibrosis in human, mouse and rat datasets. Importantly, association of clinical prognostic variables with overall survival was improved by adding the signature; we used these results to define a prognostic index in the derivation set. In the validation set, the same prognostic index was associated with overall survival. The prognostic index was associated with decompensation, HCC and progression of Child-Pugh class in the derivation set, and HCC recurrence in the validation set. This work highlights the unique transcriptional niche of stellate cells, and identifies potential stellate cell targets for tracking, targeting and isolation. Hepatic stellate cell signature expression may identify patients with HCV cirrhosis or postresection HCC with poor prognosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Real-time monitoring of oxygen uptake in hepatic bioreactor shows CYP450-independent mitochondrial toxicity of acetaminophen and amiodarone.

    Science.gov (United States)

    Prill, Sebastian; Bavli, Danny; Levy, Gahl; Ezra, Elishai; Schmälzlin, Elmar; Jaeger, Magnus S; Schwarz, Michael; Duschl, Claus; Cohen, Merav; Nahmias, Yaakov

    2016-05-01

    Prediction of drug-induced toxicity is complicated by the failure of animal models to extrapolate human response, especially during assessment of repeated dose toxicity for cosmetic or chronic drug treatments. In this work, we present a 3D microreactor capable of maintaining metabolically active HepG2/C3A spheroids for over 28 days in vitro under stable oxygen gradients mimicking the in vivo microenvironment. Mitochondrial respiration was monitored using two-frequency phase modulation of phosphorescent microprobes embedded in the tissue. Phase modulation is focus independent and unaffected by cell death or migration. This sensitive measurement of oxygen dynamics revealed important information on the drug mechanism of action and transient subthreshold effects. Specifically, exposure to antiarrhythmic agent, amiodarone, showed that both respiration and the time to onset of mitochondrial damage were dose dependent showing a TC50 of 425 μm. Analysis showed significant induction of both phospholipidosis and microvesicular steatosis during long-term exposure. Importantly, exposure to widely used analgesic, acetaminophen, caused an immediate, reversible, dose-dependent loss of oxygen uptake followed by a slow, irreversible, dose-independent death, with a TC50 of 12.3 mM. Transient loss of mitochondrial respiration was also detected below the threshold of acetaminophen toxicity. The phenomenon was repeated in HeLa cells that lack CYP2E1 and 3A4, and was blocked by preincubation with ascorbate and TMPD. These results mark the importance of tracing toxicity effects over time, suggesting a NAPQI-independent targeting of mitochondrial complex III might be responsible for acetaminophen toxicity in extrahepatic tissues.

  16. Hepatitis C Virus Driven AXL Expression Suppresses the Hepatic Type I Interferon Response.

    Directory of Open Access Journals (Sweden)

    Scott A Read

    Full Text Available Treatment of chronic hepatitis C virus (HCV infection is evolving rapidly with the development of novel direct acting antivirals (DAAs, however viral clearance remains intimately linked to the hepatic innate immune system. Patients demonstrating a high baseline activation of interferon stimulated genes (ISGs, termed interferon refractoriness, are less likely to mount a strong antiviral response and achieve viral clearance when placed on treatment. As a result, suppressor of cytokine signalling (SOCS 3 and other regulators of the IFN response have been identified as key candidates for the IFN refractory phenotype due to their regulatory role on the IFN response. AXL is a receptor tyrosine kinase that has been identified as a key regulator of interferon (IFN signalling in myeloid cells of the immune system, but has not been examined in the context of chronic HCV infection. Here, we show that AXL is up-regulated following HCV infection, both in vitro and in vivo and is likely induced by type I/III IFNs and inflammatory signalling pathways. AXL inhibited type IFNα mediated ISG expression resulting in a decrease in its antiviral efficacy against HCV in vitro. Furthermore, patients possessing the favourable IFNL3 rs12979860 genotype associated with treatment response, showed lower AXL expression in the liver and a stronger induction of AXL in the blood, following their first dose of IFN. Together, these data suggest that elevated AXL expression in the liver may mediate an IFN-refractory phenotype characteristic of patients possessing the unfavourable rs12979860 genotype, which is associated with lower rates of viral clearance.

  17. CYP7B Expression and Activity in Fibroblast-Like Synoviocytes From Patients With Rheumatoid Arthritis Regulation by Proinflammatory Cytokines

    NARCIS (Netherlands)

    Dulos, John; van der Vleuten, Monique A. J.; Kavelaars, Annemieke; Heijnen, Cobi J.; Boots, Annemieke M.

    Objective. The cytochrome P450 enzyme CYP7B catalyzes the conversion of dehydroepiandrosterone (DHEA) into 7 alpha-hydroxy-DHEA (7 alpha-OH-DHEA). This metabolite can stimulate the immune response. We previously reported that the severity of murine collagen-induced arthritis is correlated with CYP7B

  18. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  19. Biocatalytic synthesis of flavones and hydroxyl-small molecules by recombinant Escherichia coli cells expressing the cyanobacterial CYP110E1 gene

    Directory of Open Access Journals (Sweden)

    Makino Takuya

    2012-07-01

    Full Text Available Abstract Background Cyanobacteria possess several cytochrome P450s, but very little is known about their catalytic functions. CYP110 genes unique to cyanaobacteria are widely distributed in heterocyst-forming cyanobacteria including nitrogen-fixing genera Nostoc and Anabaena. We screened the biocatalytic functions of all P450s from three cyanobacterial strains of genus Nostoc or Anabaena using a series of small molecules that contain flavonoids, sesquiterpenes, low-molecular-weight drugs, and other aromatic compounds. Results Escherichia coli cells carrying each P450 gene that was inserted into the pRED vector, containing the RhFRed reductase domain sequence from Rhodococcus sp. NCIMB 9784 P450RhF (CYP116B2, were co-cultured with substrates and products were identified when bioconversion reactions proceeded. Consequently, CYP110E1 of Nostoc sp. strain PCC 7120, located in close proximity to the first branch point in the phylogenetic tree of the CYP110 family, was found to be promiscuous for the substrate range mediating the biotransformation of various small molecules. Naringenin and (hydroxyl flavanones were respectively converted to apigenin and (hydroxyl flavones, by functioning as a flavone synthase. Such an activity is reported for the first time in prokaryotic P450s. Additionally, CYP110E1 biotransformed the notable sesquiterpene zerumbone, anti-inflammatory drugs ibuprofen and flurbiprofen (methylester forms, and some aryl compounds such as 1-methoxy and 1-ethoxy naphthalene to produce hydroxylated compounds that are difficult to synthesize chemically, including novel compounds. Conclusion We elucidated that the CYP110E1 gene, C-terminally fused to the P450RhF RhFRed reductase domain sequence, is functionally expressed in E. coli to synthesize a robust monooxygenase, which shows promiscuous substrate specificity (affinity for various small molecules, allowing the biosynthesis of not only flavones (from flavanones but also a variety of

  20. SREBP-1c regulates glucose-stimulated hepatic clusterin expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gukhan [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Geun Hyang; Oh, Gyun-Sik; Yoon, Jin [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Hae Won [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Min-Seon [Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Kim, Seung-Whan, E-mail: swkim7@amc.seoul.kr [Department of Pharmacology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of)

    2011-05-20

    Highlights: {yields} This is the first report to show nutrient-regulated clusterin expression. {yields} Clusterin expression in hepatocytes was increased by high glucose concentration. {yields} SREBP-1c is directly involved in the transcriptional activation of clusterin by glucose. {yields} This glucose-stimulated activation process is mediated through tandem E-box motifs. -- Abstract: Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.

  1. Effects of Bacterial Lipopolysaccharide on Phenobarbital-Induced CYP2B Expression in Mice

    National Research Council Canada - National Science Library

    Tong Li-Masters; Edward T. Morgan

    2001-01-01

    Models of inflammation and infection, such as bacterial lipopolysaccharide (LPS), cause suppression of cytochrome P450 expression in various species, although the mechanisms involved are poorly understood...

  2. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Jönsson, Maria E., E-mail: maria.jonsson@ebc.uu.se [Dept. of Environmental Toxicology, Evolutionary Biology, Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala (Sweden); Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Kubota, Akira, E-mail: akubota@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Timme-Laragy, Alicia R., E-mail: atimmelaragy@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Division of Environmental Health, Department of Public Health, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, 01003 (United States); Woodin, Bruce, E-mail: bwoodin@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543 (United States)

    2012-12-01

    The teleost swim bladder is assumed a homolog of the tetrapod lung. Both swim bladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR) agonists; in zebrafish (Danio rerio) the swim bladder fails to inflate with exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P450 1 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swim bladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependence of the effect of PCB126 on swim bladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swim bladder inflation. The effects of PCB126 were concentration-dependent with EC{sub 50} values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swim bladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swim bladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos failed to inflate the swim bladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swim bladder. Our results indicate that PCB126 blocks swim bladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swim bladder cells. -- Highlights: ► PCB126 caused cellular changes in the developing swim bladder. ► Swim bladder inflation was not related to expression of CYP1 or cox

  3. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Glisic, Branka; Kaisarevic, Sonja; Kovacevic, Radmila; Andric, Nebojsa, E-mail: nebojsa.andric@dbe.uns.ac.rs

    2013-07-01

    Worldwide used herbicide atrazine is linked to reproductive dysfunction in females. In this study, we investigated the effects and the mechanism of atrazine action in the ovary using a primary culture of immature granulosa cells. In granulosa cells, follicle-stimulating hormone (FSH) activates both cyclic adenosine monophosphate (cAMP) and extracellular-regulated kinase 1/2 (ERK1/2) cascades, with cAMP pathway being more important for luteinizing hormone receptor (LHR) and aromatase (CYP19A1) mRNA expression. We report that 48 h after atrazine exposure the FSH-stimulated LHR and CYP19A1 mRNA expression and estradiol synthesis were decreased, with LHR mRNA being more sensitive to atrazine than CYP19A1 mRNA. Inadequate acquisition of LHR in the FSH-stimulated and atrazine-exposed granulosa cells renders human chorionic gonadotropin (hCG) ineffective to stimulate amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr) mRNA expression, suggesting anti-ovulatory effect of atrazine. To dissect the signaling cascade involved in atrazine action in granulosa cells, we used U0126, a pharmacological inhibitor of ERK1/2. U0126 prevents atrazine-induced decrease in LHR and CYP19A1 mRNA levels and estradiol production in the FSH-stimulated granulosa cells. ERK1/2 inactivation restores the ability of hCG to induce expression of the ovulatory genes in atrazine-exposed granulosa cells. Cell-based ELISA assay revealed that atrazine does not change the FSH-stimulated ERK1/2 phosphorylation in granulosa cells. The results from this study reveal that atrazine does not affect but requires ERK1/2 phosphorylation to cause decrease in the FSH-induced LHR and CYP19A1 mRNA levels and estradiol production in immature granulosa cells, thus compromising ovulation and female fertility. - Highlights: • Atrazine inhibits estradiol production in FSH-stimulated granulosa cells. • Atrazine inhibits LHR and Cyp19a1 mRNA expression in FSH-stimulated granulosa cells. • Atrazine

  4. Sigmoidal kinetics of CYP3A substrates: an approach for scaling dextromethorphan metabolism in hepatic microsomes and isolated hepatocytes to predict in vivo clearance in rat.

    Science.gov (United States)

    Witherow, L E; Houston, J B

    1999-07-01

    The metabolism of a number of compounds by the cytochrome P-450 subfamily CYP3A does not exhibit classic Michaelis-Menten kinetics but displays a sigmoidal rate-substrate concentration relationship. Intrinsic clearance (CLint) cannot be calculated for these drugs due to the lack of a first order region in their kinetic profiles, and a suitable parameter has yet to be identified to allow such data to be scaled to predict in vivo clearance. As sigmoidal kinetics have only been observed with microsomal systems, we have investigated whether this behavior is demonstrable in freshly isolated hepatocytes. We have also evaluated the term maximum clearance (CLmax), which refers to the in vitro clearance when the enzyme is fully activated, to predict in vivo clearance. To these ends we have studied the metabolism of dextromethorphan to methoxymorphinan and dextrorphan; methoxymorphinan production is best described by sigmoidal kinetics in both hepatocytes and microsomes, dextrorphan production is best described by a two site Michaelis-Menten model in microsomes but is sigmoidal in hepatocytes. Total clearance, estimated from the CLmax and CLint terms, was scaled to give mean predictions of 127 to 319 ml/min/standard rat weight of 250 g. In vivo CLint, determined after infusion via the hepatic portal vein to steady state and correcting for plasma protein binding and blood-to-plasma concentration ratio, was 259 +/- 59.2 ml/min/standard rat weight of 250 g. These investigations show that sigmoidal kinetics is not unique to microsomes and that CLmax is a useful parameter for scaling to the in vivo situation.

  5. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Hung [Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan (China); Chou, Pei-Hsin [Department of Environmental Engineering, National Cheng-Kung University, Tainan, Taiwan (China); Chen, Pei-Jen, E-mail: chenpj@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan (China)

    2014-07-30

    Highlights: • We assess ecotoxicological impact of azole fungicides in the aquatic environment. • Carcinogenic and non-carcinogenic azoles show different CYP activities in medaka. • We compare azole-induced CYP expression and carcinogenesis between fish and rodents. • Liver CYP-enzyme induction is a key event in conazole-induced tumorigenesis. • We suggest toxicity evaluation methods for azole fungicides using medaka fish. - Abstract: Conazoles are a class of imidazole- or triazole-containing drugs commonly used as fungicides in agriculture and medicine. The broad application of azole drugs has led to the contamination of surface aquifers receiving the effluent of municipal or hospital wastewater or agricultural runoff. Several triazoles are rodent carcinogens; azole pollution is a concern to environmental safety and human health. However, the carcinogenic mechanisms associated with cytochrome P450 enzymes (CYPs) of conazoles remain unclear. We exposed adult medaka fish (Oryzias latipes) to continuous aqueous solutions of carcinogenic triadimefon and non-carcinogenic myclobutanil for 7 to 20 days at sub-lethal or environmentally relevant concentrations and assessed hepatic CYP activity and gene expression associated with CYP-mediated toxicity. Both triadimefon and myclobutanil induced hepatic CYP3A activity, but only triadimefon enhanced CYP1A activity. The gene expression of cyp3a38, cyp3a40, pregnane x receptor (pxr), cyp26b, retinoid acid receptor γ1 (rarγ1) and p53 was higher with triadimefon than myclobutanil. As well, yeast-based reporter gene assay revealed that 4 tested conazoles were weak agonists of aryl hydrocarbon receptor (AhR). We reveal differential CYP gene expression with carcinogenic and non-carcinogenic conazoles in a lower vertebrate, medaka fish. Liver CYP-enzyme induction may be a key event in conazole-induced tumorigenesis. This information is essential to evaluate the potential threat of conazoles to human health and fish

  6. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria

    Directory of Open Access Journals (Sweden)

    Ranson Hilary

    2008-11-01

    Full Text Available Abstract Background Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes. Results All mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron and an urban area (Gbedjromede, low levels of resistance in mosquito samples from an oil contaminated site (Ojoo and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84 but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold and Ojoo (7.4-fold populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations. Conclusion Multiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential

  7. Dysregulated hepatic expression of glucose transporters in chronic disease: contribution of semicarbazide-sensitive amine oxidase to hepatic glucose uptake.

    Science.gov (United States)

    Karim, Sumera; Liaskou, Evaggelia; Fear, Janine; Garg, Abhilok; Reynolds, Gary; Claridge, Lee; Adams, David H; Newsome, Philip N; Lalor, Patricia F

    2014-12-15

    Insulin resistance is common in patients with chronic liver disease (CLD). Serum levels of soluble vascular adhesion protein-1 (VAP-1) are also increased in these patients. The amine oxidase activity of VAP-1 stimulates glucose uptake via translocation of transporters to the cell membrane in adipocytes and smooth muscle cells. We aimed to document human hepatocellular expression of glucose transporters (GLUTs) and to determine if VAP-1 activity influences receptor expression and hepatic glucose uptake. Quantitative PCR and immunocytochemistry were used to study human liver tissue and cultured cells. We also used tissue slices from humans and VAP-1-deficient mice to assay glucose uptake and measure hepatocellular responses to stimulation. We report upregulation of GLUT1, -3, -5, -6, -7, -8, -9, -10, -11, -12, and -13 in CLD. VAP-1 expression and enzyme activity increased in disease, and provision of substrate to hepatic VAP-1 drives hepatic glucose uptake. This effect was sensitive to inhibition of VAP-1 and could be recapitulated by H2O2. VAP-1 activity also altered expression and subcellular localization of GLUT2, -4, -9, -10, and -13. Therefore, we show, for the first time, alterations in hepatocellular expression of glucose and fructose transporters in CLD and provide evidence that the semicarbazide-sensitive amine oxidase activity of VAP-1 modifies hepatic glucose homeostasis and may contribute to patterns of GLUT expression in chronic disease. Copyright © 2014 the American Physiological Society.

  8. The hepatic Raldh1 expression is elevated in Zucker fatty rats and its over-expression introduced the retinal-induced Srebp-1c expression in INS-1 cells.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available The roles of vitamin A (VA in the development of metabolic diseases remain unanswered. We have reported that retinoids synergized with insulin to induce the expression of sterol-regulatory element-binding protein 1c gene (Srebp-1c expression in primary rat hepatocytes. Additionally, the hepatic Srebp-1c expression is elevated in Zucker fatty (ZF rats, and reduced in those fed a VA deficient diet. VA is metabolized to retinoic acid (RA for regulating gene expression. We hypothesized that the expression of RA production enzymes contributes to the regulation of the hepatic Srebp-1c expression. Therefore, we analyzed their expression levels in Zucker lean (ZL and ZF rats. The mRNA levels of retinaldehyde dehydrogenase family 1 gene (Raldh1 were found to be higher in the isolated and cultured primary hepatocytes from ZF rats than that from ZL rats. The RALDH1 protein level was elevated in the liver of ZF rats. Retinol and retinal dose- and time-dependently induced the expression of RA responsive Cyp26a1 gene in hepatocytes and hepatoma cells. INS-1 cells were identified as an ideal tool to study the effects of RA production on the regulation of gene expression because only RA, but not retinal, induced Srebp-1c mRNA expression in them. Recombinant adenovirus containing rat Raldh1 cDNA was made and used to infect INS-1 cells. The over-expression of RALDH1 introduced the retinal-mediated induction of Srebp-1c expression in INS-1 cells. We conclude that the expression levels of the enzymes for RA production may contribute to the regulation of RA responsive genes, and determine the responses of the cells to retinoid treatments. The elevated hepatic expression of Raldh1 in ZF rats may cause the excessive RA production from retinol, and in turn, result in higher Srebp-1c expression. This excessive RA production may be one of the factors contributing to the elevated lipogenesis in the liver of ZF rats.

  9. Freshwater Clam Extract Ameliorates Triglyceride and Cholesterol Metabolism through the Expression of Genes Involved in Hepatic Lipogenesis and Cholesterol Degradation in Rats

    Directory of Open Access Journals (Sweden)

    Thomas Laurent

    2013-01-01

    Full Text Available The freshwater clam (Corbicula spp. is a popular edible bivalve and has been used as a folk remedy for liver disease in Asia. As a Chinese traditional medicine, it is said that freshwater clam ameliorates alcoholic intoxication and cholestasis. In this study, to estimate the practical benefit of freshwater clam extract (FCE, we compared the effects of FCE and soy protein isolate (SPI on triglyceride and cholesterol metabolism in rats. FCE and SPI lowered serum cholesterol, and FCE tended to reduce serum triglycerides. FCE enhanced fecal sterol excretion and hepatic mRNA levels of CYP7A1 and ABCG5 more substantially than SPI; however, both diets reduced hepatic cholesterol. Both of the diets similarly suppressed liver lipids improved Δ9-desaturated fatty acid profile, and FCE was associated with a reduction in FAS and SCD1 mRNA levels. Hepatic transcriptome analysis revealed that inhibition of lipogenesis-related gene expression may contribute to downregulation of hepatic triglycerides by FCE. FCE would have better potential benefits for preventing metabolic disorders, through greater improvement of metabolism of triglycerides and cholesterol, likely through a mechanism similar to SPI.

  10. Regulation of VDR expression in rat and human intestine and liver - Consequences for CYP3A expression

    NARCIS (Netherlands)

    Khan, Ansar A.; Dragt, Bieuwke S.; Porte, Robert J.; Groothuis, Geny M. M.

    The vitamin D receptor (VDR) regulates the expression of drug metabolizing enzymes and transporters in intestine and liver, but the regulation of VDR expression in intestine and liver is incompletely understood. We studied the regulation of VDR mRNA expression by ligands for VDR, farnesoid X

  11. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vorrink, Sabine U. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Severson, Paul L. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Kulak, Mikhail V. [Department of Surgery, The University of Iowa, Iowa City, IA (United States); Futscher, Bernard W. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Domann, Frederick E., E-mail: frederick-domann@uiowa.edu [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Department of Surgery, The University of Iowa, Iowa City, IA (United States)

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126). Exposure to 1% O{sub 2} prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity. - Highlights: • Significant crosstalk exists between AhR and HIF-1α signaling. • Hypoxia perturbs PCB 126 induced AhR function and

  12. RNA Editing Modulates Human Hepatic Aryl Hydrocarbon Receptor Expression by Creating MicroRNA Recognition Sequence.

    Science.gov (United States)

    Nakano, Masataka; Fukami, Tatsuki; Gotoh, Saki; Takamiya, Masataka; Aoki, Yasuhiro; Nakajima, Miki

    2016-01-08

    Adenosine to inosine (A-to-I) RNA editing is the most frequent type of post-transcriptional nucleotide conversion in humans, and it is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes. In this study we investigated the effect of RNA editing on human aryl hydrocarbon receptor (AhR) expression because the AhR transcript potentially forms double-stranded structures, which are targets of ADAR enzymes. In human hepatocellular carcinoma-derived Huh-7 cells, the ADAR1 knockdown reduced the RNA editing levels in the 3'-untranslated region (3'-UTR) of the AhR transcript and increased the AhR protein levels. The ADAR1 knockdown enhanced the ligand-mediated induction of CYP1A1, a gene downstream of AhR. We investigated the possibility that A-to-I RNA editing creates miRNA targeting sites in the AhR mRNA and found that the miR-378-dependent down-regulation of AhR was abolished by ADAR1 knockdown. These results indicated that the ADAR1-mediated down-regulation of AhR could be attributed to the creation of a miR-378 recognition site in the AhR 3'-UTR. The interindividual differences in the RNA editing levels within the AhR 3'-UTR in a panel of 32 human liver samples were relatively small, whereas the differences in ADAR1 expression were large (220-fold). In the human liver samples a significant inverse association was observed between the miR-378 and AhR protein levels, suggesting that the RNA-editing-dependent down-regulation of AhR by miR-378 contributes to the variability in the constitutive hepatic expression of AhR. In conclusion, this study uncovered for the first time that A-to-I RNA editing modulates the potency of xenobiotic metabolism in the human liver. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Reelin expression in human liver of patients with chronic hepatitis C infection

    Directory of Open Access Journals (Sweden)

    Simone Carotti

    2017-03-01

    Full Text Available Reelin is a secreted extracellular glycoprotein that plays a critical role during brain development. Several studies have described Reelin expression in hepatic stellate cells of the human liver. In order to investigate the possible role of Reelin in the process of hepatic fibrogenesis, in this study we investigated Reelin expression in the liver tissue of patients infected with the Hepatitis C Virus (HCV. On this basis, Reelin expression was analysed by immunohistochemistry during liver biopsies of 81 patients with HCV-related chronic hepatitis. A Knodell score was used to stage liver fibrosis. Hepatic stellate cells/myofibroblast immunohistochemical markers (CRBP-1, alpha-SMA were also evaluated. As further confirmed by co-localization experiments (Reelin +CRBP-1, Reelin protein was expressed by hepatic stellate cells/myofibroblasts, and a significant positive correlation was found between Reelin expression and the stage of liver fibrosis (P=0.002. Moreover, Reelin correlated with CRBP-1 positive cells (P=0.002, but not with alpha-SMA, suggesting that Reelin should not be regarded as a marker of hepatic stellate cells/myofibroblasts differentiation but rather as a functional protein expressed during some phases of liver fibrosis. Furthermore, Disabled-1 (Dab1, a Reelin adaptor protein, was expressed in cells of ductular reaction suggesting a paracrine role for Reelin with regards these elements. In conclusion, Reelin was expressed by human hepatic stellate cells/myofibroblasts and the number of these cells increased significantly in the lobule as the liver fibrosis progressed, suggesting a role for Reelin in the activation of hepatic stellate cells/myofibroblasts during liver injury. Reelin may potentially be incorporated into liver injury evaluations in combination with other histological data.

  14. Pigs fed camelina meal increase hepatic gene expression of cytochrome 8b1, aldehyde dehydrogenase, and thiosulfate transferase.

    Science.gov (United States)

    Meadus, William Jon; Duff, Pascale; McDonald, Tanya; Caine, William R

    2014-01-03

    Camelina sativa is an oil seed crop which can be grown on marginal lands. Camelina seed oil is rich in omega-3 fatty acids (>35%) and γ-tocopherol but is also high in erucic acid and glucosinolates. Camelina meal, is the by-product after the oil has been extracted. Camelina meal was fed to 28 d old weaned pigs at 3.7% and 7.4% until age 56 d. The camelina meal supplements in the soy based diets, improved feed efficiency but also significantly increased the liver weights. Gene expression analyses of the livers, using intra-species microarrays, identified increased expression of phase 1 and phase 2 drug metabolism enzymes. The porcine versions of the enzymes were confirmed by real time PCR. Cytochrome 8b1 (CYP8B1), aldehyde dehydrogenase 2 (Aldh2), and thiosulfate transferase (TST) were all significantly stimulated. Collectively, these genes implicate the camelina glucosinolate metabolite, methyl-sulfinyldecyl isothiocyanate, as the main xeniobiotic, causing increased hepatic metabolism and increased liver weight.

  15. From molecule to behavior: Brain aromatase (cyp19a1b) characterization, expression analysis and its relation with social status and male agonistic behavior in a Neotropical cichlid fish.

    Science.gov (United States)

    Ramallo, Martín R; Morandini, Leonel; Birba, Agustina; Somoza, Gustavo M; Pandolfi, Matías

    2017-03-01

    The enzyme aromatase, responsible for the conversion of C19 androgens to C18 estrogens, exists as two paralogue copies in teleost fish: Cyp19a1a mostly expressed in the gonads, referred as gonadal aromatase, and Cyp19a1b, mostly expressed in the brain, accordingly known as brain aromatase. The neural localization of Cyp19a1b is greatly contained within the social behavior network and mesolimbic reward system in fish, suggesting a strong role of estrogen synthesis in the regulation of social behavior. In this work we aimed to analyze the variation in cyp19a1b expression in brain and pituitary of males of a highly social cichlid, Cichlasoma dimerus (locally known as chanchita), and its relation with inter-individual variability in agonistic behavior in a communal social environment. We first characterized chanchita's cyp19a1b mRNA and deduced amino acid sequence, which showed a high degree of conservation when compared to other teleost brain aromatase sequences, and its tissue expression patterns. Within the brain, Cyp19a1b was solely detected at putative radial glial cells of the forebrain, close to the brain ventricles. We then studied the relative expression levels of cyp19a1b by Real Time PCR in the brain and pituitary of males of different social status, territorial vs. non-territorial, and its relationship with an index of agonistic behavior. We found that even though, brain aromatase expression did not differ between types of males, pituitary cyp19a1b expression levels positively correlated with the index of agonistic behavior. This suggests a novel role of the pituitary in the regulation of social behavior by local estrogen synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Ahr2-dependance of PCB126 effects on the swimbladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish

    Science.gov (United States)

    Jönsson, Maria E.; Kubota, Akira; Timme-Laragy, Alicia; Woodin, Bruce; Stegeman, John J.

    2012-01-01

    The teleost swimbladder is assumed a homolog of the tetrapod lung. Both swimbladder and lung are developmental targets of persistent aryl hydrocarbon receptor (AHR1) agonists; in zebrafish (Danio rerio) the swimbladder fails to inflate with exposure to 3,3’,4,4’,5-pentachlorobiphenyl (PCB126). The mechanism for this effect is unknown, but studies have suggested roles of cytochrome P4501 (CYP1) and cyclooxygenase 2 (Cox-2) in some Ahr-mediated developmental effects in zebrafish. We determined relationships between swimbladder inflation and CYP1 and Cox-2 mRNA expression in PCB126-exposed zebrafish embryos. We also examined effects on β-catenin dependent transcription, histological effects, and Ahr2 dependance of the effect of PCB126 on swimbladder using morpholinos targeting ahr2. One-day-old embryos were exposed to waterborne PCB126 or carrier (DMSO) for 24 h and then held in clean water until day 4, a normal time for swimbladder inflation. The effects of PCB126 were concentration-dependent with EC50 values of 1.4 to 2.0 nM for induction of the CYP1s, 3.7 and 5.1 nM (or higher) for cox-2a and cox-2b induction, and 2.5 nM for inhibition of swimbladder inflation. Histological defects included a compaction of the developing bladder. Ahr2-morpholino treatment rescued the effect of PCB126 (5 nM) on swimbladder inflation and blocked induction of CYP1A, cox-2a, and cox-2b. With 2 nM PCB126 approximately 30% of eleutheroembryos2 failed to inflate the swimbladder, but there was no difference in CYP1 or cox-2 mRNA expression between those embryos and embryos showing inflated swimbladder. Our results indicate that PCB126 blocks swimbladder inflation via an Ahr2-mediated mechanism. This mechanism seems independent of CYP1 or cox-2 mRNA induction but may involve abnormal development of swimbladder cells. PMID:23036320

  17. Hepatitis

    Science.gov (United States)

    ... yourself against hepatitis A is by vaccination. Other ways to protect yourself include avoiding rimming and other anal and oral contact. While condom use is essential in preventing the spread of HIV, hepatitis B and other STDs, it does not ...

  18. Genome Editing of the CYP1A1 Locus in iPSCs as a Platform to Map AHR Expression throughout Human Development

    Directory of Open Access Journals (Sweden)

    Brenden W. Smith

    2016-01-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a ligand activated transcription factor that increases the expression of detoxifying enzymes upon ligand stimulation. Recent studies now suggest that novel endogenous roles of the AHR exist throughout development. In an effort to create an optimized model system for the study of AHR signaling in several cellular lineages, we have employed a CRISPR/CAS9 genome editing strategy in induced pluripotent stem cells (iPSCs to incorporate a reporter cassette at the transcription start site of one of its canonical targets, cytochrome P450 1A1 (CYP1A1. This cell line faithfully reports on CYP1A1 expression, with luciferase levels as its functional readout, when treated with an endogenous AHR ligand (FICZ at escalating doses. iPSC-derived fibroblast-like cells respond to acute exposure to environmental and endogenous AHR ligands, and iPSC-derived hepatocytes increase CYP1A1 in a similar manner to primary hepatocytes. This cell line is an important innovation that can be used to map AHR activity in discrete cellular subsets throughout developmental ontogeny. As further endogenous ligands are proposed, this line can be used to screen for safety and efficacy and can report on the ability of small molecules to regulate critical cellular processes by modulating the activity of the AHR.

  19. Gene expression profiling of hepatitis B- and hepatitis C-related hepatocellular carcinoma using graphical Gaussian modeling.

    Science.gov (United States)

    Ueda, Teruyuki; Honda, Masao; Horimoto, Katsuhisa; Aburatani, Sachiyo; Saito, Shigeru; Yamashita, Taro; Sakai, Yoshio; Nakamura, Mikiko; Takatori, Hajime; Sunagozaka, Hajime; Kaneko, Shuichi

    2013-04-01

    Gene expression profiling of hepatocellular carcinoma (HCC) and background liver has been studied extensively; however, the relationship between the gene expression profiles of different lesions has not been assessed. We examined the expression profiles of 34 HCC specimens (17 hepatitis B virus [HBV]-related and 17 hepatitis C virus [HCV]-related) and 71 non-tumor liver specimens (36 chronic hepatitis B [CH-B] and 35 chronic hepatitis C [CH-C]) using an in-house cDNA microarray consisting of liver-predominant genes. Graphical Gaussian modeling (GGM) was applied to elucidate the interactions of gene clusters among the HCC and non-tumor lesions. In CH-B-related HCC, the expression of vascular endothelial growth factor-family signaling and regulation of T cell differentiation, apoptosis, and survival, as well as development-related genes was up-regulated. In CH-C-related HCC, the expression of ectodermal development and cell proliferation, wnt receptor signaling, cell adhesion, and defense response genes was also up-regulated. Many of the metabolism-related genes were down-regulated in both CH-B- and CH-C-related HCC. GGM analysis of the HCC and non-tumor lesions revealed that DNA damage response genes were associated with AP1 signaling in non-tumor lesions, which mediates the expression of many genes in CH-B-related HCC. In contrast, signal transducer and activator of transcription 1 and phosphatase and tensin homolog were associated with early growth response protein 1 signaling in non-tumor lesions, which potentially promotes angiogenesis, fibrogenesis, and tumorigenesis in CH-C-related HCC. Gene expression profiling of HCC and non-tumor lesions revealed the predisposing changes of gene expression in HCC. This approach has potential for the early diagnosis and possible prevention of HCC. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Christa E.; Mullis, Primus E. [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH 3004 Bern (Switzerland); Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH 3004 Bern (Switzerland)

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  1. Differential expression of haptoglobin isoforms in chronic active hepatitis, cirrhosis and HCC related to HBV infection

    OpenAIRE

    Sarvari, Jamal; Mojtahedi, Zahra; Kuramitsu, Yasuhiro; Malek‑Hosseini, Seyed-Ali; Shamsi Shahrabadi, Mahmoud; Ghaderi, Abbas; Nakamura, Kazuyuki

    2011-01-01

    The three main complications of hepatitis B virus (HBV) infection are chronic active hepatitis (CAH), liver cirrhosis, and hepatocellular carcinoma (HCC). The aim of this study was to identify differentially expressed serum proteins among the three liver complications in patients with HBV infection. Differentially expressed proteins have been shown to be potential biomarkers for disease diagnosis, prognosis and therapy guidance. Two-dimensional polyacrylamid gel electrophoresis (2DE) combined...

  2. Cellular localization of CYP3A proteins in various tissues from pilot whale (Globicephala melas).

    Science.gov (United States)

    Celander; Moore; Stegeman

    2000-06-01

    The in situ expression of cytochrome P450 3A- (CYP3A) like proteins in hepatic and extrahepatic tissues from a marine mammal, pilot whale (Globicephala melas), was investigated. Polyclonal antibodies (PAb) raised against either rat CYP3A1 or trout CYP3A27 both recognized a microsomal protein band in liver, lung, kidney and heart. The protein band observed in liver and lung had slightly lower molecular weight than that observed in kidney and heart, suggesting the existence of two CYP3A forms in pilot whale. Immunohistochemical analyses showed strong CYP3A-staining in hepatocytes, bile duct epithelial cells, bronchial epithelial cells, in primordial- and primary follicles and their surrounding zona glomerulosa. Moderate to strong CYP3A staining was seen in smooth muscle-like cells of large arteries and arterioles in all organs examined. Mild to moderate staining was evident in alveolar epithelial cells and in kidney tubular epithelial cells. Weak staining was seen in glomerular epithelial cells and in seminiferous tubular epithelial cells.

  3. Aberrant gonadotropin-releasing hormone receptor (GnRHR) expression and its regulation of CYP11B2 expression and aldosterone production in adrenal aldosterone-producing adenoma (APA).

    Science.gov (United States)

    Nakamura, Yasuhiro; Hattangady, Namita G; Ye, Ping; Satoh, Fumitoshi; Morimoto, Ryo; Ito-Saito, Takako; Sugawara, Akira; Ohba, Koji; Takahashi, Kazuhiro; Rainey, William E; Sasano, Hironobu

    2014-03-25

    Aberrant expression of gonadotropin-releasing hormone receptor (GnRHR) has been reported in human adrenal tissues including aldosterone-producing adenoma (APA). However, the details of its expression and functional role in adrenals are still not clear. In this study, quantitative RT-PCR analysis revealed the mean level of GnRHR mRNA was significantly higher in APAs than in human normal adrenal (NA) (P=0.004). GnRHR protein expression was detected in human NA and neoplastic adrenal tissues. In H295R cells transfected with GnRHR, treatment with GnRH resulted in a concentration-dependent increase in CYP11B2 reporter activity. Chronic activation of GnRHR with GnRH (100nM), in a cell line with doxycycline-inducible GnRHR (H295R-TR/GnRHR), increased CYP11B2 expression and aldosterone production. These agonistic effects were inhibited by blockers for the calcium signaling pathway, KN93 and calmidazolium. These results suggest GnRH, through heterotopic expression of its receptor, may be a potential regulator of CYP11B2 expression levels in some cases of APA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Hepatic transcriptome analysis of hepatitis C virus infection in chimpanzees defines unique gene expression patterns associated with viral clearance.

    Directory of Open Access Journals (Sweden)

    Santosh Nanda

    Full Text Available Hepatitis C virus infection leads to a high rate of chronicity. Mechanisms of viral clearance and persistence are still poorly understood. In this study, hepatic gene expression analysis was performed to identify any molecular signature associated with the outcome of hepatitis C virus (HCV infection in chimpanzees. Acutely HCV-infected chimpanzees with self-limited infection or progression to chronicity were studied. Interferon stimulated genes were induced irrespective of the outcome of infection. Early induction of a set of genes associated with cell proliferation and immune activation was associated with subsequent viral clearance. Specifically, two of the genes: interleukin binding factor 3 (ILF3 and cytotoxic granule-associated RNA binding protein (TIA1, associated with robust T-cell response, were highly induced early in chimpanzees with self-limited infection. Up-regulation of genes associated with CD8+ T cell response was evident only during the clearance phase of the acute self-limited infection. The induction of these genes may represent an initial response of cellular injury and proliferation that successfully translates to a "danger signal" leading to induction of adaptive immunity to control viral infection. This primary difference in hepatic gene expression between self-limited and chronic infections supports the concept that successful activation of HCV-specific T-cell response is critical in clearance of acute HCV infection.

  5. Omeprazole Attenuates Hyperoxic Lung Injury in Mice via Aryl Hydrocarbon Receptor Activation and Is Associated with Increased Expression of Cytochrome P4501A Enzymes

    Science.gov (United States)

    Shivanna, Binoy; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.

    2011-01-01

    Hyperoxia contributes to lung injury in experimental animals and bronchopulmonary dysplasia (BPD) in preterm infants. Cytochrome P4501A (CYP1A) enzymes, which are regulated by the aryl hydrocarbon receptor (AhR), have been shown to attenuate hyperoxic lung injury in rodents. Omeprazole, a proton pump inhibitor, used in humans to treat gastric acid-related disorders, induces hepatic CYP1A in vitro. However, the mechanism by which omeprazole induces CYP1A and its impact on CYP1A expression in vivo and hyperoxic lung injury are unknown. Therefore, we tested the hypothesis that omeprazole attenuates hyperoxic lung injury in adult wild-type (WT) C57BL/6J mice by an AhR-mediated induction of pulmonary and hepatic CYP1A enzymes. Accordingly, we determined the effects of omeprazole on pulmonary and hepatic CYP1A expression and hyperoxic lung injury in adult WT and AhR dysfunctional (AhRd) mice. We found that omeprazole attenuated lung injury in WT mice. Attenuation of lung injury by omeprazole paralleled enhanced pulmonary CYP1A1 and hepatic CYP1A2 expression in the omeprazole-treated mice. On the other hand, omeprazole failed to enhance pulmonary CYP1A1 and hepatic CYP1A2 expression and protect against hyperoxic lung injury in AhRd mice. In conclusion, our results suggest that omeprazole attenuates hyperoxic lung injury in mice by AhR-mediated mechanisms, and this phenomenon is associated with induction of CYP1A enzymes. These studies have important implications for the prevention and/or treatment of hyperoxia-induced disorders such as BPD in infants and acute respiratory distress syndrome in older children and adults. PMID:21768223

  6. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism.

    Science.gov (United States)

    Oehler, Nicola; Volz, Tassilo; Bhadra, Oliver D; Kah, Janine; Allweiss, Lena; Giersch, Katja; Bierwolf, Jeanette; Riecken, Kristoffer; Pollok, Jörg M; Lohse, Ansgar W; Fehse, Boris; Petersen, Joerg; Urban, Stephan; Lütgehetmann, Marc; Heeren, Joerg; Dandri, Maura

    2014-11-01

    Chronic hepatitis B virus (HBV) infection has been associated with alterations in lipid metabolism. Moreover, the Na+-taurocholate cotransporting polypeptide (NTCP), responsible for bile acid (BA) uptake into hepatocytes, was identified as the functional cellular receptor mediating HBV entry. The aim of the study was to determine whether HBV alters the liver metabolic profile by employing HBV-infected and uninfected human liver chimeric mice. Humanized urokinase plasminogen activator/severe combined immunodeficiency mice were used to establish chronic HBV infection. Gene expression profiles were determined by real-time polymerase chain reaction using primers specifically recognizing transcripts of either human or murine origin. Liver biopsy samples obtained from HBV-chronic individuals were used to validate changes determined in mice. Besides modest changes in lipid metabolism, HBV-infected mice displayed a significant enhancement of human cholesterol 7α-hydroxylase (human [h]CYP7A1; median 12-fold induction; Pmetabolic alterations. Binding of HBV to NTCP limits its function, thus promoting compensatory BA synthesis and cholesterol provision. The intimate link determined between HBV and liver metabolism underlines the importance to exploit further metabolic pathways, as well as possible NTCP-related viral-drug interactions. © 2014 by the American Association for the Study of Liver Diseases.

  7. Coleus forskohlii extract attenuates the hypoglycemic effect of tolbutamide in vivo via a hepatic cytochrome P450-mediated mechanism.

    Science.gov (United States)

    Yokotani, Kaori; Chiba, Tsuyoshi; Sato, Yoko; Umegaki, Keizo

    2014-01-01

    This in vivo study in rats evaluated whether Coleus forskohlii extract (CFE) taken orally interacted with tolbutamide, a hypoglycemic drug metabolized by CYP2C enzymes. Rats were fed 0%, 0.3%, 1% (w/w) CFE diet for 2 weeks, followed by 0% CFE diet for 1 day. They were then given 40 mg/kg tolbutamide by intragastric gavage. Blood glucose level was determined up to 6 h after tolbutamide administration. CFE treatment increased total CYP content and various CYP subtypes in the liver. In particular, increases in activity and protein expression were noted for the CYP2B, CYP2C, and CYP3A subtypes. CFE treatment dose-dependently attenuated both the hypoglycemic action of tolbutamide at 6 h and the plasma concentration of tolbutamide. The activity of (S)-warfarin 7-hydroxylase, a CYP2C enzyme was negatively correlated with plasma tolbutamide level, which also showed a negative correlation with the reduction of blood glucose level. These results indicate that CFE induced hepatic CYPs in rats and attenuated the hypoglycemic action of tolbutamide via a hepatic CYP2C-mediated mechanism.

  8. Identification of a novel P450 gene belonging to the CYP4 family in the clam Ruditapes philippinarum, and analysis of basal- and benzo(a)pyrene-induced mRNA expression levels in selected tissues.

    Science.gov (United States)

    Pan, Luqing; Liu, Na; Xu, Chaoqun; Miao, Jingjing

    2011-11-01

    A novel full-length cDNA encoding a CYP4 protein was initially cloned from the clam, Ruditapes philippinarum. The nucleotide sequence contained an open reading frame coding for 442 amino acids and the deduced amino acid sequence showed 42.6-49.1% identity with other species CYP4s. The phylogenetic analysis demonstrated that the clam CYP4 was clustered within the CYP4s branch. The clam CYP4 mRNA expression was detected in gill, digestive gland, adductor muscle and mantle, and highest transcription level was observed in digestive gland compared to other tissues. Quantitative real-time RT-PCR analysis revealed that there was no notable change in CYP4 mRNA expression in gill of R. philippinarum exposure to benzo(a)pyrene (BaP), while the mRNA expression was induced significantly in the digestive gland of the clam by 0.2 ppb (μgL(-1)) BaP (pclam may serve as a useful biomarker of marine environmental PAH pollution. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Coleus forskohlii extract induces hepatic cytochrome P450 enzymes in mice.

    Science.gov (United States)

    Virgona, Nantiga; Yokotani, Kaori; Yamazaki, Yuko; Shimura, Fumio; Chiba, Tsuyoshi; Taki, Yuko; Yamada, Shizuo; Shinozuka, Kazumasa; Murata, Masatsune; Umegaki, Keizo

    2012-03-01

    Coleus forskohlii root extract (CFE) is popular for use as a weight loss dietary supplement. In this study, the influence of standardized CFE containing 10% active component forskolin on the hepatic drug metabolizing system was investigated to evaluate the safety through its drug interaction potential. Male ICR mice were fed AIN93G-based diets containing 0-5% CFE or 0.05% pure forskolin for 2-3 weeks. Intake of two different sources of 0.5% CFE significantly increased the relative liver weight, total content of hepatic cytochrome P450 (CYP) and induced CYPs (especially 2B, 2C, 3A types) and glutathione S-transferase (GST) activities. CFE significantly increased mRNA expression of CYPs and GST with dose related responses. However, unlike the CFE, intake of 0.05% pure forskolin was found to be associated with only weak induction in CYP3A and GST activities with no significant increases in relative liver weight, total hepatic content or other CYPs activities. The inductions of CYPs and GST by CFE were observed at 1 week of feeding and rapidly recovered by discontinuation of CFE. These results indicated the induction potential of CFE on CYPs, and that this effect was predominantly due to other, as yet unidentified constituents, and not forskolin contained in CFE. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse

    Energy Technology Data Exchange (ETDEWEB)

    Siddens, Lisbeth K. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Bunde, Kristi L. [College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331 (United States); Harper, Tod A. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); McQuistan, Tammie J. [Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States); Löhr, Christiane V. [Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331 (United States); Bramer, Lisa M. [Applied Statistics and Computational Modeling, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Waters, Katrina M. [Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Tilton, Susan C. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Krueger, Sharon K. [Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Superfund Research Center, Oregon State University, Corvallis, OR 97331 (United States); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States); and others

    2015-09-01

    FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8 h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8 h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4 h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8 h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. - Highlights: • Cyp1b1 null mice exhibit lower skin cancer sensitivity to DBC but not BaP or CTE. • Cyp1b1 expression impacts expression of other PAH metabolizing enzymes. • cis/trans-DBCDE-dA ratio significantly higher in the skin than the spleen, lung or liver • Potency of DBC and CTE in mouse skin is higher than predicted by RPFs.

  11. Phenobarbital induction of CYP2B1, CYP2B2, and CYP3A1 in rat liver: genetic differences in a common regulatory mechanism.

    Science.gov (United States)

    Larsen, M C; Jefcoate, C R

    1995-08-20

    The phenobarbital induction of five responsive hepatic cytochrome P450 genes is highly strain selective, particularly in female rats (Fischer > Wistar Furth). We have shown that this strain variation represents a systematic difference in the endocrine-mediated suppression of phenobarbital induction which points to a common signaling process for each of these genes. Immunoblot analysis revealed that the strain-specific differences of phenobarbital responsiveness (10-fold for CYP2B1, CYP2B2, and CYP3A1 in females) are much smaller in male animals and are also greatly diminished by hypophysectomy. Partial depletion of thyroid hormone and growth hormone levels by methimazole treatment was equally as effective as hypophysectomy in elevating phenobarbital-induced levels of CYP2B1, CYP2B2, and CYP3A1 in Wistar Furth rats, while the Fischer strain was unaffected. Ovariectomy suppressed the phenobarbital induction of these genes in the Wistar Furth but not in the Fischer strain, while castration yielded a similar differential suppression in male rats which was reversed by testosterone propionate supplementation. Changes in CYP2B1 protein closely correlated with changes in 7-pentoxyresorufin-O-dealkylation activity, a functional marker for this P450. The strain-selective differences, although smaller, were also observed in the very low basal expression of these P450 genes, while the effects of hypophysectomy, ovariectomy, and castration occurred in a similar manner. However, methimazole was essentially ineffective relative to hypophysectomy in elevating basal expression of these genes. The low concentrations of residual growth hormone and thyroid hormone probably provide a more effective suppression in the basal than in the induced state. We conclude that multiple cytochrome P450 genes share a common phenobarbital induction pathway that, in part, alleviates the suppressive effects of thyroid hormone and growth hormone which are far greater in female Wistar Furth rats. This

  12. Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil.

    Science.gov (United States)

    Arslan, Muhammad; Afzal, Muhammad; Amin, Imran; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Plant-bacteria partnership is a promising strategy for the remediation of soil and water polluted with hydrocarbons. However, the limitation of major nutrients (N, P and K) in soil affects the survival and metabolic activity of plant associated bacteria. The objective of this study was to explore the effects of nutrients on survival and metabolic activity of an alkane degrading rhizo-bacterium. Annual ryegrass (Lolium multiflorum) was grown in diesel-contaminated soil and inoculated with an alkane degrading bacterium, Pantoea sp. strain BTRH79, in greenhouse experiments. Two levels of nutrients were applied and plant growth, hydrocarbon removal, and gene abundance and expression were determined after 100 days of sowing of ryegrass. Results obtained from these experiments showed that the bacterial inoculation improved plant growth and hydrocarbon degradation and these were further enhanced by nutrients application. Maximum plant biomass production and hydrocarbon mineralization was observed by the combined use of inoculum and higher level of nutrients. The presence of nutrients in soil enhanced the colonization and metabolic activity of the inoculated bacterium in the rhizosphere. The abundance and expression of CYP153 gene in the rhizosphere of ryegrass was found to be directly associated with the level of applied nutrients. Enhanced hydrocarbon degradation was associated with the population of the inoculum bacterium, the abundance and expression of CYP153 gene in the rhizosphere of ryegrass. It is thus concluded that the combination between vegetation, inoculation with pollutant-degrading bacteria and nutrients amendment was an efficient approach to reduce hydrocarbon contamination.

  13. Biosynthesis of the Cyanogenic Glucosides Linamarin and Lotaustralin in Cassava: Isolation, Biochemical Characterization, and Expression Pattern of CYP71E7, the Oxime-Metabolizing Cytochrome P450 Enzyme1[OA

    Science.gov (United States)

    Jørgensen, Kirsten; Morant, Anne Vinther; Morant, Marc; Jensen, Niels Bjerg; Olsen, Carl Erik; Kannangara, Rubini; Motawia, Mohammed Saddik; Møller, Birger Lindberg; Bak, Søren

    2011-01-01

    Cassava (Manihot esculenta) is a eudicotyledonous plant that produces the valine- and isoleucine-derived cyanogenic glucosides linamarin and lotaustralin with the corresponding oximes and cyanohydrins as key intermediates. CYP79 enzymes catalyzing amino acid-to-oxime conversion in cyanogenic glucoside biosynthesis are known from several plants including cassava. The enzyme system converting oxime into cyanohydrin has previously only been identified in the monocotyledonous plant great millet (Sorghum bicolor). Using this great millet CYP71E1 sequence as a query in a Basic Local Alignment Search Tool-p search, a putative functional homolog that exhibited an approximately 50% amino acid sequence identity was found in cassava. The corresponding full-length cDNA clone was obtained from a plasmid library prepared from cassava shoot tips and was assigned CYP71E7. Heterologous expression of CYP71E7 in yeast afforded microsomes converting 2-methylpropanal oxime (valine-derived oxime) and 2-methylbutanal oxime (isoleucine-derived oxime) to the corresponding cyanohydrins, which dissociate into acetone and 2-butanone, respectively, and hydrogen cyanide. The volatile ketones were detected as 2.4-dinitrophenylhydrazone derivatives by liquid chromatography-mass spectrometry. A KS of approximately 0.9 μm was determined for 2-methylbutanal oxime based on substrate-binding spectra. CYP71E7 exhibits low specificity for the side chain of the substrate and catalyzes the conversion of aliphatic and aromatic oximes with turnovers of approximately 21, 17, 8, and 1 min−1 for the oximes derived from valine, isoleucine, tyrosine, and phenylalanine, respectively. A second paralog of CYP71E7 was identified by database searches and showed approximately 90% amino acid sequence identity. In tube in situ polymerase chain reaction showed that in nearly unfolded leaves, the CYP71E7 paralogs are preferentially expressed in specific cells in the endodermis and in most cells in the first cortex cell

  14. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme.

    Science.gov (United States)

    Jørgensen, Kirsten; Morant, Anne Vinther; Morant, Marc; Jensen, Niels Bjerg; Olsen, Carl Erik; Kannangara, Rubini; Motawia, Mohammed Saddik; Møller, Birger Lindberg; Bak, Søren

    2011-01-01

    Cassava (Manihot esculenta) is a eudicotyledonous plant that produces the valine- and isoleucine-derived cyanogenic glucosides linamarin and lotaustralin with the corresponding oximes and cyanohydrins as key intermediates. CYP79 enzymes catalyzing amino acid-to-oxime conversion in cyanogenic glucoside biosynthesis are known from several plants including cassava. The enzyme system converting oxime into cyanohydrin has previously only been identified in the monocotyledonous plant great millet (Sorghum bicolor). Using this great millet CYP71E1 sequence as a query in a Basic Local Alignment Search Tool-p search, a putative functional homolog that exhibited an approximately 50% amino acid sequence identity was found in cassava. The corresponding full-length cDNA clone was obtained from a plasmid library prepared from cassava shoot tips and was assigned CYP71E7. Heterologous expression of CYP71E7 in yeast afforded microsomes converting 2-methylpropanal oxime (valine-derived oxime) and 2-methylbutanal oxime (isoleucine-derived oxime) to the corresponding cyanohydrins, which dissociate into acetone and 2-butanone, respectively, and hydrogen cyanide. The volatile ketones were detected as 2.4-dinitrophenylhydrazone derivatives by liquid chromatography-mass spectrometry. A K(S) of approximately 0.9 μm was determined for 2-methylbutanal oxime based on substrate-binding spectra. CYP71E7 exhibits low specificity for the side chain of the substrate and catalyzes the conversion of aliphatic and aromatic oximes with turnovers of approximately 21, 17, 8, and 1 min(-1) for the oximes derived from valine, isoleucine, tyrosine, and phenylalanine, respectively. A second paralog of CYP71E7 was identified by database searches and showed approximately 90% amino acid sequence identity. In tube in situ polymerase chain reaction showed that in nearly unfolded leaves, the CYP71E7 paralogs are preferentially expressed in specific cells in the endodermis and in most cells in the first cortex

  15. Proteomic analysis of differentially expressed proteins in hepatitis B virus-related hepatocellular carcinoma tissues

    OpenAIRE

    Li, Ning; Long, Yunzhu; Fan, Xuegong; Liu, Hongbo; Li, Cui; Chen, Lizhang; Wang, Zhiming

    2009-01-01

    Abstract Background Hepatocellular carcinoma (HCC), a major cause of cancer death in China, is preceded by chronic hepatitis and liver cirrhosis (LC). Although hepatitis B virus (HBV) has been regarded as a clear etiology of human hepatocarcinogenesis, the mechanism is still needs to be further clarified. In this study, we used a proteomic approach to identify the differential expression protein profiles between HCC and the adjacent non-tumorous liver tissues. Methods Eighteen cases of HBV-re...

  16. Effect of Flavonoids on Glutathione Level, Lipid Peroxidation and Cytochrome P450 CYP1A1 Expression in Human Laryngeal Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Lidija Vuković

    2007-01-01

    Full Text Available Flavonoids are phytochemicals exhibiting a wide range of biological activities, among which are antioxidant activity, the ability to modulate activity of several enzymes or cell receptors and possibility to interfere with essential biochemical pathways. Using human laryngeal carcinoma HEp2 cells and their drug-resistant CK2 subline, we examined the effect of five flavonoids, three structurally related flavons (quercetin, fisetin, and myricetin, one flavonol (luteolin and one glycosilated flavanone (naringin for: (i their ability to inhibit mitochondrial dehydrogenases as an indicator of cytotoxic effect, (ii their influence on glutathione level, (iii antioxidant/prooxidant effects and influence on cell membrane permeability, and (iv effect on expression of cytochrome CYP1A1. Cytotoxic action of the investigated flavonoids after 72 hours of treatment follows this order: luteolin>quercetin>fisetin>naringin>myricetin. Our results show that CK2 were more resistant to toxic concentrations of flavonoids as compared to parental cells. Quercetin increased the total GSH level in both cell lines. CK2 cells are less perceptible to lipid peroxidation and damage caused by free radicals. Quercetin showed prooxidant effect in both cell lines, luteolin only in HEp2 cells, whereas other tested flavonoids did not cause lipid peroxidation in the tested cell lines. These data suggest that the same compound, quercetin, can act as a prooxidant, but also, it may prevent damage in cells caused by free radicals, due to the induction of GSH, by forming less harmful complex. Quercetin treatment damaged cell membranes in both cell lines. Fisetin caused higher cell membrane permeability only in HEp2 cells. However, these two compounds did not enhance the damage caused by hydrogen peroxide. Quercetin, naringin, myricetin and fisetin increased the expression of CYP1A1 in both cell lines, while luteolin decreased basal level of CYP1A1 only in HEp2 cells. In conclusion, small

  17. Aspects of hepatic lipase expression : relation to cholesterol homeostasis

    NARCIS (Netherlands)

    D. Vieira-van Bruggen (Delfina)

    2003-01-01

    textabstractHepatic lipase has triacylglycerol hydrolase and phospholipase A1 activity towards a wide variety of substrates. It is extracellularly localized in liver and in steroid hormone producing organs. The enzyme plays an important role in both intracellular cholesterol homeostasis

  18. Hepatic gene expression analysis of 2-aminoanthracene exposed Fisher-344 rats reveal patterns indicative of liver carcinoma and type 2 diabetes.

    Science.gov (United States)

    Gato, Worlanyo E; Hales, Dale B; Means, Jay C

    2012-01-01

    The goal of the present study was to examine hepatic differential gene expression patterns in Fisher-344 rats in response to dietary 2-aminoanthracene (2AA) ingestion for 14 and 28 days. Twenty four post-weaning 3-4 week old F-344 male rats were exposed to 0 mgkg(-1)-diet (control), 50 mgkg(-1)-diet (low dose), 75 mgkg(-1)-diet (medium dose) and 100 mgkg(-1)-diet (high dose) 2AA for 14 and 28 days. This was followed by analysis of the liver for global gene expression changes. In both time points, the numbers of genes affected seem to correlate with the dose of 2AA. Sixteen mRNAs were differentially expressed in all treatment groups for the short-term exposure group. Similarly, 51 genes were commonly expressed in all 28-day exposure group. Almost all the genes seem to have higher expression relative to the controls. In contrast, cytochrome P450 family 4, subfamily a, polypeptide 8 (Cyp4a8), and monocyte to macrophage differentiation-associated (Mmd2) were down-regulated relative to controls. Differentially expressed mRNAs were further analyzed for associations via DAVID. GO categories show the effect of 2AA to be linked with genes responsible for carbohydrate utilization and transport, lipid metabolic processes, stress responses such as inflammation and apoptosis processes, immune system response, DNA damage response, cancer processes and circadian rhythm. The data from the current study identified altered hepatic gene expression profiles that may be associated with carcinoma, autoimmune response, and/or type 2 diabetes. Possible biomarkers due to 2AA toxicity in the liver for future study include Abcb1a, Nhej1, Adam8, Cdkn1a, Mgmt, and Nrcam.

  19. Effect of cell permeability and dehydrogenase expression on octane activation by CYP153A6-based whole cell Escherichia coli catalysts.

    Science.gov (United States)

    White, Bronwyn E; Fenner, Caryn J; Smit, Martha S; Harrison, Susan T L

    2017-09-20

    The regeneration of cofactors and the supply of alkane substrate are key considerations for the biocatalytic activation of hydrocarbons by cytochrome P450s. This study focused on the biotransformation of n-octane to 1-octanol using resting Escherichia coli cells expressing the CYP153A6 operon, which includes the electron transport proteins ferredoxin and ferredoxin reductase. Glycerol dehydrogenase was co-expressed with the CYP153A6 operon to investigate the effects of boosting cofactor regeneration. In order to overcome the alkane supply bottleneck, various chemical and physical approaches to membrane permeabilisation were tested in strains with or without additional dehydrogenase expression. Dehydrogenase co-expression in whole cells did not improve product formation and reduced the stability of the system at high cell densities. Chemical permeabilisation resulted in initial hydroxylation rates that were up to two times higher than the whole cell system, but severely impacted biocatalyst stability. Mechanical cell breakage led to improved enzyme stability, but additional dehydrogenase expression was necessary to improve product formation. The best-performing system (in terms of final titres) consisted of mechanically ruptured cells expressing additional dehydrogenase. This system had an initial activity of 1.67 ± 0.12 U/gDCW (32% improvement on whole cells) and attained a product concentration of 34.8 ± 1.6 mM after 24 h (22% improvement on whole cells). Furthermore, the system was able to maintain activity when biotransformation was extended to 72 h, resulting in a final product titre of 60.9 ± 1.1 mM. This study suggests that CYP153A6 in whole cells is limited by coupling efficiencies rather than cofactor supply. However, the most significant limitation in the current system is hydrocarbon transport, with substrate import being the main determinant of hydroxylation rates, and product export playing a key role in system stability.

  20. Expression of cytokine and extracellular matrix mRNAs in fetal hepatic stellate cells.

    Science.gov (United States)

    Tan, Keai Sinn; Kulkeaw, Kasem; Nakanishi, Yoichi; Sugiyama, Daisuke

    2017-09-01

    In mouse fetal liver, hepatoblasts, sinusoidal endothelial cells and macrophages (or erythroblastic islands) promote differentiation and proliferation of hematopoietic cells through cell-cell interactions and secretion of cytokines and extracellular matrix factors. Until now, we have had little knowledge of the hematopoietic cytokines or extracellular matrix mRNAs expressed in hepatic stellate cells. Using p75 neurotrophin receptor (p75NTR) to mark this cell population, we sorted 12.5, 14.5 and 16.5 dpc hepatic stellate cells and analyzed expression of cytokines and extracellular matrix mRNAs. Among cytokines, insulin-like growth factor 2 (Igf2) was highly expressed at all three stages analyzed. The extracellular matrix molecule fibronectin (Fn1) was highly expressed in 12.5 dpc cells, whereas vitronectin (Vtn) was highly expressed in 14.5 and 16.5 dpc hepatic stellate cells. Among liver cells, Igf2 was predominantly expressed in hepatoblast-like cells at all three stages examined, suggesting that hepatoblast-like cells are an essential part of the niche that maintains homeostasis of hematopoietic cells in embryonic mouse liver. Defining these expression patterns could facilitate our understanding of cross talk between cytokine and extracellular matrix molecules in hepatic stellate cells and benefit research in developmental hematopoiesis as well as the study of liver biology. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  1. Branched-chain amino acids reduce hepatic iron accumulation and oxidative stress in hepatitis C virus polyprotein-expressing mice

    Science.gov (United States)

    Korenaga, Masaaki; Nishina, Sohji; Korenaga, Keiko; Tomiyama, Yasuyuki; Yoshioka, Naoko; Hara, Yuichi; Sasaki, Yusuke; Shimonaka, Yasushi; Hino, Keisuke

    2015-01-01

    Background & Aims Branched-chain amino acids (BCAA) reduce the incidence of hepatocellular carcinoma (HCC) in patients with cirrhosis. However, the mechanisms that underlie these effects remain unknown. Previously, we reported that oxidative stress in male transgenic mice that expressed hepatitis C virus polyprotein (HCVTgM) caused hepatic iron accumulation by reducing hepcidin transcription, thereby leading to HCC development. This study investigated whether long-term treatment with BCAA reduced hepatic iron accumulation and oxidative stress in iron-overloaded HCVTgM and in patients with HCV-related advanced fibrosis. Methods Male HCVTgM were fed an excess-iron diet that comprised either casein or 3.0% BCAA, or a control diet, for 6 months. Results For HCVTgM, BCAA supplementation increased the serum hepcidin-25 levels and antioxidant status [ratio of biological antioxidant potential (BAP) relative to derivatives of reactive oxygen metabolites (dROM)], decreased the hepatic iron contents, attenuated reactive oxygen species generation, and restored mitochondrial superoxide dismutase expression and mitochondrial complex I activity in the liver compared with mice fed the control diet. After 48 weeks of BCAA supplementation in patients with HCV-related advanced fibrosis, BAP/dROM and serum hepcidin-25 increased and serum ferritin decreased compared with the pretreatment levels. Conclusions BCAA supplementation reduced oxidative stress by restoring mitochondrial function and improved iron metabolism by increasing hepcidin-25 in both iron-overloaded HCVTgM and patients with HCV-related advanced fibrosis. These activities of BCAA may partially account for their inhibitory effects on HCC development in cirrhosis patients. PMID:25156780

  2. Negative regulation of hepatic fat mass and obesity associated (Fto) gene expression by insulin.

    Science.gov (United States)

    Mizuno, Tooru M; Lew, Pei San; Luo, Yanming; Leckstrom, Arnold

    2017-02-01

    To investigate the role of glucose and insulin in the regulation of hepatic fat mass and obesity associated (Fto) gene expression and the role of hepatic Fto in the regulation of gluconeogenic gene expression. To determine the effect of hyperglycemia on hepatic Fto expression, levels of Fto mRNA in liver were compared between normoglycemic/normoinsulinemic, hypereglycemic/hyperinsulinemic, and hyperglycemic/hypoinsulinemic mice. To determine the direct effect of insulin on Fto expression, levels of Fto, glucose-6-phosphatase (G6pase), and phosphoenolpyruvate carboxykinase (Pepck) mRNA levels were compared between control and insulin-treated mouse liver tissues cultured ex vivo and immortalized mouse hepatocytes AML12. To determine the role of Fto in the regulation of gluconeogenic gene expression, we examined the effect of enhanced Fto expression on G6pase and Pepck mRNA levels in AML12 cells. Fto mRNA levels were significantly reduced in hyperglycemic/hyperinsulinemic mice compared to normoglycemic/normoinsulinemic mice, while they were indistinguishable between hyperglycemic/hypoinsulinemic mice and normoglycemic/normoinsulinemic mice. Insulin treatment reduced Fto, G6pase, and Pepck mRNA levels compared to control vehicle treatment in both ex vivo cultured mouse liver tissues and AML12 cells. Enhanced Fto expression significantly increased G6pase and Pepck mRNA level in AML12 cells. Our findings support the hypothesis that hepatic Fto participates in the maintenance of glucose homeostasis possibly by mediating the inhibitory effect of glucose and insulin on gluconeogenic gene expression in liver. It is further suggested that impairments in nutritional and hormonal regulation of hepatic Fto expression may lead to impairments in glycemic control in diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Regulation of hepatic 7 alpha-hydroxylase expression by dietary psyllium in the hamster.

    Science.gov (United States)

    Horton, J D; Cuthbert, J A; Spady, D K

    1994-01-01

    Soluble fiber consistently lowers plasma total and low density lipoprotein (LDL)-cholesterol concentrations in humans and various animal models including the hamster; however, the mechanism of this effect remains incompletely defined. We performed studies to determine the activity of dietary psyllium on hepatic 7 alpha-hydroxylase, 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase and LDL receptor expression in the hamster. In animals fed a cholesterol-free semisynthetic diet containing 7.5% cellulose (avicel) as a fiber source, substitution of psyllium for avicel increased hepatic 7 alpha-hydroxylase activity and mRNA levels by 3-4-fold. Comparable effects on 7 alpha-hydroxylase expression were observed with 1% cholestyramine. Psyllium also increased hepatic 7 alpha-hydroxylase activity and mRNA in animals fed a diet enriched with cholesterol and triglyceride. Activation of 7 alpha-hydroxylase was associated with an increase in hepatic cholesterol synthesis that was apparently not fully compensatory since the cholesterol content of the liver declined. Although dietary psyllium did not increase hepatic LDL receptor expression in animals fed the cholesterol-free, very-low-fat diet, it did increase (or at least restore) receptor expression that had been downregulated by dietary cholesterol and triglyceride. Thus, 7.5% dietary psyllium produced effects on hepatic 7 alpha-hydroxylase and LDL metabolism that were similar to those of 1% cholestyramine. Induction of hepatic 7 alpha-hydroxylase activity by dietary psyllium may account, in large part, for the hypocholesterolemic effect of this soluble fiber. Images PMID:8182140

  4. Sex Hormones Regulate Hepatic Fetuin Expression in Male and Female Rats

    Directory of Open Access Journals (Sweden)

    Sang Woo Kim

    2014-08-01

    Full Text Available Background: To date, there are limited studies on the sex-specific relationship between fetuins (Ft-A and Ft-B and metabolic diseases. Our recent proteomic study has shown that fetuins may play sex-dependent roles in obesity and diabetes. In the present study, we investigated the expression of hepatic fetuins with respect to the effects of sex hormones both in vivo and in vitro. Methods & Results: A sex hormone-treated rat model was established in order to study the effects of sex hormones on hepatic fetuin expression. Animal experiments revealed that 17β-estradiol (E2- and dihydrotestosterone (DHT-treated rats showed opposite effects in terms of body weight gain in both genders. Interestingly, Ft-A and Ft-B were sex-dependently expressed in the livers of rats, responding to different regulatory modes of sex hormone receptors (ERα, ERβ, and AR. To validate in vivo data, rat normal liver cells were treated with E2 or DHT at different concentrations, and similar expression patterns as those in the animal-based experiments were confirmed. We found that these changes were mediated via sex hormone receptors using antagonist experiments. Conclusion: The results of the present study indicate that sex hormones induce gender-dimorphic expression of hepatic fetuins directly via sex hormone receptors. To the best of our knowledge, this is the first approach to address the effects of sex hormones on hepatic fetuin expression.

  5. Hepatic microRNA expression is associated with the response to interferon treatment of chronic hepatitis C

    Directory of Open Access Journals (Sweden)

    Kuroda Masahiko

    2010-10-01

    Full Text Available Abstract Background HCV infection frequently induces chronic liver diseases. The current standard treatment for chronic hepatitis (CH C combines pegylated interferon (IFN and ribavirin, and is less than ideal due to undesirable effects. MicroRNAs (miRNAs are endogenous small non-coding RNAs that control gene expression by degrading or suppressing the translation of target mRNAs. In this study we administered the standard combination treatment to CHC patients. We then examined their miRNA expression profiles in order to identify the miRNAs that were associated with each patient's drug response. Methods 99 CHC patients with no anti-viral therapy history were enrolled. The expression level of 470 mature miRNAs found their biopsy specimen, obtained prior to the combination therapy, were quantified using microarray analysis. The miRNA expression pattern was classified based on the final virological response to the combination therapy. Monte Carlo Cross Validation (MCCV was used to validate the outcome of the prediction based on the miRNA expression profile. Results We found that the expression level of 9 miRNAs were significantly different in the sustained virological response (SVR and non-responder (NR groups. MCCV revealed an accuracy, sensitivity, and specificity of 70.5%, 76.5% and 63.3% in SVR and non-SVR and 70.0%, 67.5%, and 73.7% in relapse (R and NR, respectively. Conclusions The hepatic miRNA expression pattern that exists in CHC patients before combination therapy is associated with their therapeutic outcome. This information can be utilized as a novel biomarker to predict drug response and can also be applied to developing novel anti-viral therapy for CHC patients.

  6. Silencing of hepatic fate-conversion factors induce tumorigenesis in reprogrammed hepatic progenitor-like cells.

    Science.gov (United States)

    Serrano, Felipe; García-Bravo, Maria; Blazquez, Marina; Torres, Josema; Castell, Jose V; Segovia, Jose C; Bort, Roque

    2016-07-27

    Several studies have reported the direct conversion of mouse fibroblasts to hepatocyte-like cells with different degrees of maturation by expression of hepatic fate-conversion factors. We have used a combination of lentiviral vectors expressing hepatic fate-conversion factors with Oct4, Sox2, Klf4, and Myc to convert mouse embryonic fibroblasts into hepatic cells. We have generated hepatic cells with progenitor-like features (iHepL cells). iHepL cells displayed basic hepatocyte functions but failed to perform functions characteristic of mature hepatocytes such as significant Cyp450 or urea cycle activities. iHepL cells expressed multiple hepatic-specific transcription factors and functional genes characteristic of immature hepatocytes and cholangiocytes, as well as high levels of Foxl1, Cd24a, and Lgr5, specific markers of hepatic progenitor cells. When transplanted into partial hepatectomized and hepatic irradiated mice, they differentiated into hepatocytes and cholangiocytes. However, iHepL cells formed malignant non-teratoma cell aggregations in one out of five engrafted livers and five out of five xenografts assays. All the cells in these tumors had silenced key hepatic fate-conversion factors, and lost hepatic features. This study highlights the dangers of using pluripotency factors in reprogramming strategies when fate-conversion factors are silenced in vivo, and urges us to perform extensive tumorigenic tests in reprogrammed cells.

  7. Intra-uterine Growth Restriction Downregulates the Hepatic Toll Like Receptor-4 Expression and Function

    Directory of Open Access Journals (Sweden)

    Ozlem Equils

    2005-01-01

    Full Text Available Maternal starvation is a significant cause of intrauterine growth restriction (IUGR in the world and increases the risk of infection in the neonate. We examined the effect of maternal starvation on Toll like receptor (TLR4 expression in hepatic, splenic and intestinal tissues obtained from the adult IUGR offspring of prenatal calorie restricted rats. The hepatic TLR4 protein concentration was undetectable in the IUGR rats that had restricted milk intake during the suckling period (SM/SP; n = 4, p < 0.05 as compared to the normal growth controls (CM/CP; n=4, and access to ad lib milk intake during the sucking period partially corrected the hepatic TLR4 expression (SM/CP; n = 4. IUGR had no effect on the splenic (n = 4 or intestinal (n = 4 TLR4 mRNA levels. In the liver, IUGR led to a 20% increase in baseline tumor necrosis factor (TNF-α mRNA expression ( p < 0.03 and a 70% increase in interleukin-1β (IL-1β mRNA expression ( p < 0.008 as compared to the control rats (CM/CP; n = 7. LPS-induced hepatic TNF-α release was significantly higher in SM/SP as compared to CM/CP. We propose that IUGR dysregulates TLR4 expression and function in the offspring, which may help explain the increased risk of Gram-negative sepsis and inflammatory diseases in this population.

  8. Hepatitis C virus expressing reporter tagged NS5A protein

    DEFF Research Database (Denmark)

    2014-01-01

    Hepatitis C reporter viruses containing Core through NS2 of prototype isolates of all major HCV genotypes and the remaining genes of isolate JFH1, by insertion of reporter genes in domain III of HCV NS5A were developed. A deletion upstream of the inserted reporter gene sequence conferred favorable...... growth kinetics in Huh7.5 cells to these viruses. These reporter viruses can be used for high throughput analysis of drug and vaccine candidates as well as patient samples. JFH1-based intergenotypic recombinants with genotype specific homotypic 5'UTR, or heterotypic 5'UTR (either of genotype 1a (strain H...

  9. Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish.

    Science.gov (United States)

    Lin, Chun-Hung; Chou, Pei-Hsin; Chen, Pei-Jen

    2014-07-30

    Conazoles are a class of imidazole- or triazole-containing drugs commonly used as fungicides in agriculture and medicine. The broad application of azole drugs has led to the contamination of surface aquifers receiving the effluent of municipal or hospital wastewater or agricultural runoff. Several triazoles are rodent carcinogens; azole pollution is a concern to environmental safety and human health. However, the carcinogenic mechanisms associated with cytochrome P450 enzymes (CYPs) of conazoles remain unclear. We exposed adult medaka fish (Oryzias latipes) to continuous aqueous solutions of carcinogenic triadimefon and non-carcinogenic myclobutanil for 7 to 20 days at sub-lethal or environmentally relevant concentrations and assessed hepatic CYP activity and gene expression associated with CYP-mediated toxicity. Both triadimefon and myclobutanil induced hepatic CYP3A activity, but only triadimefon enhanced CYP1A activity. The gene expression of cyp3a38, cyp3a40, pregnane x receptor (pxr), cyp26b, retinoid acid receptor γ1 (rarγ1) and p53 was higher with triadimefon than myclobutanil. As well, yeast-based reporter gene assay revealed that 4 tested conazoles were weak agonists of aryl hydrocarbon receptor (AhR). We reveal differential CYP gene expression with carcinogenic and non-carcinogenic conazoles in a lower vertebrate, medaka fish. Liver CYP-enzyme induction may be a key event in conazole-induced tumorigenesis. This information is essential to evaluate the potential threat of conazoles to human health and fish populations in the aquatic environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity

    Science.gov (United States)

    The etiology of type 2 diabetes often involves diet-induced obesity (DIO), which is associated with elevated plasma fatty acids and lipoprotein associated triglycerides. Since aberrant hepatic fatty acid uptake may contribute to this, we investigated whether increased expression of a fatty acid tran...

  11. Dietary Supplementation of Blueberry Juice Enhances Hepatic Expression of Metallothionein and Attenuates Liver Fibrosis in Rats

    Science.gov (United States)

    Wang, Yuping; Cheng, Mingliang; Zhang, Baofang; Nie, Fei; Jiang, Hongmei

    2013-01-01

    Aim To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense. Methods Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques. Results Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver. Conclusion Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis. PMID:23554912

  12. Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis

    NARCIS (Netherlands)

    Heijne, W.H.M.; Lamers, R.J.A.N.; Bladeren, P.J. van; Groten, J.P.; Nesselrooij, J.H.J. van; Ommen, B. van

    2005-01-01

    This study investigated whether integrated analysis of transcriptomics and metabolomics data increased the sensitivity of detection and provided new insight in the mechanisms of hepatotoxicity. Metabolite levels in plasma or urine were analyzed in relation to changes in hepatic gene expression in

  13. Effect of Genetic Variability in the CYP4F2, CYP4F11, and CYP4F12 Genes on Liver mRNA Levels and Warfarin Response

    Directory of Open Access Journals (Sweden)

    J. E. Zhang

    2017-05-01

    Full Text Available Genetic polymorphisms in the gene encoding cytochrome P450 (CYP 4F2, a vitamin K oxidase, affect stable warfarin dose requirements and time to therapeutic INR. CYP4F2 is part of the CYP4F gene cluster, which is highly polymorphic and exhibits a high degree of linkage disequilibrium, making it difficult to define causal variants. Our objective was to examine the effect of genetic variability in the CYP4F gene cluster on expression of the individual CYP4F genes and warfarin response. mRNA levels of the CYP4F gene cluster were quantified in human liver samples (n = 149 obtained from a well-characterized liver bank and fine mapping of the CYP4F gene cluster encompassing CYP4F2, CYP4F11, and CYP4F12 was performed. Genome-wide association study (GWAS data from a prospective cohort of warfarin-treated patients (n = 711 was also analyzed for genetic variations across the CYP4F gene cluster. In addition, SNP-gene expression in human liver tissues and interactions between CYP4F genes were explored in silico using publicly available data repositories. We found that SNPs in CYP4F2, CYP4F11, and CYP4F12 were associated with mRNA expression in the CYP4F gene cluster. In particular, CYP4F2 rs2108622 was associated with increased CYP4F2 expression while CYP4F11 rs1060467 was associated with decreased CYP4F2 expression. Interestingly, these CYP4F2 and CYP4F11 SNPs showed similar effects with warfarin stable dose where CYP4F11 rs1060467 was associated with a reduction in daily warfarin dose requirement (∼1 mg/day, Pc = 0.017, an effect opposite to that previously reported with CYP4F2 (rs2108622. However, inclusion of either or both of these SNPs in a pharmacogenetic algorithm consisting of age, body mass index (BMI, gender, baseline clotting factor II level, CYP2C9∗2 rs1799853, CYP2C9∗3 rs1057910, and VKORC1 rs9923231 improved warfarin dose variability only by 0.5–0.7% with an improvement in dose prediction accuracy of ∼1–2%. Although there is complex

  14. Paracetamol-induced spindle disturbances in V79 cells with and without expression of human CYP1A2

    DEFF Research Database (Denmark)

    Jensen, K G; Poulsen, H E; Doehmer, J

    1996-01-01

    Spindle disturbing effects in terms of c-mitosis and cytotoxicity of paracetamol were investigated in two Chinese hamster V79 cell lines, one of which (V79MZh1A2) was transfected with human CYP1A2. This enzyme catalyses the oxidative formation of the reactive paracetamol metabolite, NAPQI, believed...... to initiate hepatoxicity by covalent binding to proteins after overdose. In the native V79 cell line paracetamol increased c-mitosis frequency in a concentration dependent manner from 8.7 + or - 3.5% (control) to 66 + or - 18% at 20 mM. A significant increase to 13.3 + or - 3.5% was first seen at 2.5 m......M in the native cell line (Pmitosis frequency increased to 12.1 + or - 2.6% (Pmitosis frequency was 14.4 + or - 5.0% and 19.0 + or - 3...

  15. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    Science.gov (United States)

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  16. In vitro effects of four native Brazilian medicinal plants in CYP3A4 mRNA gene expression, glutathione levels and P-glycoprotein activity.

    Directory of Open Access Journals (Sweden)

    Andre Luis Dias Araujo Mazzari

    2016-08-01

    Full Text Available Erythrina mulungu Benth. (Fabaceae, Cordia verbenacea A. DC. (Boraginaceae, Solanum paniculatum L. (Solanaceae and Lippia sidoides Cham. (Verbenaceae are medicinal plants species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI. In this work we assess non-toxic concentrations (100μg/mL of their infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp activity in vincristine-resistant Caco-2 cells (Caco-2 VCR. Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (two-fold decrease, p<0.05, this being correlated with an antagonist effect upon hPXR (EC50 = 0.38mg/mL. Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p<0.001, Lippia sidoides (-12%, p<0.05 and Cordia verbenacea (-47%, p<0.001. The later plant extract was able to decrease GGT activity (-48%, p<0.01. In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum.

  17. Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Yongke Lu

    2015-10-01

    Full Text Available Autophagy is an intracellular pathway by which lysosomes degrade and recycle long-lived proteins and cellular organelles. The effects of ethanol on autophagy are complex but recent studies have shown that autophagy serves a protective function against ethanol-induced liver injury. Autophagy was found to also be protective against CYP2E1-dependent toxicity in vitro in HepG2 cells which express CYP2E1 and in vivo in an acute alcohol/CYPE1-dependent liver injury model. The goal of the current report was to extend the previous in vitro and acute in vivo experiments to a chronic ethanol model to evaluate whether autophagy is also protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. Wild type (WT, CYP2E1 knockout (KO or CYP2E1 humanized transgenic knockin (KI, mice were fed an ethanol liquid diet or control dextrose diet for four weeks. In the last week, some mice received either saline or 3-methyladenine (3-MA, an inhibitor of autophagy, or rapamycin, which stimulates autophagy. Inhibition of autophagy by 3-MA potentiated the ethanol-induced increases in serum transaminase and triglyceride levels in the WT and KI mice but not KO mice, while rapamycin prevented the ethanol liver injury. Treatment with 3-MA enhanced the ethanol-induced fat accumulation in WT mice and caused necrosis in the KI mice; little or no effect was found in the ethanol-fed KO mice or any of the dextrose-fed mice. 3-MA treatment further lowered the ethanol-decrease in hepatic GSH levels and further increased formation of TBARS in WT and KI mice, whereas rapamycin blunted these effects of ethanol. Neither 3-MA nor rapamycin treatment affected CYP2E1 catalytic activity or content or the induction CYP2E1 by ethanol. The 3-MA treatment decreased levels of Beclin-1 and Atg 7 but increased levels of p62 in the ethanol-fed WT and KI mice whereas rapamycin had the opposite effects, validating inhibition and stimulation of autophagy, respectively. These

  18. Gene Expression Variability in Human Hepatic Drug Metabolizing Enzymes and Transporters

    Science.gov (United States)

    Yang, Lun; Price, Elvin T.; Chang, Ching-Wei; Li, Yan; Huang, Ying; Guo, Li-Wu; Guo, Yongli; Kaput, Jim; Shi, Leming; Ning, Baitang

    2013-01-01

    Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs) in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications. PMID:23637747

  19. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Egloff, Caroline [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Kennedy, Sean W. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  20. Gene expression patterns in the progression of canine copper-associated chronic hepatitis.

    Science.gov (United States)

    Dirksen, Karen; Spee, Bart; Penning, Louis C; van den Ingh, Ted S G A M; Burgener, Iwan A; Watson, Adrian L; Groot Koerkamp, Marian; Rothuizen, Jan; van Steenbeek, Frank G; Fieten, Hille

    2017-01-01

    Copper is an essential trace element, but can become toxic when present in abundance. The severe effects of copper-metabolism imbalance are illustrated by the inherited disorders Wilson disease and Menkes disease. The Labrador retriever dog breed is a novel non-rodent model for copper-storage disorders carrying mutations in genes known to be involved in copper transport. Besides disease initiation and progression of copper accumulation, the molecular mechanisms and pathways involved in progression towards copper-associated chronic hepatitis still remain unclear. Using expression levels of targeted candidate genes as well as transcriptome micro-arrays in liver tissue of Labrador retrievers in different stages of copper-associated hepatitis, pathways involved in progression of the disease were studied. At the initial phase of increased hepatic copper levels, transcriptomic alterations in livers mainly revealed enrichment for cell adhesion, developmental, inflammatory, and cytoskeleton pathways. Upregulation of targeted MT1A and COMMD1 mRNA shows the liver's first response to rising intrahepatic copper concentrations. In livers with copper-associated hepatitis mainly an activation of inflammatory pathways is detected. Once the hepatitis is in the chronic stage, transcriptional differences are found in cell adhesion adaptations and cytoskeleton remodelling. In view of the high similarities in copper-associated hepatopathies between men and dog extrapolation of these dog data into human biomedicine seems feasible.

  1. Gene expression patterns in the progression of canine copper-associated chronic hepatitis.

    Directory of Open Access Journals (Sweden)

    Karen Dirksen

    Full Text Available Copper is an essential trace element, but can become toxic when present in abundance. The severe effects of copper-metabolism imbalance are illustrated by the inherited disorders Wilson disease and Menkes disease. The Labrador retriever dog breed is a novel non-rodent model for copper-storage disorders carrying mutations in genes known to be involved in copper transport. Besides disease initiation and progression of copper accumulation, the molecular mechanisms and pathways involved in progression towards copper-associated chronic hepatitis still remain unclear. Using expression levels of targeted candidate genes as well as transcriptome micro-arrays in liver tissue of Labrador retrievers in different stages of copper-associated hepatitis, pathways involved in progression of the disease were studied. At the initial phase of increased hepatic copper levels, transcriptomic alterations in livers mainly revealed enrichment for cell adhesion, developmental, inflammatory, and cytoskeleton pathways. Upregulation of targeted MT1A and COMMD1 mRNA shows the liver's first response to rising intrahepatic copper concentrations. In livers with copper-associated hepatitis mainly an activation of inflammatory pathways is detected. Once the hepatitis is in the chronic stage, transcriptional differences are found in cell adhesion adaptations and cytoskeleton remodelling. In view of the high similarities in copper-associated hepatopathies between men and dog extrapolation of these dog data into human biomedicine seems feasible.

  2. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China); Liu, Junhong, E-mail: liujh@qust.edu.cn [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China)

    2011-05-15

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  3. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants.

    Science.gov (United States)

    Zhang, Yuanyuan; Liu, Junhong

    2011-05-15

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Daily rhythms in expression of genes of hepatic lipid metabolism in Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Betancor, Mónica B; McStay, Elsbeth; Minghetti, Matteo; Migaud, Hervé; Tocher, Douglas R; Davie, Andrew

    2014-01-01

    In mammals, several genes involved in liver lipid and cholesterol homeostasis are rhythmically expressed with expression shown to be regulated by clock genes via Rev-erb 1α. In order to elucidate clock gene regulation of genes involved in lipid metabolism in Atlantic salmon (Salmo salar L.), the orphan nuclear receptor Rev-erb 1α was cloned and 24 h expression of clock genes, transcription factors and genes involved in cholesterol and lipid metabolism determined in liver of parr acclimated to a long-day photoperiod, which was previously shown to elicit rhythmic clock gene expression in the brain. Of the 31 genes analysed, significant daily expression was demonstrated in the clock gene Bmal1, transcription factor genes Srebp1, Lxr, Pparα and Pparγ, and several lipid metabolism genes Hmgcr, Ipi, ApoCII and El. The possible regulatory mechanisms and pathways, and the functional significance of these patterns of expression were discussed. Importantly and in contrast to mammals, Per1, Per2, Fas, Srebp2, Cyp71α and Rev-erb 1α did not display significant daily rhythmicity in salmon. The present study is the first report characterising 24 h profiles of gene expression in liver of Atlantic salmon. However, more importantly, the predominant role of lipids in the nutrition and metabolism of fish, and of feed efficiency in determining farming economics, means that daily rhythmicity in the regulation of lipid metabolism will be an area of considerable interest for future research in commercially important species.

  5. Regioselective biooxidation of (+-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system

    Directory of Open Access Journals (Sweden)

    Schmid Rolf D

    2009-07-01

    Full Text Available Abstract Background (+-Nootkatone (4 is a high added-value compound found in grapefruit juice. Allylic oxidation of the sesquiterpene (+-valencene (1 provides an attractive route to this sought-after flavoring. So far, chemical methods to produce (+-nootkatone (4 from (+-valencene (1 involve unsafe toxic compounds, whereas several biotechnological approaches applied yield large amounts of undesirable byproducts. In the present work 125 cytochrome P450 enzymes from bacteria were tested for regioselective oxidation of (+-valencene (1 at allylic C2-position to produce (+-nootkatone (4 via cis- (2 or trans-nootkatol (3. The P450 activity was supported by the co-expression of putidaredoxin reductase (PdR and putidaredoxin (Pdx from Pseudomonas putida in Escherichia coli. Results Addressing the whole-cell system, the cytochrome CYP109B1 from Bacillus subtilis was found to catalyze the oxidation of (+-valencene (1 yielding nootkatol (2 and 3 and (+-nootkatone (4. However, when the in vivo biooxidation of (+-valencene (1 with CYP109B1 was carried out in an aqueous milieu, a number of undesired multi-oxygenated products has also been observed accounting for approximately 35% of the total product. The formation of these byproducts was significantly reduced when aqueous-organic two-liquid-phase systems with four water immiscible organic solvents – isooctane, n-octane, dodecane or hexadecane – were set up, resulting in accumulation of nootkatol (2 and 3 and (+-nootkatone (4 of up to 97% of the total product. The best productivity of 120 mg l-1 of desired products was achieved within 8 h in the system comprising 10% dodecane. Conclusion This study demonstrates that the identification of new P450s capable of producing valuable compounds can basically be achieved by screening of recombinant P450 libraries. The biphasic reaction system described in this work presents an attractive way for the production of (+-nootkatone (4, as it is safe and can easily be

  6. Phenotypic Characteristics of PD-1 and CTLA-4 Expression in Symptomatic Acute Hepatitis A.

    Science.gov (United States)

    Cho, Hyosun; Kang, Hyojeung; Kim, Chang Wook; Kim, Hee Yeon; Jang, Jeong Won; Yoon, Seung Kew; Lee, Chang Don

    2016-03-01

    The immunoregulatory molecules programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) are associated with the dysfunction of antiviral effector T-cells, which leads to T-cell exhaustion and persistent viral infection in patients with chronic hepatitis C and chronic hepatitis B. Little is known about the role of PD-1 and CTLA-4 in patients with symptomatic acute hepatitis A (AHA). Peripheral blood mononuclear cells were isolated from seven patients with AHA and from six patients with nonviral acute toxic hepatitis (ATH) during the symptomatic and convalescent phases of the respective diseases; five healthy subjects acted as controls. The expression of PD-1 and CTLA-4 on T-cells was measured by flow cytometry. PD-1 and CTLA-4 expression during the symptomatic phase was significantly higher in the T-cells of AHA patients than in those of ATH patients or healthy controls (PD-1 18.3% vs 3.7% vs 1.6%, respectively, p<0.05; CTLA-4 23.5% vs 6.1% vs 5.9%, respectively, p<0.05). The levels of both molecules decreased dramatically during the convalescent phase of AHA, whereas a similar pattern was not seen in ATH. Our findings are consistent with a viral-protective effect of PD-1 and CTLA-4 as inhibitory molecules that suppress cytotoxic T-cells and thereby prevent the destruction of virus-infected hepatocytes in AHA.

  7. Hepatic GALE Regulates Whole-Body Glucose Homeostasis by Modulating Tff3 Expression.

    Science.gov (United States)

    Zhu, Yi; Zhao, Shangang; Deng, Yingfeng; Gordillo, Ruth; Ghaben, Alexandra L; Shao, Mengle; Zhang, Fang; Xu, Ping; Li, Yang; Cao, Huachuan; Zagnitko, Olga; Scott, David A; Gupta, Rana K; Xing, Chao; Zhang, Bei B; Lin, Hua V; Scherer, Philipp E

    2017-11-01

    Transcripts of key enzymes in the Leloir pathway of galactose metabolism in mouse livers are significantly increased after chronic high-fat/high-sucrose feeding. UDP-galactose-4-epimerase (GALE) is the last enzyme in this pathway that converts UDP-galactose to UDP-glucose and was previously identified as a downstream target of the endoplasmic reticulum (ER) stress effector spliced X-box binding protein 1, suggesting an interesting cross talk between galactose and glucose metabolism in the context of hepatic ER stress and whole-body metabolic fitness. However, its specific role in glucose metabolism is not established. Using an inducible and tissue-specific mouse model, we report that hepatic overexpression of Gale increases gluconeogenesis from pyruvate and impairs glucose tolerance. Conversely, genetic reduction of Gale in liver improves glucose tolerance. Transcriptional profiling identifies trefoil factor 3 (Tff3) as one of the downstream targets of GALE. Restoration of Tff3 expression corrects glucose intolerance in Gale-overexpressing mice. These studies reveal a new link between hepatic GALE activity and whole-body glucose homeostasis via regulation of hepatic Tff3 expression. © 2017 by the American Diabetes Association.

  8. The relationship between hepatic immunoglobulin production and CD154 expression in chronic liver diseases.

    Science.gov (United States)

    Mayo, Marlyn J; Mosby, James M; Jeyarajah, Rohan; Combes, Burton; Khilnani, Smina; Al-halimi, Maha; Handem, Iorna; Grammer, Amrie C; Lipsky, Peter E

    2006-03-01

    CD40-CD154 is a receptor-ligand pair that provides key communication signals between cells of the adaptive immune system in states of inflammation and autoimmunity. The CD40 receptor is expressed constitutively on B lymphocytes, for which it provides important signals regulating clonal expansion and antibody production. CD154 is a member of the tumor necrosis factor superfamily, which is primarily expressed by activated T cells. Because many chronic liver diseases are characterized by lymphocytic infiltration of the liver and several have increased immunoglobulin (Ig) production, the role of CD40-CD154 in hepatic Ig production was investigated in patients with primary biliary cirrhosis (PBC), primary sclerosing cholangitis, autoimmune hepatitis (AIH), hepatitis C, hepatitis B, alcoholic and non-alcoholic steatohepatitis, as well as normal controls. Soluble CD154 levels in the serum were found to be no different in chronic liver diseases vs normal controls. Likewise, CD154 mRNA levels in peripheral blood mononuclear cells did not differ. However, mRNA for CD154 was significantly increased in the liver of individuals with PBC and AIH as compared with the other groups. The quantity of CD154 mRNA in the liver correlated positively with the quantity of mRNA for secretory Ig. These findings suggest that CD40-CD154 signals may be involved in Ig production within the liver of autoimmune liver diseases.

  9. Identification of valid reference genes for microRNA expression studies in a hepatitis B virus replicating liver cell line

    DEFF Research Database (Denmark)

    Jacobsen, Kari Stougaard; Nielsen, Kirstine Overgaard; Nordmann Winther, Thilde

    2016-01-01

    expressed microRNAs with liver-specific target genes in plasma from children with chronic hepatitis B. To further understand the biological role of these microRNAs in the pathogenesis of chronic hepatitis B, we have used the human liver cell line HepG2, with and without HBV replication, after transfection...

  10. Expression of hepatitis B virus large envelope protein in Escherichia coli and Saccharomyces cerevisiae.

    Science.gov (United States)

    Korec, E; Korcová, J; Palková, Z; Vondrejs, V; Korínek, V; Reinis, M; Bichko, V V; Hlozánek, I

    1989-01-01

    The gene coding for hepatitis B large envelope protein was cloned under the lac promoter in bacterial vector pUC-8 and under the ADH1 promoter in yeast expression shuttle vector pVT103-U, and expression of HBsAg in bacteria and yeast was determined. The strongest expression of large envelope protein was obtained after transformation of the protease-deficient yeast strain BJ1991. The recombinant large envelope protein did not form complex 22-nm particles and was not secreted into medium.

  11. Independent effects of sham laparotomy and anesthesia on hepatic microRNA expression in rats

    OpenAIRE

    Werner, Wiebke; Sallmon, Hannes; Leder, Annekatrin; Lippert, Steffen; Reutzel-Selke, Anja; Morgül, Mehmet Haluk; Jonas, Sven; Dame, Christof; Neuhaus, Peter; Iacomini, John; Tullius, Stefan G.; Sauer, Igor M.; Raschzok, Nathanael

    2014-01-01

    Background: Studies on liver regeneration following partial hepatectomy (PH) have identified several microRNAs (miRNAs) that show a regulated expression pattern. These studies involve major surgery to access the liver, which is known to have intrinsic effects on hepatic gene expression and may also affect miRNA screening results. We performed two-third PH or sham laparotomy (SL) in Wistar rats to investigate the effect of both procedures on miRNA expression in liver tissue and corresponding p...

  12. Expression of classical mediators in hearts of rats with hepatic dysfunction.

    Science.gov (United States)

    Jarkovska, Dagmar; Bludovska, Monika; Mistrova, Eliska; Krizkova, Vera; Kotyzova, Dana; Kubikova, Tereza; Slavikova, Jana; Erek, Sumeyye Nur; Djordjevic, Aleksandar; Chottova Dvorakova, Magdalena

    2017-11-01

    Liver cirrhosis is associated with impairment of cardiovascular function including alterations of the heart innervation, humoral and nervous dysregulation, changes in systemic circulation and electrophysiological abnormalities. Choline acetyltransferase (ChAT), enzyme forming acetylcholine, tyrosine hydroxylase (TH), and dopamine-β-hydroxylase (DBH), enzymes participating in noradrenaline synthesis, are responsible for the production of classical neurotransmitters, and atrial natriuretic peptide (ANP) is produced by cardiomyocytes. The aim of this study was to evaluate the influence of experimentally induced hepatic dysfunction on the expression of proANP, ChAT, TH, and DBH in the heart. Hepatic dysfunction was induced by application of thioacetamide (TAA) or by ligation of bile duct. Biochemical parameters of hepatic injury and levels of peroxidation in the liver and heart were measured. Liver enzymes measured in the plasma were significantly elevated. Cardiac level of peroxidation was increased in operated but not TAA group animals. In the left atrium of operated rats, the expression of TH and DBH was lower, while expression of ChAT remained unchanged. In TAA group, no significant differences in the expression of the genes compared to controls were observed. Liver injury induced by ligation leads to an imbalance in the intracardiac innervation, which might impair nervous control of the heart.

  13. Effects of PCB 126 and PCB 153 on secretion of steroid hormones and mRNA expression of steroidogenic genes (STAR, HSD3B, CYP19A1) and estrogen receptors (ERα, ERβ) in prehierarchical chicken ovarian follicles.

    Science.gov (United States)

    Sechman, Andrzej; Batoryna, Marta; Antos, Piotr A; Hrabia, Anna

    2016-12-15

    The objective of this study was to assess the in vitro effects of dioxin-like PCB 126 and non-dioxin-like PCB 153 on basal and ovine LH (oLH)-stimulated testosterone (T) and estradiol (E2) secretion and expression of steroidogenic genes (STAR, HSD3B and CYP19A1) and estrogen receptors α (ERα) and β (ERβ) in white (WF) and yellowish (YF) prehierarchical follicles of the hen ovary. Steroid concentrations in a medium and gene expression in follicles following 6h of exposition were determined by RIA and real-time qPCR, respectively. Both PCBs increased basal and oLH-stimulated T secretion by the WF follicles. PCB 126 reduced basal E2 secretion by the WF follicles. PCB 153 elevated but PCB 126 reduced oLH-stimulated E2 secretion by the prehierarchical follicles. PCB 126 increased basal STAR and HSD3B and reduced CYP19A1 mRNA expression in these follicles. PCB 153 increased basal expression of STAR and HSD3B in YF follicles, but diminished HSD3B mRNA levels in the WF. The studied PCBs had an opposite effect on basal and oLH-stimulated CYP19A1 mRNA expression in prehierarchical follicles. Both PCBs modulated basal and inhibited oLH-stimulated ERα and ERβ gene expression in the prehierarchical follicles. In conclusion, data of the current study demonstrate the congener-specific effects of PCBs on sex steroid secretion by prehierarchical follicles of the chicken ovary, which are at least partly related to STAR, HSD3B and CYP19A1 gene expression. It is suggested that PCBs, by influencing follicular steroidogenesis and expression of estrogen receptors, may impair development and selection of yellowish follicles to the preovulatory hierarchy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Fucoxanthin Attenuates Rifampin-Induced Cytochrome P450 3A4 (CYP3A4 and Multiple Drug Resistance 1 (MDR1 Gene Expression Through Pregnane X Receptor (PXR-Mediated Pathways in Human Hepatoma HepG2 and Colon Adenocarcinoma LS174T Cells

    Directory of Open Access Journals (Sweden)

    Miao-Lin Hu

    2012-01-01

    Full Text Available Pregnane X receptor (PXR has been reported to regulate the expression of drug-metabolizing enzymes, such as the cytochrome P450 3A (CYP3A family and transporters, such as multiple drug resistance 1 (MDR1. Fucoxanthin, the major carotenoid in brown sea algae, is a putative chemopreventive agent. In this study, we determined whether fucoxanthin could overcome drug resistance through attenuation of rifampin-induced CYP3A4 and MDR1 gene expression by PXR-mediated pathways in HepG2 hepatoma cells. We found that fucoxanthin (1–10 μM significantly attenuated rifampin (20 μM-induced CYP3A4, MDR1 mRNA and CYP3A4 protein expression at 24 h of incubation. Mechanistically, fucoxanthin strongly attenuated the PXR-mediated CYP3A4 promoter activity in HepG2 cells. In addition, fucoxanthin attenuated constitutive androstane receptor (CAR- and rPXR-mediated CYP3A4 promoter activity in this cell line. Using the mammalian two-hybrid assay, we found that fucoxanthin significantly decreased the interaction between PXR and SRC-1, a PXR co-activator. Thus, fucoxanthin can decrease rifampin-induced CYP3A4 and MDR1 expression through attenuation of PXR-mediated CYP3A4 promoter activation and interaction between PXR and co-activator. These findings could lead to potentially important new therapeutic and dietary approaches to reduce the frequency of adverse drug reactions.

  15. Xenobiotic metabolism: the effect of acute kidney injury on non-renal drug clearance and hepatic drug metabolism.

    Science.gov (United States)

    Dixon, John; Lane, Katie; Macphee, Iain; Philips, Barbara

    2014-02-13

    Acute kidney injury (AKI) is a common complication of critical illness, and evidence is emerging that suggests AKI disrupts the function of other organs. It is a recognized phenomenon that patients with chronic kidney disease (CKD) have reduced hepatic metabolism of drugs, via the cytochrome P450 (CYP) enzyme group, and drug dosing guidelines in AKI are often extrapolated from data obtained from patients with CKD. This approach, however, is flawed because several confounding factors exist in AKI. The data from animal studies investigating the effects of AKI on CYP activity are conflicting, although the results of the majority do suggest that AKI impairs hepatic CYP activity. More recently, human study data have also demonstrated decreased CYP activity associated with AKI, in particular the CYP3A subtypes. Furthermore, preliminary data suggest that patients expressing the functional allele variant CYP3A5*1 may be protected from the deleterious effects of AKI when compared with patients homozygous for the variant CYP3A5*3, which codes for a non-functional protein. In conclusion, there is a need to individualize drug prescribing, particularly for the more sick and vulnerable patients, but this needs to be explored in greater depth.

  16. Expression of contactin associated protein-like 2 in a subset of hepatic progenitor cell compartment identified by gene expression profiling in hepatitis B virus-positive cirrhosis.

    Science.gov (United States)

    Wang, Huafeng; Gao, Yabo; Jin, Xiaolong; Xiao, Jiacheng

    2010-01-01

    Hepatic progenitor cells (HPC), a cell compartment capable of differentiating into hepatocytic and biliary lineages, may give rise to the formation of intermediate hepatobiliary cells (IHBC) or ductular reactions (DR). The aim of this study was to analyse the gene expression profiles of DR in cirrhosis and further investigate novel proteins expressed by HPC and their intermediate progeny. DR in hepatitis B virus (HBV)-positive cirrhotic liver tissues adjacent to hepatocellular carcinoma and interlobular bile ducts (ILBDs) in normal liver tissues were isolated by laser capture microdissection and then subjected to microarray analysis. Differential gene expression patterns were verified by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry on serial sections. HPC and their intermediate progeny were recognized by immunostaining with hepatocytic and biliary markers [HepPar1, cytokeratin (CK)7, CK19, neural cell adhesion molecule (NCAM), epithelial cell adhesion molecule (EpCAM)]. A total of 88 genes showed upregulation in DR compared with ILBDs. Gene ontology analyses revealed that these upregulated genes were mostly associated with cell adhesion, immune response and the metabolic process. Contactin associated protein-like 2 (CNTNAP2) was first confirmed to be a novel protein expressed in a subpopulation of DR that was positive for CK7, NCAM or EpCAM. In addition, immunoreactivity for CNTNAP2 was also noted in a subset of isolated CK7-positive HPC as well as some ductular IHBC positive for CK19 and HepPar1 in DR. CNTNAP2 is specifically associated with the emergence of ductular populations and may be identified as a novel protein for defining a subset of HPC and their intermediate progeny in cirrhosis.

  17. Regulation of CYP3A4 by pregnane X receptor: The role of nuclear receptors competing for response element binding

    Energy Technology Data Exchange (ETDEWEB)

    Istrate, Monica A., E-mail: monicai@scripps.edu [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Nussler, Andreas K., E-mail: nuessler@uchir.me.tum.de [Department of Traumatology, Technical University Munich, Ismaningerstr. 22, 81675 Munich (Germany); Eichelbaum, Michel, E-mail: michel.eichelbaum@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany); Burk, Oliver, E-mail: oliver.burk@ikp-stuttgart.de [Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany, and University of Tuebingen, Auerbachstr. 112, D-70376 Stuttgart (Germany)

    2010-03-19

    Induction of the major drug metabolizing enzyme CYP3A4 by xenobiotics contributes to the pronounced interindividual variability of its expression and often results in clinically relevant drug-drug interactions. It is mainly mediated by PXR, which regulates CYP3A4 expression by binding to several specific elements in the 5' upstream regulatory region of the gene. Induction itself shows a marked interindividual variability, whose underlying determinants are only partly understood. In this study, we investigated the role of nuclear receptor binding to PXR response elements in CYP3A4, as a potential non-genetic mechanism contributing to interindividual variability of induction. By in vitro DNA binding experiments, we showed that several nuclear receptors bind efficiently to the proximal promoter ER6 and distal xenobiotic-responsive enhancer module DR3 motifs. TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII further demonstrated dose-dependent repression of PXR-mediated CYP3A4 enhancer/promoter reporter activity in transient transfection in the presence and absence of the PXR inducer rifampin, while VDR showed this effect only in the absence of treatment. By combining functional in vitro characterization with hepatic expression analysis, we predict that TR{alpha}1, TR{beta}1, COUP-TFI, and COUP-TFII show a strong potential for the repression of PXR-mediated activation of CYP3A4 in vivo. In summary, our results demonstrate that nuclear receptor binding to PXR response elements interferes with PXR-mediated expression and induction of CYP3A4 and thereby contributes to the interindividual variability of induction.

  18. Generation and Characterization of a Novel CYP2A13-Transgenic Mouse Model

    Science.gov (United States)

    Jia, Kunzhi; Li, Lei; Liu, Zhihua; Hartog, Matthew; Kluetzman, Kerri; Zhang, Qing-Yu

    2014-01-01

    CYP2A13, CYP2B6, and CYP2F1 are neighboring cytochrome P450 genes on human chromosome 19, and the enzymes that they encode overlap in substrate specificity. A CYP2A13/2B6/2F1-transgenic mouse, in which CYP2A13 and 2F1 are both expressed in the respiratory tract and CYP2B6 is expressed in the liver, was recently generated. We generated a CYP2A13 (only) transgenic mouse so that the specific activity of CYP2A13 can be determined. The CYP2B6 and CYP2F1 genes in the CYP2A13/2B6/2F1 genomic clone were inactivated via genetic manipulations, and CYP2A13 was kept intact. A CYP2A13 (only) transgenic (2A13-TG) mouse was generated using the engineered construct and then characterized to confirm transgene integrity and determine copy numbers. The 2A13-TG mice were normal in gross morphology, development, and fertility. As in the CYP2A13/2B6/2F1-transgenic mouse, CYP2A13 expression in the 2A13-TG mouse was limited to the respiratory tract; in contrast, CYP2B6 and 2F1 proteins were not detected. Additional studies using the CYP2A13-humanized (2A13-TG/Cyp2abfgs-null) mouse produced by intercrossing between 2A13-TG and Cyp2abfgs-null mice confirmed that the transgenic CYP2A13 is active in the bioactivation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a lung procarcinogen. The 2A13-TG mouse should be valuable for assessing specific roles of human CYP2A13 in xenobiotic toxicity in the respiratory tract. PMID:24907355

  19. Generation and characterization of a novel CYP2A13--transgenic mouse model.

    Science.gov (United States)

    Jia, Kunzhi; Li, Lei; Liu, Zhihua; Hartog, Matthew; Kluetzman, Kerri; Zhang, Qing-Yu; Ding, Xinxin

    2014-08-01

    CYP2A13, CYP2B6, and CYP2F1 are neighboring cytochrome P450 genes on human chromosome 19, and the enzymes that they encode overlap in substrate specificity. A CYP2A13/2B6/2F1-transgenic mouse, in which CYP2A13 and 2F1 are both expressed in the respiratory tract and CYP2B6 is expressed in the liver, was recently generated. We generated a CYP2A13 (only) transgenic mouse so that the specific activity of CYP2A13 can be determined. The CYP2B6 and CYP2F1 genes in the CYP2A13/2B6/2F1 genomic clone were inactivated via genetic manipulations, and CYP2A13 was kept intact. A CYP2A13 (only) transgenic (2A13-TG) mouse was generated using the engineered construct and then characterized to confirm transgene integrity and determine copy numbers. The 2A13-TG mice were normal in gross morphology, development, and fertility. As in the CYP2A13/2B6/2F1-transgenic mouse, CYP2A13 expression in the 2A13-TG mouse was limited to the respiratory tract; in contrast, CYP2B6 and 2F1 proteins were not detected. Additional studies using the CYP2A13-humanized (2A13-TG/Cyp2abfgs-null) mouse produced by intercrossing between 2A13-TG and Cyp2abfgs-null mice confirmed that the transgenic CYP2A13 is active in the bioactivation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a lung procarcinogen. The 2A13-TG mouse should be valuable for assessing specific roles of human CYP2A13 in xenobiotic toxicity in the respiratory tract. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Effects of dietary sodium butyrate on hepatic biotransformation and pharmacokinetics of erythromycin in chickens.

    Science.gov (United States)

    Csikó, G; Nagy, G; Mátis, G; Neogrády, Z; Kulcsár, Á; Jerzsele, A; Szekér, K; Gálfi, P

    2014-08-01

    Butyrate, a commonly applied feed additive in poultry nutrition, can modify the expression of certain genes, including those encoding cytochrome P450 (CYP) enzymes. In comparative in vitro and in vivo experiments, the effect of butyrate on hepatic CYP genes was examined in primary cultures of chicken hepatocytes and in liver samples of chickens collected from animals that had been given butyrate as a feed additive. Moreover, the effect of butyrate on the biotransformation of erythromycin, a marker substance for the activity of enzymes of the CYP3A family, was investigated in vitro and in vivo. Butyrate increased the expression of the avian-specific CYP2H1 both in vitro and in vivo. In contrast, the avian CYP3A37 expression was decreased in hepatocytes following butyrate exposure, but not in the in vivo model. CYP1A was suppressed by butyrate in the in vitro experiments, and overexpressed in vivo in butyrate-fed animals. The concomitant incubation of hepatocytes with butyrate and erythromycin led to an increased CYP2H1 expression and a less pronounced inhibition of CYP3A37. In in vivo pharmacokinetic experiments, butyrate-fed animals given a single i.m. injection of erythromycin, a slower absorption phase (longer T(half-abs) and delayed T(max)) but a rapid elimination phase of this marker substrate was observed. Although these measurable differences were detected in the pharmacokinetics of erythromycin, it is unlikely that a concomitant application of sodium butyrate with erythromycin or other CYP substrates will cause clinically significant feed-drug interaction in chickens. © 2014 John Wiley & Sons Ltd.

  1. Cloning and tissue expression of cytochrome P450 1B1 and 1C1 ...

    African Journals Online (AJOL)

    SAM

    2014-05-14

    May 14, 2014 ... reading frame of 1551 bp encoding a protein of 517 amino acids; while, CYP1C1 having 2601 bp consists of an open ... expression. Key words: Cytochrome P450, Javanese medaka, salinity, starvation, heavy fuel oil, cloning, expression. .... had no influence on hepatic EROD activities, (Vigano et al., 1993) ...

  2. Adiponectin regulates expression of hepatic genes critical for glucose and lipid metabolism.

    Science.gov (United States)

    Liu, Qingqing; Yuan, Bingbing; Lo, Kinyui Alice; Patterson, Heide Christine; Sun, Yutong; Lodish, Harvey F

    2012-09-04

    The effects of adiponectin on hepatic glucose and lipid metabolism at transcriptional level are largely unknown. We profiled hepatic gene expression in adiponectin knockout (KO) and wild-type (WT) mice by RNA sequencing. Compared with WT mice, adiponectin KO mice fed a chow diet exhibited decreased mRNA expression of rate-limiting enzymes in several important glucose and lipid metabolic pathways, including glycolysis, tricarboxylic acid cycle, fatty-acid activation and synthesis, triglyceride synthesis, and cholesterol synthesis. In addition, binding of the transcription factor Hnf4a to DNAs encoding several key metabolic enzymes was reduced in KO mice, suggesting that adiponectin might regulate hepatic gene expression via Hnf4a. Phenotypically, adiponectin KO mice possessed smaller epididymal fat pads and showed reduced body weight compared with WT mice. When fed a high-fat diet, adiponectin KO mice showed significantly reduced lipid accumulation in the liver. These lipogenic defects are consistent with the down-regulation of lipogenic genes in the KO mice.

  3. Stable human lymphoblastoid cell lines constitutively expressing hepatitis C virus proteins.

    Science.gov (United States)

    Wölk, Benno; Gremion, Christel; Ivashkina, Natalia; Engler, Olivier B; Grabscheid, Benno; Bieck, Elke; Blum, Hubert E; Cerny, Andreas; Moradpour, Darius

    2005-06-01

    The cellular immune response plays a central role in virus clearance and pathogenesis of liver disease in hepatitis C. The study of hepatitis C virus (HCV)-specific immune responses is limited by currently available cell-culture systems. Here, the establishment and characterization of stable human HLA-A2-positive B-lymphoblastoid x T hybrid cell lines constitutively expressing either the NS3-4A complex or the entire HCV polyprotein are reported. These cell lines, termed T1/NS3-4A and T1/HCVcon, respectively, were maintained in continuous culture for more than 1 year with stable characteristics. HCV structural and non-structural proteins were processed accurately, indicating that the cellular and viral proteolytic machineries are functional in these cell lines. Viral proteins were found in the cytoplasm in dot-like structures when expressed in the context of the HCV polyprotein or in a perinuclear fringe when the NS3-4A complex was expressed alone. T1/NS3-4A and T1/HCVcon cells were lysed efficiently by HCV-specific cytotoxic T lymphocytes from patients with hepatitis C and from human HLA-A2.1 transgenic mice immunized with a liposomal HCV vaccine, indicating that viral proteins are processed endogenously and presented efficiently via the major histocompatibility complex class I pathway. In conclusion, these cell lines represent a unique tool to study the cellular immune response, as well as to evaluate novel vaccine and immunotherapeutic strategies against HCV.

  4. [Experimental study on hepatitis B-virus X gene expression in adenoid cystic carcinoma].

    Science.gov (United States)

    Xie, Ling; Wang, Weihong; Xu, Biao; Liu, Yu

    2014-08-01

    To explore the expression of hepatitis B-virus X gene (HBX) in adenoid cystic carcinoma (ACC) and determine its clinical significance. Between June 2008 and October 2012, in-hospital patients with salivary gland tumors who were treated at the Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, were enrolled to this study. HBeAb-positive patients were defined as those exposed to hepatitis B virus (HBV) or harboring persistent HBV infection regardless of being HBeAg positive or negative. According to the pathological results, all patients were divided into ACC group and control group. Immunohistochemical staining and polymerase chain reaction (PCR) were used to detect HBX expression in ACC group and control group. HBX expression was mostly detected in the cytoplasm of ACC cells. Minimal HBX expression was detected in the nucleus. HBX expression was significantly higher in ACC than in Warthin's tumor. A significant difference was observed between the two groups. HBX is expressed in ACC and may be associated with the development of ACC. HBX might serve important functions in the carcinogenesis and development of ACC.

  5. Experimental Adjustment on Drug Interactions through Intestinal CYP3A Activity in Rat: Impacts of Kampo Medicines Repeat Administered

    Directory of Open Access Journals (Sweden)

    Natsumi Kinoshita

    2011-01-01

    Full Text Available To provide the information that is necessary for making the proper use of kampo medicines, we have proposed the adequate methodology focused on the following issues: (i kampo medicines emphasize the effects produced by the combination of herbal drugs rather than the individual effect of any single herb and (ii Intestinal CYP3A has become a key factor for the bioavailability of orally administrated drugs. In the present study, we investigated both the in vivo and in vitro effects of Saireito and Hochuekkito (kampo formulas on CYP3A activities. From our study, oral pre-treatment with Saireito or Hochuekkito did not affect the pharmacokinetics of nifedipine after intravenous administration to rats. When nifedipine was administered to rat intrajejunum, a significant decrease of AUC was showed by pre-treatment with both kampo formulas. Saireito pre-treatment led to 80% decrease in max of nifedipine. Saireito caused significant increases in both protein expression and metabolic activity of CYP3A in intestinal microsome, whereas it had no effect on CYP3A in hepatic microsome. Our result also showed that this affect of Saireito can be gone by wash-out with 1 week. These findings demonstrated that Saireito may induce CYP3A activity of intestine but not of liver in rats. When resources for research are limited, well-designed scientific studies except clinical trials also have many advantages.

  6. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Directory of Open Access Journals (Sweden)

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  7. Hepatic inducible nitric oxide synthase expression increases upon exposure to hypergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.S. [Sungkyunkwan University School of Medicine, Samsung Medical Center, Department of Pathology and Translational Genomics, Seoul (Korea, Republic of); Republic of Korea Air Force Medical Center, Aerospace Medicine Research Center, Cheongju (Korea, Republic of); Jung, Y.Y. [Sungkyunkwan University School of Medicine, Samsung Medical Center, Department of Pathology and Translational Genomics, Seoul (Korea, Republic of); Do, S.I. [Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Department of Pathology, Seoul (Korea, Republic of)

    2014-08-29

    Stimulation by a number of conditions, including infection, cytokines, mechanical injury, and hypoxia, can upregulate inducible nitric oxide synthase (iNOS) in hepatocytes. We observed that exposure to hypergravity significantly upregulated the transcription of the hepatic iNOS gene. The aim of this study was to confirm our preliminary data, and to further investigate the distribution of the iNOS protein in the livers of mice exposed to hypergravity. ICR mice were exposed to +3 Gz for 1 h. We investigated the time course of change in the iNOS expression. Hepatic iNOS mRNA expression progressively increased in centrifuged mice from 0 to 12 h, and then decreased rapidly by 18 h. iNOS mRNA levels in the livers of centrifuged mice was significantly higher at 3, 6, and 12 h than in uncentrifuged control mice. The pattern of iNOS protein expression paralleled that of the mRNA expression. At 0 and 1 h, weak cytoplasmic iNOS immunoreactivity was found in some hepatocytes surrounding terminal hepatic venules. It was noted that at 6 h there was an increase in the number of perivenular hepatocytes with moderate to strong cytoplasmic immunoreactivity. The number of iNOS-positive hepatocytes was maximally increased at 12 h. The majority of positively stained cells showed a strong intensity of iNOS expression. The expression levels of iNOS mRNA and protein were significantly increased in the livers of mice exposed to hypergravity. These results suggest that exposure to hypergravity significantly upregulates iNOS at both transcriptional and translational levels.

  8. Genomics of Dementia: APOE- and CYP2D6-Related Pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Ramón Cacabelos

    2012-01-01

    Full Text Available Dementia is a major problem of health in developed societies. Alzheimer’s disease (AD, vascular dementia, and mixed dementia account for over 90% of the most prevalent forms of dementia. Both genetic and environmental factors are determinant for the phenotypic expression of dementia. AD is a complex disorder in which many different gene clusters may be involved. Most genes screened to date belong to different proteomic and metabolomic pathways potentially affecting AD pathogenesis. The ε4 variant of the APOE gene seems to be a major risk factor for both degenerative and vascular dementia. Metabolic factors, cerebrovascular disorders, and epigenetic phenomena also contribute to neurodegeneration. Five categories of genes are mainly involved in pharmacogenomics: genes associated with disease pathogenesis, genes associated with the mechanism of action of a particular drug, genes associated with phase I and phase II metabolic reactions, genes associated with transporters, and pleiotropic genes and/or genes associated with concomitant pathologies. The APOE and CYP2D6 genes have been extensively studied in AD. The therapeutic response to conventional drugs in patients with AD is genotype specific, with CYP2D6-PMs, CYP2D6-UMs, and APOE-4/4 carriers acting as the worst responders. APOE and CYP2D6 may cooperate, as pleiotropic genes, in the metabolism of drugs and hepatic function. The introduction of pharmacogenetic procedures into AD pharmacological treatment may help to optimize therapeutics.

  9. Regulation of human hepatic drug transporter activity and expression by diesel exhaust particle extract.

    Directory of Open Access Journals (Sweden)

    Marc Le Vee

    Full Text Available Diesel exhaust particles (DEPs are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC uptake transporters organic anion-transporting polypeptides (OATP 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP, whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP. Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a reference activator of the aryl hydrocarbon receptor (AhR pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute

  10. A Novel Zn2-Cys6 Transcription Factor AtrR Plays a Key Role in an Azole Resistance Mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B Expressions

    Science.gov (United States)

    Shimizu, Kiminori; Paul, Sanjoy; Ohba, Ayumi; Gonoi, Tohru; Watanabe, Akira; Gomi, Katsuya

    2017-01-01

    Successful treatment of aspergillosis caused by Aspergillus fumigatus is threatened by an increasing incidence of drug resistance. This situation is further complicated by the finding that strains resistant to azoles, the major antifungal drugs for aspergillosis, have been widely disseminated across the globe. To elucidate mechanisms underlying azole resistance, we identified a novel transcription factor that is required for normal azole resistance in Aspergillus fungi including A. fumigatus, Aspergillus oryzae, and Aspergillus nidulans. This fungal-specific Zn2-Cys6 type transcription factor AtrR was found to regulate expression of the genes related to ergosterol biosynthesis, including cyp51A that encodes a target protein of azoles. The atrR deletion mutant showed impaired growth under hypoxic conditions and attenuation of virulence in murine infection model for aspergillosis. These results were similar to the phenotypes for a mutant strain lacking SrbA that is also a direct regulator for the cyp51A gene. Notably, AtrR was responsible for the expression of cdr1B that encodes an ABC transporter related to azole resistance, whereas SrbA was not involved in the regulation. Chromatin immunoprecipitation assays indicated that AtrR directly bound both the cyp51A and cdr1B promoters. In the clinically isolated itraconazole resistant strain that harbors a mutant Cyp51A (G54E), deletion of the atrR gene resulted in a hypersensitivity to the azole drugs. Together, our results revealed that AtrR plays a pivotal role in a novel azole resistance mechanism by co-regulating the drug target (Cyp51A) and putative drug efflux pump (Cdr1B). PMID:28052140

  11. A Novel Zn2-Cys6 Transcription Factor AtrR Plays a Key Role in an Azole Resistance Mechanism of Aspergillus fumigatus by Co-regulating cyp51A and cdr1B Expressions.

    Directory of Open Access Journals (Sweden)

    Daisuke Hagiwara

    2017-01-01

    Full Text Available Successful treatment of aspergillosis caused by Aspergillus fumigatus is threatened by an increasing incidence of drug resistance. This situation is further complicated by the finding that strains resistant to azoles, the major antifungal drugs for aspergillosis, have been widely disseminated across the globe. To elucidate mechanisms underlying azole resistance, we identified a novel transcription factor that is required for normal azole resistance in Aspergillus fungi including A. fumigatus, Aspergillus oryzae, and Aspergillus nidulans. This fungal-specific Zn2-Cys6 type transcription factor AtrR was found to regulate expression of the genes related to ergosterol biosynthesis, including cyp51A that encodes a target protein of azoles. The atrR deletion mutant showed impaired growth under hypoxic conditions and attenuation of virulence in murine infection model for aspergillosis. These results were similar to the phenotypes for a mutant strain lacking SrbA that is also a direct regulator for the cyp51A gene. Notably, AtrR was responsible for the expression of cdr1B that encodes an ABC transporter related to azole resistance, whereas SrbA was not involved in the regulation. Chromatin immunoprecipitation assays indicated that AtrR directly bound both the cyp51A and cdr1B promoters. In the clinically isolated itraconazole resistant strain that harbors a mutant Cyp51A (G54E, deletion of the atrR gene resulted in a hypersensitivity to the azole drugs. Together, our results revealed that AtrR plays a pivotal role in a novel azole resistance mechanism by co-regulating the drug target (Cyp51A and putative drug efflux pump (Cdr1B.

  12. Up-regulation of the alligator CYP3A77 gene by toxaphene and dexamethasone and its short term effect on plasma testosterone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, M.P. [Department of Zoology, University of Florida, P.O. Box 118525, Gainesville, FL 32611-8525 (United States) and University of Victoria, Department of Biochemistry and Microbiology, Petch 249/251, P.O. Box 3055 STN CSC, Victoria B.C., V8W 3P6 (Canada)]. E-mail: mgunders@uvic.ca; Kohno, S. [Center for Integrative Bioscience, National Institute for Basic Biology, Okazaki National Research Institutes, 5-1 Higashiyama Myodaiji, Okazaki 444-8585 (Japan); Blumberg, B. [Department of Developmental and Cell Biology, University of California, 2113E McGaugh Hall, Irvine, CA 92697-2300 (United States); Iguchi, T. [Center for Integrative Bioscience, National Institute for Basic Biology, Okazaki National Research Institutes, 5-1 Higashiyama Myodaiji, Okazaki 444-8585 (Japan); Guillette, L.J. [Department of Zoology, University of Florida, P.O. Box 118525, Gainesville, FL 32611-8525 (United States)]. E-mail: ljg@zoo.ufl.edu

    2006-06-30

    In this study we describe an alligator hepatic CYP3A gene, CYP3A77, which is inducible by dexamethasone and toxaphene. CYP3A plays a broad role in biotransforming both exogenous compounds and endogenous hormones such as testosterone and estradiol. Alligators collected from sites in Florida that are contaminated with organochlorine compounds exhibit differences in sex steroid concentrations. Many organochlorine compounds induce CYP3A expression in other vertebrates; hence, CYP3A induction by organochlorine contaminants could increase biotransformation and clearance of sex steroids by CYP3A and provide a plausible mechanism for the lowering of endogenous sex steroid concentrations in alligator plasma. We used real time PCR to examine whether known and suspected CYP3A inducers (dexamethasone, metyrapone, rifampicin, and toxaphene) up-regulate steady state levels of hepatic CYP3A77 transcript to determine if induction patterns in female juvenile alligators are similar to those reported in other vertebrates and whether toxaphene, an organochlorine compound found in high concentrations in Lake Apopka alligators, induces this gene. Estrogen receptor {alpha} (ER{alpha}), estrogen receptor {beta} (ER{beta}), androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), and steroid-xenobiotic receptor (SXR) transcripts were also measured to determine whether any of these nuclear receptors are also regulated by these compounds in alligators. Dexamethasone (4.2-fold) and toxaphene (3.5-fold) significantly induced CYP3A77 gene transcript, whereas rifampicin (2.8-fold) and metyrapone (2.1-fold) up-regulated ER{beta} after 24 h. None of the compounds significantly up-regulated AR, ER{alpha}, GR, PR, or SXR over this time period. Plasma testosterone (T) did not change significantly after 24 h in alligators from any of the treatment groups. Dexamethasone treated animals exhibited a strong relationship between the 24 h plasma T concentrations and CYP3A77 (R {sup

  13. Human sterol regulatory element-binding protein 1a contributes significantly to hepatic lipogenic gene expression.

    Science.gov (United States)

    Bitter, Andreas; Nüssler, Andreas K; Thasler, Wolfgang E; Klein, Kathrin; Zanger, Ulrich M; Schwab, Matthias; Burk, Oliver

    2015-01-01

    Sterol regulatory element-binding protein (SREBP) 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. mRNA expression of both isoforms was quantified in cohorts of human livers and primary human hepatocytes. Hepatocytes were treated with PF-429242 to inhibit the proteolytic activation of SREBP precursor protein. SREBP1a-specifc and pan-SREBP1 knock-down were performed by transfection of respective siRNAs. Lipogenic SREBP-target gene expression was analyzed by real-time RT-PCR. In human liver, SREBP1a accounts for up to half of the total SREBP1 pool. Treatment with PF-429242 indicated SREBP-dependent auto-regulation of SREBP1a, which however was much weaker than of SREBP1c. SREBP1a-specifc knock-down also reduced significantly the expression of SREBP1c and of SREBP-target genes. Regarding most SREBP-target genes, simultaneous knock-down of both isoforms resulted in effects of only similar extent as SREBP1a-specific knock-down. We here showed that SREBP1a is significantly contributing to the human hepatic SREBP1 pool and has a share in human hepatic lipogenic gene expression. © 2015 S. Karger AG, Basel.

  14. Human Sterol Regulatory Element-Binding Protein 1a Contributes Significantly to Hepatic Lipogenic Gene Expression

    Directory of Open Access Journals (Sweden)

    Andreas Bitter

    2015-01-01

    Full Text Available Background/Aims: Sterol regulatory element-binding protein (SREBP 1, the master regulator of lipogenesis, was shown to be associated with non-alcoholic fatty liver disease, which is attributed to its major isoform SREBP1c. Based on studies in mice, the minor isoform SREBP1a is regarded as negligible for hepatic lipogenesis. This study aims to elucidate the expression and functional role of SREBP1a in human liver. Methods: mRNA expression of both isoforms was quantified in cohorts of human livers and primary human hepatocytes. Hepatocytes were treated with PF-429242 to inhibit the proteolytic activation of SREBP precursor protein. SREBP1a-specifc and pan-SREBP1 knock-down were performed by transfection of respective siRNAs. Lipogenic SREBP-target gene expression was analyzed by real-time RT-PCR. Results: In human liver, SREBP1a accounts for up to half of the total SREBP1 pool. Treatment with PF-429242 indicated SREBP-dependent auto-regulation of SREBP1a, which however was much weaker than of SREBP1c. SREBP1a-specifc knock-down also reduced significantly the expression of SREBP1c and of SREBP-target genes. Regarding most SREBP-target genes, simultaneous knock-down of both isoforms resulted in effects of only similar extent as SREBP1a-specific knock-down. Conclusion: We here showed that SREBP1a is significantly contributing to the human hepatic SREBP1 pool and has a share in human hepatic lipogenic gene expression.

  15. Daily rhythms in expression of genes of hepatic lipid metabolism in Atlantic salmon (Salmo salar L..

    Directory of Open Access Journals (Sweden)

    Mónica B Betancor

    Full Text Available In mammals, several genes involved in liver lipid and cholesterol homeostasis are rhythmically expressed with expression shown to be regulated by clock genes via Rev-erb 1α. In order to elucidate clock gene regulation of genes involved in lipid metabolism in Atlantic salmon (Salmo salar L., the orphan nuclear receptor Rev-erb 1α was cloned and 24 h expression of clock genes, transcription factors and genes involved in cholesterol and lipid metabolism determined in liver of parr acclimated to a long-day photoperiod, which was previously shown to elicit rhythmic clock gene expression in the brain. Of the 31 genes analysed, significant daily expression was demonstrated in the clock gene Bmal1, transcription factor genes Srebp1, Lxr, Pparα and Pparγ, and several lipid metabolism genes Hmgcr, Ipi, ApoCII and El. The possible regulatory mechanisms and pathways, and the functional significance of these patterns of expression were discussed. Importantly and in contrast to mammals, Per1, Per2, Fas, Srebp2, Cyp71α and Rev-erb 1α did not display significant daily rhythmicity in salmon. The present study is the first report characterising 24 h profiles of gene expression in liver of Atlantic salmon. However, more importantly, the predominant role of lipids in the nutrition and metabolism of fish, and of feed efficiency in determining farming economics, means that daily rhythmicity in the regulation of lipid metabolism will be an area of considerable interest for future research in commercially important species.

  16. Liver-specific G0 /G1 switch gene 2 (G0s2) expression promotes hepatic insulin resistance by exacerbating hepatic steatosis in male Wistar rats.

    Science.gov (United States)

    Sugaya, Yoshiyuki; Satoh, Hiroaki

    2017-08-01

    Hepatic steatosis is strongly associated with insulin resistance. It has been reported that G0 /G1 switch gene 2 (G0s2) inhibits the lipolytic activity of adipose triglyceride lipase, which is a major lipase in the liver as well as in adipocytes. Moreover, G0s2 protein content is increased in the livers of high-fat diet (HFD)-fed rats. In the present study, we investigated the effect of hepatic G0s2 on insulin sensitivity in male Wistar rats. Male Wistar rats were fed a 60% HFD for 4 weeks. After 3 weeks of feeding, rats were injected with adenovirus-expressing green fluorescent protein (Ad-GFP; control) or adenovirus-expressing mouse G0s2 (Ad-G0s2). On Day 7 after injection, a euglycemic-hyperinsulinemic clamp study was performed in rats fasted for 8 h. Body weight and fasting glucose levels were not significantly different between the Ad-GFP and Ad-G0s2 groups. During the clamp study, the glucose infusion rate required for euglycemia decreased significantly by 16% in the Ad-G0s2 compared with Ad-GFP group. The insulin-suppressed hepatic glucose output increased significantly in the Ad-G0s2 group, but the insulin-stimulated glucose disposal rate was not significantly different between the two groups. Consistent with the clamp data, insulin-stimulated phosphorylation of Akt decreased significantly in livers of rats injected with Ad-G0s2. Furthermore, Oil Red O-staining indicated that overexpression of G0s2 protein in the liver promoted hepatic steatosis by 2.5-fold in HFD-fed rats. The results of the present study indicate that hepatic G0s2 protein may promote hepatic insulin resistance by exacerbating hepatic steatosis. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  17. Hepatic FTO expression is increased in NASH and its silencing attenuates palmitic acid-induced lipotoxicity.

    Science.gov (United States)

    Lim, Andrea; Zhou, Jin; Sinha, Rohit A; Singh, Brijesh K; Ghosh, Sujoy; Lim, Kiat-Hon; Chow, Pierce Kah-Hoe; Woon, Esther C Y; Yen, Paul M

    2016-10-21

    Non-alcoholic steatohepatitis (NASH) is one of the most common causes of liver failure worldwide. It is characterized by excess fat accumulation, inflammation, and increased lipotoxicity in hepatocytes. Currently, there are limited treatment options for NASH due to lack of understanding of its molecular etiology. In the present study, we demonstrate that the expression of fat mass and obesity associated gene (FTO) is significantly increased in the livers of NASH patients and in a rodent model of NASH. Furthermore, using human hepatic cells, we show that genetic silencing of FTO protects against palmitate-induced oxidative stress, mitochondrial dysfunction, ER stress, and apoptosis in vitro. Taken together, our results show that FTO may have a deleterious role in hepatic cells during lipotoxic conditions, and strongly suggest that up-regulation of FTO may contribute to the increased liver damage in NASH. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The influence of bovine milk high or low in isoflavones on hepatic gene expression in mice

    DEFF Research Database (Denmark)

    Skaanild, Mette Tingleff; Nielsen, Tina Skau

    2012-01-01

    Isoflavones have generated much attention due to their potential positive effects in various diseases. Phytoestrogens especially equol can be found in bovine milk, as feed ration for dairy cows is comprised of plants containing phytoestrogens. The aim of this study was to analyze the changes...... in hepatic gene expression after dietary intake of milk high and low in isoflavones. In addition to pelleted feed female NMRI mice were offered water, water added either 17β-estradiol, equol, Tween 80, and milk high and low in isoflavone content for a week. Gene expression was analyzed using an array q......PCR kit. It was revealed that Tween 80 and 17β-estradiol upregulated both phase I and phase II genes to the same extent whereas equol alone, high and low isoflavone milk did not alter the expression of phase I genes but decreased the expression of phase II genes. This study shows that dietary isoflavones...

  19. Suppression of Idol expression is an additional mechanism underlying statin-induced up-regulation of hepatic LDL receptor expression.

    Science.gov (United States)

    Dong, Bin; Wu, Minhao; Cao, Aiqin; Li, Hai; Liu, Jingwen

    2011-01-01

    Recent studies have identified proprotein convertase subtilisin/kexin type 9 (PCSK9) and Idol as negative regulators of low density lipoprotein receptor (LDLR) protein stability. While the induction of PCSK9 transcription has been recognized as a limitation to the statin cholesterol-lowering efficacy at higher doses, it is unknown whether Idol is involved in the statin-mediated up-regulation of the hepatic LDLR. Here we report that statins exert opposite effects on PCSK9 and Idol gene expression in human hepatoma-derived cell lines and primary hepatocytes isolated from hamsters and rats. While PCSK9 expression was induced, the level of Idol mRNA rapidly declined in statin-treated cells in a dose-dependent manner. This differs from the effect of the liver X receptor ligand, GW3965, which increased the expression of both PCSK9 and Idol. We further show that cellular depletion of Idol by siRNA transfection did not change PCSK9 expression levels in control and statin-treated cells; however, the basal level of LDLR protein increased by 60% in Idol siRNA transfected HepG2 cells. More importantly, the increase in LDLR protein abundance by rosuvastatin and atorvastatin treatment was compromised by Idol siRNA transfection. Collectively, our present findings suggest that the suppression of Idol gene expression in liver cells is an additional mechanism underlying the statin-induced up-regulation of hepatic LDLR expression. This may contribute to the hypocholesterolemic effects of statins observed in clinical settings.

  20. Effects of dietary inulin, statin, and their co-treatment on hyperlipidemia, hepatic steatosis and changes in drug-metabolizing enzymes in rats fed a high-fat and high-sucrose diet

    Directory of Open Access Journals (Sweden)

    Sugatani Junko

    2012-03-01

    , which correlated with change in CYP1A1/2. Conclusions Dietary inulin alone was effective to prevent the development of hepatic steatosis, ameliorate nutritional effects, and alleviate the hepatic change in the expression of CYP1A1/2 and CYP2E1, while co-treatment with statin did not have additive or synergistic effects and statin may cause adverse effects in rats fed the HF diet.

  1. Evidence that the coactivator CBP/p300 is important for phenobarbital-induced but not basal expression of the CYP2H1 gene

    National Research Council Canada - National Science Library

    Dogra, Satish C; Tremethick, David; May, Brian K

    2003-01-01

    We have previously identified an upstream 556-bp enhancer domain for the chicken CYP2H1 gene that responds to phenobarbital and binds several transcription factors, including the orphan chicken xenobiotic receptor (CXR...

  2. Over-expression of CYP78A98, a cytochrome P450 gene from Jatropha curcas L., increases seed size of transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Yinshuai Tian

    2016-01-01

    Conclusions: The results indicated that CYP78A98 played a role in Jatropha seed size control. This may help us to better understand the genetic regulation of Jatropha seed development, and accelerate the breeding progress of Jatropha.

  3. Camel milk modulates the expression of aryl hydrocarbon receptor-regulated genes, Cyp1a1, Nqo1, and Gsta1, in murine hepatoma Hepa 1c1c7 cells.

    Science.gov (United States)

    Korashy, Hesham M; El Gendy, Mohamed A M; Alhaider, Abdulqader A; El-Kadi, Ayman O

    2012-01-01

    There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1), and cancer-protective genes, NAD(P)H:quinone oxidoreductase 1 (Nqo1) and glutathione S-transferase a1 (Gsta1), in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE)-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels.

  4. Camel Milk Modulates the Expression of Aryl Hydrocarbon Receptor-Regulated Genes, Cyp1a1, Nqo1, and Gsta1, in Murine hepatoma Hepa 1c1c7 Cells

    Directory of Open Access Journals (Sweden)

    Hesham M. Korashy

    2012-01-01

    Full Text Available There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1, and cancer-protective genes, NAD(PH:quinone oxidoreductase 1 (Nqo1 and glutathione S-transferase a1 (Gsta1, in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels.

  5. Transcriptional coactivator NT-PGC-1α promotes gluconeogenic gene expression and enhances hepatic gluconeogenesis.

    Science.gov (United States)

    Chang, Ji Suk; Jun, Hee-Jin; Park, Minsung

    2016-10-01

    The transcriptional coactivator PGC-1α plays a central role in hepatic gluconeogenesis. We previously reported that alternative splicing of the PGC-1α gene produces an additional transcript encoding the truncated protein NT-PGC-1α NT-PGC-1α is co-expressed with PGC-1α and highly induced by fasting in the liver. NT-PGC-1α regulates tissue-specific metabolism, but its role in the liver has not been investigated. Thus, the objective of this study was to determine the role of hepatic NT-PGC-1α in the regulation of gluconeogenesis. Adenovirus-mediated expression of NT-PGC-1α in primary hepatocytes strongly stimulated the expression of key gluconeogenic enzyme genes (PEPCK and G6Pase), leading to increased glucose production. To further understand NT-PGC-1α function in hepatic gluconeogenesis in vivo, we took advantage of a previously reported FL-PGC-1α -/- mouse line that lacks full-length PGC-1α (FL-PGC-1α) but retains a slightly shorter and functionally equivalent form of NT-PGC-1α (NT-PGC-1α 254 ). In FL-PGC-1α -/- mice, NT-PGC-1α 254 was induced by fasting in the liver and recruited to the promoters of PEPCK and G6Pase genes. The enrichment of NT-PGC-1α 254 at the promoters was closely associated with fasting-induced increase in PEPCK and G6Pase gene expression and efficient production of glucose from pyruvate during a pyruvate tolerance test in FL-PGC-1α -/- mice. Moreover, FL-PGC-1α -/- primary hepatocytes showed a significant increase in gluconeogenic gene expression and glucose production after treatment with dexamethasone and forskolin, suggesting that NT-PGC-1α 254 is sufficient to stimulate the gluconeogenic program in the absence of FL-PGC-1α Collectively, our findings highlight the role of hepatic NT-PGC-1α in stimulating gluconeogenic gene expression and glucose production. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Direct inhibitory effects of pioglitazone on hepatic fetuin-A expression.

    Directory of Open Access Journals (Sweden)

    Akinobu Ochi

    Full Text Available Fetuin-A, a circulating glycoprotein synthesized in the liver, is involved in insulin resistance and type 2 diabetes. However, regulation of fetuin-A synthesis has remained obscure. We previously reported that pioglitazone treatment significantly reduced serum fetuin-A levels in patients with type 2 diabetes. To clarify whether pioglitazone can directory inhibit hepatic fetuin-A synthesis, we investigated the effects of pioglitazone on fetuin-A expression both in vitro and in vivo. Pioglitazone treatment suppressed mRNA and protein expression of fetuin-A in Fao hepatoma cells. Interestingly, rosiglitazone but not metformin, also inhibited fetuin-A expression. In addition, GW 9662, an inhibitor of peroxisome proliferator-activated receptor (PPAR γ, reversed pioglitazone-induced suppression of fetuin-A, suggesting that thiazolidinedione derivatives may have common characteristics with regard to fetuin-A suppression, possibly through PPARγactivation. Finally, oral administration of pioglitazone to mice for 8 weeks resulted in suppression of hepatic fetuin-A mRNA. These findings suggest that pioglitazone may partially ameliorate insulin resistance through its direct inhibitory effects on fetuin-A expression in the liver.

  7. Identification of liver CYP51 as a gene responsive to circulating cholesterol in a hamster model.

    Science.gov (United States)

    Huang, Haiqiu; Xie, Zhuohong; Yokoyama, Wallace; Yu, Liangli; Wang, Thomas T Y

    2016-01-01

    Hypercholesterolaemia is a risk factor for CVD, which is a leading cause of death in industrialised societies. The biosynthetic pathways for cholesterol metabolism are well understood; however, the regulation of circulating cholesterol by diet is still not fully elucidated. The present study aimed to gain more comprehensive understanding of the relationship between circulating cholesterol levels and molecular effects in target tissues using the hamster model. Male golden Syrian hamsters were fed with chow or diets containing 36 % energy from fat with or without 1 % cholesteyramine (CA) as a modulator of circulating cholesterol levels for 35 d. It was revealed that the expression of lanosterol 14α-demethylase (CYP51) instead of 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase mRNA expression was responsive to circulating cholesterol in hamsters fed hypercholesterolaemic diets. The high-fat diet increased circulating cholesterol and down-regulated CYP51, but not HMG-CoA reductase. The CA diet decreased cholesterol and increased CYP51 expression, but HMG-CoA reductase expression was not affected. The high-fat diet and CA diet altered the expression level of cholesterol, bile acids and lipid metabolism-associated genes (LDL receptor, cholesterol 7α-hydroxylase (CYP7A1), liver X receptor (LXR) α, and ATP-binding cassette subfamily G member 5/8 (ABCG5/8)) in the liver, which were significantly correlated with circulating cholesterol levels. Correlation analysis also showed that circulating cholesterol levels were regulated by LXR/retinoid X receptor and PPAR pathways in the liver. Using the hamster model, the present study provided additional molecular insights into the influence of circulating cholesterol on hepatic cholesterol metabolism pathways during hypercholesterolaemia.

  8. Serological and molecular expression of Hepatitis B infection in patients with chronic Hepatitis C from Tunisia, North Africa

    Directory of Open Access Journals (Sweden)

    Azaiez Ons

    2010-09-01

    Full Text Available Abstract Background This study reports the prevalence and the viral aspects of HBV infection in HCV-positive patients from Tunisia, a country with intermediate and low endemicity for hepatitis B and C, respectively. Results HBV infection was assessed in the serum samples of 361 HCV-positive patients and compared to a group of HCV negative individuals. Serological markers were determined by ELISA tests and HBV DNA by real-time PCR. HBV serological markers were found in 43% and 44% of patients and controls, respectively. However, the serological and molecular expression of HBV infection differed in the two groups: The group of patients included more individuals with ongoing HBV infection, as defined by the presence of detectable HBsAg and or HBV DNA (17% and 12%, respectively. Furthermore, while most of the controls with ongoing HBV infection expressed HBsAg, the majority of HCV and HBV positive patients were HBsAg negative and HBV DNA positive. Genotyping of HCV isolates showed large predominance of subtype 1b as previously reported in Tunisia. Comparison of the replicative status of the two viruses found low HBV viral load in all co-infected patients as compared to patients with single HBV infection. In contrast, high levels of HCV viremia levels were observed in most of cases with no difference between the group of co-infected patients and the group with single HCV infection. Conclusions This study adds to the knowledge on the prevalence and the virological presentation of HCV/HBV dual infection, providing data from the North African region. It shows that, given the local epidemiology of the two viruses, co-infected patients are likely to have low replication levels of HBV suggesting a suppressive effect of HCV on HBV. In contrast, high replication levels for HCV were fond in most cases which indicate that the presence of circulating HBV-DNA does not necessarily influence HCV replication.

  9. Comparison of Paeoniflorin and Albiflorin on Human CYP3A4 and CYP2D6

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2015-01-01

    Full Text Available Peony (Paeonia lactiflora Pall- is a plant medicine and a functional food ingredient with wide application for more than 2000 years. It can be coadministrated with many other drugs, composed of traditional Chinese medicine compound such as shaoyao-gancao decoction. In order to explore the efficacy and safety of peony, effects of paeoniflorin and albiflorin (the principal components of peony on cytochrome P450 (CYP 3A4 and CYP2D6 were analyzed in human hepatoma HepG2 cells and evaluated from the level of recombinant CYP enzymes in vitro. The findings indicated that albiflorin possessed stronger regulation on the mRNA expression of CYP3A4 and CYP2D6 than paeoniflorin. For the protein level of CYP3A4, albiflorin showed significant induction or inhibition with the concentration increasing from 10−7 M to 10−5 M, but no remarkable variation was observed in paeoniflorin-treated group. Enzyme activity assay implied that both paeoniflorin and albiflorin could regulate CYP3A4 and CYP2D6 with varying degrees. The results showed that albiflorin should be given more attention because it may play a vital role on the overall efficacy of peony. The whole behavior of both paeoniflorin and albiflorin should be focused on ensuring the rationality and effectiveness of clinical application.

  10. The influence of microbial physiology on biocatalyst activity and efficiency in the terminal hydroxylation of n-octane using Escherichia coli expressing the alkane hydroxylase, CYP153A6.

    Science.gov (United States)

    Olaofe, Oluwafemi A; Fenner, Caryn J; Gudiminchi, Rama Krishna; Smit, Martha S; Harrison, Susan T L

    2013-01-25

    Biocatalyst improvement through molecular and recombinant means should be complemented with efficient process design to facilitate process feasibility and improve process economics. This study focused on understanding the bioprocess limitations to identify factors that impact the expression of the terminal hydroxylase CYP153A6 and also influence the biocatalytic transformation of n-octane to 1-octanol using resting whole cells of recombinant E. coli expressing the CYP153A6 operon which includes the ferredoxin (Fdx) and the ferredoxin reductase (FdR). Specific hydroxylation activity decreased with increasing protein expression showing that the concentration of active biocatalyst is not the sole determinant of optimum process efficiency. Process physiological conditions including the medium composition, temperature, glucose metabolism and product toxicity were investigated. A fed-batch system with intermittent glucose feeding was necessary to ease overflow metabolism and improve process efficiency while the introduction of a product sink (BEHP) was required to alleviate octanol toxicity. Resting cells cultivated on complex LB and glucose-based defined medium with similar CYP level (0.20 μmol gDCW-1) showed different biocatalyst activity and efficiency in the hydroxylation of octane over a period of 120 h. This was influenced by differing glucose uptake rate which is directly coupled to cofactor regeneration and cell energy in whole cell biocatalysis. The maximum activity and biocatalyst efficiency achieved presents a significant improvement in the use of CYP153A6 for alkane activation. This biocatalyst system shows potential to improve productivity if substrate transfer limitation across the cell membrane and enzyme stability can be addressed especially at higher temperature. This study emphasises that the overall process efficiency is primarily dependent on the interaction between the whole cell biocatalyst and bioprocess conditions.

  11. Hepatic cyclooxygenase-2 expression protects against diet-induced steatosis, obesity, and insulin resistance.

    Science.gov (United States)

    Francés, Daniel E; Motiño, Omar; Agrá, Noelia; González-Rodríguez, Águeda; Fernández-Álvarez, Ana; Cucarella, Carme; Mayoral, Rafael; Castro-Sánchez, Luis; García-Casarrubios, Ester; Boscá, Lisardo; Carnovale, Cristina E; Casado, Marta; Valverde, Ángela M; Martín-Sanz, Paloma

    2015-05-01

    Accumulation evidence links obesity-induced inflammation as an important contributor to the development of insulin resistance, which plays a key role in the pathophysiology of obesity-related diseases such as type 2 diabetes and nonalcoholic fatty liver disease. Cyclooxygenase (COX)-1 and -2 catalyze the first step in prostanoid biosynthesis. Because adult hepatocytes fail to induce COX-2 expression regardless of the proinflammatory stimuli used, we have evaluated whether this lack of expression under mild proinflammatory conditions might constitute a permissive condition for the onset of insulin resistance. Our results show that constitutive expression of human COX-2 (hCOX-2) in hepatocytes protects against adiposity, inflammation, and, hence, insulin resistance induced by a high-fat diet, as demonstrated by decreased hepatic steatosis, adiposity, plasmatic and hepatic triglycerides and free fatty acids, increased adiponectin-to-leptin ratio, and decreased levels of proinflammatory cytokines, together with an enhancement of insulin sensitivity and glucose tolerance. Furthermore, hCOX-2 transgenic mice exhibited increased whole-body energy expenditure due in part by induction of thermogenesis and fatty acid oxidation. The analysis of hepatic insulin signaling revealed an increase in insulin receptor-mediated Akt phosphorylation in hCOX-2 transgenic mice. In conclusion, our results point to COX-2 as a potential therapeutic target against obesity-associated metabolic dysfunction. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Influence of neonatal hypothyroidism on hepatic gene expression and lipid metabolism in adulthood.

    Directory of Open Access Journals (Sweden)

    Ruymán Santana-Farré

    Full Text Available Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregnant rats were given the antithyroid drug methimazole (MMI from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH, and this was accompanied by significant catch-up growth. On PND80, significant reductions in body mass, tail length, and circulating IGF-I levels remained in CH rats. Conversely, the mRNA levels of known GH target genes were significantly upregulated. The serum levels of thyroid hormones, cholesterol, and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARα and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development plays on normal liver physiology in adulthood.

  13. Influence of Neonatal Hypothyroidism on Hepatic Gene Expression and Lipid Metabolism in Adulthood

    Science.gov (United States)

    Bocos, Carlos; Henríquez-Hernández, Luis A.; Kahlon, Nusrat; Herrera, Emilio; Norstedt, Gunnar; Parini, Paolo; Flores-Morales, Amilcar; Fernández-Pérez, Leandro

    2012-01-01

    Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregnant rats were given the antithyroid drug methimazole (MMI) from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH, and this was accompanied by significant catch-up growth. On PND80, significant reductions in body mass, tail length, and circulating IGF-I levels remained in CH rats. Conversely, the mRNA levels of known GH target genes were significantly upregulated. The serum levels of thyroid hormones, cholesterol, and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARα and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development plays on normal liver physiology in adulthood. PMID:22666351

  14. Proteomic analysis of differentially expressed proteins in hepatitis B virus-related hepatocellular carcinoma tissues

    Directory of Open Access Journals (Sweden)

    Li Cui

    2009-08-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC, a major cause of cancer death in China, is preceded by chronic hepatitis and liver cirrhosis (LC. Although hepatitis B virus (HBV has been regarded as a clear etiology of human hepatocarcinogenesis, the mechanism is still needs to be further clarified. In this study, we used a proteomic approach to identify the differential expression protein profiles between HCC and the adjacent non-tumorous liver tissues. Methods Eighteen cases of HBV-related HCC including 12 cases of LC-developed HCC and 6 cases of chronic hepatitis B (CHB-developed HCC were analyzed by two-dimensional electrophoresis (2-DE combined with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS, and the results were compared to those of paired adjacent non-tumorous liver tissues. Results A total of 17 differentially expressed proteins with diverse biological functions were identified. Among these, 10 proteins were up-regulated, whereas the other 7 proteins were down-regulated in cancerous tissues. Two proteins, c-Jun N-terminal kinase 2 and ADP/ATP carrier protein were found to be up-regulated only in CHB-developed HCC tissues. Insulin-like growth factor binding protein 2 and Rho-GTPase-activating protein 4 were down-regulated in LC-developed and CHB-developed HCC tissues, respectively. Although 11 out of these 17 proteins have been already described by previous studies, or are already known to be involved in hepatocarcinogenesis, this study revealed 6 new proteins differentially expressed in HBV-related HCC. Conclusion These findings elucidate that there are common features between CHB-developed HCC and LC-developed HCC. The identified proteins are valuable for studying the hepatocarcinogenesis, and may be potential diagnostic markers or therapeutic targets for HBV-related HCC.

  15. Proteomic analysis of differentially expressed proteins in hepatitis B virus-related hepatocellular carcinoma tissues.

    Science.gov (United States)

    Li, Ning; Long, Yunzhu; Fan, Xuegong; Liu, Hongbo; Li, Cui; Chen, Lizhang; Wang, Zhiming

    2009-08-28

    Hepatocellular carcinoma (HCC), a major cause of cancer death in China, is preceded by chronic hepatitis and liver cirrhosis (LC). Although hepatitis B virus (HBV) has been regarded as a clear etiology of human hepatocarcinogenesis, the mechanism is still needs to be further clarified. In this study, we used a proteomic approach to identify the differential expression protein profiles between HCC and the adjacent non-tumorous liver tissues. Eighteen cases of HBV-related HCC including 12 cases of LC-developed HCC and 6 cases of chronic hepatitis B (CHB)-developed HCC were analyzed by two-dimensional electrophoresis (2-DE) combined with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), and the results were compared to those of paired adjacent non-tumorous liver tissues. A total of 17 differentially expressed proteins with diverse biological functions were identified. Among these, 10 proteins were up-regulated, whereas the other 7 proteins were down-regulated in cancerous tissues. Two proteins, c-Jun N-terminal kinase 2 and ADP/ATP carrier protein were found to be up-regulated only in CHB-developed HCC tissues. Insulin-like growth factor binding protein 2 and Rho-GTPase-activating protein 4 were down-regulated in LC-developed and CHB-developed HCC tissues, respectively. Although 11 out of these 17 proteins have been already described by previous studies, or are already known to be involved in hepatocarcinogenesis, this study revealed 6 new proteins differentially expressed in HBV-related HCC. These findings elucidate that there are common features between CHB-developed HCC and LC-developed HCC. The identified proteins are valuable for studying the hepatocarcinogenesis, and may be potential diagnostic markers or therapeutic targets for HBV-related HCC.

  16. CYP2E1 Potentiates Ethanol-induction of Hypoxia and HIF-1α in vivo

    Science.gov (United States)

    Wang, Xiaodong; Wu, Defeng; Yang, Lili; Gan, Lixia; Cederbaum, Arthur I

    2013-01-01

    Ethanol induces hypoxia and elevates HIF-1α in the liver. CYP2E1 plays a role in the mechanisms by which ethanol generates oxidative stress, fatty liver and liver injury. The current study evaluated whether CYP2E1 contributes to ethanol-induced hypoxia and activation of HIF-1α in vivo and whether HIF-1α protects against or promotes CYP2E1-dependent toxicity in vitro. Wild type (WT), CYP2E1-knockin (KI) and CYP2E1 knockout (KO) mice were fed ethanol chronically; pair fed controls received isocaloric dextrose. Ethanol produced liver injury in the KI mice to a much greater extent than in the WT and KO mice. Protein levels of HIF-1α and downstream targets of HIF-1α activation were elevated in the ethanol-fed KI mice compared to the WT and KO mice. Levels of HIF prolylhydroxlase 2 which promotes HIF-1α degradation were decreased in the ethanol-fed KI mice in association with the increases in HIF-1α. Hypoxia occurred in the ethanol-fed CYP2E1 KI mice as shown by an increased area of staining using the hypoxia-specific marker pimonidazole. Hypoxia was lower in the ethanol-fed WT mice and lowest in the ethanol fed KO mice and all the dextrose-fed mice. In situ double staining showed that pimonidazole and CYP2E1 were co-localized to the same area of injury in the hepatic centrilobule. Increased protein levels of HIF-1α were also found after acute ethanol treatment of KI mice. Treatment of HepG2 E47 cells which express CYP2E1 with ethanol plus arachidonic (AA) acid or ethanol plus buthionine sulfoximine (BSO) which depletes GSH caused loss of cell viability to greater extent than in HepG2 C34 cells which do not express CYP2E1. These treatments elevated protein levels of HIF-1α to a greater extent in E47 cells than C34 cells. 2-Methoxyestradiol, an inhibitor of HIF-1α, blunted the toxic effects of ethanol plus AA and ethanol plus BSO in the E47 cells in association with inhibition of HIF-1α. The HIF-1α inhibitor also blocked the elevated oxidative stress produced

  17. Age-dependent Hepatic UDP-glucuronosyltransferase Gene Expression and Activity in Children

    Directory of Open Access Journals (Sweden)

    Elizabeth Neumann

    2016-11-01

    Full Text Available ABSTRACTUDP-glucuronosyltransferases (UGTs are important phase II drug metabolism enzymes. The aim of this study was to explore the relationship between age and changes in mRNA expression and activity of major human hepatic UGTs, as well as to understand the potential regulatory mechanism underlying this relationship. Using previously generated data, we investigated age-dependent mRNA expression levels of 11 hepatic UGTs (UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A9, UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17 and 16 transcription factors (AHR, AR, CAR, ESR2, FXR, GCCR, HNF1a, HNF3a, HNF3b, HNF4a, PPARA, PPARG, PPARGC, PXR, SP1, and STAT3 in liver tissue of donors (n = 38 ranging from 0 to 25 years of age. We also examined the correlation between age and microsomal activities using 14 known UGT drug substrates in the liver samples (n = 19 of children donors. We found a statistically significant increase (nominal p < 0.05 in the expression of UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT2B7 and UGT2B17, as well as glucuronidation activities of serotonin, testosterone, and vorinostat during the first 25 years of life. Expression of estrogen receptor 1 (ESR1 and pregnane X receptor (PXR, two strong UGT transcriptional regulators, were significantly correlated with both age and UGT mRNA expression (p ≤ 0.05. These results suggest that both UGT expression and activity increase during childhood and adolescence, possibly driven in part by hormonal signaling. Our findings may help explain inter-patient variability in response to medications among children.

  18. Angiotensin receptor blockade recovers hepatic UCP2 expression and aconitase and SDH activities and ameliorates hepatic oxidative damage in insulin resistant rats.

    Science.gov (United States)

    Montez, Priscilla; Vázquez-Medina, José Pablo; Rodríguez, Rubén; Thorwald, Max A; Viscarra, José A; Lam, Lisa; Peti-Peterdi, Janos; Nakano, Daisuke; Nishiyama, Akira; Ortiz, Rudy M

    2012-12-01

    Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity.

  19. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  20. Involvement of hepatic xenobiotic related genes in bromadiolone resistance in wild Norway rats, Rattus norvegicus (Berk.)

    DEFF Research Database (Denmark)

    Markussen, Mette Drude; Heiberg, Ann-Charlotte; Alsbo, Carsten

    2007-01-01

    a role in bromadiolone resistance in the Norway rat. A high constitutive expression of Cyp2c13 and Cyp3a2 and induction of Cyp1a2, Cyp2e1 and Cyp3a3 expression during bromadiolone exposure may increase the resistance to bromadiolone presumably by facilitating increased detoxification and decreased liver...

  1. Quercetin-metabolizing CYP6AS enzymes of the pollinator Apis mellifera (Hymenoptera: Apidae).

    Science.gov (United States)

    Mao, Wenfu; Rupasinghe, Sanjeewa G; Johnson, Reed M; Zangerl, Arthur R; Schuler, Mary A; Berenbaum, May R

    2009-12-01

    Although the honey bee (Apis mellifera) genome contains far fewer cytochrome P450 genes associated with xenobiotic metabolism than other insect genomes sequenced to date, the CYP6AS subfamily, apparently unique to hymenopterans, has undergone an expansion relative to the genome of the jewel wasp (Nasonia vitripennis). The relative dominance of this family in the honey bee genome is suggestive of a role in processing phytochemicals encountered by honey bees in their relatively unusual diet of honey (comprising concentrated processed nectar of many plant species) and bee bread (a mixture of honey and pollen from many plant species). In this study, quercetin was initially suggested as a shared substrate for CYP6AS1, CYP6AS3, and CYP6AS4, by its presence in honey, extracts of which induce transcription of these three genes, and by in silico substrate predictions based on a molecular model of CYP6AS3. Biochemical assays with heterologously expressed CYP6AS1, CYP6AS3, CYP6AS4 and CYP6AS10 enzymes subsequently confirmed their activity toward this substrate. CYP6AS1, CYP6AS3, CYP6AS4 and CYP6AS10 metabolize quercetin at rates of 0.5+/-0.1, 0.5+/-0.1, 0.2+/-0.1, and 0.2+/-0.1 pmol quercetin/ pmol P450/min, respectively. Substrate dockings and sequence alignments revealed that the positively charged amino acids His107 and Lys217 and the carbonyl group of the backbone between Leu302 and Ala303 are essential for quercetin orientation in the CYP6AS3 catalytic site and its efficient metabolism. Multiple replacements in the catalytic site of CYP6AS4 and CYP6AS10 and repositioning of the quercetin molecule likely account for the lower metabolic activities of CYP6AS4 and CYP6AS10 compared to CYP6AS1 and CYP6AS3.

  2. Expression Profile of Interferon Regulatory Factor 1 in Chronic Hepatitis B Virus-Infected Liver Transplant Patients.

    Science.gov (United States)

    Janfeshan, Sahar; Yaghobi, Ramin; Eidi, Akram; Karimi, Mohammad Hossein; Geramizadeh, Bita; Malekhosseini, Seyed Ali; Kafilzadeh, Farshid

    2017-12-01

    Hepatitis B virus, which mainly affects normal liver function, leads to severe acute and chronic hepatitis, resulting in cirrhosis and hepatocellular carcinoma, but can be safely treated after liver transplant. Evaluation of determinative biomarkers may facilitate more effective treatment of posttransplant rejection. Therefore, we investigated interferon regulatory factor 1 expression in hepatitis B virus-infected liver transplant patients with and without previous rejection compared with controls. Hepatitis B virus-infected liver recipients were divided into those with (20 patients) and without a rejection (26 patients), confirmed by pathologic analyses in those who had a rejection. In addition, a healthy control group composed of 13 individuals was included. Expression levels of interferon regulatory factor 1 were evaluated during 3 follow-ups after transplant using an in-house comparative SYBR green real-time polymerase chain reaction method. Statistical analyses were performed with SPSS software (SPSS: An IBM Company, version 16.0, IBM Corporation, Armonk, NY, USA). Modifications of interferon regulatory factor 1 gene expression levels in patient groups with and without rejection were not significant between days 1, 4, and 7 after liver transplant. Interferon regulatory factor 1 mRNA expression levels were down-regulated in patients without rejection versus patients with rejection, although not significantly at day 1 (P = .234) and day 4 (P = .302) but significantly at day 7 (P = .004) after liver transplant. Down-regulation of interferon regulatory factor 1 gene expression in hepatitis B virus patients without rejection emphasized counteraction between hepatitis B virus replication and interferon regulatory factor 1 production. On the other hand, interferon regulatory factor 1 gene overexpression in patients with rejection may result in inflammatory reactions and ischemic-reperfusion injury. Therefore, a better understanding of the association between

  3. A PXR-mediated negative feedback loop attenuates the expression of CYP3A in response to the PXR agonist pregnenalone-16α-carbonitrile.

    Directory of Open Access Journals (Sweden)

    Ian Bailey

    2011-02-01

    Full Text Available The nuclear receptor superfamily of ligand-activated transcription factors plays a central role in the regulation of cellular responses to chemical challenge. Nuclear receptors are activated by a wide range of both endogenous and exogenous chemicals, and their target genes include those involved in the metabolism and transport of the activating chemical. Such target gene activation, thus, acts to remove the stimulating xenobiotic or to maintain homeostatic levels of endogenous chemicals. Given the dual nature of this system it is important to understand how these two roles are balanced, such that xenobiotics are efficiently removed while not impacting negatively on homeostasis of endogenous chemicals. Using DNA microarray technology we have examined the transcriptome response of primary rat hepatocytes to two nuclear receptor ligands: Pregnenalone-16α-carbonitrile (PCN, a xenobiotic PXR agonist, and lithocholic acid, an endogenous mixed PXR/VDR/FXR agonist. We demonstrate that despite differences in the profile of activated nuclear receptors, transcriptome responses for these two ligands are broadly similar at lower concentrations, indicating a conserved general response. However, as concentrations of stimulating ligand rises, the transcriptome responses diverge, reflecting a need for specific responses to the two stimulating chemicals. Finally, we demonstrate a novel feed-back loop for PXR, whereby ligand-activation of PXR suppresses transcription of the PXR gene, acting to attenuate PXR protein expression levels at higher ligand concentrations. Through in silico simulation we demonstrate that this feed-back loop is an important factor to prevent hyperexpression of PXR target genes such as CYP3A and confirm these findings in vitro. This novel insight into the regulation of the PXR-mediated regulatory signal networks provides a potential mechanistic rationale for the robustness in steroid homeostasis within the cell.

  4. The presence of carbon nanostructures in bakery products induces metabolic stress in human mesenchymal stem cells through CYP1A and p53 gene expression.

    Science.gov (United States)

    Al-Hadi, Ahmed M; Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Alshatwi, Ali A

    2016-01-01

    Ingredients commonly present in processed foods are excellent substrates for chemical reactions during modern thermal cooking or processing, which could possibly result in deteriorative carbonization changes mediated by a variety of thermal reactions. Spontaneous self-assembling complexation or polymerization of partially combusted lipids, proteins, and other food macromolecules with synthetic food additives during high temperature food processing or baking (200-250 °C) would result in the formation of carbon nanostructures (CNs). These unknown nanostructures may produce adverse physiological effects or potential health risks. The present work aimed to identify and characterize the nanostructures from the crusts of bread. Furthermore, a toxicological risk assessment of these nanostructures was conducted using human mesenchymal stem cells (hMSCs) as a model for cellular uptake and metabolic oxidative stress, with special reference to induced adipogenesis. CNs isolated from bread crusts were characterized using transmission electron microscopy. The in vitro risk assessment of the CNs was carried out in hMSCs using an MTT assay, cell morphological assessment, a reactive oxygen species assay, a mitochondrial trans-membrane potential assay, cell cycle progression assessment and gene expression analysis. Our results revealed that bread crusts contain CNs, which may form during the bread-making process. The in vitro results indicate that carbon nanostructures have moderately toxic effects in the hMSCs at a high dose (400 μg/mL). The mitochondrial trans-membrane potentials and intracellular ROS levels of the hMSCs were altered at this dose. The levels of the mRNA transcripts of metabolic stress-responsive genes such as CAT, GSR, GSTA4, CYP1A and p53 were significantly altered in response to CNs. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Sustained expression of CYPs and DNA adduct accumulation with continuous exposure to PCB126 and PCB153 through a new delivery method: Polymeric implants

    Directory of Open Access Journals (Sweden)

    Farrukh Aqil

    2014-01-01

    Full Text Available A new delivery method via polymeric implants was used for continuous exposure to PCBs. Female Sprague-Dawley rats received subcutaneous polymeric implants containing PCB126 (0.15% load, PCB153 (5% load, or both, for up to 45 d and release kinetics and tissue distribution were measured. PCB153 tissue levels on day 15 were readily detected in lung, liver, mammary and serum, with highest levels in the mammary tissue. PCB126 was detected only in liver and mammary tissues. However, a completely different pharmacokinetics was observed on co-exposure of PCB153 and PCB126, with a 1.8-fold higher levels of PCB153 in the liver whereas a 1.7-fold lower levels in the mammary tissue. PCB126 and PCB153 caused an increase in expression of key PCB-inducible enzymes, CYP 1A1/2 and 2B1/2, respectively. Serum and liver activities of the antioxidant enzymes, PON1 and PON3, and AhR transcription were also significantly increased by PCB126. 32P-postlabeling for polar and lipophilic DNA-adducts showed significant quantitative differences: PCB126 increased 8-oxodG, an oxidative DNA lesion, in liver and lung tissues. Adduct levels in the liver remained upregulated up to 45 d, while some lung DNA adducts declined. This is the first demonstration that continuous low-dose exposure to PCBs via implants can produce sustained tissue levels leading to the accumulation of DNA-adducts in target tissue and induction of indicator enzymes. Collectively, these data demonstrate that this exposure model is a promising tool for long-term exposure studies.

  6. Expression level of augmenter of liver regeneration in patients with hepatic failure and hepatocellular carcinoma.

    Science.gov (United States)

    Yu, Hai-Ying; Xiang, Dai-Rong; Huang, Hai-Jun; Li, Jun; Sheng, Ji-Fang

    2010-10-01

    Augmenter of liver regeneration (ALR) is an important polypeptide in the process of liver regeneration. This study aimed to determine the expression level of ALR in different liver diseases and its significance. We prepared murine polyclonal antibody against ALR protein from Balb/C mice and purified the IgG fraction, which specifically combined to ALR protein as shown by Western blotting. Serum ALR levels in patients with hepatocellular carcinoma (HCC), hepatic failure (HF), chronic hepatitis B, and healthy persons were compared by ELISA. ALR mRNA expression levels in liver tissues in some of these patients were also compared by real-time RT-PCR. Immunohistochemical analysis was carried out on HF and HCC liver tissues. Different serum ALR levels foreshowed completely different prognoses in 18 HF patients. Higher ALR levels were noted in 6 improved patients (1613.5+/-369.6 pmol/ml) than in 12 deteriorating patients (462.3+/-235.8 pmol/ml). Similar levels were found in 20 HCC patients (917.9+/-332.7 pmol/ml), 24 chronic hepatitis B patients (969.2+/-332.5 pmol/ml) and 10 healthy persons (806.9+/-240.8 pmol/ml). ALR mRNA levels in HCC liver tissues [10E6.24 (1.74X10(6)) copies/μl] were much higher than in those of HF patients receiving orthotopic liver transplantation [10E3.45 (2.82X10(3)) copies/μl] or in healthy liver tissues [10E4.31 (2.04X10(4)) copies/μl]. In immunohistochemical analysis, positive immunostaining in HCC liver tissue was more intense than that in HF liver tissue. Serum ALR level is helpful in estimating the survival time of patients with HF, and ALR may play an important role in hepatocarcinogenesis.

  7. Differential gene expression analysis of in vitro duck hepatitis B virus infected primary duck hepatocyte cultures

    Directory of Open Access Journals (Sweden)

    Issac Aneesh

    2011-07-01

    Full Text Available Abstract Background The human hepatitis B virus (HBV, a member of the hepadna viridae, causes acute or chronic hepatitis B, and hepatocellular carcinoma (HCC. The duck hepatitis B virus (DHBV infection, a dependable and reproducible model for hepadna viral studies, does not result in HCC unlike chronic HBV infection. Information on differential gene expression in DHBV infection might help to compare corresponding changes during HBV infection, and to delineate the reasons for this difference. Findings A subtractive hybridization cDNA library screening of in vitro DHBV infected, cultured primary duck hepatocytes (PDH identified cDNAs of 42 up-regulated and 36 down-regulated genes coding for proteins associated with signal transduction, cellular respiration, transcription, translation, ubiquitin/proteasome pathway, apoptosis, and membrane and cytoskeletal organization. Those coding for both novel as well as previously reported proteins in HBV/DHBV infection were present in the library. An inverse modulation of the cDNAs of ten proteins, reported to play role in human HCC, such as that of Y-box binding protein1, Platelet-activating factor acetylhydrolase isoform 1B, ribosomal protein L35a, Ferritin, α-enolase, Acid α-glucosidase and Caspase 3, copper-zinc superoxide dismutase (CuZnSOD, Filamin and Pyruvate dehydrogenase, was also observed in this in vitro study. Conclusions The present study identified cDNAs of a number of genes that are differentially modulated in in vitro DHBV infection of primary duck hepatocytes. Further correlation of this differential gene expression in in vivo infection models would be valuable to understand the little known aspects of the hepadnavirus biology.

  8. Berry intake changes hepatic gene expression and DNA methylation patterns associated with high-fat diet.

    Science.gov (United States)

    Heyman-Lindén, Lovisa; Seki, Yoshinori; Storm, Petter; Jones, Helena A; Charron, Maureen J; Berger, Karin; Holm, Cecilia

    2016-01-01

    The liver is a critical organ for regulation of energy homeostasis and fatty liver disease is closely associated with obesity and insulin resistance. We have previously found that lingonberries, blackcurrants and bilberries prevent, whereas açai berries exacerbate, the development of hepatic steatosis and obesity in the high-fat (HF)-fed C57BL/6J mouse model. In this follow-up study, we investigated the mechanisms behind these effects. Genome-wide hepatic gene expression profiling indicates that the protective effects of lingonberries and bilberries are accounted for by several-fold downregulation of genes involved in acute-phase and inflammatory pathways (e.g. Saa1, Cxcl1, Lcn2). In contrast, açai-fed mice exhibit marked upregulation of genes associated with steatosis (e.g. Cfd, Cidea, Crat) and lipid and cholesterol biosynthesis, which is in line with the exacerbation of HF-induced hepatic steatosis in these mice. In silico transcription factor analysis together with immunoblot analysis identified NF-κB, STAT3 and mTOR as upstream regulators involved in mediating the observed transcriptional effects. To gain further insight into mechanisms involved in the gene expression changes, the HELP-tagging assay was used to identify differentially methylated CpG sites. Compared to the HF control group, lingonberries induced genome-wide hypermethylation and specific hypermethylation of Ncor2, encoding the corepressor NCoR/SMRT implicated in the regulation of pathways of metabolic homeostasis and inflammation. We conclude that the beneficial metabolic effects of lingonberries and bilberries are associated with downregulation of inflammatory pathways, whereas for blackcurrants, exerting similar metabolic effects, different mechanisms of action appear to dominate. NF-κB, STAT3 and mTOR are potential targets of the health-promoting effects of berries. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Regulation of core expression during the hepatitis C virus life cycle.

    Science.gov (United States)

    Afzal, Muhammad Sohail; Alsaleh, Khaled; Farhat, Rayan; Belouzard, Sandrine; Danneels, Adeline; Descamps, Véronique; Duverlie, Gilles; Wychowski, Czeslaw; Zaidi, Najam us Sahar Sadaf; Dubuisson, Jean; Rouillé, Yves

    2015-02-01

    Core plays a critical role during hepatitis C virus (HCV) assembly, not only as a structural component of the virion, but also as a regulator of the formation of assembly sites. In this study, we observed that core is expressed later than other HCV proteins in a single viral cycle assay, resulting in a relative increase of core expression during a late step of the viral life cycle. This delayed core expression results from an increase of core half-life, indicating that core is initially degraded and is stabilized at a late step of the HCV life cycle. Stabilization-mediated delayed kinetics of core expression were also observed using heterologous expression systems. Core stabilization did not depend on its interaction with non-structural proteins or lipid droplets but was correlated with its expression levels and its oligomerization status. Therefore in the course of a HCV infection, core stabilization is likely to occur when the prior amplification of the viral genome during an initial replication step allows core to be synthesized at higher levels as a stable protein, during the assembly step of the viral life cycle. © 2015 The Authors.

  10. Changes in gene expression in liver tissue from patients with fulminant hepatitis E.

    Science.gov (United States)

    Naik, Anshu; Goel, Amit; Agrawal, Vinita; Sarangi, Aditya N; Chhavi, Nanda; Singh, Vineeta; Jameel, Shahid; Aggarwal, Rakesh

    2015-07-14

    To study host gene expression and number of immune cells in liver tissues from patients with fulminant hepatitis E (FH-E). Microarray-based expression profiling was done using Illumina Human WG-6_v3_BeadChip arrays on post-mortem liver tissue from 5 patients with FH-E, and compared with similar tissue from 6 patients with fulminant hepatitis B (FH-B; disease controls) and normal liver tissue from 6 persons. Differential expression was defined as ≥ 2.0-fold change with Benjamini-Hochberg false discovery rate below 0.05 using t-test in liver tissue from FH-B and FH-E, than healthy liver tissue. For some genes that showed differential expression in FH-E, microarray data were validated using quantitative reverse transcription PCR. Differentially expressed gene lists were then subjected to "Gene Ontology" analysis for biological processes, and pathway analysis using BioCarta database on the DAVID server. In addition, tissue sections were stained for CD4(+), CD8(+) and CD56(+) cells using indirect immunohistochemistry; cells staining positive for each of these markers were counted and compared between groups. Compared to normal livers, those from patients with FH-E and FH-B showed differential expression of 3377 entities (up-regulated 1703, downregulated 1674) and 2572 entities (up 1164, down 1408), respectively. This included 2142 (up 896, down 1246) entities that were common between the two sets; most of these belonged to metabolic, hemostatic and complement pathways, which are active in normal livers. Gene expression data from livers of patients with FH-E but not those of FH-B showed activation of several immune response pathways, particularly those involving cytotoxic T cells. The fold-change values of mRNA for selected genes in livers from FH-E than in normal liver tissue determined using quantitative reverse transcription PCR showed excellent concordance with microarray analysis. At immunohistochemistry, CD8(+) T cells showed an increase in liver biopsies from

  11. Effects of ionophores on liver CYP1A and 3A in male broilers.

    Science.gov (United States)

    Zhang, L L; Zhang, J R; Yu, Z G; Zhao, J; Mo, F; Jiang, S X

    2010-12-01

    The effects of ionophore antibiotics on the enzyme activity, protein and mRNA expression levels of cytochrome P450 (CYP) isoenzymes were investigated in liver from male Arbor Acres (AA) broiler chicks. Monensin, salinomycin and maduramycin at the dosage of 120, 60, and 5 mg/kg were administered in feed for 14 days. CYP1A and CYP3A activities were quantitated using cocktail probe drugs and a high performance liquid chromatographic (HPLC) assay at the 15th day; the protein expressions of CYP1A and CYP3A were detected by Western blot. CYP1A4, CYP1A5 and CYP3A37 mRNA levels were detected by real-time polymerase chain reaction (real-time PCR). Monensin, salinomycin and maduramycin had no effect on caffeine metabolism, protein expression and mRNA expression, but did induce dapsone metabolism, increasing CYP3A protein expression. However, there was no change in CYP3A37 mRNA expression as compared with the control group. It is suggested that ionophore antibiotics may have an induction effect on CYP3A expression and enzyme activity and that such effect might be related to the posttranscriptional regulation of its protein expression. Consideration of the enhanced metabolism of other drugs used simultaneously with ionophores is therefore recommended. © 2010 Blackwell Publishing Ltd.

  12. Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats.

    Directory of Open Access Journals (Sweden)

    Soo Jin Yang

    Full Text Available BACKGROUND: Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ on hepatic steatosis. METHODS: To investigate the effect of RGZ on hepatic steatosis, rats were treated with RGZ (4 mg·kg⁻¹·day⁻¹ by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes. RESULTS: RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α and Forkhead box O1 (Foxo1 in rat livers. AMP-activated protein kinase (AMPK phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035, suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects. CONCLUSION: Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis.

  13. Aloe vera juice: IC₅₀ and dual mechanistic inhibition of CYP3A4 and CYP2D6.

    Science.gov (United States)

    Djuv, Ane; Nilsen, Odd Georg

    2012-03-01

    The aim of this study was to evaluate the inhibitory potency (IC₅₀ values) of ethanol extracts of two commercially available aloe vera juice (AVJ) products, on CYP3A4 and CYP2D6 activities in vitro and to determine if such inhibitions could be mechanism-based. Recombinant human CYP3A4 and CYP2D6 enzymes were used and the activities were expressed by the metabolism of testosterone and dextromethorphan with ketoconazole and quinidine as positive inhibitor controls, respectively. The formed metabolites were quantified by validated HPLC techniques. Time- and NADPH- dependent inhibition assays were performed to evaluate a possible mechanism-based inhibition. One of the AVJ extracts showed about twice the inhibitory potency towards both CYP enzymes over the other with IC₅₀ values of 8.35 ± 0.72 and 12.5 ± 2.1 mg/mL for CYP3A4 and CYP2D6, respectively. The AVJ was found to exert both CYP mediated and non-CYP mediated inhibition of both CYP3A4 and CYP2D6. This dual mechanistic inhibition, however, seems to be governed by different mechanisms for CYP3A4 and CYP2D6. Estimated IC₅₀ inhibition values indicate no major interference of AVJ with drug metabolism in man, but the dual mechanistic inhibition of both enzymes might be of clinical significance. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Metformin induces PGC-1α expression and selectively affects hepatic PGC-1α functions

    Science.gov (United States)

    Aatsinki, Sanna-Mari; Buler, Marcin; Salomäki, Henriikka; Koulu, Markku; Pavek, Petr; Hakkola, Jukka

    2014-01-01

    Background and Purpose The objective of this study was to determine how the AMPK activating antidiabetic drug metformin affects the major activator of hepatic gluconeogenesis, PPARγ coactivator 1α (PGC-1α) and liver functions regulated by PGC-1α. Experimental Approach Mouse and human primary hepatocytes and mice in vivo were treated with metformin. Adenoviral overexpression, siRNA and reporter gene constructs were used for mechanistic studies. Key Results Metformin increased PGC-1α mRNA and protein expression in mouse primary hepatocytes. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) (another AMPK activator) had the opposite effect. Metformin also increased PGC-1α in human primary hepatocytes; this effect of metformin was abolished by AMPK inhibitor compound C and sirtuin 1 siRNA. AMPK overexpression by AMPK-Ad also increased PGC-1α. Whereas metformin increased PGC-1α, it down-regulated gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Furthermore, metformin attenuated the increase in PEPCK and G6Pase mRNAs induced by PGC-1α overexpression, but did not affect PGC-1α-mediated induction of mitochondrial genes. Metformin down-regulated several key transcription factors that mediate the effect of PGC-1α on gluconeogenic genes including Krüppel-like factor 15, forkhead box protein O1 and hepatocyte NF 4α, whereas it increased nuclear respiratory factor 1, which is involved in PGC-1α-mediated regulation of mitochondrial proteins. Conclusions and Implications Down-regulation of PGC-1α is not necessary for suppression of gluconeogenic genes by metformin. Importantly, metformin selectively affects hepatic PGC-1α-mediated gene regulation and prevents activation of gluconeogenesis, but does not influence its regulation of mitochondrial genes. These results identify selective modulation of hepatic PGC-1α functions as a novel mechanism involved in the therapeutic action of metformin. PMID:24428821

  15. Metformin induces PGC-1α expression and selectively affects hepatic PGC-1α functions.

    Science.gov (United States)

    Aatsinki, Sanna-Mari; Buler, Marcin; Salomäki, Henriikka; Koulu, Markku; Pavek, Petr; Hakkola, Jukka

    2014-05-01

    The objective of this study was to determine how the AMPK activating antidiabetic drug metformin affects the major activator of hepatic gluconeogenesis, PPARγ coactivator 1α (PGC-1α) and liver functions regulated by PGC-1α. Mouse and human primary hepatocytes and mice in vivo were treated with metformin. Adenoviral overexpression, siRNA and reporter gene constructs were used for mechanistic studies. Metformin increased PGC-1α mRNA and protein expression in mouse primary hepatocytes. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) (another AMPK activator) had the opposite effect. Metformin also increased PGC-1α in human primary hepatocytes; this effect of metformin was abolished by AMPK inhibitor compound C and sirtuin 1 siRNA. AMPK overexpression by AMPK-Ad also increased PGC-1α. Whereas metformin increased PGC-1α, it down-regulated gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). Furthermore, metformin attenuated the increase in PEPCK and G6Pase mRNAs induced by PGC-1α overexpression, but did not affect PGC-1α-mediated induction of mitochondrial genes. Metformin down-regulated several key transcription factors that mediate the effect of PGC-1α on gluconeogenic genes including Krüppel-like factor 15, forkhead box protein O1 and hepatocyte NF 4α, whereas it increased nuclear respiratory factor 1, which is involved in PGC-1α-mediated regulation of mitochondrial proteins. Down-regulation of PGC-1α is not necessary for suppression of gluconeogenic genes by metformin. Importantly, metformin selectively affects hepatic PGC-1α-mediated gene regulation and prevents activation of gluconeogenesis, but does not influence its regulation of mitochondrial genes. These results identify selective modulation of hepatic PGC-1α functions as a novel mechanism involved in the therapeutic action of metformin. © 2014 The British Pharmacological Society.

  16. Changes in first trimester fetal CYP1A1 and AHRR DNA methylation and mRNA expression in response to exposure to maternal cigarette smoking

    DEFF Research Database (Denmark)

    Fa, Svetlana; Larsen, Trine Vilsbøll; Bilde, Katrine

    2017-01-01

    Prenatal exposure to maternal cigarette smoking increases the risk of intrauterine growth retardation, adverse pregnancy outcomes, and diseases later in life. Exposure can result in postnatal global and gene-specific DNA methylation changes, with the latter well documented for the CYP1A1 and AHRR...

  17. Changes in hepatic gene expression upon oral administration of taurine-conjugated ursodeoxycholic acid in ob/ob mice.

    Directory of Open Access Journals (Sweden)

    Jae-Seong Yang

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is highly prevalent and associated with considerable morbidities. Unfortunately, there is no currently available drug established to treat NAFLD. It was recently reported that intraperitoneal administration of taurine-conjugated ursodeoxycholic acid (TUDCA improved hepatic steatosis in ob/ob mice. We hereby examined the effect of oral TUDCA treatment on hepatic steatosis and associated changes in hepatic gene expression in ob/ob mice. We administered TUDCA to ob/ob mice at a dose of 500 mg/kg twice a day by gastric gavage for 3 weeks. Body weight, glucose homeostasis, endoplasmic reticulum (ER stress, and hepatic gene expression were examined in comparison with control ob/ob mice and normal littermate C57BL/6J mice. Compared to the control ob/ob mice, TUDCA treated ob/ob mice revealed markedly reduced liver fat stained by oil red O (44.2±5.8% vs. 21.1±10.4%, P<0.05, whereas there was no difference in body weight, oral glucose tolerance, insulin sensitivity, and ER stress. Microarray analysis of hepatic gene expression demonstrated that oral TUDCA treatment mainly decreased the expression of genes involved in de novo lipogenesis among the components of lipid homeostasis. At pathway levels, oral TUDCA altered the genes regulating amino acid, carbohydrate, and drug metabolism in addition to lipid metabolism. In summary, oral TUDCA treatment decreased hepatic steatosis in ob/ob mice by cooperative regulation of multiple metabolic pathways, particularly by reducing the expression of genes known to regulate de novo lipogenesis.

  18. Characterization of ovine hepatic gene expression profiles in response to Escherichia coli lipopolysaccharide using a bovine cDNA microarray

    Directory of Open Access Journals (Sweden)

    Boermans Herman J

    2006-11-01

    Full Text Available Abstract Background During systemic gram-negative bacterial infections, lipopolysaccharide (LPS ligation to the hepatic Toll-like receptor-4 complex induces the production of hepatic acute phase proteins that are involved in the host response to infection and limit the associated inflammatory process. Identifying the genes that regulate this hepatic response to LPS in ruminants may provide insight into the pathogenesis of bacterial diseases and eventually facilitate breeding of more disease resistant animals. The objective of this research was to profile the expression of ovine hepatic genes in response to Escherichia coli LPS challenge (0, 200, 400 ng/kg using a bovine cDNA microarray and quantitative real-time PCR (qRT-PCR. Results Twelve yearling ewes were challenged iv with E. coli LPS (0, 200, 400 ng/kg and liver biopsies were collected 4–5 hours post-challenge to assess hepatic gene expression profiles by bovine cDNA microarray and qRT-PCR analyses. The expression of CD14, C3, IL12R, NRAMP1, SOD and IGFBP3 genes was down regulated, whereas the expression of ACTHR, IFNαR, CD1, MCP-1 and GH was increased during LPS challenge. With the exception of C3, qRT-PCR analysis of 7 of these genes confirmed the microarray results and demonstrated that GAPDH is not a suitable housekeeping gene in LPS challenged sheep. Conclusion We have identified several potentially important genes by bovine cDNA microarray and qRT-PCR analyses that are differentially expressed during the ovine hepatic response to systemic LPS challenge. Their potential role in regulating the inflammatory response to LPS warrants further investigation.

  19. Parenteral nutrition rapidly reduces hepatic mononuclear cell numbers and lipopolysaccharide receptor expression on Kupffer cells in mice.

    Science.gov (United States)

    Omata, Jiro; Fukatsu, Kazuhiko; Murakoshi, Satoshi; Noguchi, Midori; Moriya, Tomoyuki; Okamoto, Koichi; Saitoh, Daizoh; Yamamoto, Junji; Hase, Kazuo

    2010-01-01

    Parenteral nutrition (PN) reduces the number of hepatic mononuclear cell (MNCs) and impairs their function, resulting in poor survival after intraportal bacterial challenge in mice. Our recent animal study demonstrated resumption of enteral nutrition after PN to rapidly restore hepatic MNC numbers (in 12 hours) and lipopolysaccharide (LPS) receptor expression on Kupffer cells (in 48 hours). The present study examined the time courses of hepatic MNC number reductions and LPS receptor expression changes in mice receiving PN. Male mice (n = 49) from the Institute of Cancer Research were divided into chow (n = 8), PN0.5 (n = 8), PN1 (n = 8), PN2 (n = 9), PN3 (n = 9), and PN5 (n = 7) groups. The chow group was given chow with an intravenous saline infusion. The PN groups were fed parenterally for 0.5, 1, 2, 3, or 5 days following the chow-feeding courses. After 7 days of nutrition support, hepatic MNCs were isolated and counted. The expression of LPS receptors on Kupffer cells was analyzed by flow cytometry. Hepatic MNC numbers rapidly reached their lowest level in the PN0.5 and PN1 groups but were somewhat restored thereafter and remained stable after the third day, without significant differences between any 2 of the PN groups. CD14 and Toll-like receptor 4/MD-2 expressions both showed significant reductions in the PN1 group compared with the chow group and gradually decreased to their lowest levels in the PN5 group. PN administration rapidly reduces hepatic MNC numbers and LPS receptor expression on Kupffer cells.

  20. Prokaryotic Expression, Purification and Immunogenicity in Rabbits of the Small Antigen of Hepatitis Delta Virus

    Directory of Open Access Journals (Sweden)

    Vera L. Tunitskaya

    2016-10-01

    Full Text Available Hepatitis delta virus (HDV is a viroid-like blood-borne human pathogen that accompanies hepatitis B virus infection in 5% patients. HDV has been studied for four decades; however, the knowledge on its life-cycle and pathogenesis is still sparse. The studies are hampered by the absence of the commercially-available HDV-specific antibodies. Here, we describe a set of reproducible methods for the expression in E. coli of His-tagged small antigen of HDV (S-HDAg, its purification, and production of polyclonal anti-S-HDAg antibodies in rabbits. S-HDAg was cloned into a commercial vector guiding expression of the recombinant proteins with the C-terminal His-tag. We optimized S-HDAg protein purification procedure circumventing a low affinity of the His-tagged S-HDAg to the Ni-nitrilotriacetyl agarose (Ni-NTA-agarose resin. Optimization allowed us to obtain S-HDAg with >90% purity. S-HDAg was used to immunize Shinchilla grey rabbits which received 80 μg of S-HDAg in two subcutaneous primes in the complete, followed by four 40 μg boosts in incomplete Freunds adjuvant. Rabbits were bled two weeks post each boost. Antibody titers determined by indirect ELISA exceeded 107. Anti-S-HDAg antibodies detected the antigen on Western blots in the amounts of up-to 100 pg. They were also successfully used to characterize the expression of S-HDAg in the eukaryotic cells by immunofluorescent staining/confocal microscopy.

  1. Disrupting Hepatocyte Cyp51 from Cholesterol Synthesis Leads to Progressive Liver Injury in the Developing Mouse and Decreases RORC Signalling

    Science.gov (United States)

    Urlep, Žiga; Lorbek, Gregor; Perše, Martina; Jeruc, Jera; Juvan, Peter; Matz-Soja, Madlen; Gebhardt, Rolf; Björkhem, Ingemar; Hall, Jason A.; Bonneau, Richard; Littman, Dan R.; Rozman, Damjana

    2017-01-01

    Development of mice with hepatocyte knockout of lanosterol 14α-demethylase (HCyp51-/-) from cholesterol synthesis is characterized by the progressive onset of liver injury with ductular reaction and fibrosis. These changes begin during puberty and are generally more aggravated in the knockout females. However, a subgroup of (pre)pubertal knockout mice (runts) exhibits a pronounced male prevalent liver dysfunction characterized by downregulated amino acid metabolism and elevated Casp12. RORC transcriptional activity is diminished in livers of all runt mice, in correlation with the depletion of potential RORC ligands subsequent to CYP51 disruption. Further evidence for this comes from the global analysis that identified a crucial overlap between hepatic Cyp51-/- and Rorc-/- expression profiles. Additionally, the reduction in RORA and RORC transcriptional activity was greater in adult HCyp51-/- females than males, which correlates well with their downregulated amino and fatty acid metabolism. Overall, we identify a global and sex-dependent transcriptional de-regulation due to the block in cholesterol synthesis during development of the Cyp51 knockout mice and provide in vivo evidence that sterol intermediates downstream of lanosterol may regulate the hepatic RORC activity.

  2. Curcumin Successfully Inhibited the Computationally Identified CYP2A6 Enzyme-Mediated Bioactivation of Aflatoxin B1 in Arbor Acres broiler.

    Science.gov (United States)

    Muhammad, Ishfaq; Sun, Xiaoqi; Wang, He; Li, Wei; Wang, Xinghe; Cheng, Ping; Li, Sihong; Zhang, Xiuying; Hamid, Sattar

    2017-01-01

    Cytochrome P450 enzymes are often responsible for the toxic and carcinogenic effects of toxicants, such as aflatoxin B1 (AFB1). The human hepatic CYP2A6 enzyme mediates the oxidative metabolism of several procarcinogens. In this study, we characterized a partial sequence of CYP2A6 gene from Arbor Acres (AA) broiler and studied its role in AFB1 bioactivation. Moreover, the effect of curcumin on CYP2A6 is illustrated. Six groups of AA broiler were treated for 28 days including the control group (fed only basal diet), curcumin alone-treated group (450 mg/kg feed), the group fed AFB1-contaminated feed (5 mg/kg feed) plus the low (150 mg), medium (300 mg) or high (450 mg) of curcumin, and the group fed AFB1-contaminated diet alone (5 mg/kg feed). After the end of treatment period, liver samples were collected for different analyses. The results revealed that the histopathological examination showed clear signs of liver toxicity in AA broliers in AFB1-fed group, but curcumin-supplementation in feed prevented partially AFB1-induced liver toxicity. Liver and body weights were recorded to study the AFB1 harmful effects. We noted an obvious increase in liver weight and decrease in body weight in AFB1-fed group. But, the administration of curcumin partially ameliorated the increase in liver weight and decrease in body weight in a dose-dependent manner. The results (RT-PCR and Elisa) revealed that mRNA and protein expression level enhanced in AFB1-fed group. Consistently, CYP2A6 enzyme activity also increased in AFB1-fed group, suggesting that AA broiler CYP2A6 actively involved in bioactivation of AFB1. However, curcumin treatment inhibited CYP2A6 at mRNA and protein levels in AFB1 treated AA broiler in a dose-dependent manner. Maximum inhibition of liver CYP2A6 enzyme activity in AA broiler has been achieved at a dose of 450 mg/kg curcumin. This is the first study identifying and confirming the role of CYP2A6 enzyme in AFB1 bioactivation in AA broiler liver (in vivo), and

  3. Curcumin Successfully Inhibited the Computationally Identified CYP2A6 Enzyme-Mediated Bioactivation of Aflatoxin B1 in Arbor Acres broiler

    Science.gov (United States)

    Muhammad, Ishfaq; Sun, Xiaoqi; Wang, He; Li, Wei; Wang, Xinghe; Cheng, Ping; Li, Sihong; Zhang, Xiuying; Hamid, Sattar

    2017-01-01

    Cytochrome P450 enzymes are often responsible for the toxic and carcinogenic effects of toxicants, such as aflatoxin B1 (AFB1). The human hepatic CYP2A6 enzyme mediates the oxidative metabolism of several procarcinogens. In this study, we characterized a partial sequence of CYP2A6 gene from Arbor Acres (AA) broiler and studied its role in AFB1 bioactivation. Moreover, the effect of curcumin on CYP2A6 is illustrated. Six groups of AA broiler were treated for 28 days including the control group (fed only basal diet), curcumin alone-treated group (450 mg/kg feed), the group fed AFB1-contaminated feed (5 mg/kg feed) plus the low (150 mg), medium (300 mg) or high (450 mg) of curcumin, and the group fed AFB1-contaminated diet alone (5 mg/kg feed). After the end of treatment period, liver samples were collected for different analyses. The results revealed that the histopathological examination showed clear signs of liver toxicity in AA broliers in AFB1-fed group, but curcumin-supplementation in feed prevented partially AFB1-induced liver toxicity. Liver and body weights were recorded to study the AFB1 harmful effects. We noted an obvious increase in liver weight and decrease in body weight in AFB1-fed group. But, the administration of curcumin partially ameliorated the increase in liver weight and decrease in body weight in a dose-dependent manner. The results (RT-PCR and Elisa) revealed that mRNA and protein expression level enhanced in AFB1-fed group. Consistently, CYP2A6 enzyme activity also increased in AFB1-fed group, suggesting that AA broiler CYP2A6 actively involved in bioactivation of AFB1. However, curcumin treatment inhibited CYP2A6 at mRNA and protein levels in AFB1 treated AA broiler in a dose-dependent manner. Maximum inhibition of liver CYP2A6 enzyme activity in AA broiler has been achieved at a dose of 450 mg/kg curcumin. This is the first study identifying and confirming the role of CYP2A6 enzyme in AFB1 bioactivation in AA broiler liver (in vivo), and

  4. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Directory of Open Access Journals (Sweden)

    Po-Yuan Ke

    Full Text Available So far how hepatitis C virus (HCV replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp infection and downregulated cell surface level of CD81, a critical HCV entry (coreceptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  5. Postprandial hepatic protein expression in trout Oncorhynchus mykiss a proteomics examination.

    Science.gov (United States)

    Mente, Eleni; Pierce, Graham J; Antonopoulou, Efthimia; Stead, David; Martin, Samuel A M

    2017-03-01

    Following a meal, a series of physiological changes occurs in animals as they digest, absorb and assimilate ingested nutrients, the kinetics of these responses depends on metabolic rate and nutrient quality. Here we investigated the hepatic proteome in the ectothermic teleost, the rainbow trout, following a single meal to define the postprandial expression of hepatic proteins. The fish were fed a high marine fishmeal/fish oil single meal following a period of 24 h without feeding. Liver protein profiles were examined by 2D gel electrophoresis just before feeding (time 0 h) and at 6 and 12 h after feeding. Of a total of 588 protein spots analysed in a temporal fashion, 49 differed significantly in abundance between the three time groups (ANOVA, p<0.05), before and after feeding, 15 were increased and 34 were decreased in abundance after feeding. Amino acid metabolism-regulated proteins such as phenylalanine-4-hydroxylase and proliferating cell antigen were increased in abundance 12 and 6 h following the meal, suggesting by this time that the fish were increasing their protein turnover to utilize efficiently their dietary protein consumption. Overall, these results highlight some specificity of the trout metabolism and identify postprandial response of metabolism-related proteins 6-12 h after feeding a single meal.

  6. Expression of glutamine transporter isoforms in cerebral cortex of rats with chronic hepatic encephalopathy

    DEFF Research Database (Denmark)

    Leke, Renata; Escobar, Thayssa D.C.; Rama Rao, Kakulavarapu V.

    2015-01-01

    Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs due to acute and chronic liver diseases, the hallmark of which is the increased levels of ammonia and subsequent alterations in glutamine synthesis, i.e. conditions associated with the pathophysiology of HE. Under physiologica...... that the expression of the glutamine transporter isoforms is unchanged during chronic HE, and thus likely not to participate in the pathological mechanisms related to the imbalance in the GABAergic neurotransmitter system observed in this neurologic condition.......Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs due to acute and chronic liver diseases, the hallmark of which is the increased levels of ammonia and subsequent alterations in glutamine synthesis, i.e. conditions associated with the pathophysiology of HE. Under physiological...... conditions, glutamine is fundamental for replenishment of the neurotransmitter pools of glutamate and GABA. The different isoforms of glutamine transporters play an important role in the transfer of this amino acid between astrocytes and neurons. A disturbance in the GABA biosynthetic pathways has been...

  7. The Influence of Bovine Milk High or Low in Isoflavones on Hepatic Gene Expression in Mice

    Directory of Open Access Journals (Sweden)

    Mette T. Skaanild

    2010-01-01

    Full Text Available Isoflavones have generated much attention due to their potential positive effects in various diseases. Phytoestrogens especially equol can be found in bovine milk, as feed ration for dairy cows is comprised of plants containing phytoestrogens. The aim of this study was to analyze the changes in hepatic gene expression after dietary intake of milk high and low in isoflavones. In addition to pelleted feed female NMRI mice were offered water, water added either 17-estradiol, equol, Tween 80, and milk high and low in isoflavone content for a week. Gene expression was analyzed using an array qPCR kit. It was revealed that Tween 80 and 17-estradiol upregulated both phase I and phase II genes to the same extent whereas equol alone, high and low isoflavone milk did not alter the expression of phase I genes but decreased the expression of phase II genes. This study shows that dietary isoflavones can regulate the transcription of especially phase II liver enzymes which potentially could give rise to an increase in reactive oxygen metabolites that may contribute to the development of cancer.

  8. The Expression of the Hepatocyte SLAMF3 (CD229) Receptor Enhances the Hepatitis C Virus Infection

    Science.gov (United States)

    Cartier, Flora; Marcq, Ingrid; Douam, Florian; Ossart, Christèle; Regnier, Aline; Debuysscher, Véronique; Lavillette, Dimitri; Bouhlal, Hicham

    2014-01-01

    Hepatitis C virus (HCV) is a leading cause of cirrhosis and liver cancer worldwide. We recently characterized for the first time the expression of Signaling Lymphocyte Activating Molecule 3 (SLAMF3) in human hepatocytes and here, we report that SLAMF3 interacts with the HCV viral protein E2 and is implicated in HCV entry process. We found a strong correlation between SLAMF3 expression level and hepatocyte susceptibility to HCV infection. The use of specific siRNAs to down-modulate SLAMF3 expression and SLAMF3-blocking antibodies both decreased the hepatocytes susceptibility to HCV infection. Moreover, SLAMF3 over-expression significantly increased susceptibility to HCV infection. Interestingly, experiments with peptides derived from each SLAMF3 domain showed that the first N-terminal extracellular domain is essential for interaction with HCV particles. Finally, we showed that recombinant HCV envelop protein E2 can bind SLAMF3 and that anti-SLAMF3 antibodies inhibited specifically this interaction. Overall, our results revealed that SLAMF3 plays a role during HCV entry, likely by enhancing entry of viral particle within hepatocytes. PMID:24927415

  9. The expression of the hepatocyte SLAMF3 (CD229 receptor enhances the hepatitis C virus infection.

    Directory of Open Access Journals (Sweden)

    Flora Cartier

    Full Text Available Hepatitis C virus (HCV is a leading cause of cirrhosis and liver cancer worldwide. We recently characterized for the first time the expression of Signaling Lymphocyte Activating Molecule 3 (SLAMF3 in human hepatocytes and here, we report that SLAMF3 interacts with the HCV viral protein E2 and is implicated in HCV entry process. We found a strong correlation between SLAMF3 expression level and hepatocyte susceptibility to HCV infection. The use of specific siRNAs to down-modulate SLAMF3 expression and SLAMF3-blocking antibodies both decreased the hepatocytes susceptibility to HCV infection. Moreover, SLAMF3 over-expression significantly increased susceptibility to HCV infection. Interestingly, experiments with peptides derived from each SLAMF3 domain showed that the first N-terminal extracellular domain is essential for interaction with HCV particles. Finally, we showed that recombinant HCV envelop protein E2 can bind SLAMF3 and that anti-SLAMF3 antibodies inhibited specifically this interaction. Overall, our results revealed that SLAMF3 plays a role during HCV entry, likely by enhancing entry of viral particle within hepatocytes.

  10. A physiological role of AMP-activated protein kinase in phenobarbital-mediated constitutive androstane receptor activation and CYP2B induction.

    Science.gov (United States)

    Shindo, Sawako; Numazawa, Satoshi; Yoshida, Takemi

    2007-02-01

    CAR (constitutive androstane receptor) is a nuclear receptor that regulates the transcription of target genes, including CYP (cytochrome P450) 2B and 3A. The transactivation by CAR is regulated by its subcellular localization; however, the mechanism that governs nuclear translocation has yet to be clarified. It has been reported recently that AMPK (AMP-activated protein kinase) is involved in phenobarbital-mediated CYP2B induction in a particular culture system. We therefore investigated in vivo whether AMPK is involved in the activation of CAR-dependent gene expression. Immunoblot analysis using an antibody which recognizes Thr-172-phosphorylated AMPKalpha1/2 revealed phenobarbital-induced AMPK activation in rat and mouse livers as well. Phenobarbital, however, failed to increase the liver phospho-AMPK level of tumour-bearing rats in which CAR nuclear translocation had been impaired. In in vivo reporter gene assays employing PBREM (phenobarbital-responsive enhancer module) from CYP2B1, an AMPK inhibitor 8-bromo-AMP abolished phenobarbital-induced transactivation. In addition, Cyp2b10 gene expression was attenuated by 8-bromo-AMP. Forced expression of a dominant-negative mutant and the wild-type of AMPKalpha2 in the mouse liver suppressed and further enhanced phenobarbital-induced PBREM-reporter activity respectively. Moreover, the AMPK activator AICAR (5-amino-4-imidazolecarboxamide riboside) induced PBREM transactivation and an accumulation of CAR in the nuclear fraction of the mouse liver. However, AICAR and metformin, another AMPK activator, failed to induce hepatic CYP2B in mice and rats. These observations suggest that AMPK is at least partly involved in phenobarbital-originated signalling, but the kinase activation by itself is not sufficient for CYP2B induction in vivo.

  11. Role of PXR in Hepatic Cancer: Its Influences on Liver Detoxification Capacity and Cancer Progression.

    Science.gov (United States)

    Kotiya, Deepak; Jaiswal, Bharti; Ghose, Sampa; Kaul, Rachna; Datta, Kasturi; Tyagi, Rakesh K

    2016-01-01

    The role of nuclear receptor PXR in detoxification and clearance of xenobiotics and endobiotics is well-established. However, its projected role in hepatic cancer is rather illusive where its expression is reported altered in different cancers depending on the tissue-type and microenvironment. The expression of PXR, its target genes and their biological or clinical significance have not been examined in hepatic cancer. In the present study, by generating DEN-induced hepatic cancer in mice, we report that the expression of PXR and its target genes CYP3A11 and GSTa2 are down-regulated implying impairment of hepatic detoxification capacity. A higher state of inflammation was observed in liver cancer tissues as evident from upregulation of inflammatory cytokines IL-6 and TNF-α along with NF-κB and STAT3. Our data in mouse model suggested a negative correlation between down-regulation of PXR and its target genes with that of higher expression of inflammatory proteins (like IL-6, TNF-α, NF-κB). In conjunction, our findings with relevant cell culture based assays showed that higher expression of PXR is involved in reduction of tumorigenic potential in hepatic cancer. Overall, the findings suggest that inflammation influences the expression of hepatic proteins important in drug metabolism while higher PXR level reduces tumorigenic potential in hepatic cancer.

  12. Activation of ALDH1A1 in MDA-MB-468 breast cancer cells that over-express CYP2J2 protects against paclitaxel-dependent cell death mediated by reactive oxygen species.

    Science.gov (United States)

    Allison, Sarah E; Chen, Yongjuan; Petrovic, Nenad; Zhang, Jian; Bourget, Kirsi; Mackenzie, Peter I; Murray, Michael

    2017-11-01

    Cytochrome P450 2J2 (CYP2J2) expression is elevated in breast and other tumours, and is known to be protective against cytotoxic agents that may be used in cancer chemotherapy. This study evaluated the mechanisms by which MDA-MB-468 breast cancer cells that stably expressed CYP2J2 (MDA-2J2 cells) were protected against killing by the anti-cancer agent paclitaxel. Compared to control cells caspase-3/7 activation by paclitaxel was lower in MDA-2J2 cells, while cell proliferation and colony formation following paclitaxel treatment were increased. Basal lipid peroxidation was lower in MDA-2J2 cells than in control cells, and the paclitaxel-mediated increase in peroxidation was attenuated. The mitochondrial complex III inhibitor antimycin A modulated basal and paclitaxel-activated reactive oxygen species (ROS) formation in control cells; paclitaxel-activated ROS production was also modulated by the NADPH oxidase inhibitor diphenyleneiodonium. Paclitaxel increased the formation of protein adducts by the reactive aldehyde 4-hydroxynonenal that is produced by lipid peroxidation; adduct formation was attenuated in MDA-2J2 cells. ALDH1A1 expression and activity was strongly upregulated in MDA-2J2 cells that was attributed to CYP2J2-derived 14,15-epoxyeicosatrienoic acid (14,15-EET); the 8,9- and 11,12-EET regioisomers did not activate ALDH1A1 expression. Silencing of ALDH1A1 restored the sensitivity of MDA-2J2 cells to paclitaxel, as indicated by a more pronounced decrease in proliferation, and greater increases in caspase activity and formation of ROS to levels comparable with control cells. Similar findings were observed with doxorubicin, sorafenib and staurosporine, that also promoted ROS-mediated cell death that was attenuated in MDA-2J2 cells and reversed by ALDH1A1 gene silencing. These findings implicate ALDH1A1 as an important gene that is activated in MDA-MB-468-derived cells that contain high levels of CYP2J2. ALDH1A1 modulates the production of ROS by anti

  13. Influence of neonatal hypothyroidism on hepatic gene expression and lipid metabolism in adulthood

    DEFF Research Database (Denmark)

    Santana-Farré, Ruymán; Mirecki-Garrido, Mercedes; Bocos, Carlos

    2012-01-01

    , triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3 replacement with an enhanced......Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood....... Pregnant rats were given the antithyroid drug methimazole (MMI) from GD12 until PND30 to induce CH in male offspring. Growth defects due to CH were evident as reductions in body weight and tail length from the second week of life. Once the MMI treatment was discontinued, the feed efficiency increased in CH...

  14. Ethosuximide is primarily metabolized by CYP3A when incubated with isolated rat liver microsomes.

    Science.gov (United States)

    Sarver, J G; Bachmann, K A; Zhu, D; Klis, W A

    1998-01-01

    The cytochrome P450 (CYP) subfamily responsible for ethosuximide metabolism was investigated by HPLC assay of ethosuximide incubations with isolated rat liver microsomes from control rats and from rats treated with inducing agents to enrich hepatic microsomes in selected CYP isoforms. Inducing agents included beta-naphthoflavone (BNF, CYP1A inducer), phenobarbital (PB, CYP2B/2C/3A), isoniazid (INH, CYP2E1), clotrimazole (CTZ, CYP3A), clofibrate (CLO, CYP4A), and an imidazole CTZ-analog known as CDD3543 (CYP3A). Incubations with BNF, INH, CTZ, and control microsomes showed significantly (pCTZ microsomes vs. BNF, INH, and control microsomes at 10, 30, 60, and 120 min incubation. Ethosuximide metabolite levels generated by CTZ microsomes at 120 min were 36.5 times those of control microsomes. Correspondingly, ethosuximide concentrations were significantly (pCTZ microsomes compared with BNF, INH, and control microsomes at 60 and 120 min. Sixty-minute incubations with all microsome groups exhibited significantly (pCTZ (11.8x control) and PB (9.6x control) microsomes vs. all other groups. Antibody inhibition experiments demonstrated ethosuximide metabolite levels for PB microsomes were not affected by CYP2B1 antibodies, whereas CYP3A2 antibodies reduced metabolite levels for both PB and CTZ microsomes by over 80%. These results indicate CYP3A is primarily responsible for ethosuximide metabolism in rats.

  15. Regulation of zebrafish CYP3A65 transcription by AHR2

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chin-Teng; Chung, Hsin-Yu; Su, Hsiao-Ting; Tseng, Hua-Pin [Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Tzou, Wen-Shyong [Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Hu, Chin-Hwa, E-mail: chhu@mail.ntou.edu.tw [Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China); Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan (China)

    2013-07-15

    CYP3A proteins are the most abundant CYPs in the liver and intestines, and they play a pivotal role in drug metabolism. In mammals, CYP3A genes are induced by various xenobiotics through processes mediated by PXR. We previously identified zebrafish CYP3A65 as a CYP3A ortholog that is constitutively expressed in gastrointestinal tissues, and is upregulated by treatment with dexamethasone, rifampicin or tetrachlorodibenzo-p-dioxin (TCDD). However, the underlying mechanism of TCDD-mediated CYP3A65 transcription is unclear. Here we generated two transgenic zebrafish, Tg(CYP3A65S:EGFP) and Tg(CYP3A65L:EGFP), which contain 2.1 and 5.4 kb 5′ flanking sequences, respectively, of the CYP3A65 gene upstream of EGFP. Both transgenic lines express EGFP in larval gastrointestinal tissues in a pattern similar to that of the endogenous CYP3A65 gene. Moreover, EGFP expression can be significantly induced by TCDD exposure during the larval stage. In addition, EGFP expression can be stimulated by kynurenine, a putative AHR ligand produced during tryptophan metabolism. AHRE elements in the upstream regulatory region of the CYP3A65 gene are indispensible for basal and TCDD-induced transcription. Furthermore, the AHR2 DNA and ligand-binding domains are required to mediate effective CYP3A65 transcription. AHRE sequences are present in the promoters of many teleost CYP3 genes, but not of mammalian CYP3 genes, suggesting that AHR/AHR2-mediated transcription is likely a common regulatory mechanism for teleost CYP3 genes. It may also reflect the different environments that terrestrial and aquatic organisms encounter. - Highlights: • Tg(CYP3A65:EGFP) and CYP3A65 exhibits identical expression pattern. • CYP3A65 can be significantly induced by TCDD or kynurenine. • The AHRE elements are required to mediate CYP3A65 transcription. • The AHR2 DNA and ligand-binding domains are required for CYP3A65 transcription. • AHRE elements are present in many teleost CYP3 genes, but not in

  16. Mutations in human CPO gene predict clinical expression of either hepatic hereditary coproporphyria or erythropoietic harderoporphyria.

    Science.gov (United States)

    Schmitt, Caroline; Gouya, Laurent; Malonova, Eva; Lamoril, Jérôme; Camadro, Jean-Michel; Flamme, Magali; Rose, Christian; Lyoumi, Said; Da Silva, Vasco; Boileau, Catherine; Grandchamp, Bernard; Beaumont, Carole; Deybach, Jean-Charles; Puy, Hervé

    2005-10-15

    Hereditary coproporphyria (HCP), an autosomal dominant acute hepatic porphyria, results from mutations in the gene that encodes coproporphyrinogen III oxidase (CPO). HCP (heterozygous or rarely homozygous) patients present with an acute neurovisceral crisis, sometimes associated with skin lesions. Four patients (two families) have been reported with a clinically distinct variant form of HCP. In such patients, the presence of a specific mutation (K404E) on both alleles or associated with a null allele, produces a unifying syndrome in which hematological disorders predominate: 'harderoporphyria'. Here, we report the fifth case (from a third family) with harderoporphyria. In addition, we show that harderoporphyric patients exhibit iron overload secondary to dyserythropoiesis. To investigate the molecular basis of this peculiar phenotype, we first studied the secondary structure of the human CPO by a predictive method, the hydrophobic cluster analysis (HCA) which allowed us to focus on a region of the enzyme. We then expressed mutant enzymes for each amino acid of the region of interest, as well as all missense mutations reported so far in HCP patients and evaluated the amount of harderoporphyrin in each mutant. Our results strongly suggest that only a few missense mutations, restricted to five amino acids encoded by exon 6, may accumulate significant amounts of harderoporphyrin: D400-K404. Moreover, all other type of mutations or missense mutations mapped elsewhere throughout the CPO gene, lead to coproporphyrin accumulation and subsequently typical HCP. Our findings, reinforced by recent crystallographic results of yeast CPO, shed new light on the genetic predisposition to HCP. It represents a first monogenic metabolic disorder where clinical expression of overt disease is dependent upon the location and type of mutation, resulting either in acute hepatic or in erythropoietic porphyria.

  17. Hepatic Fgf21 Expression Is Repressed after Simvastatin Treatment in Mice.

    Directory of Open Access Journals (Sweden)

    Panos Ziros

    Full Text Available Fibroblast growth factor 21 (Fgf21 is a hormone with emerging beneficial roles in glucose and lipid homeostasis. The interest in Fgf21 as a potential antidiabetic drug and the factors that regulate its production and secretion is growing. Statins are the most widely prescribed drug for the treatment of dyslipidemia. However, the function of statins is not limited to the lowering of cholesterol as they are associated with pleiotropic actions such as antioxidant, anti-inflammatory and cytoprotective effects. The recently described effect of statins on mitochondrial function and the induction of Fgf21 by mitochondrial stress prompted us to investigate the effect of statin treatment on Fgf21 expression in the liver. To this end, C57BL6J male mice and primary mouse hepatocytes were treated with simvastatin, and Fgf21 expression was subsequently assessed by immunoblotting and quantitative real-time PCR. Hepatic Fgf21 protein and mRNA and circulating levels of FGF21significantly decreased in mice that had received simvastatin in their food (0.1% w/w for 1 week. This effect was also observed with simvastatin doses as low as 0.01% w/w for 1 week or following 2 intraperitoneal injections within a single day. The reduction in Fgf21 mRNA levels was further verified in primary mouse hepatocytes, indicating that the effect of simvastatin is cell autonomous. In conclusion, simvastatin treatment reduced the circulating and hepatic Fgf21 levels and this effect warrants further investigation with reference to its role in metabolism.

  18. Experimental non-alcoholic fatty liver disease results in decreased hepatic uptake transporter expression and function in rats

    NARCIS (Netherlands)

    Fisher, Craig D.; Lickteig, Andrew J.; Augustine, Lisa M.; Oude Elferink, Ronald P. J.; Besselsen, David G.; Erickson, Robert P.; Cherrington, Nathan J.

    2009-01-01

    Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of diagnoses ranging from simple fatty liver (SFL), to non-alcoholic steatohepatitis (NASH). This study aimed to determine the effect of moderate and severe NAFLD on hepatic transporter expression and function in vivo. Rats were fed a

  19. Yeast expressing hepatitis B virus surface antigen determinants on its surface: Implications for a possible oral vaccine

    NARCIS (Netherlands)

    Schreuder, M.P.; Deen, C.; Boersma, W.J.A.; Pouwels, P.H.; Klis, F.M.

    1996-01-01

    The two major hydrophilic regions of the hepatitis B virus surface antigen (HBsAg) have been expressed in the outer mannoprotein layer of the cell wall of 'Bakers Yeast', Saccharomyces cerevisiae, by fusing them between the yeast invertase signal sequence and the yeast α-agglutinin carboxyterminal

  20. Alterations in hepatic gene expression and genome-wide DNA methylation in rat offspring exposed to maternal obesity in utero

    Science.gov (United States)

    Adult offspring from obese (OB) rat dams gain greater body weight and fat mass than controls when fed HFD. At PND21, we examined energy expenditure (EE) (indirect calorimetry), hepatic gene expression (microarrays), and changes in genome-wide and global DNA methylation (enrichment-coupled DNA seque...

  1. Maternal obesity influences hepatic gene expression and genome-wide DNA methylation in offspring liver at weaning

    Science.gov (United States)

    Offspring from obese rat dams gain greater body weight and fat mass when fed HFD. Here we examine hepatic gene expression related to systemic energy expenditure and alterations in genome-wide DNA methylation. Maternal obesity was produced in rats prior to conception via overfeeding of diets. At PND2...

  2. [Expression in Escherichia coli of hepatitis B virus genes from minority nationality patients in Yunnan province with chronic hepatitis B and their antigenicity].

    Science.gov (United States)

    Bian, Zhong-qi; Hua, Zhan-lou; Yan, Wei-yao; Liu, Ming-qiu; Zheng, Zhao-xin

    2006-04-11

    To investigate the expression in Escherichia coli (E. coli) of hepatitis B virus (HBV) genes from minority nationality patients in Yunnan province with chronic hepatitis B (CHB) and their antigenicity. Peripheral blood samples were collected from 25 minority nationality patients with CHB in Yunnan province. Twenty-five CHB patients of Han nationality in Yunnan were used as controls. The full length HBV preS2/S and C genes were amplified by PCR, cloned, sequenced, and inserted into the prokaryotic expression vector p lambda PR. The recombinant plasmids p lambda PR-S2S and p lambda PR-C were transfected into E. coli of the line TOP10. The expression of the non-fusion proteins encoded by the HBV preS2S and C genes was determined by sodium dodecyl sulphate polyacrlamide gel electrophoresis (SDS-PAGE) and Western blotting. The antigenicity of the non-fusion proteins was examined by ELISA. Fifty samples of serum of patients with hepatitis A, 50 samples of serum of patients with hepatitis C, and 50 samples of serum of healthy blood donors were used as controls in the study of the antigenicity of non-fusion proteins. SDS-PAGE showed that the recombinant plasmids p lambda PR-S2S and p lambda PR-C were both stably and highly expressed in the E. coli for all 50 CHB patients. The molecular weights of the expressed non-fusion proteins, with a concentration of 16% and a purity of 50%, were between 31,000 and 21,000. Western blotting and ELISA showed that the purified recombinant non-fusion proteins reacted strongly with the antibodies HBpreS2S/SAb and HBcAb and the serum of CHB patients, but there was no cross-activity between the non-fusion proteins and all the serum samples of controls with HA and HC, and normal controls. The HBV preS2S and C genes from the minority nationality patients with CHB can be stably and highly expression in E. coli. The non-fusion proteins encoded by the HBV preS2S and C genes have high antigenicity. These findings have potential values in

  3. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie; Weinberg, Marc S. [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa); Arbuthnot, Patrick, E-mail: Patrick.Arbuthnot@wits.ac.za [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa)

    2009-11-20

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.

  4. Process development for the production of 15β-hydroxycyproterone acetate using Bacillus megaterium expressing CYP106A2 as whole-cell biocatalyst

    DEFF Research Database (Denmark)

    Kiss, Flora M.; Lundemo, Marie Therese; Zapp, Josef

    2015-01-01

    Background: CYP106A2 from Bacillus megaterium ATCC 13368 was first identified as a regio- and stereoselective 15 beta-hydroxylase of 3-oxoΔ4-steroids. Recently, it was shown that besides 3-oxo-Δ4-steroids, 3-hydroxy-Δ5-steroids as well as di- and triterpenes can also serve as substrates for this ......Background: CYP106A2 from Bacillus megaterium ATCC 13368 was first identified as a regio- and stereoselective 15 beta-hydroxylase of 3-oxoΔ4-steroids. Recently, it was shown that besides 3-oxo-Δ4-steroids, 3-hydroxy-Δ5-steroids as well as di- and triterpenes can also serve as substrates...

  5. Delineation of molecular pathways that regulate hepatic PCSK9 and LDL receptor expression during fasting in normolipidemic hamsters

    Science.gov (United States)

    Wu, Minhao; Dong, Bin; Cao, Aiqin; Li, Hai; Liu, Jingwen

    2015-01-01

    Background PCSK9 has emerged as a key regulator of serum LDL-C metabolism by promoting the degradation of hepatic LDL receptor (LDLR). In this study, we investigated the effect of fasting on serum PCSK9, LDL-C, and hepatic LDLR expression in hamsters and further delineated the molecular pathways involved in fasting-induced repression of PCSK9 transcription. Results Fasting had insignificant effects on serum total cholesterol and HDL-C levels, but reduced LDL-C, triglyceride and insulin levels. The decrease in serum LDL-C was accompanied by marked reductions of hepatic PCSK9 mRNA and serum PCSK9 protein levels with concomitant increases of hepatic LDLR protein amounts. Fasting produced a profound impact on SREBP1 expression and its transactivating activity, while having modest effects on mRNA expressions of SREBP2 target genes in hamster liver. Although PPARα mRNA levels in hamster liver were elevated by fasting, ligand-induced activation of PPARα with WY14643 compound in hamster primary hepatocytes did not affect PCSK9 mRNA or protein expressions. Further investigation on HNF1α, a critical transactivator of PCSK9, revealed that fasting did not alter its mRNA expression, however, the protein abundance of HNF1α in nuclear extracts of hamster liver was markedly reduced by prolonged fasting. Conclusion Fasting lowered serum LDL-C in hamsters by increasing hepatic LDLR protein amounts via reductions of serum PCSK9 levels. Importantly, our results suggest that attenuation of SREBP1 transactivating activity owing to decreased insulin levels during fasting is primarily responsible for compromised PCSK9 gene transcription, which was further suppressed after prolonged fasting by a reduction of nuclear HNF1α protein abundance. PMID:22954675

  6. Expression of scavenger receptor‐AI promotes alternative activation of murine macrophages to limit hepatic inflammation and fibrosis

    Science.gov (United States)

    Labonte, Adam C.; Sung, Sun‐Sang J.; Jennelle, Lucas T.; Dandekar, Aditya P.

    2016-01-01

    The liver maintains an immunologically tolerant environment as a result of continuous exposure to food and bacterial constituents from the digestive tract. Hepatotropic pathogens can take advantage of this niche and establish lifelong chronic infections causing hepatic fibrosis and hepatocellular carcinoma. Macrophages (Mϕ) play a critical role in regulation of immune responses to hepatic infection and regeneration of tissue. However, the factors crucial for Mϕ in limiting hepatic inflammation or resolving liver damage have not been fully understood. In this report, we demonstrate that expression of C‐type lectin receptor scavenger receptor‐AI (SR‐AI) is crucial for promoting M2‐like Mϕ activation and polarization during hepatic inflammation. Liver Mϕ uniquely up‐regulated SR‐AI during hepatotropic viral infection and displayed increased expression of alternative Mϕ activation markers, such as YM‐1, arginase‐1, and interleukin‐10 by activation of mer receptor tyrosine kinase associated with inhibition of mammalian target of rapamycin. Expression of these molecules was reduced on Mϕ obtained from livers of infected mice deficient for the gene encoding SR‐AI (msr1). Furthermore, in vitro studies using an SR‐AI‐deficient Mϕ cell line revealed impeded M2 polarization and decreased phagocytic capacity. Direct stimulation with virus was sufficient to activate M2 gene expression in the wild‐type (WT) cell line, but not in the knockdown cell line. Importantly, tissue damage and fibrosis were exacerbated in SR‐AI–/– mice following hepatic infection and adoptive transfer of WT bone‐marrow–derived Mϕ conferred protection against fibrosis in these mice. Conclusion: SR‐AI expression on liver Mϕ promotes recovery from infection‐induced tissue damage by mediating a switch to a proresolving Mϕ polarization state. (Hepatology 2017;65:32‐43). PMID:27770558

  7. Expression and characterization of Escherichia coli derived hepatitis C virus ARFP/F protein.

    Science.gov (United States)

    Baghbani-arani, F; Roohvand, F; Aghasadeghi, M R; Eidi, A; Amini, S; Motevalli, F; Sadat, S M; Memarnejadian, A; Khalili, G

    2012-01-01

    Genome of the hepatitis C virus (HCV) contains a long open reading frame encoding a polyprotein that is cleaved into 10 proteins. Recently, a novel, so called "ARFP/F", or "core+1", protein, which is expressed through a ribosomal frame shift within the capsid-coding sequence, has been described. Herein, to produce and characterize a recombinant form of this protein, the DNA sequence corresponding to the ARFP/F protein (amino acid 11-161) was amplified using a frame-shifted forward primer exploiting the capsid sequence of the 1b-subtype as a template. The amplicon was cloned into the pET-24a vector and expressed in different Escherichia coli strains. The expressed protein (mostly as insoluble inclusion bodies) was purified under denaturing conditions on a nickel-nitrilotriacetic acid (Ni-NTA) affinity column in a single step with a yield of 5 mg/L of culture media. After refolding steps, characterization of expressed ARFP/F was performed by SDS-PAGE and Western blot assay using specific antibodies. Antigenic properties of the protein were verified by ELISA using HCV-infected human sera and by its ability for a strong and specific interaction with sera of mice immunized with the peptide encoding a dominant ARFP/F B-cell epitope. The antigenicity plot revealed 3 major antigenic domains in the first half of the ARFP/F sequence. Immunization of BALB/c mice with the ARFP/F protein elicited high titers of IgG indicating the relevance of produced protein for induction of a humoral response. In conclusion, possibility of ARFP/F expression with a high yield and immunogenic potency of this protein in a mouse model have been demonstrated.

  8. [Altered hepatic expression of selenoprotein S1 in septic mouse induced by LPS attack].

    Science.gov (United States)

    Su, Mao-sheng; He, Lei; Yao, Yong-ming; Yu, Yan; Wu, Yao; Dong, Jia-hong

    2010-07-13

    To investigate the change of selenoprotein S1 (SEPS1) hepatic expression in septic mouse induced by LPS attack. The septic murine model induced by LPS attack was established. Ten mice were randomly selected as control group from 84 BALB/c mice and others as septic group. The mice were sacrificed after anesthesia in control group and 10 mg/kg LPS was injected intraperitoneally into septic group mice. Liver and blood samples were taken at 6, 12, 24, 48, 72 and 96 h after LPS injection. Ten mice were randomly selected at each time point. The levels of blood ALT, AST, LDH and liver IL-6, TNF-α were detected. And the SEPS1 expression was simultaneously detected by Western blot. There was liver damage in septic group compared with normal control group. The levels of ALT, AST and LDH markedly increased. And all peaked at 24 h. The levels were (99 ± 11), (299 ± 48) and (1523 ± 131) U/L respectively (versus level at zero hour, P 8239) ng/L, P < 0.05]. Western blot showed that SEPS1 protein expression markedly increased simultaneously in liver of septic mouse. And the peak value was reached at 24 h post-injury. Then there was a gradual decrease and normal level returned at 72 h. Immunohistochemical results showed that SEPS1 protein expression in liver of septic mouse also markedly increased. And the peak value was reached at 24 h post-injury. Pathologic results showed that liver lesion was apparent in septic mouse and it was the worst during 6-12 h. Liver damage to different extents may be induced by LPS attack in septic mouse. The levels of IL-6 and TNF-α markedly increase. The SEPS1 protein expression in liver of septic mouse is also markedly elevated. And it peaks at 24 h post-injury and returns to normal at 72 h.

  9. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Manal Mused Almatrafi

    2017-06-01

    Full Text Available To investigate the mechanisms by which Moringa oleifera leaves (ML modulate hepatic lipids, guinea pigs were allocated to either control (0% ML, 10% Low Moringa (LM or 15% High Moringa (HM diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH and triglyceride (TG metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG with the lowest concentrations in the HM group (p < 0.001, consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL-1β and interferon-γ, were lowest in the HM group (p < 0.005. Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01. This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  10. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Science.gov (United States)

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H.; Blesso, Christopher N.; Fernandez, Maria Luz

    2017-01-01

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group (p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group (p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver. PMID:28640194

  11. Maternal chocolate and sucrose soft drink intake induces hepatic steatosis in rat offspring associated with altered lipid gene expression profile

    DEFF Research Database (Denmark)

    Kjærgaard, Maj; Nilsson, C.; Rosendal, A.

    2014-01-01

    of overfeeding during different developmental periods. Methods: Sprague-Dawley rats were offered chow or high-fat/high-sucrose diet (chow plus chocolate and soft drink) during gestation and lactation. At birth, offspring were randomly cross-fostered within each dietary group into small and normal litter sizes...... weight gain and adiposity in offspring born to chow-fed dams. Conclusion: Our results suggest that supplementation of chocolate and soft drink during gestation and lactation contributes to early onset of hepatic steatosis associated with changes in hepatic gene expression and lipid handling....

  12. What's wrong with CYP?

    Science.gov (United States)

    Shelton, J D

    1991-01-01

    The weaknesses of using couple years protection (CYP) for assessing the effectiveness of various measures of family planning are discussed. Limitations had been recognized in the past but have been largely ignored in the present context. This has been due to the unavailability of local data, and other standardizations have been too cumbersome for practical use. The advantage of using CYP is that it allows for easy calculation of a level of contraceptive use without differentiation by method. This measure reflects to some extent, for instance, access to family planning services, and prevention of unwanted fertility. It also measures output, and provides program managers with a tool to adjust supply to demand. The weakness are categorized in terms of contraceptive failure rates, sporadic and infrequent use with secondary partners, wastage, substitution, differences in fecundity, local specificity, lack of a discount for time, ability to reach high priority or underserved clients, secondary effects, quality of care, and so on. These weaknesses broadly effect the relationship of CYP with fertility; it is possible that adjustments can be made to improve the measure. The deficiencies in accounting for hard to reach clients, in measuring the secondary effects in AIDs and STD prevention, and in measuring satisfaction and continuation or other facets of quality of care not be accounted for in CYP. This suggests that a comprehensive assessment must utilize a variety of indicators, such as a direct measure of contraceptive prevalence, the proportion of children born to high risk women, continuation rates, and qualitative measures of the impact of care. Improvement of CYP is suggested as an inexpensive solution. Local data should be used, since the average age at sterilization in a particular population impacts greatly on the actual CYP provided by sterilization in a specific program. Cookbook conversion factors should be revised so that condoms (100 per CYP) credit is reduced

  13. Expression of the vitamin D receptor, 25-hydroxylases, 1alpha-hydroxylase and 24-hydroxylase in the human kidney and renal clear cell cancer

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Andersen, Claus B.; Nielsen, John E

    2010-01-01

    The vitamin D receptor (VDR), CYP27B1 and CYP24A1 are expressed in the human kidney, but the segmental expression of the 25-hydroxylases is unknown. A comprehensive analysis of CYP2R1, CYP27A1, CYP27B1, VDR and CYP24A1 expression in normal kidney and renal clear cell cancer (CCc) would reveal...

  14. Glucomannan and glucomannan plus spirulina added to pork significantly block dietary cholesterol effects on lipoproteinemia, arylesterase activity, and CYP7A1 expression in Zucker fa/fa rats.

    Science.gov (United States)

    González-Torres, Laura; Vázquez-Velasco, Miguel; Olivero-David, Raúl; Bastida, Sara; Benedí, Juana; González, Rafaela Raposo; González-Muñoz, Ma José; Sánchez-Muniz, Francisco J

    2015-12-01

    Zucker fa/fa rats easily develop dyslipidemia and obesity. Restructured pork (RP) is a suitable matrix for including functional ingredients. The effects of glucomannan- RP or glucomannan plus spirulina-enriched RP on plasma lipid/lipoprotein levels, cytochrome P450 7A1 (CYP7A1) expression, and arylesterase activity in growing fa/fa rats fed high-energy, high-fat cholesterol-enriched diets were tested. Groups of six rats each received diet containing 15% control-RP (C), 15% glucomannan-RP diet (G), 15% glucomannan + spirulina-RP diet (GS), and same diets enriched with 2.4% cholesterol and 0.49% cholic acid (cholesterol-enriched control (HC), cholesterol-enriched glucomannan (HG), and cholesterol-enriched glucomannan + spirulina (HGS) diets) over a 7-week period. C diet induced obesity, severe hyperglycemia, moderate hypercholesterolemia, and hypertriglyceridemia. Those facts were not significantly modified by G or GS diets. G diet increased CYP7A1 expression but decreased the total cholesterol/high density lipoproteins (HDL)-cholesterol ratio (p food intake, body weight gain, and plasma glucose (p foods and notably blocked the dietary cholesterol effects. In addition, HGS-RP improved the glucomannan hypolipidemic effects, increased arylesterase/HDL-cholesterol activity, and decreased insulin resistance.

  15. The fatty liver dystrophy (fld) mutation: Developmentally related alterations in hepatic triglyceride metabolism and protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Reue, K.; Rehnmark, S.; Cohen, R.D.; Leete, T.H.; Doolittle, M.H. [West Los Angeles VA Medical Center, CA (United States). Lipid Research Lab.]|[Univ. of California, Los Angeles, CA (United States). Dept. of Medicine; Giometti, C.S.; Mishler, K. [Argonne National Lab., IL (United States); Slavin, B.G. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-07-01

    Fatty liver dystrophy (fld) is an autosomal recessive mutation in mice characterized by hypertriglyceridemia and development of a fatty liver in the early neonatal period. Also associated with the fld phenotype is a tissue-specific deficiency in the expression of lipoprotein lipase and hepatic lipase, as well as elevations in hepatic apolipoprotein A-IV and apolipoprotein C-II mRNA levels. Although these lipid abnormalities resolve at the age of weaning, adult mutant mice exhibit a peripheral neuropathy associated with abnormal myelin formation. The fatty liver in fld/fld neonates is characterized by the accumulation of large triglyceride droplets within the parenchymal cells, and these droplets persist within isolated hepatocytes maintained in culture for several days. To identify the metabolic defect that leads to lipid accumulation, the authors investigated several aspects of cellular triglyceride metabolism. The mutant mice exhibited normal activity of acid triacylglycerol lipase, an enzyme thought to be responsible for hydrolysis of dietary triglycerides in the liver. Metabolic labeling studies performed with oleic acid revealed that free fatty acids accumulate in the liver of 3 day old fld/fld mice, but not in adults. This accumulation in liver was mirrored by elevated free fatty acid levels in plasma of fld/fld neonates, with levels highest in very young mice and returning to normal by the age of one month. Quantitation of fatty acid oxidation in cells isolated from fld/fld neonates revealed that oxidation rate is reduced 60% in hepatocytes and 40% in fibroblasts; hepatocytes from adult fld/fld mice exhibited an oxidation rate similar to those from wild-type mice.

  16. Diurnal variation in hepatic expression of the rat S14 gene is synchronized by the photoperiod

    Energy Technology Data Exchange (ETDEWEB)

    Kinlaw, W.B.; Fish, L.H.; Schwartz, H.L.; Oppenheimer, J.H.

    1987-04-01

    We have analyzed the factors responsible for the circadian variation in rat hepatic mRNA-S14. Regulation of this sequence, which is found in lipogenic tissues and encodes a protein (S14) believed to be associated with fatty acid synthesis, is an excellent model of the interaction of thyroid hormone and dietary factors at the hepatocellular level. The mRNA exhibits a 3-fold diurnal variation (peak, approximately 2000 h; nadir, 0800 h) in ad libitum feeding rats on a 12-h light, 12-h dark photoschedule. We studied the effects of the photoschedule, periodic food intake, hypophysectomy, and induction by thyroid hormone (T3) on the mRNA-S14 rhythm. Adaptation to feeding restricted to either light or dark periods for 15 days did not greatly affect the diurnal rhythm. Photoreversal resulted in a 180 degrees phase shift, whereas the rhythm persisted in the presence of constant light. Oscillation continued around a higher baseline after a receptor-saturating dose of T3 in both normal and hypophysectomized rats. Our results indicate primary entrainment of the mRNA-S14 diurnal rhythm to the photoperiod, rather than to periodic food intake. Moreover, the circadian regulatory signal, which probably originates in the central nervous system, appears capable of antagonizing a maximal T3-inductive stimulus and does not originate in the pituitary gland. Persistence of the oscillation in constant light rules out circulating melatonin as the mediator. Synchronization of the rhythm by the photoschedule suggests that neuroendocrine factors are important determinants of rhythmic changes in hepatic gene expression.

  17. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression.

    Directory of Open Access Journals (Sweden)

    Jason Lamontagne

    2016-02-01

    Full Text Available Globally, a chronic hepatitis B virus (HBV infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication.

  18. Monocytes inhibit hepatitis C virus-induced TRAIL expression on CD56bright NK cells.

    Science.gov (United States)

    Mele, Dalila; Mantovani, Stefania; Oliviero, Barbara; Grossi, Giulia; Lombardi, Andrea; Mondelli, Mario U; Varchetta, Stefania

    2017-12-01

    Natural killer (NK) cells play an important role in the pathogenesis of hepatitis C virus (HCV) infection. We have previously shown that culture-derived HCV (HCVcc) enhance tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) expression on healthy NK cells, but not on those from patients infected with HCV, which was likely dependent on accessory cells. Here we sought to elucidate the mechanisms involved in altered TRAIL upregulation in this setting. Peripheral blood mononuclear cells (PBMC) from controls and patients infected with HCV were exposed to HCVcc. Cell depletions were performed to identify cells responsible for NK cell activation. Flow cytometry and ELISA were used to identify the cytokines involved in the NK activation process. In patients infected with HCV, soluble factors secreted by control PBMC restored the ability of NK cells to express TRAIL. Of note, CD14+ cell depletion had identical effects upon virus exposure and promoted increased degranulation. Moreover, increased concentrations of interleukin (IL)-18 binding protein a (IL-18BPa) and IL-36 receptor antagonist (IL-36RA) were observed after PBMC exposure to HCVcc in patients with HCV. HCVcc-induced NK cell TRAIL expression was inhibited by IL-18BPa and IL-36RA in control subjects. There were statistically significant correlations between IL-18BPa and indices of liver inflammation and fibrosis, supporting a role for this protein in the pathogenesis of chronic HCV infection. During chronic HCV infection, monocytes play a key role in negative regulation of NK cell activation, predominantly via secretion of inhibitors of IL-18 and IL-36. Coordination and collaboration between immune cells are essential to fight pathogens. Herein we show that during HCV infection monocytes secrete IL-18 and IL-36 inhibitory proteins, reducing NK cell activation, and consequently inhibiting their ability to express TRAIL and kill target cells. Copyright © 2017 European Association for the Study of the

  19. Expression of glutamine transporter isoforms in cerebral cortex of rats with chronic hepatic encephalopathy.

    Science.gov (United States)

    Leke, Renata; Escobar, Thayssa D C; Rao, Kakulavarapu V Rama; Silveira, Themis Reverbel; Norenberg, Michael D; Schousboe, Arne

    2015-09-01

    Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs due to acute and chronic liver diseases, the hallmark of which is the increased levels of ammonia and subsequent alterations in glutamine synthesis, i.e. conditions associated with the pathophysiology of HE. Under physiological conditions, glutamine is fundamental for replenishment of the neurotransmitter pools of glutamate and GABA. The different isoforms of glutamine transporters play an important role in the transfer of this amino acid between astrocytes and neurons. A disturbance in the GABA biosynthetic pathways has been described in bile duct ligated (BDL) rats, a well characterized model of chronic HE. Considering that glutamine is important for GABA biosynthesis, altered glutamine transport and the subsequent glutamate/GABA-glutamine cycle efficacy might influence these pathways. Given this potential outcome, the aim of the present study was to investigate whether the expression of the glutamine transporters SAT1, SAT2, SN1 and SN2 would be affected in chronic HE. We verified that mRNA expression of the neuronal glutamine transporters SAT1 and SAT2 was found unaltered in the cerebral cortex of BDL rats. Similarly, no changes were found in the mRNA level for the astrocytic transporter SN1, whereas the gene expression of SN2 was increased by two-fold in animals with chronic HE. However, SN2 protein immuno-reactivity did not correspond with the increase in gene transcription since it remained unaltered. These data indicate that the expression of the glutamine transporter isoforms is unchanged during chronic HE, and thus likely not to participate in the pathological mechanisms related to the imbalance in the GABAergic neurotransmitter system observed in this neurologic condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Predictive value of animal models for human cytochrome P450 (CYP)-mediated metabolism: a comparative study in vitro.

    Science.gov (United States)

    Turpeinen, M; Ghiciuc, C; Opritoui, M; Tursas, L; Pelkonen, O; Pasanen, M

    2007-12-01

    One major challenge in drug development is defining of the optimal animal species to serve as a model of metabolism in man. The study compared the hepatic drug metabolism characteristics of humans and six widely used experimental animal species. Classical in vitro model enzyme assays with known human cytochrome P450 (CYP) enzyme selectivity were employed and optimized to target human hepatic CYP forms. The profile of CYP activities best resembling the human was seen in mouse followed by monkey, minipig, and dog liver microsomes, with rats displaying the most divergent. The widest interindividual variability was found in CYP3A-mediated midazolam -hydroxylase, and omeprazole sulphoxidase activities in human and monkey liver microsomes. These data demonstrate that if hepatic xenobiotic-metabolizing characteristics were to be the sole reason for the selection of animal species for toxicity studies, then the rat might not be the most appropriate model to mimic human CYP activity patterns.

  1. Inhibition of hepatitis B virus gene expression and replication by ribonuclease P.

    Science.gov (United States)

    Xia, Chuan; Chen, Yuan-Chuan; Gong, Hao; Zeng, Wenbo; Vu, Gia-Phong; Trang, Phong; Lu, Sangwei; Wu, Jianguo; Liu, Fenyong

    2013-05-01

    Nucleic acid-based gene interfering approaches, such as those mediated by RNA interference and RNase P-associated external guide sequence (EGS), have emerged as promising antiviral strategies. The RNase P-based technology is unique, because a custom-designed EGS can bind to any complementary mRNA sequence and recruit intracellular RNase P for specific degradation of the target mRNA. In this study, a functional EGS was constructed to target hepatitis B virus (HBV) essential transcripts. Furthermore, an attenuated Salmonella strain was constructed and used for delivery of anti-HBV EGS in cells and in mice. Substantial reduction in the levels of HBV gene expression and viral DNA was detected in cells treated with the Salmonella vector carrying the functional EGS construct. Furthermore, oral inoculation of Salmonella carrying the EGS construct led to an inhibition of ~95% in the levels of HBV gene expression and a reduction of ~200,000-fold in viral DNA level in the livers and sera of the treated mice transfected with a HBV plasmid. Our results suggest that EGSs are effective in inhibiting HBV replication in cultured cells and mammalian livers, and demonstrate the use of Salmonella-mediated delivery of EGS as a promising therapeutic approach for human diseases including HBV infection.

  2. Apolipoprotein O expression in mouse liver enhances hepatic lipid accumulation by impairing mitochondrial function.

    Science.gov (United States)

    Tian, Feng; Wu, Chen-Lu; Yu, Bi-Lian; Liu, Ling; Hu, Jia-Rui

    2017-09-09

    Apolipoprotein O (ApoO) was recently observed in the cellular mitochondrial inner membrane, which plays a role in mitochondrial function and is associated with myocardiopathy. Empirical information on the physiological functions of apoO is therefore limited. In this study, we aimed to elucidate the effect of apoO on hepatic fatty acid metabolism. An adenoviral vector expressing hApoO was constructed and introduced into chow diet and high-fat diet induced mice and the L02 human hepatoma cell line. High levels of hApoO mRNA and protein were detected in the liver, and the expression of lipid metabolism genes was significantly altered compared with negative controls. The liver function indices (serum ALT and AST) were clearly elevated, and the ultrastructure of cellular mitochondria was distinctly altered in the liver after apoO overexpression. Further, mitochondrial membrane potential decreased with hApoO treatment in L02 cells. These results establish a link between apoO and lipid accumulation and could suggest a new pathway for regulating non-alcoholic fatty liver disease progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Increased Hepatic Expression of Endothelial Lipase Inhibits Cholesterol Diet-Induced Hypercholesterolemia and Atherosclerosis in Transgenic Rabbits.

    Science.gov (United States)

    Wang, Chuan; Nishijima, Kazutoshi; Kitajima, Shuji; Niimi, Manabu; Yan, Haizhao; Chen, Yajie; Ning, Bo; Matsuhisa, Fumikazu; Liu, Enqi; Zhang, Jifeng; Chen, Y Eugene; Fan, Jianglin

    2017-07-01

    Endothelial lipase (EL) is a key determinant in plasma high-density lipoprotein-cholesterol. However, functional roles of EL on the development of atherosclerosis have not been clarified. We investigated whether hepatic expression of EL affects plasma lipoprotein metabolism and cholesterol diet-induced atherosclerosis. We generated transgenic (Tg) rabbits expressing the human EL gene in the liver and then examined the effects of EL expression on plasma lipids and lipoproteins and compared the susceptibility of Tg rabbits with cholesterol diet-induced atherosclerosis with non-Tg littermates. On a chow diet, hepatic expression of human EL in Tg rabbits led to remarkable reductions in plasma levels of total cholesterol, phospholipids, and high-density lipoprotein-cholesterol compared with non-Tg controls. On a cholesterol-rich diet for 16 weeks, Tg rabbits exhibited significantly lower hypercholesterolemia and less atherosclerosis than non-Tg littermates. In Tg rabbits, gross lesion area of aortic atherosclerosis was reduced by 52%, and the lesions were characterized by fewer macrophages and smooth muscle cells compared with non-Tg littermates. Increased hepatic expression of EL attenuates cholesterol diet-induced hypercholesterolemia and protects against atherosclerosis. © 2017 American Heart Association, Inc.

  4. PPARα Downregulates Hepatic Glutaminase Expression in Mice Fed Diets with Different Protein:Carbohydrate Ratios.

    Science.gov (United States)

    Velázquez-Villegas, Laura A; Charabati, Tania; Contreras, Alejandra V; Alemán, Gabriela; Torres, Nimbe; Tovar, Armando R

    2016-09-01

    Glutamine is catabolized in the liver by glutaminase 2 (GLS2). Evidence suggests that peroxisome proliferator-activated receptor α (PPARα) represses the expression of several amino acid-catabolizing enzymes, but for Gls2 this is unknown. The aim of the study was to assess whether PPARα regulates Gls2 expression. For 8 d, 7-9-wk-old male C57BL/6 wild-type (WT) and Ppara-null mice weighing 23.4 ± 0.5 g were fed diets with different dietary protein:carbohydrate (DP:DCH) ratios (6%:77%, 20%:63%, or 50%:33%). Liver samples were obtained after 16 h of feed deprivation or 3 h of refeeding, and microarrays were performed. Hepatic glutaminase expression was measured by quantitative polymerase chain reaction and Western blotting. Cotransfection analyses in hepatocellular carcinoma cell line (HepG2) cells with PPARα and hepatocyte nuclear factor 4α (HNF4α) expression vectors were performed. The microarray results showed that Gls2 was the only upregulated gene in WT mice, but not in the Ppara-null mice. In the feed-deprived WT mice, the Gls2 mRNA and protein abundances in the 50%:33% group were 2.5- and 1.1-fold greater (P < 0.05), respectively, than those in the 20%:63% group, which were 2.3- and 0.4-fold greater than those in the 6%:77% group (P < 0.01). Gls2 mRNA expression in the 6%:77% group of feed-deprived Ppara-null mice was 33-fold greater than that in the same group of WT mice (P < 0.0001). GLS2 protein abundance in HepG2 cells was 78% greater than that in the controls (P < 0.0001) after HNF4α overexpression, and it was 99% greater after transfection with a short hairpin targeting PPARα. In Ppara-null mice, Gls2 mRNA expression was greater than in WT mice, regardless of the DP:DCH ratio. In HepG2 cells overexpressing HNF4α, Gls2 expression increased, an effect repressed by overexpression of PPARα. This suggests that Gls2 depends on the PPARα/HNF4α counterregulatory transcriptional control. © 2016 American Society for Nutrition.

  5. Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation.

    Science.gov (United States)

    Xie, H-J; Yasar, U; Lundgren, S; Griskevicius, L; Terelius, Y; Hassan, M; Rane, A

    2003-01-01

    The role of polymorphic CYP2B6 in cyclophosphamide (CPA) bioactivation was investigated in human liver microsomes. A total of 67 human liver specimens were first genotyped with respect to the CYP2B6*5 and CYP2B6*6 variant alleles. CYP2B6 apoprotein levels in 55 liver microsomal preparations were assessed by immunoblotting. 4-Hydroxy-CPA and hydroxy-bupropion were quantified by using HPLC and LC-MS, respectively. 7-Ethoxy-4-trifluoromethyl coumarin O-deethylase activity was measured fluorometrically. The frequencies of CYP2B6*5 and CYP2B6*6 mutant alleles were 9.0 and 16.4%, respectively. CYP2B6 protein expression was detected in 80% of the samples, with a large variation (0.003-2.234, arbitrary units). There was a high correlation between CYP2B6 apoprotein content and CPA 4-hydroxylation (n=55, r=0.81, P<0.0001). When based on the CYP2B6 apoprotein levels, the *6 carriers had significantly higher CPA 4-hydroxylation (P<0.05). CPA 4-hydroxylation also correlated significantly with other CYP2B6-specific reactions (n=20, P<0.0001). V(max) and K(m) for CPA 4-hydroxylation in recombinant CYP2B6 enzyme were 338 nmol/min/nmol enzyme and 1.4 mM, respectively. CYP2B6 showed much higher in vitro intrinsic clearance than previously observed in recombinant CYP2C19 and CYP2C9 variants in yeast expression system. Our results demonstrate that the polymorphic CYP2B6 is a major enzyme in the bioactivation of CPA. Moreover, we identified a strong impact of CYP2B6*6 on CPA 4-hydroxylation.

  6. Altered expression patterns of lipid metabolism genes in an animal model of HCV core-related, nonobese, modest hepatic steatosis

    Directory of Open Access Journals (Sweden)

    Chang Ming-Ling

    2008-02-01

    Full Text Available Abstract Background Because the gene expression patterns of nonobese hepatic steatosis in affected patients remain unclear, we sought to explore these patterns using an animal model of nonobese hepatic steatosis. Methods We developed mice that conditionally express the hepatitis C virus (HCV core protein regulated by the tetracycline transactivator (tTA. Microarray analyses and reverse-transcription polymerase chain reaction were performed using liver samples of both the double transgenic mice (DTM, which express both the HCV core and tTA, and single transgenic mice (STM, which express tTA alone, at 2 months of age. Functional categories of genes with altered expression were classified using gene ontology programs. Serum glucose, lipid levels, and systemic blood pressure were also measured. Results Approximately 20–30% of hepatocytes from the DTM were steatotic. No significant differences were observed in the serum glucose, lipid content, or blood pressure levels between the DTM and STM. Gene expression analyses revealed Sterol-regulatory element-binding protein (SREBP pathway activation and dysregulation of the following genes involved in lipid metabolism: 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1, Apolipoprotein AII, Apolipoprotein CI, acyl-CoA thioesterase I, and fatty acid binding protein 1; in mitochondrial function: solute carrier family 25 member 25 and cytochrome c oxidase subunit II; in immune reaction: complement component 3, lymphocyte antigen 6 complex, locus A, lymphocyte antigen 6 complex, locus C, lymphocyte antigen 6 complex, locus D, and lymphocyte antigen 6 complex, locus E. Conclusion Some genes of lipid metabolism, mitochondrial function, and immune reaction and the SREBP pathway are involved in HCV core-related, nonobese, modest hepatic steatosis.

  7. Areca nut components affect COX-2, cyclin B1/cdc25C and keratin expression, PGE2 production in keratinocyte is related to reactive oxygen species, CYP1A1, Src, EGFR and Ras signaling.

    Directory of Open Access Journals (Sweden)

    Mei-Chi Chang

    Full Text Available Chewing of betel quid (BQ increases the risk of oral cancer and oral submucous fibrosis (OSF, possibly by BQ-induced toxicity and induction of inflammatory response in oral mucosa.Primary gingival keratinocytes (GK cells were exposed to areca nut (AN components with/without inhibitors. Cytotoxicity was measured by 3-(4,5-dimethyl- thiazol- 2-yl-2,5-diphenyl-tetrazolium bromide (MTT assay. mRNA and protein expression was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR and western blotting. PGE2/PGF2α production was measured by enzyme-linked immunosorbent assays.Areca nut extract (ANE stimulated PGE2/PGF2α production, and upregulated the expression of cyclooxygenase-2 (COX-2, cytochrome P450 1A1 (CYP1A1 and hemeoxygenase-1 (HO-1, but inhibited expression of keratin 5/14, cyclinB1 and cdc25C in GK cells. ANE also activated epidermal growth factor receptor (EGFR, Src and Ras signaling pathways. ANE-induced COX-2, keratin 5, keratin 14 and cdc25C expression as well as PGE2 production were differentially regulated by α-naphthoflavone (a CYP 1A1/1A2 inhibitor, PD153035 (EGFR inhibitor, pp2 (Src inhibitor, and manumycin A (a Ras inhibitor. ANE-induced PGE2 production was suppressed by piper betle leaf (PBL extract and hydroxychavicol (two major BQ components, dicoumarol (aQuinone Oxidoreductase--NQO1 inhibitor and curcumin. ANE-induced cytotoxicity was inhibited by catalase and enhanced by dicoumarol, suggesting that AN components may contribute to the pathogenesis of OSF and oral cancer via induction of aberrant differentiation, cytotoxicity, COX-2 expression, and PGE2/PGF2α production.CYP4501A1, reactive oxygen species (ROS, EGFR, Src and Ras signaling pathways could all play a role in ANE-induced pathogenesis of oral cancer. Addition of PBL into BQ and curcumin consumption could inhibit the ANE-induced inflammatory response.

  8. Changes in expression of drug-metabolizing enzymes by single-walled carbon nanotubes in human respiratory tract cells.

    Science.gov (United States)

    Hitoshi, Kotaro; Katoh, Miki; Suzuki, Tomoko; Ando, Yoshinori; Nadai, Masayuki

    2012-03-01

    Single-walled carbon nanotubes (SWCNTs) have attracted attention for biomedical and biotechnological applications, such as drug delivery. However, there are concerns about the safety of SWCNTs for use in humans. To investigate the potential use of SWCNTs for targeted drug delivery to the lung, we examined their effect on drug-metabolizing enzymes in primary normal human bronchial epithelial (NHBE) cells from two donors and the lung carcinoma A549 cell line. Exposure of NHBE and A549 cells to SWCNTs dysregulated some of the important drug-metabolizing enzymes expressed in the human respiratory organs. Exposure of NHBE cells to SWCNTs for 24 h had a pronounced effect on expression of CYP1A1 and CYP1B1 mRNAs, which were reduced to less than 1% of control cells. These effects were also observed in A549 cells. Exposure of A549, HepG2 hepatic carcinoma cells, and MCF-7 breast carcinoma cells to tetrachlorodibenzo-p-dioxin induced the expression and enzymatic activity of CYP1A1 and CYP1B1, which were also suppressed by SWCNTs, suggesting that SWCNTs down-regulated both basal and induced CYP1A1 and CYP1B1 activities. Chromatin immunoprecipitation assays revealed that the down-regulatory effect of SWCNTs may be due to inhibition of activated aryl hydrocarbon receptor binding to the enhancer regions of the CYP1A1 and CYP1B1 genes. Down-regulation of CYP1A1 and CYP1B1 genes by SWCNTs may affect the defense mechanisms by reducing procarcinogen bioactivation in the human lung.

  9. Reductions in hepatic vitellogenin and estrogen receptor alpha expression by sediments from an agriculturally impacted waterway.

    Science.gov (United States)

    Sellin, Marlo K; Snow, Daniel D; Kolok, Alan S

    2010-01-31

    Previous studies have reported alterations in the endocrine function of fathead minnows (Pimephales promelas) collected and deployed in the Elkhorn River. The goal of the current study was to determine whether sediment from the Elkhorn River watershed could act as a source of endocrine-active compounds. To accomplish this, four aquaria containing sexually mature fathead minnows and polar organic chemical integrative samplers (POCIS) were established. The aquaria contained either: (1) laboratory water only, (2) Elkhorn River water only, (3) laboratory water and Elkhorn River sediment or (4) Elkhorn River water and Elkhorn River sediment. Steroid hormones were not detected in the extracts of POCIS or sediment. Pesticides were detected in POCIS extracts from tanks containing Elkhorn River water, but were not detected in the extracts of sediment or POCIS suspended in the tank containing laboratory water and Elkhorn River sediment suggesting that sediments do not act as a significant source of the 14 steroid hormones or 24 pesticides that were analyzed for in the current study. The hepatic mRNA expression of vitellogenin (vtg) and estrogen receptor alpha (ERalpha) in fathead minnows from each group was assessed. Female minnows exposed simultaneously to sediment and water collected from the Elkhorn River experienced defeminization as indicated by significant reductions in both vtg and ERalpha expression. Significant reductions in vtg mRNA expression were also observed in females exposed to laboratory water and Elkhorn River sediment, but not in females exposed to Elkhorn River water only. This finding suggests that exposures to sediments, rather than water, collected from the Elkhorn River lead to the defeminization of females. However, the compound(s) responsible for this effect have yet to be determined. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  10. Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6*1 and CYP2D6*10 using cell-based models in vitro

    Science.gov (United States)

    Qu, Qiang; Qu, Jian; Han, Lu; Zhan, Min; Wu, Lan-xiang; Zhang, Yi-wen; Zhang, Wei; Zhou, Hong-hao

    2014-01-01

    Aim: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6*1 and CYP2D6*10 in vitro. Methods: HepG2 cells were stably transfected with CYP2D6*1 and CYP2D6*10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. Results: HepG2-CYP2D6*1 and HepG2-CYP2D6*10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6*1- and CYP2D6*10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6*1 and CYP2D6*10. However, their Ki values for CYP2D6*1 and CYP2D6*10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. Conclusion: Six phytochemicals inhibit CYP2D6*1 and CYP2D6*10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6. PMID:24786236

  11. A decrease in hepatic microRNA-9 expression impairs gluconeogenesis by targeting FOXO1 in obese mice.

    Science.gov (United States)

    Yan, Caifeng; Chen, Jinfeng; Li, Min; Xuan, Wenying; Su, Dongming; You, Hui; Huang, Yujie; Chen, Nuoqi; Liang, Xiubin

    2016-07-01

    MicroRNA-9 (miR-9) is involved in the regulation of pancreatic beta cell function. However, its role in gluconeogenesis is still unclear. Our objective was to investigate the role of miR-9 in hepatic glucose production (HGP). MiR-9 expression was measured in livers of high-fat diet (HFD) mice and ob/ob mice. The methylation status of the miR-9-3 promoter regions in hepatocytes was determined by the methylation-specific PCR procedure. The binding activity of DNA methyltransferase (DNMT)1, DNMT3a and DNMT3b on the miR-9-3 promoter was detected by chromatin immunoprecipitation (ChIP) and quantitative real-time PCR assays. HGP was evaluated in vitro and in vivo. Glucose tolerance, insulin tolerance and pyruvate tolerance tests were also performed. Reduced miR-9 expression and hypermethylation of the miR-9-3 promoter were observed in the livers of obese mice. Further study showed that the binding of DNMT1, but not of DNMT3a and DNMT3b, to the miR-9-3 promoter was increased in hepatocytes from ob/ob mice. Knockdown of DNMT1 alleviated the decrease in hepatic miR-9 expression in vivo and in vitro. Overexpression of hepatic miR-9 improved insulin sensitivity in obese mice and inhibited HGP. In addition, deletion of hepatic miR-9 led to an increase in random and fasting blood glucose levels in lean mice. Importantly, silenced forkhead box O1 (FOXO1) expression reversed the gluconeogenesis and glucose production in hepatocytes induced by miR-9 deletion. Our observations suggest that the decrease in miR-9 expression contributes to an inappropriately activated gluconeogenesis in obese mice.

  12. Altered expression of iron regulatory proteins with aging is associated with transient hepatic iron accumulation after environmental heat stress.

    Science.gov (United States)

    Bloomer, Steven A; Han, Okhee; Kregel, Kevin C; Brown, Kyle E

    2014-01-01

    An increasing body of evidence suggests that dysregulation of iron metabolism contributes to age-related pathologies. We have previously observed increased hepatic iron with aging, and that environmental heat stress stimulates a further increase in iron and oxidative liver injury in old rats. The purpose of this study was to determine a mechanism for the increase in hepatic iron in old rats after heat stress. Young (6 mo) and old (24 mo) Fischer 344 rats were exposed to two heating bouts separated by 24 h. Livers were harvested after the second heat stress, and protein levels of the iron import protein, transferrin receptor-1 (TFR1), and the iron export protein, ferroportin (Fpn) were determined by immunoblot. In the nonheated condition, old rats had lower TFR1 expression, and higher Fpn expression. After heat stress, TFR1 declined in the old rats, and iron chelation studies demonstrated that this decline was dependent on a hyperthermia-induced increase in iron. TFR1 did not change in the young rats after heat stress. Since TFR1 is inversely regulated by iron, our results suggest that the increase in intracellular iron with aging and heat stress lower TFR1 expression. Fpn expression increased in both age groups after heat stress, but this response was delayed in old rats. This delay in the induction of an iron exporter suggests a mechanism for the increase in hepatic iron and oxidative injury after heat stress in aged organisms. © 2013.

  13. Naltrexone changes the expression of lipid metabolism-related proteins in the endoplasmic reticulum stress induced hepatic steatosis in mice.

    Science.gov (United States)

    Moslehi, Azam; Nabavizadeh, Fatemeh; Zekri, Ali; Amiri, Fatemeh

    2017-02-01

    Endoplasmic reticulum (ER) stress is closely associated with several chronic diseases such as obesity, atherosclerosis, type 2 diabetes, and hepatic steatosis. Steatosis in hepatocytes may also lead to disorders such as nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), fibrosis, and possibly cirrhosis. Opioid peptides are involved in triglyceride and cholesterol dysregulation. Naltrexone also attenuates ER stress induced hepatic steatosis in mice. In this study, we evaluated the effects of naltrexone on the expression of lipid metabolism-related nuclear factors and enzymes in the ER stress induced hepatic steatosis. C57/BL6 mice received saline, DMSO and naltrexone as control groups. In a fourth group, ER stress was induced by tunicamycin (TM) injection and in the last group, naltrexone was given before TM administration. Histopathological evaluations, real-time RT-PCR and western blot were performed. We found that GRP78, IRE1α, PERK and ATF6 gene expression and steatosis significantly reduced in naltrexone treated animals. Naltrexone alleviated the gene and protein expression of SREBP1c. Expression of ACAT1, apolipoprotein B (ApoB) and PPARα also increased after naltrexone treatment. In conclusion, this study, for the first time, shows that naltrexone has a considerable role in attenuation of ER stress-induced liver injury. © 2016 John Wiley & Sons Australia, Ltd.

  14. Up-regulation of gonadotropin mRNA-expression at the onset of gametogenesis in the roach (Rutilus rutilus): evidence for an important role of brain-type aromatase (cyp19a1b) in the pituitary.

    Science.gov (United States)

    Trubiroha, Achim; Kroupova, Hana; Wuertz, Sven; Kloas, Werner

    2012-09-15

    The present study characterized changes in key parameters of reproduction in adult roach (Rutilus rutilus) from Lake Grosser Mueggelsee (Berlin, Germany) during natural gametogenesis. Fish of both sexes were sampled in monthly intervals between April and August in order to cover the onset of gametogenesis. Investigated parameters included gonad histology, plasma levels of 17β-oestradiol (E2), testosterone (T), 11-ketotestosterone (11-KT), and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P) as well as the expression of gonadotropin subunits in the pituitary. Furthermore, the mRNA-expression of brain-type aromatase (cyp19a1b), androgen receptor (ar), and estrogen receptor isoforms was studied at the pituitary level. The onset of gametogenesis - as indicated by follicles with cortical alveoli in females and first spermatogonia B in males - was observed in July, accompanied by a significant up-regulation of follicle-stimulating hormone β (fshβ) mRNA in the pituitary in both sexes. On the other hand, luteinizing hormone β (lhβ) mRNA increased later on in August. In males, the increase of fshβ mRNA in July coincided with a rise in plasma 11-KT concentrations. In females, E2 in plasma increased later, not until August, shortly before true vitellogenesis (late cortical alveoli stage). Expression of sex steroid receptors in the pituitary revealed only minor seasonal fluctuations. Most pronounced, ar mRNA displayed the highest level pre-spawning in both sexes. Interestingly, cyp19a1b mRNA-expression in the pituitary increased in parallel with fshβ already before any changes in plasma E2 or T occurred. These data suggest an important role of pituitary FSH and aromatase at the onset of gametogenesis in the roach. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Designing, Construction and Expression of a Recombinant Fusion Protein Comprising the Hepatitis E Virus ORF2 and Rotavirus NSP4 in the Baculovirus Expression System

    Science.gov (United States)

    Makvandi, Manoochehr; Teimoori, Ali; Neisi, Niloofar; Samarbafzadeh, Alireza

    2016-01-01

    Background The hepatitis E virus (HEV) accounts for hepatitis E infection with relatively high mortality rate in pregnant women that can lead to fulminant hepatitis. The baculovirus expression system (BES) has the capability to produce high-level recombinant proteins and could be useful for vaccine designing. Objectives The aim of this study was designing a recombinant hepatitis E virus ORF2 and Rotavirus NSP4 (ORF2-NSP4) and to evaluating construction these recombinant proteins in the BES. Methods The truncated ORF2 gene (112-607) and truncated ORF2-NSP4 were subcloned in pFastBac1 plasmid, separately, followed by digestion and confirmed by digestion and sequencing. Then the products were transformed into Escherichia coli DH5α and retransformed in DH10Bac competent cells. Finally the white colonies containing Bacmid DNA subjected to PCR for confirming transformation. Bacmid DNA containing HEV truncated ORF2 and HEV truncated ORF2-NSP4 genes were transfected into SF9 cells using BES. The expressed proteins in the cell lysate were evaluated by SDS-PAGE and determined by the western blot assay. Results The lengths of subcloned genes, truncated ORF2 and truncated ORF2-NSP4 were 1500 and 2000bp, respectively. After retransforming in DH10Bac, the size of PCR products were 300 bp in Bacmid DNA without recombination while it was 4300 and 3800 bp in Bacmid truncated ORF2-NSP4 and Bacmid truncated ORF2 PCR products. The analysis of protein expression by SDS-PAGE and immunoblotting revealed the presence of 56 KDa for truncated ORF2 and 74.5 KDa for truncated ORF2-NSP4 proteins. Conclusions The results of the present study showed that the baculovirus expression system (SF9 cells) was able to express truncated ORF2 and truncated ORF2-NSP4 proteins as a potential candidate vaccine. PMID:28138375

  16. Abundance of DLK1, differential expression of CYP11B1, CYP21A2 and MC2R, and lack of INSL3 distinguish testicular adrenal rest tumours from Leydig cell tumours

    DEFF Research Database (Denmark)

    Lottrup, Grete; Nielsen, John Erik; Skakkebæk, Niels Erik

    2015-01-01

    ; and delta-like 1 homolog (DLK1) and insulin-like 3 (INSL3) in testicular biopsies with TART, orchiectomy specimens with LCTs and samples from human fetal adrenals. RESULTS: Expression of testicular steroidogenic enzymes was observed in all specimens. All investigated adrenal steroidogenic markers were...

  17. WhichCyp

    DEFF Research Database (Denmark)

    Rostkowski, Michal; Spjuth, Ola; Rydberg, Patrik

    2013-01-01

    SUMMARY: In this work we present WhichCyp, a tool for prediction of which cytochromes P450 isoforms (among 1A2, 2C9, 2C19, 2D6 and 3A4) a given molecule is likely to inhibit. The models are built from experimental high-throughput data using support vector machines and molecular signatures...

  18. TSA increases C/EBP‑α expression by increasing its lysine acetylation in hepatic stellate cells.

    Science.gov (United States)

    Tao, Li-Li; Ding, Di; Yin, Wei-Hua; Peng, Ji-Ying; Hou, Chen-Jian; Liu, Xiu-Ping; Chen, Yao-Li

    2017-11-01

    CCAAT enhancer binding protein‑α (C/EBP‑α) is a transcription factor expressed only in certain tissues, including the liver. It has been previously demonstrated that C/EBP‑α may induce apoptosis in hepatic stellate cells (HSCs), raising the question of whether acetylation of C/EBP‑α is associated with HSCs, and the potential associated mechanism. A total of three histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), suberoylanilide hydroxamic acid and nicotinamide, were selected to determine whether acetylation affects C/EBP‑α expression. A Cell Counting Kit‑8 assay was used to determine the rate of proliferation inhibition following treatment with varying doses of the three HDACIs in HSC‑T6 and BRL‑3A cells. Western blot analysis was used to examine Caspase‑3, ‑8, ‑9, and ‑12 levels in HSC‑T6 cells treated with adenoviral‑C/EBP‑α and/or TSA. Following treatment with TSA, a combination of reverse transcription‑quantitative polymerase chain reaction and western blot analyses was used to determine the inherent C/EBP‑α mRNA and protein levels in HSC‑T6 cells at 0, 1, 2, 4, 8, 12, 24, 36 and 48 h. Nuclear and cytoplasmic proteins were extracted to examine C/EBP‑α distribution. Co‑immunoprecipitation analysis was used to examine the lysine acetylation of C/EBP‑α. It was observed that TSA inhibited the proliferation of HSC‑T6 cells to a greater extent compared with BRL‑3A cells, following treatment with the three HDACIs. TSA induced apoptosis in HSC‑T6 cells and enhanced the expression of C/EBP‑α. Following treatment of HSC‑T6 cells with TSA, inherent C/EBP‑α expression increased in a time‑dependent manner, and its lysine acetylation simultaneously increased. Therefore, the results of the present study suggested that TSA may increase C/EBP‑α expression by increasing its lysine acetylation in HSCs.

  19. Insights into CYP2B6-mediated drug–drug interactions

    Directory of Open Access Journals (Sweden)

    William D. Hedrich

    2016-09-01

    Full Text Available Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors constitutive androstane receptor (CAR and pregnane X receptor (PXR in the liver. In addition to CYP2B6, these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%–10% of clinically used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent advances made in assessing clinical ramifications of important CYP2B6-mediated drug–drug interactions.

  20. Insights into CYP2B6-mediated drug-drug interactions.

    Science.gov (United States)

    Hedrich, William D; Hassan, Hazem E; Wang, Hongbing

    2016-09-01

    Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) in the liver. In addition to CYP2B6, these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%-10% of clinically used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent advances made in assessing clinical ramifications of important CYP2B6-mediated drug-drug interactions.

  1. The role of suppression of hepatic SCD1 expression in the metabolic effects of dietary methionine restriction.

    Science.gov (United States)

    Forney, Laura A; Stone, Kirsten P; Wanders, Desiree; Ntambi, James M; Gettys, Thomas W

    2017-10-05

    Dietary methionine restriction (MR) produces concurrent increases in energy intake and expenditure, but the proportionately larger increase in energy expenditure (EE) effectively limits weight gain and adipose tissue accretion over time. Increased hepatic fibroblast growth factor-21 (FGF21) is essential to MR-dependent increases in EE, but it is unknown whether the downregulation of hepatic stearoyl-coenzyme A desaturase-1 (SCD1) by MR could also be a contributing factor. Global deletion of SCD1 mimics cold exposure in mice housed at 23 °C by compromising the insular properties of the skin. The resulting cold stress increases EE, limits fat deposition, reduces hepatic lipids, and increases insulin sensitivity by activating thermoregulatory thermogenesis. To examine the efficacy of MR in the absence of SCD1 and without cold stress, the biological efficacy of MR in Scd1-/- mice housed near thermoneutrality (28 °C) was evaluated. Compared with wild-type mice on the control diet, Scd1-/- mice were leaner, had higher EE, lower hepatic and serum triglycerides, and lower serum leptin and insulin. Although dietary MR increased adipose tissue UCP1 expression, hepatic Fgf21 messenger RNA, 24 h EE, and reduced serum triglycerides in Scd1-/- mice, it failed to reduce adiposity or produce any further reduction in hepatic triglycerides, serum insulin, or serum leptin. These findings indicate that even when thermal stress is minimized, global deletion of SCD1 mimics and effectively masks many of the metabolic responses to dietary MR. However, the retention of several key effects of dietary MR in this model indicates that SCD1 is not a mediator of the biological effects of the diet.

  2. CXCL10 Decreases GP73 Expression in Hepatoma Cells at the Early Stage of Hepatitis C Virus (HCV Infection

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2013-12-01

    Full Text Available Golgi protein 73 (GP73, which is up-regulated in hepatocellular carcinoma (HCC, has recently been identified as a novel serum marker for HCC diagnosis. Several reports also noted the increased levels of GP73 expression in chronic liver disease in patients with acute hepatitis of various etiologies, chronic Hepatitis C virus (HCV infection and alcoholic liver disease. The molecular mechanisms of GP73 expression in HCV related liver disease still need to be determined. In this study, we aimed to evaluate the effect of HCV infection on GP73 expression. GP73 was highly expressed in Huh7, Hep3B, 293T and HUVEC cells, and was low-expressed in HepG2 cells. HCV infection led to down-regulation of GP73 in Huh7 and HepG2/CD81 cells at the early stage of infection. CXCL10 decreased GP73 expression in Huh7 and HepG2 cells. Up-regulation of GP73 was noted in hepatocytes with cytopathic effect at advanced stage of HCV infection, and further research is needed to determine the unknown factors affecting GP73 expression. In conclusion, our study provided additional evidence for the roles of GP73 in liver disease.

  3. In vivo effect of quercetin flavonoid on hepatic gene expression and ...

    African Journals Online (AJOL)

    Therefore, the present study aimed to investigate the in vivo effects of quercetin on mRNA and activity levels of hepatic glutathione-S Transferase (GSTa2) and glutathione peroxidase (GPx) in aged rats. Quercetin treatment resulted in significant increase in relative hepatic mRNA levels for glutathione peroxidase, liver GPx ...

  4. Inhibition of hepatitis B virus surface gene expression by antisense oligodeoxynucleotides in a human hepatoma cell line.

    Science.gov (United States)

    Reinis, M; Reinisová, M; Korec, E; Hlozánek, I

    1993-01-01

    We have studied the inhibitory effect of antisense oligodeoxynucleotides on the expression of hepatitis B virus surface antigens. Human hepatoma cell line PLC/PRF/5 harbors several integrated copies of the HBV genome and produces and secretes hepatitis B virus surface antigen (HBsAg) to the medium. Synthetic antisense oligodeoxynucleotides complementary to various regions of the surface antigen gene were synthesized and their ability to block its expression was tested. Oligodeoxynucleotides (17- and 21-mers) complementary to regions covering ATG codons of both preS2 and S genes significantly inhibited preS2 and S protein production. Less efficient inhibition was achieved when the oligonucleotide complementary to the inside S gene region was assayed.

  5. An inducible transgenic mouse model for immune mediated hepatitis showing clearance of antigen expressing hepatocytes by CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Marcin Cebula

    Full Text Available The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreER(T2 mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred K(b/OVA257-264-specific OT-I T cells to OVA_X_CreER(T2 mice or generated triple transgenic OVA_X CreER(T2_X_OT-I mice. OT-I T cells become activated in OVA_X_CreER(T2 mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreER(T2_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreER(T2_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance.

  6. 16-Dehydropregnenolone lowers serum cholesterol by up-regulation of CYP7A1 in hyperlipidemic male hamsters.

    Science.gov (United States)

    Ramakrishna, Rachumallu; Kumar, Durgesh; Bhateria, Manisha; Gaikwad, Anil Nilkanth; Bhatta, Rabi Sankar

    2017-04-01

    16-Dehydropregnenolone (DHP) has been developed and patented as a promising antihyperlipidemic agent by CSIR-Central Drug Research Institute (CSIR-CDRI), India. Although DHP is implicated in controlling cholesterol homeostasis, the mechanism underlying its pharmacological effect in hyperlipidemic disease models is poorly understood. In the present study, we postulated that DHP lowers serum lipids through regulating the key hepatic genes accountable for cholesterol metabolism. The hypothesis was tested on golden Syrian hamsters fed with high-fat diet (HFD) following oral administration of DHP at a dose of 72mg/kg body weight for a period of one week. The serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and total bile acids (TBA) in feces were measured. Real time comparative gene expression studies were performed for CYP7A1, LXRα and PPARα level in liver tissue of hamsters. The results revealed that the DHP profoundly decreased the levels of serum TC, TG, LDL-C and atherogenic index (AI), whilst elevated the HDL-C/TC ratio. Besides, DHP exhibited an anti-hyperlipidemic effect in the HFD induced hyperlipidemic hamsters by means of: (1) up-regulating the gene expression of CYP7A1 encoded cholesterol 7α-hydroxylase, that promotes the catabolism of cholesterol to bile acid; (2) inducing the gene expression of transcription factors LXRα and PPARα; (3) increasing the TBA excretion through feces. Collectively, the findings presented confer the hypolipidemic activity of DHP via up-regulation of hepatic CYP7A1 pathway that promotes cholesterol-to-bile acid conversion and bile acid excretion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characterization of equine cytochrome P450: role of CYP3A in the metabolism of diazepam.

    Science.gov (United States)

    Nakayama, S M M; Ikenaka, Y; Hayami, A; Mizukawa, H; Darwish, W S; Watanabe, K P; Kawai, Y K; Ishizuka, M

    2016-10-01

    Research on drug metabolism and pharmacokinetics in large animal species including the horse is scarce because of the challenges in conducting in vivo studies. The metabolic reactions catalyzed by cytochrome P450s (CYPs) are central to drug pharmacokinetics. This study elucidated the characteristics of equine CYPs using diazepam (DZP) as a model compound as this drug is widely used as an anesthetic and sedative in horses, and is principally metabolized by CYPs. Diazepam metabolic activities were measured in vitro using horse and rat liver microsomes to clarify the species differences in enzyme kinetic parameters of each metabolite (temazepam [TMZ], nordiazepam [NDZ], p-hydroxydiazepam [p-OH-DZP], and oxazepam [OXZ]). In both species microsomes, TMZ was the major metabolite, but the formation rate of p-OH-DZP was significantly less in the horse. Inhibition assays with a CYP-specific inhibitors and antibody suggested that CYP3A was the main enzyme responsible for DZP metabolism in horse. Four recombinant equine CYP3A isoforms expressed in Cos-7 cells showed that CYP3A96, CYP3A94, and CYP3A89 were important for TMZ formation, whereas CYP3A97 exhibited more limited activity. Phylogenetic analysis suggested diversification of CYP3As in each mammalian order. Further study is needed to elucidate functional characteristics of each equine CYP3A isoform for effective use of diazepam in horses. © 2016 John Wiley & Sons Ltd.

  8. Lupinus albus Conglutin Gamma Modifies the Gene Expressions of Enzymes Involved in Glucose Hepatic Production In Vivo.

    Science.gov (United States)

    González-Santiago, Ana E; Vargas-Guerrero, Belinda; García-López, Pedro M; Martínez-Ayala, Alma L; Domínguez-Rosales, José A; Gurrola-Díaz, Carmen M

    2017-06-01

    Lupinus albus seeds contain conglutin gamma (Cγ) protein, which exerts a hypoglycemic effect and positively modifies proteins involved in glucose homeostasis. Cγ could potentially be used to manage patients with impaired glucose metabolism, but there remains a need to evaluate its effects on hepatic glucose production. The present study aimed to analyze G6pc, Fbp1, and Pck1 gene expressions in two experimental animal models of impaired glucose metabolism. We also evaluated hepatic and renal tissue integrity following Cγ treatment. To generate an insulin resistance model, male Wistar rats were provided 30% sucrose solution ad libitum for 20 weeks. To generate a type 2 diabetes model (STZ), five-day-old rats were intraperitoneally injected with streptozotocin (150 mg/kg). Each animal model was randomized into three subgroups that received the following oral treatments daily for one week: 0.9% w/v NaCl (vehicle; IR-Ctrl and STZ-Ctrl); metformin 300 mg/kg (IR-Met and STZ-Met); and Cγ 150 mg/kg (IR-Cγ and STZ-Cγ). Biochemical parameters were assessed pre- and post-treatment using colorimetric or enzymatic methods. We also performed histological analysis of hepatic and renal tissue. G6pc, Fbp1, and Pck1 gene expressions were quantified using real-time PCR. No histological changes were observed in any group. Post-treatment G6pc gene expression was decreased in the IR-Cγ and STZ-Cγ groups. Post-treatment Fbp1 and Pck1 gene expressions were reduced in the IR-Cγ group but increased in STZ-Cγ animals. Overall, these findings suggest that Cγ is involved in reducing hepatic glucose production, mainly through G6pc inhibition in impaired glucose metabolism disorders.

  9. PPARδ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro

    Science.gov (United States)

    Kan, Chin Fung Kelvin; Singh, Amar Bahadur; Dong, Bin; Shende, Vikram Ravindra; Liu, Jingwen

    2017-01-01

    The arachidonic acid preferred long-chain acyl-CoA synthetase 4 (ACSL4) is a key enzyme for fatty acid metabolism in various metabolic tissues. In this study, we utilized hamsters fed a normal chow diet, a high-fat diet or a high cholesterol and high fat diet (HCHFD) as animal models to explore novel transcriptional regulatory mechanisms for ACSL4 expression under hyperlipidemic conditions. Through cloning hamster ACSL4 homolog and tissue profiling ACSL4 mRNA and protein expressions we observed a selective upregulation of ACSL4 in testis and liver of HCHFD fed animals. Examination of transcriptional activators of the ACSL family revealed an increased hepatic expression of PPARδ but not PPARα in HCHFD fed hamsters. To explore a role of PPARδ in dietary cholesterol-mediated upregulation of ACSL4, we administered a PPARδ specific agonist L165041 to normolipidemic and dyslipidemic hamsters. We observed significant increases of hepatic ACSL4 mRNA and protein levels in all L165041-treated hamsters as compared to control animals. The induction of ACSL4 expression by L165041 in liver tissue in vivo was recapitulated in human primary hepatocytes and hepatocytes isolated from hamster and mouse. Moreover, employing the approach of adenovirus-mediated gene knockdown, we showed that depletion of PPARδ in hamster hepatocytes specifically reduced ACSL4 expression. Finally, utilizing HepG2 as a model system, we demonstrate that PPARδ activation leads to increased ACSL4 promoter activity, mRNA and protein expression, and consequently higher arachidonoyl-CoA synthetase activity. Taken together, we have discovered a novel PPARδ-mediated regulatory mechanism for ACSL4 expression in liver tissue and cultured hepatic cells. PMID:25645621

  10. Coffee consumption delays the hepatitis and suppresses the inflammation related gene expression in the Long-Evans Cinnamon rat.

    Science.gov (United States)

    Katayama, Masafumi; Donai, Kenichiro; Sakakibara, Hiroyuki; Ohtomo, Yukiko; Miyagawa, Makoto; Kuroda, Kengo; Kodama, Hiroko; Suzuki, Kazufumi; Kasai, Noriyuki; Nishimori, Katsuhiko; Uchida, Takafumi; Watanabe, Kouichi; Aso, Hisashi; Isogai, Emiko; Sone, Hideko; Fukuda, Tomokazu

    2014-04-01

    Large-scale epidemiological studies have shown that drinking more than two cups of coffee per day reduces the risks of hepatitis and liver cancer. However, the heterogeneity of the human genome requires studies of experimental animal models with defined genetic backgrounds to evaluate the coffee effects on liver diseases. We evaluated the efficacy of coffee consumption with one of experimental animal models for human disease. We used the Long Evans Cinnamon (LEC) rat, which onsets severe hepatitis and high incidence of liver cancer, due to the accumulation of copper and iron in livers caused by the genetic mutation in Atp7B gene, and leading to the continuous oxidative stress. We determined the expression of inflammation related genes, and amounts of copper and iron in livers, and incidence of the pre-neoplastic foci in the liver tissue of LEC rats. Coffee administration for 25 weeks delayed the occurrence of hepatitis by two weeks, significantly improved survival, reduced the expression of inflammatory cytokines, and reduced the incidence of small pre-neoplastic liver foci in LEC rats. There was no significant difference in the accumulation of copper and iron in livers, indicating that coffee administration does not affect to the metabolism of these metals. These findings indicate that drinking coffee potentially prevents hepatitis and liver carcinogenesis through its anti-inflammatory effects. This study showed the efficacy of coffee in the prevention of hepatitis and liver carcinogenesis in the LEC model. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. Hepatitis B viral core protein disrupts human host gene expression by binding to promoter regions

    Directory of Open Access Journals (Sweden)

    Guo Yanhai

    2012-10-01

    Full Text Available Abstract Background The core protein (HBc of hepatitis B virus (HBV has been implicated in the malignant transformation of chronically-infected hepatocytes and displays pleiotropic functions, including RNA- and DNA-binding activities. However, the mechanism by which HBc interacts with the human genome to exert effects on hepatocyte function remains unknown. This study investigated the distribution of HBc binding to promoters in the human genome and evaluated its effects on the related genes’ expression. Results Whole-genome chromatin immunoprecipitation microarray (ChIP-on-chip analysis was used to identify HBc-bound human gene promoters. Gene Ontology and pathway analyses were performed on related genes. The quantitative polymerase chain reaction assay was used to verify ChIP-on-chip results. Five novel genes were selected for luciferase reporter assay evaluation to assess the influence of HBc promoter binding. The HBc antibody immunoprecipitated approximately 3100 human gene promoters. Among these, 1993 are associated with known biological processes, and 2208 regulate genes with defined molecular functions. In total, 1286 of the related genes mediate primary metabolic processes, and 1398 encode proteins with binding activity. Sixty-four of the promoters regulate genes related to the mitogen-activated protein kinase (MAPK pathways, and 41 regulate Wnt/beta-catenin pathway genes. The reporter gene assay indicated that HBc binding up-regulates proto-oncogene tyrosine-protein kinase (SRC, type 1 insulin-like growth factor receptor (IGF1R, and neurotrophic tyrosine kinase receptor 2 (NTRK2, and down-regulates v-Ha-ras Harvey rat sarcoma viral oncogene (HRAS. Conclusion HBc has the ability to bind a large number of human gene promoters, and can disrupt normal host gene expression. Manipulation of the transcriptional profile in HBV-infected hepatocytes may represent a key pathogenic mechanism of HBV infection.

  12. Serum serotonin reduced the expression of hepatic transporter Mrp2 and P-gp via regulating nuclear receptor CAR in PI-IBS rats

    National Research Council Canada - National Science Library

    Wu, Xin-an; Rao, Zhi; Shao, Yun-yun; Ma, Kang; Qin, Hong-yan; Ma, Yan-rong; Han, Miao; Huang, Jing

    2015-01-01

    .... The expression of hepatic transporters was assessed using the Western-blot technique in a 2,4,6-trinitrobenzenesulfonic-acid-induced rat model of post-infectious irritable bowel syndrome (PI-IBS...

  13. An Elf2-like transcription factor acts as repressor of the mouse ecto-5'-nucleotidase gene expression in hepatic myofibroblasts.

    Science.gov (United States)

    Fausther, Michel; Lavoie, Elise G; Goree, Jessica R; Dranoff, Jonathan A

    2017-12-01

    Hepatic fibrosis represents a pathological wound healing and tissue repair process triggered in response to chronic liver injury. A heterogeneous population of activated non-parenchymal liver cells, known as liver myofibroblasts, functions as the effector cells in hepatic fibrosis. Upon activation, liver myofibroblasts become fibrogenic, acquiring contractile properties and increasing collagen production capacity, while developing enhanced sensitivity to endogenous molecules and factors released in the local microenvironment. Hepatic extracellular adenosine is a bioactive small molecule, increasingly recognized as an important regulator of liver myofibroblast functions, and an important mediator in the pathogenesis of liver fibrosis overall. Remarkably, ecto-5'-nucleotidase/Nt5e/Cd73 enzyme, which accounts for the dominant adenosine-generating activity in the extracellular medium, is expressed by activated liver myofibroblasts. However, the molecular signals regulating Nt5e gene expression in liver myofibroblasts remain poorly understood. Here, we show that activated mouse liver myofibroblasts express Nt5e gene products and characterize the putative Nt5e minimal promoter in the mouse species. We describe the existence of an enhancer sequence upstream of the mouse Nt5e minimal promoter and establish that the mouse Nt5e minimal promoter transcriptional activity is negatively regulated by an Elf2-like Ets-related transcription factor in activated mouse liver myofibroblasts.

  14. Involvement of KLF11 in hepatic glucose metabolism in mice via suppressing of PEPCK-C expression.

    Directory of Open Access Journals (Sweden)

    Huabing Zhang

    Full Text Available Abnormal hepatic gluconeogenesis is related to hyperglycemia in mammals with insulin resistance. Despite the strong evidences linking Krüppel-like factor 11 (KLF11 gene mutations to development of Type 2 diabetes, the precise physiological functions of KLF11 in vivo remain largely unknown.In current investigation, we showed that KLF11 is involved in modulating hepatic glucose metabolism in mice. Overexpression of KLF11 in primary mouse hepatocytes could inhibit the expression of gluconeogenic genes, including phosphoenolpyruvate carboxykinase (cytosolic isoform, PEPCK-C and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, subsequently decreasing the cellular glucose output. Diabetic mice with overexpression of KLF11 gene in livers significantly ameliorated hyperglycemia and glucose intolerance; in contrast, the knockdown of KLF11 expression in db/m and C57BL/6J mice livers impaired glucose tolerance.Our data strongly indicated the involvement of KLF11 in hepatic glucose homeostasis via modulating the expression of PEPCK-C.

  15. Organochloride pesticides induced hepatic ABCG5/G8 expression and lipogenesis in Chinese patients with gallstone disease.

    Science.gov (United States)

    Ji, Guixiang; Xu, Cheng; Sun, Haidong; Liu, Qian; Hu, Hai; Gu, Aihua; Jiang, Zhao-Yan

    2016-06-07

    Organochlorine pesticides (OCPs) are one kind of persistent organic pollutants. Although they are reported to be associated with metabolic disorders, the underlying mechanism is unclear. We explored the association of OCPs with gallstone disease and its influence on hepatic lipid metabolism. OCPs levels in omentum adipose tissues from patients with and without gallstone disease between 2008 and 2011 were measured by GC-MS. Differences of gene expression involved in hepatic lipid metabolism and hepatic lipids content were compared in liver biopsies between groups with high and low level of OCPs. Using HepG2 cell lines, the influence on hepatic lipid metabolism by individual OCP was evaluated in vitro. In all patients who were from non-occupational population, there were high levels of β-hexachlorocyclohexane (β-HCH) and p',p'-dichloroethylene (p',p'-DDE) accumulated in adipose tissues. Both β-HCH and p', p'-DDE levels were significantly higher in adipose tissues from patients with gallstone disease (294.3± 313.5 and 2222± 2279 ng/g of lipid) than gallstone-free controls (282.7± 449.0 and 2025±2664 ng/g of lipid, PG8 (+34% and +27%, PG8 which promoting gallstone disease as well as lipogenesis.

  16. Effects of early cholesterol intake on cholesterol 7 alpha hydroxylase (Cyp7a1) expression in piglets receiving sow's breast milk or infant formula until weaning

    Science.gov (United States)

    Unlike breast milk, infant formulas are not rich in cholesterol. To compensate for the dietary loss, hepatic cholesterol synthesis is increased in formula-fed infants. Observational studies have reported significant increases in serum cholesterol and triglycerides in adults that received formula dur...

  17. Solubility as a limiting factor for expression of hepatitis A virus proteins in insect cell-baculovirus system

    Directory of Open Access Journals (Sweden)

    Haroldo Cid da Silva Junior

    2016-08-01

    Full Text Available The use of recombinant proteins may represent an alternative model to inactivated vaccines against hepatitis A virus (HAV. The present study aimed to express the VP1 protein of HAV in baculovirus expression vector system (BEVS. The VP1 was expressed intracellularly with molecular mass of 35 kDa. The VP1 was detected both in the soluble fraction and in the insoluble fraction of the lysate. The extracellular expression of VP1 was also attempted, but the protein remained inside the cell. To verify if hydrophobic characteristics would also be present in the HAV structural polyprotein, the expression of P1-2A protein was evaluated. The P1-2A polyprotein remained insoluble in the cellular extract, even in the early infection stages. These results suggest that HAV structural proteins are prone to form insoluble aggregates. The low solubility represents a drawback for production of large amounts of HAV proteins in BEVS.

  18. Cytochromes P450 are Expressed in Proliferating Cells in Barrett's Metaplasia

    Directory of Open Access Journals (Sweden)

    Steven J. Hughes

    1999-06-01

    Full Text Available The expression of cytochromes P450 (CYP in Barrett's esophagus and esophageal squamous mucosa was investigated. Esophagectomy specimens from 23 patients were examined for CYP expression of CYP1A2, CYP3A4, CYP2C9/10, and CYP2E1 by immunohistochemical analysis, and the expression of CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 in these tissues was further confirmed by reverse transcription polymerase chain reaction. Immunohistochemical analysis of esophageal squamous mucosa (n = 12 showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 proteins, but it was noted that cells within the basal proliferative zone did not express CYPs. Immunohistochemical analysis of Barrett's esophagus (n = 13 showed expression of CYP1A2, CYP3A4, CYP2E1, and CYP2C9/10 that was prominent in the basal glandular regions, which are areas containing a high percentage of actively proliferating cells. Immunohistochemical staining for both proliferating cell nuclear antigen and the CYPs further supported the colocalization of CYP expression to areas of active cell proliferation in Barrett's esophagus, whereas in the esophageal squamous epithelium, CYP expression is limited to cells that are not proliferating. RT-PCR with amplification product sequence analysis confirmed CYP1A1, CYP3A4, CYP1B1, CYP2E1, and CYP2C9/10 mRNA expression in Barrett's esophagus. These data suggest that the potential ability of cells in Barrett's esophagus to both activate carcinogens and proliferate may be important risk factors affecting carcinogenesis in this metaplastic tissue.

  19. RNA-Seq Quantification of Hepatic Drug Processing Genes in Germ-Free Mice.

    Science.gov (United States)

    Selwyn, Felcy Pavithra; Cui, Julia Yue; Klaassen, Curtis D

    2015-10-01

    Intestinal bacteria have been shown to be important in regulating host intermediary metabolism and contributing to obesity. However, relatively less is known about the effect of intestinal bacteria on the expression of hepatic drug-processing genes in the host. This study characterizes the expression of hepatic drug-processing genes in germ-free (GF) mice using RNA-Seq. Total RNA were isolated from the livers of adult male conventional and GF C57BL/6J mice (n = 3 per group). In the livers of GF mice, the mRNA of the aryl hydrocarbon receptor target gene Cyp1a2 was increased 51%, and the mRNA of the peroxisome proliferator-activated receptor α (PPARα) target gene Cyp4a14 was increased 202%. Conversely, the mRNA of the constitutive androstane receptor (CAR) target gene Cyp2b10 was decreased 57%, and the mRNA of the pregnane X receptor target gene Cyp3a11 was decreased 87% in GF mice. Although other non-Cyp phase-1 enzymes in the livers of GF mice were only moderately affected, there was a marked down-regulation in the phase-2 enzymes glutathione S-transferases p1 and p2, as well as a marked up-regulation in the major bile acid transporters Na(+)-taurocholate cotransporting polypeptide and organic anion-transporting polypeptide 1b2, and the cholesterol transporter ATP-binding cassette transporter Abcg5/Abcg8. This study demonstrates that intestinal bacteria regulate the expression of a large number of drug-processing genes, which suggests that intestinal bacteria are responsible for some individual differences in drug responses. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  20. CCL2 is Upregulated by Decreased miR-122 Expression in Iron-Overload-Induced Hepatic Inflammation

    Directory of Open Access Journals (Sweden)

    Yuxiao Tang

    2017-11-01

    Full Text Available Background/Aims: Iron overload (IO is accompanied by hepatic inflammation. The chemokine (C-C motif ligand 2 (CCL2 mediates inflammation, and its overexpression is associated with IO. However, whether IO results in CCL2 overexpression in the liver and the underlying mechanisms are unclear. Methods: We subjected mice to IO by administering intraperitoneal injections of dextran-iron or by feeding mice a 3% dextran-iron diet to observe the effects of IO on miR-122/CCL2 expression through real-time qPCR and Western blot analysis. We also used indicators, including the expression of the inflammatory cytokine, the inflammation score based on H&E staining and the serum content of ALT and AST to evaluate the effects of IO on hepatic inflammation. Meanwhile, we observed the effects of vitamin E on IO-induced hepatic inflammation. In cells, we used 100 µΜ FeSO4 or 30 µΜ Holo-Tf to produce IO and observed the roles of miR-122 in regulating CCL2 expression by using miR-122 mimics or inhibitors to overexpress or inhibit miR-122. Then, we used a dual-luciferase reporter assay to prove that miR-122 regulates CCL2 expression through direct