WorldWideScience

Sample records for hemolysins

  1. Staphylococcus cohnii hemolysins - isolation, purification and properties.

    Rózalska, M; Szewczyk, E M

    2008-01-01

    A total 355 of Staphylococcus cohnii isolates from hospital environment, patients (newborns), medical staff and from non-hospital environment were tested for hemolytic activity. Ninety-one % of S. cohnii ssp. cohnii and 74.5 % S. cohnii ssp. urealyticus strains exhibited hemolysis synergistic to S. aureus ATCC 25923 strain. Crude preparations of hemolysins of both bacterial subspecies presented delta-hemolysin, but not alpha- and beta-toxin activity. Highly pure hemolysins were obtained by semipreparative SDS-PAGE or by organic solvent extraction from the freeze-dried crude preparations. Native-PAGE and 2D-PAGE showed their high heterogeneity. Molar masses of single hemolysin units estimated by the Tris-Tricine-SDS-PAGE were calculated as 3.47 kDa for S. cohnii ssp. cohnii and 3.53 kDa for S. cohnii ssp. urealyticus.

  2. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus.

    Raghunath, Pendru

    2014-01-01

    Vibrio parahaemolyticus is the leading cause of seafood borne bacterial gastroenteritis in the world, often associated with the consumption of raw or undercooked seafood. However, not all strains of V. parahaemolyticus are pathogenic. The thermostable direct hemolysin (TDH) or TDH-related hemolysin (TRH) encoded by tdh and trh genes, respectively, are considered major virulence factors in V. parahaemolyticus. However, about 10% of clinical strains do not contain tdh and/or trh. Environmental isolates of V. parahaemolyticus lacking tdh and/or trh are also highly cytotoxic to human gastrointestinal cells. Even in the absence of these hemolysins, V. parahaemolyticus remains pathogenic indicating other virulence factors exist. This mini review aims at discussing the possible roles of tdh and trh genes in clinical and environmental isolates of V. parahaemolyticus.

  3. Cell vacuolation caused by Vibrio cholerae hemolysin.

    Figueroa-Arredondo, P; Heuser, J E; Akopyants, N S; Morisaki, J H; Giono-Cerezo, S; Enríquez-Rincón, F; Berg, D E

    2001-03-01

    Non-O1 strains of Vibrio cholerae implicated in gastroenteritis and diarrhea generally lack virulence determinants such as cholera toxin that are characteristic of epidemic strains; the factors that contribute to their virulence are not understood. Here we report that at least one-third of diarrhea-associated nonepidemic V. cholerae strains from Mexico cause vacuolation of cultured Vero cells. Detailed analyses indicated that this vacuolation was related to that caused by aerolysin, a pore-forming toxin of Aeromonas; it involved primarily the endoplasmic reticulum at early times (approximately 1 to 4 h after exposure), and resulted in formation of large, acidic, endosome-like multivesicular vacuoles (probably autophagosomes) only at late times (approximately 16 h). In contrast to vacuolation caused by Helicobacter pylori VacA protein, that induced by V. cholerae was exacerbated by agents that block vacuolar proton pumping but not by endosome-targeted weak bases. It caused centripetal redistribution of endosomes, reflecting cytoplasmic alkalinization. The gene for V. cholerae vacuolating activity was cloned and was found to correspond to hlyA, the structural gene for hemolysin. HlyA protein is a pore-forming toxin that causes ion leakage and, ultimately, eukaryotic cell lysis. Thus, a distinct form of cell vacuolation precedes cytolysis at low doses of hemolysin. We propose that this vacuolation, in itself, contributes to the virulence of V. cholerae strains, perhaps by perturbing intracellular membrane trafficking or ion exchange in target cells and thereby affecting local intestinal inflammatory or other defense responses.

  4. Cell Vacuolation Caused by Vibrio cholerae Hemolysin

    Figueroa-Arredondo, Paula; Heuser, John E.; Akopyants, Natalia S.; Morisaki, J. Hiroshi; Giono-Cerezo, Silvia; Enríquez-Rincón, Fernando; Berg, Douglas E.

    2001-01-01

    Non-O1 strains of Vibrio cholerae implicated in gastroenteritis and diarrhea generally lack virulence determinants such as cholera toxin that are characteristic of epidemic strains; the factors that contribute to their virulence are not understood. Here we report that at least one-third of diarrhea-associated nonepidemic V. cholerae strains from Mexico cause vacuolation of cultured Vero cells. Detailed analyses indicated that this vacuolation was related to that caused by aerolysin, a pore-forming toxin of Aeromonas; it involved primarily the endoplasmic reticulum at early times (∼1 to 4 h after exposure), and resulted in formation of large, acidic, endosome-like multivesicular vacuoles (probably autophagosomes) only at late times (∼16 h). In contrast to vacuolation caused by Helicobacter pylori VacA protein, that induced by V. cholerae was exacerbated by agents that block vacuolar proton pumping but not by endosome-targeted weak bases. It caused centripetal redistribution of endosomes, reflecting cytoplasmic alkalinization. The gene for V. cholerae vacuolating activity was cloned and was found to correspond to hlyA, the structural gene for hemolysin. HlyA protein is a pore-forming toxin that causes ion leakage and, ultimately, eukaryotic cell lysis. Thus, a distinct form of cell vacuolation precedes cytolysis at low doses of hemolysin. We propose that this vacuolation, in itself, contributes to the virulence of V. cholerae strains, perhaps by perturbing intracellular membrane trafficking or ion exchange in target cells and thereby affecting local intestinal inflammatory or other defense responses. PMID:11179335

  5. Water transport by the bacterial channel alpha-hemolysin

    Paula, S.; Akeson, M.; Deamer, D.

    1999-01-01

    This study is an investigation of the ability of the bacterial channel alpha-hemolysin to facilitate water permeation across biological membranes. alpha-Hemolysin channels were incorporated into rabbit erythrocyte ghosts at varying concentrations, and water permeation was induced by mixing the ghosts with hypertonic sucrose solutions. The resulting volume decrease of the ghosts was followed by time-resolved optical absorption at pH 5, 6, and 7. The average single-channel permeability coefficient of alpha-hemolysin for water ranged between 1.3x10-12 cm/s and 1.5x10-12 cm/s, depending on pH. The slightly increased single-channel permeability coefficient at lower pH-values was attributed to an increase in the effective pore size. The activation energy of water transport through the channel was low (Ea=5.4 kcal/mol), suggesting that the properties of water inside the alpha-hemolysin channel resemble those of bulk water. This conclusion was supported by calculations based on macroscopic hydrodynamic laws of laminar water flow. Using the known three-dimensional structure of the channel, the calculations accurately predicted the rate of water flow through the channel. The latter finding also indicated that water permeation data can provide a good estimate of the pore size for large channels.

  6. [Relationship between the anti-hemolysin activity and the structure of catechins and theaflavins].

    Ikigai, H; Toda, M; Okubo, S; Hara, Y; Shimamura, T

    1990-11-01

    We examined the corresponding isomers of catechins and theaflavins for anti-hemolysin activities against Staphylococcus aureus alpha-toxin and Vibrio cholerae O1 hemolysin. Catechins and theaflavins showed anti-hemolysin activities in a dose-dependent manner. Among the catechins tested, (-)catechin gallate, (-)epicatechin gallate and (-)epigallocatechin gallate having galloyl groups in their molecules showed more potent anti-hemolysin activities against both toxins. On the other hand, free catechins, i. e. (-)catechin, (-)gallocatechin, (-) epicatechin and (-)epigallocatechin had low anti-hemolysin activities against alpha-toxin. Although (-)catechin or (-)gallocatechin had no effect on cholera hemolysin, (-) epicatechin and (-)epigallocatechin were slightly inhibitory. Among dextrocatechins, (+) epicatechin and (+)epigallocatechin proved to be more effective than (+)catechin and (+) gallocatechin. The anti-hemolysin activities of theaflavins against alpha-toxin and cholera hemolysin were dependent on the number of the galloyl group in their structure. These results suggest that the tertiary structure of the catechin or theaflavin and the active site of hemolysin, that affects the interaction between them, plays an important role in the anti-hemolysin activity.

  7. Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives.

    Rokitskaya, Tatyana I; Nazarov, Pavel A; Golovin, Andrey V; Antonenko, Yuri N

    2017-06-06

    Measurements of ion conductance through α-hemolysin pore in a bilayer lipid membrane revealed blocking of the ion channel by a series of rhodamine 19 and rhodamine B esters. The longest dwell closed time of the blocking was observed with rhodamine 19 butyl ester (C4R1), whereas the octyl ester (C8R1) was of poor effect. Voltage asymmetry in the binding kinetics indicated that rhodamine derivatives bound to the stem part of the aqueous pore lumen. The binding frequency was proportional to a quadratic function of rhodamine concentrations, thereby showing that the dominant binding species were rhodamine dimers. Two levels of the pore conductance and two dwell closed times of the pore were found. The dwell closed times lengthened as the voltage increased, suggesting impermeability of the channel for the ligands. Molecular docking analysis revealed two distinct binding sites within the lumen of the stem of the α-hemolysin pore for the C4R1 dimer, but only one binding site for the C8R1 dimer. The blocking of the α-hemolysin nanopore by rhodamines could be utilized in DNA sequencing as additional optical sensing owing to bright fluorescence of rhodamines if used for DNA labeling. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Characterization of recombinant terrelysin, a hemolysin of Aspergillus terreus.

    Nayak, Ajay P; Blachere, Françoise M; Hettick, Justin M; Lukomski, Slawomir; Schmechel, Detlef; Beezhold, Donald H

    2011-01-01

    Fungal hemolysins are potential virulence factors. Some fungal hemolysins belong to the aegerolysin protein family that includes cytolysins capable of lysing erythrocytes and other cells. Here, we describe a hemolysin from Aspergillus terreus called terrelysin. We used the genome sequence database to identify the terrelysin sequence based on homology with other known aegerolysins. Aspergillus terreus mRNA was isolated, transcribed to cDNA and the open reading frame for terrelysin amplified by PCR using specific primers. Using the pASK-IBA6 cloning vector, we produced recombinant terrelysin (rTerrelysin) as a fusion product in Escherichia coli. The recombinant protein was purified and using MALDI-TOF MS determined to have a mass of 16,428 Da. Circular dichroism analysis suggests the secondary structure of the protein to be predominantly β-sheet. Results from thermal denaturation of rTerrelysin show that the protein maintained the β-sheet confirmation up to 65°C. Polyclonal antibody to rTerrelysin recognized a protein of approximately 16.5 kDa in mycelial extracts from A. terreus.

  9. Hemolysin as a Virulence Factor for Systemic Infection with Isolates of Mycobacterium avium Complex

    Maslow, Joel N.; Dawson, David; Carlin, Elizabeth A.; Holland, Steven M.

    1999-01-01

    Isolates of the Mycobacterium avium complex were examined for hemolysin expression. Only invasive isolates of M. avium were observed to be hemolytic (P < 0.001), with activity the greatest for isolates of serovars 4 and 8. Thus, M. avium hemolysin appears to represent a virulence factor necessary for invasive disease. PMID:9889239

  10. [Antibacterial and anti-hemolysin activities of tea catechins and their structural relatives].

    Toda, M; Okubo, S; Ikigai, H; Shimamura, T

    1990-03-01

    Among catechins tested, (-)epigallocatechin (EGC), (-)epicatechin gallate (ECg), (-) epigallocatechin gallate (EGCg) inhibited the growth of Staphylococcus aureus, Vibrio cholerae O1 classical Inaba 569B and El Tor Inaba V86. S. aureus was more sensitive than V. cholerae O1 to these compounds. EGCg showed also a bactericidal activity against V. cholerae O1 569B. Pyrogallol showed a stronger antibacterial activity against S. aureus and V. cholerae O1 than tannic and gallic acid. Rutin or caffein had no effect on them. ECg and EGCg showed the most potent anti-hemolysin activity against S. aureus alpha-toxin, Vibrio parahaemolyticus thermostable direct hemolysin (Vp-TDH) and cholera hemolysin. Among catechin relatives, only tannic acid had a potent anti-hemolysin activity against alpha-toxin. These results suggest that the catechol and pyrogallol groups are responsible for the antibacterial and bactericidal activities, while the conformation of catechins might play an important role in the anti-hemolysin activity.

  11. Proteolysis of truncated hemolysin A yields a stable dimerization interface

    Novak, Walter R.P.; Bhattacharyya, Basudeb; Grilley, Daniel P.; Weaver, Todd M. (Wabash); (UW)

    2017-02-21

    Wild-type and variant forms of HpmA265 (truncated hemolysin A) fromProteus mirabilisreveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structureviathe implementation of on-edge main-chain hydrogen bonds donated by residues 243–263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formedviamain-chain hydrogen bonds donated by residues 203–215 of adjacent monomers, and a previously unobserved tetramer is formed. In addition, an eight-stranded antiparallel β-sheet is formed from the flap regions of crystallographically related monomers in the high-salt structures. This new interface is possible owing to additional proteolysis of these variants after Tyr240. The interface formed in the high-salt crystal forms of hemolysin A variants may mimic the on-edge β-strand positioning used in template-assisted hemolytic activity.

  12. El Tor hemolysin of Vibrio cholerae O1 forms channels in planar lipid bilayer membranes.

    Ikigai, H; Ono, T; Iwata, M; Nakae, T; Shimamura, T

    1997-05-15

    We investigated the channel formation by El Tor hemolysin (molecular mass, 65 kDa) of Vibrio cholerae O1 biotype El Tor in planar lipid bilayers. The El Tor hemolysin channel exhibited asymmetric and hyperbolic membrane current with increasing membrane potential, meaning that the channel is voltage dependent. The zero-current membrane potential measured in KCI solution showed that permeability ratio PK+/PCl- was 0.16, indicating that the channel is 6-fold more anion selective over cation. The hemolysin channel frequently flickered in the presence of divalent cations, suggesting that the channel spontaneously opens and closes. These data imply that the El Tor hemolysin damages target cells by the formation of transmembrane channels and, consequently, is the cause of osmotic cytolysis.

  13. Structural requirements of cholesterol for binding to Vibrio cholerae hemolysin.

    Ikigai, Hajime; Otsuru, Hiroshi; Yamamoto, Koichiro; Shimamura, Tadakatsu

    2006-01-01

    Cholesterol is necessary for the conversion of Vibrio cholerae hemolysin (VCH) monomers into oligomers in liposome membranes. Using different sterols, we determined the stereochemical structures of the VCH-binding active groups present in cholesterol. The VCH monomers are bound to cholesterol, diosgenin, campesterol, and ergosterol, which have a hydroxyl group at position C-3 (3betaOH) in the A ring and a C-C double bond between positions C-5 and C-6 (C-C Delta(5)) in the B ring. They are not bound to epicholesterol and dihydrocholesterol, which form a covalent link with a 3alphaOH group and a C-C single bond between positions C-5 and C-6, respectively. This result suggests that the 3betaOH group and the C-CDelta(5) bond in cholesterol are required for VCH monomer binding. We further examined VCH oligomer binding to cholesterol. However, this oligomer did not bind to cholesterol, suggesting that the disappearance of the cholesterol-binding potential of the VCH oligomer might be a result of the conformational change caused by the conversion of the monomer into the oligomer. VCH oligomer formation was observed in liposomes containing sterols with the 3betaOH group and the C-C Delta(5) bond, and it correlated with the binding affinity of the monomer to each sterol. Therefore, it seems likely that monomer binding to membrane sterol leads to the assembly of the monomer. However, since oligomer formation was induced by liposomes containing either epicholesterol or dihydrocholesterol, the 3betaOH group and the C-C Delta(5) bond were not essential for conversion into the oligomer.

  14. NIGERLYSINTM, HEMOLYSIN PRODUCED BY ASPERGILLUS NIGER, CAUSES LETHALITY OF PRIMARY RAT CORTICAL NEURONAL CELLS IN VITRO

    Aspergillus niger produced a proteinaceous hemolysin, nigerlysinTM when incubated on sheep's blood agar at both 23° C and 37°C. Nigerlysin was purified from tryptic soy broth culture filtrate. Purified nigerlysin has a molecular weight of approximately 72 kDa, with an...

  15. The amino acid sequences and activities of synergistic hemolysins from Staphylococcus cohnii.

    Mak, Pawel; Maszewska, Agnieszka; Rozalska, Malgorzata

    2008-10-01

    Staphylococcus cohnii ssp. cohnii and S. cohnii ssp. urealyticus are a coagulase-negative staphylococci considered for a long time as unable to cause infections. This situation changed recently and pathogenic strains of these bacteria were isolated from hospital environments, patients and medical staff. Most of the isolated strains were resistant to many antibiotics. The present work describes isolation and characterization of several synergistic peptide hemolysins produced by these bacteria and acting as virulence factors responsible for hemolytic and cytotoxic activities. Amino acid sequences of respective hemolysins from S. cohnii ssp. cohnii (named as H1C, H2C and H3C) and S. cohnii ssp. urealyticus (H1U, H2U and H3U) were identical. Peptides H1 and H3 possessed significant amino acid homology to three synergistic hemolysins secreted by Staphylococcus lugdunensis and to putative antibacterial peptide produced by Staphylococcus saprophyticus ssp. saprophyticus. On the other hand, hemolysin H2 had a unique sequence. All isolated peptides lysed red cells from different mammalian species and exerted a cytotoxic effect on human fibroblasts.

  16. The β-hemolysin and intracellular survival of Streptococcus agalactiae in human macrophages.

    Sagar, Anubha; Klemm, Carolin; Hartjes, Lara; Mauerer, Stefanie; van Zandbergen, Ger; Spellerberg, Barbara

    2013-01-01

    S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches.

  17. The β-Hemolysin and Intracellular Survival of Streptococcus agalactiae in Human Macrophages

    Sagar, Anubha; Klemm, Carolin; Hartjes, Lara; Mauerer, Stefanie; van Zandbergen, Ger; Spellerberg, Barbara

    2013-01-01

    S. agalactiae (group B streptococci, GBS) is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches. PMID:23593170

  18. The β-hemolysin and intracellular survival of Streptococcus agalactiae in human macrophages.

    Anubha Sagar

    Full Text Available S. agalactiae (group B streptococci, GBS is a major microbial pathogen in human neonates and causes invasive infections in pregnant women and immunocompromised individuals. The S. agalactiae β-hemolysin is regarded as an important virulence factor for the development of invasive disease. To examine the role of β-hemolysin in the interaction with professional phagocytes, the THP-1 monocytic cell line and human granulocytes were infected with a serotype Ia S. agalactiae wild type strain and its isogenic nonhemolytic mutant. We could show that the nonhemolytic mutants were able to survive in significantly higher numbers than the hemolytic wild type strain, in THP-1 macrophage-like cells and in assays with human granulocytes. Intracellular bacterial multiplication, however, could not be observed. The hemolytic wild type strain stimulated a significantly higher release of Tumor Necrosis Factor-α than the nonhemolytic mutant in THP-1 cells, while similar levels of the chemokine Interleukin-8 were induced. In order to investigate bacterial mediators of IL-8 release in this setting, purified cell wall preparations from both strains were tested and found to exert a potent proinflammatory stimulus on THP-1 cells. In conclusion, our results indicate that the β-hemolysin has a strong influence on the intracellular survival of S. agalactiae and that a tightly controlled regulation of β-hemolysin expression is required for the successful establishment of S. agalactiae in different host niches.

  19. Calcium-dependent binding of Escherichia coli alpha-hemolysin to erythrocytes

    Boehm, D.F.

    1989-01-01

    Alpha hemolysin (AH), a protein secreted by certain strains of Escherichia coli, causes lysis of erythrocytes (RBCs) and is cytotoxic for other cells. The primary structure of AH contains an eight amino acid sequence tandemly repeated 13 times near the C-terminus. These repeated sequences are essential for hemolytic activity. AH also requires an unknown modification by an accessory protein, Hly C, for hemolytic activity. The role of calcium in the interaction of Ah with RBCs was investigated using recombinant strains which produced active and inactive forms of the toxin. Hemolytic activity was calcium-dependent. Osmotic protection experiments and immunoblots of SDS-PAGE separated proteins from washed, toxin-treated RBCs showed that the binding of active AH to RBCs was calcium-dependent. Binding of active AH to RBCs increased the calcium permeability of RBC membranes and resulted in changes in membrane protein profiles. The changes in membrane proteins did not cause the lysis of the cells. These results were consistent with a mechanism of lysis involving the formation of cation-selective pores in the membranes of target cells. 45 Ca-autoradiography of the recombinant hemolysins separated by SDS-PAGE and transferred to nitrocellulose showed that active AH bound calcium. The domain involved in binding calcium was identified as the tandemly repeated sequences since a deletion hemolysin missing 11 of the 13 repeated sequences did not bind calcium. This deletion hemolysin was non-hemolytic and did not bind to RBC membranes. Hemolysin lacking the Hly C modification was also non-hemolytic and did not bind to RBC membranes. This unmodified AH contained the repeated sequences and bound calcium as efficiently as active AH

  20. Subinhibitory concentrations of thymol reduce enterotoxins A and B and alpha-hemolysin production in Staphylococcus aureus isolates.

    Jiazhang Qiu

    Full Text Available BACKGROUND: Targeting bacterial virulence factors is now gaining interest as an alternative strategy to develop new types of anti-infective agents. It has been shown that thymol, when used at low concentrations, can inhibit the TSST-1 secretion in Staphylococcus aureus. However, there are no data on the effect of thymol on the production of other exotoxins (e.g., alpha-hemolysin and enterotoxins by S. aureus. METHODOLOGY/PRINCIPAL FINDINGS: Secretion of alpha-hemolysin, SEA and SEB in both methicillin-sensitive and methicillin-resistant S. aureus isolates cultured with graded subinhibitory concentrations of thymol was detected by immunoblot analysis. Hemolysin and tumor necrosis factor (TNF release assays were performed to elucidate the biological relevance of changes in alpha-hemolysin, SEA and SEB secretion induced by thymol. In addition, the influence of thymol on the transcription of hla, sea, and seb (the genes encoding alpha-hemolysin, SEA and SEB, respectively was analyzed by quantitative RT-PCR. Thymol inhibited transcription of hla, sea and seb in S. aureus, resulting in a reduction of alpha-hemolysin, SEA and SEB secretion and, thus, a reduction in hemolytic and TNF-inducing activities. CONCLUSIONS/SIGNIFICANCE: Subinhibitory concentrations of thymol decreased the production of alpha-hemolysin, SEA and SEB in both MSSA and MRSA in a dose-dependent manner. These data suggest that thymol may be useful for the treatment of S. aureus infections when used in combination with beta-lactams and glycopeptide antibiotics, which induce expression of alpha-hemolysin and enterotoxins at subinhibitory concentrations. Furthermore, the structure of thymol may potentially be used as a basic structure for development of drugs aimed against these bacterial virulence factors.

  1. Characterization of the response chemiluminescence of neutrophils human beings to the hemolysin Escherichia coli alpha

    Garcia, J.

    2000-01-01

    Escherichia coli alpha hemolysin (AH) evoked a luminol-amplified chemiluminescence (CL) response from human polymorphonuclear leukocytes (PMN). Analysis of kinetic parameters of the PMN CL response to AH established similarities with that of PMN to the calcium ionophore A23187. PMN CL responses to both AH and A23187 were equally decreased by preincubating PMN with A63612, a hidroxamic acid derivative and lipooxigenase inhibitor, showing that the CL response to both hemolysin and ionophore share a common mechanism, probably activation of leukotriene synthesis, due to calcium entry into the cells brought about by AH and A23187. In addition, the CL response of PMN to AH was lowered by the hydroxyl radical scavenger dimethyl sulfoxide, further suggesting arachidonate metabolism is involved in CL response. (Author) [es

  2. Inhibitory effect of totarol on exotoxin proteins hemolysin and enterotoxins secreted by Staphylococcus aureus.

    Shi, Ce; Zhao, Xingchen; Li, Wenli; Meng, Rizeng; Liu, Zonghui; Liu, Mingyuan; Guo, Na; Yu, Lu

    2015-10-01

    Staphylococcus aureus (S. aureus) causes a wide variety of infections, which are of major concern worldwide. S. aureus produces multiple virulence factors, resulting in food infection and poisoning. These virulence factors include hyaluronidases, proteases, coagulases, lipases, deoxyribonucleases and enterotoxins. Among the extracellular proteins produced by S. aureus that contribute to pathogenicity, the exotoxins α-hemolysin, staphylococcal enterotoxin A (SEA) and staphylococcal enterotoxin B (SEB) are thought to be of major significance. Totarol, a plant extract, has been revealed to inhibit the proliferation of several pathogens effectively. However, there are no reports on the effects of totarol on the production of α-hemolysin, SEA or SEB secreted by S. aureus. The aim of this study was to evaluate the effects of totarol on these three exotoxins. Hemolysis assay, western blotting and real-time reverse transcriptase-PCR assay were performed to identify the influence of graded subinhibitory concentrations of totarol on the production of α-hemolysin and the two major enterotoxins, SEA and SEB, by S. aureus in a dose-dependent manner. Moreover, an enzyme linked immunosorbent assay showed that the TNF-α production of RAW264.7 cells stimulated by S. aureus supernatants was inhibited by subinhibitory concentrations of totarol. Form the data, we propose that totarol could potentially be used as a promising natural compound in the food and pharmaceutical industries.

  3. Extracellular overexpression of recombinant Thermobifida fusca cutinase by alpha-hemolysin secretion system in E. coli BL21(DE3

    Su Lingqia

    2012-01-01

    Full Text Available Abstract Background Extracellular expression of proteins has an absolute advantage in a large-scale industrial production. In our previous study, Thermobifida fusca cutinase, an enzyme mainly utilized in textile industry, was expressed via type II secretory system in Escherichia coli BL21(DE3, and it was found that parts of the expressed protein was accumulated in the periplasmic space. Due to the fact that alpha-hemolysin secretion system can export target proteins directly from cytoplasm across both cell membrane of E. coli to the culture medium, thus in the present study we investigated the expression of cutinase using this alpha-hemolysin secretion system. Results T. fusca cutinase was fused with the specific signal peptide of alpha-hemolysin scretion system and expressed in E. coli BL21(DE3. In addition, HlyB and HlyD, strain-specific translocation components of alpha-hemolysin secretion system, were coexpressed to facilitate the enzyme expression. The cultivation of this engineered cell showed that cutinase activity in the culture medium reached 334 U/ml, which is 2.5 times that from type II secretion pathway under the same culture condition. The recombinant cutinase was further purified. Biochemical characterization of purified enzyme, which had an α-hemolysin secretion pathway signal peptide attached, had substrate specificity, pH and temperature profile, as well as application capability in bioscouring similar to that of wild-type cutinase. Conclusions In the present study, T. fusca cutinase was successfully secreted to the culture media by α-hemolysin secretion system. This is the first report of cutinase being efficiently secreted by this pathway. Due to the limited cases of successful expression of industrial enzyme by E. coli α-hemolysin secretion system, our study further explored the utilization of this pathway in industrial enzymes.

  4. Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein.

    Wartenberg, Dirk; Lapp, Katrin; Jacobsen, Ilse D; Dahse, Hans-Martin; Kniemeyer, Olaf; Heinekamp, Thorsten; Brakhage, Axel A

    2011-11-01

    Surface-associated and secreted proteins represent primarily exposed components of Aspergillus fumigatus during host infection. Several secreted proteins are known to be involved in defense mechanisms or immune evasion, thus, probably contributing to pathogenicity. Furthermore, several secreted antigens were identified as possible biomarkers for the verification of diseases caused by Aspergillus species. Nevertheless, there is only limited knowledge about the composition of the secretome and about molecular functions of particular proteins. To identify secreted proteins potentially essential for virulence, the core secretome of A. fumigatus grown in minimal medium was determined. Two-dimensional gel electrophoretic separation and subsequent MALDI-TOF-MS/MS analyses resulted in the identification of 64 different proteins. Additionally, secretome analyses of A. fumigatus utilizing elastin, collagen or keratin as main carbon and nitrogen source were performed. Thereby, the alkaline serine protease Alp1 was identified as the most abundant protein and hence presumably represents an important protease during host infection. Interestingly, the Asp-hemolysin (Asp-HS), which belongs to the protein family of aegerolysins and which was often suggested to be involved in fungal virulence, was present in the secretome under all growth conditions tested. In addition, a second, non-secreted protein with an aegerolysin domain annotated as Asp-hemolysin-like (HS-like) protein can be found to be encoded in the genome of A. fumigatus. Generation and analysis of Asp-HS and HS-like deletion strains revealed no differences in phenotype compared to the corresponding wild-type strain. Furthermore, hemolysis and cytotoxicity was not altered in both single-deletion and double-deletion mutants lacking both aegerolysin genes. All mutant strains showed no attenuation in virulence in a mouse infection model for invasive pulmonary aspergillosis. Overall, this study provides a comprehensive

  5. Detection of Vibrio harveyi using hemolysin primer in tiger shrimp Penaeus monodon

    Irma Suriyani

    2015-05-01

    Full Text Available ABSTRACT This study was aimed to analyze the sensitivity and ability of primer hemolysin in detecting pathogenetic Vibrio on tiger shrimp post-larvae (PL exposed under different exposure times in media inoculated with Vibrio harveyi. The PL of tiger shrimp were infected with 106 cfu/mL of V. harveyi by immersion method for three, six, 12, 24, 48 and 72 hours. The presence of hemolisin genes was detected by PCR techniques. The electrophoresis detected narrow hemolysin genes after PL were exposed for three and six hours. Clear visible bands of DNA Vibrio were observed for 12 hours of exposure. In contrast, no detected hemolysin gene of Vibrio was observed for PL exposed within 24, 48, and 72 hours. The rapid detection on Vibrio pathogenic for tiger shrimp PL should be conducted within three to 12 hours of exposure. No recommendation in utilizing this rapid detection for tiger shrimp PL exposed beyond 12 hours of V. harveyi. Keywords: specific primer, luminous Vibrio bacteria, pathogenic, PCR method, hemolysin gene  ABSTRAK Penelitian ini bertujuan untuk mengetahui kemampuan atau sensitivitas primer hemolisin dalam mendeteksi Vibrio patogen dengan lama pemaparan berbeda. Penelitian ini dilakukan dengan menginfeksikan Vibrio harveyi pada benur udang dengan metode perendaman pada konsentrasi 106 cfu/mL. Pengambilan sampel dilakukan pada waktu tiga, enam, 12, 24, 48, dan 72 jam pascainfeksi. Keberadaan gen hemolisin pada bakteri V. harveyi dideteksi menggunakan teknik polymerase chain reaction (PCR. Hasil elektroforesis memperlihatkan bahwa pada pemaparan tiga dan enam jam keberadaan gen hemolisin dari bakteri Vibrio patogen yang diinfeksikan sudah dapat terdeteksi pada benur walaupun masih terlihat tipis. Pada pemaparan 12 jam terlihat sangat jelas pita-pita DNA dari bakteri patogen. Sedangkan pada pemaparan 24, 48, dan 72 jam sudah tidak terdeteksi lagi gen hemolisin dari bakteri Vibrio. Hal ini diduga disebabkan terjadinya penurunan populasi

  6. Mechanism of membrane damage by El Tor hemolysin of Vibrio cholerae O1.

    Ikigai, H; Akatsuka, A; Tsujiyama, H; Nakae, T; Shimamura, T

    1996-08-01

    El Tor hemolysin (ETH; molecular mass, 65 kDa) derived from Vibrio cholerae O1 spontaneously assembled oligomeric aggregates on the membranes of rabbit erythrocyte ghosts and liposomes. Membrane-associated oligomers were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting into two to nine bands with apparent molecular masses of 170 to 350 kDa. ETH assembled oligomers on a liposomal membrane consisting of phosphatidylcholine and cholesterol, but not on a membrane of phosphatidylcholine alone. Cholesterol could be replaced with diosgenin or ergosterol but not with 5alpha-cholestane-3-one, suggesting that sterol is essential for the oligomerization. The treatment of carboxyfluorescein-encapsulated liposomes with ETH caused a rapid release of carboxyfluorescein into the medium. Because dextrin 20 (molecular mass, 900 Da) osmotically protected ETH-mediated hemolysis, this hemolysis is likely to be caused by pore formation on the membrane. The pore size(s) estimated from osmotic protection assays was in the range of 1.2 to 1.6 nm. The pore formed on a rabbit erythrocyte membrane was confirmed morphologically by electron microscopy. Thus, we provide evidence that ETH damages the target by the assembly of hemolysin oligomers and pore formation on the membrane.

  7. Langevin dynamics simulation on the translocation of polymer through α-hemolysin pore

    Sun, Li-Zhen; Luo, Meng-Bo

    2014-01-01

    The forced translocation of a polymer through an α-hemolysin pore under an electrical field is studied using a Langevin dynamics simulation. The α-hemolysin pore is modelled as a connection of a spherical vestibule and a cylindrical β-barrel and polymer-pore attraction is taken into account. The results show that polymer-pore attraction can help the polymer enter the vestibule and the β-barrel as well; however, a strong attraction will slow down the translocation of the polymer through the β-barrel. The mean translocation time for the polymer to thread through the β-barrel increases linearly with the polymer length. By comparing our results with that of a simple pore without a vestibule, we find that the vestibule helps the polymer enter and thread through the β-barrel. Moreover, we find that it is easier for the polymer to thread through the β-barrel if the polymer is located closer to the surface of the vestibule. Some simulation results are explained qualitatively by theoretically analyzing the free-energy landscape of polymer translocation. (paper)

  8. Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase.

    Kellie Burnside

    2010-06-01

    Full Text Available Exotoxins, including the hemolysins known as the alpha (alpha and beta (beta toxins, play an important role in the pathogenesis of Staphylococcus aureus infections. A random transposon library was screened for S. aureus mutants exhibiting altered hemolysin expression compared to wild type. Transposon insertions in 72 genes resulting in increased or decreased hemolysin expression were identified. Mutations inactivating a putative cyclic di-GMP synthetase and a serine/threonine phosphatase (Stp1 were found to reduce hemolysin expression, and mutations in genes encoding a two component regulator PhoR, LysR family transcriptional regulator, purine biosynthetic enzymes and a serine/threonine kinase (Stk1 increased expression. Transcription of the hla gene encoding alpha toxin was decreased in a Deltastp1 mutant strain and increased in a Deltastk1 strain. Microarray analysis of a Deltastk1 mutant revealed increased transcription of additional exotoxins. A Deltastp1 strain is severely attenuated for virulence in mice and elicits less inflammation and IL-6 production than the Deltastk1 strain. In vivo phosphopeptide enrichment and mass spectrometric analysis revealed that threonine phosphorylated peptides corresponding to Stk1, DNA binding histone like protein (HU, serine-aspartate rich fibrinogen/bone sialoprotein binding protein (SdrE and a hypothetical protein (NWMN_1123 were present in the wild type and not in the Deltastk1 mutant. Collectively, these studies suggest that Stk1 mediated phosphorylation of HU, SrdE and NWMN_1123 affects S. aureus gene expression and virulence.

  9. Change of hemoagglutinin and hemolysin titers in hemolymph of gastropod molluscs in response to immunization with sheep erythrocytes

    Baskakov, AV; Polevshchikov, AV; Harazova, AD; Krasnodembskii, EG

    2000-01-01

    This work deals with analysis of changes of the levels of hemoagglutinins (HA) and hemolysins (HL) in hemolymph of three gastropod species, Planorbius corneus, Lymnea stagnalis, and Achatina fulica, in response to immunization with sheep erythrocytes (ShE). The levels of HA and HL were determined

  10. Itraconazole-resistant Candida auris with phospholipase, proteinase and hemolysin activity from a case of vulvovaginitis.

    Kumar, Dharmendra; Banerjee, Tuhina; Pratap, Chandra Bhan; Tilak, Ragini

    2015-04-15

    Since the emergence of pathogenic non-albicans Candida species, a number of new isolates have been added to the list. One such unusual species is Candida auris (C. auris), recently isolated and studied in few reports. In this study, a case of vulvovaginitis caused by Candida auris incidentally identified by molecular methods using internal transcribed spacer polymerase chain reaction (ITS PCR) is described. Antifungal susceptibility testing revealed the isolate to be resistant to itraconazole (MIC ≥ 2 µg/ml) and expressed important virulence factors including phospholipase, proteinase and hemolysin activity. The patient was successfully treated with oral fluconazole and did not have any invasive fungemia. Very few cases of this emerging pathogen have been reported. However, its isolation from clinical specimens reveals the significance of non-albicans candida species over C. albicans and the diversity of Candida spp causing infections.

  11. Molecular detection of HpmA and HlyA hemolysin of uropathogenic Proteus mirabilis.

    Cestari, Silvia Emanoele; Ludovico, Marilucia Santos; Martins, Fernando Henrique; da Rocha, Sérgio Paulo Dejato; Elias, Waldir Pereira; Pelayo, Jacinta Sanchez

    2013-12-01

    Urinary tract infection (UTI) is one of the bacterial infections frequently documented in humans. Proteus mirabilis is associated with UTI mainly in individuals with urinary tract abnormality or related with vesicular catheterism and it can be difficult to treat because of the formation of stones in the bladder and kidneys. These stones are formed due to the presence of urease synthesized by the bacteria. Another important factor is that P. mirabilis produces hemolysin HpmA, used by the bacteria to damage the kidney tissues. Proteus spp. samples can also express HlyA hemolysin, similar to that found in Escherichia coli. A total of 211 uropathogenic P. mirabilis isolates were analyzed to detect the presence of the hpmA and hpmB genes by the techniques of polymerase chain reaction (PCR) and dot blot and hlyA by PCR. The hpmA and hpmB genes were expressed by the RT-PCR technique and two P. mirabilis isolates were sequenced for the hpmA and hpmB genes. The presence of the hpmA and hpmB genes was confirmed by PCR in 205 (97.15 %) of the 211 isolates. The dot blot confirmed the presence of the hpmA and hpmB genes in the isolates that did not amplify in the PCR. None of the isolates studied presented the hlyA gene. The hpmA and hpmB genes that were sequenced presented 98 % identity with the same genes of the HI4320 P. mirabilis sample. This study showed that the PCR technique has good sensitivity for detecting the hpmA and hpmB genes of P. mirabilis.

  12. Geographical variation in the presence of genes encoding superantigenic exotoxins and beta-hemolysin among Staphylococcus aureus isolated from bovine mastitis in Europe and USA

    Larsen, H. D.; Aarestrup, Frank Møller; Jensen, N. E.

    2002-01-01

    The object was to examine the geographical variation in the presence of superantigenic exotoxins and beta-hemolysin among epidemiologically independent Staphyirrcoccus aureus isolates from bovine mastitis. A total of 462 S. aureus isolates from nine European countries and USA were examined...... for the individual exotoxins. The genes encoding enterotoxin C, TSST-1, and enterotoxin D were the most common superantigens. The present and earlier studies demonstrate that the superantigenic exotoxins that were investigated in this study, do not play a role in the pathogenesis of bovine S. aureus mastitis...... regions in the beta-hemolysin encoding gene of the Norwegian isolates is suggested, and should be investigated further. The consistent presence of beta-hemolysin suggests that this factor, or a co-existing gene correlated to beta-hemolysin, may be an active virulence factor in the pathogenesis of bovine S...

  13. Virtual screening of compounds derived from Garcinia pedunculata as an inhibitor of gamma hemolysin component A of Staphylococcus aureus

    Tarali Chowdhury

    2014-03-01

    Full Text Available With the emergence of multi-drug resistant pathogens at alarming frequency, there has been an increase interest in the development of novel drugs from natural resources. The use of higher plants and preparations made from them to treat infections is a longstanding practice in a large part of the population, especially in the developing countries, where there is dependence on traditional medicine for a variety of ailments. The virtual screening method was used in this study to analyze the docking and inhibitory activities of some natural bioactive compounds present within Garcinia pedunculata against hemolysin toxin of Staphylococcus aureus, gamma-hemolysin component A hlgA. The study resulted in identifying compounds 1,3,6,7-tetrahydroxy-xanthone and garcinone D with high binding affinity towards the target protein revealing them as potent inhibitors that could be further used to create new drug source in the treatment of staphyloccocal infections.

  14. Insights into Alpha-Hemolysin (Hla) Evolution and Expression among Staphylococcus aureus Clones with Hospital and Community Origin

    Tavares, Ana; Nielsen, Jesper B; Boye, Kit

    2014-01-01

    BACKGROUND: Alpha-hemolysin (Hla) is a major virulence factor in the pathogenesis of Staphylococcus aureus infection, being active against a wide range of host cells. Although hla is ubiquitous in S. aureus, its genetic diversity and variation in expression in different genetic backgrounds...... and SCCmec typing. The internal regions of hla and the hla promoter were sequenced and gene expression was assessed by RT-PCR. RESULTS: Alpha-hemolysin encoding- and promoter sequences were diverse, with 12 and 23 different alleles, respectively. Based on phylogenetic analysis, we suggest that hla may have...... in the RNAIII binding site were not associated to hla expression. Although expression rates of hla were in general strain-specific, we observed CA clones showed significantly higher hla expression (p = 0.003) when compared with HA clones. CONCLUSION: We propose that the hla gene has evolved together...

  15. Driven diffusion against electrostatic or effective energy barrier across α-hemolysin

    Ansalone, Patrizio [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, Torino, IT-10135 (Italy); Chinappi, Mauro [Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Via Regina Elena 291, 00161 Roma (Italy); Rondoni, Lamberto [Scienze Matematiche, Politecnico di Torino Corso Duca degli Abruzzi 24, Torino, IT-10129, Italy and INFN, Sez. di Torino, Via P. Giuria 1, Torino IT-10125 (Italy); Cecconi, Fabio, E-mail: fabio.cecconi@roma1.infn.it [CNR-Istituto dei Sistemi Complessi UoS “Sapienza,” Via dei Taurini 19, 00185 Roma (Italy)

    2015-10-21

    We analyze the translocation of a charged particle across an α-Hemolysin (αHL) pore in the framework of a driven diffusion over an extended energy barrier generated by the electrical charges of the αHL. A one-dimensional electrostatic potential is extracted from the full 3D solution of the Poisson’s equation. We characterize the particle transport under the action of a constant forcing by studying the statistics of the translocation time. We derive an analytical expression of translocation time average that compares well with the results from Brownian dynamic simulations of driven particles over the electrostatic potential. Moreover, we show that the translocation time distributions can be perfectly described by a simple theory which replaces the true barrier by an equivalent structureless square barrier. Remarkably, our approach maintains its accuracy also for low-applied voltage regimes where the usual inverse-Gaussian approximation fails. Finally, we discuss how the comparison between the simulated time distributions and their theoretical prediction results to be greatly simplified when using the notion of the empirical Laplace transform technique.

  16. Two forms of Vibrio cholerae O1 El Tor hemolysin derived from identical precursor protein.

    Ikigai, H; Ono, T; Nakae, T; Otsuru, H; Shimamura, T

    1999-01-08

    Vibrio cholerae O1 grown in heart infusion broth produces two forms of El Tor hemolysin (ETH) monomers of 65 and 50 kDa. These monomers form several different sizes of mixed oligomers ranging from 180 to 280 kDa in the liposomal membranes. We found that the N-terminal amino acid sequences, NH2-Trp-Pro-Ala-Pro-Ala-Asn-Ser-Glu, of both the 65- and 50-kDa toxins were identical. We assumed, therefore, that the 65- and 50-kDa toxins were derivatives of the identical precursor protein and the 50-kDa protein was a truncated derivative of 65-kDa ETH. To substantiate this assumption, we treated the 260-kDa oligomer with trypsin and obtained a 190-kDa oligomer. This 190-kDa oligomer consisted of only the 50-kDa subunits. Both 260- and 190-kDa oligomers formed ion channels indistinguishable from each other in planar lipid bilayers. These results suggest that the essential part of the ETH in forming the membrane-damaging aggregate is a 50-kDa protein.

  17. Identification of the Serratia marcescens hemolysin determinant by cloning into Escherichia coli

    Braun, V.; Neuss, B.; Ruan, Y.; Schiebel, E.; Schoeffler, H.; Jander, G.

    1987-01-01

    A cosmid bank of Serratia marcescens was established from which DNA fragments were cloned into the plasmid pBR322, which conferred the chromosomally encoded hemolytic activity to Escherichia coli K-12. By transposon mutagenesis with Tn1000 and Tn5 IS50/sub L/::phoA (TnphoA), the coding region was assigned to a DNA fragment, designated hyl, comprising approximately 7 kilobases. Two proteins with molecular weights of 61,000 (61K protein) and 160,000 (160K protein) were expressed by the pBR322 derivatives and by a plasmid which contained the hly genes under the control of a phage T7 promoter and the T7 RNA polymerase. When strongly overexpressed the 160K protein was released by E. coli cells into the extracellular medium concomitant with hemolytic activity. The genes encoding the 61K and the 160K proteins were transcribed in the same direction. Mutants expressing a 160K protein truncated at the carboxyl-terminal end were partially hemolytic. Hemolysis was progressively inhibited by saccharides with increasing molecular weights from maltotriose (M/sub r/ 504) to maltoheptaose (M/sub r/ 1152) and as totally abolished by dextran 4 (M/sub r/ 4000). This result and the observed influx of [ 14 C]sucrose into erythrocytes in the presence of hemolytic E. coli transformants under osmotically protective conditions suggest the formation of defined transmembrane channels by the hemolysin

  18. Lectin, hemolysin and protease inhibitors in seed fractions with ovicidal activity against Haemonchus contortus.

    Salles, Hévila Oliveira; Braga, Ana Carolina Linhares; Nascimento, Maria Thayana dos Santos Canuto do; Sousa, Ana Márjory Paiva; Lima, Adriano Rodrigues; Vieira, Luiz da Silva; Cavalcante, Antônio Cézar Rocha; Egito, Antonio Silvio do; Andrade, Lúcia Betânia da Silva

    2014-01-01

    Bioactive molecules of plant species are promising alternatives for the chemical control of gastrointestinal nematodes in ruminants. Extracts of native and exotic seed species from Brazil's semi-arid region were tested in vitro in an egg hatch assay and the bioactivity of their proteins was investigated. Each seed species was subjected to three extractions with three types of solvents. All the seeds showed ovicidal activity, which varied according to the solvents. Higher ovicidal activity was found in the molecule fractions of low molecular weight (Albizia lebbeck, Ipomoea asarifolia, Jatropha curcas, Libidibia ferrea, Moringa oleifera and Ricinus communis (P0.05, Bonferroni test). Hemagglutinating activity was detected in the fractions of C. spectabilis and M. oleifera fractions, hemolysin activity in the A. lebbeck and M. oleifera fractions, serine protease inhibitory activity in the A. lebbeck, I. asarifolia, J. curcas, M. oleifera and R. communis fractions, cysteine protease inhibitor activity in the M. oleifera fraction, and no protein activity in the L. ferrea fraction. The results of this work reveal new plant species with a potential for use in controlling nematode parasites in goats, thus opening a new field of research involving plant protein molecules with ovicidal properties.

  19. Lectin, hemolysin and protease inhibitors in seed fractions with ovicidal activity against Haemonchus contortus

    Hévila Oliveira Salles

    Full Text Available Bioactive molecules of plant species are promising alternatives for the chemical control of gastrointestinal nematodes in ruminants. Extracts of native and exotic seed species from Brazil's semi-arid region were tested in vitro in an egg hatch assay and the bioactivity of their proteins was investigated. Each seed species was subjected to three extractions with three types of solvents. All the seeds showed ovicidal activity, which varied according to the solvents. Higher ovicidal activity was found in the molecule fractions of low molecular weight (0.05, Bonferroni test. Hemagglutinating activity was detected in the fractions of C. spectabilis and M. oleifera fractions, hemolysin activity in the A. lebbeck and M. oleifera fractions, serine protease inhibitory activity in the A. lebbeck, I. asarifolia, J. curcas, M. oleifera and R. communis fractions, cysteine protease inhibitor activity in the M. oleifera fraction, and no protein activity in the L. ferrea fraction. The results of this work reveal new plant species with a potential for use in controlling nematode parasites in goats, thus opening a new field of research involving plant protein molecules with ovicidal properties.

  20. Secretion and activation of the Serratia marcescens hemolysin by structurally defined ShlB mutants.

    Pramanik, Avijit; Könninger, Ulrich; Selvam, Arun; Braun, Volkmar

    2014-05-01

    The ShlA hemolysin of Serratia marcescens is secreted across the outer membrane by the ShlB protein; ShlB belongs to the two-partner secretion system (type Vb), a subfamily of the Omp85 outer membrane protein assembly and secretion superfamily. During secretion, ShlA is converted from an inactive non-hemolytic form into an active hemolytic form. The structure of ShlB is predicted to consist of the N-terminal α-helix H1, followed by the two polypeptide-transport-associated domains POTRA P1 and P2, and the β-barrel of 16 β-strands. H1 is inserted into the pore of the β-barrel in the outer membrane; P1 and P2 are located in the periplasm. To obtain insights into the secretion and activation of ShlA by ShlB, we isolated ShlB mutants impaired in secretion and/or activation. The triple H1 P1 P2 mutant did not secrete ShlA. The P1 and P2 deletion derivatives secreted reduced amounts of ShlA, of which P1 showed some hemolysis, whereas P2 was inactive. Deletion of loop 6 (L6), which is conserved among exporters of the Omp85 family, compromised activation but retained low secretion. Secretion-negative mutants generated by random mutagenesis were located in loop 6. The inactive secreted ShlA derivatives were complemented in vitro to active ShlA by an N-terminal ShlA fragment (ShlA242) secreted by ShlB. Deletion of H1 did not impair secretion of hemolytic ShlA. The study defines domains of ShlB which are important for ShlA secretion and activation. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Novel structurally designed vaccine for S. aureus α-hemolysin: protection against bacteremia and pneumonia.

    Rajan P Adhikari

    Full Text Available Staphylococcus aureus (S. aureus is a human pathogen associated with skin and soft tissue infections (SSTI and life threatening sepsis and pneumonia. Efforts to develop effective vaccines against S. aureus have been largely unsuccessful, in part due to the variety of virulence factors produced by this organism. S. aureus alpha-hemolysin (Hla is a pore-forming toxin expressed by most S. aureus strains and reported to play a key role in the pathogenesis of SSTI and pneumonia. Here we report a novel recombinant subunit vaccine candidate for Hla, rationally designed based on the heptameric crystal structure. This vaccine candidate, denoted AT-62aa, was tested in pneumonia and bacteremia infection models using S. aureus strain Newman and the pandemic strain USA300 (LAC. Significant protection from lethal bacteremia/sepsis and pneumonia was observed upon vaccination with AT-62aa along with a Glucopyranosyl Lipid Adjuvant-Stable Emulsion (GLA-SE that is currently in clinical trials. Passive transfer of rabbit immunoglobulin against AT-62aa (AT62-IgG protected mice against intraperitoneal and intranasal challenge with USA300 and produced significant reduction in bacterial burden in blood, spleen, kidney, and lungs. Our Hla-based vaccine is the first to be reported to reduce bacterial dissemination and to provide protection in a sepsis model of S. aureus infection. AT62-IgG and sera from vaccinated mice effectively neutralized the toxin in vitro and AT62-IgG inhibited the formation of Hla heptamers, suggesting antibody-mediated neutralization as the primary mechanism of action. This remarkable efficacy makes this Hla-based vaccine a prime candidate for inclusion in future multivalent S. aureus vaccine. Furthermore, identification of protective epitopes within AT-62aa could lead to novel immunotherapy for S. aureus infection.

  2. Python erythrocytes are resistant to α-hemolysin from Escherichia coli.

    Larsen, Casper K; Skals, Marianne; Wang, Tobias; Cheema, Muhammad U; Leipziger, Jens; Praetorius, Helle A

    2011-12-01

    α-Hemolysin (HlyA) from Escherichia coli lyses mammalian erythrocytes by creating nonselective cation pores in the membrane. Pore insertion triggers ATP release and subsequent P2X receptor and pannexin channel activation. Blockage of either P2X receptors or pannexin channels reduces HlyA-induced hemolysis. We found that erythrocytes from Python regius and Python molurus are remarkably resistant to HlyA-induced hemolysis compared to human and Trachemys scripta erythrocytes. HlyA concentrations that induced maximal hemolysis of human erythrocytes did not affect python erythrocytes, but increasing the HlyA concentration 40-fold did induce hemolysis. Python erythrocytes were more resistant to osmotic stress than human erythrocytes, but osmotic stress tolerance per se did not confer HlyA resistance. Erythrocytes from T. scripta, which showed higher osmotic resistance than python erythrocytes, were as susceptible to HlyA as human erythrocytes. Therefore, we tested whether python erythrocytes lack the purinergic signalling known to amplify HlyA-induced hemolysis in human erythrocytes. P. regius erythrocytes increased intracellular Ca²⁺ concentration and reduced cell volume when exposed to 3 mM ATP, indicating the presence of a P2X₇-like receptor. In addition, scavenging extracellular ATP or blocking P2 receptors or pannexin channels reduced the HlyA-induced hemolysis. We tested whether the low HlyA sensitivity resulted from low affinity of HlyA to the python erythrocyte membrane. We found comparable incorporation of HlyA into human and python erythrocyte membranes. Taken together, the remarkable HlyA resistance of python erythrocytes was not explained by increased osmotic resistance, lack of purinergic hemolysis amplification, or differences in HlyA affinity.

  3. Group B streptococcal beta-hemolysin/cytolysin directly impairs cardiomyocyte viability and function.

    Mary E Hensler

    Full Text Available BACKGROUND: Group B Streptococcus (GBS is a leading cause of neonatal sepsis where myocardial dysfunction is an important contributor to poor outcome. Here we study the effects of the GBS pore-forming beta-hemolysin/cytolysin (Bh/c exotoxin on cardiomyocyte viability, contractility, and calcium transients. METHODOLOGY/PRINCIPAL FINDINGS: HL-1 cardiomyocytes exposed to intact wild-type (WT or isogenic Deltabeta h/c mutant GBS, or to cell-free extracts from either strain, were assessed for viability by trypan blue exclusion and for apoptosis by TUNEL staining. Functionality of exposed cardiomyocytes was analyzed by visual quantitation of the rate and extent of contractility. Mitochondrial membrane polarization was measured in TMRE-loaded cells exposed to GBS beta h/c. Effects of GBS beta h/c on calcium transients were studied in fura-2AM-loaded primary rat ventricular cardiomyocytes. Exposure of HL-1 cardiomyocytes to either WT GBS or beta h/c extracts significantly reduced both rate and extent of contractility and later induced necrotic and apoptotic cell death. No effects on cardiomyocyte viability or function were observed after treatment with Deltabeta h/c mutant bacteria or extracts. The beta h/c toxin was associated with complete and rapid loss of detectable calcium transients in primary neonatal rat ventricular cardiomyocytes and induced a loss of mitochondrial membrane polarization. These effects on viability and function were abrogated by the beta h/c inhibitor, dipalmitoyl phosphatidylcholine (DPPC. CONCLUSIONS/SIGNIFICANCE: Our data show a rapid loss of cardiomyocyte viability and function induced by GBS beta h/c, and these deleterious effects are inhibited by DPPC, a normal constituent of human pulmonary surfactant.. These findings have clinical implications for the cardiac dysfunction observed in neonatal GBS infections.

  4. Detection and analysis of hemolysin genes in Aeromonas hydrophila isolated from Gouramy (Osphronemus gouramy) by polymerase chain reaction (PCR)

    Rozi; Rahayu, K.; Daruti, D. N.

    2018-04-01

    The goal of this study was to detect of Aeromonas hydrophila carrying the hlyA gene in guramy by PCR assay. A total of 5 A. hydrophila strains were isolated from gouramy with different location and furthermore genotypic of all A. hydrophila strains havedetected by PCR assay for 16S rRNA gene. The primers used in the PCR targeted a 592-bp fragment of the hlyA gene coding for the hemolysin gene. Particularly hlyA genes are responsible for haemolysin toxins production in this genus. After gel electrophoresis, the amplicons from representative strains of the A. hydrophila were purified using extraction kit and were subjected to the DNA sequencing analysis. The results showed that: (i) the 592bp amplicon of the hlyA gene was detected in 5/6 of the A. hydrophila; (ii) the nucleotide blast results of hemolysin gene sequences of the strains of A. hydrophila revealed a high homology of 90-97 % with published sequences, and;(iii) the protein blast showed 95-98 % homology when compared to the published sequences. The PCR clearly identified the haemolysin-producing strains of A. hydrophila by detection in hlyA genes and may have application as a rapid species-specific virulence test.

  5. Penicillin tolerance among Beta-hemolytic streptococci and production of the group carbohydrates, hemolysins, hyaluronidases and deoxyribonucleases

    Cássia C. Avelino

    1995-08-01

    Full Text Available Penicillin tolerance among 67 strains of beta-hemolytic streptococci was examined by determining the ratio of the minimal bactericidal concentration to the minimal inhibitory concentration as 32 or greater. Tolerance was demonstrated in 15 group A strains and in 11,7, and 4 of groups B, C and G, respectively. Thereafter the effects of a subminimal inhibitory concentration (1/2MIC of penicillin on the bacterial products of four tolerant and four nontolerant strains (two of each Lancefield group were analyzed and compared. The antibiotic caused a marked increase in the expression of the group carbo-hydrates for strains of group B. Penicillin was found to reduce the cell-bound hemolysin activities of the four tolerant strains and to increase the activity of the other (free form of nontolerant groups A, C and G hemolysins. Penicillin caused an increase in the extracellular hyaluronidase activities of one group A and groups B, C and G streptococci. With added antibiotic the production of deoxyribonuclease by tolerant groups A, C and G was greatly enhanced and that of the group B streptococcus was arrested.

  6. Genotypic Diversity of Staphylococcus aureus α-Hemolysin Gene (hla and Its Association with Clonal Background: Implications for Vaccine Development.

    Meng Xiao

    Full Text Available The α-hemolysin, encoded by the hla gene, is a major virulence factor in S. aureus infections. Changes in key amino acid residues of α-hemolysin can result in reduction, or even loss, of toxicity. The aim of this study was to investigate the diversity of the hla gene sequence and the relationship of hla variants to the clonal background of S. aureus isolates. A total of 47 clinical isolates from China were used in this study, supplemented with in silico analysis of 318 well-characterized whole genome sequences from globally distributed isolates. A total of 28 hla genotypes were found, including three unique to isolates from China, 20 found only in the global genomes and five found in both. The hla genotype generally correlated with the clonal background, particularly the multilocus sequence type, but was not related to geographic origin, host source or methicillin-resistance phenotype. In addition, the hla gene showed greater diversity than the seven loci utilized in the MLST scheme for S. aureus. Our investigation has provided genetic data which may be useful for future studies of toxicity, immunogenicity and vaccine development.

  7. Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

    Tuan Anh Pham

    2016-03-01

    Full Text Available Hybrid nanoparticle (NP structures containing organic building units such as polymers, peptides, DNA and proteins have great potential in biosensor and electronic applications. The nearly free modification of the polymer chain, the variation of the protein and DNA sequence and the implementation of functional moieties provide a great platform to create inorganic structures of different morphology, resulting in different optical and magnetic properties. Nevertheless, the design and modification of a protein structure with functional groups or sequences for the assembly of biohybrid materials is not trivial. This is mainly due to the sensitivity of its secondary, tertiary and quaternary structure to the changes in the interaction (e.g., hydrophobic, hydrophilic, electrostatic, chemical groups between the protein subunits and the inorganic material. Here, we use hemolysin coregulated protein 1 (Hcp1 from Pseudomonas aeruginosa as a building and gluing unit for the formation of biohybrid structures by implementing cysteine anchoring points at defined positions on the protein rim (Hcp1_cys3. We successfully apply the Hcp1_cys3 gluing unit for the assembly of often linear, hybrid structures of plasmonic gold (Au NP, magnetite (Fe3O4 NP, and cobalt ferrite nanoparticles (CoFe2O4 NP. Furthermore, the assembly of Au NPs into linear structures using Hcp1_cys3 is investigated by UV–vis spectroscopy, TEM and cryo-TEM. One key parameter for the formation of Au NP assembly is the specific ionic strength in the mixture. The resulting network-like structure of Au NPs is characterized by Raman spectroscopy, showing surface-enhanced Raman scattering (SERS by a factor of 8·104 and a stable secondary structure of the Hcp1_cys3 unit. In order to prove the catalytic performance of the gold hybrid structures, they are used as a catalyst in the reduction reaction of 4-nitrophenol showing similar catalytic activity as the pure Au NPs. To further extend the

  8. Inactivation of the Major Hemolysin Gene Influences Expression of the Nonribosomal Peptide Synthetase Gene swrA in the Insect Pathogen Serratia sp. Strain SCBI.

    Petersen, Lauren M; LaCourse, Kaitlyn; Schöner, Tim A; Bode, Helge; Tisa, Louis S

    2017-11-01

    Hemolysins are important virulence factors for many bacterial pathogens, including Serratia marcescens The role of the major hemolysin gene in the insect pathogen Serratia sp. strain SCBI was investigated using both forward and reverse-genetics approaches. Introduction of the major hemolysin gene into Escherichia coli resulted in a gain of both virulence and hemolytic activity. Inactivation of this hemolysin in Serratia sp. SCBI resulted in a loss of hemolysis but did not attenuate insecticidal activity. Unexpectedly, inactivation of the hemolysin gene in Serratia sp. SCBI resulted in significantly increased motility and increased antimicrobial activity. Reverse transcription-quantitative PCR (qRT-PCR) analysis of mutants with a disrupted hemolysin gene showed a dramatic increase in mRNA levels of a nonribosomal peptide synthetase gene, swrA , which produces the surfactant serrawettin W2. Mutation of the swrA gene in Serratia sp. SCBI resulted in highly varied antibiotic activity, motility, virulence, and hemolysis phenotypes that were dependent on the site of disruption within this 17.75-kb gene. When introduced into E. coli , swrA increases rates of motility and confers antimicrobial activity. While it is unclear how inactivation of the major hemolysin gene influences the expression of swrA , these results suggest that swrA plays an important role in motility and antimicrobial activity in Serratia sp. SCBI. IMPORTANCE The opportunistic Gram-negative bacteria of the genus Serratia are widespread in the environment and can cause human illness. A comparative genomics analysis between Serratia marcescens and a new Serratia species from South Africa, termed Serratia sp. strain SCBI, shows that these two organisms are closely related but differ in pathogenesis. S. marcescens kills Caenorhabditis nematodes, while Serratia sp. SCBI is not harmful and forms a beneficial association with them. This distinction presented the opportunity to investigate potential differences

  9. Grafting synthetic transmembrane units to the engineered low-toxicity α-hemolysin to restore its hemolytic activity.

    Ui, Mihoko; Harima, Kousuke; Takei, Toshiaki; Tsumoto, Kouhei; Tabata, Kazuhito V; Noji, Hiroyuki; Endo, Sumire; Akiyama, Kimio; Muraoka, Takahiro; Kinbara, Kazushi

    2014-12-01

    The chemical modification of proteins to provide desirable functions and/or structures broadens their possibilities for use in various applications. Usually, proteins can acquire new functions and characteristics, in addition to their original ones, via the introduction of synthetic functional moieties. Here, we adopted a more radical approach to protein modification, i.e., the replacement of a functional domain of proteins with alternative chemical compounds to build "cyborg proteins." As a proof of concept model, we chose staphylococcal α-hemolysin (Hla), which is a well-studied, pore-forming toxin. The hemolytic activity of Hla mutants was dramatically decreased by truncation of the stem domain, which forms a β-barrel pore in the membrane. However, the impaired hemolytic activity was significantly restored by attaching a pyrenyl-maleimide unit to the cysteine residue that was introduced in the remaining stem domain. In contrast, negatively charged fluorescein-maleimide completely abolished the remaining activity of the mutants.

  10. Shrimp pathogenicity, hemolysis, and the presence of hemolysin and TTSS genes in Vibrio harveyi isolated from Thailand.

    Rattanama, Pimonsri; Srinitiwarawong, Kanchana; Thompson, Janelle R; Pomwised, Rattanaruji; Supamattaya, Kidchakarn; Vuddhakul, Varaporn

    2009-09-23

    The virulence factors of Vibrio harveyi, the causative agent of luminous vibriosis, are not completely understood. We investigated the correlations between shrimp mortality, hemolysis, the presence of a hemolysin gene (vhh), and a gene involved in the type III secretion system (the Vibrio calcium response gene vcrD). V harveyi HY01 was isolated from a shrimp that died from vibriosis, and 36 other V. harveyi isolates were obtained from fish and shellfish in Hat Yai city, Thailand. An ocean isolate of V. harveyi BAA-1116 was also included. Thirteen isolates including V harveyi HYO1 caused shrimp death 12 h after injection. Most V harveyi isolates in this group (designated as Group A) caused hemolysis on prawn blood agar. None of the shrimp died after injection with V harveyi BAA-1116. Molecular analysis of all V harveyi isolates revealed the presence of vcrD in both pathogenic and non-pathogenic strains. Although vhh was detected in all V harveyi isolates, some isolates did not cause hemolysis, indicating that vhh gene expression might be regulated. Analysis of the V harveyi HYO1 genome revealed a V cholerae like-hemolysin gene, hlyA (designated as hhl). Specific primers designed for hhl detected this gene in 3 additional V harveyi isolates but the presence of this gene was not correlated with pathogenicity. Random amplified polymorphic DNA (RAPD) analysis revealed a high degree of genetic diversity in all V harveyi isolates, and there were no correlations among the hhl-positive isolates or the pathogenic strains.

  11. Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin

    Simakov, Nikolay A.

    2010-01-01

    A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776

  12. β-Hemolysin/cytolysin of Group B Streptococcus enhances host inflammation but is dispensable for establishment of urinary tract infection.

    Ritwij Kulkarni

    Full Text Available Group B Streptococcus (GBS; Streptococcus agalactiae is a major human pathogen that disproportionately affects neonates and women in the peripartum period and is an emerging cause of infection in older adults. The primary toxin of GBS, β-hemolysin/cytolysin (βH/C, has a well-defined role in the pathogenesis of invasive disease, but its role in urinary tract infection (UTI is unknown. Using both in vitro and in vivo models, we analyzed the importance of βH/C in GBS uropathogenesis. There were no significant differences in bacterial density from the bladders or kidneys from mice infected with wild-type or isogenic βH/C-deficient GBS, and competitive indices from co-infection experiments were near 1. Thus, βH/C is dispensable for the establishment of GBS-UTI. However, βH/C-sufficient GBS induced a more robust proinflammatory cytokine response in cultured bladder epithelial cells and in the urinary tracts of infected mice. Given the near ubiquity of βH/C-expressing strains in epidemiologic studies and the importance of local inflammation in dictating outcomes and sequelae of UTI, we hypothesize that βH/C-driven inflammatory signaling may be important in the clinical course of GBS-UTI.

  13. Glycan specificity of the Vibrio vulnificus hemolysin lectin outlines evolutionary history of membrane targeting by a toxin family.

    Kaus, Katherine; Lary, Jeffrey W; Cole, James L; Olson, Rich

    2014-07-29

    Pore-forming toxins (PFTs) are a class of pathogen-secreted molecules that oligomerize to form transmembrane channels in cellular membranes. Determining the mechanism for how PFTs bind membranes is important in understanding their role in disease and for developing possible ways to block their action. Vibrio vulnificus, an aquatic pathogen responsible for severe food poisoning and septicemia in humans, secretes a PFT called V. vulnificus hemolysin (VVH), which contains a single C-terminal targeting domain predicted to resemble a β-trefoil lectin fold. In order to understand the selectivity of the lectin for glycan motifs, we expressed the isolated VVH β-trefoil domain and used glycan-chip screening to identify that VVH displays a preference for terminal galactosyl groups including N-acetyl-d-galactosamine and N-acetyl-d-lactosamine. The X-ray crystal structure of the VVH lectin domain solved to 2.0Å resolution reveals a heptameric ring arrangement similar to the oligomeric form of the related, but inactive, lectin from Vibrio cholerae cytolysin. Structures bound to glycerol, N-acetyl-d-galactosamine, and N-acetyl-d-lactosamine outline a common and versatile mode of recognition allowing VVH to target a wide variety of cell-surface ligands. Sequence analysis in light of our structural and functional data suggests that VVH may represent an earlier step in the evolution of Vibrio PFTs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Molecular modeling and in silico characterization of Mycobacterium tuberculosis TlyA: Possible misannotation of this tubercle bacilli-hemolysin

    Vizcaíno Carolina

    2011-03-01

    Full Text Available Abstract Background The TlyA protein has a controversial function as a virulence factor in Mycobacterium tuberculosis (M. tuberculosis. At present, its dual activity as hemolysin and RNA methyltransferase in M. tuberculosis has been indirectly proposed based on in vitro results. There is no evidence however for TlyA relevance in the survival of tubercle bacilli inside host cells or whether both activities are functionally linked. A thorough analysis of structure prediction for this mycobacterial protein in this study shows the need for reevaluating TlyA's function in virulence. Results Bioinformatics analysis of TlyA identified a ribosomal protein binding domain (S4 domain, located between residues 5 and 68 as well as an FtsJ-like methyltranferase domain encompassing residues 62 and 247, all of which have been previously described in translation machinery-associated proteins. Subcellular localization prediction showed that TlyA lacks a signal peptide and its hydrophobicity profile showed no evidence of transmembrane helices. These findings suggested that it may not be attached to the membrane, which is consistent with a cytoplasmic localization. Three-dimensional modeling of TlyA showed a consensus structure, having a common core formed by a six-stranded β-sheet between two α-helix layers, which is consistent with an RNA methyltransferase structure. Phylogenetic analyses showed high conservation of the tlyA gene among Mycobacterium species. Additionally, the nucleotide substitution rates suggested purifying selection during tlyA gene evolution and the absence of a common ancestor between TlyA proteins and bacterial pore-forming proteins. Conclusion Altogether, our manual in silico curation suggested that TlyA is involved in ribosomal biogenesis and that there is a functional annotation error regarding this protein family in several microbial and plant genomes, including the M. tuberculosis genome.

  15. Molecular modeling reveals the novel inhibition mechanism and binding mode of three natural compounds to staphylococcal α-hemolysin.

    Jiazhang Qiu

    Full Text Available α-Hemolysin (α-HL is a self-assembling, channel-forming toxin that is produced as a soluble monomer by Staphylococcus aureus strains. Until now, α-HL has been a significant virulence target for the treatment of S. aureus infection. In our previous report, we demonstrated that some natural compounds could bind to α-HL. Due to the binding of those compounds, the conformational transition of α-HL from the monomer to the oligomer was blocked, which resulted in inhibition of the hemolytic activity of α-HL. However, these results have not indicated how the binding of the α-HL inhibitors influence the conformational transition of the whole protein during the oligomerization process. In this study, we found that three natural compounds, Oroxylin A 7-O-glucuronide (OLG, Oroxin A (ORA, and Oroxin B (ORB, when inhibiting the hemolytic activity of α-HL, could bind to the "stem" region of α-HL. This was completed using conventional Molecular Dynamics (MD simulations. By interacting with the novel binding sites of α-HL, the ligands could form strong interactions with both sides of the binding cavity. The results of the principal component analysis (PCA indicated that because of the inhibitors that bind to the "stem" region of α-HL, the conformational transition of α-HL from the monomer to the oligomer was restricted. This caused the inhibition of the hemolytic activity of α-HL. This novel inhibition mechanism has been confirmed by both the steered MD simulations and the experimental data obtained from a deoxycholate-induced oligomerization assay. This study can facilitate the design of new antibacterial drugs against S. aureus.

  16. Single-molecule analysis of lead(II)-binding aptamer conformational changes in an α-hemolysin nanopore, and sensitive detection of lead(II)

    Wang, Hai-Yan; Song, Ze-Yang; Zhang, Hui-Sheng; Chen, Si-Ping

    2016-01-01

    The α-hemolysin (αHL) nanopore is capable of analyzing DNA duplex and DNA aptamer as they can be electrophoretically driven into the vestibule from the cis entrance. The current study describes the competitive interaction induced by Pb 2+ that changes the secondary structure of DNA duplex in asymmetrical electrolyte solution. DNA duplex formed by the partial complementary DNA and DNA aptamer sequence produced unzipping blockages with the dwell unzipping time lasting 2.84 ± 0.7 ms. By cation-DNA interaction with Pb 2+ , the DNA duplex will unwind and then form Pb 2+ -stabilized-DNA aptamer, which will be captured and unfolded in vestibule. The pore conductance were reduced to 54 % and 94 % with mean dwell unfolding times of 165 ± 12 ms. The competitive behavior between Pb 2+ and single-strand DNA was further utilized to detect Pb 2+ in solution with a detection limit of 0.5 nM. This nanopore platform also provides a powerful tool for studying the cation-DNA interactions in DNA aptamer conformational changes. Thus, the results drawn from these studies provide insights into the applications of α-hemolysin nanopore as a molecular sieve to different DNA secondary structure in future application of nanopore analysis. (author)

  17. Biofilm formation, hemolysin production and antimicrobial susceptibilities of Streptococcus agalactiae isolated from the mastitis milk of dairy cows in Shahrekord district, Iran

    Azizollah Ebrahimi

    2014-12-01

    Full Text Available Streptococcus agalactiae is a major contagious pathogen causing bovine sub-clinical mastitis. The present investigation was carried out to determine some phenotypic characteristics of the S. agalactiae strains isolated from bovine mastitis cases in dairy cows of Shahrekord in the west-center of Iran. One hundred eighty California mastitis test (CMT positive milk samples were bacteriologically studied. A total of 31 (17.2% S. agalactiae isolated. Twenty eight (90.3% of the isolates were biofilm producers. This finding may indicate the high potential of pathogenicity in isolated strains. Sixteen (51.6% isolates were α hemolysin producers. Only 19.3%, 22.5% and 29.0% of the isolates were sensitive to streptomycin, flumequine and kanamycin, respectively. None of these three agents is recommended for treatment of mastitis cases.

  18. Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis

    Škopová, Karolína; Tomalová, Barbora; Kanchev, Ivan; Rossmann, Pavel; Švédová, Martina; Adkins, Irena; Bíbová, Ilona; Tomala, Jakub; Mašín, Jiří; Guiso, N.; Osička, Radim; Sedláček, Radislav; Kovář, Marek; Šebo, Peter

    2017-01-01

    Roč. 85, č. 6 (2017), s. 1-22, č. článku e00937-16. ISSN 0019-9567 R&D Projects: GA MZd(CZ) NV16-28126A; GA ČR(CZ) GA13-14547S; GA ČR GA13-12885S; GA ČR GA15-09157S; GA ČR(CZ) GAP302/12/0460; GA MŠk(CZ) LM2015064; GA MŠk(CZ) LM2015040 Institutional support: RVO:61388971 ; RVO:68378050 Keywords : Bordetella pertussis * adenylate cyclase toxin-hemolysin * cAMP intoxication Subject RIV: EE - Microbiology, Virology; EE - Microbiology, Virology (UMG-J) OBOR OECD: Microbiology; Microbiology (UMG-J) Impact factor: 3.593, year: 2016

  19. Comparative Prevalence of Immune Evasion Complex Genes Associated with β-Hemolysin Converting Bacteriophages in MRSA ST5 Isolates from Swine, Swine Facilities, Humans with Swine Contact, and Humans with No Swine Contact.

    Samantha J Hau

    Full Text Available Livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA draws concern from the public health community because in some countries these organisms may represent the largest reservoir of MRSA outside hospital settings. Recent studies indicate LA-MRSA strains from swine are more genetically diverse than the first reported sequence type ST398. In the US, a diverse population of LA-MRSA is found including organisms of the ST398, ST9, and ST5 lineages. Occurrence of ST5 MRSA in swine is of particular concern since ST5 is among the most prevalent lineages causing clinical infections in humans. The prominence of ST5 in clinical disease is believed to result from acquisition of bacteriophages containing virulence or host-adapted genes including the immune-evasion cluster (IEC genes carried by β-hemolysin converting bacteriophages, whose absence in LA-MRSA ST398 is thought to contribute to reduced rates of human infection and transmission associated with this lineage. The goal of this study was to investigate the prevalence of IEC genes associated with β-hemolysin converting bacteriophages in MRSA ST5 isolates obtained from agricultural sources, including swine, swine facilities, and humans with short- or long-term swine exposure. To gain a broader perspective, the prevalence of these genes in LA-MRSA ST5 strains was compared to the prevalence in clinical MRSA ST5 strains from humans with no known exposure to swine. IEC genes were not present in any of the tested MRSA ST5 strains from agricultural sources and the β-hemolysin gene was intact in these strains, indicating the bacteriophage's absence. In contrast, the prevalence of the β-hemolysin converting bacteriophage in MRSA ST5 strains from humans with no exposure to swine was 90.4%. The absence of β-hemolysin converting bacteriophage in LA-MRSA ST5 isolates is consistent with previous reports evaluating ST398 strains and provides genetic evidence indicating LA-MRSA ST5 isolates

  20. Comparative Prevalence of Immune Evasion Complex Genes Associated with β-Hemolysin Converting Bacteriophages in MRSA ST5 Isolates from Swine, Swine Facilities, Humans with Swine Contact, and Humans with No Swine Contact

    Hau, Samantha J.; Sun, Jisun; Davies, Peter R.; Frana, Timothy S.; Nicholson, Tracy L.

    2015-01-01

    Livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA) draws concern from the public health community because in some countries these organisms may represent the largest reservoir of MRSA outside hospital settings. Recent studies indicate LA-MRSA strains from swine are more genetically diverse than the first reported sequence type ST398. In the US, a diverse population of LA-MRSA is found including organisms of the ST398, ST9, and ST5 lineages. Occurrence of ST5 MRSA in swine is of particular concern since ST5 is among the most prevalent lineages causing clinical infections in humans. The prominence of ST5 in clinical disease is believed to result from acquisition of bacteriophages containing virulence or host-adapted genes including the immune-evasion cluster (IEC) genes carried by β-hemolysin converting bacteriophages, whose absence in LA-MRSA ST398 is thought to contribute to reduced rates of human infection and transmission associated with this lineage. The goal of this study was to investigate the prevalence of IEC genes associated with β-hemolysin converting bacteriophages in MRSA ST5 isolates obtained from agricultural sources, including swine, swine facilities, and humans with short- or long-term swine exposure. To gain a broader perspective, the prevalence of these genes in LA-MRSA ST5 strains was compared to the prevalence in clinical MRSA ST5 strains from humans with no known exposure to swine. IEC genes were not present in any of the tested MRSA ST5 strains from agricultural sources and the β-hemolysin gene was intact in these strains, indicating the bacteriophage’s absence. In contrast, the prevalence of the β-hemolysin converting bacteriophage in MRSA ST5 strains from humans with no exposure to swine was 90.4%. The absence of β-hemolysin converting bacteriophage in LA-MRSA ST5 isolates is consistent with previous reports evaluating ST398 strains and provides genetic evidence indicating LA-MRSA ST5 isolates may harbor a

  1. cAMP and EPAC are key players in the regulation of the signal transduction pathway involved in the α-hemolysin autophagic response.

    María Belén Mestre

    Full Text Available Staphylococcus aureus is a microorganism that causes serious diseases in the human being. This microorganism is able to escape the phagolysosomal pathway, increasing intracellular bacterial survival and killing the eukaryotic host cell to spread the infection. One of the key features of S. aureus infection is the production of a series of virulence factors, including secreted enzymes and toxins. We have shown that the pore-forming toxin α-hemolysin (Hla is the S. aureus-secreted factor responsible for the activation of the autophagic pathway and that this response occurs through a PI3K/Beclin1-independent form. In the present report we demonstrate that cAMP has a key role in the regulation of this autophagic response. Our results indicate that cAMP is able to inhibit the autophagy induced by Hla and that PKA, the classical cAMP effector, does not participate in this regulation. We present evidence that EPAC and Rap2b, through calpain activation, are the proteins involved in the regulation of Hla-induced autophagy. Similar results were obtained in cells infected with different S. aureus strains. Interestingly, in this report we show, for the first time to our knowledge, that both EPAC and Rap2b are recruited to the S. aureus-containing phagosome. We believe that our findings have important implications in understanding innate immune processes involved in intracellular pathogen invasion of the host cell.

  2. Temperature and electrolyte optimization of the α-hemolysin latch sensing zone for detection of base modification in double-stranded DNA.

    Johnson, Robert P; Fleming, Aaron M; Jin, Qian; Burrows, Cynthia J; White, Henry S

    2014-08-19

    The latch region of the wild-type protein pore α-hemolysin (α-HL) constitutes a sensing zone for individual abasic sites (and furan analogs) in double-stranded DNA (dsDNA). The presence of an abasic site or furan within a DNA duplex, electrophoretically captured in the α-HL vestibule and positioned at the latch region, can be detected based on the current blockage prior to duplex unzipping. We investigated variations in blockage current as a function of temperature (12-35°C) and KCl concentration (0.15-1.0 M) to understand the origin of the current signature and to optimize conditions for identifying the base modification. In 1 M KCl solution, substitution of a furan for a cytosine base in the latch region results in an ∼ 8 kJ mol(-1) decrease in the activation energy for ion transport through the protein pore. This corresponds to a readily measured ∼ 2 pA increase in current at room temperature. Optimal resolution for detecting the presence of a furan in the latch region is achieved at lower KCl concentrations, where the noise in the measured blockage current is significantly lower. The noise associated with the blockage current also depends on the stability of the duplex (as measured from the melting temperature), where a greater noise in the measured blockage current is observed for less stable duplexes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. First report of an anti-tumor, anti-fungal, anti-yeast and anti-bacterial hemolysin from Albizia lebbeck seeds.

    Lam, Sze Kwan; Ng, Tzi Bun

    2011-05-15

    A monomeric 5.5-kDa protein with hemolytic activity toward rabbit erythrocytes was isolated from seeds of Albizia lebbeck by using a protocol that involved ion-exchange chromatography on Q-Sepharose and SP-Sepharose, hydrophobic interaction chromatography on Phenyl-Sepharose, and gel filtration on Superdex 75. It was unadsorbed on both Q-Sepharose and SP-Sepharose, but adsorbed on Phenyl-Sepharose. Its hemolytic activity was fully preserved in the pH range 0-14 and in the temperature range 0-100 °C, and unaffected in the presence of a variety of metal ions and carbohydrates. The hemolysin reduced viability of murine splenocytes and inhibited proliferation of MCF-7 breast cancer cells and HepG2 hepatoma cells with an IC₅₀ of 0.21, 0.97, and 1.37 μM, respectively. It impeded mycelial growth in the fungi Rhizoctonia solani with an IC₅₀ of 39 μM but there was no effect on a variety of other filamentous fungi, including Fusarium oxysporum, Helminthosporium maydis, Valsa mali and Mycosphaerella arachidicola. Lebbeckalysin inhibited growth of Escherichia coli with an IC₅₀ of 0.52 μM. Copyright © 2010 Elsevier GmbH. All rights reserved.

  4. Escherichia coli α-hemolysin counteracts the anti-virulence innate immune response triggered by the Rho GTPase activating toxin CNF1 during bacteremia.

    Mamady Diabate

    2015-03-01

    Full Text Available The detection of the activities of pathogen-encoded virulence factors by the innate immune system has emerged as a new paradigm of pathogen recognition. Much remains to be determined with regard to the molecular and cellular components contributing to this defense mechanism in mammals and importance during infection. Here, we reveal the central role of the IL-1β signaling axis and Gr1+ cells in controlling the Escherichia coli burden in the blood in response to the sensing of the Rho GTPase-activating toxin CNF1. Consistently, this innate immune response is abrogated in caspase-1/11-impaired mice or following the treatment of infected mice with an IL-1β antagonist. In vitro experiments further revealed the synergistic effects of CNF1 and LPS in promoting the maturation/secretion of IL-1β and establishing the roles of Rac, ASC and caspase-1 in this pathway. Furthermore, we found that the α-hemolysin toxin inhibits IL-1β secretion without affecting the recruitment of Gr1+ cells. Here, we report the first example of anti-virulence-triggered immunity counteracted by a pore-forming toxin during bacteremia.

  5. The alpha hemolysin of Escherichia Coli power the metabolism oxidative of neutrophils human beings in response to the peptide chemotactic FMLP: comparison with the ionophore of calcium A23187

    Garcia, J.

    2000-01-01

    The calcium ionophore ionomycin primes polymorphonuclear leukocytes (PMN) for increased superoxide production upon stimulation with the chemotactic peptide FMLP (Helman Finkel, T. et al J Biol Chem 1987; 262: 12589-12596) In this investigation we assessed the effect of PMN priming with either alpha hemolysin (AH) or the calcium ionophore A23187, both of which increase intracellular calcium, on the oxidative metabolism of PMN (as measured by chemiluminescence) in response to secondary stimulation with FMLP. Both A23187 and AH priming increased, the luminol-enhanced chemiluminescence in response to secondary stimulation with FMLP, indicating overstimulation of PMLP oxidative metabolism. Additional experiments using lucigenin as chemiluminescence enhancer showed that A23187, but not AH priming of PMN, increased superoxide release in a manner similar to that reported for ionomycin. These results are discussed in reference to infectious processes involving hemolytic E. coli (Author) [es

  6. Two-step processing for activation of the cytolysin/hemolysin of Vibrio cholerae O1 biotype El Tor: nucleotide sequence of the structural gene (hlyA) and characterization of the processed products.

    Yamamoto, K; Ichinose, Y; Shinagawa, H; Makino, K; Nakata, A; Iwanaga, M; Honda, T; Miwatani, T

    1990-12-01

    Vibrio cholerae O1 biotype El Tor produces and secretes a 65-kDa cytolysin/hemolysin into the culture medium. We cloned the structural gene (hlyA) for the cytolysin from the total DNA of a V. cholerae O1 El Tor strain, N86. Nucleotide sequence analysis of hlyA revealed an open reading frame consisting of 2,223 bp which can code for a protein of 741 amino acids with a molecular weight of 81,961. Consistent with this, a 79-kDa protein was identified as the product of hlyA by maxicell analysis in Escherichia coli. N-terminal amino acids of this 79-kDa HlyA protein and those of a 65-kDa El Tor cytolysin purified from V. cholerae were Asn-26 and Asn-158, respectively. The 82- and 79-kDa precursors of the 65-kDa mature cytolysin were found in V. cholerae by pulse-chase labeling and Western blot (immunoblot) analysis of hlyA products. Hemolytic activity of the 79-kDa HlyA protein from E. coli was less than 5% that for the 65-kDa cytolysin from V. cholerae. Our results suggest that in V. cholerae, the 82-kDa preprotoxin synthesized in the cytoplasm is secreted through the membranes into the culture medium as the 79-kDa inactive protoxin after cleavage of the signal peptide and is then further processed into the 65-kDa active cytolysin by release of the N-terminal 15-kDa fragment.

  7. Infection and cellular defense dynamics in a novel 17β-estradiol murine model of chronic human group B streptococcus genital tract colonization reveal a role for hemolysin in persistence and neutrophil accumulation.

    Carey, Alison J; Tan, Chee Keong; Mirza, Shaper; Irving-Rodgers, Helen; Webb, Richard I; Lam, Alfred; Ulett, Glen C

    2014-02-15

    Genital tract carriage of group B streptococcus (GBS) is prevalent among adult women; however, the dynamics of chronic GBS genital tract carriage, including how GBS persists in this immunologically active host niche long term, are not well defined. To our knowledge, in this study, we report the first animal model of chronic GBS genital tract colonization using female mice synchronized into estrus by delivery of 17β-estradiol prior to intravaginal challenge with wild-type GBS 874391. Cervicovaginal swabs, which were used to measure bacterial persistence, showed that GBS colonized the vaginal mucosa of mice at high numbers (10(6)-10(7) CFU/swab) for at least 90 d. Cellular and histological analyses showed that chronic GBS colonization of the murine genital tract caused significant lymphocyte and PMN cell infiltrates, which were localized to the vaginal mucosal surface. Long-term colonization was independent of regular hormone cycling. Immunological analyses of 23 soluble proteins related to chemotaxis and inflammation showed that the host response to GBS in the genital tract comprised markers of innate immune activation including cytokines such as GM-CSF and TNF-α. A nonhemolytic isogenic mutant of GBS 874391, Δcyle9, was impaired for colonization and was associated with amplified local PMN responses. Induction of DNA neutrophil extracellular traps, which was observed in GBS-infected human PMNs in vitro in a hemolysin-dependent manner, appeared to be part of this response. Overall, this study defines key infection dynamics in a novel murine model of chronic GBS genital tract colonization and establishes previously unknown cellular and soluble defense responses to GBS in the female genital tract.

  8. Adenylate cyclase toxin-hemolysin relevance for pertussis vaccines

    Šebo, Peter; Osička, Radim; Mašín, Jiří

    2014-01-01

    Roč. 13, č. 10 (2014), s. 1215-1227 ISSN 1476-0584 R&D Projects: GA ČR GA13-14547S; GA ČR(CZ) GAP302/11/0580; GA ČR GAP302/12/0460 Institutional support: RVO:61388971 Keywords : adenylate cyclase toxin * antigen delivery * Bordetella pertussis Subject RIV: EE - Microbiology, Virology Impact factor: 4.210, year: 2014

  9. Prevalence des hemolysines chez les donneurs de sang de groupe ...

    Objectifs : Déterminer la fréquence et le titre des hémolysines anti-A et anti-B dans la population des donneurs O et de prédire de l'intérêt de la systématisation de leur recherche chez tous les donneurs O par l'évaluation du risque d'accident transfusionnels liés aux hémolysines. Méthodologie : Etude prospective au ...

  10. Third Acivity of Bordetella Adenylate Cyclase (AC) Toxin-Hemolysin

    Fišer, Radovan; Mašín, Jiří; Basler, Marek; Krůšek, Jan; Špuláková, V.; Konopásek, Ivo; Šebo, Peter

    2007-01-01

    Roč. 282, č. 5 (2007), s. 2808-2820 ISSN 0021-9258 R&D Projects: GA MŠk 1M0506; GA AV ČR IAA5020406 Grant - others:XE(XE) LSHB-CT-2003-503582; Univerzita Karlova(CZ) 146/2005/B-BIO Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z50110509 Source of funding: R - rámcový projekt EK ; V - iné verejné zdroje Keywords : bordetella * adenylate cyclase toxin * enzymatic aktivity Subject RIV: EE - Microbiology, Virology Impact factor: 5.581, year: 2007

  11. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore

    Di Marino, Daniele

    2015-08-06

    © 2015 American Chemical Society. Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  12. Prevalence and heterogeneity of Hemolysin gene vhh among hatchery isolates of Vibrio harveyi in India

    Parvathi, A.; George, J.; Kumar, S.

    , National Institute of Oceanography Regional Centre (CSIR), Kochi- 682 018, India b Department of Microbiology, College of Fisheries, Mangalore-575 002, India c Department of Biology, Eastern New Mexico University, Portales, New Mexico 88130 USA... institutional project SIP 1302 is gratefully acknowledged. S.K is grateful to Prof. (Dr). Manuel Varela, Department of Biology, Eastern New Mexico University, USA for scientific advice and guidance. This is NIO contribution no. 4508.   10...

  13. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore

    Di Marino, Daniele; Bonome, Emma Letizia; Tramontano, Anna; Chinappi, Mauro

    2015-01-01

    © 2015 American Chemical Society. Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  14. PolyA Single Strand DNA Translocation Through an Alpha-Hemolysin Pore Stem

    OKeeffe, James; Cozmuta, Ioana; Stolc, Viktor

    2003-01-01

    A new model for the polymer-pore interaction energy is introduced, based on an atomic-scale description of coulombic polymer-pore interaction. The enhanced drift velocity, experimentally observed for short polymers, is successfully accounted for, using this interaction energy model. For R/R(sub 0)>4 (R(sub 0)=7 angstroms) the translocation velocity approaches the free space drift velocity v(sub 0). This motivates the need to appropriately derivatize artificial nanopores, where R>R(sub 0).

  15. Development of a Real-Time Resistance Measurement for Vibrio parahaemolyticus Detection by the Lecithin-Dependent Hemolysin Gene

    Xiang, Guiming; Pu, Xiaoyun; Jiang, Dongneng; Liu, Linlin; Liu, Chang; Liu, Xiaobo

    2013-01-01

    The marine bacterium Vibrio parahaemolyticus (V. parahaemolyticus) causes gastroenteritis in humans via the ingestion of raw or undercooked contaminated seafood, and early diagnosis and prompt treatment are important for the prevention of V. parahaemolyticus-related diseases. In this study, a real-time resistance measurement based on loop-mediated isothermal amplification (LAMP), electrochemical ion bonding (Crystal violet and Mg2+), real-time monitoring, and derivative analysis was developed. V. parahaemolyticus DNA was first amplified by LAMP, and the products (DNA and pyrophosphate) represented two types of negative ions that could combine with a positive dye (Crystal violet) and positive ions (Mg2+) to increase the resistance of the reaction liquid. This resistance was measured in real-time using a specially designed resistance electrode, thus permitting the quantitative detection of V. parahaemolyticus. The results were obtained in 1–2 hours, with a minimum bacterial density of 10 CFU.mL−1 and high levels of accuracy (97%), sensitivity (96.08%), and specificity (97.96%) when compared to cultivation methods. Therefore, this simple and rapid method has a potential application in the detection of V. parahaemolyticus on a gene chip or in point-of-care testing. PMID:23991096

  16. The CpAL quorum sensing system regulates production of hemolysins CPA and PFO to build Clostridium perfringens biofilms.

    Vidal, Jorge E; Shak, Joshua R; Canizalez-Roman, Adrian

    2015-06-01

    Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Evaluation of esterase and hemolysin activities of different Candida species isolated from vulvovaginitis cases in Lorestan Province, Iran

    Maryam Noori

    2017-12-01

    Conclusion: According to our results, the higher expression rates of both enzymes in C. albicans species relative to those of non-albicans Candidate species can partly reflect the role of the virulence factors involved in C. albicans pathogenicity.

  18. The CpAL Quorum Sensing System Regulates Production of Hemolysins CPA and PFO To Build Clostridium perfringens Biofilms

    Shak, Joshua R.; Canizalez-Roman, Adrian

    2015-01-01

    Clostridium perfringens strains produce severe diseases, including myonecrosis and enteritis necroticans, in humans and animals. Diseases are mediated by the production of potent toxins that often damage the site of infection, e.g., skin epithelium during myonecrosis. In planktonic cultures, the regulation of important toxins, such as CPA, CPB, and PFO, is controlled by the C. perfringens Agr-like (CpAL) quorum sensing (QS) system. Strains also encode a functional LuxS/AI-2 system. Although C. perfringens strains form biofilm-like structures, the regulation of biofilm formation is poorly understood. Therefore, our studies investigated the role of CpAL and LuxS/AI-2 QS systems and of QS-regulated factors in controlling the formation of biofilms. We first demonstrate that biofilm production by reference strains differs depending on the culture medium. Increased biomass correlated with the presence of extracellular DNA in the supernatant, which was released by lysis of a fraction of the biofilm population and planktonic cells. Whereas ΔagrB mutant strains were not able to produce biofilms, a ΔluxS mutant produced wild-type levels. The transcript levels of CpAL-regulated cpa and pfoA genes, but not cpb, were upregulated in biofilms compared to planktonic cultures. Accordingly, Δcpa and ΔpfoA mutants, in type A (S13) or type C (CN3685) backgrounds, were unable to produce biofilms, whereas CN3685Δcpb made wild-type levels. Biofilm formation was restored in complemented Δcpa/cpa and ΔpfoA/pfoA strains. Confocal microscopy studies further detected CPA partially colocalizing with eDNA on the biofilm structure. Thus, CpAL regulates biofilm formation in C. perfringens by increasing levels of certain toxins required to build biofilms. PMID:25824838

  19. Serodiagnosis of Acute Typhoid Fever in Nigerian Pediatric Cases by Detection of Serum IgA and IgG Against Hemolysin E and Lipopolysaccharide.

    Davies, D Huw; Jain, Aarti; Nakajima, Rie; Liang, Li; Jasinskis, Algis; Supnet, Medalyn; Felgner, Philip L; Teng, Andy; Pablo, Jozelyn; Molina, Douglas M; Obaro, Stephen K

    2016-08-03

    Inexpensive, easy-to-use, and highly sensitive diagnostic tests are currently unavailable for typhoid fever. To identify candidate serodiagnostic markers, we have probed microarrays displaying the full Salmonella enterica serovar Typhi (S. Typhi) proteome of 4,352 different proteins + lipopolysaccharides (LPSs), with sera from Nigerian pediatric typhoid and other febrile cases, Nigerian healthy controls, and healthy U.S. adults. Nigerian antibody profiles were broad (∼500 seropositive antigens) and mainly low level, with a small number of stronger "hits," whereas the profile in U.S. adults was typhoid cases. The response to LPS was also a strong discriminator of healthy controls and typhoid, although LPS did not discriminate between typhoid and nontyphoidal Salmonella (NTS) disease. As a first step toward the development of a point-of-care diagnostic, t1477 and LPS were evaluated on immunostrips. Both provided good discrimination between healthy controls and typhoid/NTS disease. Such a test could provide a useful screen for salmonellosis (typhoid and NTS disease) in suspected pediatric cases that present with undefined febrile disease. © The American Society of Tropical Medicine and Hygiene.

  20. P2X receptor-dependent erythrocyte damage by α-hemolysin from Escherichia coli triggers phagocytosis by THP-1 cells

    Fagerberg, Steen Kåre; Skals, Marianne Gerberg; Leipziger, Jens Georg

    2013-01-01

    , which is known to be a keen trigger for phagocytosis. We hypothesize that exposure to HlyA elicits removal of the damaged erythrocytes by phagocytic cells. Cultured THP-1 cells as a model for erythrocytal phagocytosis was verified by a variety of methods, including live cell imaging. We consistently...

  1. Delivery of Large Heterologous Polypeptides across the Cytoplasmic Membrane of Antigen-Presenting Cells by the Bordetella RTX Hemolysin Moiety Lacking the Adenylyl Cyclase Domain

    Holubová, Jana; Kamanová, Jana; Jelínek, J.; Tomala, Jakub; Mašín, Jiří; Kosová, Martina; Staněk, Ondřej; Bumba, Ladislav; Michálek, J.; Kovář, Marek; Šebo, Peter

    2012-01-01

    Roč. 80, č. 3 (2012), s. 1181-1192 ISSN 0019-9567 R&D Projects: GA AV ČR IAA500200914; GA ČR(CZ) GAP207/11/0717; GA ČR GAP301/11/0325; GA MŠk 1M0506; GA MŠk 2B06161 Institutional research plan: CEZ:AV0Z50200510 Keywords : MHC CLASS-I * ESCHERICHIA-COLI * PRESENTATION PATHWAY Subject RIV: EE - Microbiology, Virology Impact factor: 4.074, year: 2012

  2. Detection of effect cytotoxic of the alpha hemolysin of E. Coli (HLY A) in leukocytes polymorphonuclear neutrophils by means of cytometry of flow

    Garcia, J.

    2000-01-01

    Cell viability of Hly A exposed polymorphonuclear neutrophils (PMN) was assessed by propidium uptake, measured by flow cytometry. Hemolytic supernatant, but not the non hemolytic controls, caused a dose-dependent fluorescence signal in PMN. Cells exposed to low hemolytic activities (bellow 0.5 HU50/ml) did not fluoresce, although cell size, estimate by Forward Scatter (FSC), increased slightly, and returned to normal within 30-60 minutes suggesting both membrane damage in absence of propodium uptake and term cell recovery from the effects of Hly A. The fluorescent signal from permeated PMN decrease 15 minutes after exposure to Hly a, a decrease which was prevented by chelation ok extracellular Ca +2 with EGTA. Whereas Ca +2 entry into the cell is responsible for triggering mechanisms leading to loss of fluorescence, low or chelated extracelular Ca +2 facilitate propidium uptake, but the fluorescent signal does not decrease only when both intracellular and extracellular Ca +2 are chelated. The findings of this study, together whit data from other authors, are taken as basis to formulate a hypothetical sequence of events to explain the cytometric data obtained from Hly A exposed PMN, including the significance of increases in cell size without propidium uptake. (Author) [es

  3. Molecular characterization of tlyA gene product, Rv1694 of Mycobacterium tuberculosis: A non-conventional hemolysin and a ribosomal RNA methyl transferase

    Ahmed Neesar

    2010-09-01

    Full Text Available Abstract Background Mycobacterium tuberculosis is a virulent bacillus causing tuberculosis, a disease responsible for million deaths each year worldwide. In order to understand its mechanism of pathogenesis in humans and to help control tuberculosis, functions of numerous Mycobacterium tuberculosis genes are being characterized. In this study we report the dual functionality of tlyA gene product of Mycobacterium tuberculosis annotated as Rv1694, a 268 amino acid long basic protein. Results The recombinant purified Rv1694 protein was found to exhibit hemolytic activity in vitro. It showed concentration and time-dependent hemolysis of rabbit and human erythrocytes. Multiple oligomeric forms (dimers to heptamers of this protein were seen on the membranes of the lysed erythrocytes. Like the oligomers of conventional, well-known, pore-forming toxins, the oligomers of Rv1694 were found to be resistant to heat and SDS, but were susceptible to reducing agents like β-mercaptoethanol as it had abolished the hemolytic activity of Rv1694 indicating the role of disulfide bond(s. The Rv1694 generated de novo by in vitro transcription and translation also exhibited unambiguous hemolysis confirming the self assembly and oligomerization properties of this protein. Limited proteolytic digestion of this protein has revealed that the amino terminus is susceptible while in solution but is protected in presence of membrane. Striking feature of Rv1694 is its presence on the cell wall of E. coli as visualized by confocal microscopy. The surface expression is consistent with the contact dependent haemolytic ability of E. coli expressing this protein. Also, immune serum specific to this protein inhibits the contact dependent hemolysis. Moreover, Rv1694 protein binds to and forms stable oligomers on the macrophage phagosomal membranes. In addition to all these properties, E. coli expressing Rv1694 was found to be susceptible to the antibiotic capreomycin as its growth was significantly slower than mock vector transformed E. coli. The S30 extract of E. coli expressing the Rv1694 had poor translational activity in presence of capreomycin, further confirming its methylation activity. Finally, incorporation of methyl group of [3H]-S-adenosylmethionine in isolated ribosomes also confirmed its methylation activity. Conclusions The Rv1694 has an unusual dual activity. It appears to contain two diverse functions such as haemolytic activity and ribosomal RNA methylation activity. It is possible that the haemolytic activity might be relevant to intra-cellular compartments such as phagosomes rather than cell lysis of erythrocytes and the self-assembly trait may have a potential role after successful entry into macrophages by Mycobacterium tuberculosis.

  4. QUANTIFICATION OF SIDEROPHORE AND HEMOLYSIN FROM STACHYBOTRYS CHARTARUM STRAINS, INCLUDING A STRAIN ISOLATED FROM THE LUNG OF A CHILD WITH PULMONARY HEMORRHAGE AND HEMOSIDEROSIS

    A strain of Stachybotrys chartarum was recently isolated from the lung of a pulmonary hemorrhage and hemosiderosis (PH) patient in Texas (designated the Houston strain). This is the first time that S. chartarum has been isolated from the lung of a PH patient. In this study, the ...

  5. Marine toxins and their toxicological significance: An overview

    Sarkar, A.

    , Hemolysins-1 and hemolysin-2, saxitoxin, neosaxitoxin, gonyautoxin, tetrodotoxin, ptychodiscus brevis toxin and theonellamide F. According to their mode of action, these toxins are classified into different categories such as cytotoxin, enterotoxin...

  6. ORF Alignment: NC_006155 [GENIUS II[Archive

    Full Text Available colitica] ref|YP_069519.1| hemolysin ... expression modulating protein (involved in ... environmental...18.1| hemolysin expression modulating protein ... (involved in environmental [Yersinia pseudotuberculo

  7. NCBI nr-aa BLAST: CBRC-CJAC-01-0646 [SEVENS

    Full Text Available CBRC-CJAC-01-0646 ref|YP_100968.1| hemolysin III [Bacteroides fragilis YCH46] ref|Y...P_213086.1| putative hemolysin [Bacteroides fragilis NCTC 9343] dbj|BAD50434.1| hemolysin III [Bacteroides fragil...is YCH46] emb|CAH09172.1| putative hemolysin [Bacteroides fragilis NCTC 9343] YP_100968.1 9.9 27% ...

  8. Comparative prevalence of immune evasion complex genes associated with beta-hemolysin converting bacteriophages in MRSA ST5 isolates from swine, swine facilities, humans with swine contact, and humans with no swine contact

    Livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA) draws concern from the public health community because in some countries these organisms may represent the largest reservoir of MRSA outside hospital settings. Recent studies indicate LA-MRSA strains from swine are more genet...

  9. Mutations in the Histone-like Nucleoid Structuring Regulatory Gene (hns) Decrease the Adherence of Shiga Toxin-producing Escherichia coli 091:H21 Strain B2F1 to Human Colonic Epithelial Cells and Increase the Production of Hemolysin

    1999-10-19

    osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170:2575-2583. Mobley, H. L., D. M. Green...produced by ETEC organisms is homologous to the toxin encoded by Y: cholerae . These toxins are the primary cause of the watery diarrhea associated with ETEC...Escherichia coli as a cause ofdiarrhea among children in Mexico . J. Clin. Microbiol. 25:1913-1919. Maurelli, A. T., and P. J. Sansonetti. 1988

  10. Mutations in the Histone-Like Nucleoid Structuring Regulatory Gene (hns) Decrease the Adherence of Shiga Toxin-Producing Escherichia coli 091:H21 Strain B2F1 to Human Colonic Epithelial Cells and Increase the Production of Hemolysin

    Scott, Maria

    1999-01-01

    ...:H21 to human colonic epithelial cells. Transposon mutagenesis of B2F1 was accomplished with the mini-Tn5phoACm mobile element and a mutant bank of B2F1 colonies that carried putative in-frame PhoA-positive transposon insertions was isolated...

  11. ORF Sequence: NC_006155 [GENIUS II[Archive

    Full Text Available g protein (involved in environmental [Yersinia pseudotuberculosis IP 32953] MTKTDYLMRLRKCTTIDTLERVIEKNKYELSDDELELFYSAADHRLAELTMNKLYDKIPPTVWQHVK ... NC_006155 gi|51595328 >gi|51595328|ref|YP_069519.1| hemolysin expression modulatin

  12. Prevalence of anti‑A and anti‑B hemolysis among blood group O ...

    Background: Group O donor blood is more readily available and is frequently used as universal red cell donor in our environment. The presence of hemolysins in the donors may however lead to hemolysis in the recipients. Attempts have been made to study the prevalence of hemolysins in various populations with results ...

  13. ABSENCE OF LECITHIN FROM THE STROMATA OF THE RED CELLS OF CERTAIN ANIMALS (RUMINANTS), AND ITS RELATION TO VENOM HEMOLYSIS

    Turner, Joseph C.

    1957-01-01

    Lipide extracts of the red cells of several animal species have been analyzed chromatographically. Genetically determined differences in phospholipide composition were found. Lecithin is absent from the cells of ox, sheep, and goat. Cells containing lecithin are susceptible to the direct hemolysin of cobra venom while cells not containing lecithin are resistant. The facts indicate that the direct hemolysin is a lecithinase. PMID:13406178

  14. Prevalence and molecular typing of Vibrio parahaemolyticus isolated from seafood in Shanghai using multilocus sequence typing (MLST)

    Vibrio parahaemolyticus is a gram-negative bacterium that inhabits coastal and marine environments. Thermostable direct hemolysin (tdh), tdh-related hemolysin (trh) and the type III secretion system are considered the potential virulent factors of pathogenic V. parahaemolyticus. The frequency of str...

  15. Prevalence of anti‑A and anti‑B hemolysis among blood group O ...

    2014-10-20

    Oct 20, 2014 ... Background: Group O donor blood is more readily available and is frequently used as universal red cell donor in our environment. The presence of hemolysins in the donors may however lead to hemolysis in the recipients. Attempts have been made to study the prevalence of hemolysins in various ...

  16. Aeromonas caviae strain induces Th1 cytokine response in mouse intestinal tract

    Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus,. Microarray profiling of...

  17. Application and Development of Biological AFM for the Study of Bacterial Toxins

    Yang, Jie

    1999-01-01

    ... with other conventional methods. These studies have also established a solid foundation for our structural elucidation of molecular level conformation of membranous bacterial toxins, such as cholera toxin and alpha-hemolysin...

  18. Proteolytic activity and cooperative hemolytic effect of dermatophytes with different species of bacteria

    Keyvan Pakshir

    2016-12-01

    Conclusion: This study indicated that hemolysin and proteolytic enzymes potentially play a role in dermatophyte pathogenesis and S. aureus could be considered as a main bacterium for creation of co-hemolytic effect in association with dermatophyte species.

  19. ORF Alignment: NC_003197 [GENIUS II[Archive

    Full Text Available g ... protein (involved in environmental regulation of ... virulence factors) [Salmonella enteri... modulating protein (involved in ... environmental regulation of virulence ...427.1| hemolysin ... expression modulating protein (involved in ... environmental regulation of

  20. ORF Alignment: NC_006905 [GENIUS II[Archive

    Full Text Available g ... protein (involved in environmental regulation of ... virulence factors) [Salmonella enteri... modulating protein (involved in ... environmental regulation of virulence ...427.1| hemolysin ... expression modulating protein (involved in ... environmental regulation of

  1. ORF Alignment: NC_003198 [GENIUS II[Archive

    Full Text Available g ... protein (involved in environmental regulation of ... virulence factors) [Salmonella enteri... modulating protein (involved in ... environmental regulation of virulence ...427.1| hemolysin ... expression modulating protein (involved in ... environmental regulation of

  2. ORF Alignment: NC_004631 [GENIUS II[Archive

    Full Text Available g ... protein (involved in environmental regulation of ... virulence factors) [Salmonella enteri... modulating protein (involved in ... environmental regulation of virulence ...427.1| hemolysin ... expression modulating protein (involved in ... environmental regulation of

  3. ORF Alignment: NC_006511 [GENIUS II[Archive

    Full Text Available g ... protein (involved in environmental regulation of ... virulence factors) [Salmonella enteri... modulating protein (involved in ... environmental regulation of virulence ...427.1| hemolysin ... expression modulating protein (involved in ... environmental regulation of

  4. ORF Sequence: NC_006905 [GENIUS II[Archive

    Full Text Available g protein (involved in environmental regulation of virulence factors) [Salmonella enterica subsp. enterica s... NC_006905 gi|62179085 >gi|62179085|ref|YP_215502.1| hemolysin expression modulatin

  5. Ham test

    Acid hemolysin test; Paroxysmal nocturnal hemoglobinuria - Ham test; PNH - Ham test ... BJ. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. Philadelphia, PA: Elsevier ...

  6. Vibrio parahaemolyticus: A Review on the Pathogenesis, Prevalence and Advance Molecular Identification Techniques

    Vengadesh eLetchumanan

    2014-12-01

    Full Text Available Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. Vibrio parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked or mishandled marine products. In rare cases, Vibrio parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. Vibrio parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh, which plays a similar role as thermostable direct hemolysin (tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2 to ensure its survival in the environment. This review aims at discussing the Vibrio parahemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques.

  7. Effects of Ligustilide on Tumor Growth and Immune Function in ...

    hemolysin concentration, spleen lymphocyte proliferation and CTL and NK cell activities in normal ICR mice, but ... dysmenorrhoea [14] and Alzheimer's disease. [15]. However, the ..... because phagocytes act as regulator and effector cells in ...

  8. Bacillus cereus and related species.

    Drobniewski, F A

    1993-01-01

    Bacillus cereus is a gram-positive aerobic or facultatively anaerobic spore-forming rod. It is a cause of food poisoning, which is frequently associated with the consumption of rice-based dishes. The organism produces an emetic or diarrheal syndrome induced by an emetic toxin and enterotoxin, respectively. Other toxins are produced during growth, including phospholipases, proteases, and hemolysins, one of which, cereolysin, is a thiol-activated hemolysin. These toxins may contribute to the pa...

  9. Flipping the switch: Tools for detecting small molecule inhibitors of staphylococcal virulence

    Cassandra L. Quave

    2014-12-01

    Full Text Available Through the expression of the accessory gene regulator (agr quorum sensing cascade, S. aureus is able to produce an extensive array of enzymes, hemolysins and immunomodulators essential to its ability to spread through the host tissues and cause disease. Many have argued for the discovery and development of quorum sensing inhibitors (QSIs to augment existing antibiotics as adjuvant therapies. Here, we discuss the state-of-the-art tools that can be used to conduct screens for the identification of such QSIs. Examples include fluorescent reporters, MS-detection of autoinducing peptide (AIP production, agar plate methods for detection of hemolysins and lipase, HPLC-detection of hemolysins from supernatants, and cell-toxicity assays for detecting damage (or relief thereof against human keratinocyte (HaCat cells. In addition to providing a description of these various approaches, we also discuss their amenability to low-, medium- and high-throughput screening efforts for the identification of novel QSIs.

  10. Distribution of putative virulence genes and antimicrobial drug resistance in Vibrio harveyi

    Parvathi, A.; Mendez, D.; Anto, C.

    zonula occludens toxin (Zot) and a hemolysin-coregulated protein gene (hcp) by polymerase chain reaction (PCR). Of the four putative reversible toxin genes, vhh-1 was detected in 31% of the isolates, vhh-2 in 46%, vhh-3 in 23% and vhh-4 was detected in 27...

  11. I See Your Smart Phone and Raise You Smart Bacteria

    , other maladies (e.g., cancer cells), and synthesize drugs for local delivery and treatment. Synthetic metabolic pathways to synthesize a pathogen-targeted drug. However, as these modules are pieced together and into the vesicle, and triggers the synthesis of the pore forming protein α-hemolysin (αHL). Therefore

  12. Effects of Ligustilide on Tumor Growth and Immune Function in ...

    Results: LIG significantly increased thymus and spleen index, macrophage phagocytosis, serum hemolysin concentration, spleen lymphocyte proliferation and CTL and NK cell activities in normal ICR mice, but inhibited the growth of transplantable H22 hepatoma. The effect was dose-related but not in a linear fashion.

  13. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia

    Vengadesh eLetchumanan

    2015-01-01

    Full Text Available Vibrio parahaemolyticus is a marine and estuarine bacterium that has been the leading cause of foodborne outbreaks which leads to a significant threat to human health worldwide. Consumption of seafood contaminated with Vibrio parahaemolyticus causes acute gastroenteritis in individuals. The bacterium poses two main virulence factor including the thermostable direct hemolysin (tdh which is a pore-forming protein that contributes to the invasiveness of the bacterium in humans and TDH-related hemolysin (trh, which plays a similar role as thermostable direct hemolysin (tdh in the disease pathogenesis. This study aimed to investigate the antimicrobial resistance Vibrio parahaemolyticus strains in shrimps purchased from wetmarkets and supermarkets. The toxR-based PCR assay indicated that a total of 57.8% (185/320 isolates were positive for V. parahaemolyticus. Only 10% (19/185 toxR-positive isolate exhibit the TDH-related hemolysin (trh gene and none of the isolates were tested positive for thermostable direct hemolysin (tdh. The MAR index was measured for 14 common antimicrobial agents. The results indicated 98% of the isolates were highly susceptible to imipenem, ampicillin sulbactam (96%, chloramphenicol (95%, trimethoprim-sulfamet (93%, gentamicin (85%, levofloxacin (83% and tetracycline (82%. The chloramphenicol (catA2 and kanamycin (aphA-3 resistance genes were detected in the resistant V. parahaemolyticus isolates. Our results demonstrate that shrimps are contaminated with V. parahaemolyticus, some of which carry the trh-gene thus being potential to cause food borne illness. The occurrence of multidrug resistance strains in the environment could be an indication of excessive usage of antibiotics in agriculture and aquaculture fields.

  14. Determination of virulence factors and biofilm formation among isolates of vulvovaginal candidiasis

    Tapan Majumdar

    2016-01-01

    Full Text Available Context: Under morphogenesis-inducing conditions, Candida spp. begins to undergo yeast-to-hypha switch. This shift from commensal to pathogenic state is dependent on several virulence factors. Aim: To find out whether the isolated Candida spp. were pathogens causing vulvovaginal candidiasis or mere bystanders. Settings and Design: Cross-sectional observational study conducted on 275 symptomatic hospital patients in Tripura between August 2012 and April 2015. Subjects and Methods: Discharge was collected from patients and identified by Grams staining and wet mount test. Culturing was done in Sabouraud dextrose agar followed by speciation. To test for virulence factors, assays for adherence, plasma coagulase, phospholipase, lipase, protease, hemolysin, and biofilm formation were carried out. Statistical Analysis Used: Significance between two groups was compared using one-way analysis of variance along with Tukey test, and Chi-square 2 × 2 contingency table at 95% confidence interval. Results: Fifty-six Candida spp. could be isolated in the study which was used for further virulence tests. One hundred percent of isolates expressed adherence. Among other virulence factors, maximum virulence 25 (45% was shown through protease production. Hemolysin production and biofilm formation were the second most 22 (39% expressed virulence factors. In a comparison of virulence factors between biofilm-forming isolates and planktonic cells, significant difference was seen for plasma coagulase and hemolysin production. Conclusions: All the isolates expressed one or more virulence factors. Adherence was expressed in all isolates but highest number was observed for Candida albicans. Furthermore, C. albicans strain number was highest for protease, hemolysin and coagulase expression and biofilm formation. Candida krusei isolates were the least in number for expressing any of the virulence factors. Significantly higher number of biofilm forming isolates produced

  15. Pore-forming virulence factors of Staphylococcus aureus destabilize epithelial barriers-effects of alpha-toxin in the early phases of airway infection

    Jan-Peter Hildebrandt

    2015-09-01

    Full Text Available Staphylococcus aureus (S. aureus is a human commensal and an opportunistic pathogen that may affect the gastrointestinal tract, the heart, bones, skin or the respiratory tract. S. aureus is frequently involved in hospital- or community-acquired lung infections. The pathogenic potential is associated with its ability to secrete highly effective virulence factors. Among these, the pore-forming toxins Panton-Valentine leukocidin (PVL and hemolysin A (Hla are the important virulence factors determining the prognosis of pneumonia cases. This review focuses on the structure and the functions of S. aureus hemolysin A and its sub-lethal effects on airway epithelial cells. The hypothesis is developed that Hla may not just be a tissue-destructive agent providing the bacteria with host-derived nutrients, but may also play complex roles in the very early stages of interactions of bacteria with healthy airways, possibly paving the way for establishing acute infections.

  16. Hemolytic activity of Trichomonas vaginalis and Tritrichomonas foetus

    Geraldo A De Carli

    1996-02-01

    Full Text Available The hemolytic activity of live isolates and clones of Trichomonas vaginalis and Tritrichomonas foetus was investigated. The isolates were tested against human erythrocytes. No hemolytic activity was detected by the isolates of T. foetus. Whereas the isolates of T. vaginalis lysed erythrocytes from all human blood groups. No hemolysin released by the parasites could be detected. Our preliminary results suggest that hemolysis depend on the susceptibility of red cell membranes to destabilization and the intervention of cell surface receptors as a mechanism of the hemolytic activity. The mechanism could be subject to strain-species-genera specific variation of trichomonads. The hemolytic activity of T. vaginalis is not due to a hemolysin or to a product of its metabolism. Pretreatment of trichomonads with concanavalin A reduced levels of hemolysis by 40%.

  17. Use of a recombinant Salmonella enterica serovar Typhimurium strain expressing C-Raf for protection against C-Raf induced lung adenoma in mice

    Gentschev, Ivaylo; Fensterle, Joachim; Schmidt, Andreas; Potapenko, Tamara; Troppmair, Jakob; Goebel, Werner; Rapp, Ulf R

    2005-01-01

    Serine-threonine kinases of the Raf family (A-Raf, B-Raf, C-Raf) are central players in cellular signal transduction, and thus often causally involved in the development of cancer when mutated or over-expressed. Therefore these proteins are potential targets for immunotherapy and a possible basis for vaccine development against tumors. In this study we analyzed the functionality of a new live C-Raf vaccine based on an attenuated Salmonella enterica serovar Typhimurium aroA strain in two Raf dependent lung tumor mouse models. The antigen C-Raf has been fused to the C-terminal secretion signal of Escherichia coli α-hemolysin and expressed in secreted form by an attenuated aroA Salmonella enterica serovar Typhimurium strain via the α-hemolysin secretion pathway. The effect of the immunization with this recombinant C-Raf strain on wild-type C57BL/6 or lung tumor bearing transgenic BxB mice was analyzed using western blot and FACS analysis as well as specific tumor growth assays. C-Raf antigen was successfully expressed in secreted form by an attenuated Salmonella enterica serovar Typhimurium aroA strain using the E. coli hemolysin secretion system. Immunization of wild-type C57BL/6 or tumor bearing mice provoked specific C-Raf antibody and T-cell responses. Most importantly, the vaccine strain significantly reduced tumor growth in two transgenic mouse models of Raf oncogene-induced lung adenomas. The combination of the C-Raf antigen, hemolysin secretion system and Salmonella enterica serovar Typhimurium could form the basis for a new generation of live bacterial vaccines for the treatment of Raf dependent human malignancies

  18. Relationships between Environmental Factors and Pathogenic Vibrios in the Northern Gulf of Mexico ▿ †

    Johnson, C. N.; Flowers, A. R.; Noriea, N. F.; Zimmerman, A. M.; Bowers, J. C.; DePaola, A.; Grimes, D. J.

    2010-01-01

    Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities. PMID:20817802

  19. Relationships between environmental factors and pathogenic Vibrios in the Northern Gulf of Mexico.

    Johnson, C N; Flowers, A R; Noriea, N F; Zimmerman, A M; Bowers, J C; DePaola, A; Grimes, D J

    2010-11-01

    Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities.

  20. Isolation of pathogenic Escherichia coli from buffalo meat sold in Parbhani city, Maharashtra, India

    M. S. Vaidya; N. M. Markandeya; R. N. Waghamare; C. S. Shekh; V. V. Deshmukh

    2013-01-01

    Aim: Isolation, characterization, in-vitro pathogenicity and antibiogram study of E.coli from buffalo meat sold in Parbhani city. Materials and Methods: Meat samples were collected from buffalo immediately after slaughter. Isolation, identification and enumeration of E. coli were done by following standard methods and protocols. Hemolysin test and Congo red binding assay were used to study in-vitro pathogenicity of E. coli isolates. Disc diffusion method was used to study antibiogram of patho...

  1. The Bordetella pertussis Type III Secretion System Tip Complex Protein Bsp22 Is Not a Protective Antigen and Fails To Elicit Serum Antibody Responses during Infection of Humans and Mice

    Romero, Rodrigo, Villarino; Bíbová, Ilona; Černý, Ondřej; Večerek, Branislav; Wald, Tomáš; Benada, Oldřich; Zavadilová, J.; Osička, Radim; Šebo, Peter

    2013-01-01

    Roč. 81, č. 8 (2013), s. 2761-2767 ISSN 0019-9567 R&D Projects: GA ČR(CZ) GAP302/11/0580; GA ČR(CZ) GAP302/11/1940 Institutional support: RVO:61388971 Keywords : ADENYLATE CYCLASE-HEMOLYSIN * T-CELL EPITOPES * IMMUNE-RESPONSES Subject RIV: EC - Immunology Impact factor: 4.156, year: 2013

  2. Evaluation of CAMP-Like Effect, Biofilm Formation, and Discrimination of Candida africana from Vaginal Candida albicans Species

    Keyvan Pakshir

    2017-01-01

    Full Text Available Candida africana as a species recovered from female genital specimens is highly close to C. albicans. The present study was conducted to discriminate C. africana from presumptive vaginal C. albicans strains by molecular assay and evaluate their hemolysin activity, biofilm formation, and cohemolytic effect (CAMP with vaginal bacterial flora. A total of 110 stock vaginal C. albicans isolates were examined by HWP1 gene amplification. Hemolysin activity and the ability of biofilm formation were evaluated by blood plate assay and visual detection methods, respectively. Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus agalactiae were used to evaluate the CAMP-like effects in Sabouraud blood agar media. Based on the size of the amplicons (941 bp, all isolates were identified as C. albicans. All samples were able to produce beta-hemolysin. Moreover, 69 out of 110 of the isolates (62.7% were biofilm-positive, 54 out of 110 Candida isolates (49% demonstrated cohemolytic effects with S. agalactiae, and 48 out of 110 showed this effect with S. aureus (43.6%. All isolates were CAMP-negative with S. epidermidis. We detected all isolates as Candida albicans and almost half of the isolates were CAMP-positive with S. aureus and S. agalactiae, suggesting that these bacteria increase the pathogenicity of Candida in vaginal candidiasis.

  3. Vibrio parahaemolyticus- An emerging foodborne pathogen

    S Nelapati

    2012-02-01

    Full Text Available Vibrio parahaemolyticus is a halophilic gram negative, motile, oxidase positive, straight or curved rod-shaped, facultative anaerobic bacteria that occur naturally in the marine environment. They form part of the indigenous microflora of aquatic habitats of various salinity and are the major causative agents for some of the most serious diseases in fish, shellfish and penacid shrimp. This human pathogen causes acute gastroenteritis characterized by diarrhea, vomiting and abdominal cramps through consumption of contaminated raw fish or shellfish. V. parahaemolyticus is the leading cause of gastroenteritis due to the consumption of seafood worldwide. The incidence of V. parahaemolyticus infection has been increasing in many parts of the world, due to the emergence of O3:K6 serotype carrying the tdh gene which is responsible for most outbreaks worldwide. The pathogenicity of this organism is closely correlated with the Kanagawa phenomenon (KP + due to production of Kanagawa hemolysin or the thermostable direct hemolysin (TDH. The TDH and TRH (TDH-related hemolysin encoded by tdh and trh genes are considered to be important virulence factors. [Vet. World 2012; 5(1.000: 48-63

  4. Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus.

    Qiu, Jiazhang; Feng, Haihua; Lu, Jing; Xiang, Hua; Wang, Dacheng; Dong, Jing; Wang, Jianfeng; Wang, Xiaoliang; Liu, Juxiong; Deng, Xuming

    2010-09-01

    Eugenol, an essential oil component in plants, has been demonstrated to possess activity against both gram-positive and gram-negative bacteria. This study examined the influence that subinhibitory concentrations of eugenol may have on the expression of the major exotoxins produced by Staphylococcus aureus. The results from a tumor necrosis factor (TNF) release assay and a hemolysin assay indicated that S. aureus cultured with graded subinhibitory concentrations of eugenol (16 to 128 microg/ml) dose dependently decreased the TNF-inducing and hemolytic activities of culture supernatants. Western blot analysis showed that eugenol significantly reduced the production of staphylococcal enterotoxin A (SEA), SEB, and toxic shock syndrome toxin 1 (the key exotoxins to induce TNF release), as well as the expression of alpha-hemolysin (the major hemolysin to cause hemolysis). In addition, this suppression was also evaluated at the transcriptional level via real-time reverse transcription (RT)-PCR analysis. The transcriptional analysis indicated that 128 microg/ml of eugenol remarkably repressed the transcription of the S. aureus sea, seb, tst, and hla genes. According to these results, eugenol has the potential to be rationally applied on food products as a novel food antimicrobial agent both to inhibit the growth of bacteria and to suppress the production of exotoxins by S. aureus.

  5. The Agr quorum-sensing system regulates fibronectin binding but not hemolysis in the absence of a functional electron transport chain.

    Pader, Vera; James, Ellen H; Painter, Kimberley L; Wigneshweraraj, Sivaramesh; Edwards, Andrew M

    2014-10-01

    Staphylococcus aureus is responsible for numerous chronic and recurrent infections, which are frequently associated with the emergence of small-colony variants (SCVs) that lack a functional electron transport chain. SCVs exhibit enhanced expression of fibronectin-binding protein (FnBP) and greatly reduced hemolysin production, although the basis for this is unclear. One hypothesis is that these phenotypes are a consequence of the reduced Agr activity of SCVs, while an alternative is that the lack of a functional electron transport chain and the resulting reduction in ATP production are responsible. Disruption of the electron transport chain of S. aureus genetically (hemB and menD) or chemically, using 2-n-heptyl-4-hydroxyquinoline N-oxide (HQNO), inhibited both growth and Agr activity and conferred an SCV phenotype. Supplementation of the culture medium with synthetic autoinducing peptide (sAIP) significantly increased Agr expression in both hemB mutant strains and S. aureus grown with HQNO and significantly reduced staphylococcal adhesion to fibronectin. However, sAIP did not promote hemolysin expression in hemB mutant strains or S. aureus grown with HQNO. Therefore, while Agr regulates fibronectin binding in SCVs, it cannot promote hemolysin production in the absence of a functional electron transport chain. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Evaluation of CAMP-Like Effect, Biofilm Formation, and Discrimination of Candida africana from Vaginal Candida albicans Species

    Bordbar, Mahboubeh; Nouraei, Hasti; Khodadadi, Hossein

    2017-01-01

    Candida africana as a species recovered from female genital specimens is highly close to C. albicans. The present study was conducted to discriminate C. africana from presumptive vaginal C. albicans strains by molecular assay and evaluate their hemolysin activity, biofilm formation, and cohemolytic effect (CAMP) with vaginal bacterial flora. A total of 110 stock vaginal C. albicans isolates were examined by HWP1 gene amplification. Hemolysin activity and the ability of biofilm formation were evaluated by blood plate assay and visual detection methods, respectively. Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus agalactiae were used to evaluate the CAMP-like effects in Sabouraud blood agar media. Based on the size of the amplicons (941 bp), all isolates were identified as C. albicans. All samples were able to produce beta-hemolysin. Moreover, 69 out of 110 of the isolates (62.7%) were biofilm-positive, 54 out of 110 Candida isolates (49%) demonstrated cohemolytic effects with S. agalactiae, and 48 out of 110 showed this effect with S. aureus (43.6%). All isolates were CAMP-negative with S. epidermidis. We detected all isolates as Candida albicans and almost half of the isolates were CAMP-positive with S. aureus and S. agalactiae, suggesting that these bacteria increase the pathogenicity of Candida in vaginal candidiasis. PMID:29318048

  7. Hemolytic activity of Fusobacterium necrophorum culture supernatants due to presence of phospholipase A and lysophospholipase.

    Abe, P M; Kendall, C J; Stauffer, L R; Holland, J W

    1979-01-01

    Culture supernatants of Fusobacterium necrophorum demonstrated hemolytic activity. The hemolysin(s), which was partially purified by ammonium sulfate precipitation, was temperature-dependent and heat labile. The spectrum of hemolytic activity against various erythrocytes included rabbit, human, and dog erythrocytes. Goats, sheep, and bovine erythrocytes showed only trace hemolysis. According to results of thin-layer chromatography, the hemolysin hydrolyzed rabbit erythrocyte phosphatidyl choline, phosphatidyl ethanolamine, lysophosphatidyl choline, and bovine phosphatidyl choline. Hydrolysis of egg yolk phosphatidyl choline, bovine phosphatidyl ethanolamine, cholesterol, 1,2-dipalmitin, 1,3-dipalmitin, sphingomyelin, or triolein was not detected by thin layer chromatography. A more sensitive procedure utilizing gas-liquid chromatography revealed that, of the substrates tested, the following were bein hydrolyzed: bovine and egg yolk phosphatidyl choline, lysophosphatidyl choline, alpha-palmito-beta-eleoyl-L-alpha lecithin and alpha-oleoyl-betal-palmitoyl-L-alpha lecithin. Substrates which were weakly hydrolyzed were bovine phosphatidyl ethanolamine, DL-alpha-hosphatidyl ethanolamine dipalmitoyl, 1,2-dipalmitin, 1,3-dipalmitin, and triolein.

  8. Coral-Associated Bacteria as a Promising Antibiofilm Agent against Methicillin-Resistant and -Susceptible Staphylococcus aureus Biofilms

    Shanmugaraj Gowrishankar

    2012-01-01

    Full Text Available The current study deals with the evaluation of two coral-associated bacterial (CAB extracts to inhibit the biofilm synthesis in vitro as well as the virulence production like hemolysin and exopolysaccharide (EPS, and also to assess their ability to modify the adhesion properties, that is cell surface hydrophobicity (CSH of methicillin-resistant (MRSA and -susceptible Staphylococcus aureus (MSSA. Out of nine CAB screened, the ethyl acetate extract of CAB-E2 (Bacillus firmus and CAB-E4 (Vibrio parahemolyticus have shown excellent antibiofilm activity against S. aureus. CAB-E2 reduced the production of EPS (57–79% and hemolysin (43–70%, which ultimately resulted in the significant inhibition of biofilms (80–87% formed by both MRSA and MSSA. Similarly, CAB-E4 was also found to decrease the production of EPS (43–57%, hemolysin (43–57% and biofilms (80–85% of test pathogens. CLSM analysis also proved the antibiofilm efficacy of CAB extracts. Furthermore, the CAB extracts strongly decreased the CSH of S. aureus. Additionally, FT-IR analysis of S. aureus treated with CAB extracts evidenced the reduction in cellular components compared to their respective controls. Thus, the present study reports for the first time, B. firmus—a coral-associated bacterium, as a promising source of antibiofilm agent against the recalcitrant biofilms formed by multidrug resistant S. aureus.

  9. Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins.

    Verena Olivier

    2009-10-01

    Full Text Available Vibrio cholerae colonizes the small intestine of adult C57BL/6 mice. In this study, the physical and genetic parameters that facilitate this colonization were investigated. Successful colonization was found to depend upon anesthesia with ketamine-xylazine and neutralization of stomach acid with sodium bicarbonate, but not streptomycin treatment. A variety of common mouse strains were colonized by O1, O139, and non-O1/non-O139 strains. All combinations of mutants in the genes for hemolysin, the multifunctional, autoprocessing RTX toxin (MARTX, and hemagglutinin/protease were assessed, and it was found that hemolysin and MARTX are each sufficient for colonization after a low dose infection. Overall, this study suggests that, after intragastric inoculation, V. cholerae encounters barriers to infection including an acidic environment and an immediate immune response that is circumvented by sodium bicarbonate and the anti-inflammatory effects of ketamine-xylazine. After initial adherence in the small intestine, the bacteria are subjected to additional clearance mechanisms that are evaded by the independent toxic action of hemolysin or MARTX. Once colonization is established, it is suggested that, in humans, these now persisting bacteria initiate synthesis of the major virulence factors to cause cholera disease. This adult mouse model of intestinal V. cholerae infection, now well-characterized and fully optimized, should serve as a valuable tool for studies of pathogenesis and testing vaccine efficacy.

  10. Interactions of Neuropathogenic Escherichia coli K1 (RS218) and Its Derivatives Lacking Genomic Islands with Phagocytic Acanthamoeba castellanii and Nonphagocytic Brain Endothelial Cells

    Yousuf, Farzana Abubakar; Yousuf, Zuhair; Iqbal, Junaid; Siddiqui, Ruqaiyyah; Khan, Hafsa; Khan, Naveed Ahmed

    2014-01-01

    Here we determined the role of various genomic islands in E. coli K1 interactions with phagocytic A. castellanii and nonphagocytic brain microvascular endothelial cells. The findings revealed that the genomic islands deletion mutants of RS218 related to toxins (peptide toxin, α-hemolysin), adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin), protein secretion system (T1SS for hemolysin), invasins (IbeA, CNF1), metabolism (D-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism) showed reduced interactions with both A. castellanii and brain microvascular endothelial cells. Interestingly, the deletion of RS218-derived genomic island 21 containing adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin), protein secretion system (T1SS for hemolysin), invasins (CNF1), metabolism (D-serine catabolism) abolished E. coli K1-mediated HBMEC cytotoxicity in a CNF1-independent manner. Therefore, the characterization of these genomic islands should reveal mechanisms of evolutionary gain for E. coli K1 pathogenicity. PMID:24818136

  11. Interactions of Neuropathogenic Escherichia coli K1 (RS218 and Its Derivatives Lacking Genomic Islands with Phagocytic Acanthamoeba castellanii and Nonphagocytic Brain Endothelial Cells

    Farzana Abubakar Yousuf

    2014-01-01

    Full Text Available Here we determined the role of various genomic islands in E. coli K1 interactions with phagocytic A. castellanii and nonphagocytic brain microvascular endothelial cells. The findings revealed that the genomic islands deletion mutants of RS218 related to toxins (peptide toxin, α-hemolysin, adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin, protein secretion system (T1SS for hemolysin, invasins (IbeA, CNF1, metabolism (D-serine catabolism, dihydroxyacetone, glycerol, and glyoxylate metabolism showed reduced interactions with both A. castellanii and brain microvascular endothelial cells. Interestingly, the deletion of RS218-derived genomic island 21 containing adhesins (P fimbriae, F17-like fimbriae, nonfimbrial adhesins, Hek, and hemagglutinin, protein secretion system (T1SS for hemolysin, invasins (CNF1, metabolism (D-serine catabolism abolished E. coli K1-mediated HBMEC cytotoxicity in a CNF1-independent manner. Therefore, the characterization of these genomic islands should reveal mechanisms of evolutionary gain for E. coli K1 pathogenicity.

  12. Comparison of enzymatic activities in different Candida species isolated from women with vulvovaginitis.

    Fatahinia, M; Halvaeezadeh, M; Rezaei-Matehkolaei, A

    2017-06-01

    Comparing the activities of secreted enzymes in different fungal species can improve our understanding of their pathogenic role. Secretion of various enzymes by Candida species has been considered for determination of their virulence in different Candida infections including vulvovaginitis. The aim of this study was to determine and compare the activity of secreted enzymes in Candidia strains isolated from women suspected to vulvovaginal candidiasis (VVC) and referred to some health centers in Khuzestan, Southwestern Iran. The vaginal secretion samples were taken by swap from 250 suspected women with symptoms of vulvovaginal candidiasis and cultured on CHROMagar Candida medium. Identification of the isolated Candida from culture positive samples performed by the color of colonies and some standard mycological procedures. Activities of phospholipase, hemolysin-α, hemolysin-β, esterase and proteinase were measured in vitro by standard laboratory protocols. The enzymatic activity index (EAI) was calculated for each enzyme in accordance to relevant protocols. Totally in eighty cases (32%), a Candida strain was isolated which found to be as 52 (65%) Candida albicans; 12 (15%) C. glabrata; 10 (12.5%) C. dubliniensis; 4 (5%) C. krusei, C. tropicalis and C. parapsilosis species (each=1; 1.3%). Among C. albicans strains, 89.1% produced all studied enzymes, while 86% of C. glabrata strains failed to produce proteinase and phospholipase. The EAIs in decreasing order were as hemolysin-β=0.2895, hemolysin-α=0.5420, esterase=0.5753, proteinase=0.7413, and phospholipase=0.7446, respectively. Activity of phospholipase, esterase and proteinase secreted by C. albicans and C. dubliniensis were significantly more than those released by C. glabrata and C. krusei, while 86% of C. glabrata strains did not show esterase activity. On the other hand, the activity rates of hemolysin α and β among all studied isolates were almost similar. In the present study, the prevalence

  13. Detection of Total and Pathogenic Vibrio parahaemolyticus in Shellfish Growing along the South Yellow Sea and the East China Sea.

    Han, Feng; Gu, Run-Run; Shen, Xiao-Sheng; Chen, Yuan-Ge; Tian, Liang-Liang; Zhou, Wei-Feng; Cai, You-Qiong

    2017-10-17

    This study was conducted to monitor the densities of total and pathogenic Vibrio parahaemolyticus in 300 samples of nine shellfish species harvested from the coasts of the South Yellow Sea and the East China Sea (N 23° to 34°, E 116° to 124°), People's Republic of China, between May and October 2015. Total V. parahaemolyticus densities were measured, and V. parahaemolyticus isolates were biochemically identified with probes for the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin-related hemolysin gene (trh). We found that 202 of the 300 samples were positive for V. parahaemolyticus from all the sites: 58 of the 100 samples from the Fujian province, 71 of the 100 samples from the Zhejiang province, and 73 of the 100 samples from the Jiangsu province. In most (170) of the 300 samples, V. parahaemolyticus densities were 0.3 to 10 most probable number (MPN)/g; five lots exceeded 110 MPN/g, and two lots were estimated at 110 MPN/g. Among the 202 V. parahaemolyticus strains, only one was trh positive. Densities of V. parahaemolyticus in these shellfish were temperature dependent, with highest densities in June and July. Among the nine mollusk species, V. parahaemolyticus was most abundant in the agemaki clam (Sinonovacula constricta). The highest and lowest V. parahaemolyticus prevalences were found in oriental cyclina (Cyclina sinensis, 93.8%) and mussels (Mytilus edulis, 28.1%), respectively. Overall, although V. parahaemolyticus is widely distributed in marine environments, the density of V. parahaemolyticus was low and the prevalence of the main virulence factor was very low in shellfish along the coasts of the South Yellow Sea and East China Sea, which is important from a public health perspective. Data presented here will be useful for correlational research and can be utilized for developing risk management plans that establish food safety guidelines for V. parahaemolyticus in Chinese shellfish.

  14. Identification of the Staphylococcus aureus vfrAB operon, a novel virulence factor regulatory locus.

    Bose, Jeffrey L; Daly, Seth M; Hall, Pamela R; Bayles, Kenneth W

    2014-05-01

    During a screen of the Nebraska Transposon Mutant Library, we identified 71 mutations in the Staphylococcus aureus genome that altered hemolysis on blood agar medium. Although many of these mutations disrupted genes known to affect the production of alpha-hemolysin, two of them were associated with an apparent operon, designated vfrAB, that had not been characterized previously. Interestingly, a ΔvfrB mutant exhibited only minor effects on the transcription of the hla gene, encoding alpha-hemolysin, when grown in broth, as well as on RNAIII, a posttranscriptional regulatory RNA important for alpha-hemolysin translation, suggesting that VfrB may function at the posttranscriptional level. Indeed, a ΔvfrB mutant had increased aur and sspAB protease expression under these conditions. However, disruption of the known secreted proteases in the ΔvfrB mutant did not restore hemolytic activity in the ΔvfrB mutant on blood agar. Further analysis revealed that, in contrast to the minor effects of VfrB on hla transcription when strains were cultured in liquid media, the level of hla transcription was decreased 50-fold in the absence of VfrB on solid media. These results demonstrate that while VfrB represses protease expression when strains are grown in broth, hla regulation is highly responsive to factors associated with growth on solid media. Intriguingly, the ΔvfrB mutant displayed increased pathogenesis in a model of S. aureus dermonecrosis, further highlighting the complexity of VfrB-dependent virulence regulation. The results of this study describe a phenotype associated with a class of highly conserved yet uncharacterized proteins found in Gram-positive bacteria, and they shed new light on the regulation of virulence factors necessary for S. aureus pathogenesis.

  15. Structurally designed attenuated subunit vaccines for S. aureus LukS-PV and LukF-PV confer protection in a mouse bacteremia model.

    Hatice Karauzum

    Full Text Available Previous efforts towards S. aureus vaccine development have largely focused on cell surface antigens to induce opsonophagocytic killing aimed at providing sterile immunity, a concept successfully applied to other Gram-positive pathogens such as Streptococcus pneumoniae. However, these approaches have largely failed, possibly in part due to the remarkable diversity of the staphylococcal virulence factors such as secreted immunosuppressive and tissue destructive toxins. S. aureus produces several pore-forming toxins including the single subunit alpha hemolysin as well as bicomponent leukotoxins such as Panton-Valentine leukocidin (PVL, gamma hemolysins (Hlg, and LukED. Here we report the generation of highly attenuated mutants of PVL subunits LukS-PV and LukF-PV that were rationally designed, based on an octameric structural model of the toxin, to be deficient in oligomerization. The attenuated subunit vaccines were highly immunogenic and showed significant protection in a mouse model of S. aureus USA300 sepsis. Protection against sepsis was also demonstrated by passive transfer of rabbit immunoglobulin raised against LukS-PV. Antibodies to LukS-PV inhibited the homologous oligomerization of LukS-PV with LukF-PV as well heterologous oligomerization with HlgB. Importantly, immune sera from mice vaccinated with the LukS mutant not only inhibited the PMN lytic activity produced by the PVL-positive USA300 but also blocked PMN lysis induced by supernatants of PVL-negative strains suggesting a broad protective activity towards other bicomponent toxins. These findings strongly support the novel concept of an anti-virulence, toxin-based vaccine intended for prevention of clinical S. aureus invasive disease, rather than achieving sterile immunity. Such a multivalent vaccine may include attenuated leukotoxins, alpha hemolysin, and superantigens.

  16. Cytokine profiles of HeLa and human diploid cells induced by different fractions of Vibrio parahaemolyticus cultures exposed to stress conditions.

    Chifiriuc, Mariana Carmen; Bleotu, Coralia; Pîrcălăbioru, Gratiela; Israil, Anca Michaela; Dinu, Sorin; Rută, Simona Maria; Grancea, Camelia; Lazăr, Veronica

    2010-01-01

    Vibrio (V.) parahaemolyticus is an aquatic halophilic bacteria which produces gastroenteritis and in rare cases septicaemia after the consumption of raw or under-cooked contaminated seafood.The severity of diarrheal illness caused by this bacterium is closely related to the presence of two types of hemolysins (the thermostable direct hemolysin-TDH and TDH related hemolysin-TRH) and also of type III secretion system (TTSS) proteins. The TTSS type 1 induces a wide array of effects on infected HeLa cells such as autophagy, oncosis, cell rounding and lysis. Previous studies have shown that heat shock proteins have the ability to stimulate the production of interleukins in different cellular cultures. In our studies we have stimulated two cellular lines (HeLa and human diploid cells) with different V. parahaemolyticus culture fractions in order to observe the effect on cytokines production. Thus, the purpose of this study was to analyze the expression of IL-1, IL-2, IL-4, IL-6, IL-10 and TNF-alpha induced by the cell treatment with total cellular lysate, periplasmic fractions and culture supernatants extracted from V. parahaemolyticus exposed to normal and also to stress conditions. The ELISA assay of the cytokine profile of the HeLa and HDC cell lines stimulated with different bacterial fractions revealed that in the V. parahemolyticus cultures submitted to osmotic and heat shock stress are accumulating factors (probably heat shock proteins) which are exhibiting immunomodulatory activity, responsible for the induction of a pro-inflammatory response associated with increased levels of IL-6 and TNF-alpha expression, however balanced by the stimulation of the anti-inflammatory cytokine IL-4 synthesis.

  17. Contribution of hly homologs to the hemolytic activity of Prevotella intermedia.

    Suzuki, Naoko; Fukamachi, Haruka; Arimoto, Takafumi; Yamamoto, Matsuo; Igarashi, Takeshi

    2012-06-01

    Prevotella intermedia is a periodontal pathogen that requires iron for its growth. Although this organism has hemolytic activity, the precise nature of its hemolytic substances and their associated hemolytic actions are yet to be fully determined. In the present study, we identified and characterized several putative hly genes in P. intermedia ATCC25611 which appear to encode hemolysins. Six hly genes (hlyA, B, C, D, E, and hlyI) of P. intermedia were identified by comparing their nucleotide sequences to those of known hly genes of Bacteroides fragilis NCTC9343. The hlyA-E, and hlyI genes were overexpressed individually in the non-hemolytic Escherichia coli strain JW5181 and examined its contribution to the hemolytic activity on sheep blood agar plates. E. coli cells expressing the hlyA and hlyI genes exhibited hemolytic activity under anaerobic conditions. On the other hand, only E. coli cells stably expressing the hlyA gene were able to lyse the red blood cells when cultured under aerobic conditions. In addition, expression of the hlyA and hlyI genes was significantly upregulated in the presence of red blood cells. Furthermore, we found that the growth of P. intermedia was similar in an iron-limited medium supplemented with either red blood cells or heme. Taken together, our results indicate that the hlyA and hlyI genes of P. intermedia encode putative hemolysins that appear to be involved in the lysis of red blood cells, and suggest that these hemolysins might play important roles in the iron-dependent growth of this organism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Activation of the NLRP3 Inflammasome Pathway by Uropathogenic Escherichia coli Is Virulence Factor-Dependent and Influences Colonization of Bladder Epithelial Cells

    Isak Demirel

    2018-03-01

    Full Text Available The NLRP3 inflammasome and IL-1β release have recently been suggested to be important for the progression of urinary tract infection (UTI. However, much is still unknown regarding the interaction of UPEC and the NLRP3 inflammasome. The purpose of this study was to elucidate what virulence factors uropathogenic Escherichia coli (UPEC use to modulate NLRP3 inflammasome activation and subsequent IL-1β release and the role of NLRP3 for UPEC colonization of bladder epithelial cells. The bladder epithelial cell line 5637, CRISPR/Cas9 generated NLRP3, caspase-1 and mesotrypsin deficient cell lines and transformed primary bladder epithelial cells (HBLAK were stimulated with UPEC isolates and the non-pathogenic MG1655 strain. We found that the UPEC strain CFT073, but not MG1655, induced an increased caspase-1 activity and IL-1β release from bladder epithelial cells. The increase was shown to be mediated by α-hemolysin activation of the NLRP3 inflammasome in an NF-κB-independent manner. The effect of α-hemolysin on IL-1β release was biphasic, initially suppressive, later inductive. Furthermore, the phase-locked type-1-fimbrial ON variant of CFT073 inhibited caspase-1 activation and IL-1β release. In addition, the ability of CFT073 to adhere to and invade NLRP3 deficient cells was significantly reduced compare to wild-type cells. The reduced colonization of NLRP3-deficient cells was type-1 fimbriae dependent. In conclusion, we found that the NLRP3 inflammasome was important for type-1 fimbriae-dependent colonization of bladder epithelial cells and that both type-1 fimbriae and α-hemolysin can modulate the activity of the NLRP3 inflammasome.

  19. Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue

    Bryan J. Berube

    2013-06-01

    Full Text Available Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.

  20. Phytoplasma adapt to the diverse environments of their plant and insect hosts by altering gene expression

    Makarova, Olga; MacLean, Allyson M.; Nicolaisen, Mogens

    2015-01-01

    a role in host adaptation. 74 genes were up-regulated in insects and included genes involved in stress response, phospholipid synthesis, malate and pyruvate metabolism, hemolysin and transporter genes, multiple copies of thymidylate kinase, sigma factor and Zn-proteases genes. In plants, 34 genes...... encoding an immune dominant membrane protein, membrane-associated proteins, and multidrug resistance ABC-type transporters, were up-regulated. Differential regulation of gene expression thus appears to play an important role in host adaptation of phytoplasmas....

  1. CYCLODEXTRINS - FIELFS OF APPLICATION. PART II

    Gh. Duca

    2012-12-01

    Full Text Available This paper represents an analysis of potential and current applications of cyclodextrins as biologically active substances in medicine. The main applications described here include use of cyclodextrins as agents that form inclusion complexes with endogenous substances (membrane lipids, cellular cholesterol, agents that form inclusion complexes with exogenous substances with their man role as guest molecules (sugammadex, FBCx, agents that block endogenous and exogenous macromolecules (ion channels, anthrax toxin, α-hemolysin, and agents which activity is based on the chemical nature of them and of their derivatives (cyclodextrin polysulphate derivatives. The fi rst classifi cation for medically important biological activity of cyclodextrins has been proposed.

  2. A portable lipid bilayer system for environmental sensing with a transmembrane protein.

    Ryuji Kawano

    Full Text Available This paper describes a portable measurement system for current signals of an ion channel that is composed of a planar lipid bilayer. A stable and reproducible lipid bilayer is formed in outdoor environments by using a droplet contact method with a micropipette. Using this system, we demonstrated that the single-channel recording of a transmembrane protein (alpha-hemolysin was achieved in the field at a high-altitude (∼3623 m. This system would be broadly applicable for obtaining environmental measurements using membrane proteins as a highly sensitive sensor.

  3. Insertional inactivation of a chromosomal locus that modulates expression of potential virulence determinants in Staphylococcus aureus.

    Cheung, A L; Wolz, C; Yeaman, M R; Bayer, A S

    1995-01-01

    A single insertion of transposon Tn551 into a unique chromosomal locus of Staphylococcus aureus ISP479C has resulted in a pleiotropic effect on the expression of both extracellular and cell wall proteins. In particular, the expression of cell wall protein A and clumping activity with fibrinogen were rendered undetectable in the mutant 1E3 compared with the parent. The secretion of alpha-hemolysin in mutant 1E3 was modestly increased. Southern blot and phenotypic analyses indicated that this l...

  4. DETEKSI GEN-GEN PENYANDI FAKTOR VIRULENSI PADA BAKTERI VIBRIO

    Ince Ayu Khairani Kadriah

    2011-04-01

    menggunakan isolat bakteri yang diisolasi dari budidaya udang windu di berbagai daerah di Sulawesi Selatan dan Jawa. Pada penelitian ini digunakan primer spesifik untuk mendeteksi gen-gen virulen toxR gene, hemolysin (vvh gene, dan GyrB gene dengan metode PCR. Dari 35 isolat yang diisolasi, 20 isolat terdeteksi memiliki gen virulensi dan 8 di antaranya memiliki dua gen virulen. Spesies bakteri yang memiliki gen virulen adalah: V.harveyi, V. parahaemolyticus, V. mimicus, dan V. campbelli

  5. Commercial biocides induce transfer of prophage Φ13 from human strains of Staphylococcus aureus to livestock CC398

    Tang, Yuanyue; Nielsen, Lene Nørby; Hvitved, Annemette

    2017-01-01

    if exposure to biocidal products induces phage transfer, and find that during co-culture, Φ13 from strain 8325, belonging to ΦSa3 group, is induced and transferred from a human strain to LA-MRSA CC398 when exposed to sub-lethal concentrations of commercial biocides containing hydrogen peroxide. Integration...... variation in CC398 strains that disrupts the phage attachment site, but not the expression of β-hemolysin. Our results show that hydrogen peroxide present in biocidal products stimulate transfer of ΦSa3 from human to LA-MRSA CC398 strains and that in these strains prophage stability depends...

  6. Rapid detection and E-test antimicrobial susceptibility testing of Vibrio parahaemolyticus isolated from seafood and environmental sources in Malaysia.

    Al-Othrubi, Saleh M; Hanafiah, Alfizah; Radu, Son; Neoh, Humin; Jamal, Rahaman

    2011-04-01

    To find out the prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus in seafoods and environmental sources. The study was carried out at the Center of Excellence for Food Safety Research, University Putra Malaysia; Universiti Kebangsaan Malaysia; Medical Molecular Biology Institute; and University Kebansaan Malaysia Hospital, Malaysia between January 2006 and August 2008. One hundred and forty-four isolates from 400 samples of seafood (122 isolates) and seawater sources (22 isolates) were investigated for the presence of thermostable direct hemolysin (tdh+) and TDH-related hemolysin (trh+) genes using the standard methods. The E-test method was used to test the antimicrobial susceptibility. The study indicates low occurrence of tdh+ (0.69%) and trh+ isolates (8.3%). None of the isolates tested posses both virulence genes. High sensitivity was observed against tetracycline (98%). The mean minimum inhibitory concentration (MIC) of the isolates toward ampicillin increased from 4 ug/ml in 2004 to 24 ug/ml in 2007. The current study demonstrates a low occurrence of pathogenic Vibrio parahaemolyticus in the marine environment and seafood. Nonetheless, the potential risk of vibrio infection due to consumption of Vibrio parahaemolyticus contaminated seafood in Malaysia should not be neglected.

  7. Bacillus cereus and related species.

    Drobniewski, F A

    1993-10-01

    Bacillus cereus is a gram-positive aerobic or facultatively anaerobic spore-forming rod. It is a cause of food poisoning, which is frequently associated with the consumption of rice-based dishes. The organism produces an emetic or diarrheal syndrome induced by an emetic toxin and enterotoxin, respectively. Other toxins are produced during growth, including phospholipases, proteases, and hemolysins, one of which, cereolysin, is a thiol-activated hemolysin. These toxins may contribute to the pathogenicity of B. cereus in nongastrointestinal disease. B. cereus isolated from clinical material other than feces or vomitus was commonly dismissed as a contaminant, but increasingly it is being recognized as a species with pathogenic potential. It is now recognized as an infrequent cause of serious nongastrointestinal infection, particularly in drug addicts, the immunosuppressed, neonates, and postsurgical patients, especially when prosthetic implants such as ventricular shunts are inserted. Ocular infections are the commonest types of severe infection, including endophthalmitis, panophthalmitis, and keratitis, usually with the characteristic formation of corneal ring abscesses. Even with prompt surgical and antimicrobial agent treatment, enucleation of the eye and blindness are common sequelae. Septicemia, meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections are other manifestations of severe disease. B. cereus produces beta-lactamases, unlike Bacillus anthracis, and so is resistant to beta-lactam antibiotics; it is usually susceptible to treatment with clindamycin, vancomycin, gentamicin, chloramphenicol, and erythromycin. Simultaneous therapy via multiple routes may be required.

  8. The Influences of Bacillus subtilis on the Virulence of Aeromonas hydrophila and Expression of luxS Gene of Both Bacteria Under Co-cultivation.

    Ren, Yuwei; Li, Sisi; Wu, Zhixin; Zhou, Chengchong; Zhang, Ding; Chen, Xiaoxuan

    2017-06-01

    The aim of this study was to explore the influence of Bacillus subtilis CH9 on Aeromonas hydrophila SC2005. The transcription level of virulence genes of A. hydrophila SC2005 and its hemolysin activity as well as its cytotoxicity were analyzed when B. subtilis CH9 and A. hydrophila SC2005 were co-cultured. The results indicated that the transcription levels of four virulence genes of A. hydrophila, including aer, ahyB, hcp, and emp, decreased when A. hydrophila was cultured with B. subtilis CH9. Furthermore, the extracellular products of A. hydrophila showed attenuated hemolysin activity as well as cytotoxicity when A. hydrophila was cultured with B. subtilis CH9. Finally, the transcriptional levels of luxS genes of B. subtilis CH9 and A. hydrophila SC2005 were determined when these two species were co-cultured. RT-qPCR results suggested that the transcription level of A. hydrophila was down-regulated significantly. On the contrary, the transcription level of B. subtilis CH9 was up-regulated significantly. These results suggested that the probiotic role of B. subtilis CH9 is related to the inhibition of growth and virulence of A. hydrophila SC2005, and quorum sensing may be involved.

  9. Characterization of Vibrio parahaemolyticus isolated from oysters in Korea: Resistance to various antibiotics and prevalence of virulence genes.

    Kang, Chang-Ho; Shin, YuJin; Jang, SeokCheol; Yu, HongSik; Kim, SuKyung; An, Sera; Park, Kunbawui; So, Jae-Seong

    2017-05-15

    Vibrio parahaemolyticus, found frequently in oysters, is the most prevalent gastroenteritis-causing pathogen in Korea and in several other Asian countries. This study monitored changes in the environmental parameters and occurrence of V. parahaemolyticus in oyster aquaculture sites. Of the 44 presumed V. parahaemolyticus isolates obtained, when tested against 16 antibiotics, 90.9, 86.4, and 75.0% of the 44 isolates exhibited resistance to vancomycin, ampicillin, and streptomycin, respectively. PCR analysis for the presence of the toxR gene confirmed 31 of the 44 isolates as being positive V. parahaemolyticus strains. The toxR positive isolates were tested for the presence of thermostable direct hemolysin (tdh) and tdh-related hemolysin (trh) virulence genes. Only 9.1% toxR positive isolate exhibit the trh gene and none of the isolates were tested positive for tdh. The occurrence of multi drug resistance strains in the environment could be an indication of excessive usage of antibiotics in agriculture and aquaculture fields. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Genetic characterization of trh positive Vibrio spp. isolated from Norway

    Anette eBauer Ellingsen

    2013-12-01

    Full Text Available The thermostable direct hemolysin (TDH and/or TDH-related hemolysin (TRH genes are carried by most virulent Vibrio parahaemolyticus serovars. In Norway, trh+ V. parahaemolyticus constitute 4.4% and 4.5 % of the total number of V. parahaemolyticus isolated from blue mussel (Mytilus edulis and water, respectively. The trh gene is located in a region close to the gene cluster for urease production (ure. This region was characterized in V. parahaemolyticus strain TH3996 and it was found that a nickel transport operon (nik was located between the first gene (ureR and the rest of the ure cluster genes. The organization of the trh-ureR-nik-ure gene cluster in the Norwegian trh+ isolates was unknown. In this study, we explore the gene organization within the trh-ureR-nik-ure cluster for these isolates. PCR analyses revealed that the genes within the trh-ureR-nik-ure gene cluster of Norwegian trh+ isolates were organized in a similar fashion as reported previously for TH33996. Additionally, the phylogenetic relationship among these trh+ isolates was investigated using Multilocus Sequence Typing (MLST. Analysis by MLST or ureR-trh sequences generated two different phylogenetic trees for the same strains analyzed, suggesting that ureR-trh genes have been acquired at different times in Norwegian V. parahaemolyticus isolates. MLST results revealed that some pathogenic and non-pathogenic V. parahaemolyticus isolates in Norway appear to be highly genetically related.

  11. Serratamolide is a hemolytic factor produced by Serratia marcescens.

    Robert M Q Shanks

    Full Text Available Serratia marcescens is a common contaminant of contact lens cases and lenses. Hemolytic factors of S. marcescens contribute to the virulence of this opportunistic bacterial pathogen. We took advantage of an observed hyper-hemolytic phenotype of crp mutants to investigate mechanisms of hemolysis. A genetic screen revealed that swrW is necessary for the hyper-hemolysis phenotype of crp mutants. The swrW gene is required for biosynthesis of the biosurfactant serratamolide, previously shown to be a broad-spectrum antibiotic and to contribute to swarming motility. Multicopy expression of swrW or mutation of the hexS transcription factor gene, a known inhibitor of swrW expression, led to an increase in hemolysis. Surfactant zones and expression from an swrW-transcriptional reporter were elevated in a crp mutant compared to the wild type. Purified serratamolide was hemolytic to sheep and murine red blood cells and cytotoxic to human airway and corneal limbal epithelial cells in vitro. The swrW gene was found in the majority of contact lens isolates tested. Genetic and biochemical analysis implicate the biosurfactant serratamolide as a hemolysin. This novel hemolysin may contribute to irritation and infections associated with contact lens use.

  12. A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta

    Whidbey, Christopher; Harrell, Maria Isabel; Burnside, Kellie; Ngo, Lisa; Becraft, Alexis K.; Iyer, Lakshminarayan M.; Aravind, L.; Hitti, Jane

    2013-01-01

    Microbial infection of the amniotic fluid is a significant cause of fetal injury, preterm birth, and newborn infections. Group B Streptococcus (GBS) is an important human bacterial pathogen associated with preterm birth, fetal injury, and neonatal mortality. Although GBS has been isolated from amniotic fluid of women in preterm labor, mechanisms of in utero infection remain unknown. Previous studies indicated that GBS are unable to invade human amniotic epithelial cells (hAECs), which represent the last barrier to the amniotic cavity and fetus. We show that GBS invades hAECs and strains lacking the hemolysin repressor CovR/S accelerate amniotic barrier failure and penetrate chorioamniotic membranes in a hemolysin-dependent manner. Clinical GBS isolates obtained from women in preterm labor are hyperhemolytic and some are associated with covR/S mutations. We demonstrate for the first time that hemolytic and cytolytic activity of GBS is due to the ornithine rhamnolipid pigment and not due to a pore-forming protein toxin. Our studies emphasize the importance of the hemolytic GBS pigment in ascending infection and fetal injury. PMID:23712433

  13. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  14. Remodeling of the Streptococcus agalactiae transcriptome in response to growth temperature.

    Laurent Mereghetti

    Full Text Available BACKGROUND: To act as a commensal bacterium and a pathogen in humans and animals, Streptococcus agalactiae (group B streptococcus, GBS must be able to monitor and adapt to different environmental conditions. Temperature variation is a one of the most commonly encountered variables. METHODOLOGY/PRINCIPAL FINDINGS: To understand the extent to which GBS modify gene expression in response to temperatures encountered in the various hosts, we conducted a whole genome transcriptome analysis of organisms grown at 30 degrees C and 40 degrees C. We identified extensive transcriptome remodeling at various stages of growth, especially in the stationary phase (significant transcript changes occurred for 25% of the genes. A large proportion of genes involved in metabolism was up-regulated at 30 degrees C in stationary phase. Conversely, genes up-regulated at 40 degrees C relative to 30 degrees C include those encoding virulence factors such as hemolysins and extracellular secreted proteins with LPXTG motifs. Over-expression of hemolysins was linked to larger zones of hemolysis and enhanced hemolytic activity at 40 degrees C. A key theme identified by our study was that genes involved in purine metabolism and iron acquisition were significantly up-regulated at 40 degrees C. CONCLUSION/SIGNIFICANCE: Growth of GBS in vitro at different temperatures resulted in extensive remodeling of the transcriptome, including genes encoding proven and putative virulence genes. The data provide extensive new leads for molecular pathogenesis research.

  15. Characterization of Vibrio Parahaemolyticus isolated from oysters and mussels in São Paulo, Brazil

    Martha Virginia Ribeiro Rojas

    2011-08-01

    Full Text Available Vibrio parahaemolyticus is a marine bacterium, responsible for gastroenteritis in humans. Most of the clinical isolates produce thermostable direct hemolysin (TDH and TDH-related hemolysin (TRH encoded by tdh and trh genes respectively. In this study, twenty-three V. parahaemolyticus, previously isolated from oysters and mussels were analyzed by PCR using specific primers for the 16S rRNA and virulence genes (tdh, trh and tlh and for resistance to different classes of antibiotics and PFGE. Nineteen isolates were confirmed by PCR as V. parahaemolyticus. The tlh gene was present in 100% of isolates, the tdh gene was identified in two (10.5% isolates, whereas the gene trh was not detected. Each isolate was resistant to at least one of the nine antimicrobials tested. Additionally, all isolates possessed the blaTEM-116 gene. The presence of this gene in V. parahaemolyticus indicates the possibility of spreading this gene in the environment. Atypical strains of V. parahaemolyticus were also detected in this study.

  16. Investigation of radioprotective effects of aqueous extract of sauseurea obyallata on immune system of mice

    Zhang Guoliang; Li Wenhui; Guo Na; Hou Yu; Wang Chenghong; Li Tianqian; Yu Shuhui

    2011-01-01

    Objective: To investigate the radioprotective effects of test compound on immune system of mice from radiation injury. Methods: Immunologic function and general state of mice were shown by swimming experiment with the weighing of spleen, thymus and computing their indexs, hemolysin mensurate experiment and PHA stimulated lymphocyte transformation experiment. All mice were irradiated with 6 Gy and received the test compound by gavage for 14 days, 7 days before irradiation and 7 days after irradiation. All the indicators were measured according to established methods. The data went through Statistical analysis by spss11.5. Results: Irradiation has obvious influence on the immune function and systemic state of mice. In swimming experiment, mice in the treatment group swim longer than the model group, but is of no significant difference. The thymus indexes are higher in treatment groups than in model group, especially the HD group, compared with model group, the differences are obvious (P<0.05). There is no obvious difference between treatment groups and model group with OD value in hemolysin mensurate experiment. Conclusions: Aqueous Extract of Sauseurea Obyallata may have radioprotective effects on immune system of mice, which deserves further exploration in the compound preparing, analysis of Chemical Compositions and the dose and mode and the treatment duration of the compound. (authors)

  17. Virulence Factors and Antibiotic Resistance in Uropathogenic and Commensal Escherichia coli Isolates

    Iraj Sedighi

    2016-10-01

    Full Text Available Background: Urinary Tract Infections (UTIs, including cystitis and pyelonephritis, are the most common infectious diseases in childhood. Aim and Objectives: Escherichia coli (E. coli account for as much as 90% of the community-acquired and also 50% of nosocomial UTIs. Therefore, the identification of E. coli strains and antibiotic resistance patterns is important for both clinical and epidemiological implications. Material and Methods: To characterize uropathogenic strains E. coli, we studied 100 strains recovered from both urine samples of children aged less than 7 years with community-acquired UTIs and stool samples of healthy children, respectively. Results: We assessed Virulence Factors (VFs and drug sensitivities of E. coli isolates. Drug sensitivities of the isolates were 94% (amikacin, 90% (nitrofurantoin, 66% (gentamicin, 56% (cefixime, 40% (nalidixic acid and 28% (cotrimoxazol. Laboratory tests showed that the prevalence of virulence factors ranged from 18% for hemolysin and P-fimbriae to 2% for type1-fimbriae. Most drug resistance was cotrimoxazole and amikacin was the lowest. P-fimbriae and hemolysin in uropathogenic E. coli were more frequent than non-pathogen type of E. coli. Conclusion: Although amikacin appeared to be the first choice for UTI in children, but nitrofurantoin seems to be practical and could be considered as the selective choice for uncomplicated lower UTIs.

  18. Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis in vitro.

    Ranjbar-Omid, Mahsa; Arzanlou, Mohsen; Amani, Mojtaba; Shokri Al-Hashem, Seyyedeh Khadijeh; Amir Mozafari, Nour; Peeri Doghaheh, Hadi

    2015-05-01

    Several virulence factors contribute to the pathogenesis of Proteus mirabilis. This study determined the inhibitory effects of allicin on urease, hemolysin and biofilm of P. mirabilis ATCC 12453 and its antimicrobial activity against 20 clinical isolates of P. mirabilis. Allicin did not inhibit hemolysin, whereas it did inhibit relative urease activity in both pre-lysed (half-maximum inhibitory concentration, IC50 = 4.15 μg) and intact cells (IC50 = 21 μg) in a concentration-dependent manner. Allicin at sub-minimum inhibitory concentrations (2-32 μg mL(-1)) showed no significant effects on the growth of the bacteria (P > 0.05), but it reduced biofilm development in a concentration-dependent manner (P mirabilis isolates were determined to be 128 and 512 μg mL(-1), respectively. The results suggest that allicin could have clinical applications in controlling P. mirabilis infections. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Commercial Biocides Induce Transfer of Prophage Φ13 from Human Strains of Staphylococcus aureus to Livestock CC398

    Yuanyue Tang

    2017-12-01

    Full Text Available Human strains of Staphylococcus aureus commonly carry the bacteriophage ΦSa3 that encodes immune evasion factors. Recently, this prophage has been found in livestock-associated, methicillin resistant S. aureus (MRSA CC398 strains where it may promote human colonization. Here, we have addressed if exposure to biocidal products induces phage transfer, and find that during co-culture, Φ13 from strain 8325, belonging to ΦSa3 group, is induced and transferred from a human strain to LA-MRSA CC398 when exposed to sub-lethal concentrations of commercial biocides containing hydrogen peroxide. Integration of ΦSa3 in LA-MRSA CC398 occurs at multiple positions and the integration site influences the stability of the prophage. We did not observe integration in hlb encoding β-hemolysin that contains the preferred ΦSa3 attachment site in human strains, and we demonstrate that this is due to allelic variation in CC398 strains that disrupts the phage attachment site, but not the expression of β-hemolysin. Our results show that hydrogen peroxide present in biocidal products stimulate transfer of ΦSa3 from human to LA-MRSA CC398 strains and that in these strains prophage stability depends on the integration site. Knowledge of ΦSa3 transfer and stability between human and livestock strains may lead to new intervention measures directed at reducing human infection by LA-MRSA strains.

  20. Commercial Biocides Induce Transfer of Prophage Φ13 from Human Strains of Staphylococcus aureus to Livestock CC398.

    Tang, Yuanyue; Nielsen, Lene N; Hvitved, Annemette; Haaber, Jakob K; Wirtz, Christiane; Andersen, Paal S; Larsen, Jesper; Wolz, Christiane; Ingmer, Hanne

    2017-01-01

    Human strains of Staphylococcus aureus commonly carry the bacteriophage ΦSa3 that encodes immune evasion factors. Recently, this prophage has been found in livestock-associated, methicillin resistant S. aureus (MRSA) CC398 strains where it may promote human colonization. Here, we have addressed if exposure to biocidal products induces phage transfer, and find that during co-culture, Φ13 from strain 8325, belonging to ΦSa3 group, is induced and transferred from a human strain to LA-MRSA CC398 when exposed to sub-lethal concentrations of commercial biocides containing hydrogen peroxide. Integration of ΦSa3 in LA-MRSA CC398 occurs at multiple positions and the integration site influences the stability of the prophage. We did not observe integration in hlb encoding β-hemolysin that contains the preferred ΦSa3 attachment site in human strains, and we demonstrate that this is due to allelic variation in CC398 strains that disrupts the phage attachment site, but not the expression of β-hemolysin. Our results show that hydrogen peroxide present in biocidal products stimulate transfer of ΦSa3 from human to LA-MRSA CC398 strains and that in these strains prophage stability depends on the integration site. Knowledge of ΦSa3 transfer and stability between human and livestock strains may lead to new intervention measures directed at reducing human infection by LA-MRSA strains.

  1. Environmental determinants of Vibrio parahaemolyticus in the Chesapeake Bay.

    Davis, Benjamin J K; Jacobs, John M; Davis, Meghan F; Schwab, Kellogg J; DePaola, Angelo; Curriero, Frank C

    2017-08-25

    Vibrio parahaemolyticus naturally-occurs in brackish and marine waters and is one of the leading causes of seafood-borne illness. Previous work studying the ecology of V. parahaemolyticus is often limited in geographic extent and lacking a full range of environmental measures. This study used a unique, large dataset of surface water samples in the Chesapeake Bay ( n =1,385) collected from 148 monitoring stations from 2007 to 2010. Water was analyzed for over 20 environmental parameters with additional meteorological and surrounding land use data. V. parahaemolyticus -specific genetic markers thermolabile hemolysin ( tlh ), thermostable direct hemolysin ( tdh ), and tdh -related hemolysin ( trh ) were assayed using quantitative PCR (qPCR), and interval-censored regression models with non-linear effects were estimated to account for limits of detection and quantitation. tlh was detected in 19.6% of water samples; tdh or trh markers were not detected. Results confirmed previously reported positive associations for V. parahaemolyticus abundance with temperature and turbidity and negative associations with high salinity (> 10-23‰). Furthermore, the salinity relationship was determined to be a function of both low temperature and turbidity, with an increase of either nullifying the high salinity effect. Associations with dissolved oxygen and phosphate also appeared stronger when samples were taken nearby human developments. Renewed focus on the V. parahaemolyticus ecological paradigm is warranted to protect public health. Importance Vibrio parahaemolyticus is one of the leading causes of seafood-borne illness in the United States and across the globe. Exposure is often through consuming raw or undercooked shellfish. Given the natural presence of the bacterium in the marine environment, improved understanding of its environmental determinants is necessary for future preventative measures. This analysis of environmental Vibrio parahaemolyticus is one of only a few that

  2. 10′(Z),13′(E)-Heptadecadienylhydroquinone Inhibits Swarming and Virulence Factors and Increases Polymyxin B Susceptibility in Proteus mirabilis

    Wang, Won-Bo; Yuan, Yu-Han; Hsueh, Po-Ren; Liaw, Shwu-Jen

    2012-01-01

    In this study, we demonstrated that 10′(Z), 13′(E)-heptadecadienylhydroquinone (HQ17-2), isolated from the lacquer tree, could decrease swarming motility and hemolysin activity but increase polymyxin B (PB) susceptibilityof Proteus mirabilis which is intrinsically highly-resistant to PB. The increased PB susceptibility induced by HQ17-2 was also observed in clinical isolates and biofilm-grown cells. HQ17-2 could inhibit swarming in the wild-type and rppA mutant but not in the rcsB mutant, indicating that HQ17-2 inhibits swarming through the RcsB-dependent pathway, a two-component signaling pathway negatively regulating swarming and virulence factor expression. The inhibition of hemolysin activity by HQ17-2 is also mediated through the RcsB-dependent pathway, because HQ17-2 could not inhibit hemolysin activity in the rcsB mutant. Moreover, the finding that HQ17-2 inhibits the expression of flhDC gene in the wild-type and rcsB-complemented strain but not in the rcsB mutant supports the notion. By contrast, HQ17-2 could increase PB susceptibility in the wild-type and rcsB mutant but not in the rppA mutant, indicating that HQ17-2 increases PB susceptibility through the RppA-dependent pathway, a signaling pathway positively regulating PB resistance. In addition, HQ17-2 could inhibit the promoter activities of rppA and pmrI, a gene positively regulated by RppA and involved in PB resistance, in the wild-type but not in the rppA mutant. The inhibition of rppA and pmrI expression caused lipopolysaccharide purified from HQ17-2-treated cells to have higher affinity for PB. Altogether, this study uncovers new biological effects of HQ17-2 and provides evidence for the potential of HQ17-2 in clinical applications. PMID:23029100

  3. Discrimination among individual Watson–Crick base pairs at the termini of single DNA hairpin molecules

    Vercoutere, Wenonah A.; Winters-Hilt, Stephen; DeGuzman, Veronica S.; Deamer, David; Ridino, Sam E.; Rodgers, Joseph T.; Olsen, Hugh E.; Marziali, Andre; Akeson, Mark

    2003-01-01

    Nanoscale α-hemolysin pores can be used to analyze individual DNA or RNA molecules. Serial examination of hundreds to thousands of molecules per minute is possible using ionic current impedance as the measured property. In a recent report, we showed that a nanopore device coupled with machine learning algorithms could automatically discriminate among the four combinations of Watson–Crick base pairs and their orientations at the ends of individual DNA hairpin molecules. Here we use kinetic analysis to demonstrate that ionic current signatures caused by these hairpin molecules depend on the number of hydrogen bonds within the terminal base pair, stacking between the terminal base pair and its nearest neighbor, and 5′ versus 3′ orientation of the terminal bases independent of their nearest neighbors. This report constitutes evidence that single Watson–Crick base pairs can be identified within individual unmodified DNA hairpin molecules based on their dynamic behavior in a nanoscale pore. PMID:12582251

  4. Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrays

    Perry, Mark; Hansen, Jesper Schmidt; Jensen, Karin Bagger Stibius

    2011-01-01

    with a high signal-to-noise (s/n) ratio. We demonstratesd this by reconstituting gA and α-hemolysin (α-HL) into BLM arrays. The improvement in membrane array lifetime and s/n ratio demonstrates that surface plasma polymerization of the supporting partition can be used to increase the stability of biomimetic......Black lipid membrane (BLM) formation across apertures in an ethylene tetra-fluoroethylene (ETFE) partition separating two aqueous compartments is an established technique for the creation of biomimetic membranes. Recently multi-aperture BLM arrays have attracted interest and in order to increase...... BLM array stability we studied the effect of covalently modifying the partition substrate using surface plasma polymerization with hydrophobic n-hexene, 1-decene and hexamethyldisiloxane (HMDSO) as modification groups. Average lifetimes across singlesided HMDSO modified partitions or using 1-decene...

  5. Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources: A mini-review

    Deyan Stratev

    2016-09-01

    Full Text Available Summary: Aeromonas hydrophila is a Gram-negative, oxidase-positive, facultative, anaerobic, opportunistic aquatic pathogen. A. hydrophila produces virulence factors, such as hemolysins, aerolysins, adhesins, enterotoxins, phospholipase and lipase. In addition to isolation from aquatic sources, A. hydrophila has been isolated from meat and meat products, milk and dairy products, and vegetables. However, various studies showed that this opportunistic pathogen is resistant to commercial antibiotics. This is attributed to factors such as the indiscriminate use of antibiotics in aquaculture, plasmids or horizontal gene transfer. In this report, we highlight the occurrence, prevalence and antimicrobial resistance of A. hydrophila isolated from different food samples. The presence of antimicrobial-resistant A. hydrophila in food poses threats to public and aquatic animal health. Keywords: A. hydrophila, Antimicrobial resistance, Microbial food safety

  6. Analyte-Triggered DNA-Probe Release from a Triplex Molecular Beacon for Nanopore Sensing.

    Guo, Bingyuan; Sheng, Yingying; Zhou, Ke; Liu, Quansheng; Liu, Lei; Wu, Hai-Chen

    2018-03-26

    A new nanopore sensing strategy based on triplex molecular beacon was developed for the detection of specific DNA or multivalent proteins. The sensor is composed of a triplex-forming molecular beacon and a stem-forming DNA component that is modified with a host-guest complex. Upon target DNA hybridizing with the molecular beacon loop or multivalent proteins binding to the recognition elements on the stem, the DNA probe is released and produces highly characteristic current signals when translocated through α-hemolysin. The frequency of current signatures can be used to quantify the concentrations of the target molecules. This sensing approach provides a simple, quick, and modular tool for the detection of specific macromolecules with high sensitivity and excellent selectivity. It may find useful applications in point-of-care diagnostics with a portable nanopore kit in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Morganella sp. rods – characteristics, infections, mechanisms of resistance to antibiotics 

    Patrycja Zalas-Więcek

    2012-04-01

    Full Text Available The Morganella genus is one member of the tribe Proteae, which also includes the genera Proteus and Providencia. These bacteria are commonly present in the environment.Morganella sp. rods are known to be a causative agent of opportunistic hospital infections, mainly urinary tract, wound and blood infections of severe and high mortality, even in cases of an appropriate antibiotic.These bacteria may produce many virulence factors, for example urease, hemolysins, LPS, adhesins and enzymes hydrolyzing and modifying antibiotics commonly used to treat infections.Understanding the diverse biological properties of these rods may be of importance in the development of effective methods of prevention and control of infections with their participation. 

  8. Effects of radiographic contrast media on the serum complement system

    Tirone, P.; Boldrini, E.

    1983-01-01

    The authors explored the activation of the complement system produced by a nonionic organic iodine compound, namely iopamidol, which is proposed as a contrast medium for radiographic examination by intravenous and intra-arterial injection. The study was conducted in vitro versus established ionic contrasts (diatrizoate, iothalamate, acetrizoate) and a nonionic compound (metrizamide). The adopted experimental model was the immunohemolytic detector system, in which the immune complex consisted of goat erythrocytes sensitized with the corresponding antibody (hemolysin), and complement (C') was supplied by guinea pig serum. All the products caused complement activation. The results show that nonionic contrast media produce less activation of the complement system than the traditional ionic contrast. Thus the use of nonionic contrast for radiological procedures necessitating the introduction of contrast material into the blood compartment would imply a reduced risk of anaphylactoid reactions. (orig.)

  9. Optimization of Microbial Elastase Production

    Abd EI-Aziz, A.B.; Hassan, A.A.

    2010-01-01

    The extra cellular proteases (caseinase, gelatinase and elastase) and hemolytic activities of the tested microorganisms on agar plates were detected, using different substrates (gelatin, casein, hemoglobin and elastin).The proteolytic activities were detected only from Pseudomonas aeruginosa, Prevotella bivius, Bacillus subtilis and Micrococcus luteus. The production of elastase by Bacillus subtilis (has low hemolysins activity) at various temperatures (30 degree C - 37 degree C) and at exposure to different doses of gamma irradiation (0.25-1.0 kGy) was investigated in shake flask. The results indicated that the incubation temperature 37 degree C was the optimum for cell growth at earlier stage; while maximum elastase activity was obtained when the cells were cultivated at 30 degree C and irradiation dose level of 0.75 kGy. The effects of temperature, substrate content, elastase concentration, ph and different metals ions on elastolysis were investigated as well the elastase amino acids composition was detected by using amino acids analyzer

  10. The Effect of Aqueous and Alcoholic Extracts of Thyme, Eucalyptus, Chamomile and Fennel on Virulence Factors of Escherichia Coli, Causative Agent of Urinary Tract Infection

    Fatemeh Dashti-Zadeh

    2017-11-01

    Results: The results showed that, the alcoholic extract of thyme in three concentrations of 10, 5 and 2.5 mg/ml can prevent motility of the studied strain. Among the four plants studied, the alcoholic and aqueous extracts of thyme had the most effect in inhibiting the formation of biofilm. Alcoholic extract of thyme at concentration of 218.75 µg/ml and the alcoholic eucalyptus Extract at Concentration of 54.6875 µg/ml had inhibitory effects on the growth of bacterium, also the thyme alcoholic extract at concentration of 3500 μg / ml had bactericidal effect. None of the extracts had an effect on hemolysin production. Conclusion: Considering the inhibitory effect of thyme and eucalyptus alcoholic extracts on bacterial growth and the ability of these extracts to prevent biofilm formation and bacterial motility, these two herbs can be considered as the first choice for the treatment of urinary tract infections.

  11. Carcinogenic Activities and Sperm Abnormalities of Methicillin Resistance Staphylococcus aureus and Inhibition of Their Virulence Potentials by Ayamycin.

    El-Gendy, Mervat Morsy Abbas Ahmed; Abdel-Wahhab, Khaled G; Mannaa, Fathia A; Farghaly, Ayman A; El-Bondkly, Ahmed M A

    2017-11-01

    This investigation aimed to study the in vivo harmful effects of the subcutaneous injection of different methicillin resistance Staphylococcus aureus extracts (MRSA2, MRSA4, MRSA10, MRSA69, MRSA70, MRSA76, and MRSA78). Such strains represented the highest minimum inhibition concentration toward methicillin with various multidrug-resistant patterns. The obtained results revealed that rats injected with the MRSA4 extract died immediately after the last dose indicating the high cytotoxicity of MRSA4 strain (100% mortality). While the mortalities in other groups injected by the other MRSA extracts ranged from 50 to 75%. In comparison with the normal animal group, all MRSA extracts induced a hepatotoxic effect which was indicated from the significant (p study focused on fighting MRSA virulence factors by the new compound ayamycin, which proved to be potent anti-virulence factor against all MRSA strains under study by significant decreasing of their streptokinase activities, hemolysin synthesis, biofilm formation, and their cell surface hydrophobicity.

  12. Norlichexanthone Reduces Virulence Gene Expression and Biofilm Formation in Staphylococcus aureus

    Baldry, Mara; Nielsen, Anita; Bojer, Martin S.

    2016-01-01

    Staphylococcus aureus is a serious human pathogen and antibiotic resistant, community-associated strains, such as the methicillin resistant S. aureus (MRSA) strain USA300, continue to spread. To avoid resistance, anti-virulence therapy has been proposed where toxicity is targeted rather than...... viability. Previously we have shown that norlichexanthone, a small non-reduced tricyclic polyketide produced by fungi and lichens, reduces expression of hla encoding α-hemolysin as well as the regulatory RNAIII of the agr quorum sensing system in S. aureus 8325-4. The aim of the present study was to further...... SaeRS system. Our data show that norlichexanthone treatment reduces expression of key virulence factors in CA-MRSA strain USA300 via AgrA binding and represses biofilm formation....

  13. The Complete Genome Sequence of the Fish Pathogen Tenacibaculum maritimum Provides Insights into Virulence Mechanisms

    David Pérez-Pascual

    2017-08-01

    Full Text Available Tenacibaculum maritimum is a devastating bacterial pathogen of wild and farmed marine fish with a broad host range and a worldwide distribution. We report here the complete genome sequence of the T. maritimum type strain NCIMB 2154T. The genome consists of a 3,435,971-base pair circular chromosome with 2,866 predicted protein-coding genes. Genes encoding the biosynthesis of exopolysaccharides, the type IX secretion system, iron uptake systems, adhesins, hemolysins, proteases, and glycoside hydrolases were identified. They are likely involved in the virulence process including immune escape, invasion, colonization, destruction of host tissues, and nutrient scavenging. Among the predicted virulence factors, type IX secretion-mediated and cell-surface exposed proteins were identified including an atypical sialidase, a sphingomyelinase and a chondroitin AC lyase which activities were demonstrated in vitro.

  14. Incidence of Vibrio parahaemolyticus in U.S. coastal waters and oysters.

    DePaola, A; Hopkins, L H; Peeler, J T; Wentz, B; McPhearson, R M

    1990-08-01

    Oyster and seawater samples were collected seasonally from May 1984 through April 1985 from shellfish-growing areas in Washington, California, Texas, Louisiana, Alabama, Florida, South Carolina, Virginia, and Rhode Island which had been designated as approved or prohibited by the National Shellfish Sanitation Program. Fecal coliforms counts, aerobic plate counts, and Vibrio parahaemolyticus densities were determined for the samples. Mean V. parahaemolyticus density was more than 100 times greater in oysters than in water, whereas density of fecal coliforms was approximately 10 times higher in oysters. Seasonal and geographical distributions of V. parahaemolyticus were related to water temperature, with highest densities in samples collected in the spring and the summer along the Gulf coast. The synthetic DNA probe for thermostable direct hemolysin hybridized with 2 of 50 isolates, 1 of which was positive by the Kanagawa test.

  15. The alpha hemolisina of Escherichia Coli induces increases in the calcium citoplasmico of neutrofilos and monocytes human beings

    Garcia, J.

    2000-01-01

    Escherichia coli alpha hemolysin (AH) and the calcium ionophores ionomycin and 4 Br A23187 caused increases in cell fluorescence, indicative of elevations in cytoplasmic calcium, in fura 2-loaded human polymorphonuclear leukocytes(PMN) and monocytes (MN). The increase in fluorescence caused by AH was dose dependent. Quelation of extracellular calcium with EGTA prevented fluorescence increases in PMN exposed to 2 HU50/ml AH, but did not prevent a small increase in 4 μM, ionomycin-treated PMN, indicating that ionomycin treatment under conditions of calcium quelation can mobilize calcium from internal stores, and that entry of external calcium accounts for most of the increases in cell fluorescence in cells treated with both AH and calcium ionophores. AH, as well as calcium ionophores and the chemotactic peptide FMLP caused rease of myeloperoxidase (MPO) from PMM suggesting that increments in intracellular calcium cause degramulation with release of granule contents (Author) [es

  16. A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor

    Kim, Jungsuk

    2016-12-01

    This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.

  17. Whole genome sequence to decipher the resistome of Shewanella algae, a multidrug-resistant bacterium responsible for pneumonia, Marseille, France.

    Cimmino, Teresa; Olaitan, Abiola Olumuyiwa; Rolain, Jean-Marc

    2016-01-01

    We characterize and decipher the resistome and the virulence factors of Shewanella algae MARS 14, a multidrug-resistant clinical strain using the whole genome sequencing (WGS) strategy. The bacteria were isolated from the bronchoalveolar lavage of a hospitalized patient in the Timone Hospital in Marseille, France who developed pneumonia after plunging into the Mediterranean Sea. The genome size of S. algae MARS 14 was 5,005,710 bp with 52.8% guanine cytosine content. The resistome includes members of class C and D beta-lactamases and numerous multidrug-efflux pumps. We also found the presence of several hemolysins genes, a complete flagellum system gene cluster and genes responsible for biofilm formation. Moreover, we reported for the first time in a clinical strain of Shewanella spp. the presence of a bacteriocin (marinocin). The WGS analysis of this pathogen provides insight into its virulence factors and resistance to antibiotics.

  18. Effect of screening on the transport of polyelectrolytes through nanopores

    Oukhaled, G.; Bacri, L.; Mathé, J.; Pelta, J.; Auvray, L.

    2008-05-01

    We study the transport of dextran sulfate molecules (Mw=8000 Da) through a bacterial α-hemolysin channel inserted into a bilayer lipid membrane submitted to an external electric field. We detect the current blockades induced by the molecules threading through one pore and vary the ionic strength in an unexplored range starting at 10-3 M. In the conditions of the experiment, the polyelectrolyte molecules enter the pore only if the Debye screening length is smaller than the pore radius in agreement with theory. We also observe that large potentials favour the passage of the molecules. The distribution of blockade durations suggests that a complex process governs the kinetics of the molecules. The dwelling time increases sharply as the Debye length increases and approaches the pore radius.

  19. Induction of Endoplasmic Reticulum Stress and Unfolded Protein Response Constitutes a Pathogenic Strategy of group A Streptococcus

    Emanuel eHanski

    2014-08-01

    Full Text Available The connection between bacterial pathogens and unfolded protein response (UPR is poorly explored. In this review we highlight the evidence showing that group A streptococcus (GAS induces endoplasmic reticulum (ER stress and UPR through which it captures the amino acid asparagine (ASN from the host. GAS acts extracellularly and during adherence to host cells it delivers the hemolysin toxins; streptolysin O (SLO and streptolysin S (SLS. By poorly understood pathways, these toxins trigger UPR leading to the induction of the transcriptional regulator ATF4 and consequently to the upregulation of asparagine synthetase (ASNS transcription leading to production and release of ASN. GAS senses ASN and alters gene expression profile accordingly, and increases the rate of multiplication. We suggest that induction of UPR by GAS and by other bacterial pathogens represent means through which bacterial pathogens gain nutrients from the host, obviating the need to become internalized or inflict irreversible cell damage.

  20. Slowing down and stretching DNA with an electrically tunable nanopore in a p–n semiconductor membrane

    Melnikov, Dmitriy V; Gracheva, Maria E; Leburton, Jean-Pierre

    2012-01-01

    We have studied single-stranded DNA translocation through a semiconductor membrane consisting of doped p and n layers of Si forming a p–n-junction. Using Brownian dynamics simulations of the biomolecule in the self-consistent membrane–electrolyte potential obtained from the Poisson–Nernst–Planck model, we show that while polymer length is extended more than when its motion is constricted only by the physical confinement of the nanopore. The biomolecule elongation is particularly dramatic on the n-side of the membrane where the lateral membrane electric field restricts (focuses) the biomolecule motion more than on the p-side. The latter effect makes our membrane a solid-state analog of the α-hemolysin biochannel. The results indicate that the tunable local electric field inside the membrane can effectively control dynamics of a DNA in the channel to either momentarily trap, slow down or allow the biomolecule to translocate at will. (paper)

  1. Aeromonas caviae strain induces Th1 cytokine response in mouse intestinal tract

    Hayes, S L; Lye, D J; McKinstry, Craig A.; Vesper, Sephen J.

    2010-01-01

    Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus. Microarray profiling of murine small intestinal extracts, 24 hours after oral infection with an A. caviae strain, provides evidence of a Th1 type immune response. A large number of gamma-interferon (γ-IFN) induced genes are up-regulated as well as several tumor necrosis factor-alpha (TNF-α) transcripts. A. caviae has always been considered as opportunistic pathogen because it lacks obvious virulence factors. This current effort suggests that an A. caviae strain can colonize the murine intestinal tract and cause what has been described by others as a dysregulatory cytokine response. This response could explain why a number of diarrheal waterborne disease cases have been attributed to A. caviae even though it lacks obvious enteropathogenic properties.

  2. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract

    Connell, Hugh; Agace, William; Klemm, Per

    1996-01-01

    of Escherichia coli for the urinary tract by promoting bacterial persistence and enhancing the inflammatory responce to infection. In a clinical study, we observed that disease severity was greater in children infected with E. coli O1:K1:H7 isolates expressing type 1 fimbriae than in those infected with type 1...... negative isolates of the same serotype. The E. coli O1:K1:H7 isolates had the same electrophoretic type, were hemolysin-negative, expressed P fimbriae, and carried the fim DNA sequences. When tested in a mouse urinary tract infection model, the type 1-positive E. coli O1:K1:H7 isolates survived inhigher...... urinary tract infection model. E. coli CN1016 reconstituted with type 1 fimbriae had restored virulence similar to that of the wild-type parent strain. These results show that type 1 fimbriae in the genetic background of a uropathogenic strain contribute to the pathogenesis of E. coli in the urinary tract....

  3. Immunomodulatory effects of Hericium erinaceus derived polysaccharides are mediated by intestinal immunology.

    Sheng, Xiaotong; Yan, Jingmin; Meng, Yue; Kang, Yuying; Han, Zhen; Tai, Guihua; Zhou, Yifa; Cheng, Hairong

    2017-03-22

    This study was aimed at investigating the immunomodulating activity of Hericium erinaceus polysaccharide (HEP) in mice, by assessing splenic lymphocyte proliferation (cell-mediated immunity), serum hemolysin levels (humoral immunity), phagocytic capacity of peritoneal cavity phagocytes (macrophage phagocytosis), and NK cell activity. ELISA of immunoglobulin A (SIgA) in the lamina propria, and western blotting of small intestinal proteins were also performed to gain insight into the mechanism by which HEP affects the intestinal immune system. Here, we report that HEP improves immune function by functionally enhancing cell-mediated and humoral immunity, macrophage phagocytosis, and NK cell activity. In addition, HEP was found to upregulate the secretion of SIgA and activate the MAPK and AKT cellular signaling pathways in the intestine. In conclusion, all these results allow us to postulate that the immunomodulatory effects of HEP are most likely attributed to the effective regulation of intestinal mucosal immune activity.

  4. Uropathogenic E. coli induce different immune response in testicular and peritoneal macrophages: implications for testicular immune privilege.

    Sudhanshu Bhushan

    Full Text Available Infertility affects one in seven couples and ascending bacterial infections of the male genitourinary tract by Escherichia coli are an important cause of male factor infertility. Thus understanding mechanisms by which immunocompetent cells such as testicular macrophages (TM respond to infection and how bacterial pathogens manipulate defense pathways is of importance. Whole genome expression profiling of TM and peritoneal macrophages (PM infected with uropathogenic E. coli (UPEC revealed major differences in regulated genes. However, a multitude of genes implicated in calcium signaling pathways was a common feature which indicated a role of calcium-dependent nuclear factor of activated T cells (NFAT signaling. UPEC-dependent NFAT activation was confirmed in both cultured TM and in TM in an in vivo UPEC infectious rat orchitis model. Elevated expression of NFATC2-regulated anti-inflammatory cytokines was found in TM (IL-4, IL-13 and PM (IL-3, IL-4, IL-13. NFATC2 is activated by rapid influx of calcium, an activity delineated to the pore forming toxin alpha-hemolysin by bacterial mutant analysis. Alpha-hemolysin suppressed IL-6 and TNF-α cytokine release from PM and caused differential activation of MAP kinase and AP-1 signaling pathways in TM and PM leading to reciprocal expression of key pro-inflammatory cytokines in PM (IL-1α, IL-1β, IL-6 downregulated and TM (IL-1β, IL-6 upregulated. In addition, unlike PM, LPS-treated TM were refractory to NFκB activation shown by the absence of degradation of IκBα and lack of pro-inflammatory cytokine secretion (IL-6, TNF-α. Taken together, these results suggest a mechanism to the conundrum by which TM initiate immune responses to bacteria, while maintaining testicular immune privilege with its ability to tolerate neo-autoantigens expressed on developing spermatogenic cells.

  5. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia.

    Letchumanan, Vengadesh; Yin, Wai-Fong; Lee, Learn-Han; Chan, Kok-Gan

    2015-01-01

    Vibrio parahaemolyticus is a marine and estuarine bacterium that has been the leading cause of foodborne outbreaks which leads to a significant threat to human health worldwide. Consumption of seafood contaminated with V. parahaemolyticus causes acute gastroenteritis in individuals. The bacterium poses two main virulence factor including the thermostable direct hemolysin (tdh) which is a pore-forming protein that contributes to the invasiveness of the bacterium in humans and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. This study aimed to investigate the antimicrobial resistance V. parahaemolyticus strains in shrimps purchased from wetmarkets and supermarkets. The toxR-based PCR assay indicated that a total of 57.8% (185/320) isolates were positive for V. parahaemolyticus. Only 10% (19/185) toxR-positive isolate exhibit the trh gene and none of the isolates were tested positive for tdh. The MAR index was measured for 14 common antimicrobial agents. The results indicated 98% of the isolates were highly susceptible to imipenem, ampicillin sulbactam (96%), chloramphenicol (95%), trimethoprim-sulfamethoxazole (93%), gentamicin (85%), levofloxacin (83%), and tetracycline (82%). The chloramphenicol (catA2) and kanamycin (aphA-3) resistance genes were detected in the resistant V. parahaemolyticus isolates. Our results demonstrate that shrimps are contaminated with V. parahaemolyticus, some of which carry the trh-gene thus being potential to cause food borne illness. The occurrence of multidrug resistance strains in the environment could be an indication of excessive usage of antibiotics in agriculture and aquaculture fields.

  6. LukM/LukF'-PV is the most active Staphylococcus aureus leukotoxin on bovine neutrophils.

    Barrio, Maria B; Rainard, Pascal; Prévost, Gilles

    2006-07-01

    Staphylococcus aureus is a ubiquitous pathogen causing infections in humans and domestic animals. It is often associated with bovine mastitis. Among secreted virulence factors, the leukotoxins constitute a family of toxins composed of two distinct subunits (class S and F proteins) which induce first Ca2+ influx and subsequent pore formation that allows ethidium entry. As mastitis-causing isolates harbor the genes of at least two, and often three leukotoxins, we compared the biological activities of the purified leukotoxins whose genes are found in mastitis-causing isolates on bovine polymorphonuclear neutrophils (PMN): spreading on a solid support, calcium influx and ethidium entry. In the spreading assay, the homologous pair LukM/LukF'-PV was the most active leukotoxin. Within each class, either S or F, subunits were interchangeable and generated leukotoxins with different specific activity. LukM was also very active when associated with heterologous F subunits. A similar ranking of homologous pairs was also found in the ethidium entry assay: LukM/LukF'-PV > HlgA/HlgB > HlgC/HlgB > LukE/LukD = LukEv/LukDv. In the Ca2+ flux assay, LukM/F'-PV was the most active pair, but gamma-hemolysin (Hlg) was also very efficient. LukEv/Dv was more active (twofold) than LukE/D in the spreading assay, but the two variants showed similar activities in the other two assays. Supposing that spreading and ethidium entry (pore formation) reflect toxic activities on bovine PMN, and Ca2+ influx cell activation, LukM/F'-PV was by far the most cytotoxic leukotoxin, but it was closely followed by gamma-hemolysin for PMN activation. These results suggest that LukM/F'-PV may constitute a particular virulence attribute of mastitis-causing S. aureus strains.

  7. Incidence and virulence characteristics of Aeromonas spp. in fish

    Ashraf M. Abd-El-Malek

    2017-01-01

    Full Text Available Aim: This study was conducted to evaluate the presence of Aeromonas spp. in raw and ready-to-eat (RTE fish commonly consumed in Assiut city, Egypt, and to determine virulence factors due to they play a key role in their pathogenicity. Materials and Methods: A total of 125 samples of raw and RTE fish samples were taken from different fish markets and fish restaurants in Assiut Governorate and screened for the presence of Aeromonas spp. by enrichment on tryptic soy broth then incubated at 30°C for 24 h. Plating unto the sterile Petri dishes containing Aeromonas agar base to which Aeromonas selective supplement was added. The plates were incubated at 37°C for 24 h. Presumptive Aeromonas colonies were biochemically confirmed and analyzed for pathogenicity by hemolysin production, protease, and lipase detection. Results: The results indicated that raw fish were contaminated with Aeromonas spp. (40% in wild and 36% in cultured Nile tilapia. Regarding RTE, Aeromonas spp. could be isolated with the percentage of 16%, 28% and 20% in fried Bolti, grilled Bolti and fried Bayad, respectively. Out of 35 isolates obtained, 22 were categorized as Aeromonas hydrophila, 12 were classified as Aeromonas sobria and Aeromonas caviae were found in only one isolate. The virulence factors of Aeromonas spp. were detected and the results showed that all isolates produced of hemolysin (91.4%, protease (77.1%, and lipase enzyme (17.1%. Conclusion: This study indicates that the presence of A. hydrophila with virulence potential in fresh and RTE fish may be a major threat to public health.

  8. Incidence of Aeromonas spp. infection in fish and chicken meat and its related public health hazards: A review

    Praveen Kumar Praveen

    2016-01-01

    Full Text Available Aeromonas is recognized to cause a variety of diseases in man. In humans, they are associated with intestinal and extraintestinal infections. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors such as enterotoxins, hemolysins or cytotoxins, and antibiotic resistance against different antibiotics. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. Comprehensive enteric disease surveillance strategies, prevention and education are essential for meeting the challenges in the years ahead. It is important for us to promote the value of enteric cultures when patients have a gastrointestinal illness or bloody diarrhea or when multiple cases of enteric disease occur after a common exposure. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors, such as enterotoxins, hemolysins or cytotoxins. It has been established that aerolysin is a virulence factor contributing to the pathogenesis of Aeromonas hydrophila infection. Fish and chicken play an important role in the transmission of this pathogen to humans. In the present study, the high prevalence of toxin-producing strains was found among the Aeromonas isolates. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. The present review was constructed with a view to highlight the zoonotic importance of Aeromonas pathogen in fish and chicken meat.

  9. Development of a loop-mediated Isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus

    Kawahara Ryuji

    2008-09-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is a marine seafood-borne pathogen causing gastrointestinal disorders in humans. Thermostable direct hemolysin (TDH and TDH-related hemolysin (TRH are known as major virulence determinants of V. parahaemolyticus. Most V. parahaemolyticus isolates from the environment do not produce TDH or TRH. Total V. parahaemolyticus has been used as an indicator for control of seafood contamination toward prevention of infection. Detection of total V. parahaemolyticus using conventional culture- and biochemical-based assays is time-consuming and laborious, requiring more than three days. Thus, we developed a novel and highly specific loop-mediated isothermal amplification (LAMP assay for the sensitive and rapid detection of Vibrio parahaemolyticus. Results The assay provided markedly more sensitive and rapid detection of V. parahaemolyticus strains than conventional biochemical and PCR assays. The assay correctly identified 143 V. parahaemolyticus strains, but did not detect 33 non-parahaemolyticus Vibrio and 56 non-Vibrio strains. Sensitivity of the LAMP assay for direct detection of V. parahaemolyticus in pure cultures and in spiked shrimp samples was 5.3 × 102 CFU per ml/g (2.0 CFU per reaction. The sensitivity of the LAMP assay was 10-fold more sensitive than that of the conventional PCR assay. The LAMP assay was markedly faster, requiring for amplification 13–22 min in a single colony on TCBS agar from each of 143 V. parahaemolyticus strains and less than 35 min in spiked shrimp samples. The LAMP assay for detection of V. parahaemolyticus required less than 40 min in a single colony on thiosulfate citrate bile salt sucrose (TCBS agar and 60 min in spiked shrimp samples from the beginning of DNA extraction to final determination. Conclusion The LAMP assay is a sensitive, rapid and simple tool for the detection of V. parahaemolyticus and will facilitate the surveillance for control of contamination of V

  10. Effects of Dry Storage and Resubmersion of Oysters on Total Vibrio vulnificus and Total and Pathogenic (tdh+/trh+) Vibrio parahaemolyticus Levels.

    Kinsey, Thomas P; Lydon, Keri A; Bowers, John C; Jones, Jessica L

    2015-08-01

    Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are the two leading causes of bacterial illnesses associated with raw shellfish consumption. Levels of these pathogens in oysters can increase during routine antifouling aquaculture practices involving dry storage in ambient air conditions. After storage, common practice is to resubmerge these stored oysters to reduce elevated Vv and Vp levels, but evidence proving the effectiveness of this practice is lacking. This study examined the changes in Vv and in total and pathogenic (thermostable direct hemolysin gene and the tdh-related hemolysin gene, tdh+ and trh+) Vp levels in oysters after 5 or 24 h of dry storage (28 to 32°C), followed by resubmersion (27 to 32°C) for 14 days. For each trial, replicate oyster samples were collected at initial harvest, after dry storage, after 7 days, and after 14 days of resubmersion. Oysters not subjected to dry storage were collected and analyzed to determine natural undisturbed vibrio levels (background control). Vibrio levels were measured using a most-probable-number enrichment followed by real-time PCR. After storage, vibrio levels (excluding tdh+ and trh+ Vp during 5-h storage) increased significantly (P oysters stored for 5 h) were not significantly different (P oysters. Vv and total and pathogenic Vp levels were not significantly different (P > 0.1) from levels in background oysters after 14 days of resubmersion, regardless of dry storage time. These data demonstrate that oyster resubmersion after dry storage at elevated ambient temperatures allows vibrio levels to return to those of background control samples. These results can be used to help minimize the risk of Vv and Vp illnesses and to inform the oyster industry on the effectiveness of routine storing and resubmerging of aquaculture oysters.

  11. Development of a rapid immunochromatographic assay to detect contamination of raw oysters with enteropathogenic Vibrio parahaemolyticus.

    Sakata, Junko; Yonekita, Taro; Kawatsu, Kentaro

    2018-01-02

    Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are major virulence factors of enteropathogenic Vibrio parahaemolyticus. TDH and TRH are bacterial exotoxins, and their presence in culture medium serves as a specific marker for detecting this significant pathogen. Here, we developed and evaluated an immunochromatographic assay (TDH/TRH-ICA) to simultaneously or individually detect TDH and TRH. The TDH/TRH-ICA detected TDH in all broth cultures of 47 V. parahaemolyticus strains carrying tdh. The genes encoding TRH are classified as variants trh1 and trh2, and TRH was detected in all broth cultures of 25 V. parahaemolyticus strains carrying trh1 and certain proportion (5/31) of broth cultures of V. parahaemolyticus strains carrying trh2. In contrast, TDH and TRH were not detected in broth cultures of 12 non-enteropathogenic V. parahaemolyticus strains without tdh and trh. It was difficult to detect TRH2 using the TDH/TRH-ICA. However, TRH2 may not serve as a suitable marker for detecting enteropathogenic V. parahaemolyticus, and evidence indicates that TRH2 may not contribute to enteropathogenesis. Further, a screening method using a combination of TDH/TRH-ICA and SPP medium supplemented with 1.5% NaCl (modified-SPP medium) detected oyster samples artificially spiked with 1.1-22 colony-forming units of enteropathogenic V. parahaemolyticus per 25g of oysters within approximately 8.5h, including the enrichment culture. The assay may serve as a method that facilitates the rapid and easy detection of raw oysters contaminated with enteropathogenic V. parahaemolyticus. Copyright © 2017. Published by Elsevier B.V.

  12. Virulence and antimicrobial resistance of common urinary bacteria from asymptomatic students of Niger Delta University, Amassoma, Bayelsa State, Nigeria

    Adebola Onanuga

    2016-01-01

    Full Text Available Background: Asymptomatic bacteriuria frequently occurs among all ages with the possibility of developing into urinary tract infections, and the antimicrobial resistance patterns of the etiologic organisms are essential for appropriate therapy. Thus, we investigated the virulence and antimicrobial resistance patterns of common urinary bacteria in asymptomatic students of Niger Delta University, Amassoma, Bayelsa State, Nigeria in a cross-sectional study. Materials and Methods: Clean catch mid-stream early morning urine samples collected from 200 asymptomatic University students of aged ranges 15–30 years were cultured, screened and common bacteria were identified using standard microbiological procedures. The isolates were screened for hemolysin production and their susceptibility to antibiotics was determined using standard disc assay method. Results: A total prevalence rate of 52.0% significant bacteriuria was detected and it was significantly higher among the female with a weak association (χ2 = 6.01, phi = 0.173, P = 0.014. The Klebsiella pneumoniae and Staphylococcus aureus isolates were most frequently encountered among the isolated bacteria and 18 (12.7% of all the bacterial isolates produced hemolysins. All the bacterial isolates exhibited 50–100% resistance to the tested beta-lactam antibiotics, tetracycline and co-trimoxazole. The isolated bacteria were 85-100% multi-drug resistant. However, most of the isolates were generally susceptible to gentamicin and ofloxacin. The phenotypic detection of extended-spectrum beta-lactamases was 9 (9.6% among the tested Gram-negative bacterial isolates. Conclusions: The observed high proportions of multidrug resistant urinary bacteria among asymptomatic University students call for the need of greater control of antibiotic use in this study area.

  13. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia

    Letchumanan, Vengadesh; Yin, Wai-Fong; Lee, Learn-Han; Chan, Kok-Gan

    2015-01-01

    Vibrio parahaemolyticus is a marine and estuarine bacterium that has been the leading cause of foodborne outbreaks which leads to a significant threat to human health worldwide. Consumption of seafood contaminated with V. parahaemolyticus causes acute gastroenteritis in individuals. The bacterium poses two main virulence factor including the thermostable direct hemolysin (tdh) which is a pore-forming protein that contributes to the invasiveness of the bacterium in humans and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. This study aimed to investigate the antimicrobial resistance V. parahaemolyticus strains in shrimps purchased from wetmarkets and supermarkets. The toxR-based PCR assay indicated that a total of 57.8% (185/320) isolates were positive for V. parahaemolyticus. Only 10% (19/185) toxR-positive isolate exhibit the trh gene and none of the isolates were tested positive for tdh. The MAR index was measured for 14 common antimicrobial agents. The results indicated 98% of the isolates were highly susceptible to imipenem, ampicillin sulbactam (96%), chloramphenicol (95%), trimethoprim-sulfamethoxazole (93%), gentamicin (85%), levofloxacin (83%), and tetracycline (82%). The chloramphenicol (catA2) and kanamycin (aphA-3) resistance genes were detected in the resistant V. parahaemolyticus isolates. Our results demonstrate that shrimps are contaminated with V. parahaemolyticus, some of which carry the trh-gene thus being potential to cause food borne illness. The occurrence of multidrug resistance strains in the environment could be an indication of excessive usage of antibiotics in agriculture and aquaculture fields. PMID:25688239

  14. Staphylococcus aureus α-Toxin Induces Actin Filament Remodeling in Human Airway Epithelial Model Cells.

    Ziesemer, Sabine; Eiffler, Ina; Schönberg, Alfrun; Müller, Christian; Hochgräfe, Falko; Beule, Achim G; Hildebrandt, Jan-Peter

    2018-04-01

    Exposure of cultured human airway epithelial model cells (16HBE14o-, S9) to Staphylococcus aureus α-toxin (hemolysin A, Hla) induces changes in cell morphology and cell layer integrity that are due to the inability of the cells to maintain stable cell-cell or focal contacts and to properly organize their actin cytoskeletons. The aim of this study was to identify Hla-activated signaling pathways involved in regulating the phosphorylation level of the actin-depolymerizing factor cofilin. We used recombinant wild-type hemolysin A (rHla) and a variant of Hla (rHla-H35L) that is unable to form functional transmembrane pores to treat immortalized human airway epithelial cells (16HBE14o-, S9) as well as freshly isolated human nasal tissue. Our results indicate that rHla-mediated changes in cofilin phosphorylation require the formation of functional Hla pores in the host cell membrane. Formation of functional transmembrane pores induced hypophosphorylation of cofilin at Ser3, which was mediated by rHla-induced attenuation of p21-activated protein kinase and LIM kinase activities. Because dephosphorylation of pSer3-cofilin results in activation of this actin-depolymerizing factor, treatment of cells with rHla resulted in loss of actin stress fibers from the cells and destabilization of cell shape followed by the appearance of paracellular gaps in the cell layers. Activation of protein kinase A or activation of small GTPases (Rho, Rac, Cdc42) do not seem to be involved in this response.

  15. Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells.

    Jeon, Hyejin; Oh, Man Hwan; Jun, So Hyun; Kim, Seung Il; Choi, Chi Won; Kwon, Hyo Il; Na, Seok Hyeon; Kim, Yoo Jeong; Nicholas, Asiimwe; Selasi, Gati Noble; Lee, Je Chul

    2016-04-01

    Staphylococcus aureus secretes membrane-derived vesicles (MVs), which can deliver virulence factors to host cells and induce cytopathology. However, the cytopathology of host cells induced by MVs derived from different S. aureus strains has not yet been characterized. In the present study, the cytotoxic activity of MVs from different S. aureus isolates on host cells was compared and the proteomes of S. aureus MVs were analyzed. The MVs purified from S. aureus M060 isolated from a patient with staphylococcal scalded skin syndrome showed higher cytotoxic activity toward host cells than that shown by MVs from three other clinical S. aureus isolates. S. aureus M060 MVs induced HEp-2 cell apoptosis in a dose-dependent manner, but the cytotoxic activity of MVs was completely abolished by treatment with proteinase K. In a proteomic analysis, the MVs from three S. aureus isolates not only carry 25 common proteins, but also carry ≥60 strain-specific proteins. All S. aureus MVs contained δ-hemolysin (Hld), γ-hemolysin, leukocidin D, and exfoliative toxin C, but exfoliative toxin A (ETA) was specifically identified in S. aureus M060 MVs. ETA was delivered to HEp-2 cells via S. aureus MVs. Both rETA and rHld induced cytotoxicity in HEp-2 cells. In conclusion, MVs from clinical S. aureus isolates differ with respect to cytotoxic activity in host cells, and these differences may result from differences in the MV proteomes. Further proteogenomic analysis or mutagenesis of specific genes is necessary to identify cytotoxic factors in S. aureus MVs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Aureusimines in Staphylococcus aureus are not involved in virulence.

    Sun, Fei; Cho, Hoonsik; Jeong, Do-Won; Li, Chunling; He, Chuan; Bae, Taeok

    2010-12-29

    Recently, dipeptide aureusimines were reported to activate expression of staphylococcal virulence genes, such as alpha-hemolysin, and increase S. aureus virulence. Surprisingly, most of the virulence genes affected by aureusimines form part of the regulon of the SaeRS two component system (TCS), raising the possibility that SaeRS might be directly or indirectly involved in the aureusimine-dependent signaling process. Using HPLC analyses, we confirmed that a transposon mutant of ausA, the gene encoding the aureusimine dipeptide synthesis enzyme, does not produce dipeptides. However, the transposon mutant showed normal hemolysis activity and alpha-hemolysin/SaeP production. Furthermore, the P1 promoter of the sae operon, one of the targets of the SaeRS TCS, showed normal transcription activity. Moreover, in contrast to the original report, the ausA transposon mutant did not exhibit attenuated virulence in an animal infection model. DNA sequencing revealed that the ausA deletion mutant used in the original study has an 83 nt-duplication in saeS. Hemolysis activity of the original mutant was restored by a plasmid carrying the sae operon. A mutant of the sae operon showed elevated resistance to chloramphenicol and erythromycin, two antibiotics widely used during staphylococcal mutagenesis. At 43°C in the presence of erythromycin and aeration, the conditions typically employed for staphylococcal mutagenesis, an saeR transposon mutant grew much faster than a control mutant and the saeR mutant was highly enriched in a mixed culture experiment. Our results show that the previously reported roles of aureusimines in staphylococcal gene regulation and virulence were due to an unintended mutation in saeS, which was likely selected due to elevated resistance of the mutant to environmental stresses. Thus, there is no evidence indicating that the dipeptide aureusimines play a role in sae-mediated virulence factor production or contribute to staphylococcal virulence.

  17. Vibrio parahaemolyticus Strains of Pandemic Serotypes Identified from Clinical and Environmental Samples from Jiangsu, China

    Jingjiao eLi

    2016-05-01

    Full Text Available Vibrio parahaemolyticus has emerged as a major foodborne pathogen in China, Japan, Thailand and other Asian countries. In this study, 72 strains of V. parahaemolyticus were isolated from clinical and environmental samples between 2006 and 2014 in Jiangsu, China. The serotypes and six virulence genes including thermostable direct hemolysin (TDR and TDR-related hemolysin (TRH genes were assessed among the isolates. Twenty five serotypes were identified and O3:K6 was one of the dominant serotypes. The genetic diversity was assessed by multilocus sequence typing (MLST analysis, and 48 sequence types (STs were found, suggesting this V. parahaemolyticus group is widely dispersed and undergoing rapid evolution. A total of 25 strains of pandemic serotypes such as O3:K6, O5:K17 and O1:KUT were identified. It is worth noting that the pandemic serotypes were not exclusively identified from clinical samples, rather, nine strains were also isolated from environmental samples; and some of these strains harbored several virulence genes, which may render those strains pathogenicity potential. Therefore, the emergence of these environmental pandemic V. parahaemolyticus strains may poses a new threat to the public health in China. Furthermore, six novel serotypes and 34 novel STs were identified among the 72 isolates, indicating that V. parahaemolyticus were widely distributed and fast evolving in the environment in Jiangsu, China. The findings of this study provide new insight into the phylogenic relationship between V. parahaemolyticus strains of pandemic serotypes from clinical and environmental sources and enhance the MLST database; and our proposed possible O- and K- antigen evolving paths of V. parahaemolyticus may help understand how the serotypes of this dispersed bacterial population evolve.

  18. Biological activity of Serratia marcescens cytotoxin

    G.V. Carbonell

    2003-03-01

    Full Text Available Serratia marcescens cytotoxin was purified to homogeneity by ion-exchange chromatography on a DEAE Sepharose Fast Flow column, followed by gel filtration chromatography on a Sephadex G100 column. The molecular mass of the cytotoxin was estimated to be about 50 kDa. Some biological properties of the cytotoxin were analyzed and compared with well-characterized toxins, such as VT1, VT2 and CNF from Escherichia coli and hemolysin produced by S. marcescens. The sensitivity of the cell lines CHO, HeLa, HEp-2, Vero, BHK-21, MA 104 and J774 to the cytotoxin was determined by the cell viability assay using neutral red. CHO and HEp-2 were highly sensitive, with massive cellular death after 1 h of treatment, followed by BHK-21, HeLa, Vero and J774 cells, while MA 104 was insensitive to the toxin. Cytotoxin induced morphological changes such as cell rounding with cytoplasmic retraction and nuclear compactation which were evident 15 min after the addition of cytotoxin. The cytotoxic assays show that 15 min of treatment with the cytotoxin induced irreversible intoxication of the cells, determined by loss of cell viability. Concentrations of 2 CD50 (0.56 µg/ml of purified cytotoxin did not present any hemolytic activity, showing that the cytotoxin is distinct from S. marcescens hemolysin. Antisera prepared against S. marcescens cytotoxin did not neutralize the cytotoxic activity of VT1, VT2 or CNF toxin, indicating that these toxins do not share antigenic determinants with cytotoxin. Moreover, we did not detect gene sequences for any of these toxins in S. marcescens by PCR assay. These results suggest that S. marcescens cytotoxin is not related to any of these toxins from E. coli.

  19. Comparative Study of Esterase and Hemolytic Activities in Clinically Important Candida Species, Isolated From Oral Cavity of Diabetic and Non-diabetic Individuals.

    Fatahinia, Mahnaz; Poormohamadi, Farzad; Zarei Mahmoudabadi, Ali

    2015-03-01

    Diabetes mellitus as a chronic metabolic disease occurs in patients with partial or complete deficiency of insulin secretion or disorder in action of insulin on tissue. The disease is known to provide conditions for overgrowth of Candida species. Candida spp. cause candidiasis by many virulence factors such as esterase, hemolysin and phospholipase. This study aimed to compare esterase and hemolytic activity in various Candida species isolated from oral cavity of diabetic and non-diabetic individuals. Swab samples were taken from 95 patients with diabetes (35 men and 60 women) and 95 normal persons (42 men and 53 women) and cultured on Sabouraud dextrose agar. Identification of isolated yeasts was performed by germ tube test, morphology on CHROMagar Candida medium, corn meal agar and ability to grow at 45°C. Hemolysin activity was evaluated using blood plate assay and esterase activity was determined using the Tween 80 opacity test. Different Candida species were isolated from 57 (60%) diabetic and 24 (25%) non-diabetic individuals. Esterase activity was detected in all Candida isolates. Only 21.6% of C. albicans from patients with diabetes had esterase activity as + 3, while it ranged from + 1 to + 2 in others. Hemolytic activity was determined in C. albicans, C. dubliniensis, C. glabrata and C. krusei as 0.79, 0.58, 0.66 and 0.74, respectively. Hemolytic activity was significantly different in the two groups of diabetics and non-diabetics. Oral carriage of C. albicans in the diabetic group (n = 42; 66.7%) was significantly greater than the control group (n = 16; 57.1%). Esterase activity of C. albicans in diabetic group was higher than non-diabetic group. Although C. albicans remains the most frequently pathogenic yeast for human, but other species are increasing.

  20. Genomic, Physiologic, and Symbiotic Characterization of Serratia marcescens Strains Isolated from the Mosquito Anopheles stephensi

    Shicheng Chen

    2017-08-01

    Full Text Available Strains of Serratia marcescens, originally isolated from the gut lumen of adult female Anopheles stephensi mosquitoes, established persistent infection at high rates in adult A. stephensi whether fed to larvae or in the sugar meal to adults. By contrast, the congener S. fonticola originating from Aedes triseriatus had lower infection in A. stephensi, suggesting co-adaptation of Serratia strains in different species of host mosquitoes. Coinfection at high infection rate in adult A. stephensi resulted after feeding S. marcescens and Elizabethkingia anophelis in the sugar meal, but when fed together to larvae, infection rates with E. anophelis were much higher than were S. marcescens in adult A. stephensi, suggesting a suppression effect of coinfection across life stages. A primary isolate of S. marcescens was resistant to all tested antibiotics, showed high survival in the mosquito gut, and produced alpha-hemolysins which contributed to lysis of erythrocytes ingested with the blood meal. Genomes of two primary isolates from A. stephensi, designated S. marcescens ano1 and ano2, were sequenced and compared to other Serratia symbionts associated with insects, nematodes and plants. Serratia marcescens ano1 and ano2 had predicted virulence factors possibly involved in attacking parasites and/or causing opportunistic infection in mosquito hosts. S. marcescens ano1 and ano2 possessed multiple mechanisms for antagonism against other microorganisms, including production of bacteriocins and multi-antibiotic resistance determinants. These genes contributing to potential anti-malaria activity including serralysins, hemolysins and chitinases are only found in some Serratia species. It is interesting that genome sequences in S. marcescens ano1 and ano2 are distinctly different from those in Serratia sp. Ag1 and Ag2 which were isolated from Anopheles gambiae. Compared to Serratia sp. Ag1 and Ag2, S. marcescens ano1 and ano2 have more rRNAs and many important

  1. Genomic, Physiologic, and Symbiotic Characterization of Serratia marcescens Strains Isolated from the Mosquito Anopheles stephensi.

    Chen, Shicheng; Blom, Jochen; Walker, Edward D

    2017-01-01

    Strains of Serratia marcescens , originally isolated from the gut lumen of adult female Anopheles stephensi mosquitoes, established persistent infection at high rates in adult A. stephensi whether fed to larvae or in the sugar meal to adults. By contrast, the congener S. fonticola originating from Aedes triseriatus had lower infection in A. stephensi , suggesting co-adaptation of Serratia strains in different species of host mosquitoes. Coinfection at high infection rate in adult A. stephensi resulted after feeding S. marcescens and Elizabethkingia anophelis in the sugar meal, but when fed together to larvae, infection rates with E. anophelis were much higher than were S. marcescens in adult A. stephensi , suggesting a suppression effect of coinfection across life stages. A primary isolate of S. marcescens was resistant to all tested antibiotics, showed high survival in the mosquito gut, and produced alpha-hemolysins which contributed to lysis of erythrocytes ingested with the blood meal. Genomes of two primary isolates from A. stephensi , designated S. marcescens ano1 and ano2, were sequenced and compared to other Serratia symbionts associated with insects, nematodes and plants. Serratia marcescens ano1 and ano2 had predicted virulence factors possibly involved in attacking parasites and/or causing opportunistic infection in mosquito hosts. S. marcescens ano1 and ano2 possessed multiple mechanisms for antagonism against other microorganisms, including production of bacteriocins and multi-antibiotic resistance determinants. These genes contributing to potential anti-malaria activity including serralysins, hemolysins and chitinases are only found in some Serratia species. It is interesting that genome sequences in S. marcescens ano1 and ano2 are distinctly different from those in Serratia sp. Ag1 and Ag2 which were isolated from Anopheles gambiae . Compared to Serratia sp. Ag1 and Ag2, S. marcescens ano1 and ano2 have more rRNAs and many important genes involved in

  2. Food-borne outbreaks, distributions, virulence, and antibiotic resistance profiles of Vibrio parahaemolyticus in Korea from 2003 to 2016: a review

    Kunbawui Park

    2018-02-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is one of the most common causes of seafood-borne illnesses in Korea, either directly or indirectly, by consuming infected seafood. Many studies have demonstrated the antibiotic susceptibility profile of V. parahaemolyticus. This strain has developed multiple antibiotic resistance, which has raised serious public health and economic concerns. This article reviews the food-borne outbreaks, distributions, virulence, and antibiotic resistance profiles of V. parahaemolyticus in Korea during 2003–2016. Main body V. parahaemolyticus infections appeared to be seasonally dependent, because 69.7% of patient infections occurred in both August and September during 2003–2016. In addition, the occurrence of V. parahaemolyticus in marine environments varies seasonally but is particularly high in July, August, and September. V. parahaemolyticus isolated from aquaculture sources on the Korean coast varied in association with virulence genes, some did not possess either the tdh (thermostable direct hemolysin or trh (tdh-related hemolysin genes, and a few were positive for only the trh gene or both genes. The high percentage of ampicillin resistance against V. parahaemolyticus in the aquatic environment suggests that ampicillin cannot be used to effectively treat infections caused by this organism. Short conclusion This study shows that the observed high percentage of multiple antibiotic resistance to V. parahaemolyticus is due to conventionally used antibiotics. Therefore, monitoring the antimicrobial resistance patterns at a national level and other solutions are needed to control aquaculture infections, ensure seafood safety, and avoid threats to public health caused by massive misuse of antibiotics.

  3. Ecological fitness and virulence features of Vibrio parahaemolyticus in estuarine environments.

    Lovell, Charles R

    2017-03-01

    Vibrio parahaemolyticus is a commonly encountered and highly successful organism in marine ecosystems. It is a fast-growing, extremely versatile copiotroph that is active over a very broad range of conditions. It frequently occurs suspended in the water column (often attached to particles or zooplankton), and is a proficient colonist of submerged surfaces. This organism is an important pathogen of animals ranging from microcrustaceans to humans and is a causative agent of seafood-associated food poisoning. This review examines specific ecological adaptations of V. parahaemolyticus, including its broad tolerances to temperature and salinity, its utilization of a wide variety of organic carbon and energy sources, and its pervasive colonization of suspended and stationary materials that contribute to its success and ubiquity in temperate and tropical estuarine ecosystems. Several virulence-related features are examined, in particular the thermostable direct hemolysin (TDH), the TDH-related hemolysin (TRH), and the type 3 secretion system, and the possible importance of these features in V. parahaemolyticus pathogenicity is explored. The impact of new and much more effective PCR primers on V. parahaemolyticus detection and our views of virulent strain abundance are also described. It is clear that strains carrying the canonical virulence genes are far more common than previously thought, which opens questions regarding the role of these genes in pathogenesis. It is also clear that virulence is an evolving feature of V. parahaemolyticus and that novel combinations of virulence factors can lead to emergent virulence in which a strain that is markedly more pathogenic evolves and propagates to produce an outbreak. The effects of global climate change on the frequency of epidemic disease, the geographic distribution of outbreaks, and the human impacts of V. parahaemolyticus are increasing and this review provides information on why this ubiquitous human pathogen has

  4. Aureusimines in Staphylococcus aureus are not involved in virulence.

    Fei Sun

    2010-12-01

    Full Text Available Recently, dipeptide aureusimines were reported to activate expression of staphylococcal virulence genes, such as alpha-hemolysin, and increase S. aureus virulence. Surprisingly, most of the virulence genes affected by aureusimines form part of the regulon of the SaeRS two component system (TCS, raising the possibility that SaeRS might be directly or indirectly involved in the aureusimine-dependent signaling process.Using HPLC analyses, we confirmed that a transposon mutant of ausA, the gene encoding the aureusimine dipeptide synthesis enzyme, does not produce dipeptides. However, the transposon mutant showed normal hemolysis activity and alpha-hemolysin/SaeP production. Furthermore, the P1 promoter of the sae operon, one of the targets of the SaeRS TCS, showed normal transcription activity. Moreover, in contrast to the original report, the ausA transposon mutant did not exhibit attenuated virulence in an animal infection model. DNA sequencing revealed that the ausA deletion mutant used in the original study has an 83 nt-duplication in saeS. Hemolysis activity of the original mutant was restored by a plasmid carrying the sae operon. A mutant of the sae operon showed elevated resistance to chloramphenicol and erythromycin, two antibiotics widely used during staphylococcal mutagenesis. At 43°C in the presence of erythromycin and aeration, the conditions typically employed for staphylococcal mutagenesis, an saeR transposon mutant grew much faster than a control mutant and the saeR mutant was highly enriched in a mixed culture experiment.Our results show that the previously reported roles of aureusimines in staphylococcal gene regulation and virulence were due to an unintended mutation in saeS, which was likely selected due to elevated resistance of the mutant to environmental stresses. Thus, there is no evidence indicating that the dipeptide aureusimines play a role in sae-mediated virulence factor production or contribute to staphylococcal

  5. Genotyping of Staphylococcus aureus in bovine mastitis and correlation to phenotypic characteristics.

    Artursson, Karin; Söderlund, Robert; Liu, Lihong; Monecke, Stefan; Schelin, Jenny

    2016-09-25

    Reducing the prevalence of mastitis caused by Staphylococcus aureus (S. aureus) is essential to improve animal health and reduce economic losses for farmers. The clinical outcome of acute mastitis and risk of progression to persistent mastitis can, at least to some extent, be related to genetic variants of the strain causing the infection. In the present study we have used microarrays to investigate the presence of virulence genes in S. aureus isolates from dairy cows with acute clinical mastitis (n=70) and correlated the findings to other genotypic and phenotypic characteristics. Among the most commonly found virulence factors were genes encoding several hemolysin types, leukocidins D and lukM/lukF-P83, clumping factors A and B, fibrinogen binding protein and fibronectin-binding protein A. Some virulence factors e.g. fibronectin-binding protein B and Staphylococcus aureus surface protein G were less common. Genes coding for several staphylococcal enterotoxins and toxic shock syndrome toxin-1 (TSST-1) were commonly found, especially in one major pulsotype. No beta-lactamase genes were found in any common pulsotype, while present in some rare pulsotypes, indicated to be of human origin. Production of TSST-1, enterotoxins, hemolysins and beta-lactamase could all be positively correlated to presence of the corresponding genes. This study reveals a number of genotypic differences and similarities among common and rare pulsotypes of S. aureus from cases of mastitis in Sweden. The results could help the design of diagnostic tools to guide on-farm interventions according to the expected impact on udder health from a specific S. aureus genotype. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Cytotoxic Potential of Bacillus cereus Strains ATCC 11778 and 14579 Against Human Lung Epithelial Cells Under Microaerobic Growth Conditions

    Kathleen eKilcullen

    2016-02-01

    Full Text Available Bacillus cereus, a food poisoning bacterium closely related to Bacillus anthracis, secretes a multitude of virulence factors including enterotoxins, hemolysins, and phospholipases. However, the majority of the in vitro experiments evaluating the cytotoxic potential of B. cereus were carried out in the conditions of aeration, and the impact of the oxygen limitation in conditions encountered by the microbe in natural environment such as gastrointestinal tract remains poorly understood. This research reports comparative analysis of ATCC strains 11778 (BC1 and 14579 (BC2 in aerated and microaerobic (static cultures with regard to their toxicity for human lung epithelial cells. We showed that BC1 increased its toxicity upon oxygen limitation while BC2 was highly cytotoxic in both growth conditions. The combined effect of the pore-forming, cholesterol-dependent hemolysin, cereolysin O (CLO, and metabolic product(s such as succinate produced in microaerobic conditions provided substantial contribution to the toxicity of BC1 but not BC2 which relied mainly on other toxins. This mechanism is shared between CB1 and B. anthracis. It involves the permeabilization of the cell membrane which facilitates transport of toxic bacterial metabolites into the cell. The toxicity of BC1was potentiated in the presence of bovine serum albumin which appeared to serve as reservoir for bacteria-derived nitric oxide participating in the downstream production of reactive oxidizing species with the properties of peroxynitrite. In agreement with this the BC1cultures demonstrated the increased oxidation of the indicator dye Amplex Red catalyzed by peroxidase as well as the increased toxicity in the presence of externally added ascorbic acid.

  7. Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture.

    Bando, Hiroki; Hisada, Hiromoto; Ishida, Hiroki; Hata, Yoji; Katakura, Yoshio; Kondo, Akihiko

    2011-11-01

    A novel promoter from a hemolysin-like protein encoding the gene, hlyA, was characterized for protein overexpression in Aspergillus oryzae grown in solid-state culture. Using endo-1,4-β-glucanase from A. oryzae (CelA) as the reporter, promoter activity was found to be higher than that of the α-amylase (amyA) and manganese superoxide dismutase (sodM) genes not only in wheat bran solid-state culture but also in liquid culture. Expression of the A. oryzae endoglucanase CelB and two heterologous endoglucanases (TrEglI and TrEglIII from Trichoderma reesei) under the control of the hlyA promoter were also found to be stronger than under the control of the amyA promoter in A. oryzae grown in wheat bran solid-state culture, suggesting that the hlyA promoter may be useful for the overproduction of other proteins as well. In wheat bran solid-state culture, the productivity of the hlyA promoter in terms of protein produced was high when the cultivation temperature was 30°C or 37°C, when the water content was 0.6 or 0.8 ml/g wheat bran, and from 48 to 72 h after inoculation. Because A. oryzae sporulated actively under these conditions and because hemolysin has been reported to play a role in fungal fruiting body formation, high-level expression of hlyA may be related to sporulation.

  8. Incidence of Aeromonas spp. infection in fish and chicken meat and its related public health hazards: A review.

    Praveen, Praveen Kumar; Debnath, Chanchal; Shekhar, Shashank; Dalai, Nirupama; Ganguly, Subha

    2016-01-01

    Aeromonas is recognized to cause a variety of diseases in man. In humans, they are associated with intestinal and extra-intestinal infections. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors such as enterotoxins, hemolysins or cytotoxins, and antibiotic resistance against different antibiotics. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. Comprehensive enteric disease surveillance strategies, prevention and education are essential for meeting the challenges in the years ahead. It is important for us to promote the value of enteric cultures when patients have a gastrointestinal illness or bloody diarrhea or when multiple cases of enteric disease occur after a common exposure. With the growing importance of Aeromonas as an emerging pathogen, it is important to combat this organism. It is indisputable that Aeromonas strains may produce many different putative virulence factors, such as enterotoxins, hemolysins or cytotoxins. It has been established that aerolysin is a virulence factor contributing to the pathogenesis of Aeromonas hydrophila infection. Fish and chicken play an important role in the transmission of this pathogen to humans. In the present study, the high prevalence of toxin-producing strains was found among the Aeromonas isolates. The ability of these bacteria to grow competitively at 5°C may be indicative of their potential as a public health hazard. The present review was constructed with a view to highlight the zoonotic importance of Aeromonas pathogen in fish and chicken meat.

  9. Phylogenetic diversity, antimicrobial susceptibility and virulence gene profiles of Brachyspira hyodysenteriae isolates from pigs in Germany.

    Jessica Joerling

    Full Text Available Swine dysentery (SD is an economically important diarrheal disease in pigs caused by different strongly hemolytic Brachyspira (B. species, such as B. hyodysenteriae, B. suanatina and B. hampsonii. Possible associations of epidemiologic data, such as multilocus sequence types (STs to virulence gene profiles and antimicrobial susceptibility are rather scarce, particularly for B. hyodysenteriae isolates from Germany. In this study, B. hyodysenteriae (n = 116 isolated from diarrheic pigs between 1990 and 2016 in Germany were investigated for their STs, susceptibility to the major drugs used for treatment of SD (tiamulin and valnemulin and genes that were previously linked with virulence and encode for hemolysins (tlyA, tlyB, tlyC, hlyA, BHWA1_RS02885, BHWA1_RS09085, BHWA1_RS04705, and BHWA1_RS02195, outer membrane proteins (OMPs (bhlp16, bhlp17.6, bhlp29.7, bhmp39f, and bhmp39h as well as iron acquisition factors (ftnA and bitC. Multilocus sequence typing (MLST revealed that 79.4% of the isolates belonged to only three STs, namely ST52 (41.4%, ST8 (12.1%, and ST112 (25.9% which have been observed in other European countries before. Another 24 isolates belonged to twelve new STs (ST113-118, ST120-123, ST131, and ST193. The temporal distribution of STs revealed the presence of new STs as well as the regular presence of ST52 over three decades (1990s-2000s. The proportion of strains that showed resistance to both tiamulin und valnemulin (39.1% varied considerably among the most frequent STs ranging from 0% (0/14 isolates resistant in ST8 isolates to 46.7% (14/30, 52.1% (25/48, and 85.7% (6/7 in isolates belonging to ST112, ST52, and ST114, respectively. All hemolysin genes as well as the iron-related gene ftnA and the OMP gene bhlp29.7 were regularly present in the isolates, while the OMP genes bhlp17.6 and bhmp39h could not be detected. Sequence analysis of hemolysin genes of selected isolates revealed co-evolution of tlyB, BHWA1_RS02885, BHWA1_RS

  10. Phylogenetic diversity, antimicrobial susceptibility and virulence gene profiles of Brachyspira hyodysenteriae isolates from pigs in Germany

    Joerling, Jessica; Barth, Stefanie A.; Schlez, Karen; Willems, Hermann

    2018-01-01

    Swine dysentery (SD) is an economically important diarrheal disease in pigs caused by different strongly hemolytic Brachyspira (B.) species, such as B. hyodysenteriae, B. suanatina and B. hampsonii. Possible associations of epidemiologic data, such as multilocus sequence types (STs) to virulence gene profiles and antimicrobial susceptibility are rather scarce, particularly for B. hyodysenteriae isolates from Germany. In this study, B. hyodysenteriae (n = 116) isolated from diarrheic pigs between 1990 and 2016 in Germany were investigated for their STs, susceptibility to the major drugs used for treatment of SD (tiamulin and valnemulin) and genes that were previously linked with virulence and encode for hemolysins (tlyA, tlyB, tlyC, hlyA, BHWA1_RS02885, BHWA1_RS09085, BHWA1_RS04705, and BHWA1_RS02195), outer membrane proteins (OMPs) (bhlp16, bhlp17.6, bhlp29.7, bhmp39f, and bhmp39h) as well as iron acquisition factors (ftnA and bitC). Multilocus sequence typing (MLST) revealed that 79.4% of the isolates belonged to only three STs, namely ST52 (41.4%), ST8 (12.1%), and ST112 (25.9%) which have been observed in other European countries before. Another 24 isolates belonged to twelve new STs (ST113-118, ST120-123, ST131, and ST193). The temporal distribution of STs revealed the presence of new STs as well as the regular presence of ST52 over three decades (1990s–2000s). The proportion of strains that showed resistance to both tiamulin und valnemulin (39.1%) varied considerably among the most frequent STs ranging from 0% (0/14 isolates resistant) in ST8 isolates to 46.7% (14/30), 52.1% (25/48), and 85.7% (6/7) in isolates belonging to ST112, ST52, and ST114, respectively. All hemolysin genes as well as the iron-related gene ftnA and the OMP gene bhlp29.7 were regularly present in the isolates, while the OMP genes bhlp17.6 and bhmp39h could not be detected. Sequence analysis of hemolysin genes of selected isolates revealed co-evolution of tlyB, BHWA1_RS02885, BHWA1_RS

  11. Use of porcine vaginal tissue ex-vivo to model environmental effects on vaginal mucosa to toxic shock syndrome toxin-1

    Davis, Catherine C.; Baccam, Mekhine; Mantz, Mary J.; Osborn, Thomas W.; Hill, Donna R.; Squier, Christopher A.

    2014-01-01

    Menstrual toxic shock syndrome (mTSS) is a rare, recognizable, and treatable disease that has been associated with tampon use epidemiologically. It involves a confluence of microbial risk factors (Staphylococcus aureus strains that produce the superantigen—TSST-1), as well as environmental characteristics of the vaginal ecosystem during menstruation and host susceptibility factors. This paper describes a series of experiments using the well-characterized model of porcine vaginal mucosa ex-vivo to assess the effect of these factors associated with tampon use on the permeability of the mucosa. The flux of radiolabeled TSST-1 and tritiated water ( 3 H 2 O) through porcine vaginal mucosa was determined at various temperatures, after mechanical disruption of the epithelial surface by tape stripping, after treatment with surfactants or other compounds, and in the presence of microbial virulence factors. Elevated temperatures (42, 47 and 52 °C) did not significantly increase flux of 3 H 2 O. Stripping of the epithelial layers significantly increased the flux of labeled toxin in a dose-dependent manner. Addition of benzalkonium chloride (0.1 and 0.5%) and glycerol (4%) significantly increased the flux of 3 H 2 O but sodium lauryl sulfate at any concentration tested did not. The flux of the labeled toxin was significantly increased in the presence of benzalkonium chloride but not Pluronic® L92 and Tween 20 and significantly increased with addition of α-hemolysin but not endotoxin. These results show that the permeability of porcine vagina ex-vivo to labeled toxin or water can be used to evaluate changes to the vaginal environment and modifications in tampon materials, and thus aid in risk assessment. - Highlights: • Model assessed local effects of tampon use on vaginal mucosa. • Risks were evaluated using two tracers to assess permeability in an ex vivo model. • Mechanical damage to the epithelial surface increased tracer penetration. • Surfactants increased

  12. Use of porcine vaginal tissue ex-vivo to model environmental effects on vaginal mucosa to toxic shock syndrome toxin-1

    Davis, Catherine C.; Baccam, Mekhine [Feminine Care Global Product Stewardship, 6110 Center Hill Road, The Procter and Gamble Company, Cincinnati, OH 45224 (United States); Mantz, Mary J. [Dows Institute for Dental Research, The University of Iowa, Iowa City, IA 52242 (United States); Osborn, Thomas W.; Hill, Donna R. [Feminine Care Product Development, 6110 Center Hill Road, The Procter and Gamble Company, Cincinnati, OH 45224 (United States); Squier, Christopher A. [Dows Institute for Dental Research, The University of Iowa, Iowa City, IA 52242 (United States)

    2014-01-15

    Menstrual toxic shock syndrome (mTSS) is a rare, recognizable, and treatable disease that has been associated with tampon use epidemiologically. It involves a confluence of microbial risk factors (Staphylococcus aureus strains that produce the superantigen—TSST-1), as well as environmental characteristics of the vaginal ecosystem during menstruation and host susceptibility factors. This paper describes a series of experiments using the well-characterized model of porcine vaginal mucosa ex-vivo to assess the effect of these factors associated with tampon use on the permeability of the mucosa. The flux of radiolabeled TSST-1 and tritiated water ({sup 3}H{sub 2}O) through porcine vaginal mucosa was determined at various temperatures, after mechanical disruption of the epithelial surface by tape stripping, after treatment with surfactants or other compounds, and in the presence of microbial virulence factors. Elevated temperatures (42, 47 and 52 °C) did not significantly increase flux of {sup 3}H{sub 2}O. Stripping of the epithelial layers significantly increased the flux of labeled toxin in a dose-dependent manner. Addition of benzalkonium chloride (0.1 and 0.5%) and glycerol (4%) significantly increased the flux of {sup 3}H{sub 2}O but sodium lauryl sulfate at any concentration tested did not. The flux of the labeled toxin was significantly increased in the presence of benzalkonium chloride but not Pluronic® L92 and Tween 20 and significantly increased with addition of α-hemolysin but not endotoxin. These results show that the permeability of porcine vagina ex-vivo to labeled toxin or water can be used to evaluate changes to the vaginal environment and modifications in tampon materials, and thus aid in risk assessment. - Highlights: • Model assessed local effects of tampon use on vaginal mucosa. • Risks were evaluated using two tracers to assess permeability in an ex vivo model. • Mechanical damage to the epithelial surface increased tracer penetration.

  13. VfrB Is a Key Activator of the Staphylococcus aureus SaeRS Two-Component System.

    Krute, Christina N; Rice, Kelly C; Bose, Jeffrey L

    2017-03-01

    In previous studies, we identified the fatty acid kinase virulence factor regulator B (VfrB) as a potent regulator of α-hemolysin and other virulence factors in Staphylococcus aureus In this study, we demonstrated that VfrB is a positive activator of the SaeRS two-component regulatory system. Analysis of vfrB , saeR , and saeS mutant strains revealed that VfrB functions in the same pathway as SaeRS. At the transcriptional level, the promoter activities of SaeRS class I ( coa ) and class II ( hla ) target genes were downregulated during the exponential growth phase in the vfrB mutant, compared to the wild-type strain. In addition, saePQRS expression was decreased in the vfrB mutant strain, demonstrating a need for this protein in the autoregulation of SaeRS. The requirement for VfrB-mediated activation was circumvented when SaeS was constitutively active due to an SaeS (L18P) substitution. Furthermore, activation of SaeS via human neutrophil peptide 1 (HNP-1) overcame the dependence on VfrB for transcription from class I Sae promoters. Consistent with the role of VfrB in fatty acid metabolism, hla expression was decreased in the vfrB mutant with the addition of exogenous myristic acid. Lastly, we determined that aspartic acid residues D38 and D40, which are predicted to be key to VfrB enzymatic activity, were required for VfrB-mediated α-hemolysin production. Collectively, this study implicates VfrB as a novel accessory protein needed for the activation of SaeRS in S. aureus IMPORTANCE The SaeRS two-component system is a key regulator of virulence determinant production in Staphylococcus aureus Although the regulon of this two-component system is well characterized, the activation mechanisms, including the specific signaling molecules, remain elusive. Elucidating the complex regulatory circuit of SaeRS regulation is important for understanding how the system contributes to disease causation by this pathogen. To this end, we have identified the fatty acid kinase

  14. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury

    Greune, Lilo; Jarosch, Kevin-André; Steil, Daniel; Zhang, Wenlan; He, Xiaohua; Lloubes, Roland; Fruth, Angelika; Kim, Kwang Sik; Schmidt, M. Alexander; Dobrindt, Ulrich; Mellmann, Alexander; Karch, Helge

    2017-01-01

    Outer membrane vesicles (OMVs) are important tools in bacterial virulence but their role in the pathogenesis of infections caused by enterohemorrhagic Escherichia coli (EHEC) O157, the leading cause of life-threatening hemolytic uremic syndrome, is poorly understood. Using proteomics, electron and confocal laser scanning microscopy, immunoblotting, and bioassays, we investigated OMVs secreted by EHEC O157 clinical isolates for virulence factors cargoes, interactions with pathogenetically relevant human cells, and mechanisms of cell injury. We demonstrate that O157 OMVs carry a cocktail of key virulence factors of EHEC O157 including Shiga toxin 2a (Stx2a), cytolethal distending toxin V (CdtV), EHEC hemolysin, and flagellin. The toxins are internalized by cells via dynamin-dependent endocytosis of OMVs and differentially separate from vesicles during intracellular trafficking. Stx2a and CdtV-B, the DNase-like CdtV subunit, separate from OMVs in early endosomes. Stx2a is trafficked, in association with its receptor globotriaosylceramide within detergent-resistant membranes, to the Golgi complex and the endoplasmic reticulum from where the catalytic Stx2a A1 fragment is translocated to the cytosol. CdtV-B is, after its retrograde transport to the endoplasmic reticulum, translocated to the nucleus to reach DNA. CdtV-A and CdtV-C subunits remain OMV-associated and are sorted with OMVs to lysosomes. EHEC hemolysin separates from OMVs in lysosomes and targets mitochondria. The OMV-delivered CdtV-B causes cellular DNA damage, which activates DNA damage responses leading to G2 cell cycle arrest. The arrested cells ultimately die of apoptosis induced by Stx2a and CdtV via caspase-9 activation. By demonstrating that naturally secreted EHEC O157 OMVs carry and deliver into cells a cocktail of biologically active virulence factors, thereby causing cell death, and by performing first comprehensive analysis of intracellular trafficking of OMVs and OMV-delivered virulence factors

  15. Healthcare- and Community-Associated Methicillin-Resistant Staphylococcus aureus (MRSA) and Fatal Pneumonia with Pediatric Deaths in Krasnoyarsk, Siberian Russia: Unique MRSA's Multiple Virulence Factors, Genome, and Stepwise Evolution

    Khokhlova, Olga E.; Hung, Wei-Chun; Wan, Tsai-Wen; Iwao, Yasuhisa; Takano, Tomomi; Higuchi, Wataru; Yachenko, Svetlana V.; Teplyakova, Olga V.; Kamshilova, Vera V.; Kotlovsky, Yuri V.; Nishiyama, Akihito; Reva, Ivan V.; Sidorenko, Sergey V.; Peryanova, Olga V.; Reva, Galina V.; Teng, Lee-Jene; Salmina, Alla B.; Yamamoto, Tatsuo

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a common multidrug-resistant (MDR) pathogen. We herein discussed MRSA and its infections in Krasnoyarsk, Siberian Russia between 2007 and 2011. The incidence of MRSA in 3,662 subjects was 22.0% and 2.9% for healthcare- and community-associated MRSA (HA- and CA-MRSA), respectively. The 15-day mortality rates for MRSA hospital- and community-acquired pneumonia (HAP and CAP) were 6.5% and 50%, respectively. MRSA CAP cases included pediatric deaths; of the MRSA pneumonia episodes available, ≥27.3% were associated with bacteremia. Most cases of HA-MRSA examined exhibited ST239/spa3(t037)/SCCmecIII.1.1.2 (designated as ST239Kras), while all CA-MRSA cases examined were ST8/spa1(t008)/SCCmecIV.3.1.1(IVc) (designated as ST8Kras). ST239Kras and ST8Kras strongly expressed cytolytic peptide (phenol-soluble modulin α, PSMα; and δ-hemolysin, Hld) genes, similar to CA-MRSA. ST239Kras pneumonia may have been attributed to a unique set of multiple virulence factors (MVFs): toxic shock syndrome toxin-1 (TSST-1), elevated PSMα/Hld expression, α-hemolysin, the staphylococcal enterotoxin SEK/SEQ, the immune evasion factor SCIN/SAK, and collagen adhesin. Regarding ST8Kras, SEA was included in MVFs, some of which were common to ST239Kras. The ST239Kras (strain OC3) genome contained: a completely unique phage, φSa7-like (W), with no att repetition; S. aureus pathogenicity island SaPI2R, the first TSST-1 gene-positive (tst+) SaPI in the ST239 lineage; and a super copy of IS256 (≥22 copies/genome). ST239Kras carried the Brazilian SCCmecIII.1.1.2 and United Kingdom-type tst. ST239Kras and ST8Kras were MDR, with the same levofloxacin resistance mutations; small, but transmissible chloramphenicol resistance plasmids spread widely enough to not be ignored. These results suggest that novel MDR and MVF+ HA- and CA-MRSA (ST239Kras and ST8Kras) emerged in Siberian Russia (Krasnoyarsk) associated with fatal pneumonia, and also with ST

  16. The Proteome of Biologically Active Membrane Vesicles from Piscirickettsia salmonis LF-89 Type Strain Identifies Plasmid-Encoded Putative Toxins

    Cristian Oliver

    2017-09-01

    Full Text Available Piscirickettsia salmonis is the predominant bacterial pathogen affecting the Chilean salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant fish disease. Membrane vesicles (MVs released by P. salmonis deliver several virulence factors to host cells. To improve on existing knowledge for the pathogenicity-associated functions of P. salmonis MVs, we studied the proteome of purified MVs from the P. salmonis LF-89 type strain using multidimensional protein identification technology. Initially, the cytotoxicity of different MV concentration purified from P. salmonis LF-89 was confirmed in an in vivo adult zebrafish infection model. The cumulative mortality of zebrafish injected with MVs showed a dose-dependent pattern. Analyses identified 452 proteins of different subcellular origins; most of them were associated with the cytoplasmic compartment and were mainly related to key functions for pathogen survival. Interestingly, previously unidentified putative virulence-related proteins were identified in P. salmonis MVs, such as outer membrane porin F and hemolysin. Additionally, five amino acid sequences corresponding to the Bordetella pertussis toxin subunit 1 and two amino acid sequences corresponding to the heat-labile enterotoxin alpha chain of Escherichia coli were located in the P. salmonis MV proteome. Curiously, these putative toxins were located in a plasmid region of P. salmonis LF-89. Based on the identified proteins, we propose that the protein composition of P. salmonis LF-89 MVs could reflect total protein characteristics of this P. salmonis type strain.

  17. Immunoproteomic analysis of antibody in lymphocyte supernatant in patients with typhoid fever in Bangladesh.

    Charles, Richelle C; Liang, Li; Khanam, Farhana; Sayeed, M Abu; Hung, Chris; Leung, Daniel T; Baker, Stephen; Ludwig, Albrecht; Harris, Jason B; Larocque, Regina C; Calderwood, Stephen B; Qadri, Firdausi; Felgner, Philip L; Ryan, Edward T

    2014-03-01

    We have previously shown that an assay based on detection of anti-Salmonella enterica serotype Typhi antibodies in supernatant of lymphocytes harvested from patients presenting with typhoid fever (antibody in lymphocyte supernatant [ALS] assay) can identify 100% of patients with blood culture-confirmed typhoid fever in Bangladesh. In order to define immunodominant proteins within the S. Typhi membrane preparation used as antigen in these prior studies and to identify potential biomarkers unique to S. Typhi bacteremic patients, we probed microarrays containing 2,724 S. Typhi proteins with ALS collected at the time of clinical presentation from 10 Bangladeshis with acute typhoid fever. We identified 62 immunoreactive antigens when evaluating both the IgG and IgA responses. Immune responses to 10 of these antigens discriminated between individuals with acute typhoid infection and healthy control individuals from areas where typhoid infection is endemic, as well as Bangladeshi patients presenting with fever who were subsequently confirmed to have a nontyphoid illness. Using an ALS enzyme-linked immunosorbent assay (ELISA) format and purified antigen, we then confirmed that immune responses against the antigen with the highest immunoreactivity (hemolysin E [HlyE]) correctly identified individuals with acute typhoid or paratyphoid fever in Dhaka, Bangladesh. These observations suggest that purified antigens could be used with ALS and corresponding acute-phase activated B lymphocytes in diagnostic platforms to identify acutely infected patients, even in areas where enteric fever is endemic.

  18. Resveratrol Improved the Progression of Chronic Prostatitis via the Downregulation of c-kit/SCF by Activating Sirt1.

    He, Yi; Zeng, Huizhi; Yu, Yang; Zhang, Jiashu; Zeng, Xiaona; Gong, Fengtao; Duan, Xingping; Liu, Qi; Yang, Bo

    2017-07-19

    The regulation mechanism of inflammation inducing prostate carcinogenesis remains largely unknown. Therefore, we investigated the role of the c-kit/SCF pathway, which has been associated with the control of prostate carcinogenesis, in chronic prostatitis (CP) rats and evaluated the anti-prostatitis effect of resveratrol. We performed hemolysin and eosin staining to evaluate the histopathological changes in prostates. Multiple approaches evaluated the expression levels of c-kit, stem cell factor (SCF), Sirt1, and carcinogenesis-associated proteins. The CP group exhibited severe diffuse chronic inflammation. Meanwhile, the prostate cells appeared atypia; the activity of c-kit/SCF was upregulated, and carcinogenesis-associated proteins are dysregulated significantly in CP rats. Resveratrol treatment significantly improved these factors by Sirt1 activation. In summary, CP could further cause prostate carcinogenesis, which may be associated with activated c-kit/SCF signaling. Resveratrol treatment could improve the progression of CP via the downregulation of c-kit/SCF by activating Sirt1.

  19. A patch-clamp ASIC for nanopore-based DNA analysis.

    Kim, Jungsuk; Maitra, Raj; Pedrotti, Kenneth D; Dunbar, William B

    2013-06-01

    In this paper, a fully integrated high-sensitivity patch-clamp system is proposed for single-molecule deoxyribonucleic acid (DNA) analysis using a nanopore sensor. This system is composed of two main blocks for amplification and compensation. The amplification block is composed of three stages: 1) a headstage, 2) a voltage-gain difference amplifier, and 3) a track-and-hold circuit, that amplify a minute ionic current variation sensed by the nanopore while the compensation block avoids the headstage saturation caused by the input parasitic capacitances during sensing. By employing design techniques novel for this application, such as an instrumentation--amplifier topology and a compensation switch, we minimize the deleterious effects of the input-offset voltage and the input parasitic capacitances while attaining hardware simplicity. This system is fabricated in a 0.35 μm 4M2P CMOS process and is demonstrated using an α-hemolysin protein nanopore for detection of individual molecules of single-stranded DNA that pass through the 1.5 nm-diameter pore. In future work, the refined system will functionalize single and multiple solid-state nanopores formed in integrated microfluidic devices for advanced DNA analysis, in scientific and diagnostic applications.

  20. Crystal Structure of Hcp from Acinetobacter baumannii: A Component of the Type VI Secretion System.

    Federico M Ruiz

    Full Text Available The type VI secretion system (T6SS is a bacterial macromolecular machine widely distributed in Gram-negative bacteria, which transports effector proteins into eukaryotic host cells or other bacteria. Membrane complexes and a central tubular structure, which resembles the tail of contractile bacteriophages, compose the T6SS. One of the proteins forming this tube is the hemolysin co-regulated protein (Hcp, which acts as virulence factor, as transporter of effectors and as a chaperone. In this study, we present the structure of Hcp from Acinetobacter baumannii, together with functional and oligomerization studies. The structure of this protein exhibits a tight β barrel formed by two β sheets and flanked at one side by a short α-helix. Six Hcp molecules associate to form a donut-shaped hexamer, as observed in both the crystal structure and solution. These results emphasize the importance of this oligomerization state in this family of proteins, despite the low similarity of sequence among them. The structure presented in this study is the first one for a protein forming part of a functional T6SS from A. baumannii. These results will help us to understand the mechanism and function of this secretion system in this opportunistic nosocomial pathogen.

  1. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.

    Pati, Rashmirekha; Mehta, Ranjit Kumar; Mohanty, Soumitra; Padhi, Avinash; Sengupta, Mitali; Vaseeharan, Baskarlingam; Goswami, Chandan; Sonawane, Avinash

    2014-08-01

    Here we studied immunological and antibacterial mechanisms of zinc oxide nanoparticles (ZnO-NPs) against human pathogens. ZnO-NPs showed more activity against Staphylococcus aureus and least against Mycobacterium bovis-BCG. However, BCG killing was significantly increased in synergy with antituberculous-drug rifampicin. Antibacterial mechanistic studies showed that ZnO-NPs disrupt bacterial cell membrane integrity, reduce cell surface hydrophobicity and down-regulate the transcription of oxidative stress-resistance genes in bacteria. ZnO-NP treatment also augmented the intracellular bacterial killing by inducing reactive oxygen species production and co-localization with Mycobacterium smegmatis-GFP in macrophages. Moreover, ZnO-NPs disrupted biofilm formation and inhibited hemolysis by hemolysin toxin producing S. aureus. Intradermal administration of ZnO-NPs significantly reduced the skin infection, bacterial load and inflammation in mice, and also improved infected skin architecture. We envision that this study offers novel insights into antimicrobial actions of ZnO-NPs and also demonstrates ZnO-NPs as a novel class of topical anti-infective agent for the treatment of skin infections. This in-depth study demonstrates properties of ZnO nanoparticles in infection prevention and treatment in several skin infection models, dissecting the potential mechanisms of action of these nanoparticles and paving the way to human applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Proteomics Analysis Reveals Previously Uncharacterized Virulence Factors in Vibrio proteolyticus

    Ann Ray

    2016-07-01

    Full Text Available Members of the genus Vibrio include many pathogens of humans and marine animals that share genetic information via horizontal gene transfer. Hence, the Vibrio pan-genome carries the potential to establish new pathogenic strains by sharing virulence determinants, many of which have yet to be characterized. Here, we investigated the virulence properties of Vibrio proteolyticus, a Gram-negative marine bacterium previously identified as part of the Vibrio consortium isolated from diseased corals. We found that V. proteolyticus causes actin cytoskeleton rearrangements followed by cell lysis in HeLa cells in a contact-independent manner. In search of the responsible virulence factor involved, we determined the V. proteolyticus secretome. This proteomics approach revealed various putative virulence factors, including active type VI secretion systems and effectors with virulence toxin domains; however, these type VI secretion systems were not responsible for the observed cytotoxic effects. Further examination of the V. proteolyticus secretome led us to hypothesize and subsequently demonstrate that a secreted hemolysin, belonging to a previously uncharacterized clan of the leukocidin superfamily, was the toxin responsible for the V. proteolyticus-mediated cytotoxicity in both HeLa cells and macrophages. Clearly, there remains an armory of yet-to-be-discovered virulence factors in the Vibrio pan-genome that will undoubtedly provide a wealth of knowledge on how a pathogen can manipulate host cells.

  3. Complete genome sequence of multidrug-resistant Staphylococcus cohnii ssp. urealyticus strain SNUDS-2 isolated from farmed duck, Republic of Korea.

    Han, Jee Eun; Lee, Seungki; Jeong, Dae Gwin; Yoon, Sun-Woo; Kim, Doo-Jin; Lee, Moo-Seung; Kim, Hye Kwon; Park, Sung-Kyun; Kim, Ji Hyung; Park, Se Chang

    2017-09-01

    Staphylococcus cohnii has become increasingly recognized as a potential pathogen of clinically significant nosocomial and farm animal infections. This study was designed to determine the genome of a multidrug-resistant S. cohnii subsp. urealyticus strain SNUDS-2 isolated from a farmed duck in Korea. Genomic DNA was sequenced using the PacBio RS II system. The complete genome was annotated and the presence of antimicrobial resistance and virulence genes were identified. The annotated 2,625,703 bp genome contained various antimicrobial resistance genes conferring resistance to β-lactam, aminoglycosides, fluoroquinolones, phenicols and trimethoprim. The virulence-associated three synergistic hemolysins have been identified in the strain. To the best of our knowledge, this is the first complete genome of S. cohnii, and will provide important insights into the biodiversity of CoNS and valuable information for the control of this emerging pathogen. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  4. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids.

    Luís, Ângelo; Silva, Filomena; Sousa, Sónia; Duarte, Ana Paula; Domingues, Fernanda

    2014-01-01

    Staphylococcus aureus is a Gram-positive pathogen which is able to form biofilms, exhibiting a more pronounced resistance to antibiotics and disinfectants. The hurdles posed in eradicating biofilms have driven the search for new compounds able to fight these structures. Phenolic compounds constitute one of the most numerous and ubiquitous group of plant secondary metabolites with many biological activities. The aim of the present work was to study the potential antimicrobial and antibiofilm properties of gallic, caffeic, and chlorogenic acids against S. aureus as well to elucidate its mechanism of action. It was concluded that the phenolic acids studied in this work have antistaphylococcal properties. For instance, gallic acid is able to influence the adhesion properties of S. aureus. The phenolic acids tested were also able to inhibit the production of α-hemolysin by this microorganism, with the exception of chlorogenic acid. Regarding its mechanism of action, caffeic acid interferes with the stability of the cell membrane and with the metabolic activity of the cells of S. aureus.

  5. Highly Accurate Classification of Watson-Crick Basepairs on Termini of Single DNA Molecules

    Winters-Hilt, Stephen; Vercoutere, Wenonah; DeGuzman, Veronica S.; Deamer, David; Akeson, Mark; Haussler, David

    2003-01-01

    We introduce a computational method for classification of individual DNA molecules measured by an α-hemolysin channel detector. We show classification with better than 99% accuracy for DNA hairpin molecules that differ only in their terminal Watson-Crick basepairs. Signal classification was done in silico to establish performance metrics (i.e., where train and test data were of known type, via single-species data files). It was then performed in solution to assay real mixtures of DNA hairpins. Hidden Markov Models (HMMs) were used with Expectation/Maximization for denoising and for associating a feature vector with the ionic current blockade of the DNA molecule. Support Vector Machines (SVMs) were used as discriminators, and were the focus of off-line training. A multiclass SVM architecture was designed to place less discriminatory load on weaker discriminators, and novel SVM kernels were used to boost discrimination strength. The tuning on HMMs and SVMs enabled biophysical analysis of the captured molecule states and state transitions; structure revealed in the biophysical analysis was used for better feature selection. PMID:12547778

  6. Membrane fusion proteins of type I secretion system and tripartite efflux pumps share a binding motif for TolC in gram-negative bacteria.

    Minho Lee

    Full Text Available The Hly translocator complex of Escherichia coli catalyzes type I secretion of the toxin hemolysin A (HlyA. In this complex, HlyB is an inner membrane ABC (ATP Binding Cassette-type transporter, TolC is an outer membrane channel protein, and HlyD is a periplasmic adaptor anchored in the inner membrane that bridges HlyB to TolC. This tripartite organization is reminiscent of that of drug efflux systems such as AcrA-AcrB-TolC and MacA-MacB-TolC of E. coli. We have previously shown the crucial role of conserved residues located at the hairpin tip region of AcrA and MacA adaptors during assembly of their cognate systems. In this study, we investigated the role of the putative tip region of HlyD using HlyD mutants with single amino acid substitutions at the conserved positions. In vivo and in vitro data show that all mutations abolished HlyD binding to TolC and resulted in the absence of HlyA secretion. Together, our results suggest that, similarly to AcrA and MacA, HlyD interacts with TolC in a tip-to-tip manner. A general model in which these conserved interactions induce opening of TolC during drug efflux and type I secretion is discussed.

  7. The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health.

    Hikmate eAbriouel

    2015-10-01

    Full Text Available Despite the use of several Weissella strains for biotechnological and probiotic purposes, certain species of this genus were found to act as opportunistic pathogens, while strains of W. ceti were recognized to be pathogenic for farmed rainbow trout. Herein, we investigated the pathogenic potential of weissellas based on in silico analyses of the 13 whole genome sequences available to date in the NCBI database.Our screening allowed us to find several virulence determinants such as collagen adhesins, aggregation substances, mucus-binding proteins and hemolysins in some species. Moreover, we detected several antibiotic resistance-encoding genes, whose presence could increase the potential pathogenicity of some strains, but should not be regarded as an excluding trait for beneficial weissellas,as long as these genes are not present on mobile genetic elements. Thus, selection of weissellas intended to be used as starters or for biotechnological or probiotic purposes should be investigated regarding their safety aspects on a strain to strain basis, preferably also by genome sequencing, since nucleotide sequence heterogeneity in virulence and antibiotic resistance genes makes PCR-based screeningunreliable for safety assessments. In this sense, the application of W. confusa and W. cibaria strains as starter cultures or as probiotics should be approached with caution, by carefully selecting strains that lack pathogenic potential.

  8. Isolation, antibiogram and pathogenicity of Salmonella spp. Recovered from slaughtered food animals in Nagpur region of Central India

    D. G. Kalambhe

    2016-02-01

    Full Text Available Aim: To determine the prevalence, antibiogram and pathogenicity of Salmonella spp. in the common food animals slaughtered for consumption purpose at government approved slaughter houses located in and around Nagpur region during a period of 2010-2012. Materials and Methods: A total of 400 samples comprising 50 each of blood and meat from each slaughtered male cattle, buffaloes, pigs and goats were collected. Isolation was done by pre-enrichment in buffered peptone water and enrichment in Rappaport-Vassiliadis broth with subsequent selective plating onto xylose lysine deoxycholate agar. Presumptive Salmonella colonies were biochemically confirmed and analyzed for pathogenicity by hemolysin production and Congo red dye binding assay (CRDA. An antibiotic sensitivity test was performed to assess the antibiotic resistance pattern of the isolates. Results: A total of 10 isolates of Salmonella spp. from meat (3 from cattle, 1 from buffaloes and 6 from pigs with an overall prevalence of 5% among food animals was recorded. No isolation was reported from any blood samples. Pathogenicity assays revealed 100% and 80% positivity for CRDA and hemolytic activity, respectively. Antimicrobial sensitivity test showed multi-drug resistance. The overall resistance of 50% was noted for trimethoprim followed by ampicillin (20%. A maximum sensitivity (80% was reported to gentamycin followed by 40% each to ampicillin and trimethoprim, 30% to amikacin and 10% to kanamycin. Conclusion: The presence of multidrug resistant and potentially pathogenic Salmonella spp. in slaughtered food animals in Nagpur region can be a matter of concern for public health.

  9. A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food.

    Lee, Nari; Kwon, Kyung Yoon; Oh, Su Kyung; Chang, Hyun-Joo; Chun, Hyang Sook; Choi, Sung-Wook

    2014-07-01

    A multiplex polymerase chain reaction (PCR) assay was developed for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in various Korean ready-to-eat foods. The six specific primer pairs for multiplex PCR were selected based on the O157 antigen (rfbE) gene of E. coli O157:H7, the DNA gyrase subunit B (gyrB) gene of B. cereus, the toxin regulatory protein (toxR) gene of V. parahaemolyticus, the invasion protein A (invA) gene of Salmonella spp., the hemolysin (hly) gene of L. monocytogenes, and the thermonuclease (nuc) gene of S. aureus. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity assays for multiplex primer pairs were investigated by testing different strains. When this multiplex PCR assay was applied to evaluate the validity of detecting six foodborne pathogens in artificially inoculated several ready-to-eat food samples, the assay was able to specifically simultaneously detect as few as 1 colony-forming unit/mL of each pathogen after enrichment for 12 h. Their presence in naturally contaminated samples also indicates that the developed multiplex PCR assay is an effective and informative supplement for practical use.

  10. The prevalence of virulence genes of E. coli strains isolated from children with urinary tract infection

    Farshad Shohreh

    2009-01-01

    Full Text Available To evaluate the prevalence of virulence genes in E. coli strains isolated from urine samples of children with urinary tract infection(UTI and their correlation with clinical data, we iso-lated E. coli strains from urine samples of children with UTI during the period of August 2005 - August 2006 and studied them for the presence of the virulence genes by PCR. A total of 96 E. coli strains were isolated. The prevalence of genes, pyelonephritis associated pili (pap genes, S-family adhesions (sfa gene, hemolysin (hly gene, and cytotoxic nercotizing factor type 1 (cnf-1-1 gene among the isolated strains was 27.1%, 14.6%, 13.5% and 22.9 %, respectively. Pyelonephritis was more prevalent in the cases with positive virulence genes. The results showed significant correlation bet-ween age of the patient and the presence of the genes (P< 0.05. Cnf-1 gene was significantly more common in samples of patients with abnormal finding on the ultrasound of kidneys (P= 0.049. Our study demonstrated higher prevalence of pyelonephritis in the presence of E. coli virulence genes. Detection of the genes in urine samples may help in the management of UTI.

  11. Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity

    Abdullah A Gharamah

    2014-01-01

    Full Text Available Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2, sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin. Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.

  12. Plasma and Mucosal Immunoglobulin M, Immunoglobulin A, and Immunoglobulin G Responses to the Vibrio cholerae O1 Protein Immunome in Adults With Cholera in Bangladesh.

    Charles, Richelle C; Nakajima, Rie; Liang, Li; Jasinskas, Al; Berger, Amanda; Leung, Daniel T; Kelly, Meagan; Xu, Peng; Kovác, Pavol; Giffen, Samantha R; Harbison, James D; Chowdhury, Fahima; Khan, Ashraful I; Calderwood, Stephen B; Bhuiyan, Taufiqur Rahman; Harris, Jason B; Felgner, Philip L; Qadri, Firdausi; Ryan, Edward T

    2017-07-01

    Cholera is a severe dehydrating illness of humans caused by toxigenic strains of Vibrio cholerae O1 or O139. Identification of immunogenic V. cholerae antigens could lead to a better understanding of protective immunity in human cholera. We probed microarrays containing 3652 V. cholerae antigens with plasma and antibody-in-lymphocyte supernatant (ALS, a surrogate marker of mucosal immune responses) from patients with severe cholera caused by V. cholerae O1 in Bangladesh and age-, sex-, and ABO-matched Bangladeshi controls. We validated a subset of identified antigens using enzyme-linked immunosorbent assay. Overall, we identified 608 immunoreactive V. cholerae antigens in our screening, 59 of which had higher immunoreactivity in convalescent compared with acute-stage or healthy control samples (34 in plasma, 39 in mucosal ALS; 13 in both sample sets). Identified antigens included cholera toxin B and A subunits, V. cholerae O-specific polysaccharide and lipopolysaccharide, toxin coregulated pilus A, sialidase, hemolysin A, flagellins (FlaB, FlaC, and FlaD), phosphoenolpyruvate-protein phosphotransferase, and diaminobutyrate-2-oxoglutarate aminotransferase. This study is the first antibody profiling of the mucosal and systemic antibody responses to the nearly complete V. cholerae O1 protein immunome; it has identified antigens that may aid in the development of an improved cholera vaccine. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  13. The pathogenesis, detection and prevention of Vibrio parahaemolyticus

    Rongzhi eWang

    2015-03-01

    Full Text Available Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemaolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems (T3SS and two type VI secretion systems (T6SS, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection.

  14. Studies on Antiviral and Immuno-Regulation Activity of Low Molecular Weight Fucoidan from Laminaria japonica

    Sun, Taohua; Zhang, Xinhui; Miao, Ying; Zhou, Yang; Shi, Jie; Yan, Meixing; Chen, Anjin

    2018-06-01

    The antiviral activity in vitro and in vivo and the effect of the immune system of two fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica (LMW fucoidans) were investigated in order to examine the possible mechanism. In vitro, I-type influenza virus, adenovirus and Parainfluenza virus I were used to infect Hep-2, Hela and MDCK cells, respectively. And 50% tissue culture infective dose was calculated to detect the antiviral activity of two LMW fucoidans. The results indicated that compared with the control group, 2 kinds of LMW fucoidans had remarkable antiviral activity in vitro in middle and high doses, while at low doses, the antiviral activity of 2 kinds of LMW fucoidans was not statistically different from that in the blank control group. And there was no statistically difference between two LMW fucoidans in antiviral activity. In vivo, LMW fucoidans could prolong the survival time of virus-infected mice, and could improve the lung index of virus-infected mice significantly, which have statistical differences with the control group significantly ( p 0.05). In this study, it was shown that both of two LMW fucoidans (LF1, LF2) could increase the thymus index, spleen index, phagocytic index, phagocytosis coefficient and half hemolysin value in middle and high doses, which suggested that LMW fucoidans could play an antiviral role by improving the quality of immune organs, improving immune cell phagocytosis and humoral immunity.

  15. Biomarkers of Aspergillus spores

    Sulc, Miroslav; Peslova, Katerina; Zabka, Martin; Hajduch, Marian; Havlicek, Vladimir

    2009-02-01

    We applied both matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometric and 1D sodium dodecylsulfate polyacrylamide gel electrophoretic (1D-PAGE) approaches for direct analysis of intact fungal spores of twenty four Aspergillus species. In parallel, we optimized various protocols for protein extraction from Aspergillus spores using acidic conditions, step organic gradient and variable sonication treatment. The MALDI-TOF mass spectra obtained from optimally prepared samples provided a reproducible fingerprint demonstrating the capability of the MALDI-TOF approach to type and characterize different fungal strains within the Aspergillus genus. Mass spectra of intact fungal spores provided signals mostly below 20 kDa. The minimum material amount represented 0.3 [mu]g (10,000 spores). Proteins with higher molecular weight were detected by 1D-PAGEE Eleven proteins were identified from three selected strains in the range 5-25 kDa by the proteomic approach. Hemolysin and hydrophobin have the highest relevance in host-pathogen interactions.

  16. An investigation of virulence factors of Legionella pneumophila environmental isolates

    Elif Özlem Arslan-Aydoğdu

    Full Text Available ABSTRACT Nine Legionella pneumophila strains isolated from cooling towers and a standard strain (L. pneumophila serogroup 1, ATCC 33152, Philadelphia 1 were analyzed and compared in terms of motility, flagella structure, ability to form biofilms, enzymatic activities (hemolysin, nucleases, protease, phospholipase A, phospholipase C, acid phosphatase, alkaline phosphatase and lipase, hemagglutination capabilities, and pathogenicity in various host cells (Acanthamoeba castellanii ATCC 30234, mouse peritoneal macrophages and human peripheral monocytes. All the isolates of bacteria appeared to be motile and polar-flagellated and possessed the type-IV fimbria. Upon the evaluation of virulence factors, isolate 4 was found to be the most pathogenic strain, while 6 out of the 9 isolates (the isolates 1, 2, 3, 4, 5, and 7 were more virulent than the ATCC 33152 strain. The different bacterial strains exhibited differences in properties such as adhesion, penetration and reproduction in the hosts, and preferred host type. To our knowledge, this is the first study to compare the virulence of environmental L. pneumophila strains isolated in Turkey, and it provides important information relevant for understanding the epidemiology of L. pneumophila.

  17. Differences in virulence genes and genome patterns of mastitis-associated Staphylococcus aureus among goat, cow, and human isolates in Taiwan.

    Chu, Chishih; Wei, Yajiun; Chuang, Shih-Te; Yu, Changyou; Changchien, Chih-Hsuan; Su, Yaochi

    2013-03-01

    A total of 117 mastitis-associated Staphylococcus aureus isolates from cow, goat, and human patients were analyzed for differences in antibiotic susceptibility, virulence genes, and genotypes using accessory gene regulator (agr) typing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Multidrug-resistant (MDR) S. aureus were commonly found in all sources, though they were predominantly found in human and goat isolates. Almost 70% of the isolates were resistant to ampicillin and penicillin. Host-associated virulence genes were identified as follows: tst, a gene encoding toxic shock syndrome toxin, was found in goat isolates; lukED and lukM, genes encoding leukocidin, found in cow isolates; lukPV, a gene encoding leukocidin, found in human isolates; and eta, a gene encoding for exfoliative toxin, found in both human and cow isolates. All four types of hemolysin, α, β, γ, and δ, were identified in human isolates, three types (α, γ, and δ), were identified in cow isolates, and two types (α and δ) were identified in goat isolates. Agr-typing determined agr1 to be the main subtype in human and cow isolates. PFGE and MLST analysis revealed the presence of diverse genotypes among the three sources. In conclusion, mastitis-associated, genetically diverse strains of MDR S. aureus differed in virulence genes among human, cow, and goat isolates.

  18. Human case of bacteremia caused by Streptococcus canis sequence type 9 harboring the scm gene.

    Taniyama, Daisuke; Abe, Yoshihiko; Sakai, Tetsuya; Kikuchi, Takahide; Takahashi, Takashi

    2017-01-01

    Streptococcus canis (Sc) is a zoonotic pathogen that is transferred mainly from companion animals to humans. One of the major virulence factors in Sc is the M-like protein encoded by the scm gene, which is involved in anti-phagocytic activities, as well as the recruitment of plasminogen to the bacterial surface in cooperation with enolase, and the consequent enhancement of bacterial transmigration and survival. This is the first reported human case of uncomplicated bacteremia following a dog bite, caused by Streptococcus canis harboring the scm gene. The similarity of the 16S rRNA from the infecting species to that of the Sc type strain, as well as the amplification of the species-specific cfg gene, encoding a co-hemolysin, was used to confirm the species identity. Furthermore, the isolate was confirmed as sequence type 9. The partial scm gene sequence harbored by the isolate was closely related to those of other two Sc strains. While this isolate did not possess the erm (A), erm (B), or mef (A), macrolide/lincosamide resistance genes, it was not susceptible to azithromycin: its susceptibility was intermediate. Even though human Sc bacteremia is rare, clinicians should be aware of this microorganism, as well as Pasteurella sp., Prevotella sp., and Capnocytophaga sp., when examining and treating patients with fever who maintain close contact with companion animals.

  19. Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection.

    Irena Pastar

    Full Text Available Understanding the pathology resulting from Staphylococcus aureus and Pseudomonas aeruginosa polymicrobial wound infections is of great importance due to their ubiquitous nature, increasing prevalence, growing resistance to antimicrobial agents, and ability to delay healing. Methicillin-resistant S. aureus USA300 is the leading cause of community-associated bacterial infections resulting in increased morbidity and mortality. We utilized a well-established porcine partial thickness wound healing model to study the synergistic effects of USA300 and P. aeruginosa on wound healing. Wound re-epithelialization was significantly delayed by mixed-species biofilms through suppression of keratinocyte growth factor 1. Pseudomonas showed an inhibitory effect on USA300 growth in vitro while both species co-existed in cutaneous wounds in vivo. Polymicrobial wound infection in the presence of P. aeruginosa resulted in induced expression of USA300 virulence factors Panton-Valentine leukocidin and α-hemolysin. These results provide evidence for the interaction of bacterial species within mixed-species biofilms in vivo and for the first time, the contribution of virulence factors to the severity of polymicrobial wound infections.

  20. Expression of virulence factors by Staphylococcus aureus grown in serum.

    Oogai, Yuichi; Matsuo, Miki; Hashimoto, Masahito; Kato, Fuminori; Sugai, Motoyuki; Komatsuzawa, Hitoshi

    2011-11-01

    Staphylococcus aureus produces many virulence factors, including toxins, immune-modulatory factors, and exoenzymes. Previous studies involving the analysis of virulence expression were mainly performed by in vitro experiments using bacterial medium. However, when S. aureus infects a host, the bacterial growth conditions are quite different from those in a medium, which may be related to the different expression of virulence factors in the host. In this study, we investigated the expression of virulence factors in S. aureus grown in calf serum. The expression of many virulence factors, including hemolysins, enterotoxins, proteases, and iron acquisition factors, was significantly increased compared with that in bacterial medium. In addition, the expression of RNA III, a global regulon for virulence expression, was significantly increased. This effect was partially restored by the addition of 300 μM FeCl₃ into serum, suggesting that iron depletion is associated with the increased expression of virulence factors in serum. In chemically defined medium without iron, a similar effect was observed. In a mutant with agr inactivated grown in serum, the expression of RNA III, psm, and sec4 was not increased, while other factors were still induced in the mutant, suggesting that another regulatory factor(s) is involved. In addition, we found that serum albumin is a major factor for the capture of free iron to prevent the supply of iron to bacteria grown in serum. These results indicate that S. aureus expresses virulence factors in adaptation to the host environment.

  1. Staphylococcus aureus α-toxin-dependent induction of host cell death by membrane-derived vesicles.

    Bernard Thay

    Full Text Available Staphylococcus aureus causes a wide spectrum of infections in humans, ranging from superficial cutaneous infections, infections in the circum-oral region, to life-threatening bacteremia. It was recently demonstrated that Gram-positive organisms such as S. aureus liberate membrane-derived vesicles (MVs, which analogously to outer membrane vesicles (OMVs of Gram-negative bacteria can play a role in delivering virulence factors to host cells. In the present study we have shown that cholesterol-dependent fusion of S. aureus MVs with the plasma membrane represents a route for delivery of a key virulence factor, α-toxin (α-hemolysin; Hla to human cells. Most S. aureus strains produce this 33-kDa pore-forming protein, which can lyse a wide range of human cells, and induce apoptosis in T-lymphocytes. Our results revealed a tight association of biologically active α-toxin with membrane-derived vesicles isolated from S. aureus strain 8325-4. Concomitantly, α-toxin contributed to HeLa cell cytotoxicity of MVs, and was the main vesicle-associated protein responsible for erythrocyte lysis. In contrast, MVs obtained from an isogenic hla mutant were significantly attenuated with regards to both causing lysis of erythrocytes and death of HeLa cells. This is to our knowledge the first recognition of an S. aureus MV-associated factor contributing to host cell cytotoxicity.

  2. The impact of CodY on virulence determinant production in community-associated methicillin-resistant Staphylococcus aureus.

    Rivera, Frances E; Miller, Halie K; Kolar, Stacey L; Stevens, Stanley M; Shaw, Lindsey N

    2012-01-01

    Staphylococcus aureus is a leading human pathogen of both hospital and community-associated diseases worldwide. This organism causes a wealth of infections within the human host as a result of the vast arsenal of toxins encoded within its genome. Previous transcriptomic studies have shown that toxin production in S. aureus can be strongly impacted by the negative regulator CodY. CodY acts by directly, and indirectly (via Agr), repressing toxin production during times of plentiful nutrition. In this study, we use iTRAQ-based proteomics for the first time to study virulence determinant production in S. aureus, so as to correlate transcriptional observations with actual changes in protein synthesis. Using a codY mutant in the epidemic CA-MRSA clone USA300 we demonstrate that deletion of this transcription factor results in a major upregulation of toxin synthesis in both post-exponential and stationary growth. Specifically, we observe hyper-production of secreted proteases, leukocidins and hemolysins in both growth phases in the USA300 codY mutant. Our findings demonstrate the power of mass spectrometry-based quantitative proteomics for studying toxin production in S. aureus, and the importance of CodY to this central process in disease causation and infection. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effect of subinhibitory concentrations of chlorogenic acid on reducing the virulence factor production by Staphylococcus aureus.

    Li, Guanghui; Qiao, Mingyu; Guo, Yan; Wang, Xin; Xu, Yunfeng; Xia, Xiaodong

    2014-09-01

    Chlorogenic acid (CA) has been reported to inhibit several pathogens, but the influence of subinhibitory concentrations of CA on virulence expression of pathogens has not been fully elucidated. The aim of this study was to explore the effect of CA on the virulence factor production of Staphylococcus aureus. The minimum inhibitory concentration (MIC) of CA against S. aureus was determined using a broth microdilution method. Hemolysin assays, coagulase titer assays, adherence to solid-phase fibrinogen assays, Western blot, and real-time reverse transcriptase-polymerase chain reaction were performed to evaluate the effect of subinhibitory concentrations of CA on the virulence factors of S. aureus. MIC of CA against S. aureus ATCC29213 was found to be 2.56 mg/mL. At subinhibitory concentrations, CA significantly inhibited the hemolysis and dose-dependently decreased coagulase titer. Reduced binding to fibrinogen and decreased production of SEA were observed with treatment of CA at concentrations ranging from 1/16MIC to 1/2MIC. CA markedly inhibited the expression of hla, sea, and agr genes in S. aureus. These data demonstrate that the virulence expression of S. aureus could be reduced by CA and suggest that CA could be potentially developed as a supplemental strategy to control S. aureus infection and to prevent staphylococcal food poisoning.

  4. ATP Release from Human Airway Epithelial Cells Exposed to Staphylococcus aureus Alpha-Toxin

    Romina Baaske

    2016-12-01

    Full Text Available Airway epithelial cells reduce cytosolic ATP content in response to treatment with S. aureus alpha-toxin (hemolysin A, Hla. This study was undertaken to investigate whether this is due to attenuated ATP generation or to release of ATP from the cytosol and extracellular ATP degradation by ecto-enzymes. Exposure of cells to rHla did result in mitochondrial calcium uptake and a moderate decline in mitochondrial membrane potential, indicating that ATP regeneration may have been attenuated. In addition, ATP may have left the cells through transmembrane pores formed by the toxin or through endogenous release channels (e.g., pannexins activated by cellular stress imposed on the cells by toxin exposure. Exposure of cells to an alpha-toxin mutant (H35L, which attaches to the host cell membrane but does not form transmembrane pores, did not induce ATP release from the cells. The Hla-mediated ATP-release was completely blocked by IB201, a cyclodextrin-inhibitor of the alpha-toxin pore, but was not at all affected by inhibitors of pannexin channels. These results indicate that, while exposure of cells to rHla may somewhat reduce ATP production and cellular ATP content, a portion of the remaining ATP is released to the extracellular space and degraded by ecto-enzymes. The release of ATP from the cells may occur directly through the transmembrane pores formed by alpha-toxin.

  5. Rapid screening of pyogenic Staphylococcus aureus for confirmation of genus and species, methicillin resistance and virulence factors by using two novel multiplex PCR.

    Haque, Abdul; Haque, Asma; Saeed, Muhammad; Azhar, Aysha; Rasool, Samreen; Shan, Sidra; Ehsan, Beenish; Nisar, Zohaib

    2017-01-01

    Emergence of methicillin resistant Staphylococcus aureus (MRSA) is a major medical problem of current era. These bacteria are resistant to most drugs and rapid diagnosis can provide a clear guideline to clinicians. They possess specific virulence factors and relevant information can be very useful. We designed this study to develop multiplex PCRs to provide rapid information. We studied 60 Staphylococcus aureus isolates and detected methicillin resistance by cefoxitin sensitivity and targeting of mecA gene. After initial studies with uniplex PCRs we optimized two multiplex PCRs with highly reproducible results. The first multiplex PCR was developed to confirm genus, species and methicillin resistance simultaneously, and the second multiplex PCR was for screening of virulence factors. We found 38.33% isolates as methicillin resistant. α -toxin, the major cytotoxic factor, was detected in 40% whereas β-hemolysin was found in 25% cases. Panton Valentine leucocidin was detected in 8.33% and toxic shock syndrome toxin in5% cases. The results of uniplex and multiplex PCRs were highly compatible. These two multiplex PCRs when run simultaneously can provide vital information about methicillin resistance and virulence status of the isolate within a few hours as compared to several days needed by routine procedures.

  6. Further studies on staphylococci in meats. III. Occurrence and characteristics of coagulase-positive strains from a variety of nonfrozen market cuts.

    JAY, J M

    1962-05-01

    From 34 retail grocery stores and meat markets, 209 samples of nonfrozen meats were obtained and analyzed for coagulase-positive Staphylococcus aureus, employing six selective media. Sixty-seven (38.7%) of 173 samples obtained from 27 stores yielded S. aureus. No coagulase-positive S. aureus was isolated from 36 samples obtained from 7 of the stores. The 67 meats yielded 272 isolates from 10 different kinds of meats. There were 162 physiological strains represented when classified by store and 36 strains classified without regard to store of origin. The larger stores yielded fewer meats with staphylococci than the smaller stores. The meats from which S. aureus was recovered in the order of frequency of percentage recovery are as follows: chicken, pork liver, fish, spiced ham, round beef steak, hamburger, beef liver, pork chops, veal steak, and lamb chops. The following seven meats did not yield staphylococci: bologna, shucked oysters, olive and pickle loaf, salami, wieners, and chopped ham. Eighty-eight per cent of the isolates produced pigment, 85% were gelatinase positive, only 1 strain failed to form a precipitate on egg yolk agar, 92% formed deoxyribonuclease, 87% produced bound coagulase, 91% produced the alpha-hemolysin, 70% the delta-, 22% the beta-, and 6% were nil in this regard. The isolates are compared with hospital and other food strains, and their possible source in the meats is discussed.

  7. Insights into the Evolution of Host Association through the Isolation and Characterization of a Novel Human Periodontal Pathobiont, Desulfobulbus oralis

    Karissa L. Cross

    2018-03-01

    Full Text Available The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis, the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis, a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease.

  8. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    Mohammed Y. Shobrak

    2014-12-01

    Full Text Available Emergence and distribution of multi-drug resistant (MDR bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor. Also, hemolysin production (a virulence factor was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1-5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration.

  9. Species Identification And Antibiotic Susceptibilities Of Coagulase- Negative Staphylococci Isolated From Urinary Tract Infection Specimens

    Hashmi, A.; Abdullah, F. E.

    2016-01-01

    Objective: To determine the incidence of Coagulase- negative S. aureusin urinary tract infections and sensitivities of these isolates to antimicrobial agents. Study Design: Cohort study. Place and Duration of Study: Dr. Essa Laboratory and Immunology and Infectious Disease Research Laboratory (IIDRL), Microbiology Department, University of Karachi, from January 2009 to January 2010. Methodology: Urine specimens, suggestive of urinary tract infection (UTI), were identified. Speciation of isolates was done using API-20 Staph.system. Screening of extracellular products was done using SDS-PAGE electrophoresis and Hemolysin on blood-agar plates. Minimum inhibitory concentration (MICs) of antibiotics was estimated by microtiter well plate method. Frequency and percentages were determined and chi-square test was used for comparing proportions with significance at p < 0.05. Results: Coagulase - negative S. aureus(CONS) were the cause of urinary tract infection in 56 out of 1866 outpatient (3 percent) and 164 of 1261 in patient (13 percent), urinary tract infections (p < 0.001). Two hundred and twenty CONS isolates were identified. The most common CONS identified was S. saprophyticus (31 percent, 68 strains). The relative frequency of Coagulase - negative S. aureus was 6 percent (13 strains). All isolates were sensitive to Vancomycin and Linezolid. Resistance was 69 percent to Ampicillin, 53 percent to Methicillin, and 37.5 percent to Ciprofloxacin. Conclusion: CONS are a potential uropathogens, with capability of slime production and resistance to common empirical prescriptions. This also warrants formulation of an appropriate antibiotic policy that covers CONS. (author)

  10. Diverse modulation of spa transcription by cell wall active antibiotics in Staphylococcus aureus

    Nielsen, Lene Nørby; Roggenbuck, Michael; Haaber, Jakob Krause

    2012-01-01

    ABSTRACT: BACKGROUND: The aim of this study was to investigate the effect of various classes of clinically relevant antibiotics at sub-lethal concentrations on virulence gene expression and biofilm formation in Staphylococcus aureus. FINDINGS: LacZ promoter fusions of genes related to staphylococ......ABSTRACT: BACKGROUND: The aim of this study was to investigate the effect of various classes of clinically relevant antibiotics at sub-lethal concentrations on virulence gene expression and biofilm formation in Staphylococcus aureus. FINDINGS: LacZ promoter fusions of genes related...... to staphylococcal virulence were used to monitor the effects of antibiotics on gene expression in a disc diffusion assay. The selected genes were hla and spa encoding alpha-hemolysin and Protein A, respectively and RNAIII, the effector molecule of the agr quorum sensing system. The results were confirmed...... by quantitative real-time PCR. Additionally, we monitored the effect of subinhibitory concentrations of antibiotics on the ability of S. aureus to form biofilm in a microtiter plate assay. The results show that sub-lethal antibiotic concentrations diversely modulate expression of RNAIII, hla and spa. Consistently...

  11. Oro-facial gangrene (noma/cancrum oris): pathogenetic mechanisms.

    Enwonwu, C O; Falkler, W A; Idigbe, E O

    2000-01-01

    Cancrum oris (Noma) is a devastating infectious disease which destroys the soft and hard tissues of the oral and para-oral structures. The dehumanizing oro-facial gangrenous lesion affects predominantly children ages 2 to 16 years, particularly in sub-Saharan Africa, where the estimated frequency in some communities varies from 1 to 7 cases per 1000 population. The risk factors are poverty, malnutrition, poor oral hygiene, residential proximity to livestock in unsanitary environments, and infectious diseases, particularly measles and those due to the herpesviridae. Infections and malnutrition impair the immune system, and this is the common denominator for the occurrence of noma. Acute necrotizing gingivitis (ANG) and oral herpetic ulcers are considered the antecedent lesions, and ongoing studies suggest that the rapid progression of these precursor lesions to noma requires infection by a consortium of micro-organisms, with Fusobacterium necrophorum (Fn) and Prevotella intermedia (Pi) as the suspected key players. Additional to production of a growth-stimulating factor for Pi, Fn displays a classic endotoxin, a dermonecrotic toxin, a cytoplasmic toxin, and a hemolysin. Without appropriate treatment, the mortality rate from noma is 70-90%. Survivors suffer the two-fold afflictions of oro-facial mutilation and functional impairment, which require a time-consuming, financially prohibitive surgical reconstruction.

  12. Ciprofloxacin and Trimethoprim Cause Phage Induction and Virulence Modulation in Staphylococcus aureus

    Goerke, Christiane; Köller, Johanna; Wolz, Christiane

    2006-01-01

    In Staphylococcus aureus strains of human origin, phages which integrate into the chromosomal gene coding for β-hemolysin (hlb) are widely distributed. Most of them encode accessory virulence determinants such as staphylokinase (sak) or enterotoxins. Here, we analyzed the effects of ciprofloxacin and trimethoprim on phage induction and expression of phage-encoded virulence factors by using isolates from patients with cystic fibrosis for which the induction of hlb-converting phages was demonstrated in vivo (C. Goerke, S. Matias y Papenberg, S. Dasbach, K. Dietz, R. Ziebach, B. C. Kahl, and C. Wolz, J. Infect. Dis. 189:724-734, 2004) as well as a φ13 lysogen of phage-cured strain 8325-4. Treatment of lysogens with subinhibitory concentrations of either antibiotic resulted in (i) delysogenization of strains resembling the isolates picked up after chronic lung infection and (ii) replication of phages in the bacterial host in a dose-dependent manner. Ciprofloxacin treatment resulted in enhanced recA transcription, indicating involvement of the SOS response in phage mobilization. Induction of φ13 was linked to elevated expression of the phage-encoded virulence gene sak, chiefly due to the activation of latent phage promoters. In summary, we could show the induction of hlb-converting phages and a subsequent virulence modulation of the host bacterium by ciprofloxacin and trimethoprim. PMID:16377683

  13. Insertional inactivation of a chromosomal locus that modulates expression of potential virulence determinants in Staphylococcus aureus.

    Cheung, A L; Wolz, C; Yeaman, M R; Bayer, A S

    1995-06-01

    A single insertion of transposon Tn551 into a unique chromosomal locus of Staphylococcus aureus ISP479C has resulted in a pleiotropic effect on the expression of both extracellular and cell wall proteins. In particular, the expression of cell wall protein A and clumping activity with fibrinogen were rendered undetectable in the mutant 1E3 compared with the parent. The secretion of alpha-hemolysin in mutant 1E3 was modestly increased. Southern blot and phenotypic analyses indicated that this locus is distinct from agr, xpr, and sar, three previously described global regulatory loci. Transduction experiments demonstrated that the genotype associated with mutant 1E3 could be transferred back into the parental strain ISP479C. The transductant 1E3-2 displayed a phenotypic profile similar to that of the original mutant. Northern (RNA) blot studies showed that this locus may be involved in modulating target genes at the mRNA level. In the rabbit endocarditis model, there was a significant decrease in both the infectivity rate and intravegetation bacterial density with mutant 1E3 compared with the parent at an inoculum of 10(3) CFU. Since protein A and the fibrinogen-binding protein(s) are major surface proteins that may mediate bacterial adhesion to host tissues, this locus may be an important genetic element involved in the expression of virulence determinants in S. aureus.

  14. Fatores de virulência de Bacillus thuringiensis: o que existe além das proteínas Cry

    Gislayne Vilas-Bôas

    2012-03-01

    Virulence Factors of Bacillus thuringiensis Berliner: Something Beyond of Cry Proteins? Abstract. The Cry proteins produced by the entomopathogenic bacterium Bacillus thuringiensis Berliner are widely known due to its high toxicity against a variety of insects. The mode of action of these proteins is specific and becomes B. thuringiensis-based products the most used in biological control programs of insect pests in agriculture and of important human disease vectors. However, while the Cry proteins are the best-known insect-specific virulence factor, strains of B. thuringiensis show also a wide range of other virulence factors, which allow the bacteria to achieve the hemolymph and colonize efficiently the insect host. Among these factors, we highlight the Vip proteins, Cyt, enterotoxins, hemolysins, phospholipases, proteases and enzymes of degradation, in addition to the recently described parasporin. This review explores the action of these virulence factors, as well as, the characterization and control of expression of their genes. Additionally, we discuss aspects related to the ecological niche of the bacteria with emphasis on the characteristics involved in the biosafety of the use of B. thuringiensis-based products for biological control of target insects.

  15. Inhibition of quorum sensing-mediated virulence in Serratia marcescens by Bacillus subtilis R-18.

    Devi, Kannan Rama; Srinivasan, Subramaniyan; Ravi, Arumugam Veera

    2018-04-13

    Serratia marcescens is an opportunistic human pathogen causing various nosocomial infections, most importantly urinary tract infections (UTIs). It exhibits increased resistance towards the conventional antibiotics. This study was aimed to evaluate the anti-virulence effect of a rhizosphere soil bacterium Bacillus subtilis strain R-18 against the uropathogen S. marcescens. First, the bacterial cell-free culture supernatant (CFCS) of B. subtilis strain R-18 was evaluated for its quorum sensing inhibitory (QSI) potential against biomarker strain Chromobacterium violaceum and the test pathogen S. marcescens. The B. subtilis R-18 CFCS effectively inhibited the quorum sensing (QS)-mediated violacein pigment production in C. violaceum and prodigiosin pigment production in S. marcescens. Furthermore, B. subtilis R-18 CFCS was successively extracted with different solvent systems. Of these solvents, B. subtilis R-18 petroleum ether (PE) extract showed inhibition in biofilm formation, protease, lipase, and hemolysin productions in S. marcescens. Fourier transform infrared spectroscopic (FT-IR) analysis revealed the alterations in the cellular components of bacterial cell pellets obtained from B. subtilis R-18 PE extract treated and untreated S. marcescens. The differential gene expression study further validated the downregulation of virulence-associated genes. Characterization of the active principle in B. subtilis R-18 PE extract by gas chromatography-mass spectrometry (GC-MS) analysis showed the presence of multiple compounds with therapeutic values, which could possibly reduce the QS-dependent phenotypes in S. marcescens. Copyright © 2018. Published by Elsevier Ltd.

  16. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    Shobrak, Mohammed Y.; Abo-Amer, Aly E.

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1–5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration. PMID:25763023

  17. Prevalence and Toxin Characteristics of Bacillus thuringiensis Isolated from Organic Vegetables.

    Kim, Jung-Beom; Choi, Ok-Kyung; Kwon, Sun-Mok; Cho, Seung-Hak; Park, Byung-Jae; Jin, Na Young; Yu, Yong Man; Oh, Deog-Hwan

    2017-08-28

    The prevalence and toxin characteristics of Bacillus thuringiensis isolated from 39 organic vegetables were investigated. B. thuringiensis was detected in 30 out of the 39 organic vegetables (76.9%) with a mean value of 2.60 log CFU/g. Twenty-five out of the 30 B. thuringiensis isolates (83.3%) showed insecticidal toxicity against Spodoptera exigua . The hblCDA, nheABC , and entFM genes were found to be the major toxin genes, but the ces gene was not detected in any of the tested B. thuringiensis isolates. The hemolysin BL enterotoxin was detected in all 30 B. thuringiensis isolates (100%). The non-hemolytic enterotoxin complex was found in 27 out of 30 B. thuringiensis isolates (90.0%). The B. thuringiensis tested in this study had similar toxin gene characteristics to B. cereus , which possessed more than one toxin gene. B. thuringiensis could have the potential risk of foodborne illness based on the toxin genes and toxin-producing ability.

  18. Occurrence of Natural Bacillus thuringiensis Contaminants and Residues of Bacillus thuringiensis-Based Insecticides on Fresh Fruits and Vegetables

    Frederiksen, Kristine; Rosenquist, Hanne; Jørgensen, Kirsten; Wilcks, Andrea

    2006-01-01

    A total of 128 Bacillus cereus-like strains isolated from fresh fruits and vegetables for sale in retail shops in Denmark were characterized. Of these strains, 39% (50/128) were classified as Bacillus thuringiensis on the basis of their content of cry genes determined by PCR or crystal proteins visualized by microscopy. Random amplified polymorphic DNA analysis and plasmid profiling indicated that 23 of the 50 B. thuringiensis strains were of the same subtype as B. thuringiensis strains used as commercial bioinsecticides. Fourteen isolates were indistinguishable from B. thuringiensis subsp. kurstaki HD1 present in the products Dipel, Biobit, and Foray, and nine isolates grouped with B. thuringiensis subsp. aizawai present in Turex. The commercial strains were primarily isolated from samples of tomatoes, cucumbers, and peppers. A multiplex PCR method was developed to simultaneously detect all three genes in the enterotoxin hemolysin BL (HBL) and the nonhemolytic enterotoxin (NHE), respectively. This revealed that the frequency of these enterotoxin genes was higher among the strains indistinguishable from the commercial strains than among the other B. thuringiensis and B. cereus-like strains isolated from fruits and vegetables. The same was seen for a third enterotoxin, CytK. In conclusion, the present study strongly indicates that residues of B. thuringiensis-based insecticides can be found on fresh fruits and vegetables and that these are potentially enterotoxigenic. PMID:16672488

  19. An emerging mycoplasma associated with trichomoniasis, vaginal infection and disease.

    Jennifer M Fettweis

    Full Text Available Humans are colonized by thousands of bacterial species, but it is difficult to assess the metabolic and pathogenic potential of the majority of these because they have yet to be cultured. Here, we characterize an uncultivated vaginal mycoplasma tightly associated with trichomoniasis that was previously known by its 16S rRNA sequence as "Mnola." In this study, the mycoplasma was found almost exclusively in women infected with the sexually transmitted pathogen Trichomonas vaginalis, but rarely observed in women with no diagnosed disease. The genomes of four strains of this species were reconstructed using metagenome sequencing and assembly of DNA from four discrete mid-vaginal samples, one of which was obtained from a pregnant woman with trichomoniasis who delivered prematurely. These bacteria harbor several putative virulence factors and display unique metabolic strategies. Genes encoding proteins with high similarity to potential virulence factors include two collagenases, a hemolysin, an O-sialoglycoprotein endopeptidase and a feoB-type ferrous iron transport system. We propose the name "Candidatus Mycoplasma girerdii" for this potential new pathogen.

  20. Decreased antibody formation in mice exposed to lead

    Koller, L D; Kovacic, S

    1974-07-12

    Swiss Webster mice were given 1375, 137.5, or 13.75 ppM lead acetate in deionized water for 56 days. The control group was given deionized water orally. There were 120 mice in each group. The diet fed to all the mice was contaminated with 1.12 ppM lead. After 56 days, all mice were inoculated intraperitoneally with 0.2 ml of a 2% suspension of sheep red blood cells. Ten mice in each group were killed on days 3 to 7 to measure primary immune response (19S or IgM antibody) and on days 9 to 14 for the secondary response (7S or IgG antibody) after a second inoculation of sheep red blood cells while they remained on 137.5 ppM lead. The number of plaque forming cells was measured in the spleen. Erythrocytes were observed for basophilic stippling, packed cell volume was measured, serum was collected for hemolysin titration, and kidneys were examined for lead. Chronic exposure to lead produced a significant decrease in antibody synthesis, particularly IgG, indicating that the memory cell was involved. The results also indicated that the reduced antibody synthesis was responsible for the increased mortality from bacterial and viral diseases in animals that were chronically exposed to lead. Other environmental contaminants such as polychlorinated biphenyls, cadmium, mercury, DDT, and sulfur dioxide have also resulted in reduction of circulating antibodies in animals, in other experiments.

  1. Functional interaction between Cerebratulus lacteus cytolysin A-III and phospholipase A2

    Liu, J.; Blumenthal, K.M.

    1988-01-01

    A study on the interaction between bee venom phospholipase A 2 and Cerebratulus lacteus cytolysin A-III, a major hemolysin secreted by this organism has been carried out. The hemolytic activity of A-III in phosphate-buffered saline is increased 5-fold in the presence of phospholipase A 2 from bee venom. Dansylphosphatidylethanolamine (DPE) labeled, phosphatidylcholine-containing liposomes and human erythrocyte membranes were employed to study the interaction between these two proteins. In DPE-liposomes, A-III alone had no effect on DPE fluorescence nor did it enhance either the phospholipase A 2 -dependent fluorescence increase or blue shift in emission maximum, indicating that the cytolysis is not a major phospholipase A 2 -activator. However, when DPE was incorporated into erythrocyte membranes, A-III alone induced a 40% fluorescence increase and a 5 nm blue shift, implying a transient activation of an endogenous phospholipase A 2 . Further studies using synthetic lysophosphatidylcholine and free fatty acids demonstrated that the hemolytic activity of A-III is potentiated by free fatty acids, a product of phospholipid degradation catalyzed by phospholipase A 2 . Subsequent analysis of this phenomenon by gel filtration chromatography, analytical ultracentrifugation, chemical cross-linking, and measurement of [ 14 C]oleic acid binding by the cytolysin demonstrated that binding of oleic acid to A-III causes aggregation of the toxin molecules to a tetrameric form which has a higher α-helix content and a greater activity than the monomer

  2. An Update on Candida tropicalis Based on Basic and Clinical Approaches

    Zuza-Alves, Diana L.; Silva-Rocha, Walicyranison P.; Chaves, Guilherme M.

    2017-01-01

    Candida tropicalis has emerged as one of the most important Candida species. It has been widely considered the second most virulent Candida species, only preceded by C. albicans. Besides, this species has been recognized as a very strong biofilm producer, surpassing C. albicans in most of the studies. In addition, it produces a wide range of other virulence factors, including: adhesion to buccal epithelial and endothelial cells; the secretion of lytic enzymes, such as proteinases, phospholipases, and hemolysins, bud-to-hyphae transition (also called morphogenesis) and the phenomenon called phenotypic switching. This is a species very closely related to C. albicans and has been easily identified with both phenotypic and molecular methods. In addition, no cryptic sibling species were yet described in the literature, what is contradictory to some other medically important Candida species. C. tropicalis is a clinically relevant species and may be the second or third etiological agent of candidemia, specifically in Latin American countries and Asia. Antifungal resistance to the azoles, polyenes, and echinocandins has already been described. Apart from all these characteristics, C. tropicalis has been considered an osmotolerant microorganism and this ability to survive to high salt concentration may be important for fungal persistence in saline environments. This physiological characteristic makes this species suitable for use in biotechnology processes. Here we describe an update of C. tropicalis, focusing on all these previously mentioned subjects. PMID:29081766

  3. An emerging mycoplasma associated with trichomoniasis, vaginal infection and disease.

    Fettweis, Jennifer M; Serrano, Myrna G; Huang, Bernice; Brooks, J Paul; Glascock, Abigail L; Sheth, Nihar U; Strauss, Jerome F; Jefferson, Kimberly K; Buck, Gregory A

    2014-01-01

    Humans are colonized by thousands of bacterial species, but it is difficult to assess the metabolic and pathogenic potential of the majority of these because they have yet to be cultured. Here, we characterize an uncultivated vaginal mycoplasma tightly associated with trichomoniasis that was previously known by its 16S rRNA sequence as "Mnola." In this study, the mycoplasma was found almost exclusively in women infected with the sexually transmitted pathogen Trichomonas vaginalis, but rarely observed in women with no diagnosed disease. The genomes of four strains of this species were reconstructed using metagenome sequencing and assembly of DNA from four discrete mid-vaginal samples, one of which was obtained from a pregnant woman with trichomoniasis who delivered prematurely. These bacteria harbor several putative virulence factors and display unique metabolic strategies. Genes encoding proteins with high similarity to potential virulence factors include two collagenases, a hemolysin, an O-sialoglycoprotein endopeptidase and a feoB-type ferrous iron transport system. We propose the name "Candidatus Mycoplasma girerdii" for this potential new pathogen.

  4. Structure of a bacterial toxin-activating acyltransferase.

    Greene, Nicholas P; Crow, Allister; Hughes, Colin; Koronakis, Vassilis

    2015-06-09

    Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.

  5. Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity.

    Reynolds, Hannah T; Barton, Hazel A

    2014-01-01

    White-nose Syndrome (WNS) is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans), is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental growth or affect pathogenesis and compared enzyme activity across several Pseudogymnoascus species isolated from both hibernating bats and cave sediments. We found that P. destructans produced enzymes that could be beneficial in either a pathogenic or saprotrophic context, such as lipases, hemolysins, and urease, as well as chitinase and cellulases, which could aid in saprotrophic growth. The WNS pathogen showed significantly lower activity for urease and endoglucanase compared to con-generic species (Pseudogymnoascus), which may indicate a shift in selective pressure to the detriment of P. destructans' saprotrophic ability. Based on the positive function of multiple saprotrophic enzymes, the causal agent of White-nose Syndrome shows potential for environmental growth on a variety of substrates found in caves, albeit at a reduced level compared to environmental strains. Our data suggest that if P. destructans emerged as an opportunistic infection from an environmental source, co-evolution with its host may have led to a reduced capacity for saprotrophic growth.

  6. Comparison of the white-nose syndrome agent Pseudogymnoascus destructans to cave-dwelling relatives suggests reduced saprotrophic enzyme activity.

    Hannah T Reynolds

    Full Text Available White-nose Syndrome (WNS is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans, is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental growth or affect pathogenesis and compared enzyme activity across several Pseudogymnoascus species isolated from both hibernating bats and cave sediments. We found that P. destructans produced enzymes that could be beneficial in either a pathogenic or saprotrophic context, such as lipases, hemolysins, and urease, as well as chitinase and cellulases, which could aid in saprotrophic growth. The WNS pathogen showed significantly lower activity for urease and endoglucanase compared to con-generic species (Pseudogymnoascus, which may indicate a shift in selective pressure to the detriment of P. destructans' saprotrophic ability. Based on the positive function of multiple saprotrophic enzymes, the causal agent of White-nose Syndrome shows potential for environmental growth on a variety of substrates found in caves, albeit at a reduced level compared to environmental strains. Our data suggest that if P. destructans emerged as an opportunistic infection from an environmental source, co-evolution with its host may have led to a reduced capacity for saprotrophic growth.

  7. Genomic diversity of Escherichia isolates from diverse habitats.

    Seungdae Oh

    Full Text Available Our understanding of the Escherichia genus is heavily biased toward pathogenic or commensal isolates from human or animal hosts. Recent studies have recovered Escherichia isolates that persist, and even grow, outside these hosts. Although the environmental isolates are typically phylogenetically distinct, they are highly related to and phenotypically indistinguishable from their human counterparts, including for the coliform test. To gain insights into the genomic diversity of Escherichia isolates from diverse habitats, including freshwater, soil, animal, and human sources, we carried out comparative DNA-DNA hybridizations using a multi-genome E. coli DNA microarray. The microarray was validated based on hybridizations with selected strains whose genome sequences were available and used to assess the frequency of microarray false positive and negative signals. Our results showed that human fecal isolates share two sets of genes (n>90 that are rarely found among environmental isolates, including genes presumably important for evading host immune mechanisms (e.g., a multi-drug transporter for acids and antimicrobials and adhering to epithelial cells (e.g., hemolysin E and fimbrial-like adhesin protein. These results imply that environmental isolates are characterized by decreased ability to colonize host cells relative to human isolates. Our study also provides gene markers that can distinguish human isolates from those of warm-blooded animal and environmental origins, and thus can be used to more reliably assess fecal contamination in natural ecosystems.

  8. Virulence Inhibitors from Brazilian Peppertree Block Quorum Sensing and Abate Dermonecrosis in Skin Infection Models

    Muhs, Amelia; Lyles, James T.; Parlet, Corey P.; Nelson, Kate; Kavanaugh, Jeffery S.; Horswill, Alexander R.; Quave, Cassandra L.

    2017-01-01

    Widespread antibiotic resistance is on the rise and current therapies are becoming increasingly limited in both scope and efficacy. Methicillin-resistant Staphylococcus aureus (MRSA) represents a major contributor to this trend. Quorum sensing controlled virulence factors include secreted toxins responsible for extensive damage to host tissues and evasion of the immune system response; they are major contributors to morbidity and mortality. Investigation of botanical folk medicines for wounds and infections led us to study Schinus terebinthifolia (Brazilian Peppertree) as a potential source of virulence inhibitors. Here, we report the inhibitory activity of a flavone rich extract “430D-F5” against all S. aureus accessory gene regulator (agr) alleles in the absence of growth inhibition. Evidence for this activity is supported by its agr-quenching activity (IC50 2–32 μg mL−1) in transcriptional reporters, direct protein outputs (α-hemolysin and δ-toxin), and an in vivo skin challenge model. Importantly, 430D-F5 was well tolerated by human keratinocytes in cell culture and mouse skin in vivo; it also demonstrated significant reduction in dermonecrosis following skin challenge with a virulent strain of MRSA. This study provides an explanation for the anti-infective activity of peppertree remedies and yields insight into the potential utility of non-biocide virulence inhibitors in treating skin infections. PMID:28186134

  9. Antibiotic resistance of Vibrio parahaemolyticus isolated from pond-reared Litopenaeus vannamei marketed in Natal, Brazil

    Ligia Maria Rodrigues de Melo

    2011-12-01

    Full Text Available Ten out of fifty fresh and refrigerated samples of shrimp (Litopenaeus vannamei collected from retailers in Natal (Rio Grande do Norte, Northeastern Brazil tested positive for Vibrio parahaemolyticus. The Kanagawa test and multiplex PCR assays were used to detect TDH and TRH hemolysins and the tdh, trh and tlh genes, respectively. All strains were Kanagawa-negative and tlh-positive. Antibiotic susceptibility testing was done for seven antibiotics by the agar diffusion technique. Five strains (50% presented multiple antibiotic resistance to ampicillin (90% and amikacin (60%, while two strains (20% displayed intermediate-level resistance to amikacin. All strains were sensitive to chloramphenicol. Intermediate-level susceptibility and/or resistance to other antibiotics ranged from 10 to 90%, with emphasis on the observed growing intermediate-level resistance to ciprofloxacin. Half our isolates yielded a multiple antibiotic resistance index above 0.2 (range: 0.14-0.29, indicating a considerable risk of propagation of antibiotic resistance throughout the food chain.

  10. Infrared Laser Heating Applied to Nanopore Sensing for DNA Duplex Analysis.

    Angevine, Christopher E; Seashols-Williams, Sarah J; Reiner, Joseph E

    2016-03-01

    Temperature studies coupled with resistive-pulse nanopore sensing enable the quantification of a variety of important thermodynamic properties at the single-molecule limit. Previous demonstrations of nanopore sensing with temperature control have utilized bulk chamber heating methodologies. This approach makes it difficult to rapidly change temperatures and enable optical access for other analytical techniques (i.e., single-molecule fluorescence). To address these issues, researchers have explored laser-based methodologies through either direct infrared (IR) absorption or plasmonic assisted heating. In this paper, we demonstrate the use of IR-based direct absorption heating with the DNA sensing capabilities of a biological nanopore. The IR heating enables rapid changes of the temperature in and around an α-hemolysin pore, and we use this to explore melting properties for short (≤50 bp) double-stranded DNA homopolymers. We also demonstrate that the IR heating enables one to measure the percentage of different-sized DNA molecules in a binary mixture.

  11. Identification of capsule, biofilm, lateral flagellum, and type IV pili in Vibrio mimicus strains.

    Tercero-Alburo, J J; González-Márquez, H; Bonilla-González, E; Quiñones-Ramírez, E I; Vázquez-Salinas, C

    2014-11-01

    Vibrio mimicus is a bacterium that causes gastroenteritis; it is closely related to Vibrio cholerae, and can cause acute diarrhea like cholera- or dysentery-type diarrhea. It is distributed worldwide. Factors associated with virulence (such as hemolysins, enterotoxins, proteases, phospholipases, aerobactin, and hemagglutinin) have been identified; however, its pathogenicity mechanism is still unknown. In pathogenic Vibrio species such as V. cholerae, Vibrio. parahaemolyticus and Vibrio vulnificus, capsule, biofilms, lateral flagellum, and type IV pili are structures described as essential for pathogenicity. These structures had not been described in V. mimicus until this work. We used 20 V. mimicus strains isolated from water (6), oyster (9), and fish (5) samples and we were able to identify the capsule, biofilm, lateral flagellum, and type IV pili through phenotypic tests, electron microscopy, PCR, and sequencing. In all tested strains, we observed and identified the presence of capsular exopolysaccharide, biofilm formation in an in vitro model, as well as swarming, multiple flagellation, and pili. In addition, we identified homologous genes to those described in other bacteria of the genus in which these structures have been found. Identification of these structures in V. mimicus is a contribution to the biology of this organism and can help to reveal its pathogenic behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Molecular structure of dextran sulphate sodium in aqueous environment

    Yu, Miao; Every, Hayley A.; Jiskoot, Wim; Witkamp, Geert-Jan; Buijs, Wim

    2018-03-01

    Here we propose a 3D-molecular structural model for dextran sulphate sodium (DSS) in a neutral aqueous environment based on the results of a molecular modelling study. The DSS structure is dominated by the stereochemistry of the 1,6-linked α-glucose units and the presence of two sulphate groups on each α-glucose unit. The structure of DSS can be best described as a helix with various patterns of di-sulphate substitution on the glucose rings. The presence of a side chain does not alter the 3D-structure of the linear main chain much, but affects the overall spatial dimension of the polymer. The simulated polymers have a diameter similar to or in some cases even larger than model α-hemolysin nano-pores for macromolecule transport in many biological processes, indicating a size-limited translocation through such pores. All results of the molecular modelling study are in line with previously reported experimental data. This study establishes the three-dimensional structure of DSS and summarizes the spatial dimension of the polymer, serving as the basis for a better understanding on the molecular level of DSS-involved electrostatic interaction processes with biological components like proteins and cell pores.

  13. Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses.

    Pedrosa, Fábio O; Monteiro, Rose Adele; Wassem, Roseli; Cruz, Leonardo M; Ayub, Ricardo A; Colauto, Nelson B; Fernandez, Maria Aparecida; Fungaro, Maria Helena P; Grisard, Edmundo C; Hungria, Mariangela; Madeira, Humberto M F; Nodari, Rubens O; Osaku, Clarice A; Petzl-Erler, Maria Luiza; Terenzi, Hernán; Vieira, Luiz G E; Steffens, Maria Berenice R; Weiss, Vinicius A; Pereira, Luiz F P; Almeida, Marina I M; Alves, Lysangela R; Marin, Anelis; Araujo, Luiza Maria; Balsanelli, Eduardo; Baura, Valter A; Chubatsu, Leda S; Faoro, Helisson; Favetti, Augusto; Friedermann, Geraldo; Glienke, Chirlei; Karp, Susan; Kava-Cordeiro, Vanessa; Raittz, Roberto T; Ramos, Humberto J O; Ribeiro, Enilze Maria S F; Rigo, Liu Un; Rocha, Saul N; Schwab, Stefan; Silva, Anilda G; Souza, Eliel M; Tadra-Sfeir, Michelle Z; Torres, Rodrigo A; Dabul, Audrei N G; Soares, Maria Albertina M; Gasques, Luciano S; Gimenes, Ciela C T; Valle, Juliana S; Ciferri, Ricardo R; Correa, Luiz C; Murace, Norma K; Pamphile, João A; Patussi, Eliana Valéria; Prioli, Alberto J; Prioli, Sonia Maria A; Rocha, Carmem Lúcia M S C; Arantes, Olívia Márcia N; Furlaneto, Márcia Cristina; Godoy, Leandro P; Oliveira, Carlos E C; Satori, Daniele; Vilas-Boas, Laurival A; Watanabe, Maria Angélica E; Dambros, Bibiana Paula; Guerra, Miguel P; Mathioni, Sandra Marisa; Santos, Karine Louise; Steindel, Mario; Vernal, Javier; Barcellos, Fernando G; Campo, Rubens J; Chueire, Ligia Maria O; Nicolás, Marisa Fabiana; Pereira-Ferrari, Lilian; Silva, José L da Conceição; Gioppo, Nereida M R; Margarido, Vladimir P; Menck-Soares, Maria Amélia; Pinto, Fabiana Gisele S; Simão, Rita de Cássia G; Takahashi, Elizabete K; Yates, Marshall G; Souza, Emanuel M

    2011-05-01

    The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme--GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.

  14. Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses.

    Fábio O Pedrosa

    2011-05-01

    Full Text Available The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme--GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.

  15. Virulence potential of Staphylococcus aureus isolates from Buruli ulcer patients.

    Amissah, Nana Ama; Chlebowicz, Monika A; Ablordey, Anthony; Tetteh, Caitlin S; Prah, Isaac; van der Werf, Tjip S; Friedrich, Alex W; van Dijl, Jan Maarten; Stienstra, Ymkje; Rossen, John W

    2017-06-01

    Buruli ulcer (BU) is a necrotizing infection of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. BU wounds may also be colonized with other microorganisms including Staphylococcus aureus. This study aimed to characterize the virulence factors of S. aureus isolated from BU patients. Previously sequenced genomes of 21 S. aureus isolates from BU patients were screened for the presence of virulence genes. The results show that all S. aureus isolates harbored on their core genomes genes for known virulence factors like α-hemolysin, and the α- and β-phenol soluble modulins. Besides the core genome virulence genes, mobile genetic elements (MGEs), i.e. prophages, genomic islands, pathogenicity islands and a Staphylococcal cassette chromosome (SCC) were found to carry different combinations of virulence factors, among them genes that are known to encode factors that promote immune evasion, superantigens and Panton-Valentine Leucocidin. The present observations imply that the S. aureus isolates from BU patients harbor a diverse repertoire of virulence genes that may enhance bacterial survival and persistence in the wound environment and potentially contribute to delayed wound healing. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. Enumeration of Vibrio parahaemolyticus in the viable but nonculturable state using direct plate counts and recognition of individual gene fluorescence in situ hybridization.

    Griffitt, Kimberly J; Noriea, Nicholas F; Johnson, Crystal N; Grimes, D Jay

    2011-05-01

    Vibrio parahaemolyticus is a gram-negative, halophilic bacterium indigenous to marine and estuarine environments and it is capable of causing food and water-borne illness in humans. It can also cause disease in marine animals, including cultured species. Currently, culture-based techniques are used for quantification of V. parahaemolyticus in environmental samples; however, these can be misleading as they fail to detect V. parahaemolyticus in a viable but nonculturable (VBNC) state which leads to an underestimation of the population density. In this study, we used a novel fluorescence visualization technique, called recognition of individual gene fluorescence in situ hybridization (RING-FISH), which targets chromosomal DNA for enumeration. A polynucleotide probe labeled with Cyanine 3 (Cy3) was created corresponding to the ubiquitous V. parahaemolyticus gene that codes for thermolabile hemolysin (tlh). When coupled with the Kogure method to distinguish viable from dead cells, RING-FISH probes reliably enumerated total, viable V. parahaemolyticus. The probe was tested for sensitivity and specificity against a pure culture of tlh(+), tdh(-), trh(-)V. parahaemolyticus, pure cultures of Vibrio vulnificus, Vibrio harveyi, Vibrio alginolyticus and Vibrio fischeri, and a mixed environmental sample. This research will provide additional tools for a better understanding of the risk these environmental organisms pose to human health. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Identification of Vibrio harveyi as a causative bacterium for a tail rot disease of sea bream Sparus aurata from research hatchery in Malta.

    Haldar, S; Maharajan, A; Chatterjee, S; Hunter, S A; Chowdhury, N; Hinenoya, A; Asakura, M; Yamasaki, S

    2010-10-20

    A bacterial disease was reported from gilthead sea bream (Sparus aurata) within a hatchery environment in Malta. Symptoms included complete erosion of tail, infection in the eye, mucous secretion and frequent mortality. A total of 540 strains were initially isolated in marine agar from different infected body parts and culture water sources. Subsequently 100 isolates were randomly selected, identified biochemically and all were found to be Vibrio harveyi-related organisms; finally from 100 isolates a total of 13 numbers were randomly selected and accurately identified as V. harveyi by 16S rRNA gene sequencing and species-specific PCR. Ribotyping of these strains with HindIII revealed total of six clusters. In vivo challenge study with representative isolates from each cluster proved two clusters each were highly pathogenic, moderately pathogenic and non-pathogenic. All 13 isolates were positive for hemolysin gene, a potential virulence factor. Further analysis revealed probably a single copy of this gene was encoded in all isolates, although not in the same locus in the genome. Although V. harveyi was reported to be an important pathogen for many aquatic organisms, to our knowledge this might be the first report of disease caused by V. harveyi and their systematic study in the sea bream hatchery from Malta. Copyright © 2009 Elsevier GmbH. All rights reserved.

  18. Effects of soybean oligosaccharides on intestinal microbial communities and immune modulation in mice

    Yan Ma

    2017-01-01

    Full Text Available Background: Soybean oligosaccharides (SBOSs are potential prebiotics that may be used to improve immune function. Here, we investigated the effects of intragastric administration of SBOSs in mice to determine the effects on autochthonous intestinal microbial communities and immunological parameters. Results E: After 22-day administration, 4.0 g kg body weight (BW−1 SBOSs significantly enhanced the proliferation of bifidobacteria and lactic acid bacteria (LAB as compared to the control. This dose of SBOSs also significantly increased numbers of enterococci and decreased numbers of Clostridium perfringens. Treatment with 4.0 g kg BW−1 SBOSs also significantly increased the percentage of T-lymphocytes and lymphocyte proliferation as compared to the control, suggesting that SBOSs promoted cellular immunity in mice. Additionally, 4.0 g kg BW−1 SBOSs induced significant differences in hemolysin production, natural killer (NK cell activity, phagocytic activity, cytokine production, and immunoglobulin levels compared to the control. Conclusion: Our data demonstrated that intragastric administration of SBOSs at a dose of 4.0 g kg BW−1 improved the numbers of beneficial intestinal microbes and enhanced immunological function of mice. Therefore, these data supported that SBOSs may have applications as a prebiotic to improve immune responses in humans. Further studies are warranted.

  19. LukMF′ is the major secreted leukocidin of bovine Staphylococcus aureus and is produced in vivo during bovine mastitis

    Vrieling, Manouk; Boerhout, Eveline M.; van Wigcheren, Glenn F.; Koymans, Kirsten J.; Mols-Vorstermans, Tanja G.; de Haas, Carla J. C.; Aerts, Piet C.; Daemen, Ineke J. J. M.; van Kessel, Kok P. M.; Koets, Ad P.; Rutten, Victor P. M. G.; Nuijten, Piet J.M.; van Strijp, Jos A. G.; Benedictus, Lindert

    2016-01-01

    Staphylococcus aureus is a major human and animal pathogen and a common cause of mastitis in cattle. S. aureus secretes several leukocidins that target bovine neutrophils, crucial effector cells in the defence against bacterial pathogens. In this study, we investigated the role of staphylococcal leukocidins in the pathogenesis of bovine S. aureus disease. We show that LukAB, in contrast to the γ-hemolysins, LukED, and LukMF′, was unable to kill bovine neutrophils, and identified CXCR2 as a bovine receptor for HlgAB and LukED. Furthermore, we assessed functional leukocidin secretion by bovine mastitis isolates and observed that, although leukocidin production was strain dependent, LukMF′ was most abundantly secreted and the major toxin killing bovine neutrophils. To determine the role of LukMF′ in bovine mastitis, cattle were challenged with high (S1444) or intermediate (S1449, S1463) LukMF′-producing isolates. Only animals infected with S1444 developed severe clinical symptoms. Importantly, LukM was produced in vivo during the course of infection and levels in milk were associated with the severity of mastitis. Altogether, these findings underline the importance of LukMF′ as a virulence factor and support the development of therapeutic approaches targeting LukMF′ to control S. aureus mastitis in cattle. PMID:27886237

  20. Exploring the Pregnant Guinea Pig as a Model for Group B Streptococcus Intrauterine Infection.

    Harrell, Maria I; Burnside, Kellie; Whidbey, Christopher; Vornhagen, Jay; Adams Waldorf, Kristina M; Rajagopal, Lakshmi

    2017-09-01

    Infection of the amniotic cavity remains a major cause of preterm birth, stillbirth, fetal injury and early onset, fulminant infections in newborns. Currently, there are no effective therapies to prevent in utero infection and consequent co-morbidities. This is in part due to the lack of feasible and appropriate animal models to understand mechanisms that lead to in utero infections. Use of mouse and rat models do not fully recapitulate human pregnancy, while pregnant nonhuman primate models are limited by ethical considerations, technical constraints, and cost. Given these limitations, the guinea pig is an attractive animal model for studying pregnancy infections, particularly as the placental structure is quite similar to the human placenta. Here, we describe our studies that explored the pregnant guinea pig as a model to study in utero Group B Streptococci (GBS) infections. We observed that intrauterine inoculation of wild type GBS in pregnant guinea pigs resulted in bacterial invasion and dissemination to the placenta, amniotic fluid and fetal organs. Also, hyperhemolytic GBS such as those lacking the hemolysin repressor CovR/S showed increased dissemination into the amniotic fluid and fetal organs such as the fetal lung and brain. These results are similar to those observed in mouse and non-human primate models of in utero infection, and support use of the guinea pig as a model for studying GBS infections in pregnancy.

  1. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus.

    Lee, Jin-Hyung; Kim, Yong-Guy; Yong Ryu, Shi; Lee, Jintae

    2016-01-14

    Staphylococcal biofilms are problematic and play a critical role in the persistence of chronic infections because of their abilities to tolerate antimicrobial agents. Thus, the inhibitions of biofilm formation and/or toxin production are viewed as alternative means of controlling Staphylococcus aureus infections. Here, the antibiofilm activities of 560 purified phytochemicals were examined. Alizarin at 10 μg/ml was found to efficiently inhibit biofilm formation by three S. aureus strains and a Staphylococcus epidermidis strain. In addition, two other anthraquinones purpurin and quinalizarin were found to have antibiofilm activity. Binding of Ca(2+) by alizarin decreased S. aureus biofilm formation and a calcium-specific chelating agent suppressed the effect of calcium. These three anthraquinones also markedly inhibited the hemolytic activity of S. aureus, and in-line with their antibiofilm activities, increased cell aggregation. A chemical structure-activity relationship study revealed that two hydroxyl units at the C-1 and C-2 positions of anthraquinone play important roles in antibiofilm and anti-hemolytic activities. Transcriptional analyses showed that alizarin repressed the α-hemolysin hla gene, biofilm-related genes (psmα, rbf, and spa), and modulated the expressions of cid/lrg genes (the holin/antiholin system). These findings suggest anthraquinones, especially alizarin, are potentially useful for controlling biofilm formation and the virulence of S. aureus.

  2. Phenol-Soluble Modulin Toxins of Staphylococcus haemolyticus

    Fei Da

    2017-05-01

    Full Text Available Coagulase-negative staphylococci (CoNS are important nosocomial pathogens and the leading cause of sepsis. The second most frequently implicated species, after Staphylococcus epidermidis, is Staphylococcus haemolyticus. However, we have a significant lack of knowledge about what causes virulence of S. haemolyticus, as virulence factors of this pathogen have remained virtually unexplored. In contrast to the aggressive pathogen Staphylococcus aureus, toxin production has traditionally not been associated with CoNS. Recent findings have suggested that phenol-soluble modulins (PSMs, amphipathic peptide toxins with broad cytolytic activity, are widespread in staphylococci, but there has been no systematic assessment of PSM production in CoNS other than S. epidermidis. Here, we identified, purified, and characterized PSMs of S. haemolyticus. We found three PSMs of the β-type, which correspond to peptides that before were described to have anti-gonococcal activity. We also detected an α-type PSM that has not previously been described. Furthermore, we confirmed that S. haemolyticus does not produce a δ-toxin, as results from genome sequencing had indicated. All four S. haemolyticus PSMs had strong pro-inflammatory activity, promoting neutrophil chemotaxis. Notably, we identified in particular the novel α-type PSM, S. haemolyticus PSMα, as a potent hemolysin and leukocidin. For the first time, our study describes toxins of this important staphylococcal pathogen with the potential to have a significant impact on virulence during blood infection and sepsis.

  3. Detecting single-abasic residues within a DNA strand immobilized in a biological nanopore using an integrated CMOS sensor.

    Kim, Jungsuk; Maitra, Raj D; Pedrotti, Ken; Dunbar, William B

    2013-02-01

    In this paper, we demonstrate the application of a novel current-measuring sensor (CMS) customized for nanopore applications. The low-noise CMS is fabricated in a 0.35μm CMOS process and is implemented in experiments involving DNA captured in an α-hemolysin (α-HL) nanopore. Specifically, the CMS is used to build a current amplitude map as a function of varying positions of a single-abasic residue within a homopolymer cytosine single-stranded DNA (ssDNA) that is captured and held in the pore. Each ssDNA is immobilized using a biotin-streptavidin linkage. Five different DNA templates are measured and compared: one all-cytosine ssDNA, and four with a single-abasic residue substitution that resides in or near the ~1.5nm aperture of the α-HL channel when the strand is immobilized. The CMOS CMS is shown to resolves the ~5Å displacements of the abasic residue within the varying templates. The demonstration represents an advance in application-specific circuitry that is optimized for small-footprint nanopore applications, including genomic sequencing.

  4. Surveillance of Virulence Markers and Antibiotic Resistance of Shiga toxin Producing E.coli O157:H7 Strains from Meats Purchase in Shiraz

    Mohammad Kargar

    2011-09-01

    Full Text Available Background: Shiga toxin Producing Escherichia coli O157:H7 is a common pathogen in cattle, which occasional causes some human disease. This bacterium can potentially contaminate meat and clinical cases of E.coli O157:H7 infections are often associated with consumption of undercooked ground beef. Methods: In this cross-sectional study 122 samples of ground meat were collected and after enrichment in specific culture media and evaluation sorbitol fermentation and their β-glucoronidase activity, the isolation of E.coli O157:H7 strains have been confirmed with specific antisera. Then virulence genes verotoxin, intimin and hemolysin with multiplex PCR and antibiotic resistance strains with disk diffusion method have been tested. Results: Out of specimens that have been supplied, 119 sorbitol negative colonies isolated which 3 strains O157:H7 (2.45% with specific antisera confirmed. Out of considered virulence genes, in two cases of these samples (1.64% the stx1 and eaeA genes were seen and also 2 isolated bacteria had resistance to erythromycin, tetracycline, ampicillin, penicillin, clindamicin, cefixime, novobiocin, and gentamicin antibiotics. Conclusion: As this organism lives in intestines of healthy cattle, preventive measures on cattle farms and during meat processing are necessary.

  5. Inhibition of Virulence Gene Expression in Staphylococcus aureus by Novel Depsipeptides from a Marine Photobacterium

    Lone Gram

    2011-12-01

    Full Text Available During a global research expedition, more than five hundred marine bacterial strains capable of inhibiting the growth of pathogenic bacteria were collected. The purpose of the present study was to determine if these marine bacteria are also a source of compounds that interfere with the agr quorum sensing system that controls virulence gene expression in Staphylococcus aureus. Using a gene reporter fusion bioassay, we recorded agr interference as enhanced expression of spa, encoding Protein A, concomitantly with reduced expression of hla, encoding α-hemolysin, and rnaIII encoding RNAIII, the effector molecule of agr. A marine Photobacterium produced compounds interfering with agr in S. aureus strain 8325-4, and bioassay-guided fractionation of crude extracts led to the isolation of two novel cyclodepsipeptides, designated solonamide A and B. Northern blot analysis confirmed the agr interfering activity of pure solonamides in both S. aureus strain 8325-4 and the highly virulent, community-acquired strain USA300 (CA-MRSA. To our knowledge, this is the first report of inhibitors of the agr system by a marine bacterium.

  6. [Microbiological characterization of non-O1 Vibrio cholerae isolated in Cuba].

    Bravo Fariñas, Laura; Fernández, Anabel; Ramírez, María M; Llop, Alina; Martínez, Gerardo; Hernández, Raquel I; Cabrera, Luis E; Morier, Luis; Fraga, Jorge; Núñez, Fidel A; Aguila, Adalberto

    2007-01-01

    The study of 422 non-01 Vibrio cholerae strains from nine provinces, 9 of them isolated from a water-borne disease outbreak, was performed. All the strains exhibited antimicrobial susceptibility and virulence factors. The nine strains from the outbreak were subjected to a DNA macrorestriction study based on the pulsed field electrophoresis technique. For the first time in Cuba and the Caribbean. The circulation of atypical non-01 V cholerae strains (resistent to vibriostatic compound 0129 and trimethoprim/sulfamethoxazole). The behavior of antimicrobial susceptibility evinced for the first time the circulation of two different resistence patterns in Cuba (ampicilline, trimethoprim/ sulfamethoxazole, sulfonamide and tetracycline, trimethoprim/ sulfamethoxazole, sulfonamide). The frequency of trimethoprim/ sulfamethoxazole-resistent strains was similar during the whole period of study. However, resistance to ampicilline decreased whereas resistance to tetracycline increased. The main found virulence factors were gelatinase, hemolysine, elastase and adherence to Hep-2 cells. On the other hand, the outbreak strains showed higher percentages than the others due to the presence of heat-liable toxin and fimbriae. The results of the molecular and epidemiological studies allowed giving a speedy and accurate response that explained the etiology of the first food-borne disease outbreak.

  7. Screening Antibacterial Agent from Crude Extract of Marine-Derived Fungi Associated with Soft Corals against MDR-Staphylococcus haemolyticus

    Sabdaningsih, A.; Cristianawati, O.; Sibero, M. T.; Nuryadi, H.; Radjasa, O. K.; Sabdono, A.; Trianto, A.

    2017-02-01

    Multidrug resistant Staphylococcus haemolyticus is a Gram-positive bacteria and member of coagulase negative staphylococci (CoNS) which has the highest level of antimicrobial resistance. This nosocomial pathogen due to skin or soft tissue infections, bacteremia, septicemia, peritonitis, otitis media, meningitis and urinary tract infections. The ability to produce enterotoxins, hemolysins, biofilm, and cytotoxins could be an important characteristic for the successful of infection. Marine-derived fungi have potency as a continuous supply of bioactive compound. The aim of this research was screening antibacterial agent from crude extracts of marine-derived fungi associated with soft corals against MDR-S. haemolyticus. Among 23 isolates of marine-derived fungi isolated from 7 soft corals, there were 4 isolates active against MDR-S. haemolyticus. The screening was conducted by using agar plug diffusion method. Isolate PPSC-27-A4 had the highest antibacterial activity with diameter 23±9,6 mm. The crude extract from this isolate had been confirmed to antibacterial susceptibility test and it had the highest antibacterial activity in 12.2 mm with concentration of 300μg/ml from mycelia extract. PPSC-27-A4 had been characterized in molecular, based on the sequence analysis of 18S rRNA, PPSC-27-A4 isolate was identified as Trichoderma longibrachiatum.

  8. Protein Nanopore-Based Discrimination between Selected Neutral Amino Acids from Polypeptides.

    Asandei, Alina; Rossini, Aldo E; Chinappi, Mauro; Park, Yoonkyung; Luchian, Tudor

    2017-12-19

    Nanopore probing of biological polymers has the potential to achieve single-molecule sequencing at low cost, high throughput, portability, and minimal sample preparation and apparatus. In this article, we explore the possibility of discrimination between neutral amino acid residues from the primary structure of 30 amino acids long, engineered peptides, through the analysis of single-molecule ionic current fluctuations accompanying their slowed-down translocation across the wild type α-hemolysin (α-HL) nanopore, and molecular dynamics simulations. We found that the transient presence inside the α-HL of alanine or tryptophan residues from the primary sequence of engineered peptides results in distinct features of the ionic current fluctuation pattern associated with the peptide reversibly blocking the nanopore. We propose that α-HL sensitivity to the molecular exclusion at the most constricted region mediates ionic current blockade events correlated with the volumes that are occluded by at least three alanine or tryptophan residues, and provides the specificity needed to discriminate between groups of neutral amino acids. Further, we find that the pattern of current fluctuations depends on the orientation of the threaded amino acid residues, suggestive of a conformational anisotropy of the ensemble of conformations of the peptide on the restricted nanopore region, related to its relative axial orientation inside the nanopore.

  9. Greek rheumatoid arthritis patients have elevated levels of antibodies against antigens from Proteus mirabilis.

    Christopoulos, Georgios; Christopoulou, V; Routsias, J G; Babionitakis, A; Antoniadis, C; Vaiopoulos, G

    2017-03-01

    Patients with rheumatoid arthritis (RA) from different ethnic groups present elevated levels of antibodies against Proteus mirabilis. This finding implicates P. mirabilis in the development of RA. The aim of this study was to investigate the importance of P. mirabilis in the etiopathogenesis of RA in Greek RA patients. In this study, 63 patients with RA and 38 healthy controls were included. Class-specific antibodies IgM, IgG, and IgA against three human cross-reactive and non-cross-reactive synthetic peptides from P. mirabilis-hemolysin (HpmB), urease C (UreC), and urease F (UreF)-were performed in all subjects, using the ELISA method. RA patients had elevated levels of IgM, IgG, and IgA antibodies against HpmB and UreC Proteus peptide which are significantly different compared to healthy controls: p = 0.005, p Proteus peptide-which are non-cross-reactive with human tissue antigens-were observed and their significant difference compared to healthy controls (p = 0.007, p mirabilis antigenic epitopes, such as in North European populations, albeit Greek RA patients presenting the cross-reaction antigen in a low percentage. These results indicate that P. mirabilis through the molecular mimicry mechanism leads to inflammation and damage of the joints in RA.

  10. Cell envelope of Bordetella pertussis: immunological and biochemical analyses and characterization of a major outer membrane porin protein

    Armstrong, S.K.

    1986-01-01

    Surface molecules of Bordetella pertussis which may be important in metabolism, pathogenesis, and immunity to whooping cough were examined using cell fractionation and 125 I cell surface labeling. Antigenic envelope proteins were examined by immunofluorescence microscopy and Western blotting procedures using monoclonal antibodies and convalescent sera. A surface protein with a high M/sub r/, missing in a mutant lacking the filamentous hemagglutinin, was identified in virulent Bordetella pertussis but was absent in virulent B. pertussis strains. At least three envelope proteins were found only in virulent B. pertussis strains and were absent or diminished in avirulent and most phenotypically modulated strains. Transposon-induced mutants unable to produce hemolysin, dermonecrotic toxin, pertussis toxin, and filamentous hemagglutinin also lacked these three envelope proteins, confirming that virulence-associated envelope proteins were genetically regulated with other virulence-associated traits. Two dimensional gel electrophoresis revealed at least five heat modifiable proteins which migrated as higher or lower M/sub r/ moieties if solubilized at 25 0 C instead of 100 0 C

  11. Insights into the Evolution of Host Association through the Isolation and Characterization of a Novel Human Periodontal Pathobiont, Desulfobulbus oralis

    Cross, Karissa L.; Chirania, Payal; Xiong, Weili; Elkins, James G.; Giannone, Richard J.; Griffen, Ann L.; Hettich, Robert L.; Joshi, Snehal S.; Mokrzan, Elaine M.; Martin, Roman K.; Leys, Eugene J.

    2018-01-01

    ABSTRACT The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis, the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis, a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease. PMID:29535201

  12. The importance of adding EDTA for the nanopore analysis of proteins.

    Krasniqi, Besnik; Lee, Jeremy S

    2012-06-01

    Nanopore analysis is a promising technique for studying the conformation of proteins and protein/protein interactions. Two proteins (bacterial thioredoxin and maltose binding protein) were subjected to nanopore analysis with α-hemolysin. Two types of events were observed; bumping events with a blockade current less than -40 pA and intercalation events with blockade currents between -40 pA and -100 pA. In potassium phosphate buffer, pH 7.8, both proteins gave intercalation events but the frequency of these events was significantly reduced in TRIS or HEPES buffers especially in the presence of 0.01 mM divalent metal ions. The frequency of events was restored by the addition of EDTA. For maltose binding protein, the frequency of intercalation events was also decreased in the presence of maltose but not lactose to which it does not bind. It is proposed that the events with large blockade currents represent transient intercalation of a loop or end of the protein into the pore and that divalent metal ions inhibit this process. The results demonstrate that the choice of buffer and the effects of metal ion contamination are important considerations in nanopore analysis.

  13. Toxigenic profile of methicillin-sensitive and resistant Staphylococcus aureus isolated from special groups.

    de Souza, Camila Sena Martins; Fortaleza, Carlos Magno Castelo Branco; Witzel, Claudia Lima; Silveira, Mônica; Bonesso, Mariana Fávero; Marques, Silvio Alencar; Cunha, Maria de Lourdes Ribeiro de Souza da

    2016-02-16

    Staphylococcus aureus is characterized by its pathogenicity and high prevalence, causing disease in both healthy and immunocompromised individuals due to its easy dissemination. This fact is aggravated by the widespread dissemination of S. aureus carrying toxigenic genes. The objective of this study was to determine the toxigenic profile of methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) in patients with purulent skin and/or soft tissue infections seen at the Dermatology Department of the University Hospital of the Botucatu Medical School, asymptomatic adults older than 60 years living in nursing homes, and prison inmates of the Avaré Detention Center. PCR was used for the detection of the mecA gene, enterotoxin genes (sea, seb, and sec), exfoliative toxins A and B (eta and etb), toxic shock syndrome toxin 1 (tst), panton-valentine leukocidin (lukS-PV and lukF-PV), and alpha- and delta-hemolysins or cytotoxins (hla and hld). The results showed a significant prevalence of toxigenic genes among S. aureus isolates from asymptomatic individuals, with the observation of a higher prevalence of cytotoxin genes. However, the panton-valentine leukocidin gene was only detected in MSSA isolated from patients with skin infections and the tst gene was exclusively found in MSSA isolated from prison inmates. The present study demonstrated a significant prevalence of toxigenic genes in MSSA and MRSA strains isolated from asymptomatic S. aureus carriers. There was a higher prevalence of cytotoxin genes.

  14. Synergism between endotoxin priming and exotoxin challenge in provoking severe vascular leakage in rabbit lungs.

    Schütte, H; Rosseau, S; Czymek, R; Ermert, L; Walmrath, D; Krämer, H J; Seeger, W; Grimminger, F

    1997-09-01

    Lipopolysaccharides (LPS) of gram-negative bacteria prime rabbit lungs for enhanced thromboxane-mediated vasoconstriction upon subsequent challenge with the exotoxin Escherichia coli hemolysin (HlyA) (Walmrath et al. J. Exp. Med. 1994;180:1437-1443). We investigated the impact of endotoxin priming and subsequent HlyA challenge on lung vascular permeability while maintaining constancy of capillary pressure. Rabbit lungs were perfused in a pressure-controlled mode in the presence of the thromboxane receptor antagonist BM 13.505, with continuous monitoring of flow. Perfusion for 180 min with 10 ng/ml LPS did not provoke vasoconstriction or alteration of capillary filtration coefficient (Kfc) values. HlyA (0.021 hemolytic units/ml) induced thromboxane release and a transient decrease in perfusion flow in the absence of significant changes in Kfc. Similar results were obtained when LPS and HlyA were coapplied simultaneously. However, when the HlyA challenge was undertaken after 180 min of LPS priming, a manifold increase in Kfc values was noted, with concomitant severe lung edema formation, although capillary pressure remained unchanged. Thus, endotoxin primes the lung vasculature to respond with a severe increase in vascular permeability to a subsequent low-dose application of HlyA. Such synergism between endotoxin priming and exotoxin challenge in provoking lung vascular leakage may contribute to the pathogenesis of respiratory failure in sepsis and severe lung infection.

  15. The Proteome of Biologically Active Membrane Vesicles from Piscirickettsia salmonis LF-89 Type Strain Identifies Plasmid-Encoded Putative Toxins.

    Oliver, Cristian; Hernández, Mauricio A; Tandberg, Julia I; Valenzuela, Karla N; Lagos, Leidy X; Haro, Ronie E; Sánchez, Patricio; Ruiz, Pamela A; Sanhueza-Oyarzún, Constanza; Cortés, Marcos A; Villar, María T; Artigues, Antonio; Winther-Larsen, Hanne C; Avendaño-Herrera, Ruben; Yáñez, Alejandro J

    2017-01-01

    Piscirickettsia salmonis is the predominant bacterial pathogen affecting the Chilean salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant fish disease. Membrane vesicles (MVs) released by P. salmonis deliver several virulence factors to host cells. To improve on existing knowledge for the pathogenicity-associated functions of P. salmonis MVs, we studied the proteome of purified MVs from the P. salmonis LF-89 type strain using multidimensional protein identification technology. Initially, the cytotoxicity of different MV concentration purified from P. salmonis LF-89 was confirmed in an in vivo adult zebrafish infection model. The cumulative mortality of zebrafish injected with MVs showed a dose-dependent pattern. Analyses identified 452 proteins of different subcellular origins; most of them were associated with the cytoplasmic compartment and were mainly related to key functions for pathogen survival. Interestingly, previously unidentified putative virulence-related proteins were identified in P. salmonis MVs, such as outer membrane porin F and hemolysin. Additionally, five amino acid sequences corresponding to the Bordetella pertussis toxin subunit 1 and two amino acid sequences corresponding to the heat-labile enterotoxin alpha chain of Escherichia coli were located in the P. salmonis MV proteome. Curiously, these putative toxins were located in a plasmid region of P. salmonis LF-89. Based on the identified proteins, we propose that the protein composition of P. salmonis LF-89 MVs could reflect total protein characteristics of this P. salmonis type strain.

  16. The prevalence of virulence genes of E. coli strains isolated from children with urinary tract infection

    Farshad, Shohreh; Emamghorashi, Fatemeh

    2009-01-01

    To evaluate the prevalence of virulence genes in E. coli strains isolated from urine samples of children with urinary tract infection(UTI) and their correlation with clinical data, we isolated E. coli strains from urine samples of children with UTI during the period of August 2005 - August 2006 and studied them for the presence of the virulence genes by PCR. A total of 96 E. coli strains were isolated. The prevalence of genes, pyelonephritis associated pili (pap genes), S-family adhesions (sfa gene), hemolysin (hly gene), and cytotoxic nercotizing factor type 1 (cnf-1-1 gene) among the isolated strains was 27.1%, 14.6%, 13.5% and 22.9 %, respectively. Pyelonephritis was more prevalent in the cases with positive virulence genes. The results showed significant correlation between age of the patient and the presence of the genes (P< 0.05). Cnf-1 gene was significantly more common in samples of patients with abnormal finding on the ultrasound of kidneys (P0.049). Our study demonstrated higher prevalence of pyelonephritis in the presence of E. coli virulence genes. Detection of the genes in urine samples may help in the management of UTI. (author)

  17. Virulence factors and antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis in Rio de Janeiro Fatores de virulência e resistência antimicrobiana em Staphylococcus aureus isolados de mastite bovina no Rio de Janeiro

    Shana M.O. Coelho

    2009-05-01

    Full Text Available The study was conducted to characterize pheno-genotypically the virulence factors and resistance pattern of Staphylococcus aureus isolates from milk samples of cows with subclinical mastitis. All hemolytic isolates presented beta-hemolysin, and 38% of the non-hemolytic isolates were able to express hemolysins in the presence of a beta-hemolytic strain. The amplification of the coa-gene displayed four different size polymorphisms with about 400 bp, 600 bp, 700 bp and 900 bp. The spaA gene that encodes the IgG-binding region of protein A revealed sizes of 700 bp and 900 bp. The amplification of region X from spaA yielded a single amplicon for each isolate with the prevalent amplicon size being of 180 bp. Amplification of sae gene yielded an amplicon size of 920 bp in 71% of the isolates. Antibiotic resistance pattern revealed that 42% S. aureus were susceptible to all antimicrobials tested. Seven different antibiotic patterns were observed. Our results indicated that 47% and 25% of S. aureus strains exhibited resistance to penicillin and oxacillin respectively. All oxacillin-resistant isolates were mecA-positive.O presente estudo foi conduzido com o objetivo de caracterizar feno-genotipicamente os fatores de virulência e perfil de resistência aos antibióticos de Staphylococcus aureus isolados de amostras de leite de vacas com mastite clínica e subclínica. Em todos os isolados hemolíticos foi detectada a presença de beta hemolisina e 38% dos não-hemolíticos produziram hemolisinas na presença de cepa beta-hemolítica. A amplificação do gene coa apresentou quatro tipos polimórficos distintos com aproximadamente 400 bp, 600 bp, 700 bp e 900 bp. O gene spaA que codifica a região de ligação da proteína A à IgG apresentou bandas de 700 bp e 900 bp. A amplificação do gene que codifica a região X revelou um único amplicon para cada isolado sendo o tamanho prevalente o de 250pb. A amplificação do gene sae resultou em amplicons com

  18. Identification of immunogenic Salmonella enterica serotype Typhi antigens expressed in chronic biliary carriers of S. Typhi in Kathmandu, Nepal.

    Richelle C Charles

    Full Text Available Salmonella enterica serotype Typhi can colonize and persist in the biliary tract of infected individuals, resulting in a state of asymptomatic chronic carriage. Chronic carriers may act as persistent reservoirs of infection within a community and may introduce infection to susceptible individuals and new communities. Little is known about the interaction between the host and pathogen in the biliary tract of chronic carriers, and there is currently no reliable diagnostic assay to identify asymptomatic S. Typhi carriage.To study host-pathogen interactions in the biliary tract during S. Typhi carriage, we applied an immunoscreening technique called in vivo-induced antigen technology (IVIAT, to identify potential biomarkers unique to carriers. IVIAT identifies humorally immunogenic bacterial antigens expressed uniquely in the in vivo environment, and we hypothesized that S. Typhi surviving in the biliary tract of humans may express a distinct antigenic profile. Thirteen S. Typhi antigens that were immunoreactive in carriers, but not in healthy individuals from a typhoid endemic area, were identified. The identified antigens included a number of putative membrane proteins, lipoproteins, and hemolysin-related proteins. YncE (STY1479, an uncharacterized protein with an ATP-binding motif, gave prominent responses in our screen. The response to YncE in patients whose biliary tract contained S. Typhi was compared to responses in patients whose biliary tract did not contain S. Typhi, patients with acute typhoid fever, and healthy controls residing in a typhoid endemic area. Seven of 10 (70% chronic carriers, 0 of 8 bile culture-negative controls (0%, 0 of 8 healthy Bangladeshis (0%, and 1 of 8 (12.5% Bangladeshis with acute typhoid fever had detectable anti-YncE IgG in blood. IgA responses were also present.Further evaluation of YncE and other antigens identified by IVIAT could lead to the development of improved diagnostic assays to identify asymptomatic

  19. A software platform for continuum modeling of ion channels based on unstructured mesh

    Tu, B; Bai, S Y; Xie, Y; Zhang, L B; Lu, B Z; Chen, M X

    2014-01-01

    Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson–Nernst–Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels. (paper)

  20. Role of Rot in bacterial autolysis regulation of Staphylococcus aureus NCTC8325.

    Chu, Xinmin; Xia, Rui; He, Nianan; Fang, Yuting

    2013-09-01

    Autolysis is an important process in cell wall turnover in Staphylococcus aureus, performed by several peptidoglycan hydrolases or so-called autolysins and controlled by many regulators. Rot is a global regulator that regulates numerous virulence genes, including genes encoding lipase, hemolysins, proteases and genes related to cell surface adhesion. The aim of our study was to determine whether Rot has the ability to regulate autolysis. We compared Triton-X-100-induced autolysis of S. aureus NCTC8325 and its rot knock-out mutant. We found that the rot mutant showed increased autolysis rates. By examining the transcript level of several autolysins and some known regulators responsible for regulating autolysis using real-time RT-PCR assays, we found that transcription of two autolysins (lytM, lytN) and one regulatory operon (lrgAB) was changed in the rot mutant. An in vitro approach was undertaken to determine which of these genes are directly controlled by Rot. Rot proteins were overproduced in Escherichia coli and purified. Gel mobility shift DNA binding assays were used and showed that in-vitro-purified Rot can directly bind to the promoter region of lytM, lytN, lrgA and lytS. We also tested biofilm formation of the rot mutant, and it showed enhancement in biofilm formation. Taken together, our results reveal that Rot affects autolysis by directly regulating autolysins LytM and LytN, and, via a regulatory system, LrgAB. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. Sigma E regulators control hemolytic activity and virulence in a shrimp pathogenic Vibrio harveyi.

    Pimonsri Rattanama

    Full Text Available Members of the genus Vibrio are important marine and aquaculture pathogens. Hemolytic activity has been identified as a virulence factor in many pathogenic vibrios including V. cholerae, V. parahaemolyticus, V. alginolyticus, V. harveyi and V. vulnificus. We have used transposon mutagenesis to identify genes involved in the hemolytic activity of shrimp-pathogenic V. harveyi strain PSU3316. Out of 1,764 mutants screened, five mutants showed reduced hemolytic activity on sheep blood agar and exhibited virulence attenuation in shrimp (Litopenaeus vannamei. Mutants were identified by comparing transposon junction sequences to a draft of assembly of the PSU3316 genome. Surprisingly none of the disrupted open reading frames or gene neighborhoods contained genes annotated as hemolysins. The gene encoding RseB, a negative regulator of the sigma factor (σ(E, was interrupted in 2 out of 5 transposon mutants, in addition, the transcription factor CytR, a threonine synthetase, and an efflux-associated cytoplasmic protein were also identified. Knockout mutations introduced into the rpoE operon at the rseB gene exhibited low hemolytic activity in sheep blood agar, and were 3-to 7-fold attenuated for colonization in shrimp. Comparison of whole cell extracted proteins in the rseB mutant (PSU4030 to the wild-type by 2-D gel electrophoresis revealed 6 differentially expressed proteins, including two down-regulated porins (OmpC-like and OmpN and an upregulated protease (DegQ which have been associated with σ(E in other organisms. Our study is the first report linking hemolytic activity to the σ(E regulators in pathogenic Vibrio species and suggests expression of this virulence-linked phenotype is governed by multiple regulatory pathways within the V. harveyi.

  2. Oral delivery of the Sj23LHD-GST antigen by Salmonella typhimurium type III secretion system protects against Schistosoma japonicum infection in mice.

    Guo Chen

    2011-09-01

    Full Text Available BACKGROUND: Schistosomiasis japonica is a zoonotic parasitic disease and oral vaccine delivery system would be benefit for prevention of this disease. Although attenuated salmonella has been used as an antigen expression vector for oral vaccine development, the membrane-bound vacuoles in which bacteria reside hinders the presentation of expressed heterologous antigens to the major histocompatibility complex (MHC molecules. The present work used an attenuated Salmonella typhimurium strain VNP20009 to secretory expression of Sj23LHDGST bivalent antigen from Schistosoma japonicum and tested the protective efficacy against S. japonicum infection in orally immunized mice. METHODOLOGY/PRINCIPAL FINDINGS: Promoters (nirB or pagC were used to express the antigen (Sj23LHDGST and the Salmonella type III or α-hemolysin secretion system was employed to secrete it. The immunoblotting analysis and fluorescent microscopy revealed that the antigen was effectively expressed and delivered to the cytosol of macrophages in vitro. Among recombinant vaccine strains, an engineered VNP20009 which expressed the antigen by nirB promoter and secreted it through type III secretion system (nirB-sopE(1-104-Sj23LHD-GST efficiently protected against S. japonicum infection in a mouse model. This strain elicited a predominantly IgG(2a antibody response and a markedly increase in the production of IL-12 and IFN-γ. The flow cytometric analysis demonstrated that this strain caused T cell activation as evidenced by significantly increased expression of CD44 and CD69. CONCLUSION/SIGNIFICANCE: Oral delivery of antigen by nirB-driven Salmonella typhimurium type III secretion system is a novel, safe, inexpensive, efficient and convenient approach for schistosome vaccine development.

  3. An Evaluation of the Quality of the Desinfection Process in Inanimated Surfaces of Basic Health Units by Biomarkers Research

    Ana Paula Bandeira Fucci

    2013-06-01

    Full Text Available Infection Related Health Care – IRHC may occur by exogenous transmission through the contamination of contaminated surfaces. This study aimed at verifying the quality of the process of disinfecting inanimate surfaces of Basic Health Units – BHU in a northeastern city in São Paulo state, through the presence of biomarkers, Staphylococcus aureus and Escherichia coli. We evaluated 7 UBS in random times and days, covering the following areas: dressing-room doorknob, drinking fountains and faucets, office desk, reception counter. Sterile swabs were rubbed on a 20 cm2 surface and transported to the laboratory in Stuart medium to the Clinical Analyses Didactic Laboratory of UNIFEV. The samples were cultured on Blood agar and MacConkey agar at 35 ± 1oC for 24 hours in aerobic and microaerophilic jar, respectively. Staphylococcus aureus was identified by the production of hemolysin, catalase and coagulase. Escherichia coli was identified using the biochemical tests: TSI, citrate, urease, indole, lysine, ornithine and arginine. Of the 105 samples analyzed, 6.66% of the samples were positive for Staphylococcus aureus and Escherichia coli to 2.85%. The Areas which showed the presence of biomarkers were: the reception booth, booth pharmacy, handles of the dressing room, dressing room faucet and drinking fountain. These results corroborate other studies that show that inanimate surfaces are important sources of contamination in the healthcare environment, contributing to crosscontamination and, consequently, to the increase of infection to the patient who is subjected to procedures in this environment. Within this context, government, by means of public health policies, is responsible for the training of health professionals, contributing to the promotion and prevention of public health

  4. Geometrical principles of homomeric β-barrels and β-helices: Application to modeling amyloid protofilaments.

    Hayward, Steven; Milner-White, E James

    2017-10-01

    Examples of homomeric β-helices and β-barrels have recently emerged. Here we generalize the theory for the shear number in β-barrels to encompass β-helices and homomeric structures. We introduce the concept of the "β-strip," the set of parallel or antiparallel neighboring strands, from which the whole helix can be generated giving it n-fold rotational symmetry. In this context, the shear number is interpreted as the sum around the helix of the fixed register shift between neighboring identical β-strips. Using this approach, we have derived relationships between helical width, pitch, angle between strand direction and helical axis, mass per length, register shift, and number of strands. The validity and unifying power of the method is demonstrated with known structures including α-hemolysin, T4 phage spike, cylindrin, and the HET-s(218-289) prion. From reported dimensions measured by X-ray fiber diffraction on amyloid fibrils, the relationships can be used to predict the register shift and the number of strands within amyloid protofilaments. This was used to construct models of transthyretin and Alzheimer β(40) amyloid protofilaments that comprise a single strip of in-register β-strands folded into a "β-strip helix." Results suggest both stabilization of an individual β-strip helix and growth by addition of further β-strip helices can involve the same pair of sequence segments associating with β-sheet hydrogen bonding at the same register shift. This process would be aided by a repeat sequence. Hence, understanding how the register shift (as the distance between repeat sequences) relates to helical dimensions will be useful for nanotube design. © 2017 Wiley Periodicals, Inc.

  5. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea.

    Gargee Dhar Purkayastha

    Full Text Available The aim of the present study is to evaluate plant growth promoting and biocontrol efficacy of a Serratia marcescens strain ETR17 isolated from tea rhizosphere for the effective management of root rot disease in tea. Isolated bacterial culture ETR17 showed significant level of in vitro antagonism against nine different foliar and root pathogens of tea. The phenotypic and molecular characterization of ETR17 revealed the identity of the bacterium as Serratia marcescens. The bacterium was found to produce several hydrolytic enzymes like chitinase, protease, lipase, cellulase and plant growth promoting metabolites like IAA and siderophore. Scanning electron microscopic studies on the interaction zone between pathogen and antagonistic bacterial isolate revealed severe deformities in the fungal mycelia. Spectral analyses (LC-ESI-MS, UV-VIS spectrophotometry and HPLC and TLC indicated the presence of the antibiotics pyrrolnitrin and prodigiosin in the extracellular bacterial culture extracts. Biofilm formation by ETR17 on polystyrene surface was also observed. In vivo application of talc-based formulations prepared with the isolate ETR17 in tea plantlets under green house conditions revealed effective reduction of root-rot disease as well as plant growth promotion to a considerable extent. Viability studies with the ETR17 talc formulation showed the survivability of the isolate up to six months at room temperature. The sustenance of ETR17 (concentration of 8-9x108 cfu g-1 in the soil after the application of talc formulation was recorded by ELISA. Safety studies revealed that ETR17 did not produce hemolysin as observed in pathogenic Serratia strains. The biocontrol strain reported in this study can be used for field application in order to minimize the use of chemical fungicides for disease control in tea gardens.

  6. Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes.

    Rodolfo García-Contreras

    2008-06-01

    Full Text Available We discovered previously that the small Escherichia coli proteins Hha (hemolysin expression modulating protein and the adjacent, poorly-characterized YbaJ are important for biofilm formation; however, their roles have been nebulous. Biofilms are intricate communities in which cell signaling often converts single cells into primitive tissues. Here we show that Hha decreases biofilm formation dramatically by repressing the transcription of rare codon tRNAs which serves to inhibit fimbriae production and by repressing to some extent transcription of fimbrial genes fimA and ihfA. In vivo binding studies show Hha binds to the rare codon tRNAs argU, ileX, ileY, and proL and to two prophage clusters D1P12 and CP4-57. Real-time PCR corroborated that Hha represses argU and proL, and Hha type I fimbriae repression is abolished by the addition of extra copies of argU, ileY, and proL. The repression of transcription of rare codon tRNAs by Hha also leads to cell lysis and biofilm dispersal due to activation of prophage lytic genes rzpD, yfjZ, appY, and alpA and due to induction of ClpP/ClpX proteases which activate toxins by degrading antitoxins. YbaJ serves to mediate the toxicity of Hha. Hence, we have identified that a single protein (Hha can control biofilm formation by limiting fimbriae production as well as by controlling cell death. The mechanism used by Hha is the control of translation via the availability of rare codon tRNAs which reduces fimbriae production and activates prophage lytic genes. Therefore, Hha acts as a toxin in conjunction with co-transcribed YbaJ (TomB that attenuates Hha toxicity.

  7. SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans.

    Senpuku, Hidenobu; Yonezawa, Hideo; Yoneda, Saori; Suzuki, Itaru; Nagasawa, Ryo; Narisawa, Naoki

    2018-02-01

    The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence-stimulating peptide. Eight competence-stimulating peptide-dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran-dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild-type. GbpC is known to be involved in the dextran-dependent aggregation of S. mutans. An SMU.940-gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran-dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran-dependent aggregation and biofilm formation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Virulence Genes and Antibiotic Susceptibilities of Uropathogenic E. coli Strains.

    Uzun, Cengiz; Oncül, Oral; Gümüş, Defne; Alan, Servet; Dayioğlu, Nurten; Küçüker, Mine Anğ

    2015-01-01

    The aim of this study is to detect the presence of and possible relation between virulence genes and antibiotic resistance in E. coli strains isolated from patients with acute, uncomplicated urinary tract infections (UTI). 62 E. coli strains isolated from patients with acute, uncomplicated urinary tract infections (50 strains isolated from acute uncomplicated cystitis cases (AUC); 12 strains from acute uncomplicated pyelonephritis cases (AUP)) were screened for virulence genes [pap (pyelonephritis-associated pili), sfa/foc (S and F1C fimbriae), afa (afimbrial adhesins), hly (hemolysin), cnf1 (cytotoxic necrotizing factor), aer (aerobactin), PAI (pathogenicity island marker), iroN (catecholate siderophore receptor), ompT (outer membrane protein T), usp (uropathogenic specific protein)] by PCR and for antimicrobial resistance by disk diffusion method according to CLSI criteria. It was found that 56 strains (90.3%) carried at least one virulence gene. The most common virulence genes were ompT (79%), aer (51.6%), PAI (51.6%) and usp (56.5%). 60% of the strains were resistant to at least one antibiotic. The highest resistance rates were against ampicillin (79%) and co-trimoxazole (41.9%). Fifty percent of the E. coli strains (31 strains) were found to be multiple resistant. Eight (12.9%) out of 62 strains were found to be ESBL positive. Statistically significant relationships were found between the absence of usp and AMP - SXT resistance, iroN and OFX - CIP resistance, PAI and SXT resistance, cnf1 and AMP resistance, and a significant relationship was also found between the presence of the afa and OFX resistance. No difference between E. coli strains isolated from two different clinical presentations was found in terms of virulence genes and antibiotic susceptibility.

  9. Phylogenetic grouping and pathotypic comparison of urine and fecal Escherichia coli isolates from children with urinary tract infection

    Masoumeh Navidinia

    2014-06-01

    Full Text Available The aim of this study was to investigate the phylogenetic background and to assess hlyD (involved in the secretion of haemolysin A and intll (encoding a class 1 integrase in Escherichia coli isolates derived from urinary and fecal specimens. A total of 200 E. coli isolates was collected from patients presenting with urinary tract infection (UTI during September 2009 to September 2010 and screened for hlyD and intll genes by polymerase chain reaction (PCR. Phylogenetic analysis showed that E. coli is composed of four main phylogenetic groups (A, B1, B2 and D and that uropathogenic E. coli (UPEC isolates mainly belong to groups B2 (54% and D (34% whereas group A (44% and D (26% are predominant among commensal E. coli isolates. In this study, hlyD was present in 26% of UPEC and 2% of commensal E. coli isolates. However, hemolytic activity was detected for 42% of UPEC and 6% of commensal E. coli isolates (p < 0.05. intll gene was more frequently expressed in UPEC (24% in comparison with commensal E. coli isolates (12%. Resistance to aztreonam, co-trimoxazole and cefpodoxime were frequently found among UPEC isolates whereas commensal E. coli isolates were commonly resistant to co-trimoxazole, nalidixic acid and cefotaxime. Concluding, a considerable difference between UPEC and commensal E. coli isolates was observed regarding their phylogenetic groups, presence of class 1 integron and hlyD gene, hemolysin activity and resistance pattern. The detection of class 1 integrons and hlyD gene was higher among UPEC compared with commensal E. coli isolates. These findings may contribute for a better understanding of the factors involved in the pathogenesis of UPEC.

  10. Ecology of Vibrio vulnificus in estuarine waters of eastern North Carolina.

    Pfeffer, Courtney S; Hite, M Frances; Oliver, James D

    2003-06-01

    While several studies on the ecology of Vibrio vulnificus in Gulf Coast environments have been reported, there is little information on the distribution of this pathogen in East Coast waters. Thus, we conducted a multiyear study on the ecology of V. vulnificus in estuarine waters of the eastern United States, employing extensive multiple regression analyses to reveal the major environmental factors controlling the presence of this pathogen, and of Vibrio spp., in these environments. Monthly field samplings were conducted between July 2000 and April 2002 at six different estuarine sites along the eastern coast of North Carolina. At each site, water samples were taken and nine physicochemical parameters were measured. V. vulnificus isolates, along with estuarine bacteria, Vibrio spp., Escherichia coli organisms, and total coliforms, were enumerated in samples from each site by using selective media. During the last 6 months of the study, sediment samples were also analyzed for the presence of vibrios, including V. vulnificus. Isolates were confirmed as V. vulnificus by using hemolysin gene PCR or colony hybridization. V. vulnificus was isolated only when water temperatures were between 15 and 27 degrees C, and its presence correlated with water temperature and dissolved oxygen and vibrio levels. Levels of V. vulnificus in sediments were low, and no evidence for an overwintering in this environment was found. Multiple regression analysis indicated that vibrio levels were controlled primarily by temperature, turbidity, and levels of dissolved oxygen, estuarine bacteria, and coliforms. Water temperature accounted for most of the variability in the concentrations of both V. vulnificus (47%) and Vibrio spp. (48%).

  11. Isolation of pathogenic Escherichia coli from buffalo meat sold in Parbhani city, Maharashtra, India

    M. S. Vaidya

    2013-10-01

    Full Text Available Aim: Isolation, characterization, in-vitro pathogenicity and antibiogram study of E.coli from buffalo meat sold in Parbhani city. Materials and Methods: Meat samples were collected from buffalo immediately after slaughter. Isolation, identification and enumeration of E. coli were done by following standard methods and protocols. Hemolysin test and Congo red binding assay were used to study in-vitro pathogenicity of E. coli isolates. Disc diffusion method was used to study antibiogram of pathogenic E. coli isolates. Results: A total of 250 buffalo meat samples were collected and processed. A total of 22 (8.80 percent E. coli isolates were isolated with average differential count of 1.231 ± 0.136 log cfu/g on EMB agar. All the E. coli isolates were confirmed by 10 Grams staining, biochemical reactions and sugar fermentation and motility tests. A total of 9 (3.6 percent E. coli isolates were found to be pathogenic by in-vitro pathogenicity testing. Antibiogram studies of pathogenic E. coli isolates showed that all 9 isolates were sensitive to gentamycin (20 ± 1.49 mm while 7 isolate showed resistance to enrofloxacin (18.22 ± 3.58 mm and tetracycline (11.44 ± 2.04 mm. Conclusion: Buffalo meat sold in Parbhani city is an important source of E. coli infection to human population. A total of 9 pathogenic E. coli were isolated from buffalo meat immediately after slaughter. All isolates were characterized and confirmed pathogenic by in-vitro pathogenicity tests. Antibiogram studies of all isolates revealed sensitivity to gentamicin and resistance to tetracycline and enrofloxacin. [Vet World 2013; 6(5.000: 277-279

  12. Toxin production and antibiotic resistances in Escherichia coli isolated from bathing areas along the coastline of the Oslo fjord.

    Charnock, Colin; Nordlie, Anne-Lise; Hjeltnes, Bjarne

    2014-09-01

    The presence of enterovirulent and/or antibiotic resistant strains of Escherichia coli in recreational bathing waters would represent a clear health issue. In total, 144 E. coli isolated from 26 beaches along the inner Oslo fjord were examined for virulence determinants and resistance to clinically important antibiotics. No isolates possessed the genetic determinants associated with enterotoxigenic strains and none showed the prototypic sorbitol negative, O157:H7 phenotype. A small number (∼1 %) produced alpha-hemolysin. Occurrences and patterns of antibiotic resistances were similar to those of E. coli isolated previously from environmental samples. In total, 6 % of the strains showed one or more clinically relevant resistances and 1.4 % were multi-drug resistant. Microarray analyses suggested that the resistance determinants were generally associated with mobile genetic elements. Resistant strains were not clonally related, and were, furthermore not concentrated at one or a few beach sites. This suggests that these strains are entering the waters at a low rate but in a widespread manner. The study demonstrates that resistant E. coli are present in coastal bathing waters where they can come into contact with bathers, and that the resistance determinants are potentially transferable. Some of the resistances registered in the study are to important antibiotics used in human medicine such as fluoroquinolones. The spread of antibiotic resistant genes, from the clinical setting to the environment, has clear implications with respect to the current management of bacterial infections and the long term value of antimicrobial therapy. The present study is the first of its kind in Norway.

  13. Antibiofilm activity of Vetiveria zizanioides root extract against methicillin-resistant Staphylococcus aureus.

    Kannappan, Arunachalam; Gowrishankar, Shanmugaraj; Srinivasan, Ramanathan; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2017-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a leading human pathogen responsible for causing chronic clinical manifestation worldwide. In addition to antibiotic resistance genes viz. mecA and vanA, biofilm formation plays a prominent role in the pathogenicity of S. aureus by enhancing its resistance to existing antibiotics. Considering the role of folk medicinal plants in the betterment of human health from the waves of multidrug resistant bacterial infections, the present study was intended to explore the effect of Vetiveria zizanioides root on the biofilm formation of MRSA and its clinical counterparts. V. zizanioides root extract (VREX) showed a concentration-dependent reduction in biofilm formation without hampering the cellular viability of the tested strains. Micrographs of scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) portrayed the devastating impact of VREX on biofilm formation. In addition to antibiofilm activity, VREX suppresses the production of biofilm related phenotypes such as exopolysaccharide, slime and α-hemolysin toxin. Furthermore, variation in FT-IR spectra evidenced the difference in cellular factors of untreated and VREX treated samples. Result of mature biofilm disruption assay and down regulation of genes like fnbA, fnbB, clfA suggested that VREX targets these adhesin genes responsible for initial adherence. GC-MS analysis revealed the presence of sesquiterpenes as a major constituent in VREX. Thus, the data of present study strengthen the ethnobotanical value of V. zizanioides and concludes that VREX contain bioactive molecules that have beneficial effect over the biofilm formation of MRSA and its clinical isolates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Comparison of Candida species isolated from children with and without early childhood caries: A descriptive cross-sectional study

    M S Beena

    2017-01-01

    Full Text Available Background: Early childhood caries (ECC is characterized by the presence of one or more decayed, missing (due to caries, or filled teeth surfaces in any primary tooth, in a child below 6 years of age. Although ECC is primarily associated with high levels of maternal Streptococcus mutans, there has been an increased interest in finding the relationship between oral fungal flora and dental caries. Objective: The aim of the study is to identify and characterize the Candida species and to compare the candidal isolates in children with ECC and without ECC. Materials and Methods: The study was conducted on children below 6 years of age, who were categorized into ECC and non-ECC groups of fifty children each. Samples were collected using sterile cotton swabs and were inoculated on Sabouraud's Dextrose Agar and incubated at 37°C for 24 h. Candidal colonies were isolated, species identified and virulence factors tested for both ECC and non-ECC groups. Results: The candidal carriage among the ECC children was found to be 84%, which was significantly higher than the non-ECC group of 24%. Candida albicans and non-albicans Candida (NAC were isolated in both ECC and non-ECC groups. Phospholipase production was significantly high in ECC group whereas hemolysin production and germ tube formation showed no significant difference between the two groups. Conclusion: A significant correlation was found between the presence of Candida and ECC. NAC also plays an important role in the development of ECC. The virulence factors such as phospholipase may be responsible for the pathogenicity of Candida in the development of ECC.

  15. Characterization of Pediococcus acidilactici strains isolated from rainbow trout (Oncorhynchus mykiss) feed and larvae: safety, DNA fingerprinting, and bacteriocinogenicity.

    Araújo, Carlos; Muñoz-Atienza, Estefanía; Poeta, Patrícia; Igrejas, Gilberto; Hernández, Pablo E; Herranz, Carmen; Cintas, Luis M

    2016-05-03

    The use of lactic acid bacteria (LAB) as probiotics constitutes an alternative or complementary strategy to chemotherapy and vaccination for disease control in aquaculture. The objectives of this work were (1) the in vitro safety assessment of 8 Pediococcus acidilactici strains isolated from rainbow trout (Oncorhynchus mykiss, Walbaum) feed and larvae; (2) the evaluation of their genetic relatedness; (3) the study of their antimicrobial/bacteriocin activity against fish pathogens; and (4) the biochemical and genetic characterization of the bacteriocin produced by the strain displaying the greatest antimicrobial activity. Concerning the safety assessment, none of the pediococci showed antibiotic resistance nor produced hemolysin or gelatinase, degraded gastric mucin, or deconjugated bile salts. Four strains (50%) produced tyramine or putrescine, but the corresponding genes were not amplified by PCR. Enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) fingerprinting allowed clustering of the pediococci into 2 well-defined groups (68% similarity). From the 8 pediococci displaying direct antimicrobial activity against at least 3 out of 9 fish pathogens, 6 strains (75%) were identified as bacteriocin producers. The bacteriocin produced by P. acidilactici L-14 was purified, and mass spectrometry and DNA sequencing revealed its identity to pediocin PA-1 (PedPA-1). Altogether, our results allowed the identification of 4 (50%) putatively safe pediococci, including 2 bacteriocinogenic strains. ERIC-PCR fingerprinting was a valuable tool for genetic profiling of P. acidilactici strains. This work reports for the first time the characterization of a PedPA-1-producing P. acidilactici strain isolated from an aquatic environment (rainbow trout larvae), which shows interesting properties related to its potential use as a probiotic in aquaculture.

  16. Isolation of Shiga toxin-producing Escherichia coli harboring variant Shiga toxin genes from seafood

    Sreepriya Prakasan

    2018-03-01

    Full Text Available Background and Aim: Shiga toxin-producing Escherichia coli (STEC are important pathogens of global significance. STEC are responsible for numerous food-borne outbreaks worldwide and their presence in food is a potential health hazard. The objective of the present study was to determine the incidence of STEC in fresh seafood in Mumbai, India, and to characterize STEC with respect to their virulence determinants. Materials and Methods: A total of 368 E. coli were isolated from 39 fresh seafood samples (18 finfish and 21 shellfish using culture-based methods. The isolates were screened by polymerase chain reaction (PCR for the genes commonly associated with STEC. The variant Shiga toxin genes were confirmed by Southern blotting and hybridization followed by DNA sequencing. Results: One or more Shiga toxins genes were detected in 61 isolates. Of 39 samples analyzed, 10 (25.64% samples harbored STEC. Other virulence genes, namely, eaeA (coding for an intimin and hlyA (hemolysin A were detected in 43 and 15 seafood isolates, respectively. The variant stx1 genes from 6 isolates were sequenced, five of which were found to be stx1d variants, while one sequence varied considerably from known stx1 sequences. Southern hybridization and DNA sequence analysis suggested putative Shiga toxin variant genes (stx2 in at least 3 other isolates. Conclusion: The results of this study showed the occurrence of STEC in seafood harboring one or more Shiga toxin genes. The detection of STEC by PCR may be hampered due to the presence of variant genes such as the stx1d in STEC. This is the first report of stx1d gene in STEC isolated from Indian seafood.

  17. Phenotypic and molecular characterization of antimicrobial resistance and virulence factors in Pseudomonas aeruginosa clinical isolates from Recife, State of Pernambuco, Brazil

    Paula Regina Luna de Araújo Jácome

    2012-12-01

    Full Text Available INTRODUCTION: The emergence of carbapenem resistance mechanisms in Pseudomonas aeruginosa has been outstanding due to the wide spectrum of antimicrobial degradation of these bacteria, reducing of therapeutic options. METHODS: Sixty-one clinical strains of P. aeruginosa isolated from five public hospitals in Recife, Pernambuco, Brazil, were examined between 2006 and 2010, aiming of evaluating the profiles of virulence, resistance to antimicrobials, presence of metallo-β-lactamase (MBL genes, and clonal relationship among isolates. RESULTS: A high percentage of virulence factors (34.4% mucoid colonies; 70.5% pyocyanin; 93.4% gelatinase positives; and 72.1% hemolysin positive and a high percentage of antimicrobial resistance rates (4.9% pan-resistant and 54.1% multi-drug resistant isolates were observed. Among the 29 isolates resistant to imipenem and/or ceftazidime, 44.8% (13/29 were MBL producers by phenotypic evaluation, and of these, 46.2% (6/13 were positive for the blaSPM-1 gene. The blaIMP and blaVIM genes were not detected. The molecular typing revealed 21 molecular profiles of which seven were detected in distinct hospitals and periods. Among the six positive blaSPM-1 isolates, three presented the same clonal profile and were from the same hospital, whereas the other three presented different clonal profiles. CONCLUSIONS: These results revealed that P. aeruginosa is able to accumulate different resistance and virulence factors, making the treatment of infections difficult. The identification of blaSPM-1 genes and the dissemination of clones in different hospitals, indicate the need for stricter application of infection control measures in hospitals in Recife, Brazil, aiming at reducing costs and damages caused by P. aeruginosa infections.

  18. Single-Molecule Titration in a Protein Nanoreactor Reveals the Protonation/Deprotonation Mechanism of a C:C Mismatch in DNA.

    Ren, Hang; Cheyne, Cameron G; Fleming, Aaron M; Burrows, Cynthia J; White, Henry S

    2018-04-18

    Measurement of single-molecule reactions can elucidate microscopic mechanisms that are often hidden from ensemble analysis. Herein, we report the acid-base titration of a single DNA duplex confined within the wild-type α-hemolysin (α-HL) nanopore for up to 3 h, while monitoring the ionic current through the nanopore. Modulation between two states in the current-time trace for duplexes containing the C:C mismatch in proximity to the latch constriction of α-HL is attributed to the base flipping of the C:C mismatch. As the pH is lowered, the rate for the C:C mismatch to flip from the intra-helical state to the extra-helical state ( k intra-extra ) decreases, while the rate for base flipping from the extra-helical state to the intra-helical state ( k extra-intra ) remains unchanged. Both k intra-extra and k extra-intra are on the order of 1 × 10 -2 s -1 to 1 × 10 -1 s -1 and remain stable over the time scale of the measurement (several hours). Analysis of the pH-dependent kinetics of base flipping using a hidden Markov kinetic model demonstrates that protonation/deprotonation occurs while the base pair is in the intra-helical state. We also demonstrate that the rate of protonation is limited by transport of H + into the α-HL nanopore. Single-molecule kinetic isotope experiments exhibit a large kinetic isotope effect (KIE) for k intra-extra ( k H / k D ≈ 5) but a limited KIE for k extra-intra ( k H / k D ≈ 1.3), supporting our model. Our experiments correspond to the longest single-molecule measurements performed using a nanopore, and demonstrate its application in interrogating mechanisms of single-molecule reactions in confined geometries.

  19. Virulence factors and antibiotic susceptibility in enterococci isolated from oral mucosal and deep infections

    Gunnar Dahlén

    2012-02-01

    Full Text Available This study evaluates the presence of virulence factors and antibiotic susceptibility among enterococcal isolates from oral mucosal and deep infections. Forty-three enterococcal strains from oral mucosal lesions and 18 from deep infections were isolated from 830 samples that were sent during 2 years to Oral Microbiology, University of Gothenburg, for analysis. The 61 strains were identified by 16S rDNA, and characterized by the presence of the virulence genes efa A (endocarditis gene, gel E (gelatinase gene, ace (collagen binding antigen gene, asa (aggregation substance gene, cyl A (cytolysin activator gene and esp (surface adhesin gene, tested for the production of bacteriocins and presence of plasmids. MIC determination was performed using the E-test method against the most commonly used antibiotics in dentistry, for example, penicillin V, amoxicillin and clindamycin. Vancomycin was included in order to detect vancomycin-resistant enterococci (VRE strains. Sixty strains were identified as Enterococcus faecalis and one as Enterococcus faecium. All the virulence genes were detected in more than 93.3% (efa A and esp of the E. faecalis strains, while the presence of phenotypic characteristics was much lower (gelatinase 10% and hemolysin 16.7%. Forty-six strains produced bacteriocins and one to six plasmids were detected in half of the isolates. Enterococcal strains from oral infections had a high virulence capacity, showed bacteriocin production and had numerous plasmids. They were generally susceptible to ampicillins but were resistant to clindamycin, commonly used in dentistry, and no VRE-strain was found.

  20. Incidence, Antimicrobial Susceptibility, and Toxin Genes Possession Screening of Staphylococcus aureus in Retail Chicken Livers and Gizzards

    Lubna S. Abdalrahman

    2015-04-01

    Full Text Available Few recent outbreaks in Europe and the US involving Campylobacter and Salmonella were linked to the consumption of chicken livers. Studies investigating Staphylococcus aureus in chicken livers and gizzards are very limited. The objectives of this study were to determine the prevalence, antimicrobial resistance, and virulence of S. aureus and MRSA (Methicillin-Resistant Staphylococcus aureus in retail chicken livers and gizzards in Tulsa, Oklahoma. In this study, 156 chicken livers and 39 chicken gizzards samples of two brands were collected. While one of the brands showed very low prevalence of 1% (1/100 for S. aureus in chicken livers and gizzards, the second brand showed prevalence of 37% (31/95. No MRSA was detected since none harbored the mecA or mecC gene. Eighty seven S. aureus isolates from livers and 28 from gizzards were screened for antimicrobial resistance to 16 antimicrobials and the possession of 18 toxin genes. Resistance to most of the antimicrobials screened including cefoxitin and oxacillin was higher in the chicken gizzards isolates. While the prevalence of enterotoxin genes seg and sei was higher in the gizzards isolates, the prevalence of hemolysin genes hla, hlb, and hld was higher in the livers ones. The lucocidin genes lukE-lukD was equally prevalent in chicken livers and gizzards isolates. Using spa typing, a subset of the recovered isolates showed that they are not known to be livestock associated and, hence, may be of a human origin. In conclusion, this study stresses the importance of thorough cooking of chicken livers and gizzards since it might contain multidrug resistant enterotoxigenic S. aureus. To our knowledge this is the first study to specifically investigate the prevalence of S. aureus in chicken livers and gizzards in the US.

  1. RpfF-dependent regulon of Xylella fastidiosa.

    Wang, Nian; Li, Jian-Liang; Lindow, Steven E

    2012-11-01

    ABSTRACT Xylella fastidiosa regulates traits important to both virulence of grape as well as colonization of sharpshooter vectors via its production of a fatty acid signal molecule known as DSF whose production is dependent on rpfF. Although X. fastidiosa rpfF mutants exhibit increased virulence to plants, they are unable to be spread from plant to plant by insect vectors. To gain more insight into the traits that contribute to these processes, a whole-genome Agilent DNA microarray for this species was developed and used to determine the RpfF-dependent regulon by transcriptional profiling. In total, 446 protein coding genes whose expression was significantly different between the wild type and an rpfF mutant (false discovery rate genes were downregulated in the rpfF mutant compared with the wild-type strain whereas 281 genes were over-expressed. RpfF function was required for regulation of 11 regulatory and σ factors, including rpfE, yybA, PD1177, glnB, rpfG, PD0954, PD0199, PD2050, colR, rpoH, and rpoD. In general, RpfF is required for regulation of genes involved in attachment and biofilm formation, enhancing expression of hemagglutinin genes hxfA and hxfB, and suppressing most type IV pili and gum genes. A large number of other RpfF-dependent genes that might contribute to virulence or insect colonization were also identified such as those encoding hemolysin and colicin V, as well as genes with unknown functions.

  2. Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant.

    Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-04-01

    We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal.

  3. Staphylococcus aureus hyaluronidase is a CodY-regulated virulence factor.

    Ibberson, Carolyn B; Jones, Crystal L; Singh, Shweta; Wise, Matthew C; Hart, Mark E; Zurawski, Daniel V; Horswill, Alexander R

    2014-10-01

    Staphylococcus aureus is a Gram-positive pathogen that causes a diverse range of bacterial infections. Invasive S. aureus strains secrete an extensive arsenal of hemolysins, immunomodulators, and exoenzymes to cause disease. Our studies have focused on the secreted enzyme hyaluronidase (HysA), which cleaves the hyaluronic acid polymer at the β-1,4 glycosidic bond. In the study described in this report, we have investigated the regulation and contribution of this enzyme to S. aureus pathogenesis. Using the Nebraska Transposon Mutant Library (NTML), we identified eight insertions that modulate extracellular levels of HysA activity. Insertions in the sigB operon, as well as in genes encoding the global regulators SarA and CodY, significantly increased HysA protein levels and activity. By altering the availability of branched-chain amino acids, we further demonstrated CodY-dependent repression of HysA activity. Additionally, through mutation of the CodY binding box upstream of hysA, the repression of HysA production was lost, suggesting that CodY is a direct repressor of hysA expression. To determine whether HysA is a virulence factor, a ΔhysA mutant of a community-associated methicillin-resistant S. aureus (CA-MRSA) USA300 strain was constructed and found to be attenuated in a neutropenic, murine model of pulmonary infection. Mice infected with this mutant strain exhibited a 4-log-unit reduction in bacterial burden in their lungs, as well as reduced lung pathology and increased levels of pulmonary hyaluronic acid, compared to mice infected with the wild-type, parent strain. Taken together, these results indicate that S. aureus hyaluronidase is a CodY-regulated virulence factor. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Proteolytic activity and cooperative hemolytic effect of dermatophytes with different species of bacteria

    Pakshir, K; Mohamadi, T; Khodadadi, H; Motamedifar, M; Zomorodian, K; Alipour, S; Motamedi, M

    2016-01-01

    Background and Purpose: Globally, dermatophytes are the most common filamentous group of fungi causing cutaneous mycoses. Dermatophytes were shown to secrete a multitude of enzymes that play a role in their pathogenesis. There is limited data on co-hemolytic (CAMP-like) effect of different bacterial species on dermatophyte species. In this study, we sought to the evaluate exoenzyme activity and co-hemolytic effect of four bacteria on clinical dermatophytes isolated from patients in Shiraz, Iran. Materials and Methods: A total of 84 clinical dermatophyte species were isolated from patients suffering dermatophytosis and identified by conventional methods. Hemolytic activity was evaluated with Columbia 5% sheep blood agar. Proteolytic activity was determined by plate clearance assay method, using gelatin 8% agar. CAMP-like factor was evaluated with four bacteria, namely, S. areus, S. saprophyticus, S. pyogenes, and S. agalactiae. Fisher's exact test was run for statistical analysis. Results: T. mentagrophytes was the most predominant agent (27 [32.1%]) followed by T. verrucosum(20 [23.8%]), T. tonsurans (10 [11.9%]), Microsporum canis (7 [8.3%]), T. rubrum (6 [7.1%]), E. floccosum (6 [7.1%]), M. gypseum (5 [6%]), and T. violaceum (3[3.6%]). The most common clinical area of dermatophytosis was the skin. All the isolates expressed the zone of incomplete alpha hemolysis. All the isolates had CAMP- positive reaction with S. aureus and the other bacteria were CAMP-negative. All the isolates expressed proteolytic activity and no significant differences were noted among diverse genera of dermatophytes and severities of proteolytic activity. Conclusion: This study indicated that hemolysin and proteolytic enzymes potentially play a role in dermatophyte pathogenesis and S. aureus could be considered as a main bacterium for creation of co-hemolytic effect in association with dermatophyte species. PMID:28959790

  5. Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum.

    VieBrock, Lauren; Evans, Sean M; Beyer, Andrea R; Larson, Charles L; Beare, Paul A; Ge, Hong; Singh, Smita; Rodino, Kyle G; Heinzen, Robert A; Richards, Allen L; Carlyon, Jason A

    2014-01-01

    Scrub typhus is an understudied, potentially fatal infection that threatens one billion persons in the Asia-Pacific region. How the causative obligate intracellular bacterium, Orientia tsutsugamushi, facilitates its intracellular survival and pathogenesis is poorly understood. Many intracellular bacterial pathogens utilize the Type 1 (T1SS) or Type 4 secretion system (T4SS) to translocate ankyrin repeat-containing proteins (Anks) that traffic to distinct subcellular locations and modulate host cell processes. The O. tsutsugamushi genome encodes one of the largest known bacterial Ank repertoires plus T1SS and T4SS components. Whether these potential virulence factors are expressed during infection, how the Anks are potentially secreted, and to where they localize in the host cell are not known. We determined that O. tsutsugamushi transcriptionally expresses 20 unique ank genes as well as genes for both T1SS and T4SS during infection of mammalian host cells. Examination of the Anks' C-termini revealed that the majority of them resemble T1SS substrates. Escherichia coli expressing a functional T1SS was able to secrete chimeric hemolysin proteins bearing the C-termini of 19 of 20 O. tsutsugamushi Anks in an HlyBD-dependent manner. Thus, O. tsutsugamushi Anks C-termini are T1SS-compatible. Conversely, Coxiella burnetii could not secrete heterologously expressed Anks in a T4SS-dependent manner. Analysis of the subcellular distribution patterns of 20 ectopically expressed Anks revealed that, while 6 remained cytosolic or trafficked to the nucleus, 14 localized to, and in some cases, altered the morphology of the endoplasmic reticulum. This study identifies O. tsutsugamushi Anks as T1SS substrates and indicates that many display a tropism for the host cell secretory pathway.

  6. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment.

    Smalley, J W; Olczak, T

    2017-02-01

    Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Direct, Specific and Rapid Detection of Staphylococcal Proteins and Exotoxins Using a Multiplex Antibody Microarray.

    Bettina Stieber

    Full Text Available S. aureus is a pathogen in humans and animals that harbors a wide variety of virulence factors and resistance genes. This bacterium can cause a wide range of mild to life-threatening diseases. In the latter case, fast diagnostic procedures are important. In routine diagnostic laboratories, several genotypic and phenotypic methods are available to identify S. aureus strains and determine their resistances. However, there is a demand for multiplex routine diagnostic tests to directly detect staphylococcal toxins and proteins.In this study, an antibody microarray based assay was established and validated for the rapid detection of staphylococcal markers and exotoxins. The following targets were included: staphylococcal protein A, penicillin binding protein 2a, alpha- and beta-hemolysins, Panton Valentine leukocidin, toxic shock syndrome toxin, enterotoxins A and B as well as staphylokinase. All were detected simultaneously within a single experiment, starting from a clonal culture on standard media. The detection of bound proteins was performed using a new fluorescence reading device for microarrays.110 reference strains and clinical isolates were analyzed using this assay, with a DNA microarray for genotypic characterization performed in parallel. The results showed a general high concordance of genotypic and phenotypic data. However, genotypic analysis found the hla gene present in all S. aureus isolates but its expression under given conditions depended on the clonal complex affiliation of the actual isolate.The multiplex antibody assay described herein allowed a rapid and reliable detection of clinically relevant staphylococcal toxins as well as resistance- and species-specific markers.

  8. Regulation of virulence by a two-component system in group B streptococcus.

    Jiang, Sheng-Mei; Cieslewicz, Michael J; Kasper, Dennis L; Wessels, Michael R

    2005-02-01

    Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.

  9. Organizational requirements of the SaeR binding sites for a functional P1 promoter of the sae operon in Staphylococcus aureus.

    Cho, Hoonsik; Jeong, Do-Won; Li, Chunling; Bae, Taeok

    2012-06-01

    In Staphylococcus aureus, the SaeRS two-component system controls the expression of multiple virulence factors. Of the two promoters in the sae operon, P1 is autoinduced and has two binding sites for the response regulator SaeR. In this study, we examined the organizational requirements of the SaeR binding sites in P1 for transcription activation. Mutational studies showed that both binding sites are essential for binding to phosphorylated SaeR (P-SaeR) and transcription activation. When the 21-bp distance between the centers of the two SaeR binding sites was altered to 26 bp, 31 bp, 36 bp, or 41 bp, only the 31-bp mutant retained approximately 40% of the original promoter activity. When the -1-bp spacing (i.e.,1-bp overlap) between the primary SaeR binding site and the -35 promoter region was altered, all mutant P1 promoters failed to initiate transcription; however, when the first nucleotide of the -35 region was changed from A to T, the mutants with 0-bp or 22-bp spacing showed detectable promoter activity. Although P-SaeR was essential for the binding of RNA polymerase to P1, it was not essential for the binding of the enzyme to the alpha-hemolysin promoter. When the nonoptimal spacing between promoter elements in P1 or the coagulase promoter was altered to the optimal spacing of 17 bp, both promoters failed to initiate transcription. These results suggest that SaeR binding sites are under rather strict organizational restrictions and provide clues for understanding the molecular mechanism of sae-mediated transcription activation.

  10. Characterization of Aeromonas hydrophila Wound Pathotypes by Comparative Genomic and Functional Analyses of Virulence Genes

    Grim, Christopher J.; Kozlova, Elena V.; Sha, Jian; Fitts, Eric C.; van Lier, Christina J.; Kirtley, Michelle L.; Joseph, Sandeep J.; Read, Timothy D.; Burd, Eileen M.; Tall, Ben D.; Joseph, Sam W.; Horneman, Amy J.; Chopra, Ashok K.; Shak, Joshua R.

    2013-01-01

    ABSTRACT Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966T, and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966T. The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966T and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. PMID:23611906

  11. Crystal structure and self-interaction of the type VI secretion tail-tube protein from enteroaggregative Escherichia coli.

    Badreddine Douzi

    Full Text Available The type VI secretion system (T6SS is a widespread machine used by bacteria to control their environment and kill or disable bacterial species or eukaryotes through toxin injection. The T6SS comprises a central tube formed of stacked hexamers of hemolysin co-regulated proteins (Hcp and terminated by a trimeric valine-glycine repeat protein G (VgrG component, the cell puncturing device. A contractile tail sheath, formed by the TssB and TssC proteins, surrounds this tube. This syringe-like machine has been compared to an inverted phage, as both Hcp and VgrG share structural homology with tail components of Caudovirales. Here we solved the crystal structure of a tryptophan-substituted double mutant of Hcp1 from enteroaggregative Escherichia coli and compared it to the structures of other Hcps. Interestingly, we observed that the purified Hcp native protein is unable to form tubes in vitro. To better understand the rationale for observation, we measured the affinity of Hcp1 hexamers with themselves by surface plasmon resonance. The intra-hexamer interaction is weak, with a KD value of 7.2 µM. However, by engineering double cysteine mutants at defined positions, tubes of Hcp1 gathering up to 15 stacked hexamers formed in oxidative conditions. These results, together with those available in the literature regarding TssB and TssC, suggest that assembly of the T6SS tube differs significantly from that of Sipho- or Myoviridae.

  12. Functional interaction between Cerebratulus lacteus cytolysin A-III and phospholipase A/sub 2/

    Liu, J.; Blumenthal, K.M.

    1988-05-15

    A study on the interaction between bee venom phospholipase A/sub 2/ and Cerebratulus lacteus cytolysin A-III, a major hemolysin secreted by this organism has been carried out. The hemolytic activity of A-III in phosphate-buffered saline is increased 5-fold in the presence of phospholipase A/sub 2/ from bee venom. Dansylphosphatidylethanolamine (DPE) labeled, phosphatidylcholine-containing liposomes and human erythrocyte membranes were employed to study the interaction between these two proteins. In DPE-liposomes, A-III alone had no effect on DPE fluorescence nor did it enhance either the phospholipase A/sub 2/-dependent fluorescence increase or blue shift in emission maximum, indicating that the cytolysis is not a major phospholipase A/sub 2/-activator. However, when DPE was incorporated into erythrocyte membranes, A-III alone induced a 40% fluorescence increase and a 5 nm blue shift, implying a transient activation of an endogenous phospholipase A/sub 2/. Further studies using synthetic lysophosphatidylcholine and free fatty acids demonstrated that the hemolytic activity of A-III is potentiated by free fatty acids, a product of phospholipid degradation catalyzed by phospholipase A/sub 2/. Subsequent analysis of this phenomenon by gel filtration chromatography, analytical ultracentrifugation, chemical cross-linking, and measurement of (/sup 14/C)oleic acid binding by the cytolysin demonstrated that binding of oleic acid to A-III causes aggregation of the toxin molecules to a tetrameric form which has a higher ..cap alpha..-helix content and a greater activity than the monomer.

  13. Listeriolysin S Is a Streptolysin S-Like Virulence Factor That Targets Exclusively Prokaryotic Cells In Vivo

    Juan J. Quereda

    2017-04-01

    Full Text Available Streptolysin S (SLS-like virulence factors from clinically relevant Gram-positive pathogens have been proposed to behave as potent cytotoxins, playing key roles in tissue infection. Listeriolysin S (LLS is an SLS-like hemolysin/bacteriocin present among Listeria monocytogenes strains responsible for human listeriosis outbreaks. As LLS cytotoxic activity has been associated with virulence, we investigated the LLS-specific contribution to host tissue infection. Surprisingly, we first show that LLS causes only weak red blood cell (RBC hemolysis in vitro and neither confers resistance to phagocytic killing nor favors survival of L. monocytogenes within the blood cells or in the extracellular space (in the plasma. We reveal that LLS does not elicit specific immune responses, is not cytotoxic for eukaryotic cells, and does not impact cell infection by L. monocytogenes. Using in vitro cell infection systems and a murine intravenous infection model, we actually demonstrate that LLS expression is undetectable during infection of cells and murine inner organs. Importantly, upon intravenous animal inoculation, L. monocytogenes is found in the gastrointestinal system, and only in this environment LLS expression is detected in vivo. Finally, we confirm that LLS production is associated with destruction of target bacteria. Our results demonstrate therefore that LLS does not contribute to L. monocytogenes tissue injury and virulence in inner host organs as previously reported. Moreover, we describe that LlsB, a putative posttranslational modification enzyme encoded in the LLS operon, is necessary for murine inner organ colonization. Overall, we demonstrate that LLS is the first SLS-like virulence factor targeting exclusively prokaryotic cells during in vivo infections.

  14. PecS is a global regulator of the symptomatic phase in the phytopathogenic bacterium Erwinia chrysanthemi 3937.

    Hommais, Florence; Oger-Desfeux, Christine; Van Gijsegem, Frédérique; Castang, Sandra; Ligori, Sandrine; Expert, Dominique; Nasser, William; Reverchon, Sylvie

    2008-11-01

    Pathogenicity of the enterobacterium Erwinia chrysanthemi (Dickeya dadantii), the causative agent of soft-rot disease in many plants, is a complex process involving several factors whose production is subject to temporal regulation during infection. PecS is a transcriptional regulator that controls production of various virulence factors. Here, we used microarray analysis to define the PecS regulon and demonstrated that PecS notably regulates a wide range of genes that could be linked to pathogenicity and to a group of genes concerned with evading host defenses. Among the targets are the genes encoding plant cell wall-degrading enzymes and secretion systems and the genes involved in flagellar biosynthesis, biosurfactant production, and the oxidative stress response, as well as genes encoding toxin-like factors such as NipE and hemolysin-coregulated proteins. In vitro experiments demonstrated that PecS interacts with the regulatory regions of five new targets: an oxidative stress response gene (ahpC), a biosurfactant synthesis gene (rhlA), and genes encoding exported proteins related to other plant-associated bacterial proteins (nipE, virK, and avrL). The pecS mutant provokes symptoms more rapidly and with more efficiency than the wild-type strain, indicating that PecS plays a critical role in the switch from the asymptomatic phase to the symptomatic phase. Based on this, we propose that the temporal regulation of the different groups of genes required for the asymptomatic phase and the symptomatic phase is, in part, the result of a gradual modulation of PecS activity triggered during infection in response to changes in environmental conditions emerging from the interaction between both partners.

  15. Effect of the Streptococcus agalactiae Virulence Regulator CovR on the Pathogenesis of Urinary Tract Infection.

    Sullivan, Matthew J; Leclercq, Sophie Y; Ipe, Deepak S; Carey, Alison J; Smith, Joshua P; Voller, Nathan; Cripps, Allan W; Ulett, Glen C

    2017-02-01

    Streptococcus agalactiae can cause urinary tract infection (UTI). The role of the S. agalactiae global virulence regulator, CovR, in UTI pathogenesis is unknown. We used murine and human bladder uroepithelial cell models of UTI and S. agalactiae mutants in covR and related factors, including β-hemolysin/cytolysin (β-h/c), surface-anchored adhesin HvgA, and capsule to study the role of CovR in UTI. We found that covR-deficient serotype III S. agalactiae 874391 was significantly attenuated for colonization in mice and adhesion to uroepithelial cells. Mice infected with covR-deficient S. agalactiae produced less proinflammatory cytokines than those infected with wild-type 874391. Acute cytotoxicity in uroepithelial cells triggered by covR-deficient but not wild-type 874391 was associated with significant caspase 3 activation. Mechanistically, covR mutation significantly altered the expression of several genes in S. agalactiae 874391 that encode key virulence factors, including β-h/c and HvgA, but not capsule. Subsequent mutational analyses revealed that HvgA and capsule, but not the β-h/c, exerted significant effects on colonization of the murine urinary tract in vivo. S. agalactiae CovR promotes bladder infection and inflammation, as well as adhesion to and viability of uroepithelial cells. The pathogenesis of S. agalactiae UTI is complex, multifactorial, and influenced by virulence effects of CovR, HvgA, and capsule. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  16. Transcriptome adaptation of group B Streptococcus to growth in human amniotic fluid.

    Izabela Sitkiewicz

    Full Text Available BACKGROUND: Streptococcus agalactiae (group B Streptococcus is a bacterial pathogen that causes severe intrauterine infections leading to fetal morbidity and mortality. The pathogenesis of GBS infection in this environment is poorly understood, in part because we lack a detailed understanding of the adaptation of this pathogen to growth in amniotic fluid. To address this knowledge deficit, we characterized the transcriptome of GBS grown in human amniotic fluid (AF and compared it with the transcriptome in rich laboratory medium. METHODS: GBS was grown in Todd Hewitt-yeast extract medium and human AF. Bacteria were collected at mid-logarithmic, late-logarithmic and stationary growth phase. We performed global expression microarray analysis using a custom-made Affymetrix GeneChip. The normalized hybridization values derived from three biological replicates at each growth point were obtained. AF/THY transcript ratios representing greater than a 2-fold change and P-value exceeding 0.05 were considered to be statistically significant. PRINCIPAL FINDINGS: We have discovered that GBS significantly remodels its transcriptome in response to exposure to human amniotic fluid. GBS grew rapidly in human AF and did not exhibit a global stress response. The majority of changes in GBS transcripts in AF compared to THY medium were related to genes mediating metabolism of amino acids, carbohydrates, and nucleotides. The majority of the observed changes in transcripts affects genes involved in basic bacterial metabolism and is connected to AF composition and nutritional requirements of the bacterium. Importantly, the response to growth in human AF included significant changes in transcripts of multiple virulence genes such as adhesins, capsule, and hemolysin and IL-8 proteinase what might have consequences for the outcome of host-pathogen interactions. CONCLUSIONS/SIGNIFICANCE: Our work provides extensive new information about how the transcriptome of GBS responds

  17. Ion Channels Induced by Antimicrobial Agents in Model Lipid Membranes are Modulated by Plant Polyphenols Through Surrounding Lipid Media.

    Efimova, Svetlana S; Zakharova, Anastasiia A; Medvedev, Roman Ya; Ostroumova, Olga S

    2018-03-16

    The potential therapeutic applications of plant polyphenols in various neurological, cardiovascular, metabolic and malignant disorders determine the relevance of studying the molecular mechanisms of their action on the cell membranes. Here, the quantitative changes in the physical parameters of model bilayer lipid membranes upon the adsorption of plant polyphenols were evaluated. It was shown that butein and naringenin significantly decreased the intrinsic dipole potential of cholesterol-free and cholesterol-enriched membranes. Cardamonin, 4'-hydroxychalcone, licochalcone A and liquiritigenin demonstrated the average efficiency, while resveratrol did not characterized by the ability to modulate the bilayer electrostatics. At the same time, the tested polyphenols affected melting of phospholipids with saturated acyl chains. The effects were attributed to the lipid disordering and a promotion of the positive curvature stress. According to DSC data and results of measurements of the threshold voltages that cause bilayer breakdown licochalcone A is the most effective agent. Furthermore, the role of the polyphenol induced changes in the electric and elastic properties of lipid host in the regulation of reconstituted ion channels was examined. The ability of the tested polyphenols to decrease the conductance of single ion channels produced by the antifungal cyclic lipopeptide syringomycin E was in agreement with their effects on the dipole potential of the lipid bilayers. The greatest effect of licochalcone A on the steady-state membrane conductance induced by the antifungal polyene macrolide antibiotic nystatin correlated with its greatest efficacy to induce the positive curvature stress. We also found that butein and naringenin bind specifically to a single pore formed by α-hemolysin from Staphylococcus aureus.

  18. Ureaplasma diversum Genome Provides New Insights about the Interaction of the Surface Molecules of This Bacterium with the Host.

    Lucas M Marques

    Full Text Available Whole genome sequencing and analyses of Ureaplasma diversum ATCC 49782 was undertaken as a step towards understanding U. diversum biology and pathogenicity. The complete genome showed 973,501 bp in a single circular chromosome, with 28.2% of G+C content. A total of 782 coding DNA sequences (CDSs, and 6 rRNA and 32 tRNA genes were predicted and annotated. The metabolic pathways are identical to other human ureaplasmas, including the production of ATP via hydrolysis of the urea. Genes related to pathogenicity, such as urease, phospholipase, hemolysin, and a Mycoplasma Ig binding protein (MIB-Mycoplasma Ig protease (MIP system were identified. More interestingly, a large number of genes (n = 40 encoding surface molecules were annotated in the genome (lipoproteins, multiple-banded antigen like protein, membrane nuclease lipoprotein and variable surface antigens lipoprotein. In addition, a gene encoding glycosyltransferase was also found. This enzyme has been associated with the production of capsule in mycoplasmas and ureaplasma. We then sought to detect the presence of a capsule in this organism. A polysaccharide capsule from 11 to 17 nm of U. diversum was observed trough electron microscopy and using specific dyes. This structure contained arabinose, xylose, mannose, galactose and glucose. In order to understand the inflammatory response against these surface molecules, we evaluated the response of murine macrophages J774 against viable and non-viable U. diversum. As with viable bacteria, non-viable bacteria were capable of promoting a significant inflammatory response by activation of Toll like receptor 2 (TLR2, indicating that surface molecules are important for the activation of inflammatory response. Furthermore, a cascade of genes related to the inflammasome pathway of macrophages was also up-regulated during infection with viable organisms when compared to non-infected cells. In conclusion, U. diversum has a typical ureaplasma genome and

  19. Antibiotic Resistance and Virulence Phenotypes of Recent Bacterial Strains Isolated from Urinary Tract Infections in Elderly Patients with Prostatic Disease

    Cristina Delcaru

    2017-05-01

    Full Text Available Acute bacterial prostatitis is one of the frequent complications of urinary tract infection (UTI. From the approximately 10% of men having prostatitis, 7% experience a bacterial prostatitis. The purpose of this study was to investigate the prevalence of uropathogens associated with UTIs in older patients with benign prostatic hyperplasia and to assess their susceptibility to commonly prescribed antibiotics as well as the relationships between microbial virulence and resistance features. Uropathogenic Escherichia coli was found to be the most frequent bacterial strain isolated from patients with benign prostatic hyperplasia, followed by Enterococcus spp., Enterobacter spp., Klebsiella spp., Proteus spp., Pseudomonas aeruginosa, and Serratia marcescens. Increased resistance rates to tetracyclines, quinolones, and sulfonamides were registered. Besides their resistance profiles, the uropathogenic isolates produced various virulence factors with possible implications in the pathogenesis process. The great majority of the uropathogenic isolates revealed a high capacity to adhere to HEp-2 cell monolayer in vitro, mostly exhibiting a localized adherence pattern. Differences in the repertoire of soluble virulence factors that can affect bacterial growth and persistence within the urinary tract were detected. The Gram-negative strains produced pore-forming toxins—such as hemolysins, lecithinases, and lipases—proteases, siderophore-like molecules resulted from the esculin hydrolysis and amylases, while Enterococcus sp. strains were positive only for caseinase and esculin hydrolase. Our study demonstrates that necessity of investigating the etiology and local resistance patterns of uropathogenic organisms, which is crucial for determining appropriate empirical antibiotic treatment in elderly patients with UTI, while establishing correlations between resistance and virulence profiles could provide valuable input about the clinical evolution and

  20. A Novel Role of Listeria monocytogenes Membrane Vesicles in Inhibition of Autophagy and Cell Death.

    Vdovikova, Svitlana; Luhr, Morten; Szalai, Paula; Nygård Skalman, Lars; Francis, Monika K; Lundmark, Richard; Engedal, Nikolai; Johansson, Jörgen; Wai, Sun N

    2017-01-01

    Bacterial membrane vesicle (MV) production has been mainly studied in Gram-negative species. In this study, we show that Listeria monocytogenes , a Gram-positive pathogen that causes the food-borne illness listeriosis, produces MVs both in vitro and in vivo . We found that a major virulence factor, the pore-forming hemolysin listeriolysin O (LLO), is tightly associated with the MVs, where it resides in an oxidized, inactive state. Previous studies have shown that LLO may induce cell death and autophagy. To monitor possible effects of LLO and MVs on autophagy, we performed assays for LC3 lipidation and LDH sequestration as well as analysis by confocal microscopy of HEK293 cells expressing GFP-LC3. The results revealed that MVs alone did not affect autophagy whereas they effectively abrogated autophagy induced by pure LLO or by another pore-forming toxin from Vibrio cholerae , VCC. Moreover, Listeria monocytogenes MVs significantly decreased Torin1-stimulated macroautophagy. In addition, MVs protected against necrosis of HEK293 cells caused by the lytic action of LLO. We explored the mechanisms of LLO-induced autophagy and cell death and demonstrated that the protective effect of MVs involves an inhibition of LLO-induced pore formation resulting in inhibition of autophagy and the lytic action on eukaryotic cells. Further, we determined that these MVs help bacteria to survive inside eukaryotic cells (mouse embryonic fibroblasts). Taken together, these findings suggest that intracellular release of MVs from L. monocytogenes may represent a bacterial strategy to survive inside host cells, by its control of LLO activity and by avoidance of destruction from the autophagy system during infection.

  1. Detection of Alpha-Toxin and Other Virulence Factors in Biofilms of Staphylococcus aureus on Polystyrene and a Human Epidermal Model.

    den Reijer, P M; Haisma, E M; Lemmens-den Toom, N A; Willemse, J; Koning, R I; Koning, R A; Demmers, J A A; Dekkers, D H W; Rijkers, E; El Ghalbzouri, A; Nibbering, P H; van Wamel, W

    2016-01-01

    The ability of Staphylococcus aureus to successfully colonize (a)biotic surfaces may be explained by biofilm formation and the actions of virulence factors. The aim of the present study was to establish the presence of 52 proteins, including virulence factors such as alpha-toxin, during biofilm formation of five different (methicillin resistant) S. aureus strains on Leiden human epidermal models (LEMs) and polystyrene surfaces (PS) using a competitive Luminex-based assay. All five S. aureus strains formed biofilms on PS, whereas only three out of five strains formed biofilms on LEMs. Out of the 52 tested proteins, six functionally diverse proteins (ClfB, glucosaminidase, IsdA, IsaA, SACOL0688 and nuclease) were detected in biofilms of all strains on both PS and LEMs. At the same time, four toxins (alpha-toxin, gamma-hemolysin B and leukocidins D and E), two immune modulators (formyl peptide receptor-like inhibitory protein and Staphylococcal superantigen-like protein 1), and two other proteins (lipase and LytM) were detectable in biofilms by all five S. aureus strains on LEMs, but not on PS. In contrast, fibronectin-binding protein B (FnbpB) was detectable in biofilms by all S. aureus biofilms on PS, but not on LEMs. These data were largely confirmed by the results from proteomic and transcriptomic analyses and in case of alpha-toxin additionally by GFP-reporter technology. Functionally diverse virulence factors of (methicillin-resistant) S. aureus are present during biofilm formation on LEMs and PS. These results could aid in identifying novel targets for future treatment strategies against biofilm-associated infections.

  2. In Vitro Effects of Polyphosphate against Prevotella intermedia in Planktonic Phase and Biofilm.

    Jang, Eun-Young; Kim, Minjung; Noh, Mi Hee; Moon, Ji-Hoi; Lee, Jin-Yong

    2016-02-01

    Polyphosphate (polyP) has gained a wide interest in the food industry due to its potential as a decontaminating agent. In this study, we examined the effect of sodium tripolyphosphate (polyP3; Na5P3O10) against planktonic and biofilm cells of Prevotella intermedia, a major oral pathogen. The MIC of polyP3 against P. intermedia ATCC 49046 determined by agar dilution method was 0.075%, while 0.05% polyP3 was bactericidal against P. intermedia in time-kill analysis performed using liquid medium. A crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that sub-MICs of polyP3 significantly decreased biofilm formation. Under the scanning electron microscope, decreased numbers of P. intermedia cells forming the biofilms were observed when the bacterial cells were incubated with 0.025% or higher concentrations of polyP3. Assessment of biofilm viability with LIVE/DEAD staining and viable cell count methods showed that 0.05% or higher concentrations of polyP3 significantly decreased the viability of the preformed biofilms in a concentration-dependent manner. The zone sizes of alpha-hemolysis formed on horse blood agar produced by P. intermedia were decreased in the presence of polyP3. The expression of the genes encoding hemolysins and the genes of the hemin uptake (hmu) locus was downregulated by polyP3. Collectively, our results show that polyP is an effective antimicrobial agent against P. intermedia in biofilms as well as planktonic phase, interfering with the process of hemin acquisition by the bacterium. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Bovine mastitis outbreak in Japan caused by methicillin-resistant Staphylococcus aureus New York/Japan clone.

    Hata, Eiji

    2016-05-01

    Many methicillin-resistant Staphylococcus aureus (MRSA) strains are multidrug-resistant; consequently, infectious diseases involving MRSA are recognized as troublesome diseases not only in human health care but also in animal health care. A bovine mastitis case caused by MRSA isolates of the New York/Japan clone (NJC), which occurred in Japan in 2005, was monitored in the current study. Isolates of the NJC are typical of hospital-acquired MRSA in Japan. The genetic backgrounds of these strains differ from those of bovine-associated S. aureus, which are typically of clonal complex (CC)97, CC705, and CC133. Moreover, the NJC isolates in this bovine outbreak possessed a β-hemolysin-converting bacteriophage and an immune evasion cluster, as found in the NJC isolates from humans, so it is possible that this clone was introduced into the dairy herd by a human carrier. Most bovine intramammary infections (IMIs) caused by the NJC isolates in our study were asymptomatic, and obvious clinical signs were recognized in only the first 3 infected cows. Of a total of 78 cows, 31 cows were MRSA carriers, and these carrier cows were detected by testing the milk of all lactating cows at 1-month intervals. These S. aureus carrier cows were culled or the infected quarter was dried off and no longer milked. Both IMI and mastitis caused by MRSA were completely eradicated after 5 months. Genotyping data suggested that exchanging of the staphylococcal cassette chromosome mec (the determining factor in methicillin resistance) occurred easily between MRSA and methicillin-sensitive S. aureus in the udders of carrier cows. This case study demonstrates an effective procedure against the spread of MRSA in a dairy herd, and highlights the risk of emergence of new MRSA strains in a dairy herd. © 2016 The Author(s).

  4. Isocitrate dehydrogenase mutation in Vibrio anguillarum results in virulence attenuation and immunoprotection in rainbow trout (Oncorhynchus mykiss).

    Mou, Xiangyu; Spinard, Edward J; Hillman, Shelby L; Nelson, David R

    2017-11-14

    Vibrio anguillarum is an extracellular bacterial pathogen that is a causative agent of vibriosis in finfish and crustaceans with mortality rates ranging from 30% to 100%. Mutations in central metabolism (glycolysis and the TCA cycle) of intracellular pathogens often result in attenuated virulence due to depletion of required metabolic intermediates; however, it was not known whether mutations in central metabolism would affect virulence in an extracellular pathogen such as V. anguillarum. Seven central metabolism mutants were created and characterized with regard to growth in minimal and complex media, expression of virulence genes, and virulence in juvenile rainbow trout (Oncorhynchus mykiss). Only the isocitrate dehydrogenase (icd) mutant was attenuated in virulence against rainbow trout challenged by either intraperitoneal injection or immersion. Further, the icd mutant was shown to be immunoprotective against wild type V. anguillarum infection. There was no significant decrease in the expression of the three hemolysin genes detected by qRT-PCR. Additionally, only the icd mutant exhibited a significantly decreased growth yield in complex media. Growth yield was directly related to the abundance of glutamate. A strain with a restored wild type icd gene was created and shown to restore growth to a wild type cell density in complex media and pathogenicity in rainbow trout. The data strongly suggest that a decreased growth yield, resulting from the inability to synthesize α-ketoglutarate, caused the attenuation despite normal levels of expression of virulence genes. Therefore, the ability of an extracellular pathogen to cause disease is dependent upon the availability of host-supplied nutrients for growth. Additionally, a live vaccine strain could be created from an icd deletion strain.

  5. Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR

    Esbelin Julia

    2012-06-01

    Full Text Available Abstract Background Bacillus cereus is a facultative anaerobe that causes diarrheal disease in humans. Diarrheal syndrome may result from the secretion of various virulence factors including hemolysin BL and nonhemolytic enterotoxin Nhe. Expression of genes encoding Hbl and Nhe is regulated by the two redox systems, ResDE and Fnr, and the virulence regulator PlcR. B. cereus Fnr is a member of the Crp/Fnr family of iron-sulfur (Fe-S proteins. Only its apo-form has so far been studied. A major goal in deciphering the Fnr-dependent regulation of enterotoxin genes is thus to obtain and characterize holoFnr. Results Fnr has been subjected to in vitro Fe-S cluster reconstitution under anoxic conditions. UV-visible and EPR spectroscopic analyses together with the chemical estimation of the iron content indicated that Fnr binds one [4Fe-4S]2+ cluster per monomer. Atmospheric O2 causes disassembly of the Fe-S cluster, which exhibited a half-life of 15 min in air. Holo- and apoFnr have similar affinities for the nhe and hbl promoter regions, while holoFnr has a higher affinity for fnr promoter region than apoFnr. Both the apo- and holo-form of Fnr interact with ResD and PlcR to form a ternary complex. Conclusions Overall, this work shows that incorporation of the [4Fe-4S]2+ cluster is not required for DNA binding of Fnr to promoter regions of hbl and nhe enterotoxin genes or for the formation of a ternary complex with ResD and PlcR. This points to some new unusual properties of Fnr that may have physiological relevance in the redox regulation of enterotoxin gene regulation.

  6. Staphylococcus aureus shifts towards commensalism in response to Corynebacterium species

    Matthew M Ramsey

    2016-08-01

    Full Text Available Staphylococcus aureus–human interactions result in a continuum of outcomes from commensalism to pathogenesis. S. aureus is a clinically important pathogen that asymptomatically colonizes ~25% of humans as a member of the nostril and skin microbiota, where it resides with other bacteria including commensal Corynebacterium species. Commensal Corynebacterium spp. are also positively correlated with S. aureus in chronic polymicrobial diabetic foot infections, distinct from acute monomicrobial S. aureus infections. Recent work by our lab and others indicates that microbe-microbe interactions between S. aureus and human skin/nasal commensals, including Corynebacterium species, affect S. aureus behavior and fitness. Thus, we hypothesized that S. aureus interactions with Corynebacterium spp. diminish S. aureus virulence. We tested this by assaying for changes in S. aureus gene expression during in vitro mono- versus coculture with Corynebacterium striatum, a common skin and nasal commensal. We observed a broad shift in S. aureus gene transcription during in vitro growth with C. striatum, including increased transcription of genes known to exhibit increased expression during human nasal colonization and decreased transcription of virulence genes. S. aureus uses several regulatory pathways to transition between commensal and pathogenic states. One of these, the quorum signal accessory gene regulator (agr system, was strongly inhibited in response to Corynebacterium spp. Phenotypically, S. aureus exposed to C. striatum exhibited increased adhesion to epithelial cells, reflecting a commensal state, and decreased hemolysin activity, reflecting an attenuation of virulence. Consistent with this, S. aureus displayed diminished fitness in experimental in vivo coinfection with C. striatum when compared to monoinfection. These data support a model in which S. aureus shifts from virulence towards a commensal state when exposed to commensal Corynebacterium species.

  7. The RNA Chaperone Hfq Is Involved in Stress Tolerance and Virulence in Uropathogenic Proteus mirabilis

    Wang, Min-Cheng; Liaw, Shwu-Jen

    2014-01-01

    Hfq is a bacterial RNA chaperone involved in the riboregulation of diverse genes via small noncoding RNAs. Here, we show that Hfq is critical for the uropathogenic Proteus mirabilis to effectively colonize the bladder and kidneys in a murine urinary tract infection (UTI) model and to establish burned wound infection of the rats. In this regard, we found the hfq mutant induced higher IL-8 and MIF levels of uroepithelial cells and displayed reduced intra-macrophage survival. The loss of hfq affected bacterial abilities to handle H2O2 and osmotic pressures and to grow at 50°C. Relative to wild-type, the hfq mutant had reduced motility, fewer flagella and less hemolysin expression and was less prone to form biofilm and to adhere to and invade uroepithelial cells. The MR/P fimbrial operon was almost switched to the off phase in the hfq mutant. In addition, we found the hfq mutant exhibited an altered outer membrane profile and had higher RpoE expression, which indicates the hfq mutant may encounter increased envelope stress. With the notion of envelope disturbance in the hfq mutant, we found increased membrane permeability and antibiotic susceptibilities in the hfq mutant. Finally, we showed that Hfq positively regulated the RpoS level and tolerance to H2O2 in the stationary phase seemed largely mediated through the Hfq-dependent RpoS expression. Together, our data indicate that Hfq plays a critical role in P. mirabilis to establish UTIs by modulating stress responses, surface structures and virulence factors. This study suggests Hfq may serve as a scaffold molecule for development of novel anti-P. mirabilis drugs and P. mirabilis hfq mutant is a vaccine candidate for preventing UTIs. PMID:24454905

  8. Involvement of polyphosphate kinase in virulence and stress tolerance of uropathogenic Proteus mirabilis.

    Peng, Liang; Jiang, Qiao; Pan, Jia-Yun; Deng, Cong; Yu, Jing-Yi; Wu, Xiao-Man; Huang, Sheng-He; Deng, Xiao-Yan

    2016-04-01

    Proteus mirabilis (P. mirabilis), a gram-negative enteric bacterium, frequently causes urinary tract infections. Many virulence factors of uropathogenic P. mirabilis have been identified, including urease, flagella, hemolysin and fimbriae. However, the functions of polyphosphate kinase (PPK), which are related to the pathogenicity of many bacteria, remain entirely unknown in P. mirabilis. In this study, a ppk gene encoding the PPK insertional mutant in P. mirabilis strain HI4320 was constructed, and its biological functions were examined. The results of survival studies demonstrated that the ppk mutant was deficient in resistance to oxidative, hyperosmotic and heat stress. The swarming and biofilm formation abilities of P. mirabilis were also attenuated after the ppk interruption. In vitro and in vivo experiments suggested that ppk was required for P. mirabilis to invade the bladder. The negative phenotypes of the ppk mutant could be restored by ppk gene complementation. Furthermore, two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry were used to analyze the proteomes of the wild-type strain and the ppk mutant. Compared with the wild-type strain, seven proteins including TonB-dependent receptor, universal stress protein G, major mannose-resistant/Proteus-like fimbrial protein (MR/P fimbriae), heat shock protein, flagellar capping protein, putative membrane protein and multidrug efflux protein were down-regulated, and four proteins including exported peptidase, repressor protein for FtsI, FKBP-type peptidyl-prolyl cis-trans isomerase and phosphotransferase were up-regulated in the ppk mutant. As a whole, these results indicate that PPK is an important regulator and plays a crucial role in stress tolerance and virulence in uropathogenic P. mirabilis.

  9. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis.

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2016-03-01

    Quorum-sensing regulates bacterial biofilm formation and virulence factors, thereby making it an interesting target for attenuating pathogens. In this study, we investigated anti-biofilm and anti-quorum-sensing compounds from secondary metabolites of halophiles marine streptomyces against urinary catheter biofilm forming Proteus mirabilis without effect on growth viability. A total of 40 actinomycetes were isolated from samples collected from different places in Iraq including marine sediments and soil samples. Fifteen isolates identified as streptomyces and their supernatant screened as anti-quorum-sensing by inhibiting quorum-sensing regulated prodigiosin biosynthesis of Serratia marcescens strain Smj-11 as a reporter strain. Isolate Sediment Lake Iraq (sdLi) showed potential anti-quorum-sensing activity. Out of 35 clinical isolates obtained from Urinary catheter used by patient at the Universiti Kebangsaan Malaysia Medical Center, 22 isolates were characterized and identified as Proteus mirabilis. Isolate Urinary Catheter B4 (UCB4) showed the highest biofilm formation with highest resistance to used antibiotic and was chosen for further studies. Ethyl acetate secondary metabolites extract was produced from sdLi isolate. First, we determined the Minimum Inhibitory Concentration (MIC) of sdLi crude extract against UCB4 isolate, and all further experiments used concentrations below the MIC. Tests of subinhibitory concentrations of sdLi crude extract showed good inhibition against UCB4 isolate biofilm formation on urinary catheter and cover glass using Scanning electron microscopy and light microscopy respectively. The influence of sub-MIC of sdLi crude extract was also found to attenuate the quorum sensing (QS)-dependent factors such as hemolysin activity, urease activity, pH value, and motility of UCB4 isolate. Evidence is presented that these nontoxic secondary metabolites may act as antagonists of bacterial quorum sensing by competing with quorum-sensing signals

  10. Pathogenesis of Proteus mirabilis Infection

    Armbruster, Chelsie E.; Mobley, Harry L. T.; Pearson, Melanie M.

    2017-01-01

    Proteus mirabilis, a Gram-negative rod-shaped bacterium most noted for its swarming motility and urease activity, frequently causes catheter-associated urinary tract infections (CAUTI) that are often polymicrobial. These infections may be accompanied by urolithiasis, development of bladder or kidney stones due to alkalinization of urine from urease-catalyzed urea hydrolysis. Adherence of the bacterium to epithelial and catheter surfaces is mediated by 17 different fimbriae, most notably MR/P fimbriae. Repressors of motility are often encoded by these fimbrial operons. Motility is mediated by flagella encoded on a single contiguous 54 kb chromosomal sequence. On agar plates, P. mirabilis undergoes a morphological conversion to a filamentous swarmer cell expressing hundreds of flagella. When swarms from different strains meet, a line of demarcation, a “Dienes line”, develops due to the killing action of each strain’s type VI secretion system. During infection, histological damage is caused by cytotoxins including hemolysin and a variety of proteases, some autotransported. The pathogenesis of infection, including assessment of individual genes or global screens for virulence or fitness factors has been assessed in murine models of ascending UTI or CAUTI using both single-species and polymicrobial models. Global gene expression studies carried out in culture and in the murine model have revealed the unique metabolism of this bacterium. Vaccines, using MR/P fimbria and its adhesin, MrpH, have been shown to be efficacious in the murine model. A comprehensive review of factors associated with urinary tract infection is presented, encompassing both historical perspectives and current advances. PMID:29424333

  11. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip.

    Diederichs, Tim; Nguyen, Quoc Hung; Urban, Michael; Tampé, Robert; Tornow, Marc

    2018-06-13

    Membrane proteins involved in transport processes are key targets for pharmaceutical research and industry. Despite continuous improvements and new developments in the field of electrical readouts for the analysis of transport kinetics, a well-suited methodology for high-throughput characterization of single transporters with nonionic substrates and slow turnover rates is still lacking. Here, we report on a novel architecture of silicon chips with embedded nanopore microcavities, based on a silicon-on-insulator technology for high-throughput optical readouts. Arrays containing more than 14 000 inverted-pyramidal cavities of 50 femtoliter volumes and 80 nm circular pore openings were constructed via high-resolution electron-beam lithography in combination with reactive ion etching and anisotropic wet etching. These cavities feature both, an optically transparent bottom and top cap. Atomic force microscopy analysis reveals an overall extremely smooth chip surface, particularly in the vicinity of the nanopores, which exhibits well-defined edges. Our unprecedented transparent chip design provides parallel and independent fluorescent readout of both cavities and buffer reservoir for unbiased single-transporter recordings. Spreading of large unilamellar vesicles with efficiencies up to 96% created nanopore-supported lipid bilayers, which are stable for more than 1 day. A high lipid mobility in the supported membrane was determined by fluorescent recovery after photobleaching. Flux kinetics of α-hemolysin were characterized at single-pore resolution with a rate constant of 0.96 ± 0.06 × 10 -3 s -1 . Here, we deliver an ideal chip platform for pharmaceutical research, which features high parallelism and throughput, synergistically combined with single-transporter resolution.

  12. The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats.

    Woo, Patrick C Y; Lau, Susanna K P; Tse, Herman; Teng, Jade L L; Curreem, Shirly O T; Tsang, Alan K L; Fan, Rachel Y Y; Wong, Gilman K M; Huang, Yi; Loman, Nicholas J; Snyder, Lori A S; Cai, James J; Huang, Jian-Dong; Mak, William; Pallen, Mark J; Lok, Si; Yuen, Kwok-Yung

    2009-03-01

    Laribacter hongkongensis is a newly discovered Gram-negative bacillus of the Neisseriaceae family associated with freshwater fish-borne gastroenteritis and traveler's diarrhea. The complete genome sequence of L. hongkongensis HLHK9, recovered from an immunocompetent patient with severe gastroenteritis, consists of a 3,169-kb chromosome with G+C content of 62.35%. Genome analysis reveals different mechanisms potentially important for its adaptation to diverse habitats of human and freshwater fish intestines and freshwater environments. The gene contents support its phenotypic properties and suggest that amino acids and fatty acids can be used as carbon sources. The extensive variety of transporters, including multidrug efflux and heavy metal transporters as well as genes involved in chemotaxis, may enable L. hongkongensis to survive in different environmental niches. Genes encoding urease, bile salts efflux pump, adhesin, catalase, superoxide dismutase, and other putative virulence factors-such as hemolysins, RTX toxins, patatin-like proteins, phospholipase A1, and collagenases-are present. Proteomes of L. hongkongensis HLHK9 cultured at 37 degrees C (human body temperature) and 20 degrees C (freshwater habitat temperature) showed differential gene expression, including two homologous copies of argB, argB-20, and argB-37, which encode two isoenzymes of N-acetyl-L-glutamate kinase (NAGK)-NAGK-20 and NAGK-37-in the arginine biosynthesis pathway. NAGK-20 showed higher expression at 20 degrees C, whereas NAGK-37 showed higher expression at 37 degrees C. NAGK-20 also had a lower optimal temperature for enzymatic activities and was inhibited by arginine probably as negative-feedback control. Similar duplicated copies of argB are also observed in bacteria from hot springs such as Thermus thermophilus, Deinococcus geothermalis, Deinococcus radiodurans, and Roseiflexus castenholzii, suggesting that similar mechanisms for temperature adaptation may be employed by other

  13. Toxic potential of palytoxin.

    Patocka, Jiří; Gupta, Ramesh C; Wu, Qing-hua; Kuca, Kamil

    2015-10-01

    This review briefly describes the origin, chemistry, molecular mechanism of action, pharmacology, toxicology, and ecotoxicology of palytoxin and its analogues. Palytoxin and its analogues are produced by marine dinoflagellates. Palytoxin is also produced by Zoanthids (i.e. Palythoa), and Cyanobacteria (Trichodesmium). Palytoxin is a very large, non-proteinaceous molecule with a complex chemical structure having both lipophilic and hydrophilic moieties. Palytoxin is one of the most potent marine toxins with an LD50 of 150 ng/kg body weight in mice exposed intravenously. Pharmacological and electrophysiological studies have demonstrated that palytoxin acts as a hemolysin and alters the function of excitable cells through multiple mechanisms of action. Palytoxin selectively binds to Na(+)/K(+)-ATPase with a Kd of 20 pM and transforms the pump into a channel permeable to monovalent cations with a single-channel conductance of 10 pS. This mechanism of action could have multiple effects on cells. Evaluation of palytoxin toxicity using various animal models revealed that palytoxin is an extremely potent neurotoxin following an intravenous, intraperitoneal, intramuscular, subcutaneous or intratracheal route of exposure. Palytoxin also causes non-lethal, yet serious toxic effects following dermal or ocular exposure. Most incidents of palytoxin poisoning have manifested after oral intake of contaminated seafood. Poisonings in humans have also been noted after inhalation, cutaneous/systemic exposures with direct contact of aerosolized seawater during Ostreopsis blooms and/or through maintaining aquaria containing Cnidarian zoanthids. Palytoxin has a strong potential for toxicity in humans and animals, and currently this toxin is of great concern worldwide.

  14. Ureaplasma diversum Genome Provides New Insights about the Interaction of the Surface Molecules of This Bacterium with the Host.

    Marques, Lucas M; Rezende, Izadora S; Barbosa, Maysa S; Guimarães, Ana M S; Martins, Hellen B; Campos, Guilherme B; do Nascimento, Naíla C; Dos Santos, Andrea P; Amorim, Aline T; Santos, Verena M; Farias, Sávio T; Barrence, Fernanda  C; de Souza, Lauro M; Buzinhani, Melissa; Arana-Chavez, Victor E; Zenteno, Maria E; Amarante-Mendes, Gustavo P; Messick, Joanne B; Timenetsky, Jorge

    2016-01-01

    Whole genome sequencing and analyses of Ureaplasma diversum ATCC 49782 was undertaken as a step towards understanding U. diversum biology and pathogenicity. The complete genome showed 973,501 bp in a single circular chromosome, with 28.2% of G+C content. A total of 782 coding DNA sequences (CDSs), and 6 rRNA and 32 tRNA genes were predicted and annotated. The metabolic pathways are identical to other human ureaplasmas, including the production of ATP via hydrolysis of the urea. Genes related to pathogenicity, such as urease, phospholipase, hemolysin, and a Mycoplasma Ig binding protein (MIB)-Mycoplasma Ig protease (MIP) system were identified. More interestingly, a large number of genes (n = 40) encoding surface molecules were annotated in the genome (lipoproteins, multiple-banded antigen like protein, membrane nuclease lipoprotein and variable surface antigens lipoprotein). In addition, a gene encoding glycosyltransferase was also found. This enzyme has been associated with the production of capsule in mycoplasmas and ureaplasma. We then sought to detect the presence of a capsule in this organism. A polysaccharide capsule from 11 to 17 nm of U. diversum was observed trough electron microscopy and using specific dyes. This structure contained arabinose, xylose, mannose, galactose and glucose. In order to understand the inflammatory response against these surface molecules, we evaluated the response of murine macrophages J774 against viable and non-viable U. diversum. As with viable bacteria, non-viable bacteria were capable of promoting a significant inflammatory response by activation of Toll like receptor 2 (TLR2), indicating that surface molecules are important for the activation of inflammatory response. Furthermore, a cascade of genes related to the inflammasome pathway of macrophages was also up-regulated during infection with viable organisms when compared to non-infected cells. In conclusion, U. diversum has a typical ureaplasma genome and metabolism, and

  15. A Novel Role of Listeria monocytogenes Membrane Vesicles in Inhibition of Autophagy and Cell Death

    Svitlana Vdovikova

    2017-05-01

    Full Text Available Bacterial membrane vesicle (MV production has been mainly studied in Gram-negative species. In this study, we show that Listeria monocytogenes, a Gram-positive pathogen that causes the food-borne illness listeriosis, produces MVs both in vitro and in vivo. We found that a major virulence factor, the pore-forming hemolysin listeriolysin O (LLO, is tightly associated with the MVs, where it resides in an oxidized, inactive state. Previous studies have shown that LLO may induce cell death and autophagy. To monitor possible effects of LLO and MVs on autophagy, we performed assays for LC3 lipidation and LDH sequestration as well as analysis by confocal microscopy of HEK293 cells expressing GFP-LC3. The results revealed that MVs alone did not affect autophagy whereas they effectively abrogated autophagy induced by pure LLO or by another pore-forming toxin from Vibrio cholerae, VCC. Moreover, Listeria monocytogenes MVs significantly decreased Torin1-stimulated macroautophagy. In addition, MVs protected against necrosis of HEK293 cells caused by the lytic action of LLO. We explored the mechanisms of LLO-induced autophagy and cell death and demonstrated that the protective effect of MVs involves an inhibition of LLO-induced pore formation resulting in inhibition of autophagy and the lytic action on eukaryotic cells. Further, we determined that these MVs help bacteria to survive inside eukaryotic cells (mouse embryonic fibroblasts. Taken together, these findings suggest that intracellular release of MVs from L. monocytogenes may represent a bacterial strategy to survive inside host cells, by its control of LLO activity and by avoidance of destruction from the autophagy system during infection.

  16. Impact of arachidonic versus eicosapentaenoic acid on exotonin-induced lung vascular leakage: relation to 4-series versus 5-series leukotriene generation.

    Grimminger, F; Wahn, H; Mayer, K; Kiss, L; Walmrath, D; Seeger, W

    1997-02-01

    Escherichia coli hemolysin (HlyA) is a proteinaceous pore-forming exotoxin that is implicated as a significant pathogenicity factor in extraintestinal E. coli infections including sepsis. In perfused rabbit lungs, subcytolytic concentrations of the toxin evoke thromboxane-mediated vasoconstriction and prostanoid-independent protracted vascular permeability increase (11). In the present study, the influence of submicromolar concentrations of free arachidonic acid (AA) and eicosapentaenoic acid (EPA) on the HlyA-induced leakage response was investigated. HlyA at concentration from 0.02 to 0.06 hemolytic units/ml provoked a dose-dependent, severalfold increase in the capillary filtration coefficient (Kfc), accompanied by the release of leukotriene(LT)B4, LTC4, and LTE4 into the recirculating buffer fluid. Simultaneous application of 100 nmol/L AA markedly augmented the HlyA-elicited leakage response, concomitant with an amplification of LTB4 release and a change in the kinetics of cysteinyl-LT generation. In contrast, 50 to 200 nmol/L EPA suppressed in a dose-dependent manner the HlyA-induced increase in Kfc values. This was accompanied by a blockage of 4-series LT generation and a dose-dependent appearance of LTB5, LTC5, and LTE5. In addition, EPA fully antagonized the AA-induced amplification of the HlyA-provoked Kfc increase, again accompanied by a shift from 4-series to 5-series LT generation. We conclude that the vascular leakage provoked by HlyA in rabbit lungs is differentially influenced by free AA versus free EPA, related to the generation of 4- versus 5-series leukotrienes. The composition of lipid emulsions used for parenteral nutrition may thus influence inflammatory capillary leakage.

  17. Complete Genome Sequence of Vibrio campbellii LMB 29 Isolated from Red Drum with Four Native Megaplasmids

    Jinxin Liu

    2017-10-01

    Full Text Available Vibrio spp. are the most common pathogens for animals reared in aquaculture. Vibrio campbellii, which is often involved in shrimp, fish and mollusks diseases, is widely distributed in the marine environment worldwide, but our knowledge about its pathogenesis and antimicrobial resistance is very limited. The existence of this knowledge gap is at least partially because that V. campbellii was originally classified as Vibrio harveyi, and the detailed information of its comparative genome analysis to other Vibrio spp. is currently lacking. In this study, the complete genome of a V. campbellii predominant strain, LMB29, was determined by MiSeq in conjunction with PacBio SMRT sequencing. This genome consists of two circular DNA chromosomes and four megaplasmids. Comparative genome analysis indicates that LMB29 shares a 96.66% similarity (average nucleotide identity with the V. campbellii ATCC strain BAA-1116 based on a 75% AF (average fraction calculations, and its functional profile is very similar to V. campbellii E1 and V. campbellii CAIM115. Both type III secretion system (T3SS and type VI secretion system (T6SS, along with the tlh gene which encodes a thermolabile hemolysin, are present in LMB29 which may contribute to the bacterial pathogenesis. The virulence of this strain was experimental confirmed by performing a LDH assay on a fish cell infection model, and cell death was observed as early as within 3 h post infection. Thirty-seven antimicrobial resistance genes (>45% identity were predicted in LMB29 which includes a novel rifampicin ADP ribosyltransferase, arr-9, in plasmid pLMB157. The gene arr-9 was predicted on a genomic island with horizontal transferable potentials which may facilitate the rifampicin resistance dissemination. Future researches are needed to explore the pathogenesis of V. campbellii LMB29, but the availability of this genome sequence will certainly aid as a basis for further analysis.

  18. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea.

    Dhar Purkayastha, Gargee; Mangar, Preeti; Saha, Aniruddha; Saha, Dipanwita

    2018-01-01

    The aim of the present study is to evaluate plant growth promoting and biocontrol efficacy of a Serratia marcescens strain ETR17 isolated from tea rhizosphere for the effective management of root rot disease in tea. Isolated bacterial culture ETR17 showed significant level of in vitro antagonism against nine different foliar and root pathogens of tea. The phenotypic and molecular characterization of ETR17 revealed the identity of the bacterium as Serratia marcescens. The bacterium was found to produce several hydrolytic enzymes like chitinase, protease, lipase, cellulase and plant growth promoting metabolites like IAA and siderophore. Scanning electron microscopic studies on the interaction zone between pathogen and antagonistic bacterial isolate revealed severe deformities in the fungal mycelia. Spectral analyses (LC-ESI-MS, UV-VIS spectrophotometry and HPLC) and TLC indicated the presence of the antibiotics pyrrolnitrin and prodigiosin in the extracellular bacterial culture extracts. Biofilm formation by ETR17 on polystyrene surface was also observed. In vivo application of talc-based formulations prepared with the isolate ETR17 in tea plantlets under green house conditions revealed effective reduction of root-rot disease as well as plant growth promotion to a considerable extent. Viability studies with the ETR17 talc formulation showed the survivability of the isolate up to six months at room temperature. The sustenance of ETR17 (concentration of 8-9x108 cfu g-1) in the soil after the application of talc formulation was recorded by ELISA. Safety studies revealed that ETR17 did not produce hemolysin as observed in pathogenic Serratia strains. The biocontrol strain reported in this study can be used for field application in order to minimize the use of chemical fungicides for disease control in tea gardens.

  19. Effects of zinc supplementation on Shiga toxin 2e-producing Escherichia coli in vitro.

    Uemura, Ryoko; Katsuge, Tomoko; Sasaki, Yosuke; Goto, Shinya; Sueyoshi, Masuo

    2017-10-07

    Swine edema disease is caused by Shiga toxin (Stx) 2e-producing Escherichia coli (STEC). Addition of highly concentrated zinc formulations to feed has been used to treat and prevent the disease, but the mechanism of the beneficial effect is unknown. The purpose of the present study was to investigate the effects of highly concentrated zinc formulations on bacterial growth, hemolysin production, and an Stx2e release by STEC in vitro. STEC strain MVH269 isolated from a piglet with edema disease was cultured with zinc oxide (ZnO) or with zinc carbonate (ZnCO 3 ), each at up to 3,000 ppm. There was no effect of zinc addition on bacterial growth. Nonetheless, the cytotoxic activity of Stx2e released into the supernatant was significantly attenuated in the zinc-supplemented media compared to that in the control, with the 50% cytotoxic dose values of 163.2 ± 12.7, 211.6 ± 33.1 and 659.9 ± 84.2 after 24 hr of growth in the presence of ZnO, ZnCO 3 , or no supplemental zinc, respectively. The hemolytic zones around colonies grown on sheep blood agar supplemented with zinc were significantly smaller than those of colonies grown on control agar. Similarly, hemoglobin absorbance after exposure to the supernatants of STEC cultures incubated in sheep blood broth supplemented with zinc was significantly lower than that resulting from exposure to the control supernatant. These in vitro findings indicated that zinc formulations directly impair the factors associated with the virulence of STEC, suggesting a mechanism by which zinc supplementation prevents swine edema disease.

  20. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of

  1. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    Salinero, Kennan Kellaris; Keller, Keith; Feil, William S.; Feil, Helene; Trong, Stephan; Di Bartolo, Genevieve; Lapidus, Alla

    2008-11-17

    Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. The a priori prediction that the D. aromatica genome would contain previously characterized 'central' enzymes involved in anaerobic aromatic degradation proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzyl succinyl synthase (bssABC) genes (responsible for formate addition to toluene) and the central benzoylCoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex with the somewhat rare exosortase (epsH), is also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB) gene cluster, Calvin cycle enzymes, and nitrogen fixation (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively). Analysis of the D. aromatica genome indicates there is much to be learned regarding the metabolic capabilities, and life-style, for this microbial

  2. Listeria monocytogenes en alimentos: ¿son todos los aislamientos igual de virulentos? Foodborne Listeria monocytogenes: are all the isolates equally virulent?

    V. López

    2006-12-01

    Full Text Available Listeria monocytogenes es un patógeno humano que se transmite a través de los alimentos y que causa infecciones graves, con una alta tasa de mortalidad. A pesar de la ubicuidad del microorganismo, la tasa real de la enfermedad es bastante baja y se asocia casi siempre a condiciones predisponentes. Tradicionalmente se consideraba que los aislamientos presentes en los alimentos y en el ambiente tenían la misma capacidad patogénica que los aislamientos de origen clínico. Pero el análisis de mutaciones en los genes de determinados factores de virulencia (internalina, hemolisina, fosfolipasas, proteína de superficie ActA y proteína reguladora PrfA, los estudios cuantitativos realizados con cultivos celulares y la genética de poblaciones, están replanteando la discusión sobre la variabilidad de la virulencia de L. monocytogenes. A pesar de todos estos avances, no existe un único marcador que permita comprobar la virulencia de los aislamientos naturales de esta especie. Probablemente en el futuro, la combinación de diferentes marcadores moleculares permitirá detectar los alimentos contaminados sólo por los clones virulentos de L. monocytogenes, con lo que se mejorará la prevención de la listeriosis humana transmitida por alimentos.Listeria monocytogenes is a foodborne human pathogen responsible for invasive infections presenting overall a high mortality. Despite the ubiquity of the microorganism, the actual disease rate is quite low and the disease is most often associated with an underlying predisposition. Foodborne and environmental isolates were traditionally considered of similar pathogenicity compared to clinical isolates. But the analysis of mutations in the genes encoding specific virulence factors (internalin, hemolysin, phospholipases, surface protein ActA and regulator protein PrfA, quantitative studies with cell cultures and population genetics have raised considerable concerns about virulence differences among L

  3. Free-Living Species of Carnivorous Mammals in Poland: Red Fox, Beech Marten, and Raccoon as a Potential Reservoir of Salmonella, Yersinia, Listeria spp. and Coagulase-Positive Staphylococcus.

    Aneta Nowakiewicz

    Full Text Available The objective of the study was to examine a population of free-living carnivorous mammals most commonly found in Poland (red fox, beech marten, and raccoon for the occurrence of bacteria that are potentially pathogenic for humans and other animal species and to determine their virulence potential (the presence of selected virulence genes. From the total pool of isolates obtained (n = 328, we selected 90 belonging to species that pose the greatest potential threat to human health: Salmonella spp. (n = 19; 4.51%, Yersinia enterocolitica (n = 10; 2.37%, Listeria monocytogenes and L. ivanovii (n = 21, and Staphylococcus aureus (n = 40; 9.5%. The Salmonella spp. isolates represented three different subspecies; S. enterica subsp. enterica accounted for a significant proportion (15/19, and most of the serotypes isolated (S. Typhimurium, S. Infantis, S. Newport and S. Enteritidis were among the 10 non-typhoidal Salmonella serotypes that are most often responsible for infections in Europe, including Poland. Y. enterococlitica was detected in the smallest percentage of animals, but 60% of strains among the isolates tested possessed the ail gene, which is responsible for attachment and invasion. Potentially pathogenic Listeria species were isolated from approx. 5% of the animals. The presence of all tested virulence genes was shown in 35% of L. monocytogenes strains, while in the case of the other strains, the genes occurred in varying numbers and configurations. The presence of the inlA, inlC, hlyA, and iap genes was noted in all strains, whereas the genes encoding PI-PLC, actin, and internalin Imo2821 were present in varying percentages (from 80% to 55%. S. aureus was obtained from 40 individuals. Most isolates possessed the hla, hld (95% for each, and hlb (32.5% genes encoding hemolysins as well as the gene encoding leukotoxin lukED (70%. In a similar percentage of strains (77.5%, the presence of at least one gene encoding enterotoxin was found, with 12

  4. Free-Living Species of Carnivorous Mammals in Poland: Red Fox, Beech Marten, and Raccoon as a Potential Reservoir of Salmonella, Yersinia, Listeria spp. and Coagulase-Positive Staphylococcus.

    Nowakiewicz, Aneta; Zięba, Przemysław; Ziółkowska, Grażyna; Gnat, Sebastian; Muszyńska, Marta; Tomczuk, Krzysztof; Majer Dziedzic, Barbara; Ulbrych, Łukasz; Trościańczyk, Aleksandra

    2016-01-01

    The objective of the study was to examine a population of free-living carnivorous mammals most commonly found in Poland (red fox, beech marten, and raccoon) for the occurrence of bacteria that are potentially pathogenic for humans and other animal species and to determine their virulence potential (the presence of selected virulence genes). From the total pool of isolates obtained (n = 328), we selected 90 belonging to species that pose the greatest potential threat to human health: Salmonella spp. (n = 19; 4.51%), Yersinia enterocolitica (n = 10; 2.37%), Listeria monocytogenes and L. ivanovii (n = 21), and Staphylococcus aureus (n = 40; 9.5%). The Salmonella spp. isolates represented three different subspecies; S. enterica subsp. enterica accounted for a significant proportion (15/19), and most of the serotypes isolated (S. Typhimurium, S. Infantis, S. Newport and S. Enteritidis) were among the 10 non-typhoidal Salmonella serotypes that are most often responsible for infections in Europe, including Poland. Y. enterococlitica was detected in the smallest percentage of animals, but 60% of strains among the isolates tested possessed the ail gene, which is responsible for attachment and invasion. Potentially pathogenic Listeria species were isolated from approx. 5% of the animals. The presence of all tested virulence genes was shown in 35% of L. monocytogenes strains, while in the case of the other strains, the genes occurred in varying numbers and configurations. The presence of the inlA, inlC, hlyA, and iap genes was noted in all strains, whereas the genes encoding PI-PLC, actin, and internalin Imo2821 were present in varying percentages (from 80% to 55%). S. aureus was obtained from 40 individuals. Most isolates possessed the hla, hld (95% for each), and hlb (32.5%) genes encoding hemolysins as well as the gene encoding leukotoxin lukED (70%). In a similar percentage of strains (77.5%), the presence of at least one gene encoding enterotoxin was found, with 12

  5. The dominant Australian community-acquired methicillin-resistant Staphylococcus aureus clone ST93-IV [2B] is highly virulent and genetically distinct.

    Kyra Y L Chua

    Full Text Available Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA USA300 has spread rapidly across North America, and CA-MRSA is also increasing in Australia. However, the dominant Australian CA-MRSA strain, ST93-IV [2B] appears distantly related to USA300 despite strikingly similar clinical and epidemiological profiles. Here, we compared the virulence of a recent Australian ST93 isolate (JKD6159 to other MRSA, including USA300, and found that JKD6159 was the most virulent in a mouse skin infection model. We fully sequenced the genome of JKD6159 and confirmed that JKD6159 is a distinct clone with 7616 single nucleotide polymorphisms (SNPs distinguishing this strain from all other S. aureus genomes. Despite its high virulence there were surprisingly few virulence determinants. However, genes encoding α-hemolysin, Panton-Valentine leukocidin (PVL and α-type phenol soluble modulins were present. Genome comparisons revealed 32 additional CDS in JKD6159 but none appeared to encode new virulence factors, suggesting that this clone's enhanced pathogenicity could lie within subtler genome changes, such as SNPs within regulatory genes. To investigate the role of accessory genome elements in CA-MRSA epidemiology, we next sequenced three additional Australian non-ST93 CA-MRSA strains and compared them with JKD6159, 19 completed S. aureus genomes and 59 additional S. aureus genomes for which unassembled genome sequence data was publicly available (82 genomes in total. These comparisons showed that despite its distinctive genotype, JKD6159 and other CA-MRSA clones (including USA300 share a conserved repertoire of three notable accessory elements (SSCmecIV, PVL prophage, and pMW2. This study demonstrates that the genetically distinct ST93 CA-MRSA from Australia is highly virulent. Our comparisons of geographically and genetically diverse CA-MRSA genomes suggest that apparent convergent evolution in CA-MRSA may be better explained by the rapid

  6. Influence of hydrological conditions on the Escherichia coli population structure in the water of a creek on a rural watershed

    Ratajczak Mehdy

    2010-08-01

    Full Text Available Abstract Background Escherichia coli is a commensal bacterium of the gastro-intestinal tract of human and vertebrate animals, although the aquatic environment could be a secondary habitat. The aim of this study was to investigate the effect of hydrological conditions on the structure of the E. coli population in the water of a creek on a small rural watershed in France composed of pasture and with human occupation. Results It became apparent, after studying the distribution in the four main E. coli phylo-groups (A, B1, B2, D, the presence of the hly (hemolysin gene and the antibiotic resistance pattern, that the E. coli population structure was modified not only by the hydrological conditions (dry versus wet periods, rainfall events, but also by how the watershed was used (presence or absence of cattle. Isolates of the B1 phylo-group devoid of hly and sensitive to antibiotics were particularly abundant during the dry period. During the wet period and the rainfall events, contamination from human sources was predominantly characterized by strains of the A phylo-group, whereas contamination by cattle mainly involved B1 phylo-group strains resistant to antibiotics and exhibiting hly. As E. coli B1 was the main phylo-group isolated in water, the diversity of 112 E. coli B1 isolates was further investigated by studying uidA alleles (beta-D-glucuronidase, the presence of hly, the O-type, and antibiotic resistance. Among the forty epidemiolgical types (ETs identified, five E. coli B1 ETs were more abundant in slightly contaminated water. Conclusions The structure of an E. coli population in water is not stable, but depends on the hydrological conditions and on current use of the land on the watershed. In our study it was the ratio of A to B1 phylo-groups that changed. However, a set of B1 phylo-group isolates seems to be persistent in water, strengthening the hypothesis that they may correspond to specifically adapted strains.

  7. Epidemiological characteristics of Candida species colonizing oral and rectal sites of Jordanian infants

    Aqel Kamal F

    2011-09-01

    Full Text Available Abstract Background There is evidence that Candida colonization contributes to increasing invasion of candidiasis in hospitalized neonates. Few studies investigated the epidemiology and risk factors of Candida colonization among hospitalized and non-hospitalized infants. This prospective study investigated the major epidemiological characteristics of Candida species colonizing oral and rectal sites of Jordanian infants. Methods Infants aged one year or less who were examined at the pediatrics outpatient clinic or hospitalized at the Jordan University Hospital, Amman, Jordan, were included in this study. Culture swabs were collected from oral and rectal sites and inoculated on Sabouraud dextrose agar. All Candida isolates were confirmed by the Remel RapID yeast plus system, and further investigated for specific virulence factors and antifungal susceptibility MIC using E-test. Genotyping of C. albicans isolates was determined using random amplified polymorphic DNA (RAPD analysis method. Results A total of 61/492 (12.4% infants were colonized with Candida species by either their oral/rectal sites or both. Rectal colonization was significantly more detected than oral colonization (64.6% verses 35.4%, particularly among hospitalized infants aged more than one month. The pattern and rates of colonization were as follows: C. albicans was the commonest species isolated from both sites and accounted for 67.1% of all isolates, followed by C.kefyr (11.4%, each C. tropicalis and C. glabrata (8.9% and C. parapsilosis (3.8%. A various rates of Candida isolates proved to secrete putative virulence factors in vitro; asparatyl proteinase, phospholipase and hemolysin. C. albicans were associated significantly (P Candida species. All Candida isolates were susceptible to amphotericin B and caspofungin, whereas 97% of Candida species isolates were susceptible to fluconazole using E-test. The genetic similarity of 53 C. albicans isolates as demonstrated by dendrogram

  8. Phenotype, genotype, and antibiotic susceptibility of Swedish and Thai oral isolates of Staphylococcus aureus

    Susanne Blomqvist

    2015-04-01

    Full Text Available Objective: The present study investigated phenotypes, virulence genotypes, and antibiotic susceptibility of oral Staphylococcus aureus strains in order to get more information on whether oral infections with this bacterium are associated with certain subtypes or related to an over-growth of the S. aureus variants normally found in the oral cavity of healthy carriers. Materials and methods: A total number of 157 S. aureus strains were investigated. Sixty-two strains were isolated from Swedish adults with oral infections, 25 strains were from saliva of healthy Swedish dental students, and 45 strains were from tongue scrapings of HIV-positive subjects in Thailand, and 25 Thai strains from non-HIV controls. The isolates were tested for coagulase, nitrate, arginine, and hemolysin, and for the presence of the virulence genes: hlg, clfA, can, sdrC, sdrD, sdrE, map/eap (adhesins and sea, seb, sec, tst, eta, etb, pvl (toxins. MIC90 and MIC50 were determined by E-test against penicillin V, oxacillin, amoxicillin, clindamycin, vancomycin, fusidic acid, and cefoxitin. Results: While the hemolytic phenotype was significantly (p<0.001 more common among the Thai strains compared to Swedish strains, the virulence genes were found in a similar frequency in the S. aureus strains isolated from all four subject groups. The Panton-Valentine leukocidin (PVL genotype was found in 73–100% of the strains. More than 10% of the strains from Swedish oral infections and from Thai HIV-positives showed low antibiotic susceptibility, most commonly for clindamycin. Only three methicillin-resistant S. aureus (MRSA strains were identified, two from oral infections and one from a Thai HIV patient. Conclusions: S. aureus is occasionally occurring in the oral cavity in both health and disease in Sweden and Thailand. It is therefore most likely that S. aureus in opportunistic oral infections originate from the oral microbiota. S. aureus should be considered in case of oral

  9. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Santamaría-Hernando, Saray; Krell, Tino; Ramos-González, María-Isabel

    2012-01-01

    Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca(2+) coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+) binding with a K(D) of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.

  10. Vibrios and Aeromonas.

    Holmberg, S D

    1988-09-01

    There are many similarities in the Vibrionaceae that cause human illness in the United States (see Table 1). Vibrios are characteristically indigenous to marine, estuarine, and brackish environments. They are distributed mainly in Gulf of Mexico coastal water, and these organisms "bloom" when the water is warm. Outbreaks of disease in humans frequently occur in summer, coinciding with multiplication of vibrios in warm water. Sporadic cases and small outbreaks of cholera continue to occur in persons living on or near the Gulf of Mexico, but infection in most persons is unrecognized. In fact, more serious and frequent illnesses result from V. vulnificus wound infections and from gastroenteritis caused by vibrios other than V. cholerae 01. Underlying hepatic or neoplastic disease (especially leukemia) apparently increases the likelihood and severity of illnesses caused by V. vulnificus and Aeromonas. Some Vibrionaceae produce clinical illness by means of enterotoxins identical or similar to cholera toxin. For many others, hemolysins, cytotoxins, and other exotoxins are necessary to produce disease; the importance of these virulence factors often is not known or the importance of these virulence factors often is not known or is of doubtful significance. Also, purported pathogenicity as demonstrated by animal models, such as fluid accumulation in ligated ileal loops, is quite nonspecific and needs to be interpreted cautiously. For Plesiomonas, a mode of pathogenesis has not been discovered. Eating raw shellfish (frequently raw oysters) has been linked epidemiologically to enteric infections with most of these bacteria; foreign travel and exposure to seawater are other frequently observed epidemiologic associations with infection. Foreign travel, particularly to the Yucatan Peninsula of Mexico, has been strongly associated with the acquisition of non-01 V. cholerae and Plesiomonas organisms. Most Vibrionaceae in the United States are susceptible in vitro--and illnesses

  11. Retrospective study of necrotizing fasciitis and characterization of its associated Methicillin-resistant Staphylococcus aureus in Taiwan

    Changchien Chih-Hsuan

    2011-10-01

    Full Text Available Abstract Background Methicillin-resistant Staphylococcus aureus (MRSA has emerged as a prevalent pathogen of necrotizing fasciitis (NF in Taiwan. A four-year NF cases and clinical and genetic differences between hospital acquired (HA- and community-acquired (CA-MRSA infection and isolates were investigated. Methods A retrospective study of 247 NF cases in 2004-2008 and antimicrobial susceptibilities, staphylococcal chromosomal cassette mec (SCCmec types, pulsed field gel electrophoresis (PFGE patterns, virulence factors, and multilocus sequence typing (MLST of 16 NF-associated MRSA in 2008 were also evaluated. Results In 247 cases, 42 microbial species were identified. S. aureus was the major prevalent pathogen and MRSA accounted for 19.8% of NF cases. Most patients had many coexisting medical conditions, including diabetes mellitus, followed by hypertension, chronic azotemia and chronic hepatic disease in order of decreasing prevalence. Patients with MRSA infection tended to have more severe clinical outcomes in terms of amputation rate (p S. aureus or non-S. aureus infection. NF patients infected by HA-MRSA had a significantly higher amputation rate, comorbidity, C-reactive protein level, and involvement of lower extremity than those infected by CA-MRSA. In addition to over 90% of MRSA resistant to erythromycin and clindamycin, HA-MRSA was more resistant than CA-MRSA to trimethoprim-sulfamethoxazole (45.8% vs. 4%. ST59/pulsotype C/SCCmec IV and ST239/pulsotype A/SCCmec III isolates were the most prevalent CA- and HA-MRSA, respectively in 16 isolates obtained in 2008. In contrast to the gene for γ-hemolysin found in all MRSA, the gene for Panton-Valentine leukocidin was only identified in ST59 MRSA isolates. Other three virulence factors TSST-1, ETA, and ETB were occasionally identified in MRSA isolates tested. Conclusion NF patients with MRSA infection, especially HA-MRSA infection, had more severe clinical outcomes than those infected by

  12. Communications of Staphylococcus aureus and non-aureus Staphylococcus species from bovine intramammary infections and teat apex colonization.

    Mahmmod, Yasser S; Klaas, Ilka Christine; Svennesen, Line; Pedersen, Karl; Ingmer, Hanne

    2018-05-16

    The role of non-aureus staphylococci (NAS) in the risk of acquisition of intramammary infections with Staphylococcus aureus is vague and still under debate. The objectives of this study were to (1) investigate the distribution patterns of NAS species from milk and teat skin in dairy herds with automatic milking systems, and (2) examine if the isolated NAS influences the expression of S. aureus virulence factors controlled by the accessory gene regulator (agr) quorum sensing system. In 8 herds, 14 to 20 cows with elevated somatic cell count were randomly selected for teat skin swabbing and aseptic quarter foremilk samples from right hind and left front quarters. Teat skin swabs were collected using the modified wet-dry method and milk samples were taken aseptically for bacterial culture. Colonies from quarters with suspicion of having NAS in milk or teat skin samples (or both) were subjected to MALDI-TOF assay for species identification. To investigate the interaction between S. aureus and NAS, 81 isolates NAS were subjected to a qualitative β-galactosidase reporter plate assay. In total, 373 NAS isolates were identified representing 105 from milk and 268 from teat skin of 284 quarters (= 142 cows). Sixteen different NAS species were identified, 15 species from teat skin and 10 species from milk. The most prevalent NAS species identified from milk were Staphylococcus epidermidis (50%), Staphylococcus haemolyticus (15%), and Staphylococcus chromogenes (11%), accounting for 76%. Meanwhile, the most prevalent NAS species from teat skin were Staphylococcus equorum (43%), S. haemolyticus (16%), and Staphylococcus cohnii (14%), accounting for 73%. Using reporter gene fusions monitoring transcriptional activity of key virulence factors and regulators, we found that out of 81 supernatants of NAS isolates, 77% reduced expression of hla, encoding a-hemolysin, 70% reduced expression of RNAIII, the key effector molecule of agr, and 61% reduced expression of spa encoding

  13. Characterization and Heterologous Expression of the Genes Encoding Enterocin A Production, Immunity, and Regulation in Enterococcus faecium DPC1146

    O’Keeffe, Triona; Hill, Colin; Ross, R. Paul

    1999-01-01

    Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10,879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the

  14. Melatonin Receptor Agonists as the "Perioceutics" Agents for Periodontal Disease through Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response.

    Zhou, Wei; Zhang, Xuan; Zhu, Cai-Lian; He, Zhi-Yan; Liang, Jing-Ping; Song, Zhong-Chen

    2016-01-01

    A, and ragA), while increasing the mRNA expression of ferritin (ftn) or hemolysin (hem). They did not show obvious cytotoxicity toward HGFs. They inhibited Pg-LPS-induced IL-6 and IL-8 secretion, which was reversed by luzindole, the melatonin receptor antagonist. Melatonin receptor agonists can inhibit planktonic and biofilm growth of Porphyromonas gingivalis by affecting the virulent properties, as well as Pg-LPS-induced inflammatory response. Our study provides new evidence that melatonin receptor agonists might be useful as novel "perioceutics" agents to prevent and treat Porphyromonas gingivalis-associated periodontal diseases.

  15. Melatonin Receptor Agonists as the “Perioceutics” Agents for Periodontal Disease through Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response

    Zhu, Cai-Lian; He, Zhi-Yan; Liang, Jing-Ping; Song, Zhong-Chen

    2016-01-01

    factors (kgp, rgpA, rgpB, hagA, and ragA), while increasing the mRNA expression of ferritin (ftn) or hemolysin (hem). They did not show obvious cytotoxicity toward HGFs. They inhibited Pg-LPS-induced IL-6 and IL-8 secretion, which was reversed by luzindole, the melatonin receptor antagonist. Conclusion Melatonin receptor agonists can inhibit planktonic and biofilm growth of Porphyromonas gingivalis by affecting the virulent properties, as well as Pg-LPS-induced inflammatory response. Our study provides new evidence that melatonin receptor agonists might be useful as novel “perioceutics” agents to prevent and treat Porphyromonas gingivalis-associated periodontal diseases. PMID:27832188

  16. Melatonin Receptor Agonists as the "Perioceutics" Agents for Periodontal Disease through Modulation of Porphyromonas gingivalis Virulence and Inflammatory Response.

    Wei Zhou

    A, rgpB, hagA, and ragA, while increasing the mRNA expression of ferritin (ftn or hemolysin (hem. They did not show obvious cytotoxicity toward HGFs. They inhibited Pg-LPS-induced IL-6 and IL-8 secretion, which was reversed by luzindole, the melatonin receptor antagonist.Melatonin receptor agonists can inhibit planktonic and biofilm growth of Porphyromonas gingivalis by affecting the virulent properties, as well as Pg-LPS-induced inflammatory response. Our study provides new evidence that melatonin receptor agonists might be useful as novel "perioceutics" agents to prevent and treat Porphyromonas gingivalis-associated periodontal diseases.

  17. Exploring the Anti-quorum Sensing and Antibiofilm Efficacy of Phytol against Serratia marcescens Associated Acute Pyelonephritis Infection in Wistar Rats

    Srinivasan, Ramanathan; Mohankumar, Ramar; Kannappan, Arunachalam; Karthick Raja, Veeramani; Archunan, Govindaraju; Karutha Pandian, Shunmugiah; Ruckmani, Kandasamy; Veera Ravi, Arumugam

    2017-01-01

    Quorum Sensing (QS) mechanism, a bacterial density-dependent gene expression system, governs the Serratia marcescens pathogenesis through the production of virulence factors and biofilm formation. The present study demonstrates the anti-quorum sensing (anti-QS), antibiofilm potential and in vivo protective effect of phytol, a diterpene alcohol broadly utilized as food additive and in therapeutics fields. In vitro treatment of phytol (5 and 10 μg/ml) showed decreasing level of biofilm formation, lipase and hemolysin production in S. marcescens compared to their respective controls. More, microscopic analyses confirmed the antibiofilm potential of phytol. The biofilm related phenomenons such as swarming motility and exopolysccharide productions were also inhibited by phytol. Furthermore, the real-time analysis elucidated the molecular mechanism of phytol which showed downregulation of fimA, fimC, flhC, flhD, bsmB, pigP, and shlA gene expressions. On the other hand, the in vivo rescue effect of phytol was assessed against S. marcescens associated acute pyelonephritis in Wistar rat. Compared to the infected and vehicle controls, the phytol treated groups (100 and 200 mg/kg) showed decreased level of bacterial counts in kidney, bladder tissues and urine samples on the 5th post infection day. As well, the phytol treatment showed reduced level of virulence enzymes such as lipase and protease productions compared to the infected and vehicle controls. Further, the infected and vehicle controls showed increasing level of inflammatory markers such as malondialdehyde (MDA), nitric oxide (NO) and myeloperoxidase (MPO) productions. In contrast, the phytol treatment showed decreasing level of inflammatory markers. In histopathology, the uninfected animal showed normal kidney and bladder structure, wherein, the infected animals showed extensive infiltration of neutrophils in kidney and bladder tissues. In contrast, the phytol treatment showed normal kidney and bladder tissues

  18. Species Distribution and Prevalence of Putative Virulence Factors in Mesophilic Aeromonas spp. Isolated from Fresh Retail Sushi

    Sunniva Hoel

    2017-05-01

    Full Text Available Aeromonas spp. are ubiquitous bacteria that have received increasing attention as human pathogens because of their widespread occurrence in food, especially seafood and vegetables. The aim of this work was to assess the species identity and phylogenetic relationship of 118 Aeromonas strains isolated from fresh retail sushi from three producers, and to characterize the isolates with respect to genetic and phenotypic virulence factors. We also evaluate the potential hazard associated with their presence in ready-to-eat seafood not subjected to heat treatment. Mesophilic Aeromonas salmonicida was most prevalent (74%, followed by A. bestiarum (9%, A. dhakensis (5%, A. caviae (5%, A. media (4%, A. hydrophila (2%, and A. piscicola (1%. All isolates were considered potentially pathogenic due to the high prevalence of genes encoding hemolysin (hlyA (99%, aerolysin (aerA (98%, cytotoxic enterotoxin (act (86%, heat-labile cytotonic enterotoxin (alt (99%, and heat-stable cytotonic enterotoxin (ast (31%. The shiga-like toxins 1 and 2 (stx-1 and stx-2 were not detected. Moreover, there was heterogeneity in toxin gene distribution among the isolates, and the combination of act/alt/hlyA/aerA was most commonly detected (63%. β-hemolysis was species-dependent and observed in 91% of the isolates. All A. media and A. caviae strains were non-hemolytic. For isolates belonging to this group, lack of hemolysis was possibly related to the absence of the act gene. Swimming motility, linked to adhesion and host invasion, occurred in 65% of the isolates. Partial sequencing of the gyrB gene demonstrated its suitability as a genetic marker for Aeromonas species identification and for assessment of the phylogenetic relationship between the isolates. The gyrB sequence divergence within a given species ranged from 1.3 to 2.9%. A. bestiarum, A. salmonicida, and A. piscicola were the most closely related species; their sequences differed by 2.7–3.4%. The average gyrB sequence

  19. Aeromonas associated diarrhoeal disease in south Brazil: prevalence, virulence factors and antimicrobial resistance Aeromonas associadas a diarréias no sul do Brasil: prevalência, fatores de virulência, e resistência a antibiótico

    Ivani M.F. Guerra

    2007-12-01

    Full Text Available Aeromonas were isolated from 27 (6.6% of 408 patients admitted with acute gastroenteritis in two hospitals at Rio Grande do Sul, Brazil. Isolates were classified as A. hydrophila (51.8%, A. caviae (40.8%, and A. veronii biotype sobria (7.4%. The highest prevalence of Aeromonas associated infections occurred in lactants and children. Virulence genes (aerA -aerolysin/hemolysin, ahpA -serine-protease, satA - glycerophospholipid-cholesterol acyltransferase, lipA -lipase, and ahyB -elastase and virulence factors (hemolytic, proteolitic, lipolitic activities, and biofilm formation were identified in most A. hydrophila and A. veronii biotype sobria isolates, with lower frequencies on A. caviae. All Aeromonas isolates were resistant to ampicillin, ticarcillin/clavulanic acid, cephalotin, and cephazolin, and most of them (>70% exhibited resistance to imipenem, carbenicillin, amoxillin/sulbactan, and piperacillin. Multiple-resistance, more than four antibiotics, was evidenced in 29.6% of the isolates. The most efficient antibiotics were the quinolones (ciprofloxacin and norfloxacin, and the aminoglycosides (amikacin and netilmicin.Aeromonas foram isoladas de 27 (6.6% dos 408 pacientes admitidos com gastroenterite aguda em dois hospitais do Rio Grande do Sul, Brasil. Os isolados foram classificados com A. hydrophila (51.8%, A. caviae (40.8%, e A. veronii biotype sobria (7.4%. A maior prevalência de Aeromonas ocorreu em lactantes e crianças. Genes (aerA -aerolisina/hemolisina, ahpA -serina-protease, satA - glicerofosfolipidio-colesterol aciltransferase, lipA -lipase, e ahyB -elastase e factores (atividade hemolítica, proteolítica, lipolítica, e formação de biofilme de virulência foram identificados na maioria dos isolados de A. hydrophila e A. veronii biotype sobria, com freqüências menores em A. caviae. Todos os isolados de Aeromonas apresentaram resistência a ampicilina, ticarcilina/ácido clavulânico, cefalotina e cefazolina, e a maior parte

  20. Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes.

    Grim, Christopher J; Kozlova, Elena V; Sha, Jian; Fitts, Eric C; van Lier, Christina J; Kirtley, Michelle L; Joseph, Sandeep J; Read, Timothy D; Burd, Eileen M; Tall, Ben D; Joseph, Sam W; Horneman, Amy J; Chopra, Ashok K; Shak, Joshua R

    2013-04-23

    Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966(T), and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966(T). The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966(T) and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. Aeromonas hydrophila is a common aquatic bacterium that has increasingly been implicated in serious human infections. While many determinants of virulence have been identified in Aeromonas, rapid identification of pathogenic versus nonpathogenic

  1. Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization.

    Lertpiriyapong, Kvin; Gamazon, Eric R; Feng, Yan; Park, Danny S; Pang, Jassia; Botka, Georgina; Graffam, Michelle E; Ge, Zhongming; Fox, James G

    2012-01-01

    The recently identified type VI secretion system (T6SS) of proteobacteria has been shown to promote pathogenicity, competitive advantage over competing microorganisms, and adaptation to environmental perturbation. By detailed phenotypic characterization of loss-of-function mutants, in silico, in vitro and in vivo analyses, we provide evidence that the enteric pathogen, Campylobacter jejuni, possesses a functional T6SS and that the secretion system exerts pleiotropic effects on two crucial processes--survival in a bile salt, deoxycholic acid (DCA), and host cell adherence and invasion. The expression of T6SS during initial exposure to the upper range of physiological levels of DCA (0.075%-0.2%) was detrimental to C. jejuni proliferation, whereas down-regulation or inactivation of T6SS enabled C. jejuni to resist this effect. The C. jejuni multidrug efflux transporter gene, cmeA, was significantly up-regulated during the initial exposure to DCA in the wild type C. jejuni relative to the T6SS-deficient strains, suggesting that inhibition of proliferation is the consequence of T6SS-mediated DCA influx. A sequential modulation of the efflux transporter activity and the T6SS represents, in part, an adaptive mechanism for C. jejuni to overcome this inhibitory effect, thereby ensuring its survival. C. jejuni T6SS plays important roles in host cell adhesion and invasion as T6SS inactivation resulted in a reduction of adherence to and invasion of in vitro cell lines, while over-expression of a hemolysin co-regulated protein, which encodes a secreted T6SS component, greatly enhanced these processes. When inoculated into B6.129P2-IL-10(tm1Cgn) mice, the T6SS-deficient C. jejuni strains did not effectively establish persistent colonization, indicating that T6SS contributes to colonization in vivo. Taken together, our data demonstrate the importance of bacterial T6SS in host cell adhesion, invasion, colonization and, for the first time to our knowledge, adaptation to DCA

  2. Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization.

    Kvin Lertpiriyapong

    Full Text Available The recently identified type VI secretion system (T6SS of proteobacteria has been shown to promote pathogenicity, competitive advantage over competing microorganisms, and adaptation to environmental perturbation. By detailed phenotypic characterization of loss-of-function mutants, in silico, in vitro and in vivo analyses, we provide evidence that the enteric pathogen, Campylobacter jejuni, possesses a functional T6SS and that the secretion system exerts pleiotropic effects on two crucial processes--survival in a bile salt, deoxycholic acid (DCA, and host cell adherence and invasion. The expression of T6SS during initial exposure to the upper range of physiological levels of DCA (0.075%-0.2% was detrimental to C. jejuni proliferation, whereas down-regulation or inactivation of T6SS enabled C. jejuni to resist this effect. The C. jejuni multidrug efflux transporter gene, cmeA, was significantly up-regulated during the initial exposure to DCA in the wild type C. jejuni relative to the T6SS-deficient strains, suggesting that inhibition of proliferation is the consequence of T6SS-mediated DCA influx. A sequential modulation of the efflux transporter activity and the T6SS represents, in part, an adaptive mechanism for C. jejuni to overcome this inhibitory effect, thereby ensuring its survival. C. jejuni T6SS plays important roles in host cell adhesion and invasion as T6SS inactivation resulted in a reduction of adherence to and invasion of in vitro cell lines, while over-expression of a hemolysin co-regulated protein, which encodes a secreted T6SS component, greatly enhanced these processes. When inoculated into B6.129P2-IL-10(tm1Cgn mice, the T6SS-deficient C. jejuni strains did not effectively establish persistent colonization, indicating that T6SS contributes to colonization in vivo. Taken together, our data demonstrate the importance of bacterial T6SS in host cell adhesion, invasion, colonization and, for the first time to our knowledge

  3. Detection of enterotoxins produced by B. cereus through PCR analysis of ground and roasted coffee samples in Rio de Janeiro, Brazil

    Cyllene de Matos Ornelas da Cunha Corrêa de Souza

    2011-06-01

    Full Text Available Coffee is one of the most appreciated drinks in the world. Coffee ground is obtained from the fruit of a small plant that belongs to the genus Coffea. Coffea arabica and Coffea canephora robusta are the two most commercially important species. They are more commonly known as arabica and robusta, respectively. Two-thirds of Coffea arabica plants are grown in South and Central America, and Eastern Africa - the place of origin for this coffee species. Contamination by microorganisms has been a major matter affecting coffee quality in Brazil, mainly due to the harvesting method adopted. Brazilian harvests are based on fruits collected from the ground mixed with those that fall on collection cloths. As the Bacillus cereus bacterium frequently uses the soil as its environmental reservoir, it is easily capable of becoming a contaminant. This study aimed to evaluate the contamination and potential of B. cereus enterotoxin genes encoding the HBL and NHE complexes, which were observed in strains of ground and roasted coffee samples sold in Rio de Janeiro. The PCR (Polymerase Chain Reaction results revealed high potential of enterotoxin production in the samples. The method described by Speck (1984 was used for the isolation of contaminants. The investigation of the potential production of enterotoxins through isolates of the microorganism was performed using the B. cereus enterotoxin Reverse Passive Latex Agglutination test-kit (BCET-RPLA, Oxoid, according to the manufacturer's instructions. The potential of enterotoxin production was investigated using polymerase chain reaction (PCR methods for hblA, hblD and hblC genes (encoding hemolysin HBL and for nheA, nheB and nheC genes (encoding non-hemolytic enterotoxin - NHE. Of all the 17 strains, 100% were positive for at least 1 enterotoxin gene; 52.9% (9/17 were positive for the 3 genes encoding the HBL complex; 35.3% (6/17 were positive for the three NHE encoding genes; and 29.4% (5/17 were positive for

  4. Management of superficial and deep-seated Staphylococcus aureus skin and soft tissue infections in sub-Saharan Africa: a post hoc analysis of the StaphNet cohort.

    Alabi, Abraham; Kazimoto, Theckla; Lebughe, Marthe; Vubil, Delfino; Phaku, Patrick; Mandomando, Inacio; Kern, Winfried V; Abdulla, Salim; Mellmann, Alexander; Peitzmann, Lena; Bischoff, Markus; Peters, Georg; Herrmann, Mathias; Grobusch, Martin P; Schaumburg, Frieder; Rieg, Siegbert

    2018-04-17

    The incidence of Staphylococcus aureus skin and soft tissue infection (SSTI) is high in sub-Saharan Africa. This is fueled by a high prevalence of Panton-Valentine leukocidin (PVL), which can be associated with necrotizing disease. The aim was to describe the clinical presentation and the treatment of SSTI in the African setting and to identify challenges in the management. Patients (n = 319) were recruited in DR Congo (n = 56, 17.6%), Gabon (n = 89, 27.9%), Mozambique (n = 79, 24.8%) and Tanzania (n = 95, 29.8%) during the prospective observational StaphNet cohort study (2010-2015). A physician recorded the clinical management in standardized questionnaires and stratified the entity of SSTI into superficial (sSSTI) or deep-seated (dSSTI). Selected virulence factors (PVL, β hemolysin) and multilocus sequence types (MLST) were extracted from whole genome sequencing data. There were 220/319 (69%) sSSTI and 99/319 (31%) dSSTI. Compared to sSSTI, patients with dSSTI were more often hospitalized (13.2 vs. 23.5%, p = 0.03), HIV-positive (7.6 vs. 15.9%, p = 0.11), and required more often incision and drainage (I&D, 45.5 vs. 76.5%, p = 0.04). The proportion of an adequate antimicrobial therapy increased marginally from day 1 (empirical therapy) to day 3 (definite therapy), for sSSTI (70.7 to 72.4%) and dSSTI (55.4 to 58.9%). PVL was a risk factor for I&D (OR = 1.7, p = 0.02) and associated with MLST clonal complex CC121 (OR = 2.7, p < 0.001). Appropriate antimicrobial agents and surgical services to perform I&D were available for the majority of patients. Results from susceptibility testing should be considered more efficiently in the selection of antimicrobial therapy.

  5. Diversity and Impact of Prokaryotic Toxins on Aquatic Environments: A Review

    Rogério Tenreiro

    2010-10-01

    Full Text Available Microorganisms are ubiquitous in all habitats and are recognized by their metabolic versatility and ability to produce many bioactive compounds, including toxins. Some of the most common toxins present in water are produced by several cyanobacterial species. As a result, their blooms create major threats to animal and human health, tourism, recreation and aquaculture. Quite a few cyanobacterial toxins have been described, including hepatotoxins, neurotoxins, cytotoxins and dermatotoxins. These toxins are secondary metabolites, presenting a vast diversity of structures and variants. Most of cyanobacterial secondary metabolites are peptides or have peptidic substructures and are assumed to be synthesized by non-ribosomal peptide synthesis (NRPS, involving peptide synthetases, or NRPS/PKS, involving peptide synthetases and polyketide synthases hybrid pathways. Besides cyanobacteria, other bacteria associated with aquatic environments are recognized as significant toxin producers, representing important issues in food safety, public health, and human and animal well being. Vibrio species are one of the most representative groups of aquatic toxin producers, commonly associated with seafood-born infections. Some enterotoxins and hemolysins have been identified as fundamental for V. cholerae and V. vulnificus pathogenesis, but there is evidence for the existence of other potential toxins. Campylobacter spp. and Escherichia coli are also water contaminants and are able to produce important toxins after infecting their hosts. Other bacteria associated with aquatic environments are emerging as toxin producers, namely Legionella pneumophila and Aeromonas hydrophila, described as responsible for the synthesis of several exotoxins, enterotoxins and cytotoxins. Furthermore, several Clostridium species can produce potent neurotoxins. Although not considered aquatic microorganisms, they are ubiquitous in the environment and can easily contaminate drinking

  6. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation

    Feil Helene

    2009-08-01

    Full Text Available Abstract Background Initial interest in Dechloromonas aromatica strain RCB arose from its ability to anaerobically degrade benzene. It is also able to reduce perchlorate and oxidize chlorobenzoate, toluene, and xylene, creating interest in using this organism for bioremediation. Little physiological data has been published for this microbe. It is considered to be a free-living organism. Results The a priori prediction that the D. aromatica genome would contain previously characterized "central" enzymes to support anaerobic aromatic degradation of benzene proved to be false, suggesting the presence of novel anaerobic aromatic degradation pathways in this species. These missing pathways include the benzylsuccinate synthase (bssABC genes (responsible for fumarate addition to toluene and the central benzoyl-CoA pathway for monoaromatics. In depth analyses using existing TIGRfam, COG, and InterPro models, and the creation of de novo HMM models, indicate a highly complex lifestyle with a large number of environmental sensors and signaling pathways, including a relatively large number of GGDEF domain signal receptors and multiple quorum sensors. A number of proteins indicate interactions with an as yet unknown host, as indicated by the presence of predicted cell host remodeling enzymes, effector enzymes, hemolysin-like proteins, adhesins, NO reductase, and both type III and type VI secretory complexes. Evidence of biofilm formation including a proposed exopolysaccharide complex and exosortase (epsH are also present. Annotation described in this paper also reveals evidence for several metabolic pathways that have yet to be observed experimentally, including a sulphur oxidation (soxFCDYZAXB gene cluster, Calvin cycle enzymes, and proteins involved in nitrogen fixation in other species (including RubisCo, ribulose-phosphate 3-epimerase, and nif gene families, respectively. Conclusion Analysis of the D. aromatica genome indicates there is much to be

  7. Development of a robust method for isolation of shiga toxin-positive Escherichia coli (STEC from fecal, plant, soil and water samples from a leafy greens production region in California.

    Michael B Cooley

    Full Text Available During a 2.5-year survey of 33 farms and ranches in a major leafy greens production region in California, 13,650 produce, soil, livestock, wildlife, and water samples were tested for Shiga toxin (stx-producing Escherichia coli (STEC. Overall, 357 and 1,912 samples were positive for E. coli O157:H7 (2.6% or non-O157 STEC (14.0%, respectively. Isolates differentiated by O-typing ELISA and multilocus variable number tandem repeat analysis (MLVA resulted in 697 O157:H7 and 3,256 non-O157 STEC isolates saved for further analysis. Cattle (7.1%, feral swine (4.7%, sediment (4.4%, and water (3.3% samples were positive for E. coli O157:H7; 7/32 birds, 2/145 coyotes, 3/88 samples from elk also were positive. Non-O157 STEC were at approximately 5-fold higher incidence compared to O157 STEC: cattle (37.9%, feral swine (21.4%, birds (2.4%, small mammals (3.5%, deer or elk (8.3%, water (14.0%, sediment (12.3%, produce (0.3% and soil adjacent to produce (0.6%. stx1, stx2 and stx1/stx2 genes were detected in 63%, 74% and 35% of STEC isolates, respectively. Subtilase, intimin and hemolysin genes were present in 28%, 25% and 79% of non-O157 STEC, respectively; 23% were of the "Top 6″ O-types. The initial method was modified twice during the study revealing evidence of culture bias based on differences in virulence and O-antigen profiles. MLVA typing revealed a diverse collection of O157 and non-O157 STEC strains isolated from multiple locations and sources and O157 STEC strains matching outbreak strains. These results emphasize the importance of multiple approaches for isolation of non-O157 STEC, that livestock and wildlife are common sources of potentially virulent STEC, and evidence of STEC persistence and movement in a leafy greens production environment.

  8. Development of ELISAs for diagnosis of acute typhoid fever in Nigerian children.

    Jiin Felgner

    2017-06-01

    Full Text Available Improved serodiagnostic tests for typhoid fever (TF are needed for surveillance, to facilitate patient management, curb antibiotic resistance, and inform public health programs. To address this need, IgA, IgM and IgG ELISAs using Salmonella enterica serovar Typhi (S. Typhi lipopolysaccharide (LPS and hemolysin E (t1477 protein were conducted on 86 Nigerian pediatric TF and 29 non-typhoidal Salmonella (NTS cases, 178 culture-negative febrile cases, 28 "other" (i.e., non-Salmonella pediatric infections, and 48 healthy Nigerian children. The best discrimination was achieved between TF and healthy children. LPS-specific IgA and IgM provided receiver operator characteristic areas under the curve (ROC AUC values of 0.963 and 0.968, respectively, and 0.978 for IgA+M combined. Similar performance was achieved with t1477-specific IgA and IgM (0.968 and 0.968, respectively; 0.976 combined. IgG against LPS and t1477 was less accurate for discriminating these groups, possibly as a consequence of previous exposure, although ROC AUC values were still high (0.928 and 0.932, respectively. Importantly, discrimination between TF and children with other infections was maintained by LPS-specific IgA and IgM (AUC = 0.903 and 0.934, respectively; 0.938 combined, and slightly reduced for IgG (0.909, while t1477-specific IgG performed best (0.914. A similar pattern was seen when comparing TF with other infections from outside Nigeria. The t1477 may be recognized by cross-reactive antibodies from other acute infections, although a robust IgG response may provide some diagnostic utility in populations where incidence of other infections is low, such as in children. The data are consistent with IgA and IgM against S. Typhi LPS being specific markers of acute TF.

  9. Genotypic characterization of virulence factors in Escherichia coli strains from patients with cystitis Caracterização genotípica dos fatores de virulência em amostras de Escherichia coli isoladas de pacientes com cistite

    Monique Ribeiro Tiba

    2008-10-01

    Full Text Available Adhesins (P-fimbriae, S-fimbriae, type 1 fimbriae and afimbrial adhesin, toxins (α-hemolysin and cytotoxic necrotizing factor type 1, iron acquisition systems (aerobactin and host defense avoidance mechanisms (capsule or lipopolysaccharide have been shown to be prevalent in Escherichia coli strains associated with urinary tract infections. In this work, 162 Uropathogenic Escherichia coli (UPEC strains from patients with cystitis were genotypically characterized by polymerase chain reaction (PCR assay. We developed three multiplex PCR assays for virulence-related genes papC, papE/F, papG alleles, fimH, sfa/foc, afaE, hly, cnf-1, usp, cdtB, iucD, and kpsMTII, all of them previously identified in UPEC strains. The PCR assay results identified 158 fimH (97.5%, 86 kpsMTII (53.1%, 53 papC/papEF/papG (32.7%, 45 sfa (27.8%, 42 iucD (25.9%, 41 hly (25.3%, 36 usp (22.2%, 30 cnf-1(18.5% and 10 afa (6.2% strains. No strain was positive for cdtB. In this work, we also demonstrated that adhesins may be multiple within a single strain and that several virulence genes can occur combined in association.Adesinas (Fímbria P, fímbria S, fímbria do tipo 1 e a adesina afimbrial, toxinas (α-hemolisina e o fator necrosante citotóxico do tipo 1, sistemas de captação de ferro (aerobactina, e mecanismos de defesa do hospedeiro (cápsula ou lipopolissacarídeo são prevalentes em amostras de Escherichia coli associadas a infecções do trato urinário. O objetivo deste trabalho foi caracterizar genotipicamente 162 amostras de Escherichia coli uropatogênica (UPEC de pacientes com cistite através do ensaio da reação em cadeia da polimerase. Foram realizados três ensaios de PCR multiplex para os seguintes fatores de virulência: papC, papE/F, alelos de papG, fimH, sfa/foc, afaE, hly, cnf-1, usp, cdtB, iucD, e kpsMTII. Os resultados da PCR identificaram, 158 amostras fimH (97,5%, 86 amostras kpsMTII (53,1%, 53 amostras papC/papEF/papG (32,7%, 45 amostras sfa (27

  10. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis

    Jourdan A. Andersson

    2017-10-01

    Full Text Available Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component of the type VI secretion system (T6SS, were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE, and ypo1119-1120, identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE of the T2SS, the ypo2884-encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%, in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely ΔlppΔypo0815, ΔlppΔypo2884, ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3. We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3 mutant strains were 55–100% protected upon subsequent re-challenge with wild

  11. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis

  12. Characteristics of Shigatoxin-Producing Escherichia coli Strains Isolated during 2010–2014 from Human Infections in Switzerland

    Lisa Fierz

    2017-08-01

    Full Text Available Objectives: The aim of this study was to characterize a collection of 95 Shigatoxin-producing E.coli (STEC isolated from human patients in Switzerland during 2010–2014.Methods: We performed O and H serotyping and molecular subtyping.Results: The five most common serogroups were O157, O145, O26, O103, and O146. Of the 95 strains, 35 (36.8% carried stx1 genes only, 43 strains (45.2% carried stx2 and 17 (17.9% harbored combinations of stx1 and stx2 genes. Stx1a (42 strains and stx2a (32 strains were the most frequently detected stx subtypes. Genes for intimin (eae, hemolysin (hly, iron-regulated adhesion (iha, and the subtilase cytotoxin subtypes subAB1, subAB2-1, subAB2-2, or subAB2-3 were detected in 70.5, 83.2, 74.7, and 20% of the strains, respectively. Multilocus sequence typing assigned the majority (58.9% of the isolates to five different clonal complexes (CC, 11, 32, 29, 20, and 165, respectively. CC11 included all O157:[H7] and O55:[H7] isolates. CC32 comprised O145:[H28] isolates, and O145:[H25] belonged to sequence type (ST 342. CC29 contained isolates of the O26:[H11], O111:[H8] and O118:[Hnt] serogroups, and CC20 encompassed isolates of O51:H49/[Hnt] and O103:[H2]. CC165 included isolates typed O80:[H2]-ST301, all harboring stx2d, eae-ξ, hly, and 66.7% additionally harboring iha. All O80:[H2]-ST301 strains harbored at least 7 genes carried by pS88, a plasmid associated with extraintestinal virulence. Compared to data from Switzerland from the years 2000–2009, an increase of the proportion of non-O157 STEC infections was observed as well as an increase of infections due to STEC O146. By contrast, the prevalence of the highly virulent German clone STEC O26:[H11]-ST29 decreased from 11.3% during 2000–2009 to 1.1% for the time span 2010–2014. The detection of O80:[H2]-ST301 harboring stx2d, eae-ξ, hly, iha, and pS88 related genes suggests an ongoing emergence in Switzerland of an unusual, highly pathogenic STEC serotype

  13. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis.

    Andersson, Jourdan A; Sha, Jian; Erova, Tatiana E; Fitts, Eric C; Ponnusamy, Duraisamy; Kozlova, Elena V; Kirtley, Michelle L; Chopra, Ashok K

    2017-01-01

    Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA , which encodes an ATP-binding protein of ribose transport system, and vasK , an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE) , and ypo1119-1120 , identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884 -encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely Δ lpp Δ ypo0815 , Δ lpp Δ ypo2884 , Δ lpp Δ cyoABCDE , Δ vasK Δ hcp6 , and Δ ypo2720-2733 Δ hcp3 . We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with Δ lpp Δ cyoABCDE , Δ vasK Δ hcp6 , and Δ ypo2720-2733 Δ hcp3 mutant strains were 55-100% protected upon subsequent re

  14. Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H- Isolates from Czech Patients with Novel Plasmid Composition Not Previously Seen in German Isolates.

    Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge; Mellmann, Alexander; Bielaszewska, Martina

    2017-12-01

    Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H - strains, first identified in Germany, have emerged as important pathogens throughout Europe. Besides chromosomally encoded Shiga toxin 2a (the major virulence factor), several putative virulence loci, including the hly , etp , and sfp operons, encoding EHEC hemolysin, type II secretion system proteins, and Sfp fimbriae, respectively, are located on the 121-kb plasmid pSFO157 in German strains. Here we report novel SF EHEC O157:H - strains isolated from patients in the Czech Republic. These strains share the core genomes and chromosomal virulence loci encoding toxins ( stx 2a and the cdtV -ABC operon) and adhesins ( eae -γ, efa1 , lpfA O157OI-141 , and lpfA O157OI-154 ) with German strains but differ essentially in their plasmids. In contrast to all previously detected SF EHEC O157:H - strains, the Czech strains carry two plasmids, of 79 kb and 86 kb. The 79-kb plasmid harbors the sfp operon, but neither of the plasmids contains the hly and etp operons. Sequence analyses demonstrated that the 79-kb plasmid (pSFO157 258/98-1) evolved from pSFO157 of German strains by deletion of a 41,534-bp region via homologous recombination, resulting in loss of the hly and etp operons. The 86-kb plasmid (pSFO157 258/98-2) displays 98% sequence similarity to a 92.7-kb plasmid of an extraintestinal pathogenic E. coli bloodstream isolate. Our finding of this novel plasmid composition in SF EHEC O157:H - strains extends the evolutionary history of EHEC O157 plasmids. Moreover, the unique molecular plasmid characteristics permit the identification of such strains, thereby facilitating further investigations of their geographic distribution, clinical significance, and epidemiology. IMPORTANCE Since their first identification in Germany in 1989, sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H - (nonmotile) strains have emerged as important causes of the life-threatening disease hemolytic

  15. Sorbitol-Fermenting Enterohemorrhagic Escherichia coli O157:H− Isolates from Czech Patients with Novel Plasmid Composition Not Previously Seen in German Isolates

    Bauwens, Andreas; Marejková, Monika; Middendorf-Bauchart, Barbara; Prager, Rita; Kossow, Annelene; Zhang, Wenlan; Karch, Helge

    2017-01-01

    ABSTRACT Sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H− strains, first identified in Germany, have emerged as important pathogens throughout Europe. Besides chromosomally encoded Shiga toxin 2a (the major virulence factor), several putative virulence loci, including the hly, etp, and sfp operons, encoding EHEC hemolysin, type II secretion system proteins, and Sfp fimbriae, respectively, are located on the 121-kb plasmid pSFO157 in German strains. Here we report novel SF EHEC O157:H− strains isolated from patients in the Czech Republic. These strains share the core genomes and chromosomal virulence loci encoding toxins (stx2a and the cdtV-ABC operon) and adhesins (eae-γ, efa1, lpfAO157OI-141, and lpfAO157OI-154) with German strains but differ essentially in their plasmids. In contrast to all previously detected SF EHEC O157:H− strains, the Czech strains carry two plasmids, of 79 kb and 86 kb. The 79-kb plasmid harbors the sfp operon, but neither of the plasmids contains the hly and etp operons. Sequence analyses demonstrated that the 79-kb plasmid (pSFO157 258/98-1) evolved from pSFO157 of German strains by deletion of a 41,534-bp region via homologous recombination, resulting in loss of the hly and etp operons. The 86-kb plasmid (pSFO157 258/98-2) displays 98% sequence similarity to a 92.7-kb plasmid of an extraintestinal pathogenic E. coli bloodstream isolate. Our finding of this novel plasmid composition in SF EHEC O157:H− strains extends the evolutionary history of EHEC O157 plasmids. Moreover, the unique molecular plasmid characteristics permit the identification of such strains, thereby facilitating further investigations of their geographic distribution, clinical significance, and epidemiology. IMPORTANCE Since their first identification in Germany in 1989, sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H− (nonmotile) strains have emerged as important causes of the life-threatening disease hemolytic

  16. Análise fenotípica e genotípica da virulência de Staphylococcus spp. e de sua dispersão clonal como contribuição ao estudo da mastite bovina Phenotypic and genotypic analysis of virulence in Staphylococcus spp. and its clonal dispersion as a contribution to the study of bovine mastitis

    Viviane F. Marques

    2013-02-01

    marcadores genéticos podem estar envolvidos com a expressão desta característica. Os demais genes detectados com frequência de 4% (10/250 para cap5 e para cap8, 32,8% (82/250 para fnbA, 4,4% (11/250 para fnbB, 19,2% (48/250 para hla e 18% (45/250 para hlb. O perfil circulante nas propriedades foi o 1: isolado produtor de "slime" e caseinase. O gene spaA foi positivo em todos os S. aureus, apresentando amplicons de tamanhos variados, sendo o tamanho prevalente o de 300pb. A amplificação do gene coa apresentou nove tipos polimórficos distintos, sendo prevalente o amplicon de 600pb. O gene agr foi detectado em todos os S. aureus, com amplicon de 200pb. Foi observado que os genes de virulência estudados estavam distribuídos de modo aleatório entreos 6 distintos perfis eletroforéticos obtidos através da Eletroforese em Gel de Campo Pulsado (PFGE.Mastitis is an inflammation of one or more mammary glands caused mainly by bacteria, among which the genus Staphylococcus plays an important role. Bacteria belonging to this genus are known to express virulence factors which allow their persistence and spread in the host. This study aimed to evaluate the phenotypic and genotypic aspects of virulence factors in Staphylococci spp. isolates from bovine mastitis clinical cases. A total of 272 milk samples from 8 farms in the South-Fluminense region of Rio de Janeiro were analyzed. The samples underwent conventional bacterial identification, yielding 250 Staphylococci spp. isolates. These were tested for the phenotypic detection of slime production by the microplate and Congo Red Agar methods. The hemolysins production, hemolytic synergism, caseinase and DNase production were also evaluated. The isolates were then assayed through the Polymerase Chain Reaction method to detect genes associated with virulence factors such as: capsule (cap5, cap8, fibronectin (fnbA, fnbB, slime (icaA, icaD and hemolysins (hla e hlb. Regarding the number of isolates assessed, 58% (145/250 were

  17. 环介导等温扩增联合横向流动试纸条可视化检测哈维氏弧菌的研究%Visual Detection ofVibrio harveyi Based on Loop-mediated Isothermal Amplification Combined with a Lateral Flow Dipstick

    程蝶; 柴方超; 蔡怡; 周前进; 陈炯

    2016-01-01

    Based on nucleotide enrichment by a loop-mediated isothermal amplification(LAMP)and chromatographic visualization by a lateral flow dipstick(LFD)assay,this work aims to develop a novel LAMP-LFD method for the rapid detection of Vibrio harveyi. Three pairs of primers were designed using the hemolysin gene(vhhA)of V. harveyi as detection target,and used in LAMP reaction,among which the forward inner primer vhhA-FIP was biotinylated. Similarly,a fluorescein isothiocyanate(FITC)-labeled probe vhhA-HP was designed to specifically hybridize with LAMP products. And then the hybridized LAMP products were visually detected by LFD. The optimized LAMP was performed at 63℃ for 40 min;and visual detection via LFD took 50 min. The results indicated that LAMP-LFD was able to specifically identify V. harveyi from other 9 pathogenic bacteria commonly existing in the aquatic animals,such as V. vulnificus. The detection limit of LAMP-LFD was 1.0×102 CFU/mL for V. harveyi pure cultures(equivalent to 2 CFU per reaction),and 5×102 CFU/mL for V. harveyi contaminated tissues of large yellow croaker(equivalent to 20 CFU per reaction),both of which were 100 times lower than that of the conventional PCR method using both outer primers vhhA-F3/vhhA-B3. Therefore,this rapid and accurate LAMP-LFD method is a promising alternative in the surveillance and point-of-care test of V. harveyiin sea farming.%以哈维氏弧菌(Vibrio harveyi)为材料,利用环介导等温扩增技术(LAMP)进行核酸扩增,借助横向流动试纸条(LFD)完成产物检测,旨在建立一种可用于哈维氏弧菌快速检测的LAMP-LFD新技术。以哈维氏弧菌的溶血素基因(vhhA)为检测靶标设计了3对特异性引物(其中,上游内引物vhhA-FIP由生物素标记),进行由生物素标记的LAMP反应;同时设计1条异硫氰酸荧光素(FITC)标记的探针,与获得的LAMP产物进行特异性杂交,杂交产物经LFD完成检测。经