WorldWideScience

Sample records for hemolymph proteins involved

  1. Metabolism of labelled proteins of bombicid moth hemolymph at the final stage of its larval development

    Energy Technology Data Exchange (ETDEWEB)

    Klunova, S M; Altsybeeva, T I; Filippovich, Yu B [Moskovskij Gosudarstvennyj Pedagogicheskij Inst. (USSR)

    1980-01-01

    Studied was the distribution of radioactivity among hemolymph total proteins, fat body, carcass, intestinal wall, febroin and sericin sections of the silk gland after a single injection of hemolymph radioactive preparation into a bombyx. The fat body was the place of the synthesis of proteins used for silk protein formation at the end of 5-larval age.

  2. A tetrodotoxin-binding protein in the hemolymph of shore crab Hemigrapsus sanguineus: purification and properties.

    Science.gov (United States)

    Nagashima, Yuji; Yamamoto, Kazuhiko; Shimakura, Kuniyoshi; Shiomi, Kazuo

    2002-06-01

    The shore crab Hemigrapsus sanguineus hemolymph contains soluble proteins that bind tetrodotoxin (TTX) and are responsible for high resistance of the crab to TTX. The TTX-binding protein was purified from the hemolymph by ultrafiltration, lectin affinity chromatography and gel filtration HPLC. The purified protein gave only one band in native-polyacrylamide gel electrophoresis (PAGE), confirming its homogeneity. Its molecular weight was estimated to be about 400k by gel filtration HPLC, while it was estimated to be about 82k under non-reducing conditions and about 72 and 82k under reducing conditions by SDS-PAGE, indicating that the TTX-binding protein was composed of at least two distinct subunits. The TTX-binding protein was an acidic glycoprotein with pI 3.5, abundant in Asp and Glu but absent in Trp, and contained 6% reducing sugar and 12% amino sugar. The protein selectively bound to TTX, with a neutralizing ability of 6.7 mouse unit TTX/mg protein, but not to paralytic shellfish poisoning toxins. However, its neutralizing activity was almost lost by treatments with enzymes (protease XIV, thermolysin, trypsin, amyloglucosidase and alpha-amylase) and denaturing agents (1% SDS, 1% dithiothreitol, 8 M urea and 6 M guanidine hydrochloride), suggesting the involvement of both proteinaceous and sugar moieties in the binding to TTX and the importance of the steric conformation of the TTX-binding protein. Copright 2002 Elsevier Science Ltd.

  3. Isolation and partial purification of antimicrobial peptides/proteins from dung beetle, Onthophagus taurus immune hemolymph

    International Nuclear Information System (INIS)

    Vasanth Patil, H.B.; Sathish Kumar, B.Y.

    2012-01-01

    Antimicrobial peptides are important in the first line of the host defense system of all insect species. In the present study antimicrobial peptide(s) were isolated from the hemolymph of the dung beetle Onthophagus taurus. Both non induced and immune induced hemolymphs were tested for their antimicrobial activity against different bacterial strains and C. albicans. Induction was done by injecting E. coli into the abdominal cavity of the O. taurus. The non induced hemolymph did not show activity against any of the tested fungal and bacterial strains where as induced hemolymph showed activity against all tested bacterial strains but no activity against C. albicans. The induced hemolymph was subjected to non reducing SDS-PAGE and UV wavelength scan was performed to detect the presence of peptides. The immune induced hemolymph was purified by gel filtration chromatography to separate the proteins responsible for the antibacterial activity. The fractions within the peak were tested against those bacteria which previously showed sensitivity to the crude immune induced hemolymph. All fractions were found to be active against all tested bacteria with difference in zone of inhibition. The peptides are active against prokaryotes and not against eukaryotes. These properties reveal its unique characteristics and therapeutic application. (author)

  4. Differential Protein Expression in the Hemolymph of Bithynia siamensis goniomphalos Infected with Opisthorchis viverrini.

    Directory of Open Access Journals (Sweden)

    Kulwadee Suwannatrai

    2016-11-01

    Full Text Available Bithynia siamensis goniomphalos is a freshwater snail that serves as the first intermediate host of the human liver fluke Opisthorchis viverrini. This parasite is a major public health problem in different countries throughout the Greater Mekong sub-region (Thailand, southern Vietnam, Lao PDR and Cambodia. Chronic O. viverrini infection also results in a gradual increase of fibrotic tissues in the biliary tract that are associated with hepatobiliary diseases and contribute to cholangiocarcinoma (a fatal type of bile duct cancer. Infectivity of the parasite in the snail host is strongly correlated with destruction of helminths by the snail's innate immune system, composed of cellular (hemocyte and humoral (plasma defense factors. To better understand this important host-parasite interface we applied sequential window acquisition of all theoretical spectra mass spectrometry (SWATH-MS to identify and quantify the proteins from the hemolymph of B. siamensis goniomphalos experimentally infected with O. viverrini and compare them to non-infected snails (control group. A total of 362 and 242 proteins were identified in the hemocytes and plasma, respectively. Of these, 145 and 117 proteins exhibited significant differences in expression upon fluke infection in hemocytes and plasma, respectively. Among the proteins with significantly different expression patterns, we found proteins related to immune response (up-regulated in both hemocyte and plasma of infected snails and proteins belonging to the structural and motor group (mostly down-regulated in hemocytes but up-regulated in plasma of infected snails. The proteins identified and quantified in this work will provide important information for the understanding of the factors involved in snail defense against O. viverrini and might facilitate the development of new strategies to control O. viverrini infection in endemic areas.

  5. Ovary histology and quantification of hemolymph proteins of Rhipicephalus (Boophilusmicroplus treated with Melia azedarach

    Directory of Open Access Journals (Sweden)

    Lorena Alessandra Dias de Sousa

    Full Text Available This study aimed to analyze ovary histology and quantify total protein in the hemolymph of Rhipicephalus (Boophilusmicroplus females treated with hexane extracts from green fruits of Melia azedarach. Eight engorged females were immersed in the extract at 0.25% concentration, and eight in water containing 5% acetone (control. The females were dissected 72 hours after treatment, and the ovaries were weighed and subjected to standard histological techniques. The total protein concentration was measured in the hemolymph of 200 females, of which 100 were treated as described above and 100 served as a control. In the treated group, ovary weight reduction and predominance of immature oocytes were observed. In addition, there were decreases in the diameters of the cytoplasm and germ vesicle of the oocytes in the treated group, compared with the controls. The protein concentration in the hemolymph was higher in the treated group than in the controls. The morphological changes observed in the treated ovaries included: presence of vacuolization; alteration of oocyte morphology, which changed from rounded to elongated; deformation of the chorion; and disorganization of the yolk granules. These results demonstrate the action ofM. azedarach fruit extracts on R.(B. microplus oogenesis.

  6. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G.; Ribeiro, José M. C.; Andersen, John F.

    2017-07-27

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes, Culex, and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary “long” D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  7. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone.

    Science.gov (United States)

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G; Ribeiro, José M C; Andersen, John F

    2017-09-15

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes , Culex , and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary "long" D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10 R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  8. C-reactive protein in the hemolymph of Achatina fulica: interrelationship with sex steroids and metallothionein.

    Science.gov (United States)

    Bose, R; Bhattacharya, S

    2000-04-01

    C-reactive protein in Achatina fulica (ACRP) is a normal component of the hemolymph. Its concentration varied from 1mg/ml in the newly hatched male, 3-5 mg/ml in the most active hermaphrodite and 1.5-2.8 mg/ml in the sedentary female showing a direct relationship of the protein with the active phase of the animal. ACRP has a molecular mass of 400 kDa and showed high absorbance in the region of 200-230 nm. It has four subunits with relative molecular masses of 110, 90, 62 and 60 kDa, respectively. Interestingly, rat platelet aggregation in vitro was significantly enhanced by ACRP in presence of 10 microM ADP and 2 mM Ca(2+) suggesting a probable role of ACRP in the aggregation of amoebocytes during the formation of plug in injured tissue. Like other vertebrate CRPs, ACRP also acts as a scavenger of chromatin fragments as evidenced by its binding to poly-L-arginine. Among the sex steroids, 4-androstenedione induces ACRP synthesis in the newly hatched male reaching the level found in the most active hermaphrodite phase (4 mg/ml). A very high molar ratio (5) of mercury binding to ACRP confirmed its sequestration property of heavy metals as observed in vertebrates. The level of metallothionein (MT) in the hemolymph gradually increased from the male to the hermaphrodite to the female, a pattern distinctly different from that of the ACRP titer. Since both MT and ACRP can sequester inorganic mercury, the high level of MT compensates functionally for the low titer of ACRP in the sedentary female.

  9. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins.

    Science.gov (United States)

    Canesi, Laura; Ciacci, Caterina; Fabbri, Rita; Balbi, Teresa; Salis, Annalisa; Damonte, Gianluca; Cortese, Katia; Caratto, Valentina; Monopoli, Marco P; Dawson, Kenneth; Bergami, Elisa; Corsi, Ilaria

    2016-10-01

    The bivalve Mytilus galloprovincialis has proven as a suitable model invertebrate for evaluating the potential impact of nanoparticles (NPs) in the marine environment. In particular, in mussels, the immune system represents a sensitive target for different types of NPs. In environmental conditions, both NP intrinsic properties and those of the receiving medium will affect particle behavior and consequent bioavailability/uptake/toxicity. However, the evaluation of the biological effects of NPs requires additional understanding of how, once within the organism, NPs interact at the molecular level with cells in a physiological environment. In mammalian systems, different NPs associate with serum soluble components, organized into a "protein corona", which affects particle interactions with target cells. However, no information is available so far on the interactions of NPs with biological fluids of aquatic organisms. In this work, the influence of hemolymph serum (HS) on the in vitro effects of amino modified polystyrene NPs (PS-NH2) on Mytilus hemocytes was investigated. Hemocytes were incubated with PS-NH2 suspensions in HS (1, 5 and 50µg/mL) and the results were compared with those obtained in ASW medium. Cell functional parameters (lysosomal membrane stability, oxyradical production, phagocytosis) were evaluated, and morphological changes were investigated by TEM. The activation state of the signalling components involved in Mytilus immune response (p38 MAPK and PKC) was determined. The results show that in the presence of HS, PS-NH2 increased cellular damage and ROS production with respect to ASW medium. The effects were apparently mediated by disregulation of p38 MAPK signalling. The formation of a PS-NH2-protein corona in HS was investigated by centrifugation, and 1D- gel electrophoresis and nano-HPLC-ESI-MS/MS. The results identified the Putative C1q domain containing protein (MgC1q6) as the only component of the PS-NH2 hard protein corona in Mytilus

  10. Hemolymph Melanization in the Silkmoth Bombyx mori Involves Formation of a High Molecular Mass Complex That Metabolizes Tyrosine*

    Science.gov (United States)

    Clark, Kevin D.; Strand, Michael R.

    2013-01-01

    The phenoloxidase (PO) cascade regulates the melanization of blood (hemolymph) in insects and other arthropods. Most studies indicate that microbial elicitors activate the PO cascade, which results in processing of the zymogen PPO to PO. PO is then thought to oxidize tyrosine and o-diphenols to quinones, which leads to melanin. However, different lines of investigation raise questions as to whether these views are fully correct. Here we report that hemolymph from the silkmoth, Bombyx mori, rapidly melanizes after collection from a wound site. Prior studies indicated that in vitro activated PPO hydroxylates Tyr inefficiently. Measurement of in vivo substrate titers, however, suggested that Tyr was the only PO substrate initially present in B. mori plasma and that it is rapidly metabolized by PO. Fractionation of plasma by gel filtration chromatography followed by bioassays indicated that melanization activity was primarily associated with a high mass complex (∼670 kDa) that contained PO. The prophenoloxidase-activating protease inhibitor Egf1.0 blocked formation of this complex and Tyr metabolism, but the addition of phenylthiourea to plasma before fractionation enhanced complex formation and Tyr metabolism. Mass spectrometry analysis indicated that the complex contained PO plus other proteins. Taken together, our results indicate that wounding alone activates the PO cascade in B. mori. They also suggest that complex formation is required for efficient use of Tyr as a substrate. PMID:23553628

  11. Lab-on-a-chip and SDS-PAGE analysis of hemolymph protein profile from Rhipicephalus microplus (Acari: Ixodidae) infected with entomopathogenic nematode and fungus.

    Science.gov (United States)

    Golo, Patrícia Silva; Dos Santos, Alessa Siqueira de Oliveira; Monteiro, Caio Marcio Oliveira; Perinotto, Wendell Marcelo de Souza; Quinelato, Simone; Camargo, Mariana Guedes; de Sá, Fillipe Araujo; Angelo, Isabele da Costa; Martins, Marta Fonseca; Prata, Marcia Cristina de Azevedo; Bittencourt, Vânia Rita Elias Pinheiro

    2016-09-01

    In the present study, lab-on-a-chip electrophoresis (LoaC) was suggested as an alternative method to the conventional polyacrylamide gel electrophoresis under denaturing conditions (SDS-PAGE) to analyze raw cell-free tick hemolymph. Rhipicephalus microplus females were exposed to the entomopathogenic fungus Metarhizium anisopliae senso latu IBCB 116 strain and/or to the entomopathogenic nematode Heterorhabditis indica LPP1 strain. Hemolymph from not exposed or exposed ticks was collected 16 and 24 h after exposure and analyze by SDS-PAGE or LoaC. SDS-PAGE yielded 15 bands and LoaC electrophoresis 17 bands. Despite the differences in the number of bands, when the hemolymph protein profiles of exposed or unexposed ticks were compared in the same method, no suppressing or additional bands were detected among the treatments regardless the method (i.e., SDS-PAGE or chip electrophoresis using the Protein 230 Kit®). The potential of LoaC electrophoresis to detect protein bands from tick hemolymph was considered more efficient in comparison to the detection obtained using the traditional SDS-PAGE method, especially when it comes to protein subunits heavier than 100 KDa. LoaC electrophoresis provided a very good reproducibility, and is much faster than the conventional SDS-PAGE method, which requires several hours for one analysis. Despite both methods can be used to analyze tick hemolymph composition, LoaC was considered more suitable for cell-free hemolymph protein separation and detection. LoaC hemolymph band percent data reported changes in key proteins (i.e., HeLp and vitellogenin) exceptionally important for tick embryogenesis. This study reported, for the first time, tick hemolymph protein profile using LoaC.

  12. Evaluation of Beauveria bassiana infection in the hemolymph serum proteins of the housefly, Musca domestica L. (Diptera: Muscidae).

    Science.gov (United States)

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree

    2017-11-01

    Beauveria bassiana plays a prominent role in biocontrol of houseflies, Musca domestica (L.). Thus, a deeper insight into immune response of M. domestica during B. bassiana infection was warranted to assist the production of more efficient mycoinsecticides. The present study investigates changes in protein profile of M. domestica hemolymph serum post B. bassiana infection using two-dimensional difference gel electrophoresis (2D-DIGE) followed by identification of selected proteins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The non-infected or control group of flies showed an expression of 54 proteins, while M. domestica infected with B. bassiana expressed a total of 68 hemolymph serum proteins. Thirty three proteins were expressed in both groups of houseflies, whereas 35 proteins were exclusively expressed in infected flies and 21 proteins were exclusively expressed in control flies. Among the 33 proteins which were expressed in both groups of houseflies, 17 proteins showed downregulation, while16 proteins were upregulated in the infected flies compared to the non-infected ones. The results from this study are expected to facilitate better understanding of insect's immune response mechanism.

  13. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins

    Energy Technology Data Exchange (ETDEWEB)

    Canesi, Laura, E-mail: Laura.Canesi@unige.it [Dept. of Earth, Environmental and Life Sciences – DISTAV, University of Genoa (Italy); Ciacci, Caterina [Dept. of Biomolecular Sciences – DIBS, University of Urbino (Italy); Fabbri, Rita; Balbi, Teresa [Dept. of Earth, Environmental and Life Sciences – DISTAV, University of Genoa (Italy); Salis, Annalisa; Damonte, Gianluca [Centre of Excellence for Biomedical Research – CEBR, University of Genoa (Italy); Cortese, Katia [Department of Experimental Medicine – DIMES, University of Genoa (Italy); Caratto, Valentina [Dept. of Earth, Environmental and Life Sciences – DISTAV, University of Genoa (Italy); Monopoli, Marco P. [Centre for BioNanoInteractions, School of Chemistry and Chemical Biology, University College Dublin (Ireland); Department of Pharmaceutical and Medical Chemistry, Royal College of Surgeons, 123 St. Stephen Green, Dublin (Ireland); Dawson, Kenneth [Centre for BioNanoInteractions, School of Chemistry and Chemical Biology, University College Dublin (Ireland); Bergami, Elisa; Corsi, Ilaria [Dept. of Physical, Earth and Environmental Sciences, University of Siena (Italy)

    2016-10-15

    The bivalve Mytilus galloprovincialis has proven as a suitable model invertebrate for evaluating the potential impact of nanoparticles (NPs) in the marine environment. In particular, in mussels, the immune system represents a sensitive target for different types of NPs. In environmental conditions, both NP intrinsic properties and those of the receiving medium will affect particle behavior and consequent bioavailability/uptake/toxicity. However, the evaluation of the biological effects of NPs requires additional understanding of how, once within the organism, NPs interact at the molecular level with cells in a physiological environment. In mammalian systems, different NPs associate with serum soluble components, organized into a “protein corona”, which affects particle interactions with target cells. However, no information is available so far on the interactions of NPs with biological fluids of aquatic organisms. In this work, the influence of hemolymph serum (HS) on the in vitro effects of amino modified polystyrene NPs (PS-NH{sub 2}) on Mytilus hemocytes was investigated. Hemocytes were incubated with PS-NH{sub 2} suspensions in HS (1, 5 and 50 µg/mL) and the results were compared with those obtained in ASW medium. Cell functional parameters (lysosomal membrane stability, oxyradical production, phagocytosis) were evaluated, and morphological changes were investigated by TEM. The activation state of the signalling components involved in Mytilus immune response (p38 MAPK and PKC) was determined. The results show that in the presence of HS, PS-NH{sub 2} increased cellular damage and ROS production with respect to ASW medium. The effects were apparently mediated by disregulation of p38 MAPK signalling. The formation of a PS-NH{sub 2}-protein corona in HS was investigated by centrifugation, and 1D- gel electrophoresis and nano-HPLC-ESI-MS/MS. The results identified the Putative C1q domain containing protein (MgC1q6) as the only component of the PS-NH{sub 2} hard

  14. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins

    International Nuclear Information System (INIS)

    Canesi, Laura; Ciacci, Caterina; Fabbri, Rita; Balbi, Teresa; Salis, Annalisa; Damonte, Gianluca; Cortese, Katia; Caratto, Valentina; Monopoli, Marco P.; Dawson, Kenneth; Bergami, Elisa; Corsi, Ilaria

    2016-01-01

    The bivalve Mytilus galloprovincialis has proven as a suitable model invertebrate for evaluating the potential impact of nanoparticles (NPs) in the marine environment. In particular, in mussels, the immune system represents a sensitive target for different types of NPs. In environmental conditions, both NP intrinsic properties and those of the receiving medium will affect particle behavior and consequent bioavailability/uptake/toxicity. However, the evaluation of the biological effects of NPs requires additional understanding of how, once within the organism, NPs interact at the molecular level with cells in a physiological environment. In mammalian systems, different NPs associate with serum soluble components, organized into a “protein corona”, which affects particle interactions with target cells. However, no information is available so far on the interactions of NPs with biological fluids of aquatic organisms. In this work, the influence of hemolymph serum (HS) on the in vitro effects of amino modified polystyrene NPs (PS-NH 2 ) on Mytilus hemocytes was investigated. Hemocytes were incubated with PS-NH 2 suspensions in HS (1, 5 and 50 µg/mL) and the results were compared with those obtained in ASW medium. Cell functional parameters (lysosomal membrane stability, oxyradical production, phagocytosis) were evaluated, and morphological changes were investigated by TEM. The activation state of the signalling components involved in Mytilus immune response (p38 MAPK and PKC) was determined. The results show that in the presence of HS, PS-NH 2 increased cellular damage and ROS production with respect to ASW medium. The effects were apparently mediated by disregulation of p38 MAPK signalling. The formation of a PS-NH 2 -protein corona in HS was investigated by centrifugation, and 1D- gel electrophoresis and nano-HPLC-ESI-MS/MS. The results identified the Putative C1q domain containing protein (MgC1q6) as the only component of the PS-NH 2 hard protein corona in

  15. Thiol oxidation of hemolymph proteins in oysters Crassostrea brasiliana as markers of oxidative damage induced by urban sewage exposure.

    Science.gov (United States)

    Trevisan, Rafael; Flores-Nunes, Fabrício; Dolores, Euler S; Mattos, Jacó J; Piazza, Clei E; Sasaki, Sílvio T; Taniguchi, Satie; Montone, Rosalinda C; Bícego, Márcia C; Dos Reis, Isis M M; Zacchi, Flávia L; Othero, Bárbara N M; Bastolla, Camila L V; Mello, Danielle F; Fraga, Ana Paula M; Wendt, Nestor; Toledo-Silva, Guilherme; Razzera, Guilherme; Dafre, Alcir L; de Melo, Cláudio M R; Bianchini, Adalto; Marques, Maria R F; Bainy, Afonso C D

    2017-07-01

    Urban sewage is a concerning issue worldwide, threatening both wildlife and human health. The present study investigated protein oxidation in mangrove oysters (Crassostrea brasiliana) exposed to seawater from Balneário Camboriú, an important tourist destination in Brazil that is affected by urban sewage. Oysters were exposed for 24 h to seawater collected close to the Camboriú River (CAM1) or 1 km away (CAM2). Seawater from an aquaculture laboratory was used as a reference. Local sewage input was marked by higher levels of coliforms, nitrogen, and phosphorus in seawater, as well as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), linear alkylbenzenes (LABs), and fecal steroid in sediments at CAM1. Exposure of oysters to CAM1 caused marked bioaccumulation of LABs and decreased PAH and PCB concentrations after exposure to both CAM1 and CAM2. Protein thiol oxidation in gills, digestive gland, and hemolymph was evaluated. Lower levels of reduced protein thiols were detected in hemolymph from CAM1, and actin, segon, and dominin were identified as targets of protein thiol oxidation. Dominin susceptibility to oxidation was confirmed in vitro by exposure to peroxides and hypochlorous acid, and 2 cysteine residues were identified as potential sites of oxidation. Overall, these data indicate that urban sewage contamination in local waters has a toxic potential and that protein thiol oxidation in hemolymph could be a useful biomarker of oxidative stress in bivalves exposed to contaminants. Environ Toxicol Chem 2017;36:1833-1845. © 2016 SETAC. © 2016 SETAC.

  16. Binding specificity of the juvenile hormone carrier protein from the hemolymph of the tobacco hornworm Manduca sexta Johannson (Lepidoptera: Sphingidae).

    Science.gov (United States)

    Peterson, R C; Reich, M F; Dunn, P E; Law, J H; Katzenellnbogen, J A

    1977-05-17

    A series of analogues of insect juvenile hormone (four geometric isomers of methyl epoxyfarnesenate, several para-substituted epoxygeranyl phenyl ethers, and epoxyfarnesol and its acetate and haloacetate derivatives) was prepared to investigate the binding specificity of the hemolymph juvenile hormone binding protein from the tobacco hornworm Manduct sexta. The relative binding affinities were determined by a competition assay against radiolabeled methyl (E,E)-3,11-dimethyl-7-ethyl-cis-10,11-epoxytrideca-2,6-dienoate (JH I). The ratio of dissociation constants was estimated by plotting competitor data according to a linear transformation of the dissociation equations describing competition of two ligands for a binding protein. The importance of the geometry of the sesquiterpene hydrocarbon chain is indicated by the fact that the binding affinity is decreased as Z (cis) double bonds are substituted for E (trans) double bonds in the methyl epoxyfarnesenate series; the unepoxidized analogues do not bind. A carboxylic ester function is important although its orientation can be reversed, as indicated by the good binding of epoxyfarnesyl acetate. In the monoterpene series, methyl epoxygeranoate shows no affinity for the binding protein, but substitution of a phenyl or p-carbomethoxyphenyl ether for the ester function imparts a low, but significant affinity. These data taken together with earlier results indicate that the binding site for juvenile hormone in the hemolymph binding protein is characterized by a sterically defined hydrophobic region with polar sites that recognize the epoxide and the ester functions.

  17. Developmental Changes for the Hemolymph Metabolome of Silkworm (Bombyx moriL.)

    Science.gov (United States)

    Zhou, Lihong; Li, Huihui; Hao, Fuhua; Li, Ning; Liu, Xin; Wang, Guoliang; Wang, Yulan; Tang, Huiru

    2015-01-01

    Silkworm (Bombyx mori) is a lepidopteran-holometabolic model organism. To understand its developmental biochemistry, we characterized the larval hemolymph metabonome from the third instar to prepupa stage using 1H NMR spectroscopy whilst hemolymph fatty acid composition using GC-FID/MS. We unambiguously assigned more than 60 metabolites, among which tyrosine-o-β-glucuronide, mesaconate, homocarnosine, and picolinate were reported for the first time from the silkworm hemolymph. Phosphorylcholine was the most abundant metabolite in all developmental stages with exception for the periods before the third and fourth molting. We also found obvious developmental dependence for the hemolymph metabonome involving multiple pathways including protein biosyntheses, glycolysis, TCA cycle, the metabolisms of choline amino acids, fatty acids, purines, and pyrimidines. Most hemolymph amino acids had two elevations during the feeding period of the fourth instar and prepupa stage. Trehalose was the major blood sugar before day 8 of the fifth instar, whereas glucose became the major blood sugar after spinning. C16:0, C18:0 and its unsaturated forms were dominant fatty acids in hemolymph. The developmental changes of hemolymph metabonome were associated with dietary nutrient intakes, biosyntheses of cell membrane, pigments, proteins, and energy metabolism. These findings offered essential biochemistry information in terms of the dynamic metabolic changes during silkworm development. PMID:25825269

  18. Imbalanced Hemolymph Lipid Levels Affect Feeding Motivation in the Two-Spotted Cricket, Gryllus bimaculatus.

    Directory of Open Access Journals (Sweden)

    Takahiro Konuma

    Full Text Available Insect feeding behavior is regulated by many intrinsic factors, including hemolymph nutrient levels. Adipokinetic hormone (AKH is a peptide factor that modulates hemolymph nutrient levels and regulates the nutritional state of insects by triggering the transfer of lipids into the hemolymph. We recently demonstrated that RNA interference (RNAi-mediated knockdown of the AKH receptor (AKHR reduces hemolymph lipid levels, causing an increase in the feeding frequency of the two-spotted cricket, Gryllus bimaculatus. This result indicated that reduced hemolymph lipid levels might motivate crickets to feed. In the present study, to elucidate whether hemolymph lipid levels contribute to insect feeding behavior, we attempted to manipulate hemolymph lipid levels via the lipophorin (Lp-mediated lipid transferring system in G. bimaculatus. Of the constituent proteins in Lp, we focused on apolipophorin-III (GrybiApoLp-III because of its possible role in facilitating lipid mobilization. First, we used RNAi to reduce the expression of GrybiApoLp-III. RNAi-mediated knockdown of GrybiApoLp-III had little effect on basal hemolymph lipid levels and the amount of food intake. In addition, hemolymph lipid levels remained static even after injecting AKH into GrybiApoLp-IIIRNAi crickets. These observations indicated that ApoLp-III does not maintain basal hemolymph lipid levels in crickets fed ad libitum, but is necessary for mobilizing lipid transfer into the hemolymph following AKH stimulation. Second, Lp (containing lipids was injected into the hemolymph to induce a temporary increase in hemolymph lipid levels. Consequently, the initiation of feeding was delayed in a dose-dependent manner, indicating that increased hemolymph lipid levels reduced the motivation to feed. Taken together, these data validate the importance of basal hemolymph lipid levels in the control of energy homeostasis and for regulating feeding behavior in crickets.

  19. The hemolymph proteome of fed and starved Drosophila larvae.

    Science.gov (United States)

    Handke, Björn; Poernbacher, Ingrid; Goetze, Sandra; Ahrens, Christian H; Omasits, Ulrich; Marty, Florian; Simigdala, Nikiana; Meyer, Imke; Wollscheid, Bernd; Brunner, Erich; Hafen, Ernst; Lehner, Christian F

    2013-01-01

    The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.

  20. The hemolymph proteome of fed and starved Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Björn Handke

    Full Text Available The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.

  1. Atrial granular cells of the snail Achatina fulica release proteins into hemolymph after stimulation of the heart nerve.

    Science.gov (United States)

    Shabelnikov, Sergej V; Bystrova, Olga A; Ivanov, Vadim A; Margulis, Boris A; Martynova, Marina

    2009-10-01

    The atrium of the gastropod mollusc Achatina fulica receives rich innervation and contains numerous granular cells (GCs). We studied the atrial innervation and discovered that axon profiles typical in appearance of peptidergic neurons form close unspecialized membrane contacts with GCs. Then, we investigated, at both morphological and biochemical levels, the effect of electrical stimulation of the heart nerve on GCs of Achatina heart perfused in situ. The ultrastructural study demonstrated changes in granule morphology consistent with secretion. These events included alteration of granule content, intracellular granule fusion and formation of complex degranulation channels, within which the granule matrix solubilized. It was shown that electrical stimulation resulted in a significant increase of the total protein concentration in the perfusate. Furthermore, SDS-PAGE analysis of the perfusate revealed three new proteins with molecular masses of 16, 22, and 57 kDa. Affinity-purified polyclonal antibodies against the 16 kDa protein were obtained; the whole-mount immunofluorescence technique revealed the presence of this protein in the granules of atrial GCs. In GCs of the stimulated atrium, a progressive loss of their granular content was observed. The results suggest that the central nervous system can modulate the secretory activity of the atrial GCs through non-synaptic pathways.

  2. Comparative proteomic analysis of hemolymph from uninfected and Candidatus Liberibacter asiaticus-infected Diaphorina citri.

    Science.gov (United States)

    Gill, T A; Chu, C; Pelz-Stelinski, K S

    2017-02-01

    Hemolymph was characterized from Diaphorina citri adults infected with the phytopathogen, Candidatus Liberibacter asiaticus (CLas), and compared with that from uninfected psyllids. This study identified 5531 and 3220 peptides within infected and uninfected hemolymph using nano-LC-MS/MS. A reduced number of proteins were detected for D. citri and all known endosymbionts within infected hemolymph as compared to uninfected hemolymph. A large number of immune defense proteins were absent from D. citri hemolymph; however, a single recognition protein (PGRP), two serine protease inhibitors, three prophenoloxidase (proPO) enzymes, and a single serine protease in an uninfected D. citri were detected. The hemolymph is nearly devoid of nutrient storage proteins. This is the first proteomic analysis of D. citri hemolymph that also analyses the components contributed by all the endosymbionts. By comparing the contribution of each endosymbiont (CCR, CPA, and WB) in the presence and absence of CLas infection, this study offers initial insights regarding the hemolymph response to microbial community shifts associated with D. citri infection status. Our data also present potential protein targets for analysis and disruption of CLas transmission that may facilitate management of huanglongbing (HLB) caused by CLas in citrus.

  3. Comparative proteomics analysis of silkworm hemolymph during the stages of metamorphosis via liquid chromatography and mass spectrometry.

    Science.gov (United States)

    Hou, Yong; Zhang, Yan; Gong, Jing; Tian, Sha; Li, Jianwei; Dong, Zhaoming; Guo, Chao; Peng, Li; Zhao, Ping; Xia, Qingyou

    2016-05-01

    The silkworm is a lepidopteran insect that has an open circulatory system with hemolymph consisting of blood and lymph fluid. Hemolymph is not only considered as a depository of nutrients and energy, but it also plays a key role in substance transportation, immunity response, and proteolysis. In this study, we used LC-MS/MS to analyze the hemolymph proteins of four developmental stages during metamorphosis. A total of 728 proteins were identified from the hemolymph of the second day of wandering stage, first day of pupation, ninth day of pupation, and first day as an adult moth. GO annotations and categories showed that silkworm hemolymph proteins were enriched in carbohydrate metabolism, proteolysis, protein binding, and antibacterial humoral response. The levels of nutrient, immunity-related, and structural proteins changed significantly during development and metamorphosis. Some, such as cuticle, odorant-binding, and chemosensory proteins, showed stage-specific expression in the hemolymph. In addition, the expression of several antimicrobial peptides exhibited their highest level of abundance in the hemolymph of the early pupal stage. These findings provide a comprehensive proteomic insight of the silkworm hemolymph and suggest additional molecular targets for studying insect metamorphosis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Nanoliter hemolymph sampling and analysis of individual adult Drosophila melanogaster.

    Science.gov (United States)

    Piyankarage, Sujeewa C; Featherstone, David E; Shippy, Scott A

    2012-05-15

    The fruit fly (Drosophila melanogaster) is an extensively used and powerful, genetic model organism. However, chemical studies using individual flies have been limited by the animal's small size. Introduced here is a method to sample nanoliter hemolymph volumes from individual adult fruit-flies for chemical analysis. The technique results in an ability to distinguish hemolymph chemical variations with developmental stage, fly sex, and sampling conditions. Also presented is the means for two-point monitoring of hemolymph composition for individual flies.

  5. Isolation, cDNA cloning, and structure-based functional characterization of oryctin, a hemolymph protein from the coconut rhinoceros beetle, Oryctes rhinoceros, as a novel serine protease inhibitor.

    Science.gov (United States)

    Horita, Shoichiro; Ishibashi, Jun; Nagata, Koji; Miyakawa, Takuya; Yamakawa, Minoru; Tanokura, Masaru

    2010-09-24

    We isolated oryctin, a 66-residue peptide, from the hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros and cloned its cDNA. Oryctin is dissimilar to any other known peptides in amino acid sequence, and its function has been unknown. To reveal that function, we determined the solution structure of recombinant (13)C,(15)N-labeled oryctin by heteronuclear NMR spectroscopy. Oryctin exhibits a fold similar to that of Kazal-type serine protease inhibitors but has a unique additional C-terminal α-helix. We performed protease inhibition assays of oryctin against several bacterial and eukaryotic proteases. Oryctin does inhibit the following serine proteases: α-chymotrypsin, endopeptidase K, subtilisin Carlsberg, and leukocyte elastase, with K(i) values of 3.9 × 10(-10) m, 6.2 × 10(-10) m, 1.4 × 10(-9) m, and 1.2 × 10(-8) m, respectively. Although the target molecule of oryctin in the beetle hemolymph remains obscure, our results showed that oryctin is a novel single domain Kazal-type inhibitor and could play a key role in protecting against bacterial infections.

  6. Isolation, cDNA Cloning, and Structure-based Functional Characterization of Oryctin, a Hemolymph Protein from the Coconut Rhinoceros Beetle, Oryctes rhinoceros, as a Novel Serine Protease Inhibitor*

    Science.gov (United States)

    Horita, Shoichiro; Ishibashi, Jun; Nagata, Koji; Miyakawa, Takuya; Yamakawa, Minoru; Tanokura, Masaru

    2010-01-01

    We isolated oryctin, a 66-residue peptide, from the hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros and cloned its cDNA. Oryctin is dissimilar to any other known peptides in amino acid sequence, and its function has been unknown. To reveal that function, we determined the solution structure of recombinant 13C,15N-labeled oryctin by heteronuclear NMR spectroscopy. Oryctin exhibits a fold similar to that of Kazal-type serine protease inhibitors but has a unique additional C-terminal α-helix. We performed protease inhibition assays of oryctin against several bacterial and eukaryotic proteases. Oryctin does inhibit the following serine proteases: α-chymotrypsin, endopeptidase K, subtilisin Carlsberg, and leukocyte elastase, with Ki values of 3.9 × 10−10 m, 6.2 × 10−10 m, 1.4 × 10−9 m, and 1.2 × 10−8 m, respectively. Although the target molecule of oryctin in the beetle hemolymph remains obscure, our results showed that oryctin is a novel single domain Kazal-type inhibitor and could play a key role in protecting against bacterial infections. PMID:20630859

  7. Free amino acids in spider hemolymph.

    Science.gov (United States)

    Tillinghast, Edward K; Townley, Mark A

    2008-11-01

    We examined the free amino acid composition of hemolymph from representatives of five spider families with an interest in knowing if the amino acid profile in the hemolymph of orb-web-building spiders reflects the high demands for small organic compounds in the sticky droplets of their webs. In nearly all analyses, on both orb and non-orb builders, glutamine was the most abundant free amino acid. Glycine, taurine, proline, histidine, and alanine also tended to be well-represented in orb and non-orb builders. While indications of taxon-specific differences in amino acid composition were observed, it was not apparent that two presumptive precursors (glutamine, taurine) of orb web sticky droplet compounds were uniquely enriched in araneids (orb builders). However, total amino acid concentrations were invariably highest in the araneids and especially so in overwintering juveniles, even as several of the essential amino acids declined during this winter diapause. Comparing the data from this study with those from earlier studies revealed a number of discrepancies. The possible origins of these differences are discussed.

  8. Hemolymph proteome changes during worker brood development match the biological divergences between western honey bees (Apis mellifera) and eastern honey bees (Apis cerana).

    Science.gov (United States)

    Feng, Mao; Ramadan, Haitham; Han, Bin; Fang, Yu; Li, Jianke

    2014-07-05

    Hemolymph plays key roles in honey bee molecule transport, immune defense, and in monitoring the physiological condition. There is a lack of knowledge regarding how the proteome achieves these biological missions for both the western and eastern honey bees (Apis mellifera and Apis cerana). A time-resolved proteome was compared using two-dimensional electrophoresis-based proteomics to reveal the mechanistic differences by analysis of hemolymph proteome changes between the worker bees of two bee species during the larval to pupal stages. The brood body weight of Apis mellifera was significantly heavier than that of Apis cerana at each developmental stage. Significantly, different protein expression patterns and metabolic pathways were observed in 74 proteins (166 spots) that were differentially abundant between the two bee species. The function of hemolymph in energy storage, odor communication, and antioxidation is of equal importance for the western and eastern bees, indicated by the enhanced expression of different protein species. However, stronger expression of protein folding, cytoskeletal and developmental proteins, and more highly activated energy producing pathways in western bees suggests that the different bee species have developed unique strategies to match their specific physiology using hemolymph to deliver nutrients and in immune defense. Our disparate findings constitute a proof-of-concept of molecular details that the ecologically shaped different physiological conditions of different bee species match with the hemolymph proteome during the brood stage. This also provides a starting point for future research on the specific hemolymph proteins or pathways related to the differential phenotypes or physiology.

  9. [SPECTRAL AND ACID-BASE PROPERTIES OF HEMOLYMPH PLASMA AND ITS FRACTIONS FROM GASTROPOD PULMONATE MOLLUSC ACHATINA FULICA].

    Science.gov (United States)

    Petrova, T A; Lianguzov, A Yu; Malygina, N M

    2016-01-01

    The set of normal biochemical indicators of the hemolymph plasma of gastropod pulmonate mollusc Achatinafulica is described. Comparative analysis of the whole plasma and its subfractions enriched and depleted of oxygen-carrying protein hemocyanin was performed by spectrophotometry and spectrofluorimetry methods. Individual features of the absorption spectra were analyzed using fourth derivatives. The optimum method for estimating protein concentration was chosen. To characterize acid-base properties of plasma hemolymph and its sub-fractions we calculated buffer capacity, equivalence points and pK values of dominant buffer groups. It is shown that the major role in maintaining the buffer capacity of hemolymph belongs to the bicarbonate system. These results are compared with data for Helix pomatia available in literature. In the future the indicators studied in this work will be used to develop ecotoxicological criteria for the environmental assessment.

  10. Metabolic Post-feeding Changes in Fat Body and Hemolymph of Dipetalogaster maximus (Hemiptera:Reduviidae

    Directory of Open Access Journals (Sweden)

    Lilián E Canavoso

    1998-03-01

    Full Text Available Lipids and glycogen in fat body as well as the modifications in the wet weight of this organ were evaluated in an unfed insect, Dipetalogaster maximus, on day 5 after adult ecdysis (time 0 and during a 30-day period after ingestion of blood meal. Total lipids, high density lipophorin (HDLp, carbohydrates, total proteins and uric acid were determined in the hemolymph during the same period. Fat body wet weight was maximum on day 10 post-feeding and represented on day 30 only 42% of the maximum weight. Lipids stored in the fat body increased up to day 15 reaching 24% of the total weight of tissue. Glycogen was maximum on day 20, representing approximately 3% of the fat body weight. HDLp represented at all times between 17-24% of the total proteins, whose levels ranged between 35 and 47 mg/ml. Uric acid showed at 20, 25 and 30 days similar levels and significantly higher than the ones shown at days 10 and 15. Hemolymphatic lipids fluctuated during starvation between 3-4.4 mg/ml and carbohydrates showed a maximum on day 15 after a blood meal, decreasing up to 0.26 mg/ml on day 25. The above results suggest that during physiological events such as starvation, the availability of nutrients is affected, involving principally the fat body reserves

  11. GP-9s are ubiquitous proteins unlikely involved in olfactory mediation of social organization in the red imported fire ant, Solenopsis invicta.

    Directory of Open Access Journals (Sweden)

    Walter S Leal

    Full Text Available The red imported fire ant (RIFA, Solenopsis invicta, is an invasive species, accidentally introduced in the United States that can cause painful (sometimes life-threatening stings to human, pets, and livestock. Their colonies have two social forms: monogyne and polygyne that have a single and multiple functional queens, respectively. A major gene (Gp-9, identified as a putative pheromone-binding protein on the basis of a modest amino acid sequence identity, has been suggested to influence the expression of colony social organization. Monogyne queens are reported to possess only the GP-9B alleles, whereas polygyne queens possess both GP-9B and GP-9b. Thus, both social forms are reported to express GP-9B, with GP-9b being a marker expressed in polygynes but it is absent in monogynes. Here, we report two types of polygyne colonies, one that does not express GP-9b (monogyne-like and the other expressing both proteins, GP-9B and GP-9b. Given their expression pattern, GP-9s are hemolymph proteins, which are more likely to be involved in the transport of lipids and small ligands within the homocoel. GP-9B existed in two forms, one of them is phosphorylated. The helical-rich content of the protein resembles the secondary structures of a beetle hemolymph protein and moth pheromone-binding proteins. An olfactory role is unlikely given the lack of specific expression in the sensillar lymph. In marked contrast to GP-9s, a chemosensory protein, SinvCSP, is demonstrated to be specifically expressed in the antennae. Within the antennae, expression of SinvCSP is restricted to the last two segments, which are known to house olfactory sensilla.

  12. Effect of salinity on hemolymph osmotic pressure, sodium concentration and Na+-K+-ATPase activity of gill of Chinese crab, Eriocheir sinensis

    Science.gov (United States)

    Liu, Hongyu; Pan, Luqing; Fu, Lü

    2008-02-01

    The effects of salinity on hemolymph osmotic pressure, Na+ concentration and Na+-K+-ATPase activity of gill of Chinese crab Eriocheir sinensis were studied. The results showed that hemolymph osmotic pressure and Na+ concentration increased significantly ( P0.05); However, the protein concentration decreased gradually with the increase of salinity from 0.25 d to 1 d, and then tended to be stable from day 1 to day 15.

  13. Hemolymph amino acid analysis of individual Drosophila larvae.

    Science.gov (United States)

    Piyankarage, Sujeewa C; Augustin, Hrvoje; Grosjean, Yael; Featherstone, David E; Shippy, Scott A

    2008-02-15

    One of the most widely used transgenic animal models in biology is Drosophila melanogaster, the fruit fly. Chemical information from this exceedingly small organism is usually accomplished by studying populations to attain sample volumes suitable for standard analysis methods. This paper describes a direct sampling technique capable of obtaining 50-300 nL of hemolymph from individual Drosophila larvae. Hemolymph sampling performed under mineral oil and in air at 30 s intervals up to 120 s after piercing larvae revealed that the effect of evaporation on amino acid concentrations is insignificant when the sample was collected within 60 s. Qualitative and quantitative amino acid analyses of obtained hemolymph were carried out in two optimized buffer conditions by capillary electrophoresis with laser-induced fluorescence detection after derivatizing with fluorescamine. Thirteen amino acids were identified from individual hemolymph samples of both wild-type (WT) control and the genderblind (gb) mutant larvae. The levels of glutamine, glutamate, and taurine in the gb hemolymph were significantly lower at 35%, 38%, and 57% of WT levels, respectively. The developed technique that samples only the hemolymph fluid is efficient and enables accurate organism-level chemical information while minimizing errors associated with possible sample contaminations, estimations, and effects of evaporation compared to the traditional hemolymph-sampling techniques.

  14. Antimicrobial lipids from the hemolymph of brachyuran crabs

    Digital Repository Service at National Institute of Oceanography (India)

    Ravichandran, S.; Wahidullah, S.; DeSouza, L.; Rameshkumar, G.

    The potential of marine crabs as a source of biologically active products is largely unexplored. In the present study, antimicrobial activity of the hemolymph (plasma) and hemocytes (plasma cells) of six brachyuran crabs was investigated against 16...

  15. Abnormal expression of leiomyoma cytoskeletal proteins involved in cell migration.

    Science.gov (United States)

    Ura, Blendi; Scrimin, Federica; Arrigoni, Giorgio; Athanasakis, Emmanouil; Aloisio, Michelangelo; Monasta, Lorenzo; Ricci, Giuseppe

    2016-05-01

    Uterine leiomyomas are monoclonal tumors. Several factors are involved in the neoplastic transformation of the myometrium. In our study we focused on dysregulated cytoskeletal proteins in the leiomyoma as compared to the myometrium. Paired tissue samples of ten leiomyomas and adjacent myometria were obtained and analyzed by two‑dimensional gel electrophoresis (2-DE). Mass spectrometry was used for protein identification, and western blotting for 2-DE data validation. The values of ten cytoskeletal proteins were found to be significantly different: eight proteins were upregulated in the leiomyoma and two proteins were downregulated. Three of the upregulated proteins (myosin regulatory light polypeptide 9, four and a half LIM domains protein 1 and LIM and SH3 domain protein 1) are involved in cell migration, while downregulated protein transgelin is involved in replicative senescence. Myosin regulatory light polypeptide 9 (MYL9) was further validated by western blotting because it is considered to be a cell migration marker in several cancers and could play a key role in leiomyoma development. Our data demonstrate significant alterations in the expression of cytoskeletal proteins involved in leiomyoma growth. A better understanding of the involvement of cytoskeletal proteins in leiomyoma pathogenesis may contribute to the identification of new therapeutic targets and the development of new pharmacological approaches.

  16. The Drosophila chitinase-like protein IDGF3 is involved in protection against nematodes and woung healing

    Czech Academy of Sciences Publication Activity Database

    Kučerová, Lucie; Brož, Václav; Arefin, B.; Maaroufi, H. O.; Hurychová, J.; Strnad, Hynek; Žurovec, Michal; Theopold, U.

    2016-01-01

    Roč. 8, č. 2 (2016), s. 199-210 ISSN 1662-811X R&D Projects: GA ČR GA14-27816S Institutional support: RVO:60077344 ; RVO:68378050 Keywords : chitinase-like proteins * imaginal disc growth factor * hemolymph clot Subject RIV: CE - Biochemistry; EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 3.938, year: 2016 http://www.karger.com/Article/FullText/442351

  17. Multiple proteins of White spot syndrome virus involved in ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... β-integrin with structure proteins of WSSV and motifs involved in WSSV infection was examined. The results showed ... Introduction. White spot ... denatured conditions and renatured by successive 12 h incu- bations with 6, 4, ...

  18. Twister Protein: a ludic tool involving protein synthesis

    Directory of Open Access Journals (Sweden)

    Aline Weyh

    2015-07-01

    Full Text Available Several studies show that students of various grade levels report the Genetics as an abstract theme and difficult to assimilate by the students, with multiple problems in the teaching-learning process and becoming necessary the development of auxiliary practices. Among the teaching tools, the game is the most currently opted playful activity by stimulating multiple intelligences, allowing greater student-teacher interaction. This work seeks the production of an innovative and dynamic educational game, Twister Protein, as a pedagogical resource for Genetics discipline. The development of the game was based on the use of easily accessible and low cost materials by teachers, allowing the knowledge of transcription, translation and protein folding. The activity was proposed and applied in the classroom with pilot undergraduate students. The fun associated with the knowledge of science not only allowed a better memorization of the content addressed, as aroused the curiosity, theme reflection, character building and collaborative spirits, as well as competitiveness through the interaction between class. This practice proved to be an effective tool in the escape from routine and fault repair of the theoretical process.

  19. Impact of Sampling and Cellular Separation on Amino Acid Determinations in Drosophila Hemolymph.

    Science.gov (United States)

    Cabay, Marissa R; Harris, Jasmine C; Shippy, Scott A

    2018-04-03

    The fruit fly is a frequently used model system with a high degree of human disease-related genetic homology. The quantitative chemical analysis of fruit fly tissues and hemolymph uniquely brings chemical signaling and compositional information to fly experimentation. The work here explores the impact of measured chemical content of hemolymph with three aspects of sample collection and preparation. Cellular content of hemolymph was quantitated and removed to determine hemolymph composition changes for seven primary amine analytes. Hemolymph sampling methods were adapted to determine differences in primary amine composition of hemolymph collected from the head, antenna, and abdomen. Also, three types of anesthesia were employed with hemolymph collection to quantitate effects on measured amino acid content. Cell content was found to be 45.4 ± 22.1 cells/nL of hemolymph collected from both adult and larvae flies. Cell-concentrated fractions of adult, but not larvae, hemolymph were found to have higher and more variable amine content. There were amino acid content differences found between all three areas indicating a robust method to characterize chemical markers from specific regions of a fly, and these appear related to physiological activity. Methods of anesthesia have an impact on hemolymph amino acid composition related to overall physiological impact to fly including higher amino acid content variability and oxygen deprivation effects. Together, these analyses identify potential complications with Drosophila hemolymph analysis and opportunities for future studies to relate hemolymph content with model physiological activity.

  20. Multiple proteins of White spot syndrome virus involved in ...

    Indian Academy of Sciences (India)

    The recognition and attachment of virus to its host cell surface is a critical step for viral infection. Recent research revealed that -integrin was involved in White spot syndrome virus (WSSV) infection. In this study, the interaction of -integrin with structure proteins of WSSV and motifs involved in WSSV infection was ...

  1. Protein function prediction involved on radio-resistant bacteria

    International Nuclear Information System (INIS)

    Mezhoud, Karim; Mankai, Houda; Sghaier, Haitham; Barkallah, Insaf

    2009-01-01

    Previously, we identified 58 proteins under positive selection in ionizing-radiation-resistant bacteria (IRRB) but absent in all ionizing-radiation-sensitive bacteria (IRSB). These are good reasons to believe these 58 proteins with their interactions with other proteins (interactomes) are a part of the answer to the question as to how IRRB resist to radiation, because our knowledge of interactomes of positively selected orphan proteins in IRRB might allow us to define cellular pathways important to ionizing-radiation resistance. Using the Database of Interacting Proteins and the PSIbase, we have predicted interactions of orthologs of the 58 proteins under positive selection in IRRB but absent in all IRSB. We used integrate experimental data sets with molecular interaction networks and protein structure prediction from databases. Among these, 18 proteins with their interactomes were identified in Deinococcus radiodurans R1. DNA checkpoint and repair, kinases pathways, energetic and nucleotide metabolisms were the important biological process that found. We predicted the interactomes of 58 proteins under positive selection in IRRB. It is hoped our data will provide new clues as to the cellular pathways that are important for ionizing-radiation resistance. We have identified news proteins involved on DNA management which were not previously mentioned. It is an important input in addition to protein that studied. It does still work to deepen our study on these new proteins

  2. Exploiting genomic data to identify proteins involved in abalone reproduction.

    Science.gov (United States)

    Mendoza-Porras, Omar; Botwright, Natasha A; McWilliam, Sean M; Cook, Mathew T; Harris, James O; Wijffels, Gene; Colgrave, Michelle L

    2014-08-28

    Aside from their critical role in reproduction, abalone gonads serve as an indicator of sexual maturity and energy balance, two key considerations for effective abalone culture. Temperate abalone farmers face issues with tank restocking with highly marketable abalone owing to inefficient spawning induction methods. The identification of key proteins in sexually mature abalone will serve as the foundation for a greater understanding of reproductive biology. Addressing this knowledge gap is the first step towards improving abalone aquaculture methods. Proteomic profiling of female and male gonads of greenlip abalone, Haliotis laevigata, was undertaken using liquid chromatography-mass spectrometry. Owing to the incomplete nature of abalone protein databases, in addition to searching against two publicly available databases, a custom database comprising genomic data was used. Overall, 162 and 110 proteins were identified in females and males respectively with 40 proteins common to both sexes. For proteins involved in sexual maturation, sperm and egg structure, motility, acrosomal reaction and fertilization, 23 were identified only in females, 18 only in males and 6 were common. Gene ontology analysis revealed clear differences between the female and male protein profiles reflecting a higher rate of protein synthesis in the ovary and higher metabolic activity in the testis. A comprehensive mass spectrometry-based analysis was performed to profile the abalone gonad proteome providing the foundation for future studies of reproduction in abalone. Key proteins involved in both reproduction and energy balance were identified. Genomic resources were utilised to build a database of molluscan proteins yielding >60% more protein identifications than in a standard workflow employing public protein databases. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Identification of Inhibitors of Biological Interactions Involving Intrinsically Disordered Proteins

    Directory of Open Access Journals (Sweden)

    Daniela Marasco

    2015-04-01

    Full Text Available Protein–protein interactions involving disordered partners have unique features and represent prominent targets in drug discovery processes. Intrinsically Disordered Proteins (IDPs are involved in cellular regulation, signaling and control: they bind to multiple partners and these high-specificity/low-affinity interactions play crucial roles in many human diseases. Disordered regions, terminal tails and flexible linkers are particularly abundant in DNA-binding proteins and play crucial roles in the affinity and specificity of DNA recognizing processes. Protein complexes involving IDPs are short-lived and typically involve short amino acid stretches bearing few “hot spots”, thus the identification of molecules able to modulate them can produce important lead compounds: in this scenario peptides and/or peptidomimetics, deriving from structure-based, combinatorial or protein dissection approaches, can play a key role as hit compounds. Here, we propose a panoramic review of the structural features of IDPs and how they regulate molecular recognition mechanisms focusing attention on recently reported drug-design strategies in the field of IDPs.

  4. Polyamines, peroxidase and proteins involved in the senescence ...

    African Journals Online (AJOL)

    Senescence is the natural aging process at the cellular level or range of phenomena associated with this process. The objective of this review was to show the involvement of substances that may be related to senescence in plants, such as polyamines, peroxidase and proteins. These substances were related with the ...

  5. Late rise in hemolymph osmolality in Macrobrachium acanthurus (diadromous freshwater shrimp) exposed to brackish water: Early reduction in branchial Na+/K+ pump activity but stable muscle HSP70 expression.

    Science.gov (United States)

    Freire, Carolina A; Maraschi, Anieli C; Lara, Alessandra F; Amado, Enelise M; Prodocimo, Viviane

    2018-02-01

    Some Macrobrachium shrimps (Caridea, Palaemonidae) are diadromous; freshwater adults are truly euryhaline, while larvae need saline water for development. Branchial Na + /K + -ATPase (NKA) and carbonic anhydrase (CA) are involved in NaCl absorption in freshwater. This study aimed at verifying the time course of the osmoregulatory response of adult Macrobrachium acanthurus to high salinity brackish water (20‰), from the first 30min to 5days. The goal was to detect possible transition from hyper- to hyporegulation, the putative involvement of branchial NKA and CA, or the induction of muscular HSP70 expression. Hemolymph osmotic and ionic concentrations remained relatively stable and close to control levels until ~9h of exposure, but later increased consistently (~50%). A fast reduction in NKA activity (3-6h) was observed; these shrimps seem to shut off salt absorption already in the first hours. Later on, especially after 24h, hemolymph concentrations rise but HSP70 expression is not induced, possibly because constitutive levels are already sufficient to prevent protein damage. Time-dependent response mechanisms effective in high salinity brackish water, resulting in salt loading avoidance and suggestive of hyporegulation should be further investigated in decapods that evolutionary invaded freshwater. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A New Method for Quick and Easy Hemolymph Collection from Apidae Adults.

    Directory of Open Access Journals (Sweden)

    Grzegorz Borsuk

    Full Text Available Bio-analysis of insects is increasingly dependent on highly sensitive methods that require high quality biological material, such as hemolymph. However, it is difficult to collect fresh and uncontaminated hemolymph from adult bees since they are very active and have the potential to sting, and because hemolymph is rapidly melanized. Here we aimed to develop and test a quick and easy method for sterile and contamination-free hemolymph sampling from adult Apidae. Our novel antennae method for hemolymph sampling (AMHS, entailed the detachment of an antenna, followed by application of delicate pressure to the bee's abdomen. This resulted in the appearance of a drop of hemolymph at the base of the detached antenna, which was then aspirated using an automatic pipetter. Larger insect size corresponded to easier and faster hemolymph sampling, and to a greater sample volume. We obtained 80-100 μL of sterile non-melanized hemolymph in 1 minute from one Bombus terrestris worker, in 6 minutes from 10 Apis mellifera workers, and in 15 minutes from 18 Apis cerana workers (+/-0.5 minutes. Compared to the most popular method of hemolymph collection, in which hemolymph is sampled by puncturing the dorsal sinus of the thorax with a capillary (TCHS, significantly fewer bees were required to collect 80-100 μL hemolymph using our novel AMHS method. Moreover, the time required for hemolymph collection was significantly shorter using the AMHS compared to the TCHS, which protects the acquired hemolymph against melanization, thus providing the highest quality material for biological analysis.

  7. FOP is a centriolar satellite protein involved in ciliogenesis.

    Directory of Open Access Journals (Sweden)

    Joanna Y Lee

    Full Text Available Centriolar satellites are proteinaceous granules that are often clustered around the centrosome. Although centriolar satellites have been implicated in protein trafficking in relation to the centrosome and cilium, the details of their function and composition remain unknown. FOP (FGFR1 Oncogene Partner is a known centrosome protein with homology to the centriolar satellite proteins FOR20 and OFD1. We find that FOP partially co-localizes with the satellite component PCM1 in a cell cycle-dependent manner, similarly to the satellite and cilium component BBS4. As for BBS4, FOP localization to satellites is cell cycle dependent, with few satellites labeled in G1, when FOP protein levels are lowest, and most labeled in G2. FOP-FGFR1, an oncogenic fusion that causes a form of leukemia called myeloproliferative neoplasm, also localizes to centriolar satellites where it increases tyrosine phosphorylation. Depletion of FOP strongly inhibits primary cilium formation in human RPE-1 cells. These results suggest that FOP is a centriolar satellite cargo protein and, as for several other satellite-associated proteins, is involved in ciliogenesis. Localization of the FOP-FGFR1 fusion kinase to centriolar satellites may be relevant to myeloproliferative neoplasm disease progression.

  8. Molecular signaling involving intrinsically disordered proteins in prostate cancer

    Directory of Open Access Journals (Sweden)

    Anna Russo

    2016-01-01

    Full Text Available Investigations on cellular protein interaction networks (PINs reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.

  9. Analysis of proteins involved in biodegradation of crop biomass

    Science.gov (United States)

    Crawford, Kamau; Trotman, Audrey

    1998-01-01

    The biodegradation of crop biomass for re-use in crop production is part of the bioregenerative life support concept proposed by the National Aeronautics and Space Administration (NASA) for long duration, manned space exploration. The current research was conducted in the laboratory to evaluate the use of electrophoretic analysis as a means of rapidly assaying for constitutive and induced proteins associated with the bacterial degradation of crop residue. The proteins involved in crop biomass biodegradation are either constitutive or induced. As a result, effluent and cultures were examined to investigate the potential of using electrophoretic techniques as a means of monitoring the biodegradation process. Protein concentration for optimum banding patterns was determined using the Bio-Rad Protein Assay kit. Four bacterial soil isolates were obtained from the G.W. Carver research Farm at Tuskegee University and used in the decomposition of components of plant biomass. The culture, WDSt3A was inoculated into 500 mL of either Tryptic Soy Broth or Nutrient Broth. Incubation, with shaking of each flask was for 96 hours at 30 C. The cultures consistently gave unique banding patterns under denaturing protein electrophoresis conditions, The associated extracellular enzymes also yielded characteristic banding patterns over a 14-day period, when native electrophoresis techniques were used to examine effluent from batch culture bioreactors. The current study evaluated sample preparation and staining protocols to determine the ease of use, reproducibility and reliability, as well as the potential for automation.

  10. Proteome Analysis of the Hemolymph, Mushroom Body, and Antenna Provides Novel Insight into Honeybee Resistance against Varroa Infestation.

    Science.gov (United States)

    Hu, Han; Bienefeld, Kaspar; Wegener, Jakob; Zautke, Fred; Hao, Yue; Feng, Mao; Han, Bin; Fang, Yu; Wubie, Abebe Jenberie; Li, Jianke

    2016-08-05

    Varroa destructor has been identified as a major culprit responsible for the losses of millions of honeybee colonies. Varroa sensitive hygiene (VSH) is a suite of behaviors from adult bees to suppress mite reproduction by uncapping and/or removing mite infested pupae from a sealed brood. Despite the efforts to elucidate the molecular underpinnings of VSH, they remain largely unknown. We investigated the proteome of mushroom bodies (MBs) and antennae of adult bees with and without VSH from a stock selected for VSH based on their response to artificially Varroa-infected brood cells by near-infrared camera observation. The pupal hemolymph proteome was also compared between the VSH-line and the line that was not selected for VSH. The identified 8609 proteins in the hemolymph, MBs, and antennae represent the most depth coverage of the honeybee proteome (>55%) to date. In the hemolymph, the VSH-line adapts a unique strategy to boost the social immunity and drive pupal organogenesis by enhancing energy metabolism and protein biosynthesis. In MBs, the up-regulated proteins implicated in neuronal sensitivity suggest their roles to promote the execution of VSH by activation of synaptic vesicles and calcium channel activities. In antennae, the highly expressed proteins associated with sensitivity of olfactory senses and signal transmissions signify their roles by inputting a strong signal to the MBs for initiating VSH. These observations illustrate that the enhanced social immunities and olfactory and neuronal sensitivity play key roles in the combat against Varroa infestation. The identified candidate markers may be useful for accelerating marker-associated selection for VSH to aid in resistance to a parasite responsible for decline in honeybee health.

  11. Fat body, hemolymph and ovary routes for delivery of substances to ovary in Melipona quadrifasciata anthidioides: differences among castes through the use of electron-opaque tracers.

    Science.gov (United States)

    da Cruz-Landim, Carminda; Roat, Thaisa Cristina; Berger, Bruno

    2013-08-01

    The yolk protein precursor, vitellogenin (Vg), in bees is synthesized in the fat body trophocytes, delivered to the hemolymph and ultimately absorbed from there during the vitellogenic phase of oocytes in the active ovary. The routes tracing the material exchange that occurs between the trophocytes and the hemolymph, in addition to the transportation from the hemolymph to the ovarian follicles, were marked by alkaline phosphatase and lanthanum nitrate (LN). Active ovaries from nurse workers and physogastric queens, as well as inactive ovaries of virgin queens, were examined by transmission electron microscopy. The LN permitted better visualization of the routes of exchanges between the organs and the hemolymph. Both methods demonstrate the apparent differences between the phases of the ovary and the bee caste. In inactive ovaries of the virgin queens, the routes from the follicular epithelium to the oocyte remain closed; conversely, they are open in active ovaries of the nurse workers and physogastric queens. The differences between the methods and classes of bees are discussed.

  12. Coexpression of multidrug resistance involve proteins: a flow cytometric analysis.

    Science.gov (United States)

    Boutonnat, J; Bonnefoix, T; Mousseau, M; Seigneurin, D; Ronot, X

    1998-01-01

    Cross resistance to multiple natural cytotoxic products represents a major obstacle in myeloblastic acute leukaemia (AML). Multidrug resistance (MDR) often involves overexpression of plasma membrane drug transporter P-glycoprotein (PGP) or the resistance associated protein (MRP). Recently, a protein overexpressed in a non-PGP MDR lung cancer cell line and termed lung resistance related protein (LRP) was identified. These proteins are known to be associated with a bad prognosis in AML. We have developed a triple indirect labelling analysed by flow cytometry to detect the coexpression of these proteins. Since no cell line expressing all three antigens is known, we mixed K562 cells (resistant to Adriblastine, PGP+, MRP-, LRP-) with GLC4 cells (resistant to Adriblastine, PGP-, MRP+, LRP+) to create a model system to test the method. The antibodies used were UIC2 for PGP, MRPm6 for MRP and LRP56 for LRP. They were revealed by Fab'2 coupled with Fluoresceine-isothiocyanate, Phycoerythrin or Tricolor with isotype specificity. Cells were fixed and permeabilized after PGP labelling because MRPm6 and LRP56 recognize intracellular epitopes. PGP and LRP were easily detected. MRP is expressed at relatively low levels and was more difficult to detect because in the triple labelling the non specific staining was higher than in a single labelling. Despite the increased background in the triple labelling we were able to detect coexpression of PGP, MRP, LRP by flow cytometry. This method appears to be very useful to detect coexpression of markers in AML. Such coexpression could modify the therapeutic approach with revertants.

  13. Milky hemolymph syndrome (MHS) in spiny lobsters, penaeid shrimp and crabs.

    Science.gov (United States)

    Nunan, Linda M; Poulos, Bonnie T; Navarro, Solangel; Redman, Rita M; Lightner, Donald V

    2010-09-02

    Black tiger shrimp Penaeus monodon, European shore crab Carcinus maenas and spiny lobster Panulirus spp. can be affected by milky hemolymph syndrome (MHS). Four rickettsia-like bacteria (RLB) isolates of MHS originating from 5 geographical areas have been identified to date. The histopathology of the disease was characterized and a multiplex PCR assay was developed for detection of the 4 bacterial isolates. The 16S rRNA gene and 16-23S rRNA intergenic spacer region (ISR) were used to examine the phylogeny of the MHS isolates. Although the pathology of this disease appears similar in the various different hosts, sequencing and examination of the phylogenetic relationships reveal 4 distinct RLB involved in the infection process.

  14. Total cysteine and glutathione determination in hemolymph of individual adult D. melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Borra, Srivani, E-mail: sborra3@uic.edu [Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, 4323 SES, MC 111, Chicago, IL 60607 (United States); Featherstone, David E., E-mail: def@uic.edu [Department of Biological Sciences, University of Illinois at Chicago, 840 West Taylor Street, SEL 4311, M/C 067, Chicago, IL 60607 (United States); Laboratory of Integrative Neuroscience, University of Illinois at Chicago, 840 West Taylor Street, SEL 4311, M/C 067, Chicago, IL 60607 (United States); Shippy, Scott A., E-mail: sshippy@uic.edu [Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, 5417 SES, MC 111, Chicago, IL 60607 (United States); Laboratory of Integrative Neuroscience, University of Illinois at Chicago, 840 West Taylor Street, SEL 4311, M/C 067, Chicago, IL 60607 (United States)

    2015-01-01

    Highlights: • Method for highly volume variant, nL sample assay of biological relevant thiols. • Defined capillary lengths used to deliver nL sample and reagent volumes. • Optimized reagent concentrations, reaction times and temperatures for thiol assay. • Total cysteine and glutathione measured from hemolymph of individual fruit flies. - Abstract: Determination of thiols, glutathione (GSH) and cysteine (Cys) are important due to their roles in oxidative stress and aging. Oxidants such as soluble O{sub 2} and H{sub 2}O{sub 2} promote oxidation of thiols to disulfide (-S-S-) bonded dimers affecting quantitation accuracy. The method presented here reduces disulfide-bonded species followed by fluorescence labelling of the 29.5 (±18.2) nL hemolymph volumes of individual adult Drosophila Melanogaster. The availability of only tens of nanoliter (nL) samples that are also highly volume variant requires efficient sample handling to improve thiol measurements while minimizing sample dilution. The optimized method presented here utilizes defined lengths of capillaries to meter tris(2-carboxyethyl)phosphine reducing reagent and monobromobimane derivatizing reagent volumes enabling Cys and GSH quantitation with only 20-fold dilution. The nL assay developed here was optimized with respect to reagent concentrations, sample dilution, reaction times and temperatures. Separation and identification of the nL thiol mixtures were obtained with capillary electrophoresis-laser induced fluorescence. To demonstrate the capability of this method total Cys and total GSH were measured in the hemolymph collected from individual adult D. Melanogaster. The thiol measurements were used to compare a mutant fly strain with a non-functional cystine–glutamate transporter (xCT) to its background control. The mutant fly, genderblind (gb), carries a non-functional gene for a protein similar to mammalian xCT whose function is not fully understood. Average concentrations obtained for mutant

  15. Hemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species

    DEFF Research Database (Denmark)

    Olsson, Trine; MacMillan, Heath A.; Nyberg, Nils

    2016-01-01

    osmolality was similar among all species despite chill-tolerant species having lower hemolymph [Na(+)]. Using NMR spectroscopy, we found that chill-tolerant species instead have higher levels of sugars and free amino acids in their hemolymph, including classical 'cryoprotectants' such as trehalose...

  16. Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis

    Directory of Open Access Journals (Sweden)

    Rom William N

    2005-08-01

    Full Text Available Abstract Background Cancer serum protein profiling by mass spectrometry has uncovered mass profiles that are potentially diagnostic for several common types of cancer. However, direct mass spectrometric profiling has a limited dynamic range and difficulties in providing the identification of the distinctive proteins. We hypothesized that distinctive profiles may result from the differential expression of relatively abundant serum proteins associated with the host response. Methods Eighty-four antibodies, targeting a wide range of serum proteins, were spotted onto nitrocellulose-coated microscope slides. The abundances of the corresponding proteins were measured in 80 serum samples, from 24 newly diagnosed subjects with lung cancer, 24 healthy controls, and 32 subjects with chronic obstructive pulmonary disease (COPD. Two-color rolling-circle amplification was used to measure protein abundance. Results Seven of the 84 antibodies gave a significant difference (p Conclusion Our results suggest that a distinctive serum protein profile involving abundant proteins may be observed in lung cancer patients relative to healthy subjects or patients with chronic disease and may have utility as part of strategies for detecting lung cancer.

  17. Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis

    International Nuclear Information System (INIS)

    Gao, Wei-Min; Haab, Brian B; Hanash, Samir M; Kuick, Rork; Orchekowski, Randal P; Misek, David E; Qiu, Ji; Greenberg, Alissa K; Rom, William N; Brenner, Dean E; Omenn, Gilbert S

    2005-01-01

    Cancer serum protein profiling by mass spectrometry has uncovered mass profiles that are potentially diagnostic for several common types of cancer. However, direct mass spectrometric profiling has a limited dynamic range and difficulties in providing the identification of the distinctive proteins. We hypothesized that distinctive profiles may result from the differential expression of relatively abundant serum proteins associated with the host response. Eighty-four antibodies, targeting a wide range of serum proteins, were spotted onto nitrocellulose-coated microscope slides. The abundances of the corresponding proteins were measured in 80 serum samples, from 24 newly diagnosed subjects with lung cancer, 24 healthy controls, and 32 subjects with chronic obstructive pulmonary disease (COPD). Two-color rolling-circle amplification was used to measure protein abundance. Seven of the 84 antibodies gave a significant difference (p < 0.01) for the lung cancer patients as compared to healthy controls, as well as compared to COPD patients. Proteins that exhibited higher abundances in the lung cancer samples relative to the control samples included C-reactive protein (CRP; a 13.3 fold increase), serum amyloid A (SAA; a 2.0 fold increase), mucin 1 and α-1-antitrypsin (1.4 fold increases). The increased expression levels of CRP and SAA were validated by Western blot analysis. Leave-one-out cross-validation was used to construct Diagonal Linear Discriminant Analysis (DLDA) classifiers. At a cutoff where all 56 of the non-tumor samples were correctly classified, 15/24 lung tumor patient sera were correctly classified. Our results suggest that a distinctive serum protein profile involving abundant proteins may be observed in lung cancer patients relative to healthy subjects or patients with chronic disease and may have utility as part of strategies for detecting lung cancer

  18. Functional analysis of thermostable proteins involved in carbohydrate metabolism

    NARCIS (Netherlands)

    Akerboom, A.P.

    2007-01-01

    Thermostable proteins can resist temperature stress whilst keeping their integrity and functionality. In many cases, thermostable proteins originate from hyperthermophilic microorganisms that thrive in extreme environments. These systems are generally located close to geothermal (volcanic) activity,

  19. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Muhammed Jamsheer K

    Full Text Available Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction.

  20. Identification of Protein-Protein Interactions Involved in Pectin Biosynthesis in the golgi Apparatus

    DEFF Research Database (Denmark)

    Lund, Christian Have

    for instance as food additives, nutraceutical, for paper and energy production. Pectin is a cell wall glycan that crucial for every plant growing on land. Pectin is said to be one of the most complex glycans on earth and it is hypothesized that at least 67 enzymatic reactions are involved in its biosynthesis......The plant cell wall surrounds every plant cell and is an essential component that is involved in diverse functions including plant development, morphology, resistance towards plant pathogens etc. The plant cell wall is not only important for the plant. The cell wall has many industrial applications...... the diverse pectin structures for industrial, agronomic and biomedical uses. Increasing evidence suggests that complex formation is important in governing functional coordination of proteins involved in cell wall biosynthesis. In Arabidopsis thaliana, a homogalacturonan (HG) synthase core complex between...

  1. A serine protease inhibitor from hemolymph of green mussel, Perna viridis

    Digital Repository Service at National Institute of Oceanography (India)

    Khan, M.S.; Goswami, U.; Rojatkar, S.R.; Khan, M.I.

    Bioactivity guided fractions of cell-free hemolymph of bacterially challenged marine mussel, Perna viridis led to the isolation of a novel quaternary alkaloid 1, which was identified by its spectral data. The isolated molecule 1 has been found...

  2. Receptor-like proteins involved in plant disease resistance

    NARCIS (Netherlands)

    Kruijt, M.; Kock, de M.J.D.; Wit, de P.J.G.M.

    2005-01-01

    Race-specific resistance in plants against microbial pathogens is governed by several distinct classes of resistance (R) genes. This review focuses on the class that consists of the plasma membrane-bound leucine-rich repeat proteins known as receptor-like proteins (RLPs). The first isolated

  3. A Deg-protease family protein in marine Synechococcus is involved in outer membrane protein organization

    Directory of Open Access Journals (Sweden)

    Rhona Kayra Stuart

    2014-06-01

    Full Text Available Deg-family proteases are a periplasm-associated group of proteins that are known to be involved in envelope stress responses and are found in most microorganisms. Orthologous genes SYNW2176 (in strain WH8102 and sync_2523 (strain CC9311 are predicted members of the Deg-protease family and are among the few genes induced by copper stress in both open ocean and coastal marine Synechococcus strains. In contrast to the lack of a phenotype in a similar knockout in Synechocystis PCC6803, a SYNW2176 knockout mutant in strain WH8102 was much more resistant to copper than the wild-type. The mutant also exhibited a significantly altered outer membrane protein composition which may contribute to copper resistance, longer lag phase after transfer, low-level consistent alkaline phosphatase activity, and an inability to induce high alkaline phosphatase activity in response to phosphate stress. This phenotype suggests a protein-quality-control role for SYNW2176, the absence of which leads to a constitutively activated stress response. Deg-protease family proteins in this ecologically important cyanobacterial group thus help to determine outer membrane responses to both nutrients and toxins.

  4. Identification of Proteins Involved in Salinity Tolerance in Salicornia bigelovii

    KAUST Repository

    Salazar Moya, Octavio Ruben

    2017-11-01

    With a global growing demand in food production, agricultural output must increase accordingly. An increased use of saline soils and brackish water would contribute to the required increase in world food production. Abiotic stresses, such as salinity and drought, are also major limiters of crop growth globally - most crops are relatively salt sensitive and are significantly affected when exposed to salt in the range of 50 to 200 mM NaCl. Genomic resources from plants that naturally thrive in highly saline environments have the potential to be valuable in the generation of salt tolerant crops; however, these resources have been largely unexplored. Salicornia bigelovii is a plant native to Mexico and the United States that grows in salt marshes and coastal regions. It can thrive in environments with salt concentrations higher than seawater. In contrast to most crops, S. bigelovii is able to accumulate very high concentrations (in the order of 1.5 M) of Na+ and Cl- in its photosynthetically active succulent shoots. Part of this tolerance is likely to include the storage of Na+ in the vacuoles of the shoots, making S. bigelovii a good model for understanding mechanisms of Na+ compartmentalization in the vacuoles and a good resource for gene discovery. In this research project, phenotypic, genomic, transcriptomic, and proteomic approaches have been used for the identification of candidate genes involved in salinity tolerance in S. bigelovii. The genomes and transcriptomes of three Salicornia species have been sequenced. This information has been used to support the characterization of the salt-induced transcriptome of S. bigelovii shoots and the salt-induced proteome of various organellar membrane enriched fractions from S. bigelovii shoots, which led to the creation of organellar membrane proteomes. Yeast spot assays at different salt concentrations revealed several proteins increasing or decreasing yeast salt tolerance. This work aims to create the basis for

  5. The SGS3 protein involved in PTGS finds a family

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2002-08-01

    Full Text Available Abstract Background Post transcriptional gene silencing (PTGS is a recently discovered phenomenon that is an area of intense research interest. Components of the PTGS machinery are being discovered by genetic and bioinformatics approaches, but the picture is not yet complete. Results The gene for the PTGS impaired Arabidopsis mutant sgs3 was recently cloned and was not found to have similarity to any other known protein. By a detailed analysis of the sequence of SGS3 we have defined three new protein domains: the XH domain, the XS domain and the zf-XS domain, that are shared with a large family of uncharacterised plant proteins. This work implicates these plant proteins in PTGS. Conclusion The enigmatic SGS3 protein has been found to contain two predicted domains in common with a family of plant proteins. The other members of this family have been predicted to be transcription factors, however this function seems unlikely based on this analysis. A bioinformatics approach has implicated a new family of plant proteins related to SGS3 as potential candidates for PTGS related functions.

  6. A Web server for predicting proteins involved in pluripotent network

    Indian Academy of Sciences (India)

    2016-11-04

    Nov 4, 2016 ... which are important in pluripotency from the existing knowledge about pluripotent ... proteins, we took 117 genes with gene ontology term developmental ... space to find a hyperplane which maximizes the margin between two ...

  7. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Carlo Travaglini-Allocatelli

    2013-01-01

    Full Text Available Cytochromes c (Cyt c are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i heme translocation and delivery, (ii apoCyt thioreductive pathway, and (iii apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.

  8. Evidence for proteins involved in prophenoloxidase cascade Eisenia fetida earthworms

    Czech Academy of Sciences Publication Activity Database

    Kohlerová, Petra; Šilerová, Marcela; Stijlemans, B.; Dieu, M.; Halada, Petr; Josková, Radka; Beschin, A.; De Baetselier, P.; Bilej, Martin

    2006-01-01

    Roč. 176, - (2006), s. 581-587 ISSN 0174-1578 R&D Projects: GA ČR GA310/04/0806; GA AV ČR KJB500200613 Institutional research plan: CEZ:AV0Z50200510 Keywords : protein * prophenoloxidase cascade * eisenia fetida Subject RIV: EE - Microbiology, Virology Impact factor: 1.740, year: 2006

  9. Involvement of protein kinase C-δ activation in betulininduced ...

    African Journals Online (AJOL)

    Purpose: To investigate the clinical benefits and underlying mechanisms of action of betulin in the treatment of cancer using a neuroblastoma (NB) cell model. Method: Cell viability ... of tumor recurrence. Keywords: Betulin, Neuroblastoma, Apoptosis, protein kinase C-δ, Adjuvant chemotherapy, Tumor recurrence, Caspase ...

  10. New protein involved in the replacement of cell molecules

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave

    2011-01-01

    In collaboration with colleagues from La Trobe University, Australia, scientists at Aarhus University have discovered and defined a novel enzyme involved in the replacement and renewal of cell molecules. The enzyme exerts its function within the so-called mitochondria - small “enclosed” compartme......In collaboration with colleagues from La Trobe University, Australia, scientists at Aarhus University have discovered and defined a novel enzyme involved in the replacement and renewal of cell molecules. The enzyme exerts its function within the so-called mitochondria - small “enclosed...

  11. Targeted proteins involved in the neuroprotective effects of lithium citrate

    OpenAIRE

    I. Yu. Torshin; O. A. Gromova; L. A. Mayorova; A. Yu. Volkov

    2017-01-01

    Preparations based on organic lithium salts are promising neuroprotective agents that are effective just in the micromolar concentration range and, at the same time, have high safety (Toxicity Class V).Objective: to elucidate more detailed mechanisms responsible for the biological and pharmacological effects of lithium citrate, by analyzing the possible interactions of lithium ion with human proteome proteins that are also represented in the rat proteome.Material and methods. The targets of l...

  12. Characterization of Carbohydrate Active Enzymes Involved in Arabinogalactan Protein Metabolism

    DEFF Research Database (Denmark)

    Knoch, Eva

    and tissues, their functions and synthesis are still poorly understood. The aim of the research presented in the thesis was to characterize carbohydrate active enzymes involved in AGP biosynthesis and modification to gain insights into the biosynthesis of the glycoproteins in plants. Candidate...... glycosyltransferases and glycoside hydrolases were selected based on co-expression profiles from a transcriptomics analysis. Reverse genetics approach on a novel glucuronosyltransferase involved in AGP biosynthesis has revealed that the enzyme activity is required for normal cell elongation in etiolated seedlings....... The enzymatic activity of a hydrolase from GH family 17 was investigated, without successful determination of the activity. Members of hydrolase family 43 appeared to be localized in the Golgi-apparatus, which is also the compartment for glycan biosynthesis. The localization of these glycoside hydrolases...

  13. Protein kinase C involvement in focal adhesion formation

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1992-01-01

    Matrix molecules such as fibronectin can promote cell attachment, spreading and focal adhesion formation. Although some interactions of fibronectin with cell surface receptors have now been identified, the consequent activation of intracellular messenger systems by cell/matrix interactions have...... still to be elucidated. We show here that the kinase inhibitors H7 and HA1004 reduce focal adhesion and stress fiber formation in response to fibronectin in a dose-dependent manner, and that activators of protein kinase C can promote their formation under conditions where they do not normally form....... Fibroblasts spread within 1h on substrata composed of fibronectin and formed focal adhesions by 3h, as monitored by interference reflection microscopy (IRM) and by labeling for talin, vinculin and integrin beta 1 subunits. In addition, stress fibers were visible. When cells were allowed to spread for 1h...

  14. Culture-independent analysis of bacterial communities in hemolymph of American lobsters with epizootic shell disease.

    Science.gov (United States)

    Quinn, Robert A; Smolowitz, Roxanna; Chistoserdov, Andrei Y

    2013-03-26

    Epizootic shell disease (ESD) of the American lobster Homarus americanus H. Milne Edwards, 1837 is a disease of the carapace that presents grossly as large, melanized, irregularly shaped lesions, making the lobsters virtually unmarketable because of their grotesque appearance. We analyzed the bacterial communities present in the hemolymph of lobsters with and without ESD using nested-PCR of the 16S rRNA genes followed by denaturing gradient gel electrophoresis. All lobsters tested (n = 42) had bacterial communities in their hemolymph, and the community profiles were highly similar regardless of the sampling location or disease state. A number of bacteria were detected in a high proportion of samples and from numerous locations, including a Sediminibacterium sp. closely related to a symbiont of Tetraponera ants (38/42) and a Ralstonia sp. (27/42). Other bacteria commonly encountered included various Bacteroidetes, Pelomonas aquatica, and a Novosphingobium sp. One bacterium, a different Sediminibacterium sp., was detected in 20% of diseased animals (n = 29), but not in the lobsters without signs of ESD (n = 13). The bacteria in hemolymph were not the same as those known to be present in lesion communities except for the detection of a Thalassobius sp. in 1 individual. This work demonstrates that hemolymph bacteremia and the particular bacterial species present do not correlate with the incidence of ESD, providing further evidence that microbiologically, ESD is a strictly cuticular disease. Furthermore, the high incidence of the same species of bacteria in hemolymph of lobsters may indicate that they have a positive role in lobster fitness, rather than in disease, and further investigation of the role of bacteria in lobster hemolymph is required.

  15. Monocyte chemotactic protein-3: possible involvement in apical periodontitis chemotaxis.

    Science.gov (United States)

    Dezerega, A; Osorio, C; Mardones, J; Mundi, V; Dutzan, N; Franco, M; Gamonal, J; Oyarzún, A; Overall, C M; Hernández, M

    2010-10-01

    To study the expression of monocyte chemotactic protein-3 (MCP-3, also known as chemokine CCL-7) in tissue from apical lesions (AL) and to associate MCP-3 expression with symptomatic or asymptomatic apical periodontitis. To determine the expression of MCP-3 in AL, biopsies obtained during tooth extraction procedures were fixed, subjected to routine processing and diagnosed as apical granuloma (AG) (n = 7) or radicular cyst (RC) (n = 5). As controls, apical periodontal ligament (PDL) specimens from healthy premolars extracted for orthodontics reasons were included (n = 7). All specimens were immunostained for MCP-3 and examined under a light microscope. In addition, homogenates from AL (n = 14) and healthy PDL samples (n = 7) were studied through immunowestern blot. Finally, periapical exudates samples were collected from root canals of teeth having diagnosis of symptomatic (n = 14) and asymptomatic apical periodontitis (n = 14) during routine endodontic treatments and analysed by immunowestern blot and densitometry.   MCP-3 was detected in AG and RC and localized mainly to inflammatory leucocytes, whereas no expression was observed in healthy PDLs. MCP-3 was also detected in periapical exudate, and its levels were significantly higher in symptomatic than in asymptomatic apical periodontitis. MCP-3 was expressed in AL and its levels associated with clinical symptoms. MCP-3 might play a role in disease pathogenesis, possibly by stimulating mononuclear chemotaxis. © 2010 International Endodontic Journal.

  16. Antibacterial activity in the hemolymph of the catarina scallop Argopecten ventricosus

    OpenAIRE

    Luna-González, Antonio; Maeda-Martínez, Alfonso; Campa-Córdova, Ángel; Orduña-Rojas, Javier

    2007-01-01

    We conducted a search for antibacterial peptide like activity in hemolymph of Argopecten ventricosus. Pre-purification of peptides was done by reverse phase HPLC. Hemolymph acidic supernatant was loaded into a column packed with C18 matrix. Stepwise elutions were performed with 5, 50, 80, and 100 % acetonitrile (ACN) in 0.05 % trifluoroacetic acid (TFA) over 550 min at a flow rate of 0.2 ml/min. Absorbance was monitored at 280 nm. Eluted fractions were concentrated under vacuum. Vibrio algino...

  17. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing.

    Science.gov (United States)

    Jekat, Stephan B; Ernst, Antonia M; von Bohl, Andreas; Zielonka, Sascia; Twyman, Richard M; Noll, Gundula A; Prüfer, Dirk

    2013-01-01

    Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing.

  18. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing

    Directory of Open Access Journals (Sweden)

    Stephan B Jekat

    2013-07-01

    Full Text Available Structural phloem proteins (P-proteins are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently evidenced to be encoded by the widespread SEO gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing. 

  19. Identification and characterization of proteins involved in nuclear organization using Drosophila GFP protein trap lines.

    Directory of Open Access Journals (Sweden)

    Margaret Rohrbaugh

    Full Text Available Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern.We analyzed four lines that show peripheral or punctate nuclear staining. One of these lines affects an uncharacterized gene named CG11138. The CG11138 protein shows a punctate distribution in the nuclear periphery similar to that of Drosophila insulator proteins but does not co-localize with known insulators. Interestingly, mutations in Lamin proteins result in alterations in CG11138 localization, suggesting that this protein may be a novel component of the nuclear lamina. A second line affects the Decondensation factor 31 (Df31 gene, which encodes a protein with a unique nuclear distribution that appears to segment the nucleus into four different compartments. The X-chromosome of males is confined to one of these compartments. We also find that Drosophila Nucleoplasmin (dNlp is present in regions of active transcription. Heat shock leads to loss of dNlp from previously transcribed regions of polytene chromosome without redistribution to the heat shock genes. Analysis of Stonewall (Stwl, a protein previously found to be necessary for the maintenance of germline stem cells, shows that Stwl is present in a punctate pattern in the nucleus that partially overlaps with that of known insulator proteins. Finally we show that Stwl, dNlp, and Df31 form part of a highly interactive network. The properties of other components of this network may help understand the role of these proteins in nuclear biology.These results establish screening of GFP protein trap alleles as a strategy to identify factors with novel cellular functions. Information gained from the analysis of CG11138 Stwl, dNlp, and Df31 sets the stage for future studies of these proteins.

  20. MEMBRANE-FUSION OF SEMLIKI FOREST VIRUS INVOLVES HOMOTRIMERS OF THE FUSION PROTEIN

    NARCIS (Netherlands)

    WAHLBERG, JM; WILSCHUT, J; GAROFF, H

    1992-01-01

    Infection of cells with enveloped viruses is accomplished through membrane fusion. The binding and fusion Processes are mediated by the spike proteins in the envelope of the virus particle and usually involve a series of conformational changes in these proteins. We have studied the low-pH-mediated

  1. Neuron membrane trafficking and protein kinases involved in autism and ADHD.

    Science.gov (United States)

    Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru

    2015-01-30

    A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  2. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2015-01-01

    Full Text Available A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1 are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT and cyclic adenosine monophosphate (cAMP-dependent protein kinase A (PKA have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT. AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  3. Ricinus communis cyclophilin: functional characterisation of a sieve tube protein involved in protein folding.

    Science.gov (United States)

    Gottschalk, Maren; Dolgener, Elmar; Xoconostle-Cázares, Beatriz; Lucas, William J; Komor, Ewald; Schobert, Christian

    2008-09-01

    The phloem translocation stream of the angiosperms contains a special population of proteins and RNA molecules which appear to be produced in the companion cells prior to being transported into the sieve tube system through the interconnecting plasmodesmata. During this process, these non-cell-autonomous proteins are thought to undergo partial unfolding. Recent mass spectroscopy studies identified peptidyl-prolyl cis-trans isomerase (PPIases) as potential molecular chaperones functioning in the phloem translocation stream (Giavalisco et al. 2006). In the present study, we describe the cloning and characterisation of a castor bean phloem cyclophilin, RcCYP1 that has high peptidyl-prolyl cis-trans isomerase activity. Equivalent enzymatic activity was detected with phloem sap or purified recombinant (His)(6)-tagged RcCYP1. Mass spectrometry analysis of proteolytic peptides, derived from a 22 kDa band in HPLC-fractionated phloem sap, immunolocalisation studies and Western analysis of proteins extracted from castor bean tissues/organs indicated that RcCYP1 is an abundant protein in the companion cell-sieve element complex. Microinjection experiments established that purified recombinant (His)(6)-RcCYP1 can interact with plasmodesmata to both induce an increase in size exclusion limit and mediate its own cell-to-cell trafficking. Collectively, these findings support the hypothesis that RcCYP1 plays a role in the refolding of non-cell-autonomous proteins after their entry into the phloem translocation stream.

  4. Proteomes and Ubiquitylomes Analysis Reveals the Involvement of Ubiquitination in Protein Degradation in Petunias1

    Science.gov (United States)

    Liu, Juanxu; Wei, Qian; Wang, Rongmin; Yang, Weiyuan; Ma, Yueyue; Chen, Guoju

    2017-01-01

    Petal senescence is a complex programmed process. It has been demonstrated previously that treatment with ethylene, a plant hormone involved in senescence, can extensively alter transcriptome and proteome profiles in plants. However, little is known regarding the impact of ethylene on posttranslational modification (PTM) or the association between PTM and the proteome. Protein degradation is one of the hallmarks of senescence, and ubiquitination, a major PTM in eukaryotes, plays important roles in protein degradation. In this study, we first obtained reference petunia (Petunia hybrida) transcriptome data via RNA sequencing. Next, we quantitatively investigated the petunia proteome and ubiquitylome and the association between them in petunia corollas following ethylene treatment. In total, 51,799 unigenes, 3,606 proteins, and 2,270 ubiquitination sites were quantified 16 h after ethylene treatment. Treatment with ethylene resulted in 14,448 down-regulated and 6,303 up-regulated unigenes (absolute log2 fold change > 1 and false discovery rate petunia. Several putative ubiquitin ligases were up-regulated at the protein and transcription levels. Our results showed that the global proteome and ubiquitylome were negatively correlated and that ubiquitination could be involved in the degradation of proteins during ethylene-mediated corolla senescence in petunia. Ethylene regulates hormone signaling transduction pathways at both the protein and ubiquitination levels in petunia corollas. In addition, our results revealed that ethylene increases the ubiquitination levels of proteins involved in endoplasmic reticulum-associated degradation. PMID:27810942

  5. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.

    Directory of Open Access Journals (Sweden)

    Ji'an Pan

    Full Text Available Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12 provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins.

  6. Proteomic characterization of the hemolymph of Octopus vulgaris infected by the protozoan parasite Aggregata octopiana.

    Science.gov (United States)

    Castellanos-Martínez, Sheila; Diz, Angel P; Álvarez-Chaver, Paula; Gestal, Camino

    2014-06-13

    The immune system of cephalopods is poorly known to date. The lack of genomic information makes difficult to understand vital processes like immune defense mechanisms and their interaction with pathogens at molecular level. The common octopus Octopus vulgaris has a high economic relevance and potential for aquaculture. However, disease outbreaks provoke serious reductions in production with potentially severe economic losses. In this study, a proteomic approach is used to analyze the immune response of O. vulgaris against the coccidia Aggregata octopiana, a gastrointestinal parasite which impairs the cephalopod nutritional status. The hemocytes and plasma proteomes were compared by 2-DE between sick and healthy octopus. The identities of 12 differentially expressed spots and other 27 spots without significant alteration from hemocytes, and 5 spots from plasma, were determined by mass spectrometry analysis aided by a six reading-frame translation of an octopus hemocyte RNA-seq database and also public databases. Principal component analysis pointed to 7 proteins from hemocytes as the major contributors to the overall difference between levels of infection and so could be considered as potential biomarkers. Particularly, filamin, fascin and peroxiredoxin are highlighted because of their implication in octopus immune defense activity. From the octopus plasma, hemocyanin was identified. This work represents a first step forward in order to characterize the protein profile of O. vulgaris hemolymph, providing important information for subsequent studies of the octopus immune system at molecular level and also to the understanding of the basis of octopus tolerance-resistance to A. octopiana. The immune system of cephalopods is poorly known to date. The lack of genomic information makes difficult to understand vital processes like immune defense mechanisms and their interaction with pathogens at molecular level. The study herein presented is focused to the comprehension of

  7. RNA-binding proteins involved in post-transcriptional regulation in bacteria

    Directory of Open Access Journals (Sweden)

    Elke eVan Assche

    2015-03-01

    Full Text Available Post-transcriptional regulation is a very important mechanism to control gene expression in changing environments. In the past decade, a lot of interest has been directed towards the role of small RNAs in bacterial post-transcriptional regulation. However, small RNAs are not the only molecules controlling gene expression at this level, RNA-binding proteins play an important role as well. CsrA and Hfq are the two best studied bacterial proteins of this type, but recently, additional proteins involved in post-transcriptional control have been identified. This review focuses on the general working mechanisms of post-transcriptionally active RNA-binding proteins, which include (i adaptation of the susceptibility of mRNAs and sRNAs to RNases, (ii modulating the accessibility of the ribosome binding site of mRNAs, (iii recruiting and assisting in the interaction of mRNAs with other molecules and (iv regulating transcription terminator / antiterminator formation, and gives an overview of both the well-studied and the newly identified proteins that are involved in post-transcriptional regulatory processes. Additionally, the post-transcriptional mechanisms by which the expression or the activity of these proteins is regulated, are described. For many of the newly identified proteins, however, mechanistic questions remain. Most likely, more post-transcriptionally active proteins will be identified in the future.

  8. Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat

    DEFF Research Database (Denmark)

    Yang, Fen; Jensen, Jens D.; Svensson, Birte

    2012-01-01

    Fusarium graminearum is a phytopathogenic fungus primarily infecting small grain cereals, including barley and wheat. Secreted enzymes play important roles in the pathogenicity of many fungi. In order to access the secretome of F. graminearum, the fungus was grown in liquid culture with barley...... or wheat flour as the sole nutrient source to mimic the host–pathogen interaction. A gel‐based proteomics approach was employed to identify the proteins secreted into the culture medium. Sixty‐nine unique fungal proteins were identified in 154 protein spots, including enzymes involved in the degradation...... between wheat and barley flour medium were mainly involved in fungal cell wall remodelling and the degradation of plant cell walls, starch and proteins. The in planta expression of corresponding F. graminearum genes was confirmed by quantitative reverse transcriptase‐polymerase chain reaction in barley...

  9. Analyses of hemolymph from Amblyomma cajennense (Acari: ixodidae) using neutron activation analysis (NAA)

    Energy Technology Data Exchange (ETDEWEB)

    Simons, Simone M.; Oliveira, Daniella G.L.; Chudzinski-Tavassi, Ana M., E-mail: daniellaoliveira@butantan.gov.b, E-mail: amchudzinki@butantan.gov.b [Instituto Butantan, Sao Paulo, SP (Brazil); Zamboni, Cibele B., E-mail: czamboni@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Instrumental neutron activation analysis technique (INAA) was applied to determine the elemental composition of hemolymph from Amblyomma cajennense tick. This biological material came from Butantan Institute (Sao Paulo city, Brazil) and it was investigated using the IEA-R1 nuclear reactor (4MW, pool type) at IPEN/CNEN-SP - Brazil. The concentration values for: Br (0.0032 {+-} 0.0005gL{sup -1}), Ca (0.104 {+-} 0.029gL{sup -1}), Cl (4.41 {+-} 0.25gL{sup -1}), I (76 {+-} 27{mu}gL{sup -1}), K (0.38 {+-} 0.09gL{sup -1}), Mg (0.038 {+-} 0.011gL{sup -1}), Na (4.30 {+-} 0.26gL{sup -1}) and S (1.35 {+-} 0.37gL{sup -1}) were determined for the first time. These data were compared with the concentration values established for Americanum and Anatolicum Excavatum tick species to clarify the ion balance in this biological material (hemolymph). This comparison suggests that Na concentration, majority in these species, has a similar behavior. These data also contribute to the understanding of hemolymph composition complementing its characterization as well as for the understanding of several physiological processes, especially those related to salivary secretion. (author)

  10. 3DSwap: Curated knowledgebase of proteins involved in 3D domain swapping

    KAUST Repository

    Shameer, Khader

    2011-09-29

    Three-dimensional domain swapping is a unique protein structural phenomenon where two or more protein chains in a protein oligomer share a common structural segment between individual chains. This phenomenon is observed in an array of protein structures in oligomeric conformation. Protein structures in swapped conformations perform diverse functional roles and are also associated with deposition diseases in humans. We have performed in-depth literature curation and structural bioinformatics analyses to develop an integrated knowledgebase of proteins involved in 3D domain swapping. The hallmark of 3D domain swapping is the presence of distinct structural segments such as the hinge and swapped regions. We have curated the literature to delineate the boundaries of these regions. In addition, we have defined several new concepts like \\'secondary major interface\\' to represent the interface properties arising as a result of 3D domain swapping, and a new quantitative measure for the \\'extent of swapping\\' in structures. The catalog of proteins reported in 3DSwap knowledgebase has been generated using an integrated structural bioinformatics workflow of database searches, literature curation, by structure visualization and sequence-structure-function analyses. The current version of the 3DSwap knowledgebase reports 293 protein structures, the analysis of such a compendium of protein structures will further the understanding molecular factors driving 3D domain swapping. The Author(s) 2011.

  11. Comparative Proteomic Analysis Reveals Proteins Putatively Involved in Toxin Biosynthesis in the Marine Dinoflagellate Alexandrium catenella

    Directory of Open Access Journals (Sweden)

    Da-Zhi Wang

    2013-01-01

    Full Text Available Alexandrium is a neurotoxin-producing dinoflagellate genus resulting in paralytic shellfish poisonings around the world. However, little is known about the toxin biosynthesis mechanism in Alexandrium. This study compared protein profiles of A. catenella collected at different toxin biosynthesis stages (non-toxin synthesis, initial toxin synthesis and toxin synthesizing coupled with the cell cycle, and identified differentially expressed proteins using 2-DE and MALDI-TOF-TOF mass spectrometry. The results showed that toxin biosynthesis of A. catenella occurred within a defined time frame in the G1 phase of the cell cycle. Proteomic analysis indicated that 102 protein spots altered significantly in abundance (P < 0.05, and 53 proteins were identified using database searching. These proteins were involved in a variety of biological processes, i.e., protein modification and biosynthesis, metabolism, cell division, oxidative stress, transport, signal transduction, and translation. Among them, nine proteins with known functions in paralytic shellfish toxin-producing cyanobacteria, i.e., methionine S-adenosyltransferase, chloroplast ferredoxin-NADP+ reductase, S-adenosylhomocysteinase, adenosylhomocysteinase, ornithine carbamoyltransferase, inorganic pyrophosphatase, sulfotransferase (similar to, alcohol dehydrogenase and arginine deiminase, varied significantly at different toxin biosynthesis stages and formed an interaction network, indicating that they might be involved in toxin biosynthesis in A. catenella. This study is the first step in the dissection of the behavior of the A. catenella proteome during different toxin biosynthesis stages and provides new insights into toxin biosynthesis in dinoflagellates.

  12. Pdsg1 and Pdsg2, novel proteins involved in developmental genome remodelling in Paramecium.

    Directory of Open Access Journals (Sweden)

    Miroslav Arambasic

    Full Text Available The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2, involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.

  13. Pdsg1 and Pdsg2, novel proteins involved in developmental genome remodelling in Paramecium.

    Science.gov (United States)

    Arambasic, Miroslav; Sandoval, Pamela Y; Hoehener, Cristina; Singh, Aditi; Swart, Estienne C; Nowacki, Mariusz

    2014-01-01

    The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.

  14. On the involvement of host proteins in Cowpea mosaic virus intercellular spread

    NARCIS (Netherlands)

    Hollander, den P.W.

    2014-01-01

    Abstract of thesis Paulus den Hollander entitled “On the involvement of host proteins in Cowpea mosaic virus intercellular spread”.

    Defence: 18th of November 13.30 h

    Abstract

    Intercellular spread of Cowpea mosaic virus (CPMV) occurs via movement

  15. Sensitive Electrochemical Detection of Native and Aggregated x-Synuclein Protein Involved in Parkinson's Disease

    NARCIS (Netherlands)

    Masarik, Michal; Stobiecka, Agata; Kizek, René; Jelen, Frantisek; Pechan, Zdenk; Hoyer, Wolfgang; Subramaniam, Vinod; Palecek, Emil

    2004-01-01

    The aggregation of α-synuclein, a 14 kDa protein, is involved in several human neurodegenerative disorders, including Parkinson's disease. We studied native and in vitro aggregated α-synuclein by circular dichroism (CD), atomic force microscopy (AFM) and electrochemical methods. We used constant

  16. DCD – a novel plant specific domain in proteins involved in development and programmed cell death

    Directory of Open Access Journals (Sweden)

    Doerks Tobias

    2005-07-01

    Full Text Available Abstract Background Recognition of microbial pathogens by plants triggers the hypersensitive reaction, a common form of programmed cell death in plants. These dying cells generate signals that activate the plant immune system and alarm the neighboring cells as well as the whole plant to activate defense responses to limit the spread of the pathogen. The molecular mechanisms behind the hypersensitive reaction are largely unknown except for the recognition process of pathogens. We delineate the NRP-gene in soybean, which is specifically induced during this programmed cell death and contains a novel protein domain, which is commonly found in different plant proteins. Results The sequence analysis of the protein, encoded by the NRP-gene from soybean, led to the identification of a novel domain, which we named DCD, because it is found in plant proteins involved in development and cell death. The domain is shared by several proteins in the Arabidopsis and the rice genomes, which otherwise show a different protein architecture. Biological studies indicate a role of these proteins in phytohormone response, embryo development and programmed cell by pathogens or ozone. Conclusion It is tempting to speculate, that the DCD domain mediates signaling in plant development and programmed cell death and could thus be used to identify interacting proteins to gain further molecular insights into these processes.

  17. Proteomic Analysis of Interaction between a Plant Virus and Its Vector Insect Reveals New Functions of Hemipteran Cuticular Protein.

    Science.gov (United States)

    Liu, Wenwen; Gray, Stewart; Huo, Yan; Li, Li; Wei, Taiyun; Wang, Xifeng

    2015-08-01

    Numerous viruses can be transmitted by their corresponding vector insects; however, the molecular mechanisms enabling virus transmission by vector insects have been poorly understood, especially the identity of vector components interacting with the virus. Here, we used the yeast two-hybrid system to study proteomic interactions of a plant virus (Rice stripe virus, RSV, genus Tenuivirus) with its vector insect, small brown planthopper (Laodelphax striatellus). Sixty-six proteins of L. striatellus that interacted with the nucleocapsid protein (pc3) of RSV were identified. A virus-insect interaction network, constructed for pc3 and 29 protein homologs of Drosophila melanogaster, suggested that nine proteins might directly interact with pc3. Of the 66 proteins, five (atlasin, a novel cuticular protein, jagunal, NAC domain protein, and vitellogenin) were most likely to be involved in viral movement, replication, and transovarial transmission. This work also provides evidence that the novel cuticular protein, CPR1, from L. striatellus is essential for RSV transmission by its vector insect. CPR1 binds the nucleocapsid protein (pc3) of RSV both in vivo and in vitro and colocalizes with RSV in the hemocytes of L. striatellus. Knockdown of CPR1 transcription using RNA interference resulted in a decrease in the concentration of RSV in the hemolymph, salivary glands and in viral transmission efficiency. These data suggest that CPR1 binds RSV in the insect and stabilizes the viral concentration in the hemolymph, perhaps to protect the virus or to help move the virus to the salivary tissues. Our studies provide direct experimental evidence that viruses can use existing vector proteins to aid their survival in the hemolymph. Identifying these putative vector molecules should lead to a better understanding of the interactions between viruses and vector insects. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Mutations in Three Genes Encoding Proteins Involved in Hair Shaft Formation Cause Uncombable Hair Syndrome

    DEFF Research Database (Denmark)

    Ü Basmanav, F Buket; Cau, Laura; Tafazzoli, Aylar

    2016-01-01

    Uncombable hair syndrome (UHS), also known as "spun glass hair syndrome," "pili trianguli et canaliculi," or "cheveux incoiffables" is a rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair hair that is resistant...... in the majority of UHS case subjects. The two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments...... and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All together, these findings elucidate the molecular genetic...

  19. Involvement of lipid-protein complexes in plant-microorganism interactions

    Directory of Open Access Journals (Sweden)

    Blein Jean-Pierre

    2002-01-01

    Full Text Available Increasing concerns about the environmental impact of modern agricultural have prompted research for alternate practices to pesticide treatments, notably using plant defense mechanisms. Thus, isolation and characterization of plant defense elicitors have been the main step of studies in many groups. Moreover, in the global concept of interactions between organisms and their environment, a major concern is to discriminate recognition between exogenous and endogenous signals, notably during pathogenic or allergenic interactions involving small proteins, such as elicitins or lipid transfer proteins (LTPs. Elicitins and lipid transfer proteins (LTP are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defense mechanisms, the biological function of LTPs is still an enigma. They are ubiquitous plant proteins able to load and transfer hydrophobic molecules such as fatty acids or phospholipids. Among them, LTPs1 (type 1 lipid transfer proteins constitute a multigenic family of secreted plant lipid binding proteins that are constitutively expressed in specific tissues and/or induced in response to biotic and abiotic stress (for reviews [1-4]. Their biological function is still unknown, even if some data provide arguments for a role of these proteins in the assembly of extracellular hydrophobic polymers (i.e., cutin and suberin [2, 4] and/or in plant defense against fungal pathogens [1, 3]. Beside their involvement in plant defense, LTPs1 are also known to be pan-allergens of plant-derived foods [5]. Finally, the discovery of the sterol carrier-properties of elicitins has opened new perspectives dealing with the relationship between this function and the elicitor activity of these small cystein-rich proteins. Nevertheless, this elicitor activity is restrained to few plant species, and thus does not appear in accordance with a universal lipid transfer

  20. Evidence against the involvement of ionically bound cell wall proteins in pea epicotyl growth

    Science.gov (United States)

    Melan, M. A.; Cosgrove, D. J.

    1988-01-01

    Ionically bound cell wall proteins were extracted from 7 day old etiolated pea (Pisum sativum L. cv Alaska) epicotyls with 3 molar LiCl. Polyclonal antiserum was raised in rabbits against the cell wall proteins. Growth assays showed that treatment of growing region segments (5-7 millimeters) of peas with either dialyzed serum, serum globulin fraction, affinity purified immunoglobulin, or papain-cleaved antibody fragments had no effect on growth. Immunofluorescence microscopy confirmed antibody binding to cell walls and penetration of the antibodies into the tissues. Western blot analysis, immunoassay results, and affinity chromatography utilizing Sepharose-bound antibodies confirmed recognition of the protein preparation by the antibodies. Experiments employing in vitro extension as a screening measure indicated no effect upon extension by antibodies, by 50 millimolar LiCl perfusion of the apoplast or by 3 molar LiCl extraction. Addition of cell wall protein to protease pretreated segments did not restore extension nor did addition of cell wall protein to untreated segments increase extension. It is concluded that, although evidence suggests that protein is responsible for the process of extension, the class(es) of proteins which are extracted from pea cell walls with 3 molar LiCl are probably not involved in this process.

  1. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng-Hou [NO.3 People' s Hospital affiliated to Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 201900 (China); The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Wu, Ying-Li [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Meng [Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China); Liu, Chuan-Xu; Wang, Li-Shun [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Guo-Qiang, E-mail: chengq@shsmu.edu.cn [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China)

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  2. Search for Partner Proteins of A. thaliana Immunophilins Involved in the Control of Plant Immunity

    Directory of Open Access Journals (Sweden)

    Inna A. Abdeeva

    2018-04-01

    Full Text Available The involvement of plant immunophilins in multiple essential processes such as development, various ways of adapting to biotic and abiotic stresses, and photosynthesis has already been established. Previously, research has demonstrated the involvement of three immunophilin genes (AtCYP19-1/ROC3, AtFKBP65/ROF2, and AtCYP57 in the control of plant response to invasion by various pathogens. Current research attempts to identify host target proteins for each of the selected immunophilins. As a result, candidate interactors have been determined and confirmed using a yeast 2-hybrid (Y2H system for protein–protein interaction assays. The generation of mutant isoforms of ROC3 and AtCYP57 harboring substituted amino acids in the in silico-predicted active sites became essential to achieving significant binding to its target partners. This data shows that ROF2 targets calcium-dependent lipid-binding domain-containing protein (At1g70790; AT1 and putative protein phosphatase (At2g30020; АТ2, whereas ROC3 interacts with GTP-binding protein (At1g30580; ENGD-1 and RmlC-like cupin (At5g39120. The immunophilin AtCYP57 binds to putative pyruvate decarboxylase-1 (Pdc1 and clathrin adaptor complex-related protein (At5g05010. Identified interactors confirm our previous findings that immunophilins ROC3, ROF2, and AtCYP57 are directly involved with stress response control. Further, these findings extend our understanding of the molecular functional pathways of these immunophilins.

  3. Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control

    Directory of Open Access Journals (Sweden)

    David Piñeiro

    2015-04-01

    Full Text Available Gemin5 is a RNA-binding protein (RBP that was first identified as a peripheral component of the survival of motor neurons (SMN complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs. Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E. Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis.

  4. Dual localized AtHscB involved in iron sulfur protein biogenesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Xiang Ming Xu

    2009-10-01

    Full Text Available Iron-sulfur clusters are ubiquitous structures which act as prosthetic groups for numerous proteins involved in several fundamental biological processes including respiration and photosynthesis. Although simple in structure both the assembly and insertion of clusters into apoproteins requires complex biochemical pathways involving a diverse set of proteins. In yeast, the J-type chaperone Jac1 plays a key role in the biogenesis of iron sulfur clusters in mitochondria.In this study we demonstrate that AtHscB from Arabidopsis can rescue the Jac1 yeast knockout mutant suggesting a role for AtHscB in iron sulfur protein biogenesis in plants. In contrast to mitochondrial Jac1, AtHscB localizes to both mitochondria and the cytosol. AtHscB interacts with AtIscU1, an Isu-like scaffold protein involved in iron-sulfur cluster biogenesis, and through this interaction AtIscU1 is most probably retained in the cytosol. The chaperone AtHscA can functionally complement the yeast Ssq1knockout mutant and its ATPase activity is enhanced by AtHscB and AtIscU1. Interestingly, AtHscA is also localized in both mitochondria and the cytosol. Furthermore, AtHscB is highly expressed in anthers and trichomes and an AtHscB T-DNA insertion mutant shows reduced seed set, a waxless phenotype and inappropriate trichome development as well as dramatically reduced activities of the iron-sulfur enzymes aconitase and succinate dehydrogenase.Our data suggest that AtHscB together with AtHscA and AtIscU1 plays an important role in the biogenesis of iron-sulfur proteins in both mitochondria and the cytosol.

  5. RPA-Binding Protein ETAA1 Is an ATR Activator Involved in DNA Replication Stress Response.

    Science.gov (United States)

    Lee, Yuan-Cho; Zhou, Qing; Chen, Junjie; Yuan, Jingsong

    2016-12-19

    ETAA1 (Ewing tumor-associated antigen 1), also known as ETAA16, was identified as a tumor-specific antigen in the Ewing family of tumors. However, the biological function of this protein remains unknown. Here, we report the identification of ETAA1 as a DNA replication stress response protein. ETAA1 specifically interacts with RPA (Replication protein A) via two conserved RPA-binding domains and is therefore recruited to stalled replication forks. Interestingly, further analysis of ETAA1 function revealed that ETAA1 participates in the activation of ATR signaling pathway via a conserved ATR-activating domain (AAD) located near its N terminus. Importantly, we demonstrate that both RPA binding and ATR activation are required for ETAA1 function at stalled replication forks to maintain genome stability. Therefore, our data suggest that ETAA1 is a new ATR activator involved in replication checkpoint control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Identification of genes and proteins involved in excision repair of human cells

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; Westerveld, A.; Van Duin, M.; Vermeulen, W.; Odijk, H.; De Wit, J.; Bootsma, D.

    1986-01-01

    The autosomal, recessive disorder xeroderma pigmentosum (XP) is characterized by extreme sensitivity of the skin to sun exposure and prediposition to skin cancer. The basic defect in most XP patients is thought to reside in an inefficient removal of UV-induced lesions in the DNA by excision repair. The biochemical complexity of this process is amply illustrated by the fact that so far nine complementary groups within this syndrome have been identified. Despite extensive research, none of these genes or proteins involved have been isolated. Using a microinjection assay system the authors identified components in crude cell extracts that transiently correct the defect in (injected) fibroblasts of all excision-deficient XP complementation groups, as indicated by temporary restoration of UV-induced unscheduled DNA synthesis. This correction is complementation group specific, since it is only found when extracts from complementing XP cells are injected. After incubation of extracts with proteinase K the XP-A and KP-G correcting activities were lost, indicating that the complementation is due to proteins. The XP-A correcting protein was found to precipitate between 30 and 60% ammonium sulfate saturation. Furthermore this protein binds to DEAE-cellulose and to (UV-irradiated) double-strand (ds) DNA attached to cellulose. The latter affinity chromatography step allows a considerable purification, since less than 1% of the proteins applied to such columns is retained. It has to be established whether the XP-A correcting proteins binds by itself or via other proteins to the UV-irradiated DNA and whether it also binds to nonirradiated (ds or ss) DNA. Similar experiments with the XP-G correcting protein are in progress

  7. Characterization of Heme Proteins Involved in Microbial Exoelectric Activity and Small Molecule-Sensing

    KAUST Repository

    Vogler, Malvina M.

    2018-01-01

    Heme proteins, also termed cytochromes, are a widespread class of metalloproteins containing an Fe-protoporphyrin IX cofactor. They perform numerous functions in nature such as oxygen-transport by hemoglobin, monooxygenation reactions catalyzed by Cytochrome P-450, and electron transfer reactions during photosynthesis. The differences between proteincofactor binding characteristics and the cofactor environment greatly influence the extensive range of functions. In this dissertation, proteins from the Mtr pathway of Shewanella oneidensis are characterized. These c-type cytochromes contain multiple heme cofactors per protein molecule that covalently attach to the protein amino acid sequence and are involved in electron transfer to extracellular metal oxides during anaerobic conditions. Successful recombinant expression of pathway components MtrC and MtrA is achieved in Escherichia coli. Heme-dependent gel staining and UV/Vis spectroscopy show characteristic c-type cytochrome characteristics. Mass spectrometry confirms that the correct extensive post-translational modifications were performed and the ten heme groups were incorporated per protein of MtrC and MtrA and the correct lipid-anchor was attached to extracellular MtrC. Raman spectroscopy measurements of MtrA provide intriguing structural information and highlight the strong influence of the heme cofactors within the protein structure. Next, an Arabidopsis thaliana protein is analyzed. It was previously identified via a motif search of the plant genome, based on conserved residues in the H4 NOX pocket. Here, the incorporation of a heme b cofactor is confirmed. UV/Vis spectroscopy under anaerobic conditions demonstrates reversible binding of nitric oxide to the heme iron and depicts the previously published characteristic absorption maxima for other H-NOX proteins.

  8. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    Science.gov (United States)

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  9. Involvement of MAPK proteins in bystander effects induced by chemicals and ionizing radiation

    International Nuclear Information System (INIS)

    Asur, Rajalakshmi; Balasubramaniam, Mamtha; Marples, Brian; Thomas, Robert A.; Tucker, James D.

    2010-01-01

    Many studies have examined bystander effects induced by ionizing radiation, however few have evaluated the ability of chemicals to induce similar effects. We previously reported the ability of two chemicals, mitomycin C (MMC) and phleomycin (PHL) to induce bystander effects in normal human lymphoblastoid cell lines. The focus of the current study was to determine the involvement of the MAPK proteins in bystander effects induced by physical and chemical DNA damaging agents and to evaluate the effects of MAPK inhibition on bystander-induced caspase 3/7 activation. The phosphorylation levels of the MAPK proteins ERK1/2, JNK, and p38, were measured from 1 to 24 h following direct or bystander exposure to MMC, PHL or radiation. We observed transient phosphorylation, at early time points, of all 3 proteins in bystander cells. We also evaluated the effect of MAPK inhibition on bystander-induced caspase 3/7 activity to determine the role of MAPK proteins in bystander-induced apoptosis. We observed bystander-induced activation of caspase 3/7 in bystander cells. Inhibition of MAPK proteins resulted in a decrease in caspase 3/7 activity at the early time points, and the caspase activity increased (in the case of ERK inhibition) or returned to basal levels (in the case of JNK or p38 inhibition) between 12 and 24 h. PHL is considered to be a radiomimetic agent, however in the present study PHL behaved more like a chemical and not like radiation in terms of MAPK phosphorylation. These results point to the involvement of MAPK proteins in the bystander effect induced by radiation and chemicals and provide additional evidence that this response is not limited to radiation but is a generalized stress response in cells.

  10. Hemolymph chemistry and histopathological changes in Pacific oysters (Crassostrea gigas) in response to low salinity stress.

    Science.gov (United States)

    Knowles, Graeme; Handlinger, Judith; Jones, Brian; Moltschaniwskyj, Natalie

    2014-09-01

    This study described seasonal differences in the histopathological and hemolymph chemistry changes in different family lines of Pacific oysters, Crassostrea gigas, in response to the stress of an abrupt change to low salinity, and mechanical grading. The most significant changes in pallial cavity salinity, hemolymph chemistry and histopathological findings occurred in summer at low salinity. In summer (water temperature 18°C) at low salinity, 9 (25.7% of full salinity), the mean pallial cavity salinity in oysters at day 3 was 19.8±1.6 (SE) and day 10 was 22.8±1.6 (SE) lower than oysters at salinity 35. Associated with this fall in pallial cavity salinity, mean hemolymph sodium for oysters at salinity 9 on day 3 and 10 were 297.2mmol/L±20(SE) and 350.4mmol/L±21.3(SE) lower than oysters at salinity 35. Similarly mean hemolymph potassium in oysters held at salinity 9 at day 3 and 10 were 5.6mmol/L±0.6(SE) and 7.9mmol/L±0.6 (SE) lower than oysters at salinity 35. These oysters at low salinity had expanded intercellular spaces and significant intracytoplasmic vacuolation distending the cytoplasm of epithelial cells in the alimentary tract and kidney and hemocyte infiltrate (diapedesis) within the alimentary tract wall. In contrast, in winter (water temperature 8°C) oyster mean pallial cavity salinity only fell at day 10 and this was by 6.0±0.6 (SE) compared to that of oysters at salinity 35. There were limited histopathological changes (expanded intercellular spaces and moderate intracytoplasmic vacuolation of renal epithelial cells) in these oysters at day 10 in low salinity. Mechanical grading and family line did not influence the oyster response to sudden low salinity. These findings provide additional information for interpretation of non-lethal, histopathological changes associated with temperature and salinity variation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The Prediction of Key Cytoskeleton Components Involved in Glomerular Diseases Based on a Protein-Protein Interaction Network.

    Science.gov (United States)

    Ding, Fangrui; Tan, Aidi; Ju, Wenjun; Li, Xuejuan; Li, Shao; Ding, Jie

    2016-01-01

    Maintenance of the physiological morphologies of different types of cells and tissues is essential for the normal functioning of each system in the human body. Dynamic variations in cell and tissue morphologies depend on accurate adjustments of the cytoskeletal system. The cytoskeletal system in the glomerulus plays a key role in the normal process of kidney filtration. To enhance the understanding of the possible roles of the cytoskeleton in glomerular diseases, we constructed the Glomerular Cytoskeleton Network (GCNet), which shows the protein-protein interaction network in the glomerulus, and identified several possible key cytoskeletal components involved in glomerular diseases. In this study, genes/proteins annotated to the cytoskeleton were detected by Gene Ontology analysis, and glomerulus-enriched genes were selected from nine available glomerular expression datasets. Then, the GCNet was generated by combining these two sets of information. To predict the possible key cytoskeleton components in glomerular diseases, we then examined the common regulation of the genes in GCNet in the context of five glomerular diseases based on their transcriptomic data. As a result, twenty-one cytoskeleton components as potential candidate were highlighted for consistently down- or up-regulating in all five glomerular diseases. And then, these candidates were examined in relation to existing known glomerular diseases and genes to determine their possible functions and interactions. In addition, the mRNA levels of these candidates were also validated in a puromycin aminonucleoside(PAN) induced rat nephropathy model and were also matched with existing Diabetic Nephropathy (DN) transcriptomic data. As a result, there are 15 of 21 candidates in PAN induced nephropathy model were consistent with our predication and also 12 of 21 candidates were matched with differentially expressed genes in the DN transcriptomic data. By providing a novel interaction network and prediction, GCNet

  12. Lipids analysis in hemolymph of African giant Achatina fulica (Bowdich, 1822) exposed to different photoperiods.

    Science.gov (United States)

    Lustrino, D; Tunholi-Alves, V M; Tunholi, V M; Marassi, M P; Pinheiro, J

    2010-02-01

    The influence of different photophases (0, 6, 12, 18 and 24 hours) on the triglycerides and total cholesterol contents in the hemolymph of A. fulica was evaluated, since there is no information in the literature about the influence of this factor on lipids metabolism in mollusks. After 2 and 4 weeks of exposure the snails were dissected. The cholesterol content at the 2nd and 4th weeks post exposure only varied significantly in the groups exposed at 24 hours and 0 hour of photophase, respectively. Probably, such increase may be a result of a rise in cholesterol biosynthesis and/or remodelling of cell membranes. There were no significant differences among the content of triglycerides in the snails exposed to 6, 12, 18 and 24 hours of photophase during two weeks. The snails exposed to intermediate photophase (6 and 12 hours) had the triglycerides content increased, ranging over values near to those observed in the group exposed to 0 hour. Results showed that triglycerides metabolism in A. fulica are more influenced by photoperiod than cholesterol metabolism. A negative relation is maintained between the triglycerides content in the hemolymph and the different photophases, with lower mobilisation of triglycerides under shorter photophases.

  13. Lipids analysis in hemolymph of African giant Achatina fulica (Bowdich, 1822 exposed to different photoperiods

    Directory of Open Access Journals (Sweden)

    D. Lustrino

    Full Text Available The influence of different photophases (0, 6, 12, 18 and 24 hours on the triglycerides and total cholesterol contents in the hemolymph of A. fulica was evaluated, since there is no information in the literature about the influence of this factor on lipids metabolism in mollusks. After 2 and 4 weeks of exposure the snails were dissected. The cholesterol content at the 2nd and 4th weeks post exposure only varied significantly in the groups exposed at 24 hours and 0 hour of photophase, respectively. Probably, such increase may be a result of a rise in cholesterol biosynthesis and/or remodelling of cell membranes. There were no significant differences among the content of triglycerides in the snails exposed to 6, 12, 18 and 24 hours of photophase during two weeks. The snails exposed to intermediate photophase (6 and 12 hours had the triglycerides content increased, ranging over values near to those observed in the group exposed to 0 hour. Results showed that triglycerides metabolism in A. fulica are more influenced by photoperiod than cholesterol metabolism. A negative relation is maintained between the triglycerides content in the hemolymph and the different photophases, with lower mobilisation of triglycerides under shorter photophases.

  14. Comparative proteomic analysis reveals proteins putatively involved in toxin biosynthesis in the marine dinoflagellate Alexandrium catenella.

    Science.gov (United States)

    Wang, Da-Zhi; Gao, Yue; Lin, Lin; Hong, Hua-Sheng

    2013-01-22

    Alexandrium is a neurotoxin-producing dinoflagellate genus resulting in paralytic shellfish poisonings around the world. However, little is known about the toxin biosynthesis mechanism in Alexandrium. This study compared protein profiles of A. catenella collected at different toxin biosynthesis stages (non-toxin synthesis, initial toxin synthesis and toxin synthesizing) coupled with the cell cycle, and identified differentially expressed proteins using 2-DE and MALDI-TOF-TOF mass spectrometry. The results showed that toxin biosynthesis of A. catenella occurred within a defined time frame in the G1 phase of the cell cycle. Proteomic analysis indicated that 102 protein spots altered significantly in abundance (P translation. Among them, nine proteins with known functions in paralytic shellfish toxin-producing cyanobacteria, i.e., methionine S-adenosyltransferase, chloroplast ferredoxin-NADP+ reductase, S-adenosylhomocysteinase, adenosylhomocysteinase, ornithine carbamoyltransferase, inorganic pyrophosphatase, sulfotransferase (similar to), alcohol dehydrogenase and arginine deiminase, varied significantly at different toxin biosynthesis stages and formed an interaction network, indicating that they might be involved in toxin biosynthesis in A. catenella. This study is the first step in the dissection of the behavior of the A. catenella proteome during different toxin biosynthesis stages and provides new insights into toxin biosynthesis in dinoflagellates.

  15. Identification and characterization of a stage specific membrane protein involved in flagellar attachment in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Katherine Woods

    Full Text Available Flagellar attachment is a visibly striking morphological feature of African trypanosomes but little is known about the requirements for attachment at a molecular level. This study characterizes a previously undescribed membrane protein, FLA3, which plays an essential role in flagellar attachment in Trypanosoma brucei. FLA3 is heavily N-glycosylated, locates to the flagellar attachment zone and appears to be a bloodstream stage specific protein. Ablation of the FLA3 mRNA rapidly led to flagellar detachment and a concomitant failure of cytokinesis in the long slender bloodstream form but had no effect on the procyclic form. Flagellar detachment was obvious shortly after induction of the dsRNA and the newly synthesized flagellum was often completely detached after it emerged from the flagellar pocket. Within 12 h most cells possessed detached flagella alongside the existing attached flagellum. These results suggest that proteins involved in attachment are not shared between the new and old attachment zones. In other respects the detached flagella appear normal, they beat rapidly although directional motion was lost, and they possess an apparently normal axoneme and paraflagellar rod structure. The flagellar attachment zone appeared to be disrupted when FLA3 was depleted. Thus, while flagellar attachment is a constitutive feature of the life cycle of trypanosomes, attachment requires stage specific elements at the protein level.

  16. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).

    Science.gov (United States)

    López-Cristoffanini, Camilo; Zapata, Javier; Gaillard, Fanny; Potin, Philippe; Correa, Juan A; Contreras-Porcia, Loretto

    2015-12-01

    Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Proteins involved in flor yeast carbon metabolism under biofilm formation conditions.

    Science.gov (United States)

    Moreno-García, Jaime; García-Martínez, Teresa; Moreno, Juan; Mauricio, Juan Carlos

    2015-04-01

    A lack of sugars during the production of biologically aged wines after fermentation of grape must causes flor yeasts to metabolize other carbon molecules formed during fermentation (ethanol and glycerol, mainly). In this work, a proteome analysis involving OFFGEL fractionation prior to LC/MS detection was used to elucidate the carbon metabolism of a flor yeast strain under biofilm formation conditions (BFC). The results were compared with those obtained under non-biofilm formation conditions (NBFC). Proteins associated to processes such as non-fermentable carbon uptake, the glyoxylate and TCA cycles, cellular respiration and inositol metabolism were detected at higher concentrations under BFC than under the reference conditions (NBFC). This study constitutes the first attempt at identifying the flor yeast proteins responsible for the peculiar sensory profile of biologically aged wines. A better metabolic knowledge of flor yeasts might facilitate the development of effective strategies for improved production of these special wines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine.

    Science.gov (United States)

    Basic, Amina; Blomqvist, Madeleine; Dahlén, Gunnar; Svensäter, Gunnel

    2017-03-14

    Hydrogen sulfide (H 2 S) is a toxic foul-smelling gas produced by subgingival biofilms in patients with periodontal disease and is suggested to be part of the pathogenesis of the disease. We studied the H 2 S-producing protein expression of bacterial strains associated with periodontal disease. Further, we examined the effect of a cysteine-rich growth environment on the synthesis of intracellular enzymes in F. nucleatum polymorphum ATCC 10953. The proteins were subjected to one-dimensional (1DE) and two-dimensional (2DE) gel electrophoresis An in-gel activity assay was used to detect the H 2 S-producing enzymes; Sulfide from H 2 S, produced by the enzymes in the gel, reacted with bismuth forming bismuth sulfide, illustrated as brown bands (1D) or spots (2D) in the gel. The discovered proteins were identified with liquid chromatography - tandem mass spectrometry (LC-MS/MS). Cysteine synthase and proteins involved in the production of the coenzyme pyridoxal 5'phosphate (that catalyzes the production of H 2 S) were frequently found among the discovered enzymes. Interestingly, a higher expression of H 2 S-producing enzymes was detected from bacteria incubated without cysteine prior to the experiment. Numerous enzymes, identified as cysteine synthase, were involved in the production of H 2 S from cysteine and the expression varied among Fusobacterium spp. and strains. No enzymes were detected with the in-gel activity assay among the other periodontitis-associated bacteria tested. The expression of the H 2 S-producing enzymes was dependent on environmental conditions such as cysteine concentration and pH but less dependent on the presence of serum and hemin.

  19. Involvement of Calmodulin and Calmodulin-like Proteins in Plant Responses to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    B W Poovaiah

    2015-08-01

    Full Text Available Transient changes in intracellular Ca2+ concentration have been well recognized to act as cell signals coupling various environmental stimuli to appropriate physiological responses with accuracy and specificity in plants. Calmodulin (CaM and calmodulin-like proteins (CMLs are major Ca2+ sensors, playing critical roles in interpreting encrypted Ca2+ signals. Ca2+-loaded CaM/CMLs interact and regulate a broad spectrum of target proteins such as channels/pumps/antiporters for various ions, transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biochemical functions. Many of the target proteins of CaM/CMLs directly or indirectly regulate plant responses to environmental stresses. Basic information about stimulus-induced Ca2+ signal and overview of Ca2+ signal perception and transduction are briefly discussed in the beginning of this review. How CaM/CMLs are involved in regulating plant responses to abiotic stresses are emphasized in this review. Exciting progress has been made in the past several years, such as the elucidation of Ca2+/CaM-mediated regulation of AtSR1/CAMTA3 and plant responses to chilling and freezing stresses, Ca2+/CaM-mediated regulation of CAT3, MAPK8 and MKP1 in homeostasis control of ROS signals, discovery of CaM7 as a DNA-binding transcription factor regulating plant response to light signals. However, many key questions in Ca2+/CaM-mediated signaling warrant further investigation. Ca2+/CaM-mediated regulation of most of the known target proteins is presumed based on their interaction. The downstream targets of CMLs are mostly unknown, and how specificity of Ca2+ signaling could be realized through the actions of CaM/CMLs and their target proteins is largely unknown. Future breakthroughs in Ca2+/CaM-mediated signaling will not only improve our understanding of how plants respond to environmental stresses, but also provide the knowledge base to improve stress-tolerance of crops.

  20. Involvement of fractalkine and macrophage inflammatory protein-1 alpha in moderate-severe depression

    Directory of Open Access Journals (Sweden)

    Rosaria Alba Merendino

    2004-01-01

    Full Text Available MODERATE-severe depression (MSD is linked to overexpression of proinflammatory cytokines and chemokines. Fractalkine (FKN and macrophage inflammatory protein-1 alpha (MIP-1α are, respectively, members of CX3C and C-C chemokines, and both are involved in recruiting and activating mononuclear phagocytes in the central nervous system. We analysed the presence of FKN and MIP-1α in sera of untreated MSD patients and healthy donors. High FKN levels were observed in all MSD patients as compared with values only detectable in 26% of healthy donors. MIP-1α was measurable in 20% of patients, while no healthy donors showed detectable chemokine levels. In conclusion, we describe a previously unknown involvement of FKN in the pathogenesis of MSD, suggesting that FKN may represent a target for a specific immune therapy of this disease.

  1. Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major.

    Directory of Open Access Journals (Sweden)

    Juliana Ide Aoki

    2016-09-01

    Full Text Available Tubercidin (TUB is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis.After transfection of a cosmid genomic library into L. major Friedlin (LmjF parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2 containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP. Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER, a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway.This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how TRP mediates TUB resistance and whether purine

  2. Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major.

    Science.gov (United States)

    Aoki, Juliana Ide; Coelho, Adriano Cappellazzo; Muxel, Sandra Marcia; Zampieri, Ricardo Andrade; Sanchez, Eduardo Milton Ramos; Nerland, Audun Helge; Floeter-Winter, Lucile Maria; Cotrim, Paulo Cesar

    2016-09-01

    Tubercidin (TUB) is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis. After transfection of a cosmid genomic library into L. major Friedlin (LmjF) parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2) containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP). Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER), a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway. This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how TRP mediates TUB resistance and whether purine metabolism is affected

  3. Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription.

    Science.gov (United States)

    Assenberg, R; Delmas, O; Morin, B; Graham, S C; De Lamballerie, X; Laubert, C; Coutard, B; Grimes, J M; Neyts, J; Owens, R J; Brandt, B W; Gorbalenya, A; Tucker, P; Stuart, D I; Canard, B; Bourhy, H

    2010-08-01

    Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Mechanosensitive molecular networks involved in transducing resistance exercise-signals into muscle protein accretion

    Directory of Open Access Journals (Sweden)

    Emil Rindom

    2016-11-01

    Full Text Available Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS, may contribute to understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1, to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ-phosphatidic acid (PA axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK-Tuberous Sclerosis Complex 2TSC2-Ras homolog enriched in brain (Rheb axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA-striated muscle activator of Rho signaling (STARS axis or how it may implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP signaling through a small mother of decapentaplegic (Smad axis.

  5. IGF-1 modulates gene expression of proteins involved in inflammation, cytoskeleton, and liver architecture.

    Science.gov (United States)

    Lara-Diaz, V J; Castilla-Cortazar, I; Martín-Estal, I; García-Magariño, M; Aguirre, G A; Puche, J E; de la Garza, R G; Morales, L A; Muñoz, U

    2017-05-01

    Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1's effects on liver by comparing wild-type controls, heterozygous igf1 +/- , and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.

  6. Evidence for the involvement of 5-lipoxygenase products in ethanol-induced intestinal plasma protein loss

    International Nuclear Information System (INIS)

    Beck, I.T.; Boyd, A.J.; Dinda, P.K.

    1988-01-01

    In this study the authors investigated whether the products of 5-lipoxygenase (5-LO) were involved in the jejunal microvascular injury induced by intraluminal ethanol (ETH). A group of rabbits was given orally a selective inhibitor of 5-LO in two 10-mg doses, 24, and 2 h before the experiments. A jejunal segment was perfused with a control solution (control segment) and an adjacent segment with an ETH-containing solution (ETH-perfused segment). In a series of experiments, they measured 5-LO activity of the jejunal segments of both groups using the generation of leukotriene B 4 (LTB 4 ) as an index. In a second series of experiments, they determined the ETH-induced intraluminal protein loss, which was taken as a measure of mucosal microvascular damage. The ETH-induced increase in protein loss was significantly lower in the treated than in the untreated group. These findings suggest that products of 5-LO are involved in the ETH-induced jejunal microvascular injury

  7. Identification of proteins involved in the adhesionof Candida species to different medical devices.

    Science.gov (United States)

    Núñez-Beltrán, Arianna; López-Romero, Everardo; Cuéllar-Cruz, Mayra

    2017-06-01

    Adhesion is the first step for Candida species to form biofilms on medical devices implanted in the human host. Both the physicochemical nature of the biomaterial and cell wall proteins (CWP) of the pathogen play a determinant role in the process. While it is true that some CWP have been identified in vitro, little is known about the CWP of pathogenic species of Candida involved in adhesion. On this background, we considered it important to investigate the potential role of CWP of C. albicans, C. glabrata, C. krusei and C. parapsilosis in adhesion to different medical devices. Our results indicate that the four species strongly adher to polyvinyl chloride (PVC) devices, followed by polyurethane and finally by silicone. It was interesting to identify fructose-bisphosphate aldolase (Fba1) and enolase 1 (Eno1) as the CWP involved in adhesion of C. albicans, C. glabrata and C. krusei to PVC devices whereas phosphoglycerate kinase (Pgk) and Eno1 allow C. parapsilosis to adher to silicone-made implants. Results presented here suggest that these CWP participate in the initial event of adhesion and are probably followed by other proteins that covalently bind to the biomaterial thus providing conditions for biofilm formation and eventually the onset of infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Intact long-type DupA protein in Helicobacter pylori is an ATPase involved in multifunctional biological activities.

    Science.gov (United States)

    Wang, Ming-yi; Chen, Cheng; Shao, Chen; Wang, Shao-bo; Wang, Ai-chu; Yang, Ya-chao; Yuan, Xiao-yan; Shao, Shi-he

    2015-04-01

    The function of intact long-type DupA protein in Helicobacter pylori was analyzed using immunoblotting and molecular biology techniques in the study. After cloning, expression and purification, ATPase activity of DupA protein was detected. Antibody was produced for localization and interaction proteins analysis. The dupA-deleted mutant was generated for adhesion and CagA protein translocation assay, susceptibility to different pH, IL-8 secretion assay, cytotoxicity to MKN-45 cells and proteins-involved apoptosis analysis. DupA protein exhibited an ATPase activity (129.5±17.8 U/mgprot) and located in bacterial membrane, while it did not involve the adhesion and CagA protein delivery of H. pylori. DupA protein involved the urease secretion as the interaction proteins. The wild type strain had a stronger growth in low pH than the dupA-deleted mutant (p DupA protein located in membrane as ATPase is a true virulence factor associated with duodenal ulcer development involving the IL-8 induction and urease secretion, while it inhibits gastric cancer cell growth in vitro by activating the mitochondria-mediated apoptotic pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Developmental expression of a cell surface protein involved in sea urchin skeleton formation

    International Nuclear Information System (INIS)

    Farach, M.C.; Valdizan, M.; Park, H.R.; Decker, G.L.; Lennarz, W.J.

    1986-01-01

    The authors have previously used a monoclonal antibody (1223) to identify a 130 Kd cell surface protein involved in skeleton formation is sea urchin embryos. In the current study the authors have examined the expression of the 1223 antigen over the course of development of embryos of two species, Strongylocentrotus purpuratus and Lytechinus pictus. The 130 Kd protein is detected in S. purp eggs on immunoblots. Labeling with [ 3 H] leucine and immunoaffinity chromatography show that it also is synthesized shortly after fertilization. Immunofluroescence reveals that at this early stage the 1223 antigen is uniformly distributed on all of the cells. Synthesis decreases to a minimum by the time of hatching (18 h), as does the total amount of antigen present in the embryo. A second period of synthesis commences at the mesenchyme blastula stage, when the spicule-forming primary mesenchyme cells (PMCs) have appeared. During this later stage, synthesis and cell surface expression are restricted to the PMCs. In contrast to S. purp., in L. pictus the 130 Kd protein does not appear until the PMCs are formed. Hybrid embryos demonstrate a pattern of expression of the maternal species. These results suggest that early expression of 1223 antigen in S. purp. is due to utilization of maternal transcripts present in the egg. In both species later expression in PMCs appears to be the result of cell-type specific synthesis, perhaps encoded by embryonic transcripts

  10. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tee, Thiam-Tsui, E-mail: thiamtsu@yahoo.com [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Cheah, Yew-Hoong [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bioassay Unit, Herbal Medicine Research Center, Institute for Medical Research, Jalan Pahang, Kuala Lumpur (Malaysia); Meenakshii, Nallappan [Biology Department, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  11. Pseudomonas aeruginosa invasion and cytotoxicity are independent events, both of which involve protein tyrosine kinase activity.

    Science.gov (United States)

    Evans, D J; Frank, D W; Finck-Barbançon, V; Wu, C; Fleiszig, S M

    1998-04-01

    Pseudomonas aeruginosa clinical isolates exhibit invasive or cytotoxic phenotypes. Cytotoxic strains acquire some of the characteristics of invasive strains when a regulatory gene, exsA, that controls the expression of several extracellular proteins, is inactivated. exsA mutants are not cytotoxic and can be detected within epithelial cells by gentamicin survival assays. The purpose of this study was to determine whether epithelial cell invasion precedes and/or is essential for cytotoxicity. This was tested by measuring invasion (gentamicin survival) and cytotoxicity (trypan blue staining) of PA103 mutants deficient in specific exsA-regulated proteins and by testing the effect of drugs that inhibit invasion for their effect on cytotoxicity. A transposon mutant in the exsA-regulated extracellular factor exoU was neither cytotoxic nor invasive. Furthermore, several of the drugs that inhibited invasion did not prevent cytotoxicity. These results show that invasion and cytotoxicity are mutually exclusive events, inversely regulated by an exsA-encoded invasion inhibitor(s). Both involve host cell protein tyrosine kinase (PTK) activity, but they differ in that invasion requires Src family tyrosine kinases and calcium-calmodulin activity. PTK inhibitor drugs such as genistein may have therapeutic potential through their ability to block both invasive and cytotoxicity pathways via an action on the host cell.

  12. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    International Nuclear Information System (INIS)

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-01-01

    Highlights: ► We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. ► Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. ► Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. ► DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. ► DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X L expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  13. Looking for prosocial genes: ITRAQ analysis of proteins involved in MDMA-induced sociability in mice.

    Science.gov (United States)

    Kuteykin-Teplyakov, Konstantin; Maldonado, Rafael

    2014-11-01

    Social behavior plays a fundamental role in life of many animal species, allowing the interaction between individuals and sharing of experiences, needs, and goals across them. In humans, some neuropsychiatric diseases, including anxiety, posttraumatic stress disorder and autism spectrum disorders, are often characterized by impaired sociability. Here we report that N-Methyl-3,4-methylenedioxyamphetamine (MDMA, "Ecstasy") at low dose (3mg/kg) has differential effects on mouse social behavior. In some animals, MDMA promotes sociability without hyperlocomotion, whereas in other mice it elevates locomotor activity without affecting sociability. Both WAY-100635, a selective antagonist of 5-HT1A receptor, and L-368899, a selective oxytocin receptor antagonist, abolish prosocial effects of MDMA. Differential quantitative analysis of brain proteome by isobaric tag for relative and absolute quantification technology (iTRAQ) revealed 21 specific proteins that were highly correlated with sociability, and allowed to distinguish between entactogenic prosocial and hyperlocomotor effects of MDMA on proteome level. Our data suggest particular relevance of neurotransmission mediated by GABA B receptor, as well as proteins involved in energy maintenance for MDMA-induced sociability. Functional association network for differentially expressed proteins in cerebral cortex, hippocampus and amygdala were identified. These results provide new information for understanding the neurobiological substrate of sociability and may help to discover new therapeutic approaches to modulate social behavior in patients suffering from social fear and low sociability. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  14. Structure of Mycobacterium tuberculosis RuvA, a protein involved in recombination

    International Nuclear Information System (INIS)

    Prabu, J. Rajan; Thamotharan, S.; Khanduja, Jasbeer Singh; Alipio, Emily Zabala; Kim, Chang-Yub; Waldo, Geoffrey S.; Terwilliger, Thomas C.; Segelke, Brent; Lekin, Tim; Toppani, Dominique; Hung, Li-Wei; Yu, Minmin; Bursey, Evan; Muniyappa, K.; Chandra, Nagasuma R.; Vijayan, M.

    2006-01-01

    RuvA, a protein from M. tuberculosis H37Rv involved in recombination, has been cloned, expressed, purified and analysed by X-ray crystallography. The process of recombinational repair is crucial for maintaining genomic integrity and generating biological diversity. In association with RuvB and RuvC, RuvA plays a central role in processing and resolving Holliday junctions, which are a critical intermediate in homologous recombination. Here, the cloning, purification and structure determination of the RuvA protein from Mycobacterium tuberculosis (MtRuvA) are reported. Analysis of the structure and comparison with other known RuvA proteins reveal an octameric state with conserved subunit–subunit interaction surfaces, indicating the requirement of octamer formation for biological activity. A detailed analysis of plasticity in the RuvA molecules has led to insights into the invariant and variable regions, thus providing a framework for understanding regional flexibility in various aspects of RuvA function

  15. Involvement of C4 protein of beet severe curly top virus (family Geminiviridae in virus movement.

    Directory of Open Access Journals (Sweden)

    Kunling Teng

    Full Text Available BACKGROUND: Beet severe curly top virus (BSCTV is a leafhopper transmitted geminivirus with a monopartite genome. C4 proteins encoded by geminivirus play an important role in virus/plant interaction. METHODS AND FINDINGS: To understand the function of C4 encoded by BSCTV, two BSCTV mutants were constructed by introducing termination codons in ORF C4 without affecting the amino acids encoded by overlapping ORF Rep. BSCTV mutants containing disrupted ORF C4 retained the ability to replicate in Arabidopsis protoplasts and in the agro-inoculated leaf discs of N. benthamiana, suggesting C4 is not required for virus DNA replication. However, both mutants did not accumulate viral DNA in newly emerged leaves of inoculated N. benthamiana and Arabidopsis, and the inoculated plants were asymptomatic. We also showed that C4 expression in plant could help C4 deficient BSCTV mutants to move systemically. C4 was localized in the cytosol and the nucleus in both Arabidopsis protoplasts and N. benthamiana leaves and the protein appeared to bind viral DNA and ds/ssDNA nonspecifically, displaying novel DNA binding properties. CONCLUSIONS: Our results suggest that C4 protein in BSCTV is involved in symptom production and may facilitate virus movement instead of virus replication.

  16. A novel protein involved in heart development in Ambystoma mexicanum is localized in endoplasmic reticulum.

    Science.gov (United States)

    Jia, P; Zhang, C; Huang, X P; Poda, M; Akbas, F; Lemanski, S L; Erginel-Unaltuna, N; Lemanski, L F

    2008-11-01

    The discovery of the naturally occurring cardiac non-function (c) animal strain in Ambystoma mexicanum (axolotl) provides a valuable animal model to study cardiomyocyte differentiation. In homozygous mutant animals (c/c), rhythmic contractions of the embryonic heart are absent due to a lack of organized myofibrils. We have previously cloned a partial sequence of a peptide cDNA (N1) from an anterior-endoderm-conditioned-medium RNA library that had been shown to be able to rescue the mutant phenotype. In the current studies we have fully cloned the N1 full length cDNA sequence from the library. N1 protein has been detected in both adult heart and skeletal muscle but not in any other adult tissues. GFP-tagged expression of the N1 protein has revealed localization of the N1 protein in the endoplasmic reticulum (ER). Results from in situ hybridization experiments have confirmed the dramatic decrease of expression of N1 mRNA in mutant (c/c) embryos indicating that the N1 gene is involved in heart development.

  17. Matrix Gla Protein is Involved in Crystal Formation in Kidney of Hyperoxaluric Rats

    Directory of Open Access Journals (Sweden)

    Xiuli Lu

    2013-02-01

    Full Text Available Background: Matrix Gla protein (MGP is a molecular determinant regulating vascular calcification of the extracellular matrix. However, it is still unclear how MGP may be invovled in crystal formation in the kidney of hyperoxaluric rats. Methods: Male Sprague-Dawley rats were divided into the hyperoxaluric group and control group. Hyperoxaluric rats were administrated by 0.75% ethylene glycol (EG for up to 8 weeks. Renal MGP expression was detected by the standard avidin-biotin complex (ABC method. Renal crystal deposition was observed by a polarizing microscope. Total RNA and protein from the rat kidney tissue were extracted. The levels of MGP mRNA and protein expression were analyzed by the real-time polymerase chain reaction (RT-PCR and Western blot. Results: Hyperoxaluria was induced successfully in rats. The MGP was polarly distributed, on the apical membrane of renal tubular epithelial cells, and was found in the ascending thick limbs of Henle's loop (cTAL and the distal convoluted tubule (DCT in hyperoxaluric rats, its expression however, was present in the medullary collecting duct (MCD in stone-forming rats. Crystals with multilaminated structure formed in the injurious renal tubules with lack of MGP expression.MGP mRNA expression was significantly upregulated by the crystals' stimulations. Conclusion: Our results suggested that the MGP was involved in crystals formation by the continuous expression, distributing it polarly in the renal tubular cells and binding directly to the crystals.

  18. Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence.

    Directory of Open Access Journals (Sweden)

    Anna C Llewellyn

    Full Text Available Francisella tularensis is a gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI, validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and

  19. Change of hemoagglutinin and hemolysin titers in hemolymph of gastropod molluscs in response to immunization with sheep erythrocytes

    NARCIS (Netherlands)

    Baskakov, AV; Polevshchikov, AV; Harazova, AD; Krasnodembskii, EG

    2000-01-01

    This work deals with analysis of changes of the levels of hemoagglutinins (HA) and hemolysins (HL) in hemolymph of three gastropod species, Planorbius corneus, Lymnea stagnalis, and Achatina fulica, in response to immunization with sheep erythrocytes (ShE). The levels of HA and HL were determined

  20. Vitellogenin RNAi halts ovarian growth and diverts reproductive proteins and lipids in young grasshoppers.

    Science.gov (United States)

    Tokar, Derek R; Veleta, Katherine A; Canzano, Joseph; Hahn, Daniel A; Hatle, John D

    2014-11-01

    Reduced reproduction extends lifespan of females in many animals. To test the effects of reproduction on storage of macronutrients, we block reproductive output in the lubber grasshopper by injecting RNAi against the precursor to egg-yolk protein, vitellogenin, in early adulthood. Controls were injected with either buffer or RNAi against the major storage protein in the hemolymph, hexamerin-90. Vitellogenin RNAi greatly reduced both levels of mRNA for vitellogenin and ovarian growth, in comparison to both controls. Fat body mass was increased upon vitellogenin RNAi, but concentrations of the three hexameric storage proteins from the hemolymph were not. Surprisingly, hemolymph vitellogenin levels were increased upon vitellogenin RNAi. Total reproductive protein (hemolymph vitellogenin plus ovarian vitellin) was unchanged by vitellogenin RNAi, as reproductive protein was diverted to the hemolymph. Similarly, the increased lipid storage upon vitellogenin RNAi was largely attributable to the reduction in lipid in the ovary, due to decreased ovarian growth. A BLAST search revealed that the 515 bp sequence of vitellogenin used for RNAi had three 11 bp regions identical to the vitellogenin receptor of the cockroach Leucophaea maderae. This suggests that our treatment, in addition to reducing levels of vitellogenin transcript, may have also blocked transport of vitellogenin from the hemolymph to the ovary. This would be consistent with halted ovarian growth simultaneous with high levels of vitellogenin in the hemolymph. Nonetheless, the accumulation of vitellogenin, instead of hexameric storage proteins, is inconsistent with a simple model of the trade-off between reproduction and storage. This was observed in young females; future studies will address whether investment of proteins may shift to the soma as individuals age. Overall, our results suggest that blockage of reproduction in young grasshoppers redirects lipids to storage and reproductive proteins to the hemolymph

  1. Development of chemical isotope labeling liquid chromatography mass spectrometry for silkworm hemolymph metabolomics

    International Nuclear Information System (INIS)

    Shen, Weifeng; Han, Wei; Li, Yunong; Meng, Zhiqi; Cai, Leiming; Li, Liang

    2016-01-01

    Silkworm (Bombyx mori) is a very useful target insect for evaluation of endocrine disruptor chemicals (EDCs) due to mature breeding techniques, complete endocrine system and broad basic knowledge on developmental biology. Comparative metabolomics of silkworms with and without EDC exposure offers another dimension of studying EDCs. In this work, we report a workflow on metabolomic profiling of silkworm hemolymph based on high-performance chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) and demonstrate its application in studying the metabolic changes associated with the pesticide dichlorodiphenyltrichloroethane (DDT) exposure in silkworm. Hemolymph samples were taken from mature silkworms after growing on diet that contained DDT at four different concentrations (1, 0.1, 0.01, 0.001 ppm) as well as on diet without DDT as controls. They were subjected to differential "1"2C-/"1"3C-dansyl labeling of the amine/phenol submetabolome, LC-UV quantification of the total amount of labeled metabolites for sample normalization, and LC-MS detection and relative quantification of individual metabolites in comparative samples. The total concentration of labeled metabolites did not show any significant change between four DDT-treatment groups and one control group. Multivariate statistical analysis of the metabolome data set showed that there was a distinct metabolomic separation between the five groups. Out of the 2044 detected peak pairs, 338 and 1471 metabolites have been putatively identified against the HMDB database and the EML library, respectively. 65 metabolites were identified by the dansyl library searching based on the accurate mass and retention time. Among the 65 identified metabolites, 33 positive metabolites had changes of greater than 1.20-fold or less than 0.83-fold in one or more groups with p-value of smaller than 0.05. Several useful biomarkers including serine, methionine, tryptophan, asymmetric dimethylarginine, N

  2. Development of chemical isotope labeling liquid chromatography mass spectrometry for silkworm hemolymph metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Weifeng [Key Laboratory of Detection for Pesticide Residues, Ministry of Agriculture (China); Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou (China); Han, Wei; Li, Yunong [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada); Meng, Zhiqi [Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou (China); Cai, Leiming, E-mail: cailm@mail.zaas.ac.cn [Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou (China); Li, Liang, E-mail: Liang.Li@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada)

    2016-10-26

    Silkworm (Bombyx mori) is a very useful target insect for evaluation of endocrine disruptor chemicals (EDCs) due to mature breeding techniques, complete endocrine system and broad basic knowledge on developmental biology. Comparative metabolomics of silkworms with and without EDC exposure offers another dimension of studying EDCs. In this work, we report a workflow on metabolomic profiling of silkworm hemolymph based on high-performance chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS) and demonstrate its application in studying the metabolic changes associated with the pesticide dichlorodiphenyltrichloroethane (DDT) exposure in silkworm. Hemolymph samples were taken from mature silkworms after growing on diet that contained DDT at four different concentrations (1, 0.1, 0.01, 0.001 ppm) as well as on diet without DDT as controls. They were subjected to differential {sup 12}C-/{sup 13}C-dansyl labeling of the amine/phenol submetabolome, LC-UV quantification of the total amount of labeled metabolites for sample normalization, and LC-MS detection and relative quantification of individual metabolites in comparative samples. The total concentration of labeled metabolites did not show any significant change between four DDT-treatment groups and one control group. Multivariate statistical analysis of the metabolome data set showed that there was a distinct metabolomic separation between the five groups. Out of the 2044 detected peak pairs, 338 and 1471 metabolites have been putatively identified against the HMDB database and the EML library, respectively. 65 metabolites were identified by the dansyl library searching based on the accurate mass and retention time. Among the 65 identified metabolites, 33 positive metabolites had changes of greater than 1.20-fold or less than 0.83-fold in one or more groups with p-value of smaller than 0.05. Several useful biomarkers including serine, methionine, tryptophan, asymmetric dimethylarginine, N

  3. Evolutionary morphology of the hemolymph vascular system of basal araneomorph spiders (Araneae: Araneomorphae).

    Science.gov (United States)

    Huckstorf, Katarina; Michalik, Peter; Ramírez, Martín; Wirkner, Christian S

    2015-11-01

    The superfamily Austrochiloidea (Austrochilidae and Gradungulidae) take a pivotal position in araneomorph spider phylogeny. In this discussion crevice weaver spiders (Filistatidae) are of equal interest. Especially data from these phylogenetically uncertain yet basal off branching groups can enlighten our understanding on the evolution of organ systems. In the course of a survey on the evolutionary morphology of the circulatory system in spiders we therefore investigated the hemolymph vascular system in two austrochiloid and one filistatid species. Additionally some data on a hypochilid and a gradungulid species are included. Using up-to-date morphological methods, the vascular systems in these spiders are visualized three dimensionally. Ground pattern features of the circulatory systems in austrochiloid spiders are presented and the data discussed along recent lines of phylogenetic hypotheses. Special topics highlighted are the intraspecific variability of the origins of some prosomal arteries and the evolutionary correlation of respiratory and circulatory systems in spiders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    Science.gov (United States)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at phigh Fe

  5. Membrane proteins involved in transport, vesicle traffic and Ca(2+) signaling increase in beetroots grown in saline soils.

    Science.gov (United States)

    Lino, Bárbara; Chagolla, Alicia; E González de la Vara, Luis

    2016-07-01

    By separating plasma membrane proteins according to their hydropathy from beetroots grown in saline soils, several proteins probably involved in salt tolerance were identified by mass spectrometry. Beetroots, as a salt-tolerant crop, have developed mechanisms to cope with stresses associated with saline soils. To observe which plasma membrane (PM) proteins were more abundant in beet roots grown in saline soils, beet root plants were irrigated with water or 0.2 M NaCl. PM-enriched membrane preparations were obtained from these plants, and their proteins were separated according to their hydropathy by serial phase partitioning with Triton X-114. Some proteins whose abundance increased visibly in membranes from salt-grown beetroots were identified by mass spectrometry. Among them, there was a V-type H(+)-ATPase (probably from contaminating vacuolar membranes), which increased with salt at all stages of beetroots' development. Proteins involved in solute transport (an H(+)-transporting PPase and annexins), vesicle traffic (clathrin and synaptotagmins), signal perception and transduction (protein kinases and phospholipases, mostly involved in calcium signaling) and metabolism, appeared to increase in salt-grown beetroot PM-enriched membranes. These results suggest that PM and vacuolar proteins involved in transport, metabolism and signal transduction increase in beet roots adapted to saline soils. In addition, these results show that serial phase partitioning with Triton X-114 is a useful method to separate membrane proteins for their identification by mass spectrometry.

  6. THE REFERENCE VALUES OF THE MAIN BIOCHEMICAL PARAMETERS OF THE HEMOLYMPH OF APIS MELLIFERA CARPATHICA IN SOUTH-EASTERN ROMANIA

    Directory of Open Access Journals (Sweden)

    AGRIPINA SAPCALIU

    2007-10-01

    Full Text Available Although biochemical analyses of the blood were and are still used for the routinediagnosis and especially for the metabolic survey in farm animals, such analyses, maybe applied for the honeybee hemolymph (as a paraclinic examination. The aim of thisexperimental study was to investigate and to determine the reference values of themain biochemical parameters in the hemolymph of the healthy honeybees of Apismellifera carpathica. The honeybee samples were collected in order to analyze thehealth condition of the respective colony. All the samples coming from sick colonieswere removed, only healthy adult honeybees coming from strong colonies were keptand used for hemolymph collection. By special methods, samples of hemolymph (300μl/sample collected from about 50 individuals, were analyzed both during the activeseason (spring/summer and the inactive season (autumn/winter. The study wascarried out on 50 samples of undiluted hemolymph taken from a total number of about2,500 honeybees. The following 21 biochemical parameters were analyzed: GLU(mg/dl, HDL-c (mg/dl, ALP (UI/l, T-cho (mg/dl, Tprot (mg/dl, Alb. (g/dl, BUN(mg/dl, LDH (UI/l, CPK (UI/l, Mg (mg/dl, FRA (μm/l, IP (mg/dl, GGT (UI/l,GOT (UI/l, GPT (UI/l, Ca (mg/dl, Cre (mg/dl, Amy (UI/l, T–BIL (mg/dl, TG(mg/dl, UA (mg/dl. The test was carried out after the collection and processing of thesamples using the SPOTCHEM EZSP4430, equipment with dry kits, the slides technique,respectively.

  7. Isolation of proteins involved in the replication of adenoviral DNA in vitro

    International Nuclear Information System (INIS)

    Lichy, J.H.; Nagata, K.; Friefeld, B.R.; Enomoto, T.; Field, J.; Guggenheimer, R.A.; Ikeda, J.E.; Horwitz, M.S.; Hurwitz, J.

    1983-01-01

    The simple mechanism of replication of adenoviral DNA has made adenovirus an especially useful model system for studies of eukaryotic replication mechanisms. The availability of this in vitro system that replicates exogenously added Ad DNA-pro has made it possible to characterize the factors involved in replication. The results presented in this paper summarize our further fractionation of the in vitro system. First, the properties of two factors purified from the uninfected nuclear extract are described. Second, the separation of the pTP/Ad Pol complex into subunits and the properties of the isolated subunits are presented. The 140K protein is shown to possess the Ad DNA polymerase activity. The results suggest that the only DNA polymerase required for adenoviral DNA replication in vitro is the 140K Ad DNA polymerase and that this enzyme is probably a viral gene product. 50 references, 10 figures, 3 tables

  8. The small nucleoid protein Fis is involved in Vibrio cholerae quorum sensing.

    Science.gov (United States)

    Lenz, Derrick H; Bassler, Bonnie L

    2007-02-01

    Quorum sensing is a process of cell-cell communication that bacteria use to relay information to one another about the cell density and species composition of the bacterial community. Quorum sensing involves the production, secretion and population-wide detection of small signalling molecules called autoinducers. This process allows bacteria to synchronize group behaviours and act as multicellular units. The human pathogen, Vibrio cholerae, uses quorum sensing to co-ordinate such complex behaviours as pathogenicity and biofilm formation. The quorum-sensing circuit of V. cholerae consists of two autoinducer/sensor systems, CAI-1/CqsS and AI-2/LuxPQ, and the VarS/A-CsrA/BCD growth-phase regulatory system. Genetic analysis suggests that an additional regulatory arm involved in quorum sensing exists in V. cholerae. All of these systems channel information into the histidine phosphotransfer protein, LuxU, and/or the response regulator, LuxO. LuxO, when phosphorylated, activates the expression of four genes encoding the Qrr (quorum regulatory RNAs) small RNAs (sRNAs). The Qrr sRNAs destabilize the hapR transcript encoding the master regulator of quorum sensing, HapR. Here we identify the nucleoid protein Fis as playing a major role in the V. cholerae quorum-sensing circuit. Fis fulfils the predictions required to be the putative additional component that inputs information into the cascade: its expression is regulated in a growth phase-dependent manner; it requires LuxO but acts independently of LuxU, and it regulates all four qrr genes and, in turn, HapR by directly binding to the qrr gene promoters and modulating their expression.

  9. Candida albicans Hom6 is a homoserine dehydrogenase involved in protein synthesis and cell adhesion

    Directory of Open Access Journals (Sweden)

    Pei-Wen Tsai

    2017-12-01

    Full Text Available Background/Purpose: Candida albicans is a common fungal pathogen in humans. In healthy individuals, C. albicans represents a harmless commensal organism, but infections can be life threatening in immunocompromised patients. The complete genome sequence of C. albicans is extremely useful for identifying genes that may be potential drug targets and important for pathogenic virulence. However, there are still many uncharacterized genes in the Candida genome database. In this study, we investigated C. albicans Hom6, the functions of which remain undetermined experimentally. Methods: HOM6-deleted and HOM6-reintegrated mutant strains were constructed. The mutant strains were compared with wild-type in their growth in various media and enzyme activity. Effects of HOM6 deletion on translation were further investigated by cell susceptibility to hygromycin B or cycloheximide, as well as by polysome profiling, and cell adhesion to polystyrene was also determined. Results: C. albicans Hom6 exhibits homoserine dehydrogenase activity and is involved in the biosynthesis of methionine and threonine. HOM6 deletion caused translational arrest in cells grown under amino acid starvation conditions. Additionally, Hom6 protein was found in both cytosolic and cell-wall fractions of cultured cells. Furthermore, HOM6 deletion reduced C. albicans cell adhesion to polystyrene, which is a common plastic used in many medical devices. Conclusion: Given that there is no Hom6 homologue in mammalian cells, our results provided an important foundation for future development of new antifungal drugs. Keywords: Candida albicans, cell adhesion, Hom6, homoserine dehydrogenase, protein synthesis

  10. Molecular heterogeneity in major urinary proteins of Mus musculus subspecies: potential candidates involved in speciation

    Science.gov (United States)

    Hurst, Jane L.; Beynon, Robert J.; Armstrong, Stuart D.; Davidson, Amanda J.; Roberts, Sarah A.; Gómez-Baena, Guadalupe; Smadja, Carole M.; Ganem, Guila

    2017-01-01

    When hybridisation carries a cost, natural selection is predicted to favour evolution of traits that allow assortative mating (reinforcement). Incipient speciation between the two European house mouse subspecies, Mus musculus domesticus and M.m.musculus, sharing a hybrid zone, provides an opportunity to understand evolution of assortative mating at a molecular level. Mouse urine odours allow subspecific mate discrimination, with assortative preferences evident in the hybrid zone but not in allopatry. Here we assess the potential of MUPs (major urinary proteins) as candidates for signal divergence by comparing MUP expression in urine samples from the Danish hybrid zone border (contact) and from allopatric populations. Mass spectrometric characterisation identified novel MUPs in both subspecies involving mostly new combinations of amino acid changes previously observed in M.m.domesticus. The subspecies expressed distinct MUP signatures, with most MUPs expressed by only one subspecies. Expression of at least eight MUPs showed significant subspecies divergence both in allopatry and contact zone. Another seven MUPs showed divergence in expression between the subspecies only in the contact zone, consistent with divergence by reinforcement. These proteins are candidates for the semiochemical barrier to hybridisation, providing an opportunity to characterise the nature and evolution of a putative species recognition signal. PMID:28337988

  11. KH-type splicing regulatory protein is involved in esophageal squamous cell carcinoma progression.

    Science.gov (United States)

    Fujita, Yuji; Masuda, Kiyoshi; Hamada, Junichi; Shoda, Katsutoshi; Naruto, Takuya; Hamada, Satoshi; Miyakami, Yuko; Kohmoto, Tomohiro; Watanabe, Miki; Takahashi, Rizu; Tange, Shoichiro; Saito, Masako; Kudo, Yasusei; Fujiwara, Hitoshi; Ichikawa, Daisuke; Tangoku, Akira; Otsuji, Eigo; Imoto, Issei

    2017-11-24

    KH-type splicing regulatory protein (KHSRP) is a multifunctional RNA-binding protein, which is involved in several post-transcriptional aspects of RNA metabolism, including microRNA (miRNA) biogenesis. It affects distinct cell functions in different tissues and can have an impact on various pathological conditions. In the present study, we investigated the oncogenic functions of KHSRP and their underlying mechanisms in the pathogenesis of esophageal squamous cell carcinoma (ESCC). KHSRP expression levels were elevated in ESCC tumors when compared with those in non-tumorous tissues by immunohistochemistry, and cytoplasmic KHSRP overexpression was found to be an independent prognosticator for worse overall survival in a cohort of 104 patients with ESCC. KHSRP knockdown inhibited growth, migration, and invasion of ESCC cells. KHSRP knockdown also inhibited the maturation of cancer-associated miRNAs, such as miR-21, miR-130b, and miR-301, and induced the expression of their target mRNAs, such as BMP6, PDCD4, and TIMP3, resulting in the inhibition of epithelial-to-mesenchymal transition. Our findings uncover a novel oncogenic function of KHSRP in esophageal tumorigenesis and implicate its use as a marker for prognostic evaluation and as a putative therapeutic target in ESCC.

  12. HTLV-1 Tax-mediated TAK1 activation involves TAB2 adapter protein

    International Nuclear Information System (INIS)

    Yu Qingsheng; Minoda, Yasumasa; Yoshida, Ryoko; Yoshida, Hideyuki; Iha, Hidekatsu; Kobayashi, Takashi; Yoshimura, Akihiko; Takaesu, Giichi

    2008-01-01

    Human T cell leukemia virus type 1 (HTLV-1) Tax is an oncoprotein that plays a crucial role in the proliferation and transformation of HTLV-1-infected T lymphocytes. It has recently been reported that Tax activates a MAPKKK family, TAK1. However, the molecular mechanism of Tax-mediated TAK1 activation is not well understood. In this report, we investigated the role of TAK1-binding protein 2 (TAB2) in Tax-mediated TAK1 activation. We found that TAB2 physically interacts with Tax and augments Tax-induced NF-κB activity. Tax and TAB2 cooperatively activate TAK1 when they are coexpressed. Furthermore, TAK1 activation by Tax requires TAB2 binding as well as ubiquitination of Tax. We also found that the overexpression of TRAF2, 5, or 6 strongly induces Tax ubiquitination. These results suggest that TAB2 may be critically involved in Tax-mediated activation of TAK1 and that NF-κB-activating TRAF family proteins are potential cellular E3 ubiquitin ligases toward Tax

  13. Identification of proteins involved in the functioning of Riftia pachyptila symbiosis by Subtractive Suppression Hybridization

    Directory of Open Access Journals (Sweden)

    Lallier François H

    2007-09-01

    Full Text Available Abstract Background Since its discovery around deep sea hydrothermal vents of the Galapagos Rift about 30 years ago, the chemoautotrophic symbiosis between the vestimentiferan tubeworm Riftia pachyptila and its symbiotic sulfide-oxidizing γ-proteobacteria has been extensively studied. However, studies on the tubeworm host were essentially targeted, biochemical approaches. We decided to use a global molecular approach to identify new proteins involved in metabolite exchanges and assimilation by the host. We used a Subtractive Suppression Hybridization approach (SSH in an unusual way, by comparing pairs of tissues from a single individual. We chose to identify the sequences preferentially expressed in the branchial plume tissue (the only organ in contact with the sea water and in the trophosome (the organ housing the symbiotic bacteria using the body wall as a reference tissue because it is supposedly not involved in metabolite exchanges in this species. Results We produced four cDNA libraries: i body wall-subtracted branchial plume library (BR-BW, ii and its reverse library, branchial plume-subtracted body wall library (BW-BR, iii body wall-subtracted trophosome library (TR-BW, iv and its reverse library, trophosome-subtracted body wall library (BW-TR. For each library, we sequenced about 200 clones resulting in 45 different sequences on average in each library (58 and 59 cDNAs for BR-BW and TR-BW libraries respectively. Overall, half of the contigs matched records found in the databases with good E-values. After quantitative PCR analysis, it resulted that 16S, Major Vault Protein, carbonic anhydrase (RpCAbr, cathepsin and chitinase precursor transcripts were highly represented in the branchial plume tissue compared to the trophosome and the body wall tissues, whereas carbonic anhydrase (RpCAtr, myohemerythrin, a putative T-Cell receptor and one non identified transcript were highly specific of the trophosome tissue. Conclusion Quantitative PCR

  14. Identification of proteins involved in the functioning of Riftia pachyptila symbiosis by Subtractive Suppression Hybridization.

    Science.gov (United States)

    Sanchez, Sophie; Hourdez, Stéphane; Lallier, François H

    2007-09-24

    Since its discovery around deep sea hydrothermal vents of the Galapagos Rift about 30 years ago, the chemoautotrophic symbiosis between the vestimentiferan tubeworm Riftia pachyptila and its symbiotic sulfide-oxidizing gamma-proteobacteria has been extensively studied. However, studies on the tubeworm host were essentially targeted, biochemical approaches. We decided to use a global molecular approach to identify new proteins involved in metabolite exchanges and assimilation by the host. We used a Subtractive Suppression Hybridization approach (SSH) in an unusual way, by comparing pairs of tissues from a single individual. We chose to identify the sequences preferentially expressed in the branchial plume tissue (the only organ in contact with the sea water) and in the trophosome (the organ housing the symbiotic bacteria) using the body wall as a reference tissue because it is supposedly not involved in metabolite exchanges in this species. We produced four cDNA libraries: i) body wall-subtracted branchial plume library (BR-BW), ii) and its reverse library, branchial plume-subtracted body wall library (BW-BR), iii) body wall-subtracted trophosome library (TR-BW), iv) and its reverse library, trophosome-subtracted body wall library (BW-TR). For each library, we sequenced about 200 clones resulting in 45 different sequences on average in each library (58 and 59 cDNAs for BR-BW and TR-BW libraries respectively). Overall, half of the contigs matched records found in the databases with good E-values. After quantitative PCR analysis, it resulted that 16S, Major Vault Protein, carbonic anhydrase (RpCAbr), cathepsin and chitinase precursor transcripts were highly represented in the branchial plume tissue compared to the trophosome and the body wall tissues, whereas carbonic anhydrase (RpCAtr), myohemerythrin, a putative T-Cell receptor and one non identified transcript were highly specific of the trophosome tissue. Quantitative PCR analyses were congruent with our libraries

  15. Larval hemolymph of rhinoceros beetle, Allomyrina dichotoma, enhances insulin secretion through ATF3 gene expression in INS-1 pancreatic β-cells.

    Science.gov (United States)

    Kim, Seung-Whan; Suh, Hyun-Woo; Yoo, Bo-Kyung; Kwon, Kisang; Yu, Kweon; Choi, Ji-Young; Kwon, O-Yu

    2018-05-22

    In this study, we show that INS-1 pancreatic β-cells treated for 2 h with hemolymph of larvae of rhinoceros beetle, Allomyrina dichotoma, secreted about twice as much insulin compared to control cells without such treatment. Activating transcription factor 3 (ATF3) was the highest upregulated gene in DNA chip analysis. The A. dichotoma hemolymph dose-dependently induced increased expression levels of genes encoding ATF3 and insulin. Conversely, treatment with ATF3 siRNA inhibited expression levels of both genes and curbed insulin secretion. These results suggest that the A. dichotoma hemolymph has potential for treating and preventing diabetes or diabetes-related complications.

  16. Reconstruction of the yeast protein-protein interaction network involved in nutrient sensing and global metabolic regulation

    DEFF Research Database (Denmark)

    Nandy, Subir Kumar; Jouhten, Paula; Nielsen, Jens

    2010-01-01

    proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives. RESULTS: Here we describe an annotated reconstruction of the protein-protein interactions around four key nutrient......) and for all the interactions between them (edges). The annotated information is readily available utilizing the functionalities of network modelling tools such as Cytoscape and CellDesigner. CONCLUSIONS: The reported fully annotated interaction model serves as a platform for integrated systems biology studies...

  17. Conformational Flexibility of Proteins Involved in Ribosome Biogenesis: Investigations via Small Angle X-ray Scattering (SAXS

    Directory of Open Access Journals (Sweden)

    Dritan Siliqi

    2018-02-01

    Full Text Available The dynamism of proteins is central to their function, and several proteins have been described as flexible, as consisting of multiple domains joined by flexible linkers, and even as intrinsically disordered. Several techniques exist to study protein structures, but small angle X-ray scattering (SAXS has proven to be particularly powerful for the quantitative analysis of such flexible systems. In the present report, we have used SAXS in combination with X-ray crystallography to highlight their usefulness at characterizing flexible proteins, using as examples two proteins involved in different steps of ribosome biogenesis. The yeast BRCA2 and CDKN1A-interactig protein, Bcp1, is a chaperone for Rpl23 of unknown structure. We showed that it consists of a rigid, slightly elongated protein, with a secondary structure comprising a mixture of alpha helices and beta sheets. As an example of a flexible molecule, we studied the SBDS (Shwachman-Bodian-Diamond Syndrome protein that is involved in the cytoplasmic maturation of the 60S subunit and constitutes the mutated target in the Shwachman-Diamond Syndrome. In solution, this protein coexists in an ensemble of three main conformations, with the N- and C-terminal ends adopting different orientations with respect to the central domain. The structure observed in the protein crystal corresponds to an average of those predicted by the SAXS flexibility analysis.

  18. Effects of lead on Na+, K+-ATPase and hemolymph ion concentrations in the freshwater mussel Elliptio complanata

    Science.gov (United States)

    Mosher, Shad; Cope, W. Gregory; Weber, Frank X.; Shea, Damian; Kwak, Thomas J.

    2012-01-01

    Freshwater mussels are an imperiled fauna exposed to a variety of environmental toxicants such as lead (Pb) and studies are urgently needed to assess their health and condition to guide conservation efforts. A 28-day laboratory toxicity test with Pb and adult Eastern elliptio mussels (Elliptio complanata) was conducted to determine uptake kinetics and to assess the toxicological effects of Pb exposure. Test mussels were collected from a relatively uncontaminated reference site and exposed to a water-only control and five concentrations of Pb (as lead nitrate) ranging from 1 to 245 mu g/L in a static renewal test with a water hardness of 42 mg/L. Endpoints included tissue Pb concentrations, hemolymph Pb and ion (Na+, K+, Cl-, Ca2+) concentrations, and Na+, K+-ATPase enzyme activity in gill tissue. Mussels accumulated Pb rapidly, with tissue concentrations increasing at an exposure-dependent rate for the first 2 weeks, but with no significant increase from 2 to 4 weeks. Mussel tissue Pb concentrations ranged from 0.34 to 898 mu g/g dry weight, were strongly related to Pb in test water at every time interval (7, 14, 21, and 28 days), and did not significantly increase after day 14. Hemolymph Pb concentration was variable, dependent on exposure concentration, and showed no appreciable change with time beyond day 7, except for mussels in the greatest exposure concentration (245 mu g/L), which showed a significant reduction in Pb by 28 days, suggesting a threshold for Pb binding or elimination in hemolymph at concentrations near 1000 mu g/g. The Na+, K+-ATPase activity in the gill tissue of mussels was significantly reduced by Pb on day 28 and was highly correlated with tissue Pb concentration (R2 = 0.92; P = 0.013). The Na+, K+-ATPase activity was correlated with reduced hemolymph Na+ concentration at the greatest Pb exposure when enzyme activity was at 30% of controls. Hemolymph Ca2+ concentration increased significantly in mussels from the greatest Pb exposure and may

  19. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-telomeric Roles of Arabidopsis Telomerase

    Directory of Open Access Journals (Sweden)

    Ladislav eDokládal

    2015-11-01

    Full Text Available Telomerase-reverse transcriptase (TERT plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE TERT domain and identified a nuclear-localized protein that contains a RNA recognition motif (RRM. This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions.

  20. Ação da inoculação de hemolinfa no mecanismo de defesa de Biomphalaria tenagophila (Orbigny, 1835 The effect of hemolymph inoculation on the defense mechanism of Biomphalaria tenagophila (Orbigny, 1835

    Directory of Open Access Journals (Sweden)

    Soely Maria Pissini Machado Reis

    1995-08-01

    Full Text Available Estudou-se a resistência à infecção pelo S. mansoni em moluscos B. tenagophila inoculados com vários tipos de hemolinfa provenientes de moluscos infectados por S. mansoni da linhagem SJ ou por outros trematódeos avaliando-se, nestas circunstâncias, o comportamento dos amebócitos. Concluiu-se que dois tipos de mecanismos teriam agido provocando resistência à infecção pelo S. mansoni: celular e humoral. A reação do tipo celular ocorreu quando os moluscos eram inoculados com hemolinfa de moluscos infectados por S. mansoni B. tenagophila inoculadas com hemolinfa de moluscos infectados por furcocercárias longifurcadas sem ocelos, apresentaram elevada resistência à infecção posterior por S.mansoni.The resistance of B. tenagophila snails to infection by Schistosoma mansoni was studied. These snails had been previously inoculated with hemolymph talsen from other snails infected by S. mansoni of SJ strain or by other trematodes. The findings suggest that two types - cellular and humoral - are responsible for the resistance to infection by S. mansoni. The cellular response occurred when the snails were inoculated with hemolymph from snails infected by S. mansoni. B. tenagophila inoculate with hemolymph from snails infected by furcocercariae without eye-spot, also showed resistance to the infection by S. mansoni. In this latter case, the degenerated sporocysts were not enveloped by amebocitary reaction, leading to the conclusion that humoral factors could be involved.

  1. Asthmatic airway smooth muscle CXCL10 production: mitogen-activated protein kinase JNK involvement

    Science.gov (United States)

    Alrashdan, Yazan A.; Alkhouri, Hatem; Chen, Emily; Lalor, Daniel J.; Poniris, Maree; Henness, Sheridan; Brightling, Christopher E.; Burgess, Janette K.; Armour, Carol L.; Ammit, Alaina J.

    2012-01-01

    CXCL10 (IP10) is involved in mast cell migration to airway smooth muscle (ASM) bundles in asthma. We aimed to investigate the role of cytokine-induced MAPK activation in CXCL10 production by ASM cells from people with and without asthma. Confluent growth-arrested ASM cells were treated with inhibitors of the MAPKs ERK, p38, and JNK and transcription factor NF-κB, or vehicle, and stimulated with IL-1β, TNF-α, or IFN-γ, alone or combined (cytomix). CXCL10 mRNA and protein, JNK, NF-κB p65 phosphorylation, and Iκ-Bα protein degradation were assessed using real-time PCR, ELISA, and immunoblotting, respectively. Cytomix, IL-1β, and TNF-α induced CXCL10 mRNA expression more rapidly in asthmatic than nonasthmatic ASM cells. IL-1β and/or TNF-α combined with IFN-γ synergistically increased asthmatic ASM cell CXCL10 release. Inhibitor effects were similar in asthmatic and nonasthmatic cells, but cytomix-induced release was least affected, with only JNK and NF-κB inhibitors halving it. Notably, JNK phosphorylation was markedly less in asthmatic compared with nonasthmatic cells. However, in both, the JNK inhibitor SP600125 reduced JNK phosphorylation and CXCL10 mRNA levels but did not affect CXCL10 mRNA stability or Iκ-Bα degradation. Together, the JNK and NF-κB inhibitors completely inhibited their CXCL10 release. We concluded that, in asthmatic compared with nonasthmatic ASM cells, JNK activation was reduced and CXCL10 gene expression was more rapid following cytomix stimulation. However, in both, JNK activation did not regulate early events leading to NF-κB activation. Thus JNK and NF-κB provide independent therapeutic targets for limiting CXCL10 production and mast cell migration to the ASM in asthma. PMID:22387292

  2. Decreased activity of neutrophils in the presence of diferuloylmethane (curcumin) involves protein kinase C inhibition.

    Science.gov (United States)

    Jancinová, Viera; Perecko, Tomás; Nosál, Radomír; Kostálová, Daniela; Bauerová, Katarína; Drábiková, Katarína

    2009-06-10

    Diferuloylmethane (curcumin) has been shown to act beneficially in arthritis, particularly through downregulated expression of proinflammatory cytokines and collagenase as well as through the modulated activities of T lymphocytes and macrophages. In this study its impact on activated neutrophils was investigated both in vitro and in experimental arthritis. Formation of reactive oxygen species in neutrophils was recorded on the basis of luminol- or isoluminol-enhanced chemiluminescence. Phosphorylation of neutrophil protein kinases C alpha and beta II was assessed by Western blotting, using phosphospecific antibodies. Adjuvant arthritis was induced in Lewis rats by heat-killed Mycobacterium butyricum. Diferuloylmethane or methotrexate was administered over a period of 28 days after arthritis induction. Under in vitro conditions, diferuloylmethane (1-100 microM) reduced dose-dependently oxidant formation both at extra- and intracellular level and it effectively reduced protein kinase C activation. Adjuvant arthritis was accompanied by an increased number of neutrophils in blood and by a more pronounced spontaneous as well as PMA (phorbol myristate acetate) stimulated chemiluminescence. Whereas the arthritis-related alterations in neutrophil count and in spontaneous chemiluminescence were not modified by diferuloylmethane, the increased reactivity of neutrophils to PMA was less evident in diferuloylmethane-treated animals. The effects of diferuloylmethane were comparable with those of methotrexate. Diferuloylmethane was found to be a potent inhibitor of neutrophil functions both in vitro and in experimental arthritis. As neutrophils are considered to be cells with the greatest capacity to inflict damage within diseased joints, the observed effects could represent a further mechanism involved in the antirheumatic activity of diferuloylmethane.

  3. Isoforms of acyl carrier protein involved in seed-specific fatty acid synthesis.

    Science.gov (United States)

    Suh, M C; Schultz, D J; Ohlrogge, J B

    1999-03-01

    Seeds of coriandrum sativum (coriander) and Thunbergia alata (black-eyed Susan vine) produce unusual monoenoic fatty acids which constitute over 80% of the total fatty acids of the seed oil. The initial step in the formation of these fatty acids is the desaturation of palmitoyl-ACP (acyl carrier protein) at the delta(4) or delta(6) positions to produce delta(4)-hexadecenoic acid (16:1(delta(4)) or delta(6)-hexadecenoic acid (16:1(delta(6)), respectively. The involvement of specific forms of ACP in the production of these novel monoenoic fatty acids was studied. ACPs were partially purified from endosperm of coriander and T. alata and used to generate 3H- and 14C-labelled palmitoyl-ACP substrates. In competition assays with labelled palmitoyl-ACP prepared from spinach (Spinacia oleracea), delta(4)-acyl-ACP desaturase activity was two- to threefold higher with coriander ACP than with spinach ACP. Similarly, the T. alata delta(6) desaturase favoured T. alata ACP over spinach ACP. A cDNA clone, Cs-ACP-1, encoding ACP was isolated from a coriander endosperm cDNA library. Cs-ACP-1 mRNA was predominantly expressed in endosperm rather than leaves. The Cs-ACP-1 mature protein was expressed in E. coli and comigrated on SDS-PAGE with the most abundant ACP expressed in endosperm tissues. In in vitro delta(4)-palmitoyl-ACP desaturase assays, the Cs-ACP-1 expressed from E. coli was four- and 10-fold more active than spinach ACP or E. coli ACP, respectively, in the synthesis of delta(4)-hexadecenoic acid from palmitoyl-ACP. In contrast, delta(9)-stearoyl-ACP desaturase activity from coriander endosperm did not discriminate strongly between different ACP species. These results indicate that individual ACP isoforms are specifically involved in the biosynthesis of unusual seed fatty acids and further suggest that expression of multiple ACP isoforms may participate in determining the products of fatty acid biosynthesis.

  4. Evidence for the involvement of a labile protein in stimulation of adrenal steroidogenesis under conditions not inhibitory to protein synthesis

    International Nuclear Information System (INIS)

    Krueger, R.J.; Orme-Johnson, N.R.

    1988-01-01

    Evidence is presented to support the hypothesis that synthesis of a labile protein is required for stimulation of steroidogenesis in rat adrenocortical cells. Amino acids L-canavanine and L-S-aminoethylcysteine, at concentrations as high as 5 mM, each inhibited steroidogenesis to a much greater extent than they inhibited protein synthesis. S-Aminoethylcysteine caused a 50% decrease in the stimulated rate of corticosterone production under conditions where incorporation of [35S]methionine into protein was unchanged. Both amino acids block stimulation of steroid synthesis at a step subsequent to the formation of cAMP and before the synthesis of progesterone. The onset of this effect, after the addition of the amino acids, on corticosterone production is quite rapid. These results provide support, that is not dependent on inhibition of protein synthesis, for the hypothesis that a labile protein mediates stimulation of steroidogenesis. Reversal of canavanine and S-aminoethylcysteine inhibition of steroidogenesis by arginine and lysine, respectively, suggests that the inhibitors are functioning as amino acid analogs. S-Aminoethylcysteine inhibits the incorporation of [3H]lysine into protein as well as inhibits steroidogenesis; further, [3H]S-aminoethylcysteine is incorporated into protein that is nonstimulatory. These results suggest that lysine residues play an essential role in the function of the labile protein or that the labile protein contains a large number of lysine residues

  5. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    Science.gov (United States)

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  6. IP3 production in the hypersensitive response of lemon seedlings against Alternaria alternata involves active protein tyrosine kinases but not a G-protein

    Directory of Open Access Journals (Sweden)

    XIMENA ORTEGA

    2005-01-01

    Full Text Available IP3 increase and de novo synthesis of scoparone are produced in the hypersensitive response (HR of lemon seedlings against the fungus Alternaria alternata. To elucidate whether a G-protein and/or a protein tyrosine kinase (PTK are involved in signal transduction leading to the production of such a defensive response, we studied the HR in this plant system after treatment with G-protein activators alone and PTK inhibitors in the presence of fungal conidia. No changes in the level of IP3 were detected in response to the treatment with the G-protein activators cholera toxin or mastoparan, although the HR was observed in response to these compounds as determined by the scoparone synthesis. On the contrary, the PTK inhibitors lavendustin A and 2,5-dihidroxy methyl cinnamate (DHMC not only prevented the IP3 changes observed in response to the fungal inoculation of lemon seedlings but also blocked the development of the HR. These results suggest that the IP3 changes observed in response to A. alternata require a PTK activity and are the result of a G-protein independent Phospholipase C activity, even though the activation of a G-protein can also lead to the development of a HR. Therefore, it appears that more than one signaling pathway may be activated for the development of HR in lemon seedlings: one involving a G-protein and the other involving a PTK-dependent PLC.

  7. Fluconazole Pharmacokinetics in Galleria mellonella Larvae and Performance Evaluation of a Bioassay Compared to Liquid Chromatography-Tandem Mass Spectrometry for Hemolymph Specimens

    DEFF Research Database (Denmark)

    Astvad, Karen Marie Thyssen; Meletiadis, Joseph; Whalley, Sarah

    2017-01-01

    The invertebrate model organism Galleria mellonella can be used to assess the efficacy of treatment of fungal infection. The fluconazole dose best mimicking human exposure during licensed dosing is unknown. We validated a bioassay for fluconazole detection in hemolymph and determined...... the fluconazole pharmacokinetics and pharmacodynamics in larval hemolymph in order to estimate a humanized dose for future experiments. A bioassay using 4-mm agar wells, 20 μl hemolymph, and the hypersusceptible Candida albicans DSY2621 was established and compared to a validated liquid chromatography-tandem mass...... spectrometry (LC-MS-MS) method. G. mellonella larvae were injected with fluconazole (5, 10, and 20 mg/kg of larval weight), and hemolymph was harvested for 24 h for pharmacokinetics calculations. The exposure was compared to the human exposure during standard licensed dosing. The bioassay had a linear standard...

  8. Insect biofuel cells using trehalose included in insect hemolymph leading to an insect-mountable biofuel cell.

    Science.gov (United States)

    Shoji, Kan; Akiyama, Yoshitake; Suzuki, Masato; Hoshino, Takayuki; Nakamura, Nobuhumi; Ohno, Hiroyuki; Morishima, Keisuke

    2012-12-01

    In this paper, an insect biofuel cell (BFC) using trehalose included in insect hemolymph was developed. The insect BFC is based on trehalase and glucose oxidase (GOD) reaction systems which oxidize β-glucose obtained by hydrolyzing trehalose. First, we confirmed by LC-MS that a sufficient amount of trehalose was present in the cockroach hemolymph (CHL). The maximum power density obtained using the insect BFC was 6.07 μW/cm(2). The power output was kept more than 10 % for 2.5 h by protecting the electrodes with a dialysis membrane. Furthermore, the maximum power density was increased to 10.5 μW/cm(2) by using an air diffusion cathode. Finally, we succeeded in driving a melody integrated circuit (IC) and a piezo speaker by connecting five insect BFCs in series. The results indicate that the insect BFC is a promising insect-mountable battery to power environmental monitoring micro-tools.

  9. Direct Involvement of Retinoblastoma Family Proteins in DNA Repair by Non-homologous End-Joining

    Directory of Open Access Journals (Sweden)

    Rebecca Cook

    2015-03-01

    Full Text Available Deficiencies in DNA double-strand break (DSB repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1 is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ. Support of cNHEJ involves a mechanism independent of RB1’s cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6. Cells with engineered loss of RB family function as well as cancer-derived cells with mutational RB1 loss show substantially reduced levels of cNHEJ. RB1 variants disabled for the interaction with XRCC5 and XRCC6, including a cancer-associated variant, are unable to support cNHEJ despite being able to confer cell-cycle control. Our data identify RB1 loss as a candidate driver of structural genomic instability and a causative factor for cancer somatic heterogeneity and evolution.

  10. The fragile X protein binds mRNAs involved in cancer progression and modulates metastasis formation.

    Science.gov (United States)

    Lucá, Rossella; Averna, Michele; Zalfa, Francesca; Vecchi, Manuela; Bianchi, Fabrizio; La Fata, Giorgio; Del Nonno, Franca; Nardacci, Roberta; Bianchi, Marco; Nuciforo, Paolo; Munck, Sebastian; Parrella, Paola; Moura, Rute; Signori, Emanuela; Alston, Robert; Kuchnio, Anna; Farace, Maria Giulia; Fazio, Vito Michele; Piacentini, Mauro; De Strooper, Bart; Achsel, Tilmann; Neri, Giovanni; Neven, Patrick; Evans, D Gareth; Carmeliet, Peter; Mazzone, Massimiliano; Bagni, Claudia

    2013-10-01

    The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  11. The Fragile X Protein binds mRNAs involved in cancer progression and modulates metastasis formation

    Science.gov (United States)

    Lucá, Rossella; Averna, Michele; Zalfa, Francesca; Vecchi, Manuela; Bianchi, Fabrizio; Fata, Giorgio La; Del Nonno, Franca; Nardacci, Roberta; Bianchi, Marco; Nuciforo, Paolo; Munck, Sebastian; Parrella, Paola; Moura, Rute; Signori, Emanuela; Alston, Robert; Kuchnio, Anna; Farace, Maria Giulia; Fazio, Vito Michele; Piacentini, Mauro; De Strooper, Bart; Achsel, Tilmann; Neri, Giovanni; Neven, Patrick; Evans, D Gareth; Carmeliet, Peter; Mazzone, Massimiliano; Bagni, Claudia

    2013-01-01

    The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression. PMID:24092663

  12. Yeast Mitochondrial Interactosome Model: Metabolon Membrane Proteins Complex Involved in the Channeling of ADP/ATP

    Directory of Open Access Journals (Sweden)

    Benjamin Clémençon

    2012-02-01

    Full Text Available The existence of a mitochondrial interactosome (MI has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp and inorganic phosphate (PiC carriers as well as the VDAC (or mitochondrial porin catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1 under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.

  13. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants.

    Science.gov (United States)

    Zheng, Xuan; Dong, Shuangshuang; Zheng, Jie; Li, Duanhua; Li, Feng; Luo, Zhongli

    2014-01-01

    G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Which Plant Proteins Are Involved in Antiviral Defense? Review on In Vivo and In Vitro Activities of Selected Plant Proteins against Viruses

    Directory of Open Access Journals (Sweden)

    Oskar Musidlak

    2017-11-01

    Full Text Available Plants have evolved a variety of defense mechanisms to tackle virus attack. Endogenous plant proteins can function as virus suppressors. Different types of proteins mediate defense responses against plant viruses. Pathogenesis-related (PR proteins are activated upon pathogen infections or in different stress situations and their production is one of many components in plant defense. Ribosome-inactivating proteins (RIPs suppress translation by enzymatically damaging ribosomes and they have been found to have antiviral activity. RNA-binding proteins (RBPs bind to target RNAs via specialized RNA-binding domain and can directly or indirectly function in plant defense system against RNA viruses. Proteins involved in silencing machinery, namely Dicer-like (DCL proteins, Argonaute (AGO proteins, and RNA-dependent RNA polymerases (RDRs confer innate antiviral defense in plants as they are able to degrade foreign RNA of viral origin. This review aims to provide a comprehensive and up-to-date picture of plant proteins participating in antiviral defense. As a result we discuss proteins conferring plant antiviral resistance and their potential future applications in different fields of life including agriculture and medicine.

  15. A New MAP Kinase Protein Involved in Estradiol-Stimulated Reproduction of the Helminth Parasite Taenia crassiceps

    Science.gov (United States)

    Escobedo, Galileo; Soldevila, Gloria; Ortega-Pierres, Guadalupe; Chávez-Ríos, Jesús Ramsés; Nava, Karen; Fonseca-Liñán, Rocío; López-Griego, Lorena; Hallal-Calleros, Claudia; Ostoa-Saloma, Pedro; Morales-Montor, Jorge

    2010-01-01

    MAP kinases (MAPK) are involved in the regulation of cellular processes such as reproduction and growth. In parasites, the role of MAPK has been scarcely studied. Here, we describe the participation of an ERK-like protein in estrogen-dependent reproduction of the helminth parasite Taenia crassiceps. Our results show that 17β-estradiol induces a concentration-dependent increase in the bud number of in vitro cultured cysticerci. If parasites are also incubated in presence of an ERK-inhibitor, the stimulatory effect of estrogen is blocked. The expression of ERK-like mRNA and its corresponding protein was detected in the parasite. The ERK-like protein was over-expressed by all treatments. Nevertheless, a strong induction of phosphorylation of this protein was observed only in response to 17β-estradiol. Cross-contamination by host cells was discarded by flow cytometry analysis. Parasite cells expressing the ERK-like protein were exclusively located at the subtegument tissue by confocal microscopy. Finally, the ERK-like protein was separated by bidimensional electrophoresis and then sequenced, showing the conserved TEY activation motif, typical of all known ERK 1/2 proteins. Our results show that an ERK-like protein is involved in the molecular signalling during the interaction between the host and T. crassiceps, and may be considered as target for anti-helminth drugs design. PMID:20145710

  16. In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism

    Directory of Open Access Journals (Sweden)

    Donohue-Rolfe Arthur

    2011-06-01

    Full Text Available Abstract Background Shigella dysenteriae serotype 1 (SD1 causes the most severe form of epidemic bacillary dysentery. Quantitative proteome profiling of Shigella dysenteriae serotype 1 (SD1 in vitro (derived from LB cell cultures and in vivo (derived from gnotobiotic piglets was performed by 2D-LC-MS/MS and APEX, a label-free computationally modified spectral counting methodology. Results Overall, 1761 proteins were quantitated at a 5% FDR (false discovery rate, including 1480 and 1505 from in vitro and in vivo samples, respectively. Identification of 350 cytoplasmic membrane and outer membrane (OM proteins (38% of in silico predicted SD1 membrane proteome contributed to the most extensive survey of the Shigella membrane proteome reported so far. Differential protein abundance analysis using statistical tests revealed that SD1 cells switched to an anaerobic energy metabolism under in vivo conditions, resulting in an increase in fermentative, propanoate, butanoate and nitrate metabolism. Abundance increases of transcription activators FNR and Nar supported the notion of a switch from aerobic to anaerobic respiration in the host gut environment. High in vivo abundances of proteins involved in acid resistance (GadB, AdiA and mixed acid fermentation (PflA/PflB indicated bacterial survival responses to acid stress, while increased abundance of oxidative stress proteins (YfiD/YfiF/SodB implied that defense mechanisms against oxygen radicals were mobilized. Proteins involved in peptidoglycan turnover (MurB were increased, while β-barrel OM proteins (OmpA, OM lipoproteins (NlpD, chaperones involved in OM protein folding pathways (YraP, NlpB and lipopolysaccharide biosynthesis (Imp were decreased, suggesting unexpected modulations of the outer membrane/peptidoglycan layers in vivo. Several virulence proteins of the Mxi-Spa type III secretion system and invasion plasmid antigens (Ipa proteins required for invasion of colonic epithelial cells, and release

  17. Microsecond molecular dynamics simulations of intrinsically disordered proteins involved in the oxidative stress response

    NARCIS (Netherlands)

    Cino, E.A.; Wong-ekkabut, J.; Karttunen, M.E.J.; Choy, W.-Y.

    2011-01-01

    Intrinsically disordered proteins (IDPs) are abundant in cells and have central roles in protein-protein interaction networks. Interactions between the IDP Prothymosin alpha (ProTa) and the Neh2 domain of Nuclear factor erythroid 2-related factor 2 (Nrf2), with a common binding partner, Kelch-like

  18. Fluconazole Pharmacokinetics in Galleria mellonella Larvae and Performance Evaluation of a Bioassay Compared to Liquid Chromatography-Tandem Mass Spectrometry for Hemolymph Specimens

    Science.gov (United States)

    Astvad, Karen Marie Thyssen; Meletiadis, Joseph; Whalley, Sarah

    2017-01-01

    ABSTRACT The invertebrate model organism Galleria mellonella can be used to assess the efficacy of treatment of fungal infection. The fluconazole dose best mimicking human exposure during licensed dosing is unknown. We validated a bioassay for fluconazole detection in hemolymph and determined the fluconazole pharmacokinetics and pharmacodynamics in larval hemolymph in order to estimate a humanized dose for future experiments. A bioassay using 4-mm agar wells, 20 μl hemolymph, and the hypersusceptible Candida albicans DSY2621 was established and compared to a validated liquid chromatography-tandem mass spectrometry (LC–MS-MS) method. G. mellonella larvae were injected with fluconazole (5, 10, and 20 mg/kg of larval weight), and hemolymph was harvested for 24 h for pharmacokinetics calculations. The exposure was compared to the human exposure during standard licensed dosing. The bioassay had a linear standard curve between 1 and 20 mg/liter. Accuracy and coefficients of variation (percent) values were below 10%. The Spearman coefficient between assays was 0.94. Fluconazole larval pharmacokinetics followed one-compartment linear kinetics, with the 24-h area under the hemolymph concentration-time curve (AUC24 h) being 93, 173, and 406 mg · h/liter for the three doses compared to 400 mg · h/liter in humans under licensed treatment. In conclusion, a bioassay was validated for fluconazole determination in hemolymph. The pharmacokinetics was linear. An exposure comparable to the human exposure during standard licensed dosing was obtained with 20 mg/kg. PMID:28760893

  19. Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem.

    Science.gov (United States)

    Ernst, Antonia M; Jekat, Stephan B; Zielonka, Sascia; Müller, Boje; Neumann, Ulla; Rüping, Boris; Twyman, Richard M; Krzyzanek, Vladislav; Prüfer, Dirk; Noll, Gundula A

    2012-07-10

    The sieve element occlusion (SEO) gene family originally was delimited to genes encoding structural components of forisomes, which are specialized crystalloid phloem proteins found solely in the Fabaceae. More recently, SEO genes discovered in various non-Fabaceae plants were proposed to encode the common phloem proteins (P-proteins) that plug sieve plates after wounding. We carried out a comprehensive characterization of two tobacco (Nicotiana tabacum) SEO genes (NtSEO). Reporter genes controlled by the NtSEO promoters were expressed specifically in immature sieve elements, and GFP-SEO fusion proteins formed parietal agglomerates in intact sieve elements as well as sieve plate plugs after wounding. NtSEO proteins with and without fluorescent protein tags formed agglomerates similar in structure to native P-protein bodies when transiently coexpressed in Nicotiana benthamiana, and the analysis of these protein complexes by electron microscopy revealed ultrastructural features resembling those of native P-proteins. NtSEO-RNA interference lines were essentially devoid of P-protein structures and lost photoassimilates more rapidly after injury than control plants, thus confirming the role of P-proteins in sieve tube sealing. We therefore provide direct evidence that SEO genes in tobacco encode P-protein subunits that affect translocation. We also found that peptides recently identified in fascicular phloem P-protein plugs from squash (Cucurbita maxima) represent cucurbit members of the SEO family. Our results therefore suggest a common evolutionary origin for P-proteins found in the sieve elements of all dicotyledonous plants and demonstrate the exceptional status of extrafascicular P-proteins in cucurbits.

  20. Adenovirus structural protein IIIa is involved in the serotype specificity of viral DNA packaging.

    Science.gov (United States)

    Ma, Hsin-Chieh; Hearing, Patrick

    2011-08-01

    The packaging of the adenovirus (Ad) genome into a capsid displays serotype specificity. This specificity has been attributed to viral packaging proteins, the IVa2 protein and the L1-52/55K protein. We previously found that the Ad17 L1-52/55K protein was not able to complement the growth of an Ad5 L1-52/55K mutant virus, whereas two other Ad17 packaging proteins, IVa2 and L4-22K, could complement the growth of Ad5 viruses with mutations in the respective genes. In this report, we investigated why the Ad17 L1-52/55K protein was not able to complement the Ad5 L1-52/55K mutant virus. We demonstrate that the Ad17 L1-52/55K protein binds to the Ad5 IVa2 protein in vitro and the Ad5 packaging domain in vivo, activities previously associated with packaging function. The Ad17 L1-52/55K protein also associates with empty Ad5 capsids. Interestingly, we find that the Ad17 L1-52/55K protein is able to complement the growth of an Ad5 L1-52/55K mutant virus in conjunction with the Ad17 structural protein IIIa. The same result was found with the L1-52/55K and IIIa proteins of several other Ad serotypes, including Ad3 and Ad4. The Ad17 IIIa protein associates with empty Ad5 capsids. Consistent with the complementation results, we find that the IIIa protein interacts with the L1-52/55K protein in vitro and associates with the viral packaging domain in vivo. These results underscore the complex nature of virus assembly and genome encapsidation and provide a new model for how the viral genome may tether to the empty capsid during the encapsidation process.

  1. A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell

    OpenAIRE

    Hong, Zehui; Jiang, Jie; Lan, Li; Nakajima, Satoshi; Kanno, Shin-ichiro; Koseki, Haruhiko; Yasui, Akira

    2008-01-01

    DNA double-strand breaks (DSBs) represent the most toxic DNA damage arisen from endogenous and exogenous genotoxic stresses and are known to be repaired by either homologous recombination or nonhomologous end-joining processes. Although many proteins have been identified to participate in either of the processes, the whole processes still remain elusive. Polycomb group (PcG) proteins are epigenetic chromatin modifiers involved in gene silencing, cancer development and the maintenance of embry...

  2. Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII.

    Science.gov (United States)

    Inturi, Raviteja; Mun, Kwangchol; Singethan, Katrin; Schreiner, Sabrina; Punga, Tanel

    2018-02-01

    Human adenoviruses (HAdVs) are common human pathogens encoding a highly abundant histone-like core protein, VII, which is involved in nuclear delivery and protection of viral DNA as well as in sequestering immune danger signals in infected cells. The molecular details of how protein VII acts as a multifunctional protein have remained to a large extent enigmatic. Here we report the identification of several cellular proteins interacting with the precursor pVII protein. We show that the cellular E3 ubiquitin ligase MKRN1 is a novel precursor pVII-interacting protein in HAdV-C5-infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the late phase of HAdV-C5 infection in various human cell lines. MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6 proteins. We provide experimental evidence that the precursor pVII protein binding enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is deficient in this function. Based on these data, we propose that the pVII protein binding promotes MKRN1 self-ubiquitination, followed by proteasomal degradation of the MKRN1 protein, in HAdV-C5-infected cells. In addition, we show that measles virus and vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the recipient cells. Taken together, our results expand the functional repertoire of the HAdV-C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential common target during different virus infections. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases. To achieve pathogenicity, HAdVs have to counteract a variety of host cell antiviral defense systems, which would otherwise hamper virus replication. In this study, we show that the HAdV-C5 histone-like core protein pVII binds to and promotes self-ubiquitination of a cellular E3 ubiquitin ligase named MKRN1. This mutual interaction between the pVII and

  3. Mining the Human Complexome Database Identifies RBM14 as an XPO1-Associated Protein Involved in HIV-1 Rev Function

    OpenAIRE

    Budhiraja, Sona; Liu, Hongbing; Couturier, Jacob; Malovannaya, Anna; Qin, Jun; Lewis, Dorothy E.; Rice, Andrew P.

    2015-01-01

    By recruiting the host protein XPO1 (CRM1), the HIV-1 Rev protein mediates the nuclear export of incompletely spliced viral transcripts. We mined data from the recently described human nuclear complexome to identify a host protein, RBM14, which associates with XPO1 and Rev and is involved in Rev function. Using a Rev-dependent p24 reporter plasmid, we found that RBM14 depletion decreased Rev activity and Rev-mediated enhancement of the cytoplasmic levels of unspliced viral transcripts. RBM14 ...

  4. Involvement of TRPV3 and TRPM8 ion channel proteins in induction of mammalian cold-inducible proteins.

    Science.gov (United States)

    Fujita, Takanori; Liu, Yu; Higashitsuji, Hiroaki; Itoh, Katsuhiko; Shibasaki, Koji; Fujita, Jun; Nishiyama, Hiroyuki

    2018-01-01

    Cold-inducible RNA-binding protein (CIRP), RNA-binding motif protein 3 (RBM3) and serine and arginine rich splicing factor 5 (SRSF5) are RNA-binding proteins that are transcriptionally upregulated in response to moderately low temperatures and a variety of cellular stresses in mammalian cells. Induction of these cold-inducible proteins (CIPs) is dependent on transient receptor potential (TRP) V4 channel protein, but seems independent of its ion channel activity. We herein report that in addition to TRPV4, TRPV3 and TRPM8 are necessary for the induction of CIPs. We established cell lines from the lung of TRPV4-knockout (KO) mouse, and observed induction of CIPs in them by western blot analysis. A TRPV4 antagonist RN1734 suppressed the induction in wild-type mouse cells, but not in TRPV4-KO cells. A TRPV3 channel blocker S408271 and a TRPM8 channel blocker AMTB as well as siRNAs against TRPV3 and TRPM8 suppressed the CIP induction in mouse TRPV4-KO cells and human U-2 OS cells. A TRPV3 channel agonist 2-APB induced CIP expression, but camphor did not. Neither did a TRPM8 channel agonist WS-12. These results suggest that TRPV4, TRPV3 and TRPM8 proteins, but not their ion channel activities are necessary for the induction of CIPs at 32 °C. Identification of proteins that differentially interact with these TRP channels at 37 °C and 32 °C would help elucidate the underlying mechanisms of CIP induction by hypothermia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. A Proteomic Approach for the Identification of Up-Regulated Proteins Involved in the Metabolic Process of the Leiomyoma.

    Science.gov (United States)

    Ura, Blendi; Scrimin, Federica; Arrigoni, Giorgio; Franchin, Cinzia; Monasta, Lorenzo; Ricci, Giuseppe

    2016-04-09

    Uterine leiomyoma is the most common benign smooth muscle cell tumor of the uterus. Proteomics is a powerful tool for the analysis of complex mixtures of proteins. In our study, we focused on proteins that were upregulated in the leiomyoma compared to the myometrium. Paired samples of eight leiomyomas and adjacent myometrium were obtained and submitted to two-dimensional gel electrophoresis (2-DE) and mass spectrometry for protein identification and to Western blotting for 2-DE data validation. The comparison between the patterns revealed 24 significantly upregulated (p leiomyoma and not with the normal myometrium. The overexpression of seven proteins involved in the metabolic processes of the leiomyoma was further validated by Western blotting and 2D Western blotting. Four of these proteins have never been associated with the leiomyoma before. The 2-DE approach coupled with mass spectrometry, which is among the methods of choice for comparative proteomic studies, identified a number of proteins overexpressed in the leiomyoma and involved in several biological processes, including metabolic processes. A better understanding of the mechanism underlying the overexpression of these proteins may be important for therapeutic purposes.

  6. Ligand-induced association of surface immunoglobulin with the detergent insoluble cytoskeleton may involve an 89K protein

    International Nuclear Information System (INIS)

    Gupta, S.K.; Woda, B.

    1986-01-01

    Membrane immunoglobulin of B-lymphocytes is thought to play an important role in antigen recognition and cellular activation. Binding of cross-linking ligands to surface immunoglobulin (SIg) on intact cells converts it to a detergent insoluble state, and this conversion is associated with the transmission of a mitogenic signal. Insolubilized membrane proteins may be solubilized by incubating the detergent insoluble cytoskeletons in buffers which convert F-actin to G-actin [(Buffer 1), 0.34M sucrose, 0.5mM ATP, 0.5mM Dithiothrietol and lmM EDTA]. Immunoprecipitation of SIg from the detergent soluble fraction of 35 S-methionine labeled non ligand treated rat B-cells results in the co-isolation of an 89K protein and a 44K protein, presumably actin. The 89K protein is not associated with the fraction of endogenous detergent insoluble SIg. On treatment of rat B cells with cross-linking ligand (anti-Ig) the 89K protein becomes detergent insoluble along with most of the SIg and co-isolates with SIg on immunoprecipitation of the detergent insoluble, buffer l solubilized fraction. The migration of the SIg-associated 89K protein from the detergent soluble fraction to the detergent insoluble fraction after ligand treatment, suggests that this protein might be involved in linking SIg to the underlying cytoskeleton and could be involved in the transmission of a mitogenic signal

  7. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    Science.gov (United States)

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  8. Physico-Pathologic Mechanisms Involved in Neurodegeneration: Misfolded Protein-Plasma Membrane Interactions.

    Science.gov (United States)

    Shrivastava, Amulya Nidhi; Aperia, Anita; Melki, Ronald; Triller, Antoine

    2017-07-05

    Several neurodegenerative disorders, such as Alzheimer's and Parkinson's disease, are characterized by prominent loss of synapses and neurons associated with the presence of abnormally structured or misfolded protein assemblies. Cell-to-cell transfer of misfolded proteins has been proposed for the intra-cerebral propagation of these diseases. When released, misfolded proteins diffuse in the 3D extracellular space before binding to the plasma membrane of neighboring cells, where they diffuse on a 2D plane. This reduction in diffusion dimension and the cell surface molecular crowding promote deleterious interactions with native membrane proteins, favoring clustering and further aggregation of misfolded protein assemblies. These processes open up new avenues for therapeutics development targeting the initial interactions of deleterious proteins with the plasma membrane or the subsequent pathological signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Proteins involved in attack and defence in Zygomycete-aphid interactions

    DEFF Research Database (Denmark)

    Grell, Morten Nedergaard; Jensen, Annette Bruun; Lange, Lene

    2009-01-01

    and defense related proteins of the host. Now, selected proteins are being produced in an expression host for further studies. The conservation of the fungal secreted proteins in the species dominating the collected material, namely Pandora neoaphidis, Entomophthora planchoniana and Conidiobolus obscurus......, and additional related fungi are under investigation. We anticipate that our work will shed light on this highly specialized group of fungi that has attracted substantial attention as potential bio-control agents....

  10. A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell

    Science.gov (United States)

    Hong, Zehui; Jiang, Jie; Lan, Li; Nakajima, Satoshi; Kanno, Shin-ichiro; Koseki, Haruhiko; Yasui, Akira

    2008-01-01

    DNA double-strand breaks (DSBs) represent the most toxic DNA damage arisen from endogenous and exogenous genotoxic stresses and are known to be repaired by either homologous recombination or nonhomologous end-joining processes. Although many proteins have been identified to participate in either of the processes, the whole processes still remain elusive. Polycomb group (PcG) proteins are epigenetic chromatin modifiers involved in gene silencing, cancer development and the maintenance of embryonic and adult stem cells. By screening proteins responding to DNA damage using laser micro-irradiation, we found that PHF1, a human homolog of Drosophila polycomb-like, Pcl, protein, was recruited to DSBs immediately after irradiation and dissociated within 10 min. The accumulation at DSBs is Ku70/Ku80-dependent, and knockdown of PHF1 leads to X-ray sensitivity and increases the frequency of homologous recombination in HeLa cell. We found that PHF1 interacts physically with Ku70/Ku80, suggesting that PHF1 promotes nonhomologous end-joining processes. Furthermore, we found that PHF1 interacts with a number of proteins involved in DNA damage responses, RAD50, SMC1, DHX9 and p53, further suggesting that PHF1, besides the function in PcG, is involved in genome maintenance processes. PMID:18385154

  11. On the involvement of single-bond rotation in the primary photochemistry of photoactive yellow protein

    NARCIS (Netherlands)

    Stahl, A.D.; Hospes, M.; Singhal, K.; van Stokkum, I.; van Grondelle, R.; Groot, M.L.; Hellingwerf, K.J.

    2011-01-01

    Prior experimental observations, as well as theoretical considerations, have led to the proposal that C4-C7 single-bond rotation may play an important role in the primary photochemistry of photoactive yellow protein (PYP). We therefore synthesized an analog of this protein's 4-hydroxy-cinnamic acid

  12. IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus.

    Science.gov (United States)

    Xing, Lili; Sun, Lina; Liu, Shilin; Li, Xiaoni; Zhang, Libin; Yang, Hongsheng

    2017-09-01

    Sea cucumbers are an important economic species and exhibit high yield value among aquaculture animals. Purple sea cucumbers are very rare and beautiful and have stable hereditary patterns. In this study, isobaric tags (IBT) were first used to reveal the molecular mechanism of pigmentation in the body wall of the purple sea cucumber. We analyzed the proteomes of purple sea cucumber in early pigmentation stage (Pa), mid pigmentation stage (Pb) and late pigmentation stage (Pc), resulting in the identification of 5580 proteins, including 1099 differentially expressed proteins in Pb: Pa and 339 differentially expressed proteins in Pc: Pb. GO and KEGG analyses revealed possible differentially expressed proteins, including"melanogenesis", "melanosome", "melanoma", "pigment-biosynthetic process", "Epidermis development", "Ras-signaling pathway", "Wnt-signaling pathway", "response to UV light", and "tyrosine metabolism", involved in pigment synthesis and regulation in purple sea cucumbers. The large number of differentially expressed proteins identified here should be highly useful in further elucidating the mechanisms underlying pigmentation in sea cucumbers. Furthermore, these results may also provide the base for further identification of proteins involved in resistance mechanisms against melanoma, albinism, UV damage, and other diseases in sea cucumbers. Copyright © 2017. Published by Elsevier Inc.

  13. Specific DNA-binding proteins and DNA sequences involved in steroid hormone regulation of gene expression

    International Nuclear Information System (INIS)

    Spelsberg, T.; Hora, J.; Horton, M.; Goldberger, A.; Littlefield, B.; Seelke, R.; Toyoda, H.

    1987-01-01

    Steroid hormones circulate in the blood and are taken by target cells via complexes with intracellular binding proteins termed receptors, that are hormone and tissue specific. Each receptor binds it specific steroid with very high affinity, having an equilibrium dissociation constant (K/sub d/) in the range of 10 -9 to 10 -10 M. Once bound by their specific steroid hormones, the steroid receptors undergo a conformational change which allows them to bind with high affinity to sites on chromatin, termed nuclear acceptor sites. There are estimated 5,000 to 10,000 of these sites expressed with an equal number not expressed (''masked'') in intact chromatin. The result of the binding to nuclear acceptor sites is an alteration of gene transcription or, in some cases, gene expression as measured by the changing levels of specific RNAs and proteins in that target tissue. Each steroid regulates specific effects on the RNA and protein profiles. The chronology of the above mechanism of action after injection of radiolabelled steroid as is follows: Steroid-receptor complex formation (1 minute), nuclear acceptor sites (2 minutes), effects on RNA synthesis (10 to 30 minutes), and finally the changing protein profiles via changes in protein synthesis and protein turnover (1 to 6 hours). Thus steroid receptors represent one of the first identified intracellular gene regulation proteins. The receptor molecules themselves are regulated by the presence or absence of the steroid molecule

  14. Cox17 Protein Is an Auxiliary Factor Involved in the Control of the Mitochondrial Contact Site and Cristae Organizing System.

    Science.gov (United States)

    Chojnacka, Magdalena; Gornicka, Agnieszka; Oeljeklaus, Silke; Warscheid, Bettina; Chacinska, Agnieszka

    2015-06-12

    The mitochondrial contact site and cristae organizing system (MICOS) is a recently discovered protein complex that is crucial for establishing and maintaining the proper inner membrane architecture and contacts with the outer membrane of mitochondria. The ways in which the MICOS complex is assembled and its integrity is regulated remain elusive. Here, we report a direct link between Cox17, a protein involved in the assembly of cytochrome c oxidase, and the MICOS complex. Cox17 interacts with Mic60, thereby modulating MICOS complex integrity. This interaction does not involve Sco1, a partner of Cox17 in transferring copper ions to cytochrome c oxidase. However, the Cox17-MICOS interaction is regulated by copper ions. We propose that Cox17 is a newly identified factor involved in maintaining the architecture of the MICOS complex. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Specificity protein 1-zinc finger protein 179 pathway is involved in the attenuation of oxidative stress following brain injury

    Directory of Open Access Journals (Sweden)

    Jian-Ying Chuang

    2017-04-01

    Full Text Available After sudden traumatic brain injuries, secondary injuries may occur during the following days or weeks, which leads to the accumulation of reactive oxygen species (ROS. Since ROS exacerbate brain damage, it is important to protect neurons against their activity. Zinc finger protein 179 (Znf179 was shown to act as a neuroprotective factor, but the regulation of gene expression under oxidative stress remains unknown. In this study, we demonstrated an increase in Znf179 protein levels in both in vitro model of hydrogen peroxide (H2O2-induced ROS accumulation and animal models of traumatic brain injury. Additionally, we examined the sub-cellular localization of Znf179, and demonstrated that oxidative stress increases Znf179 nuclear shuttling and its interaction with specificity protein 1 (Sp1. Subsequently, the positive autoregulation of Znf179 expression, which is Sp1-dependent, was further demonstrated using luciferase reporter assay and green fluorescent protein (GFP-Znf179-expressing cells and transgenic mice. The upregulation of Sp1 transcriptional activity induced by the treatment with nerve growth factor (NGF led to an increase in Znf179 levels, which further protected cells against H2O2-induced damage. However, Sp1 inhibitor, mithramycin A, was shown to inhibit NGF effects, leading to a decrease in Znf179 expression and lower cellular protection. In conclusion, the results obtained in this study show that Znf179 autoregulation through Sp1-dependent mechanism plays an important role in neuroprotection, and NGF-induced Sp1 signaling may help attenuate more extensive (ROS-induced damage following brain injury.

  16. Maternal protein restriction compromises myocardial contractility in the young adult rat by changing proteins involved in calcium handling.

    Science.gov (United States)

    de Belchior, Aucelia C S; Freire, David D; da Costa, Carlos P; Vassallo, Dalton V; Padilha, Alessandra S; Dos Santos, Leonardo

    2016-02-01

    Maternal protein restriction (MPR) during pregnancy is associated with increased cardiovascular risk in the offspring in adulthood. In this study we evaluated the cardiac function of young male rats born from mothers subjected to MPR during pregnancy, focusing on the myocardial mechanics and calcium-handling proteins. After weaning, rats received normal diet until 3 mo old, when the following parameters were assessed: arterial and left ventricular hemodynamics and in vitro cardiac contractility in isolated papillary muscles. The body weight was lower and arterial pressure higher in the MPR group compared with young adult offspring of female rats that received standard diet (controls); and left ventricle time derivatives increased in the MPR group. The force developed by the cardiac muscle was similar; but time to peak and relaxation time were longer, and the derivatives of force were depressed in the MPR. In addition, MPR group exhibited decreased post-pause potentiation of force, suggesting reduced reuptake function of the sarcoplasmic reticulum. Corroborating, the myocardial content of SERCA-2a and phosphorylated PLB-Ser16/total PLB ratio was decreased and sodium-calcium exchanger was increased in the MPR group. The contraction dependent on transsarcolemmal influx of calcium was higher in MPR if compared with the control group. In summary, young rats born from mothers subjected to protein restriction during pregnancy exhibit changes in the myocardial mechanics with altered expression of calcium-handling proteins, reinforcing the hypothesis that maternal malnutrition is related to increased cardiovascular risk in the offspring, not only for hypertension, but also cardiac dysfunction. Copyright © 2016 the American Physiological Society.

  17. Involvement of protein kinase B and mitogen-activated protein kinases in experimental normothermic liver ischaemia-reperfusion injury.

    Science.gov (United States)

    Cursio, R; Filippa, N; Miele, C; Van Obberghen, E; Gugenheim, J

    2006-06-01

    This study evaluated the role of protein kinase B (PKB), phosphatidylinositol 3-kinase (PI3-K), Bcl-2-associated death protein (BAD) and mitogen-activated protein kinases (MAPKs) in normothermic ischaemia-reperfusion (IR)-induced apoptosis in rat liver. Rats were divided into two groups that received either phosphate-buffered saline (control) or the caspase inhibitor Z-Asp-2,6-dichorobenzoyloxymethylketone (Z-Asp-cmk), injected intravenously 2 min before the induction of 120 min of normothermic liver ischaemia. Liver apoptosis was assessed by the terminal deoxyribonucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) method. PI3-K, PKB, BAD and MAPK activities were measured in ischaemic and non-ischaemic lobes at various times after reperfusion. The number of TUNEL-positive cells was significantly decreased after pretreatment with Z-Asp-cmk. In controls, PI3-K and PKB activities and BAD phosphorylation were inhibited in ischaemic liver lobes. The MAPKs (extracellular signal-regulated kinases, c-Jun N-terminal kinase and p38) showed different patterns of activation during IR. PKB activity was not modified by pretreatment with Z-Asp-cmk. Induction of apoptosis during IR liver injury might be triggered by inactivation of the antiapoptotic PI3-K-PKB pathway and activation of the proapoptotic MAPKs. Copyright (c) 2006 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  18. Is Peripheral Benzodiazepine Receptor (PBR) Gene Expression Involved in Breast Cancer Suppression by Dietary Soybean Protein?

    National Research Council Canada - National Science Library

    Das, Salil

    2006-01-01

    .... It has been established that women in Asian countries consume more soy protein than women in the United States and that the incidence of breast cancer in women in Asian countries is generally lower...

  19. 3DSwap: Curated knowledgebase of proteins involved in 3D domain swapping

    KAUST Repository

    Shameer, Khader; Shingate, Prashant N.; Manjunath, S. C. P.; Karthika, M.; Pugalenthi, Ganesan; Sowdhamini, Ramanathan

    2011-01-01

    structures in oligomeric conformation. Protein structures in swapped conformations perform diverse functional roles and are also associated with deposition diseases in humans. We have performed in-depth literature curation and structural bioinformatics

  20. Is Peripheral Benzodiazepine Receptor (PBR) Gene Expression Involved in Breast Cancer Suppression by Dietary Soybean Protein

    National Research Council Canada - National Science Library

    Das, Salil

    2004-01-01

    ...% casein and those of groups 3 and 4 received same diet containing 20% soybean protein. Animals of groups 2 and 4 received DMBA in sesame oil by gavage (15 mg per animal). Control animals (groups 1 and 3...

  1. Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem

    Czech Academy of Sciences Publication Activity Database

    Ernst, A.; Jekat, S. B.; Zielonka, S.; Mueller, B.; Neumann, U.; Ruping, B.; Twyman, R. M.; Krzyžánek, Vladislav; Pruefer, D.; Noll, G. A.

    2012-01-01

    Roč. 109, č. 28 (2012), E1980-E1989 ISSN 0027-8424 Institutional support: RVO:68081731 Keywords : photoassimilate transport * wound response * exudation * phloem protein 1 Subject RIV: CE - Biochemistry Impact factor: 9.737, year: 2012

  2. eIF4A inhibition allows translational regulation of mRNAs encoding proteins involved in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Andrew Bottley

    2010-09-01

    Full Text Available Alzheimer's disease (AD is the main cause of dementia in our increasingly aging population. The debilitating cognitive and behavioral symptoms characteristic of AD make it an extremely distressing illness for patients and carers. Although drugs have been developed to treat AD symptoms and to slow disease progression, there is currently no cure. The incidence of AD is predicted to increase to over one hundred million by 2050, placing a heavy burden on communities and economies, and making the development of effective therapies an urgent priority. Two proteins are thought to have major contributory roles in AD: the microtubule associated protein tau, also known as MAPT; and the amyloid-beta peptide (A-beta, a cleavage product of amyloid precursor protein (APP. Oxidative stress is also implicated in AD pathology from an early stage. By targeting eIF4A, an RNA helicase involved in translation initiation, the synthesis of APP and tau, but not neuroprotective proteins, can be simultaneously and specifically reduced, representing a novel avenue for AD intervention. We also show that protection from oxidative stress is increased upon eIF4A inhibition. We demonstrate that the reduction of these proteins is not due to changes in mRNA levels or increased protein degradation, but is a consequence of translational repression conferred by inhibition of the helicase activity of eIF4A. Inhibition of eIF4A selectively and simultaneously modulates the synthesis of proteins involved in Alzheimer's disease: reducing A-beta and tau synthesis, while increasing proteins predicted to be neuroprotective.

  3. Involvement of C-Terminal Histidines in Soybean PM1 Protein Oligomerization and Cu2+ Binding.

    Science.gov (United States)

    Liu, Guobao; Liu, Ke; Gao, Yang; Zheng, Yizhi

    2017-06-01

    Late embryogenesis abundant (LEA) proteins are widely distributed among plant species, where they contribute to abiotic stress tolerance. LEA proteins can be classified into seven groups according to conserved sequence motifs. The PM1 protein from soybean, which belongs to the Pfam LEA_1 group, has been shown previously to be at least partially natively unfolded, to bind metal ions and potentially to stabilize proteins and membranes. Here, we investigated the role of the PM1 C-terminal domain and in particular the multiple histidine residues in this half of the protein. We constructed recombinant plasmids expressing full-length PM1 and two truncated forms, PM1-N and PM1-C, which represent the N- and C-terminal halves of the protein, respectively. Immunoblotting and cross-linking experiments showed that full-length PM1 forms oligomers and high molecular weight (HMW) complexes in vitro and in vivo, while PM1-C, but not PM1-N, also formed oligomers and HMW complexes in vitro. When the histidine residues in PM1 and PM1-C were chemically modified, oligomerization was abolished, suggesting that histidines play a key role in this process. Furthermore, we demonstrated that high Cu2+ concentrations promote oligomerization and induce PM1 and PM1-C to form HMW complexes. Therefore, we speculate that PM1 proteins not only maintain ion homeostasis in the cytoplasm, but also potentially stabilize and protect other proteins during abiotic stress by forming a large, oligomeric molecular shield around biological targets. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Nitrile-specifier Proteins Involved in Glucosinolate Hydrolysis in Arabidopsis thaliana*S⃞

    Science.gov (United States)

    Kissen, Ralph; Bones, Atle M.

    2009-01-01

    Glucosinolates are plant secondary metabolites present in Brassicaceae plants such as the model plant Arabidopsis thaliana. Intact glucosinolates are believed to be biologically inactive, whereas degradation products after hydrolysis have multiple roles in growth regulation and defense. The degradation of glucosinolates is catalyzed by thioglucosidases called myrosinases and leads by default to the formation of isothiocyanates. The interaction of a protein called epithiospecifier protein (ESP) with myrosinase diverts the reaction toward the production of epithionitriles or nitriles depending on the glucosinolate structure. Here we report the identification of a new group of nitrile-specifier proteins (AtNSPs) in A. thaliana able to generate nitriles in conjunction with myrosinase and a more detailed characterization of one member (AtNSP2). Recombinant AtNSP2 expressed in Escherichia coli was used to test its impact on the outcome of glucosinolate hydrolysis using a gas chromatography-mass spectrometry approach. AtNSP proteins share 30–45% sequence homology with A. thaliana ESP. Although AtESP and AtNSP proteins can switch myrosinase-catalyzed degradation of 2-propenylglucosinolate from isothiocyanate to nitrile, only AtESP generates the corresponding epithionitrile. Using the aromatic benzylglucosinolate, recombinant AtNSP2 is also able to direct product formation to the nitrile. Analysis of glucosinolate hydrolysis profiles of transgenic A. thaliana plants overexpressing AtNSP2 confirms its nitrile-specifier activity in planta. In silico expression analysis reveals distinctive expression patterns of AtNSPs, which supports a biological role for these proteins. In conclusion, we show that AtNSPs belonging to a new family of A. thaliana proteins structurally related to AtESP divert product formation from myrosinase-catalyzed glucosinolate hydrolysis and, thereby, likely affect the biological consequences of glucosinolate degradation. We discuss similarities and

  5. iTRAQ-Based Quantitative Proteomics Identifies Potential Regulatory Proteins Involved in Chicken Eggshell Brownness.

    Directory of Open Access Journals (Sweden)

    Guangqi Li

    Full Text Available Brown eggs are popular in many countries and consumers regard eggshell brownness as an important indicator of egg quality. However, the potential regulatory proteins and detailed molecular mechanisms regulating eggshell brownness have yet to be clearly defined. In the present study, we performed quantitative proteomics analysis with iTRAQ technology in the shell gland epithelium of hens laying dark and light brown eggs to investigate the candidate proteins and molecular mechanisms underlying variation in chicken eggshell brownness. The results indicated 147 differentially expressed proteins between these two groups, among which 65 and 82 proteins were significantly up-regulated in the light and dark groups, respectively. Functional analysis indicated that in the light group, the down-regulated iron-sulfur cluster assembly protein (Iba57 would decrease the synthesis of protoporphyrin IX; furthermore, the up-regulated protein solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator, member 5 (SLC25A5 and down-regulated translocator protein (TSPO would lead to increased amounts of protoporphyrin IX transported into the mitochondria matrix to form heme with iron, which is supplied by ovotransferrin protein (TF. In other words, chickens from the light group produce less protoporphyrin IX, which is mainly used for heme synthesis. Therefore, the exported protoporphyrin IX available for eggshell deposition and brownness is reduced in the light group. The current study provides valuable information to elucidate variation of chicken eggshell brownness, and demonstrates the feasibility and sensitivity of iTRAQ-based quantitative proteomics analysis in providing useful insights into the molecular mechanisms underlying brown eggshell pigmentation.

  6. The actin binding cytoskeletal protein Moesin is involved in nuclear mRNA export.

    Science.gov (United States)

    Kristó, Ildikó; Bajusz, Csaba; Borsos, Barbara N; Pankotai, Tibor; Dopie, Joseph; Jankovics, Ferenc; Vartiainen, Maria K; Erdélyi, Miklós; Vilmos, Péter

    2017-10-01

    Current models imply that the evolutionarily conserved, actin-binding Ezrin-Radixin-Moesin (ERM) proteins perform their activities at the plasma membrane by anchoring membrane proteins to the cortical actin network. Here we show that beside its cytoplasmic functions, the single ERM protein of Drosophila, Moesin, has a novel role in the nucleus. The activation of transcription by heat shock or hormonal treatment increases the amount of nuclear Moesin, indicating biological function for the protein in the nucleus. The distribution of Moesin in the nucleus suggests a function in transcription and the depletion of mRNA export factors Nup98 or its interacting partner, Rae1, leads to the nuclear accumulation of Moesin, suggesting that the nuclear function of the protein is linked to mRNA export. Moesin localizes to mRNP particles through the interaction with the mRNA export factor PCID2 and knock down of Moesin leads to the accumulation of mRNA in the nucleus. Based on our results we propose that, beyond its well-known, manifold functions in the cytoplasm, the ERM protein of Drosophila is a new, functional component of the nucleus where it participates in mRNA export. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin.

    Science.gov (United States)

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-04-26

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation.

  8. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    Science.gov (United States)

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  9. MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response.

    Science.gov (United States)

    Ding, Xia; Lv, Zhen-Mei; Zhao, Yang; Min, Hang; Yang, Wei-Jun

    2008-01-01

    MTH1745 is a putative protein disulfide isomerase characterized with 151 amino acid residues and a CPAC active-site from the anaerobic archaea Methanothermobacter thermoautotrophicum. The potential functions of MTH1745 are not clear. In the present study, we show a crucial role of MTH1745 in protecting cells against stress which may be related to its functions as a disulfide isomerase and its chaperone properties. Using real-time polymerase chain reaction analyses, the level of MTH1745 messenger RNA (mRNA) in the thermophilic archaea M. thermoautotrophicum was found to be stress-induced in that it was significantly higher under low (50 degrees C) and high (70 degrees C) growth temperatures than under the optimal growth temperature for the organism (65 degrees C). Additionally, the expression of MTH1745 mRNA was up-regulated by cold shock (4 degrees C). Furthermore, the survival of MTH1745 expressing Escherichia coli cells was markedly higher than that of control cells in response to heat shock (51.0 degrees C). These results indicated that MTH1745 plays an important role in the resistance of stress. By assay of enzyme activities in vitro, MTH1745 also exhibited a chaperone function by promoting the functional folding of citrate synthase after thermodenaturation. On the other hand, MTH1745 was also shown to function as a disulfide isomerase on the refolding of denatured and reduced ribonuclease A. On the basis of its single thioredoxin domain, function as a disulfide isomerase, and its chaperone activity, we suggest that MTH1745 may be an ancient protein disulfide isomerase. These studies may provide clues to the understanding of the function of protein disulfide isomerase in archaea.

  10. Isolation of Penicillium chrysogenum PEX1 and PEX6 encoding AAA proteins involved in peroxisome biogenesis

    NARCIS (Netherlands)

    Kiel, JAKW; Hilbrands, RE; Bovenberg, RAL; Veenhuis, M

    In Penicillium chrysogenum, key enzymes involved in the production of penicillin reside in peroxisomes. As a first step to understand the role of these organelles in penicillin biosynthesis, we set out to isolate the genes involved in peroxisome biogenesis. Here we report the cloning and

  11. Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant.

    Science.gov (United States)

    Zhang, Lina; de Waard, Marita; Verheijen, Hester; Boeren, Sjef; Hageman, Jos A; van Hooijdonk, Toon; Vervoort, Jacques; van Goudoever, Johannes B; Hettinga, Kasper

    2016-09-16

    To objective of this study was to better understand the biological functions of breast milk proteins in relation to the growth and development of infants over the first six months of life. Breast milk samples from four individual women collected at seven time points in the first six months after delivery were analyzed by filter aided sample preparation and dimethyl labeling combined with liquid chromatography tandem mass spectrometry. A total of 247 and 200 milk serum proteins were identified and quantified, respectively. The milk serum proteome showed a high similarity (80% overlap) on the qualitative level between women and over lactation. The quantitative changes in milk serum proteins were mainly caused by three groups of proteins, enzymes, and transport and immunity proteins. Of these 21 significantly changed proteins, 30% were transport proteins, such as serum albumin and fatty acid binding protein, which are both involved in transporting nutrients to the infant. The decrease of the enzyme bile salt-activated lipase as well as the immunity proteins immunoglobulins and lactoferrin coincide with the gradual maturation of the digestive and immune system of infants. The human milk serum proteome didn't differ qualitatively but it did quantitatively, both between mothers and as lactation advanced. The changes of the breast milk serum proteome over lactation corresponded with the development of the digestive and immune system of infants. Breast milk proteins provide nutrition, but also contribute to healthy development of infants. Despite the previously reported large number of identified breast milk proteins and their changes over lactation, less is known on the changes of these proteins in individual mothers. This study is the first to determine the qualitative and quantitative changes of milk proteome over lactation between individual mothers. The results indicate that the differences in the milk proteome between individual mothers are more related to the

  12. Proteins Potentially Involved in Immune Evasion Strategies in Sporothrix brasiliensis Elucidated by Ultra-High-Resolution Mass Spectrometry.

    Science.gov (United States)

    Rossato, Luana; Moreno, Leandro Ferreira; Jamalian, Azadeh; Stielow, Benjamin; de Almeida, Sandro Rogério; de Hoog, Sybren; Freeke, Joanna

    2018-06-27

    Sporothrix brasiliensis is the prevalent agent of a large zoonotic outbreak in Brazil. With the involvement of several thousands of cases, this is the largest cohort of human and animal sporotrichosis on record in the world. Infections are characterized by local cutaneous dissemination in humans without underlying disease. S. brasiliensis has shown a high degree of virulence in a mouse model compared to the remaining Sporothrix species, including the ancestral species, Sporothrix schenckii The present paper investigates a genomic and expressed-proteome comparison of S. brasiliensis to S. schenckii Using bottom-up proteomics, we found 60 proteins exclusively expressed in S. brasiliensis No significant genomic differences were found among the genes coding for this protein set. A comparison with literature data identified nine proteins that are known to be involved in virulence and immune evasion in other species, several of which had not yet been reported for the Sporothrix species analyzed. IMPORTANCE Sporotrichosis is an important disease in Brazil that is caused by fungi of the genus Sporothrix and affects cats and humans. Our work investigated the proteins differentially expressed by S. brasiliensis in order to find out why this species is more virulent and pathogenic than S. schenckii We verified a set of proteins that may be related to immune escape and that can explain the high virulence. Copyright © 2018 Rossato et al.

  13. N-terminal modifications of cellular proteins: The enzymes involved, their substrate specificities and biological effects

    Science.gov (United States)

    Varland, Sylvia; Osberg, Camilla; Arnesen, Thomas

    2015-01-01

    The vast majority of eukaryotic proteins are N-terminally modified by one or more processing enzymes. Enzymes acting on the very first amino acid of a polypeptide include different peptidases, transferases, and ligases. Methionine aminopeptidases excise the initiator methionine leaving the nascent polypeptide with a newly exposed amino acid that may be further modified. N-terminal acetyl-, methyl-, myristoyl-, and palmitoyltransferases may attach an acetyl, methyl, myristoyl, or palmitoyl group, respectively, to the α-amino group of the target protein N-terminus. With the action of ubiquitin ligases, one or several ubiquitin molecules are transferred, and hence, constitute the N-terminal modification. Modifications at protein N-termini represent an important contribution to proteomic diversity and complexity, and are essential for protein regulation and cellular signaling. Consequently, dysregulation of the N-terminal modifying enzymes is implicated in human diseases. We here review the different protein N-terminal modifications occurring co- or post-translationally with emphasis on the responsible enzymes and their substrate specificities. PMID:25914051

  14. Adaptation of Lactobacillus casei Zhang to Gentamycin Involves an Alkaline Shock Protein

    Directory of Open Access Journals (Sweden)

    Wenyi Zhang

    2017-11-01

    Full Text Available Lactobacillus (L. casei Zhang is a koumiss-originated probiotic strain, which was used as a model in a long-term antibiotics-driven evolution experiment to reveal bacterial evolutionary dynamics; and we isolated gentamycin-resistant L. casei Zhang descendents. To decipher the gentamycin resistance mechanism, here we cultivated the parental L. casei Zhang and its descendent cells in an antibiotics-containing environment to compare their global protein expression profiles using the iTRAQ-based proteomic approach. A total of 72 proteins were significantly up-regulated (>2.0-fold, P < 0.05, whilst 32 proteins were significantly down-regulated <−2.0-fold, P < 0.05 in the descendent line. The gentamycin-resistant descendent line showed elevated expression in some carbohydrates, amino acids, and purine metabolic pathways. Several stress-related proteins were also differentially expressed. Among them, one alkaline shock protein, asp23, was up-regulated most in the gentamycin-resistant strain (21.9-fold increase compared with the parental strain. The asp23 gene disruption mutant was significantly more sensitive to gentamycin compared with the wild type, suggesting an important role of this gene in developing the gentamycin-resistant phenotype in L. casei. Our report has described the adaptation of a probiotic strain that has acquired antibiotics resistance through long-term antibiotics exposure at the proteome level, and we revealed a novel mechanism of gentamycin resistance.

  15. MARS: A protein family involved in the formation of vertical skeletal elements.

    Science.gov (United States)

    Abehsera, Shai; Peles, Shani; Tynyakov, Jenny; Bentov, Shmuel; Aflalo, Eliahu D; Li, Shihao; Li, Fuhua; Xiang, Jianhai; Sagi, Amir

    2017-05-01

    Vertical organizations of skeletal elements are found in various vertebrate teeth and invertebrate exoskeletons. The molecular mechanism behind the development of such structural organizations is poorly known, although it is generally held that organic matrix proteins play an essential role. While most crustacean cuticular organizations exhibit horizontal chitinous layering, a typical vertical organization is found towards the surface of the teeth in the mandibles of the crayfish Cherax quadricarinatus. Candidate genes encoding for mandible-forming structural proteins were mined in C. quadricarinatus molt-related transcriptomic libraries by using a binary patterning approach. A new protein family, termed the Mandible Alanine Rich Structural (MARS) protein family, with a modular sequence design predicted to form fibers, was found. Investigations of spatial and temporal expression of the different MARS genes suggested specific expression in the mandibular teeth-forming epithelium, particularly during the formation of the chitinous vertical organization. MARS loss-of-function RNAi experiments resulted in the collapse of the organization of the chitin fibers oriented vertically to the surface of the crayfish mandibular incisor tooth. A general search of transcriptomic libraries suggested conservation of MARS proteins across a wide array of crustaceans. Our results provide a first look into the molecular mechanism used to build the complex crustacean mandible and into the specialized vertical structural solution that has evolved in skeletal elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction.

    Science.gov (United States)

    Cecchinato, Mattia; Catelli, Elena; Lupini, Caterina; Ricchizzi, Enrico; Clubbe, Jayne; Battilani, Mara; Naylor, Clive J

    2010-11-20

    Avian metapneumoviruses detected in Northern Italy between 1987 and 2007 were sequenced in their fusion (F) and attachment (G) genes together with the same genes from isolates collected throughout western European prior to 1994. Fusion protein genes sequences were highly conserved while G protein sequences showed much greater heterogeneity. Phylogenetic studies based on both genes clearly showed that later Italian viruses were significantly different to all earlier virus detections, including early detections from Italy. Furthermore a serine residue in the G proteins and lysine residue in the fusion protein were exclusive to Italian viruses, indicating that later viruses probably arose within the country and the notion that these later viruses evolved from earlier Italian progenitors cannot be discounted. Biocomputing analysis applied to F and G proteins of later Italian viruses predicted that only G contained altered T cell epitopes. It appears likely that Italian field viruses evolved in response to selection pressure from vaccine induced immunity. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Determination of albendazole and metabolites in silkworm Bombyx mori hemolymph by ultrafast liquid chromatography tandem triple quadrupole mass spectrometry.

    Science.gov (United States)

    Li, Li; Xing, Dong-Xu; Li, Qing-Rong; Xiao, Yang; Ye, Ming-Qiang; Yang, Qiong

    2014-01-01

    Albendazole is a broad-spectrum parasiticide with high effectiveness and low host toxicity. No method is currently available for measuring albendazole and its metabolites in silkworm hemolymph. This study describes a rapid, selective, sensitive, synchronous and reliable detection method for albendazole and its metabolites in silkworm hemolymph using ultrafast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-MS/MS). The method is liquid-liquid extraction followed by UFLC separation and quantification in an MS/MS system with positive electrospray ionization in multiple reaction monitoring mode. Precursor-to-product ion transitions were monitored at 266.100 to 234.100 for albendazole (ABZ), 282.200 to 208.100 for albendazole sulfoxide (ABZSO), 298.200 to 159.100 for albendazole sulfone (ABZSO2) and 240.200 to 133.100 for albendazole amino sulfone (ABZSO2-NH2). Calibration curves had good linearities with R2 of 0.9905-0.9972. Limits of quantitation (LOQs) were 1.32 ng/mL for ABZ, 16.67 ng/mL for ABZSO, 0.76 ng/mL for ABZSO2 and 5.94 ng/mL for ABZSO2-NH2. Recoveries were 93.12%-103.83% for ABZ, 66.51%-108.51% for ABZSO, 96.85%-105.6% for ABZSO2 and 96.46%-106.14% for ABZSO2-NH2, (RSDs albendazole and its metabolites in silkworm hemolymph in a pharmacokinetic study. The results of single-dose treatment suggested that the concentrations of ABZ, ABZSO and ABZSO2 increased and then fell, while ABZSO2-NH2 level was low without obvious change. Different trends were observed for multi-dose treatment, with concentrations of ABZSO and ABZSO2 rising over time.

  18. Peptide domains involved in the localization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus

    International Nuclear Information System (INIS)

    Rowland, Raymond R.R.; Schneider, Paula; Fang Ying; Wootton, Sarah; Yoo, Dongwan; Benfield, David A.

    2003-01-01

    The nucleocapsid (N) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is the principal component of the viral nucleocapsid and localizes to the nucleolus. Peptide sequence analysis of the N protein of several North American isolates identified two potential nuclear localization signal (NLS) sequences located at amino acids 10-13 and 41-42, which were labeled NLS-1 and NLS-2, respectively. Peptides containing NLS-1 or NLS-2 were sufficient to accumulate enhanced green fluorescent protein (EGFP) in the nucleus. The inactivation of NLS-1 by site-directed mutagenesis or the deletion of the first 14 amino acids did not affect N protein localization to the nucleolus. The substitution of key lysine residues with uncharged amino acids in NLS-2 blocked nuclear/nucleolar localization. Site-directed mutagenesis within NLS-2 identified the sequence, KKNKK, as forming the core localization domain within NLS-2. Using an in vitro pull-down assay, the N protein was able to bind importin-α, importin-β nuclear transport proteins. The localization pattern of N-EGFP fusion peptides represented by a series of deletions from the C- and N-terminal ends of the N protein identified a region covering amino acids 41-72, which contained a nucleolar localization signal (NoLS) sequence. The 41-72 N peptide when fused to EGFP mimicked the nucleolar-cytoplasmic distribution of native N. These results identify a single NLS involved in the transport of N from the cytoplasm and into nucleus. An additional peptide sequence, overlapping NLS-2, is involved in the further targeting of N to the nucleolus

  19. Antigenic proteins involved in occupational rhinitis and asthma caused by obeche wood (Triplochiton scleroxylon.

    Directory of Open Access Journals (Sweden)

    Ana Aranda

    Full Text Available BACKGROUND: Obeche wood dust is a known cause of occupational asthma where an IgE-mediated mechanism has been demonstrated. OBJECTIVE: To characterize the allergenic profile of obeche wood dust and evaluate the reactivity of the proteins by in vitro, ex vivo and in vivo assays in carpenters with confirmed rhinitis and/or asthma MATERIALS AND METHODS: An in-house obeche extract was obtained, and two IgE binding bands were purified (24 and 12 kDa and sequenced by N-terminal identity. Specific IgE and IgG, basophil activation tests and skin prick tests (SPTs were performed with whole extract and purified proteins. CCD binding was analyzed by ELISA inhibition studies. RESULTS: Sixty-two subjects participated: 12 with confirmed occupational asthma/rhinitis (ORA+, 40 asymptomatic exposed (ORA-, and 10 controls. Of the confirmed subjects, 83% had a positive SPT to obeche. There was a 100% recognition by ELISA in symptomatic subjects vs. 30% and 10% in asymptomatic exposed subjects and controls respectively (p<0.05. Two new proteins were purified, a 24 kDa protein identified as a putative thaumatin-like protein and a 12 kDa gamma-expansin. Both showed allergenic activity in vitro, with the putative thaumatin being the most active, with 92% recognition by ELISA and 100% by basophil activation test in ORA+ subjects. Cross-reactivity due to CCD was ruled out in 82% of cases. CONCLUSIONS: Two proteins of obeche wood were identified and were recognized by a high percentage of symptomatic subjects and by a small proportion of asymptomatic exposed subjects. Further studies are required to evaluate cross reactivity with other plant allergens.

  20. Microsecond molecular dynamics simulations of intrinsically disordered proteins involved in the oxidative stress response.

    Directory of Open Access Journals (Sweden)

    Elio A Cino

    Full Text Available Intrinsically disordered proteins (IDPs are abundant in cells and have central roles in protein-protein interaction networks. Interactions between the IDP Prothymosin alpha (ProTα and the Neh2 domain of Nuclear factor erythroid 2-related factor 2 (Nrf2, with a common binding partner, Kelch-like ECH-associated protein 1(Keap1, are essential for regulating cellular response to oxidative stress. Misregulation of this pathway can lead to neurodegenerative diseases, premature aging and cancer. In order to understand the mechanisms these two disordered proteins employ to bind to Keap1, we performed extensive 0.5-1.0 microsecond atomistic molecular dynamics (MD simulations and isothermal titration calorimetry experiments to investigate the structure/dynamics of free-state ProTα and Neh2 and their thermodynamics of bindings. The results show that in their free states, both ProTα and Neh2 have propensities to form bound-state-like β-turn structures but to different extents. We also found that, for both proteins, residues outside the Keap1-binding motifs may play important roles in stabilizing the bound-state-like structures. Based on our findings, we propose that the binding of disordered ProTα and Neh2 to Keap1 occurs synergistically via preformed structural elements (PSEs and coupled folding and binding, with a heavy bias towards PSEs, particularly for Neh2. Our results provide insights into the molecular mechanisms Neh2 and ProTα bind to Keap1, information that is useful for developing therapeutics to enhance the oxidative stress response.

  1. Identification of Proteins Using iTRAQ and Virus-Induced Gene Silencing Reveals Three Bread Wheat Proteins Involved in the Response to Combined Osmotic-Cold Stress.

    Science.gov (United States)

    Zhang, Ning; Zhang, Lingran; Shi, Chaonan; Zhao, Lei; Cui, Dangqun; Chen, Feng

    2018-05-25

    Crops are often subjected to a combination of stresses in the field. To date, studies on the physiological and molecular responses of common wheat to a combination of osmotic and cold stresses, however, remain unknown. In this study, wheat seedlings exposed to osmotic-cold stress for 24 h showed inhibited growth, as well as increased lipid peroxidation, relative electrolyte leakage, and soluble sugar contents. iTRAQ-based quantitative proteome method was employed to determine the proteomic profiles of the roots and leaves of wheat seedlings exposed to osmotic-cold stress conditions. A total of 250 and 258 proteins with significantly altered abundance in the roots and leaves were identified, respectively, and the majority of these proteins displayed differential abundance, thereby revealing organ-specific differences in adaptation to osmotic-cold stress. Yeast two hybrid assay examined five pairs of stress/defense-related protein-protein interactions in the predicted protein interaction network. Furthermore, quantitative real-time PCR analysis indicated that abiotic stresses increased the expression of three candidate protein genes, i.e., TaGRP2, CDCP, and Wcor410c in wheat leaves. Virus-induced gene silencing indicated that three genes TaGRP2, CDCP, and Wcor410c were involved in modulating osmotic-cold stress in common wheat. Our study provides useful information for the elucidation of molecular and genetics bases of osmotic-cold combined stress in bread wheat.

  2. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein

    DEFF Research Database (Denmark)

    Ekberg, Kira; Palmgren, Michael; Veierskov, Bjarke

    2010-01-01

    The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H+-ATPases has long been recognized to be part of a regulatory apparatus....... This identifies the first group of P-type ATPases for which both ends of the polypeptide chain constitute regulatory domains, which together contribute to the autoinhibitory apparatus. This suggests an intricate mechanism of cis-regulation with both termini of the protein communicating to obtain the necessary...

  3. Anaplasma phagocytophilum MSP4 and HSP70 Proteins Are Involved in Interactions with Host Cells during Pathogen Infection

    Directory of Open Access Journals (Sweden)

    Marinela Contreras

    2017-07-01

    Full Text Available Anaplasma phagocytophilum transmembrane and surface proteins play a role during infection and multiplication in host neutrophils and tick vector cells. Recently, A. phagocytophilum Major surface protein 4 (MSP4 and Heat shock protein 70 (HSP70 were shown to be localized on the bacterial membrane, with a possible role during pathogen infection in ticks. In this study, we hypothesized that A. phagocytophilum MSP4 and HSP70 have similar functions in tick-pathogen and host-pathogen interactions. To address this hypothesis, herein we characterized the role of these bacterial proteins in interaction and infection of vertebrate host cells. The results showed that A. phagocytophilum MSP4 and HSP70 are involved in host-pathogen interactions, with a role for HSP70 during pathogen infection. The analysis of the potential protective capacity of MSP4 and MSP4-HSP70 antigens in immunized sheep showed that MSP4-HSP70 was only partially protective against pathogen infection. This limited protection may be associated with several factors, including the recognition of non-protective epitopes by IgG in immunized lambs. Nevertheless, these antigens may be combined with other candidate protective antigens for the development of vaccines for the control of human and animal granulocytic anaplasmosis. Focusing on the characterization of host protective immune mechanisms and protein-protein interactions at the host-pathogen interface may lead to the discovery and design of new effective protective antigens.

  4. Evidence for the involvement of a 66 kDa membrane protein in the synthesis of sterolglucoside in ''Saccharomyces cerevisiae''

    International Nuclear Information System (INIS)

    Lenart, U.; Palamarczyk, G.

    1995-01-01

    The membrane-bound sterolglucoside synthase from the yeast ''Saccharomyces cerevisiae'' has been solubilized by nonionic detergent, Nonidet P-40, Triton X-100, and partially purified by DEAE-cellulose column chromatography and ammonium sulfate fractionation. SDS/PAGE of the purified fraction revealed the presence of two protein bands of molecular mass 66 kDa and 54 kDa. In an attempt to identify further the polypeptide chain of sterolglucoside synthase, the partially purified enzyme was treated with [di- 125 I]-5-[3-(p-azidosalicylamide)]allyl-UDPglucose, a photoactive analogue of UDPglucose, which is a substrate for this enzyme. Upon photolysis the 125 I-labelled probe was shown to link covalently to the 66 kDa protein. The photoinsertion was competed out by the presence of unlabeled UDPglucose thus suggesting that this protein contains substrate binding site for UDPglucose. Since photoinsertion of the probe to protein of 66 kDa correlated with the molecular mass of the protein visualized upon enzyme purification we postulate that the 66 kDa protein is involved in sterolglucoside synthesis in yeast. (author). 10 refs, 5 figs, 1 tab

  5. Sensitive electrochemical detection of native and aggregated alpha-synuclein protein involved in Parkinson's disease

    Czech Academy of Sciences Publication Activity Database

    Masařík, Michal; Stobiecka, A.; Kizek, René; Jelen, František; Pechan, Zdeněk; Hoyer, W.; Jovin, T.; Subramaniam, V.; Paleček, Emil

    2004-01-01

    Roč. 16, 13-14 (2004), s. 1172-1181 ISSN 1040-0397 R&D Projects: GA ČR GA204/03/0566 Institutional research plan: CEZ:AV0Z5004920 Keywords : electrochemistry of proteins * alpha-synuclein aggregation * adsorptive transfer stripping Subject RIV: BO - Biophysics Impact factor: 2.038, year: 2004

  6. Interactions involved in pH protection of the alphavirus fusion protein

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Whitney; Kielian, Margaret, E-mail: margaret.kielian@einstein.yu.edu

    2015-12-15

    The alphavirus membrane protein E1 mediates low pH-triggered fusion of the viral and endosome membranes during virus entry. During virus biogenesis E1 associates as a heterodimer with the transmembrane protein p62. Late in the secretory pathway, cellular furin cleaves p62 to the mature E2 protein and a peripheral protein E3. E3 remains bound to E2 at low pH, stabilizing the heterodimer and thus protecting E1 from the acidic pH of the secretory pathway. Release of E3 at neutral pH then primes the virus for fusion during entry. Here we used site-directed mutagenesis and revertant analysis to define residues important for the interactions at the E3–E2 interface. Our data identified a key residue, E2 W235, which was required for E1 pH protection and alphavirus production. Our data also suggest additional residues on E3 and E2 that affect their interacting surfaces and thus influence the pH protection of E1 during alphavirus exit.

  7. Accuracy issues involved in modeling in vivo protein structures using PM7.

    Science.gov (United States)

    Martin, Benjamin P; Brandon, Christopher J; Stewart, James J P; Braun-Sand, Sonja B

    2015-08-01

    Using the semiempirical method PM7, an attempt has been made to quantify the error in prediction of the in vivo structure of proteins relative to X-ray structures. Three important contributory factors are the experimental limitations of X-ray structures, the difference between the crystal and solution environments, and the errors due to PM7. The geometries of 19 proteins from the Protein Data Bank that had small R values, that is, high accuracy structures, were optimized and the resulting drop in heat of formation was calculated. Analysis of the changes showed that about 10% of this decrease in heat of formation was caused by faults in PM7, the balance being attributable to the X-ray structure and the difference between the crystal and solution environments. A previously unknown fault in PM7 was revealed during tests to validate the geometries generated using PM7. Clashscores generated by the Molprobity molecular mechanics structure validation program showed that PM7 was predicting unrealistically close contacts between nonbonding atoms in regions where the local geometry is dominated by very weak noncovalent interactions. The origin of this fault was traced to an underestimation of the core-core repulsion between atoms at distances smaller than the equilibrium distance. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published By Wiley Periodicals, Inc.

  8. A cryptochrome-like protein is involved in the regulation of photosynthesis genes in Rhodobacter sphaeroides.

    Science.gov (United States)

    Hendrischk, Anne-Kathrin; Frühwirth, Sebastian Walter; Moldt, Julia; Pokorny, Richard; Metz, Sebastian; Kaiser, Gebhard; Jäger, Andreas; Batschauer, Alfred; Klug, Gabriele

    2009-11-01

    Blue light receptors belonging to the cryptochrome/photolyase family are found in all kingdoms of life. The functions of photolyases in repair of UV-damaged DNA as well as of cryptochromes in the light-dependent regulation of photomorphogenetic processes and in the circadian clock in plants and animals are well analysed. In prokaryotes, the only role of members of this protein family that could be demonstrated is DNA repair. Recently, we identified a gene for a cryptochrome-like protein (CryB) in the alpha-proteobacterium Rhodobacter sphaeroides. The protein lacks the typical C-terminal extension of cryptochromes, and is not related to the Cry DASH family. Here we demonstrate that CryB binds flavin adenine dinucleotide that can be photoreduced by blue light. CryB binds single-stranded DNA with very high affinity (K(d) approximately 10(-8) M) but double-stranded DNA and single-stranded RNA with far lower affinity (K(d) approximately 10(-6) M). Despite of that, no in vitro repair activity for pyrimidine dimers in single-stranded DNA could be detected. However, we show that CryB clearly affects the expression of genes for pigment-binding proteins and consequently the amount of photosynthetic complexes in R. sphaeroides. Thus, for the first time a role of a bacterial cryptochrome in gene regulation together with a biological function is demonstrated.

  9. Dendrimers destabilize proteins in a generation-dependent manner involving electrostatic interactions

    DEFF Research Database (Denmark)

    Gichm, Lise; Christensen, Casper; Boas, Ulrik

    2008-01-01

    Dendrimers are well-defined chemical polymers with a characteristic branching pattern that gives rise to attractive features such as antibacterial and antitumor activities as well as drug delivery properties. In addition, dendrimers can solubilize prion protein aggregates at very low concentratio...

  10. Evidence that the synthesis of glucosylphosphodolichol in yeast involves a 35-kDa membrane protein

    International Nuclear Information System (INIS)

    Palamarczyk, G.; Drake, R.; Haley, B.; Lennarz, W.J.

    1990-01-01

    In an effort to identify the polypeptide chain of glucosylphosphodolichol synthase, yeast microsomal membranes were allowed to react with 5-azido[β- 32 P]UDPGlc, a photoactive analogue of UDPGlc, which is a substrate for this enzyme. Upon photolysis the 32 P-labeled probe was shown to link covalently to a 35-kDa protein present in microsomal membranes prepared from several wild-type yeast strains. Binding was either reduced or absent in the microsomal membranes from two yeast mutants (alg5 and dpg1) that are known to be defective in the synthesis of glucosylphosphodolichol. The microsomes isolated from a heterozygous diploid strain alg5::dpg1 generated from these two mutants exhibited partial restoration of both the ability to photolabel the 35-kDa protein and the ability to catalyze the synthesis of glucosylphosphodolichol. Microsomal membranes from a mutant strain that synthesized glucosylphosphodolichol but lacked the ability to transfer the glucosyl residue to the growing lipid-linked oligosaccharide (alg6) exhibited labeling with 5-azido[β- 32 P]UDPGlc comparable to that found in microsomes from the wild-type strain. In all cases photoinsertion of the probe into the 35-kDa protein correlated with the level of synthase assayed in the microsomal membranes. These results strongly support the conclusion that the 35-kDa protein labeled in these experiments is a component of glucosylphosphodolichol synthase

  11. White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp

    NARCIS (Netherlands)

    Hulten, van M.C.W.; Witteveldt, J.; Snippe, M.; Vlak, J.M.

    2001-01-01

    White spot syndrome virus (WSSV) is a large DNA virus infecting shrimp and other crustaceans. The virus particles contain at least five major virion proteins, of which three (VP26, VP24, and VP15) are present in the rod-shaped nucleocapsid and two (VP28 and VP19) reside in the envelope. The mode of

  12. SCIMP, a transmembrane adaptor protein involved in major histocompatibility complex class II signaling

    Czech Academy of Sciences Publication Activity Database

    Dráber, Peter; Vonková, Ivana; Štěpánek, Ondřej; Hrdinka, Matouš; Kucová, Markéta; Skopcová, Tereza; Otáhal, Pavel; Angelisová, Pavla; Hořejší, Václav; Yeung, M.; Weiss, A.; Brdička, Tomáš

    2011-01-01

    Roč. 31, č. 22 (2011), s. 4550-4562 ISSN 0270-7306 R&D Projects: GA MŠk 1M0506; GA ČR GEMEM/09/E011 Institutional research plan: CEZ:AV0Z50520514 Keywords : SCIMP * transmembrane adaptor protein * MHC II Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.527, year: 2011

  13. Characterization of Heme Proteins Involved in Microbial Exoelectric Activity and Small Molecule-Sensing

    KAUST Repository

    Vogler, Malvina M.

    2018-01-01

    spectrometry confirms that the correct extensive post-translational modifications were performed and the ten heme groups were incorporated per protein of MtrC and MtrA and the correct lipid-anchor was attached to extracellular MtrC. Raman spectroscopy

  14. Identification and Characterization of 30 K Protein Genes Found in Bombyx mori (Lepidoptera: Bombycidae) Transcriptome

    Science.gov (United States)

    Shi, Xiao-Feng; Li, Yi-Nü; Yi, Yong-Zhu; Xiao, Xing-Guo; Zhang, Zhi-Fang

    2015-01-01

    The 30 K proteins, the major group of hemolymph proteins in the silkworm, Bombyx mori (Lepidoptera: Bombycidae), are structurally related with molecular masses of ∼30 kDa and are involved in various physiological processes, e.g., energy storage, embryonic development, and immune responses. For this report, known 30 K protein gene sequences were used as Blastn queries against sequences in the B. mori transcriptome (SilkTransDB). Twenty-nine cDNAs (Bm30K-1–29) were retrieved, including four being previously unidentified in the Lipoprotein_11 family. The genomic structures of the 29 genes were analyzed and they were mapped to their corresponding chromosomes. Furthermore, phylogenetic analysis revealed that the 29 genes encode three types of 30 K proteins. The members increased in each type is mainly a result of gene duplication with the appearance of each type preceding the differentiation of each species included in the tree. Real-Time Quantitative Polymerase Chain Reaction (Q-PCR) confirmed that the genes could be expressed, and that the three types have different temporal expression patterns. Proteins from the hemolymph was separated by SDS-PAGE, and those with molecular mass of ∼30 kDa were isolated and identified by mass spectrometry sequencing in combination with searches of various databases containing B. mori 30K protein sequences. Of the 34 proteins identified, 13 are members of the 30 K protein family, with one that had not been found in the SilkTransDB, although it had been found in the B. mori genome. Taken together, our results indicate that the 30 K protein family contains many members with various functions. Other methods will be required to find more members of the family. PMID:26078299

  15. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Sven O., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Mayer, Magnus C. [Freie Universität Berlin, Thielallee 63, 14195 Berlin (Germany); Miltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166 Teterow (Germany); Roeser, Dirk [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Multhaup, Gerd [McGill University Montreal, Montreal, Quebec H3G 1Y6 (Canada); Than, Manuel E., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany)

    2015-03-01

    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.

  16. Proteins involved in invasion of human red blood cells by malaria parasites

    Directory of Open Access Journals (Sweden)

    Ewa Jaśkiewicz

    2010-11-01

    Full Text Available Malaria is a disease caused by parasites of Plasmodium species. It is responsible for around 1-2 million deaths annually, mainly children under the age of 5. It occurs mainly in tropical and subtropical areas.Malaria is caused by five Plasmodium species:[i] P. falciparum, P. malariae, P. vivax, P. knowlesi[/i] and [i]P. ovale[/i]. Mosquitoes spread the disease by biting humans. The malaria parasite has two stages of development: the human stage and the mosquito stage. The first stage occurs in the human body and is divided into two phases: the liver phase and the blood phase.The invasion of erythrocytes by [i]Plasmodium[/i] merozoites is a multistep process of specific protein interactions between the parasite and red blood cell. The first step is the reversible merozoite attachment to the erythrocyte followed by its apical reorientation, then formation of an irreversible “tight” junction and finally entry into the red cell in a parasitophorous vacuole.The blood phase is supported by a number of proteins produced by the parasite. The merozoite surface GPI-anchored proteins (MSP-1, 2, 4, 5, 8 and 10 assist in the process of recognition of susceptible erythrocytes, apical membrane antigen (AMA-1 may be directly responsible for apical reorientation of the merozoite and apical proteins which function in tight junction formation. These ligands are members of two families: Duffy binding-like (DBL and reticulocyte binding-like (RBL proteins. In [i]Plasmodium[/i] [i]falciparum[/i] the DBL family includes: EBA-175, EBA-140 (BAEBL, EBA-181 (JESEBL, EBA-165 (PEBL and EBL-1 ligands.To date, no effective antimalarial vaccine has been developed, but there are several studies for this purpose. Therefore, it is crucial to understand the molecular basis of host cells invasion by parasites. Major efforts are focused on developing a multiantigenic and multiepitope vaccine preventing all steps of [i]Plasmodium[/i] invasion.

  17. Proteomic analysis of ACTN4-interacting proteins reveals it's a putative involvement in mRNA metabolism

    International Nuclear Information System (INIS)

    Khotin, Mikhail; Turoverova, Lidia; Aksenova, Vasilisa; Barlev, Nikolai; Borutinskaite, Veronika Viktorija; Vener, Alexander; Bajenova, Olga; Magnusson, Karl-Eric; Pinaev, George P.; Tentler, Dmitri

    2010-01-01

    Alpha-actinin 4 (ACTN4) is an actin-binding protein. In the cytoplasm, ACTN4 participates in structural organisation of the cytoskeleton via cross-linking of actin filaments. Nuclear localisation of ACTN4 has also been reported, but no clear role in the nucleus has been established. In this report, we describe the identification of proteins associated with ACTN4 in the nucleus. A combination of two-dimensional gel electrophoresis (2D-GE) and MALDI-TOF mass-spectrometry revealed a large number of ACTN4-bound proteins that are involved in various aspects of mRNA processing and transport. The association of ACTN4 with different ribonucleoproteins suggests that a major function of nuclear ACTN4 may be regulation of mRNA metabolism and signaling.

  18. Primary structure and subcellular localization of two fimbrial subunit-like proteins involved in the biosynthesis of K99 fibrillae.

    Science.gov (United States)

    Roosendaal, E; Jacobs, A A; Rathman, P; Sondermeyer, C; Stegehuis, F; Oudega, B; de Graaf, F K

    1987-09-01

    Analysis of the nucleotide sequence of the distal part of the fan gene cluster encoding the proteins involved in the biosynthesis of the fibrillar adhesin, K99, revealed the presence of two structural genes, fanG and fanH. The amino acid sequence of the gene products (FanG and FanH) showed significant homology to the amino acid sequence of the fibrillar subunit protein (FanC). Introduction of a site-specific frameshift mutation in fanG or fanH resulted in a simultaneous decrease in fibrillae production and adhesive capacity. Analysis of subcellular fractions showed that, in contrast to the K99 fibrillar subunit (FanC), both the FanH and the FanG protein were loosely associated with the outer membrane, possibly on the periplasmic side, but were not components of the fimbriae themselves.

  19. Fnr is involved in oxygen control of Herbaspirillum seropedicae N-truncated NifA protein activity in Escherichia coli.

    Science.gov (United States)

    Monteiro, Rose A; de Souza, Emanuel M; Yates, M Geoffrey; Pedrosa, Fabio O; Chubatsu, Leda S

    2003-03-01

    Herbaspirillum seropedicae is an endophytic diazotroph belonging to the beta-subclass of the class Proteobacteria, which colonizes many members of the Gramineae. The activity of the NifA protein, a transcriptional activator of nif genes in H. seropedicae, is controlled by ammonium ions through its N-terminal domain and by oxygen through mechanisms that are not well understood. Here we report that the NifA protein of H. seropedicae is inactive and more susceptible to degradation in an fnr Escherichia coli background. Both effects correlate with oxygen exposure and iron deprivation. Our results suggest that the oxygen sensitivity and iron requirement for H. seropedicae NifA activity involve the Fnr protein.

  20. Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots.

    Science.gov (United States)

    Chen, Ziyan; Zhu, Dong; Wu, Jisu; Cheng, Zhiwei; Yan, Xing; Deng, Xiong; Yan, Yueming

    2018-05-17

    In this study, we aimed to identify differentially accumulated proteins (DAPs) involved in PEG mock osmotic stress, cadmium (Cd 2+ ) stress, and their combined stress responses in Brachypodium distachyon seedling roots. The results showed that combined PEG and Cd 2+ stresses had more significant effects on Brachypodium seedling root growth, physiological traits, and ultrastructures when compared with each individual stress. Totally, 106 DAPs were identified that are responsive to individual and combined stresses in roots. These DAPs were mainly involved in energy metabolism, detoxification and stress defense and protein metabolism. Principal component analysis revealed that DAPs from Cd 2+ and combined stress treatments were grouped closer than those from osmotic stress treatment, indicating that Cd 2+ and combined stresses had more severe influences on the root proteome than osmotic stress alone. Protein-protein interaction analyses highlighted a 14-3-3 centered sub-network that synergistically responded to osmotic and Cd 2+ stresses and their combined stresses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 14 key DAP genes revealed that most genes showed consistency between transcriptional and translational expression patterns. A putative pathway of proteome metabolic changes in Brachypodium seedling roots under different stresses was proposed, which revealed a complicated synergetic responsive network of plant roots to adverse environments.

  1. The Zinc-Finger Thylakoid-Membrane Protein FIP Is Involved With Abiotic Stress Response in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Karina L. Lopes

    2018-04-01

    Full Text Available Many plant genes have their expression modulated by stress conditions. Here, we used Arabidopsis FtsH5 protease, which expression is regulated by light stress, as bait in a yeast two-hybrid screen to search for new proteins involved in the stress response. As a result, we found FIP (FtsH5 Interacting Protein, which possesses an amino proximal cleavable transit peptide, a hydrophobic membrane-anchoring region, and a carboxyl proximal C4-type zinc-finger domain. In vivo experiments using FIP fused to green fluorescent protein (GFP showed a plastid localization. This finding was corroborated by chloroplast import assays that showed FIP inserted in the thylakoid membrane. FIP expression was down-regulated in plants exposed to high light intensity, oxidative, salt, and osmotic stresses, whereas mutant plants expressing low levels of FIP were more tolerant to these abiotic stresses. Our data shows a new thylakoid-membrane protein involved with abiotic stress response in Arabidopsis thaliana.

  2. Kin3 protein, a NIMA-related kinase of Saccharomyces cerevisiae, is involved in DNA adduct damage response.

    Science.gov (United States)

    Moura, Dinara J; Castilhos, Bruna; Immich, Bruna F; Cañedo, Andrés D; Henriques, João A P; Lenz, Guido; Saffi, Jenifer

    2010-06-01

    Kin3 is a nonessential serine/threonine protein kinase of the budding yeast Saccharomyces cerevisiae with unknown cellular role. It is an ortholog of the Aspergillus nidulans protein kinase NIMA (Never-In Mitosis, gene A), which is involved in the regulation of G2/M phase progression, DNA damage response and mitosis. The aim of this study was to determine whether Kin3 is required for proper checkpoint activation and DNA repair. Here we show that KIN3 gene deficient cells present sensitivity and fail to arrest properly at G2/M-phase checkpoint in response to the DNA damage inducing agents MMS, cisplatin, doxorubicin and nitrogen mustard, suggesting that Kin3 can be involved in DNA strand breaks recognition or signaling. In addition, there is an increase in KIN3 gene expression in response to the mutagenic treatment, which was confirmed by the increase of Kin3 protein. We also showed that co-treatment with caffeine induces a slight increase in the susceptibility to genotoxic agents in kin3 cells and abolishes KIN3 gene expression in wild-type strain, suggesting that Kin3p can play a role in Tel1/Mec1-dependent pathway activation induced after genotoxic stress. These data provide the first evidence of the involvement of S. cerevisiae Kin3 in the DNA damage response.

  3. The interaction between the adaptor protein APS and Enigma is involved in actin organisation

    DEFF Research Database (Denmark)

    Barres, Romain; Gonzalez, Teresa; Le Marchand-Brustel, Yannick

    2005-01-01

    that was previously shown to be associated with the actin cytoskeleton. In HEK 293 cells, Enigma interacted specifically with APS, but not with the APS-related protein SH2-B. This interaction required the NPTY motif of APS and the LIM domains of Enigma. In NIH-3T3 cells that express the insulin receptor, Enigma...... cytoskeleton organisation, expression of Enigma alone led to the formation of F-actin clusters. Similar alteration in actin cytoskeleton organisation was observed in cells expressing both Enigma and APS with a mutation in the NPTY motif. These results identify Enigma as a novel APS-binding protein and suggest...... that the APS/Enigma complex plays a critical role in actin cytoskeleton organisation....

  4. Membrane proteins involved in potassium shifts during muscle activity and fatigue

    DEFF Research Database (Denmark)

    Kristensen, Michael; Hansen, T.; Juel, C.

    2006-01-01

    while trying to manipulate the opening probability or transport capacity of these proteins during electrical stimulation of isolated soleus muscles. All experiments were made with excised muscle from male Wistar rats. Kir2.1 channels were almost undetectable in the sarcolemmal membrane but present...... muscle contractions, whereas Kir2.1 and NKCC1 may have a role in K+ reuptake. channels and cotransporters; T tubule...

  5. Comparison of proteins involved in chondroitin sulfate utilization by three colonic Bacteroides species.

    OpenAIRE

    Lipeski, L; Guthrie, E P; O'Brien, M; Kotarski, S F; Salyers, A A

    1986-01-01

    Three species of colonic bacteria can ferment the mucopolysaccharide chondroitin sulfate: Bacteroides ovatus, Bacteroides sp. strain 3452A (an unnamed DNA homology group), and B. thetaiotaomicron. Proteins associated with the utilization of chondroitin sulfate by B. thetaiotaomicron have been characterized previously. In this report we compare chondroitin lyases and chondroitin sulfate-associated outer membrane polypeptides of B. ovatus and Bacteroides sp. strain 3452A with those of B. thetai...

  6. The anti-apoptotic BAG3 protein is involved in BRAF inhibitor resistance in melanoma cells.

    Science.gov (United States)

    Guerriero, Luana; Palmieri, Giuseppe; De Marco, Margot; Cossu, Antonio; Remondelli, Paolo; Capunzo, Mario; Turco, Maria Caterina; Rosati, Alessandra

    2017-10-06

    BAG3 protein, a member of BAG family of co-chaperones, has a pro-survival role in several tumour types. BAG3 anti-apoptotic properties rely on its characteristic to bind several intracellular partners, thereby modulating crucial events such as apoptosis, differentiation, cell motility, and autophagy. In human melanomas, BAG3 positivity is correlated with the aggressiveness of the tumour cells and can sustain IKK-γ levels, allowing a sustained activation of NF-κB. Furthermore, BAG3 is able to modulate BRAFV600E levels and activity in thyroid carcinomas. BRAFV600E is the most frequent mutation detected in malignant melanomas and is targeted by Vemurafenib, a specific inhibitor found to be effective in the treatment of advanced melanoma. However, patients with BRAF-mutated melanoma may result insensitive ab initio or, mostly, develop acquired resistance to the treatment with this molecule. Here we show that BAG3 down-modulation interferes with BRAF levels in melanoma cells and sensitizes them to Vemurafenib treatment. Furthermore, the down-modulation of BAG3 protein in an in vitro model of acquired resistance to Vemurafenib can induce sensitization to the BRAFV600E specific inhibition by interfering with BRAF pathway through reduction of ERK phosphorylation, but also on parallel survival pathways. Future studies on BAG3 molecular interactions with key proteins responsible of acquired BRAF inhibitor resistance may represent a promising field for novel multi-drugs treatment design.

  7. Rab3 proteins involved in vesicle biogenesis and priming in embryonic mouse chromaffin cells

    DEFF Research Database (Denmark)

    Schonn, Jean-Sébastien; van Weering, Jan R T; Mohrmann, Ralf

    2010-01-01

    The four Rab3 paralogs A-D are involved in exocytosis, but their mechanisms of action are hard to study due to functional redundancy. Here we used a quadruple Rab3 knock-out (rab3a, rab3b, rab3c, rab3d null, here denoted ABCD(-/-)) mouse line to investigate Rab3 function in embryonic mouse adrena...

  8. Quantitative Proteomic Analysis of Mosquito C6/36 Cells Reveals Host Proteins Involved in Zika Virus Infection.

    Science.gov (United States)

    Xin, Qi-Lin; Deng, Cheng-Lin; Chen, Xi; Wang, Jun; Wang, Shao-Bo; Wang, Wei; Deng, Fei; Zhang, Bo; Xiao, Gengfu; Zhang, Lei-Ke

    2017-06-15

    Zika virus (ZIKV) is an emerging arbovirus belonging to the genus Flavivirus of the family Flaviviridae During replication processes, flavivirus manipulates host cell systems to facilitate its replication, while the host cells activate antiviral responses. Identification of host proteins involved in the flavivirus replication process may lead to the discovery of antiviral targets. The mosquitoes Aedes aegypti and Aedes albopictus are epidemiologically important vectors for ZIKV, and effective restrictions of ZIKV replication in mosquitoes will be vital in controlling the spread of virus. In this study, an iTRAQ-based quantitative proteomic analysis of ZIKV-infected Aedes albopictus C6/36 cells was performed to investigate host proteins involved in the ZIKV infection process. A total of 3,544 host proteins were quantified, with 200 being differentially regulated, among which CHCHD2 can be upregulated by ZIKV infection in both mosquito C6/36 and human HeLa cells. Our further study indicated that CHCHD2 can promote ZIKV replication and inhibit beta interferon (IFN-β) production in HeLa cells, suggesting that ZIKV infection may upregulate CHCHD2 to inhibit IFN-I production and thus promote virus replication. Bioinformatics analysis of regulated host proteins highlighted several ZIKV infection-regulated biological processes. Further study indicated that the ubiquitin proteasome system (UPS) plays roles in the ZIKV entry process and that an FDA-approved inhibitor of the 20S proteasome, bortezomib, can inhibit ZIKV infection in vivo Our study illustrated how host cells respond to ZIKV infection and also provided a candidate drug for the control of ZIKV infection in mosquitoes and treatment of ZIKV infection in patients. IMPORTANCE ZIKV infection poses great threats to human health, and there is no FDA-approved drug available for the treatment of ZIKV infection. During replication, ZIKV manipulates host cell systems to facilitate its replication, while host cells activate

  9. ALDH16A1 is a novel non-catalytic enzyme that may be involved in the etiology of gout via protein-protein interactions with HPRT1.

    Science.gov (United States)

    Vasiliou, Vasilis; Sandoval, Monica; Backos, Donald S; Jackson, Brian C; Chen, Ying; Reigan, Philip; Lanaspa, Miguel A; Johnson, Richard J; Koppaka, Vindhya; Thompson, David C

    2013-02-25

    Gout, a common form of inflammatory arthritis, is strongly associated with elevated uric acid concentrations in the blood (hyperuricemia). A recent study in Icelanders identified a rare missense single nucleotide polymorphism (SNP) in the ALDH16A1 gene, ALDH16A1*2, to be associated with gout and serum uric acid levels. ALDH16A1 is a novel and rather unique member of the ALDH superfamily in relation to its gene and protein structures. ALDH16 genes are present in fish, amphibians, protista, bacteria but absent from archaea, fungi and plants. In most mammalian species, two ALDH16A1 spliced variants (ALDH16A1, long form and ALDH16A1_v2, short form) have been identified and both are expressed in HepG-2, HK-2 and HK-293 human cell lines. The ALDH16 proteins contain two ALDH domains (as opposed to one in the other members of the superfamily), four transmembrane and one coiled-coil domains. The active site of ALDH16 proteins from bacterial, frog and lower animals contain the catalytically important cysteine residue (Cys-302); this residue is absent from the mammalian and fish orthologs. Molecular modeling predicts that both the short and long forms of human ALDH16A1 protein would lack catalytic activity but may interact with the hypoxanthine-guanine phosphoribosyltransferase (HPRT1) protein, a key enzyme involved in uric acid metabolism and gout. Interestingly, such protein-protein interactions with HPRT1 are predicted to be impaired for the long or short forms of ALDH16A1*2. These results lead to the intriguing possibility that association between ALDH16A1 and HPRT1 may be required for optimal HPRT activity with disruption of this interaction possibly contributing to the hyperuricemia seen in ALDH16A1*2 carriers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Elemental content changes in hemolymph of Rhodnius prolixus due to mercury contamination: a study using SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Mantuano, A.; Oliveira, A.P.; Barroso, R.C. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil); Almeida, A.P.; Braz, D.; Cardoso, S.C. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Figueiredo, M.B.; Azambuja, P. [Fundacao Instituto Osvaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ (Brazil); Gonzalez, M.S. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    Full text: In recent years, the effects of pollution on the health of humans and other vertebrates have been extensively studied. However, the effects on some invertebrates are comparatively unknown. Research has demonstrated that toxic metals interfere with the reproduction, development and immune defenses of some terrestrial and marine invertebrates. Depending on environmental conditions, pollution produces chronic and acute effects on different systems and organs of animals. In general, some more toxic elements like arsenic, cadmium, lead, mercury and nickel in contact with organisms change cellular structures, enzyme activities, and in some cases destroy the physiological integrities of the tissues. In insects, the effects of pollutants depend upon the species studied. In this work, we investigated the changes in elemental contents in the hemolymph of Rhodnius prolixus on 2 and 5 days after feeding on blood containing mercury chloride. R. Prolixus is an obligated hematophagous Hemiptera and one of the most important insect vectors of trypanosoma cruzi, the causative agent of Chagas disease. The SR-TXRF measurements were performed at the X-ray fluorescence (XRF) beamline facility in Brazilian Synchrotron Light Laboratory LNLS/Brazil. The major elements Cl, K, Ca, Mn, Fe, Cu, Zn, Se, Br, Rb, K were found in all hemolymph samples analysed. Insects treated with HgCl2 had reduced Cl and Ca levels, whereas the same treatment had enhanced Br levels in comparison with non- treated control insects. (author)

  11. TOTAL HEMOCYTE COUNT AND HEMOLYMPH GLUCOSE CONCENRATION RESPONSE OF SPINY LOBSTER Panulirus homarus ON RATIO OF SHELTER

    Directory of Open Access Journals (Sweden)

    Suhaiba Djai

    2017-11-01

    Full Text Available This research was conducted to assess the physiological response of the lobster Panulirus homarus for the ratio of the shelters. The method used completely randomized design with two replicates of each treatments with shelter ratio (A 1 : 5, (B 3 : 5, (C 4 : 5, (D 5 : 5. Weight average for 184 lobsters with the stocking density of 23 lobsters for each treatment was 32.64 ± 0.58 g. The experiment was conducted for 60 days. The lobster was fed with trash fish and acclimatized for 7 days before the experiment. Observations on the physiologycal of every 10 days. The physiological responses that observed were total hemocyte count (THC and hemolymph glucose concentration. The results showed that 4:5 was the best lobster shelter ratio because it could reduce stress levels. This is indicated by the stable values of THC and hemolymph glucose level during the experiment and supported by the growth of 57.28 ± 0.15 g and survival rate of 91.31 ± 2.60%. Keywords: lobster, Panulirus homarus, ratio, shelter, THC, glucose

  12. Identification of a novel centrosomal protein CrpF46 involved in cell cycle progression and mitosis

    International Nuclear Information System (INIS)

    Wei Yi; Shen Enzhi; Zhao Na; Liu Qian; Fan Jinling; Marc, Jan; Wang Yongchao; Sun Le; Liang Qianjin

    2008-01-01

    A novel centrosome-related protein Crp F46 was detected using a serum F46 from a patient suffering from progressive systemic sclerosis. We identified the protein by immunoprecipitation and Western blotting followed by tandem mass spectrometry sequencing. The protein Crp F46 has an apparent molecular mass of ∼ 60 kDa, is highly homologous to a 527 amino acid sequence of the C-terminal portion of the protein Golgin-245, and appears to be a splice variant of Golgin-245. Immunofluorescence microscopy of synchronized HeLa cells labeled with an anti-Crp F46 monoclonal antibody revealed that Crp F46 localized exclusively to the centrosome during interphase, although it dispersed throughout the cytoplasm at the onset of mitosis. Domain analysis using Crp F46 fragments in GFP-expression vectors transformed into HeLa cells revealed that centrosomal targeting is conferred by a C-terminal coiled-coil domain. Antisense Crp F46 knockdown inhibited cell growth and proliferation and the cell cycle typically stalled at S phase. The knockdown also resulted in the formation of poly-centrosomal and multinucleate cells, which finally became apoptotic. These results suggest that Crp F46 is a novel centrosome-related protein that associates with the centrosome in a cell cycle-dependent manner and is involved in the progression of the cell cycle and M phase mechanism

  13. PsVPS1, a dynamin-related protein, is involved in cyst germination and soybean infection of Phytophthora sojae.

    Directory of Open Access Journals (Sweden)

    Delong Li

    Full Text Available Plant pathogens secrete effector proteins to suppress plant immunity. However, the mechanism by which oomycete pathogens deliver effector proteins during plant infection remains unknown. In this report, we characterized a Phytophthora sojae vps1 gene. This gene encodes a homolog of the Saccharomyces cerevisiae vacuolar protein sorting gene vps1 that mediates budding of clathrin-coated vesicles from the late Golgi, which are diverted from the general secretory pathway to the vacuole. PsVPS1-silenced mutants were generated using polyethylene glycol-mediated protoplast stable transformation and were viable but had reduced extracellular protein activity. The PsVPS1-silenced mutants showed impaired hyphal growth, and the shapes of the vacuoles were highly fragmented. Silencing of PsVPS1 affected cyst germination as well as the polarized growth of germinated cysts. Silenced mutants showed impaired invasion of susceptible soybean plants regardless of wounding. These results suggest that PsVPS1 is involved in vacuole morphology and cyst development. Moreover, it is essential for the virulence of P. sojae and extracellular protein secretion.

  14. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions.

    Science.gov (United States)

    Kamal, Abu Hena Mostafa; Komatsu, Setsuko

    2016-02-01

    To know the molecular systems basically flooding conditions in soybean, biophoton emission measurements and proteomic analyses were carried out for flooding-stressed roots under light and dark conditions. Photon emission was analyzed using a photon counter. Gel-free quantitative proteomics were performed to identify significant changes proteins using the nano LC-MS along with SIEVE software. Biophoton emissions were significantly increased in both light and dark conditions after flooding stress, but gradually decreased with continued flooding exposure compared to the control plants. Among the 120 significantly identified proteins in the roots of soybean plants, 73 and 19 proteins were decreased and increased in the light condition, respectively, and 4 and 24 proteins were increased and decreased, respectively, in the dark condition. The proteins were mainly functionally grouped into cell organization, protein degradation/synthesis, and glycolysis. The highly abundant lactate/malate dehydrogenase proteins were decreased in flooding-stressed roots exposed to light, whereas the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme was increased in both light and dark conditions. Notably, however, specific enzyme assays revealed that the activities of these enzymes and biophoton emission were sharply increased after 3 days of flooding stress. This finding suggests that the source of biophoton emission in roots might involve the chemical excitation of electron or proton through enzymatic or non-enzymatic oxidation and reduction reactions. Moreover, the lysine ketoglutarate reductase/saccharopine dehydrogenase bifunctional enzyme may play important roles in responses in flooding stress of soybean under the light condition and as a contributing factor to biophoton emission.

  15. Cold shock protein YB-1 is involved in hypoxia-dependent gene transcription

    International Nuclear Information System (INIS)

    Rauen, Thomas; Frye, Bjoern C.; Wang, Jialin; Raffetseder, Ute; Alidousty, Christina; En-Nia, Abdelaziz; Floege, Jürgen; Mertens, Peter R.

    2016-01-01

    Hypoxia-dependent gene regulation is largely orchestrated by hypoxia-inducible factors (HIFs), which associate with defined nucleotide sequences of hypoxia-responsive elements (HREs). Comparison of the regulatory HRE within the 3′ enhancer of the human erythropoietin (EPO) gene with known binding motifs for cold shock protein Y-box (YB) protein-1 yielded strong similarities within the Y-box element and 3′ adjacent sequences. DNA binding assays confirmed YB-1 binding to both, single- and double-stranded HRE templates. Under hypoxia, we observed nuclear shuttling of YB-1 and co-immunoprecipitation assays demonstrated that YB-1 and HIF-1α physically interact with each other. Cellular YB-1 depletion using siRNA significantly induced hypoxia-dependent EPO production at both, promoter and mRNA level. Vice versa, overexpressed YB-1 significantly reduced EPO-HRE-dependent gene transcription, whereas this effect was minor under normoxia. HIF-1α overexpression induced hypoxia-dependent gene transcription through the same element and accordingly, co-expression with YB-1 reduced HIF-1α-mediated EPO induction under hypoxic conditions. Taken together, we identified YB-1 as a novel binding factor for HREs that participates in fine-tuning of the hypoxia transcriptome. - Highlights: • Hypoxia drives nuclear translocation of cold shock protein YB-1. • YB-1 physically interacts with hypoxia-inducible factor (HIF)-1α. • YB-1 binds to the hypoxia-responsive element (HRE) within the erythropoietin (EPO) 3′ enhancer. • YB-1 trans-regulates transcription of hypoxia-dependent genes such as EPO and VEGF.

  16. PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins.

    Directory of Open Access Journals (Sweden)

    Soledad A Camolotto

    Full Text Available BACKGROUND: Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5'regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, -147/-140, was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA. This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. CONCLUSIONS/SIGNIFICANCE: Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.

  17. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response.

    Science.gov (United States)

    Hombach-Klonisch, Sabine; Mehrpour, Maryam; Shojaei, Shahla; Harlos, Craig; Pitz, Marshall; Hamai, Ahmed; Siemianowicz, Krzysztof; Likus, Wirginia; Wiechec, Emilia; Toyota, Brian D; Hoshyar, Reyhane; Seyfoori, Amir; Sepehri, Zahra; Ande, Sudharsana R; Khadem, Forough; Akbari, Mohsen; Gorman, Adrienne M; Samali, Afshin; Klonisch, Thomas; Ghavami, Saeid

    2018-04-01

    Despite advances in neurosurgical techniques and radio-/chemotherapy, the treatment of brain tumors remains a challenge. This is particularly true for the most frequent and fatal adult brain tumor, glioblastoma (GB). Upon diagnosis, the average survival time of GB patients remains only approximately 15months. The alkylating drug temozolomide (TMZ) is routinely used in brain tumor patients and induces apoptosis, autophagy and unfolded protein response (UPR). Here, we review these cellular mechanisms and their contributions to TMZ chemoresistance in brain tumors, with a particular emphasis on TMZ chemoresistance in glioma stem cells and GB. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A hybrid two-component system protein from Azospirillum brasilense Sp7 was involved in chemotaxis.

    Science.gov (United States)

    Cui, Yanhua; Tu, Ran; Wu, Lixian; Hong, Yuanyuan; Chen, Sanfeng

    2011-09-20

    We here report the sequence and functional analysis of org35 of Azospirillum brasilense Sp7, which was originally identified to be able to interact with NifA in yeast-two-hybrid system. The org35 encodes a hybrid two-component system protein, including N-terminal PAS domains, a histidine kinase (HPK) domain and a response regulator (RR) domain in C-terminal. To determine the function of the Org35, a deletion-insertion mutant in PAS domain [named Sp7353] and a complemental strain Sp7353C were constructed. The mutant had reduced chemotaxis ability compared to that of wild-type, and the complemental strain was similar to the wild-type strain. These data suggested that the A. brasilense org35 played a key role in chemotaxis. Variants containing different domains of the org35 were expressed, and the functions of these domains were studied in vitro. Phosphorylation assays in vitro demonstrated that the HPK domain of Org35 possessed the autokinase activity and that the phosphorylated HPK was able to transfer phosphate groups to the RR domain. The result indicated Org35 was a phosphorylation-communicating protein. Copyright © 2010 Elsevier GmbH. All rights reserved.

  19. ProFITS of maize: a database of protein families involved in the transduction of signalling in the maize genome

    Directory of Open Access Journals (Sweden)

    Zhang Zhenhai

    2010-10-01

    Full Text Available Abstract Background Maize (Zea mays ssp. mays L. is an important model for plant basic and applied research. In 2009, the B73 maize genome sequencing made a great step forward, using clone by clone strategy; however, functional annotation and gene classification of the maize genome are still limited. Thus, a well-annotated datasets and informative database will be important for further research discoveries. Signal transduction is a fundamental biological process in living cells, and many protein families participate in this process in sensing, amplifying and responding to various extracellular or internal stimuli. Therefore, it is a good starting point to integrate information on the maize functional genes involved in signal transduction. Results Here we introduce a comprehensive database 'ProFITS' (Protein Families Involved in the Transduction of Signalling, which endeavours to identify and classify protein kinases/phosphatases, transcription factors and ubiquitin-proteasome-system related genes in the B73 maize genome. Users can explore gene models, corresponding transcripts and FLcDNAs using the three abovementioned protein hierarchical categories, and visualize them using an AJAX-based genome browser (JBrowse or Generic Genome Browser (GBrowse. Functional annotations such as GO annotation, protein signatures, protein best-hits in the Arabidopsis and rice genome are provided. In addition, pre-calculated transcription factor binding sites of each gene are generated and mutant information is incorporated into ProFITS. In short, ProFITS provides a user-friendly web interface for studies in signal transduction process in maize. Conclusion ProFITS, which utilizes both the B73 maize genome and full length cDNA (FLcDNA datasets, provides users a comprehensive platform of maize annotation with specific focus on the categorization of families involved in the signal transduction process. ProFITS is designed as a user-friendly web interface and it is

  20. Involvement of the iron regulatory protein from Eisenia andrei earthworms in the regulation of cellular iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Petra Procházková

    Full Text Available Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs of the 5'- or 3'-untranslated regions (UTR of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP. The earthworm IRE site in 5'-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant.

  1. The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Morgane eBatzenschlager

    2013-11-01

    Full Text Available During interphase, the microtubular cytoskeleton of cycling plant cells is organized in both cortical and perinuclear arrays. Perinuclear microtubules (MTs are nucleated from γ-Tubulin Complexes (γ-TuCs located at the surface of the nucleus. The molecular mechanisms of γ-TuC association to the nuclear envelope are currently unknown. The γ-TuC Protein 3 (GCP3-Interacting Protein 1 (GIP1 is the smallest γ-TuC component identified so far. AtGIP1 and its homologous protein AtGIP2 participate in the localization of active γ-TuCs at interphasic and mitotic MT nucleation sites. Arabidopsis gip1gip2 mutants are impaired in establishing a fully functional mitotic spindle and exhibit severe developmental defects.In this study, gip1gip2 knock down mutants were further characterized at the cellular level. In addition to defects in both the localization of γ-TuC core proteins and MT fibre robustness, gip1gip2 mutants exhibited a severe alteration of the nuclear shape associated with an abnormal distribution of the nuclear pore complexes. Simultaneously, they showed a misorganization of the inner nuclear membrane protein AtSUN1. Furthermore, AtGIP1 was identified as an interacting partner of AtTSA1 which was detected, like the AtGIP proteins, at the nuclear envelope.These results provide the first evidence for the involvement of a γ-TuC component in both nuclear shaping and nuclear envelope organization. Functional hypotheses are discussed in order to propose a model for a GIP-dependent nucleo-cytoplasmic continuum.

  2. Wheat F-Box Protein Gene TaFBA1 Is Involved in Plant Tolerance to Heat Stress

    Directory of Open Access Journals (Sweden)

    Qinxue Li

    2018-04-01

    Full Text Available Adverse environmental conditions, including high temperature, often affect the growth and production of crops worldwide. F-box protein, a core component of the Skp1-Cullin-F-box (SCF E3 ligase complex, plays an important role in abiotic stress responses. A previously cloned gene from wheat, TaFBA1, encodes a homologous F-box protein. A Yeast two-Hybrid (Y2H assay showed that TaFBA1 interacted with other SCF proteins. We found that the expression of TaFBA1 could be induced by heat stress (45°C. Overexpression of TaFBA1 enhanced heat stress tolerance in transgenic tobacco, because growth inhibition was reduced and photosynthesis increased as compared with those in the wild type (WT plants. Furthermore, the accumulation of H2O2, O2-, and carbonyl protein decreased and cell damage was alleviated in transgenic plants under heat stress, which resulted in less oxidative damage. However, the transgenic plants contained more enzymatic antioxidants after heat stress, which might be related to the regulation of some antioxidant gene expressions. The qRT-PCR analysis showed that the overexpression of TaFBA1 upregulated the expression of genes involved in reactive oxygen species (ROS scavenging, proline biosynthesis, and abiotic stress responses. We identified the interaction of TaFBA1 with Triticum aestivum stress responsive protein 1 (TaASRP1 by Y2H assay and bimolecular fluorescence complementation (BiFC assay. The results suggested that TaFBA1 may improve enzymatic antioxidant levels and regulate gene expression by interacting with other proteins, such as TaASRP1, which leads to the enhanced heat stress tolerance seen in the transgenic plants.

  3. Quantification of the main digestive processes in ruminants: the equations involved in the renewed energy and protein feed evaluation systems.

    Science.gov (United States)

    Sauvant, D; Nozière, P

    2016-05-01

    The evolution of feeding systems for ruminants towards evaluation of diets in terms of multiple responses requires the updating of the calculation of nutrient supply to the animals to make it more accurate on aggregated units (feed unit, or UF, for energy and protein digestible in the intestine, or PDI, for metabolizable protein) and to allow prediction of absorbed nutrients. The present update of the French system is based on the building and interpretation through meta-analysis of large databases on digestion and nutrition of ruminants. Equations involved in the calculation of UF and PDI have been updated, allowing: (1) prediction of the out flow rate of particles and liquid depending on the level of intake and the proportion of concentrate, and the use of this in the calculation of ruminal digestion of protein and starch from in situ data; (2) the system to take into account the effects of the main factors of digestive interactions (level of intake, proportion of concentrate, rumen protein balance) on organic matter digestibility, energy losses in methane and in urine; (3) more accurate calculation of the energy available in the rumen and the efficiency of its use for the microbial protein synthesis. In this renewed model UF and PDI values of feedstuffs vary depending on diet composition, and intake level. Consequently, standard feed table values can be considered as being only indicative. It is thus possible to predict the nutrient supply on a wider range of diets more accurately and in particular to better integrate energy×protein interactions occurring in the gut.

  4. Tim50a, a nuclear isoform of the mitochondrial Tim50, interacts with proteins involved in snRNP biogenesis

    Directory of Open Access Journals (Sweden)

    Robinson Melvin L

    2005-07-01

    Full Text Available Abstract Background The Cajal body (CB is a nuclear suborganelle involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs, which are vital for pre-mRNA splicing. Newly imported Sm-class snRNPs traffic through CBs, where the snRNA component of the snRNP is modified, and then target to other nuclear domains such as speckles and perichromatin fibrils. It is not known how nascent snRNPs localize to the CB and are released from this structure after modification. The marker protein for CBs, coilin, may play a role in snRNP biogenesis given that it can interact with snRNPs and SMN, the protein mutated in Spinal Muscular Atrophy. Loss of coilin function in mice leads to significant viability and fertility problems and altered CB formation. Results In this report, we identify a minor isoform of the mitochondrial Tim50, Tim50a, as a coilin interacting protein. The Tim50a transcript can be detected in some cancer cell lines and normal brain tissue. The Tim50a protein differs only from Tim50 in that it contains an additional 103 aa N-terminal to the translation start of Tim50. Importantly, a putative nuclear localization signal is found within these 103 residues. In contrast to Tim50, which localizes to the cytoplasm and mitochondria, Tim50a is strictly nuclear and is enriched in speckles with snRNPs. In addition to coilin, Tim50a interacts with snRNPs and SMN. Competition binding experiments demonstrate that coilin competes with Sm proteins of snRNPs and SMN for binding sites on Tim50a. Conclusion Tim50a may play a role in snRNP biogenesis given its cellular localization and protein interaction characteristics. We hypothesize that Tim50a takes part in the release of snRNPs and SMN from the CB.

  5. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    Science.gov (United States)

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5′- or 3′-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5′-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant. PMID:25279857

  6. Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa.

    Science.gov (United States)

    Gonçalves, A Pedro; Cordeiro, J Miguel; Monteiro, João; Lucchi, Chiara; Correia-de-Sá, Paulo; Videira, Arnaldo

    2015-10-01

    Staurosporine-induced cell death in Neurospora crassa includes a well defined sequence of alterations in cytosolic calcium levels, comprising extracellular Ca(2+) influx and mobilization of Ca(2+) from internal stores. Here, we show that cells undergoing respiratory stress due to the lack of certain components of the mitochondrial complex I (like the 51kDa and 14kDa subunits) or the Ca(2+)-binding alternative NADPH dehydrogenase NDE-1 are hypersensitive to staurosporine and incapable of setting up a proper intracellular Ca(2+) response. Cells expressing mutant forms of NUO51 that mimic human metabolic diseases also presented Ca(2+) signaling deficiencies. Accumulation of reactive oxygen species is increased in cells lacking NDE-1 and seems to be required for Ca(2+) oscillations in response to staurosporine. Measurement of the mitochondrial levels of Ca(2+) further supported the involvement of these organelles in staurosporine-induced Ca(2+) signaling. In summary, our data indicate that staurosporine-induced fungal cell death involves a sophisticated response linking Ca(2+) dynamics and bioenergetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Nuclear substructure reorganization during late stageerythropoiesis is selective and does not involve caspase cleavage ofmajor nuclear substructural proteins

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Sharon Wald; Lo, Annie J.; Short, Sarah A.; Koury, MarkJ.; Mohandas, Narla; Chasis, Joel Anne

    2005-04-06

    Enucleation, a rare feature of mammalian differentiation, occurs in three cell types: erythroblasts, lens epithelium and keratinocytes. Previous investigations suggest that caspase activation functions in lens epithelial and keratinocyte enucleation, as well as in early erythropoiesis encompassing BFU-E differentiation to proerythroblast. To determine whether caspase activation contributes to later erythropoiesis and whether nuclear substructures other than chromatin reorganize, we analyzed distributions of nuclear subcompartment proteins and assayed for caspase-induced cleavage of subcompartmental target proteins in mouse erythroblasts. We found that patterns of lamin B in the filamentous network interacting with both the nuclear envelope and DNA, nuclear matrix protein NuMA, and splicing factors Sm and SC35 persisted during nuclear condensation, consistent with effective transcription of genes expressed late in differentiation. Thus nuclear reorganization prior to enucleation is selective, allowing maintenance of critical transcriptional processes independent of extensive chromosomal reorganization. Consistent with these data, we found no evidence for caspase-induced cleavage of major nuclear subcompartment proteins during late erythropoiesis, in contrast to what has been observed in early erythropoiesis and in lens epithelial and keratinocyte differentiation. These findings imply that nuclear condensation and extrusion during terminal erythroid differentiation involve novel mechanisms that do not entail major activation of apoptotic machinery.

  8. Redox stress proteins are involved in adaptation response of the hyperthermoacidophilic archaeon Sulfolobus solfataricus to nickel challenge

    Directory of Open Access Journals (Sweden)

    Scaloni Andrea

    2007-08-01

    Full Text Available Abstract Background Exposure to nickel (Ni and its chemical derivatives has been associated with severe health effects in human. On the contrary, poor knowledge has been acquired on target physiological processes or molecular mechanisms of this metal in model organisms, including Bacteria and Archaea. In this study, we describe an analysis focused at identifying proteins involved in the recovery of the archaeon Sulfolobus solfataricus strain MT4 from Ni-induced stress. Results To this purpose, Sulfolobus solfataricus was grown in the presence of the highest nickel sulphate concentration still allowing cells to survive; crude extracts from treated and untreated cells were compared at the proteome level by using a bi-dimensional chromatography approach. We identified several proteins specifically repressed or induced as result of Ni treatment. Observed up-regulated proteins were largely endowed with the ability to trigger recovery from oxidative and osmotic stress in other biological systems. It is noteworthy that most of the proteins induced following Ni treatment perform similar functions and a few have eukaryal homologue counterparts. Conclusion These findings suggest a series of preferential gene expression pathways activated in adaptation response to metal challenge.

  9. NDV-induced apoptosis in absence of Bax; evidence of involvement of apoptotic proteins upstream of mitochondria

    Directory of Open Access Journals (Sweden)

    Molouki Aidin

    2012-08-01

    Full Text Available Abstract Background Recently it was shown that following infection of HeLa cells with Newcastle disease virus (NDV, the matrix (M protein binds to Bax and subsequently the intrinsic pathway of apoptosis is activated. Moreover, there was very little alteration on mRNA and protein levels of Bax and Bcl-2 after infection with NDV. Finding In order to further investigate the role of members of the Bcl-2 family, Bax-knockout and wild-type HCT116 cells were infected with NDV strain AF2240. Although both cells underwent apoptosis through the activation of the intrinsic pathway and the release of cytochrome c from mitochondria, the percentage of dead Bax-knockout cells was significantly lower than wt cells (more than 10% at 48 h post-infection. In a parallel experiment, the effect of NDV on HT29 cells, that are originally Bcl-2-free, was studied. Apoptosis in HT29 cells was associated with Bax redistribution from cytoplasm to mitochondria, similar to that of HeLa and wt HCT116 cells. Conclusion Although the presence of Bax during NDV-induced apoptosis contributes to a faster cell death, it was concluded that other apoptotic protein(s upstream of mitochondria are also involved since cancer cells die whether in the presence or absence of Bax. Therefore, the classic Bax/Bcl-2 ratio may not be a major determinant in NDV-induced apoptosis.

  10. Involvement of Mζ-Like Protein Kinase in the Mechanisms of Conditioned Food Aversion Memory Reconsolidation in the Helix lucorum.

    Science.gov (United States)

    Solntseva, S V; Kozyrev, S A; Nikitin, V P

    2015-06-01

    We studied the involvement of Mζ-like protein kinase (PKMζ) into mechanisms of conditioned food aversion memory reconsolidation in Helix lucorum. Injections PKMζ inhibitor ZIP in a dose of 5 mg/kg on day 2 or 10 after learning led to memory impairment and amnesia development. Injections of the inhibitor in doses of 1.5 or 2.5 mg/kg had no effect. Repeated training on day 11 after induction of amnesia resulted in the formation of memory on the same type of food aversion similar to first training. The number of combinations of conditional (food) and reinforcing (electrical shock) stimuli was similar during initial and repeated training. We hypothesize that the inhibition of Mζ-like protein kinase erases the memory trace and a new memory is formed during repeated training.

  11. A PerR-like protein involved in response to oxidative stress in the extreme bacterium Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chengzhi; Wang, Liangyan; Li, Tao; Lin, Lin; Dai, Shang; Tian, Bing, E-mail: tianbing@zju.edu.cn; Hua, Yuejin, E-mail: yjhua@zju.edu.cn

    2014-07-18

    Highlights: • We report a novel PerR-like protein of Fur family in D. radiodurans that is not annotated in the current database. • drperR responses to H{sub 2}O{sub 2} and functions as a negative regulator of katE and dps. • We provided implications on how to utilize sequenced genome data and the importance of genome data mining. • This study adds knowledge to complicated regulatory network that responds to ROS stress in D. radiodurans. - Abstract: Response and defense systems against reactive oxygen species (ROS) contribute to the remarkable resistance of Deinococcus radiodurans to oxidative stress induced by oxidants or radiation. However, mechanisms involved in ROS response and defense systems of D. radiodurans are not well understood. Fur family proteins are important in ROS response. Only a single Fur homolog is predicted by sequence similarity in the current D. radiodurans genome database. Our bioinformatics analysis demonstrated an additional guanine nucleotide in the genome of D. radiodurans that is not in the database, leading to the discovery of another Fur homolog DrPerR. Gene disruption mutant of DrPerR showed enhanced resistance to hydrogen peroxide (H{sub 2}O{sub 2}) and increased catalase activity in cell extracts. Real-time PCR results indicated that DrPerR functions as a repressor of the catalase gene katE. Meanwhile, derepression of dps (DNA-binding proteins from starved cells) gene under H{sub 2}O{sub 2} stress by DrPerR point to its regulatory role in metal ions hemostasis. Thus, DrPerR might function as a Fur homolog protein which is involved in ROS response and defense. These results help clarify the complicated regulatory network that responds to ROS stress in D. radiodurans.

  12. A PerR-like protein involved in response to oxidative stress in the extreme bacterium Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Liu, Chengzhi; Wang, Liangyan; Li, Tao; Lin, Lin; Dai, Shang; Tian, Bing; Hua, Yuejin

    2014-01-01

    Highlights: • We report a novel PerR-like protein of Fur family in D. radiodurans that is not annotated in the current database. • drperR responses to H 2 O 2 and functions as a negative regulator of katE and dps. • We provided implications on how to utilize sequenced genome data and the importance of genome data mining. • This study adds knowledge to complicated regulatory network that responds to ROS stress in D. radiodurans. - Abstract: Response and defense systems against reactive oxygen species (ROS) contribute to the remarkable resistance of Deinococcus radiodurans to oxidative stress induced by oxidants or radiation. However, mechanisms involved in ROS response and defense systems of D. radiodurans are not well understood. Fur family proteins are important in ROS response. Only a single Fur homolog is predicted by sequence similarity in the current D. radiodurans genome database. Our bioinformatics analysis demonstrated an additional guanine nucleotide in the genome of D. radiodurans that is not in the database, leading to the discovery of another Fur homolog DrPerR. Gene disruption mutant of DrPerR showed enhanced resistance to hydrogen peroxide (H 2 O 2 ) and increased catalase activity in cell extracts. Real-time PCR results indicated that DrPerR functions as a repressor of the catalase gene katE. Meanwhile, derepression of dps (DNA-binding proteins from starved cells) gene under H 2 O 2 stress by DrPerR point to its regulatory role in metal ions hemostasis. Thus, DrPerR might function as a Fur homolog protein which is involved in ROS response and defense. These results help clarify the complicated regulatory network that responds to ROS stress in D. radiodurans

  13. The full-length form of the Drosophila amyloid precursor protein is involved in memory formation.

    Science.gov (United States)

    Bourdet, Isabelle; Preat, Thomas; Goguel, Valérie

    2015-01-21

    The APP plays a central role in AD, a pathology that first manifests as a memory decline. Understanding the role of APP in normal cognition is fundamental in understanding the progression of AD, and mammalian studies have pointed to a role of secreted APPα in memory. In Drosophila, we recently showed that APPL, the fly APP ortholog, is required for associative memory. In the present study, we aimed to characterize which form of APPL is involved in this process. We show that expression of a secreted-APPL form in the mushroom bodies, the center for olfactory memory, is able to rescue the memory deficit caused by APPL partial loss of function. We next assessed the impact on memory of the Drosophila α-secretase kuzbanian (KUZ), the enzyme initiating the nonamyloidogenic pathway that produces secreted APPLα. Strikingly, KUZ overexpression not only failed to rescue the memory deficit caused by APPL loss of function, it exacerbated this deficit. We further show that in addition to an increase in secreted-APPL forms, KUZ overexpression caused a decrease of membrane-bound full-length species that could explain the memory deficit. Indeed, we observed that transient expression of a constitutive membrane-bound mutant APPL form is sufficient to rescue the memory deficit caused by APPL reduction, revealing for the first time a role of full-length APPL in memory formation. Our data demonstrate that, in addition to secreted APPL, the noncleaved form is involved in memory, raising the possibility that secreted and full-length APPL act together in memory processes. Copyright © 2015 the authors 0270-6474/15/351043-09$15.00/0.

  14. A novel Drosophila Girdin-like protein is involved in Akt pathway control of cell size

    Energy Technology Data Exchange (ETDEWEB)

    Puseenam, Aekkachai [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Yoshioka, Yasuhide [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Venture Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Nagai, Rika [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Hashimoto, Reina [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Venture Laboratory, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Suyari, Osamu [Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Itoh, Masanobu [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Enomoto, Atsushi [Department of Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi 466-8550 (Japan); Takahashi, Masahide [Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Department of Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi 466-8550 (Japan); Yamaguchi, Masamitsu, E-mail: myamaguc@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585 (Japan)

    2009-11-15

    The Akt signaling pathway is well known to regulate cell proliferation and growth. Girdin, a novel substrate of Akt, plays a crucial role in organization of the actin cytoskeleton and cell motility under the control of Akt. We here identified a novel Girdin-like protein in Drosophila (dGirdin), which has two isoforms, dGirdin PA and dGirdin PB. dGirdin shows high homology with human Girdin in the N-terminal and coiled-coil domains, while diverging at the C-terminal domain. On establishment of transgenic fly lines, featuring knockdown or overexpression of dGirdin in vivo, overexpression in the wing disc cells induced ectopic apoptosis, implying a role in directing apoptosis. Knockdown of dGirdin in the Drosophila wing imaginal disc cells resulted in reduction of cell size. Furthermore, this was enhanced by half reduction of the Akt gene dose, suggesting that Akt positively regulates dGirdin. In the wing disc, cells in which dGirdin was knocked down exhibited disruption of actin filaments. From these in vivo analyses, we conclude that dGirdin is required for actin organization and regulation of appropriate cell size under control of the Akt signaling pathway.

  15. Mucin-like protein, a saliva component involved in brown planthopper virulence and host adaptation.

    Science.gov (United States)

    Huang, Hai-Jian; Liu, Cheng-Wen; Xu, Hai-Jun; Bao, Yan-Yuan; Zhang, Chuan-Xi

    2017-04-01

    The rice brown planthopper (BPH), Nilaparvata lugens, can rapidly adapt to new resistant rice varieties within several generations, rendering its management burdensome. However, the molecular mechanism underlying its adaptability remains unclear. In this study, we investigated the potential role of mucin-like protein (NlMul) in N. lugens virulence and adaptation to host resistance. NlMul is an important glycoprotein that constitutes both gelling and watery saliva, and specifically expressed in the salivary glands at all developmental stages except the egg period. Knocking down the expression of NlMul resulted in the secretion of short and single-branched salivary sheaths. NlMul might help BPH deal with plant resistance, and altered gene expression was observed when BPHs were transferred from a susceptible rice variety to a resistant one. The NlMul-deficient BPHs showed disordered developmental duration and a portion of these insects reared on resistant rice exhibited lethal effects. Our results uncover a saliva-mediated interaction between insect and host plant, and provide useful information in rice breeding and planthopper management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    Science.gov (United States)

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.

  17. A novel Drosophila Girdin-like protein is involved in Akt pathway control of cell size

    International Nuclear Information System (INIS)

    Puseenam, Aekkachai; Yoshioka, Yasuhide; Nagai, Rika; Hashimoto, Reina; Suyari, Osamu; Itoh, Masanobu; Enomoto, Atsushi; Takahashi, Masahide; Yamaguchi, Masamitsu

    2009-01-01

    The Akt signaling pathway is well known to regulate cell proliferation and growth. Girdin, a novel substrate of Akt, plays a crucial role in organization of the actin cytoskeleton and cell motility under the control of Akt. We here identified a novel Girdin-like protein in Drosophila (dGirdin), which has two isoforms, dGirdin PA and dGirdin PB. dGirdin shows high homology with human Girdin in the N-terminal and coiled-coil domains, while diverging at the C-terminal domain. On establishment of transgenic fly lines, featuring knockdown or overexpression of dGirdin in vivo, overexpression in the wing disc cells induced ectopic apoptosis, implying a role in directing apoptosis. Knockdown of dGirdin in the Drosophila wing imaginal disc cells resulted in reduction of cell size. Furthermore, this was enhanced by half reduction of the Akt gene dose, suggesting that Akt positively regulates dGirdin. In the wing disc, cells in which dGirdin was knocked down exhibited disruption of actin filaments. From these in vivo analyses, we conclude that dGirdin is required for actin organization and regulation of appropriate cell size under control of the Akt signaling pathway.

  18. Attenuated expression of the tight junction proteins is involved in clopidogrel-induced gastric injury through p38 MAPK activation

    International Nuclear Information System (INIS)

    Wu, Hai-Lu; Gao, Xin; Jiang, Zong-Dan; Duan, Zhao-Tao; Wang, Shu-Kui; He, Bang-Shun; Zhang, Zhen-Yu; Xie, Hong-Guang

    2013-01-01

    Highlights: ► Clopidogrel suppressed GES-1 cell viability in a concentration- and time-dependent manner. ► Clopidogrel significantly increased dextran permeability, reduced occludin and ZO-1 expression, and induced cell apoptosis. ► Clopidogrel activated p38 MAPK signaling pathway. ► Activation of p38 activity was involved in clopidogrel-induced increase in gastric epithelial cells permeability and disruption of TJ. -- Abstract: Bleeding complications and delayed healing of gastric ulcer associated with use of clopidogrel is a common clinical concern; however, the underlying mechanisms remain to be determined. This study aimed to clarify whether clopidogrel could cause the damage of the human gastric epithelial cells and to further elucidate the mechanisms involved. After human gastric epithelial cell line GES-1 had been treated with clopidogrel (0.5–2.5 mM), the cell proliferation was examined by MTT assay, apoptosis was measured with DAPI staining and flow cytometry analysis, and the barrier function of the tight junctions (TJ) was evaluated by permeability measurement and transmission electron microscopy. Moreover, expression of the TJ proteins occludin and ZO-1 and the phosphorylation of the mitogen-activated protein kinases (MAPK) p38, ERK, and JNK were examined by western blot. In addition, three MAPK inhibitors specific to p38, ERK and JNK were used, respectively, to verify the signaling pathways responsible for regulating the expression of the TJ proteins being tested. Results showed that clopidogrel significantly increased dextran permeability, induced apoptosis, suppressed GES-1 cell viability, and reduced the expression of the TJ proteins (occludin and ZO-1), acting through p38 MAPK phosphorylation. Furthermore, these observed effects were partially abolished by SB-203580 (a p38 MAPK inhibitor), rather than by either U-0126 (an ERK inhibitor) or SP-600125 (a JNK inhibitor), suggesting that clopidogrel-induced disruption in the gastric

  19. Determination of Albendazole and Metabolites in Silkworm Bombyx mori Hemolymph by Ultrafast Liquid Chromatography Tandem Triple Quadrupole Mass Spectrometry

    Science.gov (United States)

    Li, Li; Xing, Dong-Xu; Li, Qing-Rong; Xiao, Yang; Ye, Ming-Qiang; Yang, Qiong

    2014-01-01

    Albendazole is a broad-spectrum parasiticide with high effectiveness and low host toxicity. No method is currently available for measuring albendazole and its metabolites in silkworm hemolymph. This study describes a rapid, selective, sensitive, synchronous and reliable detection method for albendazole and its metabolites in silkworm hemolymph using ultrafast liquid chromatography tandem triple quadrupole mass spectrometry (UFLC-MS/MS). The method is liquid-liquid extraction followed by UFLC separation and quantification in an MS/MS system with positive electrospray ionization in multiple reaction monitoring mode. Precursor-to-product ion transitions were monitored at 266.100 to 234.100 for albendazole (ABZ), 282.200 to 208.100 for albendazole sulfoxide (ABZSO), 298.200 to 159.100 for albendazole sulfone (ABZSO2) and 240.200 to 133.100 for albendazole amino sulfone (ABZSO2-NH2). Calibration curves had good linearities with R2 of 0.9905–0.9972. Limits of quantitation (LOQs) were 1.32 ng/mL for ABZ, 16.67 ng/mL for ABZSO, 0.76 ng/mL for ABZSO2 and 5.94 ng/mL for ABZSO2-NH2. Recoveries were 93.12%–103.83% for ABZ, 66.51%–108.51% for ABZSO, 96.85%–105.6% for ABZSO2 and 96.46%–106.14% for ABZSO2-NH2, (RSDs <8%). Accuracy, precision and stability tests showed acceptable variation in quality control (QC) samples. This analytical method successfully determined albendazole and its metabolites in silkworm hemolymph in a pharmacokinetic study. The results of single-dose treatment suggested that the concentrations of ABZ, ABZSO and ABZSO2 increased and then fell, while ABZSO2-NH2 level was low without obvious change. Different trends were observed for multi-dose treatment, with concentrations of ABZSO and ABZSO2 rising over time. PMID:25255321

  20. Antiatherosclerotic Effect of Korean Red Ginseng Extract Involves Regulator of G-Protein Signaling 5

    Directory of Open Access Journals (Sweden)

    Eun Ju Im

    2014-01-01

    Full Text Available Regulator of G-protein signaling 5 (RGS5, an inhibitor of Gα(q and Gα(i activation, has been reported to have antiatherosclerosis. Previous studies showed antiatherosclerotic effect of Korean red ginseng water extract (KRGE via multiple signaling pathways. However, potential protective effect of KRGE through RGS5 expression has not been elucidated. Here, we investigated the antiatherosclerotic effect of KRGE in vivo and in vitro and its role on RGS5 mRNA expression. Elevated levels of total cholesterol, lactate dehydrogenase (LDH, and triglyceride (TG in western diet groups of low-density lipoprotein receptor deficient LDLr−/− mice were reversed by oral administration of KRGE. KRGE suppressed transcriptional activity of tumor necrotic factor alpha (TNF-α, interleukin-6 (IL-6, and leptin in adipose tissue. It also potently repressed western diet-induced atheroma formation in aortic sinus. While KRGE showed reduced mRNA expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, IL-1β, IL-6, and TNF-α in LPS-stimulated RAW264.7 cells, it enhanced mRNA expression of RGS5. Moreover, RGS5 siRNA transfection of microglia cells pretreated with KRGE reversed its inhibitory effect on the expression of iNOS, COX-2, and IL-1β mRNA. In conclusion, KRGE showed antiatherosclerotic and anti-inflammatory effects in western diet fed LDLr−/− mice and this effect could partly be mediated by RGS5 expression.

  1. Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein.

    Science.gov (United States)

    Yu, Yang; Zhao, Zhigang; Shi, Yanrong; Tian, Hua; Liu, Linglong; Bian, Xiaofeng; Xu, Yang; Zheng, Xiaoming; Gan, Lu; Shen, Yumin; Wang, Chaolong; Yu, Xiaowen; Wang, Chunming; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Ikehashi, Hiroshi; Jiang, Ling; Wan, Jianmin

    2016-07-01

    Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement. Copyright © 2016 by the Genetics Society of America.

  2. Regulation of myofibrillar accumulation in chick muscle cultures - Evidence for the involvement of calcium and lysosomes in non-uniform turnover of contractile proteins

    Science.gov (United States)

    Silver, Geri; Etlinger, Joseph D.

    1985-01-01

    The effects of calcium on the synthesis and the degradation of individual myofibrillar proteins were investigated using primary chick-leg skeletal muscle cultures labeled with S-35-methionine (for protein accumulation experiments) or Ca(2+)-45 (for calcium efflux experiments). It was found that the turnover of individual contractile proteins is regulated nonuniformly by a calcium-dependent mechanism involving lysosomes. The results also indicate that contractile proteins are released from the myofibril before their breakdown to amino acids.

  3. The expression of proteins involved in digestion and detoxification are regulated in Helicoverpa armigera to cope up with chlorpyrifos insecticide.

    Science.gov (United States)

    Dawkar, Vishal V; Chikate, Yojana R; More, Tushar H; Gupta, Vidya S; Giri, Ashok P

    2016-02-01

    Helicoverpa armigera is a key pest in many vital crops, which is mainly controlled by chemical strategies. To manage this pest is becoming challenging due to its ability and evolution of resistance against insecticides. Further, its subsequent spread on nonhost plant is remarkable in recent times. Hence, decoding resistance mechanism against phytochemicals and synthetic insecticides is a major challenge. The present work describes that the digestion, defense and immunity related enzymes are associated with chlorpyrifos resistance in H. armigera. Proteomic analysis of H. armigera gut tissue upon feeding on chlorpyrifos containing diet (CH) and artificial diet (AD) using nano-liquid chromatography-mass spectrometry identified upregulated 23-proteins in CH fed larvae. Database searches combined with gene ontology analysis revealed that the identified gut proteins engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification. Biochemical and quantitative real-time polymerase chain reaction analysis of candidate proteins indicated that insects were struggling to get nutrients and energy in presence of CH, while at the same time endeavoring to metabolize chlorpyrifos. Moreover, we proposed a potential processing pathway of chlorpyrifos in H. armigera gut by examining the metabolites using gas chromatography-mass spectrometry. H. armigera exhibit a range of intriguing behavioral, morphological adaptations and resistance to insecticides by regulating expression of proteins involved in digestion and detoxification mechanisms to cope up with chlorpyrifos. In these contexts, as gut is a rich repository of biological information; profound analysis of gut tissues can give clues of detoxification and resistance mechanism in insects. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  4. Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression.

    Directory of Open Access Journals (Sweden)

    Danilo Marimpietri

    Full Text Available Neuroblastoma (NB is the most common extracranial solid tumor in childhood, with grim prognosis in a half of patients. Exosomes are nanometer-sized membrane vesicles derived from the multivesicular bodies (MVBs of the endocytic pathway and released by normal and neoplastic cells. Tumor-derived exosomes have been shown in different model systems to carry molecules that promote cancer growth and dissemination. In this respect, we have here performed the first characterization and proteomic analysis of exosomes isolated from human NB cell lines by filtration and ultracentrifugation. Electron microscopy demonstrated that NB-derived exosomes exhibited the characteristic cup-shaped morphology. Dynamic light scattering studies showed a bell-shaped curve and a polydispersity factor consistent with those of exosomes. Zeta potential values suggested a good nanoparticle stability. We performed proteomic analysis of NB-derived exosomes by two dimension liquid chromatography separation and mass spectrometry analyses using the multidimensional protein identification technology strategy. We found that the large majority of the proteins identified in NB derived exosomes are present in Exocarta database including tetraspanins, fibronectin, heat shock proteins, MVB proteins, cytoskeleton-related proteins, prominin-1 (CD133, basigin (CD147 and B7-H3 (CD276. Expression of the CD9, CD63 and CD81 tetraspanins, fibronectin, CD133, CD147 and CD276 was validated by flow cytometry. Noteworthy, flow cytometric analysis showed that NB-derived exosomes expressed the GD2 disialoganglioside, the most specific marker of NB. In conclusion, this study shows that NB-derived exosomes express a discrete set of molecules involved in defense response, cell differentiation, cell proliferation and regulation of other important biological process. Thus, NB-derived exosomes may play an important role in the modulation of tumor microenvironment and represent potential tumor biomarkers.

  5. Dinitrosopiperazine-Mediated Phosphorylated-Proteins Are Involved in Nasopharyngeal Carcinoma Metastasis

    Directory of Open Access Journals (Sweden)

    Gongjun Tan

    2014-11-01

    Full Text Available N,N'-dinitrosopiperazine (DNP with organ specificity for nasopharyngeal epithelium, is involved in nasopharyngeal carcinoma (NPC metastasis, though its mechanism is unclear. To reveal the pathogenesis of DNP-induced metastasis, immunoprecipitation was used to identify DNP-mediated phosphoproteins. DNP-mediated NPC cell line (6-10B motility and invasion was confirmed. Twenty-six phosphoproteins were increased at least 1.5-fold following DNP exposure. Changes in the expression levels of selected phosphoproteins were verified by Western-blotting analysis. DNP treatment altered the phosphorylation of ezrin (threonine 567, vimentin (serine 55, stathmin (serine 25 and STAT3 (serine 727. Furthermore, it was shown that DNP-dependent metastasis is mediated in part through ezrin at threonine 567, as DNP-mediated metastasis was decreased when threonine 567 of ezrin was mutated. Strikingly, NPC metastatic tumors exhibited a higher expression of phosphorylated-ezrin at threonine 567 than the primary tumors. These findings provide novel insight into DNP-induced NPC metastasis and may contribute to a better understanding of the metastatic mechanisms of NPC tumors.

  6. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    International Nuclear Information System (INIS)

    Kadouchi, Ichiro; Sakamoto, Kei; Tangjiao, Liu; Murakami, Takashi; Kobayashi, Eiji; Hoshino, Yuichi; Yamaguchi, Akira

    2009-01-01

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  7. APC/C-mediated degradation of dsRNA-binding protein 4 (DRB4 involved in RNA silencing.

    Directory of Open Access Journals (Sweden)

    Katia Marrocco

    Full Text Available Selective protein degradation via the ubiquitin-26S proteasome is a major mechanism underlying DNA replication and cell division in all Eukaryotes. In particular, the APC/C (Anaphase Promoting Complex or Cyclosome is a master ubiquitin protein ligase (E3 that targets regulatory proteins for degradation allowing sister chromatid separation and exit from mitosis. Interestingly, recent work also indicates that the APC/C remains active in differentiated animal and plant cells. However, its role in post-mitotic cells remains elusive and only a few substrates have been characterized.In order to identify novel APC/C substrates, we performed a yeast two-hybrid screen using as the bait Arabidopsis APC10/DOC1, one core subunit of the APC/C, which is required for substrate recruitment. This screen identified DRB4, a double-stranded RNA binding protein involved in the biogenesis of different classes of small RNA (sRNA. This protein interaction was further confirmed in vitro and in plant cells. Moreover, APC10 interacts with DRB4 through the second dsRNA binding motif (dsRBD2 of DRB4, which is also required for its homodimerization and binding to its Dicer partner DCL4. We further showed that DRB4 protein accumulates when the proteasome is inactivated and, most importantly, we found that DRB4 stability depends on APC/C activity. Hence, depletion of Arabidopsis APC/C activity by RNAi leads to a strong accumulation of endogenous DRB4, far beyond its normal level of accumulation. However, we could not detect any defects in sRNA production in lines where DRB4 was overexpressed.Our work identified a first plant substrate of the APC/C, which is not a regulator of the cell cycle. Though we cannot exclude that APC/C-dependent degradation of DRB4 has some regulatory roles under specific growth conditions, our work rather points to a housekeeping function of APC/C in maintaining precise cellular-protein concentrations and homeostasis of DRB4.

  8. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes

    Directory of Open Access Journals (Sweden)

    Eriston V. Gomes

    2017-05-01

    Full Text Available Several Trichoderma spp. are well known for their ability to: (i act as important biocontrol agents against phytopathogenic fungi; (ii function as biofertilizers; (iii increase the tolerance of plants to biotic and abiotic stresses; and (iv induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum strains with: (a the phytopathogen Botrytis cinerea and (b with tomato plants, on short (24 h hydroponic cultures and long periods (4-weeks old plants after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis (BcBOT genes, during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

  9. Polycystin-1 C terminus cleavage and its relation with polycystin-2, two proteins involved in polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Claudia A. Bertuccio

    2013-04-01

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD, a most common genetic cause of chronic renal failure, is characterized by the progressive development and enlargement of cysts in kidneys and other organs. The cystogenic process is highly complex and involves a high proliferative rate, increased apoptosis, altered protein sorting, changed secretory characteristics, and disorganization of the extracellular matrix. ADPKD is caused by mutations in the genes encoding polycystin-1 (PC-1 or polycystin-2 (PC-2. PC-1 undergoes multiple cleavages that intervene in several signaling pathways involved in cellular proliferation and differentiation mechanisms. One of these cleavages releases the cytoplasmic C-terminal tail of PC-1. In addition, the C-terminal cytoplasmic tails of PC-1 and PC-2 interact in vitro and in vivo. The purpose of this review is to summarize recent literature that suggests that PC-1 and PC-2 may function through a common signaling pathway necessary for normal tubulogenesis. We hope that a better understanding of PC-1 and PC-2 protein function will lead to progress in diagnosis and treatment for ADPKD.

  10. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes.

    Science.gov (United States)

    Gomes, Eriston V; Ulhoa, Cirano J; Cardoza, Rosa E; Silva, Roberto N; Gutiérrez, Santiago

    2017-01-01

    Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δ epl-1 or wild-type T. harzianum strains with: (a) the phytopathogen Botrytis cinerea and (b) with tomato plants, on short (24 h hydroponic cultures) and long periods (4-weeks old plants) after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis ( BcBOT genes), during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

  11. LocZ Is a New Cell Division Protein Involved in Proper Septum Placement in Streptococcus pneumoniae

    Science.gov (United States)

    Holečková, Nela; Molle, Virginie; Buriánková, Karolína; Benada, Oldřich; Kofroňová, Olga; Ulrych, Aleš; Branny, Pavel

    2014-01-01

    ABSTRACT How bacteria control proper septum placement at midcell, to guarantee the generation of identical daughter cells, is still largely unknown. Although different systems involved in the selection of the division site have been described in selected species, these do not appear to be widely conserved. Here, we report that LocZ (Spr0334), a newly identified cell division protein, is involved in proper septum placement in Streptococcus pneumoniae. We show that locZ is not essential but that its deletion results in cell division defects and shape deformation, causing cells to divide asymmetrically and generate unequally sized, occasionally anucleated, daughter cells. LocZ has a unique localization profile. It arrives early at midcell, before FtsZ and FtsA, and leaves the septum early, apparently moving along with the equatorial rings that mark the future division sites. Consistently, cells lacking LocZ also show misplacement of the Z-ring, suggesting that it could act as a positive regulator to determine septum placement. LocZ was identified as a substrate of the Ser/Thr protein kinase StkP, which regulates cell division in S. pneumoniae. Interestingly, homologues of LocZ are found only in streptococci, lactococci, and enterococci, indicating that this close phylogenetically related group of bacteria evolved a specific solution to spatially regulate cell division. PMID:25550321

  12. Free amino acid pools in muscle and hemolymph during the molt cycle of the land crab, Gecarcinus lateralis

    Energy Technology Data Exchange (ETDEWEB)

    Yamaoka, L.H.; Skinner, D.M.

    1976-01-01

    The total free amino acids in muscle water of the land crab, Gecarcinus lateralis, decrease almost 3-fold during the premolt period in comparison to the intermolt period (193 ..mu..M/g during intermolt and 67 ..mu..M/g during late premolt). This decrease is accounted for primarily by changes in the nonessential amino acids proline, glycine and alanine. At the same stage, several essential amino acids (lysine, methionine and tyrosine) increase 2- to 4-fold. Although free amino acid levels in hemolymph are lower and more variable than those in muscle, the same amino acids show similar molt-stage-related changes. The decreases in glycine and proline may be associated with the synthesis of the new exoskeleton and connective tissue during the premolt period.

  13. Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics.

    Science.gov (United States)

    Jogler, Christian; Waldmann, Jost; Huang, Xiaoluo; Jogler, Mareike; Glöckner, Frank Oliver; Mascher, Thorsten; Kolter, Roberto

    2012-12-01

    Members of the Planctomycetes clade share many unusual features for bacteria. Their cytoplasm contains membrane-bound compartments, they lack peptidoglycan and FtsZ, they divide by polar budding, and they are capable of endocytosis. Planctomycete genomes have remained enigmatic, generally being quite large (up to 9 Mb), and on average, 55% of their predicted proteins are of unknown function. Importantly, proteins related to the unusual traits of Planctomycetes remain largely unknown. Thus, we embarked on bioinformatic analyses of these genomes in an effort to predict proteins that are likely to be involved in compartmentalization, cell division, and signal transduction. We used three complementary strategies. First, we defined the Planctomycetes core genome and subtracted genes of well-studied model organisms. Second, we analyzed the gene content and synteny of morphogenesis and cell division genes and combined both methods using a "guilt-by-association" approach. Third, we identified signal transduction systems as well as sigma factors. These analyses provide a manageable list of candidate genes for future genetic studies and provide evidence for complex signaling in the Planctomycetes akin to that observed for bacteria with complex life-styles, such as Myxococcus xanthus.

  14. High Prevalence of Neutrophil Cytoplasmic Autoantibodies in Infants with Food Protein-Induced Proctitis/Proctocolitis: Autoimmunity Involvement?

    Directory of Open Access Journals (Sweden)

    Alena Sekerkova

    2015-01-01

    Full Text Available Background. Food protein-induced proctitis/proctocolitis (FPIP is the most common noninfectious colitis in children in the first year of life. Along with the overall clinical symptoms, diarrhoea and rectal bleeding are the main manifestations of the disease. There is no routine noninvasive test that would be specific for this type of colitis. The aim of our study was to find a noninvasive laboratory test or tests that may be helpful in differential diagnosis of food protein-induced proctitis/proctocolitis. Methods. ANA, ANCA, ASCA, a-EMA, a-tTg, specific IgE, total IgE, IgG, IgA, IgM, and concentration of serum calprotectin were measured in a group of 25 patients with colitis and 18 children with other diagnoses. Results. Atypical-pANCA antibodies of IgG isotype were detected in the sera of 24 patients by the method of indirect immunofluorescence, and 5 patients showed also the positivity of IgA isotype. In control samples these autoantibodies were not detected. Other autoantibodies were not demonstrated in either patient or control group. Conclusions. Of the parameters tested in noninfectious colitis, atypical-pANCA on ethanol-fixed granulocytes appears to be a suitable serological marker of food protein-induced proctitis/proctocolitis and suggests a possible involvement of an autoimmune mechanisms in the pathogenesis of this disease.

  15. SLXL1, a novel acrosomal protein, interacts with DKKL1 and is involved in fertilization in mice.

    Directory of Open Access Journals (Sweden)

    Xin-jie Zhuang

    Full Text Available BACKGROUND: Spermatogenesis is a complex cellular developmental process which involves diverse families of genes. The Xlr (X-linked, lymphocyte regulated family includes multiple members, only a few of which have reported functions in meiosis, post-meiotic maturation, and fertilization of germ cells. Slx-like1 (Slxl1 is a member of the Xlr family, whose expression and function in spermatogenesis need to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: The mRNA and protein expression and localization of Slxl1 were investigated by RT-PCR, Western blotting and immunohistochemistry in different tissues and at different stages of spermatogenesis. The interacting partner of SLXL1 was examined by co-immunoprecipitation and co-localization. Assessment of the role of SLXL1 in capacitation, acrosome reaction, zona pellucida binding/penetration, and fertilization was carried out in vitro using blocking antisera. The results showed that Slxl1 mRNA and protein were specifically expressed in the testis. SLXL1 was exclusively located in the acrosome of post-meiotic germ cells and interacts with DKKL1 (Dickkopf-like1, which is an acrosome-associated protein and plays an important role in fertilization. The rates of zona pellucida binding/penetration and fertilization were significantly reduced by the anti-SLXL1 polyclonal antiserum. CONCLUSIONS/SIGNIFICANCE: SLXL1 is the first identified member of the XLR family that is associated with acrosome and is involved in zona pellucid binding/penetration and subsequent fertilization. These results, together with previous studies, suggest that Xlr family members participate in diverse processes from meiosis to fertilization during spermatogenesis.

  16. Protein improvement in Gari by the use of pure cultures of microorganisms involved in the natural fermentation process.

    Science.gov (United States)

    Ahaotu, I; Ogueke, C C; Owuamanam, C I; Ahaotu, N N; Nwosu, J N

    2011-10-15

    The ability of microorganisms involved in cassava mash fermentation to produce and improve protein value by these microorganisms during fermentation was studied. Standard microbiological procedures were used to isolate, identify and determine the numbers of the organisms. Alcaligenes faecalis, Lactobacillus plantarum, Bacillus subtilis, Leuconostoc cremoris, Aspergillus niger, A. tamari, Geotrichum candidum and Penicillium expansum were isolated and identified from cassava waste water while standard analytical methods were used to determine the ability of the isolates to produce linamarase and the proximate composition, pH and titrable acidity of the fermenting mash. The linamarase activity of the isolates ranged from 0.0416 to 0.2618 micromol mL(-1) nmol(-1). Bacillus subtilis, A. niger, A. tamari and P. expansum did not express any activity for the enzyme. Protein content of mash fermented with mixed fungal culture had the highest protein value (15.4 mg/g/dry matter) while the raw cassava had the least value (2.37 mg/g/dry matter). The naturally fermented sample had the least value for the fermented samples (3.2 mg/g/dry matter). Carbohydrate and fat contents of naturally fermented sample were higher than values obtained from the other fermented samples. Microbial numbers of the sample fermented with mixed bacterial culture was highest and got to their peak at 48 h (57 x 10(8) cfu g(-1)). pH decreased with increase in fermentation time with the mash fermented by the mixed culture of fungi having the lowest pH of 4.05 at the end of fermentation. Titrable acidity increased with increase in fermentation time with the highest value of 1.32% at 96 h of fermentation produced by the mixed culture of fungi. Thus fermentation with the pure cultures significantly increased the protein content of mash.

  17. Model of OSBP-Mediated Cholesterol Supply to Aichi Virus RNA Replication Sites Involving Protein-Protein Interactions among Viral Proteins, ACBD3, OSBP, VAP-A/B, and SAC1.

    Science.gov (United States)

    Ishikawa-Sasaki, Kumiko; Nagashima, Shigeo; Taniguchi, Koki; Sasaki, Jun

    2018-04-15

    Positive-strand RNA viruses, including picornaviruses, utilize cellular machinery for genome replication. Previously, we reported that each of the 2B, 2BC, 2C, 3A, and 3AB proteins of Aichi virus (AiV), a picornavirus, forms a complex with the Golgi apparatus protein ACBD3 and phosphatidylinositol 4-kinase IIIβ (PI4KB) at viral RNA replication sites (replication organelles [ROs]), enhancing PI4KB-dependent phosphatidylinositol 4-phosphate (PI4P) production. Here, we demonstrate AiV hijacking of the cellular cholesterol transport system involving oxysterol-binding protein (OSBP), a PI4P-binding cholesterol transfer protein. AiV RNA replication was inhibited by silencing cellular proteins known to be components of this pathway, OSBP, the ER membrane proteins VAPA and VAPB (VAP-A/B), the PI4P-phosphatase SAC1, and PI-transfer protein β. OSBP, VAP-A/B, and SAC1 were present at RNA replication sites. We also found various previously unknown interactions among the AiV proteins (2B, 2BC, 2C, 3A, and 3AB), ACBD3, OSBP, VAP-A/B, and SAC1, and the interactions were suggested to be involved in recruiting the component proteins to AiV ROs. Importantly, the OSBP-2B interaction enabled PI4P-independent recruitment of OSBP to AiV ROs, indicating preferential recruitment of OSBP among PI4P-binding proteins. Protein-protein interaction-based OSBP recruitment has not been reported for other picornaviruses. Cholesterol was accumulated at AiV ROs, and inhibition of OSBP-mediated cholesterol transfer impaired cholesterol accumulation and AiV RNA replication. Electron microscopy showed that AiV-induced vesicle-like structures were close to ER membranes. Altogether, we conclude that AiV directly recruits the cholesterol transport machinery through protein-protein interactions, resulting in formation of membrane contact sites between the ER and AiV ROs and cholesterol supply to the ROs. IMPORTANCE Positive-strand RNA viruses utilize host pathways to modulate the lipid composition of

  18. Evolutionary history of callose synthases in terrestrial plants with emphasis on proteins involved in male gametophyte development.

    Directory of Open Access Journals (Sweden)

    Lenka Záveská Drábková

    Full Text Available Callose is a plant-specific polysaccharide (β-1,3-glucan playing an important role in angiosperms in many developmental processes and responses to biotic and abiotic stresses. Callose is synthesised at the plasma membrane of plant cells by callose synthase (CalS and, among others, represents the main polysaccharide in the callose wall surrounding the tetrads of developing microspores and in the growing pollen tube wall. CalS proteins involvement in spore development is a plesiomorphic feature of terrestrial plants, but very little is known about their evolutionary origin and relationships amongst the members of this protein family. We performed thorough comparative analyses of callose synthase family proteins from major plant lineages to determine their evolutionary history across the plant kingdom. A total of 1211 candidate CalS sequences were identified and compared amongst diverse taxonomic groups of plants, from bryophytes to angiosperms. Phylogenetic analyses identified six main clades of CalS proteins and suggested duplications during the evolution of specialised functions. Twelve family members had previously been identified in Arabidopsis thaliana. We focused on five CalS subfamilies directly linked to pollen function and found that proteins expressed in pollen evolved twice. CalS9/10 and CalS11/12 formed well-defined clades, whereas pollen-specific CalS5 was found within subfamilies that mostly did not express in mature pollen vegetative cell, although were found in sperm cells. Expression of five out of seven mature pollen-expressed CalS genes was affected by mutations in bzip transcription factors. Only three subfamilies, CalS5, CalS10, and CalS11, however, formed monophyletic, mostly conserved clades. The pairs CalS9/CalS10, CalS11/CalS12 and CalS3 may have diverged after angiosperms diversified from lycophytes and bryophytes. Our analysis of fully sequenced plant proteins identified new evolutionary lineages of callose synthase

  19. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling.

    Science.gov (United States)

    Inda, Carolina; Dos Santos Claro, Paula A; Bonfiglio, Juan J; Senin, Sergio A; Maccarrone, Giuseppina; Turck, Christoph W; Silberstein, Susana

    2016-07-18

    Corticotropin-releasing hormone receptor 1 (CRHR1) activates G protein-dependent and internalization-dependent signaling mechanisms. Here, we report that the cyclic AMP (cAMP) response of CRHR1 in physiologically relevant scenarios engages separate cAMP sources, involving the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). cAMP produced by tmACs and sAC is required for the acute phase of extracellular signal regulated kinase 1/2 activation triggered by CRH-stimulated CRHR1, but only sAC activity is essential for the sustained internalization-dependent phase. Thus, different cAMP sources are involved in different signaling mechanisms. Examination of the cAMP response revealed that CRH-activated CRHR1 generates cAMP after endocytosis. Characterizing CRHR1 signaling uncovered a specific link between CRH-activated CRHR1, sAC, and endosome-based signaling. We provide evidence of sAC being involved in an endocytosis-dependent cAMP response, strengthening the emerging model of GPCR signaling in which the cAMP response does not occur exclusively at the plasma membrane and introducing the notion of sAC as an alternative source of cAMP. © 2016 Inda et al.

  20. Characterization of Enzymatic Activity of MlrB and MlrC Proteins Involved in Bacterial Degradation of Cyanotoxins Microcystins.

    Science.gov (United States)

    Dziga, Dariusz; Zielinska, Gabriela; Wladyka, Benedykt; Bochenska, Oliwia; Maksylewicz, Anna; Strzalka, Wojciech; Meriluoto, Jussi

    2016-03-16

    Bacterial degradation of toxic microcystins produced by cyanobacteria is a common phenomenon. However, our understanding of the mechanisms of these processes is rudimentary. In this paper several novel discoveries regarding the action of the enzymes of the mlr cluster responsible for microcystin biodegradation are presented using recombinant proteins. In particular, the predicted active sites of the recombinant MlrB and MlrC were analyzed using functional enzymes and their inactive muteins. A new degradation intermediate, a hexapeptide derived from linearized microcystins by MlrC, was discovered. Furthermore, the involvement of MlrA and MlrB in further degradation of the hexapeptides was confirmed and a corrected biochemical pathway of microcystin biodegradation has been proposed.

  1. Characterization of Enzymatic Activity of MlrB and MlrC Proteins Involved in Bacterial Degradation of Cyanotoxins Microcystins

    Directory of Open Access Journals (Sweden)

    Dariusz Dziga

    2016-03-01

    Full Text Available Bacterial degradation of toxic microcystins produced by cyanobacteria is a common phenomenon. However, our understanding of the mechanisms of these processes is rudimentary. In this paper several novel discoveries regarding the action of the enzymes of the mlr cluster responsible for microcystin biodegradation are presented using recombinant proteins. In particular, the predicted active sites of the recombinant MlrB and MlrC were analyzed using functional enzymes and their inactive muteins. A new degradation intermediate, a hexapeptide derived from linearized microcystins by MlrC, was discovered. Furthermore, the involvement of MlrA and MlrB in further degradation of the hexapeptides was confirmed and a corrected biochemical pathway of microcystin biodegradation has been proposed.

  2. Involvement of both protein kinase C and G proteins in superoxide production after IgE triggering in guinea pig eosinophils

    Directory of Open Access Journals (Sweden)

    Toshiya Aizawa

    1997-01-01

    Full Text Available To study the function and mechanism of eosinophils via the low affinity IgE receptor (FceRII, we examined the production of 02 metabolites by measuring the luminol-dependent chemiluminescence (LDCL response and the generation of cysteinyl leukotrienes. Eosinophils obtained from guinea pig peritoneal fluid sensitized with horse serum were purified. Luminol-dependent chemiluminescence was induced by stimulation with monoclonal anti-CD23 antibody, but not by mouse serum (controls. The mean (±SEM value of LDCL was 20.6±1.3X103 c.p.m. This reaction consisted of an initial rapid phase and a propagation phase and ended within lOmin. Guinea pig eosinophils were histochemically stained with monoclonal anti-CD23 antibody. The major product generated in the LDCL response was superoxide, as determined by the measurement of superoxide by cytochrome c reduction and the complete inhibitory effect of superoxide dismutase on the LDCL response. Pretreatment with either pertussis toxin or cholera toxin inhibited the LDCL reaction. Depletion of bivalent ions by EDTA inhibited this response and the protein kinase C inhibitor D-sphingosin inhibited both 1-oleoyl-2-acetyl-glycerol-induced and FcϵRII-mediated LDCL. These findings suggest that the NADPH-protein kinase C pathway may be involved in the FceRII-mediated LDCL response in guinea pig eosinophils.

  3. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures.

    Science.gov (United States)

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations.

  4. Investigation the Response of Some Proteins That Involved in Cachexia Syndrome to Acute Resistance Exercise in Healthy Elderly People

    Directory of Open Access Journals (Sweden)

    Meysam Gholamali

    2015-01-01

    Full Text Available Objectives: The aim of this study was to investigate the response of plasma Myostatin and insulin growth factor like-1 (IGF-1, as two most important proteins that involved in Cachexia syndrome, to acute resistance exercise in healthy elderly people. Methods & Materials: Twelve healthy older men (Age=67±1.3 years, BMI=25±1.4 kg/m2 volunteered for participation in this study. 72 hours after the determination of muscular maximal strength (by 1-RM test, subjects participated in acute resistance exercises via 75% 1-RM. In this research, two blood samples were collected at before and immediately after the exercise from Antecubital vein. Plasma Myostatin and serum levels of IGF-1 were measured by ELISA methods. Paired T-Test used for statical analyses of research data. Significant level was set at P≤0.05. Results: The results of this study showed that plasma Myostatin significantly decreased in response to resistance exercise (P=0.0001. Also the serum levels of IGF-1 increased significantly in response to resistance exercise (P=0.0001. In turn, the results reveled that the IGF-1 to Myostatin ratio increased significantly in response to resistance exercise (P=0.001. Conclusion: The results of this study showed that resistance exercise through increases of IGF-1 and decreases of Myostatin causes increment of IGF-1 to Myostatin ratio. According to the results of this study it seems prescription of resistance exercise could positive changes in proteins that involved in Cachexia syndrome in elderly people. Presumably, through this way we can prevent from Cachexia and its many physiological and physical related dysfunctions in theses people. Although more study is needed to clear its mechanisms.

  5. Arabidopsis IQM4, a Novel Calmodulin-Binding Protein, Is Involved With Seed Dormancy and Germination in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yu Ping Zhou

    2018-06-01

    Full Text Available Seed dormancy and germination are regulated by complex mechanisms controlled by diverse hormones and environmental cues. Abscisic acid (ABA promotes seed dormancy and inhibits seed germination and post-germination growth. Calmodulin (CaM signals are involved with the inhibition of ABA during seed germination and seedling growth. In this study, we showed that Arabidopsis thaliana IQM4 could bind with calmodulin 5 (CaM5 both in vitro and in vivo, and that the interaction was the Ca2+-independent type. The IQM4 protein was localized in the chloroplast and the IQM4 gene was expressed in most tissues, especially the embryo and germinated seedlings. The T-DNA insertion mutants of IQM4 exhibited the reduced primary seed dormancy and lower ABA levels compared with wild type seeds. Moreover, IQM4 plays key roles in modulating the responses to ABA, salt, and osmotic stress during seed germination and post-germination growth. T-DNA insertion mutants exhibited ABA-insensitive and salt-hypersensitive phenotypes during seed germination and post-germination growth, whereas IQM4-overexpressing lines had ABA- and osmotic-hypersensitive, and salt-insensitive phenotypes. Gene expression analyses showed that mutation of IQM4 inhibited the expression of ABA biosynthetic genes NCED6 and NCED9, and seed maturation regulators LEC1, LEC2, ABI3, and ABI5 during the silique development, as well as promoted the expression of WRKY40 and inhibited that of ABI5 in ABA-regulated seed germination. These observations suggest that IQM4 is a novel Ca2+-independent CaM-binding protein, which is positively involved with seed dormancy and germination in Arabidopsis.

  6. Ca2+-dependent proteolytic activity in crab claw muscle: effects of inhibitors and specificity for myofibrillar proteins

    International Nuclear Information System (INIS)

    Mykles, D.L.; Skinner, D.M.

    1983-01-01

    The claw closer muscle of the Bermuda land crab, Gecarcinus lateralis, undergoes a sequential atrophy and restoration during each molting cycle. The role of Ca 2+ -dependent proteinases in the turn-over of myofibrillar protein in normal anecdysial (intermolt) claw muscle is described. Crab Ca 2+ -dependent proteinase degrades the myofibrillar proteins actin, myosin heavy and light chains, paramyosin, tropomyosin, and troponin-T and -I. Ca 2+ -dependent proteinase activity in whole homogenates and 90,000 x g supernatant fractions from muscle homogenates has been characterized with respect to Ca 2+ requirement, substrate specificity, and effects of proteinase inhibitors. The enzyme is inhibited by antipain, leupeptin, E-64, and iodoacetamide; it is insensitive to pepstatin A. The specificity of crab Ca 2+ -dependent proteinase was examined with native myosin with normal ATPase activity as well as with radioiodinated myosin and radioiodinated hemolymph proteins. Hydrolysis of 125 I-myosin occurs in two phases, both Ca 2+ -dependent: (1) heavy chain (M/sub r/ = 200,000) is cleaved into four large fragments (M/sub r/ = 160,000, 110,000, 73,000, 60,000) and numerous smaller fragments; light chain (M/sub r/ = 18,000) is cleaved to a 15,000-Da fragment; (2) the fragments produced in the first phase are hydrolyzed to acid-soluble material. Although radioiodinated native hemolymph proteins are not susceptible to the Ca 2+ -dependent proteinase, those denatured by carboxymethylation are degraded. These data suggest that crab Ca 2+ -dependent proteinase is involved in turnover of myofibrillar protein in normal muscle and muscle undergoing proecdysial atrophy

  7. Protein phosphatases 2A as well as reactive oxygen species involved in tributyltin-induced apoptosis in mouse livers.

    Science.gov (United States)

    Zhang, Yali; Chen, Yonggang; Sun, Lijun; Liang, Jing; Guo, Zonglou; Xu, Lihong

    2014-02-01

    Tributyltin (TBT), a highly toxic environmental contaminant, has been shown to induce caspase-3-dependent apoptosis in human amniotic cells through protein phosphatase 2A (PP2A) inhibition and consequent JNK activation. This in vivo study was undertaken to further verify the results derived from our previous in vitro study. Mice were orally dosed with 0, 10, 20, and 60 mg/kg of body weight TBT, and levels of PP2A, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), Bax/Bcl-2, and caspase-3 were detected in the mouse livers. Apoptosis was also evaluated using the TUNEL assay. The results showed that PP2A activity was inhibited, ROS levels were elevated, and MAPKs including ERK, JNK, and p38 were activated in mouse livers treated with the highest dose of TBT. Additionally, the ratio of Bax/Bcl-2 was increased, caspase-3 was activated, and apoptosis in mouse livers could be detected in the highest dose group. Therefore, a possible signaling pathway in TBT-induced apoptosis in mouse livers involves PP2A inhibition and ROS elevation serving a pivotal function as upstream activators of MAPKs; activation of MAPKs in turn leads to an increase in the Bax/Bcl-2 ratio, ultimately leading to the activation of caspase-3. The results give a comprehensive and novel description of the mechanism of TBT-induced toxicity. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  8. Energy Stress Regulates Hippo-YAP Signaling Involving AMPK-Mediated Regulation of Angiomotin-like 1 Protein

    Directory of Open Access Journals (Sweden)

    Michael DeRan

    2014-10-01

    Full Text Available Hippo signaling is a tumor-suppressor pathway involved in organ size control and tumorigenesis through the inhibition of YAP and TAZ. Here, we show that energy stress induces YAP cytoplasmic retention and S127 phosphorylation and inhibits YAP transcriptional activity and YAP-dependent transformation. These effects require the central metabolic sensor AMP-activated protein kinase (AMPK and the upstream Hippo pathway components Lats1/Lats2 and angiomotin-like 1 (AMOTL1. Furthermore, we show that AMPK directly phosphorylates S793 of AMOTL1. AMPK activation stabilizes and increases AMOTL1 steady-state protein levels, contributing to YAP inhibition. The phosphorylation-deficient S793Ala mutant of AMOTL1 showed a shorter half-life and conferred resistance to energy-stress-induced YAP inhibition. Our findings link energy sensing to the Hippo-YAP pathway and suggest that YAP may integrate spatial (contact inhibition, mechanical, and metabolic signals to control cellular proliferation and survival.

  9. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1.

    Science.gov (United States)

    Scarlatti, Francesca; Bauvy, Chantal; Ventruti, Annamaria; Sala, Giusy; Cluzeaud, Françoise; Vandewalle, Alain; Ghidoni, Riccardo; Codogno, Patrice

    2004-04-30

    The sphingolipid ceramide is involved in the cellular stress response. Here we demonstrate that ceramide controls macroautophagy, a major lysosomal catabolic pathway. Exogenous C(2)-ceramide stimulates macroautophagy (proteolysis and accumulation of autophagic vacuoles) in the human colon cancer HT-29 cells by increasing the endogenous pool of long chain ceramides as demonstrated by the use of the ceramide synthase inhibitor fumonisin B(1). Ceramide reverted the interleukin 13-dependent inhibition of macroautophagy by interfering with the activation of protein kinase B. In addition, C(2)-ceramide stimulated the expression of the autophagy gene product beclin 1. Ceramide is also the mediator of the tamoxifen-dependent accumulation of autophagic vacuoles in the human breast cancer MCF-7 cells. Monodansylcadaverine staining and electron microscopy showed that this accumulation was abrogated by myriocin, an inhibitor of de novo synthesis ceramide. The tamoxifen-dependent accumulation of vacuoles was mimicked by 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase. 1-Phenyl-2-decanoylamino-3-morpholino-1-propanol, tamoxifen, and C(2)-ceramide stimulated the expression of beclin 1, whereas myriocin antagonized the tamoxifen-dependent up-regulation. Tamoxifen and C(2)-ceramide interfere with the activation of protein kinase B, whereas myriocin relieved the inhibitory effect of tamoxifen. In conclusion, the control of macroautophagy by ceramide provides a novel function for this lipid mediator in a cell process with major biological outcomes.

  10. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yanan; Liu, Xiaochun [State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 (China); Zhu, Pei; Li, Jianzhen; Sham, Kathy W.Y. [School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Cheng, Shuk Han [Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Li, Shuisheng; Zhang, Yong [State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 (China); Cheng, Christopher H.K., E-mail: chkcheng@cuhk.edu.hk [School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Lin, Haoran, E-mail: lsslhr@mail.sysu.edu.cn [State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275 (China); College of Ocean, Hainan University, Haikou 570228, Hainan (China)

    2013-05-24

    Highlights: •The Gper expression was detected in the developing brain of zebrafish. •Gper morpholino knockdown induced apoptosis of brain cells. •Gper morpholino knockdown reduced expression in neuron markers. •Zebrafish Gper may be involved in neuronal development. -- Abstract: G-protein-coupled estrogen receptor 1 (Gper, formerly known as GPR30) is found to be a trophic and protective factor in mediating action of estrogen in adult brain, while its role in developing brain remains to be elucidated. Here we present the expression pattern of Gper and its functions during embryogenesis in zebrafish. Both the mRNA and protein of Gper were detected throughout embryogenesis. Whole mount in situ hybridization (WISH) revealed a wide distribution of gper mRNAs in various regions of the developing brain. Gper knockdown by specific morpholinos resulted in growth retardation in embryos and morphological defects in the developing brain. In addition, induced apoptosis, decreased proliferation of the brain cells and maldevelopment of sensory and motor neurons were also found in the morphants. Our results provide novel insights into Gper functions in the developing brain, revealing that Gper can maintain the survival of the brain cells, and formation and/or differentiation of the sensory and motor neurons.

  11. Biallelic mutation of UNC50, encoding a protein involved in AChR trafficking, is responsible for arthrogryposis.

    Science.gov (United States)

    Abiusi, Emanuela; D'Alessandro, Manuela; Dieterich, Klaus; Quevarec, Loic; Turczynski, Sandrina; Valfort, Aurore-Cecile; Mezin, Paulette; Jouk, Pierre Simon; Gut, Marta; Gut, Ivo; Bessereau, Jean Louis; Melki, Judith

    2017-10-15

    Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Homozygosity mapping of disease loci combined with whole exome sequencing in a consanguineous family presenting with lethal AMC allowed the identification of a homozygous frameshift deletion in UNC50 gene (c.750_751del:p.Cys251Phefs*4) in the index case. To assess the effect of the mutation, an equivalent mutation in the Caenorhabditis elegans orthologous gene was created using CRISPR/Cas9. We demonstrated that unc-50(kr331) modification caused the loss of acetylcholine receptor (AChR) expression in C. elegans muscle. unc-50(kr331) animals were as resistant to the cholinergic agonist levamisole as unc-50 null mutants suggesting that AChRs were no longer expressed in this animal model. This was confirmed by using a knock-in strain in which a red fluorescent protein was inserted into the AChR locus: no signal was detected in unc-50(kr331) background, suggesting that UNC-50, a protein known to be involved in AChR trafficking, was no longer functional. These data indicate that biallelic mutation in the UNC50 gene underlies AMC through a probable loss of AChR expression at the neuromuscular junction which is essential for the cholinergic transmission during human muscle development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. A cytoskeleton-associated protein, TMAP/CKAP2, is involved in the proliferation of human foreskin fibroblasts

    International Nuclear Information System (INIS)

    Jeon, Sang-Min; Choi, Bongkun; Hong, Kyung Uk; Kim, Eunhee; Seong, Yeon-Sun; Bae, Chang-Dae; Park, Joobae

    2006-01-01

    Previously, we reported the cloning of a cytoskeleton-associated protein, TMAP/CKAP2, which was up-regulated in primary human gastric cancers. Although TMAP/CKAP2 has been found to be expressed in most cancer cell lines examined, the function of CKAP2 is not known. In this study, we found that TMAP/CKAP2 was not expressed in G0/G1 arrested HFFs, but that it was expressed in actively dividing cells. After initiating the cell cycle, TMAP/CKAP2 levels remained low throughout most of the G1 phase, but gradually increased between late G1 and G2/M. Knockdown of TMAP/CKAP2 reduced pRB phosphorylation and increased p27 expression, and consequently reduced HFF proliferation, whereas constitutive TMAP/CKAP2 expression increased pRB phosphorylation and enhanced proliferation. Our results show that this novel cytoskeleton-associated protein is expressed cell cycle dependently and that it is involved in cell proliferation

  13. A cytoskeleton-associated protein, TMAP/CKAP2, is involved in the proliferation of human foreskin fibroblasts.

    Science.gov (United States)

    Jeon, Sang-Min; Choi, Bongkun; Hong, Kyung Uk; Kim, Eunhee; Seong, Yeon-Sun; Bae, Chang-Dae; Park, Joobae

    2006-09-15

    Previously, we reported the cloning of a cytoskeleton-associated protein, TMAP/CKAP2, which was up-regulated in primary human gastric cancers. Although TMAP/CKAP2 has been found to be expressed in most cancer cell lines examined, the function of CKAP2 is not known. In this study, we found that TMAP/CKAP2 was not expressed in G0/G1 arrested HFFs, but that it was expressed in actively dividing cells. After initiating the cell cycle, TMAP/CKAP2 levels remained low throughout most of the G1 phase, but gradually increased between late G1 and G2/M. Knockdown of TMAP/CKAP2 reduced pRB phosphorylation and increased p27 expression, and consequently reduced HFF proliferation, whereas constitutive TMAP/CKAP2 expression increased pRB phosphorylation and enhanced proliferation. Our results show that this novel cytoskeleton-associated protein is expressed cell cycle dependently and that it is involved in cell proliferation.

  14. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis

    International Nuclear Information System (INIS)

    Shi, Yanan; Liu, Xiaochun; Zhu, Pei; Li, Jianzhen; Sham, Kathy W.Y.; Cheng, Shuk Han; Li, Shuisheng; Zhang, Yong; Cheng, Christopher H.K.; Lin, Haoran

    2013-01-01

    Highlights: •The Gper expression was detected in the developing brain of zebrafish. •Gper morpholino knockdown induced apoptosis of brain cells. •Gper morpholino knockdown reduced expression in neuron markers. •Zebrafish Gper may be involved in neuronal development. -- Abstract: G-protein-coupled estrogen receptor 1 (Gper, formerly known as GPR30) is found to be a trophic and protective factor in mediating action of estrogen in adult brain, while its role in developing brain remains to be elucidated. Here we present the expression pattern of Gper and its functions during embryogenesis in zebrafish. Both the mRNA and protein of Gper were detected throughout embryogenesis. Whole mount in situ hybridization (WISH) revealed a wide distribution of gper mRNAs in various regions of the developing brain. Gper knockdown by specific morpholinos resulted in growth retardation in embryos and morphological defects in the developing brain. In addition, induced apoptosis, decreased proliferation of the brain cells and maldevelopment of sensory and motor neurons were also found in the morphants. Our results provide novel insights into Gper functions in the developing brain, revealing that Gper can maintain the survival of the brain cells, and formation and/or differentiation of the sensory and motor neurons

  15. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants.

    Directory of Open Access Journals (Sweden)

    Shu-Mei Zhou

    Full Text Available As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT. The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS accumulation, malondialdehyde (MDA content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX and peroxidase (POD, were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants' tolerance to multiple stress conditions.

  16. "Phloem sap analysis of Schleichera oleosa (Lour) Oken, Butea monosperma (Lam) Taub. and Ziziphus mauritiana (Lam) and hemolymph of Kerria lacca (Kerr) using HPLC and tandem mass spectrometry".

    Science.gov (United States)

    Vashishtha, Amit; Rathi, Brijesh; Kaushik, Sandeep; Sharma, K K; Lakhanpaul, Suman

    2013-10-01

    Females of lac insects especially of Kerria lacca (Kerr) secret a resin known as lac for their own protection, which has tremendous applications. Lac insect completes its lifecycle on several host taxa where it exclusively feeds on phloem sap but Schleichera oleosa (Lour.) Oken, Butea monosperma (Lam.) and Ziziphus mauritiana (Lam.) are its major hosts. Analysis of phloem sap constituents as well as hemolymph of lac insect is important because it ultimately gets converted into lac by insect intervention. Main phloem sap constituent's viz. sugars and free amino acids and hemolymph of lac insect were analyzed using HPLC and tandem mass spectrometry, respectively. The results were transformed to relative percentage of the total sugars and free amino acids analyzed in each sample for comparison among lac insect hemolymph and the phloem sap of the three different host taxa. Sucrose (58.9 ± 3.6-85.6 ± 0.9) and trehalose (62.3 ± 0.4) were the predominant sugars in phloem sap of three taxa and hemolymph of lac insect, respectively. Glutamic acid (33.1 ± 1.4-39.8 ± 1.4) was found to be main amino acid among the phloem sap of three taxa while tyrosine (61 ± 2.6) was the major amino acid in hemolymph of lac insect. The relative percentage of non-essential amino acids (60.8 %-69.9 %) was found to be more in all the three host taxa while essential amino acids (30.1 %-35.4 %) were present at a lower relative percentage. In contrast to this, the relative percentage of essential amino acids (81.9 %) was observed to be higher as compared to non-essential amino acids (17.7 %) in lac insect hemolymph. These results led to the detection of lac insect's endosymbionts. Moreover, this study revealed a clue regarding the importance of development of a synthetic diet for this insect so that a precise pathway of lac biosynthesis could be investigated for thorough understanding.

  17. Nuclear factor of activated T cell (NFAT) transcription proteins regulate genes involved in adipocyte metabolism and lipolysis

    International Nuclear Information System (INIS)

    Holowachuk, Eugene W.

    2007-01-01

    NFAT involvement in adipocyte physiological processes was examined by treatment with CsA and/or GSK3β inhibitors (Li + or TZDZ-8), which prevent or increase NFAT nuclear translocation, respectively. CsA treatment reduced basal and TNFα-induced rates of lipolysis by 50%. Adipocytes preincubated with Li + or TZDZ-8 prior to CsA and/or TNFα, exhibited enhanced basal rates of lipolysis and complete inhibition of CsA-mediated decreased rates of lipolysis. CsA treatment dramatically reduced the mRNA levels of adipocyte-specific genes (aP2, HSL, PPARγ, ACS and Adn), compared with control or TNFα-treatment, whereas Li + pretreatment blocked the inhibitory effects of CsA, and mRNA levels of aP2, HSL, PPARγ, and ACS were found at or above control levels. NFAT nuclear localization, assessed by EMSA, confirmed that CsA or Li + treatments inhibited or increased NFAT nuclear translocation, respectively. These results show that NFAT proteins in mature adipocytes participate in the transcriptional control of genes involved in adipocyte metabolism and lipolysis

  18. Genes involved in protein metabolism of the probiotic lactic acid bacterium Lactobacillus delbrueckii UFV H2b20.

    Science.gov (United States)

    Do Carmo, A P; da Silva, D F; De Oliveira, M N V; Borges, A C; De Carvalho, A F; De Moraes, C A

    2011-09-01

    A basic requirement for the prediction of the potential use of lactic acid bacteria (LAB) in the dairy industry is the identification of specific genes involved in flavour-forming pathways. The probiotic Lactobacillus delbrueckii UFV H2b20 was submitted to a genetic characterisation and phylogenetic analysis of genes involved in protein catabolism. Eight genes belonging to this system were identified, which possess a closely phylogenetic relationship to NCFM strains representative, as it was demonstrated for oppC and oppBII, encoding oligopeptide transport system components. PepC, PepN, and PepX might be essential for growth of LAB, probiotic or not, since the correspondent genes are always present, including in L. delbrueckii UFV H2b20 genome. For pepX gene, a probable link between carbohydrate catabolism and PepX expression may exists, where it is regulated by PepR1/CcpA-like, a common feature between Lactobacillus strains and also in L. delbrueckii UFV H2b20. The well conserved evolutionary history of the ilvE gene is evidence that the pathways leading to branched-chain amino acid degradation, such as isoleucine and valine, are similar among L. delbrueckii subsp. bulgaricus strains and L. delbrueckii UFV H2b20. Thus, the involvement of succinate in flavour formation can be attributed to IlvE activity. The presence of aminopeptidase G in L. delbrueckii UFV H2b20 genome, which is absent in several strains, might improve the proteolytic activity and effectiveness. The nucleotide sequence encoding PepG revealed that it is a cysteine endopeptidase, belonging to Peptidase C1 superfamily; sequence analysis showed 99% identity with L. delbrueckii subsp. bulgaricus ATCC 11842 pepG, whereas protein sequence analysis revealed 100% similarity with PepG from the same organism. The present study proposes a schematic model to explain how the proteolytic system of the probiotic L. delbrueckii UFV H2b20 works, based on the components identified so far.

  19. SACE_5599, a putative regulatory protein, is involved in morphological differentiation and erythromycin production in Saccharopolyspora erythraea.

    Science.gov (United States)

    Kirm, Benjamin; Magdevska, Vasilka; Tome, Miha; Horvat, Marinka; Karničar, Katarina; Petek, Marko; Vidmar, Robert; Baebler, Spela; Jamnik, Polona; Fujs, Štefan; Horvat, Jaka; Fonovič, Marko; Turk, Boris; Gruden, Kristina; Petković, Hrvoje; Kosec, Gregor

    2013-12-17

    Erythromycin is a medically important antibiotic, biosynthesized by the actinomycete Saccharopolyspora erythraea. Genes encoding erythromycin biosynthesis are organized in a gene cluster, spanning over 60 kbp of DNA. Most often, gene clusters encoding biosynthesis of secondary metabolites contain regulatory genes. In contrast, the erythromycin gene cluster does not contain regulatory genes and regulation of its biosynthesis has therefore remained poorly understood, which has for a long time limited genetic engineering approaches for erythromycin yield improvement. We used a comparative proteomic approach to screen for potential regulatory proteins involved in erythromycin biosynthesis. We have identified a putative regulatory protein SACE_5599 which shows significantly higher levels of expression in an erythromycin high-producing strain, compared to the wild type S. erythraea strain. SACE_5599 is a member of an uncharacterized family of putative regulatory genes, located in several actinomycete biosynthetic gene clusters. Importantly, increased expression of SACE_5599 was observed in the complex fermentation medium and at controlled bioprocess conditions, simulating a high-yield industrial fermentation process in the bioreactor. Inactivation of SACE_5599 in the high-producing strain significantly reduced erythromycin yield, in addition to drastically decreasing sporulation intensity of the SACE_5599-inactivated strains when cultivated on ABSM4 agar medium. In contrast, constitutive overexpression of SACE_5599 in the wild type NRRL23338 strain resulted in an increase of erythromycin yield by 32%. Similar yield increase was also observed when we overexpressed the bldD gene, a previously identified regulator of erythromycin biosynthesis, thereby for the first time revealing its potential for improving erythromycin biosynthesis. SACE_5599 is the second putative regulatory gene to be identified in S. erythraea which has positive influence on erythromycin yield. Like bld

  20. The Involvement of Thaumatin-Like Proteins in Plant Food Cross-Reactivity: A Multicenter Study Using a Specific Protein Microarray

    Science.gov (United States)

    Palacín, Arantxa; Rivas, Luis A.; Gómez-Casado, Cristina; Aguirre, Jacobo; Tordesillas, Leticia; Bartra, Joan; Blanco, Carlos; Carrillo, Teresa; Cuesta-Herranz, Javier; Bonny, José A. Cumplido; Flores, Enrique; García-Alvarez-Eire, Mar G.; García-Nuñez, Ignacio; Fernández, Francisco J.; Gamboa, Pedro; Muñoz, Rosa; Sánchez-Monge, Rosa; Torres, Maria; Losada, Susana Varela; Villalba, Mayte; Vega, Francisco; Parro, Victor; Blanca, Miguel; Salcedo, Gabriel; Díaz-Perales, Araceli

    2012-01-01

    Cross-reactivity of plant foods is an important phenomenon in allergy, with geographical variations with respect to the number and prevalence of the allergens involved in this process, whose complexity requires detailed studies. We have addressed the role of thaumatin-like proteins (TLPs) in cross-reactivity between fruit and pollen allergies. A representative panel of 16 purified TLPs was printed onto an allergen microarray. The proteins selected belonged to the sources most frequently associated with peach allergy in representative regions of Spain. Sera from two groups of well characterized patients, one with allergy to Rosaceae fruit (FAG) and another against pollens but tolerant to food-plant allergens (PAG), were obtained from seven geographical areas with different environmental pollen profiles. Cross-reactivity between members of this family was demonstrated by inhibition assays. Only 6 out of 16 purified TLPs showed noticeable allergenic activity in the studied populations. Pru p 2.0201, the peach TLP (41%), chestnut TLP (24%) and plane pollen TLP (22%) proved to be allergens of probable relevance to fruit allergy, being mainly associated with pollen sensitization, and strongly linked to specific geographical areas such as Barcelona, Bilbao, the Canary Islands and Madrid. The patients exhibited >50% positive response to Pru p 2.0201 and to chestnut TLP in these specific areas. Therefore, their recognition patterns were associated with the geographical area, suggesting a role for pollen in the sensitization of these allergens. Finally, the co-sensitizations of patients considering pairs of TLP allergens were analyzed by using the co-sensitization graph associated with an allergen microarray immunoassay. Our data indicate that TLPs are significant allergens in plant food allergy and should be considered when diagnosing and treating pollen-food allergy. PMID:22970164

  1. The involvement of thaumatin-like proteins in plant food cross-reactivity: a multicenter study using a specific protein microarray.

    Directory of Open Access Journals (Sweden)

    Arantxa Palacín

    Full Text Available Cross-reactivity of plant foods is an important phenomenon in allergy, with geographical variations with respect to the number and prevalence of the allergens involved in this process, whose complexity requires detailed studies. We have addressed the role of thaumatin-like proteins (TLPs in cross-reactivity between fruit and pollen allergies. A representative panel of 16 purified TLPs was printed onto an allergen microarray. The proteins selected belonged to the sources most frequently associated with peach allergy in representative regions of Spain. Sera from two groups of well characterized patients, one with allergy to Rosaceae fruit (FAG and another against pollens but tolerant to food-plant allergens (PAG, were obtained from seven geographical areas with different environmental pollen profiles. Cross-reactivity between members of this family was demonstrated by inhibition assays. Only 6 out of 16 purified TLPs showed noticeable allergenic activity in the studied populations. Pru p 2.0201, the peach TLP (41%, chestnut TLP (24% and plane pollen TLP (22% proved to be allergens of probable relevance to fruit allergy, being mainly associated with pollen sensitization, and strongly linked to specific geographical areas such as Barcelona, Bilbao, the Canary Islands and Madrid. The patients exhibited >50% positive response to Pru p 2.0201 and to chestnut TLP in these specific areas. Therefore, their recognition patterns were associated with the geographical area, suggesting a role for pollen in the sensitization of these allergens. Finally, the co-sensitizations of patients considering pairs of TLP allergens were analyzed by using the co-sensitization graph associated with an allergen microarray immunoassay. Our data indicate that TLPs are significant allergens in plant food allergy and should be considered when diagnosing and treating pollen-food allergy.

  2. p38 mitogen-activated protein kinase is involved in arginase-II-mediated eNOS-uncoupling in obesity.

    Science.gov (United States)

    Yu, Yi; Rajapakse, Angana G; Montani, Jean-Pierre; Yang, Zhihong; Ming, Xiu-Fen

    2014-07-18

    Endothelial nitric oxide synthase (eNOS)-uncoupling links obesity-associated insulin resistance and type-II diabetes to the increased incidence of cardiovascular disease. Studies have indicated that increased arginase is involved in eNOS-uncoupling through competing with the substrate L-arginine. Given that arginase-II (Arg-II) exerts some of its biological functions through crosstalk with signal transduction pathways, and that p38 mitogen-activated protein kinase (p38mapk) is involved in eNOS-uncoupling, we investigated here whether p38mapk is involved in Arg-II-mediated eNOS-uncoupling in a high fat diet (HFD)-induced obesity mouse model. Obesity was induced in wild type (WT) and Arg-II-deficient (Arg-II(-/-)) mice on C57BL/6 J background by high-fat diet (HFD, 55% fat) for 14 weeks starting from age of 7 weeks. The entire aortas were isolated and subjected to 1) immunoblotting analysis of the protein level of eNOS, Arg-II and p38mapk activation; 2) arginase activity assay; 3) endothelium-dependent and independent vasomotor responses; 4) en face staining of superoxide anion and NO production with Dihydroethidium and 4,5-Diaminofluorescein Diacetate, respectively, to assess eNOS-uncoupling. To evaluate the role of p38mapk, isolated aortas were treated with p38mapk inhibitor SB203580 (10 μmol/L, 1 h) prior to the analysis. In addition, the role of p38mapk in Arg-II-induced eNOS-uncoupling was investigated in cultured human endothelial cells overexpressing Arg-II in the absence or presence of shRNA against p38mapk. HFD enhanced Arg-II expression/activity and p38mapk activity, which was associated with eNOS-uncoupling as revealed by decreased NO and enhanced L-NAME-inhibitable superoxide in aortas of WT obese mice. In accordance, WT obese mice revealed decreased endothelium-dependent relaxations to acetylcholine despite of higher eNOS protein level, whereas Arg-II(-/-) obese mice were protected from HFD-induced eNOS-uncoupling and endothelial dysfunction, which

  3. Curcuma purpurascens BI. rhizome accelerates rat excisional wound healing: involvement of Hsp70/Bax proteins, antioxidant defense, and angiogenesis activity

    Science.gov (United States)

    Rouhollahi, Elham; Moghadamtousi, Soheil Zorofchian; Hajiaghaalipour, Fatemeh; Zahedifard, Maryam; Tayeby, Faezeh; Awang, Khalijah; Abdulla, Mahmood Ameen; Mohamed, Zahurin

    2015-01-01

    Purpose Curcuma purpurascens BI. is a member of Zingiberaceae family. The purpose of this study is to investigate the wound healing properties of hexane extract of C. purpurascens rhizome (HECP) against excisional wound healing in rats. Materials and methods Twenty four rats were randomly divided into 4 groups: A) negative control (blank placebo, acacia gum), B) low dose of HECP, C) high dose of HECP, and D) positive control, with 6 rats in each group. Full-thickness incisions (approximately 2.00 cm) were made on the neck area of each rat. Groups 1–4 were treated two-times a day for 20 days with blank placebo, HECP (100 mg/kg), HECP (200 mg/kg), and intrasite gel as a positive control, respectively. After 20 days, hematoxylin and eosin and Masson’s trichrome stainings were employed to investigate the histopathological alterations. Protein expressions of Bax and Hsp70 were examined in the wound tissues using immunohistochemistry analysis. In addition, levels of enzymatic antioxidants and malondialdehyde representing lipid peroxidation were measured in wound tissue homogenates. Results Macroscopic evaluation of wounds showed conspicuous elevation in wound contraction after topical administration of HECP at both doses. Moreover, histopathological analysis revealed noteworthy reduction in the scar width correlated with the enhanced collagen content and fibroblast cells, accompanied by a reduction of inflammatory cells in the granulation tissues. At the molecular level, HECP facilitates wound-healing process by downregulating Bax and upregulating Hsp70 protein at the wound site. The formation of new blood vessel was observed in Masson’s trichrome staining of wounds treated with HECP (100 and 200 mg/kg). In addition, HECP administration caused a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation. Conclusion These findings suggested that HECP accelerated wound-healing process in rats via antioxidant activity, angiogenesis

  4. Identification of a novel synaptic protein, TMTC3, involved in periventricular nodular heterotopia with intellectual disability and epilepsy.

    Science.gov (United States)

    Farhan, Sali M K; Nixon, Kevin C J; Everest, Michelle; Edwards, Tara N; Long, Shirley; Segal, Dmitri; Knip, Maria J; Arts, Heleen H; Chakrabarti, Rana; Wang, Jian; Robinson, John F; Lee, Donald; Mirsattari, Seyed M; Rupar, C Anthony; Siu, Victoria M; Poulter, Michael O; Hegele, Robert A; Kramer, Jamie M

    2017-11-01

    Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly. © The Author 2017. Published by Oxford University Press.

  5. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host.

    Directory of Open Access Journals (Sweden)

    Farah El Najjar

    Full Text Available Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing.

  6. Cj1386 Is an Ankyrin-Containing Protein Involved in Heme Trafficking to Catalase in Campylobacter jejuni

    Science.gov (United States)

    Flint, Annika; Sun, Yi-Qian

    2012-01-01

    Campylobacter jejuni, a microaerophilic bacterium, is the most frequent cause of human bacterial gastroenteritis. C. jejuni is exposed to harmful reactive oxygen species (ROS) produced during its own normal metabolic processes and during infection from the host immune system and from host intestinal microbiota. These ROS will damage DNA and proteins and cause peroxidation of lipids. Consequently, identifying ROS defense mechanisms is important for understanding how Campylobacter survives this environmental stress during infection. Construction of a ΔCj1386 isogenic deletion mutant and phenotypic assays led to its discovery as a novel oxidative stress defense gene. The ΔCj1386 mutant has an increased sensitivity toward hydrogen peroxide. The Cj1386 gene is located directly downstream from katA (catalase) in the C. jejuni genome. A ΔkatAΔ Cj1386 double deletion mutant was constructed and exhibited a sensitivity to hydrogen peroxide similar to that seen in the ΔCj1386 and ΔkatA single deletion mutants. This observation suggests that Cj1386 may be involved in the same detoxification pathway as catalase. Despite identical KatA abundances, catalase activity assays showed that the ΔCj1386 mutant had a reduced catalase activity relative to that of wild-type C. jejuni. Heme quantification of KatA protein from the ΔCj1386 mutant revealed a significant decrease in heme concentration. This indicates an important role for Cj1386 in heme trafficking to KatA within C. jejuni. Interestingly, the ΔCj1386 mutant had a reduced ability to colonize the ceca of chicks and was outcompeted by the wild-type strain for colonization of the gastrointestinal tract of neonate piglets. These results indicate an important role for Cj1386 in Campylobacter colonization and pathogenesis. PMID:22081390

  7. Tritium Suicide Selection Identifies Proteins Involved in the Uptake and Intracellular Transport of Sterols in Saccharomyces cerevisiae▿

    Science.gov (United States)

    Sullivan, David P.; Georgiev, Alexander; Menon, Anant K.

    2009-01-01

    Sterol transport between the plasma membrane (PM) and the endoplasmic reticulum (ER) occurs by a nonvesicular mechanism that is poorly understood. To identify proteins required for this process, we isolated Saccharomyces cerevisiae mutants with defects in sterol transport. We used Upc2-1 cells that have the ability to take up sterols under aerobic conditions and exploited the observation that intracellular accumulation of exogenously supplied [3H]cholesterol in the form of [3H]cholesteryl ester requires an intact PM-ER sterol transport pathway. Upc2-1 cells were mutagenized using a transposon library, incubated with [3H]cholesterol, and subjected to tritium suicide selection to isolate mutants with a decreased ability to accumulate [3H]cholesterol. Many of the mutants had defects in the expression and trafficking of Aus1 and Pdr11, PM-localized ABC transporters that are required for sterol uptake. Through characterization of one of the mutants, a new role was uncovered for the transcription factor Mot3 in controlling expression of Aus1 and Pdr11. A number of mutants had transposon insertions in the uncharacterized Ydr051c gene, which we now refer to as DET1 (decreased ergosterol transport). These mutants expressed Aus1 and Pdr11 normally but were severely defective in the ability to accumulate exogenously supplied cholesterol. The transport of newly synthesized sterols from the ER to the PM was also defective in det1Δ cells. These data indicate that the cytoplasmic protein encoded by DET1 is involved in intracellular sterol transport. PMID:19060182

  8. DnaA protein DNA-binding domain binds to Hda protein to promote inter-AAA+ domain interaction involved in regulatory inactivation of DnaA.

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-08-19

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.

  9. DnaA Protein DNA-binding Domain Binds to Hda Protein to Promote Inter-AAA+ Domain Interaction Involved in Regulatory Inactivation of DnaA*

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-01-01

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis. PMID:21708944

  10. The yeast mitogen-activated protein kinase Slt2 is involved in the cellular response to genotoxic stress

    Directory of Open Access Journals (Sweden)

    Soriano-Carot María

    2012-02-01

    Full Text Available Abstract Background The maintenance of genomic integrity is essential for cell viability. Complex signalling pathways (DNA integrity checkpoints mediate the response to genotoxic stresses. Identifying new functions involved in the cellular response to DNA-damage is crucial. The Saccharomyces cerevisiae SLT2 gene encodes a member of the mitogen-activated protein kinase (MAPK cascade whose main function is the maintenance of the cell wall integrity. However, different observations suggest that SLT2 may also have a role related to DNA metabolism. Results This work consisted in a comprehensive study to connect the Slt2 protein to genome integrity maintenance in response to genotoxic stresses. The slt2 mutant strain was hypersensitive to a variety of genotoxic treatments, including incubation with hydroxyurea (HU, methylmetanosulfonate (MMS, phleomycin or UV irradiation. Furthermore, Slt2 was activated by all these treatments, which suggests that Slt2 plays a central role in the cellular response to genotoxic stresses. Activation of Slt2 was not dependent on the DNA integrity checkpoint. For MMS and UV, Slt2 activation required progression through the cell cycle. In contrast, HU also activated Slt2 in nocodazol-arrested cells, which suggests that Slt2 may respond to dNTP pools alterations. However, neither the protein level of the distinct ribonucleotide reductase subunits nor the dNTP pools were affected in a slt2 mutant strain. An analysis of the checkpoint function revealed that Slt2 was not required for either cell cycle arrest or the activation of the Rad53 checkpoint kinase in response to DNA damage. However, slt2 mutant cells showed an elongated bud and partially impaired Swe1 degradation after replicative stress, indicating that Slt2 could contribute, in parallel with Rad53, to bud morphogenesis control after genotoxic stresses. Conclusions Slt2 is activated by several genotoxic treatments and is required to properly cope with DNA damage. Slt

  11. Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1.

    Science.gov (United States)

    Bakari, Sana; Lembrouk, Mehdi; Sourd, Laura; Ousalem, Fares; André, François; Orlowski, Stéphane; Delaforge, Marcel; Frelet-Barrand, Annie

    2016-04-01

    Despite the great importance of human membrane proteins involved in detoxification mechanisms, their wide use for biochemical approaches is still hampered by several technical difficulties considering eukaryotic protein expression in order to obtain the large amounts of protein required for functional and/or structural studies. Lactococcus lactis has emerged recently as an alternative heterologous expression system to Escherichia coli for proteins that are difficult to express. The aim of this work was to check its ability to express mammalian membrane proteins involved in liver detoxification, i.e., CYP3A4 and two isoforms of MGST1 (rat and human). Genes were cloned using two different strategies, i.e., classical or Gateway-compatible cloning, and we checked the possible influence of two affinity tags (6×-His-tag and Strep-tag II). Interestingly, all proteins could be successfully expressed in L. lactis at higher yields than those previously obtained for these proteins with classical expression systems (E. coli, Saccharomyces cerevisiae) or those of other eukaryotic membrane proteins expressed in L. lactis. In addition, rMGST1 was fairly active after expression in L. lactis. This study highlights L. lactis as an attractive system for efficient expression of mammalian detoxification membrane proteins at levels compatible with further functional and structural studies.

  12. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process

    Energy Technology Data Exchange (ETDEWEB)

    Gemelli, Claudia, E-mail: claudia.gemelli@unimore.it [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena (Italy); Center for Regenerative Medicine, University of Modena and Reggio Emilia, Via Gottardi 100, 41125 Modena (Italy); Martello, Andrea; Montanari, Monica; Zanocco Marani, Tommaso; Salsi, Valentina; Zappavigna, Vincenzo; Parenti, Sandra; Vignudelli, Tatiana; Selmi, Tommaso; Ferrari, Sergio; Grande, Alexis [Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena (Italy)

    2013-12-10

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling.

  13. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process

    International Nuclear Information System (INIS)

    Gemelli, Claudia; Martello, Andrea; Montanari, Monica; Zanocco Marani, Tommaso; Salsi, Valentina; Zappavigna, Vincenzo; Parenti, Sandra; Vignudelli, Tatiana; Selmi, Tommaso; Ferrari, Sergio; Grande, Alexis

    2013-01-01

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling

  14. The p38 mitogen-activated protein kinase signaling pathway is involved in regulating low-density lipoprotein receptor-related protein 1-mediated β-amyloid protein internalization in mouse brain.

    Science.gov (United States)

    Ma, Kai-Ge; Lv, Jia; Hu, Xiao-Dan; Shi, Li-Li; Chang, Ke-Wei; Chen, Xin-Lin; Qian, Yi-Hua; Yang, Wei-Na; Qu, Qiu-Min

    2016-07-01

    Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Recently, increasing evidence suggests that intracellular β-amyloid protein (Aβ) alone plays a pivotal role in the progression of AD. Therefore, understanding the signaling pathway and proteins that control Aβ internalization may provide new insight for regulating Aβ levels. In the present study, the regulation of Aβ internalization by p38 mitogen-activated protein kinases (MAPK) through low-density lipoprotein receptor-related protein 1 (LRP1) was analyzed in vivo. The data derived from this investigation revealed that Aβ1-42 were internalized by neurons and astrocytes in mouse brain, and were largely deposited in mitochondria and lysosomes, with some also being found in the endoplasmic reticulum. Aβ1-42-LRP1 complex was formed during Aβ1-42 internalization, and the p38 MAPK signaling pathway was activated by Aβ1-42 via LRP1. Aβ1-42 and LRP1 were co- localized in the cells of parietal cortex and hippocampus. Furthermore, the level of LRP1-mRNA and LRP1 protein involved in Aβ1-42 internalization in mouse brain. The results of this investigation demonstrated that Aβ1-42 induced an LRP1-dependent pathway that related to the activation of p38 MAPK resulting in internalization of Aβ1-42. These results provide evidence supporting a key role for the p38 MAPK signaling pathway which is involved in the regulation of Aβ1-42 internalization in the parietal cortex and hippocampus of mouse through LRP1 in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Involvement and necessity of the Cpx regulon in the event of aberrant β-barrel outer membrane protein assembly

    Science.gov (United States)

    Gerken, Henri; Leiser, Owen P.; Bennion, Drew; Misra, Rajeev

    2010-01-01

    Summary The Cpx and σE regulons help maintain outer membrane integrity; the Cpx pathway monitors the biogenesis of cell surface structures, such as pili, while the σE pathway monitors the biogenesis of β-barrel outer membrane proteins (OMPs). In this study we revealed the importance of the Cpx regulon in the event of β-barrel OMP mis-assembly, by utilizing mutants expressing either a defective β-barrel OMP assembly machinery (Bam) or assembly defective β-barrel OMPs. Analysis of specific mRNAs showed that ΔcpxR bam double mutants failed to induce degP expression beyond the wild type level, despite activation of the σE pathway. The synthetic conditional lethal phenotype of ΔcpxR in mutant Bam or β-barrel OMP backgrounds was reversed by wild type DegP expressed from a heterologous plasmid promoter. Consistent with the involvement of the Cpx regulon in the event of aberrant β-barrel OMP assembly, the expression of cpxP, the archetypal member of the cpx regulon, was upregulated in defective Bam backgrounds or in cells expressing a single assembly-defective β-barrel OMP species. Together, these results showed that both the Cpx and σE regulons are required to reduce envelope stress caused by aberrant β-barrel OMP assembly, with the Cpx regulon principally contributing by controlling degP expression. PMID:20487295

  16. MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis.

    Science.gov (United States)

    Tagawa, Masashi; Ueyama, Tomomi; Ogata, Takehiro; Takehara, Naofumi; Nakajima, Norio; Isodono, Koji; Asada, Satoshi; Takahashi, Tomosaburo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-08-01

    Skeletal myogenesis is a multistep process by which multinucleated mature muscle fibers are formed from undifferentiated, mononucleated myoblasts. However, the molecular mechanisms of skeletal myogenesis have not been fully elucidated. Here, we identified muscle-restricted coiled-coil (MURC) protein as a positive regulator of myogenesis. In skeletal muscle, MURC was localized to the cytoplasm with accumulation in the Z-disc of the sarcomere. In C2C12 myoblasts, MURC expression occurred coincidentally with myogenin expression and preceded sarcomeric myosin expression during differentiation into myotubes. RNA interference (RNAi)-mediated knockdown of MURC impaired differentiation in C2C12 myoblasts, which was accompanied by impaired myogenin expression and ERK activation. Overexpression of MURC in C2C12 myoblasts resulted in the promotion of differentiation with enhanced myogenin expression and ERK activation during differentiation. During injury-induced muscle regeneration, MURC expression increased, and a higher abundance of MURC was observed in immature myofibers compared with mature myofibers. In addition, ERK was activated in regenerating tissue, and ERK activation was detected in MURC-expressing immature myofibers. These findings suggest that MURC is involved in the skeletal myogenesis that results from modulation of myogenin expression and ERK activation. MURC may play pivotal roles in the molecular mechanisms of skeletal myogenic differentiation.

  17. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Maric, Martina; Haugo, Alison C. [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States); Dauer, William [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Johnson, David [Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201 (United States); Roller, Richard J., E-mail: richard-roller@uiowa.edu [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States)

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  18. Exploring the Genome and Proteome of Desulfitobacterium hafniense DCB2 for its Protein Complexes Involved in Metal Reduction and Dechlorination

    Energy Technology Data Exchange (ETDEWEB)

    Sang-Hoon, Kim; Hardzman, Christina; Davis, John k.; Hutcheson, Rachel; Broderick, Joan B.; Marsh, Terence L.; Tiedje, James M.

    2012-09-27

    Desulfitobacteria are of interest to DOE mission because of their ability to reduce many electron acceptors including Fe(III), U(VI), Cr(VI), As(V), Mn(IV), Se(VI), NO3- and well as CO2, sulfite, fumarate and humates, their ability to colonize more stressful environments because they form spores, fix nitrogen and they have the more protective Gram positive cell walls. Furthermore at least some of them reductively dechlorinate aromatic and aliphatic pollutants. Importantly, most of the metals and the organochlorine reductions are coupled to ATP production and support growth providing for the organism's natural selection at DOE's contaminant sites. This work was undertaken to gain insight into the genetic and metabolic pathways involved in dissimilatory metal reduction and reductive dechlorination, (ii) to discern the commonalities among these electron-accepting processes, (iii) to identify multi-protein complexes catalyzing these functions and (iv) to elucidate the coordination in expression of these pathways and processes.

  19. Identification of G Protein-Coupled Receptors (GPCRs in Primary Cilia and Their Possible Involvement in Body Weight Control.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Omori

    Full Text Available Primary cilia are sensory organelles that harbor various receptors such as G protein-coupled receptors (GPCRs. We analyzed subcellular localization of 138 non-odorant GPCRs. We transfected GPCR expression vectors into NIH3T3 cells, induced ciliogenesis by serum starvation, and observed subcellular localization of GPCRs by immunofluorescent staining. We found that several GPCRs whose ligands are involved in feeding behavior, including prolactin-releasing hormone receptor (PRLHR, neuropeptide FF receptor 1 (NPFFR1, and neuromedin U receptor 1 (NMUR1, localized to the primary cilia. In addition, we found that a short form of dopamine receptor D2 (DRD2S is efficiently transported to the primary cilia, while a long form of dopamine receptor D2 (DRD2L is rarely transported to the primary cilia. Using an anti-Prlhr antibody, we found that Prlhr localized to the cilia on the surface of the third ventricle in the vicinity of the hypothalamic periventricular nucleus. We generated the Npy2r-Cre transgenic mouse line in which Cre-recombinase is expressed under the control of the promoter of Npy2r encoding a ciliary GPCR. By mating Npy2r-Cre mice with Ift80 flox mice, we generated Ift80 conditional knockout (CKO mice in which Npy2r-positive cilia were diminished in number. We found that Ift80 CKO mice exhibited a body weight increase. Our results suggest that Npy2r-positive cilia are important for body weight control.

  20. Identification of G Protein-Coupled Receptors (GPCRs) in Primary Cilia and Their Possible Involvement in Body Weight Control.

    Science.gov (United States)

    Omori, Yoshihiro; Chaya, Taro; Yoshida, Satoyo; Irie, Shoichi; Tsujii, Toshinori; Furukawa, Takahisa

    2015-01-01

    Primary cilia are sensory organelles that harbor various receptors such as G protein-coupled receptors (GPCRs). We analyzed subcellular localization of 138 non-odorant GPCRs. We transfected GPCR expression vectors into NIH3T3 cells, induced ciliogenesis by serum starvation, and observed subcellular localization of GPCRs by immunofluorescent staining. We found that several GPCRs whose ligands are involved in feeding behavior, including prolactin-releasing hormone receptor (PRLHR), neuropeptide FF receptor 1 (NPFFR1), and neuromedin U receptor 1 (NMUR1), localized to the primary cilia. In addition, we found that a short form of dopamine receptor D2 (DRD2S) is efficiently transported to the primary cilia, while a long form of dopamine receptor D2 (DRD2L) is rarely transported to the primary cilia. Using an anti-Prlhr antibody, we found that Prlhr localized to the cilia on the surface of the third ventricle in the vicinity of the hypothalamic periventricular nucleus. We generated the Npy2r-Cre transgenic mouse line in which Cre-recombinase is expressed under the control of the promoter of Npy2r encoding a ciliary GPCR. By mating Npy2r-Cre mice with Ift80 flox mice, we generated Ift80 conditional knockout (CKO) mice in which Npy2r-positive cilia were diminished in number. We found that Ift80 CKO mice exhibited a body weight increase. Our results suggest that Npy2r-positive cilia are important for body weight control.

  1. Potential costs of bacterial infection on storage protein gene expression and reproduction in queenless Apis mellifera worker bees on distinct dietary regimes.

    Science.gov (United States)

    Lourenço, Anete Pedro; Martins, Juliana Ramos; Guidugli-Lazzarini, Karina Rosa; Macedo, Liliane Maria Fróes; Bitondi, Márcia Maria Gentile; Simões, Zilá Luz Paulino

    2012-09-01

    Insects are able to combat infection by initiating an efficient immune response that involves synthesizing antimicrobial peptides and a range of other defense molecules. These responses may be costly to the organism, resulting in it exploiting endogenous resources to maintain homeostasis or support defense to the detriment of other physiological needs. We used queenless worker bees on distinct dietary regimes that may alter hemolymph protein storage and ovary activation to investigate the physiological costs of infection with Serratia marcescens. The expression of the genes encoding the storage proteins vitellogenin and hexamerin 70a, the vitellogenin receptor, and vasa (which has a putative role in reproduction), was impaired in the infected bees. This impairment was mainly evident in the bees fed beebread, which caused significantly higher expression of these genes than did royal jelly or syrup, and this was confirmed at the vitellogenin and hexamerin 70a protein levels. Beebread was also the only diet that promoted ovary activation in the queenless bees, but this activation was significantly impaired by the infection. The expression of the genes encoding the storage proteins apolipophorins-I and -III and the lipophorin receptor was not altered by infection regardless the diet provided to the bees. Similarly, the storage of apolipophorin-I in the hemolymph was only slightly impaired by the infection, independently of the supplied diet. Taken together these results indicate that, infection demands a physiological cost from the transcription of specific protein storage-related genes and from the reproductive capacity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Identification of New Epididymal Luminal Fluid Proteins Involved in Sperm Maturation in Infertile Rats Treated by Dutasteride Using iTRAQ

    Directory of Open Access Journals (Sweden)

    Shu-Wu Xie

    2016-05-01

    Full Text Available Background: Spermatozoa become mature and acquire fertilizing capacity during their passage through the epididymal lumen. In this study, we identified new epididymal luminal fluid proteins involved in sperm maturation in infertile rats by dutasteride, a dual 5α-reductase inhibitor, in order to provide potential epididymal targets for new contraceptives and infertility treatment. Methods: Male rats were treated with dutasteride for 28 consecutive days. We observed the protein expression profiles in the epididymal luminal fluids in infertile and normal rats using isobaric tags for relative and absolute quantitation (iTRAQ technique. The confidence of proteome data was validated by enzyme-linked immunosorbent assays. Results: 1045 proteins were tested, and 23 of them presented different expression profiling in the infertile and normal rats. The seven proteins were down-regulated, and 16 proteins were up-regulated. Among the seven proteins which were significantly down-regulated by dutasteride in the epididymal luminal fluids, there were three β-defensins (Defb2, Defb18 and Defb39, which maybe the key proteins involved in epididymal sperm maturation and male fertility. Conclusions: We report for the first time that dutasteride influences the protein expression profiling in the epididymal luminal fluids of rats, and this result provides some new epididymal targets for male contraception and infertility therapy.

  3. Differential Proteomic Analysis of the Pancreas of Diabetic db/db Mice Reveals the Proteins Involved in the Development of Complications of Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Victoriano Pérez-Vázquez

    2014-05-01

    Full Text Available Type 2 diabetes mellitus is characterized by hyperglycemia and insulin-resistance. Diabetes results from pancreatic inability to secrete the insulin needed to overcome this resistance. We analyzed the protein profile from the pancreas of ten-week old diabetic db/db and wild type mice through proteomics. Pancreatic proteins were separated in two-dimensional polyacrylamide gel electrophoresis (2D-PAGE and significant changes in db/db mice respect to wild type mice were observed in 27 proteins. Twenty five proteins were identified by matrix-assisted laser desorption/ionization (MALDI time-of-flight (TOF and their interactions were analyzed using search tool for the retrieval of interacting genes/proteins (STRING and database for annotation, visualization and integrated discovery (DAVID. Some of these proteins were Pancreatic α-amylase, Cytochrome b5, Lithostathine-1, Lithostathine-2, Chymotrypsinogen B, Peroxiredoxin-4, Aspartyl aminopeptidase, Endoplasmin, and others, which are involved in the metabolism of carbohydrates and proteins, as well as in oxidative stress, and inflammation. Remarkably, these are mostly endoplasmic reticulum proteins related to peptidase activity, i.e., they are involved in proteolysis, glucose catabolism and in the tumor necrosis factor-mediated signaling pathway. These results suggest mechanisms for insulin resistance, and the chronic inflammatory state observed in diabetes.

  4. Characterization of the methotrexate transport pathway in murine L1210 leukemia cells: Involvement of a membrane receptor and a cytosolic protein

    International Nuclear Information System (INIS)

    Price, E.M.; Ratnam, M.; Rodeman, K.M.; Freisheim, J.H.

    1988-01-01

    A radioiodinated photoaffinity analogue of methotrexate, N α -(4-amino-4-deoxy-10-methyl-pteroyl)-N ε -(4-azidosalicylyl)-L-lysine (APA-ASA-Lys), was recently used to identify the plasma membrane derived binding protein involved in the transport of this folate antagonist into murine L1210 cells. The labeled protein has an apparent molecular weight of 46K-48K when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but no such labeling occurs in a methotrexate transport-defective cell line (L1210/R81). Labeling of the total cytosolic protein from disrupted cells, followed by electrophoresis and autoradiography, showed, among other proteins, a 21K band, corresponding to dihydrofolate reductase (DHFR), in both the parent and R81 cells and a 38K band only in the parent cells. However, when whole cells were UV irradiated at various times at 37 degree C following addition of radiolabeled APA-ASA-Lys, the 38K protein and DHFR were the only cytosolic proteins labeled in the parent cells, while the intact R81 cells showed no labeled cytosolic protein, since the photoprobe is not transported. Further, when the parent cells were treated with a pulse of radiolabeled photoprobe, followed by UV irradiation at different times at 37 degree C, the probe appeared sequentially on the 48K membrane protein and both the 38K cytosolic protein and dihydrofolate reductase. A 48K protein could be detected in both parent L1210 cells and the R81 cells on Western blots using antisera to a membrane folate binding protein from human placenta. These results suggest a vectorial transport of APA-ASA-Lys or methotrexate and reduced folate coenzymes into murine L1210 cells mediated by a 48K integral membrane protein and a 38K cytosolic or peripheral membrane protein. The 38K protein may help in the trafficking of reduced folate coenzymes, shuttling them to various cytosolic targets

  5. Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

    Science.gov (United States)

    Reuter, Tanja Y; Medhurst, Annette L; Waisfisz, Quinten; Zhi, Yu; Herterich, Sabine; Hoehn, Holger; Gross, Hans J; Joenje, Hans; Hoatlin, Maureen E; Mathew, Christopher G; Huber, Pia A J

    2003-10-01

    Mutations in one of at least eight different genes cause bone marrow failure, chromosome instability, and predisposition to cancer associated with the rare genetic syndrome Fanconi anemia (FA). The cloning of seven genes has provided the tools to study the molecular pathway disrupted in Fanconi anemia patients. The structure of the genes and their gene products provided few clues to their functional role. We report here the use of 3 FA proteins, FANCA, FANCC, and FANCG, as "baits" in the hunt for interactors to obtain clues for FA protein functions. Using five different human cDNA libraries we screened 36.5x10(6) clones with the technique of the yeast two-hybrid system. We identified 69 proteins which have not previously been linked to the FA pathway as direct interactors of FANCA, FANCC, or FANCG. Most of these proteins are associated with four functional classes including transcription regulation (21 proteins), signaling (13 proteins), oxidative metabolism (10 proteins), and intracellular transport (11 proteins). Interaction with 6 proteins, DAXX, Ran, IkappaBgamma, USP14, and the previously reported SNX5 and FAZF, was additionally confirmed by coimmunoprecipitation and/or colocalization studies. Taken together, our data strongly support the hypothesis that FA proteins are functionally involved in several complex cellular pathways including transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

  6. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    Science.gov (United States)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  7. Arabidopsis senescence-associated protein DMP1 is involved in membrane remodeling of the ER and tonoplast

    Directory of Open Access Journals (Sweden)

    Kasaras Alexis

    2012-04-01

    Full Text Available Abstract Background Arabidopsis DMP1 was discovered in a genome-wide screen for senescence-associated membrane proteins. DMP1 is a member of a novel plant-specific membrane protein family of unknown function. In rosette leaves DMP1 expression increases from very low background level several 100fold during senescence progression. Results Expression of AtDMP1 fused to eGFP in Nicotiana benthamiana triggers a complex process of succeeding membrane remodeling events affecting the structure of the endoplasmic reticulum (ER and the vacuole. Induction of spherical structures (“bulbs”, changes in the architecture of the ER from tubular to cisternal elements, expansion of smooth ER, formation of crystalloid ER, and emergence of vacuolar membrane sheets and foamy membrane structures inside the vacuole are proceeding in this order. In some cells it can be observed that the process culminates in cell death after breakdown of the entire ER network and the vacuole. The integrity of the plasma membrane, nucleus and Golgi vesicles are retained until this stage. In Arabidopsis thaliana plants expressing AtDMP1-eGFP by the 35S promoter massive ER and vacuole vesiculation is observed during the latest steps of leaf senescence, whereas earlier in development ER and vacuole morphology are not perturbed. Expression by the native DMP1 promoter visualizes formation of aggregates termed “boluses” in the ER membranes and vesiculation of the entire ER network, which precedes disintegration of the central vacuole during the latest stage of senescence in siliques, rosette and cauline leaves and in darkened rosette leaves. In roots tips, DMP1 is strongly expressed in the cortex undergoing vacuole biogenesis. Conclusions Our data suggest that DMP1 is directly or indirectly involved in membrane fission during breakdown of the ER and the tonoplast during leaf senescence and in membrane fusion during vacuole biogenesis in roots. We propose that these properties of DMP1

  8. Yes-associated protein homolog, YAP-1, is involved in the thermotolerance and aging in the nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Hiroaki [Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Maimaiti, Sainawaer [Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Department of Psychotherapy, The Fourth People' s Hospital of Urumqi, Urumqi 830000 (China); Kuroyanagi, Hidehito [Laboratory of Gene Expression, Graduate School of Biomedical Science, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Kawano, Shodai; Inami, Kazutoshi; Timalsina, Shikshya; Ikeda, Mitsunobu; Nakagawa, Kentaro [Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Hata, Yutaka, E-mail: yuhammch@tmd.ac.jp [Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan)

    2013-04-15

    The mammalian Hippo pathway comprises mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2). LATS1/2, which are activated by MST1/2, phosphorylate a transcriptional co-activator, yes-associated protein (YAP), and induce the recruitment of YAP by 14-3-3 to cytoplasm, so that the TEAD-dependent gene transcriptions are turned off. Although the core components of the Hippo pathway are well conserved in metazoans, it has been discussed that Caenorhabditis elegans lacks YAP ortholog, we found that F13E6.4 gene encodes a protein that shows sequence similarities to YAP in the N-terminal TEAD-binding domain and in the WW domain. We designated this gene as yap-1. YAP-1 is widely expressed in various cells such as epithelial cells, muscles, hypodermal cells, gonadal sheath cells, spermatheca, and hypodermal cells. YAP-1 is distributed in cytoplasm and nuclei. wts-1 (LATS ortholog) and ftt-2 (14-3-3 ortholog) knockdowns cause nuclear accumulation of YAP-1, supporting that the subcellular localization of YAP-1 is regulated in a similar way as that of YAP. Heat shock also causes the nuclear accumulation of YAP-1 but after heat shock, YAP-1 translocates to cytoplasm. Knockdowns of DAF-21 (HSP90 ortholog) and HSF-1block the nuclear export of YAP-1 during this recovery. YAP-1 overexpression is beneficial for thermotolerance, whereas YAP-1 hyperactivity induced by wts-1 and ftt-2 knockdowns is deleterious on thermal response and yap-1 deficiency promotes health aging. In short, YAP-1 partially shares basal characters with mammalian YAP and plays a role in thermal stress response and healthy aging. - Highlights: ► We named Caenorhabditis elegans F13E6.4 gene yap-1 as a putative YAP homolog. ► The localization of YAP-1 is regulated by WTS-1 and FTT-2. ► YAP-1 is involved in healthy aging and thermosensitivity.

  9. Helicobacter pylori Outer Membrane Protein 18 (Hp1125 Is Involved in Persistent Colonization by Evading Interferon-γ Signaling

    Directory of Open Access Journals (Sweden)

    Yuqun Shan

    2015-01-01

    Full Text Available Outer membrane proteins (OMPs can induce an immune response. Omp18 (HP1125 of H. pylori is a powerful antigen that can induce significant interferon-γ (IFN-γ levels. Previous studies have suggested that IFN-γ plays an important role in H. pylori clearance. However, H. pylori has multiple mechanisms to avoid host immune surveillance for persistent colonization. We generated an omp18 mutant (H. pylori 26695 and H. pylori SS1 strain to examine whether Omp18 interacts with IFN-γ and is involved in H. pylori colonization. qRT-PCR revealed that IFN-γ induced Omp18 expression. qRT-PCR and western blot analysis revealed reduced expressions of virulence factors CagA and NapA in H. pylori 26695 with IFN-γ treatment, but they were induced in the Δomp18 strain. In C57BL/6 mice infected with H. pylori SS1 and the Δomp18 strain, the Δomp18 strain conferred defective colonization and activated a stronger inflammatory response. Signal transducer phosphorylation and transcription 1 (STAT1 activator was downregulated by the wild-type strain but not the Δomp18 strain in IFN-γ-treated macrophages. Furthermore, Δomp18 strain survival rates were poor in macrophages compared to the wild-type strain. We concluded that H. pylori Omp18 has an important function influencing IFN-γ-mediated immune response to participate in persistent colonization.

  10. Nitric oxide-induced murine hematopoietic stem cell fate involves multiple signaling proteins, gene expression, and redox modulation.

    Science.gov (United States)

    Nogueira-Pedro, Amanda; Dias, Carolina C; Regina, Helena; Segreto, C; Addios, Priscilla C; Lungato, Lisandro; D'Almeida, Vania; Barros, Carlos C; Higa, Elisa M S; Buri, Marcus V; Ferreira, Alice T; Paredes-Gamero, Edgar Julian

    2014-11-01

    There are a growing number of reports showing the influence of redox modulation in cellular signaling. Although the regulation of hematopoiesis by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been described, their direct participation in the differentiation of hematopoietic stem cells (HSCs) remains unclear. In this work, the direct role of nitric oxide (NO(•)), a RNS, in the modulation of hematopoiesis was investigated using two sources of NO(•) , one produced by endothelial cells stimulated with carbachol in vitro and another using the NO(•)-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in vivo. Two main NO(•) effects were observed: proliferation of HSCs-especially of the short-term HSCs-and its commitment and terminal differentiation to the myeloid lineage. NO(•)-induced proliferation was characterized by the increase in the number of cycling HSCs and hematopoietic progenitor cells positive to BrdU and Ki-67, upregulation of Notch-1, Cx43, PECAM-1, CaR, ERK1/2, Akt, p38, PKC, and c-Myc. NO(•)-induced HSCs differentiation was characterized by the increase in granulocytic-macrophage progenitors, granulocyte-macrophage colony forming units, mature myeloid cells, upregulation of PU.1, and C/EBPα genes concomitantly to the downregulation of GATA-3 and Ikz-3 genes, activation of Stat5 and downregulation of the other analyzed proteins mentioned above. Also, redox status modulation differed between proliferation and differentiation responses, which is likely associated with the transition of the proliferative to differentiation status. Our findings provide evidence of the role of NO(•) in inducing HSCs proliferation and myeloid differentiation involving multiple signaling. © 2014 AlphaMed Press.

  11. Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures.

    Science.gov (United States)

    Balfagón, Damián; Zandalinas, Sara I; Baliño, Pablo; Muriach, María; Gómez-Cadenas, Aurelio

    2018-06-01

    Usually several environmental stresses occur in nature simultaneously causing a unique plant response. However, most of the studies until now have focused in individually-applied abiotic stress conditions. Carrizo citrange (Poncirus trifoliata L. Raf. X Citrus sinensis L. Osb.) and Cleopatra mandarin (Citrus reshni Hort. ex Tan.) are two citrus rootstocks with contrasting tolerance to drought and heat stress and have been used in this work as a model for the study of plant tolerance to the combination of drought and high temperatures. According to our results, leaf integrity and photosynthetic machinery are less affected in Carrizo than in Cleopatra under combined conditions of drought and heat stress. The pattern of accumulation of three proteins (APX, HSP101 and HSP17.6) involved in abiotic stress tolerance shows that they do not accumulate under water stress conditions individually applied. However, contents of APX and HSP101 are higher in Carrizo than in Cleopatra under stress combination whereas HSP17.6 has a similar behavior in both types of plants. This, together with a better stomatal control and a higher APX activity of Carrizo, contributes to the higher tolerance of Carrizo plants to the combination of stresses and point to it as a better rootstock than Cleopatra (traditionally used in areas with scare water supplies) under the predictable future climatic conditions with frequent periods of drought combined with high temperatures. This work also provides the basis for testing the tolerance of different citrus varieties grafted on these rootstocks and growing under different field conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Physical Interaction between Replication Protein A (RPA) and MRN: Involvement of RPA2 Phosphorylation and the N-terminus of RPA1

    OpenAIRE

    Oakley, Greg; Tillison, Kristin; Opiyo, Stephen; Glanzer, Jason; Horn, Jeffrey M.; Patrick, Steve M.

    2009-01-01

    Replication protein A (RPA) is a heterotrimeric protein consisting of RPA1, RPA2 and RPA3 subunits that binds to ssDNA with high affinity. The response to replication stress requires the recruitment of RPA and the MRE11/RAD50/NBS1 (MRN) complex. RPA bound to ssDNA stabilizes stalled replication forks by recruiting checkpoint proteins involved in fork stabilization. MRN can bind DNA structures encountered at stalled or collapsed replication forks, such as ssDNA-dsDNA junctions or breaks and pr...

  13. Pu-Erh Tea Extract Induces the Degradation of FET Family Proteins Involved in the Pathogenesis of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2014-01-01

    Full Text Available FET family proteins consist of fused in sarcoma/translocated in liposarcoma (FUS/TLS, Ewing's sarcoma (EWS, and TATA-binding protein-associated factor 15 (TAF15. Mutations in the copper/zinc superoxide dismutase (SOD1, TAR DNA-binding protein 43 (TDP-43, and FET family proteins are associated with the development of amyotrophic lateral sclerosis (ALS, a fatal neurodegenerative disease. There is currently no cure for this disease and few effective treatments are available. Epidemiological studies indicate that the consumption of tea is associated with a reduced risk of developing neurodegenerative diseases. The results of this study revealed that components of a pu-erh tea extract (PTE interacted with FET family proteins but not with TDP-43 or SOD1. PTE induced the degradation of FET family proteins but had no effects on TDP-43 or SOD1. The most frequently occurring ALS-linked FUS/TLS mutant protein, R521C FUS/TLS, was also degraded in the presence of PTE. Furthermore, ammonium chloride, a lysosome inhibitor, but not lactacystin, a proteasome inhibitor, reduced the degradation of FUS/TLS protein by PTE. PTE significantly reduced the incorporation of R521C FUS/TLS into stress granules under stress conditions. These findings suggest that PTE may have beneficial health effects, including preventing the onset of FET family protein-associated neurodegenerative diseases and delaying the progression of ALS by inhibiting the cytoplasmic aggregation of FET family proteins.

  14. An Interactome-Centered Protein Discovery Approach Reveals Novel Components Involved in Mitosome Function and Homeostasis in Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Samuel Rout

    2016-12-01

    Full Text Available Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30-40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein

  15. In vivo inhibition of cysteine proteases provides evidence for the involvement of 'senescence-associated vacuoles' in chloroplast protein degradation during dark-induced senescence of tobacco leaves.

    Science.gov (United States)

    Carrión, Cristian A; Costa, María Lorenza; Martínez, Dana E; Mohr, Christina; Humbeck, Klaus; Guiamet, Juan J

    2013-11-01

    Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.

  16. NMR assignments of juvenile hormone binding protein in complex with JH III.

    Science.gov (United States)

    Suzuki, Rintaro; Tase, Akira; Fujimoto, Zui; Shiotsuki, Takahiro; Yamazaki, Toshimasa

    2009-06-01

    A hemolymph juvenile hormone binding protein (JHBP) shuttles hydrophobic JH, a key hormone in regulation of the insect life cycle, from the site of the JH biosynthesis to the cells of target organs. We report complete NMR chemical shift assignments of Bombyx mori JHBP in the JH III-bound state.

  17. Identification two novel nacrein-like proteins involved in the shell formation of the Pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Song, Xiaorui; Wang, Xiaotong; Li, Li; Zhang, Guofan

    2014-07-01

    Nacrein-like proteins have carbonic anhydrase (CA)-like domains, but their coding regions are flanked by inserted repeat sequence, such as Gly-X-Asn. Reportedly, nacrein-like proteins show the highest similarity to human carbonic anhydrase 1(α-CA1), possess CA catalytic functions, and play a key role in shell biomineralization. In the present study, two novel nacrein-like proteins were firstly identified from the shell-forming mantle of the Pacific oyster Crassostrea gigas. With numerous analyses, it was identified and characterized that both the nacrein-like proteins F1 and F2 were secreted and most closely related to the nacrein-like protein of California mussel Mytilus californianus via phylogenetic analysis. RT-PCR analysis showed that the nacrein-like proteins F1 and F2 were expressed in multiple tissues and the expression levels remarkably rose after entering the spat stage, which were basically consistent with the increase of calcite fractions in the total shell volume. Surprisingly, the Gly-X-Asn repeat domain, which is distinctive in most nacrein-like proteins, was absent in the two newly identified nacrein-like proteins in C. gigas and replaced with a series of acidic amino acids (D/E). Regardless, nacrein-like proteins in mollusks seem to be vital to the deposition of calcium carbonate and likely perform diverse functions.

  18. Alfalfa Mob1-like proteins are involved in cell proliferation and are localized in the cell division plane during cytokinesis

    International Nuclear Information System (INIS)

    Citterio, Sandra; Piatti, Simonetta; Albertini, Emidio; Aina, Roberta; Varotto, Serena; Barcaccia, Gianni

    2006-01-01

    Mps-one-binder (Mob) proteins play a crucial role in yeast cytokinesis. After cloning two Mob1-like genes, MsMob1-A and MsMob1-B from alfalfa (Medicago sativa L.) we show that, although they are constitutively expressed in roots, stems, leaves, flowers and pods, their transcripts and proteins are mostly produced in actively proliferating tissues. A polyclonal antibody specifically raised against MsMob1 proteins was used for immunolocalization studies in synchronized root tip cells. The subcellular localization of MsMob1-like proteins is demonstrated to be cell cycle-regulated. Cytoplasmic localization is faint and diffused during G 1 and S. It becomes concentrated in punctuate and fibrillar structures in G 2 as well as M phase. At the stage of cytokinesis, the protein is found at the emerging cell plate marking the progressive formation of the septum. Mob1 proteins partially co-localize with microtubules structures functionally related to the spindles and important for cytokinesis in eukaryotic cells. The MsMob1 expression cannot rescue the lethality of the yeast mob1 mutant, suggesting that interaction of Mob1 proteins with their effectors may be species-specific. Localization of Mob1 proteins in the inner layer of the root cap indicates an additional function for this class of proteins in plants, which is likely related to the onset of programmed cell death

  19. Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition.

    Science.gov (United States)

    De Vendittis, Emmanuele; Castellano, Immacolata; Cotugno, Roberta; Ruocco, Maria Rosaria; Raimo, Gennaro; Masullo, Mariorosario

    2008-01-07

    The growth temperature adaptation of six model proteins has been studied in 42 microorganisms belonging to eubacterial and archaeal kingdoms, covering optimum growth temperatures from 7 to 103 degrees C. The selected proteins include three elongation factors involved in translation, the enzymes glyceraldehyde-3-phosphate dehydrogenase and superoxide dismutase, the cell division protein FtsZ. The common strategy of protein adaptation from cold to hot environments implies the occurrence of small changes in the amino acid composition, without altering the overall structure of the macromolecule. These continuous adjustments were investigated through parameters related to the amino acid composition of each protein. The average value per residue of mass, volume and accessible surface area allowed an evaluation of the usage of bulky residues, whereas the average hydrophobicity reflected that of hydrophobic residues. The specific proportion of bulky and hydrophobic residues in each protein almost linearly increased with the temperature of the host microorganism. This finding agrees with the structural and functional properties exhibited by proteins in differently adapted sources, thus explaining the great compactness or the high flexibility exhibited by (hyper)thermophilic or psychrophilic proteins, respectively. Indeed, heat-adapted proteins incline toward the usage of heavier-size and more hydrophobic residues with respect to mesophiles, whereas the cold-adapted macromolecules show the opposite behavior with a certain preference for smaller-size and less hydrophobic residues. An investigation on the different increase of bulky residues along with the growth temperature observed in the six model proteins suggests the relevance of the possible different role and/or structure organization played by protein domains. The significance of the linear correlations between growth temperature and parameters related to the amino acid composition improved when the analysis was

  20. Whereas Short-Term Facilitation Is Presynaptic, Intermediate-Term Facilitation Involves Both Presynaptic and Postsynaptic Protein Kinases and Protein Synthesis

    Science.gov (United States)

    Jin, Iksung; Kandel, Eric R.; Hawkins, Robert D.

    2011-01-01

    Whereas short-term plasticity involves covalent modifications that are generally restricted to either presynaptic or postsynaptic structures, long-term plasticity involves the growth of new synapses, which by its nature involves both pre- and postsynaptic alterations. In addition, an intermediate-term stage of plasticity has been identified that…

  1. Phosphorylation of the human respiratory syncytial virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins.

    Science.gov (United States)

    Asenjo, Ana; Villanueva, Nieves

    2016-01-04

    The M2-2 protein regulates the balance between human respiratory syncytial virus (HRSV) transcription and replication. Here it is shown that M2-2 mediated transcriptional inhibition is managed through P protein phosphorylation. Transcription inhibition by M2-2 of the HRSV based minigenome pRSVluc, required P protein phosphorylation at serines (S) in positions 116, 117, 119 and increased inhibition is observed if S232 or S237 is also phosphorylated. Phosphorylation of these residues is required for viral particle egression from infected cells. Viral RNA synthesis complementation assays between P protein variants, suggest that two types of P proteins participate in the process as components of RNA dependent RNA polymerase (RdRp). Type I is only functional when, as a homotetramer, it is bound to N and L proteins through residues 203-241. Type II is functionally independent of these interactions and binds to N protein at a region outside residues 232-241. P protein type I phosphorylation at S116, S117 and S119, did not affect the activity of RdRp but this phosphorylation in type II avoids its interaction with N protein and impairs RdRp functionality for transcription and replication. Structural changes in the RdRp, mediated by phosphorylation turnover at the indicated residues, in the two types of P proteins, may result in a fine adjustment, late in the infectious cycle, of transcription, replication and progression in the morphogenetic process that ends in egression of the viral particles from infected cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A-kinase anchoring protein 150 in the mouse brain is concentrated in areas involved in learning and memory

    NARCIS (Netherlands)

    Ostroveanu, Anghelus; Van der Zee, Eddy A.; Dolga, Amalia M.; Luiten, Paul G. M.; Eisel, Ulrich L. M.; Nijholt, Ingrid M.

    2007-01-01

    A-kinase anchoring proteins (AKAPs) form large macromolecular signaling complexes that specifically target cAMP-dependent protein kinase (PKA) to unique subcellular compartments and thus, provide high specificity to PKA signaling. For example, the AKAP79/150 family tethers PKA, PKC and PP2B to

  3. Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant

    NARCIS (Netherlands)

    Zhang, Lina; de Waard, Marita; Verheijen, Hester; Boeren, Sjef; Hageman, Jos A.; van Hooijdonk, Toon; Vervoort, Jacques; van Goudoever, Johannes B.; Hettinga, Kasper

    2016-01-01

    Here we provide data from shot-gun proteomics, using filtered-aided sample preparation (FASP), dimethyl labeling and LC-MS/MS, to quantify the changes in the repertoire of human milk proteins over lactation. Milk serum proteins were analyzed at week 1, 2, 3 4, 8, 16, and 24 in milk from four

  4. No evidence for involvement of plasma proteins or blood-borne cells in amyloid plaque formation in scrapie-affected mice. An immunohistoperoxidase study

    NARCIS (Netherlands)

    Eikelenboom, P.; Scott, J. R.; McBride, P. A.; Rozemuller, J. M.; Bruce, M. E.; Fraser, H.

    1987-01-01

    The present study was designed to investigate blood-brain permeability and the possible involvement of plasma proteins and blood-borne cells in amyloid plaque formation in scrapie-affected mice. No abnormal extravasation of intravenously injected horseradish peroxidase (HRP) was found and with

  5. p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a yeast protein involved in DNA repair.

    NARCIS (Netherlands)

    S. Humbert; H. van Vuuren; Y. Lutz; J.H.J. Hoeijmakers (Jan); J-M. Egly (Jean-Marc); V. Moncollin

    1994-01-01

    textabstractThe human BTF2 (TFIIH) transcription factor is a multisubunit protein involved in transcription initiation by RNA polymerase II (B) as well as in DNA repair. In addition to the previously characterized p62 and p89/ERCC3 subunits, we have cloned two other subunits of BTF2, p44 and p34.

  6. Peeping into human renal calcium oxalate stone matrix: characterization of novel proteins involved in the intricate mechanism of urolithiasis.

    Directory of Open Access Journals (Sweden)

    Kanu Priya Aggarwal

    Full Text Available BACKGROUND: The increasing number of patients suffering from urolithiasis represents one of the major challenges which nephrologists face worldwide today. For enhancing therapeutic outcomes of this disease, the pathogenic basis for the formation of renal stones is the need of hour. Proteins are found as major component in human renal stone matrix and are considered to have a potential role in crystal-membrane interaction, crystal growth and stone formation but their role in urolithiasis still remains obscure. METHODS: Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to anion exchange chromatography followed by molecular-sieve chromatography. The effect of these purified proteins was tested against CaOx nucleation and growth and on oxalate injured Madin-Darby Canine Kidney (MDCK renal epithelial cells for their activity. Proteins were identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF MS followed by database search with MASCOT server. In silico molecular interaction studies with CaOx crystals were also investigated. RESULTS: Five proteins were identified from the matrix of calcium oxalate kidney stones by MALDI-TOF MS followed by database search with MASCOT server with the competence to control the stone formation process. Out of which two proteins were promoters, two were inhibitors and one protein had a dual activity of both inhibition and promotion towards CaOx nucleation and growth. Further molecular modelling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level. CONCLUSIONS: We identified and characterized Ethanolamine-phosphate cytidylyltransferase, Ras GTPase-activating-like protein, UDP-glucose:glycoprotein glucosyltransferase 2, RIMS-binding protein 3A, Macrophage-capping protein as novel proteins from the matrix of human calcium oxalate stone which play a critical role in kidney stone

  7. Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb.

    Science.gov (United States)

    Domżalska, Lucyna; Kędracka-Krok, Sylwia; Jankowska, Urszula; Grzyb, Małgorzata; Sobczak, Mirosław; Rybczyński, Jan J; Mikuła, Anna

    2017-05-01

    Using cyto-morphological analysis of somatic embryogenesis (SE) in the tree fern Cyathea delgadii as a guide, we performed a comparative proteomic analysis in stipe explants undergoing direct SE. Plant material was cultured on hormone-free medium supplemented with 2% sucrose. Phenol extracted proteins were separated using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed for protein identification. A total number of 114 differentially regulated proteins was identified during early SE, i.e. when the first cell divisions started and several-cell pro-embryos were formed. Proteins were assigned to seven functional categories: carbohydrate metabolism, protein metabolism, cell organization, defense and stress responses, amino acid metabolism, purine metabolism, and fatty acid metabolism. Carbohydrate and protein metabolism were found to be the most sensitive SE functions with the greatest number of alterations in the intensity of spots in gel. Differences, especially in non-enzymatic and structural protein abundance, are indicative for cell organization, including cytoskeleton rearrangement and changes in cell wall components. The highest induced changes concern those enzymes related to fatty acid metabolism. Global analysis of the proteome reveals several proteins that can represent markers for the first 16days of SE induction and expression in fern. The findings of this research improve the understanding of molecular processes involved in direct SE in C. delgadii. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Prediction of Chlamydia pneumoniae protein localization in host mitochondria and cytoplasm and possible involvements in lung cancer etiology: a computational approach

    Directory of Open Access Journals (Sweden)

    Aws Alshamsan

    2017-12-01

    Full Text Available Collecting evidence suggests that the intercellular infection of Chlamydia pneumoniae in lungs contributes to the etiology of lung cancer. Many proteins of Chlamydia pneumoniae outmanoeuvre the various system of the host. The infection may regulate various factors, which can influence the growth of lung cancer in affected persons. In this in-silico study, we predict potential targeting of Chlamydia pneumoniae proteins in mitochondrial and cytoplasmic comportments of host cell and their possible involvement in growth and development of lung cancer. Various cellular activities are controlled in mitochondria and cytoplasm, where the localization of Chlamydia pneumoniae proteins may alter the normal functioning of host cells. The rationale of this study is to find out and explain the connection between Chlamydia pneumoniae infection and lung cancer. A sum of 183 and 513 proteins were predicted to target in mitochondria and cytoplasm of host cell out of total 1112 proteins of Chlamydia pneumoniae. In particular, many targeted proteins may interfere with normal growth behaviour of host cells, thereby altering the decision of program cell death. Present article provides a potential connection of Chlamydia pneumoniae protein targeting and proposed that various targeted proteins may play crucial role in lung cancer etiology through diverse mechanisms.

  9. Postnatal growth velocity modulates alterations of proteins involved in metabolism and neuronal plasticity in neonatal hypothalamus in rats born with intrauterine growth restriction.

    Science.gov (United States)

    Alexandre-Gouabau, Marie-Cécile F; Bailly, Emilie; Moyon, Thomas L; Grit, Isabelle C; Coupé, Bérengère; Le Drean, Gwenola; Rogniaux, Hélène J; Parnet, Patricia

    2012-02-01

    Intrauterine growth restriction (IUGR) due to maternal protein restriction is associated in rats with an alteration in hypothalamic centers involved in feeding behaviour. In order to gain insight into the mechanism of perinatal maternal undernutrition in the brain, we used proteomics approach to identify hypothalamic proteins that are altered in their expression following protein restriction in utero. We used an animal model in which restriction of the protein intake of pregnant rats (8% vs. 20%) produces IUGR pups which were randomized to a nursing regimen leading to either rapid or slow catch-up growth. We identified several proteins which allowed, by multivariate analysis, a very good discrimination of the three groups according to their perinatal nutrition. These proteins were related to energy-sensing pathways (Eno 1, E(2)PDH, Acot 1 and Fabp5), redox status (Bcs 1L, PrdX3 and 14-3-3 protein) or amino acid pathway (Acy1) as well as neurodevelopment (DRPs, MAP2, Snca). In addition, the differential expressions of several key proteins suggested possible shunts towards ketone-body metabolism and lipid oxidation, providing the energy and carbon skeletons necessary to lipogenesis. Our results show that maternal protein deprivation during pregnancy only (IUGR with rapid catch-up growth) or pregnancy and lactation (IUGR with slow postnatal growth) modulates numerous metabolic pathways resulting in alterations of hypothalamic energy supply. As several of these pathways are involved in signalling, it remains to be determined whether hypothalamic proteome adaptation of IUGR rats in response to different postnatal growth rates could also interfere with cerebral plasticity or neuronal maturation. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Minor Coat and Heat Shock Proteins Are Involved in the Binding of Citrus Tristeza Virus to the Foregut of Its Aphid Vector, Toxoptera citricida.

    Science.gov (United States)

    Killiny, N; Harper, S J; Alfaress, S; El Mohtar, C; Dawson, W O

    2016-11-01

    Vector transmission is a critical stage in the viral life cycle, yet for most plant viruses how they interact with their vector is unknown or is explained by analogy with previously described relatives. Here we examined the mechanism underlying the transmission of citrus tristeza virus (CTV) by its aphid vector, Toxoptera citricida, with the objective of identifying what virus-encoded proteins it uses to interact with the vector. Using fluorescently labeled virions, we demonstrated that CTV binds specifically to the lining of the cibarium of the aphid. Through in vitro competitive binding assays between fluorescent virions and free viral proteins, we determined that the minor coat protein is involved in vector interaction. We also found that the presence of two heat shock-like proteins, p61 and p65, reduces virion binding in vitro Additionally, treating the dissected mouthparts with proteases did not affect the binding of CTV virions. In contrast, chitinase treatment reduced CTV binding to the foregut. Finally, competition with glucose, N-acetyl-β-d-glucosamine, chitobiose, and chitotriose reduced the binding. These findings together suggest that CTV binds to the sugar moieties of the cuticular surface of the aphid cibarium, and the binding involves the concerted activity of three virus-encoded proteins. Limited information is known about the specific interactions between citrus tristeza virus and its aphid vectors. These interactions are important for the process of successful transmission. In this study, we localized the CTV retention site as the cibarium of the aphid foregut. Moreover, we demonstrated that the nature of these interactions is protein-carbohydrate binding. The viral proteins, including the minor coat protein and two heat shock proteins, bind to sugar moieties on the surface of the foregut. These findings will help in understanding the transmission mechanism of CTV by the aphid vector and may help in developing control strategies which interfere

  11. Estudo quantitativo de metais presentes na hemolinfa de Biomphalaria glabrata (Gastropoda, infectadas e não infectadas com Schistosoma mansoni Quantitative study of metal present in the hemolymph of Biomphalaria glabrata (Gastropoda, infected and uninfected with Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Marco Antonio Vasconcelos Santos

    2005-04-01

    Full Text Available Inicialmente, desenvolveu-se um estudo para quantificar e comparar as concentrações de alguns metais presentes em duas amostras de hemolinfa do caramujo Biomphalaria glabrata (infectados e não-infectados com Schistosoma mansoni. A espectrometria de emissão óptica com fonte de plasma induzido (ICP-OES, foi utilizada para analisar os metais nas duas amostras. Os metais estudados foram: alumínio, cálcio, cádmio, cobalto, cromo, cobre, ferro, potássio, magnésio, manganês, chumbo e zinco. Os resultados mostram que, a princípio, os metais não são fatores determinantes no processo de defesa desses organismos contra este parasita, quando presente nos seus tecidos.We conducted a preliminary study to quantify and compare two concentrations of the same metals present in the hemolymph of snail Biomphalaria glabrata. In this context, we used Induction Coupled Plasma Optical Emission Spectroscopy technique (ICP-OES, to analyze the metals in the two samples (snails infected and not infected with Schistosoma mansoni. The metals studied were: aluminum, calcium, cadmium, cobalt, chromium, copper, iron, potassium, magnesium, manganese, lead and zinc. Preliminary results showed that such metals are not involved in the defense of these organisms against the parasite, when present in their tissues.

  12. Sub-nuclear distribution and mobility of nuclear proteins involved in histone acetylation and pre-mRNA splicing

    International Nuclear Information System (INIS)

    Kruhlak, Michael John

    2001-01-01

    The mitotic relationship between levels of highly acetylated chromatin, chromatin condensation, and HAT/HDAC organization was examined. HATs and HDACs were found to dissociate from chromosomes along with a loss of highly acetylated histones in condensed chromatin in mitosis. We demonstrate that, rather than being enzymatically inactivated, HAT and HDAC activities are decreased in mitosis because the enzymes are sequestered to a non-chromatin domain. Highly acetylated histone species reappear coincident with the reassociation of HATs and HDACs in late telophase/early interphase and before reinitiation of transcription. We propose that HATs and HDACs are spatially regulated through the cell cycle and that this regulation influences which chromatin domains are available for acetylation and deacetylation. We examined the movement of a splicing factor, ASF, green fluorescent fusion protein (ASF:GFP) using timelapse microscopy and the technique fluorescence recovery after photobleaching (FRAP). We found that ASF:GFP moves significantly slower than free diffusion when it is associated with speckles and, surprisingly, also when it is dispersed in the nucleoplasm. The mobility of ASF is consistent with frequent but transient interactions with relatively immobile nuclear binding sites. This mobility is slightly increased in the presence of transcription inhibitors and the ASF molecules further enrich in speckles. We propose that the nonrandom organization of splicing factors reflects spatial differences in the concentration of relatively immobile binding sites. Through a careful analysis of HDAC4 expression we found that HDAC4-containing MAD bodies are not a consistent component of the interphase nucleus. By comparing MAD bodies to PML bodies we found that the assembly, maintenance and distribution of PML bodies is regulated. We investigated the involvement of chromatin condensation in establishing mitotic transcription repression, by analyzing transcriptional activity in

  13. Proteomic identification of the related immune-enhancing proteins in shrimp Litopenaeus vannamei stimulated with vitamin C and Chinese herbs.

    Science.gov (United States)

    Qiao, Jie; Du, Zhiheng; Zhang, Yueling; Du, Hong; Guo, Lingling; Zhong, Mingqi; Cao, Jingsong; Wang, Xiuying

    2011-12-01

    Recently, strong interest has been focused on immunostimulants to reducing the diseases in shrimp aquaculture. However, information regarding to the related immune-enhancing proteins in shrimps is not available yet. In this study, vitamin C (Vc), Chinese herbs (CH), and the mixture of vitamin C and Chinese herbs (Mix) were tested for their enhancement on shrimp's immune activity. Compared with those in the control group, values of phenoloxidase (PO), superoxide dismutase (SOD) and antibacterial (Ua) activity in the Mix-treated group were improved significantly 12 or 24 days after the treatment. The cumulative mortality was also lower in the Mix-treated group after infection with Vibrio parahemolyticus. Furthermore, comparative proteomic approach was used to assess the protein expression profile in shrimps. Approximately 220-290 and 300-400 protein spots were observed in the 2-DE gels. Among them, 29 and 28 altered proteins from hemocytes and hepatopancreas, respectively, were subjected to matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis. The results revealed that the main altered proteins showed high homologies with Litopenaeus vannamei hemocyanin, hemolymph clottable protein, hemoglobin beta, cytosolic MnSOD, trypsin, cathepsin I(L) and zinc proteinase Mpc1. Together, these studies found Vc and CH were suitable immunostimulants to shrimp L. vannamei, and 7 altered proteins could be involved in the enhanced immune activities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. 1,2-Diacylglycerols, but not phorbol esters, activate a potential inhibitory pathway for protein kinase C in GH3 pituitary cells. Evidence for involvement of a sphingomyelinase.

    Science.gov (United States)

    Kolesnick, R N; Clegg, S

    1988-05-15

    It has been suggested that sphingoid bases may serve as physiologic inhibitors of protein kinase C. Because 1,2-diacylglycerols, but not phorbol esters, enhance sphingomyelin degradation via a sphingomyelinase in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762), the effects of phorbol esters, 1,2-diacylglycerols, and sphingomyelinase on protein kinase C activation were assessed. Under basal conditions, the inactive cytosolic form of protein kinase C predominated. 1,2-Diacylglycerols stimulated transient protein kinase C redistribution to the membrane. 1,2-Dioctanoylglycerol (200 micrograms/ml) reduced cytosolic protein kinase C activity to 67% of control from 72 to 48 pmol.min-1.10(6) cells-1 and enhanced membrane-bound activity to 430% of control from 6 to 25 pmol.min-1.10(6) cells-1 after 4 min of stimulation. Thereafter, protein kinase C activity returned to the cytosol. In contrast, the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated redistribution to the membrane without return to the cytosol. Exogenous sphingomyelinase reduced membrane-bound protein kinase C activity to 30% of control, yet did not alter cytosolic activity. Sphingomyelinase, added after phorbol ester-induced redistribution was completed, restored activity to the cytosol. In these studies, TPA (10(-8) M) reduced cytosolic activity to 62% of control and elevated membrane-bound protein kinase C activity to 650% of control. Sphingomyelinase restored cytosolic activity to 84% of control and reduced membrane-bound activity to 297% of control. Similarly, the free sphingoid bases, sphingosine, sphinganine, and phytosphingosine, reversed phorbol ester-induced protein kinase C redistribution. Since 1,2-diacylglycerols activate a sphingomyelinase and sphingomyelinase action can reverse protein kinase C activation, these studies suggest that a pathway involving a sphingomyelinase might comprise a physiologic negative effector system for protein kinase C

  15. A tandem sequence motif acts as a distance-dependent enhancer in a set of genes involved in translation by binding the proteins NonO and SFPQ

    Directory of Open Access Journals (Sweden)

    Roepcke Stefan

    2011-12-01

    Full Text Available Abstract Background Bioinformatic analyses of expression control sequences in promoters of co-expressed or functionally related genes enable the discovery of common regulatory sequence motifs that might be involved in co-ordinated gene expression. By studying promoter sequences of the human ribosomal protein genes we recently identified a novel highly specific Localized Tandem Sequence Motif (LTSM. In this work we sought to identify additional genes and LTSM-binding proteins to elucidate potential regulatory mechanisms. Results Genome-wide analyses allowed finding a considerable number of additional LTSM-positive genes, the products of which are involved in translation, among them, translation initiation and elongation factors, and 5S rRNA. Electromobility shift assays then showed specific signals demonstrating the binding of protein complexes to LTSM in ribosomal protein gene promoters. Pull-down assays with LTSM-containing oligonucleotides and subsequent mass spectrometric analysis identified the related multifunctional nucleotide binding proteins NonO and SFPQ in the binding complex. Functional characterization then revealed that LTSM enhances the transcriptional activity of the promoters in dependency of the distance from the transcription start site. Conclusions Our data demonstrate the power of bioinformatic analyses for the identification of biologically relevant sequence motifs. LTSM and the here found LTSM-binding proteins NonO and SFPQ were discovered through a synergistic combination of bioinformatic and biochemical methods and are regulators of the expression of a set of genes of the translational apparatus in a distance-dependent manner.

  16. Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium

    Directory of Open Access Journals (Sweden)

    Charlene Desbonnet

    2016-04-01

    Full Text Available The intrinsic resistance of Enterococcus faecium to ceftriaxone and cefepime (here referred to as “cephalosporins” is reliant on the presence of class A penicillin-binding proteins (Pbps PbpF and PonA. Mutants lacking these Pbps exhibit cephalosporin susceptibility that is reversible by exposure to penicillin and by selection on cephalosporin-containing medium. We selected two cephalosporin-resistant mutants (Cro1 and Cro2 of class A Pbp-deficient E. faecium CV598. Genome analysis revealed changes in the serine-threonine kinase Stk in Cro1 and a truncation in the associated phosphatase StpA in Cro2 whose respective involvements in resistance were confirmed in separate complementation experiments. In an additional effort to identify proteins linked to cephalosporin resistance, we performed tandem affinity purification using Pbp5 as bait in penicillin-exposed E. faecium; these experiments yielded a protein designated Pbp5-associated protein (P5AP. Transcription of the P5AP gene was increased after exposure to penicillin in wild-type strains and in Cro2 and suppressed in Cro2 complemented with the wild-type stpA. Transformation of class A Pbp-deficient strains with the plasmid-carried P5AP gene conferred cephalosporin resistance. These data suggest that Pbp5-associated cephalosporin resistance in E. faecium devoid of typical class A Pbps is related to the presence of P5AP, whose expression is influenced by the activity of the serine-threonine phosphatase/kinase system.

  17. Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement

    DEFF Research Database (Denmark)

    Kublik, Anja; Deobald, Darja; Hartwig, Stefanie

    2016-01-01

    electrophoresis (BN-PAGE), gel filtration and ultrafiltration an active dehalogenating protein complex with a molecular mass of 250–270 kDa was identified. The active subunit of reductive dehalogenase (RdhA) colocalised with a complex iron-sulfur molybdoenzyme (CISM) subunit (CbdbA195) and an iron-sulfur cluster...... of the dehalogenating complex prior to membrane solubilisation. Taken together, the identification of the respiratory dehalogenase protein complex and the absence of indications for quinone participation in the respiration suggest a quinone-independent protein-based respiratory electron transfer chain in D. mccartyi....

  18. Molecular cloning and expression of the transformation sensitive epithelial marker stratifin. A member of a protein family that has been involved in the protein kinase C signalling pathway

    DEFF Research Database (Denmark)

    Leffers, H; Madsen, Peder; Rasmussen, H H

    1993-01-01

    tissues showed that polypeptides comigrating with proteins 9124, 9125 and 9126 are ubiquitous and highly expressed in the brain. Stratifin, however, was present only in cultured epithelial cells and was most abundant in fetal and adult human tissues enriched in stratified squamous keratinising epithelium......We have identified a family of abundant acidic human keratinocyte proteins with apparent molecular masses ranging between 30,000 and 31,100 (isoelectric focussing sample spot proteins 9109 (epithelial marker stratifin), 9124, 9125, 9126 and 9231 in the master two-dimensional gel database of human...

  19. Involvement of protein kinase C in the mechanism of action of Escherichia coli heat-stable enterotoxin (STa) in a human colonic carcinoma cell line, COLO-205

    International Nuclear Information System (INIS)

    Gupta, Dyuti Datta; Saha, Subhrajit; Chakrabarti, Manoj K.

    2005-01-01

    The present study was undertaken to determine the involvement of calcium-protein kinase C pathway in the mechanism of action of Escherichia coli heat stable enterotoxin (STa) apart from STa-induced activation of guanylate cyclase in human colonic carcinoma cell line COLO-205, which was used as a model cultured cell line to study the mechanism of action of E. coli STa. In response to E. coli STa, protein kinase C (PKC) activity was increased in a time-dependent manner with its physical translocation from cytosol to membrane. Inhibition of the PKC activity in membrane fraction and inhibition of its physical translocation in response to IP 3 -mediated calcium release inhibitor dantrolene suggested the involvement of intracellular store depletion in the regulation of PKC activity. Among different PKC isoforms, predominant involvement of calcium-dependent protein kinase C (PKCα) was specified using isotype-specific pseudosubstrate, which showed pronounce enzyme activity. Inhibition of enzyme activity by PKCα-specific inhibitor Goe6976 and immunoblott study employing isotype-specific antibody further demonstrated the involvement of calcium-dependent isoform of PKC in the mechanism of action of E. coli STa. Moreover, inhibition of guanylate cyclase activity by PKCα-specific inhibitor Goe6976 suggested the involvement of PKCα in the regulation of guanylate cyclase activity

  20. Identification of ER Proteins Involved in the Functional Organisation of the Early Secretory Pathway in Drosophila Cells by a Targeted RNAi Screen

    Science.gov (United States)

    Kondylis, Vangelis; Tang, Yang; Fuchs, Florian; Boutros, Michael; Rabouille, Catherine

    2011-01-01

    Background In Drosophila, the early secretory apparatus comprises discrete paired Golgi stacks in close proximity to exit sites from the endoplasmic reticulum (tER sites), thus forming tER-Golgi units. Although many components involved in secretion have been identified, the structural components sustaining its organisation are less known. Here we set out to identify novel ER resident proteins involved in the of tER-Golgi unit organisation. Results To do so, we designed a novel screening strategy combining a bioinformatics pre-selection with an RNAi screen. We first selected 156 proteins exhibiting known or related ER retention/retrieval signals from a list of proteins predicted to have a signal sequence. We then performed a microscopy-based primary and confirmation RNAi screen in Drosophila S2 cells directly scoring the organisation of the tER-Golgi units. We identified 49 hits, most of which leading to an increased number of smaller tER-Golgi units (MG for “more and smaller Golgi”) upon depletion. 16 of them were validated and characterised, showing that this phenotype was not due to an inhibition in secretion, a block in G2, or ER stress. Interestingly, the MG phenotype was often accompanied by an increase in the cell volume. Out of 6 proteins, 4 were localised to the ER. Conclusions This work has identified novel proteins involved in the organisation of the Drosophila early secretory pathway. It contributes to the effort of assigning protein functions to gene annotation in the secretory pathway, and analysis of the MG hits revealed an enrichment of ER proteins. These results suggest a link between ER localisation, aspects of cell metabolism and tER-Golgi structural organisation. PMID:21383842

  1. Glycation inhibitors extend yeast chronological lifespan by reducing advanced glycation end products and by back regulation of proteins involved in mitochondrial respiration.

    Science.gov (United States)

    Kazi, Rubina S; Banarjee, Reema M; Deshmukh, Arati B; Patil, Gouri V; Jagadeeshaprasad, Mashanipalya G; Kulkarni, Mahesh J

    2017-03-06

    Advanced Glycation End products (AGEs) are implicated in aging process. Thus, reducing AGEs by using glycation inhibitors may help in attenuating the aging process. In this study using Saccharomyces cerevisiae yeast system, we show that Aminoguanidine (AMG), a well-known glycation inhibitor, decreases the AGE modification of proteins in non-calorie restriction (NR) (2% glucose) and extends chronological lifespan (CLS) similar to that of calorie restriction (CR) condition (0.5% glucose). Proteomic analysis revealed that AMG back regulates the expression of differentially expressed proteins especially those involved in mitochondrial respiration in NR condition, suggesting that it switches metabolism from fermentation to respiration, mimicking CR. AMG induced back regulation of differentially expressed proteins could be possibly due to its chemical effect or indirectly by glycation inhibition. To delineate this, Metformin (MET), a structural analog of AMG and a mild glycation inhibitor and Hydralazine (HYD), another potent glycation inhibitor but not structural analog of AMG were used. HYD was more effective than MET in mimicking AMG suggesting that glycation inhibition was responsible for restoration of differentially expressed proteins. Thus glycation inhibitors particularly AMG, HYD and MET extend yeast CLS by reducing AGEs, modulating the expression of proteins involved in mitochondrial respiration and possibly by scavenging glucose. This study reports the role of glycation in aging process. In the non-caloric restriction condition, carbohydrates such as glucose promote protein glycation and reduce CLS. While, the inhibitors of glycation such as AMG, HYD, MET mimic the caloric restriction condition by back regulating deregulated proteins involved in mitochondrial respiration which could facilitate shift of metabolism from fermentation to respiration and extend yeast CLS. These findings suggest that glycation inhibitors can be potential molecules that can be used

  2. Larval serum proteins of the gypsy moth, Lymantria dispar: Allometric changes during development suggest several functions for arylphorin and lipophorin

    International Nuclear Information System (INIS)

    Karpells, S.T.

    1989-01-01

    Storage proteins are the major nutritive intermediates in insects and although the serum storage proteins are relatively well studied, definitive roles for many of them have yet to be established. To further characterize their roles in development and to establish quantitative baselines for future studies, two serum proteins, arylphorin (Ap) and lipophorin (Lp), of the gypsy moth, Lymantria dispar, were studied. Ap and Lp, isolated from larval hemolymph, were partially characterized biochemically and immunologically. Hemolymph concentrations throughout larval development were determined using quantitative immunoelectrophoresis and absolute hemolymph amounts of protein were determined by measuring hemolymph volume. Cyclic fluctuations in hemolymph concentrations of Ap in particular correlated with each molting cycle and an increase in Lp levels just prior to pupation suggest a metamorphic change in the role or demand for the protein. Sexual dimorphism in protein concentrations are explained in part by the sexual dimorphism in the number of larval instars. In fact, an additional instar of Ap accumulation in the female gypsy moth is suggested to compensate for the lack of a female-specific storage protein in this species. The last two days of each instar were found to be the optimum time to sample protein concentration with minimum variance. Allometric relationships among Ap accumulation, Lp accumulation and weight gain were uncovered. Ap labelled with [ 14 C]-N-ethylmaleimide was shown to be incorporated into newly synthesized cuticle and setae during a larval-larval molt. The antiserum developed against L. dispar Ap was used to identify the Ap of Trichoplusia in and study Ap titers in parasitized T. in larvae. The antiserum was also used to determine the immunological relatedness of 5 species of Lepidoptera

  3. Elevated level of human RPA interacting protein α (hRIPα) in cervical tumor cells is involved in cell proliferation through regulating RPA transport.

    Science.gov (United States)

    Namkoong, Sim; Lee, Eun-Ju; Jang, Ik-Soon; Park, Junsoo

    2012-10-19

    Replication protein A (RPA) is a eukaryotic single-stranded DNA binding protein that is essential for DNA replication, repair, and recombination, and human RPA interacting protein α (hRIPα) is the nuclear transporter of RPA. Here, we report the regulatory role of hRIPα protein in cell proliferation. Western blot analysis revealed that the level of hRIPα was frequently elevated in cervical tumors tissues and hRIPα knockdown by siRNA inhibited cellular proliferation through deregulation of the cell cycle. In addition, overexpression of hRIPα resulted in increased clonogenicity. These results indicate that hRIPα is involved in cell proliferation through regulation of RPA transport. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Mechanisms of photosensitization by drugs: Involvement of tyrosines in the photomodification of proteins mediated by tiaprofenic acid in vitro.

    Science.gov (United States)

    Miranda, M A; Castell, J V; Sarabia, Z; Hernández, D; Puertes, I; Morera, I M; Gómez-Lechón, M J

    1997-10-01

    The photosensitizing potential of drugs must be related to their photoreactivity towards the target biomolecules. In this context, a representative photosensitizing drug (tiaprofenic acid) was co-irradiated with a model protein, bovine serum albumin (BSA). This led to a significant degree of protein crosslinking and to the formation of trace amounts of drug-BSA photoadducts. Amino acid analysis of the hydrolysed (HC1) protein showed that His and Tyr undergo a dramatic decrease (approx. 90%) as a consequence of drug-mediated photodynamic processes. When the drug was irradiated in the presence of the pure amino acids, extensive phototransformation of the latter was observed. Other photosensitizing drugs gave rise to similar processes when irradiated in the presence of BSA or the isolated amino acids. In conclusion, histidine and tyrosine appear to be key sites for the photosensitized damage to proteins. Photodegradation of the isolated amino acids in vitro may be an indicator of the photosensitizing potential of drugs.

  5. Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant

    Directory of Open Access Journals (Sweden)

    Lina Zhang

    2016-06-01

    Full Text Available Here we provide data from shot-gun proteomics, using filtered-aided sample preparation (FASP, dimethyl labeling and LC–MS/MS, to quantify the changes in the repertoire of human milk proteins over lactation. Milk serum proteins were analyzed at week 1, 2, 3 4, 8, 16, and 24 in milk from four individual mothers. A total of 247 proteins were identified, of which 200 proteins were quantified. The data supplied in this article supports the accompanying publication (Zhang et al., 2006 [1]. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (Vizcaíno et al., 2016 [2] via the PRIDE partner repository with the dataset identifier http://www.ebi.ac.uk/pride/archive/projects/PXD003465.

  6. Identification of Secreted Proteins Involved in Nonspecific dsRNA-Mediated Lutzomyia longipalpis LL5 Cell Antiviral Response

    Directory of Open Access Journals (Sweden)

    Andrea Martins-da-Silva

    2018-01-01

    Full Text Available Hematophagous insects transmit infectious diseases. Sand flies are vectors of leishmaniasis, but can also transmit viruses. We have been studying immune responses of Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. We identified a non-specific antiviral response in L. longipalpis LL5 embryonic cells when treated with non-specific double-stranded RNAs (dsRNAs. This response is reminiscent of interferon response in mammals. We are investigating putative effectors for this antiviral response. Secreted molecules have been implicated in immune responses, including interferon-related responses. We conducted a mass spectrometry analysis of conditioned medium from LL5 cells 24 and 48 h after dsRNA or mock treatment. We identified 304 proteins. At 24 h, 19 proteins had an abundance equal or greater than 2-fold change, while the levels of 17 proteins were reduced when compared to control cells. At the 48 h time point, these numbers were 33 and 71, respectively. The two most abundant secreted peptides at 24 h in the dsRNA-transfected group were phospholipid scramblase, an interferon-inducible protein that mediates antiviral activity, and forskolin-binding protein (FKBP, a member of the immunophilin family, which mediates the effect of immunosuppressive drugs. The transcription profile of most candidates did not follow the pattern of secreted protein abundance.

  7. Heat Tolerance Induction of the Indian Meal Moth (Lepidoptera: Pyralidae) Is Accompanied by Upregulation of Heat Shock Proteins and Polyols.

    Science.gov (United States)

    Kim, Minhyun; Lee, Seunghee; Chun, Yong Shik; Na, Jahyun; Kwon, Hyeok; Kim, Wook; Kim, Yonggyun

    2017-08-01

    The Indian meal moth, Plodia interpunctella, causes massive damage to stored grains and processed foods. Heat treatment has been widely used to control insect pests infesting stored grains. However, heat treatment may result in unsatisfactory control owing to heat tolerance of target insects. This study quantified the heat tolerance and analyzed its induction in P. interpunctella. Susceptibility of P. interpunctella to different high temperatures was assessed in all developmental stages. Heat treatment at 44 °C for 1 h caused significant mortalities to all developmental stages, with late-instar larvae exhibiting the highest tolerance. However, the survivorship to heat treatment was significantly increased by pre-exposure to 37 °C for 30 min. The induction of heat tolerance was accompanied by upregulation of two heat shock proteins of Hsc70 and Hsp90. Trehalose and glycerol concentrations in the hemolymph also increased after pre-exposure to 37 °C for 30 min. RNA interference (RNAi) by specific double-stranded RNAs effectively suppressed the inducible expressions of both Hsc70 and Hsp90 in response to 37 °C for 30 min. Either RNAi of Hsc70 or Hsp90 significantly impaired the heat tolerance induction of P. interpunctella. These results suggest that the induction of heat tolerance in P. interpunctella involves the upregulation of these heat shock proteins and hemolymph polyol levels. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Generation of mariner-based transposon insertion mutant library of Bacillus sphaericus 2297 and investigation of genes involved in sporulation and mosquito-larvicidal crystal protein synthesis.

    Science.gov (United States)

    Wu, Yiming; Hu, Xiaomin; Ge, Yong; Zheng, Dasheng; Yuan, Zhiming

    2012-05-01

    Bacillus sphaericus has been used with great success in mosquito control programs worldwide. Under conditions of nutrient limitation, it undergoes sporulation via a series of well defined morphological stages. However, only a small number of genes involved in sporulation have been identified. To identify genes associated with sporulation, and to understand the relationship between sporulation and crystal protein synthesis, a random mariner-based transposon insertion mutant library of B. sphaericus strain 2297 was constructed and seven sporulation-defective mutants were selected. Sequencing of the DNA flanking of the transposon insertion identified several genes involved in sporulation. The morphologies of mutants were determined by electron microscopy and synthesis of crystal proteins was analyzed by SDS-PAGE and Western blot. Four mutants blocked at early stages of sporulation failed to produce crystal proteins and had lower larvicidal activity. However, the other three mutants were blocked at later stages and were able to form crystal proteins, and the larvicidal activity was similar to wild type. These results indicated that crystal protein synthesis in B. sphaericus is dependent on sporulation initiation. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Lower Squalene Epoxidase and Higher Scavenger Receptor Class B Type 1 Protein Levels Are Involved in Reduced Serum Cholesterol Levels in Stroke-Prone Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Michihara, Akihiro; Mido, Mayuko; Matsuoka, Hiroshi; Mizutani, Yurika

    2015-01-01

    A lower serum cholesterol level was recently shown to be one of the causes of stroke in an epidemiological study. Spontaneously hypertensive rats stroke-prone (SHRSP) have lower serum cholesterol levels than normotensive Wistar-Kyoto rats (WKY). To elucidate the mechanisms responsible for the lower serum cholesterol levels in SHRSP, we determined whether the amounts of cholesterol biosynthetic enzymes or the receptor and transporter involved in cholesterol uptake and efflux in the liver were altered in SHRSP. When the mRNA levels of seven cholesterol biosynthetic enzymes were measured using real-time polymerase chain reaction (PCR), farnesyl pyrophosphate synthase and squalene epoxidase (SQE) levels in the liver of SHRSP were significantly lower than those in WKY. SQE protein levels were significantly reduced in tissues other than the brain of SHRSP. No significant differences were observed in low-density lipoprotein (LDL) receptor (uptake of serum LDL-cholesterol) or ATP-binding cassette transporter A1 (efflux of cholesterol from the liver/formation of high-density lipoprotein (HDL)) protein levels in the liver and testis between SHRSP and WKY, whereas scavenger receptor class B type 1 (SRB1: uptake of serum HDL-cholesterol) protein levels were higher in the livers of SHRSP. These results indicated that the lower protein levels of SQE and higher protein levels of SRB1 in the liver were involved in the reduced serum cholesterol levels in SHRSP.

  10. Schizosaccharomyces pombe Homologs of Human DJ-1 Are Stationary Phase-Associated Proteins That Are Involved in Autophagy and Oxidative Stress Resistance.

    Directory of Open Access Journals (Sweden)

    Yang Su

    Full Text Available The Parkinson's disease protein DJ-1 is involved in various cellular functions including detoxification of dicarbonyl compounds, autophagy and oxidative stress response. DJ-1 homologs are widely found in both prokaryotes and eukaryotes, constituting a superfamily of proteins that appear to be involved in stress response. Schizosaccharomyces pombe contains six DJ-1 homologs, designated Hsp3101-Hsp3105 and Sdj1 (previously named SpDJ-1. Here we show that deletion of any one of these six genes somehow affects autophagy during prolonged stationary phase. Furthermore, deletions of each of these DJ-1 homologs result in reduced stationary phase survival. Deletion of sdj1 also increases the sensitivity of stationary-phase cells to oxidative stress induced by hydrogen peroxide (H2O2 whereas overexpression of sdj1 has the opposite effect. Consistent with their role in stationary phase, expression of hsp3101, hsp3102, hsp3105 and sdj1, and to a lesser extent hsp3103 and hsp3104, is increased in stationary phase. The induction of hsp3101, hsp3102, hsp3105 and sdj1 involves the Sty1-regulated transcription factor Atf1 but not the transcription factor Pap1. Our results firmly establish that S. pombe homologs of DJ-1 are stationary-phase associated proteins and are likely involved in autophagy and antioxidant defense in stationary phase of S. pombe cells.

  11. Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat

    Directory of Open Access Journals (Sweden)

    Xingxia Geng

    2018-01-01

    Full Text Available Cytoplasmic male sterility (CMS where no functional pollen is produced has important roles in wheat breeding. The anther is a unique organ for male gametogenesis and its abnormal development can cause male sterility. However, the mechanisms and regulatory networks related to plant male sterility are poorly understood. In this study, we conducted comparative analyses using isobaric tags for relative and absolute quantification (iTRAQ of the pollen proteins in a CMS line and its wheat maintainer. Differentially abundant proteins (DAPs were analyzed based on Gene Ontology classifications, metabolic pathways and transcriptional regulation networks using Blast2GO. We identified 5570 proteins based on 23,277 peptides, which matched with 73,688 spectra, including proteins in key pathways such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and 6-phosphofructokinase 1 in the glycolysis pathway, isocitrate dehydrogenase and citrate synthase in the tricarboxylic acid cycle and nicotinamide adenine dinucleotide (NADH-dehydrogenase and adenosine-triphosphate (ATP synthases in the oxidative phosphorylation pathway. These proteins may comprise a network that regulates male sterility in wheat. Quantitative real time polymerase chain reaction (qRT-PCR analysis, ATP assays and total sugar assays validated the iTRAQ results. These DAPs could be associated with abnormal pollen grain formation and male sterility. Our findings provide insights into the molecular mechanism related to male sterility in wheat.

  12. The putative cellodextrin transporter-like protein CLP1 is involved in cellulase induction in Neurospora crassa.

    Science.gov (United States)

    Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe

    2015-01-09

    Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. The Putative Cellodextrin Transporter-like Protein CLP1 Is Involved in Cellulase Induction in Neurospora crassa*

    Science.gov (United States)

    Cai, Pengli; Wang, Bang; Ji, Jingxiao; Jiang, Yongsheng; Wan, Li; Tian, Chaoguang; Ma, Yanhe

    2015-01-01

    Neurospora crassa recently has become a novel system to investigate cellulase induction. Here, we discovered a novel membrane protein, cellodextrin transporter-like protein 1 (CLP1; NCU05853), a putative cellodextrin transporter-like protein that is a critical component of the cellulase induction pathway in N. crassa. Although CLP1 protein cannot transport cellodextrin, the suppression of cellulase induction by this protein was discovered on both cellobiose and Avicel. The co-disruption of the cellodextrin transporters cdt2 and clp1 in strain Δ3βG formed strain CPL7. With induction by cellobiose, cellulase production was enhanced 6.9-fold in CPL7 compared with Δ3βG. We also showed that the suppression of cellulase expression by CLP1 occurred by repressing the expression of cellodextrin transporters, particularly cdt1 expression. Transcriptome analysis of the hypercellulase-producing strain CPL7 showed that the cellulase expression machinery was dramatically stimulated, as were the cellulase enzyme genes including the inducer transporters and the major transcriptional regulators. PMID:25398875

  14. Identification of Proteins Involved in Carbohydrate Metabolism and Energy Metabolism Pathways and Their Regulation of Cytoplasmic Male Sterility in Wheat.

    Science.gov (United States)

    Geng, Xingxia; Ye, Jiali; Yang, Xuetong; Li, Sha; Zhang, Lingli; Song, Xiyue

    2018-01-23

    Cytoplasmic male sterility (CMS) where no functional pollen is produced has important roles in wheat breeding. The anther is a unique organ for male gametogenesis and its abnormal development can cause male sterility. However, the mechanisms and regulatory networks related to plant male sterility are poorly understood. In this study, we conducted comparative analyses using isobaric tags for relative and absolute quantification (iTRAQ) of the pollen proteins in a CMS line and its wheat maintainer. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology classifications, metabolic pathways and transcriptional regulation networks using Blast2GO. We identified 5570 proteins based on 23,277 peptides, which matched with 73,688 spectra, including proteins in key pathways such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and 6-phosphofructokinase 1 in the glycolysis pathway, isocitrate dehydrogenase and citrate synthase in the tricarboxylic acid cycle and nicotinamide adenine dinucleotide (NADH)-dehydrogenase and adenosine-triphosphate (ATP) synthases in the oxidative phosphorylation pathway. These proteins may comprise a network that regulates male sterility in wheat. Quantitative real time polymerase chain reaction (qRT-PCR) analysis, ATP assays and total sugar assays validated the iTRAQ results. These DAPs could be associated with abnormal pollen grain formation and male sterility. Our findings provide insights into the molecular mechanism related to male sterility in wheat.

  15. Genome-wide association study of CSF levels of 59 alzheimer's disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation.

    Science.gov (United States)

    Kauwe, John S K; Bailey, Matthew H; Ridge, Perry G; Perry, Rachel; Wadsworth, Mark E; Hoyt, Kaitlyn L; Staley, Lyndsay A; Karch, Celeste M; Harari, Oscar; Cruchaga, Carlos; Ainscough, Benjamin J; Bales, Kelly; Pickering, Eve H; Bertelsen, Sarah; Fagan, Anne M; Holtzman, David M; Morris, John C; Goate, Alison M

    2014-10-01

    Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimer's disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC) and Alzheimer's Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (pprocessing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal individuals suggest that these SNPs also influence regulation of these proteins more generally and may therefore be relevant to other diseases.

  16. PKC signaling is involved in the regulation of progranulin (acrogranin/PC-cell-derived growth factor/granulin-epithelin precursor) protein expression in human ovarian cancer cell lines.

    Science.gov (United States)

    Diaz-Cueto, Laura; Arechavaleta-Velasco, Fabian; Diaz-Arizaga, Adriana; Dominguez-Lopez, Pablo; Robles-Flores, Martha

    2012-07-01

    Overexpression of progranulin (also named acrogranin, PC-cell-derived growth factor, or granulin-epithelin precursor) is associated with ovarian cancer, specifically with cell proliferation, malignancy, chemoresistance, and shortened overall survival. The objective of the current study is to identify the signaling pathways involved in the regulation of progranulin expression in ovarian cancer cell lines. We studied the relation of protein kinase C (PKC), phosphatidylinositol 3-kinase, protein kinase A, P38, extracellular signal-regulated kinase, and Akt pathways on the modulation of progranulin expression levels in NIH-OVCAR-3 and SK-OV-3 ovarian cancer cell lines. The different pathways were examined using pharmacological inhibitors (calphostin C, LY294002, H89, SB203580, PD98059, and Akt Inhibitor), and mRNA and protein progranulin expression were analyzed by reverse transcriptase polymerase chain reaction and Western blot techniques, respectively. Inhibition of PKC signal transduction pathway by calphostin C decreased in a dose-dependent manner protein but not mRNA levels of progranulin in both ovarian cancer cell lines. LY294002 but not wortmannin, which are phosphatidylinositol 3-kinase inhibitors, also diminished the expression of progranulin in both cell lines. In addition, LY294002 treatment produced a significant reduction in cell viability. Inhibition of protein kinase A, P38, extracellular signal-regulated kinase, and Akt did not affect progranulin protein expression. These results suggest that the PKC signaling is involved in the regulation of progranulin protein expression in 2 different ovarian cancer cell lines. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the cellular proliferation and invasion in ovarian cancer produced by progranulin.

  17. Conserved hypothetical protein Rv1977 in Mycobacterium tuberculosis strains contains sequence polymorphisms and might be involved in ongoing immune evasion.

    Science.gov (United States)

    Jiang, Yi; Liu, Haican; Wang, Xuezhi; Li, Guilian; Qiu, Yan; Dou, Xiangfeng; Wan, Kanglin

    2015-01-01

    Host immune pressure and associated parasite immune evasion are key features of host-pathogen co-evolution. A previous study showed that human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved and thus it was deduced that M. tuberculosis lacks antigenic variation and immune evasion. Here, we selected 151 clinical Mycobacterium tuberculosis isolates from China, amplified gene encoding Rv1977 and compared the sequences. The results showed that Rv1977, a conserved hypothetical protein, is not conserved in M. tuberculosis strains and there are polymorphisms existed in the protein. Some mutations, especially one frameshift mutation, occurred in the antigen Rv1977, which is uncommon in M.tb strains and may lead to the protein function altering. Mutations and deletion in the gene all affect one of three T cell epitopes and the changed T cell epitope contained more than one variable position, which may suggest ongoing immune evasion.

  18. Involvement of protein kinase Mζ in the maintenance of long-term memory for taste aversion learning in young chicks.

    Science.gov (United States)

    Tiunova, A A; Bezryadnov, D V; Anokhin, K V

    2015-03-01

    The effects of an inhibitor of protein kinase Mζ on long-term memory were studied using the model of taste aversion in newborn chicks. Memory was impaired by intracerebral injection of 10 or 20 nmol of ζ-inhibiting peptide 24 h after training. Memory impairment was found 2 h after peptide administration, and repeated examination 24 h after treatment showed no recovery. Memory impairment was not observed 24 h after inhibitor administration if the testing 2 h after treatment was not performed. The results indicate the contribution of protein kinase Mζ in the maintenance of long-term memory in the avian brain. These data confirm the hypothesis of several authors that inhibition of protein kinase Mζ does not abolish memory, but rather interacts with processes of memory retrieval and/or reconsolidation.

  19. Nuclear relocalization of polyadenylate binding protein during rift valley fever virus infection involves expression of the NSs gene.

    Science.gov (United States)

    Copeland, Anna Maria; Altamura, Louis A; Van Deusen, Nicole M; Schmaljohn, Connie S

    2013-11-01

    Rift Valley fever virus (RVFV), an ambisense member of the family Bunyaviridae, genus Phlebovirus, is the causative agent of Rift Valley fever, an important zoonotic infection in Africa and the Middle East. Phlebovirus proteins are translated from virally transcribed mRNAs that, like host mRNA, are capped but, unlike host mRNAs, are not polyadenylated. Here, we investigated the role of PABP1 during RVFV infection of HeLa cells. Immunofluorescence studies of infected cells demonstrated a gross relocalization of PABP1 to the nucleus late in infection. Immunofluorescence microscopy studies of nuclear proteins revealed costaining between PABP1 and markers of nuclear speckles. PABP1 relocalization was sharply decreased in cells infected with a strain of RVFV lacking the gene encoding the RVFV nonstructural protein S (NSs). To determine whether PABP1 was required for RVFV infection, we measured the production of nucleocapsid protein (N) in cells transfected with small interfering RNAs (siRNAs) targeting PABP1. We found that the overall percentage of RVFV N-positive cells was not changed by siRNA treatment, indicating that PABP1 was not required for RVFV infection. However, when we analyzed populations of cells producing high versus low levels of PABP1, we found that the percentage of RVFV N-positive cells was decreased in cell populations producing physiologic levels of PABP1 and increased in cells with reduced levels of PABP1. Together, these results suggest that production of the NSs protein during RVFV infection leads to sequestration of PABP1 in the nuclear speckles, creating a state within the cell that favors viral protein production.

  20. Liver protein profiles in insulin receptor-knockout mice reveal novel molecules involved in the diabetes pathophysiology.

    Science.gov (United States)

    Capuani, Barbara; Della-Morte, David; Donadel, Giulia; Caratelli, Sara; Bova, Luca; Pastore, Donatella; De Canio, Michele; D'Aguanno, Simona; Coppola, Andrea; Pacifici, Francesca; Arriga, Roberto; Bellia, Alfonso; Ferrelli, Francesca; Tesauro, Manfredi; Federici, Massimo; Neri, Anna; Bernardini, Sergio; Sbraccia, Paolo; Di Daniele, Nicola; Sconocchia, Giuseppe; Orlandi, Augusto; Urbani, Andrea; Lauro, Davide

    2015-05-01

    Liver has a principal role in glucose regulation and lipids homeostasis. It is under a complex control by substrates such as hormones, nutrients, and neuronal impulses. Insulin promotes glycogen synthesis, lipogenesis, and lipoprotein synthesis and inhibits gluconeogenesis, glycogenolysis, and VLDL secretion by modifying the expression and enzymatic activity of specific molecules. To understand the pathophysiological mechanisms leading to metabolic liver disease, we analyzed liver protein patterns expressed in a mouse model of diabetes by proteomic approaches. We used insulin receptor-knockout (IR(-/-)) and heterozygous (IR(+/-)) mice as a murine model of liver metabolic dysfunction associated with diabetic ketoacidosis and insulin resistance. We evaluated liver fatty acid levels by microscopic examination and protein expression profiles by orthogonal experimental strategies using protein 2-DE MALDI-TOF/TOF and peptic nLC-MS/MS shotgun profiling. Identified proteins were then loaded into Ingenuity Pathways Analysis to find possible molecular networks. Twenty-eight proteins identified by 2-DE analysis and 24 identified by nLC-MS/MS shotgun were differentially expressed among the three genotypes. Bioinformatic analysis revealed a central role of high-mobility group box 1/2 and huntigtin never reported before in association with metabolic and related liver disease. A different modulation of these proteins in both blood and hepatic tissue further suggests their role in these processes. These results provide new insight into pathophysiology of insulin resistance and hepatic steatosis and could be useful in identifying novel biomarkers to predict risk for diabetes and its complications. Copyright © 2015 the American Physiological Society.

  1. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins

    Science.gov (United States)

    Diaz, Isabel

    2012-01-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822

  2. The RNA-binding protein xCIRP2 is involved in apoptotic tail regression during metamorphosis in Xenopus laevis tadpoles.

    Science.gov (United States)

    Eto, Ko; Iwama, Tomoyuki; Tajima, Tatsuya; Abe, Shin-ichi

    2012-10-01

    Frog metamorphosis induced by thyroid hormone (TH) involves not only cell proliferation and differentiation in reconstituted organs such as limbs, but also apoptotic cell death in degenerated organs such as tails. However, the molecular mechanisms directing the TH-dependent cell fate determination remain unclear. We have previously identified from newts an RNA-binding protein (nRBP) acting as the regulator governing survival and death in germ cells during spermatogenesis. To investigate the molecular events leading the tail resorption during metamorphosis, we analyzed the expression, the functional role in apoptosis, and the regulation of xCIRP2, a frog homolog of nRBP, in tails of Xenopus laevis tadpoles. At the prometamorphic stage, xCIRP2 protein is expressed in fibroblast, epidermal, nerve, and muscular cells and localized in their cytoplasm. When spontaneous metamorphosis progressed, the level of xCIRP2 mRNA remained unchanged but the amount of the protein decreased. In organ cultures of tails at the prometamorphic stage, xCIRP2 protein decreased before their lengths shortened during TH-dependent metamorphosis. The inhibition of calpain or proteasome attenuated the TH-induced decrease of xCIRP2 protein in tails, impairing their regression. These results suggest that xCIRP2 protein is downregulated through calpain- and proteasome-mediated proteolysis in response to TH at the onset of metamorphosis, inducing apoptosis in tails and thereby degenerating them. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neiserria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA

    Science.gov (United States)

    Isabella, Vincent M.; Clark, Virginia L.

    2011-01-01

    SUMMARY Transcriptome analysis of the facultative anaerobe, Neisseria gonorrhoeae, revealed that many genes of unknown function were induced under anaerobic conditions. Mutation of one such gene, NGO1024, encoding a protein belonging to the 2-nitropropane dioxygenase-like superfamiliy of proteins, was found to result in an inability of gonococci to grow anaerobically. Anaerobic growth of an NG1024 mutant was restored upon supplementation with unsaturated fatty acids (UFA), but not with the saturated fatty acid palmitate. Gonococcal fatty acid profiles confirmed that NGO1024 was involved in UFA synthesis anaerobically, but not aerobically, demonstrating that gonococci contain two distinct pathways for the production of UFAs, with a yet unidentified aerobic mechanism, and an anaerobic mechanism involving NGO1024. Expression of genes involved in classical anaerobic UFA synthesis, fabA, fabM, and fabB, was toxic in gonococci and unable to complement a NGO1024 mutation, suggesting that the chemistry involved in gonococcal anaerobic UFA synthesis is distinct from that of the classical pathway. NGO1024 homologs, which we suggest naming UfaA, form a distinct lineage within the 2-nitropropane dioxygenase-like superfamily, and are found in many facultative and obligate anaerobes that produce UFAs but lack fabA, suggesting that UfaA is part of a widespread pathway involved in UFA synthesis. PMID:21895795

  4. Maternal-fetal cholesterol transport in the second half ofmouse pregnancy does not involve LDL receptor-related protein 2

    NARCIS (Netherlands)

    Zwier, Mathijs V; Baardman, Maria E; van Dijk, Theo H; Jurdzinski, Angelika; Wisse, Lambertus J; Bloks, Vincent W; Berger, Rolf M F; DeRuiter, Marco C; Groen, Albert K; Plösch, Torsten

    AimLDL receptor-related protein type 2 (LRP2) is highly expressed on both yolk sac and placenta. Mutations in the corresponding gene are associated with severe birth defects in humans, known as Donnai-Barrow syndrome. We here characterized the contribution of LRP2 and maternal plasma cholesterol

  5. Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport.

    Science.gov (United States)

    Sun, Junhui; Morgan, Meghan; Shen, Rong-Fong; Steenbergen, Charles; Murphy, Elizabeth

    2007-11-26

    Nitric oxide has been shown to be an important signaling messenger in ischemic preconditioning (IPC). Accordingly, we investigated whether protein S-nitrosylation occurs in IPC hearts and whether S-nitrosoglutathione (GSNO) elicits similar effects on S-nitrosylation and cardioprotection. Preceding 20 minutes of no-flow ischemia and reperfusion, hearts from C57BL/6J mice were perfused in the Langendorff mode and subjected to the following conditions: (1) control perfusion; (2) IPC; or (3) 0.1 mmol/L GSNO treatment. Compared with control, IPC and GSNO significantly improved postischemic recovery of left ventricular developed pressure and reduced infarct size. IPC and GSNO both significantly increased S-nitrosothiol contents and S-nitrosylation levels of the L-type Ca2+ channel alpha1 subunit in heart membrane fractions. We identified several candidate S-nitrosylated proteins by proteomic analysis following the biotin switch method, including the cardiac sarcoplasmic reticulum Ca2+-ATPase, alpha-ketoglutarate dehydrogenase, and the mitochondrial F1-ATPase alpha1 subunit. The activities of these enzymes were altered in a concentration-dependent manner by GSNO treatment. We further developed a 2D DyLight fluorescence difference gel electrophoresis proteomic method that used DyLight fluors and a modified biotin switch method to identify S-nitrosylated proteins. IPC and GSNO produced a similar pattern of S-nitrosylation modification and cardiac protection against ischemia/reperfusion injury, suggesting that protein S-nitrosylation may play an important cardioprotective role in heart.

  6. An extrahepatic receptor-associated protein-sensitive mechanism is involved in the metabolism of triglyceride-rich lipoproteins

    NARCIS (Netherlands)

    Vlijmen, B.J.M. van; Rohlmann, A.; Page, S.T.; Bensadoun, A.; Bos, I.S.T.; Berkel, T.J.C. van; Havekes, L.M.; Herz, J.

    1999-01-01

    We have used adenovirus-mediated gene transfer in mice to investigate low density lipoprotein receptor (LDLR) and LDLR-related protein (LRP)- independent mechanisms that control the metabolism of chylomicron and very low density lipoprotein (VLDL) remnants in vivo. Overexpression of receptor-

  7. Comparative In silico Study of Sex-Determining Region Y (SRY) Protein Sequences Involved in Sex-Determining.

    Science.gov (United States)

    Vakili Azghandi, Masoume; Nasiri, Mohammadreza; Shamsa, Ali; Jalali, Mohsen; Shariati, Mohammad Mahdi

    2016-04-01

    The SRY gene (SRY) provides instructions for making a transcription factor called the sex-determining region Y protein. The sex-determining region Y protein causes a fetus to develop as a male. In this study, SRY of 15 spices included of human, chimpanzee, dog, pig, rat, cattle, buffalo, goat, sheep, horse, zebra, frog, urial, dolphin and killer whale were used for determine of bioinformatic differences. Nucleotide sequences of SRY were retrieved from the NCBI databank. Bioinformatic analysis of SRY is done by CLC Main Workbench version 5.5 and ClustalW (http:/www.ebi.ac.uk/clustalw/) and MEGA6 softwares. The multiple sequence alignment results indicated that SRY protein sequences from Orcinus orca (killer whale) and Tursiopsaduncus (dolphin) have least genetic distance of 0.33 in these 15 species and are 99.67% identical at the amino acid level. Homosapiens and Pantroglodytes (chimpanzee) have the next lowest genetic distance of 1.35 and are 98.65% identical at the amino acid level. These findings indicate that the SRY proteins are conserved in the 15 species, and their evolutionary relationships are similar.

  8. NOS3 is involved in the increased protein and arginine metabolic response in muscle during early endotoxemia in mice

    NARCIS (Netherlands)

    Luiking, Yvette C.; Hallemeesch, Marcella M.; Lamers, Wouter H.; Deutz, Nicolaas E. P.

    2005-01-01

    Sepsis is a severe catabolic condition. The loss of skeletal muscle protein mass is characterized by enhanced release of the amino acids glutamine and arginine, which (in)directly affects interorgan arginine and the related nitric oxide (NO) synthesis. To establish whether changes in muscle amino

  9. Probing the molecular forces involved in binding of selected volatile flavour compounds to salt-extracted pea proteins.

    Science.gov (United States)

    Wang, Kun; Arntfield, Susan D

    2016-11-15

    Molecular interactions between heterologous classes of flavour compounds with salt-extracted pea protein isolates (PPIs) were determined using various bond disrupting agents followed by GC/MS analysis. Flavour bound by proteins decreased in the order: dibutyl disulfide>octanal>hexyl acetate>2-octanone=benzaldehyde. Benzaldehyde, 2-octanone and hexyl acetate interacted non-covalently with PPIs, whereas octanal bound PPIs via covalent and non-covalent forces. Dibutyl disulfide reacted with PPIs covalently, as its retention was not diminished by urea and guanidine hydrochloride. Using propylene glycol, H-bonding and ionic interactions were implicated for hexyl acetate, benzaldehyde, and 2-octanone. A protein-destabilising salt (Cl3CCOONa) reduced bindings for 2-octanone, hexyl acetate, and benzaldehyde; however, retention for octanal and dibutyl disulfide increased. Conversely, a protein-stabilising salt (Na2SO4) enhanced retention for benzaldehyde, 2-octanone, hexyl acetate and octanal. Formation of a volatile flavour by-product, 1-butanethiol, from dibutyl disulfide when PPIs were treated with dithiothreitol indicated occurrence of sulfhydryl-disulfide interchange reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Comparative In silico Study of Sex-Determining Region Y (SRY Protein Sequences Involved in Sex-Determining

    Directory of Open Access Journals (Sweden)

    Masoume Vakili Azghandi

    2016-05-01

    Full Text Available Background: The SRY gene (SRY provides instructions for making a transcription factor called the sex-determining region Y protein. The sex-determining region Y protein causes a fetus to develop as a male. In this study, SRY of 15 spices included of human, chimpanzee, dog, pig, rat, cattle, buffalo, goat, sheep, horse, zebra, frog, urial, dolphin and killer whale were used for determine of bioinformatic differences. Methods: Nucleotide sequences of SRY were retrieved from the NCBI databank. Bioinformatic analysis of SRY is done by CLC Main Workbench version 5.5 and ClustalW (http:/www.ebi.ac.uk/clustalw/ and MEGA6 softwares. Results: The multiple sequence alignment results indicated that SRY protein sequences from Orcinus orca (killer whale and Tursiopsaduncus (dolphin have least genetic distance of 0.33 in these 15 species and are 99.67% identical at the amino acid level. Homosapiens and Pantroglodytes (chimpanzee have the next lowest genetic distance of 1.35 and are 98.65% identical at the amino acid level. Conclusion: These findings indicate that the SRY proteins are conserved in the 15 species, and their evolutionary relationships are similar.

  11. Isolation and characterization of a tomato non-specific lipid transfer protein involved in polygalacturonase-mediated pectin degradation.

    Science.gov (United States)

    Tomassen, Monic M M; Barrett, Diane M; van der Valk, Henry C P M; Woltering, Ernst J

    2007-01-01

    An important aspect of the ripening process of tomato fruit is softening. Softening is accompanied by hydrolysis of the pectin in the cell wall by pectinases, causing loss of cell adhesion in the middle lamella. One of the most significant pectin-degrading enzymes is polygalacturonase (PG). Previous reports have shown that PG in tomato may exist in different forms (PG1, PG2a, PG2b, and PGx) commonly referred to as PG isoenzymes. The gene product PG2 is differentially glycosylated and is thought to associate with other proteins to form PG1 and PGx. This association is thought to modulate its pectin-degrading activity in planta. An 8 kDa protein that is part of the tomato PG1 multiprotein complex has been isolated, purified, and functionally characterized. This protein, designated 'activator' (ACT), belongs to the class of non-specific lipid transfer proteins (nsLTPs). ACT is capable of 'converting' the gene product PG2 into a more active and heat-stable form, which increases PG-mediated pectin degradation in vitro and stimulates PG-mediated tissue breakdown in planta. This finding suggests a new, not previously identified, function for nsLTPs in the modification of hydrolytic enzyme activity. It is proposed that ACT plays a role in the modulation of PG activity during tomato fruit softening.

  12. Identification of proteins involved in the pancreatic exocrine by exogenous ghrelin administration in Sprague-Dawley rats.

    Science.gov (United States)

    Lee, Kyung-Hoon; Wang, Tao; Jin, Yong-Cheng; Lee, Sang-Bum; Oh, Jin-Ju; Hwang, Jin-Hee; Lim, Ji-Na; Lee, Jae-Sung; Lee, Hong-Gu

    2014-01-01

    The aims of study were to investigate the effects of intraperitoneal (i.p.) infusion of ghrelin on pancreatic α-amylase outputs and the responses of pancreatic proteins to ghrelin that may relate to the pancreatic exocrine. Six male Sprague-Dawley rats (300 g) were randomly divided into two groups, a control group (C, n = 3) and a treatment group (T, 10.0μg/kg BW, n = 3). Blood samples were collected from rat caudal vein once time after one hour injection. The concentrations of plasma ghrelin, cholecystokinin (CCK) and alfa-amylase activity were evaluated by enzyme immunoassay (EIA) kit. Two-dimensional gel electrophoresis (2-DE) analysis was conducted to separate the proteins in pancreas tissue. Results showed that the i.p. infusion of ghrelin at doses of 10.0 μg/kg body weight (BW) increased the plasma ghrelin concentrations (p = 0.07) and elevated the plasma CCK level significantly (p amylase activity tended to increase. The proteomics analysis indicated that some pancreatic proteins with various functions were up- or down- regulated compared with control group. In conclusion, ghrelin may have role in the pancreatic exocrine, but the signaling pathway was still not clear. Therefore, much more functional studies focus on these found proteins are needed in the near future.

  13. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction.

    Science.gov (United States)

    Swiderski, Michal R; Birker, Doris; Jones, Jonathan D G

    2009-02-01

    In plants, the TIR (toll interleukin 1 receptor) domain is found almost exclusively in nucleotide-binding (NB) leucine-rich repeat resistance proteins and their truncated homologs, and has been proposed to play a signaling role during resistance responses mediated by TIR containing R proteins. Transient expression in Nicotiana benthamiana leaves of "TIR + 80", the RPS4 truncation without the NB-ARC domain, leads to EDS1-, SGT1-, and HSP90-dependent cell death. Transgenic Arabidopsis plants expressing the RPS4 TIR+80 from either dexamethasone or estradiol-inducible promoters display inducer-dependent cell death. Cell death is also elicited by transient expression of similarly truncated constructs from two other R proteins, RPP1A and At4g19530, but is not elicited by similar constructs representing RPP2A and RPP2B proteins. Site-directed mutagenesis of the RPS4 TIR domain identified many loss-of-function mutations but also revealed several gain-of function substitutions. Lack of cell death induction by the E160A substitution suggests that amino acids outside of the TIR domain contribute to cell death signaling in addition to the TIR domain itself. This is consistent with previous observations that the TIR domain itself is insufficient to induce cell death upon transient expression.

  14. Involvement of Reactive Oxygen Species and Mitochondrial Proteins in Biophoton Emission in Roots of Soybean Plants under Flooding Stress.

    Science.gov (United States)

    Kamal, Abu Hena Mostafa; Komatsu, Setsuko

    2015-05-01

    To understand the mechanism of biophoton emission, ROS and mitochondrial proteins were analyzed in soybean plants under flooding stress. Enzyme activity and biophoton emission were increased in the flooding stress samples when assayed in reaction mixes specific for antioxidant enzymes and reactive oxygen species; although the level of the hydroxyl radicals was increased at day 4 (2 days of flooding) compared to nonflooding at day 4, the emission of biophotons did not change. Mitochondria were isolated and purified from the roots of soybean plants grown under flooding stress by using a Percoll gradient, and proteins were analyzed by a gel-free proteomic technique. Out of the 98 mitochondrial proteins that significantly changed abundance under flooding stress, 47 increased and 51 decreased at day 4. The mitochondrial enzymes fumarase, glutathione-S-transferase, and aldehyde dehydrogenase increased at day 4 in protein abundance and enzyme activity. Enzyme activity and biophoton emission decreased at day 4 by the assay of lipoxygenase under stress. Aconitase, acyl CoA oxidase, succinate dehydrogenase, and NADH ubiquinone dehydrogenase were up-regulated at the transcription level. These results indicate that oxidation and peroxide scavenging might lead to biophoton emission and oxidative damage in the roots of soybean plants under flooding stress.

  15. Involvement of carotenoids in the synthesis and assembly of protein subunits of photosynthetic reaction centers of Synechocystis sp. PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Sozer, O.; Komenda, Josef; Ughy, B.; Domonkos, I.; Laczkó-Dobos, H.; Malec, P.; Gombos, Z.; Kis, M.

    2010-01-01

    Roč. 51, č. 5 (2010), s. 823-835 ISSN 0032-0781 R&D Projects: GA AV ČR IAA400200801 Institutional research plan: CEZ:AV0Z50200510 Keywords : Carotenoidless mutant * crtB * Membrane protein synthesis Subject RIV: EE - Microbiology, Virology Impact factor: 4.257, year: 2010

  16. Study of miRNA Based Gene Regulation, Involved in Solid Cancer, by the Assistance of Argonaute Protein

    Directory of Open Access Journals (Sweden)

    Surya Narayan Rath

    2016-09-01

    Full Text Available Solid tumor is generally observed in tissues of epithelial or endothelial cells of lung, breast, prostate, pancreases, colorectal, stomach, and bladder, where several genes transcription is regulated by the microRNAs (miRNAs. Argonaute (AGO protein is a family of protein which assists in miRNAs to bind with mRNAs of the target genes. Hence, study of the binding mechanism between AGO protein and miRNAs, and also with miRNAs-mRNAs duplex is crucial for understanding the RNA silencing mechanism. In the current work, 64 genes and 23 miRNAs have been selected from literatures, whose deregulation is well established in seven types of solid cancer like lung, breast, prostate, pancreases, colorectal, stomach, and bladder cancer. In silico study reveals, miRNAs namely, miR-106a, miR-21, and miR-29b-2 have a strong binding affinity towards PTEN, TGFBR2, and VEGFA genes, respectively, suggested as important factors in RNA silencing mechanism. Furthermore, interaction between AGO protein (PDB ID-3F73, chain A with selected miRNAs and with miRNAs-mRNAs duplex were studied computationally to understand their binding at molecular level. The residual interaction and hydrogen bonding are inspected in Discovery Studio 3.5 suites. The current investigation throws light on understanding miRNAs based gene silencing mechanism in solid cancer.

  17. Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant

    NARCIS (Netherlands)

    Zhang, Lina; de Waard, Marita; Verheijen, Hester; Boeren, Sjef; Hageman, Jos A.; van Hooijdonk, Toon; Vervoort, Jacques; van Goudoever, Johannes B.; Hettinga, Kasper

    2016-01-01

    To objective of this study was to better understand the biological functions of breast milk proteins in relation to the growth and development of infants over the first six months of life. Breast milk samples from four individual women collected at seven time points in the first six months after

  18. Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant

    NARCIS (Netherlands)

    Zhang, Lina; Waard, de Marita; Verheijen, Hester; Boeren, Sjef; Hageman, Jos A.; Hooijdonk, van Toon; Vervoort, Jacques; Goudoever, van Johannes B.; Hettinga, Kasper

    2016-01-01

    To objective of this study was to better understand the biological functions of breast milk proteins in relation to the growth and development of infants over the first six months of life. Breast milk samples from four individual women collected at seven time points in the first six months after

  19. The Cerato-Platanin protein Epl-1 from Trichoderma harzianum is involved in mycoparasitism, plant resistance induction and self cell wall protection.

    Science.gov (United States)

    Gomes, Eriston Vieira; Costa, Mariana do Nascimento; de Paula, Renato Graciano; de Azevedo, Rafael Ricci; da Silva, Francilene Lopes; Noronha, Eliane F; Ulhoa, Cirano José; Monteiro, Valdirene Neves; Cardoza, Rosa Elena; Gutiérrez, Santiago; Silva, Roberto Nascimento

    2015-12-09

    Trichoderma harzianum species are well known as biocontrol agents against important fungal phytopathogens. Mycoparasitism is one of the strategies used by this fungus in the biocontrol process. In this work, we analyzed the effect of Epl-1 protein, previously described as plant resistance elicitor, in expression modulation of T. harzianum genes involved in mycoparasitism process against phytopathogenic fungi; self cell wall protection and recognition; host hyphae coiling and triggering expression of defense-related genes in beans plants. The results indicated that the absence of Epl-1 protein affects the expression of all mycoparasitism genes analyzed in direct confrontation assays against phytopathogen Sclerotinia sclerotiorum as well as T. harzianum itself; the host mycoparasitic coiling process and expression modulation of plant defense genes showing different pattern compared with wild type strain. These data indicated the involvement T. harzianum Epl-1 in self and host interaction and also recognition of T. harzianum as a symbiotic fungus by the bean plants.

  20. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Energy Technology Data Exchange (ETDEWEB)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  1. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    International Nuclear Information System (INIS)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald

    2015-01-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified

  2. An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein

    Energy Technology Data Exchange (ETDEWEB)

    McCready, Jessica [Department of Natural Sciences, Assumption College, Worcester, MA 01609 (United States); Wong, Daniel S. [Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Cell and Molecular Physiology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States); Burlison, Joseph A.; Ying, Weiwen [Synta Pharmaceuticals, Lexington, MA 02421 (United States); Jay, Daniel G., E-mail: daniel.jay@tufts.edu [Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111 (United States); Cell and Molecular Physiology Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111 (United States)

    2014-04-30

    Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP) and Lysyl oxidase 2-like protein (LOXL2) that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion.

  3. Are tyrosine residues involved in the photoconversion of the water-soluble chlorophyll-binding protein of Chenopodium album?

    Science.gov (United States)

    Takahashi, S; Seki, Y; Uchida, A; Nakayama, K; Satoh, H

    2015-05-01

    Non-photosynthetic and hydrophilic chlorophyll (Chl) proteins, called water-soluble Chl-binding proteins (WSCPs), are distributed in various species of Chenopodiaceae, Amaranthaceae, Polygonaceae and Brassicaceae. Based on their photoconvertibility, WSCPs are categorised into two classes: Class I (photoconvertible) and Class II (non-photoconvertible). Chenopodium album WSCP (CaWSCP; Class I) is able to convert the chlorin skeleton of Chl a into a bacteriochlorin-like skeleton under light in the presence of molecular oxygen. Potassium iodide (KI) is a strong inhibitor of the photoconversion. Because KI attacks tyrosine residues in proteins, tyrosine residues in CaWSCP are considered to be important amino acid residues for the photoconversion. Recently, we identified the gene encoding CaWSCP and found that the mature region of CaWSCP contained four tyrosine residues: Tyr13, Tyr14, Tyr87 and Tyr134. To gain insight into the effect of the tyrosine residues on the photoconversion, we constructed 15 mutant proteins (Y13A, Y14A, Y87A, Y134A, Y13-14A, Y13-87A, Y13-134A, Y14-87A, Y14-134A, Y87-134A, Y13-14-87A, Y13-14-134A, Y13-87-134A, Y14-87-134A and Y13-14-87-134A) using site-directed mutagenesis. Amazingly, all the mutant proteins retained not only chlorophyll-binding activity, but also photoconvertibility. Furthermore, we found that KI strongly inhibited the photoconversion of Y13-14-87-134A. These findings indicated that the four tyrosine residues are not essential for the photoconversion. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Proteomic analysis of growth phase-dependent expression of Legionella pneumophila proteins which involves regulation of bacterial virulence traits.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hayashi

    Full Text Available Legionella pneumophila, which is a causative pathogen of Legionnaires' disease, expresses its virulent traits in response to growth conditions. In particular, it is known to become virulent at a post-exponential phase in vitro culture. In this study, we performed a proteomic analysis of differences in expression between the exponential phase and post-exponential phase to identify candidates associated with L. pneumophila virulence using 2-Dimentional Fluorescence Difference Gel Electrophoresis (2D-DIGE combined with Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry (MALDI-TOF-MS. Of 68 identified proteins that significantly differed in expression between the two growth phases, 64 were up-regulated at a post-exponential phase. The up-regulated proteins included enzymes related to glycolysis, ketone body biogenesis and poly-3-hydroxybutyrate (PHB biogenesis, suggesting that L. pneumophila may utilize sugars and lipids as energy sources, when amino acids become scarce. Proteins related to motility (flagella components and twitching motility-associated proteins were also up-regulated, predicting that they enhance infectivity of the bacteria in host cells under certain conditions. Furthermore, 9 up-regulated proteins of unknown function were found. Two of them were identified as novel bacterial factors associated with hemolysis of sheep red blood cells (SRBCs. Another 2 were found to be translocated into macrophages via the Icm/Dot type IV secretion apparatus as effector candidates in a reporter assay with Bordetella pertussis adenylate cyclase. The study will be helpful for virulent analysis of L. pneumophila from the viewpoint of physiological or metabolic modulation dependent on growth phase.

  5. An Impermeant Ganetespib Analog Inhibits Extracellular Hsp90-Mediated Cancer Cell Migration that Involves Lysyl Oxidase 2-like Protein

    International Nuclear Information System (INIS)

    McCready, Jessica; Wong, Daniel S.; Burlison, Joseph A.; Ying, Weiwen; Jay, Daniel G.

    2014-01-01

    Extracellular Hsp90 (eHsp90) activates a number of client proteins outside of cancer cells required for migration and invasion. Therefore, eHsp90 may serve as a novel target for anti-metastatic drugs as its inhibition using impermeant Hsp90 inhibitors would not affect the numerous vital intracellular Hsp90 functions in normal cells. While some eHsp90 clients are known, it is important to establish other proteins that act outside the cell to validate eHsp90 as a drug target to limit cancer spread. Using mass spectrometry we identified two precursor proteins Galectin 3 binding protein (G3BP) and Lysyl oxidase 2-like protein (LOXL2) that associate with eHsp90 in MDA-MB231 breast cancer cell conditioned media and confirmed that LOXL2 binds to eHsp90 in immunoprecipitates. We introduce a novel impermeant Hsp90 inhibitor STA-12-7191 derived from ganetespib and show that it is markedly less toxic to cells and can inhibit cancer cell migration in a dose dependent manner. We used STA-12-7191 to test if LOXL2 and G3BP are potential eHsp90 clients. We showed that while LOXL2 can increase wound healing and compensate for STA-12-7191-mediated inhibition of wound closure, addition of G3BP had no affect on this assay. These findings support of role for LOXL2 in eHsp90 stimulated cancer cell migration and provide preliminary evidence for the use of STA-12-7191 to inhibit eHsp90 to limit cancer invasion

  6. AMP-activated protein kinase is involved in the activation of the Fanconi anemia/BRCA pathway in response to DNA interstrand crosslinks.

    Science.gov (United States)

    Chun, Min Jeong; Kim, Sunshin; Hwang, Soo Kyung; Kim, Bong Sub; Kim, Hyoun Geun; Choi, Hae In; Kim, Jong Heon; Goh, Sung Ho; Lee, Chang-Hun

    2016-08-16

    Fanconi anemia complementation group (FANC) proteins constitute the Fanconi Anemia (FA)/BRCA pathway that is activated in response to DNA interstrand crosslinks (ICLs). We previously performed yeast two-hybrid screening to identify novel FANC-interacting proteins and discovered that the alpha subunit of AMP-activated protein kinase (AMPKα1) was a candidate binding partner of the FANCG protein, which is a component of the FA nuclear core complex. We confirmed the interaction between AMPKα and both FANCG using co-immunoprecipitation experiments. Additionally, we showed that AMPKα interacted with FANCA, another component of the FA nuclear core complex. AMPKα knockdown in U2OS cells decreased FANCD2 monoubiquitination and nuclear foci formation upon mitomycin C-induced ICLs. Furthermore, AMPKα knockdown enhanced cellular sensitivity to MMC. MMC treatment resulted in an increase in AMPKα phosphorylation/activation, indicating AMPK is involved in the cellular response to ICLs. FANCA was phosphorylated by AMPK at S347 and phosphorylation increased with MMC treatment. MMC-induced FANCD2 monoubiquitination and nuclear foci formation were compromised in a U2OS cell line that stably overexpressed the S347A mutant form of FANCA compared to wild-type FANCA-overexpressing cells, indicating a requirement for FANCA phosphorylation at S347 for proper activation of the FA/BRCA pathway. Our data suggest AMPK is involved in the activation of the FA/BRCA pathway.

  7. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  8. DMBT1 encodes a protein involved in the immune defense and in epithelial differentiation and is highly unstable in cancer

    DEFF Research Database (Denmark)

    Mollenhauer, J; Herbertz, S; Holmskov, U

    2000-01-01

    in the respiratory immune defense. Immunohistochemical analyses revealed that DMBT1 is produced by both tumor-associated macrophages and tumor cells and that it is deregulated in glioblastoma multiforme in comparison to normal brain tissue. Our data further suggest that the proteins CRP-ductin and hensin, both...... of which have been implicated in epithelial differentiation, are the DMBT1 orthologs in mice and rabbits, respectively. These findings and the spatial and temporal distribution of DMBT1 in fetal and adult epithelia suggest that DMBT1 further plays a role in epithelial development. Rearrangements of DMBT1......, DMBT1 is a gene that is highly unstable in cancer and encodes for a protein with at least two different functions, one in the immune defense and a second one in epithelial differentiation....

  9. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-Telomeric Roles of Arabidopsis Telomerase

    Czech Academy of Sciences Publication Activity Database

    Dokládal, Ladislav; Honys, David; Rana, Rajiv; Lee, L.-Y.; Gelvin, S.B.; Sýkorová, Eva

    2015-01-01

    Roč. 6, NOV2015 (2015) ISSN 1664-462X R&D Projects: GA ČR GA13-06943S; GA MŠk(CZ) ED1.1.00/02.0068 Grant - others:GA MŠk(CZ) LH10352 Institutional support: RVO:68081707 ; RVO:61389030 Keywords : telomerase * nuclear poly(A)-binding protein * telobox Subject RIV: BO - Biophysics; EF - Botanics (UEB-Q) Impact factor: 4.495, year: 2015

  10. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes

    OpenAIRE

    Gomes, Eriston V.; Ulhoa, Cirano J.; Cardoza, Rosa E.; Silva, Roberto N.; Guti?rrez, Santiago

    2017-01-01

    Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum stra...

  11. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    Czech Academy of Sciences Publication Activity Database

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Roč. 9, č. 10 (2014) E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) EE2.3.20.0055 Institutional support: RVO:61388971 Keywords : MULTIPLE SEQUENCE ALIGNMENT * ELEMENT-BINDING PROTEIN * FERRITIN MESSENGER-RNA Subject RIV: EE - Microbiology, Virology Impact factor: 3.234, year: 2014

  12. Hormone signaling linked to silkmoth sex pheromone biosynthesis involves Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of the insect PAT family protein Bombyx mori lipid storage droplet protein-1(BmLsd)

    Science.gov (United States)

    The structurally-related members of the PAT family of proteins, which are so name based on similarity amongst perilipin, adipophilin/adipocyte differentiation-related protein (ADRP), and tail-interacting protein of 47 kilodaltons (TIP47), are cytoplasmic lipid droplet (LD)-associated proteins charac...

  13. Tubulation of Class II MHC Compartments Is Microtubule Dependent and Involves Multiple Endolysosomal Membrane Proteins in Primary Dendritic Cells1

    Science.gov (United States)

    Vyas, Jatin M.; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J. Christopher; Van der Veen, Annemarthe G.; Ploegh, Hidde L.

    2009-01-01

    Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP. PMID:17513769

  14. Involvement of the catalytic subunit of protein kinase A and of HA95 in pre-mRNA splicing

    International Nuclear Information System (INIS)

    Kvissel, Anne-Katrine; Orstavik, Sigurd; Eikvar, Sissel; Brede, Gaute; Jahnsen, Tore; Collas, Philippe; Akusjaervi, Goeran; Skalhegg, Bjorn Steen

    2007-01-01

    Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus. In the present report, we show that both Cα and Cβ are localized to spots in the mammalian nucleus. Double immunofluorescence analysis of splicing factor SC35 with the C subunit indicated that these spots are splicing factor compartments (SFCs). Using the E1A in vivo splicing assay, we found that catalytically active C subunits regulate alternative splicing and phosphorylate several members of the SR-protein family of splicing factors in vitro. Furthermore, nuclear C subunits co-localize with the C subunit-binding protein homologous to AKAP95, HA95. HA95 also regulates E1A alternative splicing in vivo, apparently through its N-terminal domain. Localization of the C subunit to SFCs and the E1A splicing pattern were unaffected by cAMP stimulation. Our findings demonstrate that the nuclear PKA C subunit co-locates with HA95 in SFCs and regulates pre-mRNA splicing, possibly through a cAMP-independent mechanism

  15. Evidence that Surface Proteins Sn14 and Sn16 of Sarcocystis neurona Merozoites Are Involved in Infection and Immunity†

    Science.gov (United States)

    Liang, Fang Ting; Granstrom, David E.; Zhao, Xiao Min; Timoney, John F.

    1998-01-01

    Sarcocystis neurona is the etiologic agent of equine protozoal myeloencephalitis (EPM). Based on an analysis of 25,000 equine serum and cerebrospinal fluid (CSF) samples, including samples from horses with neurologic signs typical of EPM or with histologically or parasitologically confirmed EPM, four major immunoblot band patterns have been identified. Twenty-three serum and CSF samples representing each of the four immunoblot patterns were selected from 220 samples from horses with neurologic signs resembling EPM and examined for inhibitory effects on the infectivity of S. neurona by an in vitro neutralization assay. A high correlation between immunoblot band pattern and neutralizing activity was detected. Two proteins, Sn14 and Sn16 (14 and 16 kDa, respectively), appeared to be important for in vitro infection. A combination of the results of surface protein labeling, immunoprecipitation, Western blotting, and trypsin digestion suggests that these molecules are surface proteins and may be useful components of a vaccine against S. neurona infection. Although S. neurona is an obligate intracellular parasite, it is potentially a target for specific antibodies which may lyse merozoites via complement or inhibit their attachment and penetration to host cells. PMID:9573058

  16. Hypoglycemic effects of Trichosanthes kirilowii and its protein constituent in diabetic mice: the involvement of insulin receptor pathway.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Tsai-Chung; Yang, Tse-Yen; Li, Chia-Cheng; Chiang, Jen-Huai; Hsiang, Chien-Yun; Ho, Tin-Yun

    2017-01-18

    Diabetes is a serious chronic metabolic disorder. Trichosanthes kirilowii Maxim. (TK) is traditionally used for the treatment of diabetes in traditional Chinese medicine (TCM). However, the clinical application of TK on diabetic patients and the hypoglycemic efficacies of TK are still unclear. A retrospective cohort study was conducted to analyze the usage of Chinese herbs in patients with type 2 diabetes in Taiwan. Glucose tolerance test was performed to analyze the hypoglycemic effect of TK. Proteomic approach was performed to identify the protein constituents of TK. Insulin receptor (IR) kinase activity assay and glucose tolerance tests in diabetic mice were further used to elucidate the hypoglycemic mechanisms and efficacies of TK. By a retrospective cohort study, we found that TK was the most frequently used Chinese medicinal herb in type 2 diabetic patients in Taiwan. Oral administration of aqueous extract of TK displayed hypoglycemic effects in a dose-dependent manner in mice. An abundant novel TK protein (TKP) was further identified by proteomic approach. TKP interacted with IR by docking analysis and activated the kinase activity of IR. In addition, TKP enhanced the clearance of glucose in diabetic mice in a dose-dependent manner. In conclusion, this study applied a bed-to-bench approach to elucidate the hypoglycemic efficacies and mechanisms of TK on clinical usage. In addition, we newly identified a hypoglycemic protein TKP from TK. Our findings might provide a reasonable explanation of TK on the treatment of diabetes in TCM.

  17. Tubulation of class II MHC compartments is microtubule dependent and involves multiple endolysosomal membrane proteins in primary dendritic cells.

    Science.gov (United States)

    Vyas, Jatin M; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J Christopher; Van der Veen, Annemarthe G; Ploegh, Hidde L

    2007-06-01

    Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP.

  18. Nucleocytoplasmic trafficking of Nipah virus W protein involves multiple discrete interactions with the nuclear import and export machinery

    International Nuclear Information System (INIS)

    Audsley, Michelle D.; Jans, David A.; Moseley, Gregory W.

    2016-01-01

    Paramyxoviruses replicate in the cytoplasm with no obvious requirement to interact with the nucleus. Nevertheless, the W protein of the highly lethal bat-borne paramyxovirus Nipah virus (NiV) is known to undergo specific targeting to the nucleus, mediated by a single nuclear localisation signal (NLS) within the C-terminal domain. Here, we report for the first time that additional sites modulate nucleocytoplasmic localisation of W. We show that the N-terminal domain interacts with importin α1 and contributes to nuclear accumulation of W, indicative of a novel N-terminal NLS. We also find that W undergoes exportin-1 mediated nuclear export, dependent on a leucine at position 174. Together, these data enable significant revision of the generally accepted model of W trafficking, with implications for understanding of the mechanisms of NiV immune evasion. - Highlights: • A new model for Nipah virus W protein nucleocytoplasmic trafficking is proposed. • Nipah W protein is shown to undergo active nuclear export via exportin-1. • Nipah W nuclear import is mediated by multiple nuclear localisation signals.

  19. Involvement of Arabidopsis thaliana ribosomal protein S27 in mRNA degradation triggered by genotoxic stress

    International Nuclear Information System (INIS)

    Revenkova, E.; Masson, J.; Koncz, C.; Afsar, K.; Jakovleva, L.; Paszkowski, J.

    1999-01-01

    A recessive Arabidopsis mutant with elevated sensitivity to DNA damaging treatments was identified in one out of 800 families generated by T-DNA insertion mutagenesis. The T-DNA generated a chromosomal deletion of 1287 bp in the promoter of one of three S27 ribosomal protein genes (ARS27A) preventing its expression. Seedlings of ars27A developed normally under standard growth conditions, suggesting wildtype proficiency of translation. However, growth was strongly inhibited in media supplemented with methyl methane sulfate (MMS) at a concentration not affecting the wild type. This inhibition was accompanied by the formation of tumor–like structures instead of auxiliary roots. Wild-type seedlings treated with increasing concentrations of MMS up to a lethal dose never displayed such a trait, neither was this phenotype observed in ars27A plants in the absence of MMS or under other stress conditions. Thus, the hypersensitivity and tumorous growth are mutant-specific responses to the genotoxic MMS treatment. Another important feature of the mutant is its inability to perform rapid degradation of transcripts after UV treatment, as seen in wild-type plants. Therefore, we propose that the ARS27A protein is dispensable for protein synthesis under standard conditions but is required for the elimination of possibly damaged mRNA after UV irradiation. (author)

  20. Genomic and proteomic analysis of Schizaphis graminum reveals cyclophilin proteins are involved in the transmission of cereal yellow dwarf virus.

    Directory of Open Access Journals (Sweden)

    Cecilia Tamborindeguy

    Full Text Available Yellow dwarf viruses cause the most economically important virus diseases of cereal crops worldwide and are transmitted by aphid vectors. The identification of aphid genes and proteins mediating virus transmission is critical to develop agriculturally sustainable virus management practices and to understand viral strategies for circulative movement in all insect vectors. Two cyclophilin B proteins, S28 and S29, were identified previously in populations of Schizaphisgraminum that differed in their ability to transmit the RPV strain of Cereal yellow dwarf virus (CYDV-RPV. The presence of S29 was correlated with F2 genotypes that were efficient virus transmitters. The present study revealed the two proteins were isoforms, and a single amino acid change distinguished S28 and S29. The distribution of the two alleles was determined in 12 F2 genotypes segregating for CYDV-RPV transmission capacity and in 11 genetically independent, field-collected S. graminum biotypes. Transmission efficiency for CYDV-RPV was determined in all genotypes and biotypes. The S29 isoform was present in all genotypes or biotypes that efficiently transmit CYDV-RPV and more specifically in genotypes that efficiently transport virus across the hindgut. We confirmed a direct interaction between CYDV-RPV and both S28 and S29 using purified virus and bacterially expressed, his-tagged S28 and S29 proteins. Importantly, S29 failed to interact with a closely related virus that is transported across the aphid midgut. We tested for in vivo interactions using an aphid-virus co-immunoprecipitation strategy coupled with a bottom-up LC-MS/MS analysis using a Q Exactive mass spectrometer. This analysis enabled us to identify a third cyclophilin protein, cyclophilin A, interacting directly or in complex with purified CYDV-RPV. Taken together, these data provide evidence that both cyclophilin A and B interact with CYDV-RPV, and these interactions may be important but not sufficient to mediate

  1. Involvement of activated leukocytes in the regulation of plasma levels of acute phase proteins in microgravity simulation experiments

    Science.gov (United States)

    Larina, Olga; Bekker, Anna; Turin-Kuzmin, Alexey

    2016-07-01

    Earth-based studies of microgravity effects showed the induction of the mechanisms of acute phase reaction (APR). APR comprises the transition of stress-sensitive protein kinases of macrophages and other responsive cells into the active state and the phosphorylation of transcription factors which in turn stimulate the production of acute-phase reaction cytokines. Leukocyte activation is accompanied by the acceleration of the formation of oxygen radicals which can serve a functional indice of leukocyte cell state. The series of events at acute phase response result in selective changes in the synthesis of a number of secretory blood proteins (acute phase proteins, APPs) in liver cells thus contributing the recovery of homeostasis state in the organism. Earlier experiment with head-down tilt showed the increase in plasma concentrations of two cytokine mediators of acute phase response, tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) being the outcome of the activation of producer cells, foremost, leukocytes. In experiment with 4-day dry immersion chemiluminescent (ChL) reply of the whole blood samples to a test stimulus were studied along with the measurements of plasma levels of APPs, namely, alpha1-antitrypsin (alpha1-AT), alpha1-acid glycoprotein (alpha1-AGP), alpha2-macroglobulin (alpha2-M), ceruloplasmin (Cer), haptoglobin (Hp), C3-complement component (C3), C-reactive protein (CRP). Eight individuals aged 21.2 ± 3.2 years were the test subjects in the investigation. Protein studies showed a noticeable increase in the mean plasma levels of all APPs measured in experiment thus producing the evidence of the activation of acute phase response mechanisms while individual patterns revealed variability during the immersion period. The overall trends were similar to these in the previous immersion series. The augment in the strength of signal in stimulated light emission tests was higher after 1- and 2-day of immersion exposure than before the

  2. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake

    DEFF Research Database (Denmark)

    Habets, Daphna D J; Luiken, Joost J F P; Ouwens, Margriet

    2012-01-01

    Aim: The signaling pathways involved in the regulation of cardiac GLUT4 translocation/glucose uptake and CD36 translocation/long-chain fatty acid uptake are not fully understood. We compared in heart/muscle-specific PKC-¿ knockout mice the roles of atypical PKCs (PKC-¿ and PKC-¿) in regulating...

  3. Comparative proteomic analysis of oil palm leaves infected with Ganoderma boninense revealed changes in proteins involved in photosynthesis, carbohydrate metabolism, and immunity and defense.

    Science.gov (United States)

    Jeffery Daim, Leona Daniela; Ooi, Tony Eng Keong; Ithnin, Nalisha; Mohd Yusof, Hirzun; Kulaveerasingam, Harikrishna; Abdul Majid, Nazia; Karsani, Saiful Anuar

    2015-08-01

    The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A CheR/CheB fusion protein is involved in cyst cell development and chemotaxis in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Wu, Lixian; Cui, Yanhua; Hong, Yuanyuan; Chen, Sanfeng

    2011-12-20

    We here report the sequence and functional analysis of cstB of Azospirillum brasilense Sp7. The predicted cstB contains C-terminal two PAS domains and N-terminal part which has similarity with CheB-CheR fusion protein. cstB mutants had reduced swarming ability compared to that of A. brasilense wild-type strain, implying that cstB was involved in chemotaxis in A. brasilense. A microscopic analysis revealed that cstB mutants developed mature cyst cells more quickly than wild type, indicating that cstB is involved in cyst formation. cstB mutants were affected in colony morphology and the production of exopolysaccharides (EPS) which are essential for A. brasilense cells to differentiate into cyst-like forms. These observations suggested that cstB was a multi-effector involved in cyst development and chemotaxis in A. brasilense. Copyright © 2010 Elsevier GmbH. All rights reserved.

  5. Physical interaction between replication protein A (RPA) and MRN: involvement of RPA2 phosphorylation and the N-terminus of RPA1.

    Science.gov (United States)

    Oakley, Greg G; Tillison, Kristin; Opiyo, Stephen A; Glanzer, Jason G; Horn, Jeffrey M; Patrick, Steve M

    2009-08-11

    Replication protein A (RPA) is a heterotrimeric protein consisting of RPA1, RPA2, and RPA3 subunits that binds to single-stranded DNA (ssDNA) with high affinity. The response to replication stress requires the recruitment of RPA and the MRE11-RAD50-NBS1 (MRN) complex. RPA bound to ssDNA stabilizes stalled replication forks by recruiting checkpoint proteins involved in fork stabilization. MRN can bind DNA structures encountered at stalled or collapsed replication forks, such as ssDNA-double-stranded DNA (dsDNA) junctions or breaks, and promote the restart of DNA replication. Here, we demonstrate that RPA2 phosphorylation regulates the assembly of DNA damage-induced RPA and MRN foci. Using purified proteins, we observe a direct interaction between RPA with both NBS1 and MRE11. By utilizing RPA bound to ssDNA, we demonstrate that substituting RPA with phosphorylated RPA or a phosphomimetic weakens the interaction with the MRN complex. Also, the N-terminus of RPA1 is a critical component of the RPA-MRN protein-protein interaction. Deletion of the N-terminal oligonucleotide-oligosaccharide binding fold (OB-fold) of RPA1 abrogates interactions of RPA with MRN and individual proteins of the MRN complex. Further identification of residues critical for MRN binding in the N-terminus of RPA1 shows that substitution of Arg31 and Arg41 with alanines disrupts the RPA-MRN interaction and alters cell cycle progression in response to DNA damage. Thus, the N-terminus of RPA1 and phosphorylation of RPA2 regulate RPA-MRN interactions and are important in the response to DNA damage.

  6. Involvement of p38 mitogen-activated protein kinase in acquired gemcitabine-resistant human urothelial carcinoma sublines

    Directory of Open Access Journals (Sweden)

    Yu-Ting Kao

    2014-07-01

    Full Text Available Resistance to chemotherapeutic drugs is one of the major challenges in the treatment of cancer. A better understanding of how resistance arises and what molecular alterations correlate with resistance is the key to developing novel effective therapeutic strategies. To investigate the underlying mechanisms of gemcitabine (Gem resistance and provide possible therapeutic options, three Gem-resistant urothelial carcinoma sublines were established (NG0.6, NG0.8, and NG1.0. These cells were cross-resistant to arabinofuranosyl cytidine and cisplatin, but sensitive to 5-fluorouracil. The resistant cells expressed lower values of [hENT1 × dCK/RRM1 × RRM2] mRNA ratio. Two adenosine triphosphate-binding cassette proteins ABCD1 as well as multidrug resistance protein 1 were elevated. Moreover, cyclin D1, cyclin-dependent kinases 2 and 4 were upregulated, whereas extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase (MAPK activity were repressed significantly. Administration of p38 MAPK inhibitor significantly reduced the Gem sensitivity in NTUB1 cells, whereas that of an extracellular signal-regulated kinase MAPK inhibitor did not. Furthermore, the Gem-resistant sublines also exhibited higher migration ability. Forced expression of p38 MAPK impaired the cell migration activity and augmented Gem sensitivity in NG1.0 cells. Taken together, these results demonstrate that complex mechanisms were merged in acquiring Gem resistance and provide information that can be important for developing therapeutic targets for treating Gem-resistant tumors.

  7. A plant EPF-type zinc-finger protein, CaPIF1, involved in defence against pathogens.

    Science.gov (United States)

    Oh, Sang-Keun; Park, Jeong Mee; Joung, Young Hee; Lee, Sanghyeob; Chung, Eunsook; Kim, Soo-Yong; Yu, Seung Hun; Choi, Doil

    2005-05-01

    SUMMARY To understand better the defence responses of plants to pathogen attack, we challenged hot pepper plants with bacterial pathogens and identified transcription factor-encoding genes whose expression patterns were altered during the subsequent hypersensitive response. One of these genes, CaPIF1 (Capsicum annuum Pathogen-Induced Factor 1), was characterized further. This gene encodes a plant-specific EPF-type protein that contains two Cys(2)/His(2) zinc fingers. CaPIF1 expression was rapidly and specifically induced when pepper plants were challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generated weak CaPIF1 expression. CaPIF1 expression was also strongly induced in pe