WorldWideScience

Sample records for hemoglobin-containing liposome vesicles

  1. Automatic labeling method for injectable 15O-oxygen using hemoglobin-containing liposome vesicles and its application for measurement of brain oxygen consumption by PET

    International Nuclear Information System (INIS)

    Tiwari, Vijay Narayan; Kiyono, Yasushi; Kobayashi, Masato; Mori, Tetsuya; Kudo, Takashi; Okazawa, Hidehiko; Fujibayashi, Yasuhisa

    2010-01-01

    Introduction: The aim of this study was to develop an injectable 15 O-O 2 system using hemoglobin-containing vesicles (HbV), a type of artificial red blood cell, and to investigate the feasibility of 15 O 2 -labeled HbV ( 15 O 2 -HbV) to measure cerebral metabolic rate of oxygen (CMRO 2 ) in rats. Methods: The direct bubbling method was combined with vortexing to enhance labeling efficiency of HbV with 15 O-O 2 gas. L-Cysteine was added as a reductant to protect hemoglobin molecules in HbV from oxidation at different concentrations, and labeling efficiencies were also compared. Measurement of cerebral blood flow (CBF) and CMRO 2 in five normal rats was performed using a small animal PET scanner after the injection of H 2 15 O and 15 O 2 -HbV to evaluate the precision of hemodynamic parameters quantitatively. Results: The labeling efficiency of HbV was significantly increased when vortexing and bubbling were combined compared with the simple bubbling method (P 15 O-O 2 combined with vortexing and the addition of 2.8 mM L-cysteine in HbV solution. The mean radioactivity of 214.4±7.8 MBq/mL HbV was obtained using this method. PET scans using 15 O 2 -HbV and H 2 15 O yielded a mean CMRO 2 value of 6.8±1.4 (mL/min per 100 g) in rats with normal CBF of 51.4±7.9 (mL/min per 100 g). Conclusion: Addition of L-cysteine to HbV and simple direct bubbling of 15 O-O 2 gas combined with vortexing was the most efficient method for preparation of 15 O 2 -HbV. The present injectable system using 15 O 2 -HbV was successfully utilized to measure CMRO 2 in rats, indicating that this new method could be useful for animal models to measure oxygen metabolism in the brain.

  2. Automatic labeling method for injectable {sup 15}O-oxygen using hemoglobin-containing liposome vesicles and its application for measurement of brain oxygen consumption by PET

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Vijay Narayan [Biomedical Imaging Research Center, University of Fukui, Fukui (Japan)], E-mail: tiwaridr@u-fukui.ac.jp; Kiyono, Yasushi; Kobayashi, Masato; Mori, Tetsuya; Kudo, Takashi [Biomedical Imaging Research Center, University of Fukui, Fukui (Japan); Okazawa, Hidehiko [Biomedical Imaging Research Center, University of Fukui, Fukui (Japan); Research and Education Program for Life Science, University of Fukui, Fukui (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, Fukui (Japan); Research and Education Program for Life Science, University of Fukui, Fukui (Japan)], E-mail: yfuji@u-fukui.ac.jp

    2010-01-15

    Introduction: The aim of this study was to develop an injectable {sup 15}O-O{sub 2} system using hemoglobin-containing vesicles (HbV), a type of artificial red blood cell, and to investigate the feasibility of {sup 15}O{sub 2}-labeled HbV ({sup 15}O{sub 2}-HbV) to measure cerebral metabolic rate of oxygen (CMRO{sub 2}) in rats. Methods: The direct bubbling method was combined with vortexing to enhance labeling efficiency of HbV with {sup 15}O-O{sub 2} gas. L-Cysteine was added as a reductant to protect hemoglobin molecules in HbV from oxidation at different concentrations, and labeling efficiencies were also compared. Measurement of cerebral blood flow (CBF) and CMRO{sub 2} in five normal rats was performed using a small animal PET scanner after the injection of H{sub 2}{sup 15}O and {sup 15}O{sub 2}-HbV to evaluate the precision of hemodynamic parameters quantitatively. Results: The labeling efficiency of HbV was significantly increased when vortexing and bubbling were combined compared with the simple bubbling method (P<.05). The most efficient method for labeling was bubbling of {sup 15}O-O{sub 2} combined with vortexing and the addition of 2.8 mM L-cysteine in HbV solution. The mean radioactivity of 214.4{+-}7.8 MBq/mL HbV was obtained using this method. PET scans using {sup 15}O{sub 2}-HbV and H{sub 2}{sup 15}O yielded a mean CMRO{sub 2} value of 6.8{+-}1.4 (mL/min per 100 g) in rats with normal CBF of 51.4{+-}7.9 (mL/min per 100 g). Conclusion: Addition of L-cysteine to HbV and simple direct bubbling of {sup 15}O-O{sub 2} gas combined with vortexing was the most efficient method for preparation of {sup 15}O{sub 2}-HbV. The present injectable system using {sup 15}O{sub 2}-HbV was successfully utilized to measure CMRO{sub 2} in rats, indicating that this new method could be useful for animal models to measure oxygen metabolism in the brain.

  3. A Phase of Liposomes with Entangled Tubular Vesicles

    Science.gov (United States)

    Chiruvolu, Shivkumar; Warriner, Heidi E.; Naranjo, Edward; Idziak, Stefan H. J.; Radler, Joachim O.; Plano, Robert J.; Zasadzinski, Joseph A.; Safinya, Cyrus R.

    1994-11-01

    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled Ltv, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the Ltv phase coexists with the well-known L_4 phase of spherical vesicles and a bulk L_α phase. However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure.

  4. Improved permeability of acyclovir: optimization of mucoadhesive liposomes using the phospholipid vesicle-based permeation assay.

    Science.gov (United States)

    Naderkhani, Elenaz; Erber, Astrid; Škalko-Basnet, Nataša; Flaten, Gøril Eide

    2014-02-01

    The antiviral drug acyclovir (ACV) suffers from poor solubility both in lipophilic and hydrophilic environment, leading to low and highly variable bioavailability. To overcome these limitations, this study aimed at designing mucoadhesive ACV-containing liposomes to improve its permeability. Liposomes were prepared from egg phosphatidylcholine (E-PC) and E-PC/egg phosphatidylglycerol (E-PC/E-PG) and their surfaces coated with Carbopol. All liposomal formulations were fully characterized and for the first time the phospholipid vesicle-based permeation assay (PVPA) was used for testing in vitro permeability of drug from mucoadhesive liposome formulations. The negatively charged E-PC/E-PG liposomes could encapsulate more ACV than neutral E-PC liposomes. Coating with Carbopol increased the entrapment in the neutral E-PC liposomes. The incorporation of ACV into liposomes exhibited significant increase in its in vitro permeability, compared with its aqueous solution. The neutral E-PC liposomal formulations exhibited higher ACV permeability values compared with charged E-PC/E-PG formulations. Coating with Carbopol significantly enhanced the permeability from the E-PC/E-PG liposomes, as well as sonicated E-PC liposomes, which showed the highest permeability of all tested formulations. The increased permeability was according to the formulations' mucoadhesive properties. This indicates that the PVPA is suitable to distinguish between permeability of ACV from different mucoadhesive liposome formulations developed for various routes of administration. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. A Novel Drug Delivery Vesicle Development to Reverse Neurodegeneration: Analysis of the Interactions among Protein, Graphene Oxide and Liposome

    Science.gov (United States)

    Miraz, Md Alamin

    In this study, Liposome was decorated with graphene oxide (GO) to synthesize fully-biocompatible theranostic vesicle that can carry bovine serum albumin (BSA) as a model protein. Graphene oxide has been studied as one of the most promising platforms for promoting the growth and repair of neurons. Our graphene oxide based structure could account for the high efficiency of protein loading and deliver to the damaged neuron cell which can reverse the neurodegeneration associated with Alzheimer's disease. The resultant vesicle exhibited high stability in aqueous solution. We investigated the protein adsorption capacity and protein interaction to carbon-based nanomaterials. The Liposome, graphene oxide and bovine serum albumin (BSA) are all biocompatible and hence will not trigger an immune response in vivo.

  6. Ex vivo skin delivery of diclofenac by transcutol containing liposomes and suggested mechanism of vesicle-skin interaction.

    Science.gov (United States)

    Manconi, Maria; Caddeo, Carla; Sinico, Chiara; Valenti, Donatella; Mostallino, Maria Cristina; Biggio, Giovanni; Fadda, Anna Maria

    2011-05-01

    Recently, we described a novel family of liposomes, the Penetration Enhancer-containing Vesicles (PEVs), as carriers for enhanced (trans)dermal drug delivery. In this study, to go deeply into the potential of these new vesicles and suggest the possible mechanism of vesicle-skin interaction, we investigated transcutol containing PEVs as carriers for diclofenac, in the form of either acid or sodium salt. PEVs, prepared with soy phosphatidylcholine and aqueous solutions containing different concentrations of transcutol, were characterized by size distribution, zeta potential, incorporation efficiency, thermotropic behavior, and stability. (Trans)dermal diclofenac delivery from PEVs was investigated ex vivo through new born pig skin using conventional liposomes and a commercial gel as controls. The mode of action of the vesicles was also studied by performing a pre-treatment test and confocal laser scanning microscopy (CLSM) analyses. Results of the all skin permeation experiments showed an improved diclofenac (both acid and sodium salt) delivery to and through the skin when PEVs were used (especially in comparison with the commercial gel) thus suggesting intact PEVs' penetration through the pig skin. Images of the qualitative CLSM analyses support this conclusion. Thus, this work shows the superior ability of the PEVs to enhance ex vivo drug transport of both hydrophilic and lipophilic diclofenac forms. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Transformation from Multilamellar to Unilamellar Vesicles by Addition of a Cationic Lipid to PEGylated Liposomes Explored with Synchrotron Small Angle X-ray Scattering

    International Nuclear Information System (INIS)

    Sakuragi, Mina; Sakurai, Kazuo; Koiwai, Kazunori; Nakamura, Kouji; Masunaga, Hiroyasu; Ogawa, Hiroki

    2011-01-01

    PEGylated liposomes composed of a benzamidine derivative (TRX), hydrogenated soybean phosphatidylcholine (HSPC), and N-(monomethoxy-polyethyleneglycolcarbamyl) distearoyl phosphatidylethanolamine (PEG-PE) were examined in terms of how the addition of TRX affects their structures with small angle x-ray scattering (SAXS) as well as transmission electron microscopy (TEM). TEM images showed the presence of unilamella vesicles for both with and without TRX, though a small amount of multilamella vesicles were observed in absence of TRX. We analyzed SAXS profiles at contained TRX composition combined with contrast variation technique by adding PEG solution and unilamella vesicle model could be reproduced. Subsequently, we analyzed SAXS profiles at no TRX composition. The mixture model of unilamella and multilamella vesicle was reconstructed and we estimated about 10 % multilamella vesicles from a fitting parameter.

  8. Biological activity of liposomal vanillin.

    Science.gov (United States)

    Castan, Leniher; Del Toro, Grisel; Fernández, Adolfo A; González, Manuel; Ortíz, Emilia; Lobo, Daliana

    2013-06-01

    This article presents a study of vanillin encapsulation inside multilamellar liposomes, with emphasis on the evaluation of antioxidant activity, the hemolytic effect, and the antisickling properties of these products. Egg phosphatidylcholine-cholesterol and egg phosphatidylcholine-cholesterol-1-O-decylglycerol liposomes were prepared by mechanical dispersion, all with vanillin included. Vesicles were characterized by determination of encapsulation efficiency and vanillin retention capacity. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The hemolytic effect of liposomes was also evaluated by spectrophotometry, as well as the antisickling activity by the Huck test using optical microscopy. Results showed that the lipid composition of liposomes did not significantly affect the encapsulation efficiency. Stable vesicles were obtained with a high retention percentage of vanillin. Liposomes exhibited a high capture of the DPPH radical compared to free vanillin and 1-O-decylglycerol (C10) in solution. Vesicles caused no significant hemolisys in normal erythrocytes, nor in those coming from patients with sickle cell anemia. Vanillin encapsulated in liposomes retained its antisickling activity, with a greater effect for C10-containing vesicles. Our results show that vanillin encapsulation in liposomes is a way to enhance the pharmacologic properties of this molecule using a suitable vehicle.

  9. Prospects of liposomes using for creating of new forms of the medicinal and preventive preparations

    Directory of Open Access Journals (Sweden)

    M. A. Kisjakova

    2010-07-01

    Full Text Available Information on the structure, physical and chemical characteristics of the phospholipid vesicles (liposomes – the effective natural drug delivery system is presented. Types of liposomes, procedures of its productions, penetration mechanisms into cells and functional features of liposomal drugs are described. Data on production of liposomes with lactobacilli acellular homogenates and the methods of the liposomes structure control asre demonstrated.

  10. Liposome Technology for Industrial Purposes

    Directory of Open Access Journals (Sweden)

    Andreas Wagner

    2011-01-01

    Full Text Available Liposomes, spherical vesicles consisting of one or more phospholipid bilayers, were first described in the mid 60s by Bangham and coworkers. Since then, liposomes have made their way to the market. Today, numerous lab scale but only a few large-scale techniques are available. However, a lot of these methods have serious limitations in terms of entrapment of sensitive molecules due to their exposure to mechanical and/or chemical stress. This paper summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations in respect to industrial applicability. An additional point of view was taken to regulatory requirements concerning liposomal drug formulations based on FDA and EMEA documents.

  11. Liposomes as carriers of imaging agents

    International Nuclear Information System (INIS)

    Caride, V.J.

    1985-01-01

    This review discusses the utilization of liposomes as imaging agents or as vehicles for contrast materials. The initial approach was the use of radiolabeled liposomes for scintigraphy. To this end liposomes were either labeled in the lipid membrane or aqueous radiotracers were incorporated inside the lipid vesicles. The lipid labeling provides a more stable association of the radioactive tracer and the lipid vesicles, while the use of water-soluble radiotracers provides a wider selection of compounds. Early attempts at selective tumor imaging using radiolabeled liposomes were unsuccessful. The use of monoclonal antibodies attached to liposomes offers new hopes. Several strategies have been proposed in this respect and several others can be envisioned. The use of liposomes permits the use of several administration routes for imaging agents. Of particular interest is the subcutaneous administration for lymph node visualization. Liposomes offer clear advantages over most radiocontrast agents for prolonged hepatosplenic contrast enhancement. This is particularly relevant in the diagnostic evaluation of the abdomen with computed tomography. Important research efforts are being conducted in this area. Two different approaches have been advanced: the incorporation of contrast agents into liposomes and the preparation of radiopaque liposomes from radiodense lipids. Nuclear magnetic resonance imaging can also benefit from contrast agents. Several centers are investigating this exciting field using liposomes loaded with paramagnetic elements.152 references

  12. Liposome fusion and lipid exchange on ultraviolet irradiation of liposomes containing a photochromic phospholipid

    International Nuclear Information System (INIS)

    Morgan, C.G.; Sandhu, S.S.; Mitchell, A.C.

    1995-01-01

    A photochromic phospholipid, 1,2-bis[4-n-butylphenylazo)phenylbutyroyl]phosphatidylcholine (Bis-Azo PC) has been incorporated inot liposomes of gel- and liquid-crystalline-phase phospholipids. Liposomes of gel-phase phospholipid are stable in the presence of the trans photostationary state Bis-Az0 PC and can encapsulate fluorescent marker dye. On photoisomerization to the cis photostationary state, trapped marker is rapidly released. Liposomes containing Bis-Azo PC can rapidly fuse together after UV isomerization, this process continuing in the dark. Exposure to white light causes reversion of Bis-Azo PC to the trans form and halts dye leakage and vesicle fusion. Both unilamellar and multilamellar liposomes are able to fuse together on UV exposure. On UV photolysis, liposomes containing Bis-Azo PC do not fuse with a large excess of unlabeled liposomes, but transfer of Bis-Azo PC can be demonstrated spectrophotometrically. Vesicles of pure gel-phase lipid containing trapped marker dye but initially no Bis-Azo PC become leaky as a result of this lipid transfer. Liposomes composed of liquid-crystalline-phase phosphatidylcholine-containing Bis-Azo PC neither leak trapped marker nor fuse together on photolysis, nor do liquid-crystalline-phase liposomes, fuse with gel-phase liposomes under these conditions. (Author)

  13. Stimuli-Responsive Liposomes for Controlled Drug Delivery

    KAUST Repository

    Li, Wengang

    2014-01-01

    Liposomes are promising drug delivery vesicles due to their biodegradibility, large volume and biocompatibility towards both hydrophilic and hydrophobic drugs. They suffer, however, from poor stability which limits their use in controlled delivery

  14. Calcipotriol delivery into the skin with PEGylated liposomes

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Rønholt, Stine; Salte, Ragnhild Djønne

    2012-01-01

    The d-vitamin analogue calcipotriol is commonly used for topical treatment of psoriasis, but skin penetration is required for calcipotriol to reach its pharmacological target: the keratinocytes in the lower epidermis. Liposomes can enhance the delivery of drugs into the skin, but a major challenge...... of the liposomes and the ability to deliver membrane-intercalated calcipotriol into the skin. Inclusion of 0.5, l and 5mol% PEG-DSPE in the membrane enhanced the colloidal stability of the liposomes without compromising the delivery of calcipotriol from the vehicle into excised pig skin. Calcipotriol...... to large multilamellar vesicles, indicating that the liposomes to some extent migrate as intact vesicles into the stratum corneum. However, calcipotriol penetrated the skin better than the lipid component of the liposomes, suggesting that at least a fraction of the drug is released from the liposomes...

  15. Recent Advances and Perspectives in Liposomes for Cutaneous Drug Delivery.

    Science.gov (United States)

    Carita, Amanda C; Eloy, Josimar O; Chorilli, Marlus; Lee, Robert J; Leonardi, Gislaine Ricci

    2018-02-13

    The cutaneous route is attractive for the delivery of drugs in the treatment of a wide variety of diseases. However the stratum corneum (SC) is an effective barrier that hampers skin penetration. Within this context, liposomes emerge as a potential carrier for improving topical delivery of therapeutic agents. In this review, we aimed to discuss key aspects for the topical delivery by drug-loaded liposomes. Phospholipid type and phase transition temperature have been shown to affect liposomal topical delivery. The effect of surface charge is subject to considerable variation depending on drug and composition. In addition, modified vesicles with the presence of components for permeation enhancement, such as surfactants and solvents, have been shown to have a considerable effect. These liposomes include: Transfersomes, Niosomes, Ethosomes, Transethosomes, Invasomes, coated liposomes, penetration enhancer containing vesicles (PEVs), fatty acids vesicles, Archaeosomes and Marinosomes. Furthermore, adding polymeric coating onto liposome surface could influence cutaneous delivery. Mechanisms of delivery include intact vesicular skin penetration, free drug diffusion, permeation enhancement, vesicle adsorption to and/or fusion with the SC, trans-appendageal penetration, among others. Finally, several skin conditions, including acne, melasma, skin aging, fungal infections and skin cancer, have benefited from liposomal topical delivery of drugs, with promising in vitro and in vivo results. However, despite the existence of some clinical trials, more studies are needed to be conducted in order to explore the potential of liposomes in the dermatological field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Amyloglucosidase enzymatic reactivity inside lipid vesicles

    Directory of Open Access Journals (Sweden)

    Kim Jin-Woo

    2007-10-01

    Full Text Available Abstract Efficient functioning of enzymes inside liposomes would open new avenues for applications in biocatalysis and bioanalytical tools. In this study, the entrapment of amyloglucosidase (AMG (EC 3.2.1.3 from Aspergillus niger into dipalmitoylphosphatidylcholine (DPPC multilamellar vesicles (MLVs and large unilamellar vesicles (LUVs was investigated. Negative-stain, freeze-fracture, and cryo-transmission electron microscopy images verified vesicle formation in the presence of AMG. Vesicles with entrapped AMG were isolated from the solution by centrifugation, and vesicle lamellarity was identified using fluorescence laser confocal microscopy. The kinetics of starch hydrolysis by AMG was modeled for two different systems, free enzyme in aqueous solution and entrapped enzyme within vesicles in aqueous suspension. For the free enzyme system, intrinsic kinetics were described by a Michaelis-Menten kinetic model with product inhibition. The kinetic constants, Vmax and Km, were determined by initial velocity measurements, and Ki was obtained by fitting the model to experimental data of glucose concentration-time curves. Predicted concentration-time curves using these kinetic constants were in good agreement with experimental measurements. In the case of the vesicles, the time-dependence of product (glucose formation was experimentally determined and simulated by considering the kinetic behavior of the enzyme and the permeation of substrate into the vesicle. Experimental results demonstrated that entrapped enzymes were much more stable than free enyzme. The entrapped enzyme could be recycled with retention of 60% activity after 3 cycles. These methodologies can be useful in evaluating other liposomal catalysis operations.

  17. Mechanical Division of Cell-Sized Liposomes

    NARCIS (Netherlands)

    Deshpande, S.R.; Kerssemakers, J.W.J.; Dekker, C.

    2018-01-01

    Liposomes, self-assembled vesicles with a lipid-bilayer boundary similar to cell membranes, are extensively used in both fundamental and applied sciences. Manipulation of their physical properties, such as growth and division, may significantly expand their use as model systems in cellular and

  18. Vesicle electrohydrodynamics.

    Science.gov (United States)

    Schwalbe, Jonathan T; Vlahovska, Petia M; Miksis, Michael J

    2011-04-01

    A small amplitude perturbation analysis is developed to describe the effect of a uniform electric field on the dynamics of a lipid bilayer vesicle in a simple shear flow. All media are treated as leaky dielectrics and fluid motion is described by the Stokes equations. The instantaneous vesicle shape is obtained by balancing electric, hydrodynamic, bending, and tension stresses exerted on the membrane. We find that in the absence of ambient shear flow, it is possible that an applied stepwise uniform dc electric field could cause the vesicle shape to evolve from oblate to prolate over time if the encapsulated fluid is less conducting than the suspending fluid. For a vesicle in ambient shear flow, the electric field damps the tumbling motion, leading to a stable tank-treading state.

  19. Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin?

    Science.gov (United States)

    Bobryshev, Yuri V; Killingsworth, Murray C; Huynh, Thuan G; Lord, Reginald S A; Grabs, Anthony J; Valenzuela, Stella M

    2007-03-01

    Over recent years, the role of matrix vesicles in the initial stages of arterial calcification has been recognized. Matrix calcifying vesicles have been isolated from atherosclerotic arteries and the biochemical composition of calcified vesicles has been studied. No studies have yet been carried out to examine the fine structure of matrix vesicles in order to visualize the features of the consequent stages of their calcification in arteries. In the present work, a high resolution ultrastructural analysis has been employed and the study revealed that matrix vesicles in human atherosclerotic lesions are heterogeneous with two main types which we classified. Type I calcified vesicles were presented by vesicles surrounded by two electron-dense layers and these vesicles were found to be resistant to the calcification process in atherosclerotic lesions in situ. Type II matrix vesicles were presented by vesicles surrounded by several electron-dense layers and these vesicles were found to represent calcifying vesicles in atherosclerotic lesions. To test the hypothesis that calcification of matrix vesicles surrounded by multilayer sheets may occur simply as a physicochemical process, independently from the cell regulation, we produced multilamellar liposomes and induced their calcification in vitro in a manner similar to that occurring in matrix vesicles in atherosclerotic lesions in situ.

  20. Stimuli-Responsive Liposomes for Controlled Drug Delivery

    KAUST Repository

    Li, Wengang

    2014-09-01

    Liposomes are promising drug delivery vesicles due to their biodegradibility, large volume and biocompatibility towards both hydrophilic and hydrophobic drugs. They suffer, however, from poor stability which limits their use in controlled delivery applications. Herein, a novel method was devised for modification of liposomes with small molecules, polymers or nanoparticles to afford stimuli responsive systems that release on demand and stay relatively stable in the absence of the trigger.. This dissertation discusses thermosensitive, pH sensitive, light sensitive and magnetically triggered liposomes that have been prepared for controlled drug delivery application. RAFT polymerization was utilized for the preparation of thermosensitive liposomes (Cholesterol-PNIPAm) and acid-labile liposomes (DOPE-PAA). With low Mw Cholesterol-PNIPAm, the thermosensitive liposomes proved to be effective for controlled release and decreased the cytotoxicity of PNIPAm by eliciting the polymer doses. By crosslinking the DOPE-PAA on liposome surface with acid-labile diamine linkers, DOPE-PAA liposomes were verified to be sensitive at low pH. The effects of polymer structures (linear or hyperbranched) have also been studied for the stability and release properties of liposomes. Finally, a dual-responsive Au@SPIO embedded liposome hybrid (ALHs) was prepared with light-induced “on-and-off” function by photo-thermal process (visible light) and instant release properties triggered by alternating magnetic field, respectively. The ALH system would be further applied into the cellular imaging field as MRI contrast agent.

  1. Liposomal Conjugates for Drug Delivery to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Frieder Helm

    2015-04-01

    Full Text Available Treatments of central nervous system (CNS diseases often fail due to the blood–brain barrier. Circumvention of this obstacle is crucial for any systemic treatment of such diseases to be effective. One approach to transfer drugs into the brain is the use of colloidal carrier systems—amongst others, liposomes. A prerequisite for successful drug delivery by colloidal carriers to the brain is the modification of their surface, making them invisible to the reticuloendothelial system (RES and to target them to specific surface epitopes at the blood–brain barrier. This study characterizes liposomes conjugated with cationized bovine serum albumin (cBSA as transport vectors in vitro in porcine brain capillary endothelial cells (PBCEC and in vivo in rats using fluorescently labelled liposomes. Experiments with PBCEC showed that sterically stabilized (PEGylated liposomes without protein as well as liposomes conjugated to native bovine serum albumin (BSA were not taken up. In contrast, cBSA-liposomes were taken up and appeared to be concentrated in intracellular vesicles. Uptake occurred in a concentration and time dependent manner. Free BSA and free cBSA inhibited uptake. After intravenous application of cBSA-liposomes, confocal fluorescence microscopy of brain cryosections from male Wistar rats showed fluorescence associated with liposomes in brain capillary surrounding tissue after 3, 6 and 24 h, for liposomes with a diameter between 120 and 150 nm, suggesting successful brain delivery of cationized-albumin coupled liposomes.

  2. Bladder uptake of liposomes after intravesical administration occurs by endocytosis.

    Directory of Open Access Journals (Sweden)

    Bharathi Raja Rajaganapathy

    Full Text Available Liposomes have been used therapeutically and as a local drug delivery system in the bladder. However, the exact mechanism for the uptake of liposomes by bladder cells is unclear. In the present study, we investigated the role of endocytosis in the uptake of liposomes by cultured human UROtsa cells of urothelium and rat bladder. UROtsa cells were incubated in serum-free media with liposomes containing colloidal gold particles for 2 h either at 37°C or at 4°C. Transmission Electron Microscopy (TEM images of cells incubated at 37°C found endocytic vesicles containing gold inside the cells. In contrast, only extracellular binding was noticed in cells incubated with liposomes at 4°C. Absence of liposome internalization at 4°C indicates the need of energy dependent endocytosis as the primary mechanism of entry of liposomes into the urothelium. Flow cytometry analysis revealed that the uptake of liposomes at 37°C occurs via clathrin mediated endocytosis. Based on these observations, we propose that clathrin mediated endocytosis is the main route of entry for liposomes into the urothelial layer of the bladder and the findings here support the usefulness of liposomes in intravesical drug delivery.

  3. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes.

    Science.gov (United States)

    Schroeder, Avi; Kost, Joseph; Barenholz, Yechezkel

    2009-11-01

    Ultrasound is used in many medical applications, such as imaging, blood flow analysis, dentistry, liposuction, tumor and fibroid ablation, and kidney stone disruption. In the past, low frequency ultrasound (LFUS) was the main method to downsize multilamellar (micron range) vesicles into small (nano scale) unilamellar vesicles. Recently, the ability of ultrasound to induce localized and controlled drug release from liposomes, utilizing thermal and/or mechanical effects, has been shown. This review, deals with the interaction of ultrasound with liposomes, focusing mainly on the mechanical mechanism of drug release from liposomes using LFUS. The effects of liposome lipid composition and physicochemical properties, on one hand, and of LFUS parameters, on the other, on liposomal drug release, are addressed. Acoustic cavitation, in which gas bubbles oscillate and collapse in the medium, thereby introducing intense mechanical strains, increases release substantially. We suggest that the mechanism of release may involve formation and collapse of small gas nuclei in the hydrophobic region of the lipid bilayer during exposure to LFUS, thereby inducing the formation of transient pores through which drugs are released. Introducing PEG-lipopolymers to the liposome bilayer enhances responsivity to LFUS, most likely due to absorption of ultrasonic energy by the highly hydrated PEG headgroups. The presence of amphiphiles, such as phospholipids with unsaturated acyl chains, which destabilize the lipid bilayer, also increases liposome susceptibility to LFUS. Application of these principles to design highly LFUS-responsive liposomes is discussed.

  4. Encapsulation of phytosterols and phytosterol esters in liposomes made with soy phospholipids by high pressure homogenization.

    Science.gov (United States)

    Wang, Fan C; Acevedo, Nuria; Marangoni, Alejandro G

    2017-11-15

    Phytosterols and phytosterol esters were encapsulated within large unilamellar liposomes prepared with soy phospholipids using a microfluidizer. The average particle diameter of these liposomal vesicles increased with increasing amounts of encapsulated phytosterols, especially with increasing free sterol content. The phytosterol content, liposomal particle size, and phytosterol encapsulation efficiency started to plateau when liposomes were prepared with MOPS buffer dispersions that contained 50 mg ml -1 soy phospholipid and more than 4% phytosterol blend, suggesting the saturation of phytosterol encapsulation. We proposed an encapsulation mechanism of free sterols and phytosterol esters in liposomes, where free sterols were mainly encapsulated within the lumen of these liposomes as crystals, and sterol esters and some free sterols were incorporated within the phospholipid bilayer of the liposomal membrane. The results from this work could provide the pharmaceutical and nutraceutical industries a practical method to produce loaded liposomes using inexpensive phospholipid mixtures for the delivery of bioactive ingredients.

  5. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    Science.gov (United States)

    Riaz, Muhammad Kashif; Riaz, Muhammad Adil; Zhang, Xue; Lin, Congcong; Wong, Ka Hong; Chen, Xiaoyu; Lu, Aiping

    2018-01-01

    Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes) containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed. PMID:29315231

  6. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif Riaz

    2018-01-01

    Full Text Available Surface functionalization of liposomes can play a key role in overcoming the current limitations of nanocarriers to treat solid tumors, i.e., biological barriers and physiological factors. The phospholipid vesicles (liposomes containing anticancer agents produce fewer side effects than non-liposomal anticancer formulations, and can effectively target the solid tumors. This article reviews information about the strategies for targeting of liposomes to solid tumors along with the possible targets in cancer cells, i.e., extracellular and intracellular targets and targets in tumor microenvironment or vasculature. Targeting ligands for functionalization of liposomes with relevant surface engineering techniques have been described. Stimuli strategies for enhanced delivery of anticancer agents at requisite location using stimuli-responsive functionalized liposomes have been discussed. Recent approaches for enhanced delivery of anticancer agents at tumor site with relevant surface functionalization techniques have been reviewed. Finally, current challenges of functionalized liposomes and future perspective of smart functionalized liposomes have been discussed.

  7. Exploring the fate of liposomes in the intestine by dynamic in vitro lipolysis

    DEFF Research Database (Denmark)

    Parmentier, Johannes; Thomas, Nicky; Müllertz, Anette

    2012-01-01

    precipitation was detected during the lipolysis assay, despite pronounced lipolytic degradation and change in vesicle size. In conclusion, the tested dynamic in vitro lipolysis model is suitable for the assessment of liposome stability in the intestine. Furthermore, liposomes might be a useful alternative......Liposomes are generally well tolerated drug delivery systems with a potential use for the oral route. However, little is known about the fate of liposomes during exposure to the conditions in the gastro-intestinal tract (GIT). To gain a better understanding of liposome stability in the intestine......, a dynamic in vitro lipolysis model, which so far has only been used for the in vitro characterisation of other lipid-based drug delivery systems, was applied to different liposomal formulations. Liposome size and phospholipid (PL) digestion were determined as two markers for liposome stability. In addition...

  8. Placing and shaping liposomes with reconfigurable DNA nanocages

    Science.gov (United States)

    Zhang, Zhao; Yang, Yang; Pincet, Frederic; C. Llaguno, Marc; Lin, Chenxiang

    2017-07-01

    The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.

  9. DIFFERENTIAL HEPATIC PROCESSING AND BILIARY-SECRETION OF HEADGROUP AND ACYL CHAINS OF LIPOSOMAL PHOSPHATIDYLCHOLINES

    NARCIS (Netherlands)

    VERKADE, HJ; DERKSEN, JTP; GERDING, A; SCHERPHOF, GL; VONK, RJ; KUIPERS, F

    1991-01-01

    To investigate the contribution of plasma-derived phosphatidylcholine (PC) to bile PC, the hepatic processing and biliary secretion of liposome-associated PC was studied in rats. For this purpose, small unilamellar vesicles (SUV), containing trace amounts of

  10. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  11. Plasmon resonant liposomes for controlled drug delivery

    Science.gov (United States)

    Knights-Mitchell, Shellie S.; Romanowski, Marek

    2015-03-01

    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  12. Transcutol containing vesicles for topical delivery of minoxidil.

    Science.gov (United States)

    Mura, Simona; Manconi, Maria; Valenti, Donatella; Sinico, Chiara; Vila, Amparo Ofelia; Fadda, Anna Maria

    2011-04-01

    The aim of this work was to evaluate the ability of Transcutol (Trc) to produce elastic vesicles with soy lecithin (SL) and study the influence of the obtained vesicles on in vitro (trans)dermal delivery of minoxidil. To this purpose, so-called penetration enhancer-containing vesicles (PEVs) were prepared using Trc aqueous solutions (5-10-20-30% v/v) as hydrophilic phase. SL liposomes, without Trc, were used as control. Prepared formulations were characterized in terms of size distribution, morphology, zeta potential, deformability, and rheological behavior. The influence of the obtained PEVs on (trans)dermal delivery of minoxidil was studied by in vitro diffusion experiments through pig skin. Results showed that all prepared PEVs were able to give good entrapment efficiency (E%≈67) similar to that of conventional liposomes. Trc-containing PEVs showed to be more deformable than liposomes only when minoxidil was loaded in 5 and 10% Trc-containing vesicles. Rheological studies showed that PEVs have higher fluidity than conventional liposomes. All PEVs showed a higher stability than liposomes as shown by studying zeta potential and size distribution during three months. Results of in vitro diffusion experiments showed that Trc-containing PEVs are able to deliver minoxidil to deep skin layers without any transdermal permeation.

  13. The Physical Characterization of Liposome Salicylic Acid Using Transmission Electron Microscope

    International Nuclear Information System (INIS)

    Elman Panjaitan

    2008-01-01

    The physical characterization of liposome, formulated from salicylic acid using thin film hydration methods with cholesterol and soybean lecithin, has been done. The formula was characterized by optical microscopes and Transmission Electron Microscope (TEM). The observation result shows that the salicylic acid can be formulated to liposomes. Soybean lecithin combined with cholesterol (600 mg : 20 mg) was the best formula and the liposome was spherical vesicle like with dimension about 70 nm unit 800 nm. (author)

  14. Liposomal Formulations in Clinical Use: An Updated Review

    Directory of Open Access Journals (Sweden)

    Upendra Bulbake

    2017-03-01

    Full Text Available Liposomes are the first nano drug delivery systems that have been successfully translated into real-time clinical applications. These closed bilayer phospholipid vesicles have witnessed many technical advances in recent years since their first development in 1965. Delivery of therapeutics by liposomes alters their biodistribution profile, which further enhances the therapeutic index of various drugs. Extensive research is being carried out using these nano drug delivery systems in diverse areas including the delivery of anti-cancer, anti-fungal, anti-inflammatory drugs and therapeutic genes. The significant contribution of liposomes as drug delivery systems in the healthcare sector is known by many clinical products, e.g., Doxil®, Ambisome®, DepoDur™, etc. This review provides a detailed update on liposomal technologies e.g., DepoFoam™ Technology, Stealth technology, etc., the formulation aspects of clinically used products and ongoing clinical trials on liposomes.

  15. Silica-Coated Liposomes for Insulin Delivery

    OpenAIRE

    Neelam Dwivedi; M. A. Arunagirinathan; Somesh Sharma; Jayesh Bellare

    2010-01-01

    Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evid...

  16. Tumor targeting using liposomal antineoplastic drugs

    Directory of Open Access Journals (Sweden)

    Jörg Huwyler

    2008-03-01

    Full Text Available Jörg Huwyler1, Jürgen Drewe2, Stephan Krähenbühl21University of Applied Sciences Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland; 2Department of Research and Division of Clinical Pharmacology, University Hospital Basel, Basel, SwitzerlandAbstract: During the last years, liposomes (microparticulate phospholipid vesicles have beenused with growing success as pharmaceutical carriers for antineoplastic drugs. Fields of application include lipid-based formulations to enhance the solubility of poorly soluble antitumordrugs, the use of pegylated liposomes for passive targeting of solid tumors as well as vector-conjugated liposomal carriers for active targeting of tumor tissue. Such formulation and drug targeting strategies enhance the effectiveness of anticancer chemotherapy and reduce at the same time the risk of toxic side-effects. The present article reviews the principles of different liposomal technologies and discusses current trends in this field of research.Keywords: tumor targeting, antineoplastic drugs, liposomes, pegylation, steric stabilization, immunoliposomes

  17. Structural properties of liposomes from digital holographic microscopy

    Science.gov (United States)

    Di Maio, Isabelle L.; Carl, Daniel; Langehanenberg, Patrik; Valenzuela, Stella M.; Battle, Andrew R.; Al Khazaaly, Sabah; Killingsworth, Murray; Kemper, Bjorn; von Bally, Gert; Martin, Donald K.

    2006-01-01

    We have constructed liposomes from L alpha Phosphatidylcholine (PC) lipids, which are biomimetic lipids similar to those present in the membranes of mammalian cells. We propose an advance in the use of liposomes, such as for drug delivery, to incorporate into the liposomal membranes transport proteins that have been extracted from the lipid membranes of mammalian cells. In this paper, we describe the usage of a novel optical microscope to characterize the nanomechanical properties of these liposomes. We have applied the technique of digital holographic microscopy, using an instrument recently developed at the University of Münster, Germany. This system enabled us to measure quantitatively the structural changes in liposomes. We have investigated the deformations of these biomimetic lipids comprising these liposomes by applying osmotic stresses, in order to gain insight into the membrane environment prior to incorporation of cloned membrane transport proteins. This control of the nanomechanical properties is important in the stresses transmitted to mechanosensitive ion channels that we have incorporated into the liposomal membranes. These liposomes provide transporting vesicles that respond to mechanical stresses, such as those that occur during implantation.

  18. Influence of polymer size, liposomal composition, surface charge, and temperature on the permeability of pH-sensitive liposomes containing lipid-anchored poly(2-ethylacrylic acid

    Directory of Open Access Journals (Sweden)

    Lu T

    2012-09-01

    Full Text Available Tingli Lu,1 Zhao Wang,2 Yufan Ma,1 Yang Zhang,2 Tao Chen1,21Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, 2Liposome Research Centre, Xi'an, ChinaBackground: Liposomes containing pH-sensitive polymers are promising candidates for the treatment of tumors and localized infection. This study aimed to identify parameters influencing the extent of contents release from poly(ethylacrylic acid (PEAA vesicles, focusing on the effects of polymer size, lipid composition, vesicle surface charge, and temperature.Methods: Anchored lipid pH-sensitive PEAA was synthesized using PEAA with a molecular weight of 8.4 kDa. PEAA vesicles were prepared by insertion of the lipid-anchored PEAA into preformed large unilamellar vesicles. The preformed liposomes were manipulated by varying the phosphocholine and cholesterol content, and by adding negative or positive charges to the liposomes. A calcein release assay was used to evaluate the effects of polymer size, liposome composition, surface charge, and temperature on liposomal permeability.Results: The release efficiency of the calcein-entrapped vesicles was found to be dependent on the PEAA polymer size. PEAA vesicles containing a phosphatidylcholine to cholesterol ratio of 60:40 (mol/mol released more than 80% of their calcein content when the molecular weight of PEAA was larger than 8.4 kDa. Therefore, the same-sized polymer of 8.4 kDa was used for the rest of study. The calcein release potential was found to decrease as the percentage of cholesterol increased and with an increase in the phosphocholine acyl chain length (DMPC . DPPC . DSPC. Negatively charged and neutral vesicles released similar amounts of calcein, whereas positively charged liposomes released a significant amount of their contents. pH-sensitive release was dependent on temperature. Dramatic content release was observed at higher temperatures.Conclusion: The observed

  19. Microspectroscopic Study of Liposome-to-cell Interaction Revealed by Förster Resonance Energy Transfer.

    Science.gov (United States)

    Yefimova, Svetlana L; Kurilchenko, Irina Yu; Tkacheva, Tatyana N; Kavok, Nataliya S; Todor, Igor N; Lukianova, Nataliya Yu; Chekhun, Vasyl F; Malyukin, Yuriy V

    2014-03-01

    We report the Förster resonance energy transfer (FRET)-labeling of liposomal vesicles as an effective approach to study in dynamics the interaction of liposomes with living cells of different types (rat hepatocytes, rat bone marrow, mouse fibroblast-like cells and human breast cancer cells) and cell organelles (hepatocyte nuclei). The in vitro experiments were performed using fluorescent microspectroscopic technique. Two fluorescent dyes (DiO as the energy donor and DiI as an acceptor) were preloaded in lipid bilayers of phosphatidylcholine liposomes that ensures the necessary distance between the dyes for effective FRET. The change in time of the donor and acceptor relative fluorescence intensities was used to visualize and trace the liposome-to-cell interaction. We show that FRET-labeling of liposome vesicles allows one to reveal the differences in efficiency and dynamics of these interactions, which are associated with composition, fluidity, and metabolic activity of cell plasma membranes.

  20. Improved stability of highly fluorinated phospholipid-based vesicles in the presence of bile salts.

    Science.gov (United States)

    Gadras, C; Santaella, C; Vierling, P

    1999-01-04

    The stability of fluorinated phospholipid-based vesicles in terms of detergent-induced release of encapsulated carboxyfluorescein has been evaluated. The fluorinated liposomes are substantially more resistant towards the lytic action of sodium taurocholate than conventional DSPC or even DSPC/CH 1/1 liposomes. Concerning structure/permeability relationships, the larger the fluorination degree of the membrane, the higher the resistance of the fluorinated liposomes to their destruction by the detergent. These results show that fluorinated liposomes have a promising potential as drug carrier and delivery systems for oral administration.

  1. Liposomal packaging generates Wnt protein with in vivo biological activity.

    Directory of Open Access Journals (Sweden)

    Nathan T Morrell

    2008-08-01

    Full Text Available Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.

  2. Atmospheric-pressure guided streamers for liposomal membrane disruption

    International Nuclear Information System (INIS)

    Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.; Gazeli, K.; Clément, F.; Antimisiaris, S. G.

    2012-01-01

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  3. Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity

    Directory of Open Access Journals (Sweden)

    Prabhu P

    2012-01-01

    Full Text Available Prabhakara Prabhu1, Rakshith Shetty1, Marina Koland1, K Vijayanarayana3, KK Vijayalakshmi2, M Harish Nairy1, GS Nisha11Department of Pharmaceutics, Nitte University, NGSM Institute of Pharmaceutical Sciences, Paneer, Deralakatte, Mangalore, Karnataka, India; 2Department of Applied Zoology, Mangalore University, Konaje, Mangalore, Karnataka, India; 3Department of Pharmacy Practice, Manipal University, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, IndiaBackground: The purpose of this study was to formulate and evaluate nano lipid vesicles of methotrexate (MTX for its anti-rheumatoid activity.Methods: In this study the principle of both active as well as passive targeting using MTX-loaded stealth liposomes as per the magic gun approach was followed. Stealth liposomes of MTX were prepared by thin-film hydration method using a PEGylated phospholipid-like DSPE-MPEG 2000. Similarly, conventional liposomes were prepared using phospholipids like DPPC and DSPC. Conventional liposomes were coated with a hydrophilic biocompatible polymer like chitosan. They were investigated for their physical properties and in vitro release profile. Further, in vivo screening of the formulations for their anti-rheumatoid efficacy was carried out in rats. Rheumatoid arthritis was induced in male Wistar-Lewis rats using complete Freund’s adjuvant (1 mg/mL Mycobacterium tuberculosis, heat killed in mineral oil.Results: It was found that chitosan coating of the conventional liposomes increased the physical stability of the liposomal suspension as well as its entrapment efficiency. The size of the unsonicated lipid vesicles was found to be in the range of 8–10 µm, and the sonicated lipid vesicles in the range of 210–260 nm, with good polydispersity index. Further, chitosan-coated conventional liposomes and the PEGylated liposomes released the drug for a prolonged period of time, compared to the uncoated conventional liposomes. It was found that there

  4. The effect of reticuloendothelial blockade on the blood clearance and tissue distribution of liposomes

    International Nuclear Information System (INIS)

    Souhami, R.L.; Patel, H.M.; Ryman, B.E.

    1981-01-01

    The blood clearance and tissue distribution of liposomes have been studied in mice subjected to reticuloendothelial blockade with dextran sulphate or carbon. The liposomes have been labelled in the lipid membranes with [ 3 H]-cholesterol, [ 14 C]phosphatidylcholine and/or 99 sup(m)Tc and the content with [ 14 C]inulin. Reticuloendothelial blockade has been shown to slow the rate of clearance of neutral, positively and negatively charged liposomes and of both small unilamellar vesicles and large multilamellar vesicles. In normal animals, the liver uptake accounted for only 20-55% of the total injected radioactivity, the amount varying with the charge and size of the liposomes. Following blockade, the liver uptake of charged and neutral multilamellar liposomes was depressed. This was also true for negatively charged small unilamellar vesicles. The degree of depression of hepatic uptake was between 25-50%, which contrasts with the 80-90% reduction in uptake of a wholly phagocytosed particle (sheep red cells). This difference suggets that mechanisms other than Kupffer cell phagocytosis are also responsible for the normal uptake of liposomes into the liver. In the case of neutral and positively charged small unilamellar vesicles, delayed clearance due to blockade was not associated with depressed hepatic uptake. The site of action of blockading agents for these preparations is not clear. With all preparations of liposomes, blockade produced a slight and variable increase in uptake in the lung and spleen. The alteration of distribution of liposomes by reticuloendothelial blockade is therefore not great and the value of the technique in modifying the tissue distribution of substances within liposomes may be limited. (orig.)

  5. Evaluation of the physicochemical properties of liposomes as potential carriers of anticancer drugs: spectroscopic study

    International Nuclear Information System (INIS)

    Pentak, Danuta

    2016-01-01

    Vesicle size and composition are a critical parameter for determining the circulation half-life of liposomes. Size influences the degree of drug encapsulation in liposomes. The geometry, size, and properties of liposomes in an aqueous environment have to be described to enable potential applications of liposome systems as drug carriers. The characteristics of multiple thermotropic phase transitions are also an important consideration in liposomes used for analytical and bioanalytical purposes. The aim of this study was to evaluate the physicochemical properties of liposomes which accommodate hydrophilic and amphiphilic drugs used in cancer therapy. The studied liposomes were prepared with the involvement of the modified reverse-phase evaporation method (mREV). The prepared liposomes had a diameter of 70–150 nm. The analyzed compounds were 1-β-d-arabinofuranosylcytosine, cyclophosphamide, and ifosfamide. In literature, there is no information about simultaneous incorporation of cytarabine, ifosfamide, and cyclophosphamide, in spite of the fact that these drugs have been used for more than 30 years. A combination of the examined drugs is used in CODOX-M/IVAC therapy. CODOX-M/IVAC (cyclophosphamide, doxorubicin, high-dose methotrexate/ifosfamide, etoposide, and high-dose cytarabine) is one of the currently preferred intensive-dose chemotherapy regimens for Burkitt lymphoma (BL). The present research demonstrates the pioneering studies of incorporation of ifosfamide into liposome vesicles, location of and competition between the analyzed drugs and liposome vesicles. The applied methods were nuclear magnetic resonance (NMR), atomic force microscopy (AFM), differential scanning calorimetry (DSC).Graphical Abstract.

  6. Evaluation of the physicochemical properties of liposomes as potential carriers of anticancer drugs: spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Pentak, Danuta, E-mail: danuta.pentak@us.edu.pl [University of Silesia, Department of Materials Chemistry and Chemical Technology, Institute of Chemistry (Poland)

    2016-05-15

    Vesicle size and composition are a critical parameter for determining the circulation half-life of liposomes. Size influences the degree of drug encapsulation in liposomes. The geometry, size, and properties of liposomes in an aqueous environment have to be described to enable potential applications of liposome systems as drug carriers. The characteristics of multiple thermotropic phase transitions are also an important consideration in liposomes used for analytical and bioanalytical purposes. The aim of this study was to evaluate the physicochemical properties of liposomes which accommodate hydrophilic and amphiphilic drugs used in cancer therapy. The studied liposomes were prepared with the involvement of the modified reverse-phase evaporation method (mREV). The prepared liposomes had a diameter of 70–150 nm. The analyzed compounds were 1-β-d-arabinofuranosylcytosine, cyclophosphamide, and ifosfamide. In literature, there is no information about simultaneous incorporation of cytarabine, ifosfamide, and cyclophosphamide, in spite of the fact that these drugs have been used for more than 30 years. A combination of the examined drugs is used in CODOX-M/IVAC therapy. CODOX-M/IVAC (cyclophosphamide, doxorubicin, high-dose methotrexate/ifosfamide, etoposide, and high-dose cytarabine) is one of the currently preferred intensive-dose chemotherapy regimens for Burkitt lymphoma (BL). The present research demonstrates the pioneering studies of incorporation of ifosfamide into liposome vesicles, location of and competition between the analyzed drugs and liposome vesicles. The applied methods were nuclear magnetic resonance (NMR), atomic force microscopy (AFM), differential scanning calorimetry (DSC).Graphical Abstract.

  7. Preparation and characterization of clove essential oil-loaded liposomes.

    Science.gov (United States)

    Sebaaly, Carine; Jraij, Alia; Fessi, Hatem; Charcosset, Catherine; Greige-Gerges, Hélène

    2015-07-01

    In this study, suitable formulations of natural soybean phospholipid vesicles were developed to improve the stability of clove essential oil and its main component, eugenol. Using an ethanol injection method, saturated (Phospholipon 80H, Phospholipon 90H) and unsaturated soybean (Lipoid S100) phospholipids, in combination with cholesterol, were used to prepare liposomes at various eugenol and clove essential oil concentrations. Liposomal batches were characterized and compared for their size, polydispersity index, Zeta potential, loading rate, encapsulation efficiency and morphology. The liposomes were tested for their stability after storing them for 2 months at 4°C by monitoring changes in their mean size, polydispersity index and encapsulation efficiency (EE) values. It was found that liposomes exhibited nanometric oligolamellar and spherical shaped vesicles and protected eugenol from degradation induced by UV exposure; they also maintained the DPPH-scavenging activity of free eugenol. Liposomes constitute a suitable system for encapsulation of volatile unstable essential oil constituents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. [Separate factors influencing the interaction of carbohydrate- containing liposomes with galactose-specific lectins].

    Science.gov (United States)

    Dvorkin, V M; Vidershaĭn, G Ia

    1984-11-01

    Some natural (Gal-Cer, Lac-Cer, desyalylated gangliosides) and synthetic (HMGal) glycolipids differing in the length of the bridge linking the terminal galactose with the hydrophobic moiety were incorporated into the liposome membranes. The precipitation of the thus obtained vesicles induced by galactose-specific lectin RCA was studied. It was shown that when the amount of the glycolipids used for the incorporation into the liposomes (1 mol. %) was the same, the vesicles with HMGal or Gal-Cer incorporated into them did not precipitate in the presence of lectin, whereas the liposomes with incorporated Lac-Cer or desyalylated gangliosides did precipitate. It was thus concluded that in order for galactose-containing liposomes precipitation by lectin RCA1 to be induced, galactose should be separated from the liposome membrane with a distance not less than 7 A. The nature of lectin-induced nonspecific precipitation of ganglioside-containing liposomes, ganglioside mycelles and cardiolipin-lecithine liposomes containing lactosylceramide was investigated. Some nonspecific ionic interactions of negatively charged liposomes and ganglioside mycelles with lectin were observed, which disappeared with a rise in the NaCl concentration up to 150-200 mM.

  9. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil.

    Science.gov (United States)

    Mura, Simona; Manconi, Maria; Sinico, Chiara; Valenti, Donatella; Fadda, Anna Maria

    2009-10-01

    The aim of this work was to evaluate the ability of a few different penetration enhancers to produce elastic vesicles with soy lecithin and the influence of the obtained vesicles on in vitro (trans)dermal delivery of minoxidil. To this purpose, so-called Penetration Enhancer-containing Vesicles (PEVs) were prepared as dehydrated-rehydrated vesicles by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy)ethanol (Transcutol), capryl-caproyl macrogol 8-glyceride (Labrasol), and cineole. Soy lecithin liposomes, without penetration enhancers, were used as control. Prepared formulations were characterized in terms of size distribution, morphology, zeta potential, and vesicle deformability. The influence of PEVs on (trans)dermal delivery of minoxidil was studied by in vitro diffusion experiments through newborn pig skin in comparison with traditional liposomes and ethanolic solutions of the drug also containing each penetration enhancer. A skin pre-treatment study using empty PEVs and conventional liposomes was also carried out. Results showed that all the used penetration enhancers were able to give more deformable vesicles than conventional liposomes with a good drug entrapment efficiency and stability. In vitro skin penetration data showed that PEVs were able to give a statistically significant improvement of minoxidil deposition in the skin in comparison with classic liposomes and penetration enhancer-containing drug ethanolic solutions without any transdermal delivery. Moreover, the most deformable PEVs, prepared with Labrasol and cineole, were also able to deliver to the skin a higher total amount of minoxidil than the PE alcoholic solutions thus suggesting that minoxidil delivery to the skin was strictly correlated to vesicle deformability, and therefore to vesicle composition.

  10. Silica-Coated Liposomes for Insulin Delivery

    Directory of Open Access Journals (Sweden)

    Neelam Dwivedi

    2010-01-01

    Full Text Available Liposomes coated with silica were explored as protein delivery vehicles for their enhanced stability and improved encapsulation efficiency. Insulin was encapsulated within the fluidic phosphatidylcholine lipid vesicles by thin film hydration at pH 2.5, and layer of silica was formed above lipid bilayer by acid catalysis. The presence of silica coating and encapsulated insulin was identified using confocal and electron microscopy. The native state of insulin present in the formulation was evident from Confocal Micro-Raman spectroscopy. Silica coat enhances the stability of insulin-loaded delivery vehicles. In vivo study shows that these silica coated formulations were biologically active in reducing glucose levels.

  11. A study of liposome formation using a solution (isoperibol) calorimeter.

    Science.gov (United States)

    Barriocanal, L; Taylor, K M G; Buckton, G

    2004-12-09

    A solution (isoperibol) calorimeter has been employed to study the process of formation of phospholipid vesicles from natural and synthetic phospholipid films. Phospholipid films were hydrated in the solution calorimeter at temperatures exceeding the main phospholipid phase transition temperature, with continuous agitation to ensure conversion of the hydrating bilayers into multilamellar liposomes. It was seen that retention of chloroform in phospholipid films altered the apparent enthalpy change of vesicle formation to a far greater extent than would be expected from the contribution of the enthalpy of solution of chloroform; this indicates that chloroform alters the hydration process of the lipid. The overall measured enthalpy change for the formation of egg phosphatidylcholine vesicles was exothermic, whilst that for dimyristoylphosphatidylcholine was endothermic. This difference, it is suggested, results from the influence of the hydrocarbon chains mostly on the hydration process and also on the process of vesicle formation.

  12. Interaction of dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin

    Science.gov (United States)

    Mady, Mohsen M.; Elshemey, Wael M.

    2011-06-01

    Insulin, a peptide that has been used for decades in the treatment of diabetes, has well-defined properties and delivery requirements. Liposomes, which are lipid bilayer vesicles, have gained increasing attention as drug carriers which reduce the toxicity and increase the pharmacological activity of various drugs. The molecular interaction between (uncharged lipid) dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin has been characterized by using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The characteristic protein absorption band peaks, Amide I (at about 1660 cm-1) and Amide II band (at about 1546 cm-1) are potentially reduced in the liposome insulin complex. Wide-angle x-ray scattering measurements showed that the association of insulin with DPPC lipid of liposomes still maintains the characteristic DPPC diffraction peaks with almost no change in relative intensities or change in peak positions. The absence of any shift in protein peak positions after insulin being associated with DPPC liposomes indicates that insulin is successfully forming complex with DPPC liposomes with possibly no pronounced alterations in the structure of insulin molecule.

  13. Liposome distribution after intravenous and selective intraarterial infusion in dogs

    International Nuclear Information System (INIS)

    Wright, K.C.; Kasi, L.P.; Jahns, M.S.; Hashimoto, S.; Wallace, S.

    1990-01-01

    In an effort to improve hepatic uptake of liposomes for drug delivery, empty vesicles were administered by means of selective arterial infusion. Negatively charged, multilamellar liposomes were labeled with technetium-99m and infused into healthy adult dogs. Each dog received 100 mg/m2 of lipid over 10 minutes at 2 mL/min. Liposomes were administered via the common hepatic artery after proximal occlusion of the gastroduodenal artery, via the cranial mesenteric artery, and via the cephalic vein. Distribution (liver, spleen, and lungs) was determined by computer-assisted external imaging techniques. On the average, after arterial infusion, 69.2% of the total activity was located in the liver, 3.6% in the spleen, 3.2% in the lungs, and 3.5% in the general circulation. Following venous injection, 50.7% of the radioactivity was found in the liver, 9.1% in the spleen, 8.6% in the lungs, and 6.7% in the peripheral blood. Once the liposomes entered the systemic circulation, they were cleared at the same rate (half-life beta = 21.5 hours) independent of their route of administration. Increased hepatic liposome uptake should translate into higher local and lower systemic liposomal drug levels

  14. Extracellular vesicles: fundamentals and clinical relevance

    Directory of Open Access Journals (Sweden)

    Wael Nassar

    2015-01-01

    Full Text Available All types of cells of eukaryotic organisms produce and release small nanovesicles into their extracellular environment. Early studies have described these vesicles as ′garbage bags′ only to remove obsolete cellular molecules. Valadi and colleagues, in 2007, were the first to discover the capability of circulating extracellular vesicles (EVs to horizontally transfer functioning gene information between cells. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodeling, chemoresistance, genetic exchange, and signaling pathway activation through growth factor/receptor transfer. EVs represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, signaling proteins, and RNAs. They contribute to physiology and pathology, and they have a myriad of potential clinical applications in health and disease. Moreover, vesicles can pass the blood-brain barrier and may perhaps even be considered as naturally occurring liposomes. These cell-derived EVs not only represent a central mediator of the disease microenvironment, but their presence in the peripheral circulation may serve as a surrogate for disease biopsies, enabling real-time diagnosis and disease monitoring. In this review, we′ll be addressing the characteristics of different types of extracellular EVs, as well as their clinical relevance and potential as diagnostic markers, and also define therapeutic options.

  15. Compartmentalization and Transport in Synthetic Vesicles

    Directory of Open Access Journals (Sweden)

    Christine eSchmitt

    2016-02-01

    Full Text Available Nano-scale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, like permeability, stability or chemical reactivity.In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multi-compartmented vesosomes as compartmentalized nano-scale bioreactors. In the bottom-up development of protocells from vesicular nano-reactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.

  16. Lipossomas: a bala mágica acertou? Liposomes: has the magic bullet hit the target?

    Directory of Open Access Journals (Sweden)

    Nuno C. Santos

    2002-12-01

    Full Text Available Efficient drug delivery systems are as important as drug themselves. A powerful drug unable to reach the target cell is useless in practice. Ehrlich's Magic Bullet was the first carrier system to be proposed. The evolution in this domain has been quite slow as the natural mechanisms of mammals against foreign products are hard to overcome. However, lipid-based systems (liposomes and related vesicles have attained reasonable success. The basic preparations and structural features of liposomes and related vesicles as well as their applications are addressed from the chemist's and biochemist's point of view.

  17. Liposome-encapsulated chemotherapy

    DEFF Research Database (Denmark)

    Børresen, B.; Hansen, A. E.; Kjær, A.

    2018-01-01

    Cytotoxic drugs encapsulated into liposomes were originally designed to increase the anticancer response, while minimizing off-target adverse effects. The first liposomal chemotherapeutic drug was approved for use in humans more than 20years ago, and the first publication regarding its use...... to inherent issues with the enhanced permeability and retention effect, the tumour phenomenon which liposomal drugs exploit. This effect seems very heterogeneously distributed in the tumour. Also, it is potentially not as ubiquitously occurring as once thought, and it may prove important to select patients...... not resolve the other challenges that liposomal chemotherapy faces, and more work still needs to be done to determine which veterinary patients may benefit the most from liposomal chemotherapy....

  18. Construction of a Liposome Dialyzer for preparation of high-value, small-volume liposome formulations

    Science.gov (United States)

    Adamala, Katarzyna; Engelhart, Aaron E.; Kamat, Neha P.; Jin, Lin; Szostak, Jack W.

    2016-01-01

    The liposome dialyzer is a small-volume equilibrium dialysis device, built from commercially available materials, that is designed for rapid exchange of small volumes of an extraliposomal reagent pool against a liposome preparation. The dialyzer is prepared by modification of commercially available dialysis cartridges and consists of a reactor with two 300 µL chambers and a 1.56 cm2 dialysis surface area. The dialyzer is prepared in three stages: 1) disassembly of dialysis cartridges to obtain required parts; 2) assembly of the dialyzer; and 3) sealing the dialyzer with epoxy. Preparation of the dialyser takes about 1.5 h, not including overnight epoxy curing. Each round of dialysis takes 1–24 h, depending on the analyte and membrane employed. We previously used the dialyzer for small-volume nonenzymatic RNA synthesis reactions inside fatty acid vesicles. In this protocol, we demonstrate other applications, including removal of unencapsulated calcein from vesicles, remote loading, and vesicle microscopy. PMID:26020615

  19. Development of a DNA-liposome complex for gene delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Rasoulianboroujeni, M. [Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Kupgan, G. [Department of Chemical Engineering, Oklahoma State University, 423 Engineering North, Stillwater, OK 74078 (United States); Moghadam, F. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ (United States); Tahriri, M. [Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Boughdachi, A. [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Khoshkenar, P. [Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605 (United States); Ambrose, J.J. [Biomedical Engineering Department, Louisiana Tech University, Ruston, LA 71272 (United States); Kiaie, N. [Tissue Engineering Department, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Vashaee, D. [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Ramsey, J.D. [Department of Chemical Engineering, Oklahoma State University, 423 Engineering North, Stillwater, OK 74078 (United States); Tayebi, L., E-mail: lobat.tayebi@marquette.edu [Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2017-06-01

    The association structures formed by cationic liposomes and DNA (Deoxyribonucleic acid)-liposome have been effectively utilized as gene carriers in transfection assays. In this research study, cationic liposomes were prepared using a modified lipid film hydration method consisting of a lyophilization step for gene delivery applications. The obtained results demonstrated that the mean particle size had no significant change while the polydispersity (PDI) increased after lyophilization. The mean particle size slightly reduced after lyophilization (520 ± 12 nm to 464 ± 25 nm) while the PDI increased after lyophilization (0.094 ± 0.017 to 0.220 ± 0.004). In addition. The mean particle size of vesicles increases when DNA is incorporated to the liposomes (673 ± 27 nm). According to the Scanning Electron Microscopy (SEM) and transmission electron microscopy (TEM) images, the spherical shape of liposomes confirmed their successful preservation and reconstitution from the powder. It was found that liposomal formulation has enhanced transfection considerably compared to the naked DNA as negative control. Finally, liposomal formulation in this research had a better function than Lipofectamine® 2000 as a commercialized product because the cellular activity (cellular protein) was higher in the prepared lipoplex than Lipofectamine® 2000. - Highlights: • Liposomal formulation in this research had a better function than Lipofectamine® 2000. • The average particle size had no significant change while the PDI increased after lyophilization. • LacZ expression of the developed cationic liposomes is approximately equal to the Lipofectamine® 2000.

  20. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes

    Science.gov (United States)

    Panwar, Preety; Pandey, Bhumika; Lakhera, P C; Singh, K P

    2010-01-01

    The purpose of the present study was to formulate effective and controlled release albendazole liposomal formulations. Albendazole, a hydrophobic drug used for the treatment of hydatid cysts, was encapsulated in nanosize liposomes. Rapid evaporation method was used for the preparation of albendazole-encapsulated conventional and PEGylated liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (6:4) and PC:CH: polyethylene glycol (PEG) (5:4:1), respectively. In this study, PEGylated and conventional liposomes containing albendazole were prepared and their characteristics, such as particle size, encapsulation efficiency, and in vitro drug release were investigated. The drug encapsulation efficiency of PEGylated and conventional liposomes was 81% and 72%, respectively. The biophysical characterization of both conventional and PEG-coated liposomes were done by transmission electron microscopy and UV-vis spectrophotometry. Efforts were made to study in vitro release of albendazole. The drug release rate showed decrease in albendazole release in descending order: free albendazole, albendazole-loaded conventional liposomes, and least with albendazole-loaded PEG-liposomes. Biologically relevant vesicles were prepared and in vitro release of liposome-entrapped albendazole was determined. PMID:20309396

  1. Characterization and In Vitro Skin Permeation of Meloxicam-Loaded Liposomes versus Transfersomes

    Directory of Open Access Journals (Sweden)

    Sureewan Duangjit

    2011-01-01

    Full Text Available The goal of this study was to develop and evaluate the potential use of liposome and transfersome vesicles in the transdermal drug delivery of meloxicam (MX. MX-loaded vesicles were prepared and evaluated for particle size, zeta potential, entrapment efficiency (%EE, loading efficiency, stability, and in vitro skin permeation. The vesicles were spherical in structure, 90 to 140 nm in size, and negatively charged (−23 to −43 mV. The %EE of MX in the vesicles ranged from 40 to 70%. Transfersomes provided a significantly higher skin permeation of MX compared to liposomes. Fourier Transform Infrared Spectroscopy (FT-IR and Differential Scanning Calorimetry (DSC analysis indicated that the application of transfersomes significantly disrupted the stratum corneum lipid. Our research suggests that MX-loaded transfersomes can be potentially used as a transdermal drug delivery system.

  2. Preparation and properties of functional mixed-lipid liposomes by γ-ray irradiation

    International Nuclear Information System (INIS)

    Hosoi, Fumio; Omichi, Hideki; Akama, Kazuhiro; Awai, Kouji; Yano, Yoshihiro; Nakano, Yoshio

    1998-01-01

    The feature of mixed-lipid liposomes such as polymerization and polymerized liposomes stability were investigated to find means for producing red cells containing hemoglobin inside the liposomes. The surface pressure-area isotherm values of the mixed-lipid monolayer indicated 1-stearoyl-2-(2,4-octadecadienoyl)-glycero-3-phosphocholine (SOPC) to be immiscible in cholesterol (Chol) and stearic acid (SA), and each component to contain separate domains in the bilayer membrane of liposomes. Radiation induced polymerization of mixed-SOPC liposomes was carried out using γ-rays from 60 Co at 4degC to stabilize lipid bilayers. The polymer yield increased significantly by adding Chol and SA to SOPC. The rate of polymerization of SOPC liposomes increased linearly with increasing of dose rate. The molecular weight of the polymer decreased with an increase in irradiation time. Irradiated SOPC/Chol/SA liposome vesicle size was affected by freeze-thawing. The vesicle size did not change when SOPC/Chol/SA was present in the system due to the addition of immiscible saturated 1,2-dipalmitoyl-glycero-3-phosphocholine (DPPC). (author)

  3. Studies on liposomes with Chlorophyll for monitoring the electromagnetic influence at molecular level

    International Nuclear Information System (INIS)

    Tugulea, Laura; Miclaus, Simona; Iacovache, Ioan

    2001-01-01

    The liposomes with Chlorophyll are excellent model membranes and could be successfully used to study the electromagnetic influence at molecular level. The strong visible absorption and fluorescence of Chlorophyll allow its use as sensor for the interactions at molecular level and as a fluorescence marker; it reflects certain aspects of the supramolecular structure of the lipid phase: fluidity, lipid and liposomes aggregation. The objective of our work was to evidence athermal effect of low level, pulsed microwave (MW) fields on liposomes and to evidence the possible mechanism of interaction at molecular level. Unilamellar liposomes were obtained from multilamellar vesicles by the hand-shaken method and sonication for 30 minutes. The multilamellar vesicles were prepared using Chla /lipid films with specific molar ratio (lipid/Chla 1/10 and 1/100) and different lipids (Dipalmitoyl phosphatidylcholine, Dimirystoyl Phosphatidylcholine and Dioleoyl Phosphatidylcholine-Sigma). The films were dispersed in buffer solutions of different pH (6.2 - 7.6). The Chlorophyll was freshly extracted from spinach leaves and separated by the chromatographic method. Portions of liposome suspension (0.6 ml) were inserted into Teflon cuvettes. The samples were irradiated in series, for periods of 5-30 minutes. The exposure system was: MW generator + adapted load (shortened rectangular waveguide) + Teflon cuvette filled with sample liquid. The effect of MW irradiation is not observable on multilamellar vesicles, but only on small unilamellar vesicles. The MW effect is athermal, verified by conventional heating in the same range of temperatures and results in enlarging the size of vesicles. The enlarging effect of MW is opposed to the effect of ultrasounds exposure. It is not clear if effects due to MW are proportional with exposure duration; it seems that this mostly depends on the type of lipid in vesicles. The UV and VIS spectra were recorded to observe the oxidation state of the

  4. Development and Characterization of Liposomal Doxorubicin Hydrochloride with Palm Oil

    Directory of Open Access Journals (Sweden)

    Bahareh Sabeti

    2014-01-01

    Full Text Available The usage of natural products in pharmaceuticals has steadily seen improvements over the last decade, and this study focuses on the utilization of palm oil in formulating liposomal doxorubicin (Dox. The liposomal form of Dox generally minimizes toxicity and enhances target delivery actions. Taking into account the antiproliferative and antioxidant properties of palm oil, the aim of this study is to design and characterize a new liposomal Dox by replacing phosphatidylcholine with 5% and 10% palm oil content. Liposomes were formed using the freeze_thaw method, and Dox was loaded through pH gradient technique and characterized through in vitro and ex vivo terms. Based on TEM images, large lamellar vesicles (LUV were formed, with sizes of 438 and 453 nm, having polydispersity index of 0.21 ± 0.8 and 0.22 ± 1.3 and zeta potentials of about −31 and −32 mV, respectively. In both formulations, the entrapment efficiency was about 99%, and whole Dox was released through 96 hours in PBS (pH = 7.4 at 37°C. Comparing cytotoxicity and cellular uptake of LUV with CaelyxR on MCF7 and MDA-MBA 231 breast cancer cell lines indicated suitable uptake and lower IC50 of the prepared liposomes.

  5. Liposome Disruption Assay to Examine Lytic Properties of Biomolecules.

    Science.gov (United States)

    Jimah, John R; Schlesinger, Paul H; Tolia, Niraj H

    2017-08-05

    Proteins may have three dimensional structural or amino acid features that suggest a role in targeting and disrupting lipids within cell membranes. It is often necessary to experimentally investigate if these proteins and biomolecules are able to disrupt membranes in order to conclusively characterize the function of these biomolecules. Here, we describe an in vitro assay to evaluate the membrane lytic properties of proteins and biomolecules. Large unilamellar vesicles (liposomes) containing carboxyfluorescein at fluorescence-quenching concentrations are treated with the biomolecule of interest. A resulting increase in fluorescence due to leakage of the dye from liposomes and subsequent dilution in the buffer demonstrates that the biomolecule is sufficient for disrupting liposomes and membranes. Additionally, since liposome disruption may occur via pore-formation or via general solubilization of lipids similar to detergents, we provide a method to distinguish between these two mechanisms. Pore-formation can be identified and evaluated by examining the blockade of carboxyfluorescein release with dextran molecules that fit the pore. The methods described here were used to determine that the malaria vaccine candidate CelTOS and proapoptotic Bax disrupt liposomes by pore formation (Saito et al. , 2000; Jimah et al. , 2016). Since membrane lipid binding by a biomolecule precedes membrane disruption, we recommend the companion protocol: Jimah et al. , 2017.

  6. Benchmarking of Sterilizing grade filters with liposome Filtration.

    Science.gov (United States)

    Loewe, Thomas; Mundlamuri, Ramesh; Loewe, Thomas; Mundrigi, Ashok; Handt, Sebastian; Singh, Bhuwan

    2017-12-14

    Cytotoxic drugs can be encapsulated in liposomes vesicles, which act as drug delivery vehicles and reduce the risk of exposure of drug to healthy cells(1). The sterility of such liposome solutions is typically ensured using 0.2μm rated sterilizing grade membranes, but due to the high viscosity and low surface tension of these formulations, they can cause pre-mature blocking and increased risk of bacterial penetration through a 0.2μm sterilizing grade membrane(2). The low surface tension of liposome solutions affects the contact angle with membrane and reduces bubble point leading to bacterial penetration through the membrane. This poses a great challenge to select an appropriate sterilizing grade membrane for a given process and for filter manufacturers to develop a sterilizing grade membrane that specifically addresses these needs. In this study, the influence of different variables that could affect the total throughput and bacterial retention performance of different membranes types on processing of liposome solutions have been evaluated. Based on the results, we conclude that the membrane properties e.g., surface porosity, surface tension, pore size, symmetry/asymmetry, hydrophilicity and liposome properties e.g., composition, lipid size and concentration affect bacterial retention and total throughput capacity. Process parameters such as temperature, pressure and flow should also be optimized to improve process efficiency. Copyright © 2017, Parenteral Drug Association.

  7. Liposomes containing cationic dimethyl dioctadecyl ammonium bromide: formulation, quality control, and lipofection efficiency.

    Science.gov (United States)

    Dass, Crispin R; Walker, Todd L; Burton, Mark A

    2002-01-01

    This article describes a novel, simple, and relatively inexpensive method to prepare cationic liposomes using an ethanol injection/pressure extrusion method. The study also demonstrated that binding erythrosine dye to cationic liposomes results in a shift of the absorption maximum of the dye from 528 nm to 549 nm at pH 4.25, allowing quantification and visualization of these vesicles. In addition, a relatively simple Ficoll-based gradient centrifugation method for separation of lipoplexes from unbound molecules is presented. Laboratory-formulated dimethyl dioctadecyl ammonium bromide (DDAB) containing liposomes were just as efficient in complexing nucleic acids as commercially available types, and binding increased as the positive to neutral lipid ratio was increased. Transfection efficiency of the DDAB-containing liposomes increased as the ratio of cationic to neutral lipid was increased from 1:1 to 4:1 with either PtdChol or DOPE as the neutral lipid. A concomitant increase in cytotoxicity of CSU-SA1 cancer cells was noted as the ratio of positive to neutral lipid of the liposomes was increased. Nevertheless, our present study showed that the 2:1 liposome is a good choice since it delivers functional plasmids at a comparable rate to commercial liposome formulations, has similar toxicities to the less harmful commercial liposomes, and is at least 1000-fold more economical to prepare inhouse, a major factor to be considered in preclinical and clinical studies with these carriers.

  8. Effects of various spacers between biotin and the phospholipid headgroup on immobilization and sedimentation of biotinylated phospholipid-containing liposomes facilitated by avidin-biotin interactions.

    Science.gov (United States)

    Sakamoto, Yasuhisa; Kikuchi, Koji; Umeda, Kazuaki; Nakanishi, Hiroyuki

    2017-09-01

    Immobilization and sedimentation of liposomes (lipid vesicles) are used in liposome-protein binding assays, facilitated by avidin/streptavidin/NeutrAvidin and biotinylated phospholipid-containing liposomes. Here, we examined the effects of three spacers [six-carbon (X), polyethylene glycol (PEG) 180 (molecular weight 180) and PEG2000 (molecular weight 2,000)] between biotin and the phospholipid headgroup on the immobilization and sedimentation of small unilamellar liposomes/vesicles (SUVs). PEG180 and PEG2000 showed more efficient immobilization of biotinylated SUVs on NeutrAvidin-coated plates than X, but X and PEG180 showed more efficient sedimentation of biotinylated SUVs upon NeutrAvidin addition than PEG2000. Thus, the most appropriate spacers differed between immobilization and sedimentation. A spacer for biotinylated SUVs must be selected according to the particular liposome-protein binding assays examined. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  9. Development and pharmacokinetic of antimony encapsulated in liposomes of phosphatidylserine using radioisotopes in experimental leishmaniasis

    International Nuclear Information System (INIS)

    Borborema, Samanta Etel Treiger

    2010-01-01

    Leishmaniasis are a complex of parasitic diseases caused by intra macrophage protozoa of the genus Leishmania, and is fatal if left untreated. Pentavalent antimonials, though toxic and their mechanism of action being unclear, remain the first-line drugs for treatment. Effective therapy could be achieved by delivering antileishmanial drugs to these sites of infection. Liposomes are phospholipid vesicles that promote improvement in the efficacy and action of drugs in target cell. Liposomes are taken up by the cells of mononuclear phagocytic system (MPS). The purpose of this study was to develop a preparation of meglumine antimonate encapsulated in liposomes of phosphatidylserine and to study its pharmacokinetic in healthy mice to establish its metabolism and distribution. Quantitative analysis of antimony from liposomes demonstrated that Neutron Activation Analysis was the most sensitive technique with almost 100 % of accuracy. All liposome formulations presented a mean diameter size of 150 nm. The determination of IC 50 in infected macrophage showed that liposome formulations were between 10 - 63 fold more effective than the free drug, indicating higher selectivity index. By fluorescence microscopy, an increased uptake of fluorescent-liposomes was seen in infected macrophages during short times of incubation compared with non-infected macrophages. Biodistribution studies showed that meglumine antimonate irradiated encapsulated in liposomes of phosphatidylserine promoted a targeting of antimony for MPS tissues and maintained high doses in organs for a prolonged period. In conclusion, these data suggest that meglumine antimonate encapsulated in liposomes showed higher effectiveness than the non-liposomal drug against Leishmania infection. The development of liposome formulations should be a new alternative for the chemotherapy of infection diseases, especially Leishmaniasis, as they are used to sustain and target pharmaceuticals to the local of infection. (author)

  10. Assembly of MreB filaments on liposome membranes: a synthetic biology approach.

    Science.gov (United States)

    Maeda, Yusuke T; Nakadai, Tomoyoshi; Shin, Jonghyeon; Uryu, Kunihiro; Noireaux, Vincent; Libchaber, Albert

    2012-02-17

    The physical interaction between the cytoskeleton and the cell membrane is essential in defining the morphology of living organisms. In this study, we use a synthetic approach to polymerize bacterial MreB filaments inside phospholipid vesicles. When the proteins MreB and MreC are expressed inside the liposomes, the MreB cytoskeleton structure develops at the inner membrane. Furthermore, when purified MreB is used inside the liposomes, MreB filaments form a 4-10 μm rigid bundle structure and deform the lipid vesicles in physical contact with the vesicle inner membrane. These results indicate that the fibrillation of MreB filaments can take place either in close proximity of deformable lipid membrane or in the presence of associated protein. Our finding might be relevant for the self-assembly of cytoskeleton filaments toward the construction of artificial cell systems.

  11. pH-sensitive liposomes containing polymerized phosphatidylethanolamine and fatty acid.

    Science.gov (United States)

    Choi, M J; Han, H S; Kim, H

    1992-11-01

    With the ultimate aim of targeting cancer drugs to malignant tissues, liposomes containing polymeric phosphatidylethanolamine and a fatty acid were prepared. For this purpose diacetylenic phosphatidylethanolamine (DAPE), a phosphatidylethanolamine containing diacetylene, was synthesized. Liposomes containing DAPE, fatty acid, and either phosphatidylethanolamine (PE) or phosphatidylethanolamine-beta-oleoyl-gamma-palmitoyl (POPE) were then prepared. Polymerization of DAPE was effected by UV illumination. The polymeric liposomes so obtained were stable at physiological pH but became leaky below pH 6.5. Of various compositions studied, the greatest pH-sensitivity was found with liposomes composed of 35 mol% DAPE, 35 mol% POPE, and 30 mol% saturated fatty acid. The presence of blood plasma albumin decreased vesicle stability while apolipoprotein A-I (apo A-I) had the opposite effect and plasma as a whole had a slightly stabilizing effect.

  12. Fusion of Nonionic Vesicles

    DEFF Research Database (Denmark)

    Bulut, Sanja; Oskolkova, M. Z.; Schweins, R.

    2010-01-01

    We present an experimental study of vesicle fusion using light and neutron scattering to monitor fusion events. Vesicles are reproducibly formed with an extrusion procedure using an single amphiphile triethylene glycol mono-n-decyl ether in water. They show long-term stability for temperatures ar...... a barrier to fusion changing from 15 k(B)T at T = 26 degrees C to 10k(H) T at T = 35 degrees C. These results are compatible with the theoretical predictions using the stalk model of vesicle fusion....

  13. Encapsulation of ropivacaine in a combined (donor-acceptor, ionic-gradient liposomal system promotes extended anesthesia time.

    Directory of Open Access Journals (Sweden)

    Camila Morais Gonçalves da Silva

    Full Text Available Ropivacaine is a local anesthetic with similar potency but lower systemic toxicity than bupivacaine, the most commonly used spinal anesthetic. The present study concerns the development of a combined drug delivery system for ropivacaine, comprised of two types of liposomes: donor multivesicular vesicles containing 250 mM (NH42SO4 plus the anesthetic, and acceptor large unilamellar vesicles with internal pH of 5.5. Both kinds of liposomes were composed of hydrogenated soy-phosphatidylcholine:cholesterol (2:1 mol% and were prepared at pH 7.4. Dynamic light scattering, transmission electron microscopy and electron paramagnetic resonance techniques were used to characterize the average particle size, polydispersity, zeta potential, morphology and fluidity of the liposomes. In vitro dialysis experiments showed that the combined liposomal system provided significantly longer (72 h release of ropivacaine, compared to conventional liposomes (~45 h, or plain ropivacaine (~4 h (p <0.05. The pre-formulations tested were significantly less toxic to 3T3 cells, with toxicity increasing in the order: combined system < ropivacaine in donor or acceptor liposomes < ropivacaine in conventional liposomes < plain ropivacaine. The combined formulation, containing 2% ropivacaine, increased the anesthesia duration up to 9 h after subcutaneous infiltration in mice. In conclusion, a promising drug delivery system for ropivacaine was described, which can be loaded with large amounts of the anesthetic (2%, with reduced in vitro cytotoxicity and extended anesthesia time.

  14. Preparation of liposomes containing zedoary turmeric oil using freeze-drying of liposomes via TBA/water cosolvent systems and evaluation of the bioavailability of the oil.

    Science.gov (United States)

    Yang, Zhiwen; Yu, Songlin; Fu, Dahua

    2010-02-01

    The purpose of this study was to enhance the absorption of zedoary turmeric oil (ZTO) in vivo and develop new formulations of a water-insoluble oily drug. This study described a method for preparing ZTO liposomes, which involved freeze-drying (FD) of liposomes with TBA/water cosolvent systems. The TBA/water cosolvent systems were used to investigate a feasible method of liposomes manufacture; the two factors, sugar/lipid mass ratio and TBA content (concentration), of the preparation process were evaluated in this study. The results showed that the addition of TBA content could significantly enhance the sublimation of ice resulting in short FD cycles time, and reduce the entrapment efficiency of liposomes. In addition, the residual TBA solvents levels were determined to be less than 0.37% under all optimum formulations and processing conditions. Several physical properties of liposomes were examined by H-600 transmission electron microscope (TEM) and zetamaster analyser system. The results revealed that the liposomes were smooth and spherical with an average particle size of 457 +/- 7.8 nm and the zeta potential was more than 3.65 Mv. The bioavailability of the liposomes was evaluated in rabbits, compared with the conventional self-emulsifying formulation for oral administration. Compared with the conventional self-emulsifying formulation, the plasma concentration-time profiles with improved sustained-release characteristics were achieved after oral administration of the liposomes with a bioavailability of 257.7% (a good strategy for improving the bioavailability of an oily drug). In conclusion, the present experimental findings clearly demonstrated the usefulness of ZTO liposome vesicles in improving therapeutic efficacy by enhancing oral bioavailability. Our study offered an alternative method for designing sustained-release preparations of oily drugs.

  15. Prolonged hypoglycemic effect in diabetic dogs due to subcutaneous administration of insulin in liposomes

    International Nuclear Information System (INIS)

    Stevenson, R.W.; Patel, H.M.; Parsons, J.A.; Ryman, B.E.

    1982-01-01

    The biologic action of insulin entrapped in liposomes (phospholipid vesicles) has been investigated following subcutaneous injection to dogs made diabetic with a combination of alloxan and streptozotocin. The fate of the liposomally entrapped material was determined by injecting rats subcutaneously with either 125 I-insulin or the labeled polysaccharide 14 C-inulin, incorporated in liposomes labeled with 3 H-cholesterol. Injection of liposome insulin (0.75 U/kg) to five diabetic dogs resulted in a mean (+/- SEM) blood glucose fall from 16.4 +/- 0.8 to 2.9 +/- 0.4 mmol/L. The glucose level had still not returned to baseline after 24 h and, correspondingly, immunoreactive insulin (IRI) could still be detected in frozen and thawed plasma 24 h after injection. In contrast, the hypoglycemic effect of the same dose of free insulin with or without empty liposomes virtually ended within 8 h and IRI levels returned to baseline by 3 h after injection. In experiments on rats with liposomally entrapped 125 I-insulin or 14 C-inulin the proportion of the injected dose of tracer recoverable by excision of the injection site remained constant after about 1 h and 70% of the dose was still fixed in subcutaneous tissue for at least 5 h thereafter. When the plasma collected 3 h after subcutaneous injection of labeled liposomes containing 125 I-insulin was passed through a column of Sepharose 6B, 50-75% of the 125 I-activity was found in the fractions associated with intact liposomes. One possibility for the persistence of the hypoglycemic effect and of measurable IRI following injection of liposome insulin could be the presence of intact liposomes in the circulation for many hours after adsorption had ceased

  16. trimethylammoniumpropane-based Liposomes

    African Journals Online (AJOL)

    mechanisms to introduce therapeutic agents into the body. Currently, the ... Liposomes are biodegradable and non-toxic and can elicit both ... buffered saline by dissolving a vial in 40 ml phosphate ... vaccines were processed using copper grids to adsorb the .... time-dependent fluctuations in the intensity of scattered light ...

  17. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium

    Directory of Open Access Journals (Sweden)

    Ma YF

    2013-06-01

    Full Text Available Yufan Ma,1 Zhao Wang,1,2 Wen Zhao,1 Tingli Lu,1 Rutao Wang,1,2 Qibing Mei,1 Tao Chen1–3 1Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China; 2Shaanxi Liposome Research Center, Xi'an, Shaanxi, People's Republic of China; 3Xi'an Libang Pharmaceuticals Co, Ltd, Xi'an, People's Republic of China Background: Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. Methods: The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE, and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG, 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS, 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA, nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. Results: It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the

  18. Origins of extreme boundary lubrication by phosphatidylcholine liposomes.

    Science.gov (United States)

    Sorkin, Raya; Kampf, Nir; Dror, Yael; Shimoni, Eyal; Klein, Jacob

    2013-07-01

    Phosphatidylcholine (PC) vesicles have been shown to have remarkable boundary lubricating properties under physiologically-high pressures. Here we carry out a systematic study, using a surface force balance, of the normal and shear (frictional) forces between two opposing surfaces bearing different PC vesicles across water, to elucidate the origin of these properties. Small unilamellar vesicles (SUVs, diameters < 100 nm) of the symmetric saturated diacyl PCs DMPC (C(14)), DPPC (C(16)) and DSPC (C(18)) attached to mica surfaces were studied in their solid-ordered (SO) phase on the surface. Overall liposome lubrication ability improves markedly with increasing acyl chain length, and correlates strongly with the liposomes' structural integrity on the substrate surface: DSPC-SUVs were stable on the surface, and provided extremely efficient lubrication (friction coefficient μ ≈ 10(-4)) at room temperature at pressures up to at least 18 MPa. DMPC-SUVs ruptured following adsorption, providing poor high-pressure lubrication, while DPPC-SUVs behavior was intermediate between the two. These results can be well understood in terms of the hydration-lubrication paradigm, but suggest that an earlier conjecture, that highly-efficient lubrication by PC-SUVs depended simply on their being in the SO rather than in the liquid-disordered phase, should be more nuanced. Our results indicate that the resistance of the SUVs to mechanical deformation and rupture is the dominant factor in determining their overall boundary lubrication efficiency in our system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Construction of a liposome dialyzer for the preparation of high-value, small-volume liposome formulations.

    Science.gov (United States)

    Adamala, Katarzyna; Engelhart, Aaron E; Kamat, Neha P; Jin, Lin; Szostak, Jack W

    2015-06-01

    The liposome dialyzer is a small-volume equilibrium dialysis device, built from commercially available materials, that is designed for the rapid exchange of small volumes of an extraliposomal reagent pool against a liposome preparation. The dialyzer is prepared by modification of commercially available dialysis cartridges (Slide-A-Lyzer cassettes), and it consists of a reactor with two 300-μl chambers and a 1.56-cm(2) dialysis surface area. The dialyzer is prepared in three stages: (i) disassembling the dialysis cartridges to obtain the required parts, (ii) assembling the dialyzer and (iii) sealing the dialyzer with epoxy. Preparation of the dialyzer takes ∼1.5 h, not including overnight epoxy curing. Each round of dialysis takes 1-24 h, depending on the analyte and membrane used. We previously used the dialyzer for small-volume non-enzymatic RNA synthesis reactions inside fatty acid vesicles. In this protocol, we demonstrate other applications, including removal of unencapsulated calcein from vesicles, remote loading and vesicle microscopy.

  20. Nanodesign of olein vesicles for the topical delivery of the antioxidant resveratrol.

    Science.gov (United States)

    Pando, Daniel; Caddeo, Carla; Manconi, Maria; Fadda, Anna Maria; Pazos, Carmen

    2013-08-01

    The ex-vivo percutaneous absorption of the natural antioxidant resveratrol in liposomes and niosomes was investigated. The influence of vesicle composition on their physicochemical properties and stability was evaluated. Liposomes containing resveratrol were formulated using soy phosphatidylcholine (Phospholipon90G). Innovative niosomes were formulated using mono- or diglycerides: glycerol monooleate (Peceol) and polyglyceryl-3 dioleate (Plurol OleiqueCC), respectively, two suitable skin-compatible oleins used in pharmaceutical formulations as penetration enhancers. Small, negatively charged vesicles with a mean size of approximately 200 nm were prepared. The accelerated stability of vesicles was evaluated using Turbiscan Lab Expert, and the bilayer deformability was also assessed. Ex-vivo transdermal experiments were carried out in Franz diffusion cells, on newborn pig skin, to study the influence of the different vesicle formulations on resveratrol skin delivery. Results indicated a high cutaneous accumulation and a low transdermal delivery of resveratrol, especially when Peceol niosomes were used. Overall, niosomes formulated with Plurol oleique or Peceol showed a better behaviour than liposomes in the cutaneous delivery of resveratrol. © 2013 Royal Pharmaceutical Society.

  1. Boronated liposome development and evaluation

    International Nuclear Information System (INIS)

    Hawthorne, M.F.

    1995-01-01

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues

  2. Liposomal Fasudil, a Rho-Kinase Inhibitor, for Prolonged Pulmonary Preferential Vasodilation in Pulmonary Arterial Hypertension

    Science.gov (United States)

    Gupta, Vivek; Gupta, Nilesh; Shaik, Imam H.; Mehvar, Reza; McMurtry, Ivan F.; Oka, Masahiko; Nozik-Grayck, Eva; Komatsu, Masanobu; Ahsan, Fakhrul

    2013-01-01

    Current pharmacological interventions for pulmonary arterial hypertension (PAH) require continuous infusions, multiple inhalations, or oral administration of drugs that act on various pathways involved in the pathogenesis of PAH. However, invasive methods of administration, short duration of action, and lack of pulmonary selectivity result in noncompliance and poor patient outcomes. In this study, we tested the hypothesis that encapsulation of an investigational anti-PAH molecule fasudil (HA-1077), a Rho-kinase inhibitor, into liposomal vesicles results in prolonged vasodilation in distal pulmonary arterioles. Liposomes were prepared by hydration and extrusion method and fasudil was loaded by ammonium sulfate-induced transmembrane electrochemical gradient. Liposomes were then characterized for various physicochemical properties. Optimized formulations were tested for pulmonary absorption and their pharmacological efficacy in a monocrotaline (MCT) induced rat model of PAH. The entrapment efficiency of optimized liposomal fasudil formulations was between 68.1±0.8% and 73.6±2.3%, and the cumulative release at 37°C was 98–99% over a period of 5 days. Compared to intravenous (IV) fasudil, a ~10 fold increase in the terminal plasma half-life was observed when liposomal fasudil was administered as aerosols. The t1/2 of IV fasudil was 0.39±0.12 h. and when given as liposomes via pulmonary route, the t1/2 extended to 4.71±0.72 h. One h after intratracheal instillation of liposomal fasudil, mean pulmonary arterial pressure (MPAP) was reduced by 37.6±5.7% and continued to decrease for about 3 h, suggesting that liposomal formulations produced pulmonary preferential vasodilation in MCT induced PAH rats. Overall, this study established the proof-of-principle that aerosolized liposomal fasudil is a feasible option for a non-invasive, controlled release and pulmonary preferential treatment of PAH. PMID:23353807

  3. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs

    International Nuclear Information System (INIS)

    Szebeni, Janos; Storm, Gert

    2015-01-01

    Liposomes are known to activate the complement (C) system, which can lead in vivo to a hypersensitivity syndrome called C activation-related pseudoallergy (CARPA). CARPA has been getting increasing attention as a safety risk of i.v. therapy with liposomes, whose testing is now recommended in bioequivalence evaluations of generic liposomal drug candidates. This review highlights the adverse consequences of C activation, the unique symptoms of CARPA triggered by essentially all i.v. administered liposomal drugs, and the various features of vesicles influencing this adverse immune effect. For the case of Doxil, we also address the mechanism of C activation and the opsonization vs. long circulation (stealth) paradox. In reviewing the methods of assessing C activation and CARPA, we delineate the most sensitive porcine model and an algorithm for stepwise evaluation of the CARPA risk of i.v. liposomes, which are proposed for standardization for preclinical toxicology evaluation of liposomal and other nanoparticulate drug candidates. - Highlights: • Outlining of difficulties in generic development of liposomal drugs. • New regulatory requirements to evaluate CARPA in preclinical studies. • Review of complement activation by liposomes and its adverse consequences (CARPA). • Assays of C activation in vitro and CARPA in vivo, with the porcine test in focus. • Decision tree how to handle the risk of CARPA assessed by a battery of tests.

  4. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs

    Energy Technology Data Exchange (ETDEWEB)

    Szebeni, Janos, E-mail: jszebeni2@gmail.com [Nanomedicine Research and Education Center, Semmelweis University, Budapest & SeroScience Ltd, Budapest (Hungary); Storm, Gert [Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht (Netherlands)

    2015-12-18

    Liposomes are known to activate the complement (C) system, which can lead in vivo to a hypersensitivity syndrome called C activation-related pseudoallergy (CARPA). CARPA has been getting increasing attention as a safety risk of i.v. therapy with liposomes, whose testing is now recommended in bioequivalence evaluations of generic liposomal drug candidates. This review highlights the adverse consequences of C activation, the unique symptoms of CARPA triggered by essentially all i.v. administered liposomal drugs, and the various features of vesicles influencing this adverse immune effect. For the case of Doxil, we also address the mechanism of C activation and the opsonization vs. long circulation (stealth) paradox. In reviewing the methods of assessing C activation and CARPA, we delineate the most sensitive porcine model and an algorithm for stepwise evaluation of the CARPA risk of i.v. liposomes, which are proposed for standardization for preclinical toxicology evaluation of liposomal and other nanoparticulate drug candidates. - Highlights: • Outlining of difficulties in generic development of liposomal drugs. • New regulatory requirements to evaluate CARPA in preclinical studies. • Review of complement activation by liposomes and its adverse consequences (CARPA). • Assays of C activation in vitro and CARPA in vivo, with the porcine test in focus. • Decision tree how to handle the risk of CARPA assessed by a battery of tests.

  5. Seminal vesicle cycts

    International Nuclear Information System (INIS)

    Alpern, M.B.; Dorfman, R.E.; Gross, B.H.; Gottlieb, C.A.; Sandler, M.A.

    1990-01-01

    PURPOSE: Adult polycystic kidney disease (APKCD), an autosomal dominant disorder, causes cyst formation in the kidney, liver, pancreas, esophagus, ovaries, uterus, and brain. This paper describes four APKCD patients with CT evidence of seminal vesicle cysts (SVCs). Four patients (aged 45-65 years) underwent abdominal/pelvic CT with oral and intravenous contrast material. Three were evaluated for possible renal transplantation and one for sepsis material. All seminal vesicles contained cystic masses with fluid that measured between 0 and 30 HU. Seminal vesicle thickness was 3-4 cm (normal, 1.5 cm). High-density walls separated the 3-12-mm diameter cysts. All patients demonstrated typical renal stigmata of APKCD. One patient had hepatic cysts, and none had cysts elsewhere. Postmortem examination in one patient confirmed the SVCs

  6. iGUVs: Preparing Giant Unilamellar Vesicles with a Smartphone and Lipids Easily Extracted from Chicken Eggs

    Science.gov (United States)

    Almendro Vedia, Víctor G.; Natale, Paolo; Chen, Su; Monroy, Francisco; Rosilio, Veronique; López-Montero, Ivan

    2017-01-01

    Since the first report of electroformed micrometer-sized liposomes in the 1980s, giant unilamellar vesicles (GUVs) have generated a lot of interest in the biophysical and biochemical communities. However, their penetration rate in high school or at the undergraduate level is still limited because of the requirement of specialized materials for…

  7. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production

    DEFF Research Database (Denmark)

    Moghimi, S.M.; Hamad, I.; Andresen, Thomas Lars

    2006-01-01

    Methoxy(polyethylene glycol), mPEG, -grafted liposomes are known to exhibit prolonged circulation time in the blood, but their infusion into a substantial percentage of human subjects triggers immediate non-IgE-mediated hypersensitivity reactions. These reactions are strongly believed to arise from...... to PEGylated liposome-mediated complement activation. Our findings provide a rational conceptual basis for development of safer vesicles for site-specific drug delivery and controlled release at pathological sites....

  8. Visualization of liposomes by magnetic resonance imaging: an opportunity to improve antitumoral liposome therapies

    International Nuclear Information System (INIS)

    Martinez Bedoya, Darel

    2012-01-01

    Controlled release of drugs at the tumor site and the development of non-invasive monitoring techniques are two of the main challenges currently facing antitumoral therapies. The paper analyzes some of the potential uses of liposomes as vehicles for the transport of drugs to the tumors, particularly directionalized variants to tumor antigens through antibody coupling (immunoliposomes). These vesicles may also be used in combination with magnetic resonance, one of the most widely used imaging techniques, and one exhibiting great visualization potential at molecular level. Joint use of these two techniques makes it possible to control the amount of drug administered, as well as predict the efficacy of the treatment and monitor its progress

  9. Preparation and Characterization of Escherichia coli Liposomes as a New Drug Delivery System to Colon Cancer

    Directory of Open Access Journals (Sweden)

    Mohammad Kargar

    2016-06-01

    Full Text Available Introduction: Liposomes are spherical vesicles composed of concentric phospholipid bilayers that can entrap hydrophilic, hydrophobic drugs. Liposomes can be prepared from natural phospholipids, synthetic lipids or bacterial lipids. The aim of this study was to formulate liposome from bacterial lipids and evaluate physicochemical properties. Materials and methods: This study was performed experimentally on E.coli. The lipids were extracted from E.coli. using chloroform and methanol. Film method was used for preparing nano-systems and methylene blue was used as a drug model. Then their particle sizes were determined using particle sizer. The release methylene blue was carried out using dialysis membrane. Also, trailing them in cancer cells was evaluated by using carboxyfluorescein. Results: The average particle size of E.coli. liposomal was 338 nm. Encapsulation efficiency was 53.33 ± 2.88% and the value of release after 24 h was 97.54% ± 0.00. Liposomes could deliver the carboxyfluorescein to cancer cells. Discussion and conclusion: The results of this study demonstrated that bacterial liposome has probably a suitable nano-particle such as particle size and desirable loading and it is possible to use them as drug delivery system.

  10. Manganese and Gd-DTPA stearyl liposomes as reticuloendothelial-system-specific MR imaging contrast agents

    International Nuclear Information System (INIS)

    Wuthrich, R.; Schwendener, R.; Duewell, S.; VonSchulthess, G.K.; Fuchs, W.A.

    1988-01-01

    Liposomes can be used to target metal ions as MR contrast agents to liver and spleen. It was the aim of this work to examine unilamellar liposomes containing manganese and gadolinium ions with respect to their targetting ability, contrast enhancement, and in vivo kinetics in rats and dogs. Unilamellar liposomes containing DTPA stearate were complexed with Mn/sup 2+/ and Gd/sup 3+/ resulting in vesicles of 30-40 nm. Injected into rats, approximately 35% of manganese liposomes were present in the liver after 30-60 minutes, and after 24 hours more than 80% had been eliminated. The pharmacokinetics of gadolinium were more protracted. In MR imaging, a reduction in the T1 of the liver parenchyma from 450 to 170 and 280 msec was observed for manganese and gadolinium liposomes (0.03 mmol/kg body weight), respectively, with the liver appearing as bright as fat. Manganese (and Gd-DTPA) stearyl liposomes are potential organ-selective contrast agents for liver and spleen and are eliminated through a hepatobiliary route

  11. Vesicle-based rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stanish, I.; Singh, A. [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Ave., S.W., Washington, DC 20375 (United States); Lowy, D.A. [Nova Research, Inc., 1900 Elkin St., Alexandria, VA 22308 (United States); Hung, C.W. [Department of Chemical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2005-05-02

    Vesicle-based rechargeable batteries can be fabricated by mounting polymerized vesicles filled with ferrocyanide or ferricyanide to a conductive surface. The potential can be adjusted by changing the concentration ratio of hydroquinone and benzoquinone bound to the vesicle membranes. These batteries show promise as a means of supplying portable power for future autonomous nanosystems. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  12. Liposome based radiosensitizer cancer therapy

    DEFF Research Database (Denmark)

    Pourhassan, Houman

    Liposome-encapsulated chemotherapeutics have been used in the treatment of a variety of cancers and are feasible for use as mono-therapeutics as well as for combination therapy in conjunction with other modalities. Despite widespread use of liposomal drugs in cancer patient care, insufficient drug...... biomolecules. By modulating the liposomal membrane, liposomes can become sensitive towards enzymatically-driven destabilization and/or functionalization, thereby allowing control of the release of encapsulated therapeutics within the diseased tissue upon intrinsic stimulation from tumor-associated enzymes...... in tumor-bearing mice.The safety and efficacy of sPLA2-sensitive liposomal L-OHP was assessed in sPLA2-deficient FaDu hypopharyngeal squamous cell carcinoma and sPLA2-expressing Colo205 colorectal adenocarcinoma. Also, the feasibility of multimodal cancer therapy employing L-OHP encapsulated in MMP...

  13. Liposomes loaded with contrast material for image enhancement in computed tomography: work in progress

    International Nuclear Information System (INIS)

    Ryan, P.J.; Davis, M.A.; DeGaeta, L.R.; Woda, B.; Melchior, D.L.

    1984-01-01

    Large unilamellar phospholipid vesicles were prepared and loaded with various radiographic contrast media. Body CT following in vivo adminstration of these vesicles in the rat demonstrated opacification of organs associated with the reticuloendothelial system. Image enhancement in the spleen and liver was dose dependent and was linearly related within the dose range investigated. Clearance of the radiographic contrast material was complete within 24 hours. Diffuse splenic lymphoma following intraperitoneal or intrasplenic injection of lymphoma cells, and solitary lymphoma nodules following intrahepatic injection were readily detected as nonenhanced areas following injection of liposomes

  14. Elastic vesicles for transdermal drug delivery of hydrophilic drugs: a comparison of important physicochemical characteristics of different vesicle types.

    Science.gov (United States)

    Ntimenou, Vassiliki; Fahr, Alfred; Antimisiaris, Sophia G

    2012-08-01

    The aim of this study is to evaluate the influence of different lipid vesicular systems on the skin permeation ability of hydrophilic molecules, and understand if and which vesicle physicochemical properties may be used as predictive tools. Calcein and carboxyfluorescein were used as hydrophilic drug models. All vesicles (conventional liposomes [CLs], transfersomes [TRs] and invasomes [INVs]), were characterized for particle size distribution, zeta-potential, vesicular shape and morphology, encapsulation efficiency, integrity, colloidal stability, elasticity and finally in vitro human skin permeation. Dynamic light scattering (DLS) and cryo-transmission electron microscopy (cryo-TEM) defined that almost all vesicles had spherical structure, low polydispersity (PI Elasticity values (measured by extrusion through membranes) were in the order INVs > TRs > CLs. Three vesicle types were selected (having different elasticity) and in vitro skin permeation experiments demonstrated that calcein permeation was minimal from an aqueous solution, slightly enhanced from CLs, and enhanced by 1.8 and 7.2 times from TRs and INVs, respectively. Permeation and elasticity values were correlated by rank order but not linearly, indicating that elasticity can be used as a crude predictive tool for enhancement of skin transport. Drug encapsulation efficiency was not found to be an important factor in the current study.

  15. Usefulness of liposomes carrying losefamate for CT opacification of liver and spleen

    International Nuclear Information System (INIS)

    Seltzer, S.E.; Shulkin, P.M.; Adams, D.F.; Davis, M.A.; Hoey, G.B.; Hopkins, R.M.; Bosworth, M.E.

    1984-01-01

    Iosefamate, a hepatobiliary contrast agent, was encapsulated into liposomes to increase its ability to opacify the liver and spleen on computed tomographic (CT) images. Multilamellar lipid vesicles containing iosefamate in their aqueous phase were prepared. Seven dogs received intravenous injections of 100-300 mg l/kg in one of three forms; encapsulated, unencapsulated, or a mixture of the two in equal parts. Animals that received the opaque vesicles had marked opacification of their livers, bile ducts, gallbladders, spleens and gastrointestinal tracts. At the high-dose level, liver upake of the encapsulated materials was also greater. Liposome-encapsulated hepatobiliary contrast agents are effective liver and spleen opacifiers for CT imaging in the dog

  16. Influence of different sugar cryoprotectants on the stability and physico-chemical characteristics of freeze-dried 5-fluorouracil plurilamellar vesicles

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud Nounou

    2005-07-01

    Full Text Available Lyophilization increases the shelf-life of liposomes by preserving it in a dry form as lyophilized cake to be reconstituted with water immediately prior to administration. Aiming at increasing stability and availability of 5-Fluorouracil liposomal products, 5-Fluorouacil Stable Plurilamellar Vesicles were prepared. Freeze dried liposomal dispersions were prepared with or without cryoprotectants. The cryoprotectants used were glucose, mannitol or trehalose in 1, 2 and 4 grams per gram phospholipids. The results showed that lyophilized cake of liposomes without cryoprotectants was compact and difficult to reconstitute, in comparison with fluffy cakes which reconstituted easily and quickly when using cryoprotectants. The percentage of 5-Fluorouracil retained in liposomes freeze-dried without cryoprotectants was 18.29% ± 0.96% and the percentage of 5-Fluorouracil retained in stable plurilamellar vesicles was 31.22% ± 0.62% using 4 grams trehalose as cryoprotectant per gram of lipid. Physico-chemical and release stability studies showed superior potentials of the lyophilized product after reconstitution in comparison to dispersion product. It may be concluded that all tested sugars have cryoprotectant effects that stabilized liposomes in the freeze dried state, where trehalose offered the most superior cryoprotectant effect for freeze dried 5-fluorouracil liposomes.

  17. Electrochemical analysis in a liposome suspension using lapachol as a hydrophobic electro active species.

    Science.gov (United States)

    Okumura, Noriko; Wakamatsu, Shiori; Uno, Bunji

    2014-01-01

    This study demonstrated that the electro-chemical analysis of hydrophobic quinones can be performed in liposome suspension systems. We prepared and analyzed liposome suspensions containing lapachol, which is a quinone-based anti-tumor activity compound. In this suspension system, a simple one redox couple of lapachol is observed. These results are quite different from those obtained in organic solvents. In addition, the pH dependence of redox behaviors of lapachol could be observed in multilamellar vesicle (MLV) suspension system. This MLV suspension system method may approximate the electrochemical behavior of hydrophobic compounds in aqueous conditions. A benefit of this liposome suspension system for electrochemical analysis is that it enables to observe water-insoluble compounds without using organic solvents.

  18. Tissue distribution and tumour localization of 99m-technetium-labelled liposomes in cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, V J; Ryman, B E; Jewkes, R F; Jeyasingh, K; Tattersall, M N.H.; Newlands, E S; Kaye, S B

    1979-07-01

    The possible use of liposomes (Phospholipid vesicles) to direct cytotoxic drugs to tumours led to the investigation of the tissue localization of i.v. injected sup(99m) Tc-labelled liposomes in cancer patients. 20 mg or 300 mg doses of liposomal lipid (7:2:1 molar ratio of phosphatidylcholine: cholesterol: phosphatidic acid) were used in a study of 13 patients with advanced cancer and one with polycythaemia rubra vera (PRV). In all cases except the patient with PRV the major site of uptake of the label was the liver and spleen. In the patient with PRV the liver uptake was greatly reduced and the major site of uptake was found in regions corresponding to marrow. With the exception of one patient with a primary hepatoma, there was no significant tumour uptake of the label.

  19. Propulsion of liposomes using bacterial motors

    International Nuclear Information System (INIS)

    Zhang Zhenhai; Li Kejie; Li Zhifei; Yu Wei; Xie Zhihong; Shi Zhiguo

    2013-01-01

    Here we describe the utilization of flagellated bacteria as actuators to propel spherical liposomes by attaching bacteria to the liposome surface. Bacteria were stably attached to liposomes using a cross-linking antibody. The effect of the number of attached bacteria on propulsion speed was experimentally determined. The effects of bacterial propulsion on the bacteria–antibody–liposome complex were stochastic. We demonstrated that liposomal mobility increased when bacteria were attached, and the propulsion speed correlated with the number of bacteria. (paper)

  20. The Impact of Bubbles on Measurement of Drug Release from Echogenic Liposomes

    OpenAIRE

    Kopechek, Jonathan A.; Haworth, Kevin J.; Radhakrishnan, Kirthi; Huang, Shaoling; Klegerman, Melvin E.; McPherson, David D.; Holland, Christy K.

    2012-01-01

    Echogenic liposomes (ELIP) encapsulate gas bubbles and drugs within lipid vesicles, but the mechanisms of ultrasound-mediated drug release from ELIP are not well understood. The effect of cavitation activity on drug release from ELIP was investigated in flowing solutions using two fluorescent molecules: a lipophilic drug (rosiglitazone) and a hydrophilic drug substitute (calcein). ELIP samples were exposed to pulsed Doppler ultrasound from a clinical diagnostic ultrasound scanner at pressures...

  1. In vivo hypertensive arterial wall uptake of radiolabeled liposomes

    International Nuclear Information System (INIS)

    Hodis, H.N.; Amartey, J.K.; Crawford, D.W.; Wickham, E.; Blankenhorn, D.H.

    1990-01-01

    Using five sham-operated and seven aortic coarctation-induced hypertensive New Zealand White rabbits intravenously injected with neutral small unilamellar vesicles loaded with [111In]nitrilotriacetic acid, we demonstrated in vivo that the normal aortic arterial wall participates in liposome uptake and that this uptake is increased in the hypertensive aortic wall by approximately threefold (p less than or equal to 0.0001). Among the three regions examined, aortic arch, thoracic aorta, and lower abdominal aorta, the difference in uptake between the normotensive and hypertensive arterial walls was significantly different, p less than or equal to 0.05, p less than or equal to 0.0001, and p less than 0.05, respectively. The uptake by the different regions of the hypertensive arterial wall is consistent with the pathological changes present in these areas. Furthermore, the extent of liposome uptake by the aortic wall is strongly correlated with the height of the blood pressure (r = 0.85, p = 0.001, n = 11). We conclude that neutral small unilamellar liposomes can be used to carry agents into the arterial wall in vivo in the study of hypertensive vascular disease and could be especially useful for the delivery of pharmacologically or biologically active agents that would otherwise be inactivated within the circulation or are impermeable to the arterial wall

  2. Experimental Aspects of Colloidal Interactions in Mixed Systems of Liposome and Inorganic Nanoparticle and Their Applications

    Directory of Open Access Journals (Sweden)

    Michael Gradzielski

    2012-09-01

    Full Text Available In the past few years, growing attention has been devoted to the study of the interactions taking place in mixed systems of phospholipid membranes (for instance in the form of vesicles and hard nanoparticles (NPs. In this context liposomes (vesicles may serve as versatile carriers or as a model system for biological membranes. Research on these systems has led to the observation of novel hybrid structures whose morphology strongly depends on the charge, composition and size of the interacting colloidal species as well as on the nature (pH, ionic strength of their dispersing medium. A central role is played by the phase behaviour of phospholipid bilayers which have a tremendous influence on the liposome properties. Another central aspect is the incorporation of nanoparticles into vesicles, which is intimately linked to the conditions required for transporting a nanoparticle through a membrane. Herein, we review recent progress made on the investigations of the interactions in liposome/nanoparticle systems focusing on the particularly interesting structures that are formed in these hybrid systems as well as their potential applications.

  3. Development and characterization of nanopore system for nano-vesicle analysis

    Science.gov (United States)

    Goyal, Gaurav

    Nano-vesicles have recently attracted a lot of attention in research and medical communities and are very promising next-generation drug delivery vehicles. This is due to their biocompatibility, biodegradability and their ability to protect drug cargo and deliver it to site-specific locations, while maintaining the desired pharmacokinetic profile. The interaction of these drug loaded vesicles with the recipient cells via adsorption, endocytosis or receptor mediated internalization involve significant bending and deformation and is governed by mechanical properties of the nano-vesicles. Currently, the mechanical characteristics of nano-vesicles are left unexplored because of the difficulties associated with vesicle analysis at sub-100 nm length scale. The need for a complete understanding of nano-vesicle interaction with each other and the recipient cells warrants development of an analytical tool capable of mechanical investigation of individual vesicles at sub-100 nm scale. This dissertation presents investigation of nano-vesicle deformability using resistive pulse sensing and solid-state nanopore devices. The dissertation is divided into four chapters. Chapter 1 discusses the motivation, specific aims and presents an overview of nanoparticle characterization techniques, resistive pulse sensing background and principles, techniques for fabricating solid-state nanopores, as well the deformation behavior of giant vesicles when placed in electric field. Chapter 2 is dedicated to understanding of the scientific principles governing transport of sub-100 nm particles in dilute solutions. We investigated the translocation of rigid nanoparticles through nanopores at salt concentrations exosomes derived from human breast cancer cell line. Exosomes also exhibit co-translocational deformation behavior; however, they appear to be less affected by the deforming force inside the nanopore compared to the DOPC liposomes. We believe, the results of this research will bring about a

  4. Formulation and in Vitro, ex Vivo and in Vivo Evaluation of Elastic Liposomes for Transdermal Delivery of Ketorolac Tromethamine

    Directory of Open Access Journals (Sweden)

    Néstor Mendoza

    2011-12-01

    Full Text Available The objective of the current study was to formulate ketorolac tromethamine-loaded elastic liposomes and evaluate their in vitro drug release and their ex vivo and in vivo transdermal delivery. Ketorolac tromethamine (KT, which is a potent analgesic, was formulated in elastic liposomes using Tween 80 as an edge activator. The elastic vesicles were prepared by film hydration after optimizing the sonication time and number of extrusions. The vesicles exhibited an entrapment efficiency of 73 ± 11%, vesicle size of 127.8 ± 3.4 nm and a zeta potential of −12 mV. In vitro drug release was analyzed from liposomes and an aqueous solution, using Franz diffusion cells and a cellophane dialysis membrane with molecular weight cut-off of 8000 Da. Ex vivo permeation of KT across pig ear skin was studied using a Franz diffusion cell, with phosphate buffer (pH 7.4 at 32 °C as receptor solution. An in vivo drug permeation study was conducted on healthy human volunteers using a tape-stripping technique. The in vitro results showed (i a delayed release when KT was included in elastic liposomes, compared to an aqueous solution of the drug; (ii a flux of 0.278 mg/cm2h and a lag time of about 10 h for ex vivo permeation studies, which may indicate that KT remains in the skin (with the possibility of exerting a local effect before reaching the receptor medium; (iii a good correlation between the total amount permeated, the penetration distance (both determined by tape stripping and transepidermal water loss (TEWL measured during the in vivo permeation studies. Elastic liposomes have the potential to transport the drug through the skin, keep their size and drug charge, and release the drug into deep skin layers. Therefore, elastic liposomes hold promise for the effective topical delivery of KT.

  5. Phospholipid liposomes functionalized by protein

    Science.gov (United States)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  6. Plane partition vesicles

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van; Ma, J

    2006-01-01

    We examine partitions and their natural three-dimensional generalizations, plane partitions, as models of vesicles undergoing an inflation-deflation transition. The phase diagrams of these models include a critical point corresponding to an inflation-deflation transition, and exhibits multicritical scaling in the vicinity of a multicritical point located elsewhere on the critical curve. We determine the locations of the multicritical points by analysing the generating functions using analytic and numerical means. In addition, we determine the numerical values of the multicritical scaling exponents associated with the multicritical scaling regimes in these models

  7. Process Variables and Design of Experiments in Liposome and Nanoliposome Research.

    Science.gov (United States)

    Zoghi, Alaleh; Khosravi-Darani, Kianoush; Omri, Abdelwahab

    2018-01-01

    Liposomes vesicles consisting of one or more phospholipid bilayers are microcarriers used in numerous scientific disciplines. During the last decade, nanostructured liposomes, or nanoliposomes, have been utilized in biomedical investigations due to their unique characteristics including nanoscale size, sustained release, biocompatibility, and biodegradability. The extensive literature covering the field of liposomology is an indication of increasing interests and applications in many areas, especially as carriers of active substances in nanomedicine, agriculture, food technology, and cosmetics. Nanoliposomes application as drug carriers resulted in more effective treatment of such diseases as cancers, atherosclerosis, infectious diseases and ocular disorders. In this communication, we will introduce commonly used methods for the preparation of liposome, pointing the therapeutic report of liposomes, and explaining the common process variables in liposome encapsulations. We will also review different screening methods and full and fractional factorial designs that impact independent variables in certain applications and the end-user response. We will review such key factors as encapsulation efficiency, loading capacity, particles' biologic, structural and physicochemical properties, and lipid composition in an effort to provide a comprehensive guide for liposomologists in different fields of interest. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Preparation and Characterization of Naringenin-Loaded Elastic Liposomes for Topical Application.

    Directory of Open Access Journals (Sweden)

    Ming-Jun Tsai

    Full Text Available Excessive production of radical oxygen species in skin is a contributor to a variety of skin pathologies. Naringenin is a potent antioxidant. The purpose of the present study was to develop elastic liposomes for naringenin topical application. Naringenin-loaded elastic liposomes containing different amounts of Tween 80 and cholesterol were prepared. The physicochemical properties including vesicle size, surface charge, encapsulation efficiency, and permeability capacity were determined to evaluate the effect of components. The stability of formulation and skin irritation caused by drug-loaded elastic liposomes were also evaluated for assessment of the clinical utility of elastic liposomes. Saturated aqueous solution of naringenin and naringenin dissolved in 10% Tween 80 solution (5 mg/mL were used as the control group. The result showed that in using elastic liposomes as carrier, the deposition amounts in the skin of naringenin were significantly increased about 7.3~11.8-fold and 1.2~1.9-fold respectively, when compared with the saturated aqueous solution and Tween 80 solution-treated groups. The level of drug was more than 98.89±3.90% after 3 months of storage at 4℃. In a skin irritation test, the result showed experimental formulation exhibit considerably less irritating than the positive control (paraformaldehyde-treated group, suggesting its potential therapeutic application.

  9. Investigation of vesicle-capsular plague antigen complex formation by elastic laser radiation scattering

    Science.gov (United States)

    Guseva, N. P.; Maximova, Irina S.; Romanov, Sergey V.; Shubochkin, L. P.; Tatarintsev, Sergey N.

    1991-05-01

    Recently a great deal of attention has been given to the investigation artificial lipid liposomes, due to their application as "containers" for directed transport of biologically active compounds into particular cells, organs and tissues for prophylaxis and therapy of infectious diseases. The use of traditional methods of liposome investigation, such as sedimentation, electrophoresis and chromatography is impeded by low liposome resistivity to different deformations. In conjunction with this, optical methods of laser light scattering are promising as they allow nondisturbing, precise and quick investigations. This paper describes the investigation of vesicle systems prepared from egg lecithin of Serva Corporation and their complexes with the capsular antigen of the plague microbe. The capsular antigen Fl was obtained from EV plague microbe grown at 37° C on Huttinger agar. Fl was isolated by gel-filtration on ASA-22 followed by freeze drying of the preparation. Angular dependences of polarized radiation scattering were measured for several liposome suspension samples in a saline solution before and after the interaction with the plague microbe capsular antigen. The aim of the investigation was to analyze the nature of mutual antigen arrangement in a liposome and to develop methods for measuring its inclusion percentage.

  10. EXPERIMENTAL LIPOSOMAL VIRAL VACCINE SAFETY

    Directory of Open Access Journals (Sweden)

    Romanova OA

    2016-12-01

    Full Text Available Introduction. With the transport links development there is rather important issue respiratory viral infections spread, especially influenza. The only method controlling influenza is vaccination. Search and development effective and safe vaccines is important. Material and methods. In base SO "Mechnikov Institute Microbiology and Immunology National Ukrainian Academy Medical Sciences" in the scientific theme "Developing new approaches to creating viral vaccines and study specific activity depending of type and degree component`s modification" was created several experimental influenza vaccine with subsequent component`s modification for selecting the most optimal pattern of safety and immunogenicity. In assessing the influenza vaccine safety is using a few criteria, including, reactivity, as measured by the frequency of local and systemic adverse (negative effects, which due to its introduction, and for lipid content drugs, ability to influence oxidation processes. At present study phase was determined: a systemic reaction and local reaction of delayed-type hypersensitivity (foot pad swelling assay;b lipids and proteins peroxidation processes after administration officinal and experimental vaccines (content protein’s carbonyl groups, lipid’s hydroperoxides, activity of glutathione-peroxidase.Study objects were trivalent seasonal influenza vaccine, "Vaxigrip" (Sanofi Pasteur, S.A., France, "Inflexal V" (Biotech Ltd. Berne, Switzerland and experimental vaccine samples. Highest immunogenicity vaccines had undergone improvements and modifications using adjuvant systems and acylation influenza proteins. Liposomes 2 – the experimental influenza vaccine with a liposome negative charge and antigenic composition like split vaccines "Vaksihryp". Liposomes 2.1 - the adjuvantexperimental influenza vaccine with modifications liposomal components (etoniy and chlorophyllipt molecules embedded in liposomal membrane. Liposomes 2.2 - the adjuvant

  11. Gemcitabine treatment of rat soft tissue sarcoma with phosphatidyldiglycerol-based thermosensitive liposomes.

    Science.gov (United States)

    Limmer, Simone; Hahn, Jasmin; Schmidt, Rebecca; Wachholz, Kirsten; Zengerle, Anja; Lechner, Katharina; Eibl, Hansjörg; Issels, Rolf D; Hossann, Martin; Lindner, Lars H

    2014-09-01

    The pyrimidine analogue gemcitabine (dFdC) is frequently used in the treatment of patients with solid tumors. However, after i.v. application dFdC is rapidly inactivated by metabolization. Here, the potential of thermosensitive liposomes based on 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2-TSL) were investigated as carrier and targeting system for delivery of dFdC in combination with local hyperthermia (HT). DPPG2-TSL were prepared by the lipid film hydration and extrusion method and characterized by dynamic light scattering, thin layer chromatography, phosphate assay and HPLC. In vivo experiments were performed in Brown Norway rats with a syngeneic soft tissue sarcoma. Local HT treatment was performed by light exposure. DPPG2-TSL were stable at 37°C in serum and showed a temperature dependent dFdC release >40°C. Plasma half-life of dFdC was strongly increased from 0.07 h (non-liposomal) to 0.53 h (liposomal, vesicle size 105 nm) or 2.59 h (liposomal, 129 nm). Therapy of BN175 tumors with dFdC encapsulated in DPPG2-TSL + HT showed significant improvement in tumor growth delay compared to non-liposomal dFdC without HT (p < 0.05), non-liposomal dFdC with HT (p < 0.01), and liposomal dFdC without HT (p < 0.05), respectively. Gemcitabine encapsulated in DPPG2-TSL in combination with local HT is a promising tool for the treatment of solid tumors. Therefore, these encouraging results ask for further investigation and evaluation.

  12. Fusion between fluid liposomes and intact bacteria: study of driving parameters and in vitro bactericidal efficacy

    Directory of Open Access Journals (Sweden)

    Wang Z

    2016-08-01

    composition (91% and 71%, respectively. Divalent cations increased the degree of fusion in the sequence Fe2+ > Mg2+ > Ca2+ > Ba2+ whereas temperatures lower than the phase transition temperature of DPPC/DMPG (9:1 vesicles decreased their fusion capacity. Acidic as well as basic pHs conferred higher degrees of fusion (54% and 45%, respectively when compared to neutral pH (35%. Conclusion: Based on the results of this study, a possible mechanism involving cationic bridging between bacterial negatively charged lipopolysaccharide and fluid liposomes DMPG phospholipids was outlined. Furthermore, the fluid liposomal-encapsulated tobramycin was prepared, and the in vitro bactericidal effects were also investigated. Keywords: fusion, lipid-mixing assay, lipid composition

  13. Uji Aktivitas Antiproliferasi Formula Liposom Ekstrak Etanol Kunyit (Curcuma domestica Terhadap Sel Kanker Payudara T47D

    Directory of Open Access Journals (Sweden)

    Gabriella Pasaribu

    2016-04-01

    Full Text Available Breast cancer is one of deadliest diseases in the world. Turmeric extract was known to have antiproliferative activity. To minimize its toxicity, turmeric extract was encapsulated with liposome, a vesicle lipid bilayer that was functioned as cancer drug carrier in body. This research aimed to determine encapsulation effect of turmeric extract against antiproliferative activity in T47D breast cancer cells through in vitro assay. Liposomes was made using thin layer method and particle size was reduced by extrusion. Materials that was used phosphatidylcholine, cholesterol, and turmeric extract. Optimization of liposomes was made in three formulations with different extract concentrations. The most optimal formulation was formulation with less extract and physical parameters which have smallest precipitates and longest settling time. Evaluation liposome particle size and zeta potential were used DLS, morphology was used TEM, and entrapment efficiency was used dialysis. The most optimal formulation was tested their antiproliferative activity compared with not encapsulated extracts used 3-(4,5-dimethylazole-2-yl-2,5-diphenyltetrazolium bromide (MTT method. The result showed that there was antiproliferative activity in encapsulated extracts. IC50 encapsulated extracts was 45.762 μg/ml and IC50 extracts was 36.399 μg/ml. Liposome particle size was below 445 nm. Zeta potential was -7.51 mV. Morphology was LUV and MVV. Entrapment efficiency was 63.80%. It could be concluded that encapsulation of turmeric extract into liposome could reduce its toxicity against cancer cells.

  14. Influence of the state of phase of lipid bilayer on the exposure of glucose residues on the surface of liposomes.

    Science.gov (United States)

    Villalva, Denise Gradella; Giansanti, Luisa; Mauceri, Alessandro; Ceccacci, Francesca; Mancini, Giovanna

    2017-11-01

    The presence of carbohydrate-binding proteins (i.e. lectins) on the surface of various bacterial strains and their overexpression in some tumor tissues makes the use of glycosylated liposomes a promising approach for the specific drug delivery in antibacterial and anti-cancer therapies. However, the functionalization of liposome surface with sugar moieties by glycosylated amphiphiles does not ensure the binding of sugar-coated vesicles with lectins. In fact, the composition and properties of lipid bilayer play a pivotal role in the exposure of sugar residues and in the interaction with lectins. The influence of the length of the hydrophilic spacer that links the sugar to liposome surface and of the presence of saturated or unsaturated phospholipids in the lipid bilayer on the ability of glucosylated liposomes to interact with a model lectin, Concanavalin A, was investigated. Our results demonstrate that both the chain length and the prensece of unsaturation, parameters that strongly affect the fluidity of the lipid bilayer, affect agglutination. In particular, agglutination is favored when liposomes are in the gel phase within a defined range of temperature. Moreover, the obtained results confirm that the length of the PEG spacer, that influences both lipid organization and the exposure of sugar moieties to the bulk, plays a crucial role in liposome/lectin interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Liposomal preparation by supercritical fluids technology | Zhong ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... technology (SCF) has been utilized in liposomal preparation because of its friendliness, nontoxicity to the environment and its possibility to achieve solvent-free liposomes and industrial-scale of liposome production under the conditions of current good manufacturing practice (cGMP).

  16. Octanol-assisted liposome assembly on chip

    NARCIS (Netherlands)

    Deshpande, S.R.; Caspi, Y.; Meijering, A.E.C.; Dekker, C.

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5–20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin

  17. Vesicles and vesicle fusion: coarse-grained simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    of vesicles that is crucial for this transport is their ability to fuse to target membranes and release their contents to the distal side. In industry, some personal care products contain vesicles to help transport reagents across the skin, and research on drug formulation shows that packaging active......Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and fro, fusing with, and budding from, other membranes. A feature...

  18. A GALA lipopeptide mediates pH- and membrane charge dependent fusion with stable giant unilamellar vesicles

    DEFF Research Database (Denmark)

    Etzerodt, Thomas P.; Trier, Sofie; Henriksen, Jonas R.

    2012-01-01

    sporadic and there is a strong need to characterize and increase our understanding of the membrane fusion properties of these peptides. Many fusion studies have focused on the ability of free peptides in solution that mediate fusion between liposomes. For drug delivery purposes it is a necessity to attach......,2-diamino propanoic acid (Dap) moiety, yielding the lipopeptide dimyristoyl-Dap-GALA (DMDGALA). We have investigated DMDGALA as a component in large unilamellar vesicles (LUVs) and demonstrate pH-triggered fusion of peptide containing LUVs with stable target giant unilamellar vesicles (GUVs), which were...

  19. Lipossomas: propriedades físico-químicas e farmacológicas, aplicações na quimioterapia à base de antimônio Liposomes: physicochemical and pharmacological properties, applications in antimony-based chemotherapy

    Directory of Open Access Journals (Sweden)

    Frédéric Frézard

    2005-06-01

    Full Text Available The use of organoantimonial complexes in the therapeutic of leishmaniasis and schistosomiasis has been limited mainly by the need for daily parenteral administration, their adverse side-effects and the appearance of drug resistance. Liposome encapsulation has been so far the most effective means to improve the efficacy of pentavalent antimonials against visceral leishmaniasis. Pharmacologically- and pharmaceutically-acceptable liposomal compositions are still being investigated through manipulation of preparation method, lipid composition and vesicle size. Recently, the encapsulation of a trivalent antimonial within "stealth" liposomes was found to reduce its acute toxicity and effectively deliver this compound to the parasite in experimental schistosomiasis.

  20. Non-leaky vesiculation of large unilamellar vesicles (LUV) induced by plasma high density lipoproteins (HDL): Detection by HPLC

    International Nuclear Information System (INIS)

    Tischler, U.; Rueckert, D.S.; Schubert, R.; Jaroni, H.W.; Schmidt, K.H.

    1989-01-01

    Interaction of large unilamellar phosphatidylcholine vesicles (LUV, 75nm) and plasma high density lipoproteins (HDL) resulted in a non-leaky vesiculation of LUV. This vesiculation was detected by a HPLC-system consisting of a combination of three TSK-gel columns (6000PW, 5000PW, 3000SW). With increasing incubation time liposomal [ 14 C]PC, entrapped [ 3 H]inulin, and apoprotein of HDL origin decreased. The decrease was accompanied by a formation of new particles, consisting of liposomal PC and apoprotein. These particles also enclosed [3H]inulin, reflecting a hydrophilic inner space. The formation of the particles reached a maximum after one day of incubation. Retention time was 21 minutes for LUV, 28 minutes for the new particles, and 36 minutes for HDL. In vesicles with membranes consisting of phosphatidylcholine and 30% cholesterol no interactions were observed

  1. Persistence at low temperature of the P beta' ripple in dipalmitoylphosphatidylcholine multilamellar vesicles containing either glycosphingolipids or cholesterol.

    Science.gov (United States)

    Rock, P; Thompson, T E; Tillack, T W

    1989-03-13

    The disappearance and reappearance of the P beta' ripple in multilamellar liposomes of dipalmitoylphosphatidylcholine (DPPC) has been examined by freeze-etch electron microscopy. The presence of less than 10 mol% of various glycosphingolipids or cholesterol in the liposomes markedly increases the time required for ripple disappearance when the vesicles are cooled from 38 degrees C to 30 degrees C, as compared to the pure phospholipid. Once the ripples have begun to disappear in the two-component vesicles, they do not uniformly reappear until the system is heated above the main transition of DPPC and allowed to cool into the pretransition region. These results suggest that the long time for ripple disappearance in the two-component systems reflects a slow molecular reorganization process which occurs when the systems are forced to change from the P beta' gel to the L beta' gel by a temperature downshift.

  2. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic

    Directory of Open Access Journals (Sweden)

    Singh S

    2016-04-01

    Full Text Available Sima Singh,1,* Harsh Vardhan,1,* Niranjan G Kotla,2 Balaji Maddiboyina,3 Dinesh Sharma,4 Thomas J Webster5,6 1School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India; 2Center for Research in Medical Devices, National University of Ireland, Galway, Ireland; 3Department of Pharmaceutics, Vishwabharathi College of Pharmaceutical Sciences, Guntur, India; 4Ranbaxy Laboratory Ltd, Gurgaon, India; 5Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia *These authors contributed equally to this work Abstract: Transdermal drug delivery systems have made significant contributions to the medical community, but have yet to completely substitute oral or parenteral delivery. Recently, various strategies have been used to augment the transdermal delivery of therapeutics. Primarily, they include iontophoresis, electrophoresis, sonophoresis, chemical permeation enhancers, microneedles, and vesicular systems. Among these strategies, elastic liposomes appear promising. Elastic vesicle scaffolds have been developed and evaluated as novel topical and transdermal delivery systems, with an infrastructure consisting of hydrophobic and hydrophilic moieties together, and as a result, such scaffolds can accommodate drug molecules with a wide range of solubility. High deformability of these vesicles provides for better penetration of intact vesicles. This system is much more efficient at delivering low- and high-molecular-weight drugs to the skin in terms of quantity and depth. In this work, elastic liposomes of Tramadol HCl were prepared using a solvent evaporation method with different surfactants and were characterized using microscopy, and particle size, shape, drug content, ex vivo release, and zeta potential were also calculated. The prepared elastic liposomes were found to be in the range of 152.4 nm with a zeta

  3. Filter-extruded liposomes revisited

    DEFF Research Database (Denmark)

    Hinna, Askell; Steiniger, Frank; Hupfeld, Stefan

    2016-01-01

    (pore-size, number of filter passages, and flow-rate), flow field-flow fractionation in conjunction with multi-angle laser light scattering (AF4-MALLS, Wyatt Technology Corp., Santa Barbara, CA) was employed. Liposome size-distributions determined by AF4-MALLS were compared with those of dynamic light...... is suggested to prepare large (300 nm) liposomes with rather narrow size distribution, based on the filter extrusion at defined flow-rates in combination with freeze-/ thaw-cycling and bench-top centrifugation....

  4. Stem Cell Extracellular Vesicles: Extended Messages of Regeneration

    Science.gov (United States)

    Riazifar, Milad; Pone, Egest J.; Lötvall, Jan; Zhao, Weian

    2017-01-01

    Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell–derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications. PMID:27814025

  5. Vesicles and vesicle gels - structure and dynamics of formation

    International Nuclear Information System (INIS)

    Gradzielski, M

    2003-01-01

    Vesicles constitute an interesting morphology formed by self-aggregating amphiphilic molecules. They exhibit a rich structural variety and are of interest both from a fundamental point of view (for studying closed bilayer systems) and from a practical point of view (whenever one is interested in the encapsulation of active molecules). In many circumstances vesicular structures have to be formed by external forces, but of great interest are amphiphilic systems, where they form spontaneously. Here the question arises of whether this means that they are also thermodynamically stable structures, which at least in some systems appears to be the case. If such vesicles are well defined in size, it is possible to pack them densely and thereby form vesicle gels that possess highly elastic properties even for relatively low volume fractions of amphiphile. Conditions for the formation and the microstructure of such vesicle gels have been studied in some detail for the case of unilamellar vesicles. Another important and topical issue is the dynamics of vesicle formation/breakdown, as the understanding of the transition process will open the way to a deeper understanding of their stability and also allow controlling of the structures formed, by means of their formation processes. Significant progress in the study of the transformation processes has been achieved, in particular by means of time-resolved scattering experiments. (topical review)

  6. Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor.

    Science.gov (United States)

    Sebaaly, Carine; Charcosset, Catherine; Stainmesse, Serge; Fessi, Hatem; Greige-Gerges, Hélène

    2016-03-15

    This work is dedicated to prepare liposomal dry powder formulations of inclusion complexes of clove essential oil (CEO) and its main component eugenol (Eug). Ethanol injection method and membrane contactor were applied to prepare liposomes at laboratory and large scale, respectively. Various liposomal formulations were tested: (1) free hydroxypropyl-β-cyclodextrin loaded liposomes; (2) drug in hydroxypropyl-β-cyclodextrin in liposomes (DCL); (3) DCL2 obtained by double loading technique, where the drug is added in the organic phase and the inclusion complex in the aqueous phase. Liposomes were characterized for their particle size, polydispersity index, Zeta potential, morphology, encapsulation efficiency of CEO components and Eug loading rate. Reproducible results were obtained with both injection devices. Compared to Eug-loaded liposomes, DCL and DCL2 improved the loading rate of Eug and possessed smaller vesicles size. The DPPH(•) scavenging activity of Eug and CEO was maintained upon incorporation of Eug and CEO into DCL and DCL2. Contrary to DCL2, DCL formulations were stable after 1 month of storage at 4°C and upon reconstitution of the dried lyophilized cakes. Hence, DCL in aqueous and lyophilized forms, are considered as a promising carrier system to preserve volatile and hydrophobic drugs enlarging their application in cosmetic, pharmaceutical and food industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The influence of oscillating electromagnetic fields on membrane structure and function: Synthetic liposome and natural membrane bilayer systems with direct application to the controlled delivery of chemical agents

    International Nuclear Information System (INIS)

    Liburdy, R.P.; de Manincor, D.; Fingado, B.

    1989-09-01

    Investigations have been conducted to determine if an imposed electromagnetic field can influence membrane transport, and ion and drug permeability in both synthetic and natural cell membrane systems. Microwave fields enhance accumulation of sodium in the lymphocyte and induce protein shedding at Tc. Microwaves also trigger membrane permeability of liposome systems under specific field exposure conditions. Sensitivity varies in a defined way in bilayers displaying a membrane structural phase transition temperature, Tc; maximal release was observed at or near Tc. Significantly, liposome systems without a membrane phase transition were also found to experience permeability increases but, in contrast, this response was temperature independent. The above results indicate that field-enhanced drug release occurs in liposome vesicles that possess a Tc as well as non-Tc liposomes. Additional studies extend non-Tc liposome responses to the in vivo case in which microwaves trigger Gentamicin release from a liposome ''depot'' placed subcutaneously in the rat hind leg. In addition, evidence is provided that cell surface sequestered liposomes can be triggered by microwave fields to release drugs directly into target cells. 24 refs., 6 figs

  8. Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications.

    Science.gov (United States)

    Rodrigues, Ana Rita O; Gomes, I T; Almeida, Bernardo G; Araújo, J P; Castanheira, Elisabete M S; Coutinho, Paulo J G

    2015-07-21

    Nickel ferrite nanoparticles with superparamagnetic behavior at room temperature were synthesized using a coprecipitation method. These magnetic nanoparticles were either covered with a lipid bilayer, forming dry magnetic liposomes (DMLs), or entrapped in liposomes, originating aqueous magnetoliposomes (AMLs). A new and promising method for the synthesis of DMLs is described. The presence of the lipid bilayer in DMLs was confirmed by FRET (Förster Resonance Energy Transfer) measurements between the fluorescent-labeled lipids NBD-C12-HPC (NBD acting as a donor) included in the second lipid layer and rhodamine B-DOPE (acceptor) in the first lipid layer. An average donor-acceptor distance of 3 nm was estimated. Assays of the non-specific interactions of magnetoliposomes with biological membranes (modeled using giant unilamellar vesicles, GUVs) were performed. Membrane fusion between both aqueous and dry magnetoliposomes and GUVs was confirmed by FRET, which is an important result regarding applications of these systems both as hyperthermia agents and antitumor drug nanocarriers.

  9. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    Directory of Open Access Journals (Sweden)

    Zacharias E. Suntres

    2011-01-01

    Full Text Available Reactive oxygen species (ROS, including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress.

  10. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood-brain barrier transport investigations.

    Science.gov (United States)

    Zidan, Ahmed S; Aldawsari, Hibah

    2015-01-01

    Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood-brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood-brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes.

  11. Formation of supported lipid bilayers of charged E. coli lipids on modified gold by vesicle fusion

    Directory of Open Access Journals (Sweden)

    Ileana F. Márquez

    2017-01-01

    Full Text Available We describe a simple way of fusing E. coli lipid vesicles onto a gold surface. Supported lipid bilayers on metal surfaces are interesting for several reasons: transducing a biological signal to an electric readout, using surface analytical tools such as Surface Plasmon Resonance (SPR, Infrared Reflection Absorption Spectroscopy, Neutron Reflectivity or Electrochemistry. The most widely used method to prepare supported lipid membranes is fusion of preexisting liposomes. It is quite efficient on hydrophilic surfaces such as glass, mica or SiO2, but vesicle fusion on metals and metal oxide surfaces (as gold, titanium oxide or indium tin oxide, remains a challenge, particularly for vesicles containing charged lipids, as is the case of bacterial lipids. We describe a simple method based on modifying the gold surface with a charged mercaptopropionic acid self-assembled monolayer and liposomes partially solubilized with detergent. The formed bilayers were characterized using a Quartz Crystal Microbalance with dissipation (QCM-D and Atomic Force Microscopy (AFM. Some advantages of this protocol are that the stability of the self-assembled monolayer allows for repeated use of the substrate after detergent removal of the bilayer and that the amount of detergent required for optimal fusion can be determined previously using the lipid-detergent solubility curve.

  12. Optimization of drug loading to improve physical stability of paclitaxel-loaded long-circulating liposomes.

    Science.gov (United States)

    Kannan, Vinayagam; Balabathula, Pavan; Divi, Murali K; Thoma, Laura A; Wood, George C

    2015-01-01

    The effect of formulation and process parameters on drug loading and physical stability of paclitaxel-loaded long-circulating liposomes was evaluated. The liposomes were prepared by hydration-extrusion method. The formulation parameters such as total lipid content, cholesterol content, saturated-unsaturated lipid ratio, drug-lipid ratio and process parameters such as extrusion pressure and number of extrusion cycles were studied and their impact on drug loading and physical stability was evaluated. A proportionate increase in drug loading was observed with increase in the total phospholipid content. Cholesterol content and saturated lipid content in the bilayer showed a negative influence on drug loading. The short-term stability evaluation of liposomes prepared with different drug-lipid ratios demonstrated that 1:60 as the optimum drug-lipid ratio to achieve a loading of 1-1.3 mg/mL without the risk of physical instability. The vesicle size decreased with an increase in the extrusion pressure and number of extrusion cycles, but no significant trends were observed for drug loading with changes in process pressure or number of cycles. The optimization of formulation and process parameters led to a physically stable formulation of paclitaxel-loaded long-circulating liposomes that maintain size, charge and integrity during storage.

  13. Stability of phospholipid vesicles studied by asymmetrical flow field-flow fractionation and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Yohannes, Gebrenegus [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Pystynen, Kati-Henna [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Riekkola, Marja-Liisa [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland); Wiedmer, Susanne K. [Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki (Finland)]. E-mail: susanne.wiedmer@helsinki.fi

    2006-02-23

    The stability of zwitterionic phosphatidylcholine vesicles in the presence of 20 mol% phosphatidyl serine (PS), phosphatidic acid (PA), phosphatidyl inositol (PI), and diacylphosphatidyl glycerol (PG) phospholipid vesicles, and cholesterol or calcium chloride was investigated by asymmetrical flow field-flow fractionation (AsFlFFF). Large unilamellar vesicles (LUV, diameter 100 nm) prepared by extrusion at 25 deg. C were used. Phospholipid vesicles (liposomes) were stored at +4 and -18 deg. C over an extended period of time. Extruded egg yolk phosphatidylcholine (EPC) particle diameters at peak maximum and mean measured by AsFlFFF were 101 {+-} 3 nm and 122 {+-} 5 nm, respectively. No significant change in diameter was observed after storage at +4 deg. C for about 5 months. When the storage period was extended to about 8 months (250 days) larger destabilized aggregates were formed (172 and 215 nm at peak maximum and mean diameters, respectively). When EPC was stored at -18 deg. C, large particles with diameters of 700-800 nm were formed as a result of dehydration, aggregation, and fusion processes. In the presence of calcium chloride, EPC alone did not form large aggregates. Addition of 20 mol% of negatively charged phospholipids (PS, PA, PI, or PG) to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) vesicles increased the electrostatic interactions between calcium ion and the vesicles and large aggregates were formed. In the presence of cholesterol, large aggregates of about 250-350 nm appeared during storage at +4 and -18 deg. C for more than 1 day. The effect of liposome storage temperature on phospholipid coatings applied in capillary electrophoresis (CE) was studied by measuring the electroosmotic flow (EOF). EPC coatings with and without cholesterol, PS, or calcium chloride, prepared from liposomes stored at +25, +4, and -18 deg. C, were studied at 25 deg. C. The performances of the coatings were further evaluated with three uncharged compounds

  14. A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing

    Directory of Open Access Journals (Sweden)

    Robert Vogel

    2016-09-01

    Full Text Available Background: Understanding the pathogenic role of extracellular vesicles (EVs in disease and their potential diagnostic and therapeutic utility is extremely reliant on in-depth quantification, measurement and identification of EV sub-populations. Quantification of EVs has presented several challenges, predominantly due to the small size of vesicles such as exosomes and the availability of various technologies to measure nanosized particles, each technology having its own limitations. Materials and Methods: A standardized methodology to measure the concentration of extracellular vesicles (EVs has been developed and tested. The method is based on measuring the EV concentration as a function of a defined size range. Blood plasma EVs are isolated and purified using size exclusion columns (qEV and consecutively measured with tunable resistive pulse sensing (TRPS. Six independent research groups measured liposome and EV samples with the aim to evaluate the developed methodology. Each group measured identical samples using up to 5 nanopores with 3 repeat measurements per pore. Descriptive statistics and unsupervised multivariate data analysis with principal component analysis (PCA were used to evaluate reproducibility across the groups and to explore and visualise possible patterns and outliers in EV and liposome data sets. Results: PCA revealed good reproducibility within and between laboratories, with few minor outlying samples. Measured mean liposome (not filtered with qEV and EV (filtered with qEV concentrations had coefficients of variance of 23.9% and 52.5%, respectively. The increased variance of the EV concentration measurements could be attributed to the use of qEVs and the polydisperse nature of EVs. Conclusion: The results of this study demonstrate the feasibility of this standardized methodology to facilitate comparable and reproducible EV concentration measurements.

  15. Complement activation-related pseudoallergy in dogs following intravenous administration of a liposomal formulation of meglumine antimoniate

    Directory of Open Access Journals (Sweden)

    Raul R. Ribeiro

    2013-08-01

    Full Text Available The increasing use of nanotechnologies in advanced therapies has allowed the observation of specific adverse reactions related to nanostructures. The toxicity of a novel liposome formulation of meglumine antimoniate in dogs with visceral leishmaniasis after single dose has been investigated. Groups of 12 animals received by the intravenous route a single dose of liposomal meglumine antimoniate (group I [GI], 6.5 mg Sb/kg, empty liposomes (GII or isotonic saline (GIII. Evaluation of hematological and biochemical parameters showed no significant changes 4 days after administration. No undesired effects were registered in the GIII. However, adverse reactions were observed in 67.7% of dogs from both groups that received liposomal formulations. The side effects began moments after bolus administration and disappeared during the first 15 minutes after treatment. Prostation, sialorrhea and defecation were the most frequent clinical signs, registered in 33.3% and 41.6 % of animals from the groups GI and GII, respectively. Tachypnea, mydriasis, miosis, vomiting and cyanosis were also registered in both groups. The adverse reactions observed in this study were attributed to the activation of the complement system by lipid vesicles in a phenomenon known as Complement Activation-Related Pseudoallergy (CARPA. The influence of the physical-chemical characteristics of liposomal formulation in the triggering of CARPA is discussed.

  16. Entrapment of ovalbumin into liposomes--factors affecting entrapment efficiency, liposome size, and zeta potential.

    Science.gov (United States)

    Brgles, Marija; Jurasin, Darija; Sikirić, Maja Dutour; Frkanec, Ruza; Tomasić, Jelka

    2008-01-01

    Various amounts of Ovalbumin (OVA) were encapsulated into positively and negatively charged multilamellar liposomes, with the aim to investigate the entrapment efficiency in different buffers and to study their effects on the liposome size and zeta potential. Results showed that the entrapment efficiency of OVA in anionic liposomes was the same in 10 mM Phosphate Buffer (PB) as in Phosphate-Buffered Saline (PBS; PB + 0.15 M NaCl). Also, liposome size was approximately 1200 nm for all anionic liposomes incorporating OVA. The entrapment efficiency of OVA in cationic liposomes was highly dependent on ionic strength. The size of cationic liposomes was approximately 1200 nm in PBS, regardless of protein content, but increased with the amount of the incorporated protein in PB. Aggregation of cationic liposomes in PB was observed when the mass of the protein was 2.5 mg or greater. The zeta potential of anionic liposomes was negative and of cationic liposomes positive in the whole range of protein mass tested. These results show how different compositions of lipid and aqueous phases can be used to vary the entrapment efficiency, liposome size, and zeta potential--the factors that are of great importance for the use of liposomes as drug carriers.

  17. Preparation and ocular pharmacokinetics of ganciclovir liposomes

    OpenAIRE

    Shen, Yan; Tu, Jiasheng

    2007-01-01

    Ophthalmic liposomes of ganciclovir (GCV) were prepared by the reverse phase evaporation method, and their ocular pharmacokinetics in albino rabbits were compared with those obtained after dosing with GCV solution. The in vitro transcorneal permeability of GCV liposomes was found to be 3.9-fold higher than that of the solution. After in vivo instillation in albino rabbits, no difference was found in the precorneal elimination rate of GCV from liposome vs solution dosing. The aqueous humor con...

  18. Evaluation of Extrusion Technique for Nanosizing Liposomes

    Directory of Open Access Journals (Sweden)

    Sandy Gim Ming Ong

    2016-12-01

    Full Text Available The aim of the present study was to study the efficiency of different techniques used for nanosizing liposomes. Further, the aim was also to evaluate the effect of process parameters of extrusion techniques used for nanosizing liposomes on the size and size distribution of the resultant liposomes. To compare the efficiency of different nanosizing techniques, the following techniques were used to nanosize the liposomes: extrusion, ultrasonication, freeze-thaw sonication (FTS, sonication and homogenization. The extrusion technique was found to be the most efficient, followed by FTS, ultrasonication, sonication and homogenization. The extruder used in the present study was fabricated using readily available and relatively inexpensive apparatus. Process parameters were varied in extrusion technique to study their effect on the size and size distribution of extruded liposomes. The results obtained indicated that increase in the flow rate of the extrusion process decreased the size of extruded liposomes however the size homogeneity was negatively impacted. Furthermore, the liposome size and distribution was found to decline with decreasing membrane pore size. It was found that by extruding through a filter with a pore size of 0.2 µm and above, the liposomes produced were smaller than the pore size, whereas, when they were extruded through a filter with a pore size of less than 0.2 µm the resultant liposomes were slightly bigger than the nominal pore size. Besides that, increment of extrusion temperature above transition temperature of the pro-liposome had no effect on the size and size distribution of the extruded liposomes. In conclusion, the extrusion technique was reproducible and effective among all the methods evaluated. Furthermore, processing parameters used in extrusion technique would affect the size and size distribution of liposomes. Therefore, the process parameters need to be optimized to obtain a desirable size range and homogeneity

  19. The Role of Cavitation in Liposome Formation

    OpenAIRE

    Richardson, Eric S.; Pitt, William G.; Woodbury, Dixon J.

    2007-01-01

    Liposome size is a vital parameter of many quantitative biophysical studies. Sonication, or exposure to ultrasound, is used widely to manufacture artificial liposomes, yet little is known about the mechanism by which liposomes are affected by ultrasound. Cavitation, or the oscillation of small gas bubbles in a pressure-varying field, has been shown to be responsible for many biophysical effects of ultrasound on cells. In this study, we correlate the presence and type of cavitation with a decr...

  20. Liposomes - experiment of magnetic resonance imaging application

    International Nuclear Information System (INIS)

    Mathieu, S.

    1987-01-01

    Most pharmaceutical research effort with liposomes has been involved with the investigation of their use as drug carriers to particular target organs. Recently there has been a growing interest in liposomes not only as carrier of drugs but as a tool for the introduction of various substances into the human body. In this study, liposome delivery of nitroxyl radicals as NMR contrast agent for improved tissue imaging is experimented in rats [fr

  1. Incorporation of the purified epstein barr virus/C3d receptor (CR2) into liposomes and demonstration of its dual ligand binding functions

    International Nuclear Information System (INIS)

    Mold, C.; Cooper, N.R.; Nemerow, G.R.

    1986-01-01

    The 145-kDA molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into 14 C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3D. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV

  2. Incorporation of the purified epstein barr virus/C3d receptor (CR2) into liposomes and demonstration of its dual ligand binding functions

    Energy Technology Data Exchange (ETDEWEB)

    Mold, C.; Cooper, N.R.; Nemerow, G.R.

    1986-06-01

    The 145-kDA molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into /sup 14/C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3D. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV.

  3. Uptake of encapsulated 99mTc-MIBI into simple or pegylated liposomes in cultured cells and in tumour-bearing nude mice

    International Nuclear Information System (INIS)

    Vergote, J.; Belhaj-Tayeb, H.; Banisadr, G.; Leger, G.; Briane, D.; Moretti, J.L.

    2001-01-01

    Encapsulating 99m Tc-MIBI into liposomes could prolong its circulation half-life in blood without alteration of tracer abilities. In addition, surface coating of liposomes with polyethylene-glycol (PEG) have been shown to be efficient vehicles for antibiotics or 99m Tc-tracers. The uptake of encapsulated 99m Tc-MIBI into liposomes, simple or pegylated, in cancerous cells and its biodistribution were compared to the free 99m Tc-MIBI. The encapsulation of 99m Tc-MIBI into liposomes was obtained using a K + diffusion potential method. Untrapped 99m Tc-MIBI into liposomes preparations 'Small Unilamellar Vesicles' (SUVs) was removed by passing the SUVs through a chromatography column. 99m Tc-MIBI uptake in cells was qualified by measuring radioactivity retained in K562 and MCF7-ras cells incubated with encapsulated or free 99m Tc-MIBI. The biodistribution was explored in tumour-bearing nude mice. The efficiency with which 99m Tc-MIBI was encapsulated in liposomes was 45% - 50% for pegylated or not. In the two cell lines, the accumulation of 99m Tc-MIBI was similar either the tracer was free or encapsulated into liposomes. One hour after injection, the biodistribution showed a higher clearance for free 99m Tc-MIBI than for encapsulated tracer into liposomes. The tumour accumulated in a greater extent the encapsulated form than the free 99m Tc-MIBI. Encapsulated 99m Tc-MIBI into PEG-liposomes would be a promising radiopharmaceutical for tumour imaging in vivo. (author)

  4. Liposome kinetics in infarcted canine myocardium

    International Nuclear Information System (INIS)

    Caride, V.J.; Twickler, J.; Zaret, B.L.

    1984-01-01

    To study the mechanisms and kinetics of liposome deposition in the region of the experimental myocardial infarction, the myocardial distribution of positive and negative liposomes was determined as a function of regional myocardial blood flow and time after administration. The study was performed in dogs at 1 and 24 h following experimental myocardial infarction. Twenty-four hours after coronary artery occlusion, the initial myocardial distribution of positive and negative liposomes (2 min) is directly proportional to regional myocardial blood flow. With time, there is reduction of the radiotracer associated with negative liposomes from all myocardial regions (p less than 0.01). In contrast, in areas of moderate and severe blood flow reduction, there is progressive accumulation of tracers entrapped or incorporated in positive liposomes. This increment becomes significant in 120 min (p less than 0.005). Similar findings are observed in studies performed 1 h after coronary artery occlusion. Dual-label liposomes [( 3 H]cholesterol and [99mTc]diethylenetriamine pentaacetic acid) were used to study the integrity of liposomes in normal and ischemic myocardium. Significant dissociation of the aqueous and lipid labels of positive liposomes is observed 1 h following coronary artery occlusion. In the 24-h myocardial infarction model, dissociation of the aqueous and lipid labels in ischemic myocardium is also observed. This phenomenon is more pronounced with positive than with negative liposomes (p less than 0.02)

  5. Engraftment of plasma membrane vesicles into liposomes: A new method for designing of liposome-based vaccines

    Directory of Open Access Journals (Sweden)

    Afshin Samiei

    2014-10-01

    Conclusion: Among five different engraftment techniques, freeze-drying is preferred over the other methods due to its simplicity, more fusion efficiency and stability of produced particles during storage.

  6. Photosensitization of liposomes by porphyrins

    Energy Technology Data Exchange (ETDEWEB)

    Grossweiner, L I; Goyal, G C

    1984-01-01

    Lipid peroxidation was photosensitized in egg phosphatidylcholine (EPC) liposomes by hematoporphyrin (HP), hematoporphyrin derivative (HpD) and uroporphyrin I (Uro-I). Photosensitization by HP was type II via singlet oxygen (/sup 1/O/sub 2/) for the monomeric and dimeric states and type I for aggregated HP. Uro-I was an efficient type II /sup 1/O/sub 2/ photosensitizer. The HpD fraction enriched in the active biological component (HpD-A) was a type II /sup 1/O/sub 2/ photosensitizer at high and low concentrations. The spectral differences between HpD-A in buffer and solubilized in small EPC liposomes are attributed to a conformation change of a key dimer constituent from a folded to a planar geometry. The implications of the results for the action mechanism in photoradiation therapy of tumors with these porphyrins are discussed. 73 references, 1 figure, 5 tables.

  7. DNA controlled assembly of liposomes

    DEFF Research Database (Denmark)

    Vogel, Stefan; Jakobsen, Ulla; Simonsen, Adam Cohen

    2009-01-01

    DNA-encoding of solid nanoparticles requires surfacechemistry, which is often tedious and not generally applicable. In the present study non-covalently attached DNA are used to assemble soft nanoparticles (liposomes) in solution. This process displays remarkably sharp thermal transitions from...... assembled to disassembled state for which reason this method allows easy and fast detection of polynucleotides (e.g. DNA or RNA), including single nucleotide polymorphisms as well as insertions and deletions....

  8. Laccases stabilization with phosphatidylcholine liposomes

    OpenAIRE

    Martí, M.; Zille, Andrea; Paulo, Artur Cavaco; Parra, J. L.; Coderch, L.

    2012-01-01

    In recent years, there has been an upsurge of interest in enzyme treatment of textile fibres. Enzymes are globular proteins whose catalytic function is due to their three dimensional structure. For this reason, stability strategies make use of compounds that avoid dismantling or distorting protein 3D structures. This study is concerned with the use of microencapsulation techniques to optimize enzyme stabilization. Laccases were embedded in phophatidylcholine liposomes and their encaps...

  9. Development and pharmacokinetic of antimony encapsulated in liposomes of phosphatidylserine using radioisotopes in experimental leishmaniasis; Desenvolvimento e farmacocinetica de antimonio encapsulado em lipossomas de fosfatidilserina utilizando radioisotopos em leishmaniose experimental

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta Etel Treiger

    2010-07-01

    Leishmaniasis are a complex of parasitic diseases caused by intra macrophage protozoa of the genus Leishmania, and is fatal if left untreated. Pentavalent antimonials, though toxic and their mechanism of action being unclear, remain the first-line drugs for treatment. Effective therapy could be achieved by delivering antileishmanial drugs to these sites of infection. Liposomes are phospholipid vesicles that promote improvement in the efficacy and action of drugs in target cell. Liposomes are taken up by the cells of mononuclear phagocytic system (MPS). The purpose of this study was to develop a preparation of meglumine antimonate encapsulated in liposomes of phosphatidylserine and to study its pharmacokinetic in healthy mice to establish its metabolism and distribution. Quantitative analysis of antimony from liposomes demonstrated that Neutron Activation Analysis was the most sensitive technique with almost 100 % of accuracy. All liposome formulations presented a mean diameter size of 150 nm. The determination of IC{sub 50} in infected macrophage showed that liposome formulations were between 10 - 63 fold more effective than the free drug, indicating higher selectivity index. By fluorescence microscopy, an increased uptake of fluorescent-liposomes was seen in infected macrophages during short times of incubation compared with non-infected macrophages. Biodistribution studies showed that meglumine antimonate irradiated encapsulated in liposomes of phosphatidylserine promoted a targeting of antimony for MPS tissues and maintained high doses in organs for a prolonged period. In conclusion, these data suggest that meglumine antimonate encapsulated in liposomes showed higher effectiveness than the non-liposomal drug against Leishmania infection. The development of liposome formulations should be a new alternative for the chemotherapy of infection diseases, especially Leishmaniasis, as they are used to sustain and target pharmaceuticals to the local of infection. (author)

  10. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines.

    Science.gov (United States)

    Aburahma, Mona Hassan

    2016-07-01

    Most of the new drugs, biological therapeutics (proteins/peptides) and vaccines have poor performance after oral administration due to poor solubility or degradation in the gastrointestinal tract (GIT). Though, vesicular carriers exemplified by liposomes or niosomes can protect the entrapped agent to a certain extent from degradation. Nevertheless, the harsh GIT environment exemplified by low pH, presence of bile salts and enzymes limits their capabilities by destabilizing them. In response to that, more resistant bile salts-containing vesicles (BS-vesicles) were developed by inclusion of bile salts into lipid bilayers constructs. The effectiveness of orally administrated BS-vesicles in improving the performance of vesicles has been demonstrated in researches. Yet, these attempts did not gain considerable attention. This is the first review that provides a comprehensive overview of utilizing BS-vesicles as a promising pharmaceutical carrier with a special focus on their successful applications in oral delivery of therapeutic macromolecules and vaccines. Insights on the possible mechanisms by which BS-vesicles improve the oral bioavailability of the encapsulated drug or immunological response of entrapped vaccine are explained. In addition, methods adopted to prepare and characterize BS-vesicles are described. Finally, the gap in the scientific researches tackling BS-vesicles that needs to be addressed is highlighted.

  11. Reversal of the multidrug resistance by drug combination using multifunctional liposomes

    Science.gov (United States)

    Patel, Niravkumar R.

    One of the major obstacles to the success of cancer chemotherapy is the multi-drug resistance (MDR) that results due mainly to the over-expression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results against MDR. However, P-gp is also expressed in normal tissues like the blood-brain barrier, gastrointestinal tract, liver and kidney. It is therefore important to limit the exposure of P-gp inhibitors to normal tissues and increase their co-localization with anticancer agents in tumor tissues to maximize the efficacy of a P-gp inhibitor. To minimize non-specific binding and increase its delivery to tumor tissues, liposomes, self-assembling phospholipid vesicles, were chosen as a drug delivery vehicle. The liposome has been identified as a system capable of carrying molecules with diverse physicochemical properties. It can also alter the pharmacokinetic profile of loaded molecules which is a concern with both tariquidar and paclitaxel. Liposomes can easily be surface-modified rendering them cell-specific as well as organelle-specific. The main objective of present study was to develop an efficient liposomal delivery system which would deliver therapeutic molecules of interest to tumor tissues and avoid interaction with normal tissues. In this study, the co-delivery of tariquidar and paclitaxel into tumor cells to reverse the MDR using long-circulating cationic liposomes was investigated. SKOV-3TR, the resistant variant of SKOV-3 and MCF-7/ADR, the resistant variant of MCF-7 were used as model cell lines. Uniform liposomal formulations were generated with high incorporation efficiency and no apparent decrease in tariquidar potency towards P-gp. Tariquidar- and paclitaxel- co-loaded long-circulating liposomes showed significant re-sensitization of SKOV-3TR and MCF-7/ADR for paclitaxel in vitro. Further modification of these liposomes with antitumor 2C5 resulted

  12. Nanoparticle Stabilized Liposomes for Acne Therapy

    Science.gov (United States)

    Fu, Victoria

    Acne vulgaris is a common skin disease that affects over 40 million people in the United States alone. The main cause of acne vulgaris is Propionibacterium acnes (P. acnes), resides deep in the pores and follicles of the skin in order to feed on oil produced by the sebaceous glands. The liposome is a lipid based nanoparticle with numerous advantages over free drug molecules as an acne treatment alternative. Bare liposomes loaded with lauric acid (LipoLA) were found to show strong antimicrobial activity against P. acnes while generating minimal toxicity. However, the platform is limited by the spontaneous tendency of liposomes to fuse with each other. Attaching nanoparticles to the surface of liposomes can overcome this challenge by providing steric repulsion and reduce surface tension. Thus, carboxyl-functionalized gold nanoparticles (AuC) were attached to the surface of liposomes (AuC-liposomes) loaded with doxycycline, a general tetracycline antibiotic. These particles were found to have a diameter of 120 nm and a zeta potential of 20.0 mV. Both fluorescent and antimicrobial studies demonstrated that based on electrostatic interaction, negatively charged AuC attached to the liposome's positively charged surface and stabilized liposomes in a neutral pH environment (pH = 7.4). Upon entering the skin's acidic environment (pH = 4), AuC detached from the liposome's surface and liposomes could fuse with P. acnes residing in the pores. Furthermore, toxicity studies showed that AuC-liposomes did not induce any significant toxicity, while two of the leading over-the-counter therapies, benzoyl peroxide and salicylic acid, generated substantial skin irritation.

  13. Extracellular vesicles: Exosomes, microvesicles, and friends

    NARCIS (Netherlands)

    Raposo, G.; Stoorvogel, W.|info:eu-repo/dai/nl/074352385

    2013-01-01

    Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for

  14. Spontaneous charged lipid transfer between lipid vesicles.

    Science.gov (United States)

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  15. Impermeability effects in three-dimensional vesicles

    International Nuclear Information System (INIS)

    Biscari, P; Canevese, S M; Napoli, G

    2004-01-01

    We analyse the effects of the impermeability constraint on the equilibrium shapes of a three-dimensional vesicle hosting a rigid inclusion. A given alteration of the inclusion and/or vesicle parameters leads to shape modifications of different orders of magnitude, when applied to permeable or impermeable vesicles. Moreover, the enclosed-volume constraint wrecks the uniqueness of stationary equilibrium shapes, and gives rise to pear-shaped or stomatocyte-like vesicles

  16. Membrane Trafficking and Vesicle Fusion

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 5. Membrane Trafficking and Vesicle Fusion: Post-Palade Era Researchers Win the Nobel Prize. Riddhi Atul Jani Subba Rao Gangi Setty. General Article Volume 19 Issue 5 May 2014 pp 421-445 ...

  17. Methods for using redox liposome biosensors

    Science.gov (United States)

    Cheng, Quan; Stevens, Raymond C.

    2002-01-01

    The present invention provides methods and compositions for detecting the presence of biologically-important analytes by using redox liposome biosensors. In particular, the present invention provides liposome/sol-gel electrodes suitable for the detection of a wide variety of organic molecules, including but not limited to bacterial toxins.

  18. Astragaloside IV liposomes ameliorates adriamycin-induced ...

    African Journals Online (AJOL)

    Methods: The rats were given a single tail intravenous injection of adriamycin (6 mg/kg) within 1 week, and then divided into four groups including normal, model, benazepril and astragaloside IV liposomes group. They were all orally administered dosage of benazepril and astragaloside IV liposomes once daily for 8 weeks.

  19. Bovine binder-of-sperm protein BSP1 promotes protrusion and nanotube formation from liposomes

    International Nuclear Information System (INIS)

    Lafleur, Michel; Courtemanche, Lesley; Karlsson, Goeran; Edwards, Katarina; Schwartz, Jean-Louis; Manjunath, Puttaswamy

    2010-01-01

    Research highlights: → Binder-of-sperm protein 1 (BSP1) modifies the morphology of lipidic vesicles inducing bead necklace-like and thread-like structures. → In the presence of multilamellar liposomes, BSP1 leads to the formation of long nanotubes. → The insertion of BSP1 in the external lipid leaflet of membranes induces local changes in bilayer curvature. -- Abstract: Binder-of-sperm (BSP) proteins interact with sperm membranes and are proposed to extract selectively phosphatidylcholine and cholesterol from these. This change in lipid composition is a key step in sperm capacitation. The present work demonstrates that the interactions between the protein BSP1 and model membranes composed with phosphatidylcholine lead to drastic changes in the morphology of the lipidic self-assemblies. Using cryo-electron microscopy and fluorescence microscopy, we show that, in the presence of the protein, the lipid vesicles elongate, and form bead necklace-like structures that evolve toward small vesicles or thread-like structures. In the presence of multilamellar vesicles, where a large reservoir of lipid is available, the presence of BSP proteins lead to the formation of long nanotubes. Long spiral-like threads, associated with lipid/protein complexes, are also observed. The local curvature of lipid membranes induced by the BSP proteins may be involved in lipid domain formation and the extraction of some lipids during the sperm maturation process.

  20. Emergence and stability of intermediate open vesicles in disk-to-vesicle transitions.

    Science.gov (United States)

    Li, Jianfeng; Zhang, Hongdong; Qiu, Feng; Shi, An-Chang

    2013-07-01

    The transition between two basic structures, a disk and an enclosed vesicle, of a finite membrane is studied by examining the minimum energy path (MEP) connecting these two states. The MEP is constructed using the string method applied to continuum elastic membrane models. The results reveal that, besides the commonly observed disk and vesicle, open vesicles (bowl-shaped vesicles or vesicles with a pore) can become stable or metastable shapes. The emergence, stability, and probability distribution of these open vesicles are analyzed. It is demonstrated that open vesicles can be stabilized by higher-order elastic energies. The estimated probability distribution of the different structures is in good agreement with available experiments.

  1. Morphological study of lipid vesicles in presence of amphotericin B via modification of the microfluidic CellASIC platform and LED illumination microscopy

    International Nuclear Information System (INIS)

    Genova, J; Decheva-Zarkova, M; Pavlič, J I

    2016-01-01

    Giant lipid vesicles (liposomes) are the simplest model of the biological cell and can be easily formed from natural or synthetic lipid species with controlled composition and properties. This is the reason why they are the preferred objects for various scientific investigations. Amphotericin B (AmB) is a membrane active drug, used for treatment of systemic fungal infections. In this work we studied the morphological behavior of giant SOPC vesicles in asymmetrical presence of amphotericin B antibiotic in the vicinity of the lipid membrane. The visualization of the vesicles was carried out via inverted phase contrast microscopy. The illumination source was modified in a way that tungsten light bulb was replaced by 10 W white LED chip. All the experiments were performed using CellASIC ONIX Microfluidic Platform. The setup has been modified thus opening new opportunities for a variety of experimental realizations. The performed morphological studies showed strong and irreversible effect on the vesicle shape at the presence of amphotericin B in concentration 10 -5 g/l in the outer for the liposome's membrane solution. At concentration 10 -3 g/l AmB the effect was less visible and in 15-20 minutes the vesicles regained its initial spherical shape. (paper)

  2. Formation of Oligovesicular Vesicles by Micromanipulation

    Directory of Open Access Journals (Sweden)

    Yukihisa Okumura

    2011-09-01

    Full Text Available Cell-sized lipid bilayer membrane vesicles (giant vesicles, GVs or semi-vesicles were formed from egg yolk phosphatidylcholine on a platinum electrode under applied electric voltage by electroformation. Micromanipulation of the semi-vesicle by first pressing its membrane with a glass microneedle and then withdrawing the needle left a GV in the interior of the vesicle. During the process, an aqueous solution of Ficoll that filled the needle was introduced into the newly formed inner vesicle and remained encapsulated. Approximately 50% of attempted micromanipulation resulted in the formation of an inner daughter vesicle, “microvesiculation”. By repeating the microvesiculation process, multiple inner GVs could be formed in a single parent semi-vesicle. A semi-vesicle with inner GVs could be detached from the electrode by scraping with a microneedle, yielding an oligovesicular vesicle (OVV with desired inner aqueous contents. Microvesiculation of a GV held on the tip of a glass micropipette was also possible, and this also produced an OVV. Breaking the membrane of the parent semi-vesicle by micromanipulation with a glass needle after microvesiculation, released the inner GVs. This protocol may be used for controlled formation of GVs with desired contents.

  3. Evaluation the influence of Polyethylene glycol in circulation and biodistribution of pH-sensitive liposomes, radiolabeled with Technetium 99m in experimental models

    International Nuclear Information System (INIS)

    Nunes, Shirleide Santos

    2016-01-01

    Liposomes are lipid vesicles widely studied throughout the world as nanocarriers for different substances. The hydrophilic polymer polyethylene glycol (PEG) might be added onto the surface of liposomes to prolong the circulation time by reducing the opsonization of the vesicles, leading to a reduced uptake by the mononuclear phagocyte system (MPS). Several studies claim that the molecular weight of the PEG, as well as combination of different types of PEG with different molecular weights may alter the pharmacokinetics of the liposome. Therefore, the purpose of this study was to evaluate the influence of molecular weight and PEG combinations with different chain sizes in the pharmacokinetics and biodistribution of pH-sensitive liposomes containing 99m Tc-HYNIC-βAla-Bombesin complex (7-14 ) in tumor models (4T1 and Ehrlich). Eight liposomal formulations were prepared, the results showed that the liposomes exhibited adequate chemical and physical-chemical properties, such as mean diameter less than 300nm, monodisperse populations, neutral zeta potential, and encapsulation content of 26.4 to 38.7%. The images obtained by transmission electron cryomicroscopy (cryo-TEM) allowed visualization of unilamellar vesicles with an average diameter of 90 nm. There was no difference in blood half-life (T1/2), thereby for the composition of liposomes used in this study, PEG did not increase blood circulation time. Biodistribution studies and scintigraphic images showed high uptake by organs of the SMF, liver and spleen. The PEG2000 formulation showed higher concentration in blood. Liposomes with DSPE, PEG2000 or PEG1000 / 5000 showed higher uptake in the tumor compared to the contralateral muscle, but there was no statistical difference between the formulations when tumor-to-muscle ratio, obtained in the biodistribution studies or scintigraphic images, was analyzed. The results suggest that for this specific formulation, the addition of PEG was not efficient for increasing the

  4. Enhanced Transdermal Delivery of Diclofenac Sodium via Conventional Liposomes, Ethosomes, and Transfersomes

    Directory of Open Access Journals (Sweden)

    Saeed Ghanbarzadeh

    2013-01-01

    Full Text Available The aim of this study was to improve the transdermal permeation of Diclofenac sodium, a poorly water-soluble drug, employing conventional liposomes, ethosomes, and transfersomes. The prepared formulations had been characterized for the loaded drug amount and vesicle size. The prepared vesicular systems were incorporated into 1% Carbopol 914 gel, and a survey of in vitro drug release and drug retention into rat skin has been done on them using a modified Franz diffusion cell. The cumulative amount of drug permeated after 24 h, flux, and permeability coefficient were assessed. Stability studies were performed for three months. The size of vesicles ranged from 145 to 202 nm, and the encapsulation efficiency of the Diclofenac sodium was obtained between 42.61% and 51.72%. The transfersomes and ethosomes provided a significantly higher amount of cumulative permeation, steady state flux, permeability coefficient, and residual drug into skin compared to the conventional liposomes, conventional gel, or hydroethanolic solution. The in vitro release data of all vesicular systems were well fit into Higuchi model (RSD > 0.99. Stability tests indicated that the vesicular formulations were stable over three months. Results revealed that both ethosome and transfersome formulations can act as drug reservoir in skin and extend the pharmacologic effects of Diclofenac sodium.

  5. The cell-free integration of a polytopic mitochondrial membrane protein into liposomes occurs cotranslationally and in a lipid-dependent manner.

    Directory of Open Access Journals (Sweden)

    Ashley R Long

    Full Text Available The ADP/ATP Carrier (AAC is the most abundant transporter of the mitochondrial inner membrane. The central role that this transporter plays in cellular energy production highlights the importance of understanding its structure, function, and the basis of its pathologies. As a means of preparing proteoliposomes for the study of membrane proteins, several groups have explored the use of cell-free translation systems to facilitate membrane protein integration directly into preformed unilamellar vesicles without the use of surfactants. Using AAC as a model, we report for the first time the detergent-free reconstitution of a mitochondrial inner membrane protein into liposomes using a wheat germ-based in vitro translation system. Using a host of independent approaches, we demonstrate the efficient integration of AAC into vesicles with an inner membrane-mimetic lipid composition and, more importantly, that the integrated AAC is functionally active in transport. By adding liposomes at different stages of the translation reaction, we show that this direct integration is obligatorily cotranslational, and by synthesizing stable ribosome-bound nascent chain intermediates, we show that the nascent AAC polypeptide interacts with lipid vesicles while ribosome-bound. Finally, we show that the presence of the phospholipid cardiolipin in the liposomes specifically enhances AAC translation rate as well as the efficiency of vesicle association and integration. In light of these results, the possible mechanisms of liposome-assisted membrane protein integration during cell-free translation are discussed with respect to the mode of integration and the role of specific lipids.

  6. Phospholipid Vesicles in Materials Science

    Energy Technology Data Exchange (ETDEWEB)

    Granick, Steve [Univ. of Illinois, Champaign, IL (United States)

    2016-05-11

    The objective of this research was to develop the science basis needed to deploy phospholipid vesicles as functional materials in energy contexts. Specifically, we sought to: (1) Develop an integrated molecular-level understanding of what determines their dynamical shape, spatial organization, and responsiveness to complex, time-varying environments; and (2) Develop understanding of their active transportation in crowded environments, which our preliminary measurements in cells suggest may hold design principles for targeting improved energy efficiency in new materials systems. The methods to do this largely involved fluorescence imaging and other spectroscopy involving single particles, vesicles, particles, DNA, and endosomes. An unexpected importance outcome was a new method to image light-emitting diodes during actual operation using super-resolution spectroscopy.

  7. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: a light-responsive nanocarrier with enhanced antitumor efficiency

    Directory of Open Access Journals (Sweden)

    Liu Y

    2015-04-01

    Full Text Available Ying Liu,1,* Man He,1,* Mengmeng Niu,1 Yiqing Zhao,1 Yuanzhang Zhu,1 Zhenhua Li,2 Nianping Feng1 1Department of Pharmaceutical Sciences, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China; 2Cedars-Sinai Medical Center, Los Angeles, CA, USA *These authors contributed equally to this work Abstract: Rapid drug release at the specific site of action is still a challenge for antitumor therapy. Development of stimuli-responsive hybrid nanocarriers provides a promising strategy to enhance therapeutic effects by combining the unique features of each component. The present study explored the use of drug–gold nanoparticle conjugates incorporated into liposomes to enhance antitumor efficiency. A model drug, vincristine sulfate, was physically conjugated with gold nanoparticles and verified by UV-visible and fourier transform infrared spectroscopy, and differential scanning calorimetry. The conjugates were incorporated into liposomes by film dispersion to yield nanoparticles (113.4 nm with light-responsive release properties, as shown by in vitro release studies. Intracellular uptake and distribution was studied in HeLa cells using transmission electron microscopy and confocal laser scanning microscopy. This demonstrated liposome internalization and localization in endosomal–lysosomal vesicles. Fluorescence intensity increased in cells exposed to UV light, indicating that this stimulated intracellular drug release; this finding was confirmed by quantitative analyses using flow cytometry. Antitumor efficacy was evaluated in HeLa cells, both in culture and in implants in vivo in nude mice. HeLa cell viability assays showed that light exposure enhanced liposome cytotoxicity and induction of apoptosis. Furthermore, treatment with the prepared liposomes coupled with UV light exposure produced greater antitumor effects in nude mice and reduced side effects, as compared with free vincristine sulfate

  8. A permeability transition in liver mitochondria and liposomes induced by α,ω-dioic acids and Ca(2+).

    Science.gov (United States)

    Dubinin, Mikhail V; Samartsev, Victor N; Astashev, Maxim E; Kazakov, Alexey S; Belosludtsev, Konstantin N

    2014-11-01

    The article examines the molecular mechanism of the Ca(2+)-dependent cyclosporin A (CsA)-insensitive permeability transition in rat liver mitochondria induced by α,ω-dioic acids. The addition of α,ω-hexadecanedioic acid (HDA) to Ca(2+)-loaded liver mitochondria was shown to induce a high-amplitude swelling of the organelles, a drop of membrane potential and the release of Ca(2+) from the matrix, the effects being insensitive to CsA. The experiments with liposomes loaded with sulforhodamine B (SRB) revealed that, like palmitic acid (PA), HDA was able to cause permeabilization of liposomal membranes. However, the kinetics of HDA- and PA-induced release of SRB from liposomes was different, and HDA was less effective than PA in the induction of SRB release. Using the method of ultrasound interferometry, we also showed that the addition of Ca(2+) to HDA-containing liposomes did not change the phase state of liposomal membranes-in contrast to what was observed when Ca(2+) was added to PA-containing vesicles. It was suggested that HDA/Ca(2+)- and PA/Ca(2+)-induced permeability transition occurs by different mechanisms. Using the method of dynamic light scattering, we further revealed that the addition of Ca(2+) to HDA-containing liposomes induced their aggregation/fusion. Apparently, these processes result in a partial release of SRB due to the formation of fusion pores. The possibility that this mechanism underlies the HDA/Ca(2+)-induced permeability transition of the mitochondrial membrane is discussed.

  9. Preparation and ocular pharmacokinetics of ganciclovir liposomes.

    Science.gov (United States)

    Shen, Yan; Tu, Jiasheng

    2007-12-07

    Ophthalmic liposomes of ganciclovir (GCV) were prepared by the reverse phase evaporation method, and their ocular pharmacokinetics in albino rabbits were compared with those obtained after dosing with GCV solution. The in vitro transcorneal permeability of GCV liposomes was found to be 3.9-fold higher than that of the solution. After in vivo instillation in albino rabbits, no difference was found in the precorneal elimination rate of GCV from liposome vs solution dosing. The aqueous humor concentration-time profiles of both liposomes and solution were well described by 2-compartmental pharmacokinetics with first-order absorption. The area under the curve of the aqueous humor concentration-time profiles of GCV liposomes was found to be 1.7-fold higher than that of GCV solution. Ocular tissue distribution of GCV from liposomes was 2 to 10 times higher in the sclera, cornea, iris, lens, and vitreous humor when compared with those observed after solution dosing. These results suggested that liposomes may hold some promise in ocular GCV delivery.

  10. Stabilization of liophilized liposomal products

    Directory of Open Access Journals (Sweden)

    2001-08-01

    Full Text Available Liposomes as a drug carrier have numerous dominancy. Liophilization is the most propr form of these products for long-term maintenance, but this procedure is affected by unstabilizing agent that results in destruction of membrane, release of content and change in size and microbial contamination; hence for prevention of the adverse effects, the protective role of sugars such as: Maltose, Fructose, Glucose, Galactose, Saccharose and Lactose were studied. For this purpose, after preparation of liposomal suspention, categorized in for duplicate groups and concentrations of 25, 50, 100 percent of these sugars were added to those. On the basis of color and consistency of products, the best method of freezing is as application of absolute alcohol and then chilling in-70 oc for 16 h. In survey of protective substances concentrations 0.7, 1.4, 2.8, and 5.6 percent of the mentioned sugars were used for calculating of leakage percent (Upon on the ratio of optical density of treated samples to untreated. In this study, released maltose had highest effect. Level of fusion and aggregation had any significant difference between pre and post lyophilized samples in centrifugation with 10000 rpm. Microbial state of recent samples were studied by culturing in SCD and SCDA media that indicated microbial growth in both samples.     

  11. The role of cavitation in liposome formation.

    Science.gov (United States)

    Richardson, Eric S; Pitt, William G; Woodbury, Dixon J

    2007-12-15

    Liposome size is a vital parameter of many quantitative biophysical studies. Sonication, or exposure to ultrasound, is used widely to manufacture artificial liposomes, yet little is known about the mechanism by which liposomes are affected by ultrasound. Cavitation, or the oscillation of small gas bubbles in a pressure-varying field, has been shown to be responsible for many biophysical effects of ultrasound on cells. In this study, we correlate the presence and type of cavitation with a decrease in liposome size. Aqueous lipid suspensions surrounding a hydrophone were exposed to various intensities of ultrasound and hydrostatic pressures before measuring their size distribution with dynamic light scattering. As expected, increasing ultrasound intensity at atmospheric pressure decreased the average liposome diameter. The presence of collapse cavitation was manifested in the acoustic spectrum at high ultrasonic intensities. Increasing hydrostatic pressure was shown to inhibit the presence of collapse cavitation. Collapse cavitation, however, did not correlate with decreases in liposome size, as changes in size still occurred when collapse cavitation was inhibited either by lowering ultrasound intensity or by increasing static pressure. We propose a mechanism whereby stable cavitation, another type of cavitation present in sound fields, causes fluid shearing of liposomes and reduction of liposome size. A mathematical model was developed based on the Rayleigh-Plesset equation of bubble dynamics and principles of acoustic microstreaming to estimate the shear field magnitude around an oscillating bubble. This model predicts the ultrasound intensities and pressures needed to create shear fields sufficient to cause liposome size change, and correlates well with our experimental data.

  12. Spontaneous Vesicle Recycling in the Synaptic Bouton

    Directory of Open Access Journals (Sweden)

    Sven eTruckenbrodt

    2014-12-01

    Full Text Available The trigger for synaptic vesicle exocytosis is Ca2+, which enters the synaptic bouton following action potential stimulation. However, spontaneous release of neurotransmitter also occurs in the absence of stimulation in virtually all synaptic boutons. It has long been thought that this represents exocytosis driven by fluctuations in local Ca2+ levels. The vesicles responding to these fluctuations are thought to be the same ones that release upon stimulation, albeit potentially triggered by different Ca2+ sensors. This view has been challenged by several recent works, which have suggested that spontaneous release is driven by a separate pool of synaptic vesicles. Numerous articles appeared during the last few years in support of each of these hypotheses, and it has been challenging to bring them into accord. We speculate here on the origins of this controversy, and propose a solution that is related to developmental effects. Constitutive membrane traffic, needed for the biogenesis of vesicles and synapses, is responsible for high levels of spontaneous membrane fusion in young neurons, probably independent of Ca2+. The vesicles releasing spontaneously in such neurons are not related to other synaptic vesicle pools and may represent constitutively releasing vesicles (CRVs rather than bona fide synaptic vesicles. In mature neurons, constitutive traffic is much dampened, and the few remaining spontaneous release events probably represent bona fide spontaneously releasing synaptic vesicles (SRSVs responding to Ca2+ fluctuations, along with a handful of CRVs that participate in synaptic vesicle turnover.

  13. Targeted drug delivery using temperature-sensitive liposomes

    International Nuclear Information System (INIS)

    Magin, R.L.; Niesman, M.R.

    1984-01-01

    Liposomes are receiving considerable attention as vehicles for selective drug delivery. One method of targeting liposomal contents involves the combination of local hyperthermia with temperature-sensitive liposomes. Such liposomes have been used to increase the uptake of methotrexate and cis-platinum into locally heated mouse tumors. However, additional information is needed on the mechanism of liposome drug release and the physiologic deposition of liposomes in vivo before clinical trails are begun. Current research is directed at studying the encapsulation and release of water soluble drugs from temperature-sensitive liposomes. The influence of liposome size, structure, and composition on the rapid release in plasma of cytosine arabinoside, cis-platinum, and the radiation sensitizer SR-2508 are described. These results demonstrate potential applications for temperature-sensitive liposomes in selective drug delivery

  14. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion.

    Science.gov (United States)

    Yamada, Yuma; Akita, Hidetaka; Kamiya, Hiroyuki; Kogure, Kentaro; Yamamoto, Takenori; Shinohara, Yasuo; Yamashita, Kikuji; Kobayashi, Hideo; Kikuchi, Hiroshi; Harashima, Hideyoshi

    2008-02-01

    Mitochondria are the principal producers of energy in higher cells. Mitochondrial dysfunction is implicated in a variety of human diseases, including cancer and neurodegenerative disorders. Effective medical therapies for such diseases will ultimately require targeted delivery of therapeutic proteins or nucleic acids to the mitochondria, which will be achieved through innovations in the nanotechnology of intracellular trafficking. Here we describe a liposome-based carrier that delivers its macromolecular cargo to the mitochondrial interior via membrane fusion. These liposome particles, which we call MITO-Porters, carry octaarginine surface modifications to stimulate their entry into cells as intact vesicles (via macropinocytosis). We identified lipid compositions for the MITO-Porter which promote both its fusion with the mitochondrial membrane and the release of its cargo to the intra-mitochondrial compartment in living cells. Thus, the MITO-Porter holds promise as an efficacious system for the delivery of both large and small therapeutic molecules into mitochondria.

  15. Protection of DPPC phospholipid liposomal membrane against radiation oxidative damage by antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Marathe, D.L.; Pandey, B.N.; Mishra, K.P [Bhabha Atomic Research Centre, Mumbai (India)

    2000-05-01

    Investigations in our laboratory on egg lecithin liposomes have recently showed a marked protection against damage by gamma radiation when cholesterol was present in the composition of vesicles suggesting a role of bilayer molecular architecture in the mechanism of free radical mediated lipid peroxidation. Present study was designed to determine the changes in bilayer permeability in DPPC unilamelar vesicles after exposure to gamma radiation by monitoring the leakage of pre-loaded carboxyfluorescein (CF), a marker loaded in aqueous interior of vesicle and fluidity alterations in the bilayer using fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a membrane bilayer probe. It was found that radiation doses of an order of magnitude higher were required to produce detectable changes in vesicles of DPPC than in the vesicles of egg lecithin suggesting a modulating role of chemical nature of composition in the membrane radiation sensitivity. It was significant to find that the leakage of CF from and incorporation of DPH into vesicle bilayer showed similar response pattern to radiation doses (0.1-6 kGy) which was also found to be dose rate dependent. Presence of antioxidants; alpha-tocopherol (0.15 mole %) in the bilayer membrane or ascorbic acid (0.1 mM) in the aqueous region significantly protected DPPC vesicles from radiation damage as determined from DPH uptake kinetics suggesting involvement of reactive free radicals of lipids as well as water radicals in the mechanism of membrane peroxidative damage. The magnitude of protection was found to increase with the increasing concentration of both these antioxidants but comparisons showed that {alpha}-tocopherol was far more effective in protecting the vesicles than ascorbic acid. These results contribute to our understanding of the mechanism of radiation oxidative damage and its modification by radical scavenging and/or organizational modulation which emphasize the importance of structure and composition of

  16. Protection of DPPC phospholipid liposomal membrane against radiation oxidative damage by antioxidants

    International Nuclear Information System (INIS)

    Marathe, D.L.; Pandey, B.N.; Mishra, K.P

    2000-01-01

    Investigations in our laboratory on egg lecithin liposomes have recently showed a marked protection against damage by gamma radiation when cholesterol was present in the composition of vesicles suggesting a role of bilayer molecular architecture in the mechanism of free radical mediated lipid peroxidation. Present study was designed to determine the changes in bilayer permeability in DPPC unilamelar vesicles after exposure to gamma radiation by monitoring the leakage of pre-loaded carboxyfluorescein (CF), a marker loaded in aqueous interior of vesicle and fluidity alterations in the bilayer using fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), a membrane bilayer probe. It was found that radiation doses of an order of magnitude higher were required to produce detectable changes in vesicles of DPPC than in the vesicles of egg lecithin suggesting a modulating role of chemical nature of composition in the membrane radiation sensitivity. It was significant to find that the leakage of CF from and incorporation of DPH into vesicle bilayer showed similar response pattern to radiation doses (0.1-6 kGy) which was also found to be dose rate dependent. Presence of antioxidants; alpha-tocopherol (0.15 mole %) in the bilayer membrane or ascorbic acid (0.1 mM) in the aqueous region significantly protected DPPC vesicles from radiation damage as determined from DPH uptake kinetics suggesting involvement of reactive free radicals of lipids as well as water radicals in the mechanism of membrane peroxidative damage. The magnitude of protection was found to increase with the increasing concentration of both these antioxidants but comparisons showed that α-tocopherol was far more effective in protecting the vesicles than ascorbic acid. These results contribute to our understanding of the mechanism of radiation oxidative damage and its modification by radical scavenging and/or organizational modulation which emphasize the importance of structure and composition of

  17. Liposomal curcumin and its application in cancer.

    Science.gov (United States)

    Feng, Ting; Wei, Yumeng; Lee, Robert J; Zhao, Ling

    2017-01-01

    Curcumin (CUR) is a yellow polyphenolic compound derived from the plant turmeric. It is widely used to treat many types of diseases, including cancers such as those of lung, cervices, prostate, breast, bone and liver. However, its effectiveness has been limited due to poor aqueous solubility, low bioavailability and rapid metabolism and systemic elimination. To solve these problems, researchers have tried to explore novel drug delivery systems such as liposomes, solid dispersion, microemulsion, micelles, nanogels and dendrimers. Among these, liposomes have been the most extensively studied. Liposomal CUR formulation has greater growth inhibitory and pro-apoptotic effects on cancer cells. This review mainly focuses on the preparation of liposomes containing CUR and its use in cancer therapy.

  18. Radioprotective effectiveness of Adeturone incapsulated in liposomes

    International Nuclear Information System (INIS)

    Pantev, T.

    1989-01-01

    The radioprotective properties of the radioprotector Adeturone incapsulated in mono- and tricomponent liposomes were studied. Intraperitoneal administration of the radioprotector by means of monocomponent liposomes from egg lecithin, as well as its applicaton alone immediately (15-30 min) before irradiation of mice with 7,5 Gy gamma-quanta (LD 100/30 ) guaranteed high survival -80% and 75% accordingly. Orally introduced Adeturone, incapsulated in tricomponent liposomes (dipalmitoil lecithin, cholesterol, stearinamine - 7:2:1), protected for 0,5 to 4,5 hours lethally X-irradiated mice (7,8 Gy; LD 90/30 ). Under these conditions, Adeturone applied alone 4,5 hours before irradiation was ineffective. These results show the presence of prolonged radioprotective effect of Adeturone, when orally applied in the form of liposomal suspension. 2 tabs., 17 refs

  19. Progress involving new techniques for liposome preparation

    Directory of Open Access Journals (Sweden)

    Zhenjun Huang

    2014-08-01

    Full Text Available The article presents a review of new techniques being used for the preparation of liposomes. A total of 28 publications were examined. In addition to the theories, characteristics and problems associated with traditional methods, the advantages and drawbacks of the latest techniques were reviewed. In the light of developments in many relevant areas, a variety of new techniques are being used for liposome preparation and each of these new technique has particular advantages over conventional preparation methods. However, there are still some problems associated with these new techniques that could hinder their applications and further improvements are needed. Generally speaking, due to the introduction of these latest techniques, liposome preparation is now an improved procedure. These applications promote not only advances in liposome research but also the methods for their production on an industrial scale.

  20. Optogenetic acidification of synaptic vesicles and lysosomes.

    Science.gov (United States)

    Rost, Benjamin R; Schneider, Franziska; Grauel, M Katharina; Wozny, Christian; Bentz, Claudia; Blessing, Anja; Rosenmund, Tanja; Jentsch, Thomas J; Schmitz, Dietmar; Hegemann, Peter; Rosenmund, Christian

    2015-12-01

    Acidification is required for the function of many intracellular organelles, but methods to acutely manipulate their intraluminal pH have not been available. Here we present a targeting strategy to selectively express the light-driven proton pump Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace endogenous proton pumps, enabling optogenetic control of vesicular acidification and neurotransmitter accumulation. Under physiological conditions, glutamatergic vesicles are nearly full, as additional vesicle acidification with pHoenix only slightly increased the quantal size. By contrast, we found that incompletely filled vesicles exhibited a lower release probability than full vesicles, suggesting preferential exocytosis of vesicles with high transmitter content. Our subcellular targeting approach can be transferred to other organelles, as demonstrated for a pHoenix variant that allows light-activated acidification of lysosomes.

  1. Ultrasound-responsive ultrathin multiblock copolyamide vesicles

    Science.gov (United States)

    Huang, Lei; Yu, Chunyang; Huang, Tong; Xu, Shuting; Bai, Yongping; Zhou, Yongfeng

    2016-02-01

    This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation.This study reports the self-assembly of novel polymer vesicles from an amphiphilic multiblock copolyamide, and the vesicles show a special structure with an ultrathin wall thickness of about 4.5 nm and a combined bilayer and monolayer packing model. Most interestingly, the vesicles are ultrasound-responsive and can release the encapsulated model drugs in response to ultrasonic irradiation. Electronic supplementary information (ESI) available: Details of experiments and characterization, and FT-IR, TEM, DPD, FL and micro-DSC results. See DOI: 10.1039/c5nr08596a

  2. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles

    NARCIS (Netherlands)

    Farsi, Z.; Preobraschenski, J.; Bogaart, G. van den; Riedel, D.; Jahn, R.; Woehler, A.

    2016-01-01

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided

  3. Octanol-assisted liposome assembly on chip

    Science.gov (United States)

    Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees

    2016-01-01

    Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.

  4. Engineering liposomal nanoparticles for targeted gene therapy.

    Science.gov (United States)

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  5. Ultrasound effects on brain-targeting mannosylated liposomes: in vitro and blood–brain barrier transport investigations

    Directory of Open Access Journals (Sweden)

    Zidan AS

    2015-07-01

    Full Text Available Ahmed S Zidan,1,2 Hibah Aldawsari1 1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt Abstract: Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood–brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood–brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (<200 nm of narrow size distribution. Optimized ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes. Keywords: CNS delivery, sizing, lipid based formulations, quality by design, sertraline hydrochloride

  6. Transcriptome of extracellular vesicles released by hepatocytes.

    Directory of Open Access Journals (Sweden)

    Felix Royo

    Full Text Available The discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin. Here, we show that the extracellular vesicles released by hepatocytes also carry RNA. We report the messenger RNA composition of extracellular vesicles released in two non-tumoral hepatic models: primary culture of rat hepatocytes and a progenitor cell line obtained from a mouse foetal liver. We describe different subpopulations of extracellular vesicles with different densities and protein and RNA content. We also show that the RNA cargo of extracellular vesicles released by primary hepatocytes can be transferred to rat liver stellate-like cells and promote their activation. Finally, we provide in vitro and in vivo evidence that liver-damaging drugs galactosamine, acetaminophen, and diclofenac modify the RNA content of these vesicles. To summarize, we show that the extracellular vesicles secreted by hepatocytes contain various RNAs. These vesicles, likely to be involved in the activation of stellate cells, might become a new source for non-invasive identification of the liver toxicity markers.

  7. Trafficking of astrocytic vesicles in hippocampal slices

    International Nuclear Information System (INIS)

    Potokar, Maja; Kreft, Marko; Lee, So-Young; Takano, Hajime; Haydon, Philip G.; Zorec, Robert

    2009-01-01

    The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.

  8. Membrane fusion of pH-sensitive liposomes – a quantitative study using giant unilamellar vesicles

    DEFF Research Database (Denmark)

    Trier, Sofie; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2011-01-01

    This article presents a methodology for developing small-signal behavioral electromagnetic (EM) models of p-i-n photodiodes (PDs) for high-speed applications. The EM model includes RC bandwidth limitation effect and transit-time effect. The model is capable of accurately modeling arbitrary comple...

  9. Extracellular Vesicles in Hematological Disorders

    Directory of Open Access Journals (Sweden)

    Anat Aharon

    2014-10-01

    Full Text Available Extracellular vesicles (EVs, comprised of exosomes, microparticles, apoptotic bodies, and other microvesicles, are shed from a variety of cells upon cell activation or apoptosis. EVs promote clot formation, mediate pro-inflammatory processes, transfer proteins and miRNA to cells, and induce cell signaling that regulates cell differentiation, proliferation, migration, invasion, and apoptosis. This paper will review the contribution of EVs in hematological disorders, including hemoglobinopathies (sickle cell disease, thalassemia, paroxysmal nocturnal hemoglobinuria, and hematological malignancies (lymphomas, myelomas, and acute and chronic leukemias.

  10. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    OpenAIRE

    L?sser, Cecilia; Th?ry, Clotilde; Buz?s, Edit I.; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; L?tvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field co...

  11. Peptide-Mediated Liposome Fusion: The Effect of Anchor Positioning

    Directory of Open Access Journals (Sweden)

    Niek S. A. Crone

    2018-01-01

    Full Text Available A minimal model system for membrane fusion, comprising two complementary peptides dubbed “E” and “K” joined to a cholesterol anchor via a polyethyleneglycol spacer, has previously been developed in our group. This system promotes the fusion of large unilamellar vesicles and facilitates liposome-cell fusion both in vitro and in vivo. Whilst several aspects of the system have previously been investigated to provide an insight as to how fusion is facilitated, anchor positioning has not yet been considered. In this study, the effects of placing the anchor at either the N-terminus or in the center of the peptide are investigated using a combination of circular dichroism spectroscopy, dynamic light scattering, and fluorescence assays. It was discovered that anchoring the “K” peptide in the center of the sequence had no effect on its structure, its ability to interact with membranes, or its ability to promote fusion, whereas anchoring the ‘E’ peptide in the middle of the sequence dramatically decreases fusion efficiency. We postulate that anchoring the ‘E’ peptide in the middle of the sequence disrupts its ability to form homodimers with peptides on the same membrane, leading to aggregation and content leakage.

  12. Development and optimization of a new processing approach for manufacturing topical liposomes-in-hydrogel drug formulations by dual asymmetric centrifugation.

    Science.gov (United States)

    Ingebrigtsen, Sveinung G; Škalko-Basnet, Nataša; Holsæter, Ann Mari

    2016-09-01

    The objective of the present study was to utilize dual asymmetric centrifugation (DAC) as a novel processing approach for the production of liposomes-in-hydrogel formulations. Lipid films of phosphatidylcholine, with and without chloramphenicol (CAM), were hydrated and homogenized by DAC to produce liposomes in the form of vesicular phospholipid gels with a diameter in the size range of 200-300 nm suitable for drug delivery to the skin. Different homogenization processing parameters were investigated along with the effect of adding propylene glycol (PG) to the formulations prior to homogenization. The produced liposomes were incorporated into a hydrogel made of 2.5% (v/v) soluble β-1,3/1,6-glucan (SBG) and mixed by DAC to achieve a homogenous liposomes-in-hydrogel-formulation suitable for topical application. CAM-containing liposomes with a vesicle diameter of 282 ± 30 nm and polydispersity index (PI) of 0.13 ± 0.02 were successfully produced by DAC after 50 min centrifugation at 3500 rpm, and homogenously (< 4% content variation) incorporated into the SBG hydrogel. Addition of PG decreased the necessary centrifugation time to 2 min and 55 s, producing liposomes of 230 ± 51 nm and PI of 0.25 ± 0.04. All formulations had an entrapment efficiency of approximately 50%. We managed to develop a relatively fast and reproducible new method for the production of liposomes-in-hydrogel formulations by DAC.

  13. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Hawthorne, M. Frederick

    2005-01-01

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic

  14. ANTISTAPHYLOCOCCAL ACTIVITY OF LIPOSOMAL FORMS OF LINCOMYCIN

    Directory of Open Access Journals (Sweden)

    Derkach SA

    2015-04-01

    Full Text Available Nowadays the vital problem of modern medicine is a tendency to emerging of both nosocomial and community-acquired strains before antibiotic resistance forming. The complexity of antibiotic therapy of diseases caused by methicillin resistant staphylococci having high poly resistance almost to every classes of antibacterial agents is of prime importance. One of the ways to improve antibacterial preparations still remains the development of their liposomal forms. This work studies antistaphylococcal activity (according to MIC of the liposomal form of lincomycin developed in the Institute of Dermatology and Venereology of Ukraine by Ivanova N. N., the Candidate of Сhemical Sciences.The purpose of this research work was to study liposomal inhibiting concentration of the liposomalny form of lincomycin and a commercial preparation lincomycin (produced by CJSC “Pharmaceutical firm "Darnitsa". Determination of the minimum inhibiting concentration was carried out by a tablet micromethod by consecutive cultivations of the samples under study.It is shown that MIC of liposomal lincomycin is eight times as low as usual lincomycin (0,23mkg/ml to 1,87 mkg/ml. Antibacterial activity of the liposomal form of lincomycin is studied concerning the patients selected from the different biotopes with pyo inflammatory diseases of staphylococcus strains (15 strains – methicillin sensitive, 12 strains - methicillin resistant.It is shown authentically the higher sensitivity of S. aureus strains to the liposomal form of lincomycin in comparison with usual lincomycin . Also 50.0% of MRSA strains were sensitive to the liposomalny form of lincomycin that shows the perspective for the development of the liposomal forms of antibiotics to cure staphylococcal infections.

  15. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.-S.; Yao Jie; Durst, Richard A.

    2006-01-01

    Quantum dots (QDs) and silica nanoparticles (SNs) are relatively new classes of fluorescent probes that overcome the limitations encountered by organic fluorophores in bioassay and biological imaging applications. We encapsulated QDs and SNs in liposomes and separated nanoparticle-loaded liposomes from unencapsulated nanoparticles by size exclusion chromatography. Fluorescence correlation spectroscopy was used to measure the average number of nanoparticles inside each liposome. Results indicated that nanoparticle-loaded liposomes were formed and separated from unencapsulated nanoparticles by using a Sepharose gel. As expected, fluorescence self-quenching of nanoparticles inside liposomes was not observed. Each liposome encapsulated an average of three QDs. These studies demonstrated that nanoparticles could be successfully encapsulated into liposomes and provided a methodology to quantify the number of nanoparticles inside each liposome by fluorescence correlation spectroscopy

  16. Synaptic vesicle distribution by conveyor belt.

    Science.gov (United States)

    Moughamian, Armen J; Holzbaur, Erika L F

    2012-03-02

    The equal distribution of synaptic vesicles among synapses along the axon is critical for robust neurotransmission. Wong et al. show that the continuous circulation of synaptic vesicles throughout the axon driven by molecular motors ultimately yields this even distribution. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Amperometric Adhesion Signals of Liposomes, Cells and Droplets

    OpenAIRE

    Ivošević DeNardis, N.; Žutić, V.; Svetličić, V.; Frkanec, R.

    2009-01-01

    Individual soft microparticles (liposomes, living cells and organic droplets) in aqueous media are characterized by their adhesion signals using amperometry at the dropping mercury electrode. We confirmed that the general mechanism established for adhesion of hydrocarbon droplets and cells is valid as well for liposome adhesion within a wide range of surface charge densities. Incidents and shape of adhesion signals in liposome suspensions reflect liposome polydispersity, surface charge den...

  18. Responsive Polydiacetylene Vesicles for Biosensing Microorganisms

    Directory of Open Access Journals (Sweden)

    Estelle Lebègue

    2018-02-01

    Full Text Available Polydiacetylene (PDA inserted in films or in vesicles has received increasing attention due to its property to undergo a blue-to-red colorimetric transition along with a change from non-fluorescent to fluorescent upon application of various stimuli. In this review paper, the principle for the detection of various microorganisms (bacteria, directly detected or detected through the emitted toxins or through their DNA, and viruses and of antibacterial and antiviral peptides based on these responsive PDA vesicles are detailed. The analytical performances obtained, when vesicles are in suspension or immobilized, are given and compared to those of the responsive vesicles mainly based on the vesicle encapsulation method. Many future challenges are then discussed.

  19. Spontaneous transfer of gangliotetraosylceramide between phospholipid vesicles

    International Nuclear Information System (INIS)

    Brown, R.E.; Sugar, I.P.; Thompson, T.E.

    1985-01-01

    The transfer kinetics of the neutral glycosphingolipid gangliotetraosylceramide (asialo-GM1) were investigated by monitoring tritiated asialo-GM1 movement from donor to acceptor vesicles. Two different methods were employed to separate donor and acceptor vesicles at desired time intervals. In one method, a negative charge was imparted to dipalmitoylphosphatidylcholine donor vesicles by including 10 mol% dipalmitoylphosphatidic acid. Donors were separated from neutral dipalmitoylphosphatidylcholine acceptor vesicles by ion-exchange chromatography. In the other method, small, unilamellar donor vesicles and large, unilamellar acceptor vesicles were coincubated at 45 degrees C and then separated at desired time intervals by molecular sieve chromatography. The majority of asialo-GM1 transfer to acceptor vesicles occurred as a slow first-order process with a half-time of about 24 days assuming that the relative concentration of asialo-GM1 in the phospholipid matrix was identical in each half of the donor bilayer and that no glycolipid flip-flop occurred. Asialo-GM1 net transfer was calculated relative to that of [ 14 C]cholesteryl oleate, which served as a nontransferable marker in the donor vesicles. A nearly identical transfer half-time was obtained when the phospholipid matrix was changed from dipalmitoylphosphatidylcholine to palmitoyloleoylphosphatidylcholine. Varying the acceptor vesicle concentration did not significantly alter the asialo-GM1 transfer half-time. This result is consistent with a transfer mechanism involving diffusion of glycolipid through the aqueous phase rather than movement of glycolipid following formation of collisional complexes between donor and acceptor vesicles. (Abstract Truncated)

  20. Thermodynamics and kinetics of vesicles formation processes.

    Science.gov (United States)

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  1. Multifunctional liposomes for MRI and image-guided drug delivery

    NARCIS (Netherlands)

    Langereis, Sander; Hijnen, Nicole; Strijkers, Gustav; Nicolay, Klaas; Grüll, Holger

    2014-01-01

    Liposomes are a class of nanovesicles that have been explored extensively in the biomedical arena for early diagnosis and treatment of disease. In recent years, several liposomal drug formulations have been clinically approved in oncology. In a modular approach, the properties of liposomes can be

  2. Characterization of Diclofenac Liposomes Formulated with Palm Oil ...

    African Journals Online (AJOL)

    Purpose: To characterize diclofenac sodium (DS) liposomes prepared using palm oil fractions. Methods: Reverse-phase evaporation method was used to prepare liposomes containing 10, 20, 30 , 40 or 50% palm oil fractions. The effect of palm oil content on liposome formation, surface morphology, shape, size and zeta ...

  3. Evaluation of iron transport from ferrous glycinate liposomes using ...

    African Journals Online (AJOL)

    Background: Iron fortification of foods is currently a strategy employed to fight iron deficiency in countries. Liposomes were assumed to be a potential carrier of iron supplements. Objective: The objective of this study was to investigate the iron transport from ferrous glycinate liposomes, and to estimate the effects of liposomal ...

  4. Liposomal curcumin and its application in cancer

    Directory of Open Access Journals (Sweden)

    Feng T

    2017-08-01

    Full Text Available Ting Feng,1,* Yumeng Wei,1,* Robert J Lee,2 Ling Zhao1 1Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China; 2Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA *These authors contributed equally to this work Abstract: Curcumin (CUR is a yellow polyphenolic compound derived from the plant turmeric. It is widely used to treat many types of diseases, including cancers such as those of lung, cervices, prostate, breast, bone and liver. However, its effectiveness has been limited due to poor aqueous solubility, low bioavailability and rapid metabolism and systemic elimination. To solve these problems, researchers have tried to explore novel drug delivery systems such as liposomes, solid dispersion, microemulsion, micelles, nanogels and dendrimers. Among these, liposomes have been the most extensively studied. Liposomal CUR formulation has greater growth inhibitory and pro-apoptotic effects on cancer cells. This review mainly focuses on the preparation of liposomes containing CUR and its use in cancer therapy. Keywords: curcumin, liposomes, drug delivery, bioavailability, cancer 

  5. Treatment of Digital Ischemia with Liposomal Bupivacaine

    Directory of Open Access Journals (Sweden)

    José Raul Soberón

    2014-01-01

    Full Text Available Objective. This report describes a case in which the off-label use of liposomal bupivacaine (Exparel in a peripheral nerve block resulted in marked improvement of a patient’s vasoocclusive symptoms. The vasodilating and analgesic properties of liposomal bupivacaine in patients with ischemic symptoms are unknown, but our clinical experience suggests a role in the management of patients suffering from vasoocclusive disease. Case Report. A 45-year-old African American female was admitted to the hospital with severe digital ischemic pain. She was not a candidate for any vascular surgical or procedural interventions. Two continuous supraclavicular nerve blocks were placed with modest clinical improvement. These effects were also short-lived, with the benefits resolving after the discontinuation of the peripheral nerve blocks. She continued to report severe pain and was on multiple anticoagulant medications, so a decision was made to perform an axillary nerve block using liposomal bupivacaine (Exparel given the compressibility of the site as well as the superficial nature of the target structures. Conclusions. This case report describes the successful off-label usage of liposomal bupivacaine (Exparel in a patient with digital ischemia. Liposomal bupivacaine (Exparel is currently FDA approved only for wound infiltration use at this time.

  6. Liposomal membrane disruption by means of miniaturized dielectric-barrier discharge in air: liposome characterization

    Science.gov (United States)

    Svarnas, P.; Asimakoulas, L.; Katsafadou, M.; Pachis, K.; Kostazos, N.; Antimisiaris, S. G.

    2017-08-01

    The increasing interest of the plasma community in the application of atmospheric-pressure cold plasmas to bio-specimen treatment has led to the creation of the emerging field of plasma biomedicine. Accordingly, plasma setups based on dielectric-barrier discharges have already been widely tested for the inactivation of various cells. Most of these systems refer to the plasma jet concept where noble gases penetrate atmospheric air and are subjected to the influence of high electric fields, thus forming guided streamers. Following the original works of our group where liposomal membranes were proposed as models for studying the interaction between plasma jets and cells, we present herein a study on liposomal membrane disruption by means of miniaturized dielectric-barrier discharge running in atmospheric air. Liposomal membranes of various lipid compositions, lamellarities, and sizes are treated at different times. It is shown that the dielectric-barrier discharge of low mean power leads to efficient liposomal membrane disruption. The latter is achieved in a controllable manner and depends on liposome properties. Additionally, it is clearly demonstrated that liposomal membrane disruption takes place even after plasma extinction, i.e. during post-treatment, resembling thus an ‘apoptosis’ effect, which is well known today mainly for cell membranes. Thus, the adoption of the present concept would be beneficial for tailoring studies on plasma-treated cell-mimics. Finally, the liposome treatment is discussed with respect to possible physicochemical mechanisms and potential discharge modification due to the various compositions of the liquid electrode.

  7. The Effect of a Fluorophore Photo-Physics on the Lipid Vesicle Diffusion Coefficient Studied by Fluorescence Correlation Spectroscopy.

    Science.gov (United States)

    Drabik, Dominik; Przybyło, Magda; Sikorski, Aleksander; Langner, Marek

    2016-03-01

    Fluorescence Correlation Spectroscopy (FCS) is a technique, which allows determination of the diffusion coefficient and concentration of fluorescent objects suspended in the solution. The measured parameter is the fluctuation of the fluorescence signal emitted by diffusing molecules. When 100 nm DOPC vesicles labeled with various fluorescent dyes (Fluorescein-PE, NBD-PE, Atto488 DOPE or βBodipy FL) were measured, different values of diffusion coefficients have been obtained. These diffusion coefficients were different from the expected values measured using the dynamic light scattering method (DLS). The FCS was initially developed for solutions containing small fluorescent molecules therefore the observed inconsistency may result from the nature of vesicle suspension itself. The duration of the fluorescence signal may depend on the following factors: the exposure time of the labeled object to the excitation beam, the photo-physical properties (e.g., stability) of a fluorophore, the theoretical model used for the calculations of the diffusion coefficient and optical properties of the vesicle suspension. The diffusion coefficients determined for differently labeled liposomes show that its dependence on vesicle size and quantity of fluorescent probed used for labeling was significant demonstrating that the fluorescence properties of the fluorophore itself (bleaching and/or blinking) were critical factors for a correct outcome of FCS experiment. The new, based on combined FCS and DLS measurements, method for the determination of the focal volume prove itself to be useful for the evaluation of a fluorescence dye with respect to its applicability for FCS experiment.

  8. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection - IV. Fate of liposomes in regional lymph nodes

    NARCIS (Netherlands)

    Oussoren, C; Scherphof, G; van der Want, JJ; van Rooijen, N; Storm, G

    1998-01-01

    The ability of clodronate-containing liposomes to deplete lymph nodes of macrophages was used as a tool to investigate the fate of liposomes in regional lymph nodes after subcutaneous (s.c.) administration. Reduced lymph node localization of liposomes in macrophage-depleted lymph nodes confirmed

  9. Radioprotective effectiveness of Adeturone, incapsulated in liposomes

    International Nuclear Information System (INIS)

    Pantev, T.

    1990-01-01

    The radioprotective properties of Adeturone (S,2-aminoethyl isothiuronic adenosine-5-triphosphate), incapsulated in mono- and tricomponent lisosomes was studied. Intraperitoneal adminisration of the radioprotector by means of monocomponent liposomes from egg lecithins, as well as of the radioprotector alone shortly before (15-30 min) gamma irradiation of mice with 7.5 Gy (LD 100/30 ) provided high survival rate - accordingly 80% and 75%. Orally administered Adeturone incapsulated in tricomponent liposomes (dipalmitoil-DL-3-lecithin:cholesterine:stearilamine - 7:2:1) protected mice exposed to lethal X-irradiation (7.8 Gy, LD 90/30 ) for 0.5 to 4.5 hours. Adeturone, applied alone under these conditions 4.5 hours before irradiation, was ineffective. The results clearly demonstrated a prolonged radioprotective effect of Adeturone, administered per os as liposome suspension. 2 tabs., 17 refs

  10. Liposome imaging agents in personalized medicine

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Hansen, Anders Elias; Gabizon, Alberto

    2012-01-01

    In recent years the importance of molecular and diagnostic imaging has increased dramatically in the treatment planning of many diseases and in particular in cancer therapy. Within nanomedicine there are particularly interesting possibilities for combining imaging and therapy. Engineered liposomes...... that selectively localize in tumor tissue can transport both drugs and imaging agents, which allows for a theranostic approach with great potential in personalized medicine. Radiolabeling of liposomes have for many years been used in preclinical studies for evaluating liposome in vivo performance and has been...... start to consider how to use imaging for patient selection and treatment monitoring in connection to nanocarrier based medicines. Nanocarrier imaging agents could furthermore have interesting properties for disease diagnostics and staging. Here, we review the major advances in the development...

  11. Vesicles Are Persistent Features of Different Plastids.

    Science.gov (United States)

    Lindquist, Emelie; Solymosi, Katalin; Aronsson, Henrik

    2016-10-01

    Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. On the Computing Potential of Intracellular Vesicles.

    Science.gov (United States)

    Mayne, Richard; Adamatzky, Andrew

    2015-01-01

    Collision-based computing (CBC) is a form of unconventional computing in which travelling localisations represent data and conditional routing of signals determines the output state; collisions between localisations represent logical operations. We investigated patterns of Ca2+-containing vesicle distribution within a live organism, slime mould Physarum polycephalum, with confocal microscopy and observed them colliding regularly. Vesicles travel down cytoskeletal 'circuitry' and their collisions may result in reflection, fusion or annihilation. We demonstrate through experimental observations that naturally-occurring vesicle dynamics may be characterised as a computationally-universal set of Boolean logical operations and present a 'vesicle modification' of the archetypal CBC 'billiard ball model' of computation. We proceed to discuss the viability of intracellular vesicles as an unconventional computing substrate in which we delineate practical considerations for reliable vesicle 'programming' in both in vivo and in vitro vesicle computing architectures and present optimised designs for both single logical gates and combinatorial logic circuits based on cytoskeletal network conformations. The results presented here demonstrate the first characterisation of intracelluar phenomena as collision-based computing and hence the viability of biological substrates for computing.

  13. MR imaging of the seminal vesicles

    International Nuclear Information System (INIS)

    Edson, S.B.; Hricak, H.; Chun-Fang Chang, Y.

    1987-01-01

    The seminal vesicles of 56 healthy males and 23 males with pathologic conditions were studied with a .35-T magnet and spin-echo (SE) techniques (repetition time/echo time [msec] = 500/30 and 2,000/60). The authors analyzed (1) the size and relative signal intensity of seminal vesicles compared to surrounding fat, muscle, or urine; (2) the effect of aging on the size and signal intensity of the vesicles, and (3) the appearance of the seminal vesicles in different pathologic conditions. In the transverse plane, the normal seminal vesicle measures 31 +- 7 mm in length and 17 +- 4 mm in width. Its size or signal intensity did not change significantly with age. On SE = 500/30 images the seminal vesicles were isointense with muscle; on SE = 2,000/60 images they were isointense or slightly hypointense relative to fat. MR imaging was highly sensitive for displaying seminal vesicle pathology, based on asymmetry in size and changes in signal intensities. MR imaging provides unique information but its role in pathologic conditions needs to be further explored

  14. Fluorescence Resonance Energy Transfer in Polydiacetylene Liposomes

    Science.gov (United States)

    Li, Xuelian; Matthews, Shelton; Kohli, Punit

    2009-01-01

    Conjugated polydiacetylene (PDA) possessing stimuli-responsive properties has been intensively investigated for developing efficient sensors. We report here fluorescence resonance energy transfer (FRET) in liposomes synthesized using different molar ratios of dansyl-tagged diacetylene and diacetylene–carboxylic acid monomers. Photopolymerization of diacetylene resulted in cross-linked PDA liposomes. We used steady-state electronic absorption, emission, and fluorescence anisotropy (FA) analysis to characterize the thermal-induced FRET between dansyl fluorophores (donor) and PDA (acceptor). We found that the monomer ratio of acceptor to donor (Rad) and length of linkers (functional part that connects dansyl fluorophores to the diacetylene group in the monomer) strongly affected FRET. For Rad = 10 000, the acceptor emission intensity was amplified by more than 18 times when the liposome solution was heated from 298 to 338 K. A decrease in Rad resulted in diminished acceptor emission amplification. This was primarily attributed to lower FRET efficiency between donors and acceptors and a higher background signal. We also found that the FRET amplification of PDA emissions after heating the solution was much higher when dansyl was linked to diacetylene through longer and flexible linkers than through shorter linkers. We attributed this to insertion of dansyl in the bilayer of the liposomes, which led to an increased dansyl quantum yield and a higher interaction of multiple acceptors with limited available donors. This was not the case for shorter and more rigid linkers where PDA amplification was much smaller. The present studies aim at enhancing our understanding of FRET between fluorophores and PDA-based conjugated liposomes. Furthermore, receptor tagged onto PDA liposomes can interact with ligands present on proteins, enzymes, and cells, which will produce emission sensing signal. Therefore, using the present approach, there exist opportunities for designing FRET

  15. Cargo Release from Polymeric Vesicles under Shear

    Directory of Open Access Journals (Sweden)

    Yingying Guo

    2018-03-01

    Full Text Available In this paper we study the release of cargo from polymeric nano-carriers under shear. Vesicles formed by two star block polymers— A 12 B 6 C 2 ( A B C and A 12 B 6 A 2 ( A B A —and one linear block copolymer— A 14 B 6 ( A B , are investigated using dissipative particle dynamics (DPD simulations. A - and C -blocks are solvophobic and B -block is solvophilic. The three polymers form vesicles of different structures. The vesicles are subjected to shear both in bulk and between solvophobic walls. In bulk shear, the mechanisms of cargo release are similar for all vesicles, with cargo travelling through vesicle membrane with no preferential release location. When sheared between walls, high cargo release rate is only observed with A B C vesicle after it touches the wall. For A B C vesicle, the critical condition for high cargo release rate is the formation of wall-polymersome interface after which the effect of shear rate in promoting cargo release is secondary. High release rate is achieved by the formation of solvophilic pathway allowing cargo to travel from the vesicle cavity to the vesicle exterior. The results in this paper show that well controlled target cargo release using polymersomes can be achieved with polymers of suitable design and can potentially be very useful for engineering applications. As an example, polymersomes can be used as carriers for surface active friction reducing additives which are only released at rubbing surfaces where the additives are needed most.

  16. Liposomes as carriers of the beta-emitters rhenium-186 and rhenium-188 for use in radiotherapy

    International Nuclear Information System (INIS)

    Haefeli, U.

    1989-01-01

    The two radioisotopes Re-186 and Re-188 are highly favoured as therapeutic nuclides in nuclear medicine due to their unique radiation characteristics. For application in future (e.g. radiosynoviorthesis of the knee) we have chosen liposomes as biodegradable and non-irriting carriers. They were filled with radioactive Re in therapeutic doses of >370 MBq (10 mCi). 1. Small unilamellar liposomes (SUV's) of an average size of 28 nm were prepared by ultrasonic irradiation. They encapsulated only 0.64% of the perrhenate. 2. Liposomes carrying DTPA-SA in their bilayer (SA=octadecylamine) were produced in order to form a complex with Tc and Re. Technetium was complexed in high yield and the Tc-DTPA-liposome bindings were found to be stable when tested by dialysis. Similar attempts to complex Re were not successful because the amount of Sn(+II) required for the reduction was so high that the liposomes were destroyed. 3. Methylthiosemicarbazide (mts) was coupled covalently to aminomethylpolystyrene. These spheres were used as a very convenient and simple model for testing the labelling-yield and the stability of the Re-mts-complex. 4. Two isomers of the complex ReO(OEt)Cl 2 (PPh 3 ) 2 (Rephos) were characterized. These highly lipid-soluble inactive complexes were irradiated by neutrons and then used to prepare a mixed micelle with egg yolk lecithin and the detergent sodium deoxycholate. Liposomes were produced in a size of 60-80 nm in a very simple way by gelfiltration. Up to 53.5% of the radioactive Rephos was incorporated. Monitoring the stability by dialysis an initial loss of 10-15% and subsequent linear decrease were observed. The daily loss could be reduced to 1.0% by the addition of ascorbic acid. After 8 days, 82% of the initial activity still remained in the vesicles. 5. [ReO 2 (en) 2 ]Cl.2H 2 O and [ReO 2 (1,4,8,11-tetraazaundecane)]Cl were synthesized and characterized. 6. A direct enzymatic method to determine the remaining cholate in liposomes was developed

  17. Recent Trends of Polymer Mediated Liposomal Gene Delivery System

    Directory of Open Access Journals (Sweden)

    Shyamal Kumar Kundu

    2014-01-01

    Full Text Available Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.

  18. Liposomes for Use in Gene Delivery

    Directory of Open Access Journals (Sweden)

    Daniel A. Balazs

    2011-01-01

    Full Text Available Liposomes have a wide array of uses that have been continuously expanded and improved upon since first being observed to self-assemble into vesicular structures. These arrangements can be found in many shapes and sizes depending on lipid composition. Liposomes are often used to deliver a molecular cargo such as DNA for therapeutic benefit. The lipids used to form such lipoplexes can be cationic, anionic, neutral, or a mixture thereof. Herein physical packing parameters and specific lipids used for gene delivery will be discussed, with lipids classified according to overall charge.

  19. Liposomal cancer therapy: exploiting tumor characteristics

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Andresen, Thomas Lars

    2010-01-01

    an overview of current strategies for improving the different stages of liposomal cancer therapy, which involve transporting drug-loaded liposomes through the bloodstream, increasing tumor accumulation, and improving drug release and cancer cell uptake after accumulation at the tumor target site. What...... the reader will gain: The review focuses on strategies that exploit characteristic features of solid tumors, such as abnormal vasculature, overexpression of receptors and enzymes, as well as acidic and thiolytic characteristics of the tumor microenvironment. Take home message: It is concluded that the design...

  20. Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery.

    Science.gov (United States)

    Manca, Maria Letizia; Matricardi, Pietro; Cencetti, Claudia; Peris, Josè Esteban; Melis, Virginia; Carbone, Claudia; Escribano, Elvira; Zaru, Marco; Fadda, Anna Maria; Manconi, Maria

    2016-05-30

    Allantoin is traditionally employed in the treatment of skin ulcers and hypertrophic scars. In the present work, to improve its local deposition in the skin and deeper tissues, allantoin was incorporated in conventional liposomes and in new argan oil enriched liposomes. In both cases, obtained vesicles were unilamellar, as confirmed by cryo-TEM observation, but the addition of argan oil allowed a slight increase of the mean diameter (∼130nm versus ∼85nm). The formulations, especially those containing argan oil, favoured the allantoin accumulation in the skin, in particular in the dermis (∼8.7μg/cm(2)), and its permeation through the skin (∼33μg/cm(2)). The performances of vesicles as skin delivery systems were compared with those obtained by water dispersion of allantoin and the commercial gel, Sameplast(®). Moreover, in this work, for the first time, the elastic and viscous moduli of the skin were measured, underlining the different hydrating/moisturizing effects of the formulations. The application of ARG liposomes seems to provide a softening and relaxing effect on the skin, thus facilitating the drug accumulation and passage into and trough it. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Overcoming cellular and tissue barriers to improve liposomal drug delivery

    Science.gov (United States)

    Kohli, Aditya G.

    Forty years of liposome research have demonstrated that the anti-tumor efficacy of liposomal therapies is, in part, driven by three parameters: 1) liposome formulation and lipid biophysics, 2) accumulation and distribution in the tumor, and 3) release of the payload at the site of interest. This thesis outlines three studies that improve on each of these delivery steps. In the first study, we engineer a novel class of zwitterlipids with an inverted headgroup architecture that have remarkable biophysical properties and may be useful for drug delivery applications. After intravenous administration, liposomes accumulate in the tumor by the enhanced permeability and retention effect. However, the tumor stroma often limits liposome efficacy by preventing distribution into the tumor. In the second study, we demonstrate that depletion of hyaluronan in the tumor stroma improves the distribution and efficacy of DoxilRTM in murine 4T1 tumors. Once a liposome has distributed to the therapeutic site, it must release its payload over the correct timescale. Few facile methods exist to quantify the release of liposome therapeutics in vivo. In the third study, we outline and validate a simple, robust, and quantitative method for tracking the rate and extent of release of liposome contents in vivo. This tool should facilitate a better understanding of the pharmacodynamics of liposome-encapsulated drugs in animals. This work highlights aspects of liposome behavior that have prevented successful clinical translation and proposes alternative approaches to improve liposome drug delivery.

  2. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery.

    Science.gov (United States)

    Chono, Sumio; Fukuchi, Rie; Seki, Toshinobu; Morimoto, Kazuhiro

    2009-07-20

    The pulmonary insulin delivery characteristics of liposomes were examined. Aerosolized liposomes containing insulin were administered into rat lungs and the enhancing effect on insulin delivery was evaluated by changes of plasma glucose levels. Liposomes with dipalmitoyl phosphatidylcholine (DPPC) enhanced pulmonary insulin delivery in rats, however, liposomes with dilauroyl, dimyristoyl, distearoyl or dioleoyl phosphatidylcholine did not. Liposomes with DPPC also enhanced the in vitro permeation of FITC dextran (Mw 4400, FD-4) through the calu-3 cell monolayer by reducing the transepithelial electrical resistance and did not harm lung tissues in rats. These findings suggest that liposomes with DPPC enhance pulmonary insulin delivery by opening the epithelial cell space in the pulmonary mucosa not mucosal cell damage. Liposomes with DPPC could be useful as a pulmonary delivery system for peptide and protein drugs.

  3. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes

    Directory of Open Access Journals (Sweden)

    Samadikhah HR

    2011-10-01

    Full Text Available Hamid Reza Samadikhah1,*, Asia Majidi2,*, Maryam Nikkhah2, Saman Hosseinkhani11Department of Biochemistry, 2Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran *These authors contributed equally to this work Purpose: Cationic liposomes (CLs are composed of phospholipid bilayers. One of the most important applications of these particles is in drug and gene delivery. However, using CLs to deliver therapeutic nucleic acids and drugs to target organs has some problems, including low transfection efficiency in vivo. The aim of this study was to develop novel CLs containing magnetite to overcome the deficiencies. Patients and methods: CLs and magnetic cationic liposomes (MCLs were prepared using the freeze-dried empty liposome method. Luciferase-harboring vectors (pGL3 were transferred into liposomes and the transfection efficiencies were determined by luciferase assay. Firefly luciferase is one of most popular reporter genes often used to measure the efficiency of gene transfer in vivo and in vitro. Different formulations of liposomes have been used for delivery of different kinds of gene reporters. Lipoplex (liposome–plasmid DNA complexes formation was monitored by gel retardation assay. Size and charge of lipoplexes were determined using particle size analysis. Chinese hamster ovary cells were transfected by lipoplexes (liposome-pGL3; transfection efficiency and gene expression level was evaluated by luciferase assay. Results: High transfection efficiency of plasmid by CLs and novel nanomagnetic CLs was achieved. Moreover, lipoplexes showed less cytotoxicity than polyethyleneimine and Lipofectamine™. Conclusion: Novel liposome compositions (1,2-dipalmitoyl-sn-glycero-3-phosphocholine [DPPC]/dioctadecyldimethylammonium bromide [DOAB] and DPPC/cholesterol/DOAB with high transfection efficiency can be useful in gene delivery in vitro. MCLs can also be used for targeted gene delivery, due to

  4. Construction of a Liposome Dialyzer for preparation of high-value, small-volume liposome formulations

    OpenAIRE

    Adamala, Katarzyna; Engelhart, Aaron E.; Kamat, Neha P.; Jin, Lin; Szostak, Jack W.

    2015-01-01

    The liposome dialyzer is a small-volume equilibrium dialysis device, built from commercially available materials, that is designed for rapid exchange of small volumes of an extraliposomal reagent pool against a liposome preparation. The dialyzer is prepared by modification of commercially available dialysis cartridges and consists of a reactor with two 300 µL chambers and a 1.56 cm2 dialysis surface area. The dialyzer is prepared in three stages: 1) disassembly of dialysis cartridges to obtai...

  5. Synaptic Vesicle Endocytosis in Different Model Systems

    Directory of Open Access Journals (Sweden)

    Quan Gan

    2018-06-01

    Full Text Available Neurotransmission in complex animals depends on a choir of functionally distinct synapses releasing neurotransmitters in a highly coordinated manner. During synaptic signaling, vesicles fuse with the plasma membrane to release their contents. The rate of vesicle fusion is high and can exceed the rate at which synaptic vesicles can be re-supplied by distant sources. Thus, local compensatory endocytosis is needed to replenish the synaptic vesicle pools. Over the last four decades, various experimental methods and model systems have been used to study the cellular and molecular mechanisms underlying synaptic vesicle cycle. Clathrin-mediated endocytosis is thought to be the predominant mechanism for synaptic vesicle recycling. However, recent studies suggest significant contribution from other modes of endocytosis, including fast compensatory endocytosis, activity-dependent bulk endocytosis, ultrafast endocytosis, as well as kiss-and-run. Currently, it is not clear whether a universal model of vesicle recycling exist for all types of synapses. It is possible that each synapse type employs a particular mode of endocytosis. Alternatively, multiple modes of endocytosis operate at the same synapse, and the synapse toggles between different modes depending on its activity level. Here we compile review and research articles based on well-characterized model systems: frog neuromuscular junctions, C. elegans neuromuscular junctions, Drosophila neuromuscular junctions, lamprey reticulospinal giant axons, goldfish retinal ribbon synapses, the calyx of Held, and rodent hippocampal synapses. We will compare these systems in terms of their known modes and kinetics of synaptic vesicle endocytosis, as well as the underlying molecular machineries. We will also provide the future development of this field.

  6. Analysis of the Diffusion Process by pH Indicator in Microfluidic Chips for Liposome Production

    Directory of Open Access Journals (Sweden)

    Elisabetta Bottaro

    2017-07-01

    Full Text Available In recent years, the development of nano- and micro-particles has attracted considerable interest from researchers and enterprises, because of the potential utility of such particles as drug delivery vehicles. Amongst the different techniques employed for the production of nanoparticles, microfluidic-based methods have proven to be the most effective for controlling particle size and dispersity, and for achieving high encapsulation efficiency of bioactive compounds. In this study, we specifically focus on the production of liposomes, spherical vesicles formed by a lipid bilayer encapsulating an aqueous core. The formation of liposomes in microfluidic devices is often governed by diffusive mass transfer of chemical species at the liquid interface between a solvent (i.e., alcohol and a non-solvent (i.e., water. In this work, we developed a new approach for the analysis of mixing processes within microfluidic devices. The method relies on the use of a pH indicator, and we demonstrate its utility by characterizing the transfer of ethanol and water within two different microfluidic architectures. Our approach represents an effective route to experimentally characterize diffusion and advection processes governing the formation of vesicular/micellar systems in microfluidics, and can also be employed to validate the results of numerical modelling.

  7. Spin-Echo Small Angle Neutron Scattering analysis of liposomes and bacteria

    Science.gov (United States)

    van Heijkamp, Léon F.; Sevcenco, Ana-Maria; Abou, Diane; van Luik, Remko; Krijger, Gerard C.; Hagedoorn, Peter-Leon; de Schepper, Ignatz M.; Wolterbeek, Bert; Koning, Gerben A.; Bouwman, Wim G.

    2010-10-01

    Two types of liposomes, commonly used in drug delivery studies, and E. coli bacteria, all prepared in H2O, were resuspended in D2O and measured with Small Angle Spin-Echo Neutron Scattering (SESANS). Modeling was performed using correlation functions for solid spheres and hollow spheres. The signal strength and curve shape were more indicative of hollow particles, indicating that the H2O-D2O exchange occurred too fast to be observed with the available time resolution. Fitting the particle diameter and membrane thickness of the hollow sphere model to the data, gave results which were in good agreement with Dynamic Light Scattering (DLS) data and literature, showing as a proof-of-principle that SESANS is able to investigate such systems. SESANS may become a good alternative to conventional tritium studies or a tool with which to study intracellular vesicle transport phenomena, with possible in vivo applications. Calculations show that a substantial change in numbers of a mixed system of small and large biological particles should be observable. A possible application is the destruction by external means of great numbers of liposomes in the presence of tumor cells for triggered drug release in cancer treatment. Since SESANS is both non-invasive and non-destructive and can handle relatively thick samples, it could be a useful addition to more conventional techniques.

  8. Single liposome analysis of peptide translocation by the ABC transporter TAPL.

    Science.gov (United States)

    Zollmann, Tina; Moiset, Gemma; Tumulka, Franz; Tampé, Robert; Poolman, Bert; Abele, Rupert

    2015-02-17

    ATP-binding cassette (ABC) transporters use ATP to drive solute transport across biological membranes. Members of this superfamily have crucial roles in cell physiology, and some of the transporters are linked to severe diseases. However, understanding of the transport mechanism, especially of human ABC exporters, is scarce. We reconstituted the human lysosomal polypeptide ABC transporter TAPL, expressed in Pichia pastoris, into lipid vesicles (liposomes) and performed explicit transport measurements. We analyzed solute transport at the single liposome level by monitoring the coincident fluorescence of solutes and proteoliposomes in the focal volume of a confocal microscope. We determined a turnover number of eight peptides per minute, which is two orders of magnitude higher than previously estimated from macroscopic measurements. Moreover, we show that TAPL translocates peptides against a large concentration gradient. Maximal filling is not limited by an electrochemical gradient but by trans-inhibition. Countertransport and reversibility studies demonstrate that peptide translocation is a strictly unidirectional process. Altogether, these data are included in a refined model of solute transport by ABC exporters.

  9. Liposomal buccal mucoadhesive film for improved delivery and permeation of water-soluble vitamins.

    Science.gov (United States)

    Abd El Azim, Heba; Nafee, Noha; Ramadan, Alyaa; Khalafallah, Nawal

    2015-07-05

    This study aims at improving the buccal delivery of vitamin B6 (VB6) as a model highly water-soluble, low permeable vitamin. Two main strategies were combined; first VB6 was entrapped in liposomes, which were then formulated as mucoadhesive film. Both plain and VB6-loaded liposomes (LPs) containing Lipoid S100 and propylene glycol (∼ 200 nm) were then incorporated into mucoadhesive film composed of SCMC and HPMC. Results showed prolonged release of VB6 (72.65%, T50% diss 105 min) after 6h from LP-film compared to control film containing free VB6 (96.37%, T50% diss 30 min). Mucoadhesion was assessed both ex vivo on chicken pouch and in vivo in human. Mucoadhesive force of 0.2N and residence time of 4.4h were recorded. Ex vivo permeation of VB6, across chicken pouch mucosa indicated increased permeation from LP-systems compared to corresponding controls. Interestingly, incorporation of the vesicles in mucoadhesive film reduced the flux by 36.89% relative to LP-dispersion. Meanwhile, both films provided faster initial permeation than the liquid forms. Correlating the cumulative percent permeated ex vivo with the cumulative percent released in vitro indicated that LPs retarded VB6 release but improved permeation. These promising results represent a step forward in the field of buccal delivery of water-soluble vitamins. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Hyaluronan-decorated liposomes as drug delivery systems for cutaneous administration.

    Science.gov (United States)

    Franzé, Silvia; Marengo, Alessandro; Stella, Barbara; Minghetti, Paola; Arpicco, Silvia; Cilurzo, Francesco

    2018-01-15

    The work aimed to evaluate the feasibility to design hyaluronic acid (HA) decorated flexible liposomes to enhance the skin penetration of nifedipine. Egg phosphatidylcholine (e-PC) based transfersomes (Tween 80) and transethosomes (ethanol) were prepared. HA was reacted with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (HA-DPPE) and two molar ratios (0.5 and 3%) of conjugate with respect to e-PC were tested. The presence of HA significantly increased the packing order of the bilayer (as verified by differential scanning calorimetry), reducing both the encapsulation efficiency and the flexibility of the decorated liposomes in a dose-dependent manner. In fact, at the highest HA content the constant of deformability (K, N/mm) increased and the carriers remained on the skin surface after topical application. The stiffening effect of HA was counterbalanced by the addition of ethanol as fluidizing agent that allowed to maintain the highest HA concentration, meanwhile reducing the K value of the vesicles. HA-transethosomes allowed a suitable nifedipine permeation (J ∼ 30 ng/cm 2 /h) and significantly improved the drug penetration, favouring the formation of a drug depot in the epidermis. These data suggest the potentialities of HA-transethosomes as drug delivery systems intended for the treatment of cutaneous pathologies and underline the importance of studying the effect of surface functionalization on carrier deformability to rationalize the design of such systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Antioxidant properties of biohybrids based on liposomes and sage silver nanoparticles.

    Science.gov (United States)

    Barbinta-Patrascu, Marcela Elisabeta; Bunghez, Ioana-Raluca; Iordache, Stefan Marian; Badea, Nicoleta; Fierascu, Radu-Claudiu; Ion, Rodica Mariana

    2013-03-01

    This paper is aimed to describe a simple and rapid eco-friendly bottom-up approach for the preparation of antioxidant silver bionanostructures using a leaf extract from sage (Salvia officinalis L.). The bioreduction property of sage in the synthesis of silver nanoparticles was investigated by UV-VIS and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy. During their preparation, the particle size analysis was performed by using Dynamic Light Scattering technique. Ultrasonic irradiation was used to obtain sage silver nanoparticles. The morphology (size and shape) of the herbal silver nanoparticles was evaluated by Scanning Electron Microscopy that revealed the formation of spherical phytonanoparticles with size less than 80 nm. In order to increase their stability and their biocompatibility, the sage silver nanoparticles were introduced in two types of liposomes: soybean lecithin- and Chla-DPPC-lipid vesicles which were prepared by thin film hydration method. X-Ray Fluorescence analysis confirmed the silver presence in liposomes/sage-AgNPs biohybrids. The stability of liposomes/herbal AgNPs bioconstructs was checked by zeta potential measurements. The most stable biohybrids: Chla-DPPC/sage-AgNPs with zeta potential value of -34.2 mV, were characterized by Atomic Force Microscopy revealing the spherical and quasi-spherical shaped profiles of these nanobiohybrids with size less than 96 nm. The antioxidant activity of the silver bionanostructures was evaluated using chemiluminescence assay. The developed eco-friendly silver phytonanostructures based on lipid membranes, nanosilver and sage extract, manifest strong antioxidant properties (between 86.5% and 98.6%).

  12. Partitioning of organophosphorus pesticides into phosphatidylcholine small unilamellar vesicles studied by second-derivative spectrophotometry.

    Science.gov (United States)

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya

    2015-06-15

    In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM>FT>PFF>PCF>IFP>CFVP>FNT⩾DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R(2)=0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Hierarchical unilamellar vesicles of controlled compositional heterogeneity.

    Directory of Open Access Journals (Sweden)

    Maik Hadorn

    Full Text Available Eukaryotic life contains hierarchical vesicular architectures (i.e. organelles that are crucial for material production and trafficking, information storage and access, as well as energy production. In order to perform specific tasks, these compartments differ among each other in their membrane composition and their internal cargo and also differ from the cell membrane and the cytosol. Man-made structures that reproduce this nested architecture not only offer a deeper understanding of the functionalities and evolution of organelle-bearing eukaryotic life but also allow the engineering of novel biomimetic technologies. Here, we show the newly developed vesicle-in-water-in-oil emulsion transfer preparation technique to result in giant unilamellar vesicles internally compartmentalized by unilamellar vesicles of different membrane composition and internal cargo, i.e. hierarchical unilamellar vesicles of controlled compositional heterogeneity. The compartmentalized giant unilamellar vesicles were subsequently isolated by a separation step exploiting the heterogeneity of the membrane composition and the encapsulated cargo. Due to the controlled, efficient, and technically straightforward character of the new preparation technique, this study allows the hierarchical fabrication of compartmentalized giant unilamellar vesicles of controlled compositional heterogeneity and will ease the development of eukaryotic cell mimics that resemble their natural templates as well as the fabrication of novel multi-agent drug delivery systems for combination therapies and complex artificial microreactors.

  14. Differential reactivity of maleimide and bromoacetyl functions with thiols: application to the preparation of liposomal diepitope constructs.

    Science.gov (United States)

    Schelté, P; Boeckler, C; Frisch, B; Schuber, F

    2000-01-01

    The comparative reactivity of maleimide and bromoacetyl groups with thiols (2-mercaptoethanol, free cysteine, and cysteine residues present at the N-terminus of peptides) was investigated in aqueous media. These studies were performed (i) with water-soluble functionalized model molecules, i.e., polyoxyethylene-based spacer arms that could also be coupled to lipophilic anchors destined to be incorporated into liposomes, and (ii) with small unilamellar liposomes carrying at their surface these thiol-reactive functions. Our results indicate that an important kinetic discrimination (2-3 orders of magnitude in terms of rate constants) can be achieved between the maleimide and bromoacetyl functions when the reactions with thiols are performed at pH 6.5. The bromoacetyl function which reacts at higher pH values (e.g., pH 9.0) retained a high chemoselectivity; i.e., under conditions where it reacted appreciably with the thiols of, e.g., HS-peptides, it did react with other nucleophilic functions such as alpha- and epsilon-amino groups or imidazole, which could also be present in peptides. This differential reactivity was applied to design chemically defined and highly immunogenic liposomal diepitope constructs as synthetic vaccines, i.e., vesicles carrying at their surface two different peptides conjugated each to a specific amphiphilic anchor. This was realized by coupling sequentially at pH 6.5 and 9.0 two HS-peptides to preformed vesicles containing lipophilic anchors functionalized with maleimide and bromoacetyl groups [Boeckler, C., et al. (1999) Eur. J. Immunol. 29, 2297-2308].

  15. Influence of the Encapsulation Efficiency and Size of Liposome on the Oral Bioavailability of Griseofulvin-Loaded Liposomes

    Directory of Open Access Journals (Sweden)

    Sandy Gim Ming Ong

    2016-08-01

    Full Text Available The objective of the present study was to investigate the influence of the encapsulation efficiency and size of liposome on the oral bioavailability of griseofulvin-loaded liposomes. Griseofulvin-loaded liposomes with desired characteristics were prepared from pro-liposome using various techniques. To study the effect of encapsulation efficiency, three preparations of griseofulvin, namely, griseofulvin aqueous suspension and two griseofulvin-loaded liposomes with different amounts of griseofulvin encapsulated [i.e., F1 (32% and F2(98%], were administered to rats. On the other hand, to study the effect of liposome size, the rats were given three different griseofulvin-loaded liposomes of various sizes, generated via different mechanical dispersion techniques [i.e., FTS (142 nm, MS (357 nm and NS (813 nm], but with essentially similar encapsulation efficiencies (about 93%. Results indicated that the extent of bioavailability of griseofulvin was improved 1.7–2.0 times when given in the form of liposomes (F1 compared to griseofulvin suspension. Besides that, there was an approximately two-fold enhancement of the extent of bioavailability following administration of griseofulvin-loaded liposomes with higher encapsulation efficiency (F2, compared to those of F1. Also, the results showed that the extent of bioavailability of liposomal formulations with smaller sizes were higher by approximately three times compared to liposomal formulation of a larger size. Nevertheless, a further size reduction of griseofulvin-loaded liposome (≤400 nm did not promote the uptake or bioavailability of griseofulvin. In conclusion, high drug encapsulation efficiency and small liposome size could enhance the oral bioavailability of griseofulvin-loaded liposomes and therefore these two parameters deserve careful consideration during formulation.

  16. Effect of chitosan coating on the characteristics of DPPC liposomes

    Directory of Open Access Journals (Sweden)

    Mohsen M. Mady

    2010-07-01

    Full Text Available Because it is both biocompatible and biodegradable, chitosan has been used to provide a protective capsule in new drug formulations. The present work reports on investigations into some of the physicochemical properties of chitosan-coated liposomes, including drug release rate, transmission electron microscopy (TEM, zeta potential and turbidity measurement. It was found that chitosan increases liposome stability during drug release. The coating of DPPC liposomes with a chitosan layer was confirmed by electron microscopy and the zeta potential of liposomes. The coating of liposomes by chitosan resulted in a marginal increase in the size of the liposomes, adding a layer of (92 ± 27.1 nm. The liposomal zeta potential was found to be increasingly positive as chitosan concentration increased from 0.1% to 0.3% (w/v, before stabilising at a relatively constant value. Turbidity studies revealed that the coating of DPPC liposomes with chitosan did not significantly modify the main phase transition temperature of DPPC at examined chitosan concentrations. The appropriate combination of liposomal and chitosan characteristics may produce liposomes with specific, prolonged and controlled release.

  17. Motion mechanics of non-adherent giant liposomes with a combined optical and atomic force microscope

    Science.gov (United States)

    Moreno-Flores, Susana; Ortíz, Rocío

    2017-11-01

    Herein we present an investigation of the motional dynamics of single mesoscopic bodies of biological relevance with an AFM-based macromanipulation tool and an optical microscope. Giant liposomes are prominent case examples as minimal cell models; studying their mechanics provides a means to address the influence of structural components in the mechanical behaviour of living cells. However, they also pose an experimental challenge due to their lightness, fragility, and high mobility. Their entrapment in wells in a fluid of lower density allows their study under conditions of constrained motion, which enables the synchronous measurement of nanoforces with motion tracking. The procedure enables to estimate sliding friction coefficients and masses of vesicles, and sheds light upon the region between the vesicle and the underlying substrate. The present study paves the way for the investigation of motion and deformation mechanics with one combined technique and a single type of experiment traditionally vetoed to objects that can move as well as deform. Such an approach can be directly applied to cells in suspension, adherent cells or cellular 3D-assemblies so as to assess substrate biocompatibility, monitor adhesion, detachment, motility as well as deformability.

  18. Motion mechanics of non-adherent giant liposomes with a combined optical and atomic force microscope

    International Nuclear Information System (INIS)

    Moreno-Flores, Susana; Ortíz, Rocío

    2017-01-01

    Herein we present an investigation of the motional dynamics of single mesoscopic bodies of biological relevance with an AFM-based macromanipulation tool and an optical microscope. Giant liposomes are prominent case examples as minimal cell models; studying their mechanics provides a means to address the influence of structural components in the mechanical behaviour of living cells. However, they also pose an experimental challenge due to their lightness, fragility, and high mobility. Their entrapment in wells in a fluid of lower density allows their study under conditions of constrained motion, which enables the synchronous measurement of nanoforces with motion tracking. The procedure enables to estimate sliding friction coefficients and masses of vesicles, and sheds light upon the region between the vesicle and the underlying substrate. The present study paves the way for the investigation of motion and deformation mechanics with one combined technique and a single type of experiment traditionally vetoed to objects that can move as well as deform. Such an approach can be directly applied to cells in suspension, adherent cells or cellular 3D-assemblies so as to assess substrate biocompatibility, monitor adhesion, detachment, motility as well as deformability. (paper)

  19. Skin penetration and retention of L-ascorbic acid 2-phosphate using multilamellar vesicles.

    Science.gov (United States)

    Yoo, Juno; Shanmugam, Srinivasan; Song, Chung-Kil; Kim, Dae-Duk; Choi, Han-Gon; Yong, Chul-Soon; Woo, Jong-Soo; Yoo, Bong Kyu

    2008-12-01

    Transdermal formulation of L-ascorbic acid 2-phosphate magnesium salt (A2P) was prepared using multilamellar vesicles (MLV). A2P was either physically mixed with or entrapped into three different MLVs of neutral, cationic, and anionic liposome vesicles. For the preparation of neutral MLVs, phosphatidylcholine (PC) and cholesterol (CH) were used. For cationic and anionic MLVs, dioleoyl-trimethylammonium-propane and dimyristoyl glycerophosphate were added as surface charge inducers, respectively, in addition to PC and CH. Particle size of the three A2P-loaded MLVs was submicron, and polydispersity index revealed homogenous distribution of the prepared MLVs except neutral ones. Skin penetration study with hairless mouse skin showed that both physical mixtures of A2P with empty MLVs and A2P-loaded MLVs increased penetration of the drug compared to aqueous A2P solution. During the penetration, however, significant amount of the drug was metabolized into L-ascorbic acid, which has no beneficial effect on stimulation of hair growth. Out of the physical mixtures and A2P-loaded MLVs tested, physical mixture of A2P with empty cationic MLV resulted in the greatest skin penetration and retention in hairless mouse skin.

  20. Lipossomas e suas aplicações terapêuticas: estado da arte Liposomes and their therapeutic: state of art applications

    Directory of Open Access Journals (Sweden)

    Cinthia Meireles Batista

    2007-06-01

    Full Text Available Lipossomas são vesículas constituídas de uma ou mais bicamadas fosfolipídicas orientadas concentricamente em torno de um compartimento aquoso e servem como carreadores de fármacos, biomoléculas ou agentes de diagnóstico. A estabilidade dos lipossomas pode ser afetada por fatores químicos, físicos e biológicos. Após administração intravenosa, lipossomas convencionais são rapidamente capturados pelo sistema fagocitário mononuclear. Para evitar essa captura, lipossomas furtivos foram desenvolvidos, os quais apresentam a superfície modificada com componentes hidrofílicos. Para permitir a liberação seletiva do fármaco nos sítios alvos, ligantes de reconhecimento específico são conjugados na superfície de lipossomas. Em geral, os métodos de preparação de lipossomas incluem hidratação de um filme lipídico seguida de sonicação ou extrusão para redução do tamanho das vesículas. Os lipossomas são caracterizados quanto ao tamanho e composição química das vesículas e conteúdo do material encapsulado. Nesta revisão, constata-se que os lipossomas oferecem maior eficácia e segurança com relação aos tratamentos convencionais. Apesar de algumas formulações lipossomais serem comercializadas desde os anos 1980 para tratamento de infecções fúngicas sistêmicas e do câncer, problemas de ordem tecnológica e biológica fazem com que os lipossomas sejam ainda extensivamente estudados para desenvolvimento de formulações estáveis no organismo visando à terapia de várias doenças, principalmente do câncer.Liposomes are vesicles that consist of one or more concentric phospholipidic bilayers organized around an aqueous inner compartment. They are carriers of drugs, biomolecules and diagnostic agents. The stability of liposomes can be influenced by chemical or physical factors. Once injected in the circulatory system, conventional liposomes suffer uptake by the mononuclear phagocytic system. To avoid such a capture

  1. Advances and Challenges of Liposome Assisted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Lisa eSercombe

    2015-12-01

    Full Text Available The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.

  2. Liposome-based drug delivery in breast cancer treatment

    International Nuclear Information System (INIS)

    Park, John W

    2002-01-01

    Drug delivery systems can in principle provide enhanced efficacy and/or reduced toxicity for anticancer agents. Long circulating macromolecular carriers such as liposomes can exploit the 'enhanced permeability and retention' effect for preferential extravasation from tumor vessels. Liposomal anthracyclines have achieved highly efficient drug encapsulation, resulting in significant anticancer activity with reduced cardiotoxicity, and include versions with greatly prolonged circulation such as liposomal daunorubicin and pegylated liposomal doxorubicin. Pegylated liposomal doxorubucin has shown substantial efficacy in breast cancer treatment both as monotherapy and in combination with other chemotherapeutics. Additional liposome constructs are being developed for the delivery of other drugs. The next generation of delivery systems will include true molecular targeting; immunoliposomes and other ligand-directed constructs represent an integration of biological components capable of tumor recognition with delivery technologies

  3. Membrane fusion between baculovirus budded virus-enveloped particles and giant liposomes generated using a droplet-transfer method for the incorporation of recombinant membrane proteins.

    Science.gov (United States)

    Nishigami, Misako; Mori, Takaaki; Tomita, Masahiro; Takiguchi, Kingo; Tsumoto, Kanta

    2017-07-01

    Giant proteoliposomes are generally useful as artificial cell membranes in biochemical and biophysical studies, and various procedures for their preparation have been reported. We present here a novel preparation technique that involves the combination of i) cell-sized lipid vesicles (giant unilamellar vesicles, GUVs) that are generated using the droplet-transfer method, where lipid monolayer-coated water-in-oil microemulsion droplets interact with oil/water interfaces to form enclosed bilayer vesicles, and ii) budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus) that express recombinant transmembrane proteins on their envelopes. GP64, a fusogenic glycoprotein on viral envelopes, is activated by weak acids and is thought to cause membrane fusion with liposomes. Using confocal laser scanning microscopy (CLSM), we observed that the single giant liposomes fused with octadecyl rhodamine B chloride (R18)-labeled wild-type BV envelopes with moderate leakage of entrapped soluble compounds (calcein), and the fusion profile depended on the pH of the exterior solution: membrane fusion occurred at pH ∼4-5. We further demonstrated that recombinant transmembrane proteins, a red fluorescent protein (RFP)-tagged GPCR (corticotropin-releasing hormone receptor 1, CRHR1) and envelope protein GP64 could be partly incorporated into membranes of the individual giant liposomes with a reduction of the pH value, though there were also some immobile fluorescent spots observed on their circumferences. This combination may be useful for preparing giant proteoliposomes containing the desired membranes and inner phases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Astrocytic Vesicle Mobility in Health and Disease

    Directory of Open Access Journals (Sweden)

    Robert Zorec

    2013-05-01

    Full Text Available Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i intercellular communication by gliotransmitters (glutamate, adenosine 5'-triphosphate, atrial natriuretic peptide, (ii plasma membrane exchange of transporters and receptors (EAAT2, MHC-II, and (iii the involvement of vesicle mobility carrying aquaporins (AQP4 in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.

  5. EXTRACELLULAR VESICLES: CLASSIFICATION, FUNCTIONS AND CLINICAL RELEVANCE

    Directory of Open Access Journals (Sweden)

    A. V. Oberemko

    2014-12-01

    Full Text Available This review presents a generalized definition of vesicles as bilayer extracellular organelles of all celular forms of life: not only eu-, but also prokaryotic. The structure and composition of extracellular vesicles, history of research, nomenclature, their impact on life processes in health and disease are discussed. Moreover, vesicles may be useful as clinical instruments for biomarkers, and they are promising as biotechnological drug. However, many questions in this area are still unresolved and need to be addressed in the future. The most interesting from the point of view of practical health care represents a direction to study the effect of exosomes and microvesicles in the development and progression of a particular disease, the possibility of adjusting the pathological process by means of extracellular vesicles of a particular type, acting as an active ingredient. Relevant is the further elucidation of the role and importance of exosomes to the surrounding cells, tissues and organs at the molecular level, the prospects for the use of non-cellular vesicles as biomarkers of disease.

  6. Pharmacokinetics of a 5-fluorouracil liposomal delivery system.

    OpenAIRE

    Simmons, S T; Sherwood, M B; Nichols, D A; Penne, R B; Sery, T; Spaeth, G L

    1988-01-01

    A liposomal delivery system was developed in an attempt to prolong ocular levels of 5-fluorouracil for glaucoma filtering surgery. The pharmacokinetics of the 5-fluorouracil liposomal delivery system were studied in normal pigmented rabbits with 5-fluorouracil labelled with carbon-14 (C-14). 14C 5-fluorouracil was incorporated into the liposomes at a concentration of 10 g/l and injected subconjunctivally in doses of 5 and 10 mg. Concentrations of 5-fluorouracil were assayed at 10 time interva...

  7. Novel liposomal technology applied in esophageal cancer treatment

    Science.gov (United States)

    Yeh, Chia-Hsien; Hsieh, Yei-San; Yang, Pei-wen; Huang, Leaf; Hsu, Yih-Chih

    2018-02-01

    Cisplatin (CDDP) has been commonly used as a chemotherapeutic drug, mainly used for the treatment of malignant epithelial cell tumors. We have developed a new method based on innovative lipid calcium phosphate, which encapsulated hydrophobic drugs to form liposomal nanoparticles. Esophageal cancer xenograft model was used to investigate the efficacy of liposomal nanoparticles. and it showed good therapeutic efficacy with lower side effects. Liposomal nanoparticles exhibited a better therapeutic effect than that of conventional CDDP.

  8. Liposomes: structure, properties and methods of curative administration in organism

    Directory of Open Access Journals (Sweden)

    M. A. Kisyakova

    2010-07-01

    Full Text Available A review of data from scientific sources, devoted to problems of liposomes’ structure, properties and processes of formation was made. Advantages of liposomes used for medical purposes are shown. Methods of liposomes administration in an organism are characterised. Data on mechanisms of interaction between liposomes and cells, peculiarities of liposomes’ lipids composition and dependence of its tropism to definite organs and tissues are generalised.

  9. The use of asymmetrical flow field-flow fractionation with on-line detection in the study of drug retention within liposomal nanocarriers and drug transfer kinetics

    DEFF Research Database (Denmark)

    Hinna, Askell Hvid; Hupfeld, Stefan; Kuntsche, Judith

    2016-01-01

    Due to their solubilizing capabilities, liposomes (phospholipid vesicles) are suited for designing formulations for intravenous administration of drug compounds which are poorly water-soluble. Despite the good in-vitro stability of such formulations with minimal drug leakage, upon i.v. injection...... ratio. An initial rapid transfer of p-THPP was found (∼5%) and investigated further by determining the extent of transfer between donor and acceptor during separation. The donor- and acceptor phase were found to be separated within few minutes and only minor (≤2%) transfer could be detected within...

  10. pH-triggered echogenicity and contents release from liposomes.

    Science.gov (United States)

    Nahire, Rahul; Hossain, Rayat; Patel, Rupa; Paul, Shirshendu; Meghnani, Varsha; Ambre, Avinash H; Gange, Kara N; Katti, Kalpana S; Leclerc, Estelle; Srivastava, D K; Sarkar, Kausik; Mallik, Sanku

    2014-11-03

    Liposomes are representative lipid nanoparticles widely used for delivering anticancer drugs, DNA fragments, or siRNA to cancer cells. Upon targeting, various internal and external triggers have been used to increase the rate for contents release from the liposomes. Among the internal triggers, decreased pH within the cellular lysosomes has been successfully used to enhance the rate for releasing contents. However, imparting pH sensitivity to liposomes requires the synthesis of specialized lipids with structures that are substantially modified at a reduced pH. Herein, we report an alternative strategy to render liposomes pH sensitive by encapsulating a precursor which generates gas bubbles in situ in response to acidic pH. The disturbance created by the escaping gas bubbles leads to the rapid release of the encapsulated contents from the liposomes. Atomic force microscopic studies indicate that the liposomal structure is destroyed at a reduced pH. The gas bubbles also render the liposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeted doxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface. In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents released from these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantially reduced viability for the pancreatic cancer cells (14%).

  11. Improved Antitumor Efficacy and Pharmacokinetics of Bufalin via PEGylated Liposomes

    Science.gov (United States)

    Yuan, Jiani; Zhou, Xuanxuan; Cao, Wei; Bi, Linlin; Zhang, Yifang; Yang, Qian; Wang, Siwang

    2017-11-01

    Bufalin was reported to show strong pharmacological effects including cardiotonic, antiviral, immune-regulation, and especially antitumor effects. The objective of this study was to determine the characterization, antitumor efficacy, and pharmacokinetics of bufalin-loaded PEGylated liposomes compared with bufalin entity, which were prepared by FDA-approved pharmaceutical excipients. Bufalin-loaded PEGylated liposomes and bufalin-loaded liposomes were prepared reproducibly with homogeneous particle size by the combination of thin film evaporation method and high-pressure homogenization method. Their mean particle sizes were 127.6 and 155.0 nm, mean zeta potentials were 2.24 and - 18.5 mV, and entrapment efficiencies were 76.31 and 78.40%, respectively. In vitro release profile revealed that the release of bufalin in bufalin-loaded PEGylated liposomes was slower than that in bufalin-loaded liposomes. The cytotoxicity of blank liposomes has been found within acceptable range, whereas bufalin-loaded PEGylated liposomes showed enhanced cytotoxicity to U251 cells compared with bufalin entity. In vivo pharmacokinetics indicated that bufalin-loaded PEGylated liposomes could extend or eliminate the half-life time of bufalin in plasma in rats. The results suggested that bufalin-loaded PEGylated liposomes improved the solubility and increased the drug concentration in plasma.

  12. Liposomal Bupivacaine Injection Technique in Total Knee Arthroplasty.

    Science.gov (United States)

    Meneghini, R Michael; Bagsby, Deren; Ireland, Philip H; Ziemba-Davis, Mary; Lovro, Luke R

    2017-01-01

    Liposomal bupivacaine has gained popularity for pain control after total knee arthroplasty (TKA), yet its true efficacy remains unproven. We compared the efficacy of two different periarticular injection (PAI) techniques for liposomal bupivacaine with a conventional PAI control group. This retrospective cohort study compared consecutive patients undergoing TKA with a manufacturer-recommended, optimized injection technique for liposomal bupivacaine, a traditional injection technique for liposomal bupivacaine, and a conventional PAI of ropivacaine, morphine, and epinephrine. The optimized technique utilized a smaller gauge needle and more injection sites. Self-reported pain scores, rescue opioids, and side effects were compared. There were 41 patients in the liposomal bupivacaine optimized injection group, 60 in the liposomal bupivacaine traditional injection group, and 184 in the conventional PAI control group. PAI liposomal bupivacaine delivered via manufacturer-recommended technique offered no benefit over PAI ropivacaine, morphine, and epinephrine. Mean pain scores and the proportions reporting no or mild pain, time to first opioid, and amount of opioids consumed were not better with PAI liposomal bupivacaine compared with PAI ropivacaine, morphine, and epinephrine. The use of the manufacturer-recommended technique for PAI of liposomal bupivacaine does not offer benefit over a conventional, less expensive PAI during TKA. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. FDA Approves Irinotecan Liposome to Treat Pancreatic Cancer

    Science.gov (United States)

    Patients with metastatic pancreatic cancer that has progressed after receiving gemcitabine-based chemotherapy now have a new treatment option: irinotecan liposome in combination with fluorouracil and leucovorin.

  14. Liposome as nanocarrier: Site targeted delivery in lung cancer

    Directory of Open Access Journals (Sweden)

    Najeeb Ullah

    2017-08-01

    Full Text Available Lung cancer is fatal and spreading rapidly worldwide. Different clinical strategies are applied to stop this cancer. As the lung is a delicate organ, special clinical applications must be used and nanodrugs delivery systems are the most important applications of all. This review discusses the lung problems such as lung cancer, lung inflammation and bronchi constrictions followed by repetitive intake of some drugs. The objective of this review is to study how nanodrug delivery systems were synthesized and used in lung disorder treatment especially in lung cancer. The authors studied some articles from 1989 to 2015. Liposome encapsulation was done in various ways for the delivery of different drugs such as metaproterenol into liposomes caused bronchodilation, immunoliposomes bearing antibodies for doxorubicin reduced 50% inhibitory effects, radioliposomes with high penetrating ability to peripheral airways, aerosol delivery systems with deep pulmonary deposition, polymeric drug delivery having potential to improve beneficial index of drug, solid lipid liposomes, liposomal gentamicin with altered different clinical susceptibilities of resistance, transferrin conjugated liposomes to deliver cytostatic drugs to site of lungs, anti-inflammatory drugs with mannosylated liposomes, liposomal suspensions with single stranded RNAs and peptide encapsulation of liposomes. This review indicates that many animals perished with intravenous administration of drugs but survived in liposomal targeting groups.

  15. A scenario for a genetically controlled fission of artificial vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; Jørgensen, Mikkel Girke

    2011-01-01

    to vesicles (Hanczyc et al. 2003). In the present work, we developed a scenario how a genetically controlled fission of vesicles may be achieved by the synthesis of a special class of viral proteins within artificial vesicles. Because the authors already have a lot of experience in the water-in-oil emulsion...... be incorporated into vesicles, and therefore allow the synthesis of a large number of proteins (Noireaux et al. 2005). However, vesicle fission remains one of the upcoming challenges in the artificial cell project (Noireaux et al. 2011). So far, vesicle fission is implemented by applying mechanical stress...

  16. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  17. Irradiation-induced fusion between giant vesicles and photoresponsive large unilamellar vesicles containing malachite green derivative.

    Science.gov (United States)

    Uda, Ryoko M; Yoshikawa, Yuki; Kitaba, Moe; Nishimoto, Noriko

    2018-07-01

    Light-initiated fusion between vesicles has attracted much attention in the research community. In particular, fusion between photoresponsive and non-photoresponsive vesicles has been of much interest in the development of systems for the delivery of therapeutic agents to cells. We have performed fusion between giant vesicles (GVs) and photoresponsive smaller vesicles containing malachite green (MG) derivative, which undergoes ionization to afford a positive charge on the molecule by irradiation. The fusion proceeds as the concentration of GV lipid increases toward equimolarity with the lipid of the smaller vesicle. It is also dependent on the molar percentage of photoionized MG in the lipid of the smaller vesicle. On the other hand, the fusion is hardly affected by the anionic component of the GV. The photoinduced fusion was characterized by two methods, involving the mixing of lipid membranes and of aqueous contents. Fluorescence microscopy revealed that irradiation triggered the fusion of a single GV with the smaller vesicles containing MG. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Interaction of cationic drugs with liposomes.

    Science.gov (United States)

    Howell, Brett A; Chauhan, Anuj

    2009-10-20

    Interactions between cationic drugs and anionic liposomes were studied by measuring binding of drugs and the effect of binding on liposome permeability. The measurements were analyzed in the context of a continuum model based on electrostatic interactions and a Langmuir isotherm. Experiments and modeling indicate that, although electrostatic interactions are important, the fraction of drug sequestered in the double-layer is negligible. The majority of drug enters the bilayer with the charged regions interacting with the charged lipid head groups and the lipophilic regions associated with the bilayer. The partitioning of the drug can be described by a Langmuir isotherm with the electrostatic interactions increasing the sublayer concentration of the drug. The binding isotherms are similar for all tricyclic antidepressants (TCA). Bupivacaine (BUP) binds significantly less compared to TCA because its structure is such that the charged region has minimal interactions with the lipid heads once the BUP molecule partitions inside the bilayer. Conversely, the TCAs are linear with distinct hydrophilic and lipophilic regions, allowing the lipophilic regions to lie inside the bilayer and the hydrophilic regions to protrude out. This conformation maximizes the permeability of the bilayer, leading to an increased release of a hydrophilic fluorescent dye from liposomes.

  19. Oxygen Measurements in Liposome Encapsulated Hemoglobin

    Science.gov (United States)

    Phiri, Joshua Benjamin

    Liposome encapsulated hemoglobins (LEH's) are of current interest as blood substitutes. An analytical methodology for rapid non-invasive measurements of oxygen in artificial oxygen carriers is examined. High resolution optical absorption spectra are calculated by means of a one dimensional diffusion approximation. The encapsulated hemoglobin is prepared from fresh defibrinated bovine blood. Liposomes are prepared from hydrogenated soy phosphatidylcholine (HSPC), cholesterol and dicetylphosphate using a bath sonication method. An integrating sphere spectrophotometer is employed for diffuse optics measurements. Data is collected using an automated data acquisition system employing lock-in -amplifiers. The concentrations of hemoglobin derivatives are evaluated from the corresponding extinction coefficients using a numerical technique of singular value decomposition, and verification of the results is done using Monte Carlo simulations. In situ measurements are required for the determination of hemoglobin derivatives because most encapsulation methods invariably lead to the formation of methemoglobin, a nonfunctional form of hemoglobin. The methods employed in this work lead to high resolution absorption spectra of oxyhemoglobin and other derivatives in red blood cells and liposome encapsulated hemoglobin (LEH). The analysis using singular value decomposition method offers a quantitative means of calculating the fractions of oxyhemoglobin and other hemoglobin derivatives in LEH samples. The analytical methods developed in this work will become even more useful when production of LEH as a blood substitute is scaled up to large volumes.

  20. [Preparation of diclofenac sodium liposomes and its ocular pharmacokinetics].

    Science.gov (United States)

    Sun, Kao-xiang; Wang, Ai-ping; Huang, Li-jun; Liang, Rong-cai; Liu, Ke

    2006-11-01

    To prepare diclofenac sodium liposomes and observe its ocular pharmacokinetics in rabbits. The diclofenac sodium cationic liposomes were prepared by reverse-phase evaporation methods and the formula of liposome was optimized with uniform design. HPLC method was established and validated for the determination of diclofenac sodium in precornea, cornea and aqueous humor of rabbit eye. Liposome and eyedrop solution 50 microL with total 50 microg diclofenac sodium were instilled to eyes of rabbits, separately. Samples of tear, cornea and aqueous humor were collected at different time intervals after rabbits were sacrificed. The ocular pharmacokinetics was investigated by the concentration-time data of tear, cornea and aqueous humor. The mean particle size of the diclofenac sodium liposomes was 226.5 nm with zeta potential of + 18. 1 mV. The entrapment efficiency reached 63%. Compared with solution, liposome was characterized by slower clearance in precornea. The concentration of diclotenac in cornea and aqueous humor instilled with liposome were higher than that with eye-drop solution. Cmax of diclofenac sodium in aqueous humor instilled with liposome and eye-drop solution were (0.69 +/- 0.25) and (0.48 +/- 0.19) microg x mL(-1) and (36.68 +/- 11.7) and (21.82 +/- 8.6) microg x g(-1) in cornea, respectively. But no significant difference were found to Tmax in aqueous humor and cornea between liposome and eyedrop, T(1/2) of diclofenac in aqueous humor and cornea with liposoine were longer than that with eye-drop solution. The ocular bioavailability of liposome in aqueous humor was 211% compared with that of eyedrop. Diclofenac sodium cationic liposomes can increase the corneal contact time, enhance the corneal permeability of diclofenac sodium and improve its ocular bioavailability.

  1. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    Science.gov (United States)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  2. The use of asymmetrical flow field-flow fractionation with on-line detection in the study of drug retention within liposomal nanocarriers and drug transfer kinetics.

    Science.gov (United States)

    Hinna, Askell Hvid; Hupfeld, Stefan; Kuntsche, Judith; Brandl, Martin

    2016-05-30

    Due to their solubilizing capabilities, liposomes (phospholipid vesicles) are suited for designing formulations for intravenous administration of drug compounds which are poorly water-soluble. Despite the good in-vitro stability of such formulations with minimal drug leakage, upon i.v. injection there is a risk of premature drug loss due to drug transfer to plasma proteins and cell membranes. Here we report on the refinement of a recently introduced simple in vitro predictive tool by Hinna and colleagues in 2014, which brings small drug loaded (donor) liposomes in contact with large acceptor liposomes, the latter serving as a model mimicking biological sinks in the body. The donor- and acceptor-liposomes were subsequently separated using asymmetrical flow field-flow fractionation (AF4), during which the sample is exposed to a large volume of eluent which corresponds to a dilution factor of approximately 600. The model drug content in the donor- and acceptor fraction was quantified by on-line UV/VIS extinction measurements with correction for turbidity and by off-line HPLC measurements of collected fractions. The refined method allowed for (near) baseline separation of donor and acceptor vesicles as well as reliable quantification of the drug content not only of the donor- but now also of the acceptor-liposomes due to their improved size-homogeneity, colloidal stability and reduced turbidity. This improvement over the previously reported approach allowed for simultaneous quantification of both drug transfer and drug release to the aqueous phase. By sampling at specific incubation times, the release and transfer kinetics of the model compound p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine) was determined. p-THPP is structurally closely related to the photosensitizer temoporfin, which is in clinical use and under evaluation in liposomal formulations. The transfer of p-THPP to the acceptor vesicles followed 1st order kinetics with a half-life of

  3. In vitro and in vivo studies of gadolinium-159 liposomes in cancer treatment

    International Nuclear Information System (INIS)

    Soares, Daniel Cristian Ferreira

    2011-01-01

    In Brazil, estimates of new cancer cases, valid for the years 2010 and 2011 show that the disease will be responsible for the deaths of about 500,000 people. As an alternative therapy the radiotherapy technique, widely used in treating various types of tumors, act indiscriminate tumoral and healthy cells. Seeking to minimize these effects, nano structured carriers containing radioisotopes, such as liposomes, have been studied with the aim of improving the specificity of action of ionizing radiation, delivering and retaining adequate amounts of radioactive material in tumor cells, leading them to death. In this context, the present study, we prepared liposomes stealth pH-sensitive metal complex containing the radioactive 159 Gd-DTPA-BMA ( 159 Gd-SpHL) aiming to study in vitro and in vivo its effects in cancer treatment. The vesicles showed encapsulation rate of about 20%, average diameter of 100 nm and low release kinetics of radioactivity in biological media. The formulation was characterized through physic-chemical and morphological studies and the results revealed a low polydispersity index and negative Zeta potential. We studied in vitro and in vivo its action against the cells of Ehrlich tumor models and RT2 (rat glioma). The results of in vitro studies showed that the complex has significant radioactive cytotoxicity against the cells of two of the three models studied and that, being encapsulated in liposomes, the cytotoxicity was greatly enhanced. Additionally, we investigated the involvement of caspase-3 protein in Ehrlich and RT2 cell death. The results suggest that the main mechanism involved in the cytotoxic action of radioactive complex is related to apoptosis. The results of in vivo studies showed that liposomes containing 159 Gd-DTPA-BMA accumulated significantly in Ehrlich solid tumor in mice. Aiming to improve this uptake, we prepared pH-sensitive liposomes coated with folate containing the same radioactive complex ( 159 Gd-FTSpHL). The results

  4. Functional transferred DNA within extracellular vesicles

    International Nuclear Information System (INIS)

    Cai, Jin; Wu, Gengze; Jose, Pedro A.; Zeng, Chunyu

    2016-01-01

    Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmic macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.

  5. Functional transferred DNA within extracellular vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jin [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province (China); Wu, Gengze [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Jose, Pedro A. [Division of Nephrology, Department of Medicine and Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201 (United States); Zeng, Chunyu, E-mail: Chunyuzeng01@163.com [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China)

    2016-11-15

    Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmic macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.

  6. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  7. Theory of Disk-to-Vesicle Transformation

    Science.gov (United States)

    Li, Jianfeng; Shi, An-Chang

    2009-03-01

    Self-assembled membranes from amphiphilic molecules, such as lipids and block copolymers, can assume a variety of morphologies dictated by energy minimization of system. The membrane energy is characterized by a bending modulus (κ), a Gaussian modulus (κG), and the line tension (γ) of the edge. Two basic morphologies of membranes are flat disks that minimize the bending energy at the cost of the edge energy, and enclosed vesicles that minimize the edge energy at the cost of bending energy. In our work, the transition from disk to vesicle is studied theoretically using the string method, which is designed to find the minimum energy path (MEP) or the most probable transition path between two local minima of an energy landscape. Previous studies of disk-to-vesicle transition usually approximate the transitional states by a series of spherical cups, and found that the spherical cups do not correspond to stable or meta-stable states of the system. Our calculation demonstrates that the intermediate shapes along the MEP are very different from spherical cups. Furthermore, some of these transitional states can be meta-stable. The disk-to-vesicle transition pathways are governed by two scaled parameters, κG/κ and γR0/4κ, where R0 is the radius of the disk. In particular, a meta-stable intermediate state is predicted, which may correspond to the open morphologies observed in experiments and simulations.

  8. The Bretherton Problem for a Vesicle

    Science.gov (United States)

    Barakat, Joseph; Spann, Andrew; Shaqfeh, Eric

    2016-11-01

    The motion of a lipid bilayer vesicle through a circular tube is investigated by singular perturbation theory in the limit of vanishing clearance. The vesicle is treated as a sac of fluid enclosed by a thin, elastic sheet that admits a bending stiffness. It is assumed that the vesicle is axisymmetric and swollen to a near-critical volume such that the clearance "e" between the membrane and the tube wall is very small. In this limit, bending resistance is of negligible importance compared to the isotropic tension, allowing the vesicle to be treated as a "no-slip bubble." The effective membrane tension is found to scale inversely with "e" raised to the 3/2 power with a comparatively weak Marangoni gradient. The extra pressure drop is found to have a leading contribution due to the cylindrical midsection, which scales inversely with "e," as well as a correction due to the end caps, which scales inversely with the square root of "e." The apparent viscosity is predicted as a unique function of the geometry. The theory exhibits excellent agreement with a simplified, "quasi-parallel" theory and with direct numerical simulations using the boundary element method. The results of this work are compared to those for bubbles, rigid particles, and red blood cells in confined flows.

  9. Nanoplasmonic ruler to measure lipid vesicle deformation

    Czech Academy of Sciences Publication Activity Database

    Jackman, J.A.; Špačková, Barbora; Linardy, E.; Kim, M.C.; Yoon, B.K.; Homola, Jiří; Cho, N.J.

    2016-01-01

    Roč. 52, č. 1 (2016), s. 76-79 ISSN 1359-7345 R&D Projects: GA ČR(CZ) GBP205/12/G118 Institutional support: RVO:67985882 Keywords : nanomaterial * silicon * lipid vesicle Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 6.319, year: 2016

  10. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    Science.gov (United States)

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. Copyright © 2016, American Association for the Advancement of Science.

  11. Recent advances in liposomal nanohybrid cerasomes as promising drug nanocarriers.

    Science.gov (United States)

    Yue, Xiuli; Dai, Zhifei

    2014-05-01

    Liposomes have been extensively investigated as possible carriers for diagnostic or therapeutic agents due to their unique properties. However, liposomes still have not attained their full potential as drug and gene delivery vehicles because of their insufficient morphological stability. Recently, a super-stable and freestanding hybrid liposomal cerasome (partially ceramic- or silica-coated liposome) has drawn much attention as a novel drug delivery system because its atomic layer of polyorganosiloxane surface imparts higher morphological stability than conventional liposomes and its liposomal bilayer structure reduces the overall rigidity and density greatly compared to silica nanoparticles. Cerasomes are more biocompatible than silica nanoparticles due to the incorporation of the liposomal architecture into cerasomes. Cerasomes combine the advantages of both liposomes and silica nanoparticles but overcome their disadvantages so cerasomes are ideal drug delivery systems. The present review will first highlights some of the key advances of the past decade in the technology of cerasome production and then review current biomedical applications of cerasomes, with a view to stimulating further research in this area of study. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Fluorescence studies on gamma irradiated egg lecithin liposomal membrane

    International Nuclear Information System (INIS)

    Pandey, B.N.; Mishra, K.P.

    1998-01-01

    Alterations in structure and organization of sonicated EYL liposomal vesicular membrane after irradiation was investigated by DPH fluorescence probe which is a well known reporter for the environment of hydrophobic interior of membrane. Results of present study have demonstrated that loss of DPH fluorescence in liposomal membrane is linked to free radical mediated structural alterations possibly rigidization in the lipid bilayer

  13. The clearance of liposomes administered by the intramuscular route

    International Nuclear Information System (INIS)

    Arrowsmith, M.; Mills, S.N.

    1982-01-01

    Iodine 131-labelled lecithin was used to label liposomes entrapping cortisone-21-palmitate. The lecithin was injected into the fascia latae muscles of rabbits and the percentage of the initial dose remaining at certain time intervals was calculated from gamma camera image data. Release from the intramuscular site occurs by diffusion from intact liposomes. (U.K.)

  14. 64Cu loaded liposomes as positron emission tomography imaging agents

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa; Binderup, Tina; Rasmussen, Palle

    2011-01-01

    applicable as PET imaging agents. We show the utility of the 64Cu-liposomes for quantitative in vivo imaging of healthy and tumor-bearing mice using PET. This remote loading method is a powerful tool for characterizing the in vivo performance of liposome based nanomedicine, and has great potential...

  15. BODIPY-based fluorescent liposomes with sesquiterpene lactone trilobolide

    Directory of Open Access Journals (Sweden)

    Ludmila Škorpilová

    2017-07-01

    Full Text Available Like thapsigargin, which is undergoing clinical trials, trilobolide is a natural product with promising anticancer and anti-inflammatory properties. Similar to thapsigargin, it has limited aqueous solubility that strongly reduces its potential medicinal applications. The targeted delivery of hydrophobic drugs can be achieved using liposome-based carriers. Therefore, we designed a traceable liposomal drug delivery system for trilobolide. The fluorescent green-emitting dye BODIPY, cholesterol and trilobolide were used to create construct 6. The liposomes were composed of dipalmitoyl-3-trimethylammoniumpropane and phosphatidylethanolamine. The whole system was characterized by atomic force microscopy, the average size of the liposomes was 150 nm in width and 30 nm in height. We evaluated the biological activity of construct 6 and its liposomal formulation, both of which showed immunomodulatory properties in primary rat macrophages. The uptake and intracellular distribution of construct 6 and its liposomal formulation was monitored by means of live-cell fluorescence microscopy in two cancer cell lines. The encapsulation of construct 6 into the liposomes improved the drug distribution in cancer cells and was followed by cell death. This new liposomal trilobolide derivative not only retains the biological properties of pure trilobolide, but also enhances the bioavailability, and thus has potential for the use in theranostic applications.

  16. Polyelectrolyte stabilized multilayered liposomes for oral delivery of paclitaxel

    DEFF Research Database (Denmark)

    Jain, Sanyog; Kumar, Dinesh; Swarnakar, Nitin K

    2012-01-01

    Paclitaxel (PTX) loaded layersome formulations were prepared using layer-by-layer assembly of the polyelectrolytes over liposomes. Stearyl amine was utilized to provide positive charge to the liposomes, which were subsequently coated with anionic polymer polyacrylic acid (PAA) followed by coating...

  17. Liposomal delivery of radionuclides for cancer diagnostics and radiotherapy

    DEFF Research Database (Denmark)

    Petersen, Anncatrine Luisa

    , an in vivo study is presented, where passive tumor accumulation of 64Cu loaded liposomes (64Cu-liposomes) in tumor-bearing mice was quantified directly by PET and computed tomography (CT) imaging. Furthermore, Article I present an evaluation and quantitative measurement of the biodistribution of 64Cu...

  18. Optimization and characterization of liposome formulation by mixture design.

    Science.gov (United States)

    Maherani, Behnoush; Arab-tehrany, Elmira; Kheirolomoom, Azadeh; Reshetov, Vadzim; Stebe, Marie José; Linder, Michel

    2012-02-07

    This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((¬)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.

  19. Radiolabeling, biodistribution and tumor imaging of stealth liposomes containing methotrexate

    International Nuclear Information System (INIS)

    Subramanian, N; Arulsudar, N; Chuttani, K; Mishra, P; Sharma, R.K; Murthy, R.S.R

    2003-01-01

    To study the utility of sterically stabilized liposomes (stealth liposomes) in tumor scintigraphy by studying its biodistribution and accumulation in target tissue after radiolabeling with Technetium-99m (99mTC). Conventional and Stealth liposomes were prepared by lipid film hydration method using methotrexate as model anticancer drug. Radiolabeling of the liposomes was carried out by direct labeling using reduced 99mTc. Experimental conditions for maximum labeling yield were optimized. The stability studies were carried out to check binding strength of the radiolabeled complexes. The blood kinetic study was carried out in rabbits after giving the labeled complex by intravenous administration through ear vein. The biodistribution studies were carried out in the Ehrlich ascites tumor (EAT) bearing mice after intravenous administration through tail vein, showed prolonged circulation in blood and significant increase in the accumulation in tumor for the sterically stabilized liposomes compared to the conventional liposomes. The gamma scintigraphic image shows the distribution of the stealth liposomes in liver, spleen, kidney and tumor. The study gives precise idea about the use of stealth liposomes in tumor scintigraphy and organ distribution studies (Au)

  20. Programmable fusion of liposomes mediated by lipidated PNA

    DEFF Research Database (Denmark)

    Rabe, A; Löffler, P M G; Ries, O

    2017-01-01

    We recently reported a DNA-programmed fusion cascade enabling the use of liposomes as nanoreactors for compartmentalized chemical reactions. This communication reports an alternative and robust strategy based on lipidated peptide nucleic acids (LiPs). LiPs enabled fusion of liposomes with remarka...... with remarkable 31% efficiency at 50 °C with low leakage (5%)....

  1. Presence of electrostatically adsorbed polysaccharides improves spray drying of liposomes.

    Science.gov (United States)

    Karadag, Ayse; Özçelik, Beraat; Sramek, Martin; Gibis, Monika; Kohlus, Reinhard; Weiss, Jochen

    2013-02-01

    Spray drying of liposomes with conventional wall materials such as maltodextrins often yields nonfunctional powders, that is, liposomes break down during drying and rehydration. Electrostatically coating the surface of liposomes with a charged polymer prior to spray drying may help solve this problem. Anionic lecithin liposomes (approximately 400 nm) were coated with lower (approximately 500 kDa, LMW-C) or higher (approximately 900 kDa, HMW-C) molecular weight cationic chitosan using the layer-by-layer depositing method. Low (DE20, LMW-MD) or high molecular weight (DE2, HMW-MD) maltodextrin was added as wall material to facilitate spray drying. If surfaces of liposomes (1%) were completely covered with chitosan (0.4%), no bridging or depletion flocculation would occur, and mean particle diameters would be approximately 500 nm. If maltodextrins (20%) were added to uncoated liposomes, extensive liposomal breakdown would occur making the system unsuitable for spray drying. No such aggregation or breakdown was observed when maltodextrin was added to chitosan-coated liposomes. Size changed little or even decreased slightly depending on the molecular weight of maltodextrin added. Scanning electron microscopy images of powders containing chitosan-coated liposomes revealed that their morphologies depended on the type of maltodextrin added. Powders prepared with LMW-MD contained mostly spherical particles while HMW-MD powders contained particles with concavities and dents. Upon redispersion, coated liposomes yielded back dispersions with particle size distributions similar to the original ones, except for LMW-C coated samples that had been spray dried with HMW-MD which yielded aggregates (approximately 30 μm). Results show that coating of liposomes with an absorbing polymer allows them to be spray dried with conventional maltodextrin wall materials. Liposomes have attracted considerable attention in the food and agricultural, biomedical industries for the delivery of

  2. The Treatment of Breast Cancer Using Liposome Technology

    Directory of Open Access Journals (Sweden)

    Sarah Brown

    2012-01-01

    Full Text Available Liposome-based chemotherapeutics used in the treatment of breast cancer can in principle enhance the therapeutic index of otherwise unencapsulated anticancer drugs. This is partially attributed to the fact that encapsulation of cytotoxic agents within liposomes allows for increased concentrations of the drug to be delivered to the tumor site. In addition, the presence of the phospholipid bilayer prevents the encapsulated active form of the drug from being broken down in the body prior to reaching tumor tissue and also serves to minimize exposure of the drug to healthy sensitive tissue. While clinically approved liposome-based chemotherapeutics such as Doxil have proven to be quite effective in the treatment of breast cancer, significant challenges remain involving poor drug transfer between the liposome and cancerous cells. In this review, we discuss the recent advancements made in the development of liposome-based chemotherapeutics with respect to improved drug transfer for use in breast cancer therapy.

  3. Interactions of a Photochromic Spiropyran with Liposome Model Membranes

    KAUST Repository

    Jonsson, Fabian

    2013-02-19

    The interactions between anionic or zwitterionic liposomes and a water-soluble, DNA-binding photochromic spiropyran are studied using UV/vis absorption and linear dichroism (LD) spectroscopy. The spectral characteristics as well as the kinetics of the thermal isomerization process in the absence and presence of the two different liposome types provide information about the environment and whether or not the spiropyran resides in the liposome membrane. By measuring LD on liposomes deformed and aligned by shear flow, further insight is obtained about interaction and binding geometry of the spiropyran at the lipid membranes. We show that the membrane interactions differ between the two types of liposomes used as well as the isomeric forms of the spiropyran photoswitch. © 2013 American Chemical Society.

  4. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications.

    Science.gov (United States)

    Panahi, Yunes; Farshbaf, Masoud; Mohammadhosseini, Majid; Mirahadi, Mozhdeh; Khalilov, Rovshan; Saghfi, Siamak; Akbarzadeh, Abolfazl

    2017-06-01

    Liposome is a new nanostructure for the encapsulation and delivery of bioactive agents. There are a lot of bioactive materials that could be incorporated into liposomes including cosmetics, food ingredients, and pharmaceuticals. Liposomes possess particular properties such as biocompatibility, biodegradability; accompanied by their nanosize they have potential applications in nanomedicine, cosmetics, and food industry. Nanoliposome technology offers thrilling chances for food technologists in fields including encapsulation and controlled release of food ingredients, also improved bioavailability and stability of sensitive materials. Amid numerous brilliant new drug and gene delivery systems, liposomes provide an advanced technology to carry active molecules to the specific site of action, and now days, various formulations are in clinical use. In this paper, we provide review of the main physicochemical properties of liposomes, current methods of the manufacturing and introduce some of their usage in food nanotechnology as carrier vehicles of nutrients, enzymes, and food antimicrobials and their applications as drug carriers and gene delivery agents in biomedicine.

  5. Ultrasound triggered drug delivery with liposomal nested microbubbles.

    Science.gov (United States)

    Wallace, N; Wrenn, S P

    2015-12-01

    When ultrasound contrast agent microbubbles are nested within a liposome, damage to the liposome membrane caused by both stable and inertial cavitation of the microbubble allows for release of the aqueous core of the liposome. Triggered release was not accomplished unless microbubbles were present within the liposome. Leakage was tested using fluorescence assays developed specifically for this drug delivery vehicle and qualitative measurements using an optical microscope. These studies were done using a 1 MHz focused ultrasound transducer while varying parameters including peak negative ultrasound pressure, average liposome diameter, and microbubble concentration. Two regimes exist for membrane disruption caused by cavitating microbubbles. A faster release rate, as well as permanent membrane damage are seen for samples exposed to high pressure (2.1-3.7 MPa). A slower release rate and dilation/temporary poration are characteristic of stable cavitation for low pressure studies (0.54-1.7 MPa). Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging

    Science.gov (United States)

    Kuijten, Maayke M. P.; Hannah Degeling, M.; Chen, John W.; Wojtkiewicz, Gregory; Waterman, Peter; Weissleder, Ralph; Azzi, Jamil; Nicolay, Klaas; Tannous, Bakhos A.

    2015-11-01

    Liposomes are spherical, self-closed structures formed by lipid bilayers that can encapsulate drugs and/or imaging agents in their hydrophilic core or within their membrane moiety, making them suitable delivery vehicles. We have synthesized a new liposome containing gadolinium-DOTA lipid bilayer, as a targeting multimodal molecular imaging agent for magnetic resonance and optical imaging. We showed that this liposome has a much higher molar relaxivities r1 and r2 compared to a more conventional liposome containing gadolinium-DTPA-BSA lipid. By incorporating both gadolinium and rhodamine in the lipid bilayer as well as biotin on its surface, we used this agent for multimodal imaging and targeting of tumors through the strong biotin-streptavidin interaction. Since this new liposome is thermosensitive, it can be used for ultrasound-mediated drug delivery at specific sites, such as tumors, and can be guided by magnetic resonance imaging.

  7. Liposomal nanoparticles encapsulating iloprost exhibit enhanced vasodilation in pulmonary arteries

    Directory of Open Access Journals (Sweden)

    Jain PP

    2014-07-01

    Full Text Available Pritesh P Jain,1 Regina Leber,1,2 Chandran Nagaraj,1 Gerd Leitinger,3 Bernhard Lehofer,4 Horst Olschewski,1,5 Andrea Olschewski,1,6 Ruth Prassl,1,4 Leigh M Marsh11Ludwig Boltzmann Institute for Lung Vascular Research, 2Biophysics Division, Institute of Molecular Biosciences, University of Graz, 3Research Unit Electron Microscopic Techniques, Institute of Cell Biology, Histology, and Embryology, 4Institute of Biophysics, 5Division of Pulmonology, Department of Internal Medicine, 6Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, AustriaAbstract: Prostacyclin analogues are standard therapeutic options for vasoconstrictive diseases, including pulmonary hypertension and Raynaud’s phenomenon. Although effective, these treatment strategies are expensive and have several side effects. To improve drug efficiency, we tested liposomal nanoparticles as carrier systems. In this study, we synthesized liposomal nanoparticles tailored for the prostacyclin analogue iloprost and evaluated their pharmacologic efficacy on mouse intrapulmonary arteries, using a wire myograph. The use of cationic lipids, stearylamine, or 1,2-di-(9Z-octadecenoyl-3-trimethylammonium-propane (DOTAP in liposomes promoted iloprost encapsulation to at least 50%. The addition of cholesterol modestly reduced iloprost encapsulation. The liposomal nanoparticle formulations were tested for toxicity and pharmacologic efficacy in vivo and ex vivo, respectively. The liposomes did not affect the viability of human pulmonary artery smooth muscle cells. Compared with an equivalent concentration of free iloprost, four out of the six polymer-coated liposomal formulations exhibited significantly enhanced vasodilation of mouse pulmonary arteries. Iloprost that was encapsulated in liposomes containing the polymer polyethylene glycol exhibited concentration-dependent relaxation of arteries. Strikingly, half the concentration of iloprost in liposomes elicited

  8. Clearance and localization of intravitreal liposomes in the aphakic vitrectomized eye

    International Nuclear Information System (INIS)

    Stern, W.H.; Heath, T.D.; Lewis, G.P.; Guerin, C.J.; Erickson, P.A.; Lopez, N.G.; Hong, K.L.

    1987-01-01

    The authors have examined the fate of intravitreally injected liposomes in the aphakic, vitrectomized eye of the rabbit. Liposomes labelled with 125 [I]-p-hydroxybenzimidylphosphatidylethanolamine were eliminated rapidly from the intraocular fluid. Nonetheless, a significant fraction of these liposomes were found to bind to various ocular tissues including the retina, iris, sclera, and cornea. Ultrastructural studies with gold colloid-loaded liposomes revealed that retinal bound liposomes were attached to the inner limiting lamina but did not penetrate to the internal cells of the retina. Epiretinal cells bound and internalized gold colloid-loaded liposomes suggesting that these cells may be very sensitive to liposome mediated drug delivery

  9. Genetically Controlled Fusion, Exocytosis and Fission of Artificial Vesicles

    DEFF Research Database (Denmark)

    Bönzli, Eva; Hadorn, Maik; De Lucrezia, Davide

    if a special class of viral proteins, termed fusogenic peptides, were added to the external medium. In the present work, we intend to develop genetically controlled fusion, fission and exocytosis of vesicles by the synthesis of peptides within vesicles. First, we enclosed synthesized peptides in vesicles...... to induce in a next step fusion of adjacent vesicles, fission and exocytosis of nested vesicles. Second, we will replace the peptides by an enclosed cell-free expression system to internally synthesize fusion peptides. To control the gene expression, different mechanisms are available, e.g. addition...... fusion, fission and exocytosis....

  10. Modification of liposomal concentration in liposome/adenoviral complexes allows significant protection of adenoviral vectors from neutralising antibody, in vitro.

    Science.gov (United States)

    Steel, Jason C; Cavanagh, Heather M A; Burton, Mark A; Dingwall, Daniel J; Kalle, Wouter H J

    2005-06-01

    Adenoviral vectors have been commonly used in gene therapy protocols, however the success of their use is often limited by the induction of host immunity to the vector. Following exposure to the adenoviral vector, adenoviral-specific neutralising antibodies are produced which limits further administration. This study examines the efficacy of complexing liposomes to adenovirus for the protection of the adenovirus from neutralising antibodies in an in vitro setting. Dimethyldioctadecylammonium bromide (DDAB)-dioleoyl-l-phosphatidylethanolamine (DOPE) liposomes were bound at varying concentrations to adenovirus to form AL complexes and tested these complexes' ability to prevent adenoviral neutralisation. It is shown that by increasing the concentration of liposomes in the adenoviral-liposome (AL) complexes we can increase the level of immuno-shielding afforded the adenovirus. It is also shown that the increase in liposomal concentration may lead to drawbacks such as increased cytotoxicity and reductions in expression levels.

  11. Development of Liposomal Bubbles with Perfluoropropane Gas as Gene Delivery Carriers

    Science.gov (United States)

    Maruyama, Kazuo; Suzuki, Ryo; Sawamura, Kaori; Takizawa, Tomoko; Utoguchi, Naoki; Negishi, Yoichi

    2007-05-01

    Liposomes have some advantages as drug, antigen and gene delivery carriers. Their size can be easily controlled and they can be modified to add a targeting function. Based on liposome technology, we developed novel liposomal bubbles (Bubble liposomes) containing the ultrasound imaging gas, perfluoropropane. We assessed the feasibility of Bubble liposomes as carriers for gene delivery after cavitation induced by ultrasound. At first, we investigated their ability to deliver genes with Bubble liposomes and ultrasound to various types of cells such as mouse sarcoma cells, mouse melanoma cells, human T cell line and human umbilical vein endothelial cells. The results showed that the Bubble liposomes could deliver plasmid DNA to many cell types without cytotoxicity. In addition, we found that Bubble liposomes could effectively deliver plasmid DNA into mouse femoral artery in vivo. The gene transduction with Bubble liposomes was more effectively than conventional lipofection. We conclude that Bubble liposomes are unique and efficient gene delivery carriers in vitro and in vivo.

  12. Liposomal Drug Delivery of Anticancer Agents

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob

    and retention (EPR) effect. The liposomes consists of sPLA2 IIA sensitive phospholipids having anticancer drugs covalently attached to the sn-2 position of the glycerol backbone in the phospholipids, hence drug leakage is avoided from the carrier system. Various known anticancer agents, like chlorambucil, all......) based strategy using a limited number of reaction types. Upon coupling of unsaturated building blocks ring closing metathesis cascades were used to “reprogram” the molecular scaffold and highly diverse structures were obtained. In total 20 novel compounds with a broad structural diversity were prepared...

  13. Delivery of aerosolized drugs encapsulated in liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yung-Sung; Lyons, C.R. [Univ. of New Mexico, Albuquerque, NM (United States); Schmid, M.H.

    1995-12-01

    Mycobacterium tuberculosis (Mtb) is an infectious disease that resides in the human lung. Due to the difficulty in completely killing off the disease in infected individuals, Mtb has developed drug-resistant forms and is on the rise in the human population. Therefore, ITRI and the University of New Mexico are collaborating to explore the treatment of Mtb by an aerosolized drug delivered directly to the lungs. In conclusion, it is feasible to obtain an appropriate size and concentration of the liposomes before and after aerosolization.

  14. Delivery of aerosolized drugs encapsulated in liposomes

    International Nuclear Information System (INIS)

    Cheng, Yung-Sung; Lyons, C.R.; Schmid, M.H.

    1995-01-01

    Mycobacterium tuberculosis (Mtb) is an infectious disease that resides in the human lung. Due to the difficulty in completely killing off the disease in infected individuals, Mtb has developed drug-resistant forms and is on the rise in the human population. Therefore, ITRI and the University of New Mexico are collaborating to explore the treatment of Mtb by an aerosolized drug delivered directly to the lungs. In conclusion, it is feasible to obtain an appropriate size and concentration of the liposomes before and after aerosolization

  15. Adiabatic differential scanning calorimetric study of divalent cation induced DNA - DPPC liposome formulation compacted for gene delivery

    Directory of Open Access Journals (Sweden)

    Erhan Süleymanoglu

    2004-11-01

    Full Text Available Complexes between nucleic acids and phospholipid vesicles have been developed as stable non-viral gene delivery vehicles. Currently employed approach uses positively charged lipid species and a helper zwitterionic lipid, the latter being applied for the stabilization of the whole complex. However, besides problematic steps during their preparation, cationic lipids are toxic for cells. The present work describes some energetic issues pertinent to preparation and use of neutral lipid-DNA self-assemblies, thus avoiding toxicity of lipoplexes. Differential scanning calorimetry data showed stabilization of polynucleotide helix upon its interaction with liposomes in the presence of divalent metal cations. It is thus possible to suggest this self-assembly as an improved formulation for use in gene delivery.

  16. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery

    Directory of Open Access Journals (Sweden)

    Lin HW

    2018-02-01

    Full Text Available Hongwei Lin,1,2 Qingchun Xie,1,2 Xin Huang,1,2 Junfeng Ban,1,2 Bo Wang,1,2 Xing Wei,3 Yanzhong Chen,1,2 Zhufen Lu1,2 1Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China; 2Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China; 3Guangdong Shennong Chinese Medicine Research Institute, Guangzhou, People’s Republic of China Aim: The aim of this work was to develop a novel vesicular carrier, ultradeformable liposomes (UDLs, to expand the applications of the Chinese herbal medicine, imperatorin (IMP, and increase its transdermal delivery. Methods: In this study, we prepared IMP-loaded UDLs using the thin-film hydration method and evaluated their encapsulation efficiency, vesicle deformability, skin permeation, and the amounts accumulated in different depths of the skin in vitro. The influence of different charged surfactants on the properties of the UDLs was also investigated. Results: The results showed that the UDLs containing cationic surfactants had high entrapment efficiency (60.32%±2.82%, an acceptable particle size (82.4±0.65 nm, high elasticity, and prolonged drug release. The penetration rate of IMP in cationic-UDLs was 3.45-fold greater than that of IMP suspension, which was the highest value among the vesicular carriers. UDLs modified with cationic surfactant also showed higher fluorescence intensity in deeper regions of the epidermis. Conclusion: The results of our study suggest that cationic surfactant-modified UDLs could increase the transdermal flux, prolong the release of the drug, and serve as an effective dermal delivery system for IMP. Keywords: ultradeformable liposomes, cationic, imperatorin, skin permeation, transdermal drug delivery

  17. SNX9 - a prelude to vesicle release.

    Science.gov (United States)

    Lundmark, Richard; Carlsson, Sven R

    2009-01-01

    The sorting nexin SNX9 has, in the past few years, been singled out as an important protein that participates in fundamental cellular activities. SNX9 binds strongly to dynamin and is partly responsible for the recruitment of this GTPase to sites of endocytosis. SNX9 also has a high capacity for modulation of the membrane and might therefore participate in the formation of the narrow neck of endocytic vesicles before scission occurs. Once assembled on the membrane, SNX9 stimulates the GTPase activity of dynamin to facilitate the scission reaction. It has also become clear that SNX9 has the ability to activate the actin regulator N-WASP in a membrane-dependent manner to coordinate actin polymerization with vesicle release. In this Commentary, we summarize several aspects of SNX9 structure and function in the context of membrane remodeling, discuss its interplay with various interaction partners and present a model of how SNX9 might work in endocytosis.

  18. Effect of Lipid Composition on In Vitro Release and Skin Deposition of Curcumin Encapsulated Liposomes

    Directory of Open Access Journals (Sweden)

    Geethi Pamunuwa

    2016-01-01

    Full Text Available Liposomal encapsulation improves numerous physiochemical and biological properties of curcumin. The aim of this work was to impart slow release and skin delivery of curcumin via liposomal encapsulation. Liposomes were made using egg yolk phosphatidylcholine as the staple lipid while incorporating polysorbate 80 and stearylamine to prepare hybrid liposomes and positively charged liposomes, respectively. Negatively charged liposomes exhibited the highest encapsulation efficiencies (87.8±4.3% and loading capacities (3.4±0.2%. The sizes of all formulations were about 250 nm, while stearylamine increased the polydispersity index. Positively charged liposomes showed lower degradation temperatures than negatively charged liposomes by 10–15°C, attributable to the presence of stearylamine. The melting temperatures of positively charged liposomes (40–50°C were much higher than those of negatively charged liposomes (14-15°C, which may have affected release and skin deposition behavior of liposomes. The positively charged liposomes exhibited the slowest release of curcumin in phosphate buffered saline (pH 6.8 and the release profiles of all liposomal formulations conformed to the Gompertz model. The negatively charged liposomes facilitated the highest skin deposition of curcumin as revealed by studies conducted using excised pig ear skin. Concisely, positively and negatively charged liposomes were optimal for slow release and skin deposition of curcumin, respectively.

  19. Stem cell extracellular vesicles and kidney injury

    OpenAIRE

    Grange, Cristina; Iampietro, Corinne; Bussolati, Benedetta

    2017-01-01

    Extracellular vesicles (EVs) appear as a new promising cell-free therapy for acute and chronic renal diseases. EVs retain characteristics of the cell of origin and those derived from stem cells may mimic their regenerative properties per se. In fact, EVs contain many active molecules such as proteins and RNA species that act on target cells through different mechanisms, stimulating proliferation and angiogenesis and reducing apoptosis and inflammation. There are several reports that demonstra...

  20. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  1. High energy irradiation of bacterial membrane vesicles

    International Nuclear Information System (INIS)

    De La Rosa, M.A.M.

    1977-01-01

    The interactions of membrane components and two well-defined transport systems in the E. coli ML 308-225 membrane vesicles with 60 Co gamma radiation were investigated. The results presented show that gamma radiation can monitor membrane components and functions of varying radiosensitivities. The possible application of high-energy radiation as a physical probe of membrane structure and functions is indeed promising

  2. Liposomal encapsulated Zn-DTPA for removing intracellular 169Yb

    International Nuclear Information System (INIS)

    Blank, M.L.; Cress, E.A.; Byrd, B.L.; Washburn, L.C.; Snyder, F.

    1980-01-01

    Multilamellar liposomes possessing neutral positive or negative charges were tested for their capacity to encapsulate sodium ethylenediaminetetraacetate (EDTA) and for their selectivity in depositing in specific tissues after being injected into rats. Negative-charged liposomes had the greatest trapping efficiency over a wide range of lipid-to-aqueous phase ratios. In contrast, except for lung, liposomal charge had no significant effect on the tissue distribution of encapsulated EDTA; liver and spleen exhibited the highest uptake with all preparations. The proportion of encapsulated EDTA taken up by the liver decreased as the amount of injected liposomes was increased. Free zinc diethylenetriaminepentaacetate (Zn-DTPA) and multilamellar liposomes containing entrapped Zn-DTPA were administered to rats that had been injected with 169 Yb-citrate 24 hr earlier. At doses of 14 mg Zn-DTPA per kg body weight, both free Zn-DPTA and the liposomal-bound Zn-DTPA caused increased removal of 169 Yb from the animals. However, treatment with the liposomal Zn-DTPA caused significantly more of the 169 Yb to be removed than did the free Zn-DTPA treatment by itself. Our data indicate that lipophilic forms of chelators can effectively increase the removal rates of heavy metal contamination in tissues. (author)

  3. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses

    Science.gov (United States)

    Hendricks, Gabriel L.; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C.; Viswanathan, Karthik; Albers, Leila; Comolli, James C.; Shriver, Zachary; Knipe, David M.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Trevejo, Jose M.

    2016-01-01

    Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as ‘molecular sinks’ and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. PMID:25637710

  4. Formulation and Evaluation of Rifampicin Liposomes for Buccal Drug Delivery.

    Science.gov (United States)

    Lankalapalli, Srinivas; Tenneti, V S Vinai Kumar

    2016-01-01

    Drug delivery through liposomes offers several advantages, but still challenging to the researchers for the use of liposomes as carriers in drug delivery due to their poor physical stability, unpredictable drug encapsulation and systemic availability of the loaded drug. The present investigation was planned with an objective to prepare Rifampicin loaded liposomes by using response surface methodology of statistical 32 factorial design and further to formulate them into pastilles for deliver through buccal route thereby to enhance systemic absorption. Rifampicin liposomes were prepared by using different ratios of soya lecithin and cholesterol by solvent Injection method. These liposomes were characterized by using optical microscopy, Scanning Electron Microscopy (SEM) and evaluated for particle size, entrapment efficiency (EE), in vitro and ex vivo drug release. Main effects and interaction terms of the formulation variables were evaluated quantitatively using a mathematical statistical model approach showing that both independent variables have significant (P value value: 0.0273), percentage entrapment efficiency (P value: 0.0096), percentage drug release through dialysis membrane (P value: 0.0047) and percentage drug release through porcine buccal membrane (P value: 0.0019). The statistical factorial design of liposomal formulations fulfilled all the requirements of the target set and exhibited suitable values for the selected test parameters. Pastilles were prepared for liposomes using glycerol gelatin base and were found to be soft, smooth with uniform drug content and drug release.

  5. Multimodality imaging demonstrates trafficking of liposomes preferentially to ischemic myocardium

    International Nuclear Information System (INIS)

    Lipinski, Michael J.; Albelda, M. Teresa; Frias, Juan C.; Anderson, Stasia A.; Luger, Dror; Westman, Peter C.; Escarcega, Ricardo O.; Hellinga, David G.; Waksman, Ron; Arai, Andrew E.; Epstein, Stephen E.

    2016-01-01

    Introduction: Nanoparticles may serve as a promising means to deliver novel therapeutics to the myocardium following myocardial infarction. We sought to determine whether lipid-based liposomal nanoparticles can be shown through different imaging modalities to specifically target injured myocardium following intravenous injection in an ischemia–reperfusion murine myocardial infarction model. Methods: Mice underwent ischemia–reperfusion surgery and then either received tail-vein injection with gadolinium- and fluorescent-labeled liposomes or no injection (control). The hearts were harvested 24 h later and underwent T1 and T2-weighted ex vivo imaging using a 7 Tesla Bruker magnet. The hearts were then sectioned for immunohistochemistry and optical fluorescent imaging. Results: The mean size of the liposomes was 100 nm. T1-weighted signal intensity was significantly increased in the ischemic vs. the non-ischemic myocardium for mice that received liposomes compared with control. Optical imaging demonstrated significant fluorescence within the infarct area for the liposome group compared with control (163 ± 31% vs. 13 ± 14%, p = 0.001) and fluorescent microscopy confirmed the presence of liposomes within the ischemic myocardium. Conclusions: Liposomes traffic to the heart and preferentially home to regions of myocardial injury, enabling improved diagnosis of myocardial injury and could serve as a vehicle for drug delivery.

  6. Multimodality imaging demonstrates trafficking of liposomes preferentially to ischemic myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, Michael J., E-mail: mjlipinski12@gmail.com [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States); Albelda, M. Teresa [GIBI2" 3" 0, Grupo de Investigación Biomédica en Imagen, IIS La Fe, Valencia (Spain); Frias, Juan C. [Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, Valencia (Spain); Anderson, Stasia A. [Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Luger, Dror; Westman, Peter C.; Escarcega, Ricardo O.; Hellinga, David G.; Waksman, Ron [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States); Arai, Andrew E. [Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (United States); Epstein, Stephen E. [MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Washington, DC (United States)

    2016-03-15

    Introduction: Nanoparticles may serve as a promising means to deliver novel therapeutics to the myocardium following myocardial infarction. We sought to determine whether lipid-based liposomal nanoparticles can be shown through different imaging modalities to specifically target injured myocardium following intravenous injection in an ischemia–reperfusion murine myocardial infarction model. Methods: Mice underwent ischemia–reperfusion surgery and then either received tail-vein injection with gadolinium- and fluorescent-labeled liposomes or no injection (control). The hearts were harvested 24 h later and underwent T1 and T2-weighted ex vivo imaging using a 7 Tesla Bruker magnet. The hearts were then sectioned for immunohistochemistry and optical fluorescent imaging. Results: The mean size of the liposomes was 100 nm. T1-weighted signal intensity was significantly increased in the ischemic vs. the non-ischemic myocardium for mice that received liposomes compared with control. Optical imaging demonstrated significant fluorescence within the infarct area for the liposome group compared with control (163 ± 31% vs. 13 ± 14%, p = 0.001) and fluorescent microscopy confirmed the presence of liposomes within the ischemic myocardium. Conclusions: Liposomes traffic to the heart and preferentially home to regions of myocardial injury, enabling improved diagnosis of myocardial injury and could serve as a vehicle for drug delivery.

  7. Viscoelastic deformation of lipid bilayer vesicles.

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-07

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  8. Routes and mechanisms of extracellular vesicle uptake

    Directory of Open Access Journals (Sweden)

    Laura Ann Mulcahy

    2014-08-01

    Full Text Available Extracellular vesicles (EVs are small vesicles released by donor cells that can be taken up by recipient cells. Despite their discovery decades ago, it has only recently become apparent that EVs play an important role in cell-to-cell communication. EVs can carry a range of nucleic acids and proteins which can have a significant impact on the phenotype of the recipient. For this phenotypic effect to occur, EVs need to fuse with target cell membranes, either directly with the plasma membrane or with the endosomal membrane after endocytic uptake. EVs are of therapeutic interest because they are deregulated in diseases such as cancer and they could be harnessed to deliver drugs to target cells. It is therefore important to understand the molecular mechanisms by which EVs are taken up into cells. This comprehensive review summarizes current knowledge of EV uptake mechanisms. Cells appear to take up EVs by a variety of endocytic pathways, including clathrin-dependent endocytosis, and clathrin-independent pathways such as caveolin-mediated uptake, macropinocytosis, phagocytosis, and lipid raft–mediated internalization. Indeed, it seems likely that a heterogeneous population of EVs may gain entry into a cell via more than one route. The uptake mechanism used by a given EV may depend on proteins and glycoproteins found on the surface of both the vesicle and the target cell. Further research is needed to understand the precise rules that underpin EV entry into cells.

  9. Liposomes to target peripheral neurons and Schwann cells.

    Directory of Open Access Journals (Sweden)

    Sooyeon Lee

    Full Text Available While a wealth of literature for tissue-specific liposomes is emerging, optimal formulations to target the cells of the peripheral nervous system (PNS are lacking. In this study, we asked whether a novel formulation of phospholipid-based liposomes could be optimized for preferential uptake by microvascular endothelia, peripheral neurons and Schwann cells. Here, we report a unique formulation consisting of a phospholipid, a polymer surfactant and cholesterol that result in enhanced uptake by targeted cells. Using fluorescently labeled liposomes, we followed particle internalization and trafficking through a distinct route from dextran and escape from degradative compartments, such as lysosomes. In cultures of non-myelinating Schwann cells, liposomes associate with the lipid raft marker Cholera toxin, and their internalization is inhibited by disruption of lipid rafts or actin polymerization. In contrast, pharmacological inhibition of clathrin-mediated endocytosis does not significantly impact liposome entry. To evaluate the efficacy of liposome targeting in tissues, we utilized myelinating explant cultures of dorsal root ganglia and isolated diaphragm preparations, both of which contain peripheral neurons and myelinating Schwann cells. In these models, we detected preferential liposome uptake into neurons and glial cells in comparison to surrounding muscle tissue. Furthermore, in vivo liposome administration by intramuscular or intravenous injection confirmed that the particles were delivered to myelinated peripheral nerves. Within the CNS, we detected the liposomes in choroid epithelium, but not in myelinated white matter regions or in brain parenchyma. The described nanoparticles represent a novel neurophilic delivery vehicle for targeting small therapeutic compounds, biological molecules, or imaging reagents into peripheral neurons and Schwann cells, and provide a major advancement toward developing effective therapies for peripheral

  10. Purple-bacterial photosynthetic reaction centers and quantum-dot hybrid-assemblies in lecithin liposomes and thin films.

    Science.gov (United States)

    Lukashev, Eugeny P; Knox, Petr P; Gorokhov, Vladimir V; Grishanova, Nadezda P; Seifullina, Nuranija Kh; Krikunova, Maria; Lokstein, Heiko; Paschenko, Vladimir Z

    2016-11-01

    Quantum dots (QDs) absorb ultraviolet and long-wavelength visible light energy much more efficiently than natural bacterial light-harvesting proteins and can transfer the excitation energy to photosynthetic reaction centers (RCs). Inclusion of RCs combined with QDs as antennae into liposomes opens new opportunities for using such hybrid systems as a basis for artificial energy-transforming devices that potentially can operate with greater efficiency and stability than devices based only on biological components or inorganic components alone. RCs from Rhodobacter sphaeroides and QDs (CdSe/ZnS with hydrophilic covering) were embedded in lecithin liposomes by extrusion of a solution of multilayer lipid vesicles through a polycarbonate membrane or by dialysis of lipids and proteins dispersed with excess detergent. The efficiency of RC and QD interaction within the liposomes was estimated using fluorescence excitation spectra of the photoactive bacteriochlorophyll of the RCs and by measuring the fluorescence decay kinetics of the QDs. The functional activity of the RCs in hybrid complexes was fully maintained, and their stability was even increased. The efficiency of energy transfer between QDs and RCs and conditions of long-term stability of function of such hybrid complexes in film preparations were investigated as well. It was found that dry films containing RCs and QDs, maintained at atmospheric humidity, are capable of maintaining their functional activity for at least some months as judged by measurements of their spectral characteristics, efficiency of energy transfer from QDs to RCs and RC electron transport activity. Addition of trehalose to the films increases the stability further, especially for films maintained at low humidity. These stable hybrid film structures are promising for further studies towards developing new phototransformation devices for biotechnological applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing.

    Science.gov (United States)

    Bhuvana, M; Narayanan, J Shankara; Dharuman, V; Teng, W; Hahn, J H; Jayakumar, K

    2013-03-15

    Immobilization of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) liposome-gold nano-particle (DOPE-AuNP) nano-composite covalently on 3-mercaptopropionic acid (MPA) on gold surface is demonstrated for the first time for electrochemical label free DNA sensing. Spherical nature of the DOPE on the MPA monolayer is confirmed by the appearance of sigmoidal voltammetric profile, characteristic behavior of linear diffusion, for the MPA-DOPE in presence of [Fe(CN)(6)](3-/4-) and [Ru(NH(3))(6)](3+) redox probes. The DOPE liposome vesicle fusion is prevented by electroless deposition of AuNP on the hydrophilic amine head groups of the DOPE. Immobilization of single stranded DNA (ssDNA) is made via simple gold-thiol linkage for DNA hybridization sensing in the presence of [Fe(CN)(6)](3-/4-). The sensor discriminates the hybridized (complementary target hybridized), un-hybridized (non-complementary target hybridized) and single base mismatch target hybridized surfaces sensitively and selectively without signal amplification. The lowest target DNA concentration detected is 0.1×10(-12)M. Cyclic voltammetry (CV), electrochemical impedance (EIS), differential pulse voltammetry (DPV) and quartz crystal microbalance (QCM) techniques are used for DNA sensing on DOPE-AuNP nano-composite. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Ultraviolet-Visible (UV) spectroscopic techniques are used to understand the interactions between the DOPE, AuNP and ssDNA. The results indicate the presence of an intact and well defined spherical DOPE-AuNP nano-composite on the gold surface. The method could be applied for fabrication of the surface based liposome-AuNP-DNA composite for cell transfection studies at reduced reagents and costs. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Giant liposomes as delivery system for ecophysiological studies in copepods.

    Science.gov (United States)

    Buttino, Isabella; De Rosa, Giuseppe; Carotenuto, Ylenia; Ianora, Adrianna; Fontana, Angelo; Quaglia, Fabiana; La Rotonda, Maria Immacolata; Miralto, Antonio

    2006-03-01

    Giant liposomes are proposed as a potential delivery system in marine copepods, the dominant constituent of the zooplankton. Liposomes were prepared in the same size range as the food ingested by copepods (mean diameter of about 7 microm). The encapsulation of a hydrophilic and high molecular mass fluorescent compound, fluorescein isothiocyanate-dextran (FitcDx), within the liposomes provided a means of verifying copepod ingestion when viewed with the confocal laser-scanning microscope. Females of the calanoid copepod Temora stylifera were fed with FitcDx-encapsulated liposomes alone or mixed with the dinoflagellate alga Prorocentrum minimum. Control copepods were incubated with the P. minimum diet alone. Egg production rates, percentage egg-hatching success and number of faecal pellets produced were evaluated after 24 h and 48 h of feeding. Epifluorescence of copepod gut and faecal pellets indicated that the liposomes were actively ingested by T. stylifera in both experimental food conditions, with or without the dinoflagellate diet. Ingestion rates calculated using 3H-labelled liposomes indicated that females ingested more liposomes when P. minimum was added to the solution (16% vs 7.6% of uptake). When liposomes were supplied together with the algal diet, egg production rate, egg-hatching success and faecal pellet production were as high as those observed for the control diet. By contrary, egg production and hatching success were very low with a diet of liposomes alone and faecal pellet production was similar to that recorded in starved females. This results suggest that liposomes alone did not add any nutritive value to the diet, making them a good candidate as inert carriers to study the nutrient requirements or biological activity of different compounds. In particular, such liposomes are proposed as carriers for diatom-derived polyunsaturated aldehydes, which are known to impair copepod embryo viability. Other potential applications of liposomes as a delivery

  13. Release of canine parvovirus from endocytic vesicles

    International Nuclear Information System (INIS)

    Suikkanen, Sanna; Antila, Mia; Jaatinen, Anne; Vihinen-Ranta, Maija; Vuento, Matti

    2003-01-01

    Canine parvovirus (CPV) is a small nonenveloped virus with a single-stranded DNA genome. CPV enters cells by clathrin-mediated endocytosis and requires an acidic endosomal step for productive infection. Virion contains a potential nuclear localization signal as well as a phospholipase A 2 like domain in N-terminus of VP1. In this study we characterized the role of PLA 2 activity on CPV entry process. PLA 2 activity of CPV capsids was triggered in vitro by heat or acidic pH. PLA 2 inhibitors inhibited the viral proliferation suggesting that PLA 2 activity is needed for productive infection. The N-terminus of VP1 was exposed during the entry, suggesting that PLA 2 activity might have a role during endocytic entry. The presence of drugs modifying endocytosis (amiloride, bafilomycin A 1 , brefeldin A, and monensin) caused viral proteins to remain in endosomal/lysosomal vesicles, even though the drugs were not able to inhibit the exposure of VP1 N-terminal end. These results indicate that the exposure of N-terminus of VP1 alone is not sufficient to allow CPV to proliferate. Some other pH-dependent changes are needed for productive infection. In addition to blocking endocytic entry, amiloride was able to block some postendocytic steps. The ability of CPV to permeabilize endosomal membranes was demonstrated by feeding cells with differently sized rhodamine-conjugated dextrans together with the CPV in the presence or in the absence of amiloride, bafilomycin A 1 , brefeldin A, or monensin. Dextran with a molecular weight of 3000 was released from vesicles after 8 h of infection, while dextran with a molecular weight of 10,000 was mainly retained in vesicles. The results suggest that CPV infection does not cause disruption of endosomal vesicles. However, the permeability of endosomal membranes apparently changes during CPV infection, probably due to the PLA 2 activity of the virus. These results suggest that parvoviral PLA 2 activity is essential for productive infection and

  14. Self-assembly in monoelaidin aqueous dispersions: direct vesicles to cubosomes transition.

    Directory of Open Access Journals (Sweden)

    Anan Yaghmur

    Full Text Available In the present study, synchrotron small-angle X-ray scattering (SAXS and Cryo-TEM were used to characterize the temperature-induced structural transitions of monoelaidin (ME aqueous dispersion in the presence of the polymeric stabilizer F127. We prove that the direct transition from vesicles to cubosomes by heating this dispersion is possible. The obtained results were compared with the fully hydrated bulk ME phase.Our results indicate the formation of ME dispersion, which is less stable than that based on the congener monoolein (MO. In addition, the temperature-dependence behavior significantly differs from the fully hydrated bulk phase. SAXS findings indicate a direct L(alpha-V(2 internal transition in the dispersion. While the transition temperature is conserved in the dispersion, the formed cubosomes with internal Im3m symmetry clearly contain more water and this ordered interior is retained over a wider temperature range as compared to its fully hydrated bulk system. At 25 degrees C, Cryo-TEM observations reveal the formation of most likely closely packed onion-like vesicles. Above the lamellar to non-lamellar phase transition at 65 degrees C, flattened cubosomes with an internal nanostructure are observed. However, they have only arbitrary shapes and thus, their morphology is significantly different from that of the well-shaped analogous MO cubosome and hexosome particles.Our study reveals a direct liposomes-cubosomes transition in ME dispersion. The obtained results suggest that the polymeric stabilizer F127 especially plays a significant role in the membrane fusion processes. F127 incorporates in considerable amount into the internal nanostructure and leads to the formation of a highly swollen Im3m phase.

  15. Superresolution and Fluorescence Dynamics Evidence Reveal That Intact Liposomes Do Not Cross the Human Skin Barrier

    DEFF Research Database (Denmark)

    Dreier, Jes; Sørensen, Jens A; Brewer, Jonathan R

    2016-01-01

    In this study we use the combination of super resolution optical microscopy and raster image correlation spectroscopy (RICS) to study the mechanism of action of liposomes as transdermal drug delivery systems in human skin. Two different compositions of liposomes were applied to newly excised human...... skin, a POPC liposome and a more flexible liposome containing the surfactant sodium cholate. Stimulated emission depletion microscopy (STED) images of intact skin and cryo-sections of skin treated with labeled liposomes were recorded displaying an optical resolution low enough to resolve the 100 nm...... liposomes in the skin. The images revealed that virtually none of the liposomes remained intact beneath the skin surface. RICS two color cross correlation diffusion measurements of double labeled liposomes confirmed these observations. Our results suggest that the liposomes do not act as carriers...

  16. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.

    Science.gov (United States)

    Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo

    2016-01-01

    Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.

  17. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis.

    Directory of Open Access Journals (Sweden)

    Débora L Oliveira

    2010-06-01

    Full Text Available Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown.We characterized extracellular vesicle production in wild type (WT and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex or MVB functionality (vps23, late endosomal trafficking revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells.Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the

  18. Chemical meningitis related to intra-CSF liposomal cytarabine.

    Science.gov (United States)

    Durand, Bénédicte; Zairi, Fahed; Boulanger, Thomas; Bonneterre, Jacques; Mortier, Laurent; Le Rhun, Emilie

    2017-10-01

    Therapeutic options of leptomeningeal metastases include intra-cerebrospinal fluid (CSF) chemotherapy. Among intra-CSF agents, liposomal cytarabine has advantages but can induce specific toxicities. A BRAF-V600E-mutated melanoma leptomeningeal metastases patient, treated by dabrafenib and liposomal cytarabine, presented after the first injection of liposomal cytarabine with hyperthermia and headaches. Despite sterile CSF/blood analyses, extended intravenous antibiotics were given and the second injection was delayed. The diagnosis of chemical meningitis was finally made. Dose reduction and appropriate symptomatic treatment permitted the administration of 15 injections of liposomal cytarabine combined with dabrafenib. A confirmation of the diagnosis of chemical meningitis is essential in order (1) not to delay intra-CSF or systemic chemotherapy or (2) to limit the administration of unnecessary but potentially toxic antibiotics.

  19. Syntheses and characterization of liposome-incorporated adamantyl aminoguanidines.

    Science.gov (United States)

    Šekutor, Marina; Štimac, Adela; Mlinarić-Majerski, Kata; Frkanec, Ruža

    2014-08-21

    A series of mono and bis-aminoguanidinium adamantane derivatives has been synthesized and incorporated into liposomes. They combine two biomedically significant molecules, the adamantane moiety and the guanidinium group. The adamantane moiety possesses the membrane compatible features while the cationic guanidinium subunit was recognized as a favourable structural feature for binding to complementary molecules comprising phosphate groups. The liposome formulations of adamantyl aminoguanidines were characterized and it was shown that the entrapment efficiency of the examined compounds is significant. In addition, it was demonstrated that liposomes with incorporated adamantyl aminoguanidines effectively recognized the complementary liposomes via the phosphate group. These results indicate that adamantane derivatives bearing guanidinium groups might be versatile tools for biomedical application, from studies of molecular recognition processes to usage in drug formulation and cell targeting.

  20. Pharmacokinetics of a 5-fluorouracil liposomal delivery system.

    Science.gov (United States)

    Simmons, S T; Sherwood, M B; Nichols, D A; Penne, R B; Sery, T; Spaeth, G L

    1988-01-01

    A liposomal delivery system was developed in an attempt to prolong ocular levels of 5-fluorouracil for glaucoma filtering surgery. The pharmacokinetics of the 5-fluorouracil liposomal delivery system were studied in normal pigmented rabbits with 5-fluorouracil labelled with carbon-14 (C-14). 14C 5-fluorouracil was incorporated into the liposomes at a concentration of 10 g/l and injected subconjunctivally in doses of 5 and 10 mg. Concentrations of 5-fluorouracil were assayed at 10 time intervals from 0.5 to 96 hours in cornea, sclera, and conjunctiva and at six time intervals from 0.5 to 12 hours in aqueous. Two peak concentrations were noted at approximately one and eight hours, with measurable levels present at 96 hours. This study demonstrates the ability of this liposomal delivery system to prolong levels of 5-fluorouracial in normal pigmented rabbits. PMID:3179257

  1. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    Science.gov (United States)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  2. Treatment of deep mycoses with liposomal amphotericin B.

    Science.gov (United States)

    Berenguer, J; Muñoz, P; Parras, F; Fernández-Baca, V; Hernández-Sampelayo, T; Bouza, E

    1994-06-01

    Amphotericin B is the mainstay of therapy of many deep mycoses, but its use is seriously hampered by dose-limiting nephrotoxicity. In this study a liposomal formulation of amphotericin B was administered to ten patients with proven deep mycoses: invasive aspergillosis (n = 4), deep candidiasis (n = 4) and zygomycosis (n = 2). The mean daily dosage of liposomal amphotericin B was 3.0 mg/kg (range 2.5 to 4 mg/kg), the mean total dosage of liposomal amphotericin B 2,781 mg (range 87 to 5,220 mg) and the mean duration of treatment 17 days (range 3 to 33 days). Treatment with liposomal amphotericin B was associated with little nephrotoxicity and an overall survival rate of 50%. The median increase of serum creatinine from baseline levels was 0.38 mg/dl (-1.2 to 2.6 mg/dl).

  3. Enzyme sensitive liposomes in chemotherapy and potentiation of immunotherapy

    DEFF Research Database (Denmark)

    Østrem, Ragnhild Garborg

    efficacy and induction of severe adverse effects. Interestingly, the pharmacokinetics and biodistribution of drugs can be substantially altered by encapsulation in liposomal drug delivery vehicles. The first chapter of this thesis gives a brief introduction to cancer followed by a discussion...... of the applicability of liposomes as drug delivery vehicles in cancer therapy. The second chapter describes the development of a liposome system with an inbuilt release mechanism triggered by secretory phospholipase A2 (sPLA2). This enzyme is expressed at elevated levels in many human cancers, and as such represents...... with an introduction to the cancer-immunity cycle and to how treatment approaches can aid this interplay. Subsequently it demonstrates that the presence of a functional immune system is important in the efficacy of liposomal oxaliplatin, and that this efficacy can be substantially enhanced by combination with...

  4. Do plasma proteins distinguish between liposomes of varying charge density?

    KAUST Repository

    Capriotti, Anna Laura; Caracciolo, Giulio; Cavaliere, Chiara; Foglia, Patrizia; Pozzi, Daniela; Samperi, Roberto; Laganà , Aldo

    2012-01-01

    efficient and more biocompatible liposomal formulations, the behavior of three CLs with different membrane charge densities was investigated. The proteins of the three coronas were identified by nano-liquid chromatography-tandem mass spectrometry

  5. The Effect of Polymer Backbone Chemistry on the Induction of the Accelerated Blood Clearance in Polymer Modified Liposomes

    KAUST Repository

    Kierstead, Paul H.; Okochi, Hideaki; Venditto, Vincent J.; Chuong, Tracy C.; Kivimae, Saul; Frechet, Jean; Szoka, Francis C.

    2015-01-01

    A variety of water-soluble polymers, when attached to a liposome, substantially increase liposome circulation half-life in animals. However, in certain conditions, liposomes modified with the most widely used polymer, polyethylene glycol (PEG

  6. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Morphology transition of raft-model membrane induced by osmotic pressure: Formation of double-layered vesicle similar to an endo- and/or exocytosis

    International Nuclear Information System (INIS)

    Onai, Teruaki; Hirai, Mitsuhiro

    2010-01-01

    The effect of osmotic pressure on the structure of large uni-lamellar vesicle (LUV) of the lipid mixtures of monosialoganglioside (G M1 )-cholesterol-dioleoyl-phosphatidylcholine (DOPC) was studies by using wide-angle X-ray scattering (WAXS) method. The molar ratios of the mixtures were 0.1/0.1/1, 0/0.1/1, and 0/0/1. The ternary lipid mixture is a model of lipid rafts. The value of osmotic pressure was varied from 0 to 4.16x10 5 N/m 2 by adding the polyvinylpyrrolidone (PVP) in the range from 0 to 25 % w/v. In the case of the mixtures without G M1 , the rise of the osmotic pressure just enhances the multi-lamellar stacking with deceasing the inter-lamellar spacing. On the other hand, the mixture containing G M1 shows the structural transition from a uni-lamellar vesicle to a double-layered vesicle (a liposome including a smaller one inside) by the rise of osmotic pressure. In this morphology transition the total surface area of the double-layered vesicle is mostly as same as that of the LUV at the initial state. The polar head region of G M1 is bulky and highly hydrophilic due to the oligosaccharide chain containing a sialic acid residue. Then, the present results suggest that the existence of G M1 in the outer-leaflet of the LUV is essentially important for such a double-layered vesicle formation. Alternatively, a phenomenon similar to an endo- and/or exocytosis in cells can be caused simply by a variation of osmotic pressure.

  8. Transcutaneous drug delivery by liposomes using fractional laser technology.

    Science.gov (United States)

    Fujimoto, Takahiro; Wang, Jian; Baba, Kazuki; Oki, Yuka; Hiruta, Yuki; Ito, Masayuki; Ito, Shinobu; Kanazawa, Hideko

    2017-07-01

    Transdermal delivery of hydrophilic peptides remains a challenge due to their poor cellular uptake and transdermal penetration. We hypothesize that combination of a CO 2 fractional laser to enhance percutaneous absorption and liposomes as transdermal carriers would improve skin penetration of hydrophilic drugs. NA. Liposomes were prepared using membrane fusion lipid dioleoylphosphatidylethanolamine, and used to deliver 5-carboxyfluorescein (CF) and fluorescein isothiocyanate-conjugated ovalbumin (OVA-FITC) as model hydrophilic peptide drugs. Liposome size was estimated by dynamic light scattering. Liposome uptake into murine macrophage cells and penetration or permeation into Yucatan micropig skin after irradiation by CO 2 fractional laser at varying energy levels (laser power and exposure duration) were investigated using Franz cell and fluorescence microscopy. Oxidative damage to the irradiated mouse skin was assessed by electron spin resonance. Size of CF and OVA-FITC encapsulated liposomes was 324 ± 75 nm. Cellular uptake of OVA-FITC delivered by liposomes was 10-fold higher (1,370 relative fluorescence units, RFU) than delivered in solution form (130 RFU). Fractional laser irradiation increased skin permeation rate of CF liposomes (0-10%) and OVA-FITC liposomes (4-40%) in a dose-dependent manner. Although peeling off the stratum corneum facilitated CF liposome penetration at low energy levels (2.69-3.29 J/cm 2 ; 10-20 W for 500 μs), drug permeation was similar (7-8%) in peeled or untreated skin at higher laser energy levels (6.06 J/cm 2 ; 20 W for 1,500 μs). FITC penetrated deeper in the skin after laser irradiation. However, OH, O2-, and VC reactive oxygen species were generated upon irradiation of the skin with a fractional CO 2 laser. Increasing laser power and irradiation, time increased liposome uptake by cells and penetration of peptide drugs across the skin in a dose-dependent manner. High-energy CO 2 fractional laser overcomes the

  9. Comparison of conventional chemotherapy, stealth liposomes and temperature-sensitive liposomes in a mathematical model.

    Directory of Open Access Journals (Sweden)

    Astrid Gasselhuber

    Full Text Available Various liposomal drug carriers have been developed to overcome short plasma half-life and toxicity related side effects of chemotherapeutic agents. We developed a mathematical model to compare different liposome formulations of doxorubicin (DOX: conventional chemotherapy (Free-DOX, Stealth liposomes (Stealth-DOX, temperature sensitive liposomes (TSL with intra-vascular triggered release (TSL-i, and TSL with extra-vascular triggered release (TSL-e. All formulations were administered as bolus at a dose of 9 mg/kg. For TSL, we assumed locally triggered release due to hyperthermia for 30 min. Drug concentrations were determined in systemic plasma, aggregate body tissue, cardiac tissue, tumor plasma, tumor interstitial space, and tumor cells. All compartments were assumed perfectly mixed, and represented by ordinary differential equations. Contribution of liposomal extravasation was negligible in the case of TSL-i, but was the major delivery mechanism for Stealth-DOX and for TSL-e. The dominant delivery mechanism for TSL-i was release within the tumor plasma compartment with subsequent tissue- and cell uptake of released DOX. Maximum intracellular tumor drug concentrations for Free-DOX, Stealth-DOX, TSL-i, and TSL-e were 3.4, 0.4, 100.6, and 15.9 µg/g, respectively. TSL-i and TSL-e allowed for high local tumor drug concentrations with reduced systemic exposure compared to Free-DOX. While Stealth-DOX resulted in high tumor tissue concentrations compared to Free-DOX, only a small fraction was bioavailable, resulting in little cellular uptake. Consistent with clinical data, Stealth-DOX resulted in similar tumor intracellular concentrations as Free-DOX, but with reduced systemic exposure. Optimal release time constants for maximum cellular uptake for Stealth-DOX, TSL-e, and TSL-i were 45 min, 11 min, and <3 s, respectively. Optimal release time constants were shorter for MDR cells, with ∼4 min for Stealth-DOX and for TSL-e. Tissue concentrations

  10. Engineering of an Inhalable DDA/TDB Liposomal Adjuvant

    DEFF Research Database (Denmark)

    Ingvarsson, Pall Thor; Yang, Mingshi; Mulvad, Helle

    2013-01-01

    The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB).......The purpose of this study was to identify and optimize spray drying parameters of importance for the design of an inhalable powder formulation of a cationic liposomal adjuvant composed of dimethyldioctadecylammonium (DDA) bromide and trehalose-6,6'-dibehenate (TDB)....

  11. Copper-64 labeled liposomes for imaging bone marrow

    International Nuclear Information System (INIS)

    Lee, Sang-gyu; Gangangari, Kishore; Kalidindi, Teja Muralidhar; Punzalan, Blesida; Larson, Steven M.; Pillarsetty, Naga Vara Kishore

    2016-01-01

    Introduction: Bone marrow is the soft tissue compartment inside the bones made up of hematopoietic cells, adipocytes, stromal cells, phagocytic cells, stem cells, and sinusoids. While [ 18 F]-FLT has been utilized to image proliferative marrow, to date, there are no reports of particle based positron emission tomography (PET) imaging agents for imaging bone marrow. We have developed copper-64 labeled liposomal formulation that selectively targets bone marrow and therefore serves as an efficient PET probe for imaging bone marrow. Methods: Optimized liposomal formulations were prepared with succinyl PE, DSPC, cholesterol, and mPEG-DSPE (69:39:1:10:0.1) with diameters of 90 and 140 nm, and were doped with DOTA-Bn-DSPE for stable 64 Cu incorporation into liposomes. Results: PET imaging and biodistribution studies with 64 Cu-labeled liposomes indicate that accumulation in bone marrow was as high as 15.18 ± 3.69%ID/g for 90 nm liposomes and 7.01 ± 0.92%ID/g for 140 nm liposomes at 24 h post-administration. In vivo biodistribution studies in tumor-bearing mice indicate that the uptake of 90 nm particles is approximately 0.89 ± 0.48%ID/g in tumor and 14.22 ± 8.07%ID/g in bone marrow, but respective values for Doxil® like liposomes are 0.83 ± 0.49%ID/g and 2.23 ± 1.00%ID/g. Conclusion: Our results indicate that our novel PET labeled liposomes target bone marrow with very high efficiency and therefore can function as efficient bone marrow imaging agents.

  12. Optimization of Paclitaxel Containing pH-Sensitive Liposomes By 3 Factor, 3 Level Box-Behnken Design.

    Science.gov (United States)

    Rane, Smita; Prabhakar, Bala

    2013-07-01

    The aim of this study was to investigate the combined influence of 3 independent variables in the preparation of paclitaxel containing pH-sensitive liposomes. A 3 factor, 3 levels Box-Behnken design was used to derive a second order polynomial equation and construct contour plots to predict responses. The independent variables selected were molar ratio phosphatidylcholine:diolylphosphatidylethanolamine (X1), molar concentration of cholesterylhemisuccinate (X2), and amount of drug (X3). Fifteen batches were prepared by thin film hydration method and evaluated for percent drug entrapment, vesicle size, and pH sensitivity. The transformed values of the independent variables and the percent drug entrapment were subjected to multiple regression to establish full model second order polynomial equation. F was calculated to confirm the omission of insignificant terms from the full model equation to derive a reduced model polynomial equation to predict the dependent variables. Contour plots were constructed to show the effects of X1, X2, and X3 on the percent drug entrapment. A model was validated for accurate prediction of the percent drug entrapment by performing checkpoint analysis. The computer optimization process and contour plots predicted the levels of independent variables X1, X2, and X3 (0.99, -0.06, 0, respectively), for maximized response of percent drug entrapment with constraints on vesicle size and pH sensitivity.

  13. Advanced strategies in liposomal cancer therapy

    DEFF Research Database (Denmark)

    Andresen, Thomas Lars; Jensen, Simon Skøde; Jørgensen, Kent

    2005-01-01

    is therefore of great importance. In the first part of this review, we present current strategies in the drug delivery field, focusing on site-specific triggered drug release from liposomes in cancerous tissue. Currently marketed drug delivery systems lack the ability to actively release the carried drug......, none of them have yet led to marketed drugs and are still far from achieving this goal. The most advanced and prospective technologies are probably the prodrug strategies where nontoxic drugs are carried and activated specifically in the malignant tissue by overexpressed enzymes. In the second part......Tumor specific drug delivery has become increasingly interesting in cancer therapy, as the use of chemotherapeutics is often limited due to severe side effects. Conventional drug delivery systems have shown low efficiency and a continuous search for more advanced drug delivery principles...

  14. Deciphering the Functional Composition of Fusogenic Liposomes

    Science.gov (United States)

    Kolašinac, Rejhana; Kleusch, Christian; Braun, Tobias; Merkel, Rudolf; Csiszár, Agnes

    2018-01-01

    Cationic liposomes are frequently used as carrier particles for nucleic acid delivery. The most popular formulation is the equimolar mixture of two components, a cationic lipid and a neutral phosphoethanolamine. Its uptake pathway has been described as endocytosis. The presence of an aromatic molecule as a third component strongly influences the cellular uptake process and results in complete membrane fusion instead of endocytosis. Here, we systematically varied all three components of this lipid mixture and determined how efficiently the resulting particles fused with the plasma membrane of living mammalian cells. Our results show that an aromatic molecule and a cationic lipid component with conical molecular shape are essential for efficient fusion induction. While a neutral lipid is not mandatory, it can be used to control fusion efficiency and, in the most extreme case, to revert the uptake mechanism back to endocytosis. PMID:29364187

  15. Removal of cellular-type hemoglobin-based oxygen carrier (hemoglobin-vesicles) from blood using centrifugation and ultrafiltration.

    Science.gov (United States)

    Sakai, Hiromi; Sou, Keitaro; Horinouchi, Hirohisa; Tsuchida, Eishun; Kobayashi, Koichi

    2012-02-01

    The hemoglobin-vesicle (HbV) is an artificial oxygen carrier encapsulating a concentrated hemoglobin solution in a phospholipid vesicle (liposome). During or after transporting oxygen, macrophages capture HbVs in the reticuloendothelial system (RES) with an approximate circulation half-life of 3 days. Animal studies show transient splenohepatomegaly after large doses, but HbVs were completely degraded, and the components were excreted in a few weeks. If a blood substitute is used for emergency use until red blood cell transfusion becomes available or for temporary use such as a priming fluid for an extracorporeal circuit, then one option would be to remove HbVs from the circulating blood without waiting a few weeks for removal by the RES. Using a mixture of beagle dog whole blood and HbV, we tested the separation of HbV using a centrifugal Fresenius cell separator and an ultrafiltration system. The cell separator system separated the layers of blood cell components from the HbV-containing plasma layer by centrifugal force, and then the HbV was removed from plasma phase by the ultrafiltration system. The HbVs (250-280 nm) are larger than plasma proteins (blood cell components (> 3 µm). The size of HbVs is advantageous to be separated from the original blood components, and the separated blood components can be returned to circulation. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Deformation of phospholipid vesicles in an optical stretcher

    OpenAIRE

    Delabre , Ulysse; Feld , Kasper; Crespo , Eleonore; Whyte , Graeme; Sykes , Cecile; Seifert , Udo; Guck , Jochen

    2015-01-01

    International audience; Phospholipid vesicles are common model systems for cell membranes. Important aspects of the membrane function relate to its mechanical properties. Here we have investigated the deformation behaviour of phospholipid vesicles in a dual-beam laser trap, also called an optical stretcher. This study explicitly makes use of the inherent heating present in such traps to investigate the dependence of vesicle deformation on temperature. By using lasers with different wavelength...

  17. Spin State As a Probe of Vesicle Self-Assembly.

    Science.gov (United States)

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-03-02

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compositions and distribution of surfactants between the bilayers and the aqueous bulk.

  18. Spin State As a Probe of Vesicle Self-Assembly

    OpenAIRE

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-01-01

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compo...

  19. Enzymatic degradation of polymer covered SOPC-liposomes in relation to drug delivery

    DEFF Research Database (Denmark)

    Davidsen, Jesper; Vermehren, C.; Frøkjær, S.

    2001-01-01

    Polyethylenoxide (PEG) covered liposomes are used as lipid-based drug-delivery systems. In comparison to conventional liposomes the polymer-covered liposomes display a long circulation half-life in the blood stream. We investigate the influence of polyethyleneoxide-distearoylphosphatidylethanolam......Polyethylenoxide (PEG) covered liposomes are used as lipid-based drug-delivery systems. In comparison to conventional liposomes the polymer-covered liposomes display a long circulation half-life in the blood stream. We investigate the influence of polyethyleneoxide...

  20. The Role of Liposomal Bupivacaine in Value-Based Care.

    Science.gov (United States)

    Iorio, Richard

    Multimodal pain control strategies are crucial in reducing opioid use and delivering effective pain management to facilitate improved surgical outcomes. The utility of liposomal bupivacaine in enabling effective pain control in multimodal strategies has been demonstrated in several studies, but others have found the value of liposomal bupivacaine in such approaches to be insignificant. At New York University Langone Medical Center, liposomal bupivacaine injection and femoral nerve block were compared in their delivery of efficacious and cost-effective multimodal analgesia among patients undergoing total joint arthroplasty (TJA). Retrospective analysis revealed that including liposomal bupivacaine in a multimodal pain control protocol for TJA resulted in improved quality and efficiency metrics, decreased narcotic use, and faster mobilization, all relative to femoral nerve block, and without a significant increase in admission costs. In addition, liposomal bupivacaine use was associated with elimination of the need for patient-controlled analgesia in TJA. Thus, at Langone Medical Center, the introduction of liposomal bupivacaine to TJA has been instrumental in achieving adequate pain control, delivering high-level quality of care, and controlling costs.

  1. Modification of wool surface by liposomes for dyeing with weld.

    Science.gov (United States)

    Montazer, Majid; Zolfaghari, Alireza; Toliat, Taibeh; Moghadam, Mohammad Bameni

    2009-01-01

    In this research work, wool surface has been modified by liposome to investigate its effects on dyeing with weld, a yellow natural dye. To do this, samples were first treated with aluminium sulphate and afterward with different concentrations of liposomes at various temperatures for 30 minutes and, finally, dyed with weld at 75, 85, and 95 degrees C for 30, 45, and 60 minutes. K/S values of fabric samples were calculated and washing, light and rub fastness properties of the samples were indicated. The results proposed that the sample treated with 1% liposomes and dyed at 75 degrees C for 60 min has the highest K/S value. The central composite design (CCD) used for the experimental plan with three variables on the results of color strength and statistical analysis confirms the optimum conditions obtained by the experimental results. It was also found that washing, light, wet, and dry rub fastness properties of samples dyed with weld, including liposomes, have not significantly changed. The results of water drop absorption indicated that the hydrophobicity is higher for the samples pretreated with liposomes. The SEM picture of wool sample treated with mordant and liposomes and finally dyed with weld shows a coated layer on the fiber surface.

  2. Calcium-Responsive Liposomes via a Synthetic Lipid Switch.

    Science.gov (United States)

    Lou, Jinchao; Carr, Adam J; Watson, Alexa J; Mattern-Schain, Samuel I; Best, Michael D

    2018-03-07

    Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Liposomal preparations of muramyl glycopeptides as immunomodulators and adjuvants.

    Science.gov (United States)

    Turánek, Jaroslav; Ledvina, Miroslav; Kasná, Andrea; Vacek, Antonín; Hríbalova, Vera; Krejcí, Josef; Miller, Andrew D

    2006-04-12

    The need for safe and structurally defined immunomodulators and adjuvants is increasing in connection with the recently observed marked increase in the prevalence of pathological conditions characterized by immunodeficiency. Important groups of such compounds are muramyl glycopeptides, analogs of muramyl dipeptide (MDP), glucosaminyl-muramyl dipeptide (GMDP), and desmuramylpeptides. We have designed and synthesized new types of analogs with changes in both the sugar and the peptide parts of the molecule that show a high immunostimulating and adjuvant activity and suppressed adverse side effects. The introduction of lipophilic residues has also improved their incorporation into liposomes, which represent a suitable drug carrier. The proliposome-liposome method is based on the conversion of the initial proliposome preparation into liposome dispersion by dilution with the aqueous phase. The description of a home-made stirred thermostated cell and its link-up with a liquid delivery system for a rapid and automated preparation of multilamellar liposomes at strictly controlled conditions (sterility, temperature, dilution rate and schedule) is presented. The cell has been designed for laboratory-scale preparation of liposomes (300-1000 mg of phospholipid per run) in a procedure taking less than 90 min. The method can be readily scaled up. Examples of adjuvant and immunostimulatory effect of liposomal preparation in mice model will be presented.

  4. ABC Triblock Copolymer Vesicles with Mesh-like Morphology

    Science.gov (United States)

    Zhao, Wei; Russell, Thomas; Grason, Gregory

    2010-03-01

    Polymer vesicles can be made from poly(isoprene-b-styrene-b-2-vinylpyridene) (PI-b-PS-b-P2VP) triblock copolymer under the confinement of anodic aluminum oxide (AAO) membrane. It was found that these vesicles have well-defined, nanoscopic size and a microphase-separated hydrophobic core, comprised of PS and PI blocks. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the core at a well-defined composition of three blocks. Confinement played an important role in generating these vesicles with such an unusual morphology.

  5. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles.

    Science.gov (United States)

    Lässer, Cecilia; Théry, Clotilde; Buzás, Edit I; Mathivanan, Suresh; Zhao, Weian; Gho, Yong Song; Lötvall, Jan

    2016-01-01

    The International Society for Extracellular Vesicles (ISEV) has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs). This course, "Basics of Extracellular Vesicles," uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC) on EVs was launched on 15 August 2016 at the platform "Coursera" and is free of charge.

  6. The International Society for Extracellular Vesicles launches the first massive open online course on extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Cecilia Lässer

    2016-12-01

    Full Text Available The International Society for Extracellular Vesicles (ISEV has organised its first educational online course for students and beginners in the field of extracellular vesicles (EVs. This course, “Basics of Extracellular Vesicles,” uses recorded lectures from experts in the field and will be open for an unlimited number of participants. The course is divided into 5 modules and can be accessed at www.coursera.org/learn/extracellular-vesicles. The first module is an introduction to the field covering the nomenclature and history of EVs. Module 2 focuses on the biogenesis and uptake mechanisms of EVs, as well as their RNA, protein and lipid cargo. Module 3 covers the collection and processing of cell culture media and body fluids such as blood, breast milk, cerebrospinal fluid and urine prior to isolation of EVs. Modules 4 and 5 present different isolation methods and characterisation techniques utilised in the EV field. Here, differential ultracentrifugation, size-exclusion chromatography, density gradient centrifugation, kit-based precipitation, electron microscopy, cryo-electron microscopy, flow cytometry, atomic-force microscopy and nanoparticle-tracking analysis are covered. This first massive open online course (MOOC on EVs was launched on 15 August 2016 at the platform “Coursera” and is free of charge.

  7. Sugar-Decorated Sugar Vesicles : Lectin-Carbohydrate Recognition at the Surface of Cyclodextrin Vesicles

    NARCIS (Netherlands)

    Voskuhl, Jens; Stuart, Marc C. A.; Ravoo, Bart Jan

    2010-01-01

    An artificial glycocalix self-assembles when unilamellar bilayer vesicles of amphiphilic beta-cyclodextrins are decorated with maltose and lactose by host-guest interactions. To this end, maltose and lactose were conjugated with adamantane through a tetra(ethyleneglycol) spacer. Both

  8. Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate

    DEFF Research Database (Denmark)

    Schotten, Sebastiaan; Meijer, Marieke; Walter, Alexander Matthias

    2015-01-01

    supralinear effects on the fusion rate. To test this prediction experimentally, we developed a method to assess the number of releasable vesicles, rate constants for vesicle priming, unpriming, and fusion, and the activation energy for fusion by fitting a vesicle state model to synaptic responses induced......-linear effects of genetic/pharmacological perturbations on synaptic transmission and a novel interpretation of the cooperative nature of Ca2+-dependent release....

  9. Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification.

    Science.gov (United States)

    Sun, Guofei; Chung, Tai-Shung; Jeyaseelan, Kandiah; Armugam, Arunmozhiarasi

    2013-02-01

    Aquaporins are water channel proteins in biological membranes that have extraordinary water permeability and selectivity. In this work, we have demonstrated that one of their family members, AquaporinZ (AqpZ), can be possibly applied in a pressure-driven water purification process. A nanofiltration membrane was designed and fabricated by immobilization of AqpZ-reconstituted liposomes on a polydopamine (PDA) coated microporous membrane. Amine-functionalized proteoliposomes were first deposited via gentle vacuum suction and subsequently conjugated on the PDA layer via an amine-catechol adduct formation. Due to the existence of a polymer network within the lipid bilayers, the membrane could sustain hydraulic pressure of 5 bar as well as the strong surface agitation in nanofiltration tests, indicating a relatively stable membrane structure. In comparison with membrane without AqpZ incorporation, the membrane with AqpZ-to-lipid weight ratio of 1:100 increased the water flux by 65% with enhanced NaCl and MgCl(2) rejections of 66.2% and 88.1%, respectively. With AqpZ incorporation, the vesicle immobilized membrane exhibits a promising strategy for high productivity water purification. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery.

    Science.gov (United States)

    Lin, Hongwei; Xie, Qingchun; Huang, Xin; Ban, Junfeng; Wang, Bo; Wei, Xing; Chen, Yanzhong; Lu, Zhufen

    2018-01-01

    The aim of this work was to develop a novel vesicular carrier, ultradeformable liposomes (UDLs), to expand the applications of the Chinese herbal medicine, imperatorin (IMP), and increase its transdermal delivery. In this study, we prepared IMP-loaded UDLs using the thin-film hydration method and evaluated their encapsulation efficiency, vesicle deformability, skin permeation, and the amounts accumulated in different depths of the skin in vitro. The influence of different charged surfactants on the properties of the UDLs was also investigated. The results showed that the UDLs containing cationic surfactants had high entrapment efficiency (60.32%±2.82%), an acceptable particle size (82.4±0.65 nm), high elasticity, and prolonged drug release. The penetration rate of IMP in cationic-UDLs was 3.45-fold greater than that of IMP suspension, which was the highest value among the vesicular carriers. UDLs modified with cationic surfactant also showed higher fluorescence intensity in deeper regions of the epidermis. The results of our study suggest that cationic surfactant-modified UDLs could increase the transdermal flux, prolong the release of the drug, and serve as an effective dermal delivery system for IMP.

  11. The Use of Hemoglobin Vesicles for Delivering Medicinal Gas for the Treatment of Intractable Disorders.

    Science.gov (United States)

    Taguchi, Kazuaki; Yamasaki, Keishi; Sakai, Hiromi; Maruyama, Toru; Otagiri, Masaki

    2017-09-01

    Bioactive gaseous molecules, such as oxygen (O 2 ) and carbon monoxide (CO), are essential elements for most living organisms to maintain their homeostasis and biological activities. An accumulating body of evidence suggests that such molecules can be used in clinics as a medical gas in the treatment of various intractable disorders. Recent developments in hemoglobin-encapsulated liposomes, namely hemoglobin vesicles (HbV), possess great potential for retaining O 2 and CO and could lead to strategies for the development of novel pharmacological agents as medical gas donors. HbV with either O 2 or CO bound to it has been demonstrated to have therapeutic potential for treating certain intractable disorders and has the possibility to serve as diagnostic and augmenting product by virtue of unique physicochemical characteristics of HbV. The present review provides an overview of the present status of the use of O 2 - or CO-binding HbV in experimental animal models of intractable disorders and discusses prospective clinical applications of HbV as a medical gas donor. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Biomembrane Permeabilization: Statistics of Individual Leakage Events Harmonize the Interpretation of Vesicle Leakage.

    Science.gov (United States)

    Braun, Stefan; Pokorná, Šárka; Šachl, Radek; Hof, Martin; Heerklotz, Heiko; Hoernke, Maria

    2018-01-23

    The mode of action of membrane-active molecules, such as antimicrobial, anticancer, cell penetrating, and fusion peptides and their synthetic mimics, transfection agents, drug permeation enhancers, and biological signaling molecules (e.g., quorum sensing), involves either the general or local destabilization of the target membrane or the formation of defined, rather stable pores. Some effects aim at killing the cell, while others need to be limited in space and time to avoid serious damage. Biological tests reveal translocation of compounds and cell death but do not provide a detailed, mechanistic, and quantitative understanding of the modes of action and their molecular basis. Model membrane studies of membrane leakage have been used for decades to tackle this issue, but their interpretation in terms of biology has remained challenging and often quite limited. Here we compare two recent, powerful protocols to study model membrane leakage: the microscopic detection of dye influx into giant liposomes and time-correlated single photon counting experiments to characterize dye efflux from large unilamellar vesicles. A statistical treatment of both data sets does not only harmonize apparent discrepancies but also makes us aware of principal issues that have been confusing the interpretation of model membrane leakage data so far. Moreover, our study reveals a fundamental difference between nano- and microscale systems that needs to be taken into account when conclusions about microscale objects, such as cells, are drawn from nanoscale models.

  13. Liposome Delivery Systems for Inhalation: A Critical Review Highlighting Formulation Issues and Anticancer Applications.

    Science.gov (United States)

    Rudokas, Mindaugas; Najlah, Mohammad; Alhnan, Mohamed Albed; Elhissi, Abdelbary

    2016-01-01

    This is a critical review on research conducted in the field of pulmonary delivery of liposomes. Issues relating to the mechanism of nebulisation and liposome composition were appraised and correlated with literature reports of liposome formulations used in clinical trials to understand the role of liposome size and composition on therapeutic outcome. A major highlight was liposome inhalation for the treatment of lung cancers. Many in vivo studies that explored the potential of liposomes as anticancer carrier systems were evaluated, including animal studies and clinical trials. Liposomes can entrap anticancer drugs and localise their action in the lung following pulmonary delivery. The safety of inhaled liposomes incorporating anticancer drugs depends on the anticancer agent used and the amount of drug delivered to the target cancer in the lung. The difficulty of efficient targeting of liposomal anticancer aerosols to the cancerous tissues within the lung may result in low doses reaching the target site. Overall, following the success of liposomes as inhalable carriers in the treatment of lung infections, it is expected that more focus from research and development will be given to designing inhalable liposome carriers for the treatment of other lung diseases, including pulmonary cancers. The successful development of anticancer liposomes for inhalation may depend on the future development of effective aerosolisation devices and better targeted liposomes to maximise the benefit of therapy and reduce the potential for local and systemic adverse effects. © 2016 S. Karger AG, Basel.

  14. Antibody-Hapten Recognition at the Surface of Functionalized Liposomes Studied by SPR: Steric Hindrance of Pegylated Phospholipids in Stealth Liposomes Prepared for Targeted Radionuclide Delivery

    Directory of Open Access Journals (Sweden)

    Eliot. P. Botosoa

    2011-01-01

    Full Text Available Targeted PEGylated liposomes could increase the amount of drugs or radionuclides delivered to tumor cells. They show favorable stability and pharmacokinetics, but steric hindrance of the PEG chains can block the binding of the targeting moiety. Here, specific interactions between an antihapten antibody (clone 734, specific for the DTPA-indium complex and DTPA-indium-tagged liposomes were characterized by surface plasmon resonance (SPR. Non-PEGylated liposomes fused on CM5 chips whereas PEGylated liposomes did not. By contrast, both PEGylated and non-PEGylated liposomes attached to L1 chips without fusion. SPR binding kinetics showed that, in the absence of PEG, the antibody binds the hapten at the surface of lipid bilayers with the affinity of the soluble hapten. The incorporation of PEGylated lipids hinders antibody binding to extents depending on PEGylated lipid fraction and PEG molecular weight. SPR on immobilized liposomes thus appears as a useful technique to optimize formulations of liposomes for targeted therapy.

  15. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil: in vitro evaluation of drug permeation by infrared spectroscopy.

    Science.gov (United States)

    Mura, Simona; Manconi, Maria; Fadda, Anna Maria; Sala, Maria Chiara; Perricci, Jacopo; Pini, Elena; Sinico, Chiara

    2013-01-01

    Recently, we carried out a research on new liposomal systems prepared by using in their composition a few penetration enhancers which differ for chemical structure and physicochemical properties. The penetration enhancer-containing vesicles (PEVs) were prepared by using soy lecithin and different amounts of three penetration enhancers, 2-(2-ethoxyethoxy) ethanol (Transcutol(®)), capryl-caproyl macrogol 8-glyceride (Labrasol(®)), and cineole.To study the influence of the PEVs on (trans)dermal delivery of minoxidil, in vitro diffusion experiments were performed through new born pig skin and the results were compared with that obtained applying the vesicular system without enhancer (control) after pretreatment of the skin with the various enhancers. In this study, Fourier transform infrared spectroscopy (FTIR), attenuated total reflectance FTIR (ATR-FTIR) and FTIR imaging were used to evaluate the effective penetration of minoxidil in the skin layers and to discover the influence of the enhancer on the drug topical delivery. These analytical studies allowed us to characterize the drug formulations and to evaluate the vesicle distribution into the skin. Recorded spectra confirmed that the vesicle formulations with penetration enhancers promoted drug deposition into the skin.

  16. From conventional to stealth liposomes: a new frontier in cancer chemotherapy.

    Science.gov (United States)

    Cattel, Luigi; Ceruti, Maurizio; Dosio, Franco

    2003-01-01

    Many attempts have been made to achieve good selectivity to targeted tumor cells by preparing specialized carrier agents that are therapeutically profitable for anticancer therapy. Among these, liposomes are the most studied colloidal particles thus far applied in medicine and in particular in antitumor therapy. Although they were first described in the 1960s, only at the beginning of 1990s did the first therapeutic liposomes appear on the market. The first-generation liposomes (conventional liposomes) comprised a liposome-containing amphotericin B, Ambisome (Nexstar, Boulder, CO, USA), used as an antifungal drug, and Myocet (Elan Pharma Int, Princeton, NJ, USA), a doxorubicin-containing liposome, used in clinical trials to treat metastatic breast cancer. The second-generation liposomes ("pure lipid approach") were long-circulating liposomes, such as Daunoxome, a daunorubicin-containing liposome approved in the US and Europe to treat AIDS-related Kaposi's sarcoma. The third-generation liposomes were surface-modified liposomes with gangliosides or sialic acid, which can evade the immune system responsible for removing liposomes from circulation. The fourth-generation liposomes, pegylated liposomal doxorubicin, were called "stealth liposomes" because of their ability to evade interception by the immune system, in the same way as the stealth bomber was able to evade radar. Actually, the only stealth liposome on the market is Caelyx/Doxil (Schering-Plough, Madison NJ, USA), used to cure AIDS-related Kaposi's sarcoma, resistant ovarian cancer and metastatic breast cancer. Pegylated liposomal doxorubicin is characterized by a very long-circulation half-life, favorable pharmacokinetic behavior and specific accumulation in tumor tissues. These features account for the much lower toxicity shown by Caelyx in comparison to free doxorubicin, in terms of cardiotoxicity, vesicant effects, nausea, vomiting and alopecia. Pegylated liposomal doxorubicin also appeared to be less

  17. Nonenzymatic glycation of phosphatidylethanolamine in erythrocyte vesicles

    International Nuclear Information System (INIS)

    Patkowska, M.J.; Horowitz, M.I.

    1986-01-01

    Unsealed inside-out and right-side out vesicles were prepared from human red cells. The vesicles were incubated with D-glucose [ 14 C(U)] and sodium cyanoborohydride in phosphate buffer, pH 7.4. After incubation, lipids were extracted with 1-butanol and non-lipid contaminants removed by Sephadex G-25 chromatography. Phosphatidylethanolamine-sorbitol was purified by chromatography on columns of silicic acid and phenylboronate agarose gel. Phospholipase C (B. cereus) liberated phosphoethanolamine-sorbitol (I) which comigrated on TLC with synthetic I prepared by reductive condensation of phosphoethanolamine and D-glucose and also with the product of phospholipase C (B. cereus) hydrolysis of reference phosphatidylethanolamine-sorbitol. Exposure of I to alkaline phosphatase (E. coli) gave P/sub i/ and ethanolamine-sorbitol (II) which comigrated on TLC with synthetic II prepared by reductive condensation of ethanolamine and D-glucose or by phospholipase D hydrolysis of reference phosphatidylethanolamine-sorbitol. These studies demonstrate that vesicular phosphatidylethanolamine can be reductively glycated and illustrate the applicability of both phospholipase C and phospholipase D in characterizing glycated phosphoglycerides

  18. Mechanical collapse of confined fluid membrane vesicles.

    Science.gov (United States)

    Rim, Jee E; Purohit, Prashant K; Klug, William S

    2014-11-01

    Compact cylindrical and spherical invaginations are common structural motifs found in cellular and developmental biology. To understand the basic physical mechanisms that produce and maintain such structures, we present here a simple model of vesicles in confinement, in which mechanical equilibrium configurations are computed by energy minimization, balancing the effects of curvature elasticity, contact of the membrane with itself and the confining geometry, and adhesion. For cylindrical confinement, the shape equations are solved both analytically and numerically by finite element analysis. For spherical confinement, axisymmetric configurations are obtained numerically. We find that the geometry of invaginations is controlled by a dimensionless ratio of the adhesion strength to the bending energy of an equal area spherical vesicle. Larger adhesion produces more concentrated curvatures, which are mainly localized to the "neck" region where the invagination breaks away from its confining container. Under spherical confinement, axisymmetric invaginations are approximately spherical. For extreme confinement, multiple invaginations may form, bifurcating along multiple equilibrium branches. The results of the model are useful for understanding the physical mechanisms controlling the structure of lipid membranes of cells and their organelles, and developing tissue membranes.

  19. Tissue distribution of radiolabeled phosphatidylserine-containing liposome in mice

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta E.T.; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia], e-mail: samanta@usp.br, e-mail: nnascime@ipen.br; Andrade Junior, Heitor F. de [Instituto de Medicina Tropical de Sao Paulo (IMTSP), Sao Paulo, SP (Brazil)], e-mail: hfandrad@usp.br; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Radiofarmacia], e-mail: jaosso@ipen.br

    2009-07-01

    Liposomes are used as drug delivery systems to modify pharmacokinetic of drugs and also to improve their action in target cells. Liposomes containing phosphatidylserine are efficiently eliminated from the blood by cells of the mononuclear phagocytic system (MPS), predominantly Kupffer cells in the liver. In this way, this is a valuable approach to treat infectious diseases involving MPS, especially leishmaniasis. Leishmaniasis is a severe parasitic disease, caused by intramacrophage protozoa Leishmania sp., and is fatal if left untreated. Leishmania resides mainly in the liver and the spleen. Antileishmanial agents containing-liposomes showed more effective therapies with reduction of toxicity and adverse side effects. The purpose of this study was to investigate the tissue distribution of radioactive meglumine antimoniate encapsulated in phosphatidylserine-containing liposome. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor to produce antimony radiotracers, {sup 122}Sb and {sup 124}Sb, and encapsulated in liposome. Healthy mice received a single intraperitoneal dose of the radiolabeled drug. Analysis of the mean radioactive tissue concentration-time data curves showed that liver and spleen had the highest levels of radioactivity. In addition these levels of drug remained for more than 48 hours. The dominant route of elimination was via biliary excretion with slow rate. Small fraction of the drug was found in the kidneys with very fast elimination. In conclusion, the phosphatidylserine-containing liposome showed to be a very useful tool to target antileishmanial agents to MPS and to sustain the drug levels for longer times. Besides, radiolabeled liposome is the easiest approach to perform biodistribution evaluation. (author)

  20. Tissue distribution of radiolabeled phosphatidylserine-containing liposome in mice

    International Nuclear Information System (INIS)

    Borborema, Samanta E.T.; Nascimento, Nanci do; Osso Junior, Joao A.

    2009-01-01

    Liposomes are used as drug delivery systems to modify pharmacokinetic of drugs and also to improve their action in target cells. Liposomes containing phosphatidylserine are efficiently eliminated from the blood by cells of the mononuclear phagocytic system (MPS), predominantly Kupffer cells in the liver. In this way, this is a valuable approach to treat infectious diseases involving MPS, especially leishmaniasis. Leishmaniasis is a severe parasitic disease, caused by intramacrophage protozoa Leishmania sp., and is fatal if left untreated. Leishmania resides mainly in the liver and the spleen. Antileishmanial agents containing-liposomes showed more effective therapies with reduction of toxicity and adverse side effects. The purpose of this study was to investigate the tissue distribution of radioactive meglumine antimoniate encapsulated in phosphatidylserine-containing liposome. Meglumine antimoniate was neutron irradiated inside the IEA-R1 nuclear reactor to produce antimony radiotracers, 122 Sb and 124 Sb, and encapsulated in liposome. Healthy mice received a single intraperitoneal dose of the radiolabeled drug. Analysis of the mean radioactive tissue concentration-time data curves showed that liver and spleen had the highest levels of radioactivity. In addition these levels of drug remained for more than 48 hours. The dominant route of elimination was via biliary excretion with slow rate. Small fraction of the drug was found in the kidneys with very fast elimination. In conclusion, the phosphatidylserine-containing liposome showed to be a very useful tool to target antileishmanial agents to MPS and to sustain the drug levels for longer times. Besides, radiolabeled liposome is the easiest approach to perform biodistribution evaluation. (author)

  1. Histopathologic Study Following Administration of Liposome-Encapsulated Hemoglobin in the Normovolemic Rat

    National Research Council Canada - National Science Library

    Rudolph, Alan

    1995-01-01

    ... bovine hemoglobin in the normovolemic rat. We have also examined the administration of the liposome vehicle, tetrameric bovine hemoglobin, and liposome encapsulated bovine hemoglobin that had been lyophilized with 300 mM trehalose...

  2. Etoposide Incorporated into Camel Milk Phospholipids Liposomes Shows Increased Activity against Fibrosarcoma in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Hamzah M. Maswadeh

    2015-01-01

    Full Text Available Phospholipids were isolated from camel milk and identified by using high performance liquid chromatography and gas chromatography-mass spectrometry (GC/MS. Anticancer drug etoposide (ETP was entrapped in liposomes, prepared from camel milk phospholipids, to determine its activity against fibrosarcoma in a murine model. Fibrosarcoma was induced in mice by injecting benzopyrene (BAP and tumor-bearing mice were treated with various formulations of etoposide, including etoposide entrapped camel milk phospholipids liposomes (ETP-Cam-liposomes and etoposide-loaded DPPC-liposomes (ETP-DPPC-liposomes. The tumor-bearing mice treated with ETP-Cam-liposomes showed slow progression of tumors and increased survival compared to free ETP or ETP-DPPC-liposomes. These results suggest that ETP-Cam-liposomes may prove to be a better drug delivery system for anticancer drugs.

  3. Oxidative stability of Liposomes composed of docosahexaenoic acid-containing phospholipids

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk; Andresen, Thomas Lars; Jørgensen, Kent

    2007-01-01

    Oxidative stability of liposomes made of (Docosahexaenoic acid) DHA-containing phosphatidylcholine (PC) was examined during preparation and storage. After preparation of the liposomes, the concentration of primary (conjugated dienes) and secondary oxidation products (Thiobarbituric acid...

  4. Comparative proteomic analysis of extracellular vesicles isolated by acoustic trapping or differential centrifugation

    NARCIS (Netherlands)

    Rezeli, Melinda; Gidlöf, Olof; Evander, Mikael; Bryl-Górecka, Paulina; Sathanoori, Ramasri; Gilje, Patrik; Pawlowski, Krzysztof; Horvatovich, Péter; Erlinge, David; Marko-Varga, György; Laurell, Thomas

    2016-01-01

    Extracellular vesicles (ECVs), including microparticles (MPs) and exosomes, are submicron membrane vesicles released by diverse cell types upon activation or stress. Circulating ECVs are potential reservoirs of disease biomarkers, and the complexity of these vesicles is significantly lower compared

  5. Getting there: vesicles en route for plant cytokinesis

    NARCIS (Netherlands)

    Ozdoba, A.

    2007-01-01

    In dividing plant cells, membranous vesicles (60-80 nm in diameter) are transported to the site where a new cell wall that separates the daughter cells is formed. In this thesis the physical parameters size and stiffness that vesicles require to reach the forming cell plate were studied. Synthetic

  6. Spontaneous transfer of ganglioside GM1 between phospholipid vesicles

    International Nuclear Information System (INIS)

    Brown, R.E.; Thompson, T.E.

    1987-01-01

    The transfer kinetics of the negatively charged glycosphingolipid II 3 -N-acetylneuraminosyl-gangliotetraosylceramide (GM 1 ) were investigated by monitoring tritiated GM 1 movement between donor and acceptor vesicles. After appropriate incubation times at 45 0 C, donor and acceptor vesicles were separated by molecular sieve chromatography. Donors were small unilamellar vesicles produced by sonication, whereas acceptors were large unilamellar vesicles produced by either fusion or ethanol injection. Initial GM 1 transfer to acceptors followed first-order kinetics with a half-time of about 40 h assuming that GM 1 is present in equal mole fractions in the exterior and interior surfaces of the donor vesicle bilayer and that no glycolipid flip-flop occurs. GM 1 net transfer was calculated relative to that of [ 14 C]cholesteryl oleate, which served as a nontransferable marker in the donor vesicles. Factors affecting the GM 1 interbilayer transfer rate included phospholipid matrix composition, initial GM 1 concentration in donor vesicles, and the GM 1 distribution in donor vesicles with respect to total lipid symmetry. The findings provide evidence that GM 1 is molecularly dispersed at low concentrations within liquid-crystalline phospholipid bilayers

  7. Loading of Vesicles into Soft Amphiphilic Nanotubes using Osmosis

    NARCIS (Netherlands)

    Erne, Petra M.; van Bezouwen, Laura S.; Stacko, Peter; van Dtjken, Derk Jan; Chen, Jiawen; Stuart, Marc C. A.; Boekema, Eghert J.; Feringa, Ben L.

    2015-01-01

    The facile assembly of higher-order nanoarchitectures from simple building blocks is demonstrated by the loading of vesicles into soft amphiphilic nanotubes using osmosis. The nanotubes are constructed from rigid interdigitated bilayers which are capped with vesicles comprising phospholipid-based

  8. Slow sedimentation and deformability of charged lipid vesicles.

    Directory of Open Access Journals (Sweden)

    Iván Rey Suárez

    Full Text Available The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity.

  9. Model of separated form factors for unilamellar vesicles

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Aksenov, V.L.; Lesieur, P.; Lombardo, D.; Kiselev, A.M.

    2001-01-01

    A new model of separated form factors is proposed for the evaluation of small-angle neutron scattering curves from large unilamellar vesicles. The validity of the model was checked via comparison with the model of a hollow sphere. The model of separated form factors and the hollow sphere model give a reasonable agreement in the evaluation of vesicle parameters

  10. Molecular dynamics simulations of lipid vesicle fusion in atomic detail

    NARCIS (Netherlands)

    Knecht, Volker; Marrink, Siewert-Jan

    The fusion of a membrane-bounded vesicle with a target membrane is a key step in intracellular trafficking, exocytosis, and drug delivery. Molecular dynamics simulations have been used to study the fusion of small unilamellar vesicles composed of a dipalmitoyl-phosphatidylcholine (DPPC)/palmitic

  11. The freezing process of small lipid vesicles at molecular resolution

    NARCIS (Netherlands)

    Risselada, H. Jelger; Marrink, Siewert J.

    2009-01-01

    At present very little is known about the kinetic barriers which a small vesicle will face during the transformation from the liquid-crystalline to the gel phase, and what the structure of frozen vesicles looks like at the molecular level. The formation of gel domains in the strongly curved bilayer

  12. Asymmetric incorporation of Na+, K+-ATPase into phospholipid vesicles

    NARCIS (Netherlands)

    Jackson, R.L.; Verkleij, A.J.; Zoelen, E.J.J. van; Lane, L.K.; Schwartz, A.; Deenen, L.L.M. van

    Purified lamb kidney Na+, K+-ATPase, consisting solely of the Mτ = 95,000 catalytic subunit and the Mτ- 44,000 glycoprotein, was solubilized with Triton X-100 and incorporated into unilamellar phospholipid vesicles. Freeze-fracture electron microscopy of the vesicles showed intramembranous particles

  13. Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles

    KAUST Repository

    Węgrzyn, Ilona

    2011-11-16

    Hydrophobic side groups on a stimuli-responsive polymer, encapsulated within a single giant unilamellar vesicle, enable membrane attachment during compartment formation at elevated temperatures. We thermally modulated the vesicle through implementation of an IR laser via an optical fiber, enabling localized directed heating. Polymer-membrane interactions were monitored using confocal imaging techniques as subsequent membrane protrusions occurred and lipid nanotubes formed in response to the polymer hydrogel contraction. These nanotubes, bridging the vesicle membrane to the contracting hydrogel, were retained on the surface of the polymer compartment, where they were transformed into smaller vesicles in a process reminiscent of cellular endocytosis. This development of a synthetic vesicle system containing a stimuli-responsive polymer could lead to a new platform for studying inter/intramembrane transport through lipid nanotubes. © 2011 American Chemical Society.

  14. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew F. Hill

    2013-12-01

    Full Text Available Extracellular vesicles (EVs are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV held a workshop on “evRNA analysis and bioinformatics.” Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.

  15. Ganglioside GM1 spontaneous transfer between phospholipid vesicles

    International Nuclear Information System (INIS)

    Brown, R.E.; Sugar, I.P.; Thompson, T.E.

    1986-01-01

    The transfer kinetics of the monosiaylated glycosphingolipid, GM 1 , between different size phospholipid vesicles was measured using molecular sieve chromatography. At desired time intervals, small unilamellar donor vesicles were separated from large unilamellar acceptor vesicles by elution from a Sephacryl S-500 column [ 3 H]-GM 1 net transfer was calculated relative to [ 14 C]-cholesteryl oleate, which served as a nontransferable marker in the donor vesicles. The initial GM 1 transfer rate between 1-palmitoyl-2-oleoyl phosphatidylcholine vesicles at 45 0 C deviated slightly from first order kinetics and possessed a half time of 3.6 days. This transfer half time is an order of magnitude shorter than that observed from the desiaylated derivative of GM 1 . The transfer kinetics are consistent with the authors recent electron microscopic results suggesting a molecular distribution of GM 1 in liquid-crystalline phosphatidylcholine bilayers

  16. Interaction of a potyviral VPg with anionic phospholipid vesicles

    International Nuclear Information System (INIS)

    Rantalainen, Kimmo I.; Christensen, Peter A.; Hafren, Anders; Otzen, Daniel E.; Kalkkinen, Nisse; Maekinen, Kristiina

    2009-01-01

    The viral genome-linked protein (VPg) of Potato virus A (PVA) is a multifunctional protein that belongs to a class of intrinsically disordered proteins. Typically, this type of protein gains a more stable structure upon interactions or posttranslational modifications. In a membrane lipid strip overlay binding assay, PVA VPg was found to bind phosphatidylserine (PS), but not phosphatidylcholine (PC). According to circular dichroism spectroscopy, the secondary structure of PVA VPg was stabilized upon interactions with PS and phosphatidylglycerol (PG), but not with PC vesicles. It is possible that this stabilization favored the formation of α-helical structures. Limited tryptic digestion showed that the interaction with anionic vesicles protected certain, otherwise accessible, trypsin cleavage sites. An electron microscopy study revealed that interaction with VPg substantially increased the vesicle diameter and caused the formation of pore or plaque-like electron dense spots on the vesicle surface, which gradually led to disruption of the vesicles.

  17. Contribution à la formulation et à l'évaluation de liposomes d'ATP

    OpenAIRE

    Vincourt-Vitse, Véronique,

    2012-01-01

    ATP liposome incorporating hepatic ligands may contribute to improve the energetic status of the liver graft. In a first phase of development, it has been emphasized the great need of stabilizing the liposome (i) and of validating a cellular model with an altered energetic status in order to test the formulations of interest. To provide a stable liposomal preparation, different strategies have been carried out to freeze-dry liposome with or without ATP. Sucrose and trehalose better stabilize ...

  18. Low-resolution simulations of vesicle suspensions in 2D

    Science.gov (United States)

    Kabacaoğlu, Gökberk; Quaife, Bryan; Biros, George

    2018-03-01

    Vesicle suspensions appear in many biological and industrial applications. These suspensions are characterized by rich and complex dynamics of vesicles due to their interaction with the bulk fluid, and their large deformations and nonlinear elastic properties. Many existing state-of-the-art numerical schemes can resolve such complex vesicle flows. However, even when using provably optimal algorithms, these simulations can be computationally expensive, especially for suspensions with a large number of vesicles. These high computational costs can limit the use of simulations for parameter exploration, optimization, or uncertainty quantification. One way to reduce the cost is to use low-resolution discretizations in space and time. However, it is well-known that simply reducing the resolution results in vesicle collisions, numerical instabilities, and often in erroneous results. In this paper, we investigate the effect of a number of algorithmic empirical fixes (which are commonly used by many groups) in an attempt to make low-resolution simulations more stable and more predictive. Based on our empirical studies for a number of flow configurations, we propose a scheme that attempts to integrate these fixes in a systematic way. This low-resolution scheme is an extension of our previous work [51,53]. Our low-resolution correction algorithms (LRCA) include anti-aliasing and membrane reparametrization for avoiding spurious oscillations in vesicles' membranes, adaptive time stepping and a repulsion force for handling vesicle collisions and, correction of vesicles' area and arc-length for maintaining physical vesicle shapes. We perform a systematic error analysis by comparing the low-resolution simulations of dilute and dense suspensions with their high-fidelity, fully resolved, counterparts. We observe that the LRCA enables both efficient and statistically accurate low-resolution simulations of vesicle suspensions, while it can be 10× to 100× faster.

  19. In vivo and in vitro evaluation of octyl methoxycinnamate liposomes

    Directory of Open Access Journals (Sweden)

    de Carvalho Varjão Mota A

    2013-12-01

    Full Text Available Aline de Carvalho Varjão Mota,1 Zaida Maria Faria de Freitas,1 Eduardo Ricci Júnior,1 Gisela Maria Dellamora-Ortiz,1 Ralph Santos-Oliveira,2 Rafael Antonio Ozzetti,3 André Luiz Vergnanini,3 Vanessa Lira Ribeiro,4 Ronald Santos Silva,4 Elisabete Pereira dos Santos11Faculty of Pharmacy, Federal University of Rio de Janeiro, 2Nuclear Engineering Institute, National Nuclear Energy Commission, 3Allergisa Dermatocosmetic Research, University of Campinas, São Paulo, 4Pharmacology and Toxicology Department, National Insitute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, BrazilAbstract: Solar radiation causes damage to human skin, and photoprotection is the main way to prevent these harmful effects. The development of sunscreen formulations containing nanosystems is of great interest in the pharmaceutical and cosmetic industries because of the many potential benefits. This study aimed to develop and evaluate an octyl methoxycinnamate (OMC liposomal nanosystem (liposome/OMC to obtain a sunscreen formulation with improved safety and efficacy by retaining OMC for longer on the stratum corneum.Methods: The liposome/OMC nanostructure obtained was tested for enzymatic hydrolysis with lipase from Rhizomucor miehei and biodistribution with liposomes labeled with technetium-99m. The liposome/OMC formulation was then incorporated in a gel formulation and tested for ocular irritation using the hen’s egg test-chorio-allantoic membrane (HET-CAM assay, in vitro and in vivo sun protection factor, in vitro release profile, skin biometrics, and in vivo tape stripping.Results: The liposome/OMC nanosystem was not hydrolyzed from R. miehei by lipase. In the biodistribution assay, the liposome/OMC formulation labeled with technetium-99m had mainly deposited in the skin, while for OMC the main organ was the liver, showing that the liposome had higher affinity for the skin than OMC. The liposome/OMC formulation was classified as nonirritating in

  20. Poly(amino acid)s: next-generation coatings for long-circulating liposomes

    NARCIS (Netherlands)

    Romberg, B.

    2007-01-01

    Incorporation of a lipid conjugate of a water-soluble polymer into liposomes can reduce the adhesion of plasma proteins that would otherwise cause rapid recognition and removal of the liposomes by phagocytes. Such polymer-coated liposomes show prolonged circulation property and passive targeting to

  1. Effects of 5-nitro-2-furaldehyde on the radiation damage of liposomes

    International Nuclear Information System (INIS)

    Kuropteva, Z.V.; Sprinz, H.; Schaefer, H.; Winkler, E.

    1986-01-01

    By means of 1 H-NMR spectroscopy the influence of 5-nitro-2-furaldehyde (NF) on the permeation of Eu 3+ ions into irradiated liposomes of egg yolk lecithin was examined. In the presence of NF there was an increase in the permeability of irradiated liposomes. The damage of the liposomes was quantified spectrophotometrically in terms of diene conjugation. (author)

  2. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin.

    Science.gov (United States)

    Jin, Hong-Hao; Lu, Qun; Jiang, Jian-Guo

    2016-03-01

    Using thin film ultrasonic dispersion method, the curcumin liposomes were prepared with milk fat globule membrane (MFGM) phospholipids and soybean lecithins, respectively, to compare the characteristics and stability of the 2 curcumin liposomes. The processing parameters of curcumin liposomes were investigated to evaluate their effects on the encapsulation efficiency. Curcumin liposomes were characterized in terms of size distribution, ζ-potential, and in vitro release behavior, and then their storage stability under various conditions was evaluated. The curcumin liposomes prepared with MFGM phospholipids had an encapsulation efficiency of about 74%, an average particle size of 212.3 nm, and a ζ-potential of -48.60 mV. The MFGM liposomes showed higher encapsulation efficiency, smaller particle size, higher absolute value of ζ-potential, and slower in vitro release than soybean liposomes. The retention rate of liposomal curcumin was significantly higher than that of free curcumin. The stability of the 2 liposomes under different pH was almost the same, but MFGM liposomes displayed a slightly higher stability than soybean liposomes under the conditions of Fe(3+), light, temperature, oxygen, and relative humidity. In conclusion, MFGM phospholipids have potential advantages in the manufacture of curcumin liposomes used in food systems. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Pros and cons of the liposome platform in cancer drug targeting.

    Science.gov (United States)

    Gabizon, Alberto A; Shmeeda, Hilary; Zalipsky, Samuel

    2006-01-01

    Coating of liposomes with polyethylene-glycol (PEG) by incorporation in the liposome bilayer of PEG-derivatized lipids results in inhibition of liposome uptake by the reticulo-endothelial system and significant prolongation of liposome residence time in the blood stream. Parallel developments in drug loading technology have improved the efficiency and stability of drug entrapment in liposomes, particularly with regard to cationic amphiphiles such as anthracyclines. An example of this new generation of liposomes is a formulation of pegylated liposomal doxorubicin known as Doxil or Caelyx, whose clinical pharmacokinetic profile is characterized by slow plasma clearance and small volume of distribution. A hallmark of these long-circulating liposomal drug carriers is their enhanced accumulation in tumors. The mechanism underlying this passive targeting effect is the phenomenon known as enhanced permeability and retention (EPR) which has been described in a broad variety of experimental tumor types. Further to the passive targeting effect, the liposome drug delivery platform offers the possibility of grafting tumor-specific ligands on the liposome membrane for active targeting to tumor cells, and potentially intracellular drug delivery. The pros and cons of the liposome platform in cancer targeting are discussed vis-à-vis nontargeted drugs, using as an example a liposome drug delivery system targeted to the folate receptor.

  4. Interactions of liposome carriers with infectious fungal hyphae reveals the role of β-glucans.

    Science.gov (United States)

    Chavan, Neelam L; Young, Joseph K; Drezek, Rebekah A; Lewis, Russell; Bikram, Malavosklish

    2012-09-04

    Relatively little is known about how liposomal formulations modulate drug delivery to fungal pathogens. We compared patterns of hyphal cell wall binding for empty rhodmine-labeled liposomes and the clinically available amphotericin B-containing liposomal formulation (AmBisome) in Aspergillus fumigatus and Candida albicans. Following 0.5 h of coincubation with A. fumigatus , empty liposomes concentrated primarily in fungal septae along at the surface of the cell wall, suggesting that liposome uptake is concentrated in areas of the cell wall where linear glucan is exposed on the cell surface, which was confirmed by aniline blue staining. Consistent with this hypothesis, pretreatment of liposomes with soluble linear glucan (laminarin) decreased liposome binding in both Aspergillus and Candida fungal hyphae, while growth of Aspergillus hyphae in the presence of an agent that increases fungal cell wall surface exposure of linear β-glucans without cell death (caspofungin) increased liposome uptake throughout the Aspergillus fungal cell wall. Increasing the polyethylene glycol (PEG) concentration in liposomes from 0 to 30% significantly increased fungal uptake of liposomes that was only modestly attenuated when fungal cells were incubated in serum concentrations ranging from 10 to 100%. The presence of β-glucans on the fungal hyphae cell walls of Aspergillus fumigatus is one of the factors responsible for mediating the binding of liposome carriers to the hyphae and could explain possible synergy reported between liposomal amphotericin B and echinocanins.

  5. Determination of platinum drug release and liposome stability in human plasma by CE-ICP-MS

    DEFF Research Database (Denmark)

    Nguyen, Trinh Thi Nhu Tam; Ostergaard, Jesper; Stürup, Stefan

    2013-01-01

    An in vitro method for simultaneous assessment of platinum release and liposome stability of liposomal formulations in human plasma is demonstrated. The development and assessment of the method was performed on a PEGylated liposomal formulation containing cisplatin. Complete separation of free ci...

  6. Investigations of a new, highly negative liposome with improved biodistribution for imaging

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Clancy, B.

    1980-01-01

    An attractive feature of liposomes is the wide range of lipid composition that can lead to liposome formation, coupled with the observation that liposome biodistribution may be altered by varying lipid composition. For instance, adding charged lipids to neutral lecithin will alter the biodistribution of the resulting charged liposomes. We have prepared highly negative liposomes by replacing lecithin with negatively charged cardiolipin. The liposomes have been labeled in the lipid phase with Ga-67 and Tc-99m oxine and their properties evaluated. The expected high negative charge of the resulting liposomes was confirmed by an ion-exchange chromatographic technique. Using paper chromatography, the stability of the label was determined during incubation in saline and serum. Finally, biodistributions were determined at 2 h in mice, and the results compared with those for negative lecithin liposomes. Accumulated activities in liver and spleen were reduced by factors of five and 20, respectively, over lecithin liposomes. Since preferential accumulation of activity in these organs constitutes the biggest limitation to the use of lecithin liposomes, cardiolipin liposomes may prove to be more useful carriers of radioactivity in imaging applications. More importantly, however, these results illustrate the value of studying novel liposome types as potential radiopharmaceuticals

  7. Fluorescent cell-traceable dexamethasone-loaded liposomes for the treatment of inflammatory liver diseases

    NARCIS (Netherlands)

    Bartneck, M.; Scheyda, K.M.; Warzecha, K.T.; Rizzo, L.Y.; Hittatiya, K.; Luedde, T.; Storm, Gerrit; Trautwein, C.; Lammers, Twan Gerardus Gertudis Maria; Tacke, F.

    2015-01-01

    Liposomes are routinely used carrier materials for delivering drug molecules to pathological sites. Besides in tumors and inflammatory sites, liposomes also strongly accumulate in liver and spleen. The potential of using liposomes to treat acute and chronic liver disorders, however, has not yet been

  8. Fluorescent cell-traceable dexamethasone-loaded liposomes for the treatment of inflammatory liver diseases

    NARCIS (Netherlands)

    Bartneck, Matthias; Scheyda, Katharina M; Warzecha, Klaudia T; Rizzo, Larissa Y; Hittatiya, Kanishka; Luedde, Tom; Storm, G; Trautwein, Christian; Lammers, Twan; Tacke, Frank

    Liposomes are routinely used carrier materials for delivering drug molecules to pathological sites. Besides in tumors and inflammatory sites, liposomes also strongly accumulate in liver and spleen. The potential of using liposomes to treat acute and chronic liver disorders, however, has not yet been

  9. Liposomal Drug Product Development and Quality: Current US Experience and Perspective.

    Science.gov (United States)

    Kapoor, Mamta; Lee, Sau L; Tyner, Katherine M

    2017-05-01

    Research in the area of liposomes has grown substantially in the past few decades. Liposomes are lipid bilayer structures that can incorporate drug substances to modify the drug's pharmacokinetic profile thereby improving drug delivery. The agency has received over 400 liposomal drug product submissions (excluding combination therapies), and there are currently eight approved liposomal drug products on the US market. In order to identify the pain points in development and manufacturing of liposomal drug products, a retrospective analysis was performed from a quality perspective on submissions for new and generic liposomal drug products. General analysis on liposomal drug product submissions was also performed. Results indicated that 96% of the submissions were Investigational New Drug (IND) applications, 3% were New Drug Applications (NDAs), and the remaining 1% was Abbreviated New Drug Applications (ANDAs). Doxorubicin hydrochloride was the most commonly used drug substance incorporated into the liposomes (31%). The majority of the liposomal products were administered via intravenous route (84%) with cancer (various types) being the most common indication (63%). From a quality perspective, major challenges during the development of liposomal drug products included identification and (appropriate) characterization of critical quality attributes of liposomal drug products and suitable control strategies during product development. By focusing on these areas, a faster and more efficient development of liposomal drug products may be achieved. Additionally, in this way, the drug review process for such products can be streamlined.

  10. A perspective on extracellular vesicles proteomics

    Science.gov (United States)

    Rosa-Fernandes, Livia; Rocha, Victória Bombarda; Carregari, Victor Corasolla; Urbani, Andrea; Palmisano, Giuseppe

    2017-11-01

    Increasing attention has been given to secreted extracellular vesicles (EVs) in the past decades, especially in the portrayal of their molecular cargo and role as messengers in both homeostasis and pathophysiological conditions. This review presents the state-of-the-art proteomic technologies to identify and quantify EVs proteins along with their PTMs, interacting partners and structural details. The rapid growth of mass spectrometry-based analytical strategies for protein sequencing, PTMs and structural characterization has improved the level of molecular details that can be achieve from limited amount of EVs isolated from different biological sources. Here we will provide a perspective view on the achievements and challenges on EVs proteome characterization using mass spectrometry. A detailed bioinformatics approach will help us to picture the molecular fingerprint of EVs and understand better their pathophysiological function.

  11. Gas Vesicle Nanoparticles for Antigen Display

    Directory of Open Access Journals (Sweden)

    Shiladitya DasSarma

    2015-09-01

    Full Text Available Microorganisms like the halophilic archaeon Halobacterium sp. NRC-1 produce gas-filled buoyant organelles, which are easily purified as protein nanoparticles (called gas vesicles or GVNPs. GVNPs are non-toxic, exceptionally stable, bioengineerable, and self-adjuvanting. A large gene cluster encoding more than a dozen proteins has been implicated in their biogenesis. One protein, GvpC, found on the exterior surface of the nanoparticles, can accommodate insertions near the C-terminal region and results in GVNPs displaying the inserted sequences on the surface of the nanoparticles. Here, we review the current state of knowledge on GVNP structure and biogenesis as well as available studies on immunogenicity of pathogenic viral, bacterial, and eukaryotic proteins and peptides displayed on the nanoparticles. Recent improvements in genetic tools for bioengineering of GVNPs are discussed, along with future opportunities and challenges for development of vaccines and other applications.

  12. Morphometric image analysis of giant vesicles

    DEFF Research Database (Denmark)

    Husen, Peter Rasmussen; Arriaga, Laura; Monroy, Francisco

    2012-01-01

    We have developed a strategy to determine lengths and orientations of tie lines in the coexistence region of liquid-ordered and liquid-disordered phases of cholesterol containing ternary lipid mixtures. The method combines confocal-fluorescence-microscopy image stacks of giant unilamellar vesicles...... (GUVs), a dedicated 3D-image analysis, and a quantitative analysis based in equilibrium thermodynamic considerations. This approach was tested in GUVs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-palmitoyl-sn-glycero-3-phosphocholine/cholesterol. In general, our results show a reasonable...... agreement with previously reported data obtained by other methods. For example, our computed tie lines were found to be nonhorizontal, indicating a difference in cholesterol content in the coexisting phases. This new, to our knowledge, analytical strategy offers a way to further exploit fluorescence...

  13. Periodic-cylinder vesicle with minimal energy

    International Nuclear Information System (INIS)

    Xiao-Hua, Zhou

    2010-01-01

    We give some details about the periodic cylindrical solution found by Zhang and Ou-Yang in [1996 Phys. Rev. E 53 4206] for the general shape equation of vesicle. Three different kinds of periodic cylindrical surfaces and a special closed cylindrical surface are obtained. Using the elliptic functions contained in mathematic, we find that this periodic shape has the minimal total energy for one period when the period–amplitude ratio β ≈ 1.477, and point out that it is a discontinuous deformation between plane and this periodic shape. Our results also are suitable for DNA and multi-walled carbon nanotubes (MWNTs). (cross-disciplinary physics and related areas of science and technology)

  14. Methods to isolate extracellular vesicles for diagnosis

    Science.gov (United States)

    Kang, Hyejin; Kim, Jiyoon; Park, Jaesung

    2017-12-01

    Extracellular vesicles (EVs) are small membrane-bound bodies that are released into extracellular space by diverse cells, and are found in body fluids like blood, urine and saliva. EVs contain RNA, DNA and proteins, which can be biomarkers for diagnosis. EVs can be obtained by minimally-invasive biopsy, so they are useful in disease diagnosis. High yield and purity contribute to precise diagnosis of disease, but damaged EVs and impurities can cause confu sed results. However, EV isolation methods have different yields and purities. Furthermore, the isolation method that is most suitable to maximize EV recovery efficiency depends on the experimental conditions. This review focuses on merits and demerits of several types of EV isolation methods, and provides examples of how to diagnose disease by exploiting information obtained by analysis of EVs.

  15. Liposomal bupivacaine: a review of a new bupivacaine formulation

    Directory of Open Access Journals (Sweden)

    Chahar P

    2012-08-01

    Full Text Available Praveen Chahar, Kenneth C Cummings IIIAnesthesiology Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USAAbstract: Many attempts have been made to increase the duration of local anesthetic action. One avenue of investigation has focused on encapsulating local anesthetics within carrier molecules to increase their residence time at the site of action. This article aims to review the literature surrounding the recently approved formulation of bupivacaine, which consists of bupivacaine loaded in multivesicular liposomes. This preparation increases the duration of local anesthetic action by slow release from the liposome and delays the peak plasma concentration when compared to plain bupivacaine administration. Liposomal bupivacaine has been approved by the US Food and Drug Administration for local infiltration for pain relief after bunionectomy and hemorrhoidectomy. Studies have shown it to be an effective tool for postoperative pain relief with opioid sparing effects and it has also been found to have an acceptable adverse effect profile. Its kinetics are favorable even in patients with moderate hepatic impairment, and it has been found not to delay wound healing after orthopedic surgery. More studies are needed to establish its safety and efficacy for use via intrathecal, epidural, or perineural routes. In conclusion, liposomal bupivacaine is effective for treating postoperative pain when used via local infiltration when compared to placebo with a prolonged duration of action, predictable kinetics, and an acceptable side effect profile. However, more adequately powered trials are needed to establish its superiority over plain bupivacaine.Keywords: liposomal bupivacaine, postoperative pain, pharmacokinetics, pharmacodynamics, efficacy, safety

  16. Application of Liposomes in Treatment of Rheumatoid Arthritis: Quo Vadis

    Directory of Open Access Journals (Sweden)

    Bhupinder Kapoor

    2014-01-01

    Full Text Available The most common treatments for rheumatoid arthritis include nonsteroidal anti-inflammatory drugs (NSAIDs, corticosteroids, disease modifying antirheumatic drugs (DMARDs, and some biological agents. However, none of the treatments available is able to achieve the ultimate goal of treatment, that is, drug-free remission. This limitation has shifted the focus of treatment to delivery strategies with an ability to deliver the drugs into the synovial cavity in the proper dosage while mitigating side effects to other tissues. A number of approaches like microemulsions, microspheres, liposomes, microballoons, cocrystals, nanoemulsions, dendrimers, microsponges, and so forth, have been used for intrasynovial delivery of these drugs. Amongst these, liposomes have proven to be very effective for retaining the drug in the synovial cavity by virtue of their size and chemical composition. The fast clearance of intra-synovially administered drugs can be overcome by use of liposomes leading to increased uptake of drugs by the target synovial cells, which in turn reduces the exposure of nontarget sites and eliminates most of the undesirable effects associated with therapy. This review focuses on the use of liposomes in treatment of rheumatoid arthritis and summarizes data relating to the liposome formulations of various drugs. It also discusses emerging trends of this promising technology.

  17. Stimuli-responsive Smart Liposomes in Cancer Targeting.

    Science.gov (United States)

    Jain, Ankit; Jain, Sanjay K

    2018-02-08

    Liposomes are vesicular carriers which possess aqueous core entrapped within the lipid bilayer. These are carriers of choice because of biocompatible and biodegradable features in addition to flexibility of surface modifications at surface and lipid compositions of lipid bilayers. Liposomes have been reported well for cancer treatment using both passive and active targeting approaches however tumor microenvironment is still the biggest hurdle for safe and effective delivery of anticancer agents. To overcome this problem, stimuli-responsive smart liposomes have emerged as promising cargoes pioneered to anomalous tumor milieu in response to pH, temperature, and enzymes etc. as internal triggers, and magnetic field, ultrasound, and redox potential as external guides for enhancement of drug delivery to tumors. This review focuses on all such stimuli-responsive approaches using fabrication potentiality of liposomes in combination to various ligands, linkers, and PEGylation etc. Scientists engaged in cancer targeting approaches can get benefited greatly with this knowledgeable assemblage of advances in liposomal nanovectors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Biophysical aspects of using liposomes as delivery vehicles.

    Science.gov (United States)

    Ulrich, Anne S

    2002-04-01

    Liposomes are used as biocompatible carriers of drugs, peptides, proteins, plasmic DNA, antisense oligonucleotides or ribozymes, for pharmaceutical, cosmetic, and biochemical purposes. The enormous versatility in particle size and in the physical parameters of the lipids affords an attractive potential for constructing tailor-made vehicles for a wide range of applications. Some of the recent literature will be reviewed here and presented from a biophysical point of view, thus providing a background for the more specialized articles in this special issue on liposome technology. Different properties (size, colloidal behavior, phase transitions, and polymorphism) of diverse lipid formulations (liposomes, lipoplexes, cubic phases, emulsions, and solid lipid nanoparticles) for distinct applications (parenteral, transdermal, pulmonary, and oral administration) will be rationalized in terms of common structural, thermodynamic and kinetic parameters of the lipids. This general biophysical basis helps to understand pharmaceutically relevant aspects such as liposome stability during storage and towards serum, the biodistribution and specific targeting of cargo, and how to trigger drug release and membrane fusion. Methods for the preparation and characterization of liposomal formulations in vitro will be outlined, too.

  19. Liposomes self-assembled from electrosprayed composite microparticles

    International Nuclear Information System (INIS)

    Yu Dengguang; Yang Junhe; Wang Xia; Tian Feng

    2012-01-01

    Composite microparticles, consisting of polyvinylpyrrolidone (PVP), naproxen (NAP) and lecithin (PC), have been successfully prepared using an electrospraying process and exploited as templates to manipulate molecular self-assembly for the synthesis of liposomes in situ. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations demonstrate that the microparticles have an average diameter of 960 ± 140 nm and a homogeneous structure. X-ray diffraction (XRD) patterns, differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results verify that the building blocks NAP and PC are scattered in the polymer matrix in a molecular way owing to the very fast drying of the electrospraying process and the favorable secondary interactions among the components. FESEM, scanning probe microscope (SPM) and TEM observations demonstrate that the liposomes can be achieved through molecular self-assembly in situ when the microparticles contact water thanks to ‘like prefers like’ and by means of the confinement effect of the microparticles. The liposomes have an encapsulation rate of 91.3%, and 80.7% of the drug in the liposomes can be freed into the dissolution medium in a sustained way and by a diffusion mechanism over a period of 24 h. The developed strategy not only provides a new, facile, and effective method to assemble and organize molecules of multiple components into liposomes with electrosprayed microparticles as templates, but also opens a new avenue for nanofabrication in a step-by-step and controllable way. (paper)

  20. Proteomics of Aggregatibacter actinomycetemcomitans Outer Membrane Vesicles.

    Directory of Open Access Journals (Sweden)

    Thomas Kieselbach

    Full Text Available Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. Outer membrane vesicles (OMVs released by this species have been demonstrated to deliver effector proteins such as cytolethal distending toxin (CDT and leukotoxin (LtxA into human host cells and to act as triggers of innate immunity upon carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs. To improve our understanding of the pathogenicity-associated functions that A. actinomycetemcomitans exports via OMVs, we studied the proteome of density gradient-purified OMVs from a rough-colony type clinical isolate, strain 173 (serotype e using liquid chromatography-tandem mass spectrometry (LC-MS/MS. This analysis yielded the identification of 151 proteins, which were found in at least three out of four independent experiments. Data are available via ProteomeXchange with identifier PXD002509. Through this study, we not only confirmed the vesicle-associated release of LtxA, and the presence of proteins, which are known to act as immunoreactive antigens in the human host, but we also identified numerous additional putative virulence-related proteins in the A. actinomycetemcomitans OMV proteome. The known and putative functions of these proteins include immune evasion, drug targeting, and iron/nutrient acquisition. In summary, our findings are consistent with an OMV-associated proteome that exhibits several offensive and defensive functions, and they provide a comprehensive basis to further disclose roles of A. actinomycetemcomitans OMVs in periodontal and systemic disease.

  1. Multivesicular liposomal bupivacaine at the sciatic nerve

    Science.gov (United States)

    McAlvin, J. Brian; Padera, Robert F.; Shankarappa, Sahadev A.; Reznor, Gally; Kwon, Albert H.; Chiang, Homer; Yang, Jason; Kohane, Daniel S.

    2014-01-01

    Clinical translation of sustained release formulations for local anesthetics has been limited by adverse tissue reaction. Exparel™ (DepoFoam bupivacaine) is a new liposomal local anesthetic formulation whose biocompatibility near nerve tissue is not well characterized. Exparel™ injection caused sciatic nerve blockade in rats lasting 240 minutes compared to 120 minutes for 0.5% (w/v) bupivacaine HCl and 210 minutes for 1.31% (w/v) bupivacaine HCl (same bupivacaine content as Exparel™). On histologic sections four days after injection, median inflammation scores in the Exparel™ group (2.5 of 4) were slightly higher than in groups treated with bupivacaine solutions (score 2). Myotoxicity scores in the Exparel™ group (2.5 of 6) were similar to in the 0.5% (w/v) bupivacaine HCl group (3), but significantly less than in the 1.31% (w/v) bupivacaine HCl group (5). After two weeks, inflammation from Exparel™ (score 2 of 6) was greater than from 0.5% (w/v) bupivacaine HCl (1) and similar to that from 1.31% (w/v) bupivacaine HCl (1). Myotoxicity in all three groups was not statistically significantly different. No neurotoxicity was detected in any group. Tissue reaction to Exparel™ was similar to that of 0.5% (w/v) bupivacaine HCl. Surveillance for local tissue injury will be important during future clinical evaluation. PMID:24612918

  2. Seminal vesicle intrafraction motion analysed with cinematic magnetic resonance imaging

    International Nuclear Information System (INIS)

    Gill, Suki; Dang, Kim; Fox, Chris; Bressel, Mathias; Kron, Tomas; Bergen, Noelene; Ferris, Nick; Owen, Rebecca; Chander, Sarat; Tai, Keen Hun; Foroudi, Farshad

    2014-01-01

    This study analyses seminal vesicle displacement relative to the prostate and in relation to treatment time. A group of eleven patients undergoing prostate cancer radiotherapy were imaged with a continuous 3 T cine-MRI in the standard treatment setup position. Four images were recorded every 4 seconds for 15 minutes in the sagittal plane and every 6.5 seconds for 12 minutes in the coronal plane. The prostate gland and seminal vesicles were contoured on each MRI image. The coordinates of the centroid of the prostate and seminal vesicles on each image was analysed for displacement against time. Displacements between the 2.5 percentile and 97.5 percentile (i.e. the 2.5% trimmed range) for prostate and seminal vesicle centroid displacements were measured for 3, 5, 10 and 15 minutes time intervals in the anterior-posterior (AP), left-right (LR) and superior-inferior (SI) directions. Real time prostate and seminal vesicle displacement was compared for individual patients. The 2.5% trimmed range for 3, 5, 10 and 15 minutes for the seminal vesicle centroids in the SI direction measured 4.7 mm; 5.8 mm; 6.5 mm and 7.2 mm respectively. In the AP direction, it was 4.0 mm, 4.5 mm, 6.5 mm, and 7.0 mm. In the LR direction for 3, 5 and 10 minutes; for the left seminal vesicle, it was 2.7 mm, 2.8 mm, 3.4 mm and for the right seminal vesicle, it was 3.4 mm, 3.3 mm, and 3.4 mm. The correlation between the real-time prostate and seminal vesicle displacement varied substantially between patients indicating that the relationship between prostate displacement and seminal vesicles displacement is patient specific with the majority of the patients not having a strong relationship. Our study shows that seminal vesicle motion increases with treatment time, and that the prostate and seminal vesicle centroids do not move in unison in real time, and that an additional margin is required for independent seminal vesicle motion if treatment localisation is to the prostate

  3. Binding of human serum albumin to PEGylated liposomes: insights into binding numbers and dynamics by fluorescence correlation spectroscopy

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Urquhart, Andrew; Thormann, Esben

    2016-01-01

    Liposomes for medical applications are often administered by intravenous injection. Once in the bloodstream, the liposomes are covered with a "protein corona", which impacts the behavior and eventual fate of the liposomes. Currently, many aspects of the liposomal protein corona are not well...

  4. Potential of Continuous Manufacturing for Liposomal Drug Products.

    Science.gov (United States)

    Worsham, Robert D; Thomas, Vaughan; Farid, Suzanne S

    2018-05-21

    Over the last several years, continuous manufacturing of pharmaceuticals has evolved from bulk APIs and solid oral dosages into the more complex realm of biologics. The development of continuous downstream processing techniques has allowed biologics manufacturing to realize the benefits (e.g. improved economics, more consistent quality) that come with continuous processing. If relevant processing techniques and principles are selected, the opportunity arises to develop continuous manufacturing designs for additional pharmaceutical products including liposomal drug formulations. Liposome manufacturing has some inherent aspects that make it favorable for a continuous process. Other aspects such as formulation refinement, materials of construction, and aseptic processing need development, but present an achievable challenge. This paper reviews the current state of continuous manufacturing technology applicable to liposomal drug product manufacturing and an assessment of the challenges and potential of this application. This article is protected by copyright. All rights reserved.

  5. Lipophilic drug transfer between liposomal and biological membranes

    DEFF Research Database (Denmark)

    Fahr, Alfred; van Hoogevest, Peter; Kuntsche, Judith

    2006-01-01

    This review presents the current knowledge on the interaction of lipophilic, poorly water soluble drugs with liposomal and biological membranes. The center of attention will be on drugs having the potential to dissolve in a lipid membrane without perturbing them too much. The degree of interaction...... is described as solubility of a drug in phospholipid membranes and the kinetics of transfer of a lipophilic drug between membranes. Finally, the consequences of these two factors on the design of lipid-based carriers for oral, as well as parenteral use, for lipophilic drugs and lead selection of oral...... lipophilic drugs is described. Since liposomes serve as model-membranes for natural membranes, the assessment of lipid solubility and transfer kinetics of lipophilic drug using liposome formulations may additionally have predictive value for bioavailability and biodistribution and the pharmacokinetics...

  6. Radiolabeling of liposomes and polymeric micelles with PET-isotopes

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann

    as a revolution in modern therapeutics, especially in chemotherapy. A major reason is the ability of nanoparticles to accumulate in tumor tissue. Liposomes are the classic nanoparticle, consisting of a lipid membrane with an aqueous core. Polymeric micelles are made from amphiphilic detergent‐like copolymers......This thesis is divided into three separate chapters that can be read independently. Chapter 1 is a general introduction, touching upon liposomes and polymeric micelles and radiolabeling with 18F and 64Cu. Chapter 2 and 3 address two separate research projects, each described below. A complete......‐life only allowing up to 8 hours scans. 18F must be covalently attached to components of the liposome. By binding to a lipid, it can be stably lodged in the membrane. A glycerolipid and a cholesteryl ether were synthesized with free primary alcohols and a series of their sulphonates (Ms, Ts, Tf) were...

  7. Ultraviolet- and sunlight-induced lipid peroxidation in liposomal membrane

    International Nuclear Information System (INIS)

    Mandal, T.K.; Chatterjee, S.N.

    1980-01-01

    Ultraviolet radiation and sunlight caused lipid peroxidation in the liposomal membrane (as detected by measurement of the oxidation index, A 233 /A 215 , and the amount of malondialdehyde formed) and made the membrane leaky (as revealed by the release of the trapped chromate anions). The oxidation index and the formation of malondialdehyde increased linearly with increasing dose of radiation and depended significantly on the dose rate. The effects were smaller in liposomes derived from Vibrio cholerae phospholipid than in those derived from egg lecithin. The effects of the radiation dose and dose rate on hemolysis and peroxidation (MDA formation) of the erythrocyte membrane followed a similar pattern. A direct correlation between the percentage leakage of chromate (Y) and the oxidation index (X) of the liposomal system was obtained as Y = 236.5 x X

  8. Assembly of Liposomes Controlled by Triple Helix Formation

    DEFF Research Database (Denmark)

    Vogel, Stefan; Jakobsen, Ulla

    2013-01-01

    Attachment of DNA to the surface of different solid nanoparticles (e.g. gold- and silica nanoparticles) is well established and a number of DNA-modified solid nanoparticle systems have been applied to thermal denaturation analysis of oligonucleotides. We report herein the non-covalent immobilizat...... analysis (NTA) and dynamic light scattering (DLS) show independently from ultraviolet spectroscopy experiments the formation of liposome aggregates.......-covalent immobilization of oligonucleotides on the surface of soft nanoparticles (e.g. liposomes) and the subsequent controlled assembly by DNA triple helix formation. The non-covalent approach avoids tedious surface chemistry and necessary purification procedures and can simplify and extend the available methodology...... sequences (G or C-rich) to explore the applicability of the method for different triple helical assembly modes. We demonstrate advantages and limitations of the approach and proof the reversible and reproducible formation of liposome aggregates during thermal denaturation cycles. Nanoparticle tracking...

  9. Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting

    Directory of Open Access Journals (Sweden)

    Federico Perche

    2013-01-01

    Full Text Available Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor’s vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies.

  10. Vesicle fusion with bilayer lipid membrane controlled by electrostatic interaction

    Directory of Open Access Journals (Sweden)

    Azusa Oshima

    2017-09-01

    Full Text Available The fusion of proteoliposomes is a promising approach for incorporating membrane proteins in artificial lipid membranes. In this study, we employed an electrostatic interaction between vesicles and supported bilayer lipid membranes (s-BLMs to control the fusion process. We combined large unilamellar vesicles (LUVs containing anionic lipids, which we used instead of proteoliposomes, and s-BLMs containing cationic lipids to control electrostatic interaction. Anionic LUVs were never adsorbed or ruptured on the SiO2 substrate with a slight negative charge, and selectively fused with cationic s-BLMs. The LUVs can be fused effectively to the target position. Furthermore, as the vesicle fusion proceeds and some of the positive charges are neutralized, the attractive interaction weakens and finally the vesicle fusion saturates. In other words, we can control the number of LUVs fused with s-BLMs by controlling the concentration of the cationic lipids in the s-BLMs. The fluidity of the s-BLMs after vesicle fusion was confirmed to be sufficiently high. This indicates that the LUVs attached to the s-BLMs were almost completely fused, and there were few intermediate state vesicles in the fusion process. We could control the position and amount of vesicle fusion with the s-BLMs by employing an electrostatic interaction.

  11. Exchangeable pulmonary water space evaluation using giant liposomes

    International Nuclear Information System (INIS)

    Santos, A.C.; Ribeiro, M.J.; Ferreira, N.; De Lima, J.J.P.

    1998-01-01

    The present work aims to study the potential use of liposomes for the evaluation of pulmonary exchangeable water space, important parameter in some pulmonary oedema situations. This study is based upon the delivery of a diffusible water radiotracer into pulmonary capillary network, which equilibrates with interstitial water space of the lung and returns to the blood circulation. The time constant of this phenomena depends on the magnitude of the water space under study. The release of the diffusible radiotracer in lung capillaries is performed using liposomes with specific formulation. The giant liposomes (15-30μm diameter) used in this study are instable at 37 deg. C. They are biocompatible, biodegradable, with low toxicity and showed no immunogenicity. A water tracer labelled with 99m Tc, encapsulated in the aqueous phase of giant liposomes, has been used. Liposomes were prepared in sterile conditions and with apyrogenic materials. The lipid films composition is L-α-diestearoylphosphatidylcholine (DSPC), L-α-phosphatidyl-DL-glycerol (EPG) and cholesterol (CHOL) (60%/10%/30% mass ratio). After iv injection at +-20 deg. C in the femoral vein of Wistar rats (300g-600g) or albine rabbits (4.5-5Kg), the thermolabile liposomes will be entrapped in lung capillaries and release the radiotracer locally. When the radiodrug is diffusible we will evaluate the volume of the exchangeable pulmonary water analyzing the activity/time curves. These curves are slower for greater water spaces. When the radiotracer is non-diffusible, the disappearance curves are not influenced by the extravascular water space. (author)

  12. Thermosensitive liposomal drug delivery systems: state of the art review

    Directory of Open Access Journals (Sweden)

    Kneidl B

    2014-09-01

    Full Text Available Barbara Kneidl,1,2 Michael Peller,3 Gerhard Winter,2 Lars H Lindner,1 Martin Hossann11Department of Internal Medicine III, University Hospital Munich, 2Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, 3Institute for Clinical Radiology, University Hospital Munich, Ludwig-Maximilians University, Munich, GermanyAbstract: Thermosensitive liposomes are a promising tool for external targeting of drugs to solid tumors when used in combination with local hyperthermia or high intensity focused ultrasound. In vivo results have demonstrated strong evidence that external targeting is superior over passive targeting achieved by highly stable long-circulating drug formulations like PEGylated liposomal doxorubicin. Up to March 2014, the Web of Science listed 371 original papers in this field, with 45 in 2013 alone. Several formulations have been developed since 1978, with lysolipid-containing, low temperature-sensitive liposomes currently under clinical investigation. This review summarizes the historical development and effects of particular phospholipids and surfactants on the biophysical properties and in vivo efficacy of thermosensitive liposome formulations. Further, treatment strategies for solid tumors are discussed. Here we focus on temperature-triggered intravascular and interstitial drug release. Drug delivery guided by magnetic resonance imaging further adds the possibility of performing online monitoring of a heating focus to calculate locally released drug concentrations and to externally control drug release by steering the heating volume and power. The combination of external targeting with thermosensitive liposomes and magnetic resonance-guided drug delivery will be the unique characteristic of this nanotechnology approach in medicine.Keywords: thermosensitive liposomes, phosphatidyloligoglycerol, hyperthermia, high intensity focused ultrasound, drug delivery, drug targeting

  13. PEG minocycline-liposomes ameliorate CNS autoimmune disease.

    Directory of Open Access Journals (Sweden)

    Wei Hu

    Full Text Available Minocycline is an oral tetracycline derivative with good bioavailability in the central nervous system (CNS. Minocycline, a potent inhibitor of matrix metalloproteinase (MMP-9, attenuates disease activity in experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. Potential adverse effects associated with long-term daily minocycline therapy in human patients are concerning. Here, we investigated whether less frequent treatment with long-circulating polyethylene glycol (PEG minocycline liposomes are effective in treating EAE.Performing in vitro time kinetic studies of PEG minocycline-liposomes in human peripheral blood mononuclear cells (PBMCs, we determined that PEG minocycline-liposome preparations stabilized with CaCl(2 are effective in diminishing MMP-9 activity. Intravenous injections of PEG minocycline-liposomes every five days were as effective in ameliorating clinical EAE as daily intraperitoneal injections of minocycline. Treatment of animals with PEG minocycline-liposomes significantly reduced the number of CNS-infiltrating leukocytes, and the overall expression of MMP-9 in the CNS. There was also a significant suppression of MMP-9 expression and proteolytic activity in splenocytes of treated animals, but not in CNS-infiltrating leukocytes. Thus, leukocytes gaining access to the brain and spinal cord require the same absolute amount of MMP-9 in all treatment groups, but minocycline decreases the absolute cell number.Our data indicate that less frequent injections of PEG minocycline-liposomes are an effective alternative pharmacotherapy to daily minocycline injections for the treatment of CNS autoimmune diseases. Also, inhibition of MMP-9 remains a promising treatment target in EAE and patients with MS.

  14. Multifunctional quantum dots and liposome complexes in drug delivery

    Science.gov (United States)

    Wang, Qi; Chao, Yimin

    2018-01-01

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches. PMID:28866655

  15. Multifunctional quantum dots and liposome complexes in drug delivery.

    Science.gov (United States)

    Wang, Qi; Chao, Yi-Min

    2017-09-03

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.

  16. Formation of Giant Protein Vesicles by a Lipid Cosolvent Method

    DEFF Research Database (Denmark)

    Hansen, Jesper S.; Vararattanavech, Ardcharaporn; Vissing, Thomas

    2011-01-01

    This paper describes a method to create giant protein vesicles (GPVs) of ≥10 μm by solvent‐driven fusion of large vesicles (0.1–0.2 μm) with reconstituted membrane proteins. We found that formation of GPVs proceeded from rotational mixing of protein‐reconstituted large unilamellar vesicles (LUVs)...... of spinach SoPIP2;1 and E. coli AqpZ aquaporins. Our findings show that hydrophobic interactions within the bilayer of formed GPVs are influenced not only by the solvent partitioning propensity, but also by lipid composition and membrane protein isoform....

  17. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W

    2011-01-01

    Previous work has showed that ergosterol and sphingolipids become sorted to secretory vesicles immunoisolated using a chimeric, artificial raft membrane protein as bait. In this study, we have extended this analysis to three populations of secretory vesicles isolated using natural yeast plasma...... a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...

  18. Acute Pancreatitis by liposomal amphotericin B.

    Directory of Open Access Journals (Sweden)

    Rafael Hernández

    2016-11-01

    Full Text Available BACKGROUND: The most frequently observed adverse reactions of a liposomal formulation of amphotericin B (LAB on the first dose of fever and rigors are, hypokalemia and renal toxicity. Acute pancreatitis is not listed in the Summary of Product Characteristics of LAB, although some non-severe cases of pancreatitis toxicity after LAB are described in the literature. CASE SUMMARY: We present the case of an 88-year-old male with not known allergies and diagnosed with arterial hypertension and Grade III chronic kidney disease. One month before was admitted because of pneumonia, acute kidney injury, atrial fibrillation and pancytopenia; he was discharged on January 13, 2016, and two weeks later, he returned to the Urgency Department with severe deterioration of the general condition, fever, and a skin rash , these symptoms were attributed to a delayed allergic reaction to levofloxacin. During his first admission, he was treated with acetylsalicylic acid 100 mg, digoxin, metamizole, pantoprazole, valsartan/amlodipine. The Lab results showed pancytopenia. It was performed a bone marrow aspiration, suggesting a case of leishmaniasis. It was initiated intravenous treatment with LAB at 3 mg / kg / day. The first day of treatment, the patient showed a severe bronchospasm, exacerbation of the previous rash possibly caused by quinolones treatment, was treated with corticosteroids, antihistamines, aerosol therapy and oxygen therapy until full recovery. During the following days, LAB was administrated at a slow infusion rate and premedication with appropriate tolerance. On the fifth day of the treatment, the patient started with a diffuse abdominal pain, anorexia, and vomiting. The amylase lab result was 431 IU/L. An abdominal scanner showed edematous pancreatitis. After 48 hours the amylase and lipase lab values were normal. And the abdominal Scanner was repeated with no changes. The evolution of patient was aggravating until reaching multiple organs failure a

  19. Bleomycin-Loaded pH-Sensitive Polymer–Lipid-Incorporated Liposomes for Cancer Chemotherapy

    Directory of Open Access Journals (Sweden)

    Eiji Yuba

    2018-01-01

    Full Text Available Cancer chemotherapeutic systems with high antitumor effects and less adverse effects are eagerly desired. Here, a pH-sensitive delivery system for bleomycin (BLM was developed using egg yolk phosphatidylcholine liposomes modified with poly(ethylene glycol-lipid (PEG-PE for long circulation in the bloodstream and 2-carboxycyclohexane-1-carboxylated polyglycidol-having distearoyl phosphatidylethanolamine (CHexPG-PE for pH sensitization. The PEG-PE/CHexPG-PE-introduced liposomes showed content release responding to pH decrease and were taken up by tumor cells at a rate 2.5 times higher than that of liposomes without CHexPG-PE. BLM-loaded PEG-PE/CHexPG-PE-introduced liposomes exhibited comparable cytotoxicity with that of the free drug. Intravenous administration of these liposomes suppressed tumor growth more effectively in tumor-bearing mice than did the free drug and liposomes without CHexPG-PE. However, at a high dosage of BLM, these liposomes showed severe toxicity to the spleen, liver, and lungs, indicating the trapping of liposomes by mononuclear phagocyte systems, probably because of recognition of the carboxylates on the liposomes. An increase in PEG molecular weight on the liposome surface significantly decreased toxicity to the liver and spleen, although toxicity to the lungs remained. Further improvements such as the optimization of PEG density and lipid composition and the introduction of targeting ligands to the liposomes are required to increase therapeutic effects and to reduce adverse effects.

  20. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers

    Directory of Open Access Journals (Sweden)

    Redzic JS

    2014-02-01

    Full Text Available Jasmina S Redzic,1 Timothy H Ung,2 Michael W Graner2 1Skaggs School of Pharmacy and Pharmaceutical Sciences, 2Department of Neurosurgery, School of Medicine, University of Colorado Denver, Aurora, CO, USA Abstract: Glioblastoma multiforme (GBM is the most frequent and most devastating of the primary central nervous system tumors, with few patients living beyond 2 years postdiagnosis. The damage caused by the disease and our treatments for the patients often leave them physically and cognitively debilitated. Generally, GBMs appear after very short clinical histories and are discovered by imaging (using magnetic resonance imaging [MRI], and the diagnosis is validated by pathology, following surgical resection. The treatment response and diagnosis of tumor recurrence are also tracked by MRI, but there are numerous problems encountered with these monitoring modalities, such as ambiguous interpretation and forms of pseudoprogression. Diagnostic, prognostic, and predictive biomarkers would be an immense boon in following treatment schemes and in determining recurrence, which often requires an invasive intracranial biopsy to verify imaging data. Extracellular vesicles (EVs are stable, membrane-enclosed, virus-sized particles released from either the cell surface or from endosomal pathways that lead to the systemic release of EVs into accessible biofluids, such as serum/plasma, urine, cerebrospinal fluid, and saliva. EVs carry a wide variety of proteins, nucleic acids, lipids, and other metabolites, with many common features but with enough individuality to be able to identify the cell of origin of the vesicles. These components, if properly interrogated, could allow for the identification of tumor-derived EVs in biofluids, indicating tumor progression, relapse, or treatment failure. That knowledge would allow clinicians to continue with treatment regimens that were actually effective or to change course if the therapies were failing. Here, we review

  1. Improved Methods of Producing and Administering Extracellular Vesicles | Poster

    Science.gov (United States)

    An efficient method of producing purified extracellular vesicles (EVs), in conjunction with a method that blocks liver macrophages from clearing EVs from the body, has produced promising results for the use of EVs in cancer therapy.

  2. EVpedia : a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E; Buée, Luc; Buzás, Edit I; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S; Desiderio, Dominic M; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M; Gardiner, Chris; Giebel, Bernd; Greening, David W; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F; Hill, Michelle M; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I; Rodrigues, Marcio L; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond|info:eu-repo/dai/nl/212909509; Sharma, Shivani; Siljander, Pia; Simpson, Richard J; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song; Nolte - t Hoen, Esther|info:eu-repo/dai/nl/261632175

    2014-01-01

    MOTIVATION: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS: We

  3. EVpedia: a community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae-Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong-Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si-Hyun; Park, Kyong-Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; van Balkom, Bas W. M.; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E.; Buée, Luc; Buzás, Edit I.; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S.; Desiderio, Dominic M.; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M.; Gardiner, Chris; Giebel, Bernd; Greening, David W.; Gross, Julia Christina; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F.; Hill, Michelle M.; Nolte-'t Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V.; Jayachandran, Muthuvel; Jee, Young-Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon-Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; van Leeuwen, Johannes; Lener, Thomas; Liu, Ming-Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, François; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N.; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I.; Rodrigues, Marcio L.; Roh, Tae-Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J.; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stępień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J.; Wai, Sun Nyunt; Witwer, Kenneth; Yáñez-Mó, María; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song

    2015-01-01

    Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. We present an improved

  4. Biological properties of extracellular vesicles and their physiological functions

    NARCIS (Netherlands)

    Yáñez-Mó, María; Siljander, Pia R-M; Andreu, Zoraida; Zavec, Apolonija Bedina; Borràs, Francesc E; Buzas, Edit I; Buzas, Krisztina; Casal, Enriqueta; Cappello, Francesco; Carvalho, Joana; Colás, Eva; Cordeiro-da Silva, Anabela; Fais, Stefano; Falcon-Perez, Juan M; Ghobrial, Irene M; Giebel, Bernd; Gimona, Mario; Graner, Michael; Gursel, Ihsan; Gursel, Mayda; Heegaard, Niels H H; Hendrix, An; Kierulf, Peter; Kokubun, Katsutoshi; Kosanovic, Maja; Kralj-Iglic, Veronika; Krämer-Albers, Eva-Maria; Laitinen, Saara; Lässer, Cecilia; Lener, Thomas; Ligeti, Erzsébet; Linē, Aija; Lipps, Georg; Llorente, Alicia; Lötvall, Jan; Manček-Keber, Mateja; Marcilla, Antonio; Mittelbrunn, Maria; Nazarenko, Irina; Nolte-'t Hoen, Esther N M; Nyman, Tuula A; O'Driscoll, Lorraine; Olivan, Mireia; Oliveira, Carla; Pállinger, Éva; Del Portillo, Hernando A; Reventós, Jaume; Rigau, Marina; Rohde, Eva; Sammar, Marei; Sánchez-Madrid, Francisco; Santarém, N; Schallmoser, Katharina; Ostenfeld, Marie Stampe; Stoorvogel, Willem|info:eu-repo/dai/nl/074352385; Stukelj, Roman; Van der Grein, Susanne G|info:eu-repo/dai/nl/412755211; Vasconcelos, M Helena; Wauben, Marca H M|info:eu-repo/dai/nl/112675735; De Wever, Olivier

    2015-01-01

    In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological

  5. Packing states of multilamellar vesicles in a nonionic surfactant system

    DEFF Research Database (Denmark)

    Le, T.D.; Olsson, U.; Mortensen, K.

    2001-01-01

    -alpha(*) phase using the noninvasive small-angle neutron scattering (SANS) technique, one while heating and the other while cooling the sample. Data from the heating and cooling cycles were used to demonstrate reversibility of the system. Three states of packing can be identified from the scattering profiles......Lyotropic lamellar phases under shear flow have been shown to form multilamellar vesicles (MLVs), an onion-like structure. The size of the vesicles is governed by the shear imposed on the sample. Previously, we studied the structural transformation from multilamellar vesicles to lamellae to sponge...... under shear. Here, we focused only in the MLV region, L-alpha(*), of a temperature sensitive surfactant system (C12E4-water) to investigate the packing of multilamellar vesicles as a function of temperature under constant shear. Two sets of temperature scan experiments were performed in the L...

  6. Biogenesis and function of Porphyromonas gingivalis outer membrane vesicles

    Science.gov (United States)

    Xie, H

    2015-01-01

    Porphyromonas gingivalis is one of the keystone pathogens associated with chronic periodontitis. All P. gingivalis strains examined thus far produce outer membrane vesicles. Recent studies have found that vesicles possess some well-known virulence factors of P. gingivalis such as adhesins, toxins and proteolytic enzymes. Carrying most of the characteristic features of their parent P. gingivalis cells, vesicles communicate with host cells and other members of microbial biofilms, resulting in the transmission of virulence factors into these host cells and the formation of pathogenic bacteria-dominated microbial communities. An in-depth understanding of both the nature and role of vesicles in the pathogenicity of P. gingivalis is both important and timely, particularly when speaking of periodontitis and its related systemic effects. PMID:26343879

  7. Integral equation methods for vesicle electrohydrodynamics in three dimensions

    Science.gov (United States)

    Veerapaneni, Shravan

    2016-12-01

    In this paper, we develop a new boundary integral equation formulation that describes the coupled electro- and hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to external flow and electric fields. The dynamics of the vesicle are characterized by a competition between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations.

  8. Extracellular vesicles provide a means for tissue crosstalk during exercise

    DEFF Research Database (Denmark)

    Whitham, Martin; Parker, Benjamin L; Friedrichsen, Martin

    2018-01-01

    Exercise stimulates the release of molecules into the circulation, supporting the concept that inter-tissue signaling proteins are important mediators of adaptations to exercise. Recognizing that many circulating proteins are packaged in extracellular vesicles (EVs), we employed quantitative prot...

  9. EVpedia : A community web portal for extracellular vesicles research

    NARCIS (Netherlands)

    Kim, Dae Kyum; Lee, Jaewook; Kim, Sae Rom; Choi, Dong Sic; Yoon, Yae Jin; Kim, Ji Hyun; Go, Gyeongyun; Nhung, Dinh; Hong, Kahye; Jang, Su Chul; Kim, Si Hyun; Park, Kyong Su; Kim, Oh Youn; Park, Hyun Taek; Seo, Ji Hye; Aikawa, Elena; Baj-Krzyworzeka, Monika; Van Balkom, Bas W M; Belting, Mattias; Blanc, Lionel; Bond, Vincent; Bongiovanni, Antonella; Borràs, Francesc E.; Buée, Luc; Buzás, Edit I.; Cheng, Lesley; Clayton, Aled; Cocucci, Emanuele; Dela Cruz, Charles S.; Desiderio, Dominic M.; Di Vizio, Dolores; Ekström, Karin; Falcon-Perez, Juan M.; Gardiner, Chris; Giebel, Bernd; Greening, David W.; Christina Gross, Julia; Gupta, Dwijendra; Hendrix, An; Hill, Andrew F.; Hill, Michelle M.; Nolte-'T Hoen, Esther; Hwang, Do Won; Inal, Jameel; Jagannadham, Medicharla V.; Jayachandran, Muthuvel; Jee, Young Koo; Jørgensen, Malene; Kim, Kwang Pyo; Kim, Yoon Keun; Kislinger, Thomas; Lässer, Cecilia; Lee, Dong Soo; Lee, Hakmo; Van Leeuwen, Johannes; Lener, Thomas; Liu, Ming Lin; Lötvall, Jan; Marcilla, Antonio; Mathivanan, Suresh; Möller, Andreas; Morhayim, Jess; Mullier, Francois; Nazarenko, Irina; Nieuwland, Rienk; Nunes, Diana N.; Pang, Ken; Park, Jaesung; Patel, Tushar; Pocsfalvi, Gabriella; Del Portillo, Hernando; Putz, Ulrich; Ramirez, Marcel I.; Rodrigues, Marcio L.; Roh, Tae Young; Royo, Felix; Sahoo, Susmita; Schiffelers, Raymond; Sharma, Shivani; Siljander, Pia; Simpson, Richard J.; Soekmadji, Carolina; Stahl, Philip; Stensballe, Allan; Stepień, Ewa; Tahara, Hidetoshi; Trummer, Arne; Valadi, Hadi; Vella, Laura J.; Wai, Sun Nyunt; Witwer, Kenneth; Yánez-Mó, Maria; Youn, Hyewon; Zeidler, Reinhard; Gho, Yong Song

    2015-01-01

    Motivation: Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. Results: We

  10. Understanding crumpling lipid vesicles at the gel phase transition

    Science.gov (United States)

    Hirst, Linda; Ossowski, Adam; Fraser, Matthew

    2011-03-01

    Wrinkling and crumpling transitions in different membrane types have been studied extensively in recent years both theoretically and computationally. There has also been very interesting recent work on defects in liquid crystalline shells. Lipid bilayer vesicles, widely used in biophysical research can be considered as a single layer smectic shell in the liquid crystalline phase. On cooling the lipid vesicle a transition to the gel phase may take place in which the lipid chains tilt and assume a more ordered packing arrangement. We observe large scale morphological changes in vesicles close to this transition point using fluorescence microscopy and investigate the possible mechanisms for this transition. Confocal microscopy is used to map 3D vesicle shape and crumpling length-scales. We also employ the molecular tilt sensitive dye, Laurdan to investigate the role of tilt domain formation on macroscopic structure. Funded by NSF CAREER award (DMR - BMAT #0852791).

  11. ABC triblock copolymer vesicles with mesh-like morphology.

    Science.gov (United States)

    Zhao, Wei; Chen, Dian; Hu, Yunxia; Grason, Gregory M; Russell, Thomas P

    2011-01-25

    Polymer vesicles made from poly(isoprene-b-styrene-b-2-vinyl pyridine) (PI-b-PS-b-P2VP) triblock copolymer confined within the nanopores of an anodic aluminum oxide (AAO) membrane are studied. It was found that these vesicles have well-defined, nanoscopic size, and complex microphase-separated hydrophobic membranes, comprised of the PS and PI blocks, while the coronas are formed by the P2VP block. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the membrane at a well-defined composition of the three blocks that can be tuned by changing the copolymer composition. The nanoscale confinement, copolymer composition, and subtle molecular interactions contribute to the generation of these vesicles with such unusual morphologies.

  12. Plasma membrane aquaporins mediates vesicle stability in broccoli.

    Directory of Open Access Journals (Sweden)

    Maria Del Carmen Martínez-Ballesta

    Full Text Available The use of in vitro membrane vesicles is attractive because of possible applications in therapies. Here we aimed to compare the stability and functionality of plasma membrane vesicles extracted from control and salt-treated broccoli. The impact of the amount of aquaporins was related to plasma membrane osmotic water permeability and the stability of protein secondary structure. Here, we describe for first time an increase in plant aquaporins acetylation under high salinity. Higher osmotic water permeability in NaCl vesicles has been related to higher acetylation, upregulation of aquaporins, and a more stable environment to thermal denaturation. Based on our findings, we propose that aquaporins play an important role in vesicle stability.

  13. Assembly of cells and vesicles for organ engineering

    International Nuclear Information System (INIS)

    Taguchi, Tetsushi

    2011-01-01

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration. (topical review)

  14. Towards traceable size determination of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Zoltán Varga

    2014-02-01

    Full Text Available Background: Extracellular vesicles (EVs have clinical importance due to their roles in a wide range of biological processes. The detection and characterization of EVs are challenging because of their small size, low refractive index, and heterogeneity. Methods: In this manuscript, the size distribution of an erythrocyte-derived EV sample is determined using state-of-the-art techniques such as nanoparticle tracking analysis, resistive pulse sensing, and electron microscopy, and novel techniques in the field, such as small-angle X-ray scattering (SAXS and size exclusion chromatography coupled with dynamic light scattering detection. Results: The mode values of the size distributions of the studied erythrocyte EVs reported by the different methods show only small deviations around 130 nm, but there are differences in the widths of the size distributions. Conclusion: SAXS is a promising technique with respect to traceability, as this technique was already applied for traceable size determination of solid nanoparticles in suspension. To reach the traceable measurement of EVs, monodisperse and highly concentrated samples are required.

  15. Extracellular vesicles in Alzheimer's disease: friends or foes? Focus on aβ-vesicle interaction.

    Science.gov (United States)

    Joshi, Pooja; Benussi, Luisa; Furlan, Roberto; Ghidoni, Roberta; Verderio, Claudia

    2015-03-03

    The intercellular transfer of amyloid-β (Aβ) and tau proteins has received increasing attention in Alzheimer's disease (AD). Among other transfer modes, Aβ and tau dissemination has been suggested to occur through release of Extracellular Vesicles (EVs), which may facilitate delivery of pathogenic proteins over large distances. Recent evidence indicates that EVs carry on their surface, specific molecules which bind to extracellular Aβ, opening the possibility that EVs may also influence Aβ assembly and synaptotoxicity. In this review we focus on studies which investigated the impact of EVs in Aβ-mediated neurodegeneration and showed either detrimental or protective role for EVs in the pathology.

  16. CAPS Activity in Priming Vesicle Exocytosis Requires CK2 Phosphorylation*

    OpenAIRE

    Nojiri, Mari; Loyet, Kelly M.; Klenchin, Vadim A.; Kabachinski, Gregory; Martin, Thomas F. J.

    2009-01-01

    CAPS (Ca2+-dependent activator protein for secretion) functions in priming Ca2+-dependent vesicle exocytosis, but the regulation of CAPS activity has not been characterized. Here we show that phosphorylation by protein kinase CK2 is required for CAPS activity. Dephosphorylation eliminated CAPS activity in reconstituting Ca2+-dependent vesicle exocytosis in permeable and intact PC12 cells. Ser-5, -6, and -7 and Ser-1281 were identified by mass spectrometry as the major phosphorylation sites in...

  17. Cystadenoma of the seminal vesicle. A case report

    DEFF Research Database (Denmark)

    Lundhus, E; Bundgaard, N; Sørensen, Flemming Brandt

    1984-01-01

    Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment.......Cystadenomas of the seminal vesicle are extremely rare benign tumours, which only have been reported seven times earlier in the literature. The first Danish case is reported with discussion of symptomatology, pathology and treatment....

  18. Interaction and rheology of vesicle suspensions in confined shear flow

    Science.gov (United States)

    Shen, Zaiyi; Farutin, Alexander; Thiébaud, Marine; Misbah, Chaouqi

    2017-10-01

    Dynamics and rheology of a confined suspension of vesicles (a model for red blood cells) are studied numerically in two dimensions by using an immersed boundary lattice Boltzmann method. We pay particular attention to the link between the spatiotemporal organization and the rheology of the suspension. Besides confinement, we analyze the effect of concentration of the suspension, ϕ (defined as the area fraction occupied by the vesicles in the simulation domain), as well as the viscosity contrast λ (defined as the ratio between the viscosity of the fluid inside the vesicles, ηint, and that of the suspending fluid, ηext). The hydrodynamic interaction between two vesicles is shown to play a key role in determining the spatial organization. For λ =1 , the pair of vesicles settles into an equilibrium state with constant interdistance, which is regulated by the confinement. The equilibrium interdistance increases with the gap between walls, following a linear relationship. However, no stable equilibrium interdistance between two tumbling vesicles is observed for λ =10 . A quite ordered suspension is observed concomitant with the existence of an equilibrium interdistance between a vesicle pair. However, a disordered suspension prevails when no pair equilibrium interdistance exists, as occurs for tumbling vesicles. We then analyze the rheology, focusing on the effective viscosity, denoted as η , as well as on normalized viscosity, defined as [η ] =(η -ηext) /(ηextϕ ) . Ordering of the suspension is accompanied by a nonmonotonic behavior of [η ] with ϕ , while η exhibits plateaus. The nonmonotonic behavior of [η ] is suppressed when a disordered pattern prevails.

  19. Ultradeformable Liposomes: a Novel Vesicular Carrier For Enhanced Transdermal Delivery of Procyanidins: Effect of Surfactants on the Formation, Stability, and Transdermal Delivery.

    Science.gov (United States)

    Chen, Rencai; Li, Rongli; Liu, Qian; Bai, Chao; Qin, Benlin; Ma, Yue; Han, Jing

    2017-07-01

    The aims of this work were to develop a novel vesicular carrier, procyanidins, ultradeformable liposomes (PUDLs), to expand the applications for procyanidins, and increase their stability and transdermal delivery. In this study, we prepared procyanidins ultradeformable liposomes using thin film hydration method and evaluated their encapsulation efficiency, vesicle deformability, storage stability, and skin permeation in vitro. The influence of different surfactants on the properties of PUDLs was also investigated. The results obtained showed that the PUDLs containing Tween 80 had a high entrapment efficiency (80.27 ± 0.99%), a small particle size (140.6 ± 19 nm), high elasticity, and prolonged drug release. Compared with procyanidins solution, the stability of procyanidins in PUDLs improved significantly when stored at 4, 25, and 30°C. The penetration rate of PUDLs was 6.25-fold greater than that of procyanidins solution. Finally, the results of our study suggested that PUDLs could increase the transdermal flux, prolong the release and improve the stability of procyanidins, and could serve as an effective dermal delivery system for procyanidins.

  20. Interaction of a novel antimicrobial peptide isolated from the venom of solitary bee Colletes daviesanus with phospholipid vesicles and Escherichia coli cells.

    Science.gov (United States)

    Čujová, Sabína; Bednárová, Lucie; Slaninová, Jiřina; Straka, Jakub; Čeřovský, Václav

    2014-11-01

    The peptide named codesane (COD), consisting of 18 amino acid residues and isolated from the venom of wild bee Colletes daviesanus (Hymenoptera : Colletidae), falls into the category of cationic α-helical amphipathic antimicrobial peptides. In our investigations, synthetic COD exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria and Candida albicans but also noticeable hemolytic activity. COD and its analogs (collectively referred to as CODs) were studied for the mechanism of their action. The interaction of CODs with liposomes led to significant leakage of calcein entrapped in bacterial membrane-mimicking large unilamellar vesicles made preferentially from anionic phospholipids while no calcein leakage was observed from zwitterionic liposomes mimicking membranes of erythrocytes. The preference of CODs for anionic phospholipids was also established by the blue shift in the tryptophan emission spectra maxima when the interactions of tryptophan-containing COD analogs with liposomes were examined. Those results were in agreement with the antimicrobial and hemolytic activities of CODs. Moreover, we found that the studied peptides permeated both the outer and inner cytoplasmic membranes of Escherichia coli. This was determined by measuring changes in the fluorescence of probe N-phenyl-1-naphthylamine and detecting cytoplasmic β-galactosidase released during the interaction of peptides with E. coli cells. Transmission electron microscopy revealed that treatment of E. coli with one of the COD analogs caused leakage of bacterial content mainly from the septal areas of the cells. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  1. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles.

    Science.gov (United States)

    Moniruzzaman, Md; Alam, Jahangir Md; Dohra, Hideo; Yamazaki, Masahito

    2015-09-29

    Enzymatic digestion of bovine lactoferrin generates lactoferricin B (Lfcin B), a 25-mer peptide with strong antimicrobial activity of unknown mechanism. To elucidate the mechanistic basis of Lfcin B bactericidal activity, we investigated the interaction of Lfcin B with Escherichia coli and liposomes of lipid membranes. Lfcin B induced the influx of a membrane-impermeant fluorescent probe, SYTOX green, from the outside of E. coli into its cytoplasm. Lfcin B induced gradual leakage of calcein from large unilamellar vesicles (LUVs) of dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) membranes. To clarify the cause of Lfcin B-induced leakage of calcein from the LUVs, we used the single giant unilamellar vesicle (GUV) method to investigate the interaction of Lfcin B with calcein-containing DOPG/DOPC-GUVs. We observed that a rapid leakage of calcein from a GUV started stochastically; statistical analysis provided a rate constant for Lfcin B-induced pore formation, kp. On the other hand, phase-contrast microscopic images revealed that Lfcin B induced a rapid leakage of sucrose from the single GUVs with concomitant appearance of a spherical GUV of smaller diameter. Because of the very fast leakage, and at the present time resolution of the experiments (33 ms), we could not follow the evolution of pore nor the process of the structural changes of the GUV. Here we used the term "local rupture" to express the rapid leakage of sucrose and determined the rate constant of local rupture, kL. On the basis of the comparison between kp and kL, we concluded that the leakage of calcein from single GUVs occurred as a result of a local rupture in the GUVs and that smaller pores inducing leakage of calcein were not formed before the local rupture. The results of the effect of the surface charge density of lipid membranes and that of salt concentration in buffer on kp clearly show that kp increases with an increase in the extent of electrostatic interactions due to

  2. Protein antigen adsorption to the DDA/TDB liposomal adjuvant

    DEFF Research Database (Denmark)

    Hamborg, Mette; Jorgensen, Lene; Bojsen, Anders Riber

    2013-01-01

    Understanding the nature of adjuvant-antigen interactions is important for the future design of efficient and safe subunit vaccines, but remains an analytical challenge. We studied the interactions between three model protein antigens and the clinically tested cationic liposomal adjuvant composed...... of dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB)....

  3. Distribution of local anesthetics between aqueous and liposome phases

    Czech Academy of Sciences Publication Activity Database

    Ruokonen, S. K.; Duša, Filip; Rantamäki, A. H.; Robciuc, A.; Holma, P.; Holopainen, J. M.; Abdel-Rehim, M.; Wiedmer, S. K.

    2017-01-01

    Roč. 1479, JAN (2017), s. 194-203 ISSN 0021-9673 Institutional support: RVO:68081715 Keywords : liposome electrokinetic chromatography * distribution constants * EOF markers Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.981, year: 2016

  4. Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B.

    Directory of Open Access Journals (Sweden)

    Gloria Morizot

    2016-01-01

    Full Text Available We report on 4 patients (1 immunocompetent, 3 immunosuppressed in whom visceral leishmaniasis had become unresponsive to (or had relapsed after treatment with appropriate doses of liposomal amphotericin B. Under close follow-up, full courses of pentavalent antimony were administered without life-threatening adverse events and resulted in rapid and sustained clinical and parasitological cure.

  5. Activity-Based Protein Profiling of Rhomboid Proteases in Liposomes

    Czech Academy of Sciences Publication Activity Database

    Wolf, E. V.; Seybold, M.; Hadravová, Romana; Stříšovský, Kvido; Verhelst, S. H. L.

    2015-01-01

    Roč. 16, č. 11 (2015), s. 1616-1621 ISSN 1439-4227 R&D Projects: GA MŠk(CZ) LK11206; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : activity-based protein profiling * chemical probes * inhibitors * intramembrane proteases * liposomes Subject RIV: CE - Biochemistry Impact factor: 2.850, year: 2015

  6. Gemcitabine-loaded liposomes: rationale, potentialities and future perspectives

    Directory of Open Access Journals (Sweden)

    Federico C

    2012-11-01

    Full Text Available Cinzia Federico, Valeria M Morittu, Domenico Britti, Elena Trapasso, Donato CoscoDepartment of Health Sciences, Building of BioSciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S Venuta”, Germaneto, ItalyAbstract: This review describes the strategies used in recent years to improve the biopharmaceutical properties of gemcitabine, a nucleoside analog deoxycytidine antimetabolite characterized by activity against many kinds of tumors, by means of liposomal devices. The main limitation of using this active compound is the rapid inactivation of deoxycytidine deaminase following administration in vivo. Consequently, different strategies based on its encapsulation/complexation in innovative vesicular colloidal carriers have been investigated, with interesting results in terms of increased pharmacological activity, plasma half-life, and tumor localization, in addition to decreased side effects. This review focuses on the specific approaches used, based on the encapsulation of gemcitabine in liposomes, with particular attention to the results obtained during the last 5 years. These approaches represent a valid starting point in the attempt to obtain a novel, commercializable drug formulation as already achieved for liposomal doxorubicin (Doxil®, Caelyx®.Keywords: gemcitabine, liposomes, multidrug, poly(ethylene glycol, tumors

  7. Rapid Quantification and Validation of Lipid Concentrations within Liposomes

    Directory of Open Access Journals (Sweden)

    Carla B. Roces

    2016-09-01

    Full Text Available Quantification of the lipid content in liposomal adjuvants for subunit vaccine formulation is of extreme importance, since this concentration impacts both efficacy and stability. In this paper, we outline a high performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD method that allows for the rapid and simultaneous quantification of lipid concentrations within liposomal systems prepared by three liposomal manufacturing techniques (lipid film hydration, high shear mixing, and microfluidics. The ELSD system was used to quantify four lipids: 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, cholesterol, dimethyldioctadecylammonium (DDA bromide, and ᴅ-(+-trehalose 6,6′-dibehenate (TDB. The developed method offers rapidity, high sensitivity, direct linearity, and a good consistency on the responses (R2 > 0.993 for the four lipids tested. The corresponding limit of detection (LOD and limit of quantification (LOQ were 0.11 and 0.36 mg/mL (DMPC, 0.02 and 0.80 mg/mL (cholesterol, 0.06 and 0.20 mg/mL (DDA, and 0.05 and 0.16 mg/mL (TDB, respectively. HPLC-ELSD was shown to be a rapid and effective method for the quantification of lipids within liposome formulations without the need for lipid extraction processes.

  8. Interactions of a Photochromic Spiropyran with Liposome Model Membranes

    KAUST Repository

    Jonsson, Fabian; Beke-Somfai, Tamá s; André asson, Joakim; Nordé n, Bengt

    2013-01-01

    by shear flow, further insight is obtained about interaction and binding geometry of the spiropyran at the lipid membranes. We show that the membrane interactions differ between the two types of liposomes used as well as the isomeric forms of the spiropyran

  9. Single cell targeting using plasmon resonant gold-coated liposomes

    Science.gov (United States)

    Leung, Sarah J.; Romanowski, Marek

    2012-03-01

    We have developed an experimental system with the potential for the delivery and localized release of an encapsulated agent with high spatial and temporal resolution. We previously introduced liposome-supported plasmon resonant gold nanoshells; in this composite structure, the liposome allows for the encapsulation of substances, such as therapeutic agents, neurotransmitters, or growth factors, and the plasmon resonant structure facilitates the rapid release of encapsulated contents upon laser light illumination. More recently, we demonstrated that these gold-coated liposomes are capable of releasing their contents in a spectrally-controlled manner, where plasmon resonant nanoparticles only release content upon illumination with a wavelength of light matching their plasmon resonance band. We now show that this release mechanism can be used in a biological setting to deliver a peptide derivative of cholecystokinin to HEK293 cells overexpressing the CCK2 receptor. Using directed laser light, we may enable localized release from gold-coated liposomes to enable accurate perturbation of cellular functions in response to released compounds; this system may have possible applications in signaling pathways and drug discovery.

  10. Mechanisms of reduction of antitumor drug toxicity by liposome encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Y. E.; Hanson, W. R.; Bharucha, J.; Ainsworth, E. J.; Jaroslow, B.

    1977-01-01

    The antitumor drug Actinomycin D is effective against the growth of some human solid tumors but its use is limited by its extreme toxicity. The development of a method of administering Act. D to reduce its systemic toxicity by incorporating the drug within liposomes reduced its toxicity but its tumoricidal activity was retained.

  11. pH-sensitive liposomes: characterization and application

    International Nuclear Information System (INIS)

    Connor, J.

    1986-01-01

    It has been demonstrated that liposomes composed of dioleoylphosphatidylethanolamine (DOPE) and palmitoylhomocysteine (PHC) have the ability to fuse with adjacent membranes upon exposure to mildly acid pH. The ability of liposomes to fuse is absolutely dependent on the presence of DOPE and a weakly acidic amphiphile. The acid induced fusion event is a leaky process, but the leakage can be reduced by 50%, with only a small loss of fusion ability, by the inclusion of 40 mole percent cholesterol. Using an established monoclonal antibody targeting system. pH-sensitive immunoliposomes were prepared which successfully delivered entrapped calcein to the cytoplasm of target cells. The addition of chloroquine, which raises the internal pH of cellular vacuoles, blocks the cytoplasmic delivery of the pH-sensitive immunoliposomes. pH-insensitive immunoliposomes delivered calcein only to the endosome/lysosome system and not the cytoplasm. 31 P-NMR and light scattering of DOPE:OA liposomes under acidic conditions demonstrate that the effect of the protons and the divalent cations is to force the DOPE to revert to the hexagonal II configuration. In vivo experiments with DOPE:OA immunoliposomes indicate that the liposomes rapidly aggregate and release their contents upon exposure to plasma. These results indicate that pH-sensitive immunoliposomes are an effective tool for in vitro cytoplasmic delivery but are ineffective for in vivo delivery at this point in development

  12. Some factors affecting the valinomycin-induced leak from liposomes

    NARCIS (Netherlands)

    Blok, M.C.; Gier, J. de; Deenen, L.L.M. van

    1974-01-01

    Experiments dealing with the valinomycin-induced K+ leak from egg lecithin liposomes have demonstrated the importance of the enclosed anion. Except when lipophilic anions are enclosed, the addition of both valinomycin and a uncoupler, e.g. carbonylcyanide p-trifluoromethoxyphenylhydrazone, is

  13. Biomolecular Interactions of Tannin Isolated from Oenothera gigas with Liposomes.

    Science.gov (United States)

    Sekowski, Szymon; Ionov, Maksim; Dubis, Alina; Mavlyanov, Saidmukhtar; Bryszewska, Maria; Zamaraeva, Maria

    2016-04-01

    We have examined the interaction between hydrolysable tannin 1-O-galloyl-4,6-hexahydroxydiphenoyl-β-D-glucose (OGβDG) with neutral liposomes as a model of cell membranes composed of three lipids: lecithin, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at different mass ratios. OGβDG in the concentration range 0.5-15 µg/ml (0.4-12 µM) strongly interacts with liposomal membranes by changing their structure, surface charge and fluidity. Used OGβDG molecules decrease and increase the rigidity of hydrophilic surface and hydrophobic parts of liposomes, respectively. At higher concentrations of tannin (>15 µM), liposomes are aggregated. Fourier Transform Infra-Red (FTIR) analysis showed that mainly -OH groups from OGβDG and also PO(2-) groups from phospholipids are responsible for the interaction. Obtained data indicate the importance of membrane lipid composition in interactions between tannins and cells.

  14. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy

    Directory of Open Access Journals (Sweden)

    L.A. Muehlmann

    2011-08-01

    Full Text Available Photodynamic therapy is a well-established and clinically approved treatment for several types of cancer. Antineoplastic photodynamic therapy is based on photosensitizers, i.e., drugs that absorb photons translating light energy into a chemical potential that damages tumor tissues. Despite the encouraging clinical results with the approved photosensitizers available today, the prolonged skin phototoxicity, poor selectivity for diseased tissues, hydrophobic nature, and extended retention in the host organism shown by these drugs have stimulated researchers to develop new formulations for photodynamic therapy. In this context, due to their amphiphilic characteristic (compatibility with both hydrophobic and hydrophilic substances, liposomes have proven to be suitable carriers for photosensitizers, improving the photophysical properties of the photosensitizers. Moreover, as nanostructured drug delivery systems, liposomes improve the efficiency and safety of antineoplastic photodynamic therapy, mainly by the classical phenomenon of extended permeation and retention. Therefore, the association of photosensitizers with liposomes has been extensively studied. In this review, both current knowledge and future perspectives on liposomal carriers for antineoplastic photodynamic therapy are critically discussed.

  15. Fluorescence quenching of fluorescein by Merocyanine 540 in liposomes

    International Nuclear Information System (INIS)

    Toprak, Mahmut; Meryem Aydin, Burcu; Arik, Mustafa; Onganer, Yavuz

    2011-01-01

    The fluorescence quenching of fluorescein (FL) by merociyanine 540 (MC540) was examined in L-egg lecithin phosphatidycholine (PC) liposomes using spectroscopic methods. The type of quenching mechanism (dynamic or static) was evaluated using the Stern-Volmer plots. Findings were also supported by the temperature studies and florescence decay measurements. The Stern-Volmer equation was utilized to calculate bimolecular quenching constants (K q ). Furthermore, the bimolecular quenching constant of the quencher in the liposomes (K SV ), partition coefficient (K p ), binding constant (K), and corresponding thermodynamic parameters ΔH, ΔS, and ΔG were calculated. The quenching property was also used in determining quantitatively (K p ) the partition coefficient of Merociyanini 540 in PC liposome.The obtained data indicated that static quenching occurred in the system and the K SV values decreased with increasing lipid concentration. In addition, thermodynamic analysis suggested that van der Waals interactions and hydrogen bonding were the main acting forces between fluorescein and merociyanine 540 molecules in the medium. - Highlights: → Fluorescence quenching of FL by MC540 in liposome system was analyzed. → Fluorescence quenching mechanism of FL by MC540 was consistent with the static model. → Binding FL to MC540 was spontaneous and carried out by hydrogen bond and van der Waals forces.

  16. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar

    2015-01-01

    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the las...

  17. Evaluation of iron transport from ferrous glycinate liposomes using ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Insufficient dietary intake and low iron bio- availability in foods ... pared with common iron supplements, iron liposomes can obviously ... to inhibit iron absorption in humans and in cell culture models11. ..... ical nutrition issues. The effects of .... of approximately 2-100 nm could play an active role in mediating ...

  18. Extracellular Membrane Vesicles and Phytopathogenicity of Acholeplasma laidlawii PG8

    Directory of Open Access Journals (Sweden)

    Vladislav M. Chernov

    2012-01-01

    Full Text Available For the first time, the phytopathogenicity of extracellular vesicles of Acholeplasma laidlawii PG8 (a ubiquitous mycoplasma that is one of the five common species of cell culture contaminants and is a causative agent for phytomycoplasmoses in Oryza sativa L. plants was studied. Data on the ability of extracellular vesicles of Acholeplasma laidlawii PG8 to penetrate from the nutrient medium into overground parts of Oryza sativa L. through the root system and to cause alterations in ultrastructural organization of the plants were presented. As a result of the analysis of ultrathin leaf sections of plants grown in medium with A. laidlawii PG8 vesicles, we detected significant changes in tissue ultrastructure characteristic to oxidative stress in plants as well as their cultivation along with bacterial cells. The presence of nucleotide sequences of some mycoplasma genes within extracellular vesicles of Acholeplasma laidlawii PG8 allowed a possibility to use PCR (with the following sequencing to perform differential detection of cells and bacterial vesicles in samples under study. The obtained data may suggest the ability of extracellular vesicles of the mycoplasma to display in plants the features of infection from the viewpoint of virulence criteria—invasivity, infectivity—and toxigenicity—and to favor to bacterial phytopathogenicity.

  19. Active elastohydrodynamics of vesicles in narrow blind constrictions

    Science.gov (United States)

    Fai, T. G.; Kusters, R.; Harting, J.; Rycroft, C. H.; Mahadevan, L.

    2017-11-01

    Fluid-resistance limited transport of vesicles through narrow constrictions is a recurring theme in many biological and engineering applications. Inspired by the motor-driven movement of soft membrane-bound vesicles into closed neuronal dendritic spines, here we study this problem using a combination of passive three-dimensional simulations and a simplified semianalytical theory for the active transport of vesicles forced through constrictions by molecular motors. We show that the motion of these objects is characterized by two dimensionless quantities related to the geometry and to the strength of forcing relative to the vesicle elasticity. We use numerical simulations to characterize the transit time for a vesicle forced by fluid pressure through a constriction in a channel and find that relative to an open channel, transport into a blind end leads to the formation of a smaller forward-flowing lubrication layer that strongly impedes motion. When the fluid pressure forcing is complemented by forces due to molecular motors that are responsible for vesicle trafficking into dendritic spines, we find that the competition between motor forcing and fluid drag results in multistable dynamics reminiscent of the real system. Our study highlights the role of nonlocal hydrodynamic effects in determining the kinetics of vesicular transport in constricted geometries.

  20. Calmodulin stimulation of calcium transport in carrot microsomal vesicles

    International Nuclear Information System (INIS)

    Pierce, W.S.; Sze, H.

    1987-01-01

    ATP-dependent 45 Ca 2+ uptake into microsomal vesicles isolated from cultured carrot cells (Daucus carota Danvers) was stimulated 2-3 fold by 5 ug/ml calmodulin (CaM). Microsomal vesicles separated with a linear sucrose gradient showed two peaks with CaM-stimulated Ca 2+ uptake activities. One peak (at 1.12 g/cc) comigrated with the activity of the antimycin A-insensitive NADH-dependent cytochrome c reductase. This transport activity was enhanced 10-20 fold by 10 mM oxalate and appeared to be associates with vesicles derived primarily from the ER. The other peak of CaM-stimulated Ca 2+ uptake (at 1.17 g/cc) was not affected by oxalate. These vesicles are probably derived from the plasma membrane. Preliminary experiments with the low-density vesicles (ER) vesicles, indicate that inositol-1,4,5-trisphosphate caused a transient reduction in intravesicular Ca 2+ . These results are consistent with the ER being an important site of intracellular Ca 2+ regulation

  1. Bubble-induced microstreaming: guiding and destroying lipid vesicles

    Science.gov (United States)

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2002-11-01

    Micron-sized bubbles respond with strong oscillations when submitted to ultrasound. This has led to their use as echographic contrast enhancers. The large energy and force densities generated by the collapsing bubbles also make them non-invasive mechanical tools: Recently, it has been reported that the interaction of cavitating bubbles with nearby cells can render the latter permeable to large molecules (sonoporation), suggesting prospects for drug delivery and gene transfection. We have developed a laboratory setup that allows for a controlled study of the interaction of single microbubbles with single lipid bilayer vesicles. Substituting vesicles for cell membranes is advantageous because the mechanical properties of vesicles are well-known. Microscopic observations reveal that vesicles near a bubble follow the vivid streaming motion set up by the bubble. The vesicles "bounce" off the bubble, being periodically accelerated towards and away from it, and undergo well-defined shape deformations along their trajectory in accordance with fluid-dynamical theory. Break-up of vesicles could also be observed.

  2. Coadministration of doxorubicin and etoposide loaded in camel milk phospholipids liposomes showed increased antitumor activity in a murine model

    Directory of Open Access Journals (Sweden)

    Maswadeh HM

    2015-04-01

    Full Text Available Hamzah M Maswadeh,1 Ahmed N Aljarbou,1 Mohammed S Alorainy,2 Arshad H Rahmani,3 Masood A Khan3 1Department of Pharmaceutics, College of Pharmacy, 2Department of Pharmacology and Therapeutics, College of Medicine, 3College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia Abstract: Small unilamellar vesicles from camel milk phospholipids (CML mixture or from 1,2 dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC were prepared, and anticancer drugs doxorubicin (Dox or etoposide (ETP were loaded. Liposomal formulations were used against fibrosarcoma in a murine model. Results showed a very high percentage of Dox encapsulation (~98% in liposomes (Lip prepared from CML-Lip or DPPC-Lip, whereas the percentage of encapsulations of ETP was on the lower side, 22% of CML-Lip and 18% for DPPC-Lip. Differential scanning calorimetry curves show that Dox enhances the lamellar formation in CML-Lip, whereas ETP enhances the nonlamellar formation. Differential scanning calorimetry curves also showed that the presence of Dox and ETP together into DPPC-Lip produced the interdigitation effect. The in vivo anticancer activity of liposomal formulations of Dox or ETP or a combination of both was assessed against benzopyrene (BAP-induced fibrosarcoma in a murine model. Tumor-bearing mice treated with a combination of Dox and ETP loaded into CML-Lip showed increased survival and reduced tumor growth compared to other groups, including the combination of Dox and ETP in DPPC-Lip. Fibrosarcoma-bearing mice treated with a combination of free (Dox + ETP showed much higher tumor growth compared to those groups treated with CML-Lip-(Dox + ETP or DPPC-Lip-(Dox + ETP. Immunohistochemical study was also performed to show the expression of tumor-suppressor PTEN, and it was found that the tumor tissues from the group of mice treated with a combination of free (Dox + ETP showed greater loss of cytoplasmic PTEN than tumor tissues obtained from the

  3. Comparative Analysis of Membrane Vesicles from Three Piscirickettsia salmonis Isolates Reveals Differences in Vesicle Characteristics.

    Directory of Open Access Journals (Sweden)

    Julia I Tandberg

    Full Text Available Membrane vesicles (MVs are spherical particles naturally released from the membrane of Gram-negative bacteria. Bacterial MV production is associated with a range of phenotypes including biofilm formation, horizontal gene transfer, toxin delivery, modulation of host immune responses and virulence. This study reports comparative profiling of MVs from bacterial strains isolated from three widely disperse geographical areas. Mass spectrometry identified 119, 159 and 142 proteins in MVs from three different strains of Piscirickettsia salmonis isolated from salmonids in Chile (LF-89, Norway (NVI 5692 and Canada (NVI 5892, respectively. MV comparison revealed several strain-specific differences related to higher virulence capability for LF-89 MVs, both in vivo and in vitro, and stronger similarities between the NVI 5692 and NVI 5892 MV proteome. The MVs were similar in size and appearance as analyzed by electron microscopy and dynamic light scattering. The MVs from all three strains were internalized by both commercial and primary immune cell cultures, which suggest a potential role of the MVs in the bacterium's utilization of leukocytes. When MVs were injected into an adult zebrafish infection model, an upregulation of several pro-inflammatory genes were observed in spleen and kidney, indicating a modulating effect on the immune system. The present study is the first comparative analysis of P. salmonis derived MVs, highlighting strain-specific vesicle characteristics. The results further illustrate that the MV proteome from one bacterial strain is not representative of all bacterial strains within one species.

  4. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Nunzio Iraci

    2016-02-01

    Full Text Available Extracellular vesicles (EVs are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.

  5. Superresolution and Fluorescence Dynamics Evidence Reveal That Intact Liposomes Do Not Cross the Human Skin Barrier.

    Directory of Open Access Journals (Sweden)

    Jes Dreier

    Full Text Available In this study we use the combination of super resolution optical microscopy and raster image correlation spectroscopy (RICS to study the mechanism of action of liposomes as transdermal drug delivery systems in human skin. Two different compositions of liposomes were applied to newly excised human skin, a POPC liposome and a more flexible liposome containing the surfactant sodium cholate. Stimulated emission depletion microscopy (STED images of intact skin and cryo-sections of skin treated with labeled liposomes were recorded displaying an optical resolution low enough to resolve the 100 nm liposomes in the skin. The images revealed that virtually none of the liposomes remained intact beneath the skin surface. RICS two color cross correlation diffusion measurements of double labeled liposomes confirmed these observations. Our results suggest that the liposomes do not act as carriers that transport their cargo directly through the skin barrier, but mainly burst and fuse with the outer lipid layers of the stratum corneum. It was also found that the flexible liposomes showed a greater delivery of the fluorophore into the stratum corneum, indicating that they functioned as chemical permeability enhancers.

  6. Liposomes equipped with cell penetrating peptide BR2 enhances chemotherapeutic effects of cantharidin against hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Xue; Lin, Congcong; Lu, Aiping; Lin, Ge; Chen, Huoji; Liu, Qiang; Yang, Zhijun; Zhang, Hongqi

    2017-11-01

    A main hurdle for the success of tumor-specific liposomes is their inability to penetrate tumors efficiently. In this study, we incorporated a cell-penetrating peptide BR2 onto the surface of a liposome loaded with the anticancer drug cantharidin (CTD) to create a system targeting hepatocellular carcinoma (HCC) cells more efficiently and effectively. The in vitro cytotoxicity assay comparing the loaded liposomes' effects on hepatocellular cancer HepG2 and the control Miha cells showed that CTD-loaded liposomes had a stronger anticancer effect after BR2 modification. The cellular uptake results of HepG2 and Miha cells further confirmed the superior ability of BR2-modified liposomes to penetrate cancer cells. The colocalization study revealed that BR2-modified liposomes could enter tumor cells and subsequently release drugs. A higher efficiency of delivery by BR2 liposomes as compared to unmodified liposomes was evident by evaluation of the HepG2 tumor spheroids penetration and inhibition. The biodistribution studies and anticancer efficacy results in vivo showed the significant accumulation of BR2-modified liposomes into tumor sites and an enhanced tumor inhibition. In conclusion, BR2-modified liposomes improve the anticancer potency of drugs for HCC.

  7. Physicochemical aspects of the liposome-wool interaction in wool dyeing.

    Science.gov (United States)

    Martí, Meritxell; Barsukov, Leonid I; Fonollosa, Jordi; Parra, José Luis; Sukhanov, Stanislav V; Coderch, Luisa

    2004-04-13

    Despite the promising application of liposomes in wool dyeing, little is known about the mechanism of liposome interactions with the wool fiber and dyestuffs. The kinetics of wool dyeing by two dyes, Acid Green 27 (hydrophobic) and Acid Green 25 (hydrophilic), were compared in three experimental protocols: (1) without liposomes, (2) in the presence of phosphatidylcholine (PC) liposomes, and (3) with wool previously treated with PC liposomes. Physicochemical interactions of liposomes with wool fibers were studied under experimental dyeing conditions with particular interest in the liposome affinity to the fiber surface and changes in the lipid composition of the wool fibers. The results obtained indicate that the presence of liposomes favors the retention of these two dyes in the dyeing bath, this effect being more pronounced in case of the hydrophobic dye. Furthermore, the liposome treatment is accompanied by substantial absorption of PC by wool fibers with simultaneous partial solubilization of their polar lipids (more evident at higher temperatures). This may result in structural modification of the cell membrane complex of wool fibers, which could account for a high level of the dye exhaustion observed at the end of the liposome dyeing process.

  8. A Liposomal Formulation Able to Incorporate a High Content of Paclitaxel and Exert Promising Anticancer Effect

    Directory of Open Access Journals (Sweden)

    Pei Kan

    2011-01-01

    Full Text Available A liposome formulation for paclitaxel was developed in this study. The liposomes, composed of naturally unsaturated and hydrogenated phosphatidylcholines, with significant phase transition temperature difference, were prepared and characterized. The liposomes exhibited a high content of paclitaxel, which was incorporated within the segregated microdomains coexisting on phospholipid bilayer of liposomes. As much as 15% paclitaxel to phospholipid molar ratio were attained without precipitates observed during preparation. In addition, the liposomes remained stable in liquid form at 4∘C for at least 6 months. The special composition of liposomal membrane which could reduce paclitaxel aggregation could account for such a capacity and stability. The cytotoxicity of prepared paclitaxel liposomes on the colon cancer C-26 cell culture was comparable to Taxol. Acute toxicity test revealed that LD50 for intravenous bolus injection in mice exceeded by 40 mg/kg. In antitumor efficacy study, the prepared liposomal paclitaxel demonstrated the increase in the efficacy against human cancer in animal model. Taken together, the novel formulated liposomes can incorporate high content of paclitaxel, remaining stable for long-term storage. These animal data also demonstrate that the liposomal paclitaxel is promising for further clinical use.

  9. Liposomes as potential carrier system for targeted delivery of polyene antibiotics.

    Science.gov (United States)

    Naik, Suresh R; Desai, Sandhya K; Shah, Priyank D; Wala, Santosh M

    2013-09-01

    The development of new therapeutic modalities involves the use of drug carrier, such as liposomes, which can modify pharmacokinetic and bio-distribution of drug profile. Polyene antibiotics incorporation into liposomes improves its availability at the site, bio-distribution and therapeutic index mainly through the engulfment of liposomes by circulating monocytes/macrophages and transportation to the site of infection. Polyene antibiotics (AmB, SJA-95, HA-1-92) and other antibiotics (streptomycin, tobramycin, quinolones, anti-tubercular and anti-cancer drugs), liposomal preparations are described with possible advantages from therapeutic efficacy and toxicity point of view. The polyene macrolide antibiotics liposomal preparations proved to be more effective in the treatment of systemic mycosis. The AmB-cyclodextrin derivatives inclusion complex is a major breakthrough in liposomal preparation which can be converted into aqueous phase of liposome. Liposomal drug incorporated preparation has been one of the important areas of research for developing the existing polyene antibiotics into useful chemotherapeutic agents in clinical medicine. In recent past other antibiotics have also been incorporated into liposomes using wide variety of materials, phosphatidylethanolamine derivatives (pegylated liposomes, enzyme sensitive conjugates, fluidosomes of anti-cancer drugs and poly lactic/glycolic acid microspheres for anti-tuberculosis drugs). In addition, attempts were also made to extend the receptor mediated drug targeting and to review some relevant patents.

  10. An evaluation of anti-tumor effect and toxicity of PEGylated ursolic acid liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qianqian; Zhao, Tingting; Liu, Yanping; Xing, Shanshan; Li, Lei; Gao, Dawei, E-mail: dwgao@ysu.edu.cn [Yanshan University, Applying Chemistry Key Lab of Hebei Province, Department of Bioengineer (China)

    2016-02-15

    Therapy of solid tumors mediated by nano-drug delivery has attracted considerable interest. In our previous study, ursolic acid (UA) was successfully encapsulated into PEGylated liposomes. The study aimed to evaluate the tumor inhibition effect and cytotoxicity of the PEGylated UA liposomes by U14 cervical carcinoma-bearing mice. The liposomes were spherical particles with mean particle diameters of 127.2 nm. The tumor inhibition rate of PEGylated UA liposomes was 53.60 % on U14 cervical carcinoma-bearing mice, which was greater than those of the UA solution (18.25 %) and traditional UA liposome groups (40.75 %). The tumor cells apoptosis rate of PEGylated UA liposomes was 25.81 %, which was significantly higher than that of the traditional UA liposomes (13.37 %). Moreover, the kidney and liver did not emerge the pathological changes in UA therapeutic mice by histopathological analysis, while there were significant differences on tumor tissues among three UA formulation groups. The PEGylated UA liposomes exhibited higher anti-tumor activity and lower cytotoxicity, and the main reason was that the coating PEG layer improved UA liposome properties, such as enhancing the stability of liposomes, promoting the effect of slow release, and prolonging the time of blood circulation. This may shed light on the development of PEGylated nano-vehicles.

  11. A targeting drug-delivery model via interactions among cells and liposomes under ultrasonic excitation

    International Nuclear Information System (INIS)

    Xi Xiaoyu; Zhang Dong; Yang Fang; Gu Ning; Chen Di; Wu Junru; Luo Yi

    2008-01-01

    In our previous work, it was found that acoustic cavitation might play a role in improving the cell permeability to microparticles when liposomes were used in an in vitro experiment. The purpose of this project is to expand our study and to learn other possible mechanisms by which cells may interact with liposomes under ultrasound (US) excitation and become transiently permeable to microparticles. It is further hypothesized that two possible scenarios may be involved in in vitro experiments: (1) drug-carrying liposomes transiently overcome the cell membrane barrier and enter into a cell while the cell is still viable; (2) the liposomes incorporate with a cell at its membrane through a fusing process. To prove this hypothesis, liposomes of two different structures were synthesized: one has fluorescent molecules encapsulated into liposomes and the other has fluorescent markers incorporated into the shells of liposomes. Liposomes of each kind were mixed with human breast cancer cells (MCF7-cell line) in a suspension at 5 (liposomes) : 1 (cell) ratio and were then exposed to a focused 1 MHz ultrasound beam at its focal region for 40 s. The US signal contained 20 cycles per tone-burst at a pulse-repetition-frequency of 10 kHz; the spatial peak acoustic pressure amplitude was 0.25 MPa. It was found that the possible mechanisms might include the acoustic cavitation, the endocytosis and cell-fusion. Acoustic radiation force might make liposomes collide with cells effectively and facilitate the delivery process

  12. Silica-based monolithic capillary columns modified by liposomes for characterization of analyte–liposome interactions by capillary liquid chromatography

    Czech Academy of Sciences Publication Activity Database

    Moravcová, Dana; Planeta, Josef; Wiedmer, S. K.

    2013-01-01

    Roč. 1317, SI (2013), s. 159-166 ISSN 0021-9673 R&D Projects: GA MV VG20112015021; GA ČR(CZ) GAP206/11/0138 Institutional support: RVO:68081715 Keywords : monolithic silica capillary column * immobilized liposomes * biomimicking stationary phase Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.258, year: 2013

  13. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  14. Seminal vesicle involvement at salvage radical prostatectomy.

    Science.gov (United States)

    Meeks, Joshua J; Walker, Marc; Bernstein, Melanie; Eastham, James A

    2013-06-01

    To describe the incidence and clinical outcomes of seminal vesicle invasion (SVI) at salvage radical prostatectomy (SRP) and to describe the accuracy of SV biopsy. As SRP is used after biochemical recurrence (BCR) of prostate cancer after radiotherapy (RT) to gain local oncological control. The SVs receive lower doses of radiation from external-beam RT (EBRT) to avoid rectal exposure and are not targeted with brachytherapy (BT) with low-risk prostate cancer. SRP was performed on 206 men with BCR after RT at a tertiary care institution between 1998 and 2011. Post-RT biopsy and SRP specimens were reviewed by a genitourinary pathologist. SVI was detected in 65 (32%) of 206 patients. No difference was found between EBRT alone (65% vs 63%) and BT (29% vs 31%) with or without EBRT in patients with SVI. Men with SVI had higher rates of cT3 disease (20% vs 8%) and Gleason score ≥ 8 at SRP (52% vs 21%). BCR-free survival at 5 years was 18% and 56% in patients with and without SVI (hazard ratio 2.85, 95% confidence interval 1.87-4.36, P < 0.001), yet the rate of local recurrence was low (11%). Prostate cancer was identified in nine of 18 patients who underwent SV biopsy and was the only location of prostate cancer in two patients. SVI is a prognostic indicator for BCR after SRP, but local recurrence in patients with SVI after SRP remains low. We recommend SV biopsy to improve staging and cancer detection in men with BCR after radiotherapy. © 2013 BJU International.

  15. Dual-coating of liposomes as encapsulating matrix of antimicrobial peptides: Development and characterization

    Science.gov (United States)

    Gomaa, Ahmed I.; Martinent, Cynthia; Hammami, Riadh; Fliss, Ismail; Subirade, Muriel

    2017-11-01

    Abstract Antimicrobial peptides have been proposed as a potential biopreservatives in pharmaceutical research and agribusiness. However, many limitations hinder their utilization, such as their vulnerability to proteolytic digestion and their potential interaction with other food ingredients in complex food systems. One approach to overcome such problems is developing formulations entrapping and thereby protecting the antimicrobial peptides. Liposome encapsulation is a strategy that could be implemented to combine protection of the antimicrobial activity of the peptides from proteolytic enzymes and the controlled release of the encapsulated active ingredients. The objective of this study was to develop dual-coated food grade liposome formulations for oral administration of bacteriocins. The formulations were developed from anionic and cationic phospholipids as models of negatively and positively charged liposomes, respectively. Liposomes were prepared by the hydration of lipid films. Subsequently, the liposomes were coated with two layers comprising a biopolymer network (pectin) and whey proteins (WPI) in order to further improve their stability and enable the gradual release of the developed liposomes. Liposomes were characterized for their size, charge, molecular structure, morphology, encapsulation efficiency and release. The results of FTIR, zeta potential, size distribution and transmission electron microscopy confirmed that the liposomes were efficiently coated. Ionic interactions were involved in the stabilization of the positively charged liposome formulations. Negatively charge liposome formulations were stabilized through weak interactions. The release study proved the efficiency of dual coating on the protection of liposomes against gastrointestinal digestion. This work is the first to study the encapsulation of antimicrobial peptides in dual-coated liposomes. Furthermore, the work successfully encapsulated MccJ25 in both negative and positive liposome

  16. Polymer coated liposomes for dental drug delivery--interactions with parotid saliva and dental enamel.

    Science.gov (United States)

    Nguyen, S; Hiorth, M; Rykke, M; Smistad, G

    2013-09-27

    The interactions between pectin coated liposomes and parotid saliva and dental enamel were studied to investigate their potential to mimic the protective biofilm formed naturally on tooth surfaces. Different pectin coated liposomes with respect to pectin type (LM-, HM- and AM-pectin) and concentration (0.05% and 0.2%) were prepared. Interactions between the pectin coated liposomes and parotid saliva were studied by turbidimetry and imaging by atomic force microscopy. The liposomes were adsorbed to hydroxyapatite (HA) and human dental enamel using phosphate buffer and parotid saliva as adsorption media. A continuous flow was imposed on the enamel surfaces for various time intervals to examine their retention on the dental enamel. The results were compared to uncoated, charged liposomes. No aggregation tendencies for the pectin coated liposomes and parotid saliva were revealed. This makes them promising as drug delivery systems to be used in the oral cavity. In phosphate buffer the adsorption to HA of pectin coated liposomes was significantly lower than the negative liposomes. The difference diminished in parotid saliva. Positive liposomes adsorbed better to the dental enamel than the pectin coated liposomes. However, when subjected to flow for 1h, no significant differences in the retention levels on the enamel were found between the formulations. For all formulations, more than 40% of the liposomes still remained on the enamel surfaces. At time point 20 min the retention of HM-pectin coated and positive liposomes were significantly higher. It was concluded that pectin coated liposomes can adsorb to HA as well as to the dental enamel. Their ability to retain on the enamel surfaces promotes the concept of using them as protective structures for the teeth. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH

    NARCIS (Netherlands)

    Johnsson, M; Wagenaar, A; Engberts, JBFN

    2003-01-01

    A sugar-based (reduced glucose) gemini surfactant forms vesicles in dilute aqueous solution near neutral pH. At lower pH, there is a vesicle-to-micelle transition within a narrow pH region (pH 6.0-5.6). The vesicles are transformed into large cylindrical micelles that in turn are transformed into

  18. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    Energy Technology Data Exchange (ETDEWEB)

    Demirsoy, Fatma Funda Kaya [Ankara University, The Central Laboratory of The Institute of Biotechnology (Turkey); Eruygur, Nuraniye [Gazi University, Department of Pharmacognosy, Faculty of Pharmacy (Turkey); Süleymanoğlu, Erhan, E-mail: erhans@mail.ru [Gazi University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Turkey)

    2015-01-15

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg{sup 2+}-ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized.

  19. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    International Nuclear Information System (INIS)

    Demirsoy, Fatma Funda Kaya; Eruygur, Nuraniye; Süleymanoğlu, Erhan

    2015-01-01

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg 2+ -ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized

  20. Acoustic Studies on Nanodroplets, Microbubbles and Liposomes

    Science.gov (United States)

    Kumar, Krishna Nandan

    in vitro study aimed at developing an ultrasound-aided noninvasive pressure estimation technique using contrast agents-DefinityRTM, a lipid coated microbubble, and an experimental PLA (Poly lactic acid) microbubbles. Scattered responses from these bubbles have been measured in vitro as a function of ambient pressure using a 3.5 MHz acoustic excitation of varying amplitude. At an acoustic pressure of 670 kPa, Definity RTM microbubbles showed a linear decrease in subharmonic signal with increasing ambient pressure, registering a 12dB reduction at an overpressure of 120 mm Hg. Ultrasound contrast microbubbles experience widely varying ambient blood pressure in different organs, which can also change due to diseases. Pressure change can alter the material properties of the encapsulation of these microbubbles. Here the characteristic rheological parameters of contrast agent Definity and Targestar are determined by varying the ambient pressure (in a physiologically relevant range 0-200 mmHg). Four different interfacial rheological models are used to characterize the microbubbles. Both the contrast agents show an increase in their interfacial dilatational viscosity and interfacial dilatational elasticity with ambient pressure. It has been well established that liposomes prepared following a careful multi-step procedure can be made echogenic. Our group as well as others experimentally demonstrated that freeze-drying in the presence of mannitol is a crucial component to ensure echogenicity. Here, we showed that freeze-dried aqueous solutions of excipients such as mannitol, meso-erythritol, glycine, and glucose that assume a crystalline state, when dispersed in water creates bubbles and are echogenic even without any lipids. We also present an explanation for the bubble generation process because of dissolution of mannitol.

  1. Application of 10B entrapped PEG-liposome to boron neutron-capture therapy for pancreatic cancer model in vivo

    International Nuclear Information System (INIS)

    Yanagie, H.; Eriguchi, M.; Maruyama, K.; Takizawa, T.; Ishida, O.; Ogura, K.; Matsumoto, T.; Sakurai, Y.; Kobayashi, T.; Ono, K.; Rant, J.; Skvarc, J.; Ilic, R.; Shinohara, A.; Chiba, M.; Kobayashi, H.

    1999-01-01

    The cytotoxic effects for tumor were evaluated with intravenous injection 10 B PEG-liposome (Stealth liposome) on human pancreatic carcinoma wenografts in nude mice with thermal neutron irradiation. After thermal neutron irradiation of mice injected with 10 B bare-liposome or 10 B PEG liposome, AsPC-1 tumour growth was suppressed relative to controls. Injection of 10 B PEG-liposome caused the greatest tumour suppression with thermal neutron irradiation in vivo. These results suggest that intravenous injection of 10 B PEG-liposome can increase the retention of 10 B atoms by tumor cells, causing tumor growth suppression in vivo upon thermal neutron irradiation.(author)

  2. Simultant encapsulation of vitamin C and beta-carotene in sesame (Sesamum indicum l.) liposomes

    Science.gov (United States)

    Hudiyanti, D.; Fawrin, H.; Siahaan, P.

    2018-04-01

    In this study sesame liposomes were used to encapsulate both vitamin C and beta-carotene simultaneously. Liposomes were prepared with addition of cholesterol. The encapsulation efficiency (EE) of sesame liposomes for vitamin C in the present of beta-carotene was 77%. The addition of cholesterol increased the encapsulation efficiency. The highest encapsulation efficiency was 89% obtained in liposomes with 10% and 20% cholesterol. Contrary to that, the highest beta-carotene encapsulation efficiency of 78%, was found in the sesame liposomes prepared without the added cholesterol. Results showed that sesame liposomes can be used to encapsulate beta-carotene and vitamin C simultaneously. When beta-carotene and vitamin C were encapsulated concurrently, cholesterol intensified the efficiency of vitamin C encapsulation on the contrary it diminished the efficiency of beta-carotene encapsulation.

  3. Barriers to Liposomal Gene Delivery: from Application Site to the Target.

    Science.gov (United States)

    Saffari, Mostafa; Moghimi, Hamid Reza; Dass, Crispin R

    2016-01-01

    Gene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems face different barriers from their site of application to their target, which is inside the cells. These barriers include presystemic obstacles (epithelial barriers), systemic barriers in blood circulation and cellular barriers. Epithelial barriers differ depending on the route of administration. Systemic barriers include enzymatic degradation, binding and opsonisation. Both of these barriers can act as limiting hurdles that genetic material and their vector should overcome before reaching the cells. Finally liposomes should overcome cellular barriers that include cell entrance, endosomal escape and nuclear uptake. These barriers and their impact on liposomal gene delivery will be discussed in this review.

  4. Oral administration of insulin by means of liposomes in animal experiments

    International Nuclear Information System (INIS)

    Tragl, K.H.; Pohl, A.; Kinast, H.

    1979-01-01

    Liposomes are an effective vehicle for the oral administration of insulin. They are prepared from lipid emulsions by sonication and particles of homogeneous size are generated by elution through sepharose columns. Liposomes are taken up into the gastric mucosa by endocytosis and then transported to the liver via the portal circulation. Oral administration of 10 U insulin/kg body weight to rats is followed by a reduction in blood glucose to 67% of the initial value. When liposome-trapped insulin was injected intravenously a decrease in blood glucose to 40% of the initial value was obtained by the administration of 5 IU insulin/kg body weight. While the effect of orally-administered liposome-trapped insulin is obvious, the problems of standardization of the insulin content of the liposomes and the great variability of liposome uptake into the gastric mucosa by endocytosis remain unsolved. (author)

  5. Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese.

    Science.gov (United States)

    Cui, H Y; Wu, J; Lin, L

    2016-08-01

    Listeria monocytogenes infection in dairy products is of mounting public concern. To inhibit bacterial growth, we engineered stimuli-responsive liposomes containing lemongrass oil for this study. The controlled release of liposome-entrapped lemongrass oil is triggered by listerolysin O, secreted by L. monocytogenes. We investigated the antibiotic activities of lemongrass oil liposomes against L. monocytogenes in cheese. We also assessed their possible effects on the quality of the cheese. Liposomes containing lemongrass oil (5.0mg/mL) presented the optimal polydispersity index (0.246), zeta-potential (-58.9mV) and entrapment efficiency (25.7%). The liposomes displayed satisfactory antibiotic activity against L. monocytogenes in cheese over the storage period at 4°C. We observed no effects on the physical and sensory properties of the cheese after the liposome treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Structure of liposome encapsulating proteins characterized by X-ray scattering and shell-modeling

    International Nuclear Information System (INIS)

    Hirai, Mitsuhiro; Kimura, Ryota; Takeuchi, Kazuki; Hagiwara, Yoshihiko; Kawai-Hirai, Rika; Ohta, Noboru; Igarashi, Noriyuki; Shimuzu, Nobutaka

    2013-01-01

    Wide-angle X-ray scattering data using a third-generation synchrotron radiation source are presented. Lipid liposomes are promising drug delivery systems because they have superior curative effects owing to their high adaptability to a living body. Lipid liposomes encapsulating proteins were constructed and the structures examined using synchrotron radiation small- and wide-angle X-ray scattering (SR-SWAXS). The liposomes were prepared by a sequential combination of natural swelling, ultrasonic dispersion, freeze-throw, extrusion and spin-filtration. The liposomes were composed of acidic glycosphingolipid (ganglioside), cholesterol and phospholipids. By using shell-modeling methods, the asymmetric bilayer structure of the liposome and the encapsulation efficiency of proteins were determined. As well as other analytical techniques, SR-SWAXS and shell-modeling methods are shown to be a powerful tool for characterizing in situ structures of lipid liposomes as an important candidate of drug delivery systems

  7. Conventional and dense gas techniques for the production of liposomes: a review.

    Science.gov (United States)

    Meure, Louise A; Foster, Neil R; Dehghani, Fariba

    2008-01-01

    The aim of this review paper is to compare the potential of various techniques developed for production of homogenous, stable liposomes. Traditional techniques, such as Bangham, detergent depletion, ether/ethanol injection, reverse-phase evaporation and emulsion methods, were compared with the recent advanced techniques developed for liposome formation. The major hurdles for scaling up the traditional methods are the consumption of large quantities of volatile organic solvent, the stability and homogeneity of the liposomal product, as well as the lengthy multiple steps involved. The new methods have been designed to alleviate the current issues for liposome formulation. Dense gas liposome techniques are still in their infancy, however they have remarkable advantages in reducing the use of organic solvents, providing fast, single-stage production and producing stable, uniform liposomes. Techniques such as the membrane contactor and heating methods are also promising as they eliminate the use of organic solvent, however high temperature is still required for processing.

  8. In situ SAXS experiment during DNA and liposome complexation

    Energy Technology Data Exchange (ETDEWEB)

    Gasperini, A.A.; Cavalcanti, L.P. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Balbino, T.A.; Torre, L.G. de la [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Oliveira, C.L.P. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil)

    2012-07-01

    Full text: Gene therapy is an exciting research area that allows the treatment of different diseases. Basically, an engineered DNA that codes a protein is the therapeutic drug that has to be delivered to the cell nucleus. After that, the DNA transfection process allows the protein production using the cell machinery. However, the efficient delivery needs DNA protection against nucleases and interstitial fluids. In this context, the use of cationic liposome/DNA complexes is a promising strategy for non-viral gene therapy. Liposomes are lipid systems that self-aggregate in bilayers and the use of cationic lipids allows the electrostatic complexation with DNA. In this work, we used SAXS technique to study the complexation kinetics between cationic liposomes and plasmid DNA and evaluate the liposome structural modifications in the presence of DNA. Liposomes were prepared according to [1] using as plasmid DNA vector model a modified version of pVAX1-GFP with luciferase as reporter gene [2]. The complexation was promoted in a SAXS sample holder containing a microchannel to get access to the compartment between two mica windows where the X-ray beam could cross through [3]. We obtained in situ complexation using such sample holder coupled to a fed-batch reactor through a peristaltic pump. The scattering curves were recorded each 30 seconds during the cycles. The DNA was added until a certain final ratio between surface charges previously determined. We studied the form and structure factor model for the liposome bilayer to fit the scattering curves [4]. Structural information such as the bilayer electronic density profiles, number of bilayers and fluidity were determined as a function of the complexation with DNA. These differences can reflect in singular in vitro and in vivo effects. [1] L. G. de la Torre et al. Colloids and Surfaces B: Biointerfaces, 73, 175 (2009) [2] A. R. Azzoni et al. The Journal of Gene Medicine, 9, 392 (2007) [3] L. P. Cavalcanti et al. Review of

  9. Overall energy conversion efficiency of a photosynthetic vesicle

    Energy Technology Data Exchange (ETDEWEB)

    Sener, Melih [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States; Strumpfer, Johan [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States; Singharoy, Abhishek [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Hunter, C. Neil [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom; Schulten, Klaus [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  10. Adhesion signals of phospholipid vesicles at an electrified interface.

    Science.gov (United States)

    DeNardis, Nadica Ivošević; Žutić, Vera; Svetličić, Vesna; Frkanec, Ruža

    2012-09-01

    General adhesion behavior of phospholipid vesicles was examined in a wide range of potentials at the mercury electrode by recording time-resolved adhesion signals. It was demonstrated that adhesion-based detection is sensitive to polar headgroups in phospholipid vesicles. We identified a narrow potential window around the point of zero charge of the electrode where the interaction of polar headgroups of phosphatidylcholine vesicles with the substrate is manifested in the form of bidirectional signals. The bidirectional signal is composed of the charge flow due to the nonspecific interaction of vesicle adhesion and spreading and of the charge flow due to a specific interaction of the negatively charged electrode and the most exposed positively charged choline headgroups. These signals are expected to appear only when the electrode surface charge density is less than the surface charge density of the choline groups at the contact interface. In comparison, for the negatively charged phosphatidylserine vesicles, we identified the potential window at the mercury electrode where charge compensation takes place, and bidirectional signals were not detected.

  11. Models for randomly distributed nanoscopic domains on spherical vesicles

    Science.gov (United States)

    Anghel, Vinicius N. P.; Bolmatov, Dima; Katsaras, John

    2018-06-01

    The existence of lipid domains in the plasma membrane of biological systems has proven controversial, primarily due to their nanoscopic size—a length scale difficult to interrogate with most commonly used experimental techniques. Scattering techniques have recently proven capable of studying nanoscopic lipid domains populating spherical vesicles. However, the development of analytical methods able of predicting and analyzing domain pair correlations from such experiments has not kept pace. Here, we developed models for the random distribution of monodisperse, circular nanoscopic domains averaged on the surface of a spherical vesicle. Specifically, the models take into account (i) intradomain correlations corresponding to form factors and interdomain correlations corresponding to pair distribution functions, and (ii) the analytical computation of interdomain correlations for cases of two and three domains on a spherical vesicle. In the case of more than three domains, these correlations are treated either by Monte Carlo simulations or by spherical analogs of the Ornstein-Zernike and Percus-Yevick (PY) equations. Importantly, the spherical analog of the PY equation works best in the case of nanoscopic size domains, a length scale that is mostly inaccessible by experimental approaches such as, for example, fluorescent techniques and optical microscopies. The analytical form factors and structure factors of nanoscopic domains populating a spherical vesicle provide a new and important framework for the quantitative analysis of experimental data from commonly studied phase-separated vesicles used in a wide range of biophysical studies.

  12. Evaluation of liposomes coated with a pH responsive polymer

    OpenAIRE

    Barea, M.J.; Jenkins, M.J.; Gaber, M.H.; Bridson, R.H.

    2010-01-01

    Liposomes have been coated with the pH responsive polymer, Eudragit S100, and the formulation's potential for lower gastrointestinal (GI) targeting following oral administration assessed. Cationic liposomes were coated with the anionic polymer through simple mixing. The evolution of a polymer coat was studied using zeta potential measurements and laser diffraction size analysis. Further evidence of an association between polymer and liposome was obtained using light and cryo scanning electron...

  13. Films of Agarose Enable Rapid Formation of Giant Liposomes in Solutions of Physiologic Ionic Strength

    OpenAIRE

    Horger, Kim S.; Estes, Daniel J.; Capone, Ricardo; Mayer, Michael

    2009-01-01

    This paper describes a method to form giant liposomes in solutions of physiologic ionic strength, such as phosphate buffered saline (PBS) or 150 mM KCl. Formation of these cell-sized liposomes proceeded from hybrid films of partially dried agarose and lipids. Hydrating the films of agarose and lipids in aqueous salt solutions resulted in swelling and partial dissolution of the hybrid films and in concomitant rapid formation of giant liposomes in high yield. This method did not require the pre...

  14. Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition

    DEFF Research Database (Denmark)

    Foged, Camilla; Arigita, Carmen; Sundblad, Anne

    2004-01-01

    the interaction of negatively charged liposomes with both human and murine DCs. This increase could be blocked in human DCs by addition of the polysaccharide mannan indicating that uptake might be mediated by the mannose receptor. Cationic liposomes containing trimethyl ammonium propane interacted with a very...... high percentage of both DC types and could be detected in high amounts intracellularly. In conclusion, liposome bilayer composition has an important effect on interaction with DCs and might be critical for the vaccination outcome....

  15. Atomic Force Microscopy Study on the Stiffness of Nanosized Liposomes Containing Charged Lipids.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Goda, Yukihiro; Sakai-Kato, Kumiko

    2018-06-18

    It has recently been recognized that the mechanical properties of lipid nanoparticles play an important role during in vitro and in vivo behaviors such as cellular uptake, blood circulation, and biodistribution. However, there have been no quantitative investigations of the effect of commonly used charged lipids on the stiffness of nanosized liposomes. In this study, by means of atomic force microscopy (AFM), we quantified the stiffness of nanosized liposomes composed of neutrally charged lipids combined with positively or negatively charged lipids while simultaneously imaging the liposomes in aqueous medium. Our results showed that charged lipids, whether negatively or positively charged, have the effect of reducing the stiffness of nanosized liposomes, independently of the saturation degree of the lipid acyl chains; the measured stiffness values of liposomes containing charged lipids are 30-60% lower than those of their neutral counterpart liposomes. In addition, we demonstrated that the Laurdan generalized polarization values, which are related to the hydration degree of the liposomal membrane interface and often used as a qualitative indicator of liposomal membrane stiffness, do not directly correlate with the physical stiffness values of the liposomes prepared in this study. However, our results indicate that direct quantitative AFM measurement is a valuable method to gain molecular-scale information about how the hydration degree of liposomal interfaces reflects (or does not reflect) liposome stiffness as a macroscopic property. Our AFM method will contribute to the quantitative characterization of the nano-bio interaction of nanoparticles and to the optimization of the lipid composition of liposomes for clinical use.

  16. 6-mercaptopurine and daunorubicin double drug liposomes-preparation, drug-drug interaction and characterization.

    Science.gov (United States)

    Agrawal, Vineet; Paul, Manash K; Mukhopadhyay, Anup K

    2005-01-01

    This article addresses and investigates the dual incorporation of daunorubicin (DR) and 6-mercaptopurine (6-MP) in liposomes for better chemotherapy. These drugs are potential candidates for interaction due to the quinone (H acceptor) and hydroxyl (H donor) groups on DR and 6-MP, respectively. Interactions between the two drugs in solution were monitored by UV/Vis and fluorescence spectroscopy. Interaction between the two drugs inside the liposomes was evaluated by HPLC (for 6-MP) and by fluorescence spectroscopy (for daunorubicin) after phospholipase-mediated liposome lysis. Our results provide evidence for the lack of interaction between the two drugs in solution and in liposomes. The entrapment efficiencies of 6-MP in the neutral Phosphatidyl choline (PC):Cholesterol (Chol):: 2:1 and anionic PC:Chol:Cardiolipin (CL) :: 4:5:1 single and double drug liposomes were found to be 0.4% and 1.5% (on average), respectively. The entrapment efficiencies of DR in the neutral and anionic double drug liposomes were found to be 55% and 31%, respectively. The corresponding entrapment of daunorubicin in the single drug liposomes was found to be 62% on average. Our thin layer chromatography (TLC) and transmission electron microscopy (TEM) results suggest stability of lipid and liposomes, thus pointing plausible existence of double drug liposomes. Cytotoxicity experiments were performed by using both single drug and double drug liposomes. By comparing the results of phase contrast and fluorescence microscopy, it was observed that the double drug liposomes were internalized in the jurkat and Hut78 (highly resistant cell line) leukemia cells as viewed by the fluorescence of daunorubicin. The cytotoxicity was dose dependent and had shown a synergistic effect when double drug liposome was used.

  17. Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery.

    Science.gov (United States)

    Thamphiwatana, Soracha; Fu, Victoria; Zhu, Jingying; Lu, Diannan; Gao, Weiwei; Zhang, Liangfang

    2013-10-01

    We report a novel pH-responsive gold nanoparticle-stabilized liposome system for gastric antimicrobial delivery. By adsorbing small chitosan-modified gold nanoparticles (diameter ~10 nm) onto the outer surface of negatively charged phospholipid liposomes (diameter ~75 nm), we show that at gastric pH the liposomes have excellent stability with limited fusion ability and negligible cargo releases. However, when the stabilized liposomes are present in an environment with neutral pH, the gold stabilizers detach from the liposomes, resulting in free liposomes that can actively fuse with bacterial membranes. Using Helicobacter pylori as a model bacterium and doxycycline as a model antibiotic, we demonstrate such pH-responsive fusion activity and drug release profile of the nanoparticle-stabilized liposomes. Particularly, at neutral pH the gold nanoparticles detach, and thus the doxycycline-loaded liposomes rapidly fuse with bacteria and cause superior bactericidal efficacy as compared to the free doxycycline counterpart. Our results suggest that the reported liposome system holds a substantial potential for gastric drug delivery; it remains inactive (stable) in the stomach lumen but actively interacts with bacteria once it reaches the mucus layer of the stomach where the bacteria may reside.

  18. Mechanistic Studies on the Triggered Release of Liposomal Contents by Matrix Metalloproteinase-9

    Science.gov (United States)

    Elegbede, Adekunle I.; Banerjee, Jayati; Hanson, Andrea J.; Tobwala, Shakila; Ganguli, Bratati; Wang, Rongying; Lu, Xiaoning; Srivastava, D. K.; Mallik, Sanku

    2009-01-01

    Matrix metalloproteinases (MMPs) are a class of extracellular matrix degrading enzymes over-expressed in many cancers and contribute to the metastatic ability of the cancer cells. We have recently demonstrated that liposomal contents can be released when triggered by the enzyme MMP-9. Herein, we report our results on the mechanistic studies of the MMP-9 triggered release of the liposomal contents. We synthesized peptides containing the cleavage site for MMP-9 and conjugated them with fatty acids to prepare the corresponding lipopeptides. By employing Circular Dichroism spectroscopy, we demonstrate that the lipopeptides, when incorporated in liposomes, are de-mixed in the lipid bilayers and generate triple helical structures. MMP-9 cleaves the triple helical peptides, leading to the release of the liposomal contents. Other MMPs, which cannot hydrolyze triple helical peptides, failed to release the contents from the liposomes. We also observed that the rate and the extent of release of the liposomal contents depend on the mismatch between acyl chains of the synthesized lipopeptide and phospholipid components of the liposomes. Circular Dichroism spectroscopic studies imply that the observed differences in the release reflect the ability of the liposomal membrane to anneal the defects following the enzymatic cleavage of the liposome-incorporated lipopeptides. PMID:18642903

  19. Release of Liposomal Contents by Cell-Secreted Matrix Metalloproteinase-9

    Science.gov (United States)

    Banerjee, Jayati; Hanson, Andrea J.; Gadam, Bhushan; Elegbede, Adekunle I.; Tobwala, Shakila; Ganguly, Bratati; Wagh, Anil; Muhonen, Wallace W.; Law, Benedict; Shabb, John B.; Srivastava, D. K.; Mallik, Sanku

    2011-01-01

    Liposomes have been widely used as a drug delivery vehicle and currently, more than 10 liposomal formulations are approved by the Food and Drug Administration for clinical use. However, upon targeting, the release of the liposome-encapsulated contents is usually slow. We have recently demonstrated that contents from appropriately-formulated liposomes can be rapidly released by the cancer-associated enzyme matrix metalloproteinase-9 (MMP-9). Herein, we report our detailed studies to optimize the liposomal formulations. By properly selecting the lipopeptide, the major lipid component and their relative amounts, we demonstrate that the contents are rapidly released in the presence of cancer-associated levels of recombinant human MMP-9. We observed that the degree of lipid mismatch between the lipopepides and the major lipid component profoundly affects the release profiles from the liposomes. By utilizing the optimized liposomal formulations, we also demonstrate that cancer cells (HT-29) which secrete low levels of MMP-9 failed to release significant amount of the liposomal contents. Metastatic cancer cells (MCF7) secreting high levels of the enzyme rapidly release the encapsulated contents from the liposomes. PMID:19601658

  20. Physical and Oxidative Stability of Uncoated and Chitosan-Coated Liposomes Containing Grape Seed Extract

    Directory of Open Access Journals (Sweden)

    Jochen Weiss

    2013-08-01

    Full Text Available Polyphenol-rich grape seed extract (0.1 w/w% was incorporated in liposomes (1 w/w% soy lecithin by high pressure homogenization (22,500 psi and coated with chitosan (0.1 w/w%. Primary liposomes and chitosan-coated secondary liposomes containing grape seed extract showed good physical stability during 98 days of storage. Most of the polyphenols were incorporated in the shell of the liposomes (85.4%, whereas only 7.6% of the polyphenols of grape seed extract were located in the interior of the liposomes. Coating with chitosan did not change the polyphenol content in the liposomes (86.6%. The uncoated liposomes without grape seed extract were highly prone to lipid oxidation. The cationic chitosan coating, however, improved the oxidative stability to some extent, due to its ability to repel pro-oxidant metals. Encapsulated grape seed extract showed high antioxidant activity in both primary and secondary liposomes, which may be attributed to its polyphenol content. In conclusion, the best chemical stability of liposomes can be achieved using a combination of grape seed extract and chitosan.