WorldWideScience

Sample records for hemoglobin chemical reactivity

  1. Probing the reactivity of nucleophile residues in human 2,3-diphosphoglycerate/deoxy-hemoglobin complex by aspecific chemical modifications.

    Science.gov (United States)

    Scaloni, A; Ferranti, P; De Simone, G; Mamone, G; Sannolo, N; Malorni, A

    1999-06-11

    The use of aspecific methylation reaction in combination with MS procedures has been employed for the characterization of the nucleophilic residues present on the molecular surface of the human 2,3-diphosphoglycerate/deoxy-hemoglobin complex. In particular, direct molecular weight determinations by ESMS allowed to control the reaction conditions, limiting the number of methyl groups introduced in the modified globin chains. A combined LCESMS-Edman degradation approach for the analysis of the tryptic peptide mixtures yielded to the exact identification of methylation sites together with the quantitative estimation of their degree of modification. The reactivities observed were directly correlated with the pKa and the relative surface accessibility of the nucleophilic residues, calculated from the X-ray crystallographic structure of the protein. The results here described indicate that this methodology can be efficiently used in aspecific modification experiments directed to the molecular characterization of the surface topology in proteins and protein complexes.

  2. Study of methyl bromide reactivity with human and mouse hemoglobin

    African Journals Online (AJOL)

    A study has been carried out on in-vitro reactivity of human and mouse hemoglobin spectrophotometrically at physiological pH, using different protein to reagent ratios. Hemoglobin side chains were modified with different concentrations of methyl bromide on agro-soil fumigant. To ascertain if the site of alkylation was the ...

  3. Chemical Reactivity Test (CRT)

    Energy Technology Data Exchange (ETDEWEB)

    Zaka, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-13

    The Chemical Reactivity Test (CRT) is used to determine the thermal stability of High Explosives (HEs) and chemical compatibility between (HEs) and alien materials. The CRT is one of the small-scale safety tests performed on HE at the High Explosives Applications Facility (HEAF).

  4. Reactivation of fetal hemoglobin in thalassemia and sickle cell disease

    Directory of Open Access Journals (Sweden)

    Sandro Eridani

    2014-09-01

    Full Text Available Considerable attention has been recently devoted to mechanisms involved in the perinatal hemoglobin switch, as it was long ago established that the survival of fetal hemoglobin (HbF production in significant amount can reduce the severity of the clinical course in severe disorders like β-thalassemia and sickle cell disease (SCD. For instance, when β-thalassemia is associated with hereditary persistence of fetal hemoglobin (HPFH the disease takes a mild course, labeled as thalassemia intermedia. The same clinical amelioration occurs for the association between HPFH and SCD. As for the mechanism of this effect, some information has been obtained from the study of natural mutations at the human β-globin locus in patients with increased HbF, like the Corfu thalassemia mutations. Important evidence came from the discovery that drugs capable of improving the clinical picture of SCD, like decitabine ad hydroxycarbamide, are acting through the reactivation, to some extent, of HbF synthesis. The study of the mechanism of action of these compounds was followed by the identification of some genetic determinants, which promote this event. In particular, among a few genetic factors involved in this process, the most relevant appears the BCL11A gene, which is now credited to be able to silence γ-globin genes in the perinatal period by interaction with several erythroid-specific transcription factors and is actually considered as a barrier to HbF reactivation by known HbF inducing agents. Epigenetics is also a player in the process, mainly through DNA demethylation. This is certified by the recent demonstration that hypomethylating agents such as 5-azacytidine and decitabine, the first compounds used for HbF induction by pharmacology, act as irreversible inhibitors of demethyltransferase enzymes. Great interest has also been raised by the finding that several micro-RNAs, which act as negative regulators of gene expression, have been implicated in the

  5. Hemoglobin

    Science.gov (United States)

    1993-03-08

    affinity, which is less at low levels of hemoglobin saturation, increases markedly as fractional saturation increases. Thus, high affinity for 02 at... diphosphoglycerate (2,3-DPG), and carbon dioxide (Co 2). Since they are linked to 02 binding, they are called oxygen-linked effectors. The oxygen...hemoglobin molecule because of the negative charge of the ions. 2,3- Diphosphoglycerate is a molecule formed during the breakdown of sugar in normal human

  6. ROLE OF STEM CELL FACTOR IN THE REACTIVATION OF HUMAN FETAL HEMOGLOBIN

    Directory of Open Access Journals (Sweden)

    Ugo Testa

    2009-06-01

    Full Text Available

    In humans the switch from fetal to adult  hemoglobin (HbF→ HbA takes place in the perinatal and postnatal period, determining the progressive replacement of HbF with HbA synthesis ( i.e., the relative HbF content in red blood cells decreases from 80-90% to <1%. In spite of more than twenty years of intensive investigations on this classic model, the molecular mechanisms regulating the Hb switching, as well as HbF synthesis in adults, has been only in part elucidated. In adult life, the residual HbF, restricted to F cell compartment, may be reactivated up to 10-20% of total Hb synthesis in various conditions associated with “stress erythropoiesis”: this reactivation represented until now an interesting model of partial Hb switch reverse with important therapeutic implications in patients with hemoglobinopathies, and particularly in -thalassemia.
    In vitro and in vivo models have led to the identification of several chemical compounds able to reactivate HbF synthesis in adult erythroid cells. Although the impact of these HbF inducers, including hypomethylating agents, histone deacetylase inhibitors and hydroxyurea, was clear on the natural history of sickle cell anemia, the benefit on the clinical course of -thalassemia was only limited: particularly, the toxicity and the modest increase in γ-globin reactivation indicated the need for improved agents able to induce higher levels of HbF.
    In the present review we describe the biologic properties of Stem Cell Factor (SCF, a cytokine sustaining the survival and proliferation of erythroid cells, that at pharmacological doses acts as a potent stimulator of HbF synthesis in adult erythroid cells.

  7. Reactive chemicals and process hazards

    International Nuclear Information System (INIS)

    Surianarayanan, M.

    2016-01-01

    Exothermic chemical reactions are often accompanied by significant heat release, and therefore, need a thorough investigation before they are taken to a plant scale. Sudden thermal energy releases from exothermic decompositions and runaway reactions have contributed to serious fire and explosions in several chemical process plants. Similarly, thermal runaway had also occurred in storage and transportation of reactive chemicals. The secondary events of thermal runaway reactions can be rupture of process vessel, toxic spills and release of explosive vapor clouds or combination of these also. The explosion hazards are governed by the system thermodynamics and kinetics of the thermal process. Theoretical prediction of limiting temperature is difficult due to process complexities. Further, the kinetic data obtained through classical techniques, at conditions far away from runaway situation, is often not valid for assessing the runaway behavior of exothermic processes. The main focus of this lecture is to discuss the causes and several contributing factors for thermal runaway and instability and present analyses of the methodologies of the new instrumental techniques for assessing the thermal hazards of reactive chemicals during processing, storage and transportation. (author)

  8. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    Science.gov (United States)

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  9. Stability and Application of Reactive Nitrogen and Oxygen Species-Induced Hemoglobin Modifications in Dry Blood Spots As Analyzed by Liquid Chromatography Tandem Mass Spectrometry.

    Science.gov (United States)

    Chen, Hauh-Jyun Candy; Fan, Chih-Huang; Yang, Ya-Fen

    2016-12-19

    Dried blood spot (DBS) is an emerging microsampling technique for the bioanalysis of small molecules, including fatty acids, metabolites, drugs, and toxicants. DBS offers many advantages as a sample format including easy sample collection and cheap sample shipment. Hemoglobin adducts have been recognized as a suitable biomarker for monitoring chemical exposure. We previously reported that certain modified peptides in hemoglobin derived from reactive chlorine, nitrogen, and oxygen species are associated with factors including smoking, diabetes mellitus, and aging. However, the stability of these oxidation-induced modifications of hemoglobin remains unknown and whether they can be formed artifactually during storage of DBS. To answer these questions, globin extracted from the DBS cards was analyzed, and the stability of the modifications was evaluated. After storage of the DBS cards at 4 °C or room temperature up to 7 weeks, we isolated globin from a quarter of the spot every week. The extents of 11 sites and types of post-translational modifications (PTMs), including nitration and nitrosylation of tyrosine and oxidation of cysteine and methionine residues, in human hemoglobin were measured in the trypsin digest by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) using selected reaction monitoring. The extents of all these PTMs are stable within 14 days when stored on DBS at room temperature and at 4 °C, while those from direct extraction of fresh blood are stable for at least 8 weeks when stored as an aqueous solution at -20 °C. Extraction of globin from a DBS card is of particular importance for hemolytic blood samples. To our knowledge, this is the first report on the stability of oxidative modifications of hemoglobin on DBSs, which are stable for 14 days under ambient conditions (room temperature, in air). Therefore, it is feasible and convenient to analyze these hemoglobin modifications from DBSs in studies

  10. Steam-chemical reactivity for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; McCarthy, K.A.; Oates, M.A.; Petti, D.A.; Pawelko, R.J.; Smolik, G.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental investigation to determine the influence of neutron irradiation effects and annealing on the chemical reactivity of beryllium exposed to steam. The work entailed measurements of the H{sub 2} generation rates for unirradiated and irradiated Be and for irradiated Be that had been previously annealed at different temperatures ranging from 450degC to 1200degC. H{sub 2} generation rates were similar for irradiated and unirradiated Be in steam-chemical reactivity experiments at temperatures between 450degC and 600degC. For irradiated Be exposed to steam at 700degC, the chemical reactivity accelerated rapidly and the specimen experienced a temperature excursion. Enhanced chemical reactivity at temperatures between 400degC and 600degC was observed for irradiated Be annealed at temperatures of 700degC and higher. This reactivity enhancement could be accounted for by the increased specific surface area resulting from development of a surface-connected porosity in the irradiated-annealed Be. (author)

  11. Chemical reactivity of cation-exchanged zeolites

    OpenAIRE

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed by Brønsted acid sites in the hydrogen forms of zeolites, the nature of chemical reactivity, and related, the structure of the metal-containing ions in cation-exchanged zeolites remains the subject...

  12. Chemical Inhibition of Histone Deacetylases 1 and 2 Induces Fetal Hemoglobin through Activation of GATA2.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Shearstone

    Full Text Available Therapeutic intervention aimed at reactivation of fetal hemoglobin protein (HbF is a promising approach for ameliorating sickle cell disease (SCD and β-thalassemia. Previous studies showed genetic knockdown of histone deacetylase (HDAC 1 or 2 is sufficient to induce HbF. Here we show that ACY-957, a selective chemical inhibitor of HDAC1 and 2 (HDAC1/2, elicits a dose and time dependent induction of γ-globin mRNA (HBG and HbF in cultured primary cells derived from healthy individuals and sickle cell patients. Gene expression profiling of erythroid progenitors treated with ACY-957 identified global changes in gene expression that were significantly enriched in genes previously shown to be affected by HDAC1 or 2 knockdown. These genes included GATA2, which was induced greater than 3-fold. Lentiviral overexpression of GATA2 in primary erythroid progenitors increased HBG, and reduced adult β-globin mRNA (HBB. Furthermore, knockdown of GATA2 attenuated HBG induction by ACY-957. Chromatin immunoprecipitation and sequencing (ChIP-Seq of primary erythroid progenitors demonstrated that HDAC1 and 2 occupancy was highly correlated throughout the GATA2 locus and that HDAC1/2 inhibition led to elevated histone acetylation at well-known GATA2 autoregulatory regions. The GATA2 protein itself also showed increased binding at these regions in response to ACY-957 treatment. These data show that chemical inhibition of HDAC1/2 induces HBG and suggest that this effect is mediated, at least in part, by histone acetylation-induced activation of the GATA2 gene.

  13. ROLE OF STEM CELL FACTOR IN THE REACTIVATION OF HUMAN FETAL HEMOGLOBIN

    Directory of Open Access Journals (Sweden)

    Marco Gabbianelli

    2009-11-01

    In vitro and in vivo models have led to the identification of several chemical compounds able to reactivate HbF synthesis in adult erythroid cells. Although the impact of these HbF inducers, including hypomethylating agents, histone deacetylase inhibitors and hydroxyurea, was clear on the natural history of sickle cell anemia, the benefit on the clinical course of -thalassemia was only limited: particularly, the toxicity and the modest increase in γ-globin reactivation indicated the need for improved agents able to induce higher levels of HbF. In the present review we describe the biologic properties of Stem Cell Factor (SCF, a cytokine sustaining the survival and proliferation of erythroid cells, that at pharmacological doses acts as a potent stimulator of HbF synthesis in adult erythroid cells.

  14. Reduced hemoglobin and increased C-reactive protein are associated with upper gastrointestinal bleeding.

    Science.gov (United States)

    Tomizawa, Minoru; Shinozaki, Fuminobu; Hasegawa, Rumiko; Togawa, Akira; Shirai, Yoshinori; Ichiki, Noboru; Motoyoshi, Yasufumi; Sugiyama, Takao; Yamamoto, Shigenori; Sueishi, Makoto

    2014-02-07

    To investigate the early upper gastrointestinal endoscopy (endoscopy) significantly reduces mortality resulting from upper gastrointestinal (GI) bleeding. Upper GI bleeding was defined as 1a, 1b, 2a, and 2b according to the Forrest classification. The hemoglobin (Hb), and C-reactive protein (CRP) were examined at around the day of endoscopy and 3 mo prior to endoscopy. The rate of change was calculated as follows: (the result of blood examination on the day of endoscopy - the results of blood examination 3 mo prior to endoscopy)/(results of blood examination 3 mo prior to endoscopy). Receiver operating characteristic curves were created to determine threshold values. Seventy-nine men and 77 women were enrolled. There were 17 patients with upper GI bleeding: 12 with a gastric ulcer, 3 with a duodenal ulcer, 1 with an acute gastric mucosal lesion, and 1 with gastric cancer. The area under the curve (AUC), threshold, sensitivity, and specificity of Hb around the day of endoscopy were 0.902, 11.7 g/dL, 94.1%, and 77.1%, respectively, while those of CRP were 0.722, 0.5 mg/dL, 70.5%, and 73%, respectively. The AUC, threshold, sensitivity, and specificity of the rate of change of Hb were 0.851, -21.3%, 76.4%, and 82.6%, respectively, while those of CRP were 0.901, 100%, 100%, and 82.5%, respectively. Predictors for upper GI bleeding were Hb 21.3% and an increase in the CRP > 100%, 3 mo before endoscopy.

  15. Rock fracture processes in chemically reactive environments

    Science.gov (United States)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the

  16. Phase equilibria in chemical reactive fluid mixtures

    International Nuclear Information System (INIS)

    Maurer, Gerd

    2011-01-01

    Downstream processing is a major part of nearly all processes in the chemical industries. Most separation processes in the chemical (and related) industries for fluid mixtures are based on phase equilibrium phenomena. The majority of separation processes can be modelled assuming that chemical reactions are of no (or very minor) importance, i.e., assuming that the overall speciation remains unchanged during a separation process. However, there are also a large number of industrially important processes where the thermodynamic properties are influenced by chemical reactions. The phase equilibrium of chemical reactive mixtures has been a major research area of the author's group over nearly 40 years. In this contribution, three examples from that research are discussed. The first example deals with the vapour phase dimerisation of carboxylic acids and its consequences on phase equilibrium phenomena and phase equilibrium predictions. The second example deals with the solubility of sour gases (e.g., carbon dioxide and sulfur dioxide) in aqueous solutions of ammonia. That topic has been of interest for many years, e.g., in relation with the gasification and liquefaction of coal and, more recently, with the removal of carbon dioxide from flue gas in the 'chilled ammonia process'. The third example deals with phase equilibrium phenomena in aqueous solutions of polyelectrolytes. It deals with the phenomenon of 'counter ion condensation' and methods to model the Gibbs free energy of such solutions.

  17. An autonomous organic reaction search engine for chemical reactivity

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Henson, Alon B.; Granda, Jaroslaw M.; Cronin, Leroy

    2017-06-01

    The exploration of chemical space for new reactivity, reactions and molecules is limited by the need for separate work-up-separation steps searching for molecules rather than reactivity. Herein we present a system that can autonomously evaluate chemical reactivity within a network of 64 possible reaction combinations and aims for new reactivity, rather than a predefined set of targets. The robotic system combines chemical handling, in-line spectroscopy and real-time feedback and analysis with an algorithm that is able to distinguish and select the most reactive pathways, generating a reaction selection index (RSI) without need for separate work-up or purification steps. This allows the automatic navigation of a chemical network, leading to previously unreported molecules while needing only to do a fraction of the total possible reactions without any prior knowledge of the chemistry. We show the RSI correlates with reactivity and is able to search chemical space using the most reactive pathways.

  18. Physical basis of the effect of hemoglobin on the 31P NMR chemical shifts of various phosphoryl compounds

    International Nuclear Information System (INIS)

    Kirk, K.; Kuchel, P.W.

    1988-01-01

    The marked difference between the intra- and extracellular 31 P NMR chemical shifts of various phosphoryl compounds when added to a red cell suspension may be largely understood in terms of the effects of hemoglobin on the 31 P NMR chemical shifts. The presence of [oxy- or (carbonmonoxy)-] hemoglobin inside the red cell causes the bulk magnetic susceptibility of the cell cytoplasm to be significantly less than that of the external solution. This difference is sufficient to account for the difference in the intra- and extracellular chemical shifts of the two phosphate esters trimethyl phosphate and triethyl phosphate. However, in the case of the compounds dimethyl methylphosphonate, diethyl methylphosphonate, and trimethylphosphine oxide as well as the hypophosphite, phenylphosphinate, and diphenylphosphinate ions, hemoglobin exerts an additional, much larger, effect, causing the 31 P NMR resonances to shift to lower frequency in a manner that cannot be accounted for in terms of magnetic susceptibility. Lysozyme is a protein structurally unrelated to hemoglobin and was shown to cause similar shifts to lower frequency of the resonances of these six compounds; this suggests that the mechanism may involve a property of proteins in general and not a specific property of hemoglobin. The effect of different solvents on the chemical shifts of the eight phosphoryl compounds provided an insight into the possible physical basis of the effect. It is proposed that, in addition to magnetic susceptibility effects, hemoglobin exerts its influence on phosphoryl chemical shifts by disrupting the hydrogen bonding of the phosphoryl group to solvent water

  19. Chemical Reactivity as Described by Quantum Chemical Methods

    Directory of Open Access Journals (Sweden)

    F. De Proft

    2002-04-01

    Full Text Available Abstract: Density Functional Theory is situated within the evolution of Quantum Chemistry as a facilitator of computations and a provider of new, chemical insights. The importance of the latter branch of DFT, conceptual DFT is highlighted following Parr's dictum "to calculate a molecule is not to understand it". An overview is given of the most important reactivity descriptors and the principles they are couched in. Examples are given on the evolution of the structure-property-wave function triangle which can be considered as the central paradigm of molecular quantum chemistry to (for many purposes a structure-property-density triangle. Both kinetic as well as thermodynamic aspects can be included when further linking reactivity to the property vertex. In the field of organic chemistry, the ab initio calculation of functional group properties and their use in studies on acidity and basicity is discussed together with the use of DFT descriptors to study the kinetics of SN2 reactions and the regioselectivity in Diels Alder reactions. Similarity in reactivity is illustrated via a study on peptide isosteres. In the field of inorganic chemistry non empirical studies of adsorption of small molecules in zeolite cages are discussed providing Henry constants and separation constants, the latter in remarkable good agreement with experiments. Possible refinements in a conceptual DFT context are presented. Finally an example from biochemistry is discussed : the influence of point mutations on the catalytic activity of subtilisin.

  20. Fish hemoglobins

    OpenAIRE

    Souza,P.C. de; Bonilla-Rodriguez,G.O.

    2007-01-01

    Vertebrate hemoglobin, contained in erythrocytes, is a globular protein with a quaternary structure composed of 4 globin chains (2 alpha and 2 beta) and a prosthetic group named heme bound to each one. Having myoglobin as an ancestor, hemoglobin acquired the capacity to respond to chemical stimuli that modulate its function according to tissue requirements for oxygen. Fish are generally submitted to spatial and temporal O2 variations and have developed anatomical, physiological and biochemica...

  1. Reactivity of Dual-Use Decontaminants with Chemical Warfare Agents

    Science.gov (United States)

    2016-07-01

    REACTIVITY OF DUAL-USE DECONTAMINANTS WITH CHEMICAL WARFARE AGENTS ECBC-TR-1384... Decontaminants with Chemical Warfare Agents 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Willis, Matthew P...extraction) of chemical warfare agents from materials. 15. SUBJECT TERMS GD HD Decontamination Hazard mitigation VX Chemical warfare agent Liquid-phase

  2. Nondestructive Reactivation of Chemical Protective Garments

    National Research Council Canada - National Science Library

    Chang, Kuo

    1995-01-01

    .... Complete reactivation was achieved when the aqueous/ i-propanol/ iodine displacement method of Manes, which removed all but pure hydrocarbon oil soils from the current overgarment Type III foam...

  3. Fluxes of chemically reactive species inferred from mean concentration measurements

    NARCIS (Netherlands)

    Galmarini, S.; Vilà-Guerau De Arellano, J.; Duyzer, J.H.

    1997-01-01

    A method is presented for the calculation of the fluxes of chemically reactive species on the basis of routine measurements of meteorological variables and chemical species. The method takes explicity into account the influence of chemical reactions on the fluxes of the species. As a demonstration

  4. Reactivating Fetal Hemoglobin Expression in Human Adult Erythroblasts Through BCL11A Knockdown Using Targeted Endonucleases

    Directory of Open Access Journals (Sweden)

    Carmen F Bjurström

    2016-01-01

    Full Text Available We examined the efficiency, specificity, and mutational signatures of zinc finger nucleases (ZFNs, transcriptional activator-like effector nucleases (TALENs, and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9 systems designed to target the gene encoding the transcriptional repressor BCL11A, in human K562 cells and human CD34+ progenitor cells. ZFNs and TALENs were delivered as in vitro transcribed mRNA through electroporation; CRISPR/Cas9 was codelivered by Cas9 mRNA with plasmid-encoded guideRNA (gRNA (pU6.g1 or in vitro transcribed gRNA (gR.1. Analyses of efficacy revealed that for these specific reagents and the delivery methods used, the ZFNs gave rise to more allelic disruption in the targeted locus compared to the TALENs and CRISPR/Cas9, which was associated with increased levels of fetal hemoglobin in erythroid cells produced in vitro from nuclease-treated CD34+ cells. Genome-wide analysis to evaluate the specificity of the nucleases revealed high specificity of this specific ZFN to the target site, while specific TALENs and CRISPRs evaluated showed off-target cleavage activity. ZFN gene-edited CD34+ cells had the capacity to engraft in NOD-PrkdcSCID-IL2Rγnull mice, while retaining multi-lineage potential, in contrast to TALEN gene-edited CD34+ cells. CRISPR engraftment levels mirrored the increased relative plasmid-mediated toxicity of pU6.g1/Cas9 in hematopoietic stem/progenitor cells (HSPCs, highlighting the value for the further improvements of CRISPR/Cas9 delivery in primary human HSPCs.

  5. Nitrosylated hemoglobin levels in human venous erythrocytes correlate with vascular endothelial function measured by digital reactive hyperemia.

    Directory of Open Access Journals (Sweden)

    Irina I Lobysheva

    Full Text Available Impaired nitric oxide (NO-dependent endothelial function is associated with the development of cardiovascular diseases. We hypothesized that erythrocyte levels of nitrosylated hemoglobin (HbNO-heme may reflect vascular endothelial function in vivo. We developed a modified subtraction method using Electron Paramagnetic Resonance (EPR spectroscopy to identify the 5-coordinate α-HbNO (HbNO concentration in human erythrocytes and examined its correlation with endothelial function assessed by peripheral arterial tonometry (PAT. Changes in digital pulse amplitude were measured by PAT during reactive hyperemia following brachial arterial occlusion in a group of healthy volunteers (50 subjects. Erythrocyte HbNO levels were measured at baseline and at the peak of hyperemia. We digitally subtracted an individual model EPR signal of erythrocyte free radicals from the whole EPR spectrum to unmask and quantitate the HbNO EPR signals.Mean erythrocyte HbNO concentration at baseline was 219+/-12 nmol/L (n = 50. HbNO levels and reactive hyperemia (RH indexes were higher in female (free of contraceptive pills than male subjects. We observed a dynamic increase of HbNO levels in erythrocytes isolated at 1-2 min of post-occlusion hyperemia (120+/-8% of basal levels; post-occlusion HbNO levels were correlated with basal levels. Both basal and post-occlusion HbNO levels were significantly correlated with reactive hyperemia (RH indexes (r = 0.58; P<0.0001 for basal HbNO.The study demonstrates quantitative measurements of 5-coordinate α-HbNO in human venous erythrocytes, its dynamic physiologic regulation and correlation with endothelial function measured by tonometry during hyperemia. This opens the way to further understanding of in vivo determinants of NO bioavailability in human circulation.

  6. Chemical reactor modeling multiphase reactive flows

    CERN Document Server

    Jakobsen, Hugo A

    2014-01-01

    Chemical Reactor Modeling closes the gap between Chemical Reaction Engineering and Fluid Mechanics.  The second edition consists of two volumes: Volume 1: Fundamentals. Volume 2: Chemical Engineering Applications In volume 1 most of the fundamental theory is presented. A few numerical model simulation application examples are given to elucidate the link between theory and applications. In volume 2 the chemical reactor equipment to be modeled are described. Several engineering models are introduced and discussed. A survey of the frequently used numerical methods, algorithms and schemes is provided. A few practical engineering applications of the modeling tools are presented and discussed. The working principles of several experimental techniques employed in order to get data for model validation are outlined. The monograph is based on lectures regularly taught in the fourth and fifth years graduate courses in transport phenomena and chemical reactor modeling, and in a post graduate course in modern reactor m...

  7. Chemical reactivity of cation-exchanged zeolites

    NARCIS (Netherlands)

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed

  8. Chemical reactivities of some interstellar molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M S

    1980-01-01

    Work in the area of chemical evolution during the last 25 years has revealed the formation of a large number of biologically important molecules produced from simple starting materials under relatively simple experimental conditions. Much of this work has resulted from studies under atmospheres simulating that of the primitive earth or other planets. During the last decade, progress has also been made in the identification of chemical constituents of interstellar medium. A number of these molecules are the same as those identified in laboratory experiments. Even though the conditions of the laboratory experiments are vastly different from those of the cool, low-density interstellar medium, some of the similarities in composition are too obvious to go unnoticed. The present paper highlights some of the similarities in the composition of prebiotic molecules and those discovered in the interstellar medium. Also the chemical reactions which some of the common molecules e.g., NH3, HCN, H2CO, HC(triple bond)-C-CN etc. can undergo are surveyed.

  9. Modeling food matrix effects on chemical reactivity: Challenges and perspectives.

    Science.gov (United States)

    Capuano, Edoardo; Oliviero, Teresa; van Boekel, Martinus A J S

    2017-06-29

    The same chemical reaction may be different in terms of its position of the equilibrium (i.e., thermodynamics) and its kinetics when studied in different foods. The diversity in the chemical composition of food and in its structural organization at macro-, meso-, and microscopic levels, that is, the food matrix, is responsible for this difference. In this viewpoint paper, the multiple, and interconnected ways the food matrix can affect chemical reactivity are summarized. Moreover, mechanistic and empirical approaches to explain and predict the effect of food matrix on chemical reactivity are described. Mechanistic models aim to quantify the effect of food matrix based on a detailed understanding of the chemical and physical phenomena occurring in food. Their applicability is limited at the moment to very simple food systems. Empirical modeling based on machine learning combined with data-mining techniques may represent an alternative, useful option to predict the effect of the food matrix on chemical reactivity and to identify chemical and physical properties to be further tested. In such a way the mechanistic understanding of the effect of the food matrix on chemical reactions can be improved.

  10. Differential Control of Heme Reactivity in Alpha and Beta Subunits of Hemoglobin: A Combined Raman Spectroscopic and Computational Study

    Science.gov (United States)

    2015-01-01

    The use of hybrid hemoglobin (Hb), with mesoheme substituted for protoheme, allows separate monitoring of the α or β hemes along the allosteric pathway. Using resonance Raman (rR) spectroscopy in silica gel, which greatly slows protein motions, we have observed that the Fe–histidine stretching frequency, νFeHis, which is a monitor of heme reactivity, evolves between frequencies characteristic of the R and T states, for both α or β chains, prior to the quaternary R–T and T–R shifts. Computation of νFeHis, using QM/MM and the conformational search program PELE, produced remarkable agreement with experiment. Analysis of the PELE structures showed that the νFeHis shifts resulted from heme distortion and, in the α chain, Fe–His bond tilting. These results support the tertiary two-state model of ligand binding (Henry et al., Biophys. Chem.2002, 98, 149). Experimentally, the νFeHis evolution is faster for β than for α chains, and pump–probe rR spectroscopy in solution reveals an inflection in the νFeHis time course at 3 μs for β but not for α hemes, an interval previously shown to be the first step in the R–T transition. In the α chain νFeHis dropped sharply at 20 μs, the final step in the R–T transition. The time courses are fully consistent with recent computational mapping of the R–T transition via conjugate peak refinement by Karplus and co-workers (Fischer et al., Proc. Natl. Acad. Sci. U. S. A.2011, 108, 5608). The effector molecule IHP was found to lower νFeHis selectively for α chains within the R state, and a binding site in the α1α2 cleft is suggested. PMID:24991732

  11. Slow Invariant Manifolds in Chemically Reactive Systems

    Science.gov (United States)

    Paolucci, Samuel; Powers, Joseph M.

    2006-11-01

    The scientific design of practical gas phase combustion devices has come to rely on the use of mathematical models which include detailed chemical kinetics. Such models intrinsically admit a wide range of scales which renders their accurate numerical approximation difficult. Over the past decade, rational strategies, such as Intrinsic Low Dimensional Manifolds (ILDM) or Computational Singular Perturbations (CSP), for equilibrating fast time scale events have been successfully developed, though their computation can be challenging and their accuracy in most cases uncertain. Both are approximations to the preferable slow invariant manifold which best describes how the system evolves in the long time limit. Strategies for computing the slow invariant manifold are examined, and results are presented for practical combustion systems.

  12. Study on chemical reactivity control of liquid sodium. Research program

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki; Sugiyama, Ken-ichiro; Kitagawa, Hiroshi; Oka, Nobuki; Yoshioka, Naoki

    2007-01-01

    Liquid sodium has the excellent properties as coolant of the fast breeder reactor (FBR). On the other hand, it reacts high with water and oxygen. So an innovative technology to suppress the reactivity is desired. The purpose of this study is to control the chemical reactivity of liquid sodium by dispersing the nanometer-size metallic particles (we call them Nano-particles) into liquid sodium. We focus on the atomic interaction between Nano-particles and sodium atoms. And we try to apply it to suppress the chemical reactivity of liquid sodium. Liquid sodium dispersing Nano-particles is named 'Nano-fluid'. Research programs of this study are the Nano-particles production, the evaluation of reactivity suppression of liquid sodium and the feasibility study to FBR plant. In this paper, the research programs and status are described. The important factors for particle production were understood. In order to evaluate the chemical reactivity of Nano-fluid the research programs were planned. The feasibility of the application of Nano-fluid to the coolant of FBR plant was evaluated preliminarily from the viewpoint of design and operation. (author)

  13. Fish hemoglobins

    Directory of Open Access Journals (Sweden)

    P.C. de Souza

    2007-06-01

    Full Text Available Vertebrate hemoglobin, contained in erythrocytes, is a globular protein with a quaternary structure composed of 4 globin chains (2 alpha and 2 beta and a prosthetic group named heme bound to each one. Having myoglobin as an ancestor, hemoglobin acquired the capacity to respond to chemical stimuli that modulate its function according to tissue requirements for oxygen. Fish are generally submitted to spatial and temporal O2 variations and have developed anatomical, physiological and biochemical strategies to adapt to the changing environmental gas availability. Structurally, most fish hemoglobins are tetrameric; however, those from some species such as lamprey and hagfish dissociate, being monomeric when oxygenated and oligomeric when deoxygenated. Fish blood frequently possesses several hemoglobins; the primary origin of this finding lies in the polymorphism that occurs in the globin loci, an aspect that may occasionally confer advantages to its carriers or even be a harmless evolutionary remnant. On the other hand, the functional properties exhibit different behaviors, ranging from a total absence of responses to allosteric regulation to drastic ones, such as the Root effect.

  14. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...

  15. Biochemistry Applied to Everyday Life: Chemical Equilibrium and the Transporting Function of the Hemoglobin

    Directory of Open Access Journals (Sweden)

    Carlos Mario Echeverría Palacio

    2006-12-01

    Full Text Available The hemoglobin is a blood protein which cantransport oxygen, a gas insoluble in water, todifferent organs where it is required for the properfunction; this protein also transports themetabolic products, CO2 and H+ for theirexcretion. This process depends on pH, the BPGconcentration, pO2 and pCO2. The cooperativebinding between hemoglobin and those compoundsand the conformational changes necessaryfor oxygen and CO2 uptake and release inthe specific place where they are required. Abruptchanges of atmospheric pressure associatedwith height and the exposure to other gases suchas CO present in vehicles and closed roomscould compromise the normal functioning of theorganism because their presence affects thetransport function of the hemoglobin. In thispaper, we will explain everyday phenomenarelated to the transport of gases through hemoglobinas a demonstration that a knowledge ofbiochemistry begins to be useful from now on to understand everyday situations and give usan expectation of their value to comprehendmany health problems that would be faced inthe future

  16. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    Energy Technology Data Exchange (ETDEWEB)

    Malek, Ali; Balawender, Robert, E-mail: rbalawender@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw (Poland)

    2015-02-07

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor.

  17. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    International Nuclear Information System (INIS)

    Malek, Ali; Balawender, Robert

    2015-01-01

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor

  18. Hemoglobin (image)

    Science.gov (United States)

    Hemoglobin is the most important component of red blood cells. It is composed of a protein called ... exchanged for carbon dioxide. Abnormalities of an individual's hemoglobin value can indicate defects in the normal balance ...

  19. To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions.

    Science.gov (United States)

    Bravo-Díaz, Carlos; Romsted, Laurence Stuart; Liu, Changyao; Losada-Barreiro, Sonia; Pastoriza-Gallego, Maria José; Gao, Xiang; Gu, Qing; Krishnan, Gunaseelan; Sánchez-Paz, Verónica; Zhang, Yongliang; Dar, Aijaz Ahmad

    2015-08-25

    Two important and unsolved problems in the food industry and also fundamental questions in colloid chemistry are how to measure molecular distributions, especially antioxidants (AOs), and how to model chemical reactivity, including AO efficiency in opaque emulsions. The key to understanding reactivity in organized surfactant media is that reaction mechanisms are consistent with a discrete structures-separate continuous regions duality. Aggregate structures in emulsions are determined by highly cooperative but weak organizing forces that allow reactants to diffuse at rates approaching their diffusion-controlled limit. Reactant distributions for slow thermal bimolecular reactions are in dynamic equilibrium, and their distributions are proportional to their relative solubilities in the oil, interfacial, and aqueous regions. Our chemical kinetic method is grounded in thermodynamics and combines a pseudophase model with methods for monitoring the reactions of AOs with a hydrophobic arenediazonium ion probe in opaque emulsions. We introduce (a) the logic and basic assumptions of the pseudophase model used to define the distributions of AOs among the oil, interfacial, and aqueous regions in microemulsions and emulsions and (b) the dye derivatization and linear sweep voltammetry methods for monitoring the rates of reaction in opaque emulsions. Our results show that this approach provides a unique, versatile, and robust method for obtaining quantitative estimates of AO partition coefficients or partition constants and distributions and interfacial rate constants in emulsions. The examples provided illustrate the effects of various emulsion properties on AO distributions such as oil hydrophobicity, emulsifier structure and HLB, temperature, droplet size, surfactant charge, and acidity on reactant distributions. Finally, we show that the chemical kinetic method provides a natural explanation for the cut-off effect, a maximum followed by a sharp reduction in AO efficiency with

  20. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    Science.gov (United States)

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  1. Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: the Lagrangian approach.

    Science.gov (United States)

    Soltanian, Mohamad Reza; Ritzi, Robert W; Dai, Zhenxue; Huang, Chao Cheng

    2015-03-01

    Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact of changing the mean, variance, and integral scale of K and Kd on reactive solute dispersion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Attenuation of Chemical Reactivity of Shale Matrixes following Scale Precipitation

    Science.gov (United States)

    Li, Q.; Jew, A. D.; Kohli, A. H.; Alalli, G.; Kiss, A. M.; Kovscek, A. R.; Zoback, M. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2017-12-01

    Introduction of fracture fluids into shales initiates a myriad of fluid-rock reactions that can strongly influence migration of fluid and hydrocarbon through shale/fracture interfaces. Due to the extremely low permeability of shale matrixes, studies on chemical reactivity of shales have mostly focused on shale surfaces. Shale-fluid interactions inside within shale matrixes have not been examined, yet the matrix is the primary conduit through which hydrocarbons and potential contaminants are transmitted. To characterize changes in matrix mineralogy, porosity, diffusivity, and permeability during hydraulic stimulation, we reacted Marcellus (high clay and low carbonate) and Eagle Ford (low clay and high carbonate) shale cores with fracture fluids for 3 weeks at elevated pressure and temperature (80 oC, and 77 bars). In the carbonate-poor Marcellus system, fluid pH increased from 2 to 4, and secondary Fe(OH)3 precipitates were observed in the fluid. Sulfur X-ray fluorescence maps show that fluids had saturated and reacted with the entire 1-cm-diameter core. In the carbonate-rich Eagle Ford system, pH increased from 2 to 6 due to calcite dissolution. When additional Ba2+ and SO42- were present (log10(Q/K)=1.3), extensive barite precipitation was observed in the matrix of the Eagle Ford core (and on the surface). Barite precipitation was also observed on the surface of the Marcellus core, although to a lesser extent. In the Marcellus system, the presence of barite scale attenuated diffusivity in the matrix, as demonstrated by sharply reduced Fe leaching and much less sulfide oxidation. Systematic studies in homogeneous solution show that barite scale precipitation rates are highly sensitive to pH, salinity, and the presence of organic compounds. These findings imply that chemical reactions are not confined to shale/fluid interfaces but can penetrate into shale matrices, and that barite scale formation can clog diffusion pathways for both fluid and hydrocarbon.

  3. Chemical stability of reactive skin decontamination lotion (RSDL®).

    Science.gov (United States)

    Bogan, R; Maas, H J; Zimmermann, T

    2018-09-01

    Reactive Skin Decontamination Lotion (RSDL ® ) is used for the decontamination of Chemical Warfare Agents and Toxic Industrial Compounds after dermal exposure. It has to be stockpiled over a long period and is handled in all climatic zones. Therefore stability is an essential matter of concern. In this work we describe a study to the chemical stability of RSDL ® as basis for an estimation of shelf life. We analysed RSDL ® for the active ingredient 2,3-butandione monoxime (diacetylmonooxime, DAM), the putative degradation product dimethylglyoxime (DMG) and unknown degradation products by means of a reversed phase high pressure liquid chromatography (HPLC). Calculations were done according to the Arrhenius equation. Based on the temperature dependent rate constants, the time span was calculated, until defined threshold values for DAM and DMG subject to specification and valid regulations were exceeded. The calculated data were compared to the ones gathered from stockpiled samples and samples exposed during foreign mission. The decline of DAM followed first order kinetics, while formation of DMG could be described by zero order kinetics. The rate constants were distinctively temperature dependent. Calculated data were in good accordance to the measured ones from stockpile and mission. Based on a specified acceptable DAM-content of 90% and a valid threshold value of 0.1% (w/w) for the degradation product DMG, RSDL ® proved to be stable for at least four years if stored at the recommended conditions of 15°C-30°C. If continuously stored at higher temperatures shelf life will decrease markedly. Therefore RSDL ® is an object for risk orientated quality monitoring during storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Substrate Vibrations as Promoters of Chemical Reactivity on Metal Surfaces.

    Science.gov (United States)

    Campbell, Victoria L; Chen, Nan; Guo, Han; Jackson, Bret; Utz, Arthur L

    2015-12-17

    Studies exploring how vibrational energy (Evib) promotes chemical reactivity most often focus on molecular reagents, leaving the role of substrate atom motion in heterogeneous interfacial chemistry underexplored. This combined theoretical and experimental study of methane dissociation on Ni(111) shows that lattice atom motion modulates the reaction barrier height during each surface atom's vibrational period, which leads to a strong variation in the reaction probability (S0) with surface temperature (Tsurf). State-resolved beam-surface scattering studies at Tsurf = 90 K show a sharp threshold in S0 at translational energy (Etrans) = 42 kJ/mol. When Etrans decreases from 42 kJ/mol to 34 kJ/mol, S0 decreases 1000-fold at Tsurf = 90 K, but only 2-fold at Tsurf = 475 K. Results highlight the mechanism for this effect, provide benchmarks for DFT calculations, and suggest the potential importance of surface atom induced barrier height modulation in heterogeneously catalyzed reactions, particularly on structurally labile nanoscale particles and defect sites.

  5. Impact of Hemoglobin A1c Levels on Residual Platelet Reactivity and Outcomes After Insertion of Coronary Drug-Eluting Stents (from the ADAPT-DES Study)

    DEFF Research Database (Denmark)

    Schoos, Mikkel M.; Dangas, George D.; Mehran, Roxana

    2016-01-01

    An increasing hemoglobin A1c (HbA1c) level portends an adverse cardiovascular prognosis; however, the association between glycemic control, platelet reactivity, and outcomes after percutaneous coronary intervention (PCI) with drug-eluting stents (DES) is unknown. We sought to investigate whether Hb...... With Drug Eluting Stents registry, HbA1c levels were measured as clinically indicated in 1,145 of 8,582 patients, stratified by HbA1c 8.5% (n = 171, 14.9%). HPR on clopidogrel and aspirin was defined after PCI as P2Y12 reaction units (PRU) >208...... >208 (42.5%, 50.2%, and 62.3%, p definite or probable stent thrombosis (ST; 0.9%, 2.7%, and 4.2%, p = 0.02) increased progressively with HbA1c groups. Clinically relevant bleeding was greatest in the intermediate HbA1c group (8.2% vs 13.1% vs 9.5%, p = 0.04). In adjusted models...

  6. Encoding of Fundamental Chemical Entities of Organic Reactivity Interest using chemical ontology and XML.

    Science.gov (United States)

    Durairaj, Vijayasarathi; Punnaivanam, Sankar

    2015-09-01

    Fundamental chemical entities are identified in the context of organic reactivity and classified as appropriate concept classes namely ElectronEntity, AtomEntity, AtomGroupEntity, FunctionalGroupEntity and MolecularEntity. The entity classes and their subclasses are organized into a chemical ontology named "ChemEnt" for the purpose of assertion, restriction and modification of properties through entity relations. Individual instances of entity classes are defined and encoded as a library of chemical entities in XML. The instances of entity classes are distinguished with a unique notation and identification values in order to map them with the ontology definitions. A model GUI named Entity Table is created to view graphical representations of all the entity instances. The detection of chemical entities in chemical structures is achieved through suitable algorithms. The possibility of asserting properties to the entities at different levels and the mechanism of property flow within the hierarchical entity levels is outlined. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Chemical reactivity of alkali lignin modified with laccase

    International Nuclear Information System (INIS)

    Sun, Yong; Qiu, Xueqing; Liu, Yunquan

    2013-01-01

    The modification of alkali lignin with laccase was investigated. The structural change of lignin was analyzed. The sulfonation reactivity was measured by the content of sulfonic group. The results showed the sulfonation reactivity increased to some extent under the condition of atmosphere pressure, but decreased under the condition of 0.3 MPa oxygen pressure. The analysis of Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) showed the cleavage of various ether linkages and demethylation took place in the structure of lignin to certain extent during modification with laccase, which contributed to the improvement of sulfonation reactivity. Under the condition of 0.3 MPa oxygen pressure, the ratio of s/g (guaiacyl/syringyl) increased after modification, which reduced the sulfonation reactivity of lignin. Simultaneously partial polymerization reaction, such as 4-O-5′, β-5, 5-5 and other reaction in the aromatic ring decreased the activity sites of C 2 , C 5 and C 6 . Abundant polymerization reaction of α-O increased steric hindrance of C 2 and C 6 in aromatic ring, resulting in low sulfonation reactivity of lignin. -- Highlights: ► The modification of alkali lignin with laccase was investigated. ► The sulfonation reactivity increased under the condition of atmosphere pressure. ► More content of guaiacyl and hydroxy, the less content of methoxyl, syringyl can enhance the sulfonation reactivity of lignin. ► Partial moieties polymerized each other with α-O linkgages during treatment with laccase under oxygen pressure. ► The steric hindrance on C 2 and C 6 in aromatic ring resulted in low sulfonation reaction reactivity of lignin

  8. The Reaction of Oxy Hemoglobin with Nitrite

    DEFF Research Database (Denmark)

    Hathazi, Denisa; Scurtu, Florina; Bischin, Cristina

    2018-01-01

    The autocatalytic reaction between nitrite and the oxy form of globins involves free radicals. For myoglobin (Mb), an initial binding of nitrite to the iron-coordinated oxygen molecule was proposed; the resulting ferrous-peroxynitrate species was not detected, but its decay product, the high...... to a simple kinetic model involving a transient met-aqua form, in contrast to the ferryl detected in the case of Mb in a similar reaction sequence. These data are in line with a previous observation of a transient accumulation of ferryl Hb under auto-catalytic conditions at much lower concentrations......-peroxynitrate. Density functional theory (DFT) calculations support this latter assignment. The reaction allows for differentiating between the reactivities of various chemically modified hemoglobins, including candidates for blood substitutes. Polymerization of hemoglobin slows the nitrite-induced oxidation, in sharp...

  9. Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials

    Science.gov (United States)

    2016-06-01

    2013 4. TITLE AND SUBTITLE Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials 5a...directions for future decontamination formulation approaches. 15. SUBJECT TERMS GD HD Decontamination Hazard mitigation VX Chemical warfare agent... DECONTAMINANTS TO PROVIDE HAZARD MITIGATION OF CHEMICAL WARFARE AGENTS FROM MATERIALS 1. INTRODUCTION Decontamination of materials is the

  10. The relationship between periapical lesions and the serum levels of glycosylated hemoglobin and C-reactive protein in type 2 diabetic patients.

    Science.gov (United States)

    Al-Zahrani, Mohammad S; Abozor, Basel M; Zawawi, Khalid H

    2017-01-01

    To investigate the relationship between the presence of periapical lesions (PL) and levels of glycosylated hemoglobin (HbA1c), and C-reactive protein (CRP) in patients with type 2 diabetes.  Methods: This cross-sectional study was conducted at Ibn Sina National College for Medical Studies, Jeddah, Kingdom of Saudi Arabia, between September 2013 and February 2015. Medical and dental history and Sociodemographic data were obtained from participants. Dental and periodontal examinations were conducted and blood samples were obtained to determine levels of HbA1c and CRP. The presence of PL was recorded from panoramic and periapical radiographs. Descriptive statistics and multivariable linear and logistic regression models were used for data analyses.  Results: One hundred patients were included; mean age was 48.9 ± 8.5 years. Of these patients, 14% had no PL, whereas 25% had one or 2 lesions, 32% had 3 or 4 lesions, and 29% had ≥5 PL. The mean HbA1c was 9.8% (± 2.5) mg/L and CRP was 6.9 mg/L (± 6.3). The presence of PL was significantly associated with a higher level of HbA1c independent of age, gender, probing depth, and plaque index (p=0.023). Individuals with PL were also more likely to have a high CRP level (greater than 3 mg/L) independent of the previous covariates (odds ratio: 1.19; 95% confidence interval: 1.01-1.41).  Conclusion: Periapical lesions are associated with a poorer glycemic control and a higher CRP level in type 2 diabetic patients.

  11. The relationship between periapical lesions and the serum levels of glycosylated hemoglobin and C-reactive protein in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Mohammad S. Al-Zahrani

    2017-01-01

    Full Text Available Objectives: To investigate the relationship between the presence of periapical lesions (PL and levels of glycosylated hemoglobin (HbA1c, and C-reactive protein (CRP in patients with type 2 diabetes. Methods: This cross-sectional study was conducted at Ibn Sina National College for Medical Studies, Jeddah, Kingdom of Saudi Arabia, between September 2013 and February 2015. Medical and dental history and Sociodemographic data were obtained from participants. Dental and periodontal examinations were conducted and blood samples were obtained to determine levels of HbA1c and CRP. The presence of PL was recorded from panoramic and periapical radiographs. Descriptive statistics and multivariable linear and logistic regression models were used for data analyses. Results: One hundred patients were included; mean age was 48.9 ± 8.5 years. Of these patients, 14% had no PL, whereas 25% had one or 2 lesions, 32% had 3 or 4 lesions, and 29% had ≥5 PL. The mean HbA1c was 9.8% (± 2.5 mg/L and CRP was 6.9 mg/L (± 6.3. The presence of PL was significantly associated with a higher level of HbA1c independent of age, gender, probing depth, and plaque index (p=0.023. Individuals with PL were also more likely to have a high CRP level (>3 mg/L independent of the previous covariates (odds ratio: 1.19; 95% confidence interval: 1.01-1.41. Conclusion: Periapical lesions are associated with a poorer glycemic control and a higher CRP level in type 2 diabetic patients.

  12. Reactive hydro- end chlorocarbons in the troposphere and lower stratosphere : sources, distributions, and chemical impact

    NARCIS (Netherlands)

    Scheeren, H.A.

    2003-01-01

    The work presented in this thesis focuses on measurements of chemical reactive C2 C7 non-methane hydrocarbons (NMHC) and C1 C2 chlorocarbons with atmospheric lifetimes of a few hours up to about a year. The group of reactive chlorocarbons includes the most abundant atmospheric species with large

  13. Chemical reactivity of the compressed noble gas atoms and their ...

    Indian Academy of Sciences (India)

    Attempts are made to gain insights into the effect of confinement of noble gas atoms on their various reactivity indices. Systems become harder, less polarizable and difficult to excite as the compression increases. Ionization also causes similar effects. A quantum fluid density functional technique is adopted in order to study ...

  14. Modification of chemical reactivity of enzymatic hydrolysis lignin by ultrasound treatment in dilute alkaline solutions.

    Science.gov (United States)

    Ma, Zhuoming; Li, Shujun; Fang, Guizhen; Patil, Nikhil; Yan, Ning

    2016-12-01

    In this study, we have explored various ultrasound treatment conditions for structural modification of enzymatic hydrolysis lignin (EHL) for enhanced chemical reactivity. The key structural modifications were characterized by using a combination of analytical methods, including, Fourier Transform-Infrared spectroscopy (FTIR), Proton Nuclear Magnetic Resonance ( 1 H NMR), Gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and Folin-Ciocalteu (F-C) method. Chemical reactivity of the modified EHL samples was determined by both 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and their reactivity towards formaldehyde. It was observed that the modified EHL had a higher phenolic hydroxyl group content, a lower molecular weight, a higher reactivity towards formaldehyde, and a greater antioxidant property. The higher reactivity demonstrated by the samples after treatment suggesting that ultrasound is a promising method for modifying enzymatic hydrolysis lignin for value-added applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Models for risk assessment of reactive chemicals in aquatic toxicology

    NARCIS (Netherlands)

    Freidig, Andreas Peter

    2000-01-01

    A quantitative structure property relationship (QSPR) for a,b-unsaturated carboxylates (mainly acrylates and methacrylates) was established in chapter 2. Chemical reaction rate constants were measured for 12 different chemicals with three different nucleophiles, namely H 2 O, OH - and glutathione

  16. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    Science.gov (United States)

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas.

  17. A Conceptual Framework for Predicting the Toxicity of Reactive Chemicals: Modeling Soft Electrophilicity

    Science.gov (United States)

    Although the literature is replete with QSAR models developed for many toxic effects caused by reversible chemical interactions, the development of QSARs for the toxic effects of reactive chemicals lacks a consistent approach. While limitations exit, an appropriate starting-point...

  18. Communication: Enhanced chemical reactivity of graphene on a Ni(111) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi [Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I–35131 Padova, Italy and DEMOCRITOS National Simulation Center of the Italian Istituto Officina dei Materiali (IOM) of the Italian National Research Council (CNR), Trieste (Italy)

    2016-03-21

    Due to the unique combination of structural, mechanical, and transport properties, graphene has emerged as an exceptional candidate for catalysis applications. The low chemical reactivity caused by sp{sup 2} hybridization and strongly delocalized π electrons, however, represents a main challenge for straightforward use of graphene in its pristine, free-standing form. Following recent experimental indications, we show that due to charge hybridization, a Ni(111) substrate can enhance the chemical reactivity of graphene, as exemplified by the interaction with the CO molecule. While CO only physisorbs on free-standing graphene, chemisorption of CO involving formation of ethylene dione complexes is predicted in Ni(111)-graphene. Higher chemical reactivity is also suggested in the case of oxidized graphene, opening the way to a simple and efficient control of graphene chemical properties, devoid of complex defect patterning or active metallic structures deposition.

  19. Communication: Enhanced chemical reactivity of graphene on a Ni(111) substrate

    International Nuclear Information System (INIS)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2016-01-01

    Due to the unique combination of structural, mechanical, and transport properties, graphene has emerged as an exceptional candidate for catalysis applications. The low chemical reactivity caused by sp 2 hybridization and strongly delocalized π electrons, however, represents a main challenge for straightforward use of graphene in its pristine, free-standing form. Following recent experimental indications, we show that due to charge hybridization, a Ni(111) substrate can enhance the chemical reactivity of graphene, as exemplified by the interaction with the CO molecule. While CO only physisorbs on free-standing graphene, chemisorption of CO involving formation of ethylene dione complexes is predicted in Ni(111)-graphene. Higher chemical reactivity is also suggested in the case of oxidized graphene, opening the way to a simple and efficient control of graphene chemical properties, devoid of complex defect patterning or active metallic structures deposition.

  20. Phase rule calculations and the thermodynamics of reactive systems under chemical equilibrium

    Directory of Open Access Journals (Sweden)

    PLATT G. M.

    1999-01-01

    Full Text Available In this paper, we examine the resolution of some phase rule problems within the context of multiple chemical equilibrium reactions, using cubic equations of state and an activity coefficient model. Bubble and dew reactive surfaces, reactive azeotropic loci and reactive critical loci are generated and presented in graphical form. Also isobaric bubble and dew reactive enthalpy loci, which may be useful in the modeling of reactive distillation operations, are depicted. All the formalism here employed is developed within the coordinate transformation of Ung and Doherty, which is appropriate for equilibrium reactive or multireactive systems. The major contribution of this work is the determination of critical loci for reactive or multireactive equilibrium systems. Since it is known that for some class of chemical reactions the kinetics and product distribution exhibit high sensitivity to pressure near criticality, the present study may be useful as a predicting tool in these cases if the chemical equilibrium condition is not too far from the real phenomenon.

  1. Hemoglobin C disease

    Science.gov (United States)

    Clinical hemoglobin C ... Hemoglobin C is an abnormal type of hemoglobin, the protein in red blood cells that carries oxygen. It is ... Americans. You are more likely to have hemoglobin C disease if someone in your family has had ...

  2. Evaluation of the chemical reactivity in lignin precursors using the Fukui function.

    Science.gov (United States)

    Martinez, Carmen; Rivera, José L; Herrera, Rafael; Rico, José L; Flores, Nelly; Rutiaga, José G; López, Pablo

    2008-02-01

    The hydroxycinnamyl alcohols: p-coumarol, coniferol and sinapol are considered the basic units and precursors of lignins models. In this work, the specific reactivity of these molecules was studied. We investigate their intrinsic chemical reactivity in terms of the Fukui function, applying the principle of hard and soft acids and bases (HSAB) in the framework of the density functional theory (DFT). Comparisons of their nucleophilic, electrophilic and free radical reactivity show their most probably sites to form linkages among them. It is found that the most reactive sites, for reactions involving free radicals, are the carbons at the beta-position in the p-coumarol and sinapol molecules, whilst the regions around the carbon-oxygen bond of the phenoxyl group are the most reactive in coniferol.

  3. Reactive formulations for a neutralization of toxic industrial chemicals

    Science.gov (United States)

    Tucker, Mark D [Albuqueruqe, NM; Betty, Rita G [Rio Rancho, NM

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  4. Chemical and Photochemical Reactivity in Microemulsions and Waterless Microemulsions.

    Science.gov (United States)

    1988-02-10

    virtually the same as that found in the alcohol rich microemulsion A. This value is also close to that found in pure butanol (= 5.0 - table I). It would...formamide or alcohol rich). RESEARCH PATTERN -Supplementing the physical chemical study of the microemulsion medium involving ionic surfactants with density...SAMII (1/02/1988) Ii&N 3 Part II - OXYDATIONS BY HYDROPEROXIDES IN MICROEMULSIONS E. OLIVEROS and M.T. MAURETTE During the past six months, the financial

  5. Importance of asparagine on the conformational stability and chemical reactivity of selected anti-inflammatory peptides

    Energy Technology Data Exchange (ETDEWEB)

    Soriano-Correa, Catalina, E-mail: csorico@comunidad.unam.mx [Química Computacional, Facultad de Estudios Superiores (FES)-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230 México, D.F. (Mexico); Barrientos-Salcedo, Carolina [Laboratorio de Química Médica y Quimiogenómica, Facultad de Bioanálisis Campus Veracruz-Boca del Río, Universidad Veracruzana, C.P. 91700 Veracruz (Mexico); Campos-Fernández, Linda; Alvarado-Salazar, Andres [Química Computacional, Facultad de Estudios Superiores (FES)-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, C.P. 09230 México, D.F. (Mexico); Esquivel, Rodolfo O. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa (UAM-Iztapalapa), C.P. 09340 México, D.F. (Mexico)

    2015-08-18

    Highlights: • Asparagine plays an important role to anti-inflammatory effect of peptides. • The electron-donor substituent groups favor the formation of the hydrogen bonds, which contribute in the structural stability of peptides. • Chemical reactivity and the physicochemical features are crucial in the biological functions of peptides. - Abstract: Inflammatory response events are initiated by a complex series of molecular reactions that generate chemical intermediaries. The structure and properties of peptides and proteins are determined by the charge distribution of their side chains, which play an essential role in its electronic structure and physicochemical properties, hence on its biological functionality. The aim of this study was to analyze the effect of changing one central amino acid, such as substituting asparagine for aspartic acid, from Cys–Asn–Ser in aqueous solution, by assessing the conformational stability, physicochemical properties, chemical reactivity and their relationship with anti-inflammatory activity; employing quantum-chemical descriptors at the M06-2X/6-311+G(d,p) level. Our results suggest that asparagine plays a more critical role than aspartic acid in the structural stability, physicochemical features, and chemical reactivity of these tripeptides. Substituent groups in the side chain cause significant changes on the conformational stability and chemical reactivity, and consequently on their anti-inflammatory activity.

  6. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    Science.gov (United States)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  7. Effect of mechanical activation on structure changes and reactivity in further chemical modification of lignin.

    Science.gov (United States)

    Zhao, Xiaohong; Zhang, Yanjuan; Hu, Huayu; Huang, Zuqiang; Yang, Mei; Chen, Dong; Huang, Kai; Huang, Aimin; Qin, Xingzhen; Feng, Zhenfei

    2016-10-01

    Lignin was treated by mechanical activation (MA) in a customized stirring ball mill, and the structure and reactivity in further esterification were studied. The chemical structure and morphology of MA-treated lignin and the esterified products were analyzed by chemical analysis combined with UV/vis spectrometer, FTIR,NMR, SEM and particle size analyzer. The results showed that MA contributed to the increase of aliphatic hydroxyl, phenolic hydroxyl, carbonyl and carboxyl groups but the decrease of methoxyl groups. Moreover, MA led to the decrease of particle size and the increase of specific surface area and roughness of surface in lignin. The reactivity of lignin was enhanced significantly for the increase of hydroxyl content and the improvement of mass transfer in chemical reaction caused by the changes of molecular structure and morphological structure. The process of MA is green and simple, and is an effective method for enhancing the reactivity of lignin. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, B F [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1998-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  9. Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows

    Energy Technology Data Exchange (ETDEWEB)

    Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)

    1997-12-31

    The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.

  10. An experimental study of steam explosions involving chemically reactive metal

    International Nuclear Information System (INIS)

    Cho, D.H.; Armstrong, D.R.; Gunther, W.H.; Basu, S.

    1997-01-01

    An experimental study of molten zirconium-water explosions was conducted. A 1-kg mass of zirconium melt was dropped into a column of water. Explosions took place only when an external trigger was used. In the triggered tests, the extent of oxidation of the zirconium melt was very extensive. However, the explosion energetics estimated were found to be very small compared to the potential chemical energy available from the oxidation reaction. Zirconium is of particular interest, since it is a component of the core materials of the current nuclear power reactors. This paper describes the test apparatus and summarizes the results of four tests conducted using pure zirconium melt

  11. Chemical stability and in chemico reactivity of 24 fragrance ingredients of concern for skin sensitization risk assessment.

    Science.gov (United States)

    Avonto, Cristina; Wang, Mei; Chittiboyina, Amar G; Vukmanovic, Stanislav; Khan, Ikhlas A

    2018-02-01

    Twenty-four pure fragrance ingredients have been identified as potential concern for skin sensitization. Several of these compounds are chemically unstable and convert into reactive species upon exposure to air or light. In the present work, a systematic investigation of the correlation between chemical stability and reactivity has been undertaken. The compounds were subjected to forced photodegradation for three months and the chemical changes were studied with GC-MS. At the end of the stability study, two-thirds of the samples were found to be unstable. The generation of chemically reactive species was investigated using the in chemico HTS-DCYA assay. Eleven and fourteen compounds were chemically reactive before and after three months, respectively. A significant increase in reactivity upon degradation was found for isoeugenol, linalool, limonene, lyral, citronellol and geraniol; in the same conditions, the reactivity of hydroxycitronellal decreased. The non-reactive compounds α-isomethyl ionone, benzyl alcohol, amyl cinnamal and farnesol became reactive after photo-oxidative degradation. Overall, forced degradation resulted in four non-reactive fragrance compounds to display in chemico thiol reactivity, while ten out of 24 compounds remained inactive. Chemical degradation does not necessarily occur with generation of reactive species. Non-chemical activation may be involved for the 10 stable unreactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Chemical and physical characteristics of phosphate rock materials of varying reactivity

    International Nuclear Information System (INIS)

    Syers, J.K.; Currie, L.D.

    1986-01-01

    Several chemical and physical properties of 10 phosphate rock (PR) materials of varying reactivity were evaluated. The highest concentrations of As and Cd were noted. Because Cd and U can accumulate in biological systems, it may be necessary to direct more attention towards the likely implications of Cd and U concentrations when evaluating a PR for direct application. Three sequential extractions with 2% citric acid may be more useful for comparing the chemical solubility of PR materials, particularly for those containing appreciable CaC0 3 . The poor relationship obtained between surface area and the solubility of the PR materials suggests that surface area plays a secondary role to chemical reactivity in controlling the solubility of a PR in a chemical extractant. A Promesh plot provided an effective method for describing the particle-size characteristics of those PR materials which occurred as sands. Fundamental characteristics, such as mean particle size and uniformity, can readily be determined from a Promesh plot. (author)

  13. Coal structure and reactivity changes induced by chemical demineralisation

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Pevida, C.; Garcia, R.; Pis, J.J. [Department of Energy and Environment, Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Steel, K.M.; Patrick, J.W. [Fuel Technology Group, School of Chemical, Environmental and Mining Engineering, Nottingham University, University Park, NG7 2RD Nottingham (United Kingdom)

    2002-12-01

    The aim of this work was to determine the influence that an advanced demineralisation procedure has on the combustion characteristics of coal. A high-volatile bituminous coal with 6.2% ash content was treated in a mixture of hydrofluoric and fluorosilicic acids (HF/H{sub 2}SiF{sub 6}). Nitric acid was used either as a pretreatment, or as a washing stage after HF/H{sub 2}SiF{sub 6} demineralisation, with an ash content as low as 0.3% being attained in the latter case. The structural changes produced by the chemical treatment were evaluated by comparison of the FTIR spectra of the raw and treated coal samples. The devolatilisation and combustibility behaviour of the samples was studied by using a thermobalance coupled to a mass spectrometer (TGA-MS) for evolved gas analysis. The combustibility characteristics of the cleaned samples were clearly improved, there being a decrease in SO{sub 2} emissions.

  14. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  15. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application.

    Science.gov (United States)

    Vabbilisetty, Pratima; Boron, Mallorie; Nie, Huan; Ozhegov, Evgeny; Sun, Xue-Long

    2018-02-28

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG 2000 -DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG 2000 -DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids.

  16. Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding.

    Science.gov (United States)

    Gandhiraman, R P; Gubala, V; Le, N C H; Nam, Le Cao Hoai; Volcke, C; Doyle, C; James, B; Daniels, S; Williams, D E

    2010-08-01

    The performances of new polymeric materials with excellent optical properties and good machinability have led the biomedical diagnostics industry to develop cheap disposable biosensor platforms appropriate for point of care applications. Zeonor, a type of cycloolefin polymer (COP), is one such polymer that presents an excellent platform for biosensor chips. These polymer substrates have to be modified to have suitable physico-chemical properties for immobilizing proteins. In this work, we have demonstrated the amine functionalization of COP substrates, by plasma enhanced chemical vapour deposition (PECVD), through codeposition of ethylene diamine and 3-aminopropyltriethoxysilane precursors, for building chemistries on the plastic chip. The elemental composition, adhesion, ageing and reactivity of the plasma polymerized film were examined. The Si-O functionality present in amino silane contributed for a good interfacial adhesion of the coating to COP substrates and also acted as a network building layer for plasma polymerization. Wet chemical modification was then carried out on the amine functionalized chips to create chemically reactive isothiocyanate sites and protein repellent fluorinated sites on the same chip. The density of the reactive and repellent sites was altered by choosing appropriate mixtures of homofunctional phenyldiisothiocyanate (PDITC), pentafluoroisothiocyanate (5FITC) and phenylisothiocyanate (PITC) compounds. By tailoring the density of reactive binding sites and protein repellent sites, the non-specific binding of ssDNA has been decreased to a significant extent. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Unifying principles of irreversibility minimization for efficiency maximization in steady-flow chemically-reactive engines

    International Nuclear Information System (INIS)

    Ramakrishnan, Sankaran; Edwards, Christopher F.

    2014-01-01

    Systems research has led to the conception and development of various steady-flow, chemically-reactive, engine cycles for stationary power generation and propulsion. However, the question that remains unanswered is: What is the maximum-efficiency steady-flow chemically-reactive engine architecture permitted by physics? On the one hand the search for higher-efficiency cycles continues, often involving newer processes and devices (fuel cells, carbon separation, etc.); on the other hand the design parameters for existing cycles are continually optimized in response to improvements in device engineering. In this paper we establish that any variation in engine architecture—parametric change or process-sequence change—contributes to an efficiency increase via one of only two possible ways to minimize total irreversibility. These two principles help us unify our understanding from a large number of parametric analyses and cycle-optimization studies for any steady-flow chemically-reactive engine, and set a framework to systematically identify maximum-efficiency engine architectures. - Highlights: • A unified thermodynamic model to study chemically-reactive engine architectures is developed. • All parametric analyses of efficiency are unified by two irreversibility-minimization principles. • Variations in internal energy transfers yield a net work increase that is greater than engine irreversibility reduced. • Variations in external energy transfers yield a net work increase that is lesser than engine irreversibility reduced

  18. Chemical Reactive Anchoring Lipids with Different Performance for Cell Surface Re-engineering Application

    Science.gov (United States)

    2018-01-01

    Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell’s functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine–poly(ethylene glycol)–dibenzocyclooctyne (DSPE–PEG2000–DBCO) and cholesterol–PEG–dibenzocyclooctyne (CHOL–PEG2000–DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.7 cells as a model cell. Briefly, RAW 264.7 cells were incubated with anchor lipids under various concentrations and at different incubation times. The successful incorporation of the chemical reactive anchor lipids was confirmed by biotinylation via copper-free click chemistry, followed by streptavidin-fluorescein isothiocyanate binding. In comparison, the cholesterol-based anchor lipid afforded a higher cell membrane incorporation efficiency with less internalization than the phospholipid-based anchor lipid. Low cytotoxicity of both anchor lipids upon incorporation into the RAW 264.7 cells was observed. Further, the cell membrane residence time of the cholesterol-based anchor lipid was evaluated with confocal microscopy. This study suggests the potential cell surface re-engineering applications of the chemical reactive anchor lipids. PMID:29503972

  19. Fast screening of analytes for chemical reactions by reactive low-temperature plasma ionization mass spectrometry.

    Science.gov (United States)

    Zhang, Wei; Huang, Guangming

    2015-11-15

    Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Chemical reactivity of analogous technetium(V) and rhenium(V) dioxo complexes

    International Nuclear Information System (INIS)

    Kremer, C.; Kremer, E.; Leon, A.

    1993-01-01

    All complexes of the series [MO 2 L 2 ] + (M = Tc, Re, L = ethylenediamine (en), 1,3-diaminopropane (1,3-dap)) have been synthesized and their chemical reactivities investigated. The following properties were studied: stability of the aqueous solutions at different pH values, substitution kinetics, lipophilicity and protein binding. The complexes show very similar reactivity in aqueous solution. From a radiopharmaceutical point of view, no significant difference in their in vivo behavior is expected. (author) 12 refs.; 1 fig.; 3 tabs

  1. Chemical reactivity of potential ferrocyanide precipitates in Hanford tanks with nitrates and nitrites

    International Nuclear Information System (INIS)

    Scheele, R.D.; Burger, L.L.; Tingey, J.M.; Hallen, R.T.; Lilga, M.A.

    1992-01-01

    Ferrocyanide-bearing wastes were produced at the Hanford Site during the 1950s. Safe storage of these wastes has recently drawn increased attention. As a result of these concerns, the Pacific Northwest Laboratory was chartered to investigate the chemical reactivity and explosivity of the ferrocyanide-bearing wastes. We have investigated the thermal sensitivity of synthetic wastes and ferrocyanides and observed oxidation at 130 deg. C and explosions down to 295 deg. C. Coupled with thermodynamic calculations, these thermal studies have also shown a dependence of the reactivity on the synthetic waste composition, which is dependent on the solids settling behavior. (author)

  2. Self-organised synthesis of Rh nanostructures with tunable chemical reactivity

    Directory of Open Access Journals (Sweden)

    Lizzit S

    2007-01-01

    Full Text Available AbstractNonequilibrium periodic nanostructures such as nanoscale ripples, mounds and rhomboidal pyramids formed on Rh(110 are particularly interesting as candidate model systems with enhanced catalytic reactivity, since they are endowed with steep facets running along nonequilibrium low-symmetry directions, exposing a high density of undercoordinated atoms. In this review we report on the formation of these novel nanostructured surfaces, a kinetic process which can be controlled by changing parameters such as temperature, sputtering ion flux and energy. The role of surface morphology with respect to chemical reactivity is investigated by analysing the carbon monoxide dissociation probability on the different nanostructured surfaces.

  3. Computational Study of Chemical Reactivity Using Information-Theoretic Quantities from Density Functional Reactivity Theory for Electrophilic Aromatic Substitution Reactions.

    Science.gov (United States)

    Wu, Wenjie; Wu, Zemin; Rong, Chunying; Lu, Tian; Huang, Ying; Liu, Shubin

    2015-07-23

    The electrophilic aromatic substitution for nitration, halogenation, sulfonation, and acylation is a vastly important category of chemical transformation. Its reactivity and regioselectivity is predominantly determined by nucleophilicity of carbon atoms on the aromatic ring, which in return is immensely influenced by the group that is attached to the aromatic ring a priori. In this work, taking advantage of recent developments in quantifying nucleophilicity (electrophilicity) with descriptors from the information-theoretic approach in density functional reactivity theory, we examine the reactivity properties of this reaction system from three perspectives. These include scaling patterns of information-theoretic quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy and information gain at both molecular and atomic levels, quantitative predictions of the barrier height with both Hirshfeld charge and information gain, and energetic decomposition analyses of the barrier height for the reactions. To that end, we focused in this work on the identity reaction of the monosubstituted-benzene molecule reacting with hydrogen fluoride using boron trifluoride as the catalyst in the gas phase. We also considered 19 substituting groups, 9 of which are ortho/para directing and the other 9 meta directing, besides the case of R = -H. Similar scaling patterns for these information-theoretic quantities found for stable species elsewhere were disclosed for these reactions systems. We also unveiled novel scaling patterns for information gain at the atomic level. The barrier height of the reactions can reliably be predicted by using both the Hirshfeld charge and information gain at the regioselective carbon atom. The energy decomposition analysis ensued yields an unambiguous picture about the origin of the barrier height, where we showed that it is the electrostatic interaction that plays the dominant role, while the roles played by exchange-correlation and

  4. RICE: a computer program for multicomponent chemically reactive flows at all speeds

    International Nuclear Information System (INIS)

    Rivard, W.C.; Farmer, O.A.; Butler, T.D.

    1974-11-01

    The fluid dynamics of chemically reactive mixtures are calculated at arbitrary flow speeds with the RICE program. The dynamics are governed by the two-dimensional, time-dependent Navier-Stokes equations together with the species transport equations and the mass-action rate equations for the chemical reactions. The mass and momentum equations for the mixture are solved implicitly by the ICE technique. The equations for total energy and species transport are solved explicitly while the chemical rate equations are solved implicitly with a time step that may be a submultiple of the hydrodynamic time step. Application is made to continuous wave HF chemical lasers to compute the supersonic mixing and chemical reactions that take place in the lasing cavity. (U.S.)

  5. Enhancing the design of in situ chemical barriers with multicomponent reactive transport modeling

    International Nuclear Information System (INIS)

    Sevougian, S.D.; Steefel, C.I.; Yabusaki, S.B.

    1994-11-01

    This paper addresses the need for systematic control of field-scale performance in the emplacement and operation of in situ chemical treatment barriers; in particular, it addresses the issue of how the local coupling of reaction kinetics and material heterogeneities at the laboratory or bench scale can be accurately upscaled to the field. The authors have recently developed modeling analysis tools that can explicitly account for all relevant chemical reactions that accompany the transport of reagents and contaminants through a chemically and physically heterogeneous subsurface rock or soil matrix. These tools are incorporated into an enhanced design methodology for in situ chemical treatment technologies, and the new methodology is demonstrated in the ongoing design of a field experiment for the In Situ Redox Manipulation (ISRM) project at the U.S. Department of Energy (DOE) Hanford Site. The ISRM design approach, which systematically integrates bench-scale and site characterization information, provides an ideal test for the new reactive transport techniques. The need for the enhanced chemistry capability is demonstrated by an example that shows how intra-aqueous redox kinetics can affect the transport of reactive solutes. Simulations are carried out on massively parallel computer architectures to resolve the influence of multiscale heterogeneities on multicomponent, multidimensional reactive transport. The technology will soon be available to design larger-scale remediation schemes

  6. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    International Nuclear Information System (INIS)

    Nicholls, A.L. III; Tarver, C.M.

    1998-01-01

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed

  7. The chemical reactivity and structure of collagen studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wess, T.J.; Wess, L.; Miller, A. [Univ. of Stirling (United Kingdom)

    1994-12-31

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon.

  8. The chemical reactivity and structure of collagen studied by neutron diffraction

    International Nuclear Information System (INIS)

    Wess, T.J.; Wess, L.; Miller, A.

    1994-01-01

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon

  9. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse: Chapter 12

    Science.gov (United States)

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  10. Reactive chemically modified piezoelectric crystal detectors: A new class of high-selectivity sensors

    International Nuclear Information System (INIS)

    Fadeev, A.Yu.; Filatov, A.L.; Lisichkin, G.V.

    1994-01-01

    A great number of works have focused on the study of properties of modified piezoelectric quartz crystal detectors (PQCDs) coated with sorbing substrates and on applying sensors based on them for the analysis of diluted gas mixtures and solutions. This work offers a new class of gravemetric sensors characterized by a reversible chemical reaction that occurs on their surface. Silica films are proposed as a sorbing coating of quartz detectors, and a chemical modification of a surface is suggested for covalent fixation of the necessary compounds. PQCDs were chemically modified with reactive diene derivatives that can also act as dienophiles. Hexachlorocyclopentadiene (HCCPD, resonater I) and cyclopentadiene (CPD, resonator II) were fixed on a PQCD surface in several stages. After treatment with the resonaters, the PQCD in a CPD gas phase exhibited time dependent frequency shifts from 20-100 Hz. The results suggest that there is a reversible chemical reaction on the electrode surface of resonators I and II when they interact with CPD vapors. Therefore, PQCDs modified with reactive dienes were prepared for the first time and may be employed as selective sensors for CPD

  11. Automated chemical kinetic modeling via hybrid reactive molecular dynamics and quantum chemistry simulations.

    Science.gov (United States)

    Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai

    2018-06-13

    An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.

  12. Selective adsorption of bovine hemoglobin on functional TiO2 nano-adsorbents: surface physic-chemical properties determined adsorption activity

    Science.gov (United States)

    Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide

    2015-04-01

    Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.

  13. Ultraviolet light photobiology of the protozoan Tetrahymena pyriformis and chemical reactivation of DNA damage

    International Nuclear Information System (INIS)

    Wheeler, J.S.

    1988-01-01

    The tunable dye laser was developed in order to perform UV-B and UV-C (254-320 nm) action spectra studies on several different organisms. Using the laser, action spectra studies have been performed for Escherichia coli, Saccharomyces, Chlamydomonas, Caenorhabditis elegans, Paramecium, and Tetrahymena pyriformis. Studies generally indicate increasing LD 50 values with increasing wavelength. Two notable findings were made: (1) The action spectra does not follow the DNA absorption spectra at 280, 290 and 295 nm; (2) The repair competent/repair defective sensitization factor does not remain constant throughout the wavelength region. In addition it was found that the repair defective strain of E. coli, Bs-1, showed an increase in survival with increasing UV irradiation, at certain dose levels. Further experiments were designed to better characterize the reactivation. Tetrahymena were exposed to UV-C and reactivated with methyl methanesulfonate (MMS) and 4-nitro quinoline oxide (4-NQO). In both cases survival was seen to increase after chemical exposure. Likewise, UV-C was found to reactivate chemical damage (MMS)

  14. Properties of amorphous silicon thin films synthesized by reactive particle beam assisted chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyeong-Ho; Jang, Jin-Nyoung; Hong, MunPyo; Kwon, Kwang-Ho; Park, Hyung-Ho

    2010-01-01

    Amorphous silicon thin films were formed by chemical vapor deposition of reactive particle beam assisted inductively coupled plasma type with various reflector bias voltages. During the deposition, the substrate was heated at 150 o C. The effects of reflector bias voltage on the physical and chemical properties of the films were systematically studied. X-ray diffraction and Raman spectroscopy results showed that the deposited films were amorphous and the films under higher reflector voltage had higher internal energy to be easily crystallized. The chemical state of amorphous silicon films was revealed as metallic bonding of Si atoms by using X-ray photoelectron spectroscopy. An increase in reflector voltage induced an increase of surface morphology of films and optical bandgap and a decrease of photoconductivity.

  15. THE INTEGRATED USE OF COMPUTATIONAL CHEMISTRY, SCANNING PROBE MICROSCOPY, AND VIRTUAL REALITY TO PREDICT THE CHEMICAL REACTIVITY OF ENVIRONMENTAL SURFACES

    Science.gov (United States)

    In the last decade three new techniques scanning probe microscopy (SPM), virtual reality (YR) and computational chemistry ave emerged with the combined capability of a priori predicting the chemically reactivity of environmental surfaces. Computational chemistry provides the cap...

  16. Prediction of monomer reactivity in radical copolymerizations from transition state quantum chemical descriptors

    Directory of Open Access Journals (Sweden)

    Zhengde Tan

    2013-01-01

    Full Text Available In comparison with the Q-e scheme, the Revised Patterns Scheme: the U, V Version (the U-V scheme has greatly improved both its accessibility and its accuracy in interpreting and predicting the reactivity of a monomer in free-radical copolymerizations. Quantitative structure-activity relationship (QSAR models were developed to predict the reactivity parameters u and v of the U-V scheme, by applying genetic algorithm (GA and support vector machine (SVM techniques. Quantum chemical descriptors used for QSAR models were calculated from transition state species with structures C¹H3 - C²HR³• or •C¹H2 - C²H2R³ (formed from vinyl monomers C¹H²=C²HR³ + H•, using density functional theory (DFT, at the UB3LYP level of theory with 6-31G(d basis set. The optimum support vector regression (SVR model of the reactivity parameter u based on Gaussian radial basis function (RBF kernel (C = 10, ε = 10- 5 and γ = 1.0 produced root-mean-square (rms errors for the training, validation and prediction sets being 0.220, 0.326 and 0.345, respectively. The optimal SVR model for v with the RBF kernel (C = 20, ε = 10- 4 and γ = 1.2 produced rms errors for the training set of 0.123, the validation set of 0.206 and the prediction set of 0.238. The feasibility of applying the transition state quantum chemical descriptors to develop SVM models for reactivity parameters u and v in the U-V scheme has been demonstrated.

  17. Feasibility Study for the Use of Green, Bio-Based, Efficient Reactive Sorbent Material to Neutralize Chemical Warfare Agents

    Science.gov (United States)

    2012-08-02

    REPORT Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents 14. ABSTRACT 16...way cellulose, lignin and hemicelluloses interact as well as whole wood dissolution occurs in ILs. The present project was conducted to 1. REPORT...Feasibility study for the use of green, bio-based, efficient reactive sorbent material to neutralize chemical warfare agents Report Title ABSTRACT Over the

  18. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  19. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    Newsom, H.C.

    1999-01-01

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted

  20. Chemical Reactivity and Spectroscopy Explored From QM/MM Molecular Dynamics Simulations Using the LIO Code

    Directory of Open Access Journals (Sweden)

    Juan P. Marcolongo

    2018-03-01

    Full Text Available In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU, that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.

  1. Chemical reactivity and spectroscopy explored from QM/MM molecular dynamics simulations using the LIO code

    Science.gov (United States)

    Marcolongo, Juan P.; Zeida, Ari; Semelak, Jonathan A.; Foglia, Nicolás O.; Morzan, Uriel N.; Estrin, Dario A.; González Lebrero, Mariano C.; Scherlis, Damián A.

    2018-03-01

    In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU), that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.

  2. The influence of condensed tannin structure on rate of microbial mineralization and reactivity to chemical assays.

    Science.gov (United States)

    Norris, Charlotte E; Preston, Caroline M; Hogg, Karen E; Titus, Brian D

    2011-03-01

    We examined how tannin structure influences reactivity in tannin assays and carbon and nitrogen mineralization. Condensed tannins from the foliage of ten tree and shrub species and from pecan shells (Carya illinoensis) had different proportions of: (a) epicatechin (cis) and catechin (trans) isomers, (b) procyanidin (PC) and prodelphinidin (PD) monomers, and (c) different chain lengths. The response of each tannin to several widely used tannin assays was determined. Although there was some variation in response to proanthocyanidin (butanol/HCl) and Folin Ciocalteu assays, we did not deduce any predictable relationship between tannin structure and response to either assay. There was little variation in protein precipitation among the different tannins. To assess biological activity, six of the tannins were incubated with forest humus for 22 days. We determined that, while PC-based tannins remained at least partly extractable for the duration of the incubation, tannins with a high proportion of PD subunits rapidly became unextractable from soil. There was a positive correlation between net nitrogen mineralization and cis chemical structure. Carbon mineralization was enhanced initially by the addition of tannins to humus, but after 22 days, a negative correlation between the proportion of cis subunits and respiration was determined. Overall, we were not able to demonstrate consistent effects of structure on either microbial mineralization or reactivity to chemical assays; such relationships remain elusive.

  3. Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition

    Science.gov (United States)

    2017-09-30

    Report: Young Investigator Proposal, Research Area 7.4 Reactive Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer ...Chemical Systems: Multifunctional, Bimetallic Nanomaterials Prepared by Atomic Layer Electroless Deposition Report Term: 0-Other Email: pcappillino... Layer Electroless Deposition (ALED, Figure 1) is the ability to tune growth mechanism, hence growth morphology, by altering conditions. In this

  4. Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1996-01-01

    Safety assessments for radioactive waste repositories require a detailed knowledge of physical, chemical, hydrological, and geological processes for long time spans. In the past, individual models for hydraulics, transport, or geochemical processes were developed more or less separately to great sophistication for the individual processes. Such processes are especially important in the near field of a waste repository. Attempts have been made to couple at least two individual processes to get a more adequate description of geochemical systems. These models are called coupled codes; they couple predominantly a multicomponent transport model with a chemical reaction model. Here reactive transport is modeled by the sequentially coupled code MCOTAC that couples one-dimensional advective, dispersive, and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium. Transport, described by a random walk of multispecies particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term. The modular-structured code was applied to incongruent dissolution of hydrated silicate gels, to movement of multiple solid front systems, and to an artificial, numerically difficult heterogeneous redox problem. These applications show promising features with respect to applicability to relevant problems and possibilities of extensions

  5. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    T. F. Lyon

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  6. Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines

    Directory of Open Access Journals (Sweden)

    C. W. Spicer

    1994-08-01

    Full Text Available Assessment of the environmental impact of aircraft emissions is required by planners and policy makers. Seveal areas of concern are: 1. exposure of airport workers and urban residents to toxic chemicals emitted when the engines operate at low power (idle and taxi on the ground; 2. contributions to urban photochemical air pollution of aircraft volatile organic and nitrogen oxides emissions from operations around airports; and 3. emissions of nitrogen oxides and particles during high-altitude operation. The environmental impact of chemicals emitted from jet aircraft turbine engines has not been firmly established due to lack of data regarding emission rates and identities of the compounds emitted. This paper describes an experimental study of two different aircraft turbine engines designed to determine detailed organic emissions, as well as emissions of inorganic gases. Emissions were measured at several engine power settings. Measurements were made of detailed organic composition from C1 through C17, CO, CO2, NO, NOx, and polycyclic aromatic hydrocarbons. Measurements were made using a multi-port sampling pro be positioned directly behind the engine in the exhaust exit plane. The emission measurements have been used to determine the organic distribution by carbon number and the distribution by compound class at each engine power level. The sum of the organic species was compared with an independent measurement of total organic carbon to assess the carbon mass balance. A portion of the exhaust was captured and irradiated in outdoor smog chambers to assess the photochemical reactivity of the emissions with respect to ozone formation. The reactivity of emissions from the two engines was apportioned by chemical compound class.

  7. New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow

    Science.gov (United States)

    Zakeri, Ramin; Kamali Moghadam, Ramin; Mani, Mahmoud

    2017-04-01

    The modified quantum kinetic (MQK) chemical reaction model introduced by Zakeri et al. is developed for applicable cases in axisymmetric reactive rarefied gas flows using the direct simulation Monte Carlo (DSMC) method. Although, the MQK chemical model uses some modifications in the quantum kinetic (QK) method, it also employs the general soft sphere collision model and Stockmayer potential function to properly select the collision pairs in the DSMC algorithm and capture both the attraction and repulsion intermolecular forces in rarefied gas flows. For assessment of the presented model in the simulation of more complex and applicable reacting flows, first, the air dissociation is studied in a single cell for equilibrium and non-equilibrium conditions. The MQK results agree well with the analytical and experimental data and they accurately predict the characteristics of the rarefied flowfield with chemical reaction. To investigate accuracy of the MQK chemical model in the simulation of the axisymmetric flow, air dissociation is also assessed in an axial hypersonic flow around two geometries, the sphere as a benchmark case and the blunt body (STS-2) as an applicable test case. The computed results including the transient, rotational and vibrational temperatures, species concentration in the stagnation line, and also the heat flux and pressure coefficient on the surface are compared with those of the other chemical methods like the QK and total collision energy (TCE) models and available analytical and experimental data. Generally, the MQK chemical model properly simulates the chemical reactions and predicts flowfield characteristics more accurate rather than the typical QK model. Although in some cases, results of the MQK approaches match with those of the TCE method, the main point is that the MQK does not need any experimental data or unrealistic assumption of specular boundary condition as used in the TCE method. Another advantage of the MQK model is the

  8. Adsorption of a reactive dye on chemically modified activated carbons--influence of pH.

    Science.gov (United States)

    Orfão, J J M; Silva, A I M; Pereira, J C V; Barata, S A; Fonseca, I M; Faria, P C C; Pereira, M F R

    2006-04-15

    The surface chemistry of a commercial activated carbon with a slightly basic nature was modified by appropriate treatments in order to obtain two additional samples, respectively with acidic and basic properties, without changing its textural parameters significantly. Different techniques (N2 adsorption at 77 K, temperature programmed desorption, and determination of acidity, basicity, and pH at the point of zero charge) were used to characterize the adsorbents. Kinetic and equilibrium adsorption data of a selected textile reactive dye (Rifafix Red 3BN, C.I. reactive red 241) on the mentioned materials were obtained at the pH values of 2, 7, and 12. The kinetic curves are fitted using the second-order model. The respective rate constants seem to diminish progressively with the initial concentration for the more diluted solutions tested, reaching a constant value at higher concentrations, which depends on the experimental system under consideration (adsorbent and pH). In general, the Langmuir model provides the best fit for the equilibrium data. The different uptakes obtained are discussed in relation to the surface chemical properties of the adsorbents. It is shown that the adsorption of the reactive (anionic) dye on the basic sample (prepared by thermal treatment under H2 flow at 700 degrees C) is favored. This conclusion is explained on the basis of the dispersive and electrostatic interactions involved. Moreover, it is also shown that the optimal adsorption condition for all the activated carbons tested corresponds to solution pH values not higher than the pH(pzc) of the adsorbents, which may be interpreted by taking into account the electrostatic forces present.

  9. The chemical reactivity of the Martian soil and implications for future missions

    Science.gov (United States)

    Zent, Aaron P.; Mckay, Christopher P.

    1994-01-01

    Possible interpretations of the results of the Viking Biology Experiments suggest that greater than 1 ppm of a thermally labile oxidant, perhaps H2O2, and about 10 ppm of a thermally stable oxidant are present in the martian soil. We reexamine these results and discuss implications for future missions, the search for organics on Mars, and the possible health and engineering effects for human exploration. We conclude that further characterization of the reactivity of the martian regolith materials is warrented-although if our present understanding is correct the oxidant does not pose a hazard to humans. There are difficulties in explaining the reactivity of the Martian soil by oxidants. Most bulk phase compounds that are capable of oxidizing H2O to O2 per the Gas Exchange Experiment (GEx) are thermally labile or unstable against reduction by atmospheric CO2. Models invoking trapped O2 or peroxynitrates (NOO2(-)) require an unlikely geologic history for the Viking Lander 2 site. Most suggested oxidants, including H2O2, are expected to decompose rapidly under martian UV. Nonetheless, we conclude that the best model for the martian soil contains oxidants produced by heterogeneous chemical reactions with a photochemically produced atmospheric oxidant. The GEx results may be due to catalytic decomposition of an unstable oxidizing material by H2O. We show that interfacial reaction sites covering less than 1% of the available soil surfaces could explain the Viking Biology Experiments results.

  10. Reactive Chemical Vapor Deposition Method as New Approach for Obtaining Electroluminescent Thin Film Materials

    Directory of Open Access Journals (Sweden)

    Valentina V. Utochnikova

    2012-01-01

    Full Text Available The new reactive chemical vapor deposition (RCVD method has been proposed for thin film deposition of luminescent nonvolatile lanthanide aromatic carboxylates. This method is based on metathesis reaction between the vapors of volatile lanthanide dipivaloylmethanate (Ln(dpm3 and carboxylic acid (HCarb orH2Carb′ and was successfully used in case of HCarb. Advantages of the method were demonstrated on example of terbium benzoate (Tb(bz3 and o-phenoxybenzoate thin films, and Tb(bz3 thin films were successfully examined in the OLED with the following structure glass/ITO/PEDOT:PSS/TPD/Tb(bz3/Ca/Al. Electroluminescence spectra of Tb(bz3 showed only typical luminescent bands, originated from transitions of the terbium ion. Method peculiarities for deposition of compounds of dibasic acids H2Carb′ are established on example of terbium and europium terephtalates and europium 2,6-naphtalenedicarboxylate.

  11. Reactive Ion Etching as Cleaning Method Post Chemical Mechanical Polishing for Phase Change Memory Device

    International Nuclear Information System (INIS)

    Min, Zhong; Zhi-Tang, Song; Bo, Liu; Song-Lin, Feng; Bomy, Chen

    2008-01-01

    In order to improve nano-scale phase change memory performance, a super-clean interface should be obtained after chemical mechanical polishing (CMP) of Ge 2 Sb 2 Te 5 phase change films. We use reactive ion etching (RIE) as the cleaning method. The cleaning effect is analysed by scanning electron microscopy and an energy dispersive spectrometer. The results show that particle residue on the surface has been removed. Meanwhile, Ge 2 Sb 2 Te 5 material stoichiometric content ratios are unchanged. After the top electrode is deposited, current-voltage characteristics test demonstrates that the set threshold voltage is reduced from 13 V to 2.7V and the threshold current from 0.1mA to 0.025mA. Furthermore, we analyse the RIE cleaning principle and compare it with the ultrasonic method

  12. Computer tool to evaluate the cue reactivity of chemically dependent individuals.

    Science.gov (United States)

    Silva, Meire Luci da; Frère, Annie France; Oliveira, Henrique Jesus Quintino de; Martucci Neto, Helio; Scardovelli, Terigi Augusto

    2017-03-01

    Anxiety is one of the major influences on the dropout of relapse and treatment of substance abuse treatment. Chemically dependent individuals need (CDI) to be aware of their emotional state in situations of risk during their treatment. Many patients do not agree with the diagnosis of the therapist when considering them vulnerable to environmental stimuli related to drugs. This research presents a cue reactivity detection tool based on a device acquiring physiological signals connected to personal computer. Depending on the variations of the emotional state of the drug addict, alteration of the physiological signals will be detected by the computer tool (CT) which will modify the displayed virtual sets without intervention of the therapist. Developed in 3ds Max® software, the CT is composed of scenarios and objects that are in the habit of marijuana and cocaine dependent individual's daily life. The interaction with the environment is accomplished using a Human-Computer Interface (HCI) that converts incoming physiological signals indicating anxiety state into commands that change the scenes. Anxiety was characterized by the average variability from cardiac and respiratory rate of 30 volunteers submitted stress environment situations. To evaluate the effectiveness of cue reactivity a total of 50 volunteers who were marijuana, cocaine or both dependent were accompanied. Prior to CT, the results demonstrated a poor correlation between the therapists' predictions and those of the chemically dependent individuals. After exposure to the CT, there was a significant increase of 73% in awareness of the risks of relapse. We confirmed the hypothesis that the CT, controlled only by physiological signals, increases the perception of vulnerability to risk situations of individuals with dependence on marijuana, cocaine or both. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Methyl salicylate: a reactive chemical warfare agent surrogate to detect reaction with hypochlorite.

    Science.gov (United States)

    Salter, W Bruce; Owens, Jeffery R; Wander, Joseph D

    2011-11-01

    Methyl salicylate (MeS) has a rich history as an inert physical simulant for the chemical warfare agents sulfur mustard and soman, where it is used extensively for liquid- and vapor-permeation testing. Here we demonstrate possible utility of MeS as a reactivity simulant for chlorine-based decontaminants. In these experiments MeS was reacted with sodium hypochlorite varying stoichiometry, temperature, reaction time, and pH. No colored oxidation products were observed; however, chlorination of the aromatic ring occurred ortho (methyl 3-chlorosalicylate) and para (methyl 5-chlorosalicylate) to the position bearing the -OH group in both the mono- and disubstituted forms. The monosubstituted para product accumulated initially, and the ortho and 3,5-dichloro products formed over the next several hours. Yields from reactions conducted below pH 11 declined rapidly with decreasing pH. Reactions run at 40 °C produced predominantly para substitution, while those run at 0 °C produced lower yields of ortho- and para-substituted products. Reactions were also carried out on textile substrates of cotton, 50/50 nylon-cotton, and a meta aramid. The textile data broadly reproduced reaction times and stoichiometry observed in the liquid phase, but are complicated by physical and possibly chemical interactions with the fabric. These data indicate that, for hypochlorite-containing neutralizing agents operating at strongly alkaline pH, one can expect MeS to react stoichiometrically with the hypochlorite it encounters. This suggests utility of MeS in lieu of such highly hazardous surrogates as monochloroalkyl sulfides as a simulant for threat scenarios involving the stoichiometric decomposition of sulfur mustard. Specifically, the extent of coverage of the simulant on a fabric by the neutralizing agent can be directly measured. Similar reactivity toward other halogen oxidizing agents is likely but remains to be demonstrated.

  14. Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2012-06-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the exchange at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  15. Reactive hydro- end chlorocarbons in the troposphere and lower stratosphere : sources, distributions, and chemical impact

    Science.gov (United States)

    Scheeren, H. A.

    2003-09-01

    The work presented in this thesis focuses on measurements of chemical reactive C2 C7 non-methane hydrocarbons (NMHC) and C1 C2 chlorocarbons with atmospheric lifetimes of a few hours up to about a year. The group of reactive chlorocarbons includes the most abundant atmospheric species with large natural sources, which are chloromethane (CH3Cl), dichloromethane (CH2Cl2), and trichloromethane (CHCl3), and tetrachloroethylene (C2Cl4) with mainly anthropogenic sources. The NMHC and chlorocarbons are present at relatively low quantities in our atmosphere (10-12 10-9 mol mol-1 of air). Nevertheless, they play a key role in atmospheric photochemistry. For example, the oxidation of NMHC plays a dominant role in the formation of ozone in the troposphere, while the photolysis of chlorocarbons contributes to enhanced ozone depletion in the stratosphere. In spite of their important role, however, their global source and sinks budgets are still poorly understood. Hence, this study aims at improving our understanding of the sources, distribution, and chemical role of reactive NMHC and chlorocarbons in the troposphere and lower stratosphere. To meet this aim, a comprehensive data set of selected C2 C7 NMHC and chlorocarbons has been analyzed, derived from six aircraft measurement campaigns with two different jet aircrafts (the Dutch TUD/NLR Cessna Citation PH-LAB, and the German DLR Falcon) conducted between 1995 and 2001 (STREAM 1995 and 1997 and 1998, LBA-CLAIRE 1998, INDOEX 1999, MINOS 2001). The NMHC and chlorocarbons have been detected by gas-chromatography (GC-FID/ECD) in pre-concentrated whole air samples collected in stainless steel canister on-board the measurement aircrafts. The measurement locations include tropical (Maldives/Indian Ocean and Surinam), midlatitude (Western Europe and Canada) and polar regions (Lapland/northern Sweden) between the equator to about 70ºN, covering different seasons and pollution levels in the troposphere and lower stratosphere. Of

  16. The Hemoglobin E Thalassemias

    Science.gov (United States)

    Fucharoen, Suthat; Weatherall, David J.

    2012-01-01

    Hemoglobin E (HbE) is an extremely common structural hemoglobin variant that occurs at high frequencies throughout many Asian countries. It is a β-hemoglobin variant, which is produced at a slightly reduced rate and hence has the phenotype of a mild form of β thalassemia. Its interactions with different forms of α thalassemia result in a wide variety of clinical disorders, whereas its coinheritance with β thalassemia, a condition called hemoglobin E β thalassemia, is by far the most common severe form of β thalassemia in Asia and, globally, comprises approximately 50% of the clinically severe β-thalassemia disorders. PMID:22908199

  17. Cloned Hemoglobin Genes Enhance Growth Of Cells

    Science.gov (United States)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  18. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto

    2015-01-01

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model

  19. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sudarjanto, Gatut [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller-Lehmann, Beatrice [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller, Jurg [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia)]. E-mail: j.keller@awmc.uq.edu.au

    2006-11-02

    The integrated chemical-biological degradation combining advanced oxidation by UV/H{sub 2}O{sub 2} followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H{sub 2}O{sub 2}/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required.

  20. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    International Nuclear Information System (INIS)

    Sudarjanto, Gatut; Keller-Lehmann, Beatrice; Keller, Jurg

    2006-01-01

    The integrated chemical-biological degradation combining advanced oxidation by UV/H 2 O 2 followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H 2 O 2 /L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required

  1. Comparison of Electrocoagulation and Chemical Coagulation Processes in Removing Reactive red 196 from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ali Assadi

    2016-06-01

    Full Text Available Background: Conventional chemical coagulation is considered as an old method to dye and COD removal in textile effluent. Electrocoagulation (EC process is a robust method to achieve maximum removal. Methods: This study was designed to compare the result of operational parameters including optimum pH and coagulant concentration for chemical coagulation with ferric chloride and alum also, voltage, electrolysis time, initial pH, and conductivity for EC with iron electrodes to remove reactive red 196 (RR 196. Results: The outcomes show that ferric chloride and alum at optimum concentration were capable of removing dye and COD by 79.63 % and 84.83% and 53% and 55%, respectively. In contrast, EC process removed the dye and COD by 99.98% and 90.4%, respectively. Conclusion: The highest treatment efficiency was obtained by increasing the voltage, electrolysis time, pH and conductivity. Increase initial dye concentration reduces removal efficiency. Ultimately, it could be concluded that EC technology is an efficient procedure for handling of colored industrial wastewaters.

  2. Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex Interfacial Systems. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sibener, Steven J. [Univ. of Chicago, IL (United States). James Franck Inst. and Dept. of Chemistry

    2014-03-11

    This research program explored the efficacy of using molecular-level manipulation, imaging and scanning tunneling spectroscopy in conjunction with supersonic molecular beam gas-surface scattering to significantly enhance our understanding of chemical processes occurring on well-characterized interfaces. One program focus was on the spatially-resolved emergent behavior of complex reaction systems as a function of the local geometry and density of adsorbate-substrate systems under reaction conditions. Another focus was on elucidating the emergent electronic and related reactivity characteristics of intentionally constructed single and multicomponent atom- and nanoparticle-based materials. We also examined emergent chirality and self-organization in adsorbed molecular systems where collective interactions between adsorbates and the supporting interface lead to spatial symmetry breaking. In many of these studies we combined the advantages of scanning tunneling (STM) and atomic force (AFM) imaging, scanning tunneling local electronic spectroscopy (STS), and reactive supersonic molecular beams to elucidate precise details of interfacial reactivity that had not been observed by more traditional surface science methods. Using these methods, it was possible to examine, for example, the differential reactivity of molecules adsorbed at different bonding sites in conjunction with how reactivity is modified by the local configuration of nearby adsorbates. At the core of this effort was the goal of significantly extending our understanding of interfacial atomic-scale interactions to create, with intent, molecular assemblies and materials with advanced chemical and physical properties. This ambitious program addressed several key topics in DOE Grand Challenge Science, including emergent chemical and physical properties in condensed phase systems, novel uses of chemical imaging, and the development of advanced reactivity concepts in combustion and catalysis including carbon

  3. The surface chemical reactivity of particles and its impact on human health

    Science.gov (United States)

    Setyan, A.; Sauvain, J. J.; Riediker, M.; Guillemin, M.; Rossi, M. J.

    2017-12-01

    The chemical composition of the particle-air interface is the gateway to chemical reactions of gases with condensed phase particles. It is of prime importance to understand the reactivity of particles and their interaction with surrounding gases, biological membranes, and solid supports. We used a Knudsen flow reactor to quantify functional groups on the surface of a few selected particle types. This technique is based on a heterogeneous titration reaction between a probe gas and a specific functional group on the particle surface. Six probe gases have been selected for the identification and quantification of important functional groups: N(CH3)3 for the titration of acidic sites, NH2OH for the detection of carbonyl functions (aldehydes and ketones) and/or oxidized sites owing to its strong reducing properties, CF3COOH and HCl for basic sites of different strength, O3 and NO2 for oxidizable groups. We also studied the kinetics of the reactions between particles and probe gases (uptake coefficient γ0). We tested the surface chemical composition and oxidation states of laboratory-generated aerosols (3 amorphous carbons, 2 flame soots, 2 Diesel particles, 2 secondary organic aerosols [SOA], 4 multiwall carbon nanotubes [MWCNT], 3 TiO2, and 2 metal salts) and of aerosols sampled in several bus depots. The sampling of particles in the bus depots was accompanied by the collection of urine samples of mechanics working full-time in these bus depots, and the quantification of 8-hydroxy-2'-deoxyguanosine, a biomarker of oxidative stress. The increase in oxidative stress biomarker levels over a working day was correlated (pcellular antioxidants.

  4. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    International Nuclear Information System (INIS)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M.; Watson, David B.

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M. partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M. species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions

  5. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  6. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells.

    Science.gov (United States)

    Fang, Chih-Yeu; Huang, Sheng-Yen; Wu, Chung-Chun; Hsu, Hui-Yu; Chou, Sheng-Ping; Tsai, Ching-Hwa; Chang, Yao; Takada, Kenzo; Chen, Jen-Yang

    2012-01-01

    Seroepidemiological studies imply a correlation between Epstein-Barr virus (EBV) reactivation and the development of nasopharyngeal carcinoma (NPC). N-nitroso compounds, phorbols, and butyrates are chemicals found in food and herb samples collected from NPC high-risk areas. These chemicals have been reported to be risk factors contributing to the development of NPC, however, the underlying mechanism is not fully understood. We have demonstrated previously that low dose N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.1 µg/ml) had a synergistic effect with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate (SB) in enhancing EBV reactivation and genome instability in NPC cells harboring EBV. Considering that residents in NPC high-risk areas may contact regularly with these chemical carcinogens, it is vital to elucidate the relation between chemicals and EBV and their contributions to the carcinogenesis of NPC. In this study, we constructed a cell culture model to show that genome instability, alterations of cancer hallmark gene expression, and tumorigenicity were increased after recurrent EBV reactivation in NPC cells following combined treatment of TPA/SB and MNNG. NPC cells latently infected with EBV, NA, and the corresponding EBV-negative cell, NPC-TW01, were periodically treated with MNNG, TPA/SB, or TPA/SB combined with MNNG. With chemically-induced recurrent reactivation of EBV, the degree of genome instability was significantly enhanced in NA cells treated with a combination of TPA/SB and MNNG than those treated individually. The Matrigel invasiveness, as well as the tumorigenicity in mouse, was also enhanced in NA cells after recurrent EBV reactivation. Expression profile analysis by microarray indicates that many carcinogenesis-related genes were altered after recurrent EBV reactivation, and several aberrations observed in cell lines correspond to alterations in NPC lesions. These results indicate that cooperation between chemical carcinogens can

  7. Chemical reactivation of resin-embedded pHuji adds red for simultaneous two-color imaging with EGFP

    Science.gov (United States)

    Guo, Wenyan; Liu, Xiuli; Liu, Yurong; Gang, Yadong; He, Xiaobin; Jia, Yao; Yin, Fangfang; Li, Pei; Huang, Fei; Zhou, Hongfu; Wang, Xiaojun; Gong, Hui; Luo, Qingming; Xu, Fuqiang; Zeng, Shaoqun

    2017-01-01

    The pH-sensitive fluorescent proteins enabling chemical reactivation in resin are useful tools for fluorescence microimaging. EGFP or EYFP is good for such applications. For simultaneous two-color imaging, a suitable red fluorescent protein is an urgent need. Here a pH-sensitive red fluorescent protein, pHuji, is selected and verified to remain pH-sensitive in HM20 resin. We observe 183% fluorescence intensity of pHuji in resin-embeded mouse brain and 29.08-fold fluorescence intensity of reactivated pHuji compared to the quenched state. pHuji and EGFP can be quenched and chemically reactivated simultaneously in resin, thus enabling simultaneous two-color micro-optical sectioning tomography of resin-embedded mouse brain. This method may greatly facilitate the visualization of neuronal morphology and neural circuits to promote understanding of the structure and function of the brain. PMID:28717566

  8. Investigation on reactivity of iron nickel oxides in chemical looping dry reforming

    International Nuclear Information System (INIS)

    Huang, Zhen; He, Fang; Chen, Dezhen; Zhao, Kun; Wei, Guoqiang; Zheng, Anqing; Zhao, Zengli; Li, Haibin

    2016-01-01

    Iron nickel oxides as oxygen carriers were investigated to clarify the reaction mechanism of NiFe_2O_4 material during the chemical looping dry reforming (CLDR) process. The thermodynamic analysis showed that metallic Fe can be oxidized into Fe_3O_4 by CO_2, but metallic Ni cannot. The oxidizability of the four oxygen carriers was in the order of NiO > synthetic NiFe_2O_4 spinel > NiO-Fe_2O_3 mixed oxides > Fe_2O_3, and the reducibility sequence of their reduced products was synthetic NiFe_2O_4 spinel > NiO-Fe_2O_3 mixed oxides > Fe_2O_3 > NiO. The NiO showed the best oxidizability but it was easy to cause CH_4 cracking and its reduced product (Ni) did not recover lattice oxygen under CO_2 atmosphere. It only produced 74 mL CO for 1 g Fe_2O_3 during the CO_2 reforming because of its weak oxidizability. The Redox ability of synthetic NiFe_2O_4 was obvious higher than that of NiO-Fe_2O_3 mixed oxides due to the synergistic effect of metallic Fe-Ni in the spinel structure. 1 g synthetic NiFe_2O_4 can produce 238 mL CO, which was twice higher than that of 1 g NiO-Fe_2O_3 mixed oxides (111 mL). A part of Fe element was divorced from the NiFe_2O_4 spinel structure after one cycle, which was the major reason for degradation of reactivity of NiFe_2O_4 oxygen carrier. - Highlights: • A synergistic effect of Fe/Ni can improve the reactivity of oxygen carrier (OC). • The oxidizability sequence of four OCs is NiO > NiFe_2O_4 > mixed NiO + Fe_2O_3 > Fe_2O_3. • The reducibility sequence of four OCs is NiFe_2O_4 > mixed NiO + Fe_2O_3 > Fe_2O_3 > NiO. • The formation of Fe (Ni) alloy phase facilitates more CO_2 reduced into CO. • Part of Fe is divorced from the spinel structure, leading to the degeneration of OC reactivity.

  9. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  10. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2013-01-01

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed

  11. Reactive Imprint Lithography: Combined Topographical Patterning and Chemical Surface Functionalization of Polystyrene-block-poly(tert-butyl acrylate) Films

    NARCIS (Netherlands)

    Duvigneau, Joost; Cornelissen, Stijn; Bardajı´Valls, Nuria; Schönherr, Holger; Vancso, Gyula J.

    2009-01-01

    Here, reactive imprint lithography (RIL) is introduced as a new, one-step lithographic tool for the fabrication of large-area topographically patterned, chemically activated polymer platforms. Films of polystyrene-block-poly(tert-butyl acrylate) (PS-b-PtBA) are imprinted with PDMS master stamps at

  12. Quick Look Report for Chemical Reactivity Modeling of Various Multi-Canister Overpack Breaches

    Energy Technology Data Exchange (ETDEWEB)

    Bratton, Robert Lawrence

    2002-04-01

    This report makes observations or shows trends in the response and does not specifically provide conclusions or predict the onset of bulk uranium oxidation safety margins based on hole size. Comprehensive analysis will be provided in the future. The report should animate discussions about the results and what should be analyzed further in the final analysis. This report intends only to show the response of the breached multi-canister overpack (MCO) as a function of event time using the GOTH_SNF computer code. The response will be limited to physical quantities available on the exterior of the MCO. The GOTH_SNF model is approximate, because not all physical phenomenon was included in the model. Error estimates in the response are not possible at this time, because errors in the actual physical data are not known. Sensitivities in the results from variations in the physical data have not been pursued at this time, either. This effort was undertaken by the National Spent Nuclear Fuel Program to evaluate potential chemical reactivity issues of a degraded uranium metal spent nuclear fuel using the MCO fully loaded with Mark IV N-reactor fuel as the evaluation model. This configuration is proposed for handling in the Yucca Mountain Project (YMP) surface facility. Hanford is loading N-reactor fuel elements into the MCO for interim storage at the Hanford site with permanent disposal proposed at YMP. A portion of the N-reactor fuel inventory has suffered corrosion, exposing the uranium metal under the zircaloy cladding. Because of the sealed MCO, the local radiation field, and decay heat of the fuel, hydrogen production cannot be ruled out from the metal hydrates on the surface of the zircaloy cladding and exposed fuel. Because of the much greater surface area, the oxyhydroxide composition, and water of hydration in the uranium metal corrosion product, the corrosion product will be a significant water source that may equal the absorbed water on the zircaloy cladding. A

  13. Quick Look Report for Chemical Reactivity Modeling of Various Multi-Canister Overpack Breaches

    International Nuclear Information System (INIS)

    Bratton, Robert Lawrence

    2002-01-01

    This report makes observations or shows trends in the response and does not specifically provide conclusions or predict the onset of bulk uranium oxidation safety margins based on hole size. Comprehensive analysis will be provided in the future. The report should animate discussions about the results and what should be analyzed further in the final analysis. This report intends only to show the response of the breached multi-canister overpack (MCO) as a function of event time using the GOTH( ) SNF computer code. The response will be limited to physical quantities available on the exterior of the MCO. The GOTH( ) SNF model is approximate, because not all physical phenomenon was included in the model. Error estimates in the response are not possible at this time, because errors in the actual physical data are not known. Sensitivities in the results from variations in the physical data have not been pursued at this time, either. This effort was undertaken by the National Spent Nuclear Fuel Program to evaluate potential chemical reactivity issues of a degraded uranium metal spent nuclear fuel using the MCO fully loaded with Mark IV N-reactor fuel as the evaluation model. This configuration is proposed for handling in the Yucca Mountain Project (YMP) surface facility. Hanford is loading N-reactor fuel elements into the MCO for interim storage at the Hanford site with permanent disposal proposed at YMP. A portion of the N-reactor fuel inventory has suffered corrosion, exposing the uranium metal under the zircaloy cladding. Because of the sealed MCO, the local radiation field, and decay heat of the fuel, hydrogen production cannot be ruled out from the metal hydrates on the surface of the zircaloy cladding and exposed fuel. Because of the much greater surface area, the oxyhydroxide composition, and water of hydration in the uranium metal corrosion product, the corrosion product will be a significant water source that may equal the absorbed water on the zircaloy cladding

  14. Advanced Chemical Reduction of Reduced Graphene Oxide and Its Photocatalytic Activity in Degrading Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Christelle Pau Ping Wong

    2015-10-01

    Full Text Available Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5 dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers’ method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis, X-ray powder diffraction (XRD, Raman, and Scanning Electron Microscopy (SEM to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm−1 was observed in the UV spectrum. Further, the appearance of a broad peak (002, centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.

  15. Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    International Nuclear Information System (INIS)

    Li, Guanchen; Al-Abbasi, Omar; Von Spakovsky, Michael R

    2014-01-01

    This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H 2 ↔ FH + H

  16. Le Châtelier's conjecture: Measurement of colloidal eigenstresses in chemically reactive materials

    Science.gov (United States)

    Abuhaikal, Muhannad; Ioannidou, Katerina; Petersen, Thomas; Pellenq, Roland J.-M.; Ulm, Franz-Josef

    2018-03-01

    Volume changes in chemically reactive materials, such as hydrating cement, play a critical role in many engineering applications that require precise estimates of stress and pressure developments. But a means to determine bulk volume changes in the absence of other deformation mechanisms related to thermal, pressure and load variations, is still missing. Herein, we present such a measuring devise, and a hybrid experimental-theoretical technique that permits the determination of colloidal eigenstresses. Applied to cementitious materials, it is found that bulk volume changes in saturated cement pastes at constant pressure and temperature conditions result from a competition of repulsive and attractive phenomena that originate from the relative distance of the solid particles - much as Henry Louis Le Châtelier, the father of modern cement science, had conjectured in the late 19th century. Precipitation of hydration products in confined spaces entails a repulsion, whereas the concurrent reduction in interparticle distance entails activation of attractive forces in charged colloidal particles. This cross-over from repulsion to attraction can be viewed as a phase transition between a liquid state (below the solid percolation) and the limit packing of hard spheres, separated by an energy barrier that defines the temperature-dependent eigenstress magnitude.

  17. Role of Chemical Reactivity and Transition State Modeling for Virtual Screening.

    Science.gov (United States)

    Karthikeyan, Muthukumarasamy; Vyas, Renu; Tambe, Sanjeev S; Radhamohan, Deepthi; Kulkarni, Bhaskar D

    2015-01-01

    Every drug discovery research program involves synthesis of a novel and potential drug molecule utilizing atom efficient, economical and environment friendly synthetic strategies. The current work focuses on the role of the reactivity based fingerprints of compounds as filters for virtual screening using a tool ChemScore. A reactant-like (RLS) and a product- like (PLS) score can be predicted for a given compound using the binary fingerprints derived from the numerous known organic reactions which capture the molecule-molecule interactions in the form of addition, substitution, rearrangement, elimination and isomerization reactions. The reaction fingerprints were applied to large databases in biology and chemistry, namely ChEMBL, KEGG, HMDB, DSSTox, and the Drug Bank database. A large network of 1113 synthetic reactions was constructed to visualize and ascertain the reactant product mappings in the chemical reaction space. The cumulative reaction fingerprints were computed for 4000 molecules belonging to 29 therapeutic classes of compounds, and these were found capable of discriminating between the cognition disorder related and anti-allergy compounds with reasonable accuracy of 75% and AUC 0.8. In this study, the transition state based fingerprints were also developed and used effectively for virtual screening in drug related databases. The methodology presented here provides an efficient handle for the rapid scoring of molecular libraries for virtual screening.

  18. Towards Tetraradicaloid: The Effect of Fusion Mode on Radical Character and Chemical Reactivity

    KAUST Repository

    Hu, Pan

    2015-12-30

    Open-shell singlet diradicaloids display unique electronic, non-linear optical and magnetic activity and could become novel molecular materials for organic electronics, photonics and spintronics. However, design and synthesis of diradicaloids with a significant polyradical character is a challenging task for chemists. In this article, we report our efforts toward tetraradicaloid system. A series of potential tetraradicaloids by fusion of two p-quinodimethane (p-QDM) units with naphthalene or benzene rings in different modes were synthesized. Their model compounds containing one p-QDM moiety were also prepared and compared. Their ground-state structures, physical properties and chemical reactivity were systematically investigated by various exper-imental methods such as steady-state and transient absorption, two-photon absorption, X-ray crystallographic analysis, electron spin resonance, superconducting quantum interference device and electrochemistry, assisted by density functional theory calculations. It was found that their diradical and tetraradical characters show a clear dependence on the fusion mode. Upon the introducing of more five-membered rings, the diradical characters greatly decrease. This difference can be explained by the pro-aromaticity/anti-aromaticity of the molecules as well as the intramolecular charge transfer. Our comprehensive studies provide a guideline for the design and synthesis of stable open-shell singlet polycyclic hydrocarbons with significant polyradical characters.

  19. Chemical and Molecular Descriptors for the Reactivity of Amines with CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Anita S.; Kitchin, John R.

    2012-10-24

    Amine-based solvents are likely to play an important role in CO{sub 2} capture applications in the future, and the identification of amines with superior performance will facilitate their use in CO{sub 2} capture. While some improvements in performance will be achieved through process modifications, modifying the CO{sub 2} capture performance of an amine also implies in part an ability to modify the reactions between the amine and CO{sub 2} through development of new functionalized amines. We present a computational study of trends in the reactions between CO{sub 2} and functionalized amines with a focus on identifying molecular descriptors that determine trends in reactivity. We examine the formation of bicarbonate and carbamate species on three classes of functionalized amines: alkylamines, alkanolamines, and fluorinated alkylamines including primary, secondary and tertiary amines in each class. These functional groups span electron-withdrawing to donating behavior, hydrogen-bonding, extent of functionalization, and proximity effects of the functional groups. Electron withdrawing groups tend to destabilize CO{sub 2} reaction products, whereas electron-donating groups tend to stabilize CO{sub 2} reaction products. Hydrogen bonding stabilizes CO{sub 2} reaction products. Electronic structure descriptors based on electronegativity were found to describe trends in the bicarbonate formation energy. A chemical correlation was observed between the carbamate formation energy and the carbamic acid formation energy. The local softness on the reacting N in the amine was found to partially explain trends carbamic acid formation energy.

  20. Towards Tetraradicaloid: The Effect of Fusion Mode on Radical Character and Chemical Reactivity

    KAUST Repository

    Hu, Pan; Lee, Sangsu; Herng, Tun Seng; Aratani, Naoki; Goncalves, Theo; Qi, Qingbiao; Shi, Xueliang; Yamada, Hiroko; Huang, Kuo-Wei; Ding, Jun; Kim, Dongho; Wu, Jishan

    2015-01-01

    Open-shell singlet diradicaloids display unique electronic, non-linear optical and magnetic activity and could become novel molecular materials for organic electronics, photonics and spintronics. However, design and synthesis of diradicaloids with a significant polyradical character is a challenging task for chemists. In this article, we report our efforts toward tetraradicaloid system. A series of potential tetraradicaloids by fusion of two p-quinodimethane (p-QDM) units with naphthalene or benzene rings in different modes were synthesized. Their model compounds containing one p-QDM moiety were also prepared and compared. Their ground-state structures, physical properties and chemical reactivity were systematically investigated by various exper-imental methods such as steady-state and transient absorption, two-photon absorption, X-ray crystallographic analysis, electron spin resonance, superconducting quantum interference device and electrochemistry, assisted by density functional theory calculations. It was found that their diradical and tetraradical characters show a clear dependence on the fusion mode. Upon the introducing of more five-membered rings, the diradical characters greatly decrease. This difference can be explained by the pro-aromaticity/anti-aromaticity of the molecules as well as the intramolecular charge transfer. Our comprehensive studies provide a guideline for the design and synthesis of stable open-shell singlet polycyclic hydrocarbons with significant polyradical characters.

  1. Simultaneous measurements of reactive scalar and velocity in a planar liquid jet with a second-order chemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoaki; Sakai, Yasuhiko; Nagata, Kouji; Terashima, Osamu [Nagoya University, Department of Mechanical Science and Engineering, Nagoya (Japan); Kubo, Takashi [Meijo University, Faculty of Science and Technology, Nagoya (Japan)

    2012-11-15

    This paper presents a new experimental approach for simultaneous measurements of velocity and concentration in a turbulent liquid flow with a chemical reaction. For the simultaneous measurements, we developed a combined probe consisting of an I-type hot-film probe and an optical fiber probe based on the light absorption spectrometric method. In a turbulent planar liquid jet with a second-order chemical reaction (A+B{yields}R), streamwise velocity and concentrations of all reactive species are measured by the combined probe. The turbulent mass fluxes of the reactive species are estimated from the simultaneous measurements. The results show that the influence of the chemical reaction on the turbulent mass flux of the reactant species near the jet exit is different from its influence in other regions, and the turbulent mass flux of the product species has a negative value near the jet exit and a positive value in other regions. (orig.)

  2. Nano-patterning of perpendicular magnetic recording media by low-energy implantation of chemically reactive ions

    International Nuclear Information System (INIS)

    Martin-Gonzalez, M.S.; Briones, F.; Garcia-Martin, J.M.; Montserrat, J.; Vila, L.; Faini, G.; Testa, A.M.; Fiorani, D.; Rohrmann, H.

    2010-01-01

    Magnetic nano-patterning of perpendicular hard disk media with perpendicular anisotropy, but preserving disk surface planarity, is presented here. Reactive ion implantation is used to locally modify the chemical composition (hence the magnetization and magnetic anisotropy) of the Co/Pd multilayer in irradiated areas. The procedure involves low energy, chemically reactive ion irradiation through a resist mask. Among N, P and As ions, P are shown to be most adequate to obtain optimum bit density and topography flatness for industrial Co/Pd multilayer media. The effect of this ion contributes to isolate perpendicular bits by destroying both anisotropy and magnetic exchange in the irradiated areas. Low ion fluences are effective due to the stabilization of atomic displacement levels by the chemical effect of covalent impurities.

  3. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene.

    Science.gov (United States)

    Irving, Roy M; Pinkerton, Marie E; Elfarra, Adnan A

    2013-02-15

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague-Dawley rats were dosed (i.p.) with 230 μmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S(2)-S(3) segments) while DCVCS primarily affected the outer cortical proximal tubules (S(1)-S(2) segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37°C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Abiotic pyrite reactivity versus nitrate, selenate and selenite using chemical and electrochemical methods

    International Nuclear Information System (INIS)

    Ignatiadis, I.; Betelu, S.; Gaucher, E.; Tournassat, C.; Chainet, F.

    2010-01-01

    Document available in extended abstract form only. This work is part of ReCosy European project (www.recosy.eu), whose main objectives are the sound understanding of redox phenomena controlling the long-term release/retention of radionuclides in nuclear waste disposal and providing tools to apply the results to performance assessment/safety case. Redox is one of the main factor affecting speciation and mobility of redox-sensitive radionuclides. Thus, it is of a great importance to investigate the redox reactivity of the host radioactive waste formations, particularly when exposed to redox perturbations. Callovo-Oxfordian formation (COx), a clay rock known as an anoxic and reducing system, was selected in France as the most suitable location to store nuclear waste. Iron (II) sulfide, mostly constituted of pyrite (FeS 2 ), iron (II) carbonate, iron(II) bearing clays and organic matter are considered to account almost entirely for the total reducing capacity of the rock. We report here the redox reactivity of pyrite upon exposure to nitrate (N(V)), selenate (Se(VI)) and selenite (Se(IV)) that possibly occur in the nuclear storage. Both, chemical and electrochemical kinetic approaches were simultaneously conducted such as to (i) determine the kinetics parameters of the reactions and (ii) understand the kinetic mechanisms. In order to reach similar conditions that are encountered in the storage system, all experiments were realised in NaCl 0.1 M, near neutral pH solutions, and an abiotic glove box (O 2 less than 10 -8 M). Chemical approach has consisted to set in contact pyrite in grains with solutions containing respectively nitrate, selenate and selenite. Reactants and products chemical analyses, conducted at different contact times, allowed us to assess the kinetics of oxidant reduction. Electrochemical approach has consisted in the continuous or semi-continuous analysis of large surface pyrite electrodes immersed in solutions with or without oxidant (nitrate

  5. Theoretical study of some aspects of the nucleo-bases reactivity: definition of new theoretical tools for the study of chemical reactivity

    International Nuclear Information System (INIS)

    Labet, V.

    2009-09-01

    In this work, three kinds of nucleo-base damages were studied from a theoretical point of view with quantum chemistry methods based on the density-functional theory: the spontaneous deamination of cytosine and its derivatives, the formation of tandem lesion induced by hydroxyl radicals in anaerobic medium and the formation of pyrimidic dimers under exposition to an UV radiation. The complementary use of quantitative static methods allowing the exploration of the potential energy surface of a chemical reaction, and of 'conceptual DFT' principles, leads to information concerning the mechanisms involved and to the rationalization of the differences in the nucleo-bases reactivity towards the formation of a same kind of damage. At the same time, a reflexion was undertaken on the asynchronous concerted mechanism concept, in terms of physical meaning of the transition state, respect of the Maximum Hardness Principle, and determination of the number of primitive processes involved. Finally, a new local reactivity index was developed, relevant to understand the reactivity of a molecular system in an excited state. (author)

  6. Phylogeny of Echinoderm Hemoglobins.

    Directory of Open Access Journals (Sweden)

    Ana B Christensen

    Full Text Available Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates.The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates.

  7. Chemical Identity of Interaction of Protein with Reactive Metabolite of Diosbulbin B In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2017-08-01

    Full Text Available Diosbulbin B (DIOB, a hepatotoxic furan-containing compound, is a primary ingredient in Dioscorea bulbifera L., a common herbal medicine. Metabolic activation is required for DIOB-induced liver injury. Protein covalent binding of an electrophilic reactive intermediate of DIOB is considered to be one of the key mechanisms of cytotoxicity. A bromine-based analytical technique was developed to characterize the chemical identity of interaction of protein with reactive intermediate of DIOB. Cysteine (Cys and lysine (Lys residues were found to react with the reactive intermediate to form three types of protein modification, including Cys adduction, Schiff’s base, and Cys/Lys crosslink. The crosslink showed time- and dose-dependence in animals given DIOB. Ketoconazole pretreatment decreased the formation of the crosslink derived from DIOB, whereas pretreatment with dexamethasone or buthionine sulfoximine increased such protein modification. These data revealed that the levels of hepatic protein adductions were proportional to the severity of hepatotoxicity of DIOB.

  8. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays

    Science.gov (United States)

    2013-01-01

    Background Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. Results We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5′-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface. Conclusions Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different

  9. Atomic-level spatial distributions of dopants on silicon surfaces: toward a microscopic understanding of surface chemical reactivity

    Science.gov (United States)

    Hamers, Robert J.; Wang, Yajun; Shan, Jun

    1996-11-01

    We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.

  10. Heterogeneously catalyzed reactive extraction for biomass valorization into chemicals and fuels

    NARCIS (Netherlands)

    Ordomskiy, V.; Khodakov, A.Y.; Nijhuis, T.A.; Schouten, J.C.

    2015-01-01

    This paper focuses on the heterogeneously catalyzed reactive extraction and separation in reaction steps in organic and aqueous phases during the transformation of biomass derived products. Two approaches are demonstrated for decomposing and preserving routes for biomass transformation into valuable

  11. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene

    International Nuclear Information System (INIS)

    Irving, Roy M.; Pinkerton, Marie E.; Elfarra, Adnan A.

    2013-01-01

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague–Dawley rats were dosed (i.p.) with 230 μmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S 2 –S 3 segments) while DCVCS primarily affected the outer cortical proximal tubules (S 1 –S 2 segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37 °C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity. - Highlights: ► NA-DCVCS and NA-DCVC toxicity are distinct from DCVCS toxicity. ► NA-DCVCS readily reacts with GSH to form mono- and di-GSH conjugates. ► Liver glutathione S-transferases enhance NA-DCVCS GSH conjugate formation. ► Renal localization of lesions suggests a role for NA-DCVCS in TCE nephrotoxicity

  12. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Irving, Roy M. [Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706 (United States); Pinkerton, Marie E. [Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706 (United States); Elfarra, Adnan A., E-mail: elfarra@svm.vetmed.wisc.edu [Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI 53706 (United States); Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-02-15

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague–Dawley rats were dosed (i.p.) with 230 μmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S{sub 2}–S{sub 3} segments) while DCVCS primarily affected the outer cortical proximal tubules (S{sub 1}–S{sub 2} segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37 °C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity. - Highlights: ► NA-DCVCS and NA-DCVC toxicity are distinct from DCVCS toxicity. ► NA-DCVCS readily reacts with GSH to form mono- and di-GSH conjugates. ► Liver glutathione S-transferases enhance NA-DCVCS GSH conjugate formation. ► Renal localization of lesions suggests a role for NA-DCVCS in TCE nephrotoxicity.

  13. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns.

    Science.gov (United States)

    Hartwig, Jan; Metternich, Jan B; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V

    2014-06-14

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  14. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns

    OpenAIRE

    Hartwig, Jan; Metternich, Jan B.; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V.

    2014-01-01

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  15. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    Science.gov (United States)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  16. Unravelling chemical priming machinery in plants: the role of reactive oxygen-nitrogen-sulfur species in abiotic stress tolerance enhancement.

    Science.gov (United States)

    Antoniou, Chrystalla; Savvides, Andreas; Christou, Anastasis; Fotopoulos, Vasileios

    2016-10-01

    Abiotic stresses severely limit crop yield and their detrimental effects are aggravated by climate change. Chemical priming is an emerging field in crop stress management. The exogenous application of specific chemical agents before stress events results in tolerance enhancement and reduction of stress impacts on plant physiology and growth. However, the molecular mechanisms underlying the remarkable effects of chemical priming on plant physiology remain to be elucidated. Reactive oxygen, nitrogen and sulfur species (RONSS) are molecules playing a vital role in the stress acclimation of plants. When applied as priming agents, RONSS improve stress tolerance. This review summarizes the recent knowledge on the role of RONSS in cell signalling and gene regulation contributing to abiotic stress tolerance enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Rice (Oryza) hemoglobins

    Science.gov (United States)

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  18. Responses of human birch pollen allergen-reactive T cells to chemically modified allergens (allergoids).

    Science.gov (United States)

    Dormann, D; Ebner, C; Jarman, E R; Montermann, E; Kraft, D; Reske-Kunz, A B

    1998-11-01

    Allergoids are widely used in specific immunotherapy for the treatment of IgE-mediated allergic diseases. The aim of this study was to analyse whether a modification of birch pollen allergens with formaldehyde affects the availability of T-cell epitopes. Efficient modification of the allergens was verified by determining IgE and IgG binding activity using ELISA inhibition tests. T-cell responses to birch pollen allergoids were analysed in polyclonal systems, using peripheral blood mononuclear cells (PBMC) of five birch pollen-allergic individuals, as well as birch pollen extract-reactive T-cell lines (TCL), established from the peripheral blood of 14 birch pollen-allergic donors. To determine whether the modification of natural (n)Bet v 1 with formaldehyde or maleic anhydride results in epitope-specific changes in T-cell reactivities, 22 Bet v 1-specific T-cell clones (TCC), established from nine additional birch pollen-allergic individuals, were tested for their reactivity with these products. The majority of PBMC and TCL showed a reduced response to the birch pollen extract allergoid. Bet v 1-specific TCC could be divided into allergoid-reactive and -non-reactive TCC. No simple correlation between possible modification sites of formaldehyde in the respective T-cell epitopes and the stimulatory potential of the allergoid was observed. Mechanisms of suppression or of anergy induction were excluded as an explanation for the non-reactivity of representative TCC. All TCC could be stimulated by maleylated and unmodified nBet v 1 to a similar extent. These results demonstrate differences in the availability of T-cell epitopes between allergoids and unmodified allergens, which are most likely due to structural changes within the allergen molecule.

  19. Simulations of the dispersion of reactive pollutants in a street canyon, considering different chemical mechanisms and micromixing

    Science.gov (United States)

    Garmory, A.; Kim, I. S.; Britter, R. E.; Mastorakos, E.

    The Stochastic Fields (SF) or Field Monte Carlo method has been used to model the dispersion of reactive scalars in a street canyon, using a simple chemistry and the CBM-IV mechanism. SF is a Probability Density Function (PDF) method which allows both means and variances of the scalars to be calculated as well as considering the effect of segregation on reaction rates. It was found that the variance of reactive scalars such as NO 2 was very high in the mixing region at roof-top level with rms values of the order of the mean values. The effect of segregation on major species such as O 3 was found to be very small using either mechanism, however, some radical species in CBM-IV showed a significant difference. These were found to be the seven species with the fastest chemical timescales. The calculated photostationary state defect was also found to be in error when segregation is neglected.

  20. Improvements in or relating to antibodies active against human hemoglobin Asub(1C)

    International Nuclear Information System (INIS)

    Javid, J.; Cerami, A.; Koenig, R.J.; Pettis, P.K.

    1980-01-01

    A method is described for preparing an antibody against human hemoglobin Asub(1c) which is substantially free of cross-reactivity against the human hemoglobins A 0 , Asub(1a) and Asub(1b). The antibodies are collected from cats, goats or sheep following injections of purified hemoglobin Asub(1c) antigen since these animals do not naturally produce hemoglobin Asub(1c). A radioimmunoassay method is also described whereby these antibodies are used to determine the quantity of hemoglobin Asub(1c) in blood samples. This is a useful technique in the diagnosis of diabetes mellitus. (U.K.)

  1. Evaluation of a high-throughput peptide reactivity format assay for assessment of the skin sensitization potential of chemicals

    Directory of Open Access Journals (Sweden)

    Chin Lin eWong

    2016-03-01

    Full Text Available The direct peptide reactivity assay (DPRA is a validated method for in vitro assessment of the skin sensitization potential of chemicals. In the present work, we describe a peptide reactivity assay using 96-well plate format and systematically identified the optimal assay conditions for accurate and reproducible classification of chemicals with known sensitizing capacity. The aim of the research is to ensure that the analytical component of the peptide reactivity assay is robust, accurate and reproducible in accordance with criteria that are used for the validation of bioanalytical methods. Analytical performance was evaluated using quality control samples (QCs; heptapeptides at low, medium and high concentrations and incubation of control chemicals (chemicals with known sensitization capacity, weak, moderate, strong, extreme and non-sensitizers with each of three synthetic heptapeptides, viz Cor1-C420 (Ac-NKKCDLF, cysteine- (Ac-RFAACAA and lysine- (Ac-RFAAKAA containing heptapeptides. The optimal incubation temperature for all three heptapeptides was 25°C. Apparent heptapeptide depletion was affected by vial material composition. Incubation of test chemicals with Cor1-C420, showed that peptide depletion was unchanged in polypropylene vials over 3-days storage in an autosampler but this was not the case for borosilicate glass vials. For cysteine-containing heptapeptide, the concentration was not stable by day 3 post-incubation in borosilicate glass vials. Although the lysine-containing heptapeptide concentration was unchanged in both polypropylene and borosilicate glass vials, the apparent extent of lysine-containing heptapeptide depletion by ethyl acrylate, differed between polypropylene (24.7% and glass (47.3% vials. Additionally, the peptide-chemical complexes for Cor1-C420-cinnamaldehyde and cysteine-containing heptapeptide-2,4-dinitrochlorobenzene were partially reversible during 3-days of autosampler storage. These observations further

  2. A comparative study of changes in immunological reactivity during prolonged introduction of radioactive and chemical substances into the organism with drinking water

    International Nuclear Information System (INIS)

    Shubik, V.M.; Nevstrueva, M.A.; Kalnitskij, S.A.; Livshits, R.E.; Merkushev, G.N.; Pilshchik, E.M.; Ponomareva, T.V.

    1978-01-01

    A comparative study was conducted into the factors of non-specific protection and specific immunity, allergic and autoallergic reactivities during prolonged exposure of experimental animals to 6 different radioactive and 7 harmful chemical substances. Qualitative and quantitative peculiarities were found in the changes in immunological reactivity during the exposure of the organism to radionuclides and stable chemical compounds. Impairment of immunity plays an essential role in the course and the outcome of effects induced by chronic action of the substances examined. (author)

  3. A Simple Visualization of Double Bond Properties: Chemical Reactivity and UV Fluorescence

    Science.gov (United States)

    Grayson, Scott M.

    2012-01-01

    A simple, easily visualized thin-layer chromatography (TLC) staining experiment is presented that highlights the difference in reactivity between aromatic double bonds and nonaromatic double bonds. Although the stability of aromatic systems is a major theme in organic chemistry, the concept is rarely reinforced "visually" in the undergraduate…

  4. A theory for bioinorganic chemical reactivity of oxometal complexes and analogous oxidants: the exchange and orbital-selection rules.

    Science.gov (United States)

    Usharani, Dandamudi; Janardanan, Deepa; Li, Chunsen; Shaik, Sason

    2013-02-19

    Over the past decades metalloenzymes and their synthetic models have emerged as an area of increasing research interest. The metalloenzymes and their synthetic models oxidize organic molecules using oxometal complexes (OMCs), especially oxoiron(IV)-based ones. Theoretical studies have helped researchers to characterize the active species and to resolve mechanistic issues. This activity has generated massive amounts of data on the relationship between the reactivity of OMCs and the transition metal's identity, oxidation state, ligand sphere, and spin state. Theoretical studies have also produced information on transition state (TS) structures, reaction intermediates, barriers, and rate-equilibrium relationships. For example, the experimental-theoretical interplay has revealed that nonheme enzymes carry out H-abstraction from strong C-H bonds using high-spin (S = 2) oxoiron(IV) species with four unpaired electrons on the iron center. However, other reagents with higher spin states and more unpaired electrons on the metal are not as reactive. Still other reagents carry out these transformations using lower spin states with fewer unpaired electrons on the metal. The TS structures for these reactions exhibit structural selectivity depending on the reactive spin states. The barriers and thermodynamic driving forces of the reactions also depend on the spin state. H-Abstraction is preferred over the thermodynamically more favorable concerted insertion into C-H bonds. Currently, there is no unified theoretical framework that explains the totality of these fascinating trends. This Account aims to unify this rich chemistry and understand the role of unpaired electrons on chemical reactivity. We show that during an oxidative step the d-orbital block of the transition metal is enriched by one electron through proton-coupled electron transfer (PCET). That single electron elicits variable exchange interactions on the metal, which in turn depend critically on the number of

  5. Chemical conjugation of cowpea mosaic viruses with reactive HPMA-based polymers

    Czech Academy of Sciences Publication Activity Database

    Laga, Richard; Koňák, Čestmír; Šubr, Vladimír; Ulbrich, Karel; Suthiwangcharoen, N.; Niu, Q.; Wang, Q.

    2010-01-01

    Roč. 21, č. 12 (2010), s. 1669-1685 ISSN 0920-5063 R&D Projects: GA AV ČR KJB400500803; GA ČR GA202/09/2078; GA AV ČR KAN200200651 Institutional research plan: CEZ:AV0Z40500505 Keywords : acylthiazolidine-2-thione reactive groups * bioconjugation * coating Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.842, year: 2010

  6. Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity

    International Nuclear Information System (INIS)

    Bouraoui, Zeineb; Jeguirim, Mejdi; Guizani, Chamseddine; Limousy, Lionel; Dupont, Capucine; Gadiou, Roger

    2015-01-01

    The present investigation aims to examine the influence of textural, structural and chemical properties of biomass chars on the CO 2 gasification rate. Various lignocellulosic biomass chars were prepared under the same conditions. Different analytical techniques were used to determine the char properties such as Scanning Electronic Microscopy, nitrogen adsorption manometry, Raman spectroscopy and X Ray Fluorescence. Gasification tests were carried out in a thermobalance under 20% CO 2 in nitrogen at 800 °C. Significant differences of the total average reactivity were observed with a factor of 2 between the prepared chars. Moreover, different behaviors of gasification rate profiles versus conversion were obtained. This difference of behavior appeared to be correlated with the biomass char properties. Hence, up to 70% of conversion, the gasification rate was shown to depend on the char external surface and the potassium content. At higher conversion ratio, a satisfactory correlation between the Catalytic Index and the average gasification rate was identified. The results highlight the importance of knowing both textural and structural properties and mineral contents of biomass chars to predict fuel reactivity during CO 2 gasification processes. Such behavior prediction is highly important in the gasifiers design for char conversion. - Highlights: • CO 2 gasification reactivity of various lignocellulosic chars were examined. • Chars properties affect strongly samples gasification behavior. • Initial gasification rate is affected by external surface, K content and D3/G ratio. • Gasification rate behavior depends on the Alkali index at high conversion

  7. The Atmospheric Tomography Mission (ATom): Comparing the Chemical Climatology of Reactive Species and Air Parcels from Measurements and Global Models

    Science.gov (United States)

    Prather, M. J.; Flynn, C.; Wennberg, P. O.; Kim, M. J.; Ryerson, T. B.; Hanisco, T. F.; Diskin, G. S.; Daube, B. C.; Commane, R.; McKain, K.; Apel, E. C.; Blake, N. J.; Blake, D. R.; Elkins, J. W.; Hall, S.; Steenrod, S.; Strahan, S. E.; Lamarque, J. F.; Fiore, A. M.; Horowitz, L. W.; Murray, L. T.; Mao, J.; Shindell, D. T.; Wofsy, S. C.

    2017-12-01

    The NASA Atmospheric Tomography Mission (ATom) is building a photochemical climatology of the remote troposphere based on objective sampling and profiling transects over the Pacific and Atlantic Oceans. These statistics provide direct tests of chemistry-climate models. The choice of species focuses on those controlling primary reactivity (a.k.a. oxidative state) of the troposphere, specifically chemical tendencies of O3 and CH4. These key species include, inter alia, O3, CH4, CO, C2H6, other alkanes, alkenes, aromatics, NOx, HNO3, HO2NO2, PAN, other organic nitrates, H2O, HCHO, H2O2, CH3OOH. Three of the four ATom deployments are now complete, and data from the first two (ATom-1 & -2) have been released as of this talk (see espoarchive.nasa.gov/archive/browse/atom). The statistical distributions of key species are presented as 1D and 2D probability densities (PDs) and we focus here on the tropical and mid-latitude regions of the Pacific during ATom-1 (Aug) and -2 (Feb). PDs are computed from ATom observations and 6 global chemistry models over the tropospheric depth (0-12 km) and longitudinal extent of the observations. All data are weighted to achieve equal mass-weighting by latitude regimes to account for spatial sampling biases. The models are used to calculate the reactivity in each ATom air parcel. Reweighting parcels with loss of CH4 or production of O3, for example, allows us to identify which air parcels are most influential, including assessment of the importance of fine pollution layers in the most remote troposphere. Another photochemical climatology developed from ATom, and used to test models, includes the effect of clouds on photolysis rates. The PDs and reactivity-weighted PDs reveal important seasonal differences and similarities between the two campaigns and also show which species may be most important in controlling reactivities. They clearly identify some very specific failings in the modeled climatologies and help us evaluate the chemical

  8. Acoustic sensors for the control of liquid-solid interface evolution and chemical reactivity

    International Nuclear Information System (INIS)

    Ferrandis, J.Y.; Tingry, S.; Attal, J.; Seta, P.

    2006-01-01

    Less classical than far-field acoustic investigations of solid materials and/or solid-liquid interfaces, near-field acoustic properties of an acoustic solid wave guide (tip), thin enough at its termination to present an external diameter smaller than the excitation acoustic wave wavelength, is shown to be able to probe interface properties. As a result of that, these near-field acoustic probes can play the role of chemical sensors, if chemical modifications or chemical reactions are concerned at their surface. In that context, a chemical sensor was realized by electrochemical deposition of an electron-conducting polymer (polypyrrole-biotin) on a metal tip, followed by enzyme attachment by molecular recognition process involving the biotin-avidin-specific interaction. Results from near-field acoustic showed that the enzyme modification of the polymer layer can be detected by this new acoustic sensor

  9. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    Science.gov (United States)

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully

  10. Establishment and intra-/inter-laboratory validation of a standard protocol of reactive oxygen species assay for chemical photosafety evaluation.

    Science.gov (United States)

    Onoue, Satomi; Hosoi, Kazuhiro; Wakuri, Shinobu; Iwase, Yumiko; Yamamoto, Toshinobu; Matsuoka, Naoko; Nakamura, Kazuichi; Toda, Tsuguto; Takagi, Hironori; Osaki, Naoto; Matsumoto, Yasuhiro; Kawakami, Satoru; Seto, Yoshiki; Kato, Masashi; Yamada, Shizuo; Ohno, Yasuo; Kojima, Hajime

    2013-11-01

    A reactive oxygen species (ROS) assay was previously developed for photosafety evaluation of pharmaceuticals, and the present multi-center study aimed to establish and validate a standard protocol for ROS assay. In three participating laboratories, two standards and 42 coded chemicals, including 23 phototoxins and 19 nonphototoxic drugs/chemicals, were assessed by the ROS assay according to the standardized protocol. Most phototoxins tended to generate singlet oxygen and/or superoxide under UV-vis exposure, but nonphototoxic chemicals were less photoreactive. In the ROS assay on quinine (200 µm), a typical phototoxic drug, the intra- and inter-day precisions (coefficient of variation; CV) were found to be 1.5-7.4% and 1.7-9.3%, respectively. The inter-laboratory CV for quinine averaged 15.4% for singlet oxygen and 17.0% for superoxide. The ROS assay on 42 coded chemicals (200 µm) provided no false negative predictions upon previously defined criteria as compared with the in vitro/in vivo phototoxicity, although several false positives appeared. Outcomes from the validation study were indicative of satisfactory transferability, intra- and inter-laboratory variability, and predictive capacity of the ROS assay. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Modeling the transport of chemical warfare agents and simulants in polymeric substrates for reactive decontamination

    Science.gov (United States)

    Pearl, Thomas; Mantooth, Brent; Varady, Mark; Willis, Matthew

    2014-03-01

    Chemical warfare agent simulants are often used for environmental testing in place of highly toxic agents. This work sets the foundation for modeling decontamination of absorbing polymeric materials with the focus on determining relationships between agents and simulants. The correlations of agents to simulants must consider the three way interactions in the chemical-material-decontaminant system where transport and reaction occur in polymer materials. To this end, diffusion modeling of the subsurface transport of simulants and live chemical warfare agents was conducted for various polymer systems (e.g., paint coatings) with and without reaction pathways with applied decontamination. The models utilized 1D and 2D finite difference diffusion and reaction models to simulate absorption and reaction in the polymers, and subsequent flux of the chemicals out of the polymers. Experimental data including vapor flux measurements and dynamic contact angle measurements were used to determine model input parameters. Through modeling, an understanding of the relationship of simulant to live chemical warfare agent was established, focusing on vapor emission of agents and simulants from materials.

  12. Topological analysis (BCP) of vibrational spectroscopic studies, docking, RDG, DSSC, Fukui functions and chemical reactivity of 2-methylphenylacetic acid

    Science.gov (United States)

    Kavimani, M.; Balachandran, V.; Narayana, B.; Vanasundari, K.; Revathi, B.

    2018-02-01

    Experimental FT-IR and FT-Raman spectra of 2-methylphenylacetic acid (MPA) were recorded and theoretical values are also analyzed. The non-linear optical (NLO) properties were evaluated by determination of first (5.5053 × 10- 30 e.s.u.) and second hyper-polarizabilities (7.6833 × 10- 36 e.s.u.) of the title compound. The Multiwfn package is used to find the weak non-covalent interaction (Van der Wall interaction) and strong repulsion (steric effect) of the molecule and examined by reduced density gradient. The molecular electrostatic potential (MEP) analysis used to find the most reactive sites for the electrophilic and nucleophilic attack. The chemical activity (electronegativity, hardness, chemical softness and chemical potential) of the title compound was predicted with the help of HOMO-LUMO energy values. The natural bond orbital (NBO) has been analyzed the stability of the molecule arising from the hyper-conjugative interaction. DSSCs were discussed in structural modifications that improve the electron injection efficiency of the title compound (MPA). The Fukui functions are calculated in order to get information associated with the local reactivity properties of the title compound. The binding sites of the two receptors were reported by molecular docking field and active site bond distance is same 1.9 Å. The inhibitor of the title compound forms a stable complex with 1QYV and 2H1K proteins at the binding energies are - 5.38 and - 5.85 (Δ G in kcal/mol).

  13. Facile Interfacial Electron Transfer of Hemoglobin

    Directory of Open Access Journals (Sweden)

    Chunhai Fan

    2005-12-01

    Full Text Available Abstract: We herein describe a method of depositing hemoglobin (Hb and sulfonated polyaniline (SPAN on GC electrodes that facilitate interfacial protein electron transfer. Well-defined, reproducible, chemically reversible peaks of Hb and SPAN can be obtained in our experiments. We also observed enhanced peroxidase activity of Hb in SPAN films. These results clearly showed that SPAN worked as molecular wires and effectively exchanged electrons between Hb and electrodes.Mediated by Conjugated Polymers

  14. Typical parameters of the plasma chemical similarity in non-isothermal reactive plasmas

    International Nuclear Information System (INIS)

    Gundermann, S.; Jacobs, H.; Miethke, F.; Rutsher, A.; Wagner, H.E.

    1996-01-01

    The substance of physical similarity principles is contained in parameters which govern the comparison of different realizations of a model device. Because similarity parameters for non-isothermal plasma chemical reactors are unknown to a great extent, an analysis of relevant equations is given together with some experimental results. Modelling of the reactor and experimental results for the ozone synthesis are presented

  15. Electrochemical and Quantum Chemical Study of Reactivity of Orthophthalaldehyde with Aliphatic Primary Amines

    Czech Academy of Sciences Publication Activity Database

    Donkeng Dazie, Joel; Liška, Alan; Ludvík, Jiří

    2016-01-01

    Roč. 163, č. 9 (2016), G127-G132 ISSN 0013-4651 R&D Projects: GA ČR GA13-21704S Institutional support: RVO:61388955 Keywords : electrochemistry * quantum chemical study * amines Subject RIV: CG - Electrochemistry Impact factor: 3.259, year: 2016

  16. Development of a QSAR for worst case estimates of acute toxicity of chemically reactive compounds

    NARCIS (Netherlands)

    Freidig, A.P.; Dekkers, S.; Verwei, M.; Zvinavashe, E.; Bessems, J.G.M.; Sandt, van de J.J.M.

    2007-01-01

    Future EU legislations enforce a fast hazard and risk assessment of thousands of existing chemicals. If conducted by means of present data requirements, this assessment will use a huge number of test animals and will be neither cost nor time effective. The purpose of the current research was to

  17. Surface area and chemical reactivity characteristics of uranium metal corrosion products.

    Energy Technology Data Exchange (ETDEWEB)

    Totemeier, T. C.

    1998-02-17

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m{sup 2}/g. The reactivity of the products in Ar-9%O{sub 2} and Ar-20%O{sub 2} were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal.

  18. Quantum mechanical reactive scattering theory for simple chemical reactions: Recent developments in methodology and applications

    International Nuclear Information System (INIS)

    Miller, W.H.

    1989-08-01

    It has recently been discovered that the S-matrix version of the Kohn variational principle is free of the ''Kohn anomalies'' that have plagued other versions and prevented its general use. This has made a major contribution to heavy particle reactive (and also to electron-atom/molecule) scattering which involve non-local (i.e., exchange) interactions that prevent solution of the coupled channel equations by propagation methods. This paper reviews the methodology briefly and presents a sample of integral and differential cross sections that have been obtained for the H + H 2 → H 2 +H and D + H 2 → HD + H reactions in the high energy region (up to 1.2 eV translational energy) relevant to resonance structures reported in recent experiments. 35 refs., 11 figs

  19. Surface area and chemical reactivity characteristics of uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T. C.

    1998-01-01

    The results of an initial characterization of hydride-containing corrosion products from uranium metal Zero Power Physics Reactor (ZPPR) fuel plates are presented. Sorption analyses using the BET method with a Kr adsorbate were performed to measure the specific areas of corrosion product samples. The specific surface areas of the corrosion products varied from 0.66 to 1.01 m 2 /g. The reactivity of the products in Ar-9%O 2 and Ar-20%O 2 were measured at temperatures between 35 C and 150 C using a thermo-gravimetric analyzer. Ignition of the products occurred at temperatures of 150 C and above. The oxidation rates below ignition were comparable to rates observed for uranium metal

  20. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    Science.gov (United States)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  1. Attempts to identify a control system for chemical reactivity in the living state using virtual energy.

    Science.gov (United States)

    Reid, B L; Bourke, C

    2001-07-01

    This thesis explores the activation of chemicals in metabolic systems from the viewpoint that this activation is under the control of elements of the space-sea in which the chemicals are immersed. Themselves inert, the chemicals are theorised to exploit a force or action issuing from space (fluctuation) and characterized by the homogeneity (termed symmetry) of this medium. The fluctuation is heterogenized upon collision with matter from the intervention of well recognized fields of gravity and electromagnetism at the instant of its issue to form the near field of radiation. Fractions of original space waves and of their intrinsic spin are produced resulting in the activation of the orbitals (valency) in the chemical itself. The thesis continues: the disturbed fluctuation must return to space, obliging in turn, a prior return to the homogeneous state requiring special restorative wave rearrangements known as resonance. The success of the restorative resonance is signalled by a singularity of the fluctuation now propelled to infinity (space), and the contingent chemical reactions thereby terminated. Compromise to this return can occur from many causes and, in its presence, activation of the orbitals continues. They now effectively constitute autonomous reactions alienated from the system as a whole. The thesis is supported from evidence from diverse fields such as space theory, history of quantum field theory in attempts to derive its meaning, dielectrics and the near field of electromagnetic radiation, electron-space interactions at the Fermi surface during phase transitions and evolution of equilibrium conditions in resonance phenomena. The utility of the hypothesis rests on recognition of the resonance condition at various points in the system sufficiently macroscopic as to be available clinically as an abrupt interface between physiology and pathology. Copyright 2001 Harcourt Publishers Ltd.

  2. Role of Extracellular Polymeric Substances in the Surface Chemical Reactivity of Hymenobacter aerophilus, a Psychrotolerant Bacterium▿

    Science.gov (United States)

    Baker, M. G.; Lalonde, S. V.; Konhauser, K. O.; Foght, J. M.

    2010-01-01

    Bacterial surface layers, such as extracellular polymeric substances (EPS), are known to play an important role in metal sorption and biomineralization; however, there have been very few studies investigating how environmentally induced changes in EPS production affect the cell's surface chemistry and reactivity. Acid-base titrations, cadmium adsorption assays, and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the surface reactivities of Hymenobacter aerophilus cells with intact EPS (WC) or stripped of EPS (SC) and purified EPS alone. Linear programming modeling of titration data showed SC to possess functional groups corresponding to phosphoryl (pKa ∼6.5), phosphoryl/amine (pKa ∼7.9), and amine/hydroxyl (pKa ∼9.9). EPS and WC both possess carboxyl groups (pKa ∼5.1 to 5.8) in addition to phosphoryl and amine groups. FT-IR confirmed the presence of polysaccharides and protein in purified EPS that can account for the additional carboxyl groups. An increased ligand density was observed for WC relative to that for SC, leading to an increase in the amount of Cd adsorbed (0.53 to 1.73 mmol/liter per g [dry weight] and 0.53 to 0.59 mmol/liter per g [dry weight], respectively). Overall, the presence of EPS corresponds to an increase in the number and type of functional groups on the surface of H. aerophilus that is reflected by increased metal adsorption relative to that for EPS-free cells. PMID:19915039

  3. Role of extracellular polymeric substances in the surface chemical reactivity of Hymenobacter aerophilus, a psychrotolerant bacterium.

    Science.gov (United States)

    Baker, M G; Lalonde, S V; Konhauser, K O; Foght, J M

    2010-01-01

    Bacterial surface layers, such as extracellular polymeric substances (EPS), are known to play an important role in metal sorption and biomineralization; however, there have been very few studies investigating how environmentally induced changes in EPS production affect the cell's surface chemistry and reactivity. Acid-base titrations, cadmium adsorption assays, and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the surface reactivities of Hymenobacter aerophilus cells with intact EPS (WC) or stripped of EPS (SC) and purified EPS alone. Linear programming modeling of titration data showed SC to possess functional groups corresponding to phosphoryl (pKa approximately 6.5), phosphoryl/amine (pKa approximately 7.9), and amine/hydroxyl (pKa approximately 9.9). EPS and WC both possess carboxyl groups (pKa approximately 5.1 to 5.8) in addition to phosphoryl and amine groups. FT-IR confirmed the presence of polysaccharides and protein in purified EPS that can account for the additional carboxyl groups. An increased ligand density was observed for WC relative to that for SC, leading to an increase in the amount of Cd adsorbed (0.53 to 1.73 mmol/liter per g [dry weight] and 0.53 to 0.59 mmol/liter per g [dry weight], respectively). Overall, the presence of EPS corresponds to an increase in the number and type of functional groups on the surface of H. aerophilus that is reflected by increased metal adsorption relative to that for EPS-free cells.

  4. Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading.

    Science.gov (United States)

    Wang, XinJie; Wu, YanQing; Huang, FengLei

    2017-01-05

    A mesoscopic framework is developed to quantify the thermal-mechanical-chemical responses of polymer-bonded explosive (PBX) samples under impact loading. A mesoscopic reactive model is developed for the cyclotetramethylenetetranitramine (HMX) crystal, which incorporates nonlinear elasticity, crystal plasticity, and temperature-dependent chemical reaction. The proposed model was implemented in the finite element code ABAQUS by the user subroutine VUMAT. A series of three-dimensional mesoscale models were constructed and calculated under low-strength impact loading scenarios from 100m/s to 600m/s where only the first wave transit is studied. Crystal anisotropy and microstructural heterogeneity are responsible for the nonuniform stress field and fluctuations of the stress wave front. At a critical impact velocity (≥300m/s), a chemical reaction is triggered because the temperature contributed by the volumetric and plastic works is sufficiently high. Physical quantities, including stress, temperature, and extent of reaction, are homogenized from those across the microstructure at the mesoscale to compare with macroscale measurements, which will advance the continuum-level models. The framework presented in this study has important implications in understanding hot spot ignition processes and improving predictive capabilities in energetic materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    Science.gov (United States)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-03-01

    A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method). The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics.

  6. Quasi-equilibria and plasma chemical similarity in non-isothermal reactive plasmas

    International Nuclear Information System (INIS)

    Miethke, F.; Rutscher, A.; Wagner, H.E.

    2000-01-01

    With regard to the output of stable products the mode of operation of non-isothermal plasma chemical reactors shows physical and chemical well defined states, which represent limiting cases and may be interpreted as quasi-equilibrium states. The occurrence and the characteristics of these states, meanwhile more than once observed and described, are demonstrated by an instructive model reaction. Within the frame of the so-called Macroscopic Kinetics a central parameter is dominating the reactor operation. This result may be generalized and is linked up to the application of similarity principles for the reactor operation. After the general formulation of such principles, starting from the balance equations of particles and energy, a dimensionless similarity parameter is formulated, characterizing the composition of the effluent gas of the reactor. The applicability of this parameter is demonstrated by experimental examples. (Authors)

  7. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    Directory of Open Access Journals (Sweden)

    S. Ahmad

    2018-03-01

    Full Text Available A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method. The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics. Keywords: Squeezing flow, Sutterby fluid model, Mixed convection, Double stratification, Thermal radiation, Chemical reaction

  8. Octazethrene and Its Isomer with Different Diradical Characters and Chemical Reactivity: The Role of the Bridge Structure

    KAUST Repository

    Hu, Pan

    2016-03-11

    The fundamental relationship between structure and diradical character is important for the development of open-shell diradicaloid-based materials. In this work, we synthesized two structural isomers bearing a 2,6-naphthoquinodimethane or a 1,5-naphthoquinodimethane bridge and demonstrated that their diradical characters and chemical reactivity are quite different. The mesityl or pentafluorophenyl substituted octazethrene derivatives OZ-M/OZ-F and their isomer OZI-M (with mesityl substituents) were synthesized via an intramolecular Friedel-Crafts alkylation followed by oxidative dehydrogenation strategy from the key building blocks 4 and 11. Our detailed experimental and theoretical studies showed that both isomers have an open-shell singlet ground state with a remarkable diradical character (y0 = 0.35 and 0.34 for OZ-M and OZ-F, and y0 = 0.58 for OZI-M). Compounds OZ-M and OZ-F have good stability under the ambient environment while OZI-M has high reactivity and can be easily oxidized to a dioxo-product 15, which can be correlated to their different diradical characters. Additionally, we investigated the physical properties of OZ-M, OZ-F and 15.

  9. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Science.gov (United States)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  10. Octazethrene and Its Isomer with Different Diradical Characters and Chemical Reactivity: The Role of the Bridge Structure

    KAUST Repository

    Hu, Pan; Lee, Sangsu; Park, Kyu Hyung; Das, Soumyajit; Herng, Tun Seng; Goncalves, Theo; Huang, Kuo-Wei; Ding, Jun; Kim, Dongho; Wu, Jishan

    2016-01-01

    The fundamental relationship between structure and diradical character is important for the development of open-shell diradicaloid-based materials. In this work, we synthesized two structural isomers bearing a 2,6-naphthoquinodimethane or a 1,5-naphthoquinodimethane bridge and demonstrated that their diradical characters and chemical reactivity are quite different. The mesityl or pentafluorophenyl substituted octazethrene derivatives OZ-M/OZ-F and their isomer OZI-M (with mesityl substituents) were synthesized via an intramolecular Friedel-Crafts alkylation followed by oxidative dehydrogenation strategy from the key building blocks 4 and 11. Our detailed experimental and theoretical studies showed that both isomers have an open-shell singlet ground state with a remarkable diradical character (y0 = 0.35 and 0.34 for OZ-M and OZ-F, and y0 = 0.58 for OZI-M). Compounds OZ-M and OZ-F have good stability under the ambient environment while OZI-M has high reactivity and can be easily oxidized to a dioxo-product 15, which can be correlated to their different diradical characters. Additionally, we investigated the physical properties of OZ-M, OZ-F and 15.

  11. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics.

    Science.gov (United States)

    Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei

    2016-01-21

    The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation.

  12. Practical use of chemical probes for reactive oxygen species produced in biological systems by {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Hee; Moon, Yu Ran; Chung, Byung Yeoup; Kim, Jae-Sung [Radiation Research Division for Bio-technology, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Lee, Kang-Soo [Crop Production and Technology Major, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Cho, Jae-Young [Bio-environmental Science Major, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Jin-Hong [Radiation Research Division for Bio-technology, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: jhongkim@kaeri.re.kr

    2009-05-15

    Application of chemical probes, for detection of reactive oxygen species (ROS), was tested during {gamma}-irradiation. The ethanol/{alpha}-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) and 3,3'-diaminobenzidine (DAB) were structurally stable enough to detect {sup {center_dot}}OH and H{sub 2}O{sub 2}, increasingly generated by {gamma}-irradiation up to 1000 Gy. Interestingly, the production rate of H{sub 2}O{sub 2}, but not {sup {center_dot}}OH, during {gamma}-irradiation, was significantly different between in vitro systems of lettuce and spinach. These results suggest that 4-POBN and DAB could be utilized as a semi-quantitative probe to quantify {sup {center_dot}}OH and H{sub 2}O{sub 2}, produced by {gamma}-irradiation up to 1000 Gy.

  13. Chemical environment of iron atoms in iron oxynitride films synthesized by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Grafoute, M.; Petitjean, C.; Rousselot, C.; Pierson, J.F.; Greneche, J.M.

    2007-01-01

    An iron oxynitride film was deposited on silicon and glass substrates by magnetron sputtering in an Ar-N 2 -O 2 reactive mixture. Rutherford back-scattering spectrometry was used to determine the film composition (Fe 1.06 O 0.35 N 0.65 ). X-ray diffraction revealed the formation of a face-centred cubic (fcc) structure with a lattice parameter close to that of γ'''-FeN. X-ray photoelectron spectroscopy showed the occurrence of Fe-N and Fe-O bonds in the film. The local environment of iron atoms studied by 57 Fe Moessbauer spectrometry at both 300 and 77 K gives clear evidence that the Fe 1.06 O 0.35 N 0.65 is not a mixture of iron oxide and iron nitride phases. Despite a small amount of an iron nitride phase, the main sample consists of an iron oxynitride phase with an NaCl-type structure where oxygen atoms partially substitute for nitrogen atoms, thus indicating the formation of a iron oxynitride with an fcc structure

  14. Production of chemically reactive radioactive ion beams through on-line separation

    International Nuclear Information System (INIS)

    Joinet, A.

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO 2 , Nb, Ti, V,TiO 2 , CeO x , ThO 2 , C, ZrC 4 and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target

  15. Flow of chemically reactive magneto Cross nanoliquid with temperature-dependent conductivity

    Science.gov (United States)

    Hayat, Tasawar; Ullah, Ikram; Waqas, Muhammad; Alsaedi, Ahmed

    2018-05-01

    Influence of temperature-dependent thermal conductivity on MHD flow of Cross nanoliquid bounded by a stretched sheet is explored. The combined feature of Brownian motion and thermophoresis in nanoliquid modeling is retained. In addition, the attributes of zero mass flux at sheet are imposed. First-order chemical reaction is retained. The resulting problems are numerically computed. Plots and tabulated values are presented and examined. It is figured out that larger thermophoretic diffusion and thermal conductivity significantly rise the thermal field, whereas opposite situation is seen for heat transfer rate.

  16. Tautomeric transformation of temozolomide, their proton affinities and chemical reactivities: A theoretical approach.

    Science.gov (United States)

    Sang-Aroon, Wichien; Ruangpornvisuti, Vithaya; Amornkitbamrung, Vittaya

    2016-05-01

    The gas-phase geometry optimizations of bare, mono- and dihydrated complexes of temozolomide isomers were carried out using density functional calculation at the M06-2X/6-31+G(d,p) level of the theory. The structures and protonation energies of protonated species of temozolomide are reported. Chemical indices of all isomers and protonated species are also reported. Energies, thermodynamic quantities, rate constants and equilibrium constants of tautomeric and rotameric transformations of all isomers I1↔TZM↔HIa↔HIb↔I2↔I3 in bare and hydrated systems were obtained. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Role of tip chemical reactivity on atom manipulation process in dynamic force microscopy

    Czech Academy of Sciences Publication Activity Database

    Sugimoto, Y.; Yurtsever, A.; Abe, M.; Morita, S.; Ondráček, Martin; Pou, P.; Perez, R.; Jelínek, Pavel

    2013-01-01

    Roč. 7, č. 8 (2013), s. 7370-7376 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GPP204/11/P578 Grant - others:GA AV ČR(CZ) M100101207 Institutional support: RVO:68378271 Keywords : noncontact atomic force microscopy * atomic manipulation * force spectroscopy * chemical interaction force * DFT simulations * nudged elastic band Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 12.033, year: 2013 http://pubs.acs.org/doi/abs/10.1021/nn403097p

  18. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    International Nuclear Information System (INIS)

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H 2 /minus/> DH + H and the substitution reaction D + C 2 H 2 /minus/> C 2 HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs

  19. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    Science.gov (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  20. Intra-/inter-laboratory validation study on reactive oxygen species assay for chemical photosafety evaluation using two different solar simulators.

    Science.gov (United States)

    Onoue, Satomi; Hosoi, Kazuhiro; Toda, Tsuguto; Takagi, Hironori; Osaki, Naoto; Matsumoto, Yasuhiro; Kawakami, Satoru; Wakuri, Shinobu; Iwase, Yumiko; Yamamoto, Toshinobu; Nakamura, Kazuichi; Ohno, Yasuo; Kojima, Hajime

    2014-06-01

    A previous multi-center validation study demonstrated high transferability and reliability of reactive oxygen species (ROS) assay for photosafety evaluation. The present validation study was undertaken to verify further the applicability of different solar simulators and assay performance. In 7 participating laboratories, 2 standards and 42 coded chemicals, including 23 phototoxins and 19 non-phototoxic drugs/chemicals, were assessed by the ROS assay using two different solar simulators (Atlas Suntest CPS series, 3 labs; and Seric SXL-2500V2, 4 labs). Irradiation conditions could be optimized using quinine and sulisobenzone as positive and negative standards to offer consistent assay outcomes. In both solar simulators, the intra- and inter-day precisions (coefficient of variation; CV) for quinine were found to be below 10%. The inter-laboratory CV for quinine averaged 15.4% (Atlas Suntest CPS) and 13.2% (Seric SXL-2500V2) for singlet oxygen and 17.0% (Atlas Suntest CPS) and 7.1% (Seric SXL-2500V2) for superoxide, suggesting high inter-laboratory reproducibility even though different solar simulators were employed for the ROS assay. In the ROS assay on 42 coded chemicals, some chemicals (ca. 19-29%) were unevaluable because of limited solubility and spectral interference. Although several false positives appeared with positive predictivity of ca. 76-92% (Atlas Suntest CPS) and ca. 75-84% (Seric SXL-2500V2), there were no false negative predictions in both solar simulators. A multi-center validation study on the ROS assay demonstrated satisfactory transferability, accuracy, precision, and predictivity, as well as the availability of other solar simulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Comparative Studies on Dyeability with Direct, Acid and Reactive Dyes after Chemical Modification of Jute with Mixed Amino Acids Obtained from Extract of Waste Soya Bean Seeds

    Science.gov (United States)

    Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar

    2017-12-01

    Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.

  2. Genetic hemoglobin disorders rather than iron deficiency are a major predictor of hemoglobin concentration in women of reproductive age in rural prey Veng, Cambodia.

    Science.gov (United States)

    Karakochuk, Crystal D; Whitfield, Kyly C; Barr, Susan I; Lamers, Yvonne; Devlin, Angela M; Vercauteren, Suzanne M; Kroeun, Hou; Talukder, Aminuzzaman; McLean, Judy; Green, Timothy J

    2015-01-01

    Anemia is common in Cambodian women. Potential causes include micronutrient deficiencies, genetic hemoglobin disorders, inflammation, and disease. We aimed to investigate factors associated with anemia (low hemoglobin concentration) in rural Cambodian women (18-45 y) and to investigate the relations between hemoglobin disorders and other iron biomarkers. Blood samples were obtained from 450 women. A complete blood count was conducted, and serum and plasma were analyzed for ferritin, soluble transferrin receptor (sTfR), folate, vitamin B-12, retinol binding protein (RBP), C-reactive protein (CRP), and α1 acid glycoprotein (AGP). Hemoglobin electrophoresis and multiplex polymerase chain reaction were used to determine the prevalence and type of genetic hemoglobin disorders. Overall, 54% of women had a genetic hemoglobin disorder, which included 25 different genotypes (most commonly, hemoglobin E variants and α(3.7)-thalassemia). Of the 420 nonpregnant women, 29.5% had anemia (hemoglobin 8.3 mg/L), hemoglobin disorders, respectively. There was no biochemical evidence of vitamin A deficiency (RBP 5 mg/L) and 26% (AGP >1 g/L) of nonpregnant women, respectively. By using an adjusted linear regression model, the strongest predictors of hemoglobin concentration were hemoglobin E homozygous disorder and pregnancy status. Other predictors were 2 other heterozygous traits (hemoglobin E and Constant Spring), parity, RBP, log ferritin, and vitamin B-12. Multiple biomarkers for anemia and iron deficiency were significantly influenced by the presence of hemoglobin disorders, hence reducing their diagnostic sensitivity. Further investigation of the unexpectedly low prevalence of IDA in Cambodian women is warranted. © 2015 American Society for Nutrition.

  3. Modeling of reactive chemical transport of leachates from a utility fly-ash disposal site

    International Nuclear Information System (INIS)

    Apps, J.A.; Zhu, M.; Kitanidis, P.K.; Freyberg, D.L.; Ronan, A.D.; Itakagi, S.

    1991-04-01

    Fly ash from fossil-fuel power plants is commonly slurried and pumped to disposal sites. The utility industry is interested in finding out whether any hazardous constituents might leach from the accumulated fly ash and contaminate ground and surface waters. To evaluate the significance of this problem, a representative site was selected for modeling. FASTCHEM, a computer code developed for the Electric Power Research Institute, was utilized for the simulation of the transport and fate of the fly-ash leachate. The chemical evolution of the leachate was modeled as it migrated along streamtubes defined by the flow model. The modeling predicts that most of the leachate seeps through the dam confining the ash pond. With the exception of ferrous, manganous, sulfate and small amounts of nickel ions, all other dissolved constituents are predicted to discharge at environmentally acceptable concentrations

  4. Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove

    2007-01-01

    of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration...... of the kinetics. The kinetic cell model serves both as a tool for the development and testing of tailored solvers as well as a testbed for studying the interactions between chemical kinetics and phase behavior. A comparison between a Kvalue correlation based approach and a more rigorous equation of state based......Phase changes are known to cause convergence problems for integration of stiff kinetics in thermal and compositional reservoir simulations. We propose an algorithm for detection and location of phase changes based on discrete event system theory. The algorithm provides a robust way for handling...

  5. Response of the ionosphere to the injection of chemically reactive vapors

    International Nuclear Information System (INIS)

    Bernhardt, P.A.

    1976-05-01

    As a gas released in the ionosphere expands, it is rapidly cooled. When the vapor becomes sufficiently tenuous, it is reheated by collisions with the ambient atmosphere, and its flow is then governed by diffusive expansion. As the injected gas becomes well mixed with the plasma, a hole is created by chemical processes. In the case of diatomic hydrogen release, depression of the electron concentrations is governed by the charge exchange reaction between oxygen ions and hydrogen, producing positive hydroxyl ions. Hydroxyl ions rapidly react with the electron gas to produce excited oxygen and hydrogen atoms. Enhanced airglow emissions result from the transition of the excited atoms to lower energy states. The electron temperature in the depleted region rises sharply and this rise causes a thermal expansion of the plasma and a further reduction in the local plasma concentration

  6. Electron Transfer Reactivity Patterns at Chemically Modified Electrodes: Fundamentals and Application to the Optimization of Redox Recycling Amplification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Adam Johan [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Electroanalytical chemistry is often utilized in chemical analysis and Fundamental studies. Important advances have been made in these areas since the advent of chemically modified electrodes: the coating of an electrode with a chemical film in order to impart desirable, and ideally, predictable properties. These procedures enable the exploitation of unique reactivity patterns. This dissertation presents studies that investigate novel reaction mechanisms at self-assembled monolayers on gold. In particular, a unique electrochemical current amplification scheme is detailed that relies on a selective electrode to enable a reactivity pattern that results in regeneration of the analyte (redox recycling). This regenerating reaction can occur up to 250 times for each analyte molecule, leading to a notable enhancement in the observed current. The requirements of electrode selectivity and the resulting amplification and detection limit improvements are described with respect to the heterogeneous and homogeneous electron transfer rates that characterize the system. These studies revealed that the heterogeneous electrolysis of the analyte should ideally be electrochemically reversible, while that for the regenerating agent should be held to a low level. Moreover, the homogeneous reaction that recycles the analyte should occur at a rapid rate. The physical selectivity mechanism is also detailed with respect to the properties of the electrode and redox probes utilized. It is shown that partitioning of the analyte into/onto the adlayer leads to the extraordinary selectivity of the alkanethiolate monolayer modified electrode. Collectively, these studies enable a thorough understanding of the complex electrode mechanism required for successful redox recycling amplification systems, Finally, in a separate (but related) study, the effect of the akyl chain length on the heterogeneous electron transfer behavior of solution-based redox probes is reported, where an odd-even oscillation

  7. Two-photon excited fluorescence emission from hemoglobin

    Science.gov (United States)

    Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.

    2015-03-01

    Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.

  8. Chemical reactivity of {alpha}-isosaccharinic acid in heterogeneous alkaline systems

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M. A.; Loon, L. R. Van

    2009-05-15

    Cellulose degradation under alkaline conditions is of relevance for the mobility of many radionuclides in the near-field of a cementitious repository for radioactive waste, because metal-binding degradation products may be formed. Among these, {alpha}- isosaccharinic acid ({alpha}-ISA) is the strongest complexant. The prediction of the equilibrium concentration of {alpha}-ISA in cement pore water is therefore an important step in the assessment of the influence of cellulose degradation products on the speciation of radionuclides in such environments. The present report focuses on possible chemical transformation reactions of {alpha}-ISA in heterogeneous alkaline model systems containing either Ca(OH){sub 2} or crushed hardened cement paste. The transformation reactions were monitored by measuring the concentration of {alpha}-ISA by high performance anion exchange chromatography and the formation of reaction products by high performance ion exclusion chromatography. The overall loss of organic species from solution was monitored by measuring the concentration of non-purgeable organic carbon. The reactions were examined in diluted and compacted suspensions, at either 25 {sup o}C or 90 {sup o}C, and under anaerobic atmospheres obtained by various methods. It was found that {alpha}-ISA was transformed under all conditions tested to some extent. Reaction products, such as glycolate, formate, lactate and acetate, all compounds with less complexing strength than {alpha}-ISA, were detected. The amount of reaction products identified by the chromatographic technique applied was {approx} 50 % of the amount of {alpha}-ISA reacted. Sorption of {alpha}-ISA to Ca(OH){sub 2} contributed only to a minor extent to the loss of {alpha}-ISA from the solution phase. As the most important conclusion of the present work it was demonstrated that the presence of oxidising agents had a distinctive influence on the turnover of {alpha}-ISA. Under aerobic conditions {alpha}-ISA was

  9. Chemical reactivity of α-isosaccharinic acid in heterogeneous alkaline systems

    International Nuclear Information System (INIS)

    Glaus, M. A.; Loon, L. R. Van

    2008-11-01

    Cellulose degradation under alkaline conditions is of relevance for the mobility of many radionuclides in the near-field of a cementitious repository for radioactive waste, because metal-binding degradation products may be formed. Among these, α-isosaccharinic acid (α-ISA) is the strongest complexant. The prediction of the equilibrium concentration of α-ISA in cement pore water is therefore an important step in the assessment of the influence of cellulose degradation products on the speciation of radionuclides in such environments. The present report focuses on possible chemical transformation reactions of α-ISA in heterogeneous alkaline model systems containing either Ca(OH) 2 or crushed hardened cement paste. The transformation reactions were monitored by measuring the concentration of α-ISA by high performance anion exchange chromatography and the formation of reaction products by high performance ion exclusion chromatography. The overall loss of organic species from solution was monitored by measuring the concentration of non-purgeable organic carbon. The reactions were examined in diluted and compacted suspensions, either at 25 o C or 90 o C, and under anaerobic atmospheres obtained by various methods. It was found that α-ISA was transformed under all conditions tested to some extent. Reaction products, such as glycolate, formate, lactate and acetate, all compounds with less complexing strength than α-ISA, were detected. The amount of reaction products identified by the chromatographic technique applied was ∼50 % of the amount of α-ISA reacted. Sorption of α-ISA to Ca(OH) 2 contributed only to a minor extent to the loss of α-ISA from the solution phase. As the most important conclusion of the present work it was demonstrated that the presence of oxidising agents had a distinctive influence on the turnover of α-ISA. Under aerobic conditions α-ISA was quantitatively converted to reaction products, whereas under strict anaerobic conditions, only

  10. Chemical reactivity of α-isosaccharinic acid in heterogeneous alkaline systems

    International Nuclear Information System (INIS)

    Glaus, M. A.; Loon, L. R. Van

    2009-05-01

    Cellulose degradation under alkaline conditions is of relevance for the mobility of many radionuclides in the near-field of a cementitious repository for radioactive waste, because metal-binding degradation products may be formed. Among these, α- isosaccharinic acid (α-ISA) is the strongest complexant. The prediction of the equilibrium concentration of α-ISA in cement pore water is therefore an important step in the assessment of the influence of cellulose degradation products on the speciation of radionuclides in such environments. The present report focuses on possible chemical transformation reactions of α-ISA in heterogeneous alkaline model systems containing either Ca(OH) 2 or crushed hardened cement paste. The transformation reactions were monitored by measuring the concentration of α-ISA by high performance anion exchange chromatography and the formation of reaction products by high performance ion exclusion chromatography. The overall loss of organic species from solution was monitored by measuring the concentration of non-purgeable organic carbon. The reactions were examined in diluted and compacted suspensions, at either 25 o C or 90 o C, and under anaerobic atmospheres obtained by various methods. It was found that α-ISA was transformed under all conditions tested to some extent. Reaction products, such as glycolate, formate, lactate and acetate, all compounds with less complexing strength than α-ISA, were detected. The amount of reaction products identified by the chromatographic technique applied was ∼ 50 % of the amount of α-ISA reacted. Sorption of α-ISA to Ca(OH) 2 contributed only to a minor extent to the loss of α-ISA from the solution phase. As the most important conclusion of the present work it was demonstrated that the presence of oxidising agents had a distinctive influence on the turnover of α-ISA. Under aerobic conditions α-ISA was quantitatively converted to reaction products, whereas under strict anaerobic conditions, only

  11. Physico-chemical changes of the ground waters related to the 2011 El Hierro magmatic reactivation

    Science.gov (United States)

    Dionis, S.; Melián, G.; Padrón, E.; Padilla, G.; Nolasco, D.; Rodríguez, F.; Hernández, I.; Peraza, D.; Barrancos, J.; Hernández, P.; Calvo, D.; Pérez, N.

    2012-04-01

    The island of El Hierro (278 Km2), is the smallest, the southwesternmost and the youngest island (˜1.12 My) of the Canarian archipelago. The main geological characteristics of El Hierro consist on the presence of three convergent ridges of volcanic cones on a truncated trihedron shape and giant landslides between the three rift zones, being the most recent El Golfo on the northwest flank of the island. On July 2011 an anomalous seismic activity at Hierro Island started and suggested the initial stage of a volcanic unrest in the volcanic system. On October 10, after the occurrence of more than 10,000 earthquakes, a submarine eruption started. Evidences of this submarine volcanic eruption were visible on the sea surface to the south of La Restinga village, at the south of the island, in the form of large light-green coloured area, turbulent gas emission and the appearance of steamy volcanic fragments three days later. As part of its volcanic surveillance activities, the Instituto Volcanologico de Canarias (INVOLCAN) started a hydrogeochemical monitoring program on August 2011 in order to evaluate the temporal evolution of several physico-chemical parameters of the ground water system of El Hierro. Four observation sites were selected: three wells on the north of the island, where the seismic activity was located at the beginning of the volcano-seismic unrest (SIMO, FRON and PADO) and one horizontal well (gallery) in the south (TACO). Ground water sampling is being regularly collected, three times per week, at each observation site, and in-situ measurements of pH, conductivity and temperature measurements are performed. After 6 month of monitoring, no significant changes have been observed on pH and temperature measurements from all the observation sites. However, clear sharp decrease of conductivity was observed at SIMO on October 10 when the seismic tremor started. In addition, the strongest conductivity decrease pattern was observed later on at SIMO and PADO on

  12. Vibrational deactivation on chemically reactive potential surfaces: An exact quantum study of a low barrier collinear model of H + FH, D + FD, H + FD and D + FH

    International Nuclear Information System (INIS)

    Schatz, G.C.; Kuppermann, A.

    1980-01-01

    We study vibrational deactivation processes on chemically reactive potential energy surfaces by examining accurate quantum mechanical transition probabilities and rate constants for the collinear H + FH(v), D + FD(v), H + FD(v), and D + FH(v) reactions. A low barrier (1.7 kcal/mole) potential surface is used in these calculations, and we find that for all four reactions, the reactive inelastic rate constants are larger than the nonreactive ones for the same initial and final vibrational states. However, the ratios of these reactive and nonreactive rate constants depend strongly on the vibrational quantum number v and the isotopic composition of the reagents. Nonreactive and reactive transition probabilities for multiquantum jump transitions are generally comparable to those for single quantum transitions. This vibrationally nonadiabatic behavior is a direct consequence of the severe distortion of the diatomic that occurs in a collision on a low barrier reactive surface, and can make chemically reactive atoms like H or D more efficient deactivators of HF or DF than nonreactive collision partners. Many conclusions are in at least qualitative agreement with those of Wilkin's three dimensional quasiclassical trajectory study on the same systems using a similar surface. We also present results for H + HF(v) collisions which show that for a higher barrier potential surface (33 rather than 1.7 kcal/mole), the deactivation process becomes similar in character to that for nonreactive partners, with v→v-1 processes dominating

  13. Numerical solution of chemically reactive non-Newtonian fluid flow: Dual stratification

    Science.gov (United States)

    Rehman, Khalil Ur; Malik, M. Y.; Khan, Abid Ali; Zehra, Iffat; Zahri, Mostafa; Tahir, M.

    2017-12-01

    We have found that only a few attempts are available in the literature relatively to the tangent hyperbolic fluid flow induced by stretching cylindrical surfaces. In particular, temperature and concentration stratification effects have not been investigated until now with respect to the tangent hyperbolic fluid model. Therefore, we have considered the tangent hyperbolic fluid flow induced by an acutely inclined cylindrical surface in the presence of both temperature and concentration stratification effects. To be more specific, the fluid flow is attained with the no slip condition, which implies that the bulk motion of the fluid particles is the same as the stretching velocity of a cylindrical surface. Additionally, the flow field situation is manifested with heat generation, mixed convection and chemical reaction effects. The flow partial differential equations give a complete description of the present problem. Therefore, to trace out the solution, a set of suitable transformations is introduced to convert these equations into ordinary differential equations. In addition, a self-coded computational algorithm is executed to inspect the numerical solution of these reduced equations. The effect logs of the involved parameters are provided graphically. Furthermore, the variations of the physical quantities are examined and given with the aid of tables. It is observed that the fluid temperature is a decreasing function of the thermal stratification parameter and a similar trend is noticed for the concentration via the solutal stratification parameter.

  14. Chemical reactivity of precursor materials during synthesis of glasses used for conditioning high-level radioactive waste: Experiments and models

    International Nuclear Information System (INIS)

    Monteiro, A.

    2012-01-01

    The glass used to store high-level radioactive waste is produced by reaction of a solid waste residue and a glassy precursor (glass frit). The waste residue is first dried and calcined (to lose water and nitrogen respectively), then mixed with the glass frit to enable vitrification at high temperature. In order to obtain a good quality glass of constant composition upon cooling, the chemical reactions between the solid precursors must be complete while in the liquid state, to enable incorporation of the radioactive elements into the glassy matrix. The physical and chemical conditions during glass synthesis (e.g. temperature, relative proportions of frit and calcine, amount of radioactive charge) are typically empirically adjusted to obtain a satisfactory final product. The aim of this work is to provide new insights into the chemical and physical interactions that take place during vitrification and to provide data for a mathematical model that has been developed to simulate the chemical reactions. The consequences of the different chemical reactions that involve solid, liquid and gaseous phases are described (thermal effects, changes in crystal morphology and composition, variations in melt properties and structure). In a first series of experiments, a simplified analogue of the calcine (NaNO 3 -Al 2 O 3 ± MoO 3 /Nd 2 O 3 ) has been studied. In a second series of experiments, the simplified calcines have been reacted with a simplified glass frit (SiO 2 -Na 2 O-B 2 O 3 -Al 2 O 3 ) at high temperature. The results show that crystallization of the calcine may take place before interaction with the glass frit, but that the reactivity with the glass at high temperature is a function of the nature and stoichiometry of the crystalline phases which form at low temperature. The results also highlight how the mixing of the starting materials, the physical properties of the frit (viscosity, glass transition temperature) and the Na 2 O/Al 2 O 3 of the calcine but also its

  15. Influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with carcinogenic and anticoagulant effect of 17β-aminoestrogens

    Energy Technology Data Exchange (ETDEWEB)

    Soriano-Correa, Catalina, E-mail: socc@puma2.zaragoza.unam.mx [Química Computacional, FES-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Iztapalapa, Mexico City (Mexico); Raya, Angélica [Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Instituto Politécnico Nacional (IPN), Silao de la Victoria, Guanajuato (Mexico); Barrientos-Salcedo, Carolina [Laboratorio de Química Médica y Quimiogenómica, Facultad de Bioanálisis Campus Veracruz - Boca del Río, Universidad Veracruzana, Veracruz (Mexico); Esquivel, Rodolfo O. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa (UAM-Iztapalapa), Mexico City (Mexico)

    2014-06-25

    Highlights: • The aromatic A-ring of 17β-aminoestrogens contribute to its anticoagulant effect. • The electron-donor substituent groups favored the basicity of 17β-aminoestrogens. • The physicochemical properties are important in the carcinogenic effect of anticoagulant molecules. - Abstract: Activity of steroid hormones is dependent upon a number of factors, as solubility, transport and metabolism. The functional differences caused by structural modifications could exert an influence on the chemical reactivity and biological effect. The goal of this work is to study the influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with the carcinogenic risk that can associate with the anticoagulant effect of 17β-aminoestrogens using quantum-chemical descriptors at the DFT-B3LYP, BH and HLYP and M06-2X levels. The relative acidity of (H1) of the hydroxyl group increases with electron-withdrawing groups. Electron-donor groups favor the basicity. The steric hindrance of the substituents decreases the aromatic character and consequently diminution the carcinogenic effect. Density descriptors: hardness, electrophilic index, atomic charges, molecular orbitals, electrostatic potential and their geometric parameters permit analyses of the chemical reactivity and physicochemical features and to identify some reactive sites of 17β-aminoestrogens.

  16. Synthesis, characterisation and chemical reactivity of some new binuclear dioxouranium(VI) complexes derived from organic diazo compounds (Preprint No. CT-33)

    International Nuclear Information System (INIS)

    Pujar, M.A.; Pirgonde, B.R.

    1988-02-01

    A new series of binuclear dioxouranium(VI) complexes of polydentatate diazo compounds have been synthesised and characterised adequately by analysis, physio-chemical techniques and reactivity of these complexes. The location of bonding site of ligands, stability of complexes and status of U-O bond and probable structures of these complexes have been discussed. (author). 10 refs

  17. Fuels and chemicals from equine-waste-derived tail gas reactive pyrolysis oil: technoeconomic analysis, environmental and exergetic life cycle assessment

    Science.gov (United States)

    Horse manure, whose improper disposal imposes considerable environmental costs, constitutes an apt feedstock for conversion to renewable fuels and chemicals when tail gas reactive pyrolysis (TGRP) is employed. TGRP is a modification of fast pyrolysis that recycles its non-condensable gases and produ...

  18. Non-invasive hemoglobin monitoring.

    Science.gov (United States)

    Joseph, Bellal; Haider, Ansab; Rhee, Peter

    2016-09-01

    Technology has transformed the practice of medicine and surgery in particular over the last several decades. This change in practice has allowed diagnostic and therapeutic tests to be performed less invasively. Hemoglobin monitoring remains one of the most commonly performed diagnostic tests in the United States. Recently, non-invasive hemoglobin monitoring technology has gained popularity. The aim of this article is to review the principles of how this technology works, pros and cons, and the implications of non-invasive hemoglobin technology particularly in trauma surgery. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  19. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    International Nuclear Information System (INIS)

    Jacques, S.; Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P.

    2013-01-01

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called “interphase” between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC–TiC) n interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC–TiC) n films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  20. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    Science.gov (United States)

    Jacques, S.; Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P.

    2013-06-01

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called "interphase" between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC-TiC)n interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC-TiC)n films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  1. Microstructure, chemical states, and mechanical properties of V–C–Co coatings prepared by non-reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Zhang, Xiaojuan; Wang, Bo; Zhan, Zhaolin; Huang, Feng

    2013-01-01

    V–C–Co coatings have been prepared by non-reactive magnetron co-sputtering from VC and Co targets. The microstructure, chemical states, and mechanical properties are examined as a function of Co content in the coatings. The coatings are dense, with columnar growth structures. High resolution transmission electron microscopy (HRTEM) studies identify a nanocomposite microstructure for the 12.4 at.% Co coating, in which ligament-like Co-rich regions partially separate the nanocrystalline VC grains. X-ray photoelectron spectroscopy studies reveal a noticeable charge transfer from Co 2p states to C 1s states. This charge transfer, in addition to the ligament-like Co-rich regions as revealed by HRTEM, points to the formation of a strong Co/VC interface. The nanoindentation hardness of the coatings drops steadily with the Co content, from 29 GPa for pure VC to ∼ 21 GPa for the 12.4 at.% Co coating. Meanwhile, the plasticity characteristic increased from 0.42 to 0.53. - Highlights: • Nanocomposite V–C–Co coatings with strong Co/VC interfaces were formed. • Found nanocrystalline VC grains separated by ∼ 1 nm thin Co-rich ligaments. • A noticeable amount of C-Co bonds between VC and Co is identified. • V–C–Co coatings exhibited a higher plasticity characteristic than VC

  2. Microstructure, chemical states, and mechanical properties of V–C–Co coatings prepared by non-reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaojuan [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000 (China); Wang, Bo [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Zhan, Zhaolin [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650000 (China); Huang, Feng, E-mail: huangfeng@nimte.ac.cn [Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China)

    2013-07-01

    V–C–Co coatings have been prepared by non-reactive magnetron co-sputtering from VC and Co targets. The microstructure, chemical states, and mechanical properties are examined as a function of Co content in the coatings. The coatings are dense, with columnar growth structures. High resolution transmission electron microscopy (HRTEM) studies identify a nanocomposite microstructure for the 12.4 at.% Co coating, in which ligament-like Co-rich regions partially separate the nanocrystalline VC grains. X-ray photoelectron spectroscopy studies reveal a noticeable charge transfer from Co 2p states to C 1s states. This charge transfer, in addition to the ligament-like Co-rich regions as revealed by HRTEM, points to the formation of a strong Co/VC interface. The nanoindentation hardness of the coatings drops steadily with the Co content, from 29 GPa for pure VC to ∼ 21 GPa for the 12.4 at.% Co coating. Meanwhile, the plasticity characteristic increased from 0.42 to 0.53. - Highlights: • Nanocomposite V–C–Co coatings with strong Co/VC interfaces were formed. • Found nanocrystalline VC grains separated by ∼ 1 nm thin Co-rich ligaments. • A noticeable amount of C-Co bonds between VC and Co is identified. • V–C–Co coatings exhibited a higher plasticity characteristic than VC.

  3. Chemical reactivities of the superconducting oxides, YBa2Cu3Oy and BiSrCaCu2Oy

    International Nuclear Information System (INIS)

    Toyama, Hisashi; Mizuno, Noritaka; Misono, Makoto

    1989-01-01

    The chemical reactivities of YBa 2 Cu 3 O y and BiSrCaCu 2 O y with various gases have been studied. It was found that large quantities of NO, CO, and NO 2 were rapidly absorbed (or intercalated) in the bulk of YBa 2 Cu 3 O y (T c : 90 K) at 573 K. The amount absorbed was in the order NO ∼ CO ∼ NO 2 > O 2 ∼ CO 2 > N 2 O ∼ 0. The amount for NO was more than two times the amount of YBa 2 Cu 3 O y in molar ratio and elongation by about 0.2 angstrom along c-axis was observed. NO absorbed was almost completely recovered as NO by the evacuation at 773 K. This absorption-desorption cycle proceeded reversively. The electronic resistivity at 573 K of YBa 2 Cu 3 O y increased upon the NO absorption and was restored by the evacuation at 773 K. CO was also absorbed rapidly accompanied by evolution of CO 2 . BiSrCaCu 2 O y did not absorb either NO or CO

  4. Influence of crystal defects on the chemical reactivity of recoil atoms in oxygen-containing chromium compounds

    International Nuclear Information System (INIS)

    Costea, T.

    1969-01-01

    The influence of crystal defects on the chemical reactivity of recoil atoms produced by the reaction 50 Cr (n,γ) 51 Cr in oxygen-containing chromium compounds has been studied. Three methods have been used to introduce the defects: doping (K 2 CrO 4 doped with BaCrO 4 ), irradiation by ionizing radiation (K 2 CrO 4 irradiated in the presence of Li 2 CO 3 ) and non-stoichiometry (the semi-conducting oxides of the CrO 3 -Cr 2 O 3 series). The thermal annealing kinetics of the irradiated samples have been determined, and the activation energy has been calculated. In all cases it has been observed that there is a decrease in the activation energy for thermal annealing in the presence of the defects. In order to explain the annealing process, an electronic mechanism has been proposed based on the interaction between the recoil species and the charge-carriers (holes or electrons). (author) [fr

  5. Quantum chemical study of the structure, spectroscopy and reactivity of NO+.(H2O) n=1-5 clusters.

    Science.gov (United States)

    Linton, Kirsty A; Wright, Timothy G; Besley, Nicholas A

    2018-03-13

    Quantum chemical methods including Møller-Plesset perturbation (MP2) theory and density functional theory (DFT) have been used to study the structure, spectroscopy and reactivity of NO + (H 2 O) n =1-5 clusters. MP2/6-311++G** calculations are shown to describe the structure and spectroscopy of the clusters well. DFT calculations with exchange-correlation functionals with a low fraction of Hartree-Fock exchange give a binding energy of NO + (H 2 O) that is too high and incorrectly predict the lowest energy structure of NO + (H 2 O) 2 , and this error may be associated with a delocalization of charge onto the water molecule directly binding to NO + Ab initio molecular dynamics (AIMD) simulations were performed to study the NO + (H 2 O) 5 [Formula: see text] H + (H 2 O) 4 + HONO reaction to investigate the formation of HONO from NO + (H 2 O) 5 Whether an intracluster reaction to form HONO is observed depends on the level of electronic structure theory used. Of note is that methods that accurately describe the relative energies of the product and reactant clusters did not show reactions on the timescales studied. This suggests that in the upper atmosphere the reaction may occur owing to the energy present in the NO + (H 2 O) 5 complex following its formation.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  6. Nonlinear photoacoustic spectroscopy of hemoglobin.

    Science.gov (United States)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P; Xia, Jun; Wang, Lihong V

    2015-05-18

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  7. Nonlinear photoacoustic spectroscopy of hemoglobin

    International Nuclear Information System (INIS)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.

    2015-01-01

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography

  8. Nonlinear photoacoustic spectroscopy of hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V., E-mail: LHWANG@WUSTL.EDU [Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130 (United States)

    2015-05-18

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  9. Quantitative analysis of composition, structure and features of hemoglobin under the influence of radiation in vivo

    International Nuclear Information System (INIS)

    Kurbanov, F.F.; Mamedov, T.G.; Abdullaev, Kh.D.; Akhmedov, N.A.; Manojlov, S.K.

    1995-01-01

    The literature data on the changes in composition, structure and properties of hemoglobin under the influence of ionizing radiation in vivo are reviewed. The algorithm of calculation of damaged hemoglobin molecule percentage is proposed. Four main realizations of radiation-chemical damage are considered. By the algorithm the estimation of the damaged molecules percentage resulted from the exposure to 10 Gy is given. Hemoglobin radiation damage is considered as one of the most important mechanisms triggering radiation sickness. 11 refs

  10. Chemical Reactivity of Isoproturon, Diuron, Linuron, and Chlorotoluron Herbicides in Aqueous Phase: A Theoretical Quantum Study Employing Global and Local Reactivity Descriptors

    Directory of Open Access Journals (Sweden)

    Luis Humberto Mendoza-Huizar

    2015-01-01

    Full Text Available We have calculated global and local DFT reactivity descriptors for isoproturon, diuron, linuron, and chlorotoluron herbicides at the MP2/6-311++G(2d,2p level of theory. The results suggest that, in aqueous conditions, chlorotoluron, linuron, and diuron herbicides may be degraded by elimination of urea moiety through electrophilic attacks. On the other hand, electrophilic, nucleophilic, and free radical attacks on isoproturon may cause the elimination of isopropyl fragment.

  11. The interaction of 2,3-diphosphoglycerate with various human hemoglobins

    Science.gov (United States)

    Bunn, H. Franklin; Briehl, Robin W.

    1970-01-01

    Oxygen equilibria were measured on a number of human hemoglobins, which had been “stripped” of organic phosphates and isolated by column chromatography. In the presence of 2 × 10-4 M 2,3-diphosphoglycerate (2,3-DPG), the P50 of hemoglobins A, A2, S, and C increased about twofold, signifying a substantial and equal decrease in oxygen affinity. Furthermore, hemoglobins Chesapeake and MMilwaukee-1 which have intrinsically high and low oxygen affinities, respectively, also showed a twofold increase in P50 in the presence of 2 × 10-4 M 2,3-DPG. In comparison to these, hemoglobins AIC and F were less reactive with 2,3-DPG while hemoglobin FI showed virtually no reactivity. The N-terminal amino of each β-chain of hemoglobin AIC is linked to a hexose. In hemoglobin FI the N-terminal amino of each γ-chain is acetylated. These results suggest that the N-terminal amino groups of the non-α-chains are involved in the binding of 2,3-DPG to hemoglobin. PMID:5422014

  12. Hemoglobin C, S-C, and E Diseases

    Science.gov (United States)

    ... quickly than others, resulting in chronic anemia. Hemoglobin C disease Hemoglobin C disease occurs mostly in blacks. ... a common complication of hemoglobin C disease. Hemoglobin S-C disease Hemoglobin S-C disease occurs in people who ...

  13. Cross talk between increased intracellular zinc (Zn2+) and accumulation of reactive oxygen species in chemical ischemia.

    Science.gov (United States)

    Slepchenko, Kira G; Lu, Qiping; Li, Yang V

    2017-10-01

    Both zinc (Zn 2+ ) and reactive oxygen species (ROS) have been shown to accumulate during hypoxic-ischemic stress and play important roles in pathological processes. To understand the cross talk between the two of them, here we studied Zn 2+ and ROS accumulation by employing fluorescent probes in HeLa cells to further the understanding of the cause and effect relationship of these two important cellular signaling systems during chemical-ischemia, stimulated by oxygen and glucose deprivation (OGD). We observed two Zn 2+ rises that were divided into four phases in the course of 30 min of OGD. The first Zn 2+ rise was a transient, which was followed by a latent phase during which Zn 2+ levels recovered; however, levels remained above a basal level in most cells. The final phase was the second Zn 2+ rise, which reached a sustained plateau called Zn 2+ overload. Zn 2+ rises were not observed when Zn 2+ was removed by TPEN (a Zn 2+ chelator) or thapsigargin (depleting Zn 2+ from intracellular stores) treatment, indicating that Zn 2+ was from intracellular storage. Damaging mitochondria with FCCP significantly reduced the second Zn 2+ rise, indicating that the mitochondrial Zn 2+ accumulation contributes to Zn 2+ overload. We also detected two OGD-induced ROS rises. Two Zn 2+ rises preceded two ROS rises. Removal of Zn 2+ reduced or delayed OGD- and FCCP-induced ROS generation, indicating that Zn 2+ contributes to mitochondrial ROS generation. There was a Zn 2+ -induced increase in the functional component of NADPH oxidase, p47 phox , thus suggesting that NADPH oxidase may mediate Zn 2+ -induced ROS accumulation. We suggest a new mechanism of cross talk between Zn 2+ and mitochondrial ROS through positive feedback processes that eventually causes excessive free Zn 2+ and ROS accumulations during the course of ischemic stress. Copyright © 2017 the American Physiological Society.

  14. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems

    Directory of Open Access Journals (Sweden)

    M. De Lucia

    2015-02-01

    Full Text Available Fully coupled, multi-phase reactive transport simulations of CO2 storage systems can be approximated by a simplified one-way coupling of hydrodynamics and reactive chemistry. The main characteristics of such systems, and hypotheses underlying the proposed alternative coupling, are (i that the presence of CO2 is the only driving force for chemical reactions and (ii that its migration in the reservoir is only marginally affected by immobilisation due to chemical reactions. In the simplified coupling, the exposure time to CO2 of each element of the hydrodynamic grid is estimated by non-reactive simulations and the reaction path of one single batch geochemical model is applied to each grid element during its exposure time. In heterogeneous settings, analytical scaling relationships provide the dependency of velocity and amount of reactions to porosity and gas saturation. The analysis of TOUGHREACT fully coupled reactive transport simulations of CO2 injection in saline aquifer, inspired to the Ketzin pilot site (Germany, both in homogeneous and heterogeneous settings, confirms that the reaction paths predicted by fully coupled simulations in every element of the grid show a high degree of self-similarity. A threshold value for the minimum concentration of dissolved CO2 considered chemically active is shown to mitigate the effects of the discrepancy between dissolved CO2 migration in non-reactive and fully coupled simulations. In real life, the optimal threshold value is unknown and has to be estimated, e.g. by means of 1-D or 2-D simulations, resulting in an uncertainty ultimately due to the process de-coupling. However, such uncertainty is more than acceptable given that the alternative coupling enables using grids of the order of millions of elements, profiting from much better description of heterogeneous reservoirs at a fraction of the calculation time of fully coupled models.

  15. A new polyethyleneglycol-derivatized hemoglobin derivative with decreased oxygen affinity and limited toxicity.

    Science.gov (United States)

    Zolog, Oana; Mot, Augustin; Deac, Florina; Roman, Alina; Fischer-Fodor, Eva; Silaghi-Dumitrescu, Radu

    2011-01-01

    A new protocol is described for derivatization of hemoglobin with polyethyleneglycol (PEG) via reaction of the unmodified native hemoglobin with an activated amine-reacting polyethylene glycol derivative which, unlike protocols previously described, leads to formation of a peptide bond between hemoglobin and PEG. Dioxygen binding and peroxide reactivities of the derivatized hemoglobin are examined, and found to be within reasonable limits, with the particular observation that, unlike with a few other derivatization protocols, the dioxygen affinity is slightly lower than that of native Hb. In cell culture tests (human umbilical vein epithelial cells, HUVEC), the derivatization protocol induces no toxic effect. These results show promise towards applicability for production of hemoglobin-based blood substitutes.

  16. Assessing Chemical Transformation of Reactive, Interfacial Thin Films Made of End-Tethered Poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) Chains

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Bethany [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Kite, Camille M. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Hopkins, Benjamin W. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Zetterberg, Anna [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering; Lokitz, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Ankner, John Francis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS); Kilbey, S. Michael [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering

    2017-01-24

    Designing thin films or surface scaffolds with an appropriate display of chemical functionality is useful for biomedical applications, sensing platforms, adhesives, and barrier coatings. Relationships between the structural characteristics of model thin films based on reactive poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) brushes and the amount and distribution of primary amines used to chemically functionalize the layer in situ are quantitatively detailed via neutron reflectometry and compared with results from ellipsometry. After functionalization, the PVDMA brush thickness increases as a result of the primary amines reacting with the azlactone rings. Both techniques show that the extent of functionalization by small-molecule amines depends on the size of the amine, the grafting density of brush chains and their molecular weight. However, constrained analysis of neutron reflectivity data predicated on that technique’s sensitivity to isotopic substitution and its ability to resolve structure at the nanoscale, shows that the extent of functionalization is not accurately represented by the average extent of functionalization determined from ellipsometric thickness: reactive modification is not uniform, even in modestly dense brushes, except when the penetrant is small. Additionally, there appears to be a loss of PVDMA chains during functionalization, attributed to chain scission resulting from additional stretching brought about by functionalization. These findings provide unprecedented insight into the alteration of surface properties by reactive modification and broadly support efforts to produce tailored surfaces in which properties such as friction, colloidal stability, adhesion, wettability, and biocompatibility can be modulated in situ by chemical modification.

  17. Hemoglobin affinity in Andean rodents

    Directory of Open Access Journals (Sweden)

    HRVOJ OSTOJIC

    2002-01-01

    Full Text Available Blood hemoglobin oxygen affinity (P50 was measured in three Andean species and in the laboratory rat (control, all raised near sea level. Chinchilla lanigera (Molina, 1792 has an altitudinal habitat range from low Andean slopes up to 3000 m., while Chinchilla brevicaudata (Waterhouse, 1848 has an altitudinal range from 3000 to 5000 m. The laboratory type guinea pig, wild type guinea pig (Cavia porcellus, (Waterhouse, 1748, and laboratory rat (Rattus norvegicus were also raised at sea level. The Andean species had high hemoglobin oxygen affinities (low P50 compared with the rat. Chinchilla brevicaudata had a higher affinity than Chinchilla lanigera. The wild type guinea pig had a higher affinity than the laboratory type. As has been shown in other species, this is another example of an inverse correlation between the altitude level and the P50 values. This is the first hemoglobin oxygen affinity study in Chinchilla brevicaudata.

  18. Analytical determination of specific 4,4'-methylene diphenyl diisocyanate hemoglobin adducts in human blood.

    Science.gov (United States)

    Gries, Wolfgang; Leng, Gabriele

    2013-09-01

    4,4'-Methylene diphenyl diisocyanate (MDI) is one of the most important isocyanates in the industrial production of polyurethane and other MDI-based synthetics. Because of its high reactivity, it is known as a sensitizing agent, caused by protein adducts. Analysis of MDI is routinely done by determination of the nonspecific 4,4'-methylenedianiline as a marker for MDI exposure in urine and blood. Since several publications have reported specific adducts of MDI and albumin or hemoglobin, more information about their existence in humans is necessary. Specific adducts of MDI and hemoglobin were only reported in rats after high-dose MDI inhalation. The aim of this investigation was to detect the hemoglobin adduct 5-isopropyl-3-[4-(4-aminobenzyl)phenyl]hydantoin (ABP-Val-Hyd) in human blood for the first time. We found values up to 5.2 ng ABP-Val-Hyd/g globin (16 pmol/g) in blood samples of workers exposed to MDI. Because there was no information available about possible amounts of this specific MDI marker, the analytical method focused on optimal sensitivity and selectivity. Using gas chromatography-high-resolution mass spectrometry with negative chemical ionization, we achieved a detection limit of 0.02 ng ABP-Val-Hyd/g globin (0.062 pmol/g). The robustness of the method was confirmed by relative standard deviations between 3.0 and 9.8 %. Combined with a linear detection range up to 10 ng ABP-Val-Hyd/g globin (31 pmol/g), the enhanced precision parameter demonstrates that the method described is optimized for screening studies of the human population.

  19. Hemoglobin Wayne Trait with Incidental Polycythemia.

    Science.gov (United States)

    Ambelil, Manju; Nguyen, Nghia; Dasgupta, Amitava; Risin, Semyon; Wahed, Amer

    2017-01-01

    Hemoglobinopathies, caused by mutations in the globin genes, are one of the most common inherited disorders. Many of the hemoglobin variants can be identified by hemoglobin analysis using conventional electrophoresis and high performance liquid chromatography; however hemoglobin DNA analysis may be necessary in other cases for confirmation. Here, we report a case of a rare alpha chain hemoglobin variant, hemoglobin Wayne, in a 47-year-old man who presented with secondary polycythemia. Capillary zone electrophoresis and high performance liquid chromatography revealed a significant amount of a hemoglobin variant, which was further confirmed by hemoglobin DNA sequencing as hemoglobin Wayne. Since the patient was not homozygous for hemoglobin Wayne, which is associated with secondary polycythemia, the laboratory diagnosis in this case was critical in ruling out hemoglobinopathy as the etiology of his polycythemia. © 2017 by the Association of Clinical Scientists, Inc.

  20. Hemoglobin and heme scavenger receptors

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Møller, Holger Jon; Moestrup, Søren Kragh

    2010-01-01

    Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis...... and rhabdomyolysis), specific high capacity scavenging systems have evolved in the mammalian organism. Two major systems, which essentially function in a similar way by means of a circulating latent plasma carrier protein that upon ligand binding is recognized by a receptor, are represented by a) the hemoglobin...

  1. Enhanced reactivation of UV-irradiated adenovirus 2 in HeLa cells treated with non-mutagenic chemical agents

    Energy Technology Data Exchange (ETDEWEB)

    Piperakis, S.M.; McLennan, A.G. (Liverpool Univ. (UK). Dept. of Biochemistry)

    1985-03-01

    Treatment of HeLa cells with ethanol and sodium arsenite, compounds which are known to elicit the heat-shock response, before infection with UV-irradiated adenovirus 2 has been found to result in the enhanced reactivation of the damaged virus in a manner similar to that obtained by pre-irradiation or heating of the cells. Enhanced reactivation may be the result of the inhibition of DNA synthesis caused by these agents since hydroxyurea also produced a significant enhancement.

  2. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies.

    Science.gov (United States)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH 2 -CH=CH-CH 2 -) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than ~1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  3. Revealing the importance of linkers in K-series oxime reactivators for tabun-inhibited AChE using quantum chemical, docking and SMD studies

    Science.gov (United States)

    Ghosh, Shibaji; Chandar, Nellore Bhanu; Jana, Kalyanashis; Ganguly, Bishwajit

    2017-08-01

    Inhibition of acetylcholinesterase (AChE) with organophosphorus compounds has a detrimental effect on human life. Oxime K203 seems to be one of the promising reactivators for tabun-inhibited AChE than (K027, K127, and K628). These reactivators differ only in the linker units between the two pyridinium rings. The conformational analyses performed with quantum chemical RHF/6-31G* level for K027, K127, K203 and K628 showed that the minimum energy conformers have different orientations of the active and peripheral pyridinium rings for these reactivator molecules. K203 with (-CH2-CH=CH-CH2-) linker unit possesses more open conformation compared to the other reactivators. Such orientation of K203 experiences favorable interaction with the surrounding residues of catalytic anionic site (CAS) and peripheral anionic site (PAS) of tabun-inhibited AChE. From the steered molecular dynamics simulations, it has been observed that the oxygen atom of the oxime group of K203 reactivator approaches nearest to the P-atom of the SUN203 (3.75 Å) at lower time scales (less than 1000 ps) as compared to the other reactivators. K203 experiences less number of hydrophobic interaction with the PAS residues which is suggested to be an important factor for the efficient reactivation process. In addition, K203 crates large number of H-bonding with CAS residues SUN203, Phe295, Tyr337, Phe338 and His447. K203 barely changes its conformation during the SMD simulation process and hence the energy penalty to adopt any other conformation is minimal in this case as compared to the other reactivators. The molecular mechanics and Poisson-Boltzmann surface area binding energies obtained for the interaction of K203 inside the gorge of tabun inhibited AChE is substantially higher (-290.2 kcal/mol) than the corresponding K628 reactivator (-260.4 kcal/mol), which also possess unsaturated aromatic linker unit.

  4. Hemoglobin of mice with radiation-induced mutations at the hemoglobin loci

    International Nuclear Information System (INIS)

    Popp, R.A.; Stratton, L.P.; Hawley, D.K.; Effron, K.

    1979-01-01

    Chemical analyses were done on the abnormal hemoglobins of the five (101 x SEC)F 1 offspring of X- irradiated adult SEC mice to determine which hemoglobin genes were expressed in each hemoglobin variant. Three offspring of irradiated SEC males did not express either of the two kinds of α-chains normally found in all SEC mice. The deficient α-chain synthesis caused these mice to exhibit an α-thalassemia similar to human α-thalassemia. Scanning electron microscopy was used to show that many erythrocytes of mice with α-thalassemia have bizarre shapes; e.g. many erythrocytes appeared flattened or had thorny projections (acanthocytes). One mutant with a tandem duplication of a segment of chromosome 7 (site of locus determining β-chain structure) produced twice as much SEC as 101 β-chain polypeptides. One mutant that probably arose by non-disjunction of chromosome 7's in its unirradiated 101 mother and loss of chromosome 7 from the gamete of its irradiated SEC father did not express the SEC β-chain gene. (author)

  5. Hemoglobin of mice with radiation-induced mutations at the hemoglobin loci

    Energy Technology Data Exchange (ETDEWEB)

    Popp, R A; Stratton, L P; Hawley, D K; Effron, K [Oak Ridge National Lab., TN (USA)

    1979-01-15

    Chemical analyses were done on the abnormal hemoglobins of the five (101 x SEC)F/sub 1/ offspring of X- irradiated adult SEC mice to determine which hemoglobin genes were expressed in each hemoglobin variant. Three offspring of irradiated SEC males did not express either of the two kinds of ..cap alpha..-chains normally found in all SEC mice. The deficient ..cap alpha..-chain synthesis caused these mice to exhibit an ..cap alpha..-thalassemia similar to human ..cap alpha..-thalassemia. Scanning electron microscopy was used to show that many erythrocytes of mice with ..cap alpha..-thalassemia have bizarre shapes; e.g. many erythrocytes appeared flattened or had thorny projections (acanthocytes). One mutant with a tandem duplication of a segment of chromosome 7 (site of locus determining ..beta..-chain structure) produced twice as much SEC as 101 ..beta..-chain polypeptides. One mutant that probably arose by non-disjunction of chromosome 7's in its unirradiated 101 mother and loss of chromosome 7 from the gamete of its irradiated SEC father did not express the SEC ..beta..-chain gene.

  6. Fetal hemoglobin is much less prone to DNA cleavage compared to the adult protein

    Directory of Open Access Journals (Sweden)

    Sandeep Chakane

    2017-08-01

    Full Text Available Hemoglobin (Hb is well protected inside the red blood cells (RBCs. Upon hemolysis and when free in circulation, Hb can be involved in a range of radical generating reactions and may thereby attack several different biomolecules. In this study, we have examined the potential damaging effects of cell-free Hb on plasmid DNA (pDNA. Hb induced cleavage of supercoiled pDNA (sc pDNA which was proportional to the concentration of Hb applied. Almost 70% of sc pDNA was converted to open circular or linear DNA using 10 µM of Hb in 12 h. Hb can be present in several different forms. The oxy (HbO2 and met forms are most reactive, while the carboxy-protein shows only low hydrolytic activity. Hemoglobin A (HbA could easily induce complete pDNA cleavage while fetal hemoglobin (HbF was three-fold less reactive. By inserting, a redox active cysteine residue on the surface of the alpha chain of HbF by site-directed mutagenesis, the DNA cleavage reaction was enhanced by 82%. Reactive oxygen species were not directly involved in the reaction since addition of superoxide dismutase and catalase did not prevent pDNA cleavage. The reactivity of Hb with pDNA can rather be associated with the formation of protein based radicals. Keywords: Adult hemoglobin, Fetal hemoglobin, Supercoiled plasmid DNA, DNA cleavage, Cysteine, Protein radicals

  7. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111)

    Science.gov (United States)

    Xin, Hongliang; Linic, Suljo

    2016-06-01

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  8. Blood Test: Hemoglobin A1C

    Science.gov (United States)

    ... Why Are Hemoglobin A1c Tests Done? When a child has diabetes, hemoglobin A1c levels are followed to see how well medicines are working. If a child with diabetes has a high hemoglobin A1c level, it may ...

  9. Characteristic emission in glutaraldehyde polymerized hemoglobin

    International Nuclear Information System (INIS)

    Ma Li; Wang Xiaojun

    2011-01-01

    Hemoglobin with different modifications has been investigated using spectroscopic techniques. A new emission at around 371 nm has been observed under excitation of 305 nm from glutaraldehyde polymerized human hemoglobin. Intensity and peak position of the emission are dependent on both oxidation state and ligand environment and the emission has been identified from the hemoglobin oligomer.

  10. Induction of molecular endpoints by reactive oxygen species in human lung cells predicted by physical chemical properties of engineered nanoparticles

    Science.gov (United States)

    A series of six titanium dioxide and two cerium oxide engineered nanomaterials were assessed for their ability to induce cytotoxicity, reactive oxygen species (ROS), and various types of DNA and protein damage in human respiratory BEAS-2B cells exposed in vitro for 72 hours at se...

  11. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition

    Directory of Open Access Journals (Sweden)

    M. J. Prather

    2018-05-01

    Full Text Available We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating these data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14 880 parcels along 180° W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10 % of parcels control 25–30 % of the total reactivities, but do not fully agree on which parcels comprise the top 10 %. Distinct differences in specific features occur, including the spatial regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the six models tested here, three are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify four, effectively distinct, chemical models. Based on this

  12. Chemical Modeling of the Reactivity of Short-Lived Greenhouse Gases: A Model Inter-Comparison Prescribing a Well-Measured, Remote Troposphere

    Science.gov (United States)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-01-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating over the data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14,880 parcels along 180W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10% of parcels control 25-30% of the total reactivities), but do not fully agree on which parcels comprise the top 10%. Distinct differences in specific features occur, including the regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the 6 models tested here, 3 are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify 4, effectively distinct, chemical models. Based on this work, we suggest that water vapor differences in

  13. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition

    Science.gov (United States)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-05-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating these data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14 880 parcels along 180° W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10 % of parcels control 25-30 % of the total reactivities), but do not fully agree on which parcels comprise the top 10 %. Distinct differences in specific features occur, including the spatial regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the six models tested here, three are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify four, effectively distinct, chemical models. Based on this work, we suggest that water vapor

  14. Hemoglobin Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... page: https://medlineplus.gov/labtests/hemoglobintest.html Hemoglobin Test To use the sharing features on this page, please enable JavaScript. What is a Hemoglobin Test? A hemoglobin test measures the levels of hemoglobin ...

  15. Study of a new hybrid process combining slurry infiltration and Reactive Chemical Vapour Infiltration for the realisation of Ceramic Matrix Composites

    International Nuclear Information System (INIS)

    Ledain, Olivier

    2014-01-01

    Ceramic matrix composites were originally developed for aerospace,military aeronautics or energy applications thanks to their good properties at high temperature. They are generally made by Chemical Vapor Infiltration (CVI). A new short hybrid process combining fiber preform slurry impregnation of ceramic powders with an innovative Reactive CVI (RCVI) route is proposed to reduce the production time. This route is based on the combination of Reactive Chemical Vapour Deposition (RCVD), which is often used to deposit coatings on fibres, with the Chemical Vapor Infiltration (CVI).In RCVD, the absence of one element of the deposited carbide in the initial gas phase involves the consumption/conversion of the solid substrate. In this work, the RCVD growth and the associated consumption were studied with different parameters in the Ti-H-Cl-C chemical system. The study has been completed with the chemical products analysis, combining XRD, XPS and FTIR. Then, the partial conversion of sub-micrometer carbon powders into titanium carbide and the consolidation of green bodies by RCVI from H 2 /TiCl 4 gaseous infiltration were studied. The residual porosity and the final TiC content were measured in the bulk of the infiltrated powders by image analysis from scanning electron microscopy. Depending on temperature, few hundred micrometers-depth infiltrations are obtained.Finally, the results have been transposed to the RCVI into CMC-type pre-forms. Despite a minimal TiC content of 25% in the overall preform, the results shown a bad homogeneity of the infiltration and a poor cohesion of fibres with RCVI consolidated powder of their environment. (author) [fr

  16. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    Science.gov (United States)

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives.

  17. Hemoglobin Function in Stored Blood.

    Science.gov (United States)

    1974-08-01

    States during 1973. Several advantages over ACA) are important. Blood stored in CPD maintains higher ./ levels of 2,3-DPG (2,3- diphosphoglycerate ) and a...survival and ATP levels in stored blood is explained by the several functions of ATP which are necessary for cell viability. However, ATP levels do...not correlate with oxygen affinity during storage. Levels of 2,3-DPG determine oxygen affinity and thus hemoglobin function. (12,13) When normal levels

  18. Chemical analysis of reactive species and antimicrobial activity of/nwater treated by nanosecond pulsed DBD air plasma

    Czech Academy of Sciences Publication Activity Database

    Laurita, R.; Barbieri, D.; Gherardi, M.; Colombo, V.; Lukeš, Petr

    2015-01-01

    Roč. 3, č. 2 (2015), s. 53-61 ISSN 2212-8166 R&D Projects: GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST TD1208 Institutional support: RVO:61389021 Keywords : Dielectric barrier discharge * Plasma activated water * Reactive species * Peroxynitrite * Phenol degradation * Candida albicans * Staphylococcus aureus * Antimicrobial activity * Nosocomial infections Subject RIV: BL - Plasma and Gas Discharge Physics http://www.sciencedirect.com/science/article/pii/S2212816615300081

  19. Generation and Role of Reactive Oxygen and Nitrogen Species Induced by Plasma, Lasers, Chemical Agents, and Other Systems in Dentistry

    Science.gov (United States)

    Jha, Nayansi; Ryu, Jae Jun

    2017-01-01

    The generation of reactive oxygen and nitrogen species (RONS) has been found to occur during inflammatory procedures, during cell ischemia, and in various crucial developmental processes such as cell differentiation and along cell signaling pathways. The most common sources of intracellular RONS are the mitochondrial electron transport system, NADH oxidase, and cytochrome P450. In this review, we analyzed the extracellular and intracellular sources of reactive species, their cell signaling pathways, the mechanisms of action, and their positive and negative effects in the dental field. In dentistry, ROS can be found—in lasers, photosensitizers, bleaching agents, cold plasma, and even resin cements, all of which contribute to the generation and prevalence of ROS. Nonthermal plasma has been used as a source of ROS for biomedical applications and has the potential for use with dental stem cells as well. There are different types of dental stem cells, but their therapeutic use remains largely untapped, with the focus currently on only periodontal ligament stem cells. More research is necessary in this area, including studies about ROS mechanisms with dental cells, along with the utilization of reactive species in redox medicine. Such studies will help to provide successful treatment modalities for various diseases. PMID:29204250

  20. Host-cell reactivation of UV-irradiated and chemically-treated herpes simplex virus-1 by xeroderma pigmentosum, xp heterozygotes and normal skin fibroblasts

    International Nuclear Information System (INIS)

    Selsky, C.A.

    1978-01-01

    The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylamino-fluorene-treated herpes simplex virus type 1 strain MP was studied in normal and xeroderma pigmentosum human skin fibroblasts. Virus treated with either agent demonstrated lower survival in XP cells from complementation groups A, B, C and D than in normal fibroblasts. The relative reactivation ability of XP cells from the different genetic complementation groups was found to be the same for both irradiated and chemically treated virus. In addition, the inactivation kinetics for virus treated with either agent in the XP variant were comparable to that seen in normal skin fibroblasts. The addition of 2 or 4 mmoles caffeine to the post-infection assay medium had no effect on the inactivation kinetics of virus treated by either agent in the XP variant or in XP cells from the different genetic complementation groups. Treatment of the virus with nitrogen mustard resulted in equivalent survival in normal and XP genetic complementation group D cells. No apparent defect was observed in the ability of XP heterozygous skin fibroblasts to repair virus damaged with up to 100 μg N-acetoxy-2-acetylaminofluorene per ml. These findings indicate that the repair of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus is accomplished by the same pathway or different pathways sharing a common intermediate step and that the excision defect of XP cells plays little if any role in the reactivation of nitrogen mustard treated virus. (Auth.)

  1. Oral Administration of the Japanese Traditional Medicine Keishibukuryogan-ka-yokuinin Decreases Reactive Oxygen Metabolites in Rat Plasma: Identification of Chemical Constituents Contributing to Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Yosuke Matsubara

    2017-02-01

    Full Text Available Insufficient detoxification and/or overproduction of reactive oxygen species (ROS induce cellular and tissue damage, and generated reactive oxygen metabolites become exacerbating factors of dermatitis. Keishibukuryogan-ka-yokuinin (KBGY is a traditional Japanese medicine prescribed to treat dermatitis such as acne vulgaris. Our aim was to verify the antioxidant properties of KBGY, and identify its active constituents by blood pharmacokinetic techniques. Chemical constituents were quantified in extracts of KBGY, crude components, and the plasma of rats treated with a single oral administration of KBGY. Twenty-three KBGY compounds were detected in plasma, including gallic acid, prunasin, paeoniflorin, and azelaic acid, which have been reported to be effective for inflammation. KBGY decreased level of the diacron-reactive oxygen metabolites (d-ROMs in plasma. ROS-scavenging and lipid hydroperoxide (LPO generation assays revealed that gallic acid, 3-O-methylgallic acid, (+-catechin, and lariciresinol possess strong antioxidant activities. Gallic acid was active at a similar concentration to the maximum plasma concentration, therefore, our findings indicate that gallic acid is an important active constituent contributing to the antioxidant effects of KBGY. KBGY and its active constituents may improve redox imbalances induced by oxidative stress as an optional treatment for skin diseases.

  2. Role of Reversible Histidine Coordination in Hydroxylamine Reduction by Plant Hemoglobins (Phytoglobins).

    Science.gov (United States)

    Athwal, Navjot Singh; Alagurajan, Jagannathan; Andreotti, Amy H; Hargrove, Mark S

    2016-10-18

    Reduction of hydroxylamine to ammonium by phytoglobin, a plant hexacoordinate hemoglobin, is much faster than that of other hexacoordinate hemoglobins or pentacoordinate hemoglobins such as myoglobin, leghemoglobin, and red blood cell hemoglobin. The reason for differences in reactivity is not known but could be intermolecular electron transfer between protein molecules in support of the required two-electron reduction, hydroxylamine binding, or active site architecture favoring the reaction. Experiments were conducted with phytoglobins from rice, tomato, and soybean along with human neuroglobin and soybean leghemoglobin that reveal hydroxylamine binding as the rate-limiting step. For hexacoordinate hemoglobins, binding is limited by the dissociation rate constant for the distal histidine, while leghemoglobin is limited by an intrinsically low affinity for hydroxylamine. When the distal histidine is removed from rice phytoglobin, a hydroxylamine-bound intermediate is formed and the reaction rate is diminished, indicating that the distal histidine imidazole side chain is critical for the reaction, albeit not for electron transfer but rather for direct interaction with the substrate. Together, these results demonstrate that phytoglobins are superior at hydroxylamine reduction because they have distal histidine coordination affinity constants near 1, and facile rate constants for binding and dissociation of the histidine side chain. Hexacoordinate hemoglobins such as neuroglobin are limited by tighter histidine coordination that blocks hydroxylamine binding, and pentacoordinate hemoglobins have intrinsically lower hydroxylamine affinities.

  3. Formulation of chemically reactive foams for the dissolution of oxides polluting the secondary circuits of steam generators

    International Nuclear Information System (INIS)

    Provens, Helene

    1999-01-01

    The fouling of the Steam Generators (SG) secondary circuits, due to oxides deposits like magnetite (Fe 3 O 4 ), induces the degradation of the internal SG equipment, the reduction of the plant power, implying to clean these circuits. This operation made in liquid phase generates an important volume of effluents with an expensive cost of treatment. The use of a reactive foam allows the reduction of this volume by ten. Among the reactive tested, oxalic acid is the most efficient to dissolve a magnetite quantity of 10 g.l -1 , at ambient temperature for 24 hours, as imposed by the industrial wishes. The dissolution is not complete in our experimental conditions and is a complex reaction of autocatalytic type, composed of an acid attack, a reductive step, both followed by a slow diffusion. The surfactants generating the foam, which transport the reactive, are adsorbed on the magnetite but this affects weakly the dissolution. Its effectiveness is evaluated varying the experimental conditions. The wetting properties and the stability of the foam induce erosion and undissolved particles transport capacities, during its circulation into the SG. These particles trapped in the inter-bubble liquid films or carried by the piston effect of the foam bed, can be recovered on filters placed out of the SG. To quantify the transport, the influence of different parameters is studied: the more stable the foam is, the more important the transport is. Innocuousness tests showed that oxalic acid was not harmful for constitutive SG materials, either they were isolated or coupled. The cleaning by oxalic acid causes ferrous oxalates precipitation, representing 10 to 15 pc of the total iron quantity depending on the sample. A rinsing out with a foam containing 1 pc oxalic acid and 5 pc hydrogen peroxide allows the dissolution of these precipitates without corrosion problems. (author) [fr

  4. PLASMA PROTEIN AND HEMOGLOBIN PRODUCTION

    Science.gov (United States)

    Robscheit-Robbins, F. S.; Miller, L. L.; Whipple, G. H.

    1947-01-01

    Given healthy dogs fed abundant iron and protein-free or low protein diets with sustained anemia and hypoproteinemia, we can study the capacity of these animals to produce simultaneously new hemoglobin and plasma protein. Reserve stores of blood protein-building materials are measurably depleted and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for weeks or months depending upon the intake of food proteins or amino acid mixtures. These dogs are very susceptible to infection and various poisons. Dogs tire of these diets and loss of appetite terminates many experiments. Under these conditions (double depletion) standard growth mixtures of essential amino acids are tested to show the response in blood protein output and urinary nitrogen balance. As a part of each tabulated experiment one of the essential amino acids is deleted from the complete growth mixture to compare such response with that of the whole mixture. Methionine, threonine, phenylalanine, and tryptophane when singly eliminated from the complete amino acid mixture do effect a sharp rise in urinary nitrogen. This loss of urinary nitrogen is corrected when the individual amino acid is replaced in the mixture. Histidine, lysine, and valine have a moderate influence upon urinary nitrogen balance toward nitrogen conservation. Leucine, isoleucine, and arginine have minimal or no effect upon urinary nitrogen balance when these individual amino acids are deleted from the complete growth mixture of amino acids during 3 to 4 week periods. Tryptophane and to a less extent phenylalanine and threonine when returned to the amino acid mixture are associated with a conspicuous preponderance of plasma protein output over the hemoglobin output (Table 4). Arginine, lysine, and histidine when returned to the amino acid mixture are associated with a large preponderance of hemoglobin output. Various amino acid mixtures under these conditions may give a positive

  5. Hemoglobin Labeled by Radioactive Lysine

    Science.gov (United States)

    Bale, W. F.; Yuile, C. L.; DeLaVergne, L.; Miller, L. L.; Whipple, G. H.

    1949-12-08

    This paper reports on the utilization of tagged epsilon carbon of DL-lysine by a dog both anemic and hypoproteinemic due to repeated bleeding plus a diet low in protein. The experiment extended over period of 234 days, a time sufficient to indicate an erythrocyte life span of at least 115 days based upon the rate of replacement of labeled red cell proteins. The proteins of broken down red cells seem not to be used with any great preference for the synthesis of new hemoglobin.

  6. Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, P.; Pruess, K.; Xu, T.; Figueroa, R.A. Hernandez; Lopez, M. Diaz; Lopez, E. Contreras

    2008-10-01

    Waterflooding for enhanced oil recovery requires that injected waters must be chemically compatible with connate reservoir waters, in order to avoid mineral dissolution-and-precipitation cycles that could seriously degrade formation permeability and injectivity. Formation plugging is a concern especially in reservoirs with a large content of carbonates, such as calcite and dolomite, as such minerals typically react rapidly with an aqueous phase, and have strongly temperature-dependent solubility. Clay swelling can also pose problems. During a preliminary waterflooding pilot project, the Poza Rica-Altamira oil field, bordering the Gulf coast in the eastern part of Mexico, experienced injectivity loss after five months of reinjection of formation waters into well AF-847 in 1999. Acidizing with HCl restored injectivity. We report on laboratory experiments and reactive chemistry modeling studies that were undertaken in preparation for long-term waterflooding at Agua Frma. Using analogous core plugs obtained from the same reservoir interval, laboratory coreflood experiments were conducted to examine sensitivity of mineral dissolution and precipitation effects to water composition. Native reservoir water, chemically altered waters, and distilled water were used, and temporal changes in core permeability, mineral abundances and aqueous concentrations of solutes were monitored. The experiments were simulated with the multi-phase, nonisothermal reactive transport code TOUGHREACT, and reasonable to good agreement was obtained for changes in solute concentrations. Clay swelling caused an additional impact on permeability behavior during coreflood experiments, whereas the modeled permeability depends exclusively on chemical processes. TOUGHREACT was then used for reservoir-scale simulation of injecting ambient-temperature water (30 C, 86 F) into a reservoir with initial temperature of 80 C (176 F). Untreated native reservoir water was found to cause serious porosity and

  7. Determination Of Ph Including Hemoglobin Correction

    Science.gov (United States)

    Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.

    2005-09-13

    Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.

  8. Hemoglobin Variants: Biochemical Properties and Clinical Correlates

    Science.gov (United States)

    Thom, Christopher S.; Dickson, Claire F.; Gell, David A.; Weiss, Mitchell J.

    2013-01-01

    Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples. PMID:23388674

  9. Iron Store of Pregnant Women with Hemoglobin SS and SC in Benin ...

    African Journals Online (AJOL)

    reactive protein (CRP) was also assayed to rule out ... KEY WORDS: Benin City, iron status, pregnancy, sickle‑cell hemoglobin. Access this article online .... the determination of the hematological indices, and also put into a universal bottle for the ...

  10. Engineering of the chemical reactivity of the Ti/HfO₂ interface for RRAM: experiment and theory.

    Science.gov (United States)

    Calka, Pauline; Sowinska, Malgorzata; Bertaud, Thomas; Walczyk, Damian; Dabrowski, Jarek; Zaumseil, Peter; Walczyk, Christian; Gloskovskii, Andrei; Cartoixà, Xavier; Suñé, Jordi; Schroeder, Thomas

    2014-04-09

    The Ti/HfO2 interface plays a major role for resistance switching performances. However, clear interface engineering strategies to achieve reliable and reproducible switching have been poorly investigated. For this purpose, we present a comprehensive study of the Ti/HfO2 interface by a combined experimental-theoretical approach. Based on the use of oxygen-isotope marked Hf*O2, the oxygen scavenging capability of the Ti layer is clearly proven. More importantly, in line with ab initio theory, the combined HAXPES-Tof-SIMS study of the thin films deposited by MBE clearly establishes a strong impact of the HfO2 thin film morphology on the Ti/HfO2 interface reactivity. Low-temperature deposition is thus seen as a RRAM processing compatible way to establish the critical amount of oxygen vacancies to achieve reproducible and reliable resistance switching performances.

  11. Investigating the Chemical Reactivity for Hydrogen in Siliciclastic Sediments: two Work Packages of the H2STORE Project

    Science.gov (United States)

    De Lucia, M.; Pilz, P.

    2014-12-01

    The H2STORE ("Hydrogen to Store") collaborative project, funded by the German government, investigates the feasibility of industrial-scale hydrogen storage from excess wind energy in siliciclastic depleted gas and oil reservoirs or suitable saline aquifers. In particular, two work packages (geochemical experiments and modelling) hosted at the German Research Centre for Geosciences (GFZ) focus on the possible impact of hydrogen on formation fluids and on the mineralogical, geochemical and petrophysical properties of reservoirs and caprocks. Laboratory experiments expose core samples from several potential reservoirs to pure hydrogen or hydrogen mixtures under site-specific conditions (temperatures up to 200 °C and pressure up to 300 bar). The resulting qualitative and, whereas possible, quantitative data are expected to ameliorate the precision of predictive geochemical and reactive transport modelling, which is also performed within the project. The combination of experiments and models will improve the knowledge about: (1) solubility model and mixing rule for of hydrogen and its gas mixtures in high saline formation fluids; (2) hydrogen reactivity in a broad spectrum of P-T conditions; (3) thermodynamics and kinetics of mineral dissolution or precipitation reactions and redox processes. It is known that under specific P-T conditions reactions between hydrogen and anorganic rock components such as carbonates can occur. However these conditions have never been precisely defined to date. A precise estimation of the hydrogen impact on reservoir behavior of different siliciclastic rock types is crucial for site selection and optimization of storage depth. Enhancing the overall understanding of such systems will benefit the operational reliability, the ecological tolerance, and the economic efficiency of future energy storing plants, crucial aspects for public acceptance and for industrial investors.

  12. Structure, Reactivity and Dynamics

    Indian Academy of Sciences (India)

    Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...

  13. Supra-molecular structure and chemical reactivity of cellulose I studied using CP/MAS (sup)13 C-NMR

    CSIR Research Space (South Africa)

    Chunilall, Viren

    2013-08-01

    Full Text Available There are a few traditional methods of analysing the chemical properties of cellulose I. Some of these methods include the Permanganate number determination, which is used to obtain the lignin content of the pulp [12]. The acid insoluble lignin content... – Fundamental Aspects 88 [10] Fengel D, Wegener G. Wood Chemistry, Ultrastructure, Reactions, Walter de Gruyter; 1984. [11] Uhlmann T. Ullmann's encyclopedia of industrial chemistry. Paper and Pulp. 1991; 18 (A). [12] Permanganate number of pulp, Tappi T...

  14. Synthesis of iron nanoparticles from hemoglobin and myoglobin

    International Nuclear Information System (INIS)

    Sayyad, Arshad S; Ajayan, Pulickel M; Balakrishnan, Kaushik; Ci, Lijie; Kabbani, Ahmad T; Vajtai, Robert

    2012-01-01

    Stable iron nanoparticles have been synthesized from naturally occurring and abundant Fe-containing bio-precursors, namely hemoglobin and myoglobin. The formation of stable iron nanoparticles was achieved through a one-pot, single-phase chemical reduction approach. The reduction of iron ions present in the bio-precursors was carried out at room temperature and avoids the use of harsh chemical reagents. The size distribution of the product falls into the narrow 2–5 nm range and the particles were found to be crystalline. This method can be a valuable synthetic approach for producing bio-conjugated nanoparticle systems for biological applications. (paper)

  15. Single and double carbon vacancies in pyrene as first models for graphene defects: A survey of the chemical reactivity toward hydrogen

    Science.gov (United States)

    Nieman, Reed; Das, Anita; Aquino, Adélia J. A.; Amorim, Rodrigo G.; Machado, Francisco B. C.; Lischka, Hans

    2017-01-01

    Graphene is regarded as one of the most promising materials for nanoelectronics applications. Defects play an important role in modulating its electronic properties and also enhance its chemical reactivity. In this work the reactivity of single vacancies (SV) and double vacancies (DV) in reaction with a hydrogen atom Hr is studied. Because of the complicated open shell electronic structures of these defects due to dangling bonds, multireference configuration interaction (MRCI) methods are being used in combination with a previously developed defect model based on pyrene. Comparison of the stability of products derived from Csbnd Hr bond formation with different carbon atoms of the different polyaromatic hydrocarbons is made. In the single vacancy case the most stable structure is the one where the incoming hydrogen is bound to the carbon atom carrying the dangling bond. However, stable Csbnd Hr bonded structures are also observed in the five-membered ring of the single vacancy. In the double vacancy, most stable bonding of the reactant Hr atom is found in the five-membered rings. In total, Csbnd Hr bonds, corresponding to local energy minimum structures, are formed with all carbon atoms in the different defect systems and the pyrene itself. Reaction profiles for the four lowest electronic states show in the case of a single vacancy a complex picture of curve crossings and avoided crossings which will give rise to a complex nonadiabatic reaction dynamics involving several electronic states.

  16. Atmospheric photochemical reactivity and ozone production at two sites in Hong Kong: Application of a Master Chemical Mechanism-photochemical box model

    Science.gov (United States)

    Ling, Z. H.; Guo, H.; Lam, S. H. M.; Saunders, S. M.; Wang, T.

    2014-09-01

    A photochemical box model incorporating the Master Chemical Mechanism (v3.2), constrained with a full suite of measurements, was developed to investigate the photochemical reactivity of volatile organic compounds at a semirural site (Mount Tai Mo Shan (TMS)) and an urban site (Tsuen Wan (TW)) in Hong Kong. The levels of ozone (O3) and its precursors, and the magnitudes of the reactivity of O3 precursors, revealed significant differences in the photochemistry at the two sites. Simulated peak hydroperoxyl radical (HO2) mixing ratios were similar at TW and TMS (p = 0.05), while the simulated hydroxyl radical (OH) mixing ratios were much higher at TW (p TMS, but at TW, both HCHO and O3 photolyses were found to be major contributors. By contrast, radical-radical reactions governed HOx radical losses at TMS, while at TW, the OH + NO2 reaction was found to dominate in the morning and the radical-radical reactions at noon. Overall, the conversion of NO to NO2 by HO2 dictated the O3 production at the two sites, while O3 destruction was dominated by the OH + NO2 reaction at TW, and at TMS, O3 photolysis and the O3 + HO2 reaction were the major mechanisms. The longer OH chain length at TMS indicated that more O3 was produced for each radical that was generated at this site.

  17. Reactive transport modeling of chemical and isotope data to identify degradation processes of chlorinated ethenes in a diffusion-dominated media

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Damgaard, Ida; Jeannottat, Simon

    . Degradation and transport processes of chlorinated ethenes are not well understood in such geological settings, therefore risk assessment and remediation at these sites are particularly challenging. In this work, a combined approach of chemical and isotope analysis on core samples, and reactive transport...... the source zone (between 6 and 12 mbs). Concentrations and stable isotope ratios of the mother compounds and their daughter products, as well as redox parameters, fatty acids and microbial data, were analyzed with discrete sub-sampling along the cores. More samples (each 5 mm) were collected around...... of dechlorination and degradation pathways (biotic reductive dechlorination or abiotic β-elimination with iron minerals) in three core profiles. The model includes diffusion in the matrix, sequential reductive dechlorination, abiotic degradation, isotope fractionation due to degradation and due to diffusion...

  18. A quantum chemical study of the reactivity of acetaminophen (paracetamol) toxic metabolite N-acetyl-p-benzoquinone imine with deoxyguanosine and glutathione.

    Science.gov (United States)

    Klopčič, Ivana; Poberžnik, Matic; Mavri, Janez; Dolenc, Marija Sollner

    2015-12-05

    Acetaminophen (APAP) forms some reactive metabolites that can react with DNA. APAP is a potentially genotoxic drug and is classified as a Group 3 drug according to International Agency for Research on Cancer (IARC). One of the possible mechanisms of APAP genotoxicity after long term of use is that its reactive quinone imine (QI) metabolite of acetaminophen (NAPQI), can chemically react with DNA after glutathione (GSH) depletion. A quantum chemical study of the reactions between the NAPQI and deoxyguanosine (dG) or GSH was performed. Activation energies (ΔG(ǂ)) for the reactions associated with the 1, 4-Michael addition were calculated on the M062X/6-311++G (d,p) level of theory. We modeled the reaction with dG as a multi-step process. The first step is rate-limiting (ΔG(ǂ) = 26.7 kcal/mol) and consists of formation of a C-N bond between the C3 atom of the QI moiety and the N7 atom of dG. The second step involves proton transfer from the C3 moiety to the nitrogen atom of the QI with ΔG(ǂ) of 13.8 kcal/mol. The depurination reaction that follows has a ΔG(ǂ) of 25.7 kcal/mol. The calculated ΔG(ǂ) for the nucleophilic attack of the deprotonated S atom of GSH on the C3 atom of the NAPQI is 12.9 kcal/mol. Therefore, the QI will react with GSH much faster than with DNA. Our study gives mechanistic insight into the genotoxicity of the APAP metabolite and will be useful for estimating the genotoxic potential of existing drugs with a QI moiety. Our results show that clinical application of APAP is safe, while in the case of severely depleted GSH levels APAP should be administered with caution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Critical Reflections on the Hydrophobic Effect, its Origins and Manifestation: Water Structure, Chemical Reactivity, Micelles and Gels.

    Directory of Open Access Journals (Sweden)

    Sosale Chandrasekhar

    2017-09-01

    Full Text Available The origins of the Hydrophobic Effect (HE, its biological significance and its experimental basis are critically addressed in this brief review. It is argued that the mechanistic work reported on the HE in recent decades needs to be reassessed, as its conclusions are apparently debatable. Essentially, it is highly inaccurate to view the HE as a repulsive interaction, which is rather an attractive one. It appears inevitable that the HE is indeed a manifestation of the perturbation of the structure of water upon the introduction of hydrocarbon molecules into its interior. There appears to be no other satisfactory explanation for the formation of micellar aggregates and the existence of the critical micelle concentration. Also, the practical significance of the HE on the reactivity of organic compounds (e.g. cycloadditions is severely limited by their minuscule solubility levels, itself a manifestation of the HE! Other related phenomena apparently include the formation of gels and the occurrence of certain esterification reactions in water, which are briefly reviewed from a conceptual viewpoint.

  20. Entropy and chemical change. 1: Characterization of product (and reactant) energy distributions in reactive molecular collisions: Information and enthropy deficiency

    Science.gov (United States)

    Bernstein, R. B.; Levine, R. D.

    1972-01-01

    Optimal means of characterizing the distribution of product energy states resulting from reactive collisions of molecules with restricted distributions of initial states are considered, along with those for characterizing the particular reactant state distribution which yields a given set of product states at a specified total energy. It is suggested to represent the energy-dependence of global-type results in the form of square-faced bar plots, and of data for specific-type experiments as triangular-faced prismatic plots. The essential parameters defining the internal state distribution are isolated, and the information content of such a distribution is put on a quantitative basis. The relationship between the information content, the surprisal, and the entropy of the continuous distribution is established. The concept of an entropy deficiency, which characterizes the specificity of product state formation, is suggested as a useful measure of the deviance from statistical behavior. The degradation of information by experimental averaging is considered, leading to bounds on the entropy deficiency.

  1. Determination of Human Hemoglobin Derivatives.

    Science.gov (United States)

    Attia, Atef M M; Ibrahim, Fatma A A; Abd El-Latif, Noha A; Aziz, Samir W; Abdelmottaleb Moussa, Sherif A; Elalfy, Mohsen S

    2015-01-01

    The levels of the inactive hemoglobin (Hb) pigments [such as methemoglobin (metHb), carboxyhemoglobin (HbCO) and sulfohemoglobin (SHb)] and the active Hb [in the oxyhemoglobin (oxyHb) form] as well as the blood Hb concentration in healthy non pregnant female volunteers were determined using a newly developed multi-component spectrophotometric method. The results of this method revealed values of SHb% in the range (0.0727-0.370%), metHb% (0.43-1.0%), HbCO% (0.4-1.52%) and oxyHb% (97.06-98.62%). Furthermore, the results of this method revealed values of blood Hb concentration in the range (12.608-15.777 g/dL). The method is highly sensitive, accurate and reproducible.

  2. Biological variability of glycated hemoglobin.

    Science.gov (United States)

    Braga, Federica; Dolci, Alberto; Mosca, Andrea; Panteghini, Mauro

    2010-11-11

    The measurement of glycated hemoglobin (HbA(1c)) has a pivotal role in monitoring glycemic state in diabetic patients. Furthermore, the American Diabetes Association has recently recommended the use of HbA(1c) for diabetes diagnosis, but a clear definition of the clinically allowable measurement error is still lacking. Information on biological variability of the analyte can be used to achieve this goal. We systematically reviewed the published studies on the biological variation of HbA(1c) to check consistency of available data in order to accurately define analytical goals. The nine recruited studies were limited by choice of analytic methodology, population selection, protocol application and statistical analyses. There is an urgent need to determine biological variability of HbA(1c) using a specific and traceable assay, appropriate protocol and appropriate statistical evaluation of data. 2010 Elsevier B.V. All rights reserved.

  3. THE BIOCHEMISTRY OF VITREOSCILLA HEMOGLOBIN

    Directory of Open Access Journals (Sweden)

    Benjamin C. Stark

    2012-10-01

    Full Text Available The hemoglobin (VHb from Vitreoscilla was the first bacterial hemoglobin discovered. Its structure and function have been extensively investigated, and engineering of a wide variety of heterologous organisms to express VHb has been performed to increase their growth and productivity. This strategy has shown promise in applications as far-ranging as the production of antibiotics and petrochemical replacements by microorganisms to increasing stress tolerance in plants. These applications of “VHb technology” have generally been of the “black box” variety, wherein the endpoint studied is an increase in the levels of a certain product or improved growth and survival. Their eventual optimization, however, will require a thorough understanding of the various functions and activities of VHb, and how VHb expression ripples to affect metabolism more generally. Here we review the current knowledge of these topics. VHb's functions all involve oxygen binding (and often delivery in one way or another. Several biochemical and structure-function studies have provided an insight into the molecular details of this binding and delivery. VHb activities are varied. They include supply of oxygen to oxygenases and the respiratory chain, particularly under low oxygen conditions; oxygen sensing and modulation of transcription factor activity; and detoxification of NO, and seem to require interactions of VHb with “partner proteins”. VHb expression affects the levels of ATP and NADH, although not enormously. VHb expression may affect the level of many compounds of intermediary metabolism, and, apparently, alters the levels of expression of many genes. Thus, the metabolic changes in organisms engineered to express VHb are likely to be numerous and complicated.

  4. Modeling Chemically Reactive Flow of Sutterby Nanofluid by a Rotating Disk in Presence of Heat Generation/Absorption

    Science.gov (United States)

    Hayat, T.; Ahmad, Salman; Ijaz Khan, M.; Alsaedi, A.

    2018-05-01

    In this article we investigate the flow of Sutterby liquid due to rotating stretchable disk. Mass and heat transport are analyzed through Brownian diffusion and thermophoresis. Further the effects of magnetic field, chemical reaction and heat source are also accounted. We employ transformation procedure to obtain a system of nonlinear ODE’s. This system is numerically solved by Built-in-Shooting method. Impacts of different involved parameter on velocity, temperature and concentration are described. Velocity, concentration and temperature gradients are numerically computed. Obtained results show that velocity is reduced through material parameter. Temperature and concentration are enhanced with thermophoresis parameter.

  5. Led Astray by Hemoglobin A1c

    Directory of Open Access Journals (Sweden)

    Jean Chen MD

    2016-01-01

    Full Text Available Hemoglobin A1c (A1c is used frequently to diagnose and treat diabetes mellitus. Therefore, it is important be aware of factors that may interfere with the accuracy of A1c measurements. This is a case of a rare hemoglobin variant that falsely elevated a nondiabetic patient’s A1c level and led to a misdiagnosis of diabetes. A 67-year-old male presented to endocrine clinic for further management after he was diagnosed with diabetes based on an elevated A1c of 10.7%, which is approximately equivalent to an average blood glucose of 260 mg/dL. Multiple repeat A1c levels remained >10%, but his home fasting and random glucose monitoring ranged from 92 to 130 mg/dL. Hemoglobin electrophoresis and subsequent genetic analysis diagnosed the patient with hemoglobin Wayne, a rare hemoglobin variant. This variant falsely elevates A1c levels when A1c is measured using cation-exchange high-performance liquid chromatography. When the boronate affinity method was applied instead, the patient’s A1c level was actually 4.7%. Though hemoglobin Wayne is clinically silent, this patient was erroneously diagnosed with diabetes and started on an antiglycemic medication. Due to this misdiagnosis, the patient was at risk of escalation in his “diabetes management” and hypoglycemia. Therefore, it is important that providers are aware of factors that may result in hemoglobin A1c inaccuracy including hemoglobin variants.

  6. Hemoglobin Values During Pregnancy | Leffler | Nigerian Medical ...

    African Journals Online (AJOL)

    It is known that the iron turnover in expectant mothers is up to three times that of an average adult. This is reflected in lower hemoglobin levels. The study showed that hemoglobin levels can be maintained by taking Bio-Strath®, provided that the patients' diet contains adequate fresh fruits and vegetables, whole grains, lean ...

  7. Vitreoscilla hemoglobin promotes Salecan production by Agrobacterium sp. ZX09.

    Science.gov (United States)

    Chen, Yun-mei; Xu, Hai-yang; Wang, Yang; Zhang, Jian-fa; Wang, Shi-ming

    2014-11-01

    Salecan is a novel exopolysaccharide produced by the strain Agrobacterium sp. ZX09, and it is composed of only glucose monomers. The unique chemical composition and excellent physicochemical properties make Salecan a promising material for applications in coagulation, lubrication, protection against acute liver injury, and alleviating constipation. In this study, we cloned the Vitreoscilla hemoglobin gene into a broad-host-range plasmid pCM158. Without antibiotic selection, there was negligible loss of the plasmid in the host Agrobacterium sp. ZX09 after one passage of cultivation. The expression of Vitreoscilla hemoglobin was demonstrated by carbon monoxide (CO) difference spectrum. The engineered strain Agrobacterium sp. ZX09 increased Salecan yield by 30%. The other physiological changes included its elevated respiration rate and cellular invertase activity.

  8. Improving the chemical compatibility of sealing glass for solid oxide fuel cells: Blocking the reactive species by controlled crystallization

    Science.gov (United States)

    Zhang, Teng; Zou, Qi; Zeng, Fanrong; Wang, Shaorong; Tang, Dian; Yang, Hiswen

    2012-10-01

    The chemical compatibility of sealing glass is of great importance for Solid oxide fuel cell (SOFC). In this work, the interfacial reaction between sealing glass and Cr-containing interconnect alloy is characterized by reacting Cr2O3 powders with a representative SrO-containing glass crystallized by different heat-treatment schedules. The crystalline structure and crystalline content of sealing glass are determined by X-ray diffraction. The results show that the fraction of Cr6+ decreases from 39.8 ± 1.9% for quenched glass to 8.2 ± 0.4% for glass crystallized at 900 °C for 2 h. In addition, the interfacial reaction can be further reduced with increasing crystallization temperature and time as well as the addition of nucleation agent (TiO2). The formation of some Sr-containing crystalline phases, Sr2SiO4 and Sr(TiO3), contributes to the improvement of chemical compatibility of sealing glass, in agreement with the results of thermodynamic calculations.

  9. Spectroscopic study of gamma irradiated bovine hemoglobin

    International Nuclear Information System (INIS)

    Maghraby, Ahmed Mohamed; Ali, Maha Anwar

    2007-01-01

    In the present study, the effects of ionizing radiation of Cs-137 and Co-60 from 4.95 to 743.14 Gy and from 40 Gy to 300 kGy, respectively, on some bovine hemoglobin characteristics were studied. Such an effect was evaluated using electron paramagnetic resonance (EPR) spectroscopy, and infra-red (IR) spectroscopy. Bovine hemoglobin EPR spectra were recorded and analyzed before and after irradiation and changes were explained in detail. IR spectra of unirradiated and irradiated Bovine hemoglobin were recorded and analyzed also. It was found that ionizing radiation may lead to the increase of free radicals production, the decrease in α-helices contents, which reflects the degradation of hemoglobin molecular structure, or at least its incomplete performance. Results also show that the combined application of EPR and FTIR spectroscopy is a powerful tool for determining structural modification of bovine hemoglobin samples exposed to gamma irradiation

  10. Spin Label Studies of the Hemoglobin-Membrane Interaction During Sickle Hemoglobin Polymerization

    International Nuclear Information System (INIS)

    Falcon Dieguez, Jose E.; Rodi, Pablo; Lores Guevara, Manuel A.; Gennaro, Ana Maria

    2009-12-01

    An enhanced hemoglobin-membrane association has been previously documented in Sickle Cell Anemia. However, it is not known how this interaction is modified during the hemoglobin S polymerization process. In this work, we use a model of reconstituted erythrocytes from ghost membranes whose cytoskeleton proteins had been previously labeled with the 4-maleimido Tempo spin label, and that were subsequently resealed with hemoglobin S or A solutions. Using EPR spectroscopy, we studied the time dependence of the spectral W/S parameter, indicative of the conformational state of cytoskeleton proteins (mainly spectrin) under spontaneous deoxygenation, with the aim of detecting the eventual effects due to hemoglobin S polymerization. The differences observed in the temporal behaviour of W/S in erythrocytes reconstituted with both hemoglobins were considered as experimental evidence of an increment in hemoglobin S-membrane interaction, as a result of the polymerization process of hemoglobin S under spontaneous deoxygenation. (author)

  11. Radioimmunochemical characterization of hemoglobins Lepore and Kenya: unique antigenic determinants located on hybrid hemoglobins

    International Nuclear Information System (INIS)

    Garver, F.A.; Altay, G.; Baker, M.M.; Gravely, M.; Huisman, T.H.J.

    1978-01-01

    Antisera were produced in rabbits to the three known types of Lepore hemoglobins, which contain hybrid delta-β non-α-chains, and to hemoglobin Kenya, which has a hybrid γ-β non-α-chain. By using a sensitive radioimmunoassay technique, the absorbed antisera were shown to contain an antibody population that was specific for the hybrid hemoglobin and did not cross-react with normal hemoglobins. However, with the absorbed Lepore-specific antisera, the three known types of Lepore hemoglobins were antigenically indistinguishable from each other, suggesting that antibodies are not produced to the primary structural differences which define the three non-α-chains of the Lepore hemoglobins. These studies demonstrate that the non-α-subunits of hemoglobins Lepore and Kenya possess unique antigenic determinant sites, evidently resulting from an altered polypeptide conformation

  12. Theoretical study of coupling mechanisms between oxygen diffusion, chemical reaction, mechanical stresses in a solid-gas reactive system

    International Nuclear Information System (INIS)

    Creton, N.; Optasanu, V.; Montesin, T.; Garruchet, S.

    2008-01-01

    This paper offers a study of oxygen dissolution into a solid, and its consequences on the mechanical behaviour of the material. In fact, mechanical strains strongly influence the oxidation processes and may be, in some materials, responsible for cracking. To realize this study, mechanical considerations are introduced into the classical diffusion laws. Simulations were made for the particular case of uranium dioxide, which undergoes the chemical fragmentation. According to our simulations, the hypothesis of a compression stress field into the oxidised UO 2 compound near the internal interface is consistent with some oxidation mechanisms of oxidation experimentally observed. More generally, this work will be extended to the simulation to an oxide layer growth on a metallic substrate. (authors)

  13. Chemical pneumonitis and subsequent reactive airways dysfunction syndrome after a single exposure to a household product: a case report

    Directory of Open Access Journals (Sweden)

    Khalid Imran

    2009-11-01

    Full Text Available Abstract Introduction Household products are usually safe to use. Adverse events arising from their use are mostly reported in patients with pre-existing atopy or pulmonary problems and usually only after a prolonged exposure to such products. We report the case of a patient with no prior problems who developed significant side effects from a single exposure to a domestic product. Case presentation A 43-year-old Caucasian American man, previously in good health, used a domestic aerosol product called 'Stand N' Seal "Spray-On" Grout Sealer' in an enclosed room in his house. The product contained n-butyl acetate ( Conclusion A household product may still prove unsafe to use even after it has gone through vigorous testing and approval processes. Even healthy individuals are susceptible to adverse outcomes after a brief exposure. Extra precautions should be taken when using any chemical product at home.

  14. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luukkonen, Jukka [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)], E-mail: Jukka.Luukkonen@uku.fi; Hakulinen, Pasi; Maeki-Paakkanen, Jorma [Department of Environmental Health, National Public Health Institute, P.O. Box 95, FI-70701 Kuopio (Finland); Juutilainen, Jukka; Naarala, Jonne [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2009-03-09

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR.

  15. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    International Nuclear Information System (INIS)

    Luukkonen, Jukka; Hakulinen, Pasi; Maeki-Paakkanen, Jorma; Juutilainen, Jukka; Naarala, Jonne

    2009-01-01

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR

  16. NITRO MUSK BOUND TO CARP HEMOGLOBIN ...

    Science.gov (United States)

    Nitroaromatic compounds including synthetic nitro musks are important raw materials and intermediates in the synthesis of explosives, dyes, and pesticides, pharmaceutical and personal care-products (PPCPs). The nitro musks such as musk xylene (MX) and musk ketone (MK) are extensively used as fragrance ingredients in PPCPs and other commercial toiletries. Identification and quantification of a bound 4-amino-MX (4-AMX) metabolite as well as a 2- amino-MK (2-AMK) metabolite were carried out by gas chromatography-mass spectrometry' (GC/MS), with selected ion monitoring (SIM) in both the electron ionization (ElMS) and electron capture (EC) negative ion chemical ionization (NICIMS) modes. Detection of 4-AMX and 2-AMK occurred after the cysteine adducts in carp hemoglobin, derived from the nitroso metabolites, were released by alkaline hydrolysis. The released metabolites were extracted into n-hexane. The extract was preconcentrated by evaporation, and analyzed by GC-SIM-MS. A comparison between the El and EC approaches was made. EC NICIMS detected both metabolites whereas only 4-AMX was detected by ElMS. The EC NICIMS approach exhibited fewer matrix responses and provided a lower detection limit. Quantitation in both approaches was based on internal standard and a calibration plot. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Q

  17. Chemically reactive and naturally convective high speed MHD fluid flow through an oscillatory vertical porous plate with heat and radiation absorption effect

    Directory of Open Access Journals (Sweden)

    S.M. Arifuzzaman

    2018-04-01

    Full Text Available This paper concerns with the modelling of an unsteady natural convective and higher order chemically reactive magnetohydrodynamics (MHD fluid flow with the effect of heat and radiation absorption. The flow is generated through a vertical oscillating porous plate. Boundary layer approximations is carried out to establish a flow model which represents the time dependent momentum, energy and diffusion balance equations. Before being solved numerically, the governing partial differential equations (PDEs were transformed into a set of nonlinear ordinary differential equation (ODEs by using non-similar technique. A very efficient numerical approach solves the obtained nonlinear coupled ODEs so called Explicit Finite Difference Method (EFDM. An algorithm is implemented in Compaq Visual Fortran 6.6a as a solving tool. In addition, the stability and convergence analysis (SCA is examined and shown explicitly. The advantages of SCA is its optimizes the accuracy of system parameters such as Prandtl number (Pr and Schmidt number (Sc.The velocity, temperature and concentration fields in the boundary layer region are studied in detail and the outcomes are shown in graphically with the influence of various pertinent parameters such as Grashof number (Gr, modified Grashof number (Gr, magnetic parameter (M, Darcy number (Da,Prandtl number (Pr, Schmidt number (Sc, radiation (R, heat sink (Q,radiation absorption (Q1, Eckert number (Ec, Dufour number (Du,Soret number (Sr, Schmidt number (Sc, reaction index (P and chemical reaction (Kr. Furthermore, the effect of skin friction coefficient (Cf, Nusselt number (Nu and Sherwood number (Sh are also examined graphically. Keywords: MHD, Oscillating porous plate, Radiation absorption, High order chemical reaction, EFDM

  18. Fixation of some chemically modified reactive dye during gamma irradiation of cotton fabrics in presence of vinyl and acrylic monomers

    International Nuclear Information System (INIS)

    Zohdy, M.H.; El-Naggar, A.M.; Abdallah, W.A.

    1999-01-01

    The radiation grafting of vinyl sulfone dye having an activated double bond in presence of styrene monomer or its mixtures with ethyl acrylate onto cotton fabric has been investigated. The chemical reaction of the vinyl sulfone form with peroxy radicals on cotton fabric through covalent bonding is tested by extracting the dyed samples in 50% aqueous DMF solution. It was found that the presence of styene monomer in the dyeing solution is essential for the reaction or grafting of the vinyl sulfone dye. However, when a constant styrene concentration of 5% was used in the dye bath, the color strength expressed as K/S was found to increase by increasing the dye concentration. The results showed that the color strength obtained in case of using 10% ethyl acrylate is much lower than in the case of using the same concentration of styrene monomer. A solvent composition of equal ratios of methanol and water has been proven to be suitable to produce the highest improvement in the color strength. The irradiation dose was found to play an important role in initiating the reaction of the vinyl sulfone dye

  19. Hybrid graphene oxide/DAB-Am-16 dendrimer: Preparation, characterization chemical reactivity and their electrocatalytic detection of L-Dopamine

    Science.gov (United States)

    Do Carmo, Devaney Ribeiro; Fernandes, Daniela Silvestrini

    2017-09-01

    Graphene oxide (GO) was chemically modified with a poly(propylene)imine Generation 3.0 dendrimer (DAB-Am-16). The characterization, structure and properties of hybrid graphene oxide/DAB-Am-16 dendrimer was studied by Raman spectroscopy, Fourier-Transforming Infrared Spectroscopy (FT-IR), X-Ray Photoelectron Spectroscopic (XPS), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Thermogravimetric analysis. After functionalized the hybrid material (GOD) can interact with copper and subsequently with hexacyanoferrate (III) ions (GODHCu). The GODHCu incorporated into a graphite paste electrode (20% w/w) was applied to an electrocatalytic detection of neurotransmitter L-dopamine using differential pulse voltammetry. The analytical curve showed a linear response in the concentration range from 1.0 × 10-7 to 1.0 × 10-5 mol L-1 with a corresponding equation Y(A) = 1.706 × 10-5 + 0.862 [L-dopamine] and a correlation coefficient r2 = 0.998. The detection limit was 6.36 × 10-7 mol L-1 with a relative standard deviation of ±4% (n = 3) and an amperometric sensitivity of 0.862 A/mol L-1.

  20. A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species

    Directory of Open Access Journals (Sweden)

    Junaid Ahmad Khan

    2018-03-01

    Full Text Available Boundary layer flow around a stretchable rough cylinder is modeled by taking into account boundary slip and transverse magnetic field effects. The main concern is to resolve heat/mass transfer problem considering non-linear radiative heat transfer and temperature/concentration jump aspects. Using conventional similarity approach, the equations of motion and heat transfer are converted into a boundary value problem whose solution is computed by shooting method for broad range of slip coefficients. The proposed numerical scheme appears to improve as the strengths of magnetic field and slip coefficients are enhanced. Axial velocity and temperature are considerably influenced by a parameter M which is inversely proportional to the radius of cylinder. A significant change in temperature profile is depicted for growing wall to ambient temperature ratio. Relevant physical quantities such as wall shear stress, local Nusselt number and local Sherwood number are elucidated in detail. Keywords: Stretchable boundary, Thermal radiation, Chemical reaction, Mathematical modeling, Non-linear differential system, Mass transfer

  1. Chemical dynamics between wells across a time-dependent barrier: Self-similarity in the Lagrangian descriptor and reactive basins.

    Science.gov (United States)

    Junginger, Andrej; Duvenbeck, Lennart; Feldmaier, Matthias; Main, Jörg; Wunner, Günter; Hernandez, Rigoberto

    2017-08-14

    In chemical or physical reaction dynamics, it is essential to distinguish precisely between reactants and products for all times. This task is especially demanding in time-dependent or driven systems because therein the dividing surface (DS) between these states often exhibits a nontrivial time-dependence. The so-called transition state (TS) trajectory has been seen to define a DS which is free of recrossings in a large number of one-dimensional reactions across time-dependent barriers and thus, allows one to determine exact reaction rates. A fundamental challenge to applying this method is the construction of the TS trajectory itself. The minimization of Lagrangian descriptors (LDs) provides a general and powerful scheme to obtain that trajectory even when perturbation theory fails. Both approaches encounter possible breakdowns when the overall potential is bounded, admitting the possibility of returns to the barrier long after the trajectories have reached the product or reactant wells. Such global dynamics cannot be captured by perturbation theory. Meanwhile, in the LD-DS approach, it leads to the emergence of additional local minima which make it difficult to extract the optimal branch associated with the desired TS trajectory. In this work, we illustrate this behavior for a time-dependent double-well potential revealing a self-similar structure of the LD, and we demonstrate how the reflections and side-minima can be addressed by an appropriate modification of the LD associated with the direct rate across the barrier.

  2. Oxygen Measurements in Liposome Encapsulated Hemoglobin

    Science.gov (United States)

    Phiri, Joshua Benjamin

    Liposome encapsulated hemoglobins (LEH's) are of current interest as blood substitutes. An analytical methodology for rapid non-invasive measurements of oxygen in artificial oxygen carriers is examined. High resolution optical absorption spectra are calculated by means of a one dimensional diffusion approximation. The encapsulated hemoglobin is prepared from fresh defibrinated bovine blood. Liposomes are prepared from hydrogenated soy phosphatidylcholine (HSPC), cholesterol and dicetylphosphate using a bath sonication method. An integrating sphere spectrophotometer is employed for diffuse optics measurements. Data is collected using an automated data acquisition system employing lock-in -amplifiers. The concentrations of hemoglobin derivatives are evaluated from the corresponding extinction coefficients using a numerical technique of singular value decomposition, and verification of the results is done using Monte Carlo simulations. In situ measurements are required for the determination of hemoglobin derivatives because most encapsulation methods invariably lead to the formation of methemoglobin, a nonfunctional form of hemoglobin. The methods employed in this work lead to high resolution absorption spectra of oxyhemoglobin and other derivatives in red blood cells and liposome encapsulated hemoglobin (LEH). The analysis using singular value decomposition method offers a quantitative means of calculating the fractions of oxyhemoglobin and other hemoglobin derivatives in LEH samples. The analytical methods developed in this work will become even more useful when production of LEH as a blood substitute is scaled up to large volumes.

  3. Integration of On-Column Chemical Reactions in Protein Characterization by Liquid Chromatography/Mass Spectrometry: Cross-Path Reactive Chromatography.

    Science.gov (United States)

    Pawlowski, Jake W; Carrick, Ian; Kaltashov, Igor A

    2018-01-16

    Profiling of complex proteins by means of mass spectrometry (MS) frequently requires that certain chemical modifications of their covalent structure (e.g., reduction of disulfide bonds), be carried out prior to the MS or MS/MS analysis. Traditionally, these chemical reactions take place in the off-line mode to allow the excess reagents (the majority of which interfere with the MS measurements and degrade the analytical signal) to be removed from the protein solution prior to MS measurements. In addition to a significant increase in the analysis time, chemical reactions may result in a partial or full loss of the protein if the modifications adversely affect its stability, e.g,, making it prone to aggregation. In this work we present a new approach to solving this problem by carrying out the chemical reactions online using the reactive chromatography scheme on a size exclusion chromatography (SEC) platform with MS detection. This is achieved by using a cross-path reaction scheme, i.e., by delaying the protein injection onto the SEC column (with respect to the injection of the reagent plug containing a disulfide-reducing agent), which allows the chemical reactions to be carried out inside the column for a limited (and precisely controlled) period of time, while the two plugs overlap inside the column. The reduced protein elutes separately from the unconsumed reagents, allowing the signal suppression in ESI to be avoided and enabling sensitive MS detection. The new method is used to measure fucosylation levels of a plasma protein haptoglobin at the whole protein level following online reduction of disulfide-linked tetrameric species to monomeric units. The feasibility of top-down fragmentation of disulfide-containing proteins is also demonstrated using β 2 -microglobulin and a monoclonal antibody (mAb). The new online technique is both robust and versatile, as the cross-path scheme can be readily expanded to include multiple reactions in a single experiment (as

  4. Host-guest complex of N-(2-chloroethyl), N-nitroso, N‧, N‧ -dicyclohexylsulfamid with β-cyclodextrin: Fluorescence, QTAIM analysis and structure-chemical reactivity

    Science.gov (United States)

    Bensouilah, Nadjia; Fisli, Hassina; Bensouilah, Hamza; Zaater, Sihem; Abdaoui, Mohamed; Boutemeur-Kheddis, Baya

    2017-10-01

    In this work, the inclusion complex of DCY/CENS: N-(2-chloroethyl), N-nitroso, N‧, N‧-dicyclohexylsulfamid and β-cyclodextrin (β-CD) is investigated using the fluorescence spectroscopy, PM3, ONIOM2 and DFT methods. The experimental part reveals that DCY/CENS forms a 1:1 stoichiometric ratio inclusion complex with β-CD. The constant of stability is evaluated using the Benesi-Hildebrand equation. The results of the theoretical optimization showed that the lipophilic fraction of molecule (cyclohexyl group) is inside of β-CD. Accordingly, the Nitroso-Chloroethyl moiety is situated outside the cavity of the macromolecule host. The favorable structure of the optimized complex indicates the existence of weak intermolecular hydrogen bonds and the most important van der Waals (vdW) interactions which are studied on the basis of Natural Bonding Orbital (NBO) analysis. The NBO is employed to compute the electronic donor-acceptor exchanges between drug and β-CD. Furthermore, a detailed topological charge density analysis based on the quantum theory of atoms in molecules (QTAIM), has been accomplished on the most favorable complex using B3LYP/6-31G(d) method. The presence of stabilizing intermolecular hydrogen bonds and van der Waals interactions in the most favorable complex is predicted. Also, the energies of these interactions are estimated with Espinosa's formula. The findings of this investigation reveal that the correlation between the structural parameters and the electronic density is good. Finally, and based on DFT calculations, the reactivity of the interesting molecule in free state was studied and compared with that in the complexed state using chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors.

  5. Chemical Dynamics and Critical Phenomena: Electrical Conductivity and Reactivity of Benzyl Bromide in Triethylamine+Water Near its Consolute Point

    Science.gov (United States)

    Specker, Christopher D.; Ellis, Joel M.; Baird, James K.

    2007-06-01

    The binary liquid mixture of triethylamine+water has a lower consolute point at a critical composition of 32.27mass% triethylamine. Starting at a temperature within the one-phase region, the electrical conductivity of a sample of this mixture was measured and found to increase smoothly with increasing temperature before falling sharply at 291.24K (18.09°C). Since opalescence was visible at this temperature, it was identified with the critical solution temperature of the binary mixture. A solution of 90 μL of benzyl bromide dissolved in 90mL of 32.27mass% triethylamine+water was prepared, and the resulting Menschutkin reaction between benzyl bromide and triethylamine was allowed to come to equilibrium. The electrical conductivity of this equilibrium mixture was measured in the one-phase region and was found to increase smoothly with increasing temperature before rising sharply at 291.55K (18.40°C). This temperature was identified as the critical temperature of the ternary. The rate of approach of the ternary mixture to chemical equilibrium was also measured and shown to be governed by a first-order rate law. The temperature dependence of the rate coefficient followed the Arrhenius equation up to a temperature of about 290.74K (17.59°C). Above this temperature, the rate coefficient fell by as much as 22% below the value predicted by extrapolation of the Arrhenius equation. This suppression in the rate reaction in the vicinity of the critical temperature can be interpreted as evidence for the existence of critical slowing down.

  6. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  7. chemical studies on the reactivity of some organic extractants for extraction and separation of certain elements from aqueous solutions

    International Nuclear Information System (INIS)

    Aly, M.M.I.

    2010-01-01

    Lanthanide elements such as lanthanum and neodymium are important elements in photo-electronic and metallurgical industries as well as in nuclear technology. The main constituents of the spent nuclear fuel are actinides like uranium, thorium and various fission products including lanthanides. The co-ordination compounds of the trivalent lanthanum and neodymium continues to be an active research area, which includes the specific spectroscopic and magnetic properties of rare earth ions and their applications as super molecular device, contrast-enhancing agents in magnetic resonance imaging, optical signal amplifiers and electroluminescent (EL) devices. Hence, the separation and purification of these elements is of great concern. Solvent extraction technique is employed to separate and purify rare earth elements in an industrial scale, but the separation of lanthanum and neodymium is a difficult task, as lanthanide ions exhibit similar chemical and physical properties. They have generally common and stable +3 oxidation state that requires synthesis of certain extractants which are able to extract them from different aqueous solutions. During the last twenty years, different publications have pointed out the remarkable properties of alkyl amide in the field of separation chemistry. These extractants are able to form stable co-ordination compounds with different metallic ions. In this concern, this thesis deals with the synthesis of different amide extractants namely N, N diethylacetoamide (DEAA), N, N Teteraphenyl malonamide (TPMA), N, N diphenylbenzamide (DPBA), N, N' diphenylacetoamide (DPAA), and N, N' Teteraethyl malonamide (TEMA), which were synthesized, characterized and compared with Aliquat-336 in kerosene for extraction and separation of La (III) and Nd (III). The effect of the different parameters affecting the extraction of these metals from aqueous nitric acid medium in the different systems has been studied in terms of shaking time, nitric acid, hydrogen

  8. Selection of aptamers specific for glycated hemoglobin and total hemoglobin using on-chip SELEX.

    Science.gov (United States)

    Lin, Hsin-I; Wu, Ching-Chu; Yang, Ching-Hsuan; Chang, Ko-Wei; Lee, Gwo-Bin; Shiesh, Shu-Chu

    2015-01-21

    Blood glycated hemoglobin (HbA1c) levels reflecting average glucose concentrations over the past three months are fundamental for the diagnosis, monitoring, and risk assessment of diabetes. It has been hypothesized that aptamers, which are single-stranded DNAs or RNAs that demonstrate high affinity to a large variety of molecules ranging from small drugs, metabolites, or proteins, could be used for the measurement of HbA1c. Aptamers are selected through an in vitro process called systematic evolution of ligands by exponential enrichment (SELEX), and they can be chemically synthesized with high reproducibility at relatively low costs. This study therefore aimed to select HbA1c- and hemoglobin (Hb)-specific single-stranded DNA aptamers using an on-chip SELEX protocol. A microfluidic SELEX chip was developed to continuously and automatically carry out multiple rounds of SELEX to screen specific aptamers for HbA1c and Hb. HbA1c and Hb were first coated onto magnetic beads. Following several rounds of selection and enrichment with a randomized 40-mer DNA library, specific oligonucleotides were selected. The binding specificity and affinity were assessed by competitive and binding assays. Using the developed microfluidic system, the incubation and partitioning times were greatly decreased, and the entire process was shortened dramatically. Both HbA1c- and Hb-specific aptamers selected by the microfluidic system showed high specificity and affinity (dissociation constant, Kd = 7.6 ± 3.0 nM and 7.3 ± 2.2 nM for HbA1c and Hb, respectively). With further refinements in the assay, these aptamers may replace the conventional antibodies for in vitro diagnostics applications in the near future.

  9. Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state

    Science.gov (United States)

    Li, Guanchen; von Spakovsky, Michael R.

    2016-01-01

    This paper presents a study of the nonequilibrium relaxation process of chemically reactive systems using steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the chemical reaction, i.e., the accessible intermediate states, is predicted and discussed. The prediction is made using a thermodynamic-ensemble approach, which does not require detailed information about the particle mechanics involved (e.g., the collision of particles). Instead, modeling the kinetics and dynamics of the relaxation process is based on the principle of steepest-entropy ascent (SEA) or maximum-entropy production, which suggests a constrained gradient dynamics in state space. The SEAQT framework is based on general definitions for energy and entropy and at least theoretically enables the prediction of the nonequilibrium relaxation of system state at all temporal and spatial scales. However, to make this not just theoretically but computationally possible, the concept of density of states is introduced to simplify the application of the relaxation model, which in effect extends the application of the SEAQT framework even to infinite energy eigenlevel systems. The energy eigenstructure of the reactive system considered here consists of an extremely large number of such levels (on the order of 10130) and yields to the quasicontinuous assumption. The principle of SEA results in a unique trajectory of system thermodynamic state evolution in Hilbert space in the nonequilibrium realm, even far from equilibrium. To describe this trajectory, the concepts of subsystem hypoequilibrium state and temperature are introduced and used to characterize each system-level, nonequilibrium state. This definition of temperature is fundamental rather than phenomenological and is a generalization of the temperature defined at stable equilibrium. In addition, to deal with the large number of energy eigenlevels, the equation of motion is formulated on the basis of the density of states and a set of

  10. Patch testing with a new fragrance mix - reactivity to the individual constituents and chemical detection in relevant cosmetic products.

    Science.gov (United States)

    Frosch, Peter J; Rastogi, Suresh C; Pirker, Claudia; Brinkmeier, Thomas; Andersen, Klaus E; Bruze, Magnus; Svedman, Cecilia; Goossens, An; White, Ian R; Uter, Wolfgang; Arnau, Elena Giménez; Lepoittevin, Jean-Pierre; Johansen, Jeanne Duus; Menne, Torkil

    2005-04-01

    A new fragrance mix (FM II), with 6 frequently used chemicals not present in the currently used fragrance mix (FM I), was evaluated in 6 dermatological centres in Europe, as previously reported. In this publication, test results with the individual constituents and after repeated open application test (ROAT) of FM II are described. Furthermore, cosmetic products which had caused a contact dermatitis in patients were analysed for the presence of the individual constituents. In 1701 patients, the individual constituents of the medium (14%) and the highest (28%) concentration of FM II were simultaneously applied with the new mix at 3 concentrations (break-down testing for the lowest concentration of FM II (2.8%) was performed only if the mix was positive). ROAT was performed with the concentration of the FM II which had produced a positive or doubtful (+ or ?+) patch test reaction. Patients' products were analysed for the 6 target compounds by gas chromatography-mass spectrometry (GC-MS). 50 patients (2.9%) showed a positive reaction to 14% FM II and 70 patients (4.1%) to 28% FM II. 24/50 (48%) produced a positive reaction to 1 or more of the individual constituents of 14% FM II and 38/70 (54.3%) to 28% FM II, respectively. If doubtful reactions to individual constituents are included, the break-down testing was positive in 74% and 70%, respectively. Patients with a positive reaction to 14% FM II showed a higher rate of reactions to the individual constituent of the 28% FM II: 36/50 (72%). Positive reactions to individual constituents in patients negative to FM II were exceedingly rare. If doubtful reactions are regarded as negative, the sensitivity, specificity, positive predictive value and negative predictive value for the medium concentration of FM II towards at least 1 individual constituent was 92.3% (exact 95% confidence interval 74.9-99.1%), 98.4% (97.7-99.0%), 48% (33.7-62.6%) and 99.9% (99.6-"100.0%), respectively. For the high concentration, the figures

  11. Detection of Sickle Cell Hemoglobin in Haiti by Genotyping and Hemoglobin Solubility Tests

    Science.gov (United States)

    Carter, Tamar E.; von Fricken, Michael; Romain, Jean R.; Memnon, Gladys; St. Victor, Yves; Schick, Laura; Okech, Bernard A.; Mulligan, Connie J.

    2014-01-01

    Sickle cell disease is a growing global health concern because infants born with the disorder in developing countries are now surviving longer with little access to diagnostic and management options. In Haiti, the current state of sickle cell disease/trait in the population is unclear. To inform future screening efforts in Haiti, we assayed sickle hemoglobin mutations using traditional hemoglobin solubility tests (HST) and add-on techniques, which incorporated spectrophotometry and insoluble hemoglobin separation. We also generated genotype data as a metric for HST performance. We found 19 of 202 individuals screened with HST were positive for sickle hemoglobin, five of whom did not carry the HbS allele. We show that spectrophotometry and insoluble hemoglobin separation add-on techniques could resolve false positives associated with the traditional HST approach, with some limitations. We also discuss the incorporation of insoluble hemoglobin separation observation with HST in suboptimal screening settings like Haiti. PMID:24957539

  12. Moessbauer study of hemoglobin of diabetes

    International Nuclear Information System (INIS)

    Li Aiguo; Ni Xinbo; Cai Yingwen; Zhang Guilin; Zhang Hongde; Ge Yongxin

    2000-01-01

    The hemoglobins from normal adults (Gly-Hb 5%), people infected with diabetes (Gly-Hb 10%) and serious diabetics (Gly-Hb 15%) were investigated by Moessbauer spectroscopy at liquid nitrogen temperature. All the experimental spectra of hemoglobin are composed of three doublets corresponding to oxy-hemoglobin (Oxy-Hb), deoxy-hemoglobin (Deoxy-Hb) and low-spin hemo-chrome (Ls-Hemo) respectively. It is found that Oxy-Hb is decreasing but Deoxy-hb increasing for diabetes. Experimental results also indicate that the line-width of Moessbauer spectra of Oxy-Hb for diabetics is narrower than that for normal adults, showing that while Fe on Oxy-Hb exists in pile-up of some similar states for normal adults, but it becomes in single state for serious diabetes

  13. Methylation of hemoglobin to enhance flocculant performance

    Science.gov (United States)

    An inexpensive bioflocculant, bovine hemoglobin (Hb), has been covalently modified through methylation of the side chain carboxyl groups of aspartic and glutamic acid residues to improve its flocculation activity. Potentiometric titration of the recovered products showed approximately 28% degree of ...

  14. Hemoglobin levels in normal Filipino pregnant women.

    Science.gov (United States)

    Kuizon, M D; Natera, M G; Ancheta, L P; Platon, T P; Reyes, G D; Macapinlac, M P

    1981-09-01

    The hemoglobin concentrations during pregnancy in Filipinos belonging to the upper income group, who were prescribed 105 mg elemental iron daily, and who had acceptable levels of transferrin saturation, were examined in an attempt to define normal levels. The hemoglobin concentrations for each trimester followed a Gaussian distribution. The hemoglobin values equal to the mean minus one standard deviation were 11.4 gm/dl for the first trimester and 10.4 gm/dl for the second and third trimesters. Using these values as the lower limits of normal, in one group of pregnant women the prevalence of anemia during the last two trimesters was found lower than that obtained when WHO levels for normal were used. Groups of women with hemoglobin of 10.4 to 10.9 gm/dl (classified anemic by WHO criteria but normal in the present study) and those with 11.0 gm/dl and above could not be distinguished on the basis of their serum ferritin levels nor on the degree of decrease in their hemoglobin concentration during pregnancy. Many subjects in both groups, however, had serum ferritin levels less than 12 ng/ml which indicate poor iron stores. It might be desirable in future studies to determine the hemoglobin cut-off point that will delineate subjects who are both non-anemic and adequate in iron stores using serum ferritin levels as criterion for the latter.

  15. High affinity hemoglobin and Parkinson's disease.

    Science.gov (United States)

    Graham, Jeffrey; Hobson, Douglas; Ponnampalam, Arjuna

    2014-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain. Oxidative damage in this region has been shown to play an important role in the pathogenesis of this disease. Human neurons have been discovered to contain hemoglobin, with an increased concentration seen in the neurons of the SN. High affinity hemoglobin is a clinical entity resulting from mutations that create a functional increase in the binding of hemoglobin to oxygen and an inability to efficiently unload it to tissues. This can result in a number of metabolic compensatory changes, including an elevation in circulating hemoglobin and an increase in the molecule 2,3-diphosphoglycerate (2,3-DPG). Population based studies have revealed that patients with PD have elevated hemoglobin as well as 2,3-DPG levels. Based on these observations, we hypothesize that the oxidative damage seen in PD is related to an underlying high affinity hemoglobin subtype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evaluation of the Efficiency of the Reticulocyte Hemoglobin Content on Diagnosis for Iron Deficiency Anemia in Chinese Adults

    Directory of Open Access Journals (Sweden)

    Jie Cai

    2017-05-01

    Full Text Available Our aim was to evaluate the cut-off value and efficiency of using reticulocyte hemoglobin content as a marker to diagnose iron deficiency anemia in Chinese adults. 140 adults who needed bone marrow aspiration for diagnosis at the hematology department of the Peking Union Medical College Hospital were enrolled according to the inclusive and exclusive criteria. Venous blood samples were collected to detect complete blood count, including hemoglobin, reticulocyte hemoglobin content, hematocrit, mean cellular volume, corpuscular hemoglobin concentration, hemoglobin content, free erythrocyte protoporphyrin; iron indexes of serum ferritin, serum transferrin receptor, and unsaturated iron-binding capacity; and inflammation markers of C-reactive protein and α-acid glycoprotein. Bone marrow samples were obtained for the bone marrow iron staining, which was used as the standard for the evaluation of iron status in this study. Subjects were divided into three groups according to hemoglobin levels and bone marrow iron staining results: the IDA (iron deficiency anemia group, the NIDA (non-iron deficiency anemia group, and the control group. The differences of the above-mentioned indexes were compared among the three groups and the effect of inflammation was also considered. The cut-off value of reticulocyte hemoglobin content was determined by receiver operation curves. The IDA group (n = 56 had significantly lower reticulocyte hemoglobin content, mean cellular volume, corpuscular hemoglobin concentration, hemoglobin content, and serum ferritin; and higher free erythrocyte protoporphyrin, unsaturated iron-binding capacity, and serum transferrin receptor (p < 0.05 compared with the NIDA group (n = 38 and control group (n = 46. Hematocrit, serum ferritin, and unsaturated iron-binding capacity were significantly affected by inflammation while reticulocyte hemoglobin content and other parameters were not. The cut-off value of reticulocyte hemoglobin content for

  17. Evaluation of the Efficiency of the Reticulocyte Hemoglobin Content on Diagnosis for Iron Deficiency Anemia in Chinese Adults.

    Science.gov (United States)

    Cai, Jie; Wu, Meng; Ren, Jie; Du, Yali; Long, Zhangbiao; Li, Guoxun; Han, Bing; Yang, Lichen

    2017-05-02

    Our aim was to evaluate the cut-off value and efficiency of using reticulocyte hemoglobin content as a marker to diagnose iron deficiency anemia in Chinese adults. 140 adults who needed bone marrow aspiration for diagnosis at the hematology department of the Peking Union Medical College Hospital were enrolled according to the inclusive and exclusive criteria. Venous blood samples were collected to detect complete blood count, including hemoglobin, reticulocyte hemoglobin content, hematocrit, mean cellular volume, corpuscular hemoglobin concentration, hemoglobin content, free erythrocyte protoporphyrin; iron indexes of serum ferritin, serum transferrin receptor, and unsaturated iron-binding capacity; and inflammation markers of C-reactive protein and α-acid glycoprotein. Bone marrow samples were obtained for the bone marrow iron staining, which was used as the standard for the evaluation of iron status in this study. Subjects were divided into three groups according to hemoglobin levels and bone marrow iron staining results: the IDA (iron deficiency anemia) group, the NIDA (non-iron deficiency anemia) group, and the control group. The differences of the above-mentioned indexes were compared among the three groups and the effect of inflammation was also considered. The cut-off value of reticulocyte hemoglobin content was determined by receiver operation curves. The IDA group ( n = 56) had significantly lower reticulocyte hemoglobin content, mean cellular volume, corpuscular hemoglobin concentration, hemoglobin content, and serum ferritin; and higher free erythrocyte protoporphyrin, unsaturated iron-binding capacity, and serum transferrin receptor ( p iron-binding capacity were significantly affected by inflammation while reticulocyte hemoglobin content and other parameters were not. The cut-off value of reticulocyte hemoglobin content for diagnosing iron deficiency anemia was 27.2 pg, with a sensitivity of 87.5% and a specificity of 92.9%. The cut-off values for

  18. Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors

    International Nuclear Information System (INIS)

    Kato, Yukitaka; Yamada, Mitsuteru; Kanie, Toshihiro; Yoshizawa, Yoshio

    2001-01-01

    The thermal performance of a chemical heat pump that uses a calcium oxide/carbon dioxide reaction system was discussed as a heat storage system for utilizing heat output from high temperature gas reactors (HTGR). Calcium oxide/carbon dioxide reactivity for the heat pump was measured using a packed bed reactor containing 1.0 kg of reactant. The reactor was capable of storing heat at 900 deg. C by decarbonation of calcium carbonate and generating up to 997 deg. C by carbonation of calcium oxide. The amount of stored heat in the reactor was 800-900 kJ kg -1 . The output temperature of the reactor could be controlled by regulating the carbonation pressure. The thermal storage performance of the reactor was superior to that of conventional sensible heat storage systems. A heat pump using this CaO/CO 2 reactor is expected to contribute to thermal load leveling and to realize highly efficient utilization of HTGR output due to the high heat storage density and high-quality temperature output of the heat pump

  19. Quantum chemical study of the structure, spectroscopy and reactivity of NO+.(H2O)n=1-5 clusters

    Science.gov (United States)

    Linton, Kirsty A.; Wright, Timothy G.; Besley, Nicholas A.

    2018-03-01

    Quantum chemical methods including Møller-Plesset perturbation (MP2) theory and density functional theory (DFT) have been used to study the structure, spectroscopy and reactivity of NO+.(H2O)n=1-5 clusters. MP2/6-311++G** calculations are shown to describe the structure and spectroscopy of the clusters well. DFT calculations with exchange-correlation functionals with a low fraction of Hartree-Fock exchange give a binding energy of NO+.(H2O) that is too high and incorrectly predict the lowest energy structure of NO+.(H2O)2, and this error may be associated with a delocalization of charge onto the water molecule directly binding to NO+. Ab initio molecular dynamics (AIMD) simulations were performed to study the NO+.(H2O)5 H+.(H2O)4 + HONO reaction to investigate the formation of HONO from NO+.(H2O)5. Whether an intracluster reaction to form HONO is observed depends on the level of electronic structure theory used. Of note is that methods that accurately describe the relative energies of the product and reactant clusters did not show reactions on the timescales studied. This suggests that in the upper atmosphere the reaction may occur owing to the energy present in the NO+.(H2O)5 complex following its formation. This article is part of the theme issue `Modern theoretical chemistry'.

  20. The clinical significance of detecting serum homocysteine, glycosylated hemoglobin and C-reactive protein in type 2 diabetic retinopathy%2型糖尿病视网膜病变检测血清同型半胱氨酸,糖化血红蛋白及超敏C-反应蛋白的临床意义

    Institute of Scientific and Technical Information of China (English)

    陈国新; 赵立忠; 冼小珍; 陈月梅

    2016-01-01

    目的:探究同型半胱氨酸,糖化血红蛋白及C-反应蛋白对检测2型糖尿病视网膜病变的临床意义。方法:选取2014年6月至2016年2月在我院进行治疗的2型糖尿病视网膜病变患者57例和2型糖尿病无视网膜病变患者52例分别为糖尿病视网膜病变组(DR组)和糖尿病无视网膜病变组(NDR组),另从我院50名健康受试者作为对照组。采用免疫比浊法检测三组研究样本的血清同型半胱氨酸(Hcy)、糖化血红蛋白(HbAlc)和超敏C-反应蛋白(hs- CRP)水平。采用SPSS19.0软件对三组研究样本的Hcy,HbAlc,hs- CRP进行对比性分析。结果:DR组Hcy,HbAlc,hs- CRP的水平分别为15.75±4.88umol/L,9.47±2.14%,1.87±1.12mg/L,较NDR组和对照组明显偏高(<0.05),NDR组Hcy,HbAlc,hs- CRP的水平分别为10.98±3.74 umol/L,8.02±2.11%,0.74±0.47 mg/L,显著高于对照组(<0.05),此外研究结果还表明hsCRP水平与Hcy水平显著正相关(r=0.974,P=0.0027)。结论:Hcy,HbAlc,hs- CRP的水平和2型糖尿病视网膜病变病情具有密切的关系,检测这三项指标可以为诊断和治疗2型糖尿病视网膜病变的提供合理且有意义的的临床依据。%Objective:To explore the clinical values of homocysteine (Hcy) , glycosylated hemoglobin (HbA1c) and C- re-active protein ( CRP) detections for type 2 diabetic retinopathy. Methods: In this study, we selected 57 cases of type 2 diabetic retinopathy patients (DR group) and 52 cases of diabetic retinopathy patients without retinopathy (NDR group) hospitalized in our hospital from June 2014 to February 2016. Additionally, 50 healthy subjects were selected as controls. Latex nephelometry was used to detect serum Hcy, hypersensitive CRP (hs- CRP) and HbAlc levels, and comparative analysis in the three groups were ana-lyzed under SPSS19.0 software. Results: The Hcy, HbAlc, hs- CRP levels in DR group were (15.75 ± 4.88) μmol/L, (9.47 ±2

  1. Potential energy profile, structural, vibrational and reactivity descriptors of trans-2-methoxycinnamic acid by FTIR, FT-Raman and quantum chemical studies

    Science.gov (United States)

    Arjunan, V.; Anitha, R.; Thenmozhi, S.; Marchewka, M. K.; Mohan, S.

    2016-06-01

    The stable conformers of trans-2-methoxycinnamic acid (trans-2MCA) are determined by potential energy profile analysis. The energies of the s-cis and s-trans conformers of trans-2MCA determined by B3LYP/cc-pVTZ method are -612.9788331 Hartrees and -612.9780953 Hartrees, respectively. The vibrational and electronic investigations of the stable s-cis and s-trans conformers of trans-2-methoxycinnamic acid have been carried out extensively with FTIR and FT-Raman spectral techniques. The s-cis conformer (I) with a (C16-C17-C18-O19) dihedral angle equal to 0° is found to be more favoured relative to the one s-trans (II) with (C16-C17-C18-O19) = 180°, possibly due to delocalization, hydrogen bonding and steric repulsion effects between the methoxy and acrylic acid groups. The DFT studies are performed with B3LYP method by utilizing 6-311++G** and cc-pVTZ basis sets to determine the structure, thermodynamic properties, vibrational characteristics and chemical shifts of the compound. The total dipole moments of the conformers determined by B3LYP/cc-pVTZ method are 3.35 D and 4.87 D for s-cis and s-trans, respectively. It reveals the higher polarity of s-trans conformer of trans-2MCA molecule. The electronic and steric influence of the methoxy group on the skeletal frequencies has been analysed. The energies of the frontier molecular orbitals and the LUMO-HOMO energy gap have been determined. The MEP of s-cis conformer lie in the range +1.374e × 10-2 to -1.374e × 10-2 while for s-trans it is +1.591e × 10-2 to -1.591e × 10-2. The total electron density of s-cis conformer lie in the range +5.273e × 10-2 to -5.273e × 10-2 while for s-trans it is +5.403e × 10-2 to -5.403e × 10-2. The MEP and total electron density shows that the s-cis conformer is less polar, less reactive and more stable than the s-trans conformer. All the reactivity descriptors of the molecule have been discussed. Intramolecular electronic interactions and their stabilisation energies have analysed

  2. The Reaction of Oxy Hemoglobin with Nitrite: Mechanism, Antioxidant-Modulated Effect, and Implications for Blood Substitute Evaluation

    Directory of Open Access Journals (Sweden)

    Denisa Hathazi

    2018-02-01

    Full Text Available The autocatalytic reaction between nitrite and the oxy form of globins involves free radicals. For myoglobin (Mb, an initial binding of nitrite to the iron-coordinated oxygen molecule was proposed; the resulting ferrous-peroxynitrate species was not detected, but its decay product, the high-valent ferryl form, was demonstrated in stopped-flow experiments. Reported here are the stopped flow spectra recorded upon mixing oxy Hb (native, as well as chemically-derivatized in the form of several candidates of blood substitutes with a supraphysiological concentration of nitrite. The data may be fitted to a simple kinetic model involving a transient met-aqua form, in contrast to the ferryl detected in the case of Mb in a similar reaction sequence. These data are in line with a previous observation of a transient accumulation of ferryl Hb under auto-catalytic conditions at much lower concentrations of nitrite (Grubina, R. et al. J. Biol. Chem. 2007, 282, 12916. The simple model for fitting the stopped-flow data leaves a small part of the absorbance changes unaccounted for, unless a fourth species is invoked displaying features similar to the oxy and tentatively assigned as ferrous-peroxynitrate. Density functional theory (DFT calculations support this latter assignment. The reaction allows for differentiating between the reactivities of various chemically modified hemoglobins, including candidates for blood substitutes. Polymerization of hemoglobin slows the nitrite-induced oxidation, in sharp contrast to oxidative-stress type reactions which are generally accelerated, not inhibited. Sheep hemoglobin is found to be distinctly more resistant to reaction with nitrite compared to bovine Hb, at large nitrite concentrations (stopped-flow experiments directly observing the oxy + nitrite reaction as well as under auto-catalytic conditions. Copolymerization of Hb with bovine serum albumin (BSA using glutaraldehyde leads to a distinct increase of the lag time

  3. Biodecolorization and biodegradation of Reactive Blue by ...

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... Aspergillus sp. effectively decolorized Reactive Blue and other structurally different synthetic dyes. Agitation was found to be an important ... Few chemically different dyes such as Reactive Black (75%), Reactive Yellow (70%),. Reactive Red (33%) and ..... Degradation of azo dyes by the lignin degrading ...

  4. Convergent evolution of hemoglobin switching in jawed and jawless vertebrates.

    Science.gov (United States)

    Rohlfing, Kim; Stuhlmann, Friederike; Docker, Margaret F; Burmester, Thorsten

    2016-02-01

    During development, humans and other jawed vertebrates (Gnathostomata) express distinct hemoglobin genes, resulting in different hemoglobin tetramers. Embryonic and fetal hemoglobin have higher oxygen affinities than the adult hemoglobin, sustaining the oxygen demand of the developing organism. Little is known about the expression of hemoglobins during development of jawless vertebrates (Agnatha). We identified three hemoglobin switches in the life cycle of the sea lamprey. Three hemoglobin genes are specifically expressed in the embryo, four genes in the filter feeding larva (ammocoete), and nine genes correspond to the adult hemoglobin chains. During the development from the parasitic to the reproductive adult, the composition of hemoglobin changes again, with a massive increase of chain aHb1. A single hemoglobin chain is expressed constitutively in all stages. We further showed the differential expression of other globin genes: Myoglobin 1 is most highly expressed in the reproductive adult, myoglobin 2 expression peaks in the larva. Globin X1 is restricted to the embryo; globin X2 was only found in the reproductive adult. Cytoglobin is expressed at low levels throughout the life cycle. Because the hemoglobins of jawed and jawless vertebrates evolved independently from a common globin ancestor, hemoglobin switching must also have evolved convergently in these taxa. Notably, the ontogeny of sea lamprey hemoglobins essentially recapitulates their phylogeny, with the embryonic hemoglobins emerging first, followed by the evolution of larval and adult hemoglobins.

  5. Proton magnetic resonance study of the influence of chemical modification, mutation, quaternary state, and ligation state on dynamic stability of the heme pocket in hemoglobin as reflected in the exchange of the proximal histidyl ring labile proton

    International Nuclear Information System (INIS)

    Han, K.H.; La Mar, G.N.; Nagai, K.

    1989-01-01

    Proton nuclear magnetic resonance spectroscopy has been utilized to investigate the rates of exchange with deuterium of the proximal histidyl ring protons in a series of chemically modified and mutated forms of Hb A. Differences in rates of exchange are related to differences in the stability of the deformed or partially unfolded intermediates from which exchange with bulk solvent takes place. Each modified/mutated Hb exhibited kinetic subunit heterogeneity in the reduced ferrous state, with the alpha subunit exhibiting faster exchange than the beta subunit. Modification or mutation resulted in significant increases in the His F8 ring NH exchange rates primarily for the affected subunit and only if the modification/mutation occurs at the allosterically important alpha 1 beta 2 subunit interface. Moreover, this enhancement in exchange rate is observed primarily in that quaternary state of the modified/mutated Hb in which the modified/substituted residue makes the intersubunit contact. This confirms the importance of allosteric constraints in determining the dynamic properties of the heme pocket. Using modified or mutated Hbs that can switch between the alternate quaternary states within a given ligation state or ligate within a given quaternary state, we show that the major portion of the enhanced exchange rate in R-state oxy Hb relative to T-state deoxy Hb originates from the quaternary switch rather than from ligation. However, solely ligation effects are not negligible. The exchange rates of the His F8 ring labile protons increase dramatically upon oxidizing the iron to the ferric state, and both the subunit kinetic heterogeneity and the allosteric sensitivity to the quaternary state are essentially abolished

  6. Synthesis, spectroscopic analyses (FT-IR and NMR), vibrational study, chemical reactivity and molecular docking study and anti-tubercular activity of condensed oxadiazole and pyrazine derivatives

    Science.gov (United States)

    El-Azab, Adel S.; Mary, Y. Sheena; Abdel-Aziz, Alaa A. M.; Miniyar, Pankaj B.; Armaković, Stevan; Armaković, Sanja J.

    2018-03-01

    The Fourier transform infrared spectra of the compounds 2-(5-phenyl-1,3,4-oxadiazol-2-yl)pyrazine (PHOXPY), 2-(5-styryl-1,3,4-oxadiazol-2-yl)pyrazine (STOXPY) and 2-(5-(furan-2-yl)-1,3,4-oxadiazol-2-yl)pyrazine (FUOXPY) have been recorded and the wavenumbers are computed at the density functional theory level. The assignments of all the fundamental bands of each molecule are made using potential energy distribution. The computed values of dipole moment, polarizability and hyperpolarizability values indicate that the title molecules exhibit NLO properties. The HOMO and LUMO energies demonstrate the chemical stability of the molecules and NBO analysis is made to study the stability of molecules arising from hyper conjugative interactions and charge delocalization. Detailed computational analysis and spectroscopic characterization has been performed for three newly synthesized oxadiazole derivatives. Obtained computational and experimental results have been mutually compared in order to understand the influence of structural parts specific for each derivative. From the MIC determination, MTb H37Rv was found to be sensitive to compounds, PHOXPY, STOXPY and FUOXPY. The results obtained from anti-TB activity are more promising as the compounds were found to be more potent than reference standards, streptomycin and pyrazinamide. Efforts were made in order to predict both global and local reactive properties of the title oxadiazole derivatives, including their sensitivity towards autoxidation mechanism and influence of water. The results obtained from anti-TB activity are more promising for the title compounds. Interaction with representative protein Pterindeaminase inhibitor asricin A was also investigated using the molecular docking procedure. The docked ligands form stable complexes with the receptor ricin A and the docking results suggest that these compounds can be developed as new anti-cancer drugs.

  7. Nitrosyl hemoglobins: EPR above 80 K

    Energy Technology Data Exchange (ETDEWEB)

    Wajnberg, E.; Bemski, G.; El-Jaick, L.J.; Alves, O.C.

    1995-03-01

    The EPR spectra of nitrosyl hemoglobin and myoglobin in different conditions (native, denatured and lyophilized), as well as of hematin-NO were obtained in the temperature range of 80 K-280 K. There is a substantial and reversible.decrease of the areas of the EPR spectra of all the hemoglobin samples above 150 K. The interpretation of the results implies the existence of two conformational states in thermal equilibrium only one of which is EPR detectable. Thermodynamical parameters are determined for the hexa and penta-coordinated cases. (author). 25 refs, 3 figs.

  8. Nitrosyl hemoglobins: EPR above 80 K

    International Nuclear Information System (INIS)

    Wajnberg, E.; Bemski, G.; El-Jaick, L.J.; Alves, O.C.

    1995-03-01

    The EPR spectra of nitrosyl hemoglobin and myoglobin in different conditions (native, denatured and lyophilized), as well as of hematin-NO were obtained in the temperature range of 80 K-280 K. There is a substantial and reversible.decrease of the areas of the EPR spectra of all the hemoglobin samples above 150 K. The interpretation of the results implies the existence of two conformational states in thermal equilibrium only one of which is EPR detectable. Thermodynamical parameters are determined for the hexa and penta-coordinated cases. (author). 25 refs, 3 figs

  9. Predictors of hemoglobin in Danish blood donors

    DEFF Research Database (Denmark)

    Kotzé, Sebastian R; Pedersen, Ole B; Petersen, Mikkel S

    2015-01-01

    BACKGROUND: It is well known that blood donors are at increased risk of iron deficiency and subsequent development of iron deficiency anemia. We aimed to investigate the effect of factors influencing hemoglobin (Hb) levels. STUDY DESIGN AND METHODS: Initiated in 2010, the Danish Blood Donor Study...

  10. Rheological Variations among Nigerians with Different Hemoglobin ...

    African Journals Online (AJOL)

    Some Hemorheological determinants such as whole blood viscosity (WBV) and plasma viscosity (PV) and Plasma Fibrinogen Concentration (PFC) were measured with standard methods. We recorded a relatively unchanged whole blood viscosities in subjects with various hemoglobin genotypes (AA, AS and SS; P>0.05, ...

  11. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  12. Constraints on mutational pathways of hemoglobin evolution

    DEFF Research Database (Denmark)

    Kumar, Amit; Natarajan, Chandrasekhar; Moriyama, Hideaki

    2016-01-01

    amino acid substitutions that occurred during an evolutionary reduction in hemoglobin (Hb)-O2 affinity in nightjars (nocturnal birds in the family Caprimulgidae).We selected nightjar Hbs for experimental study because ancestral sequence reconstructions indicated that the evolved reduction in Hb-O2...

  13. Kadar Hemoglobin dan Kecerdasan Intelektual Anak

    Directory of Open Access Journals (Sweden)

    Yuni Kusmiyati

    2013-10-01

    Full Text Available Kualitas sumber daya manusia dipengaruhi oleh inteligensi anak. Skor kecerdasan intelektual yang tidak menetap pada usia tertentu dapat berubah karena faktor genetik, gizi, dan lingkungan. Tujuan penelitian ini adalah mengetahui hubungan kadar hemoglobin dengan kecerdasan intelektual anak. Penelitian observasional dengan desain potong lintang ini dilakukan pada populasi siswa kelas VI Sekolah Dasar Negeri Giwangan Yogyakarta, tahun 2013. Penarikan sampel dilakukan dengan metode simple random sampling terhadap 37 sampel siswa. Instrumen untuk mengukur kecerdasan intelektual dengan Cultural Fair Intelligence Quotient Test yang dirancang untuk meminimalkan pengaruh kultural dengan memperhatikan prosedur evaluasi, instruksi, konten isi, dan respons peserta. Tes dilakukan oleh Biro Psikologi Universitas Ahmad Dahlan Yogyakarta, kadar hemoglobin diukur menggunakan Portable Hemoglobin Digital Analyzer Easy Touch secara digital.Variabel luar indeks massa tubuh diukur langsung menggunakan parameter tinggi badan dan berat badan. Analisis menggunakan uji regresi linier. Hasil penelitian menunjukkan indeks massa tubuh tidak berhubungan dengan kecerdasan intelektual (nilai p = 0,052. Anemia berhubungan cukup dengan kecerdasan anak (r = 0,491 dan berpola positif, semakin tinggi kadar hemoglobin semakin tinggi kecerdasan intelektual anak. Nilai koefisien determinasi 0,241 menerangkan bahwa 24,1% variasi anemia cukup baik untuk menjelaskan variabel kecerdasan intelektual. Ada hubungan antara kadar hemoglobin dengan kecerdasan intelektual (nilai p = 0,002. Quality of human resources is influenced by the child’s intelligent. Intelligence Quotient (IQ score will not settle at a certain age and can change due to genetic factors, nutrition, and the environment. The objective is known relationship of anemia with IQ to child. Method of observational study with cross sectional design. Population are students of class VI elementary school of Giwangan Yogyakarta in

  14. Novel Semi-Direct OH Reactivity (kOH) Measurements by Chemical Ionization Mass Spectrometry during a Chamber Instrument Comparison Campaign and Continuous Ambient Air Sampling at a Central European GAW Station

    Science.gov (United States)

    Muller, J.; Kubistin, D.; Elste, T.; Plass-Duelmer, C.; Claude, A.; Englert, J.; Holla, R.; Fuchs, H.; Hofzumahaus, A.; Holland, F.; Novelli, A.; Tillmann, R.; Wegener, R.; Rohrer, F.; Yu, Z.; Bohn, B.; Williams, J.; Pfannerstill, E.; Edtbauer, A.; Kluepfel, T.

    2016-12-01

    Total OH reactivity (kOH) has been recognized as a useful measure to gauge the potential atmospheric oxidation capacity and a few different in-situ measurement techniques have been developed over the last 15 years. Here results are presented from a novel semi-direct method developed by the German Weather Service (DWD) utilizing a chemical ionization mass spectrometer (CIMS). Recently in April 2016, the CIMS system participated in a half-blind kOH instrument comparison campaign at the Forschungszentrum Jülich (FZJ) SAPHIR chamber. Experiments provided controlled conditions with a range of different VOC mixtures and varying NOx levels, representing environments dominated by biogenic or urban emissions. Alongside CIMS, kOH was also measured by systems using the comparative reactivity method (CRM) and the pump-probe technique with OH detection. The intercomparison revealed a good performance of CIMS at lower OH reactivities (0-15 s-1), a range for which the instrumental set up was optimized. Limitations of the CIMS system consist of an upper limit for kOH detection and the need for applying a chemical correction function as a result of instrument-internal HOx recycling. Findings and instrument parameters obtained from the FZJ SAPHIR campaign and flow tube experiments are then applied to ambient air kOH measurements at the Meteorological Observatory Hohenpeissenberg (MOHp), Germany. The CIMS instrument is used there for long-term measurements of OH, H2SO4, ROx and kOH. Here, we show ambient air kOH measurements, interpreted in conjunction with volatile organic compounds (VOC) and inorganic trace gases also measured at the GAW station Hohenpeissenberg. These observations provide a unique dataset to investigate turnover rates and seasonal cycles of reactive trace gases, i.e. sources that make up total OH reactivity in this central European, rural setting.

  15. A new hemoglobin gene from soybean: a role for hemoglobin in all plants

    DEFF Research Database (Denmark)

    Anderson, C R; Jensen, E O; LLewellyn, D J

    1996-01-01

    We have isolated a new hemoglobin gene from soybean. It is expressed in cotyledons, stems of seedlings, roots, young leaves, and in some cells in the nodules that are associated with the nitrogen-fixing Bradyrhizobium symbiont. This contrasts with the expression of the leghemoglobins, which...... are active only in the infected cells of the nodules. The deduced protein sequence of the new gene shows only 58% similarity to one of the soybean leghemoglobins, but 85-87% similarity to hemoglobins from the nonlegumes Parasponia, Casuarina, and barley. The pattern of expression and the gene sequence...... indicate that this new gene is a nonsymbiotic legume hemoglobin. The finding of this gene in legumes and similar genes in other species strengthens our previous suggestion that genomes of all plants contain hemoglobin genes. The specialized leghemoglobin gene family may have arisen from a preexisting...

  16. Moessbauer spectroscopic studies of hemoglobin and its isolated subunits

    International Nuclear Information System (INIS)

    Hoy, G.R.; Cook, D.C.; Berger, R.L.; Friedman, F.K.

    1986-01-01

    Samples of 90% enriched 57Fe hemoglobin and its isolated subunits have been prepared. Moessbauer spectroscopic measurements have been made on three such samples. Sample one contained contributions of oxyhemoglobin, deoxyhemoglobin, and carbonmonoxyhemoglobin. This sample was studied from a temperature of 90 K down to 230 mK. Measurements were also made at 4.2 K using a small applied magnetic field of 1.0 T. In general, the measured quadrupole splittings and isomer shifts for each component agreed with previous measurements on single component samples in the literature, and thus demonstrated that chemically enriched hemoglobin has not been altered. The second and third samples were isolated alpha and beta subunits, respectively. We have found measurable Moessbauer spectral differences between the HbO 2 sites in the alpha subunit sample and the beta subunit sample. The measured Moessbauer spectral areas indicate that the iron ion has the largest mean-square displacement at the deoxy Hb sites as compared to that at the oxy- and carbonmonoxy Hb sites. The mean-square displacement at the HbO 2 sites is the smallest

  17. pH-Specific structural speciation of the ternary V(V)-peroxido-betaine system: a chemical reactivity-structure correlation.

    Science.gov (United States)

    Gabriel, C; Kioseoglou, E; Venetis, J; Psycharis, V; Raptopoulou, C P; Terzis, A; Voyiatzis, G; Bertmer, M; Mateescu, C; Salifoglou, A

    2012-06-04

    (V)-diperoxido units, thereby stabilizing a dinuclear V(V)-tetraperoxido dianion. Structural comparisons of the anions in 1-3 with other known dinuclear V(V)-tetraperoxido binary anionic species provide insight into the chemical reactivity of V(V)-diperoxido systems and their potential link to cellular events such as insulin mimesis and anitumorigenicity modulated by the presence of betaine.

  18. Alpha chain hemoglobins with electrophoretic mobility similar to that of hemoglobin S in a newborn screening program

    Directory of Open Access Journals (Sweden)

    Marcilene Rezende Silva

    2013-01-01

    Full Text Available OBJECTIVE: To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. METHODS: βS allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. RESULTS: The following alpha chain variants were found: seven children with hemoglobin Hasharon [alpha2 47(CE5 Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13 Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2 Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5 Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. CONCLUSION: Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants.

  19. Alpha chain hemoglobins with electrophoretic mobility similar to that of hemoglobin S in a newborn screening program.

    Science.gov (United States)

    Silva, Marcilene Rezende; Sendin, Shimene Mascarenhas; Araujo, Isabela Couto de Oliveira; Pimentel, Fernanda Silva; Viana, Marcos Borato

    2013-01-01

    To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. β(S) allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI) were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. THE FOLLOWING ALPHA CHAIN VARIANTS WERE FOUND: seven children with hemoglobin Hasharon [alpha2 47(CE5) Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13) Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2) Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5) Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants.

  20. The Determinants of Hemoglobin Variability in Hemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Tomanoski Vasilije

    2016-12-01

    Full Text Available Introduction. Factors that have been reported to affect erythropoietin (EPO responsiveness in hemodialysis (HD patients include iron deficiency, chronic inflammation, secondary hyperparathyroidism, malnutrition and inadequate HD dose. The aim of the study was to analyze the deteminants of hemoglobin variability in HD patients. Methods. The study encompassed 526 patients (197 F and 329 M. According to HD vintage at the beginning of the study the patients were divided into two groups: group-1 encompassed 153 patients with HD vintage bellow 24 months, and group-2 encompassed 329 patients with HD vintage over 24 months. Over a period of 21 months after admission the following parameters were analyzed: hemoglobin (Hb, EPO dose, iron dose, HD dose (eKT/V, transferrin saturation (TSAT, C-reactive protein (CRP, ferritin and serum albumin at 3 months and parathyroid hormone (PTH at 6 months. Results. The percentage of patients with Hb>=105g/L significantly improved, and the average Hb level significantly increased in both groups over a period of 21 months. The average EPO and iron dose significantly decreased, but TSAT and ferritin levels significantly increased over a period of 21 months. The average eKT/V and s-albumin values significantly increased, but the average CRP and PTH levels significantly decresead over a period of 21 months. In group-1 EPO dose and CRP, but in group-2 EPO dose, ferritin, HD vintage, and iron dose were statistically significant predictors of the Hb level 9 months after admission. Conclusions. Insufficient EPO therapy, iron deficiency and chronic inflammation were the main factors of inadequate correction of anemia in HD patients before admission.

  1. Lyophilized bovine hemoglobin as a possible reference material for the determination of hemoglobin derivatives in human blood

    NARCIS (Netherlands)

    Maas, BHA; Buursma, A; Ernst, RAJ; Maas, AHJ; Zijlstra, WG

    1998-01-01

    We investigated the suitability of a lyophilized bovine hemoglobin (LBH) preparation containing various fractions of oxyhemoglobin (O(2)Hb), carboxyhemoglobin (COHb), and methemoglobin (MetHb) for quality assessment in multicomponent analysis (MCA) of hemoglobin derivatives. It was demonstrated that

  2. Lyophilized bovine hemoglobin as a possible reference material for the determination of hemoglobin derivatives in human blood

    NARCIS (Netherlands)

    Maas, BHA; Buursma, A; Ernst, RAJ; Maas, AHJ; Zijlstra, WG

    We investigated the suitability of a lyophilized bovine hemoglobin (LBH) preparation containing various fractions of oxyhemoglobin (O(2)Hb), carboxyhemoglobin (COHb), and methemoglobin (MetHb) for quality assessment in multicomponent analysis (MCA) of hemoglobin derivatives. It was demonstrated that

  3. Hemoglobin estimation by the HemoCue® portable hemoglobin photometer in a resource poor setting.

    Science.gov (United States)

    Nkrumah, Bernard; Nguah, Samuel Blay; Sarpong, Nimako; Dekker, Denise; Idriss, Ali; May, Juergen; Adu-Sarkodie, Yaw

    2011-04-21

    In resource poor settings where automated hematology analyzers are not available, the Cyanmethemoglobin method is often used. This method though cheaper, takes more time. In blood donations, the semi-quantitative gravimetric copper sulfate method which is very easy and inexpensive may be used but does not provide an acceptable degree of accuracy. The HemoCue® hemoglobin photometer has been used for these purposes. This study was conducted to generate data to support or refute its use as a point-of-care device for hemoglobin estimation in mobile blood donations and critical care areas in health facilities. EDTA blood was collected from study participants drawn from five groups: pre-school children, school children, pregnant women, non-pregnant women and men. Blood collected was immediately processed to estimate the hemoglobin concentration using three different methods (HemoCue®, Sysmex KX21N and Cyanmethemoglobin). Agreement between the test methods was assessed by the method of Bland and Altman. The Intraclass correlation coefficient (ICC) was used to determine the within subject variability of measured hemoglobin. Of 398 subjects, 42% were males with the overall mean age being 19.4 years. The overall mean hemoglobin as estimated by each method was 10.4 g/dl for HemoCue, 10.3 g/dl for Sysmex KX21N and 10.3 g/dl for Cyanmethemoglobin. Pairwise analysis revealed that the hemoglobin determined by the HemoCue method was higher than that measured by the KX21N and Cyanmethemoglobin. Comparing the hemoglobin determined by the HemoCue to Cyanmethemoglobin, the concordance correlation coefficient was 0.995 (95% CI: 0.994-0.996, p < 0.001). The Bland and Altman's limit of agreement was -0.389 - 0.644 g/dl with the mean difference being 0.127 (95% CI: 0.102-0.153) and a non-significant difference in variability between the two measurements (p = 0.843). After adjusting to assess the effect of other possible confounders such as sex, age and category of person, there was no

  4. Molecular structure, chemical reactivity, nonlinear optical activity and vibrational spectroscopic studies on 6-(4-n-heptyloxybenzyoloxy)-2-hydroxybenzylidene)amino)-2H-chromen-2-one: A combined density functional theory and experimental approach

    Science.gov (United States)

    Pegu, David; Deb, Jyotirmoy; Saha, Sandip Kumar; Paul, Manoj Kumar; Sarkar, Utpal

    2018-05-01

    In this work, we have synthesized new coumarin Schiff base molecule, viz., 6-(4-n-heptyloxybenzyoloxy)-2-hydroxybenzylidene)amino)-2H-chromen-2-one and characterized its structural, electronic and spectroscopic properties experimentally and theoretically. The theoretical analysis of UV-visible absorption spectra reflects a red shift in the absorption maximum in comparison to the experimental results. Most of the vibrational assignments of infrared and Raman spectra predicted using density functional theory approach match well with the experimental findings. Further, the chemical reactivity analysis confirms that solvent highly affects the reactivity of the studied compound. The large hyperpolarizability value of the compound concludes that the system exhibits significant nonlinear optical features and thus, points out their possibility in designing material with high nonlinear activity.

  5. Hemoglobin promotes somatic embryogenesis in peanut cultures.

    Science.gov (United States)

    Jayabalan, N; Anthony, P; Davey, M R; Power, J B; Lowe, K C

    2004-02-01

    Critical parameters influencing somatic embryogenesis include growth regulators and oxygen supply. Consequently, the present investigation has focused on optimization of a somatic embryogenic system for peanut (Arachis hypogaea L.) through media supplementation with the auxin, picloram. The latter at 30 mg L(-1) was optimal for inducing regeneration of somatic embryos from cultured explants of zygotic embryos. In contrast, somatic embryogenesis did not occur in the absence of this growth regulator. An assessment has also been made of the beneficial effect on somatic embryogenesis and plant regeneration of the commercial hemoglobin (Hb) solution, Erythrogen. Hemoglobin at 1:50 and 1:100 (v:v) stimulated increases in mean fresh weight (up to a maximum of 57% over control), mean number of explants producing somatic embryos (15%) and mean number of somatic embryos per explant (29%).

  6. Radio-ligand immunoassay for human hemoglobin variants

    International Nuclear Information System (INIS)

    Javid, J.; Pettis, P.K.; Miller, J.E.

    1981-01-01

    A quantitative method is described for the individual assay of human hemoglobin variants occurring singly or in mixture. The hemoglobin to be assayed is bound to specific antibody; the immune complex is attached to protein A-containing S. aureus and removed from the mixture. The hemoglobin thus isolated is quantified by its ability to bind radiolabeled haptoglobin. The technique is accurate and distinguishes among the 4 hemoglobins tested, namely Hb A, S, C and F. It has the advantage over conventional radioimmunoassay that a single probe, radiolabeled haptoglobin, is needed for the specific assay of any hemoglobin. (Auth.)

  7. Induction of nano pore in Agrobacterial hemoglobin

    Directory of Open Access Journals (Sweden)

    Mojtaba Tousheh

    2014-01-01

    Full Text Available Introduction: A variety of oxygen-transport and -binding proteins exist in organisms including bacteria, protozoans, and fungi all have hemoglobin-like proteins. In addition to dealing with transport and sensing of oxygen, they may also deal with NO2, CO2, sulfide compounds, and even O2 scavenging in environments. Also they detoxified chlorinated materials like P450 enzymes and peroxidases and use as a detector of nitrate and hydrogen peroxide. Pore-forming bacterial globins are interested for filtration. Materials and methods: Although there are data for bacterial toxin as a filter, here we used Agrobacterial hem to induce nano pore in the heme structure using point mutation. Results: Investigations showed that three amino acids leucine 76, alanine 83 and histidine 80 are important for pore formation in Agrobacterium hemoglobin. A point mutation on leucine 76 to glycine, histidine 80 to asparagine and alanine 83 to lysine step by step led to create the nano pore 0.7- 0.8 nm in the globin. Discussion and conclusion: These mutations in bacterial hemoglobin increase the stability when mutation is with it’s at pH7. This mutation decreases the aliphatic index however increase the stability index.

  8. Imidazolidinone adducts of peptides and hemoglobin

    International Nuclear Information System (INIS)

    San George, R.C.; Hoberman, H.D.

    1986-01-01

    Acetaldehyde reacts selectively with the terminal amino groups of the α and β chains of hemoglobin to form stable adducts, the structures of which, based on 13 C NMR studies, are proposed to be diastereomeric 2-methyl imidazolidin-4-ones. In this scheme, acetaldelhyde forms a reversible Schiff base with the α-amino groups of the polypeptide chains which cyclize with the amide nitrogen of the first peptide bond to form the stable imidazolidinone adducts. In support of this mechanism, the authors found that in following the reaction of the peptide val-gly-gly with [1,2- 13 C] acetaldehyde, 13 C NMR resonances attributed to a Schiff base (δ = 170 ppm) were observed which slowly disappeared prior to appearance of resonances from a pair of stable adducts (δ = 70 and 71 ppm) believed to be the diastereomeric imidazolidinones. Schiff base formation appeared to limit the overall rate. Tetraglycine reacted in a similar manner but with a resonance from a single stable adduct observed representing the enantiomeric imidazolidinone adducts of this peptide. Peptides with proline in position 2 should be incapable of forming imidazolidinones, and the authors found that ala-pro-gly did in fact fail to form a stable adduct with acetaldehyde. The 2-methyl imidazolidin-4-one adducts of hemoglobin may be useful in determining the contribution of the amino terminal groups to the structure and functional properties of hemoglobins

  9. Reactive Arthritis

    Directory of Open Access Journals (Sweden)

    Eren Erken

    2013-06-01

    Full Text Available Reactive arthritis is an acute, sterile, non-suppurative and inflammatory arthropaty which has occured as a result of an infectious processes, mostly after gastrointestinal and genitourinary tract infections. Reiter syndrome is a frequent type of reactive arthritis. Both reactive arthritis and Reiter syndrome belong to the group of seronegative spondyloarthropathies, associated with HLA-B27 positivity and characterized by ongoing inflammation after an infectious episode. The classical triad of Reiter syndrome is defined as arthritis, conjuctivitis and urethritis and is seen only in one third of patients with Reiter syndrome. Recently, seronegative asymmetric arthritis and typical extraarticular involvement are thought to be adequate for the diagnosis. However, there is no established criteria for the diagnosis of reactive arthritis and the number of randomized and controlled studies about the therapy is not enough. [Archives Medical Review Journal 2013; 22(3.000: 283-299

  10. Small angle X-ray scattering on concentrated hemoglobin solutions

    International Nuclear Information System (INIS)

    Zinke, M.; Damaschun, G.; Mueller, J.J.; Ruckpaul, K.

    1978-01-01

    The small-angle X-ray scattering technique was used to determine the intermolecular structure and interaction potentials in oxi-and deoxi-hemoglobin solutions. The pair correlation function obtained by the ZERNICKE-PRINS equation characterizes the intermolecular structure of the hemoglobin molecules. The intermolecular structure is concentration dependent. The hemoglobin molecules have a 'short range order structure' with a range of about 4 molecule diameters at 324 g/l. The potential functions of the hemoglobin-hemoglobin interaction have been determined on the basis of fluid theories. Except for the deoxi-hemoglobin solution having the concentration 370 g/l, the pair interaction consists in a short repulsion and a weak short-range attraction against kT. The potential minimum is between 1.2 - 1.5 nm above the greatest hemoglobin diameter. (author)

  11. Hemoglobin estimation by the HemoCue® portable hemoglobin photometer in a resource poor setting

    Directory of Open Access Journals (Sweden)

    Idriss Ali

    2011-04-01

    Full Text Available Abstract Background In resource poor settings where automated hematology analyzers are not available, the Cyanmethemoglobin method is often used. This method though cheaper, takes more time. In blood donations, the semi-quantitative gravimetric copper sulfate method which is very easy and inexpensive may be used but does not provide an acceptable degree of accuracy. The HemoCue® hemoglobin photometer has been used for these purposes. This study was conducted to generate data to support or refute its use as a point-of-care device for hemoglobin estimation in mobile blood donations and critical care areas in health facilities. Method EDTA blood was collected from study participants drawn from five groups: pre-school children, school children, pregnant women, non-pregnant women and men. Blood collected was immediately processed to estimate the hemoglobin concentration using three different methods (HemoCue®, Sysmex KX21N and Cyanmethemoglobin. Agreement between the test methods was assessed by the method of Bland and Altman. The Intraclass correlation coefficient (ICC was used to determine the within subject variability of measured hemoglobin. Results Of 398 subjects, 42% were males with the overall mean age being 19.4 years. The overall mean hemoglobin as estimated by each method was 10.4 g/dl for HemoCue, 10.3 g/dl for Sysmex KX21N and 10.3 g/dl for Cyanmethemoglobin. Pairwise analysis revealed that the hemoglobin determined by the HemoCue method was higher than that measured by the KX21N and Cyanmethemoglobin. Comparing the hemoglobin determined by the HemoCue to Cyanmethemoglobin, the concordance correlation coefficient was 0.995 (95% CI: 0.994-0.996, p Conclusion Hemoglobin determined by the HemoCue method is comparable to that determined by the other methods. The HemoCue photometer is therefore recommended for use as on-the-spot device for determining hemoglobin in resource poor setting.

  12. Host-cell reactivation of uv-irradiated and chemically treated Herpes simplex virus type 1 strain MP in normal and xeroderma pigmentosum skin fibroblasts

    International Nuclear Information System (INIS)

    Selsky, C.A.

    1976-01-01

    The host-cell reactivation of UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated herpes simplex virus type 1 strain mp was studied in normal human skin fibroblasts and xeroderma pigmentosum skin fibroblasts from XP genetic complementation groups A-D and in an XP variant. The increasing relative order for the host-cell reactivation of both types of damaged virus in the different complementation groups is A = D < B < C; XP variant = normal controls. XP complementation group D cells, which manifest the most severe inhibition of her ability for both UV-irradiated and N-acetoxy-2-acetylaminofluorene-treated virus, can reactivate nitrogen mustard treated HSV-1 mp to the same extent as normal cells. Together, these results indicate that (1) Excision repair of UV and N-acetoxy-2-acetylaminofluorene DNA damaged viruses share a common rate limiting enzymatic step and (2) The repair defect in xeroderma pigmentosum cells plays little or no role in the recovery of nitrogen mustard treated virus. The results of studies on the effect of caffeine on the survival of both UV- and N-acetoxy-2-acetylaminofluorene-treated virus in normal and XP cells imply that the reactivation of HSV-1 mp is mediated by an excision repair process with little if any recovery contributed by post-replication repair mechanisms. The host-cell reactivation of N-acetoxy-2-acetylaminofluorene-treated HSV-1 mp was also correlated with the defective UV-induced unscheduled DNA synthesis in two skin fibroblast strains established from a skin biopsy obtained from each of two juvenile females who had been clinically diagnosed as xeroderma pigmentosum. These findings are discussed in relation to the further characterization of the xeroderma pigmentosum phenotype and their possible utilization for the selection and isolation of new mammalian cell DNA repair mutants

  13. A coordination polymer based magnetic adsorbent material for hemoglobin isolation from human whole blood, highly selective and recoverable

    Science.gov (United States)

    Zhang, Xiaoxing; Tan, Jipeng; Xu, Xinxin; Shi, Fanian; Li, Guanglu; Yang, Yiqiao

    2017-09-01

    A composite material has been obtained successfully through the loading of nanoscale coordination polymer on magnetic Fe3O4@SiO2 core-shell particle. In this composite material, coordination polymer nanoparticles distribute uniformly on Fe3O4@SiO2 and these two components are "tied" together firmly with chemical bonds. Adsorption experiments suggest this composite material exhibits very excellent selectivity to hemoglobin. But under the same condition, its adsorption to bovine serum albumin can almost be ignored. This selectivity can be attributed to the existence of hydrophobic interactions between coordination polymer nanoparticle and hemoglobin. For composite material, the hemoglobin adsorption process follows Langmuir model perfectly with high speed. The adsorbed hemoglobin can be eluted easily by sodium dodecyl sulfate stripping reagent with structure and biological activity of hemoglobin keeps well. The composite material was also employed to separate hemoglobin from human whole blood, which receives a very satisfactory result. Furthermore, magnetic measurement reveals ferromagnetic character of this composite material with magnetization saturation 3.56 emu g-1 and this guarantees its excellent magnetic separation performance from the treated solution.

  14. Chemical and mineralogical characterization of highly and less reactive coal from Northern Natal and Venda-Pafuri coalfields in South Africa

    Science.gov (United States)

    Kataka, M. O.; Matiane, A. R.; Odhiambo, B. D. O.

    2018-01-01

    Spontaneous combustion of coal is a major hazard associated with the coal mining industry over centuries. It also a major cause of underground fires in South African collieries and in opencast operations, spoil heaps and stockpiles. Spontaneous combustion incidents are manifested in all major aspects of coal mining namely, underground mining, surface mining, including during sea-borne transportation, storage and waste disposal. Previous studies indicate that there are various factors (both intrinsic and extrinsic) that influence the spontaneous combustion of coals. This paper characterizes highly reactive coal from the Vryheid coalfields and less reactive coal from at Venda-Pafuri coalfield, to identify and delineate some intrinsic coal parameters that are considered to be most critical in terms of heat 'generation' and relationships between the two coals types by tracing their similarities and differences in their spontaneous combustion parameters. Various tests were carried out to characterize these coals in terms of their intrinsic properties, namely: ultimate, proximate, petrographic analysis and Glasser spontaneous tests. The ultimate and proximate analysis showed that spontaneous coal has high contents of carbon, oxygen, and volatile matter as compared to non-spontaneous coal, making it more susceptible to spontaneous combustion. Non-spontaneous coal has higher ash content than the spontaneous coal. Furthermore, the petrographic analysis showed that spontaneous coal has high total reactivity compared to the non-spontaneous coal. Results from Glasser spontaneous test indicate that spontaneous coal absorbs more oxygen than non-spontaneous coal, which explains why spontaneous coal is more susceptible to spontaneous combustion. High reactive coal has low values of critical self-heating temperature (CSHT), indicating that this coal has potential of spontaneous ignition.

  15. Assessment of surface reactivity of thorium oxide in conditions close to chemical equilibrium by isotope exchange {sup 229}Th/{sup 232}Th method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Muresan, Tomo; Perrigaud, Katy; Vandenborre, Johan; Ribet, Solange; Grambow, Bernd [Nantes Univ., CNRS/IN2P3 (France). SUBATECH Unite Mixte de Recherche 6457; Takamasa, Inai [TOKAI Univ., Kanagawa (Japan)

    2017-08-01

    This work aims to assess the solubility and the surface reactivity of crystallized thorium at pH 3.0 in presence of three types of solids: synthesized powder at 1300 C, crushed kernel, and intact kernel. In this study, the kernel is composed by the core solid from high temperature reactors (HTR) sphere particles. The originality of this work consisted in following in a sequential order the kinetic of dissolution, the surface reactivity in presence of isotope tracer {sup 229}Th, and its desorption process. Long time experiments (634 days) allowed to get deeper understanding on the behavior of the surface reactivity in contact with the solution. Solubility values are ranging from 0.3 x 10{sup -7} mol.L{sup -1} to 3 x 10{sup -7} mol.L{sup -1} with a dissolution rate of 10{sup -6}-10{sup -4} g.m{sup -2} day{sup -1}. PHREEQC modeling showed that crystallized ThO{sub 2}(cr, 20 nm) phase controls the equilibrium in solution. Isotope exchange between {sup 229}Th and {sup 232}Th indicated that well-crystallized phase exist as an inert surface regarding to the absence of exchange between surface solid and solution.

  16. Hemoglobin detection using carbon dots as a fluorescence probe.

    Science.gov (United States)

    Barati, Ali; Shamsipur, Mojtaba; Abdollahi, Hamid

    2015-09-15

    Herein, we have described the application of high fluorescent carbon dots (CDs) without any surface modification as a simple and fast responding fluorescence probe for sensitive and selective determination of hemoglobin (Hb) in the presence of H2O2. Although Hb itself was able to quench the fluorescence of CDs, based on the inner filter effect (IFE) of the protein that affects both excitation and emission spectra of CDs, the presence of H2O2 resulted in further improvement of the sensitivity of Hb detection. The assay is based on the reaction of Hb with H2O2 that generates reactive oxygen species including hydroxyl (OH•) and superoxide (O2(•-)) radicals under heme degradation and/or iron release from Hb and the subsequent reaction of hydroxyl radicals, as strong oxidizing agents, with CDs resulting in high fluorescence quenching. The proposed probe was used for determination of Hb in concentration range of 1-100 nM with a detection limit of 0.4 nM. The method was successfully applied to the determination of Hb in human blood samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.

    Science.gov (United States)

    Vu, B Christie; Nothnagel, Henry J; Vuletich, David A; Falzone, Christopher J; Lecomte, Juliette T J

    2004-10-05

    The truncated hemoglobin (Hb) from the cyanobacterium Synechocystis sp. PCC 6803 is a bis-histidyl hexacoordinate complex in the absence of exogenous ligands. This protein can form a covalent cross-link between His117 in the H-helix and the heme 2-vinyl group. Cross-linking, the physiological importance of which has not been established, is avoided with the His117Ala substitution. In the present work, H117A Hb was used to explore exogenous ligand binding to the heme group. NMR and thermal denaturation data showed that the replacement was of little consequence to the structural and thermodynamic properties of ferric Synechocystis Hb. It did, however, decelerate the association of cyanide ions with the heme iron. Full complexation required hours, instead of minutes, of incubation at optical and NMR concentrations. At neutral pH and in the presence of excess cyanide, binding occurred with a first-order dependence on cyanide concentration, eliminating distal histidine decoordination as the rate-limiting step. The cyanide complex of the H117A variant was characterized for the conformational changes occurring as the histidine on the distal side, His46 (E10), was displaced. Extensive rearrangement allowed Tyr22 (B10) to insert in the heme pocket and Gln43 (E7) and Gln47 (E11) to come in contact with it. H-bond formation to the bound cyanide was identified in solution with the use of (1)H(2)O/(2)H(2)O mixtures. Cyanide binding also resulted in a change in the ratio of heme orientational isomers, in a likely manifestation of heme environment reshaping. Similar observations were made with the related Synechococcus sp. PCC 7002 H117A Hb, except that cyanide binding was rapid in this protein. In both cases, the (15)N chemical shift of bound cyanide was reminiscent of that in peroxidases and the orientation of the proximal histidine was as in other truncated Hbs. The ensemble of the data provided insight into the structural cooperativity of the heme pocket scaffold and pointed

  18. Hemichrome formation during hemoglobin Zurich denaturation

    International Nuclear Information System (INIS)

    Zago, M.A.; Costa, F.F.; Botura, C.; Baffa, O.

    1988-01-01

    Electron paramagnetic resonance (EPR)spectrum of hemoglobin Zurich, after oxidation, storage and heating, showed several absorption derives in the high field region (g ≅ 2) which are indicative of hemichrome formation. Characteristic visible spectra of hemichromes were observed for oxidized Hb Zurich and for its spontaneous precipitate. The proportional increase of EPR signals at g ≅ 2 and decrease at g = 6.37, the constant ratio of absorbance at 540 nm to 280 nm during heating, and the similarity of this ratio for spontaneously precipitated HbA and for Hb Zurich indicate that heme is not lost during the first steps of Hb Zurich denaturation. (author) [pt

  19. Assessing the relative stabilities of engineered hemoglobins using electrospray mass spectrometry.

    Science.gov (United States)

    Apostol, I

    1999-07-15

    An ion trap mass spectrometer equipped with an electrospray source was used to examine the relative thermodynamic stabilities of various hemoglobins with respect to both tetramer dissociation and hemin dissociation. The results demonstrated that the stability of hemoglobin molecules can be differentiated by the amount of applied collision-induced dissociation (CID) energy necessary to break up the intact tetramer into its constituent globins. The stability of the intact tetramer was affected by single mutations in the beta-globins. The stabilities of the constituent hologlobins were assessed via trap CID of selected ions. The results demonstrated the importance of the contributions of the hologlobin components to the stability of the intact tetramer. Genetic fusion of two alpha-globins, through the introduction of a single glycine residue between the C-terminus of one alpha-chain and the N-terminus of the second, significantly increased the stability of the hemoglobin pseudo-tetramer. Chemical crosslinking of the beta-globins in addition to genetic fusion of alpha-globins further stabilized the hemoglobin molecule. A dihemoglobin molecule produced by the genetic fusion of two di-alpha-globins with a flexible linker demonstrated a decreased stability relative to the corresponding monohemoglobin. Copyright 1999 Academic Press.

  20. Special investigations of hemoglobin in the dynamics of acute radiation sickness

    International Nuclear Information System (INIS)

    Zdravko, B.J.; Panasyuk, E.N.

    1986-01-01

    The effect of penetrating radiation into the UV, visible and IR spectra of hemoglobin obtained from guinea-pigs being irradiated by the 300 and 600 cGy doses is studied. The change of the absorption intensity in the range of 275 nm of aqueous hemoglobin solutions depending on the stage and duration of the radiation pathology is revealed. The displacement of amide absorption bands into a shorter area of hemoglobin fluctuations frequencies of irradiated animals in the period from the 1 to 19-th day after the irradiation by the 300 cGy dose and during the whole period of the acute radiation pathology after the irradiation by the 600 cGy dose is established by the use of the IR-spectroscopy method. For the relative quantitative estimation of the denaturized hemoglobins by radiation, radiotoxins and by other physical and chemical factors, one suggests to use the formulas of the hem optical density relation coefficient to the globin optical density

  1. Characterization and Expression of the Lucina pectinata Oxygen and Sulfide Binding Hemoglobin Genes

    Science.gov (United States)

    López-Garriga, Juan; Cadilla, Carmen L.

    2016-01-01

    The clam Lucina pectinata lives in sulfide-rich muds and houses intracellular symbiotic bacteria that need to be supplied with hydrogen sulfide and oxygen. This clam possesses three hemoglobins: hemoglobin I (HbI), a sulfide-reactive protein, and hemoglobin II (HbII) and III (HbIII), which are oxygen-reactive. We characterized the complete gene sequence and promoter regions for the oxygen reactive hemoglobins and the partial structure and promoters of the HbI gene from Lucina pectinata. We show that HbI has two mRNA variants, where the 5’end had either a sequence of 96 bp (long variant) or 37 bp (short variant). The gene structure of the oxygen reactive Hbs is defined by having 4-exons/3-introns with conservation of intron location at B12.2 and G7.0 and the presence of pre-coding introns, while the partial gene structure of HbI has the same intron conservation but appears to have a 5-exon/ 4-intron structure. A search for putative transcription factor binding sites (TFBSs) was done with the promoters for HbII, HbIII, HbI short and HbI long. The HbII, HbIII and HbI long promoters showed similar predicted TFBSs. We also characterized MITE-like elements in the HbI and HbII gene promoters and intronic regions that are similar to sequences found in other mollusk genomes. The gene expression levels of the clam Hbs, from sulfide-rich and sulfide-poor environments showed a significant decrease of expression in the symbiont-containing tissue for those clams in a sulfide-poor environment, suggesting that the sulfide concentration may be involved in the regulation of these proteins. Gene expression evaluation of the two HbI mRNA variants indicated that the longer variant is expressed at higher levels than the shorter variant in both environments. PMID:26824233

  2. Analysis Of Convective Plane Stagnation Point Chemically Reactive Mhd Flow Past A Vertical Porous Plate With A Convective Boundary Condition In The Presence Of A Uniform Magnetic Field.

    OpenAIRE

    Adeniyan, A.,

    2013-01-01

    The numerical investigation of a stagnation point boundary layer flow , mass and heat transfer of a steady two dimensional , incompressible , viscous electrically conducting, chemically reacting laminar fluid over a vertical convectively heated , electrically neutral flat plate exposed to a transverse uniform magnetic field has been carried out to examine the influence of the simultaneous presence of the effects of a convective boundary condition, chemical reaction, heat transfer and suctio...

  3. Relationship of Baseline Hemoglobin Level with Serum Ferritin, Postphlebotomy Hemoglobin Changes, and Phlebotomy Requirements among HFE C282Y Homozygotes

    Directory of Open Access Journals (Sweden)

    Seyed Ali Mousavi

    2015-01-01

    Full Text Available Objectives. We aimed to examine whether baseline hemoglobin levels in C282Y-homozygous patients are related to the degree of serum ferritin (SF elevation and whether patients with different baseline hemoglobin have different phlebotomy requirements. Methods. A total of 196 patients (124 males and 72 females who had undergone therapeutic phlebotomy and had SF and both pre- and posttreatment hemoglobin values were included in the study. Results. Bivariate correlation analysis suggested that baseline SF explains approximately 6 to 7% of the variation in baseline hemoglobin. The results also showed that males who had higher (≥150 g/L baseline hemoglobin levels had a significantly greater reduction in their posttreatment hemoglobin despite requiring fewer phlebotomies to achieve iron depletion than those who had lower (<150 g/L baseline hemoglobin, regardless of whether baseline SF was below or above 1000 µg/L. There were no significant differences between hemoglobin subgroups regarding baseline and treatment characteristics, except for transferrin saturation between male subgroups with SF above 1000 µg/L. Similar differences were observed when females with higher (≥138 g/L baseline hemoglobin were compared with those with lower (<138 g/L baseline hemoglobin. Conclusion. Dividing C282Y-homozygous patients into just two subgroups according to the degree of baseline SF elevation may obscure important subgroup variations.

  4. Interaction of thyroid hormone and hemoglobin: nature of the interaction and effect of hemoglobin on thyroid hormone radioimmunoassay

    International Nuclear Information System (INIS)

    Davis, P.J.; Yoshida, K.; Schoenl, M.

    1980-01-01

    Gel filtration of human erythrocyte (RBC) lysate incubated with labeled thyroxine (Tu) or triiodothyronine (Tt) revealed co-elution of a major iodothyronine-binding fraction (R-2) and hemoglobin. Solutions of purified human hemoglobin and Tt also showed co-elution of hormone and hemoglobin. Because hematin and protoporphyrin were shown to bind labeled Tt, the oxygen-binding site on hemoglobin was excluded as the site of iodothyronine-hemoglobin interaction. Analysis of hormone binding by heme and globin moieties showed Tt binding to be limited to the heme fraction. Addition of excess unlabeled Tt to hemoglobin or heme incubated with labeled Tt indicated 75% to 90% of hormone binding was poorly dissociable. These observations suggested that the presence of hemoglobin in RBC lysate or in serum could influence the measurement of Tu and Tt by specific radioimmunoassay (RIA). Subsequent studies of the addition to serum of human hemoglobin revealed a significant reduction in Tt and Tu detectable by RIA in the presence of this protein. The effect was influenced by the concentration of hemoglobin and by duration and temperature of incubations of hemoglobin and serum prior to RIA

  5. Relationship of Baseline Hemoglobin Level with Serum Ferritin, Postphlebotomy Hemoglobin Changes, and Phlebotomy Requirements among HFE C282Y Homozygotes

    Science.gov (United States)

    Mousavi, Seyed Ali; Mahmood, Faiza; Aandahl, Astrid; Knutsen, Teresa Risopatron; Llohn, Abid Hussain

    2015-01-01

    Objectives. We aimed to examine whether baseline hemoglobin levels in C282Y-homozygous patients are related to the degree of serum ferritin (SF) elevation and whether patients with different baseline hemoglobin have different phlebotomy requirements. Methods. A total of 196 patients (124 males and 72 females) who had undergone therapeutic phlebotomy and had SF and both pre- and posttreatment hemoglobin values were included in the study. Results. Bivariate correlation analysis suggested that baseline SF explains approximately 6 to 7% of the variation in baseline hemoglobin. The results also showed that males who had higher (≥150 g/L) baseline hemoglobin levels had a significantly greater reduction in their posttreatment hemoglobin despite requiring fewer phlebotomies to achieve iron depletion than those who had lower (baseline hemoglobin, regardless of whether baseline SF was below or above 1000 µg/L. There were no significant differences between hemoglobin subgroups regarding baseline and treatment characteristics, except for transferrin saturation between male subgroups with SF above 1000 µg/L. Similar differences were observed when females with higher (≥138 g/L) baseline hemoglobin were compared with those with lower (baseline hemoglobin. Conclusion. Dividing C282Y-homozygous patients into just two subgroups according to the degree of baseline SF elevation may obscure important subgroup variations. PMID:26380265

  6. A method for phenomenological and chemical kinetics study of autocatalytic reactive dissolution by optical microscopy. The case of uranium dioxide dissolution in nitric acid media

    Directory of Open Access Journals (Sweden)

    Marc Philippe

    2018-01-01

    Full Text Available Dissolution is a milestone of the head-end of hydrometallurgical processes, as the stabilization rates of the chemical elements determine the process performance and hold-up. This study aims at better understanding the chemical and physico-chemical phenomena of uranium dioxide dissolution reactions in nitric acid media in the Purex process, which separates the reusable materials and the final wastes of the spent nuclear fuels. It has been documented that the attack of sintering-manufactured uranium dioxide solids occurs through preferential attack sites, which leads to the development of cracks in the solids. Optical microscopy observations show that in some cases, the development of these cracks leads to the solid cleavage. It is shown here that the dissolution of the detached fragments is much slower than the process of the complete cleavage of the solid, and occurs with no disturbing phenomena, like gas bubbling. This fact has motivated the measurement of dissolution kinetics using optical microscopy and image processing. By further discriminating between external resistance and chemical reaction, the “true” chemical kinetics of the reaction have been measured, and the highly autocatalytic nature of the reaction confirmed. Based on these results, the constants of the chemical reactions kinetic laws have also been evaluated.

  7. A method for phenomenological and chemical kinetics study of autocatalytic reactive dissolution by optical microscopy. The case of uranium dioxide dissolution in nitric acid media

    Science.gov (United States)

    Marc, Philippe; Magnaldo, Alastair; Godard, Jérémy; Schaer, Éric

    2018-03-01

    Dissolution is a milestone of the head-end of hydrometallurgical processes, as the stabilization rates of the chemical elements determine the process performance and hold-up. This study aims at better understanding the chemical and physico-chemical phenomena of uranium dioxide dissolution reactions in nitric acid media in the Purex process, which separates the reusable materials and the final wastes of the spent nuclear fuels. It has been documented that the attack of sintering-manufactured uranium dioxide solids occurs through preferential attack sites, which leads to the development of cracks in the solids. Optical microscopy observations show that in some cases, the development of these cracks leads to the solid cleavage. It is shown here that the dissolution of the detached fragments is much slower than the process of the complete cleavage of the solid, and occurs with no disturbing phenomena, like gas bubbling. This fact has motivated the measurement of dissolution kinetics using optical microscopy and image processing. By further discriminating between external resistance and chemical reaction, the "true" chemical kinetics of the reaction have been measured, and the highly autocatalytic nature of the reaction confirmed. Based on these results, the constants of the chemical reactions kinetic laws have also been evaluated.

  8. Porphyromonas endodontalis binds, reduces and grows on human hemoglobin.

    Science.gov (United States)

    Zerr, M; Drake, D; Johnson, W; Cox, C D

    2001-08-01

    Porphyromonas endodontalis is a black-pigmented, obligate anaerobic rod-shaped bacterium implicated as playing a major role in endodontic infections. We have previously shown that P. endodontalis requires the porphyrin nucleus, preferably supplied as hemoglobin, as a growth supplement. The bacteria also actively transport free iron, although this activity does not support growth in the absence of a porphyrin source. The purpose of this study was to further investigate the binding and subsequent utilization of human hemoglobin by P. endodontalis. P. endodontalis binds hemoglobin and reduces the Fe(III) porphyrin, resulting in a steady accumulation of ferrous hemoglobin. Reduction of methemoglobin was similar to the extracellular reduction of nitrobluetetrazolium in the presence of oxidizable substrate. Turbidimetric and viable cell determinations showed that P. endodontalis grew when supplied only hemoglobin. Therefore, we conclude that hemoglobin appears to serve as a sole carbon and nitrogen source, and that these bacteria reduce extracellular compounds at the expense of oxidized substrates.

  9. Characterization of hemoglobin-benzo[a]pyrene adducts

    International Nuclear Information System (INIS)

    Haugen, D.A.; Myers, S.R.

    1987-01-01

    Cultures of Syrian hamster embryo (SHE) cells were supplemented with human Hb (0.2 mM heme) and [ 3 H]BP (1 μM). After a 24-h incubation, the medium was removed and subjected to cation-exchange liquid chromatography (CM-Sepharose) to resolve hemoglobins from serum proteins in the medium. The BP-treated Hb was subjected to analysis in each of three column chromatographic systems established for isolation and characterization of human hemoglobin and its genetic and post-translationally modified variants. Results demonstrate that hemoglobin-carcinogen adducts can be resolved from native hemoglobin by established conventional and high-performance liquid chromatographic procedures, suggesting the basis for development of general approaches for isolating and characterizing hemoglobin-carcinogen adducts. The results also suggest the basis for a model system in which adducts between carcinogens and human hemoglobin are formed in cultures of mammalian cells or tissues

  10. Studies on radiation induced changes in bovine hemoglobin type A

    International Nuclear Information System (INIS)

    Wdzieczak, J.; Duda, W.; Leyko, W.

    1978-01-01

    In this paper the structural and functional changes of gamma irradiated bovine hemoglobin are presented. Aqueous solutions/1%/of HbO 2 were irradiated in air with doses ranging from 1 to 4 Mrad. Isoelectric focusing indicated change of the charge of irradiated hemoglobin. The isoelectric point of hemoglobin was displaced towards more acid values with increasing doses, up from 1 Mrad. Fingerprint analysis and peptide column chromatography of irradiated hemoglobin demonstrated disturbances increasing with the dose. These changes were confirmed by amino acid analysis which showed that Cys, Met, Trp, His, Pro and Tyr residues were destroyed or modified following irradiation. At doses exceeding 1 Mrad the irradiated solutions of hemoglobin showed a decrease of heme-heme interaction and an increase of affinity for oxygen. Differences observed in oxygen-dissociation curves seem to be correlated with the radiation induced destruction of amino acid residues which are responsible for the functional properties of hemoglobin. (auth.)

  11. Quantum mechanical calculations of vibrational population inversion in chemical reactions - Numerically exact L-squared-amplitude-density study of the H2Br reactive system

    Science.gov (United States)

    Zhang, Y. C.; Zhang, J. Z. H.; Kouri, D. J.; Haug, K.; Schwenke, D. W.

    1988-01-01

    Numerically exact, fully three-dimensional quantum mechanicl reactive scattering calculations are reported for the H2Br system. Both the exchange (H + H-prime Br to H-prime + HBr) and abstraction (H + HBR to H2 + Br) reaction channels are included in the calculations. The present results are the first completely converged three-dimensional quantum calculations for a system involving a highly exoergic reaction channel (the abstraction process). It is found that the production of vibrationally hot H2 in the abstraction reaction, and hence the extent of population inversion in the products, is a sensitive function of initial HBr rotational state and collision energy.

  12. A review of variant hemoglobins interfering with hemoglobin A1c measurement.

    Science.gov (United States)

    Little, Randie R; Roberts, William L

    2009-05-01

    Hemoglobin A1c (HbA1c) is used routinely to monitor long-term glycemic control in people with diabetes mellitus, as HbA1c is related directly to risks for diabetic complications. The accuracy of HbA1c methods can be affected adversely by the presence of hemoglobin (Hb) variants or elevated levels of fetal hemoglobin (HbF). The effect of each variant or elevated HbF must be examined with each specific method. The most common Hb variants worldwide are HbS, HbE, HbC, and HbD. All of these Hb variants have single amino acid substitutions in the Hb beta chain. HbF is the major hemoglobin during intrauterine life; by the end of the first year, HbF falls to values close to adult levels of approximately 1%. However, elevated HbF levels can occur in certain pathologic conditions or with hereditary persistence of fetal hemoglobin. In a series of publications over the past several years, the effects of these four most common Hb variants and elevated HbF have been described. There are clinically significant interferences with some methods for each of these variants. A summary is given showing which methods are affected by the presence of the heterozygous variants S, E, C, and D and elevated HbF. Methods are divided by type (immunoassay, ion-exchange high-performance liquid chromatography, boronate affinity, other) with an indication of whether the result is artificially increased or decreased by the presence of a Hb variant. Laboratorians should be aware of the limitations of their method with respect to these interferences. 2009 Diabetes Technology Society.

  13. Haptoglobin preferentially binds β but not α subunits cross-linked hemoglobin tetramers with minimal effects on ligand and redox reactions.

    Science.gov (United States)

    Jia, Yiping; Wood, Francine; Buehler, Paul W; Alayash, Abdu I

    2013-01-01

    Human hemoglobin (Hb) and haptoglobin (Hp) exhibit an extremely high affinity for each other, and the dissociation of Hb tetramers into dimers is generally believed to be a prerequisite for complex formation. We have investigated Hp interactions with native Hb, αα, and ββ cross-linked Hb (ααXLHb and ββXLHb, respectively), and rapid kinetics of Hb ligand binding as well as the redox reactivity in the presence of and absence of Hp. The quaternary conformation of ββ subunit cross-linking results in a higher binding affinity than that of αα subunit cross-linked Hb. However, ββ cross-linked Hb exhibits a four fold slower association rate constant than the reaction rate of unmodified Hb with Hp. The Hp contact regions in the Hb dimer interfaces appear to be more readily exposed in ββXLHb than ααXLHb. In addition, apart from the functional changes caused by chemical modifications, Hp binding does not induce appreciable effects on the ligand binding and redox reactions of ββXLHb. Our findings may therefore be relevant to the design of safer Hb-based oxygen therapeutics by utilizing this preferential binding of ββXLHb to Hp. This may ultimately provide a safe oxidative inactivation and clearance pathway for chemically modified Hbs in circulation.

  14. Can hydroxylamine be a more potent nucleophile for the reactivation of tabun-inhibited AChE than prototype oxime drugs? An answer derived from quantum chemical and steered molecular dynamics studies.

    Science.gov (United States)

    Lo, Rabindranath; Ganguly, Bishwajit

    2014-07-29

    Organophosphorus nerve agents are highly toxic compounds which strongly inhibit acetylcholinesterase (AChE) in the blood and in the central nervous system (CNS). Tabun is one of the highly toxic organophosphorus (OP) compounds and is resistant to many oxime drugs formulated for the reactivation of AChE. The reactivation mechanism of tabun-conjugated AChE with various drugs has been examined with density functional theory and ab initio quantum chemical calculations. The presence of a lone-pair located on the amidic group resists the nucleophilic attack at the phosphorus center of the tabun-conjugated AChE. We have shown that the newly designed drug candidate N-(pyridin-2-yl)hydroxylamine, at the MP2/6-31+G*//M05-2X/6-31G* level in the aqueous phase with the polarizable continuum solvation model (PCM), is more effective in reactivating the tabun-conjugated AChE than typical oxime drugs. The rate determining activation barrier with N-(pyridin-2-yl)hydroxylamine was found to be ∼1.7 kcal mol(-1), which is 7.2 kcal mol(-1) lower than the charged oxime trimedoxime (one of the most efficient reactivators in tabun poisonings). The greater nucleophilicity index (ω(-)) and higher CHelpG charge of pyridinylhydroxylamine compared to TMB4 support this observation. Furthermore, we have also examined the reactivation process of tabun-inhibited AChE with some other bis-quaternary oxime drug candidates such as methoxime (MMB4) and obidoxime. The docking analysis suggests that charged bis-quaternary pyridinium oximes have greater binding affinity inside the active-site gorge of AChE compared to the neutral pyridinylhydroxylamine. The peripheral ligand attached to the neutral pyridinylhydroxylamine enhanced the binding with the aromatic residues in the active-site gorge of AChE through effective π-π interactions. Steered molecular dynamics (SMD) simulations have also been performed with the charged oxime (TMB4) and the neutral hydroxylamine. From protein-drug interaction

  15. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...... they are best used. Milner's CCS and its operational semantics are introduced, together with the notions of behavioural equivalences based on bisimulation techniques and with recursive extensions of Hennessy-Milner logic. In the second part of the book, the presented theories are extended to take timing issues...

  16. The iodine reactivity

    International Nuclear Information System (INIS)

    2003-01-01

    The iodine is an important element because it has long life isotopes (such as iodine 129) and a great mobility in natural media. Iodine presents a complex chemistry because of its volatility and its strong redox reactivity. The S.E.C.R. works to better understand the reactivity of this element in different natural, industrial or biological environments. It plays a part in thermochemical sites as a possible way of hydrogen formation. This seminar gives some aspects relative to the chemical reactivity of iodine, since its thermochemistry in the I/S cycles to produce hydrogen to its reactivity in the natural medium and its potential radiological impact. This document includes 4 presentations transparencies) dealing with: the 129 I cycle rejected in the low radioactive gaseous and liquid effluents of the La Hague reprocessing plant (C. Frechou); a bibliographic review of iodine retention in soils (F. Bazer-Bachi); the hydrogen production and the iodine/sulfur thermochemical cycle (role of iodine in the process); and the direct characterization by electro-spray ionization mass spectroscopy of iodine fixation by fulvic acids (P. Reiller, B. Amekraz, C. Moulin, V. Moulin)

  17. An expeditious and green synthesis of new enaminones and study their chemical reactivity toward some different amines and binucleophiles under environmentally friendly conditions

    Directory of Open Access Journals (Sweden)

    Khadijah M. Al-Zaydi

    2017-05-01

    Full Text Available The condensation reaction of 3-heteroaromatic-3-oxopropanenitriles 3, 4 and 7 with dimethylformamide–dimethylacetal (DMF–DMA gave the corresponding enaminones 8, 9 and 10, respectively. Nucleophilic substitution of 8 and 9 with different amines resulted in a new derivatives of enaminones 11–18. The reactivity of enaminones 8 and 9 toward some nitrogen nucleophiles was investigated with a view to synthesize new heterocyclic systems. Thus, treatment of compounds 8 and 9 with phenylhydrazine afforded the pyrazole derivatives 19 and 20, respectively. On the other hand, reacting 8 and 9 with guanidine gave the pyrimidines 21 and 22, respectively. Treatment of compound 9 with hydroxylamine hydrochloride afforded the aminoisoxazoles 23. The foregoing reactions were carried out with conventional heating and under green conditions [ultrasound (US irradiations or ionic liquids (ILs] and a comparative study was employed. All the new structures are fully characterized.

  18. Chemical properties and reactive oxygen and nitrogen species quenching activities of dry sugar-amino acid maillard reaction mixtures exposed to baking temperatures.

    Science.gov (United States)

    Chen, Xiu-Min; Liang, Ningjian; Kitts, David D

    2015-10-01

    Maillard reaction products (MRPs) derived from 10 different, dry sugar-amino acid reaction model systems were examined for changes in color index (E), sugar loss, and formation of α-dicarbonyl compounds; the changes were correlated with relative activities to quench both reactive oxygen (ROS) and reactive nitrogen (RNS) species. Reducing sugars, xylose, ribose, fructose, glucose, and non-reducing sucrose were reacted with glycine (Xyl-Gly, Rib-Gly, Fru-Gly, Glc-Gly, and Suc-Gly), or lysine (Xyl-Lys, Rib-Lys, Fru-Lys, Glc-Lys, and Suc-Lys), respectively, at temperatures of 150°C and 180°C for time periods ranging from 5 to 60min. ROS quenching capacity was negatively correlated with color index (E) (r=-0.604, P<0.001), and positively correlated with sugar loss (r=0.567, P<0.001). MRPs also exhibited activity to quench RNS as assessed by nitric oxide (NO) inhibition in differentiated Caco-2 cells that were induced with interferon-γ (IFN-γ) and phorbol ester (PMA) cocktail. We also showed a correlation between RNS and color index, sugar loss, and ROS quenching activities for MR mixtures that were heated for a short time (e.g. 10min) at 150°C. MRP quenching of ROS was largely influenced by sugar type, whereas, RNS quenching was dependent more so on the interaction between reactants and reaction conditions used to generate MRPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Oxygen binding to nitric oxide marked hemoglobin

    International Nuclear Information System (INIS)

    Louro, S.R.W.; Ribeiro, P.C.; Bemski, G.

    1979-04-01

    Electron spin resonance spectra of organic phosphate free human hemoglobin marked with nitric oxide at the sixth coordination position of one of the four hemes allow to observe the transition from the tense (T) to the relaxed (R) conformation, as a function of parcial oxygen pressure. The spectra are composites of contributions from α sub(T), α sub(R) and β chains spectra, showing the presence of only two conformations: T and R. In the absence of organic phosphates NO binds to α and β chains with the same probability, but in the presence of phosphates NO combines preferentially with α chains. The dissociation of NO proceeds at least an order of magnitude faster in T than in R configuration. (author) [pt

  20. Chemical synthesis, characterization studies and reactivity of a catalytic material based on ZrO2-H3PW12O40

    International Nuclear Information System (INIS)

    Hernandez Enriquez, Juan Manuel; Garcia Alamilla, Ricardo; Paramo Garcia, Ulises; Rodrigo, Rebeca Silva; Garcia Serrano, Luz Arcelia

    2013-01-01

    In this work, the preparation and characterization of materials such as zirconium oxide (ZrO 2 ) and phosphotungstic acid promoted zirconium oxide (ZrO 2 -H 3 PW 12 O 40 ) is presented. Physico-chemical characterization results showed that addition of H 3 PW 12 O 40 acted as both a textural and chemical promoter of zirconium oxide. The incorporation of phosphotungstic acid into the ZrO 2 matrix delayed the sintering of the material and stabilized ZrO 2 in the tetragonal phase. ZrO 2 acidity was also enhanced, developing strong acid sites on its surface. The Pt/ZrO 2 -H 3 PW 12 O 40 catalyst was active for n-pentane isomerization at 250 deg C, exhibiting high selectivity to iso-pentane (95%). This result is probably due to its suitable acidity (author)

  1. A thermodynamical measure of cooperativity: application to hemoglobin

    International Nuclear Information System (INIS)

    Jacchieri, S.G.; Ferreira, R.C.

    1984-01-01

    A comparative analysis of the heat requirements for dioxygen exchange is made for hemoglobin and myoglobin, the latter taken as the prototype of the vertebrate hemoglobin's ancestor. it is shown that cooperativity manifests itself also in terms of energy utilization. (Author) [pt

  2. Biphasic oxidation of oxy-hemoglobin in bloodstains

    NARCIS (Netherlands)

    Bremmer, Rolf H.; de Bruin, Daniel M.; de Joode, Maarten; Buma, Wybren Jan; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-01-01

    In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO(2)) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions of

  3. Haptoglobin radioassay based on binding to solid-phase hemoglobin

    International Nuclear Information System (INIS)

    Hooper, D.C.; Reed, R.A.; Peacock, A.C.

    1979-01-01

    A specific and sensitive assay for haptoglobin based on binding to an easily prepred Sepharose-bound hemoglobin reagent is described. The assay is suitable for directly determining radiolabeled amino acid incorporation into haptoglobin in several liver cell systems in vitro and can be adapted to measure unlabeled free haptoglobin in plasma samples regardlss of the presence of the haptoglobin--hemoglobin complex

  4. Biphasic Oxidation of Oxy-Hemoglobin in Bloodstains

    NARCIS (Netherlands)

    Bremmer, R.H.; de Bruin, D.M.; de Joode, M.; Buma, W.J.; van Leeuwen, T.G.; Aalders, M.C.G.

    2011-01-01

    Background In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO2) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions

  5. 21 CFR 864.7400 - Hemoglobin A2 assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hemoglobin A2 assay. 864.7400 Section 864.7400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7400 Hemoglobin A2...

  6. 21 CFR 864.7455 - Fetal hemoglobin assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7455 Fetal hemoglobin...

  7. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13...

  8. Conformational changes in hemoglobin triggered by changing the iron charge

    International Nuclear Information System (INIS)

    Croci, S.; Achterhold, K.; Ortalli, I.; Parak, F. G.

    2008-01-01

    In this work the hemoglobin conformational changes induced by changing the iron charge have been studied and compared with Myoglobin. Moessbauer spectroscopy was used to follow the change of the iron conformation. In order to compare the conformational relaxation of hemoglobin and myoglobin, and to study a possible influence of the quaternary structure, an intermediate metastable state of hemoglobin has been created by low temperature X-ray irradiation of methemoglobin. The irradiation reduces the Fe(III) of the heme groups to Fe(II) Low Spin, where the water is still bound on the sixth coordination. Heating cycles performed at temperatures from 140 K to 200 K allow the molecules to overcome an activation energy barrier and to relax into a stable conformation such as deoxy-hemoglobin or carboxy-hemoglobin, if CO is present. Slightly different structures (conformational substates) reveal themselves as a distribution of energy barriers (ΔG). The distribution of the activation energy, for the decay of the Fe(II) Low Spin intermediate, has been fitted with a Gaussian. For comparison, published myoglobin data were re-analysed in the same way. The average energy value at characteristic temperature is very similar in case of myoglobin and hemoglobin. The larger Gaussian energy distribution for myoglobin with respect to hemoglobin shows that more conformational substates are available. This may be caused by a larger area exposed to water. In hemoglobin, part of the surface of the chains is not water accessible due to the quaternary structure.

  9. 1D Thermal-Hydraulic-Chemical (THC) Reactive transport modeling for deep geothermal systems: A case study of Groß Schönebeck reservoir, Germany

    Science.gov (United States)

    Driba, D. L.; De Lucia, M.; Peiffer, S.

    2014-12-01

    Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in

  10. Radiation - induced changes in the optical properties of hemoglobin molecule

    International Nuclear Information System (INIS)

    Selim, N.S; El-Marakby, S.M.

    2009-01-01

    Adult male albino rats were exposed to different doses of gamma radiation from Cs-137 source. Hemoglobin samples were analyzed 24 hrs after irradiation. The UV-visible spectrum of hemoglobin molecule was measured in the range 200 to 700 nm. The overall spectrum of the hemoglobin molecule showed hypochromicity that increased with dose increase. To investigate the effect of radiation on the hemoglobin molecule, different parameters of the spectrum were calculated: molar absorption coefficient, absorption cross section, transition dipole moment , dipole length, the optical energy gap and activation energy for each characteristic peak. The obtained results revealed that the radiation effect can induce rearrangement of the transition dipole moments and change molecular energy levels of the hemoglobin molecule

  11. INTRINSIC REGULATION OF HEMOGLOBIN EXPRESSION BY VARIABLE SUBUNIT INTERFACE STRENGTHS

    Science.gov (United States)

    Manning, James M.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, Lois R.

    2012-01-01

    SUMMARY The expression of the six types of human hemoglobin subunits over time is currently considered to be regulated mainly by transcription factors that bind to upstream control regions of the gene (the “extrinsic” component of regulation). Here we describe how subunit pairing and further assembly to tetramers in the liganded state is influenced by the affinity of subunits for one another (the “intrinsic” component of regulation). The adult hemoglobin dimers have the strongest subunit interfaces and the embryonic hemoglobins are the weakest with fetal hemoglobins of intermediate strength, corresponding to the temporal order of their expression. These variable subunit binding strengths and the attenuating effects of acetylation contribute to the differences with which these hemoglobin types form functional O2-binding tetramers consistent with gene switching. PMID:22129306

  12. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  13. Electrochemical investigations of the interaction of C-reactive protein (CRP) with a CRP antibody chemically immobilized on a gold surface

    International Nuclear Information System (INIS)

    Hennessey, Hooman; Afara, Nadia; Omanovic, Sasha; Padjen, Ante L.

    2009-01-01

    A possibility of using a range of dc and ac electrochemical techniques to probe associative interactions of C-reactive protein (CRP) with CRP antibody (aCRP) immobilized on a gold electrode surface was investigated. It was demonstrated that the investigated electrochemical techniques can be used efficiently to probe these interactions over a wide CRP concentration range, from 1.15 x 10 -5 to 1.15 mg L -1 . The measured sensitivity of the techniques is in the following decreasing order: differential pulse voltammetry, charge-transfer resistance obtained from electrochemical impedance spectroscopy (EIS), cyclic voltammetry, chronoamperometry, and double-layer capacitance deduced from EIS measurements which gave the poorest sensitivity. Measurements of kinetic parameters demonstrated that the associative interactions of CRP with the immobilized aCRP reached quasi-equilibrium after 20-30 min. The kinetics of these interactions was modeled successfully using a two-step kinetic model. In this model, the first step represents reversible CRP-aCRP associative-dissociative interactions, while the second step represents the irreversible transformation of the bound CRP into a thermodynamically stable configuration. It was demonstrated that the thermodynamically stable configuration of CRP starts prevailing after 7 min of interaction of CRP with the immobilized aCRP.

  14. Production of chemically reactive radioactive ion beams through on-line separation; Production de faisceaux d'ions radioactifs chimiquement reactifs par separation en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Joinet, A

    2003-10-01

    The ISOL (isotope separation on line) allows the production of secondary radioactive ion beams through spallation or fragmentation or fission reactions that take place in a thick target bombarded by a high intensity primary beam. The challenge is to increase the intensity and purity of the radioactive beam. The optimization of the system target/source requires the right choice of material for the target by taking into account the stability of the material, its reactivity and the ionization method used. The target is an essential part of the system because radioactive elements are generated in it and are released more or less quickly. Tests have been made in order to select the best fitted material for the release of S, Se, Te, Ge and Sn. Materials tested as target filling are: ZrO{sub 2}, Nb, Ti, V,TiO{sub 2}, CeO{sub x}, ThO{sub 2}, C, ZrC{sub 4} and VC). Other molecules such as: COSe, COS, SeS, COTe, GeS, SiS, SnS have been studied to ease the extraction of recoil nuclei (Se, S, Te, Ge and Sn) produced inside the target.

  15. The synthesis and coupling of photoreactive collagen-based peptides to restore integrin reactivity to an inert substrate, chemically-crosslinked collagen

    Science.gov (United States)

    Malcor, Jean-Daniel; Bax, Daniel; Hamaia, Samir W.; Davidenko, Natalia; Best, Serena M.; Cameron, Ruth E.; Farndale, Richard W.; Bihan, Dominique

    2016-01-01

    Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion. Here, we restore cell reactivity to a cross-linked type I collagen film by covalently linking synthetic triple-helical peptides (THPs), mimicking the structure of collagen. These THPs are ligands containing an active cell-recognition motif, GFOGER, a high-affinity binding site for the collagen-binding integrins. We end-stapled peptide strands containing GFOGER by coupling a short diglutamate-containing peptide to their N-terminus, improving the thermal stability of the resulting THP. A photoreactive Diazirine group was grafted onto the end-stapled THP to allow covalent linkage to the collagen film upon UV activation. Such GFOGER-derivatized collagen films showed restored affinity for the ligand-binding I domain of integrin α2β1, and increased integrin-dependent cell attachment and spreading of HT1080 and Rugli cell lines, expressing integrins α2β1 and α1β1, respectively. The method we describe has wide application, beyond collagen films or scaffolds, since the photoreactive diazirine will react with many organic carbon skeletons. PMID:26854392

  16. Effect of Multiple Mutations in the Hemoglobin- and Hemoglobin-Haptoglobin-Binding Proteins, HgpA, HgpB, and HgpC, of Haemophilus influenzae Type b

    OpenAIRE

    Morton, Daniel J.; Whitby, Paul W.; Jin, Hongfan; Ren, Zhen; Stull, Terrence L.

    1999-01-01

    Haemophilus influenzae requires heme for growth and can utilize hemoglobin and hemoglobin-haptoglobin as heme sources. We previously identified two hemoglobin- and hemoglobin-haptoglobin-binding proteins, HgpA and HgpB, in H. influenzae HI689. Insertional mutation of hgpA and hgpB, either singly or together, did not abrogate the ability to utilize or bind either hemoglobin or the hemoglobin-haptoglobin complex. A hemoglobin affinity purification method was used to isolate a protein of approxi...

  17. Diffusion coefficients of oxygen and hemoglobin as obtained simultaneously from photometric determination of the oxygenation of layers of hemoglobin solutions

    NARCIS (Netherlands)

    Spaan, J. A.; Kreuzer, F.; van Wely, F. K.

    1980-01-01

    The oxygenation of layers of deoxygenated hemoglobin solutions after a sudden exposure to a gas containing oxygen at a partial pressure P1 has been studied by a photometric method. Layer thicknesses varied between 50 and 250 micron, hemoglobin concentrations between 0.1 and 0.34kg/l, and oxygen

  18. Histopathologic Study Following Administration of Liposome-Encapsulated Hemoglobin in the Normovolemic Rat

    National Research Council Canada - National Science Library

    Rudolph, Alan

    1995-01-01

    ... bovine hemoglobin in the normovolemic rat. We have also examined the administration of the liposome vehicle, tetrameric bovine hemoglobin, and liposome encapsulated bovine hemoglobin that had been lyophilized with 300 mM trehalose...

  19. A study of membrane protein defects and alpha hemoglobin chains of red blood cells in human beta thalassemia

    International Nuclear Information System (INIS)

    Rouyer-Fessard, P.; Garel, M.C.; Domenget, C.; Guetarni, D.; Bachir, D.; Colonna, P.; Beuzard, Y.

    1989-01-01

    The soluble pool of alpha hemoglobin chains present in blood or bone marrow cells was measured with a new affinity method using a specific probe, beta A hemoglobin chain labeled with [ 3 H]N-ethylmaleimide. This pool of soluble alpha chains was 0.067 ± 0.017% of hemoglobin in blood of normal adult, 0.11 ± 0.03% in heterozygous beta thalassemia and ranged from 0.26 to 1.30% in homozygous beta thalassemia intermedia. This elevated pool of soluble alpha chains observed in human beta thalassemia intermedia decreased 33-fold from a value of 10% of total hemoglobin in bone marrow cells to 0.3% in the most dense red blood cells. The amount of insoluble alpha chains was measured by using the polyacrylamide gel electrophoresis in urea and Triton X-100. In beta thalassemia intermedia the amount of insoluble alpha chains was correlated with the decreased spectrin content of red cell membrane and was associated with a decrease in ankyrin and with other abnormalities of the electrophoretic pattern of membrane proteins. The loss and topology of the reactive thiol groups of membrane proteins was determined by using [ 3 H]N-ethylmaleimide added to membrane ghosts prior to urea and Triton X-100 electrophoresis. Spectrin and ankyrin were the major proteins with the most important decrease of thiol groups

  20. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Directory of Open Access Journals (Sweden)

    Phillips Ruth B

    2010-10-01

    Full Text Available Abstract Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon

  1. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Science.gov (United States)

    2010-01-01

    Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves

  2. Quantifying risk of penile prosthesis infection with elevated glycosylated hemoglobin.

    Science.gov (United States)

    Wilson, S K; Carson, C C; Cleves, M A; Delk, J R

    1998-05-01

    Elevation of glycosylated hemoglobin above levels of 11.5 mg.% has been considered a contraindication to penile prosthesis implantation in diabetic patients. We determine the predictive value of glycosylated hemoglobin A1C in penile prosthesis infections in diabetic and nondiabetic patients to confirm or deny this prevalent opinion. We conducted a 2-year prospective study of 389 patients, including 114 diabetics, who underwent 3-piece penile prosthesis implantation. All patients had similar preoperative preparation without regard to diabetic status, control or glycosylated hemoglobin A1C level. Risk of infection was statistically analyzed for diabetics versus nondiabetics, glycosylated hemoglobin A1C values above and below 11.5 mg.%, insulin dependent versus oral medication diabetics, and fasting blood sugars above and below 180 mg.%. Prosthesis infections developed in 10 diabetics (8.7%) and 11 nondiabetics (4.0%). No increased infection rate was observed in diabetics with high fasting sugars or diabetics on insulin. There was no statistically significant increased infection risk with increased levels of glycosylated hemoglobin A1C among all patients or among only the diabetics. In fact, there was no meaningful difference in the median or mean level of glycosylated hemoglobin A1C in the infected and noninfected patients regardless of diabetes. Use of glycosylated hemoglobin A1C values to identify and exclude surgical candidates with increased risk of infections is not proved by this study. Elevation of fasting sugar or insulin dependence also does not increase risk of infection in diabetics undergoing prosthesis implantation.

  3. Postoperative hemoglobin level in patients with femoral neck fracture.

    Science.gov (United States)

    Nagra, Navraj S; Van Popta, Dmitri; Whiteside, Sigrid; Holt, Edward M

    2016-01-01

    The aim of this study was to analyze the changes of hemoglobin levels in patients undergoing fixation for femoral neck fracture. Peroperative hemoglobin levels of patients who underwent either dynamic hip screw (DHS) fixation (n=74; mean age: 80 years) or hip hemiarthroplasty (n=104; mean age: 84 years) for femoral neck fracture was monitored. There was a statistically and clinically significant mean drop of 31.1 g/L between the preoperative (D0) and postoperative Day 5 Hb levels (pmeasurement, DHS patients had lower hemoglobin values over hemiarthroplasty patients (p=0.046). The decrease in hemoglobin in the first 24-hour postoperative period (D0 to Day 1) is an underestimation of the ultimate lowest value in hemoglobin found at Day 2. Relying on the Day 1 hemoglobin level could be detrimental to patient care. We propose a method of predicting patients likely to be transfused and recommend a protocol for patients undergoing femoral neck fracture surgery to standardize postoperative hemoglobin monitoring.

  4. Expression of fully functional tetrameric human hemoglobin in Escherichia coli

    International Nuclear Information System (INIS)

    Hoffman, S.J.; Looker, D.L.; Roehrich, J.M.; Cozart, P.E.; Durfee, S.L.; Tedesco, J.L.; Stetler, G.L.

    1990-01-01

    Synthesis genes encoding the human α- and β-globin polypeptides have been expressed from a single operon in Escherichia coli. The α- and β-globin polypeptides associate into soluble tetramers, incorporate heme, and accumulate to >5% of the total cellular protein. Purified recombinant hemoglobin has the correct stoichiometry of α- and β-globin chains and contains a full complement of heme. Each globin chain also contains an additional methionine as an extension to the amino terminus. The recombinant hemoglobin has a C 4 reversed-phase HPLC profile essentially identical to that of human hemoglobin A 0 and comigrates with hemoglobin A 0 on SDS/PAGE. The visible spectrum and oxygen affinity are similar to that of native human hemoglobin A 0 . The authors have also expressed the α- and β-globin genes separately and found that the expression of the α-globin gene alone results in a marked decrease in the accumulation of α-globin in the cell. Separate expression of the β-globin gene results in high levels of insoluble β-globin. These observations suggest that the presence of α- and β-globin in the same cell stabilizes α-globin and aids the correct folding of β-globin. This system provides a simple method for expressing large quantities of recombinant hemoglobin and allows facile manipulation of the genes encoding hemoglobin to produce functionally altered forms of this protein

  5. Using the MWC model to describe heterotropic interactions in hemoglobin

    Science.gov (United States)

    Rapp, Olga

    2017-01-01

    Hemoglobin is a classical model allosteric protein. Research on hemoglobin parallels the development of key cooperativity and allostery concepts, such as the ‘all-or-none’ Hill formalism, the stepwise Adair binding formulation and the concerted Monod-Wymann-Changuex (MWC) allosteric model. While it is clear that the MWC model adequately describes the cooperative binding of oxygen to hemoglobin, rationalizing the effects of H+, CO2 or organophosphate ligands on hemoglobin-oxygen saturation using the same model remains controversial. According to the MWC model, allosteric ligands exert their effect on protein function by modulating the quaternary conformational transition of the protein. However, data fitting analysis of hemoglobin oxygen saturation curves in the presence or absence of inhibitory ligands persistently revealed effects on both relative oxygen affinity (c) and conformational changes (L), elementary MWC parameters. The recent realization that data fitting analysis using the traditional MWC model equation may not provide reliable estimates for L and c thus calls for a re-examination of previous data using alternative fitting strategies. In the current manuscript, we present two simple strategies for obtaining reliable estimates for MWC mechanistic parameters of hemoglobin steady-state saturation curves in cases of both evolutionary and physiological variations. Our results suggest that the simple MWC model provides a reasonable description that can also account for heterotropic interactions in hemoglobin. The results, moreover, offer a general roadmap for successful data fitting analysis using the MWC model. PMID:28793329

  6. Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel

    International Nuclear Information System (INIS)

    Luo, Yueqi; Zhu, Lei; Fang, Junhua; Zhuang, Zhuyue; Guan, Chun; Xia, Chen; Xie, Xiaomin; Huang, Zhen

    2015-01-01

    Ethanol-gasoline blended fuels have been widely applied in markets recently, as ethanol reduces life-cycle greenhouse gas emissions and improves anti-knock performance. However, its effects on particulate matter (PM) emissions from gasoline direct injection (GDI) engine still need further investigation. In this study, the effects of ethanol-gasoline blended fuels on particle size distributions, number concentrations, chemical composition and soot oxidation activity of GDI engine were investigated. It was found that ethanol-gasoline blended fuels increased the particle number concentration in low-load operating conditions. In higher load conditions, the ethanol-gasoline was effective for reducing the particle number concentration, indicating that the chemical benefits of ethanol become dominant, which could reduce soot precursors such as large n-alkanes and aromatics in gasoline. The volatile organic mass fraction in ethanol-gasoline particulates matter was higher than that in gasoline particulate matter because ethanol reduced the amount of soot precursors during combustion and thereby reduced the elemental carbon proportions in PM. Ethanol addition also increased the proportion of small particles, which confirmed the effects of ethanol on organic composition. Ethanol-gasoline reduced the concentrations of most PAH species, except those with small aromatic rings, e.g., naphthalene. Soot from ethanol-gasoline has lower activation energy of oxidation than that from gasoline. The results in this study indicate that ethanol-gasoline has positive effects on PM emissions control, as the soot oxidation activity is improved and the particle number concentrations are reduced at moderate and high engine loads. - Highlights: • Ethanol-gasoline reduces elemental carbon in PM. • Ethanol-gasoline increases volatile organic fraction in PM. • Soot generated from ethanol-gasoline has higher oxidation activity.

  7. Immunological reactivity

    International Nuclear Information System (INIS)

    Shubik, V.M.

    1984-01-01

    Materials on comparative characteristics of state of some immunological parameters under the effect of toxic radioactive and non-radioactive chemical substances on organism of experimental animas as well as data on possible role of disclosed immunological changes are presented. Data on the possible role of immunological mechanisms in shortening life span and distortions of reproduction function are given

  8. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Buehler, Paul W.; Butt, Omer I. [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); D' Agnillo, Felice, E-mail: felice.dagnillo@fda.hhs.gov [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2011-06-10

    Highlights: {yields} Toxicological implications associated with the use of NaNO{sub 2} therapy to treat systemic cell-free Hb exposure are not well-defined. {yields} Systemic Hb exposure followed by NaNO{sub 2} infusion induces acute CNS toxicities in guinea pigs. {yields} These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO{sub 2} alone. {yields} NaNO{sub 2}-mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO{sub 2}) therapy can attenuate the hypertensive effects of Hb. However, the chemical reactivity of NaNO{sub 2} with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO{sub 2} on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO{sub 2}, at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO{sub 2} alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.

  9. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    International Nuclear Information System (INIS)

    Buehler, Paul W.; Butt, Omer I.; D'Agnillo, Felice

    2011-01-01

    Highlights: → Toxicological implications associated with the use of NaNO 2 therapy to treat systemic cell-free Hb exposure are not well-defined. → Systemic Hb exposure followed by NaNO 2 infusion induces acute CNS toxicities in guinea pigs. → These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO 2 alone. → NaNO 2 -mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO 2 ) therapy can attenuate the hypertensive effects of Hb. However, the chemical reactivity of NaNO 2 with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO 2 on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO 2 , at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO 2 alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.

  10. Individualized anemia management reduces hemoglobin variability in hemodialysis patients.

    Science.gov (United States)

    Gaweda, Adam E; Aronoff, George R; Jacobs, Alfred A; Rai, Shesh N; Brier, Michael E

    2014-01-01

    One-size-fits-all protocol-based approaches to anemia management with erythropoiesis-stimulating agents (ESAs) may result in undesired patterns of hemoglobin variability. In this single-center, double-blind, randomized controlled trial, we tested the hypothesis that individualized dosing of ESA improves hemoglobin variability over a standard population-based approach. We enrolled 62 hemodialysis patients and followed them over a 12-month period. Patients were randomly assigned to receive ESA doses guided by the Smart Anemia Manager algorithm (treatment) or by a standard protocol (control). Dose recommendations, performed on a monthly basis, were validated by an expert physician anemia manager. The primary outcome was the percentage of hemoglobin concentrations between 10 and 12 g/dl over the follow-up period. A total of 258 of 356 (72.5%) hemoglobin concentrations were between 10 and 12 g/dl in the treatment group, compared with 208 of 336 (61.9%) in the control group; 42 (11.8%) hemoglobin concentrations were hemoglobin concentrations were >12 g/dl in the treatment group compared with 46 (13.4%) in the control group. The median ESA dosage per patient was 2000 IU/wk in both groups. Five participants received 6 transfusions (21 U) in the treatment group, compared with 8 participants and 13 transfusions (31 U) in the control group. These results suggest that individualized ESA dosing decreases total hemoglobin variability compared with a population protocol-based approach. As hemoglobin levels are declining in hemodialysis patients, decreasing hemoglobin variability may help reduce the risk of transfusions in this population.

  11. Relationship between maternal hemoglobin and perinatal outcome

    International Nuclear Information System (INIS)

    Bakhtiar, U.J.; Khan, Y.; Nisar, R.

    2007-01-01

    To Study the Relationship between Maternal Hemoglobin and Perinatal outcome in a cohort of 860 pregnant women and to highlight the importance of antenatal care regarding maternal health and fetal outcome. All Singleton pregnancies delivering at Pakistan Railway Hospital Rawalpindi from January 2004 to December 2005 that fulfilled the required criteria were included. Out of the 860 patients, 402 were anemic (<11gm/dl) and 458 were non anemic. Perinatal outcome included preterm delivery, low birth weight, intrauterine growth retardation, perinatal death, low apgr scores and intrauterine fetal deaths. Risk of preterm and Low birth weight among anemic women was 3.4 and 1.8 times more than non anaemic women. The neonates of anemic woman also had 1.7 times increased risk of having low apgr scores at 1 min. Among anemic women there was 2.2 times greater risk of intrauterine fetal death than the non-anemic women. Regular antenatal care from first trimester has a vital role in assessing and managing maternal anemia timely and it directly affects the perinatal outcome. The patients with anemia have also higher risk of having low birth weight, preterm births and intra uterine fetal death. (author)

  12. Noninvasive hemoglobin measurement using dynamic spectrum

    Science.gov (United States)

    Yi, Xiaoqing; Li, Gang; Lin, Ling

    2017-08-01

    Spectroscopy methods for noninvasive hemoglobin (Hgb) measurement are interfered by individual difference and particular weak signal. In order to address these problems, we have put forward a series of improvement methods based on dynamic spectrum (DS), including instrument design, spectrum extraction algorithm, and modeling approach. The instrument adopts light sources composed of eight laser diodes with the wavelength range from 600 nm to 1100 nm and records photoplethysmography signals at eight wavelengths synchronously. In order to simplify the optical design, we modulate the light sources with orthogonal square waves and design the corresponding demodulation algorithm, instead of adopting a beam-splitting system. A newly designed algorithm named difference accumulation has been proved to be effective in improving the accuracy of dynamic spectrum extraction. 220 subjects are involved in the clinical experiment. An extreme learning machine calibration model between the DS data and the Hgb levels is established. Correlation coefficient and root-mean-square error of prediction sets are 0.8645 and 8.48 g/l, respectively. The results indicate that the Hgb level can be derived by this approach noninvasively with acceptable precision and accuracy. It is expected to achieve a clinic application in the future.

  13. Evans Syndrome Complicated by Intratubular Hemoglobin Cast Nephropathy

    Directory of Open Access Journals (Sweden)

    Iván González

    2017-01-01

    Full Text Available Evans syndrome (ES is a rare autoimmune disorder whose exact pathophysiology is unknown. It is characterized by the simultaneous or subsequent development of autoimmune hemolytic anemia (AIHA and immune thrombocytopenia (ITP. Intravascular hemolysis, with hemoglobinemia, is known to produce acute kidney injury; however, the development of intratubular hemoglobin casts (hemoglobin cast nephropathy in the setting of acute hemolysis is uncommon. Likewise, the association of ES and acute renal failure is equally uncommon. We present a case of a 7-year-old girl with ES who developed acute kidney injury in the setting of intravascular hemolysis and had widespread intratubular hemoglobin casts.

  14. Biophysical basis of hypoxic radioprotection by deoxygenated dextran-hemoglobin

    International Nuclear Information System (INIS)

    Wong, J.T.; Hill, R.P.

    1986-01-01

    Perfusion with deoxygenated dextran-hemoglobin provides an effective method for inducing hypoxic radioprotection of normal tissues during radiation treatment of tumors. In this study, the dependence of P50, the half-saturation pressure of oxygen binding to dextran-hemoglobin, was analyzed as a function of solution temperature and pH. The variation of attainable radioprotection with P50, and with the amount of collateral blood entering into the perfused region, was calculated. Upon perfusion of canine gracilis muscle with deoxygenated dextran-hemoglobin, a rapid onset of extensive venous hypoxia was observed

  15. Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca

    DEFF Research Database (Denmark)

    Jacobsen-Lyon, K; Jensen, Erik Østergaard; Jørgensen, Jan-Elo

    1995-01-01

    Casuarina glauca has a gene encoding hemoglobin (cashb-nonsym). This gene is expressed in a number of plant tissues. Casuarina also has a second family of hemoglobin genes (cashb-sym) expressed at a high level in the nodules that Casuarina forms in a nitrogen-fixing symbiosis with the actinomycete...... of the Casuarina gene. The finding that the nonsymbiotic Casuarina gene is also correctly expressed in L. corniculatus suggests to us that a comparable non-symbiotic hemoglobin gene will be found in legume species. Udgivelsesdato: 1995-Feb...

  16. Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol-gel film

    International Nuclear Information System (INIS)

    Yu Jiuhong; Ju Huangxian

    2003-01-01

    Hemoglobin (Hb) was entrapped in a titania sol-gel matrix and used as a mimetic peroxidase to construct a novel amperometric biosensor for hydrogen peroxide. The Hb entrapped titania sol-gel film was obtained with a vapor deposition method, which simplified the traditional sol-gel process for protein immobilization. The morphologies of both titania sol-gel and the Hb films were characterized using scanning electron microscopy (SEM) and proved to be chemically clean, porous, homogeneous. This matrix provided a biocompatible microenvironment for retaining the native structure and activity of the entrapped Hb and a very low mass transport barrier to the substrates. H 2 O 2 could be reduced by the catalysis of the entrapped hemoglobin at -300 mV without any mediator. The reagentless H 2 O 2 sensor exhibited a fast response (less than 5 s) and sensitivity as high as 1.29 mA mM -1 cm -2 . The linear range for H 2 O 2 determination was from 5.0x10 -7 to 5.4x10 -5 M with a detection limit of 1.2x10 -7 M. The apparent Michaelis-Menten constant of the encapsulated hemoglobin was calculated to be 0.18±0.02 mM. The stability of the biosensor was also evaluated

  17. Effects of spermine NONOate and ATP on the thermal stability of hemoglobin

    Directory of Open Access Journals (Sweden)

    Bassam Rasha

    2012-08-01

    Full Text Available Abstract Background Minor changes in protein structure induced by small organic and inorganic molecules can result in significant metabolic effects. The effects can be even more profound if the molecular players are chemically active and present in the cell in considerable amounts. The aim of our study was to investigate effects of a nitric oxide donor (spermine NONOate, ATP and sodium/potassium environment on the dynamics of thermal unfolding of human hemoglobin (Hb. The effect of these molecules was examined by means of circular dichroism spectrometry (CD in the temperature range between 25°C and 70°C. The alpha-helical content of buffered hemoglobin samples (0.1 mg/ml was estimated via ellipticity change measurements at a heating rate of 1°C/min. Results Major results were: 1 spermine NONOate persistently decreased the hemoglobin unfolding temperature Tuirrespectively of the Na + /K + environment, 2 ATP instead increased the unfolding temperature by 3°C in both sodium-based and potassium-based buffers and 3 mutual effects of ATP and NO were strongly influenced by particular buffer ionic compositions. Moreover, the presence of potassium facilitated a partial unfolding of alpha-helical structures even at room temperature. Conclusion The obtained data might shed more light on molecular mechanisms and biophysics involved in the regulation of protein activity by small solutes in the cell.

  18. Comparison of reactivity on step and terrace sites of Pd (3 3 2) surface for the dissociative adsorption of hydrogen: A quantum chemical molecular dynamics study

    International Nuclear Information System (INIS)

    Ahmed, Farouq; Nagumo, Ryo; Miura, Ryuji; Ai, Suzuki; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Miyamoto, Akira

    2011-01-01

    The notion of 'active sites' is fundamental to heterogeneous catalysis. However, the exact nature of the active sites, and hence the mechanism by which they act, are still largely a matter of speculation. In this study, we have presented a systematic quantum chemical molecular dynamics (QCMD) calculations for the interaction of hydrogen on different step and terrace sites of the Pd (3 3 2) surface. Finally the dissociative adsorption of hydrogen on step and terrace as well as the influence of surface hydrogen vacancy for the dissociative adsorption of hydrogen has been investigated through QCMD. This is a state-of-the-art method for calculating the interaction of atoms and molecules with metal surfaces. It is found that fully hydrogen covered (saturated) step sites can dissociate hydrogen moderately and that a monovacancy surface is suitable for significant dissociative adsorption of hydrogen. However in terrace site of the surface we have found that dissociation of hydrogen takes place only on Pd sites where the metal atom is not bound to any pre-adsorbed hydrogen atoms. Furthermore, from the molecular dynamics and electronic structure calculations, we identify a number of consequences for the interpretation and modeling of diffusion experiments demonstrating the coverage and directional dependence of atomic hydrogen diffusion on stepped palladium surface.

  19. Structural, chemical and nanomechanical investigations of SiC/polymeric a-C:H films deposited by reactive RF unbalanced magnetron sputtering

    Science.gov (United States)

    Tomastik, C.; Lackner, J. M.; Pauschitz, A.; Roy, M.

    2016-03-01

    Amorphous carbon (or diamond-like carbon, DLC) films have shown a number of important properties usable for a wide range of applications for very thin coatings with low friction and good wear resistance. DLC films alloyed with (semi-)metals show some improved properties and can be deposited by various methods. Among those, the widely used magnetron sputtering of carbon targets is known to increase the number of defects in the films. Therefore, in this paper an alternative approach of depositing silicon-carbide-containing polymeric hydrogenated DLC films using unbalanced magnetron sputtering was investigated. The influence of the C2H2 precursor concentration in the deposition chamber on the chemical and structural properties of the deposited films was investigated by Raman spectroscopy, X-ray photoelectron spectroscopy and elastic recoil detection analysis. Roughness, mechanical properties and scratch response of the films were evaluated with the help of atomic force microscopy and nanoindentation. The Raman spectra revealed a strong correlation of the film structure with the C2H2 concentration during deposition. A higher C2H2 flow rate results in an increase in SiC content and decrease in hydrogen content in the film. This in turn increases hardness and elastic modulus and decreases the ratio H/E and H3/E2. The highest scratch resistance is exhibited by the film with the highest hardness, and the film having the highest overall sp3 bond content shows the highest elastic recovery during scratching.

  20. Site-Specific Three-Color Labeling of α-Synuclein via Conjugation to Uniquely Reactive Cysteines during Assembly by Native Chemical Ligation.

    Science.gov (United States)

    Lee, Taehyung C; Moran, Crystal R; Cistrone, Philip A; Dawson, Philip E; Deniz, Ashok A

    2018-04-12

    Single-molecule fluorescence is widely used to study conformational complexity in proteins, and has proven especially valuable with intrinsically disordered proteins (IDPs). Protein studies using dual-color single-molecule Förster resonance energy transfer (smFRET) are now quite common, but many could benefit from simultaneous measurement of multiple distances through multi-color labeling. Such studies, however, have suffered from limitations in site-specific incorporation of more than two dyes per polypeptide. Here we present a fully site-specific three-color labeling scheme for α-synuclein, an IDP with important putative functions and links to Parkinson disease. The convergent synthesis combines native chemical ligation with regiospecific cysteine protection of expressed protein fragments to permit highly controlled labeling via standard cysteine-maleimide chemistry, enabling more global smFRET studies. Furthermore, this modular approach is generally compatible with recombinant proteins and expandable to accommodate even more complex experiments, such as by labeling with additional colors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Experimental study of chemical-mechanical coupling during percolation of reactive fluid through rocks under stress, in the context of the CO2 geological sequestration

    International Nuclear Information System (INIS)

    Le Guen, Y.

    2006-10-01

    CO 2 injection into geological repositories will induce chemical and mechanical instabilities. The study of these instabilities is based on experimental deformation of natural rock samples under stress, in the presence of fluids containing, or not, dissolved CO 2 . Triaxial cells used for the experiments permitted an independent control and measurement of stress, temperature, fluid pressure and composition. Vertical strains were measured during several months, with a resolution of 1.10 -12 s -1 on the strain rate. Simultaneously, fluids were analysed in order to quantify fluid-rock interactions. For limestone samples, percolation of CO 2 -rich fluids increases strain rate by a factor 1.7 up to 5; on the other hand, sandstone deformation remained almost the same. Increase in strain rate with limestone samples was explained by injected water acidification by the CO 2 which increases rock solubility and reaction kinetics. On the opposite, small effect of CO 2 on quartz explains the absence of deformation. X-ray observations confirmed the importance of rock composition and structure on the porosity evolution. Numerical simulations of rock elastic properties showed increasing shear stress into the sample. Measured deformation showed an evolution of reservoir rocks mechanical properties. It was interpreted as the consequence of pressure solution mechanisms both at grains contacts and on grain free surfaces. (author)

  2. Numerical simulation of in-situ chemical oxidation (ISCO) and biodegradation of petroleum hydrocarbons using a coupled model for bio-geochemical reactive transport

    Science.gov (United States)

    Marin, I. S.; Molson, J. W.

    2013-05-01

    Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.

  3. The Maillard reaction of a shrimp by-product protein hydrolysate: chemical changes and inhibiting effects of reactive oxygen species in human HepG2 cells.

    Science.gov (United States)

    Zha, Fengchao; Wei, Binbin; Chen, Shengjun; Dong, Shiyuan; Zeng, Mingyong; Liu, Zunying

    2015-06-01

    Recently, much attention has been given to improving the antioxidant activity of protein hydrolysates via the Maillard reaction, but little is known about the cellular antioxidant activity of Maillard reaction products (MRPs) from protein hydrolysates. We first investigated chemical characterization and the cellular antioxidant activity of MRPs in a shrimp (Litopenaeus vannamei) by-product protein hydrolysate (SBH)-glucose system at 110 °C for up to 10 h of heating. Solutions of SBH and glucose were also heated alone as controls. The Maillard reaction greatly resulted in the increase of hydroxymethylfurfural (HMF) and browning intensity, high molecular weight fraction, and reduction of the total amino acid in SBH with the heating time, which correlated well with the free radical scavenging activity of MRPs. MRPs had stronger inhibiting effects on oxidative stress of human HepG2 cells than the original SBH, and its cellular antioxidant activity strongly correlated with free radical scavenging activity, but less affected by the browning intensity and HMF level. The caramelization of glucose partially affected the HMF level and free radical scavenging activity of MRPs, but it was not related to the cellular antioxidant activity. The cellular antioxidant activity of MRPs for 5 h of heating time appeared to reach a maximum level, which was mainly due to carbonyl ammonia condensation reaction. In conclusion, the Maillard reaction is a potential method to increase the cellular antioxidant activity of a shrimp by-product protein hydrolysate, but the higher HMF levels and the lower amino acid content in MRPs should also be considered.

  4. High temperature chemical reactivity in the system (U, Zr,Fe, O). A contribution to the study of zirconia as a ''core catcher''

    International Nuclear Information System (INIS)

    Maurizi, A.; CEA Centre d'Etudes de Saclay, 91 - Gif-sur-Yvette

    1996-01-01

    Within the framework of the improvement of nuclear reactor safety, a device to recover corium is proposed to be installed under the reactor vessel to limit the consequences of a core melting. According to our bibliographic study, stabilised zirconia seems to be the best refractory material to play this role and to support the physicochemical, mechanical and thermal requirements imposed to the corium catcher. The nature of the chemical interactions between zirconia and iron of high temperature were established and experimental data on the (U, Fe, Zr, O) quaternary system which stands for the corium were determined. First of all, the Knudsen effusion mass-spectrometric method was used to establish the liquidus position for a (U, Zr, O) alloy representative of the corium (U/Zr = 1,5) at 2000 deg C. The oxygen solubility limit in a (U, Zr, O) liquid alloy is about 7 atomic %. In oxidising conditions, the reaction between zirconia and iron leads to the formation of a stabilised zirconia-iron oxide solid solution. Up to 10 atomic % of iron can be incorporated in the structure, leading to the stabilisation of cubic zirconia and a modification of lattice constants. The valence and localisation of those iron measured as a function of time and temperature from 1500 to 2400 deg C, after high frequency inductive heating, both on laboratory materials are commercial bricks. The reaction rate is governed by an activation energy of about 80 kJ/mol. Our results demonstrate that stabilised zirconia is able to efficiently absorb oxidised iron. (author)

  5. Development of a Transferable Reactive Force Field of P/H Systems: Application to the Chemical and Mechanical Properties of Phosphorene.

    Science.gov (United States)

    Xiao, Hang; Shi, Xiaoyang; Hao, Feng; Liao, Xiangbiao; Zhang, Yayun; Chen, Xi

    2017-08-17

    We developed ReaxFF parameters for phosphorus and hydrogen to give a good description of the chemical and mechanical properties of pristine and defected black phosphorene. ReaxFF for P/H is transferable to a wide range of phosphorus- and hydrogen-containing systems including bulk black phosphorus, blue phosphorene, edge-hydrogenated phosphorene, phosphorus clusters, and phosphorus hydride molecules. The potential parameters were obtained by conducting global optimization with respect to a set of reference data generated by extensive ab initio calculations. We extended ReaxFF by adding a 60° correction term, which significantly improved the description of phosphorus clusters. Emphasis was placed on the mechanical response of black phosphorene with different types of defects. Compared to the nonreactive SW potential ( Jiang , J.-W. Nanotechnology 2015 , 26 , 315706 ), ReaxFF for P/H systems provides a significant improvement in describing the mechanical properties of the pristine and defected black phosphorene, as well as the thermal stability of phosphorene nanotubes. A counterintuitive phenomenon is observed that single vacancies weaken the black phosphorene more than double vacancies with higher formation energy. Our results also showed that the mechanical response of black phosphorene is more sensitive to defects in the zigzag direction than that in the armchair direction. In addition, we developed a preliminary set of ReaxFF parameters for P/H/O/C to demonstrate that the ReaxFF parameters developed in this work could be generalized to oxidized phosphorene and P-containing 2D van der Waals heterostructures. That is, the proposed ReaxFF parameters for P/H systems establish a solid foundation for modeling of a wide range of P-containing materials.

  6. 21 CFR 866.5470 - Hemoglobin immunological test system.

    Science.gov (United States)

    2010-04-01

    .... Measurements of free hemoglobin aid in the diagnosis of various hematologic disorders, such as sickle cell... blood cells), and leukemia (cancer of the blood-forming organs). (b) Classification. Class II...

  7. A nanocluster-based fluorescent sensor for sensitive hemoglobin detection.

    Science.gov (United States)

    Yang, Dongqin; Meng, Huijie; Tu, Yifeng; Yan, Jilin

    2017-08-01

    In this report, a fluorescence sensor for sensitive detection of hemoglobin was developed. Gold nanoclusters were first synthesized with bovine serum albumin. It was found that both hydrogen peroxide and hemoglobin could weakly quench the fluorescence from the gold nanoclusters, but when these two were applied onto the nanolcusters simultaneously, a much improved quenching was resulted. This enhancing effect was proved to come from the catalytic generation of hydroxyl radical by hemoglobin. Under an optimized condition, the quenching linearly related to the concentration of hemoglobin in the range of 1-250nM, and a limit of detection as low as 0.36nM could be obtained. This provided a sensitive means for the quantification of Hb. The sensor was then successfully applied for blood analyses with simple sample pretreatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Novel subunit structure observed for noncooperative hemoglobin from Urechis caupo.

    Science.gov (United States)

    Kolatkar, P R; Meador, W E; Stanfield, R L; Hackert, M L

    1988-03-05

    Tetrameric hemoglobin from the "fat innkeeper" worm Urechis caupo possesses a novel subunit arrangement having an "inside out" quaternary structure in that the G/H helices are located on the outer surface of the tetramer. A 5-A resolution crystal structure reveals that although the individual subunits are beta-like, having a distinct D helix and the general myoglobin fold, the subunit contacts are very different from those previously observed for hemoglobins. Furthermore, the hemoglobin from U. caupo is also quite different from the unusual hemoglobin tetramer from clam which also has its G/H helices on the outer surface but with the hemes in close proximity through E-F helical contacts (Royer, W. E., Jr., Love, W. E., and Fenderson, F. F. (1985) Nature 316, 277-280).

  9. The influence of socioeconomic status on the hemoglobin level and ...

    African Journals Online (AJOL)

    Conclusion: Poor socioeconomic status has an adverse effect on the nutritional status and hemoglobin of SCA patients. ... Date of Acceptance: 15-Mar-2011 ..... This study was designed to determine the relationship .... mobiles and devices.

  10. Hemoglobin as a factor in the control of tumor oxygenation

    International Nuclear Information System (INIS)

    Hirst, D.G.

    1987-01-01

    The concentration of hemoglobin in the blood has been shown to have a market effect on the radiosensitivity of human and animal tumors. Experimental studies in mice indicate that radiosensitivity is influenced by a change in the hemoglobin level rather than by the absolute concentration. This dependence may be exploited to therapeutic advantage. Recent studies of hemoglobin/oxygen affinity have shown that the concentration of 2,3 diphosphoglycerate (2,3 DPG) affects tumor sensitivity to X-rays. Increased 2,3 DPG levels increase radiosensitivity in several mouse tumors. The time dependence of this effect remains to be established. The effective application of these effects in man may depend on the development of drugs which produce changes in hemoglobin affinity without the need for blood transfusions. Several drugs are currently being investigated

  11. Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis

    DEFF Research Database (Denmark)

    Wang, Yaping; Elhiti, Mohamed; Hebelstrup, Kim

    2011-01-01

    Over the past few years non-symbiotic plant hemoglobins have been described in a variety of plant species where they fulfill several functions ranging from detoxification processes to basic aspects of plant growth and post-embryonic development. To date no information is available on the role...... of hemoglobins during invitro morphogenesis. Shoot organogenesis was induced in Arabidopsis lines constitutively expressing class 1, 2 and 3 hemoglobins (GLB1, 2 and 3) and lines in which the respective genes were either downregulated by RNAi (GLB1) or knocked out (GLB2 and GLB3). The process was executed......, 15, and 16), feed-back repressors of the cytokinin pathway, was repressed in both hemoglobin over-expressors whereas that of several Type-B ARRs (ARR2, 12, and 13), transcription activators of cytokinin-responsive genes, was induced. Such changes enhanced the sensitivity of the root explants...

  12. Lower versus Higher Hemoglobin Threshold for Transfusion in Septic Shock

    DEFF Research Database (Denmark)

    Holst, Lars B; Haase, Nicolai; Wetterslev, Jørn

    2014-01-01

    BACKGROUND: Blood transfusions are frequently given to patients with septic shock. However, the benefits and harms of different hemoglobin thresholds for transfusion have not been established. METHODS: In this multicenter, parallel-group trial, we randomly assigned patients in the intensive care...... unit (ICU) who had septic shock and a hemoglobin concentration of 9 g per deciliter or less to receive 1 unit of leukoreduced red cells when the hemoglobin level was 7 g per deciliter or less (lower threshold) or when the level was 9 g per deciliter or less (higher threshold) during the ICU stay...... were similar in the two intervention groups. CONCLUSIONS: Among patients with septic shock, mortality at 90 days and rates of ischemic events and use of life support were similar among those assigned to blood transfusion at a higher hemoglobin threshold and those assigned to blood transfusion...

  13. Direct electrochemistry of hemoglobin entrapped in dextran film on ...

    Indian Academy of Sciences (India)

    Administrator

    28. Li et al used single- walled carbon nanotube (SWCNT) and 1-hexyl-3- ... Electrochemistry of dextran/hemoglobin/carbon ionic liquid electrode. 273. 2.4 Procedures ..... used for the construction of H2O2 biosensor. Acknowledgement.

  14. Temperature-dependent enthalpy of oxygenation in Antarctic fish hemoglobins

    DEFF Research Database (Denmark)

    Fago, A.; Wells, R.M.G.; Weber, Roy E.

    1997-01-01

    The effect of temperature on the oxygen-binding properties of the hemoglobins of three cold-adapted Antarctic fish species, Dissostichus mawsoni, Pagothenia borchgrevinki and Trematomus, sp., has been investigated under different pH values and buffer conditions. A clear non linear van't Hoff plot...... (logP(50) vs 1/T) of D. mawsoni hemoglobin indicates that the enthalpy of oxygenation (slope of the plot) is temperature dependent and that at high temperatures oxygen-binding becomes less exothermic. Nearly linear relationships were found in the hemoglobins of the other two species. The data were...... oxygen binding. The degree of the temperature dependence of the heat of oxygenation observed in these hemoglobins seems to reflect the differences in their allosteric effects rather than a specific molecular adaptation to low temperatures. Moreover, this study indicates that the disagreement between...

  15. Receptor targeting of hemoglobin mediated by the haptoglobins

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Moestrup, Søren Kragh

    2009-01-01

    Haptoglobin, the haptoglobin-hemoglobin receptor CD163, and the heme oxygenase-1 are proteins with a well-established function in the clearance and metabolism of "free" hemoglobin released during intravascular hemolysis. This scavenging system counteracts the potentially harmful oxidative and NO......-scavenging effects associated with "free" hemoglobin, and, furthermore, elicits an anti-inflammatory response. In the late primate evolution, haptoglobin variants with distinct functions have arisen, including haptoglobin polymers and the haptoglobin-related protein. The latter associates with a subspecies of high......-density lipoprotein (HDL) particles playing a crucial role in the innate immunity against certain trypanosome parasites. Recent studies have elucidated this fairly sophisticated immune defense mechanism that takes advantage of a trypanosomal haptoglobin-hemoglobin receptor evolved to supply the parasite with heme...

  16. Effects of thyroid status on glycated hemoglobin

    Directory of Open Access Journals (Sweden)

    Rana Bhattacharjee

    2017-01-01

    Full Text Available Introduction: Glycated hemoglobin (HbA1c can be altered in different conditions. We hypothesize that HbA1c levels may change due to altered thyroid status, possibly due to changes in red blood cell (RBC turnover. Objectives: The objective of this study was to determine the effects of altered thyroid status on HbA1c levels in individuals without diabetes, with overt hyper- and hypo-thyroidism, and if present, whether such changes in HbA1c are reversed after achieving euthyroid state. Methods: Euglycemic individuals with overt hypo- or hyper-thyroidism were selected. Age- and sex-matched controls were recruited. Baseline HbA1c and reticulocyte counts (for estimation of RBC turnover were estimated in all the patients and compared. Thereafter, stable euthyroidism was achieved in a randomly selected subgroup and HbA1c and reticulocyte count was reassessed. HbA1c values and reticulocyte counts were compared with baseline in both the groups. Results: Hb A1c in patients initially selected was found to be significantly higher in hypothyroid group. HbA1c values in hyperthyroid patients were not significantly different from controls. HbA1c reduction and rise in reticulocyte count were significant in hypothyroid group following treatment without significant change in glucose level. Hb A1c did not change significantly following treatment in hyperthyroid group. The reticulocyte count, however, decreased significantly. Conclusion: Baseline HbA1c levels were found to be significantly higher in hypothyroid patients, which reduced significantly after achievement of euthyroidism without any change in glucose levels. Significant baseline or posttreatment change was not observed in hyperthyroid patients. Our study suggests that we should be cautious while interpreting HbA1c data in patients with hypothyroidism.

  17. Oxygen binding to partially nitrosylated hemoglobin.

    Science.gov (United States)

    Fago, Angela; Crumbliss, Alvin L; Hendrich, Michael P; Pearce, Linda L; Peterson, Jim; Henkens, Robert; Bonaventura, Celia

    2013-09-01

    Reactions of nitric oxide (NO) with hemoglobin (Hb) are important elements in protection against nitrosative damage. NO in the vasculature is depleted by the oxidative reaction with oxy Hb or by binding to deoxy Hb to generate partially nitrosylated Hb (Hb-NO). Many aspects of the formation and persistence of Hb-NO are yet to be clarified. In this study, we used a combination of EPR and visible absorption spectroscopy to investigate the interactions of partially nitrosylated Hb with O2. Partially nitrosylated Hb samples had predominantly hexacoordinate NO-heme geometry and resisted oxidation when exposed to O2 in the absence of anionic allosteric effectors. Faster oxidation occurred in the presence of 2,3-diphosphoglycerate (DPG) or inositol hexaphosphate (IHP), where the NO-heme derivatives had higher levels of pentacoordinate heme geometry. The anion-dependence of the NO-heme geometry also affected O2 binding equilibria. O2-binding curves of partially nitrosylated Hb in the absence of anions were left-shifted at low saturations, indicating destabilization of the low O2 affinity T-state of the Hb by increasing percentages of NO-heme, much as occurs with increasing levels of CO-heme. Samples containing IHP showed small decreases in O2 affinity, indicating shifts toward the low-affinity T-state and formation of inert α-NO/β-met tetramers. Most remarkably, O2-equilibria in the presence of the physiological effector DPG were essentially unchanged by up to 30% NO-heme in the samples. As will be discussed, under physiological conditions the interactions of Hb with NO provide protection against nitrosative damage without impairing O2 transport by Hb's unoccupied heme sites. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. HEMOGLOBINA GLICOSILADA O HEMOGLOBINA GLICADA, ¿CUÁL DE LAS DOS? | GLYCOSILATED HEMOGLOBIN OR GLYCATED HEMOGLOBIN, WHICH OF THE TWO?

    Directory of Open Access Journals (Sweden)

    Mariela Bracho-Nava

    2015-11-01

    , according to the International Federation of Clinical Chemistry (IFCC, as a generic term referring to a group of substances that are formed from biochemical reactions between hemoglobin A (HbA and some reducing sugars present in the bloodstream, glucose being the most abundant of them. This reaction is known as the Maillard reaction, which is based on a non-enzimatic glycosylation, or more correctly called, in a glycation. Custom, ignorance or confusion among both chemical processes has led to use the term glycosylated hemoglobin instead of glycated hemoglobin. This article provides a review of the process of formation of hemoglobin A1c, defining the reaction of glycosylation and the protein glycation, the chemical species that favor the glycation, the characteristics of the process of glycation of hemoglobin, stages in which it occurs and the effects related to the glycation of proteins in human beings, to finally conclude with a passage of designations which has received the HbA1c to the present; all with the aim of clarifying and giving property to the use of the term glycated hemoglobin.

  19. Hemoglobin concentrations and associated factors in adolescentes from Recife, Brazil

    OpenAIRE

    Elisângela Barros Soares Mendonça; Lilian Ferreira Muniz; Ilma Kruze Grande de Arruda; Alcides da Silva Diniz

    2014-01-01

    OBJECTIVE: To estimate the prevalence of anemia and associated factors in adolescents from the city of Recife in Pernambuco state. METHODS: This is a cross-sectional study, involving a random sample of 256 adolescents of both genders, aged 13 to 18, whose hemoglobin concentrations were evaluated, along with their nutritional status and socioeconomic and demographic characteristics. RESULTS: The prevalence of inadequate hemoglobin concentrations was 10.2% [CI95%=6.7-14.5], reaching levels cons...

  20. Thalassemia and Hemoglobin E in Southern Thai Blood Donors

    OpenAIRE

    Nuinoon, Manit; Kruachan, Kwanta; Sengking, Warachaya; Horpet, Dararat; Sungyuan, Ubol

    2014-01-01

    Thalassemia and hemoglobin E (Hb E) are common in Thailand. Individuals with thalassemia trait usually have a normal hemoglobin concentration or mild anemia. Therefore, thalassemic individuals who have minimum acceptable Hb level may be accepted as blood donors. This study was aimed at determining the frequency of α-thalassemia 1 trait, β-thalassemia trait, and Hb E-related syndromes in Southern Thai blood donors. One hundred and sixteen voluntary blood donors, Southern Thailand origin, were ...

  1. Individualized Anemia Management Reduces Hemoglobin Variability in Hemodialysis Patients

    OpenAIRE

    Gaweda, Adam E.; Aronoff, George R.; Jacobs, Alfred A.; Rai, Shesh N.; Brier, Michael E.

    2013-01-01

    One-size-fits-all protocol-based approaches to anemia management with erythropoiesis-stimulating agents (ESAs) may result in undesired patterns of hemoglobin variability. In this single-center, double-blind, randomized controlled trial, we tested the hypothesis that individualized dosing of ESA improves hemoglobin variability over a standard population-based approach. We enrolled 62 hemodialysis patients and followed them over a 12-month period. Patients were randomly assigned to receive ESA ...

  2. EPR studies of cooperative binding of Cu (II) to hemoglobin

    International Nuclear Information System (INIS)

    Louro, S.R.W.; Tabak, M.

    1983-07-01

    The investigation of the relative affinities of the two pairs of hemoglobin copper sites by monitoring the EPR spectra of the complexes formed by the reaction of copper with deoxyhemoglobin is reported. A model in which two sites are assumed to accept copper ions in a noncooperative way is not able to predict the experimental results. Thus it is conclude that the binding of these ions to hemoglobin is a cooperative phenomenon. (Author) [pt

  3. Association of subclinical inflammation, glycated hemoglobin and risk for obstructive sleep apnea syndrome.

    Science.gov (United States)

    D'Aurea, Carolina Vicaria Rodrigues; Cerazi, Bruno Gion de Andrade; Laurinavicius, Antonio Gabriele; Janovsky, Carolina Castro Porto Silva; Conceição, Raquel Dilguerian de Oliveira; Santos, Raul D; Bittencourt, Márcio Sommer

    2017-01-01

    To investigate the inter-relation between high sensitivity C-reactive protein and glycated hemoglobin in prediction of risk of obstructive sleep apnea. We included all individuals participating in a check-up program at the Preventive Medicine Center of Hospital Israelita Albert Einstein in 2014. The Berlin questionnaire for risk of obstructive sleep apnea was used, and the high sensitivity C-reactive protein and glycated hemoglobin levels were evaluated. The sample included 7,115 participants (age 43.4±9.6 years, 24.4% women). The Berlin questionnaire showed changes in 434 (6.1%) individuals. This finding was associated with high sensitivity C-reactive protein and glycated hemoglobin levels (papneia obstrutiva do sono. Foram incluídos todos os indivíduos participantes do programa de check-up do Centro de Medicina Preventiva Hospital Israelita Albert Einstein em 2014. Foi aplicado o questionário de Berlin sobre risco de apneia do sono, e avaliadas as dosagens de hemoglobina glicada e proteína C-reativa de alta sensibilidade. Foram incluídos 7.115 participantes (idade 43,4±9,6 anos, 24,4% mulheres). A prevalência de alteração no questionário de Berlin foi de 434 (6,1%). A alteração do questionário de Berlin associou-se positivamente aos resultados da proteína C-reativa de alta sensibilidade e da hemoglobina glicada (papneia obstrutiva do sono, mesmo após ajuste para obesidade e proteína C-reativa. Estes achados sugerem possível ligação fisiopatológica entre alterações na resistência insulínica e a síndrome da apneia obstrutiva do sono, que independe da obesidade ou inflamação de baixo grau.

  4. Comparative study of bedside and laboratory measurements of hemoglobin.

    Science.gov (United States)

    Krenzischek, D A; Tanseco, F V

    1996-11-01

    The purpose of this study was to examine the effects of variations in technique on measurements of hemoglobin level done at the bedside and to compare these results with laboratory measurements of hemoglobin. In accordance with hospital policy, procedure, and protocol, various techniques were used to obtain samples of capillary and venous blood and of blood from arterial and central venous catheters. Levels of hemoglobin were measured at the bedside and in the laboratory, and the results were compared. The Johns Hopkins Hospital adult postanesthesia care unit. A total of 187 blood samples were obtained from 62 adults who had undergone general surgery. Group I comprised 20 subjects with capillary and venous blood samples. Group II comprised 21 subjects with arterial blood samples. Group III comprised 21 subjects with central venous blood samples. The results showed that the amount of blood to be discarded before obtaining samples of arterial and central venous blood need not be any larger than double the dead space of the catheter, and that shaking the blood sample for 10 seconds was sufficient to mix the sample before measurement of hemoglobin levels. Results of bedside and laboratory measurements of hemoglobin level were comparable. Bedside measurement of hemoglobin increases efficiency in patient care, decreases risk of blood-transmitted infection for staff, and decreases cost to the patient. However, the persons who perform the assay must be responsible in adhering to the standard of practice to minimize errors in the measurements.

  5. Cell volume regulation in hemoglobin CC and AA erythrocytes

    International Nuclear Information System (INIS)

    Berkowitz, L.R.; Orringer, E.P.

    1987-01-01

    Swelling hemoglobin CC erythrocytes stimulates a ouabain-insensitive K flux that restores original cell volume. Studies were performed with the K analog, 86 Rb. This volume regulatory pathway was characterized for its anion dependence, sensitivity to loop diuretics, and requirement for Na. The swelling-induced K flux was eliminated if intracellular chloride was replaced by nitrate and both swelling-activated K influx and efflux were partially inhibited by 1 mM furosemide or bumetanide. K influx in swollen hemoglobin CC cells was not diminished when Na in the incubation medium was replaced with choline, indicating Na independence of the swelling-induced flux. Identical experiments with hemoglobin AA cells also demonstrated a swelling-induced increase in K flux, but the magnitude and duration of this increase were considerably less than that seen with hemoglobin CC cells. The increased K flux in hemoglobin AA cells was likewise sensitive to anion replacement and to loop diuretics and did not require the presence of Na. These data indicate that a volume-activated K pathway with similar transport characteristics exists in both hemoglobin CC and AA red cells

  6. Comparison of Hemoglobin Levels Before and After Hemodialysis and Their Effects on Erythropoietin Dosing and Cost

    OpenAIRE

    Sagheb; Fallahzadeh; Moaref; Fallahzadeh; Dormanesh

    2016-01-01

    Background Hemoglobin levels measured after hemodialysis, as compared to hemoglobin levels measured before hemodialysis, are suggested to be a more accurate reflection of the hemoglobin levels between hemodialysis sessions, and to be a better reference point for adjusting erythropoietin dosing. Objectives The aim of this study was to compare the hemoglobin levels before and after hemodialysis, to calculate the required erythropoie...

  7. The reactivity meter and core reactivity

    International Nuclear Information System (INIS)

    Siltanen, P.

    1999-01-01

    This paper discussed in depth the point kinetic equations and the characteristics of the point kinetic reactivity meter, particularly for large negative reactivities. From a given input signal representing the neutron flux seen by a detector, the meter computes a value of reactivity in dollars (ρ/β), based on inverse point kinetics. The prompt jump point of view is emphasised. (Author)

  8. Identification of a haptoglobin-hemoglobin complex in the Alaskan Least Cisco (Coregonus sardinella).

    Science.gov (United States)

    Wahl, S M; Boger, J K; Michael, V; Duffy, L K

    1992-01-01

    The hemoglobin and a hemoglobin binding protein have been characterized in the Arctic fish (Coregonus sardinella). The evolutionary significance of the hemoglobin and plasma protein differences between fish and mammals is still unresolved. Blood samples from the Alaskan Least Cisco were separated into plasma and hemoglobin fractions and the proteins in these fractions were analyzed both by alkaline agarose gel electrophoresis, by isolelectric focusing, and by capillary electrophoresis. Staining the plasma proteins gels with o-dianisidine revealed hemoglobin containing protein complexes. A hemoglobin-containing band was observed in hemolyzed plasma which did not migrate with free hemoglobin, and is believed to be hemoglobin-haptoglobin complex. Size exclusion chromatography further characterized the hemoglobin as disassociating freely into dimers, and hemoglobin-haptoglobin complex having a molecular weight greater then 200,000 daltons.

  9. Structure, spectroscopic analyses (FT-IR and NMR), vibrational study, chemical reactivity and molecular docking study on 3,3'-((4-(trifluoromethyl)phenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione), a promising anticancerous bis-lawsone derivative

    Science.gov (United States)

    Yadav, Krishna Kant; Kumar, Abhishek; Kumar, Amarendra; Misra, Neeraj; Brahmachari, Goutam

    2018-02-01

    Lawsone (2-hydroxy-1,4-naphthoquinone)has been evaluated to possess a wide range of biological and pharmacological activities. The interesting structural pattern of lawsone coupled with its so-called multifaceted pharmacological potential have made this scaffolds useful in certain chemical processes, particularly in synthesizing ligands for metal complexations, and also few of its derivatives have shown a number of biological activities. The equilibrium geometry of 3,3‧-((4-(trifluoromethyl)phenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) (1; TPMHD), a promising anticancerous lawsone derivative, has been determined and analyzed at DFT method employingB3LYP/6-311++G(d,p) level of theory. The reactivity descriptors such as Fukui functions and HOMO-LUMO gap are calculated and discussed. The infrared spectra of TPMHD(1) are calculated and compared with the experimentally observed ones. Moreover, 1H and 13C NMR spectra have been calculated by using the gauge independent atomic orbital method. The docking studies reveal that the TPMHD has strong binding affinity toward target protein 2SHP. Thus the compound has a possible use as a drug in cancer therapy. The study suggests further investigation on TPMHD for their in-depth biological and pharmaceutical importance.

  10. The narrow therapeutic window of glycated hemoglobin and assay variability.

    Science.gov (United States)

    Hosseini, S S; Bibler, I; Charles, M A

    1999-12-01

    Glycated hemoglobin is measured by a variety of assays, each of which has a unique normal level. Our purpose is to show that among the different assays available in the United States, using the same patient's blood sample, assay results may vary widely and may more or less easily achieve a glycated hemoglobin value within the normal range. The following assays were compared using the same patient's blood sample for each pair of assays: glycohemoglobin affinity assay (GHB Reader; Isolab, Akron, OH) versus gel electrophoresis assay (n = 76); Isolab versus ion capture assay (IMX; Abbott Laboratories, Irving, TX) (n = 57); monoclonal antibody assay (DCA2000; Bayer Diagnostics, Pittsburgh, PA) versus IMX (n = 100); and high-performance liquid chromatography (HPLC) assay (Bio-Rad Variant A1c; Bio-Rad Laboratories, Richmond, CA) versus IMX assay (n = 55). Our analyses indicate that a relative ranking can be established for the ease of achieving a normal glycated hemoglobin level. The ranking indicates that the most stringent or difficult assays for achieving a normal level are the Isolab and DCA2000 assays. The intermediate assays are the IMX and Bio-Rad Variant, and the easiest method for achieving a normal value is the gel electrophoresis assay. Our results indicate that various glycated hemoglobin assays vary widely and are associated with more or less difficulty for an individual patient to achieve a glycated hemoglobin level within the normal range. These results are especially significant with respect to (1) the clinically narrow therapeutic window of glycated hemoglobin values in type 1 diabetes to avoid rapidly advancing severe hypoglycemia rates and chronic microvascular complication rates, and (2) the glycated hemoglobin threshold for rapidly advancing macrovascular disease in both type 1 and type 2 patients.

  11. Propanil-induced methemoglobinemia and hemoglobin binding in the rat

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, D.C.; McRae, T.A.; Hinson, J.A. (National Center for Toxicological Research, Jefferson, AR (USA))

    1990-09-15

    Administration of (ring-U-14C)propanil (3,4-dichloropropionanilide) to male Sprague-Dawley rats (30, 100, and 300 mg/kg, ip) increased the formation of methemoglobin at the two highest doses. Following a propanil dose of 100 mg/kg, methemoglobin formation attained a maximum level of 5% by 1.5 hr and declined to normal levels (approximately 2.5%) by 12 hr. Hemoglobin binding attained a maximum level of 50 pmol/mg protein by 12 hr, and remained constant for 24 hr. Following a propanil dose of 300 mg/kg, methemoglobin formation attained a maximum level of 24% by 4.5 hr, and declined to a level of 5% by 24 hr. Hemoglobin binding attained a maximum level of 425 pmol/mg protein by 12 hr, and remained constant for 24 hr. Hemoglobin binding was also detected at the lowest propanil dose (10 pmol/mg protein) even though methemoglobin formation was not observed. HPLC analysis of alkaline-treated hemoglobin from propanil-treated rats indicated the presence of one radiolabeled compound with the same HPLC retention time as 3,4-dichloraniline. These data are consistent with the concept that propanil is converted to N-hydroxy-3,4-dichloroaniline in the liver. Subsequently, this metabolite enters the erythrocyte and is oxidized by hemoglobin to 3,4-dichloronitrosobenzene with concomitant conversion of oxyhemoglobin to methemoglobin. The 3,4-dichloronitrosobenzene binds to cysteine residues on hemoglobin as the corresponding sulfinic acid amide adduct. These data suggest that human exposure to propanil may be monitored in the absence of observable toxicity by the analysis of propanil metabolites bound to hemoglobin.

  12. Hemoglobin isoform differentiation and allosteric regulation of oxygen binding in the turtle, Trachemys scripta

    DEFF Research Database (Denmark)

    Damsgaard, Christian; Storz, Jay F.; Hoffmann, Federico G.

    2013-01-01

    When freshwater turtles acclimatize to winter hibernation, there is a gradual transition from aerobic to anaerobic metabolism, which may require adjustments of blood O2 transport before turtles become anoxic. Here, we report the effects of protons, anionic cofactors, and temperature on the O2......-binding properties of isolated hemoglobin (Hb) isoforms, HbA and HbD, in the turtle Trachemys scripta. We determined the primary structures of the constituent subunits of the two Hb isoforms, and we related the measured functional properties to differences in O2 affinity between untreated hemolysates from...... turtles that were acclimated to normoxia and anoxia. Our data show that HbD has a consistently higher O2 affinity compared with HbA, whereas Bohr and temperature effects, as well as thiol reactivity, are similar. Although sequence data show amino acid substitutions at two known β-chain ATP-binding site...

  13. Plant hemoglobins: Important players at the crossroads between oxygen and nitric oxide

    DEFF Research Database (Denmark)

    Gupta, Kapuganti J; Hebelstrup, Kim; Mur, Luis A J

    2011-01-01

    Plant hemoglobins constitute a diverse group of hemeproteins and evolutionarily belong to three different classes. Class 1 hemoglobins possess an extremely high affinity to oxygen and their main function consists in scavenging of nitric oxide (NO) at very low oxygen levels. Class 2 hemoglobins have...... at high O2 concentrations. Depending on their physical properties, hemoglobins belong either to hexacoordinate non-symbiotic or pentacoordinate symbiotic groups. Plant hemoglobins are plausible targets for improving resistance to multiple stresses....

  14. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    DFT global chemical reactivity descriptors (chemical hardness, total energy, electronic chemical potential, and electrophilicity) are calculated for the isomers and used to predict their relative stability and reactivity. The chemical reactivity indices are found to be related to the bond angle defined by the cis carbonyls and the ...

  15. Wiley guide to chemical incompatibilities

    National Research Council Canada - National Science Library

    Pohanish, Richard P; Greene, Stanley A

    2009-01-01

    .... A portable and easy-to-use reference on reactive substances commonly found in commerce, the Wiley Guide to Chemical Incompatibilities, Third Edition compiles hard-to-find data on over 11,000 chemical...

  16. Reactive sites influence in PMMA oligomers reactivity: a DFT study

    Science.gov (United States)

    Paz, C. V.; Vásquez, S. R.; Flores, N.; García, L.; Rico, J. L.

    2018-01-01

    In this work, we present a theoretical study of methyl methacrylate (MMA) living anionic polymerization. The study was addressed to understanding two important experimental observations made for Michael Szwarc in 1956. The unexpected effect of reactive sites concentration in the propagation rate, and the self-killer behavior of MMA (deactivating of living anionic polymerization). The theoretical calculations were performed by density functional theory (DFT) to obtain the frontier molecular orbitals values. These values were used to calculate and analyze the chemical interaction descriptors in DFT-Koopmans’ theorem. As a result, it was observed that the longest chain-length species (related with low concentration of reactive sites) exhibit the highest reactivity (behavior associated with the increase of the propagation rate). The improvement in this reactivity was attributed to the crosslinking produced in the polymethyl methacrylate chains. Meanwhile, the self-killer behavior was associated with the intermolecular forces present in the reactive sites. This behavior was associated to an obstruction in solvation, since the active sites remained active through all propagation species. The theoretical results were in good agreement with the Szwarc experiments.

  17. Allergic contact dermatitis due to highly reactive halogenated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, F C; Ive, F A

    1983-11-01

    Ten cases of dermatitis in a fine organic chemicals plant are reported. These cases were all due to exposure to chemical compounds with reactive bromine or chlorine atoms. This type of chemical is always extremely irritant, but evidence is put forward to suggest that these cases were the result of allergic sensitization. Chemicals with reactive halogen atoms should always be handled with extreme care and patch testing should be approached with caution.

  18. More Genetic Engineering With Cloned Hemoglobin Genes

    Science.gov (United States)

    Bailey, James E.

    1992-01-01

    Cells modified to enhance growth and production of proteins. Method for enhancing both growth of micro-organisms in vitro and production of various proteins or metalbolites in these micro-organisms provides for incorporation of selected chromosomal or extrachormosomal deoxyribonucleic acid (DNA) sequences into micro-organisms from other cells or from artificial sources. Incorporated DNA includes parts encoding desired product(s) or characteristic(s) of cells and parts that control expression of productor characteristic-encoding parts in response to variations in environment. Extended method enables increased research into growth of organisms in oxygen-poor environments. Industrial applications found in enhancement of processing steps requiring oxygen in fermentation, enzymatic degradation, treatment of wastes containing toxic chemicals, brewing, and some oxidative chemical reactions.

  19. Normalization of hemoglobin-based oxygen carrier-201 induced vasoconstriction: targeting nitric oxide and endothelin.

    Science.gov (United States)

    Taverne, Yannick J; de Wijs-Meijler, Daphne; Te Lintel Hekkert, Maaike; Moon-Massat, Paula F; Dubé, Gregory P; Duncker, Dirk J; Merkus, Daphne

    2017-05-01

    Hemoglobin-based oxygen carrier (HBOC)-201 is a cell-free modified hemoglobin solution potentially facilitating oxygen uptake and delivery in cardiovascular disorders and hemorrhagic shock. Clinical use has been hampered by vasoconstriction in the systemic and pulmonary beds. Therefore, we aimed to 1 ) determine the possibility of counteracting HBOC-201-induced pressor effects with either adenosine (ADO) or nitroglycerin (NTG); 2 ) assess the potential roles of nitric oxide (NO) scavenging, reactive oxygen species (ROS), and endothelin (ET) in mediating the observed vasoconstriction; and 3 ) compare these effects in resting and exercising swine. Chronically instrumented swine were studied at rest and during exercise after administration of HBOC-201 alone or in combination with ADO. The role of NO was assessed by supplementation with NTG or administration of the eNOS inhibitor N ω -nitro-l-arginine. Alternative vasoactive pathways were investigated via intravenous administration of the ET A /ET B receptor blocker tezosentan or a mixture of ROS scavengers. The systemic and to a lesser extent the pulmonary pressor effects of HBOC-201 could be counteracted by ADO; however, dosage titration was very important to avoid systemic hypotension. Similarly, supplementation of NO with NTG negated the pressor effects but also required titration of the dose. The pressor response to HBOC-201 was reduced after eNOS inhibition and abolished by simultaneous ET A /ET B receptor blockade, while ROS scavenging had no effect. In conclusion, the pressor response to HBOC-201 is mediated by vasoconstriction due to NO scavenging and production of ET. Further research should explore the effect of longer-acting ET receptor blockers to counteract the side effect of hemoglobin-based oxygen carriers. NEW & NOTEWORTHY Hemoglobin-based oxygen carrier (HBOC)-201 can disrupt hemodynamic homeostasis, mimicking some aspects of endothelial dysfunction, resulting in elevated systemic and pulmonary blood

  20. [Hemoglobin variants in Colombian patients referred to discard hemoglobinopathies].

    Science.gov (United States)

    Romero-Sánchez, Consuelo; Gómez Gutiérrez, Alberto; Duarte, Yurani; Amazo, Constanza; Manosalva, Clara; Chila M, Lorena; Casas-Gómez, María Consuelo; Briceño Balcázar, Ignacio

    2015-10-01

    Oxygen transport is altered in hemoglobinopathies. To study the distribution of hemoglobinopathies in Andean subjects without African ancestry. We analyzed blood samples of 1,407 subjects aged 18 to 59 years (58% females), living in the central Andean region of Colombia, referred to discard hemoglobinopathies. The frequency and type of hemoglobinopathy was established by capillary and agarose gel electrophoresis. The frequency of hemoglobinopathies was 34.5% and higher among females. The structural variants found were: AS-heterozygous hemoglobin (8.1%), homozygous SS (3.7%), heterozygous SC (2.2%), AC heterozygotes (0.5%) and heterozygous AE (0.3%). Quantitative variants found were Hb A-Beta thalassemia (13.91%) and Hb H (0.06%), Beta-thalassemia heterozygotes C (0.88%), S-Beta thalassemia heterozygotes (6.07%) and compound heterozygous SC/Beta thalassemia (0.25%), with a persistence of fetal hemoglobin 0. Composite thalassemia was also found in 31%. All techniques showed good correlation and capillary electrophoresis demonstrated a greater detection of hemoglobin variants. The frequency of hemoglobin variants in the analyzed population was high, which is an important public health indicator. The most common hemoglobin variant was HbA/Increased structural Hb A2 and the mos frequent structural hemoglobinopathy was sickle cell trait. Capillary electrophoresis can discern any Hb variants present in the population.

  1. Placental morphology at different maternal hemoglobin levels: a histopathological study

    International Nuclear Information System (INIS)

    Kiran, N.; Zubair, A.; Malik, T.M.

    2015-01-01

    To evaluate the histopathological parameters of the placenta like weight, infarct and syncytial knots, at different maternal hemoglobin levels, in both qualitative and quantitative manner. Study design: Descriptive study Place and Duration of Study: Army Medical College, National University of Sciences and Technology in collaboration with Department of Obstetrics and Gynecology, Military Hospital, Rawalpindi, Pakistan, from December 2011 to November 2012. Patients and Methods: A total of 75 placentas were included, that were collected from full term mothers at the time of childbirth. Placental weight was taken without umbilical cord and gross placental infarcts were noted. Samples of placental tissue were taken and stained by haematoxylin and eosin (H and E). Microscopic study was done to evaluate placental infarcts and syncytial knots. Results: Mean placental weight at normal and low maternal hemoglobin was 581.67 ± 83.97g and 482.58 ± 104.74g respectively. Gross placental infarcts were found in all cases having low maternal hemoglobin concentration (60% cases). Syncytial knots were found in all placentas but they were considerably more at decreasing levels of maternal hemoglobin (19.79 ± 5.22). Conclusion: The present study showed decrease in placental weight, increase in placental infarcts and syncytial knot hyperplasia at low maternal hemoglobin concentration, displaying adaptive alterations. (author)

  2. Blood hemoglobin level and treatment outcome of early breast cancer

    International Nuclear Information System (INIS)

    Henke, M.; Sindlinger, F.; Ikenberg, H.; Gerds, T.; Schumacher, M.

    2004-01-01

    Background and purpose: to determine whether the blood hemoglobin concentration correlates with the prognosis of patients with early breast cancer and, if so, whether this is restricted to treatment modality. Patients and methods: data were collected retrospectively from patients with early breast cancer (T1,2 NO-2 MO) who underwent either breast-conserving surgery followed by adjuvant radiotherapy (BCS-RT; n = 96) or a modified radical mastectomy (MRM; n = 194). The effect of preoperative blood hemoglobin level, nodal status, histological grading and hormone receptor status on disease-free survival was determined for both treatment modalities using a cox regression model and visualized by kaplan-meier plots. Results: the blood hemoglobin concentration significantly correlated with disease-free survival of patients receiving BCS-RT (relative risk [RR]: 0.67 per g/dl; p = 0.007). This was independent of other known risk factors for breast cancer patients, as determined by multivariate analysis. By contrast, the blood hemoglobin level had no prognostic significance when patients were treated with MRM. Conclusion: blood hemoglobin concentration seems to affect the prognosis of patients with early breast cancer when a treatment schedule that includes radiotherapy is applied. Reduced radiosensitivity due to diminished tumor oxygenation may be the underlying cause. Confirmative trials and studies intended to elucidate the underlying mechanism are warranted. (orig.)

  3. The refractive index of human hemoglobin in the visible range

    International Nuclear Information System (INIS)

    Zhernovaya, O; Tuchin, V; Sydoruk, O; Douplik, A

    2011-01-01

    Because the refractive index of hemoglobin in the visible range is sensitive to the hemoglobin concentration, optical investigations of hemoglobin are important for medical diagnostics and treatment. Direct measurements of the refractive index are, however, challenging; few such measurements have previously been reported, especially in a wide wavelength range. We directly measured the refractive index of human deoxygenated and oxygenated hemoglobin for nine wavelengths between 400 and 700 nm for the hemoglobin concentrations up to 140 g l -1 . This paper analyzes the results and suggests a set of model functions to calculate the refractive index depending on the concentration. At all wavelengths, the measured values of the refractive index depended on the concentration linearly. Analyzing the slope of the lines, we determined the specific refraction increments, derived a set of model functions for the refractive index depending on the concentration, and compared our results with those available in the literature. Based on the model functions, we further calculated the refractive index at the physiological concentration within the erythrocytes of 320 g l -1 . The results can be used to calculate the refractive index in the visible range for arbitrary concentrations provided that the refractive indices depend on the concentration linearly.

  4. Biophysical Monitoring and dose response characteristics of irradiated hemoglobin

    International Nuclear Information System (INIS)

    Elshemey, W.M; Selim, N.S.; Desouky, O.

    2003-01-01

    The present work aims to move a step forward towards a deeper understanding of the scattering of x-ray, from lyophilized biological samples. Comparative study has been performed using LAXS and UV-visible spectrophotometry for monitoring the dose response characteristics of the hemoglobin molecule of irradiated blood. Blood samples were irradiated at doses ranging from 5 up to 100 Gy. Diluted hemoglobin solution was scanned in the UV- visible range (200-700 nm), and lyophilized hemoglobin was prepared for LAXS measurement. The radiation-induced changes in the hemoglobin structure have been evaluated. The LAXS profile of hemoglobin molecule is characterized by the presence of two peaks in the forward direction of scattering. These peaks were found to be sensitive to the variations in the molecular structure of a given sample. The obtained results suggest that the 1 s t peak, recorded at 4.65 o , is sensitive to the tertiary and quaternary structure of the globin part, while the major peak, recorded at 10.5 o , appeared to be related to its primary and secondary structure

  5. Post-transfusion hemoglobin values and patient blood management

    DEFF Research Database (Denmark)

    Moerman, Jan; Vermeulen, Edith; Van Mullem, Mia

    2018-01-01

    Objectives: The objective of this retrospective study was to evaluate the added value of communicating post-transfusion hemoglobin values to clinicians as a strategy to improve RBC utilization in a 500-bed hospital. Methods: The total number of RBC transfusions, the mean number of RBC units...... transfused per patient, the mean pre- and post-transfusion hemoglobin values, the ratio of patients transfused and the ratio of patients with a post-transfusion hemoglobin > 10.5 g/dL were calculated per service and per department for six months. The data were reported to each service and compared...... with the data of the department as peer group. The impact of this communication strategy was evaluated in the following six months. Results: In the six months pre-intervention, the mean post-transfusion hemoglobin value was 9.2 g/dL. Post-transfusion hemoglobin was > 10.5 g/dL in 13.4% of patients (112...

  6. Study of LAXS Profile of Hemoglobin from Irradiated Blood

    International Nuclear Information System (INIS)

    Selim, N.S.; Desouky, O.S.; Elshemey, W.M.

    2006-01-01

    The present work aims to move a step forward towards a deeper understanding of the scattering of x-ray, from lyophilized biological samples. Comparative study has been performed using low angle x-ray scattering (LAXS) and UV-visible spectrophotometry for monitoring the dose response characteristics of the hemoglobin molecule of irradiated blood. Blood samples were exposed to gamma rays, at doses ranging from 5 up to 100 Gy. Diluted hemoglobin solution was scanned in the UV-visible range (200-700 nm), and lyophilized hemoglobin was prepared for LAXS measurement. The radiation-induced changes in the hemoglobin structure have been evaluated. The LAXS profile of hemoglobin molecule is characterized by the presence of 2 peaks in the forward direction of scattering. These peaks were found to be sensitive to the variations in the molecular structure of a given sample. The obtained results suggest that the 1st peak, recorded at 4.65O (equivalent to momentum transfer, x= 0.526 nm-1), is sensitive to the tertiary and quaternary structure of the globin part, while the major peak, recorded at 10.5O (equivalent to momentum transfer, x= 1.189 nm-1), appeared to be related to its primary and secondary structure

  7. A microfluidic approach for hemoglobin detection in whole blood

    Science.gov (United States)

    Taparia, Nikita; Platten, Kimsey C.; Anderson, Kristin B.; Sniadecki, Nathan J.

    2017-10-01

    Diagnosis of anemia relies on the detection of hemoglobin levels in a blood sample. Conventional blood analyzers are not readily available in most low-resource regions where anemia is prevalent, so detection methods that are low-cost and point-of-care are needed. Here, we present a microfluidic approach to measure hemoglobin concentration in a sample of whole blood. Unlike conventional approaches, our microfluidic approach does not require hemolysis. We detect the level of hemoglobin in a blood sample optically by illuminating the blood in a microfluidic channel at a peak wavelength of 540 nm and measuring its absorbance using a CMOS sensor coupled with a lens to magnify the image onto the detector. We compare measurements in microchannels with channel heights of 50 and 115 μm and found the channel with the 50 μm height provided a better range of detection. Since we use whole blood and not lysed blood, we fit our data to an absorption model that includes optical scattering in order to obtain a calibration curve for our system. Based on this calibration curve and data collected, we can measure hemoglobin concentration within 1 g/dL for severe cases of anemia. In addition, we measured optical density for blood flowing at a shear rate of 500 s-1 and observed it did not affect the nonlinear model. With this method, we provide an approach that uses microfluidic detection of hemoglobin levels that can be integrated with other microfluidic approaches for blood analysis.

  8. Original Paper Chemical reactivity and supramolecular susceptibility ...

    African Journals Online (AJOL)

    Safou-Tchiana

    The morphological structure of Testulea gabonensis (T. ... That morphology is defined by elementary fibrils, microfibrils and microfibrillar bands (Habibi et al., 2012). Microfibrillar bands are composed with crystalline and non-crystalline regions of varying dimension. ...... cellulose in the silver tree fern Cyathea dealbata.

  9. Original Paper Chemical reactivity and supramolecular susceptibility ...

    African Journals Online (AJOL)

    Safou-Tchiana

    The morphological structure of Testulea gabonensis (T. ..... and 2d), and its cellulose trend to bundle in macrofribrils ..... relative strength differences supporting the ..... of microstructure in native celluloses .... crystallinity in wood by carbon-13.

  10. Radioprotective properties of some heterocyclic nitrogenous compounds against spectral modifications in hemoglobin of x-irradiated mice; Proprietes radioprotectrices de certains composes heterocycliques azotes sur les modifications spectrales de l'hemoglobine de souris irradiee

    Energy Technology Data Exchange (ETDEWEB)

    Roushdy, H; Pierotti, T; Polverelli, M [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Imidazole and benzimidazole are known for their radioprotective action. In this work, authors have studied the radioprotective action of these compounds on visible and ultra-violet hemoglobin absorption spectra obtained from mice after in vivo X-irradiation. Results compared to those obtained with cysteamine show: 1- a possible pharmacological action of the heterocyclic nitrogenous compounds on the {alpha} and {beta} bands (540 and 580 m{mu}). 2 - a significative variation of the ratio of the optical densities (580/540) after irradiation with hemoglobin of non and radio-protected mice. However, following a real drop of absorption maxima, the twenty-fifth day after irradiation, normal optical densities of each band are found again. A physico-chemical study would be necessary to understand the hemoglobin transformation after irradiation and perhaps, its possible radioprotection. (authors) [French] Les proprietes radioprotectrices de l'imidazole et du benzimidazole etant deja connues, les auteurs ont etudie l'action de ces produits sur les spectres d'absorption de l'hemoglobine dans le visible et le proche ultra-violet apres une irradiation in vivo de souris a dose letale. L'action de ces produits comparee a celle de la cysteamine utilisee dans les memes conditions a permis de constater: 1- l'action pharmacologique probable des heterocycles azotes sur les bandes {alpha} et {beta} situees a 540 et 580 m{mu}; 2 - qu'avec et sans radioprotecteurs, les modifications spectrales se traduisaient par des variations du rapport d'intensite d'absorption existant entre les bandes a 540 et 580 m{mu}. Toutefois, apres une chute des maxima d'absorption, ceux-ci retournent aux valeurs normales le vingt-cinquieme jour apres irradiation. Une etude physicochimique complementaire de l'hemoglobine permettrait de definir la nature exacte du changement apres irradiation et peut-etre son eventuelle radioprotection. (auteurs)

  11. Clues for discovering a new biological function of Vitreoscilla hemoglobin in organisms: potential sulfide receptor and storage.

    Science.gov (United States)

    Wang, Dandan; Liu, Li; Wang, Hui; Xu, Haoran; Chen, Lei; Ma, Li; Li, Zhengqiang

    2016-04-01

    The interaction between H2 S and Vitreoscilla hemoglobin (VHb) has been studied by UV-Vis and Resonance Raman spectroscopes to confirm the binding between the ligand and the protein. Kinetic constants, kon = 1.2 × 10(5) m(-1) ·s(-1) and koff = 2.5 × 10(-4) ·s(-1) , have been determined and compared with those for mammalian hemoglobins. Density Functional Theory study supports the binding of H2 S by modeling the configurations of HOMO dispersions. We hypothesized that VHb is involved in H2 S reception and storage. Different from Lucina pectinata HbI, a typical H2 S-binding hemoglobin, VHb, exhibits unusual properties on H2 S reactivity such as steric constraints playing an important role in modulating H2 S entry. A distinct mechanism of VHb interaction with H2 S is supported by studies of variant forms of VHb. © 2016 Federation of European Biochemical Societies.

  12. Recombinant hemoglobin II from Lucina pectinata: a large-scale method for hemeprotein expression in E. coli.

    Science.gov (United States)

    Ramos, Cacimar; Pietri, Ruth; Lorenzo, Wilmarie; Roman, Elddie; Granell, Laura B; Cadilla, Carmen L; López-Garriga, Juan

    2010-02-01

    Hemoglobin II from the clam L. pectinata is an O(2) reactive protein that remains oxygenated in the presence of other molecules. To determine the mechanism of ligand selection in this hemoglobin, rHbII was expressed in large quantities using an improved fermentation process. The highest protein yield was obtained by: transforming HbII into the BLi5 cells, inducing and supplementing the culture during the mid-log phase with 1 mM IPTG, 30 microg/mL hemin chloride and 1% glucose, and decreasing the temperature to 30 degrees C after induction. In addition, cell culture density was greatly enhanced by using glycerol, adding MgSO(4), supplementing the media with glucose after the glycerol was consumed and maintaining the dissolved oxygen at 35%. Under these conditions the maximum protein yield obtained was approximately 2,300 mg/L. The results indicate that rHbII is similar to the native protein. The protocol was validated with other hemoglobins, indicating that it can be extended to other hemeproteins.

  13. Hemoglobin is essential for normal growth of Arabidopsis organs

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Hunt, Peter; Dennis, Elizabeth

    2006-01-01

    In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silenced...... lines are viable but show a mutant phenotype affecting the regions where AHb1 is expressed. Arabidopsis lines with an insertional knockout or overexpression of AHb2, a class II 3-on-3 hemoglobin, were generated. Seedlings overexpressing AHb2 show enhanced survival of hypoxic stress. The AHb2 knockout...... lines develop normally. However, when AHb2 knockout is combined with AHb1 silencing, seedlings die at an early vegetative stage suggesting that the two 3-on-3 hemoglobins, AHb1 and AHb2, together play an essential role for normal development of Arabidopsis seedlings. In conclusion, these results...

  14. An Atomistic View on Human Hemoglobin Carbon Monoxide Migration Processes

    Science.gov (United States)

    Lucas, M. Fátima; Guallar, Víctor

    2012-01-01

    A significant amount of work has been devoted to obtaining a detailed atomistic knowledge of the human hemoglobin mechanism. Despite this impressive research, to date, the ligand diffusion processes remain unclear and controversial. Using recently developed computational techniques, PELE, we are capable of addressing the ligand migration processes. First, the methodology was tested on myoglobin's CO migration, and the results were compared with the wealth of theoretical and experimental studies. Then, we explored both hemoglobin tense and relaxed states and identified the differences between the α-and β-subunits. Our results indicate that the proximal site, equivalent to the Xe1 cavity in myoglobin, is never visited. Furthermore, strategically positioned residues alter the diffusion processes within hemoglobin's subunits and suggest that multiple pathways exist, especially diversified in the α-globins. A significant dependency of the ligand dynamics on the tertiary structure is also observed. PMID:22385860

  15. Reactive polymer fused deposition manufacturing

    Science.gov (United States)

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  16. Development of methods to measure hemoglobin adducts by gel electrophoresis - Preliminary results

    International Nuclear Information System (INIS)

    Sun, J.D.; McBride, S.M.

    1988-01-01

    Chemical adducts formed on blood hemoglobin may be a useful biomarker for assessing human exposures to these compounds. This paper reports preliminary results in the development of methods to measure such adducts that may be generally applicable for a wide variety of chemicals. Male F344/N rats were intraperitoneally injected with 14 C-BaP dissolved in corn oil. Twenty-four hours later, the rats were sacrificed. Blood samples were collected and globin was isolated. Globin protein was then cleaved into peptide fragments using cyanogen bromide and the fragments separated using 2-dimensional gel electrophoresis. The results showed that the adducted 14 C-globin fragments migrated to different areas of the gel than did unadducted fragments. Further research is being conducted to develop methods that will allow quantitation of separated adducted globin fragments from human blood samples without the use of a radiolabel. (author)

  17. Framework for reactive mass transport

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    Reactive transport modeling is applicable for a range of porous materials. Here the modeling framework is focused on cement-based materials, where ion diffusion and migration are described by the Poisson-Nernst-Planck equation system. A two phase vapor/liquid flow model, with a sorption hysteresis...... description is coupled to the system. The mass transport is solved by using the finite element method where the chemical equilibrium is solved explicitly by an operator splitting method. The IPHREEQC library is used as chemical equilibrium solver. The equation system, solved by IPHREEQC, is explained...

  18. Nitric Oxide in Plants: The Roles of Ascorbate and Hemoglobin

    Science.gov (United States)

    Wang, Xiaoguang; Hargrove, Mark S.

    2013-01-01

    Ascorbic acid and hemoglobins have been linked to nitric oxide metabolism in plants. It has been hypothesized that ascorbic acid directly reduces plant hemoglobin in support of NO scavenging, producing nitrate and monodehydroascorbate. In this scenario, monodehydroascorbate reductase uses NADH to reduce monodehydroascorbate back to ascorbate to sustain the cycle. To test this hypothesis, rates of rice nonsymbiotic hemoglobin reduction by ascorbate were measured directly, in the presence and absence of purified rice monodehydroascorbate reductase and NADH. Solution NO scavenging was also measured methodically in the presence and absence of rice nonsymbiotic hemoglobin and monodehydroascorbate reductase, under hypoxic and normoxic conditions, in an effort to gauge the likelihood of these proteins affecting NO metabolism in plant tissues. Our results indicate that ascorbic acid slowly reduces rice nonsymbiotic hemoglobin at a rate identical to myoglobin reduction. The product of the reaction is monodehydroascorbate, which can be efficiently reduced back to ascorbate in the presence of monodehydroascorbate reductase and NADH. However, our NO scavenging results suggest that the direct reduction of plant hemoglobin by ascorbic acid is unlikely to serve as a significant factor in NO metabolism, even in the presence of monodehydroascorbate reductase. Finally, the possibility that the direct reaction of nitrite/nitrous acid and ascorbic acid produces NO was measured at various pH values mimicking hypoxic plant cells. Our results suggest that this reaction is a likely source of NO as the plant cell pH drops below 7, and as nitrite concentrations rise to mM levels during hypoxia. PMID:24376554

  19. Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 2: guinea pigs challenged with soman.

    Science.gov (United States)

    Braue, Ernest H; Smith, Kelly H; Doxzon, Bryce F; Lumpkin, Horace L; Clarkson, Edward D

    2011-03-01

    This report, the second in a series of five, directly compares the efficacy of Reactive Skin Decontamination Lotion (RSDL), the M291 Skin Decontamination Kit (SDK), 0.5% bleach (sodium or calcium hypochlorite solution), 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents (SERPACWA) in the haired guinea pig model following exposure to soman (GD). In all experiments, guinea pigs were close-clipped and given anesthesia. In the decontamination experiments, the animals were challenged with GD and decontaminated after a 2-minute delay for the standard procedure or at longer times for the delayed-decontamination experiments. Positive control animals were challenged with GD in the same manner as the treated animals, except that they received no treatment. All animals were observed during the first 4 hours and again at 24 hours after exposure for signs of toxicity and death. The protective ratio (PR, defined as the median lethal dose [LD(50)] of the treatment group divided by the LD(50) of the untreated positive control animals) was calculated from the derived probit dose-response curves established for each treatment group and nontreated control animals. SERPACWA was applied as a thin coating (0.1 mm thick), allowed to dry for 15 minutes, and challenged with GD. After a 2-hour challenge, any remaining GD was blotted off the animal, but no additional decontamination was done. Significance in this report is defined as p decontamination experiments, the calculated PRs for RSDL, 0.5% bleach, 1% soapy water, and M291 SDK were 14, 2.7, 2.2, and 2.6, respectively. RSDL was by far the most effective decontamination product tested and significantly better than any of the other products. Bleach, soapy water, and the M291 SDK provided equivalent and modest protection. Since only RSDL provided at least good protection (PR > 5), it was the only decontamination product evaluated for delayed decontamination. In the GD delayed-decontamination experiments

  20. Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 1: guinea pigs challenged with VX.

    Science.gov (United States)

    Braue, Ernest H; Smith, Kelly H; Doxzon, Bryce F; Lumpkin, Horace L; Clarkson, Edward D

    2011-03-01

    This report, first in a series of five, directly compares the efficacy of 4 decontamination products and Skin Exposure Reduction Paste Against Chemical Warfare Agents (SERPACWA) in the haired guinea pig model following exposure to VX. In all experiments, guinea pigs were close-clipped and given anesthesia. In the decontamination experiments, the animals were challenged with VX and decontaminated after a 2-minute delay for the standard procedure or at longer times for the delayed-decontamination experiments. Skin Exposure Reduction Paste Against Chemical Warfare Agents was applied as a thin coating (0.1 mm thick), allowed to dry for 15 minutes, and challenged with VX. After a 2-hour challenge, any remaining VX was blotted off the animal, but no additional decontamination was done. Positive control animals were challenged with VX in the same manner as the treated animals, except that they received no treatment. In addition, the positive control animals were always challenged with 5% VX in isopropyl alcohol (IPA) solution, whereas the treatment animals received either neat (undiluted) VX or 5% VX in IPA solution. All animals were observed during the first 4 hours and again at 24 hours after exposure for signs of toxicity and death. The protective ratio (PR, defined as the median lethal dose [LD(50)] of the treatment group divided by the LD(50) of the untreated positive control animals) was calculated from the probit dose-response curves established for each treatment group and nontreated control animals. Significance in this report was defined as p decontamination experiments, the calculated PRs for Reactive Skin Decontamination Lotion (RSDL), 0.5% bleach, 1% soapy water, and the M291 Skin Decontamination Kit (SDK) were 66, 17, 16, and 1.1, respectively. Reactive Skin Decontamination Lotion was by far the most effective decontamination product tested and was significantly better than any of the other products. Bleach and soapy water provided equivalent and good (PR

  1. Independency of Fe ions in hemoglobin on immunomagnetic reduction assay

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.Y. [MagQu Co. Ltd., Sindian City, Taipei County 231, Taiwan (China); Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China); Lan, C.B.; Chen, C.H. [Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China); Horng, H.E. [Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China)], E-mail: phyfv001@scc.ntnu.edu.tw; Hong, Chin-Yih [Department of Mechanical Engineering, Nan-Kai University of Technology, Nantau County, Taiwan (China)], E-mail: cyhong@nkut.edu.tw; Yang, H.C. [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)], E-mail: hcyang@phys.ntu.edu.tw; Lai, Y.K. [College of Life Sciences, National Tsing Hua University, Hsinchu City 300, Taiwan (China); Department of Bioresources, Da-Yeh University, Changhua 515, Taiwan (China); Lin, Y.H.; Teng, K.S. [Apex Biotechnology Co. Ltd., Hsinchu City 300, Taiwan (China)

    2009-10-15

    Immunomagnetic reduction (IMR), which involves measuring the reduction in the ac magnetic susceptibility of magnetic reagents, is due to the association between bio-functionalized magnetic nanoparticles and target bio-molecules. This has been demonstrated for assaying proteins in solutions free of Fe ions, such as serum. In this work, the validity of IMR assay for samples rich in Fe ions like hemoglobin (Hb) is investigated. According to the results, there is no magnetic signal contributed by Fe-ion-rich Hb. Furthermore, the results show a high sensitivity in assaying hemoglobin A1c (HbA1c) by using IMR.

  2. Dichloromethane as an antisickling agent in sickle cell hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B.P.; North, B.E.

    1977-01-01

    Observations are reported that show that dichloromethane (DCM) does have a significant effect on the oxygen binding properties of hemoglobin. At DCM pressures high enough to prevent or reverse sickling, DCM would lower the oxygen affinity of hemoglobin, therefore reducing oxygen transport at low oxygen pressure. This decrease in oxygen affinity might, however, increase the oxygen availability to tissue as long as a sufficiently large lung P/sub O/sub 2// is maintained. Crystallographic studies show that site D4 has a much lower affinity for DCM than site D3 while sites D1 and D2 show a higher affinity.

  3. Independency of Fe ions in hemoglobin on immunomagnetic reduction assay

    International Nuclear Information System (INIS)

    Yang, S.Y.; Lan, C.B.; Chen, C.H.; Horng, H.E.; Hong, Chin-Yih; Yang, H.C.; Lai, Y.K.; Lin, Y.H.; Teng, K.S.

    2009-01-01

    Immunomagnetic reduction (IMR), which involves measuring the reduction in the ac magnetic susceptibility of magnetic reagents, is due to the association between bio-functionalized magnetic nanoparticles and target bio-molecules. This has been demonstrated for assaying proteins in solutions free of Fe ions, such as serum. In this work, the validity of IMR assay for samples rich in Fe ions like hemoglobin (Hb) is investigated. According to the results, there is no magnetic signal contributed by Fe-ion-rich Hb. Furthermore, the results show a high sensitivity in assaying hemoglobin A1c (HbA1c) by using IMR.

  4. Why are there two kinds of chain in tetrameric hemoglobins

    International Nuclear Information System (INIS)

    Ferreira, R.; Jacchieri, S.G.

    1981-01-01

    The homeotropic allosteric interactions responsible for the sigmoidal oxygen saturation curves of α 2 β 2 hemoglobins are shown to be larger than those of hypothetical hemoglobins obeying identical curves and built from equivalent chains, γ 4 . It is also shown that this ensures for the α 2 β 2 species a more dependable cooperativity, through a biologically significative temperature range. On the basis of these findings it is argued that the existence of two different globin chains is advantageous in an evolutionary sense. (Author) [pt

  5. Postoperative hemoglobin level in patients with femoral neck fracture

    OpenAIRE

    Nagra, Navraj; van Popta, Dmitri; Whiteside, Sigrid; Holt, Edward

    2018-01-01

    Objective: The aim of this study was to analyze the changes of hemoglobin levels in patients undergoing fixation for femoral neck fracture.Methods: Peroperative hemoglobin levels of patients who underwent either dynamic hip screw (DHS) fixation (n=74; mean age: 80 years) or hip hemiarthroplasty (n=104; mean age: 84 years) for femoral neck fracture was monitored.Results: There was a statistically and clinically significant mean drop of 31.1 g/L between the preoperative (D0) and postoperative D...

  6. Respiratory properties of blood and hemoglobin solutions from the piranha

    DEFF Research Database (Denmark)

    Wood, S.C.; Weber, Roy E.; Powers, D.

    1979-01-01

    1. Respiratory properties of piranha blood are distinguished from those of other fish primarily by the high CO2 buffering capacity (?HCO3/-?pH= 19.6mmol/l for oxygenated blood and 39.1 mmol/l for deoxygenated blood). 2. The concentration of nucleoside triphosphates (NTP) and the half-saturation t......) lowered the oxygen affinity of purified hemoglobin solutions, accounting for the size-dependent correlation ofP50 and NTP concentration in whole blood. 5. While similar in concentration in red cells, GTP is more potent than ATP as an allosteric modifier of hemoglobin function....

  7. Is Routine Ordering of Both Hemoglobin and Hematocrit Justifiable?

    Science.gov (United States)

    Addison, David J.

    1966-01-01

    In order to assess the value of routine simultaneous hemoglobin and hematocrit determinations, paired determinations in the following groups were studied: (1) 360 consecutive pairs from the hematology laboratory, (2) 95 pairs on general medical patients, (3) 43 pairs on 10 patients with upper gastrointestinal hemorrhage, and (4) 62 pairs on 10 patients with burns. These values were plotted on scatter diagrams. In the 560 pairs only three disparate determinations were found. It is concluded that, in most clinical situations, determination of the hemoglobin or the hematocrit as a screening procedure provides as much useful information as the simultaneous determination of both. PMID:5296947

  8. The Effect of High-Flux Hemodialysis on Hemoglobin Concentrations in Patients with CKD: Results of the MINOXIS Study

    Science.gov (United States)

    Schneider, Andreas; Drechsler, Christiane; Krane, Vera; Krieter, Detlef H.; Scharnagl, Hubert; Schneider, Markus P.; Wanner, Christoph

    2012-01-01

    Summary Background and objectives Hemodialysis treatment induces markers of inflammation and oxidative stress, which could affect hemoglobin levels and the response to erythropoietin use. This study sought to determine whether high-flux dialysis would help improve markers of renal anemia, inflammation, and oxidative stress compared with low-flux dialysis. Design, settings, participants, & measurements In a prospective, controlled study, 221 patients undergoing maintenance hemodialysis and receiving darbepoetin-alfa treatment (mean age, 66 years; 55% male) from 19 centers were screened in a 20-week run-in period of low-flux hemodialysis with a synthetic dialysis membrane. Thereafter, 166 patients were enrolled and randomly assigned to receive a synthetic high-flux membrane or to continue on low-flux dialysis for 52 weeks. Data on myeloperoxidase, oxidized LDL, high-sensitivity C-reactive protein, and the Malnutrition Inflammation Score were collected at baseline and after 52 weeks; routine laboratory data, such as hemoglobin, ferritin, and albumin, and the use of darbepoetin-alfa, were also measured in the run-in period. Results After 52 weeks, the low-flux and the high-flux groups did not differ with respect to hemoglobin (mean ± SD, 11.7±0.9 g/dl versus 11.7±1.1 g/dl; P=0.62) or use of darbepoetin-alfa (mean dosage ± SD, 29.8±24.8 μg/wk versus 26.0±31.1 μg/wk; P=0.85). Markers of inflammation, oxidative stress, or nutritional status also did not differ between groups. Conclusion Over 1 year, high-flux dialysis had no superior effects on hemoglobin levels or markers of inflammation, oxidative stress, and nutritional status. These data do not support the hypothesis that enhanced convective toxin removal would improve patient outcome. PMID:22096040

  9. Reactive Kripke semantics

    CERN Document Server

    Gabbay, Dov M

    2013-01-01

    This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, rea

  10. The effect of ionizing radiation on hemoglobin synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, S

    1972-01-01

    The effect of ionizing radiation on hemoglobin synthesis was studied and its effect on the quality of protein was discovered. The biological effects due to the changes in the structure of protein were also observed. The results of the experiments are presented.

  11. Recombinant bacterial hemoglobin alters metabolism of Aspergillus niger

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Diano, Audrey; Nielsen, Jens

    2009-01-01

    , the fungus will produce various by-products like organic acids and polyols. In order to circumvent this problem we here study the effects of the expression of a bacterial hemoglobin protein on the metabolism of A. niger. We integrated the vgb gene from Vitreoscilla sp. into the genome at the pyrA locus...

  12. Relationship of Hemoglobin to Arterial Oxygen Desaturation during Aeromedical Evacuation

    Science.gov (United States)

    2015-04-02

    2. REPORT TYPE Special Report 3. DATES COVERED (From – To) September 2012 – September 2014 4. TITLE AND SUBTITLE Relationship of Hemoglobin to...pressurized pulsatile, and hydrosurgery debridement methods for removing bacteria from fracture implants. Orthopedics. 2012; 35(7):e1046-e1050. 11. Burns TC

  13. Hemoglobin is essential for normal growth of Arabidopsis organs

    DEFF Research Database (Denmark)

    Hebelstrup, Kim Henrik; Hunt, Peter; Dennis, Elizabeth

    2006-01-01

    In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silence...... suggests that 3-on-3 hemoglobins apart from a role in hypoxic stress play a general role under non-stressed conditions where they are essential for normal development by controlling the level of NO which tends to accumulate in floral buds and leaf hydathodes of plants......In Arabidopsis thaliana, the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1-silenced...... lines are viable but show a mutant phenotype affecting the regions where AHb1 is expressed. Arabidopsis lines with an insertional knockout or overexpression of AHb2, a class II 3-on-3 hemoglobin, were generated. Seedlings overexpressing AHb2 show enhanced survival of hypoxic stress. The AHb2 knockout...

  14. Effect of some high consumption spices on hemoglobin glycation.

    Science.gov (United States)

    Naderi, G H; Dinani, Narges J; Asgary, S; Taher, M; Nikkhoo, N; Boshtam, M

    2014-01-01

    Formation of glycation products is major factor responsible in complications of diabetes. Worldwide trend is toward the use of natural additives in reducing the complications of diseases. Therefore, there is a growing interest in natural antiglycation found in plants. Herbs and spices are one of the most important targets to search for natural antiglycation from the point of view of safety. This study investigated the ability of some of the spices to inhibit glycation process in a hemoglobin/glucose model system and compared their potency with each other. For this subject the best concentration and time to incubate glucose with hemoglobin was investigated. Then the glycosylation degree of hemoglobin in the presence of extracts by the three concentrations 0.25, 0.5 and 1 μg/ml was measured colorimetrically at 520 nm. Results represent that some of extracts such as wild caraway, turmeric, cardamom and black pepper have inhibitory effects on hemoglobin glycation. But some of the extracts such as anise and saffron have not only inhibitory effects but also aggravated this event and have proglycation properties. In accordance with the results obtained we can conclude that wild caraway, turmeric, cardamom and black pepper especially wild caraway extracts are potent antiglycation agents, which can be of great value in the preventive glycation-associated complications in diabetes.

  15. Site-specific semisynthetic variant of human hemoglobin

    International Nuclear Information System (INIS)

    Hefta, S.A.; Lyle, S.B.; Busch, M.R.; Harris, D.E.; Matthew, J.B.; Gurd, F.R.N.

    1988-01-01

    A single round of Edman degradation was employed to remove the NH 2 -terminal valine from isolated α chains of human hemoglobin. Reconstitution of normal β chains with truncated or substituted α chains was used to form truncated (des-Val 1 -α1) and substituted ([[1- 13 C]Gly 1 ]α1) tetrameric hemoglobin analogs. Structural homology of the analogs with untreated native hemoglobin was established by using several spectroscopic and physical methods. Functional studies indicate that the reconstituted tetrameric protein containing des-Val 1 -α chains has a higher affinity for oxygen, is less influenced by chloride ions or 2,3-biphosphoglycerate, and shows lower cooperativity than native hemoglobin. These results confirm the key functional role of the α-chain NH 2 terminus in mediating cooperative oxygen binding across the dimer interface. The NH 2 -terminal pK/sub 1/2/ value was determined for the [ 13 C]glycine-substituted analog to be 7.46 +/- 0.09 at 15 0 C in the carbon monoxide-liganded form. This value, measured directly by 13 C NMR, agrees with the determination made by the less-direct 13 CO 2 method and confirms the role of this residue as a contributor to the alkaline Bohr effect; however, it is consistent with the presence of an NH 2 -terminal salt bridge to the carboxylate of Arg-141 of the α chain in the liganded form

  16. A Review on hematology and hemoglobin of fish

    Directory of Open Access Journals (Sweden)

    Ebru YILMAZ

    2015-01-01

    Full Text Available Determination of hematological parameters of fish living in natüre helps to recognize population and to determinate of pollutants in the aquatic environment. In this review, hematological parameters of fish, fish hemoglobin and the Bohr effect were given information.

  17. Influence of hemoglobin on non-invasive optical bilirubin sensing

    Science.gov (United States)

    Jiang, Jingying; Gong, Qiliang; Zou, Da; Xu, Kexin

    2012-03-01

    Since the abnormal metabolism of bilirubin could lead to diseases in the human body, especially the jaundice which is harmful to neonates. Traditional invasive measurements are difficult to be accepted by people because of pain and infection. Therefore, the real-time and non-invasive measurement of bilirubin is of great significance. However, the accuracy of currently transcutaneous bilirubinometry(TcB) is generally not high enough, and affected by many factors in the human skin, mostly by hemoglobin. In this talk, absorption spectra of hemoglobin and bilirubin have been collected and analyzed, then the Partial Least Squares (PLS) models have been built. By analyzing and comparing the Correlation and Root Mean Square Error of Prediction(RMSEP), the results show that the Correlation of bilirubin solution model is larger than that of the mixture solution added with hemoglobin, and its RMSEP value is smaller than that of mixture solution. Therefore, hemoglobin has influences on the non-invasive optical bilirubin sensing. In next step, it is necessary to investigate how to eliminate the influence.

  18. Glycated Hemoglobin Measurement and Prediction of Cardiovascular Disease

    DEFF Research Database (Denmark)

    Di Angelantonio, Emanuele; Gao, Pei; Khan, Hassan

    2014-01-01

    IMPORTANCE: The value of measuring levels of glycated hemoglobin (HbA1c) for the prediction of first cardiovascular events is uncertain. OBJECTIVE: To determine whether adding information on HbA1c values to conventional cardiovascular risk factors is associated with improvement in prediction of c...

  19. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glycosylated hemoglobin assay. 864.7470 Section 864.7470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7470...

  20. 21 CFR 864.7415 - Abnormal hemoglobin assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Abnormal hemoglobin assay. 864.7415 Section 864.7415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7415 Abnormal...