WorldWideScience

Sample records for hemodynamic stress region

  1. Hemodynamic stress testing using pacing tachycardia

    International Nuclear Information System (INIS)

    McKay, R.G.; Grossman, W.

    1986-01-01

    A trial pacing was first introduced in 1967 by Sowton and co-workers as a stress test which could be used in the cardiac catheterization laboratory to evaluate patients with schemic heart disease. Sowton noted that artificially increasing the heart rate by pacing the right atrium could usually induce angina in patients with symptomatic coronary artery disease. Since Sowton's original description, numerous investigators have described characteristic pacing-induced electrocardiographic changes, derangements of myocardial lactate metabolism, hemodynamic abnormalities, regional wall abnormalities, and defects in thallium scintigraphy. Although agreement on the overall usefulness of atrial pacing has not been uniform, it is clear that the technique can safely and reliably induce ischemia in most patients with coronary artery disease and that information obtained during the pacing-induced ischemic state can often be helpful in the diagnosis and treatment of the patient's underlying disease

  2. Life Satisfaction and Hemodynamic Reactivity to Mental Stress.

    Science.gov (United States)

    Schwerdtfeger, Andreas; Gaisbachgrabner, Kerstin; Traunmüller, Claudia

    2017-06-01

    Satisfaction with life has been considered a health-protective variable, which could impact cardiovascular morbidity and mortality. However, few studies have examined the physiological pathways involved in the potentially salutary effect of life satisfaction. It was hypothesized that life satisfaction should be associated with a cardiovascular response profile that signals challenge (i.e., higher cardiac output, lower peripheral resistance), rather than threat during a mental stress task. A sample of 75 healthy, medication-free men without clinical signs of psychological disorders who worked full-time and occupied highly demanding positions participated in this study. They performed two mental stress tasks (n-back) with varying degrees of difficulty. The tasks were embedded between a baseline and a recovery period. Cardiovascular and hemodynamic variables (heart rate, blood pressure, cardiac output, total peripheral resistance) were recorded by means of impedance cardiography. Individuals who were more satisfied with their life displayed higher cardiac output and lower peripheral resistance levels during the stress tasks, indicating a challenge rather than a threat profile. Findings were robust when controlled for physical activity, smoking, age, and depressive symptoms. Life satisfaction could be positively correlated with beneficial hemodynamic stress reactivity, indicating that individuals with higher levels of life satisfaction can more adaptively cope with stress. Increased cardiac output and decreased peripheral resistance during stress may constitute one route through which life satisfaction can benefit health.

  3. Hemodynamic effects of a novel pharmacologic stress agent, Higemine

    International Nuclear Information System (INIS)

    Zhang, X.L.; Liu, X.J.; Tao, Z.H.; Shi, R.F.

    2002-01-01

    Objective: Higenamine (dl-demethylcodaurine) (HG), which was isolated from aconitum japonicum. This study was to evaluate the hemodynamic effects of HG in animal study. Methods: We compared the hemodynamic effects of HG (0.5-4μg/min/kg) with Dobutamine (Dob) (5-30μg/min/kg) in 6 dogs: heart rate (HR), blood pressure (BP), coronary blood flow (CBF), myocardial oxygen consumption (MOC) were measured. Tolerability and safety of HG (1-500μg/mg/min) were evaluated in 8 dogs. Results: Comparison of hemodynamic effects between Dob an HG was presented. SBP: systolic blood pressure; DP: diastolic blood pressure; P<0.01; P<0.05. Diastolic BP slightly decreased, but systolic BP did not change significantly during HG infusion. There was no significant ECG abnormalities and side effects during HG infusion. Conclusion: HG might be a safe and useful pharmacologic stress agent, especially for patients with severe hypertension

  4. Use of lignocaine or nitroglycerine for blunting of hemodynamic stress response during electroconvulsive therapy

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Zahoor

    2014-01-01

    Conclusion: NTG provided more hemodynamic stability in post-ECT period as compared to lignocaine which only prevented a surge in HR without any effect on MAP. We conclude that NTG can safely be instituted for anaesthesia in ECT patients for prevention of hemodynamic stress response.

  5. Sex differences in the hemodynamic responses to mental stress: Effect of caffeine consumption.

    Science.gov (United States)

    Farag, Noha H; Vincent, Andrea S; McKey, Barbara S; Al'Absi, Mustafa; Whitsett, Thomas L; Lovallo, William R

    2006-07-01

    The effect of caffeine on stress responses was compared in 25 men and 22 women in a 2-week placebo-controlled, double-blind, randomized crossover trial. On each week, participants abstained from all dietary sources of caffeine before undergoing a 6-h laboratory protocol under placebo or caffeine exposure followed by a 30-min mental stressor with blood pressure (BP) and cardiovascular hemodynamic assessments. On the placebo session, men and women showed a significant BP increase to stress, although women had significant cardiac responses whereas men had vascular responses. Caffeine ingestion before stress caused both men and women to have enhanced hemodynamic responses to the stressor associated with an increase in cardiac index and a drop in the peripheral resistance index. Caffeine enhances the cardiovascular fight-or-flight response pattern to stress in men and women.

  6. The hemodynamics in intracranial aneurysm ruptured region with active contrast leakage during computed tomography angiography

    Science.gov (United States)

    Li, Ming-Lung; Wang, Yi-Chou; Liou, Tong-Miin; Lin, Chao-An

    2014-10-01

    Precise locations of rupture region under contrast agent leakage of five ruptured cerebral artery aneurysms during computed tomography angiography, which is to our knowledge for the first time, were successfully identified among 101 patients. These, together with numerical simulations based on the reconstructed aneurysmal models, were used to analyze hemodynamic parameters of aneurysms under different cardiac cyclic flow rates. For side wall type aneurysms, different inlet flow rates have mild influences on the shear stresses distributions. On the other hand, for branch type aneurysms, the predicted wall shear stress (WSS) correlates strongly with the increase of inlet vessel velocity. The mean and time averaged WSSes at rupture regions are found to be lower than those over the surface of the aneurysms. Also, the levels of the oscillatory shear index (OSI) are higher than the reported threshold value, supporting the assertion that high OSI correlates with rupture of the aneurysm. However, the present results also indicate that OSI level at the rupture region is relatively lower.

  7. Computational and experimental assessment of influences of hemodynamic shear stress on carotid plaque.

    Science.gov (United States)

    Zhou, Hui; Meng, Long; Zhou, Wei; Xin, Lin; Xia, Xiangxiang; Li, Shuai; Zheng, Hairong; Niu, Lili

    2017-07-29

    Studies have identified hemodynamic shear stress as an important determinant of endothelial function and atherosclerosis. In this study, we assess the influences of hemodynamic shear stress on carotid plaques. Carotid stenosis phantoms with three severity (30, 50, 70%) were made from 10% polyvinyl alcohol (PVA) cryogel. The phantoms were placed in a pulsatile flow loop with the same systolic/diastolic phase (35/65) and inlet flow rate (16 L/h). Ultrasonic particle imaging velocimetry (Echo PIV) and computational fluid dynamics (CFD) were used to calculate the velocity profile and shear stress distribution in the carotid stenosis phantoms. Inlet/outlet boundary conditions used in CFD were extracted from Echo PIV experiments to make sure that the results were comparable. Echo PIV and CFD results showed that velocity was largest in 70% than those in 30 and 50% at peak systole. Echo PIV results indicated that shear stress was larger in the upper wall and the surface of plaque than in the center of vessel. CFD results demonstrated that wall shear stress in the upstream was larger than in downstream of plaque. There was no significant difference in average velocity obtained by CFD and Echo PIV in 30% (p = 0.25). Velocities measured by CFD in 50% (93.01 cm/s) and in 70% (115.07 cm/s) were larger than those by Echo PIV in 50% (60.26 ± 5.36 cm/s) and in 70% (89.11 ± 7.21 cm/s). The results suggested that Echo PIV and CFD could obtain hemodynamic shear stress on carotid plaques. Higher WSS occurred in narrower arteries, and the shoulder of plaque bore higher WSS than in bottom part.

  8. Emotional, neurohormonal, and hemodynamic responses to mental stress in Tako-Tsubo cardiomyopathy.

    Science.gov (United States)

    Smeijers, Loes; Szabó, Balázs M; van Dammen, Lotte; Wonnink, Wally; Jakobs, Bernadette S; Bosch, Jos A; Kop, Willem J

    2015-06-01

    Tako-Tsubo cardiomyopathy (TTC) is characterized by apical ballooning of the left ventricle and symptoms and signs mimicking acute myocardial infarction. The high catecholamine levels in the acute phase of TTC and common emotional triggers suggest a dysregulated stress response system. This study examined whether patients with TTC show exaggerated emotional, neurohormonal, and hemodynamic responses to mental stress. Patients with TTC (n = 18; mean age 68.3 ± 11.7, 78% women) and 2 comparison groups (healthy controls, n = 19; mean age 60.0 ± 7.6, 68% women; chronic heart failure, n = 19; mean age 68.8 ± 10.1, 68% women) performed a structured mental stress task (anger recall and mental arithmetic) and low-grade exercise with repeated assessments of negative emotions, neurohormones (catecholamines: norepinephrine, epinephrine, dopamine, hypothalamic-pituitary-adrenal axis hormones: adrenocorticotropic hormone [ACTH], cortisol), echocardiography, blood pressure, and heart rate. TTC was associated with higher norepinephrine (520.7 ± 125.5 vs 407.9 ± 155.3 pg/ml, p = 0.021) and dopamine (16.2 ± 10.3 vs 10.3 ± 3.9 pg/ml, p = 0.027) levels during mental stress and relatively low emotional arousal (p stress and exercise were elevated in TTC compared with healthy controls. No evidence was found for a dysregulated hypothalamic-pituitary-adrenal axis or hemodynamic responses. Patients with TTC showed blunted emotional arousal to mental stress. This study suggests that catecholamine hyper-reactivity and not emotional hyper-reactivity to stress is likely to play a role in myocardial vulnerability in TTC. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. [Indicators of general, cerebral, and regional hemodynamics in myopic schoolchildren aged 13-15 years].

    Science.gov (United States)

    Iastrebtseva, T A; Chuprov, A D; Plotnikova, Iu A

    2002-01-01

    110 schoolchildren aged 13-15 years were examined. 24 of them had pseudomyopia and 6 patients myopia of various forms. A control group consisted of 38 children. Central hemodynamics was estimated by average dynamic pressure, cerebral hemodynamics--by rheoencephalography, regional hemodynamics--by dopplerography of the internal carotid and suprapubic arteries. It was found that with myopia progression, the average dynamic pressure positively comes down with reduction of reographic waves amplitude in rheogram. The blood flow rate in internal carotid and suprapubic arteries has no substantial impact on myopia course. Predisposition to arterial hypotension is a risk factor for myopia development and progression.

  10. Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J; Hartman, J; Rodriguez, J; Maitland, D

    2008-01-16

    Aneurysm re-growth and rupture can sometimes unexpectedly occur following treatment procedures that were initially considered to be successful at the time of treatment and post-operative angiography. In some cases, this can be attributed to surgical clip slippage or endovascular coil compaction. However, there are other cases in which the treatment devices function properly. In these instances, the subsequent complications are due to other factors, perhaps one of which is the post-treatment hemodynamic stress. To investigate whether or not a treatment procedure can subject the parent artery to harmful hemodynamic stresses, computational fluid dynamics simulations are performed on a patient-specific basilar aneurysm and bifurcation before and after a virtual endovascular treatment. The simulations demonstrate that the treatment procedure produces a substantial increase in the wall shear stress. Analysis of the post-treatment flow field indicates that the increase in wall shear stress is due to the impingement of the basilar artery flow upon the aneurysm filling material and to the close proximity of a vortex tube to the artery wall. Calculation of the time-averaged wall shear stress shows that there is a region of the artery exposed to a level of wall shear stress that can cause severe damage to endothelial cells. The results of this study demonstrate that it is possible for a treatment procedure, which successfully excludes the aneurysm from the vascular system and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to the immediately adjacent vessel wall.

  11. Time-dependent 3D simulations of the hemodynamics in a stented coronary artery

    International Nuclear Information System (INIS)

    Faik, Isam; Mongrain, Rosaire; Leask, Richard L; Rodes-Cabau, Josep; Larose, Eric; Bertrand, Olivier

    2007-01-01

    Stenting is becoming the major interventional cardiology procedure worldwide. However restenosis remains a major limitation to the effectiveness of stents. Alterations to the local hemodynamics in the stented segment of the artery could be a potential factor in the development of in-stent restenosis. The characterization of wall shear stress and of blood flow patterns in a stented artery is therefore necessary for a good understanding of the role of hemodynamics in the development of in-stent restenosis. We have used a time-dependent 3D numerical model of a stented coronary artery to study the characteristics of the blood flow and the shear stress distribution. Our results show that the presence of the stent produces significant secondary flow that is limited to an annulus in the near wall region. Low shear stress zones were localized in the vicinity of the struts while the tips of the struts exhibited high values of shear stress. These results support the hypothesis that local hemodynamics may affect the development of in-stent restenosis and could influence the choice of stent geometries for future stent designs

  12. Collateral circulation alters downstream hemodynamic stress caused by intracranial atherosclerotic stenosis.

    Science.gov (United States)

    Liu, Xin; Dornbos, David; Pu, Yuehua; Leng, Xinyi; Song, Ligang; Jia, Baixue; Pan, Yuesong; Wang, David; Miao, Zhongrong; Wang, Yilong; Liu, Liping; Wang, Yongjun

    2017-06-01

    Fractional flow reserve (FFR) accurately predicts the degree of stenosis and is now widely used to identify clinically significant severe coronary artery lesions. In the current study, we utilized a similar indicator, fractional flow (FF), to determine the hemodynamic impact of symptomatic intracranial atherosclerotic stenosis (ICAS) and to assess the correlation of FF with the severity of stenosis and collateral circulation. Patients with symptomatic ICAS (70-99% stenosis) confirmed on digital subtraction angiography (DSA) were consecutively recruited. FF was obtained during DSA examination with the use of pressure sensors and was measured as a ratio, comparing measurements distal to an ICAS lesion (Pd) and within the aorta (Pa). The degree of leptomeningeal collateralization was graded from zero (absent) to four (complete compensatory). The correlation between FF, anatomical stenosis, and collateral status was then analyzed. Twenty-five patients with a mean age of 55.6 years were analyzed. The median percentage of stenosis and median FF were 82.3 and 0.68%, respectively. Eleven patients were found to have poor collateralization (grade 0-2), and fourteen patients were identified with good collateral circulation (grade 3-4). Overall, the hemodynamic impact of an atherosclerotic lesions worsened (decreased FF) as the percentage of stenosis increased, although this did not reach statistical significance (r = -0.398, p = 0.06). However, the status of collateralization significantly altered this correlation, worsening the hemodynamic impact in patients with poor collateral circulation (r = -0.677, p = 0.032). There was no difference in patients with good collateral circulation (r = -0.279, p = 0.356). An anatomically severe (70-99%) symptomatic ICAS lesion may generate significant hemodynamic stress downstream as assessed by the indicator FF, particularly in patients with poor collateral circulation. Further, good collateralization may mitigate this

  13. Hemodynamic Simulations in Dialysis Access Fistulae

    Science.gov (United States)

    McGah, Patrick; Leotta, Daniel; Beach, Kirk; Riley, James; Aliseda, Alberto

    2010-11-01

    Arteriovenous fistulae are created surgically to provide adequate access for dialysis in patients with End-Stage Renal Disease. It has long been hypothesized that the hemodynamic and mechanical forces (such as wall shear stress, wall stretch, or flow- induced wall vibrations) constitute the primary external influence on the remodeling process. Given that nearly 50% of fistulae fail after one year, understanding fistulae hemodynamics is an important step toward improving patency in the clinic. We perform numerical simulations of the flow in patient-specific models of AV fistulae reconstructed from 3D ultrasound scans with physiologically-realistic boundary conditions also obtained from Doppler ultrasound. Comparison of the flow features in different geometries and configurations e.g. end-to-side vs. side-to-side, with the in vivo longitudinal outcomes will allow us to hypothesize which flow conditions are conducive to fistulae success or failure. The flow inertia and pulsatility in the simulations (mean Re 700, max Re 2000, Wo 4) give rise to complex secondary flows and coherent vortices, further complicating the spatio- temporal variability of the wall pressure and shear stresses. Even in mature fistulae, the anastomotic regions are subjected to non-physiological shear stresses (>10.12pcPa) which may potentially lead to complications.

  14. [Stress in nurses at a hemodynamics ward in Rio Grande do Sul, Brazil].

    Science.gov (United States)

    Linch, Graciele Fernanda da Costa; Guido, Laura de Azevedo

    2011-03-01

    This study aimed to evaluate the relationship between stress and symptoms reported by nurses working in units hemodynamics. Data were collected through a questionnaire. For analysis, the results were considered statistically significant if p nurses with a predominance of females (90.5%) and average age of 35.24 (+/- 8.21) years. Most participants werepostgraduate (77.8%) and did not have another job (77.8%). In relation to stress, 52.4% of nurses had an average between 1.11 and 1.97, classified as medium stress, and the critical situations domain presented the highest score (1.63 +/- 0.29). Regarding symptoms, the domain skeletal muscle had a higher average (1.39 +/- 0.94). In this study, there was high significant positive correlation between stress and symptoms (r = 0.629, p nurses.

  15. The Effect of Hemodynamics on Cerebral Aneurysm Morphology

    Science.gov (United States)

    Metcalfe, Ralph; Mantha, Aishwarya; Karmonik, Christof; Strother, Charles

    2004-11-01

    One of the difficulties in applying principles of hemodynamics to the study of blood flow in aneurysms are the drastic variations in possible shape of both the aneurysms and the parent arteries in the region of interest. We have taken data from three para-opthalmic internal carotid artery aneurysms using 3D-digital subtraction angiography (3D-DSA) and performed CFD simulations of steady and unsteady flows through the three different cases using the same pressure gradients and pulsatile flow waveforms (based on the Ku model for flow through the Carotid bifurcation). We have found that the total pressure differential within the aneurysms is consistent with the direction of flow, and that the dynamic pressure gradient within the aneurysm is very small compared with the static pressure variations. Wall shear stresses were highest near regions of sharp arterial curvature, but always remained low inside the aneurysm. These results suggest a more complex role for hemodynamics in aneurysm generation, growth and rupture.

  16. Effect of cannabinoids CB1 receptors blockade on hemodynamic parameters and endothelial function at the immobilization stress in the experiment

    Directory of Open Access Journals (Sweden)

    S. V. Gavreliuk

    2017-12-01

    Full Text Available The aim of the study was to evaluate the response of hemodynamic parameters and changes in endothelial function in modeling of CB1 cannabinoid receptors blockade in chronic stress. Materials and мethods. The study was performed on four groups of hundred-day-old rats, which were examined by ultrasonic scanning during the ten-day period of the experiment. The first group consisted of intact animals; the second group – animals, which were exposed to immobilization stress; the third – animals which were given a solution of rimonabant hydrochloride at the rate of 10 mg×kg-1 of animal weight per day daily per os; the fourth group consisted of animals which daily received a solution of rimonabant hydrochloride at the rate of 10 mg×kg-1 of animal weight per day and were exposed to immobilization stress. The intraluminal vessel diameter, the intima-media complex thickness, endothelium-dependent and endothelium-independent dilation were quantified in the ultrasound examination. Quantitative characteristics of the blood flow were studied: peak systolic velocity, end diastolic velocity, resistive index and peak-systolic/end-diastolic ratio, and estimated mean blood flow velocity. Results. It has been found that the effect of chronic immobilization stress in 100-day-old male rats causes intima-media complex structure and thickness change, endothelial dysfunction and increase in the abdominal aorta intraluminal diameter. Hemodynamics changes are characterized by a decrease in the average blood flow velocity and an increase in the values of indices characterizing the vascular wall peripheral resistance. Prolonged blockade of cannabinoids CB1 receptors leads to endothelial dysfunction development, a decrease in the intraluminal diameter of the abdominal aorta and a decrease in the average blood flow velocity while vascular wall elastic properties maintaining. This affects the sensitivity of cardiovascular system to nitrogen oxide, which is manifested by

  17. Hemodynamics Modeling and Simulation of Anterior Communicating Artery Aneurysms

    Directory of Open Access Journals (Sweden)

    Jianjun Li

    2014-07-01

    Full Text Available It is a general agreement that hemodynamics plays very important role in the initiation, growth, and rupture of cerebral aneurysms and hemodynamics in the anterior communicating artery aneurysms is considered the most complex in all cerebral aneurysms and it is difficult to find some reasonable relationship between the hemodynamics parameters and the rupture risk. In this paper, the 3D geometries of four anterior communicating artery aneurysms were generated from the CTA data and the computational models with bilateral feeding arteries for the four aneurysms were constructed. The blood flow was simulated by computational fluid dynamics software and the hemodynamics parameters such as velocity, wall shear stress, and oscillatory shear index were calculated. The following results were observed: one of the four models only needs the left feeding artery; the max normalized wall shear stress locates at the aneurysmal neck of the largest aneurysm; the max oscillatory shear index locates at the aneurysmal sac of the largest aneurysm. The conclusion was drawn that the anterior communicating artery aneurysm has higher rupture risk from the hemodynamics viewpoint if the max wall shear stress locates at the neck and the max oscillatory shear index locates at the dome.

  18. The effect of tourniquet deflation on hemodynamics and regional cerebral oxygen saturation in aged patients undergoing total knee replacement surgery

    OpenAIRE

    Song, Inkyung; Kim, Dong Yeon; Kim, Youn Jin

    2012-01-01

    Background Inflation and deflation of a pneumatic tourniquet used in total knee replacement surgery induces various changes in patient's hemodynamic and metabolic status, which may result in serious complications, especially in aged patients. Near-infrared spectroscopy (NIRS) is a monitoring device designed to estimate the regional cerebral oxygen saturation. We evaluated the effect of tourniquet deflation on hemodynamics and regional cerebral oxygen saturation in aged patients undergoing tot...

  19. Systemic and regional hemodynamic effects of enalaprilat infusion in experimental normotensive sepsis

    Directory of Open Access Journals (Sweden)

    L. Rahal

    Full Text Available Angiotensin-converting enzyme inhibitors have been shown to improve splanchnic perfusion in distinct shock states. We hypothesized that enalaprilat potentiates the benefits of early fluid resuscitation in severe experimental sepsis, particularly in the splanchnic region. Anesthetized and mechanically ventilated mongrel dogs received an intravenous infusion of live Escherichia coli over a period of 30 min. Thereafter, two interventions were performed: fluid infusion (normal saline, 32 mL/kg over 30 min and enalaprilat infusion (0.02 mg kg-1 min-1 for 60 min in randomized groups. The following groups were studied: controls (fluid infusion, N = 4, E1 (enalaprilat infusion followed by fluid infusion, N = 5 and E2 (fluid infusion followed by enalaprilat infusion, N = 5. All animals were observed for a 120 min after bacterial infusion. Mean arterial pressure, cardiac output (CO, portal vein blood flow (PVBF, systemic and regional oxygen-derived variables, and lactate levels were measured. Rapid and progressive reductions in CO and PVBF were induced by the infusion of live bacteria, while minor changes were observed in mean arterial pressure. Systemic and regional territories showed a significant increase in oxygen extraction and lactate levels. Widening venous-arterial and portal-arterial pCO2 gradients were also detected. Fluid replacement promoted transient benefits in CO and PVBF. Enalaprilat after fluid resuscitation did not affect systemic or regional hemodynamic variables. We conclude that in this model of normotensive sepsis inhibition of angiotensin-converting enzyme did not interfere with the course of systemic or regional hemodynamic and oxygen-derived variables.

  20. Hemodynamic measurement using four-dimensional phase-contrast MRI: Quantification of hemodynamic parameters and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Ho Jin; Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang (Korea, Republic of); Kim, Guk Bae; Kweon, Ji Hoon; Kim, Young Hak; Lee, Deok Hee; Yang, Dong Hyun; KIm, Nam Kug [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2016-07-15

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  1. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Hojin [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Guk Bae [Asan Institute of Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kweon, Jihoon [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Sang Joon [POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Kim, Young-Hak [Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Lee, Deok Hee; Yang, Dong Hyun [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Kim, Namkug [Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of); Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of)

    2016-11-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.

  2. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Naoki eIso

    2016-01-01

    Full Text Available The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME and motor imagery (MI by using near-infrared spectroscopy (NIRS, as this technique is more clinically expedient than established methods (e.g. fMRI. Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb concentration. Oxy-Hb in the somatosensory motor cortex (SMC increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA and premotor area (PMA, oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS.

  3. Hemodynamic mechanisms of the attenuated blood pressure response to mental stress after a single bout of maximal dynamic exercise in healthy subjects

    Directory of Open Access Journals (Sweden)

    F.J. Neves

    2012-07-01

    Full Text Available To determine the hemodynamic mechanisms responsible for the attenuated blood pressure response to mental stress after exercise, 26 healthy sedentary individuals (age 29 ± 8 years underwent the Stroop color-word test before and 60 min after a bout of maximal dynamic exercise on a treadmill. A subgroup (N = 11 underwent a time-control experiment without exercise. Blood pressure was continuously and noninvasively recorded by infrared finger photoplethysmography. Stroke volume was derived from pressure signals, and cardiac output and peripheral vascular resistance were calculated. Perceived mental stress scores were comparable between mental stress tests both in the exercise (P = 0.96 and control (P = 0.24 experiments. After exercise, the blood pressure response to mental stress was attenuated (pre: 10 ± 13 vs post: 6 ± 7 mmHg; P 0.05. In conclusion, a single bout of maximal dynamic exercise attenuates the blood pressure response to mental stress in healthy subjects, along with lower stroke volume and cardiac output, denoting an acute modulatory action of exercise on the central hemodynamic response to mental stress.

  4. Immediate effects of chest physiotherapy on hemodynamic, metabolic, and oxidative stress parameters in subjects with septic shock.

    Science.gov (United States)

    dos Santos, Rafael S; Donadio, Márcio V F; da Silva, Gabriela V; Blattner, Clarissa N; Melo, Denizar A S; Nunes, Fernanda B; Dias, Fernando S; Squizani, Eamim D; Pedrazza, Leonardo; Gadegast, Isabella; de Oliveira, Jarbas R

    2014-09-01

    Septic shock presents as a continuum of infectious events, generating tissue hypoxia and hypovolemia, and increased oxidative stress. Chest physiotherapy helps reduce secretion, improving dynamic and static compliance, as well as improving secretion clearance and preventing pulmonary complications. The purpose of this study was to evaluate the immediate effect of chest physiotherapy on hemodynamic, metabolic, inflammatory, and oxidative stress parameters in subjects in septic shock. We conducted a quasi-experimental study in 30 subjects in septic shock, who underwent chest physiotherapy, without associated heart diseases and with vasopressors stress were evaluated before and 15 min after physiotherapy. Thirty subjects with a mean age of 61.8 ± 15.9 y and Sequential Organ Failure Assessment of 8 (range 6-10) were included. Chest physiotherapy caused a normalization of pH (P = .046) and P(aCO2) (P = .008); reduction of lactate (P = .001); and an increase in P(aO2) (P = .03), arterial oxygen saturation (P = .02), and P(aO2)/F(IO2) (P = .034), 15 min after it was applied. The results indicate that chest physiotherapy has immediate effects, improving oxygenation and reducing lactate and oxidative damage in subjects in septic shock. However, it does not cause alterations in the inflammatory and hemodynamic parameters. Copyright © 2014 by Daedalus Enterprises.

  5. The effect of tourniquet deflation on hemodynamics and regional cerebral oxygen saturation in aged patients undergoing total knee replacement surgery.

    Science.gov (United States)

    Song, Inkyung; Kim, Dong Yeon; Kim, Youn Jin

    2012-11-01

    Inflation and deflation of a pneumatic tourniquet used in total knee replacement surgery induces various changes in patient's hemodynamic and metabolic status, which may result in serious complications, especially in aged patients. Near-infrared spectroscopy (NIRS) is a monitoring device designed to estimate the regional cerebral oxygen saturation. We evaluated the effect of tourniquet deflation on hemodynamics and regional cerebral oxygen saturation in aged patients undergoing total knee replacement surgery, using NIRS. Twenty-eight American Society of Anesthesiologists physical status I or II patients, over the age of sixty-five years undergoing total knee replacement surgery, were included. Under general anesthesia, the mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), stroke volume (SV), and regional cerebral oxygen saturation (rSO(2)) were recorded before induction of anesthesia and every 2 min after tourniquet deflation for 20 min. Arterial blood gas analysis was performed 5 min before, in addition to 0, and 10 min after tourniquet deflation. The decrease of rSO(2) was not significant during 20-min deflation period. MAP, CO and SV showed significant decrease during 2 to 12, 4 to 6 and 2 to 6-min period after tourniquet deflation, respectively (P deflation caused significant changes in hemodynamic and metabolic status, but not in regional cerebral oxygen saturation. It is recommended to monitor neurologic status, as well as hemodynamic and metabolic status to avoid serious complications, especially in aged patients.

  6. [Regional cerebral oxygen saturation as a marker of hemodynamic state following cardiac surgery].

    Science.gov (United States)

    García-Hernández, J A; Aldemira-Liz, A; Martínez-López, A I; Cayuela, A; Charlo-Molina, M T; Cano-Franco, J; Loscertales-Abril, M

    2013-10-01

    Regional cerebral oxygen saturation (rSO₂) is a measure of the general state of perfusion and oxygenation. We aim to analyze the relationship between this and various hemodynamic and respiratory parameters. Forty-three patients, operated on between October 2011 and July 2012, were included in this prospective observational descriptive study. The following parameters were measured: mean arterial pressure, both arterial and central venous oxygen saturation and partial pressures of oxygen and carbon dioxide, and lactate levels. From these parameters, the oxygenation index and the oxygen extraction ratio were calculated. These measurements were studied to evaluate whether rSO₂ correlated significantly with the other parameters. The average age and weight of the patients were 27.3 months and 9.2 kg, respectively. The rSO₂ correlated positively with both central venous oxygen saturation (r=0.73, P 0.4) between the rSO₂ and central venous oxygen saturation, and between the rSO₂ and oxygen extraction ratio. Regional cerebral oxygen saturation correlates well with hemodynamic parameters - mean arterial pressure, venous saturation, and the tissue oxygen extraction. However, it does not correlate with respiratory parameters. Copyright © 2012 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  7. Divergent effects of laughter and mental stress on arterial stiffness and central hemodynamics.

    Science.gov (United States)

    Vlachopoulos, Charalambos; Xaplanteris, Panagiotis; Alexopoulos, Nikolaos; Aznaouridis, Konstantinos; Vasiliadou, Carmen; Baou, Katerina; Stefanadi, Elli; Stefanadis, Christodoulos

    2009-05-01

    To investigate the effect of laughter and mental stress on arterial stiffness and central hemodynamics. Arterial stiffness and wave reflections are independent predictors of cardiovascular risk. Chronic psychological stress is an independent risk factor for cardiovascular events, whereas acute stress deteriorates vascular function. Eighteen healthy individuals were studied on three occasions, according to a randomized, single-blind, crossover, sham procedure-controlled design. The effects of viewing a 30-minute segment of two films inducing laughter or stress were assessed. Carotid-femoral pulse wave velocity was used as an index of arterial stiffness; augmentation index was used as a measure of wave reflections. Laughter decreased pulse wave velocity (by 0.30 m/sec, p = .01), and augmentation index (by 2.72%, p = .05). Conversely, stress increased pulse wave velocity (by 0.29 m/sec, p = .05) and augmentation index (by 5.1%, p = .005). Laughter decreased cortisol levels by 1.67 microg/dl (p = .02), soluble P-selectin by 26 ng/ml (p = .02) and marginally von Willebrand factor (by 2.4%, p = .07) and increased total oxidative status (by 61 micromol/L, p laughter) and negative (stress) behavioral interventions have divergent acute effects on arterial stiffness and wave reflections. These findings have important clinical implications extending the spectrum of lifestyle modifications that can ameliorate arterial function.

  8. Evaluation of hemodynamic significance of coronary fistulae. Diagnostic integration between coronary angiography and stress/rest myocardial scintigraphy

    International Nuclear Information System (INIS)

    Rubini, G.; Sebastiani, M.

    2000-01-01

    It is here reported on the importance of the integration of data obtained from digital coronary angiography and stress/rest 99m Tc sestamibi myocardial perfusion single photon emission tomography in evaluationing the hemodynamic significance of coronary arteriovenous fistulae. Coronary fistulae were detected with coronary angiography in 9 patients. All patients underwent clinical examination, trans thoracic echocardiography, stress electrocardiogram and stress/rest 99m Tc sestamibi myocardial perfusion single photon emission tomography. Stress/rest 99m Tc sestamibi myocardial perfusion single photon tomography and stress electrocardiogram showed stress-induced myocardial ischemia in 2 patients. The first patient with familial predisposition and risk factors for ischemic heart disease presented a mesocardic heart murmur on clinical examination. At stress ECG (125 Watt, 153 b/m max frequency 93%, arterial pressure 230 mmHg, max frequency pressure product 35200) ischemic alterations were recorded at the first minute of the second stage of the Bruce protocol. Coronary angiography detected a circumflex artery fistula in the coronary sinus. Stress/rest 99m Tc sestamibi myocardial perfusion single photon emission tomography for the evaluation of stress/rest perfusion detected a reversible perfusion defect of the proximal portion of the posterolateral and lateral walls, thus confirming the hemodynamic importance of the flow through the fistula during stress cycloergometric testing. In the second patient familial predisposition to ischemic heart disease and previous inferior wall myocardial infarction and non-significant stress ECG, coronary angiography identified a seclusive stenosis of the right coronary artery and anomaly between the anterior interventricular artery and the left pulmonary artery. The presence of the contrast medium in the left pulmonary artery identified a flow from the left ventricle to the left pulmonary artery. Good angiographic results were obtained

  9. A study of the hemodynamics of anterior communicating artery aneurysms

    Science.gov (United States)

    Cebral, Juan R.; Castro, Marcelo A.; Putman, Christopher M.

    2006-03-01

    In this study, the effects of unequal physiologic flow conditions in the internal carotid arteries on the intra-aneurysmal hemodynamics of anterior communicating artery aneurysms were investigated. Patient-specific vascular computational fluid dynamics models of five cerebral aneurysms were constructed from bilateral 3D rotational angiography images. The aneurysmal hemodynamics was analyzed under a range of physiologic flow conditions including the effects of unequal mean flows and phase shifts between the flow waveforms of the left and right internal carotid arteries. A total of five simulations were performed for each patient, and unsteady wall shear stress (WSS) maps were created for each flow condition. Time dependent curves of average WSS magnitude over selected regions on the aneurysms were constructed and used to analyze the influence of the inflow conditions. It was found that mean flow imbalances in the feeding vessels tend to shift the regions of elevated WSS (flow impingement region) towards the dominating inflow jet and to change the magnitude of the WSS peaks. However, the overall qualitative appearance of the WSS distribution and velocity simulations is not substantially affected. In contrast, phase differences tend to increase the temporal complexity of the hemodynamic patterns and to destabilize the intra-aneurysmal flow pattern. However, these effects are less important when the A1 confluence is less symmetric, i.e. dominated by one of the A1 segments. Conditions affecting the flow characteristics in the parent arteries of cerebral aneurysms with more than one avenue of inflow should be incorporated into flow models.

  10. Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations.

    Science.gov (United States)

    Stark, David E; Margulies, Daniel S; Shehzad, Zarrar E; Reiss, Philip; Kelly, A M Clare; Uddin, Lucina Q; Gee, Dylan G; Roy, Amy K; Banich, Marie T; Castellanos, F Xavier; Milham, Michael P

    2008-12-17

    Electrophysiological studies have long demonstrated a high degree of correlated activity between the left and right hemispheres, however little is known about regional variation in this interhemispheric coordination. Whereas cognitive models and neuroanatomical evidence suggest differences in coordination across primary sensory-motor cortices versus higher-order association areas, these have not been characterized. Here, we used resting-state functional magnetic resonance imaging data acquired from 62 healthy volunteers to examine interregional correlation in spontaneous low-frequency hemodynamic fluctuations. Using a probabilistic atlas, we correlated probability-weighted time series from 112 regions comprising the entire cerebrum. We then examined regional variation in correlated activity between homotopic regions, contrasting primary sensory-motor cortices, unimodal association areas, and heteromodal association areas. Consistent with previous studies, robustly correlated spontaneous activity was noted between all homotopic regions, which was significantly higher than that between nonhomotopic (heterotopic and intrahemispheric) regions. We further demonstrated substantial regional variation in homotopic interhemispheric correlations that was highly consistent across subjects. Specifically, there was a gradient of interhemispheric correlation, with highest correlations across primary sensory-motor cortices (0.758, SD=0.152), significantly lower correlations across unimodal association areas (0.597, SD=0.230) and still lower correlations across heteromodal association areas (0.517, SD=0.226). These results demonstrate functional differences in interhemispheric coordination related to the brain's hierarchical subdivisions. Synchrony across primary cortices may reflect networks engaged in bilateral sensory integration and motor coordination, whereas lower coordination across heteromodal association areas is consistent with functional lateralization of these regions

  11. Biomechanical and Hemodynamic Measures of Right Ventricular Diastolic Function: Translating Tissue Biomechanics to Clinical Relevance.

    Science.gov (United States)

    Jang, Sae; Vanderpool, Rebecca R; Avazmohammadi, Reza; Lapshin, Eugene; Bachman, Timothy N; Sacks, Michael; Simon, Marc A

    2017-09-12

    Right ventricular (RV) diastolic function has been associated with outcomes for patients with pulmonary hypertension; however, the relationship between biomechanics and hemodynamics in the right ventricle has not been studied. Rat models of RV pressure overload were obtained via pulmonary artery banding (PAB; control, n=7; PAB, n=5). At 3 weeks after banding, RV hemodynamics were measured using a conductance catheter. Biaxial mechanical properties of the RV free wall myocardium were obtained to extrapolate longitudinal and circumferential elastic modulus in low and high strain regions (E 1 and E 2 , respectively). Hemodynamic analysis revealed significantly increased end-diastolic elastance (E ed ) in PAB (control: 55.1 mm Hg/mL [interquartile range: 44.7-85.4 mm Hg/mL]; PAB: 146.6 mm Hg/mL [interquartile range: 105.8-155.0 mm Hg/mL]; P =0.010). Longitudinal E 1 was increased in PAB (control: 7.2 kPa [interquartile range: 6.7-18.1 kPa]; PAB: 34.2 kPa [interquartile range: 18.1-44.6 kPa]; P =0.018), whereas there were no significant changes in longitudinal E 2 or circumferential E 1 and E 2 . Last, wall stress was calculated from hemodynamic data by modeling the right ventricle as a sphere: stress=Pressure×radius2×thickness. RV pressure overload in PAB rats resulted in an increase in diastolic myocardial stiffness reflected both hemodynamically, by an increase in E ed , and biomechanically, by an increase in longitudinal E 1 . Modest increases in tissue biomechanical stiffness are associated with large increases in E ed . Hemodynamic measurements of RV diastolic function can be used to predict biomechanical changes in the myocardium. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  12. Assessment of Cerebral Hemodynamic Changes in Pediatric Patients with Moyamoya Disease Using Probabilistic Maps on Analysis of Basal/Acetazolamide Stress Brain Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Young; Lee, Jae Sung; Kim, Seung Ki; Wang, Kyu Chang; Cho, Byung Kyu; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2008-06-15

    To evaluate the hemodynamic changes and the predictive factors of the clinical outcome in pediatric patients with moyamoya disease, we analyzed pre/post basal/acetazolamide stress brain perfusion SPECT with automated volume of interest (VOIs) method. Total fifty six (M:F=33:24, age 6.7{+-}3.2 years) pediatric patients with moyamoya disease, who underwent basal/acetazolamide stress brain perfusion SPECT within 6 before and after revascularization surgery (encephalo-duro-arterio-synangiosis (EDAS) with frontal encephalo-galeo-synangiosis (EGS) and EDAS only followed on contralateral hemisphere), and followed-up more than 6 months after post-operative SPECT, were included. A mean follow-up period after post-operative SPECT was 33{+-}21 months. Each patient's SPECT image was spatially normalized to Korean template with the SPM2. For the regional count normalization, the count of pons was used as a reference region. The basal/acetazolamide-stressed cerebral blood flow (CBF), the cerebral vascular reserve index (CVRI), and the extent of area with significantly decreased basal/acetazolamide- stressed rCBF than age-matched normal control were evaluated on both medial frontal, frontal, parietal, occipital lobes, and whole brain in each patient's images. The post-operative clinical outcome was assigned as good, poor according to the presence of transient ischemic attacks and/or fixed neurological deficits by pediatric neurosurgeon. In a paired t-test, basal/acetazolamide-stressed rCBF and the CVRI were significantly improved after revascularization (p<0.05). The significant difference in the pre-operative basal/acetazolamide-stressed rCBF and the CVRI between the hemispheres where EDAS with frontal EGS was performed and their contralateral counterparts where EDAS only was done disappeared after operation (p<0.05). In an independent student t-test, the pre-operative basal rCBF in the medial frontal gyrus, the post-operative CVRI in the frontal lobe and the parietal

  13. Pharmacological Modulation of Hemodynamics in Adult Zebrafish In Vivo.

    Directory of Open Access Journals (Sweden)

    Daniel Brönnimann

    Full Text Available Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo.Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations.Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001. Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01 and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03.In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic alterations.

  14. SvO(2)-guided resuscitation for experimental septic shock: effects of fluid infusion and dobutamine on hemodynamics, inflammatory response, and cardiovascular oxidative stress.

    Science.gov (United States)

    Rosário, André Loureiro; Park, Marcelo; Brunialti, Milena Karina; Mendes, Marialice; Rapozo, Marjorie; Fernandes, Denise; Salomão, Reinaldo; Laurindo, Francisco Rafael; Schettino, Guilherme Paula; Azevedo, Luciano Cesar P

    2011-12-01

    The pathogenetic mechanisms associated to the beneficial effects of mixed venous oxygen saturation (SvO(2))-guided resuscitation during sepsis are unclear. Our purpose was to evaluate the effects of an algorithm of SvO(2)-driven resuscitation including fluids, norepinephrine and dobutamine on hemodynamics, inflammatory response, and cardiovascular oxidative stress during a clinically resembling experimental model of septic shock. Eighteen anesthetized and catheterized pigs (35-45 kg) were submitted to peritonitis by fecal inoculation (0.75 g/kg). After hypotension, antibiotics were administered, and the animals were randomized to two groups: control (n = 9), with hemodynamic support aiming central venous pressure 8 to 12 mmHg, urinary output 0.5 mL/kg per hour, and mean arterial pressure greater than 65 mmHg; and SvO(2) (n = 9), with the goals above, plus SvO(2) greater than 65%. The interventions lasted 12 h, and lactated Ringer's and norepinephrine (both groups) and dobutamine (SvO(2) group) were administered. Inflammatory response was evaluated by plasma concentration of cytokines, neutrophil CD14 expression, oxidant generation, and apoptosis. Oxidative stress was evaluated by plasma and myocardial nitrate concentrations, myocardial and vascular NADP(H) oxidase activity, myocardial glutathione content, and nitrotyrosine expression. Mixed venous oxygen saturation-driven resuscitation was associated with improved systolic index, oxygen delivery, and diuresis. Sepsis induced in both groups a significant increase on IL-6 concentrations and plasma nitrate concentrations and a persistent decrease in neutrophil CD14 expression. Apoptosis rate and neutrophil oxidant generation were not different between groups. Treatment strategies did not significantly modify oxidative stress parameters. Thus, an approach aiming SvO(2) during sepsis improves hemodynamics, without any significant effect on inflammatory response and oxidative stress. The beneficial effects associated

  15. The structural study of prefabrication stress stent and the hemodynamics in percutaneous transhepatic portacaval shunt

    International Nuclear Information System (INIS)

    Chu Jianguo; Sun Xiaoli; Zhou Yijun; Huang He; Zhou Hua; Lv Chunyan; Yang Shuhui

    2006-01-01

    Objective: To present a preliminary latest procedure for portal hypertension and evaluate the technical feasibility and efficacy of portacaval shunt creation through the percutaneous transhepatic approach in order to make a hemodynamic comparison with that of the classic TIPS. Methods: Thirty-eight patients with portal hypertension (36 men; mean age 57 years, range 32-73) were referred for PTPS procedure because of bleeding varices (n=36), intractable ascites (n=1), and hepatopulmonary syndrome (n=1). The severity of liver disease was classified as Child-Pugh B in 27 and C in 11. The PTPS was created by a percutaneous transhepatic puncture into right portal vein and then through left portal vein to the hepatic segment of IVC followed by a prefabrication stress stent-graft placement at the very site. Results: Technical and functional success of 100% was achieved in all patients, without related complications. The postprocedural portal vein-IVC gradients mean 13 cmH 2 O was achieved with the follow-up period mean 493 days. No recurrence of variceal bleeding and controlled refractory ascites were achieved, and still more with primary patency rate of the involved vascular structure up to 94.8% at 365 days, much better than classic TIPS. Conclusions: Portacaval shunt creation using the prefabrication stress stent via percutaneous transhepatic technique is safe and feasible. the compact coincidence was obtained between the stent and the involved vessel with restoration of intrahepatic portal venous hemodynamics together with partial lowering of portal venous pressure and guaranteeing intrahepatic perfusion through right portal vein. It is also obviously to have postoperative prevention of shunt restenoses and lowering postoperative incidence of hepato-encephalopathy. (authors)

  16. Influences of Pinpoint Plantar Long-Wavelength Infrared Light Irradiation (Stress-Free Therapy on Chorioretinal Hemodynamics, Atherosclerosis Factors, and Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    Keisou Ishimaru

    2018-03-01

    Full Text Available Background: We previously reported that pinpoint plantar long-wavelength infrared light irradiation (stress-free therapy; SFT is useful for alleviating insulin resistance and improving intracranial blood flow in patients with type 2 diabetes mellitus. This study was undertaken to evaluate the influences of SFT on chorioretinal hemodynamics (retinal artery and vein blood flows as well as atherosclerosis-related factors (TG, LDL-C and VEGF in patients with dyslipidemia. Methods: Four patients with dyslipidemia received 15-minute irradiation with a stress-free apparatus (far-infrared wavelength, 30 mW. Using laser speckle flowgraphy, associations of chorioretinal blood flow with peripheral atherosclerosis-inducing factors/VEGF levels before and after irradiation were analyzed. Results: Chorioretinal blood flow increased, while TG/LDL-C levels decreased, after irradiation. VEGF tended to rise in cases with pre-irradiation baseline levels at the lower limit but tended to decrease in cases in which baseline levels had exceeded the normal range. Conclusion: SFT was suggested to enhance chorioretinal circulation and to normalize VEGF, thereby possibly contributing to amelioration of atherosclerosis-inducing factors. Abnormalities in chorioretinal hemodynamics are known to be highly involved in the pathophysiology of diabetic retinopathy and age-related macular degeneration, and anti-VEGF antibody has been used for treating these conditions. The necessity of risk management, involving chorioretinal blood flow, has been pointed out when dealing with central retinal vein occlusion, diabetes mellitus, ischemic cerebral/cardiac disease, dementia and so on. SFT is therefore a potential complementary medical strategy which can be expected to contribute to normalization of chorioretinal blood flow and atherosclerosis-inducing factors/VEGF levels, and thereby to the prevention of lifestyle-related chronic diseases. Keywords: Pinpoint plantar long

  17. Short-term vascular hemodynamic responses to isometric exercise in young adults and in the elderly

    NARCIS (Netherlands)

    Hartog, R. (Renee); D. Bolignano (Davide); E.J.G. Sijbrands (Eric); Pucci, G. (Giacomo); F.U.S. Mattace Raso (Francesco)

    2018-01-01

    textabstractBackground: Vascular aging is known to induce progressive stiffening of the large elastic arteries, altering vascular hemodynamics under both rest and stress conditions. In this study, we aimed to investigate changes in vascular hemodynamics in response to isometric handgrip exercise

  18. Hemodynamic Based Coronary Artery Aneurysm Thrombosis Risk Stratification in Kawasaki Disease Patients

    Science.gov (United States)

    Grande Gutierrez, Noelia; Mathew, M.; McCrindle, B.; Kahn, A.; Burns, J.; Marsden, A.

    2017-11-01

    Coronary artery aneurysms (CAA) as a result of Kawasaki Disease (KD) put patients at risk for thrombosis and myocardial infarction. Current AHA guidelines recommend CAA diameter >8 mm or Z-score >10 as the criterion for initiating systemic anticoagulation. Our hypothesis is that hemodynamic data derived from computational blood flow simulations is a better predictor of thrombosis than aneurysm diameter alone. Patient-specific coronary models were constructed from CMRI for a cohort of 10 KD patients (5 confirmed thrombosis cases) and simulations with fluid structure interaction were performed using the stabilized finite element Navier-Stokes solver available in SimVascular. We used a closed-loop lumped parameter network (LPN) to model the heart and vascular boundary conditions coupled numerically to the flow solver. An automated parameter estimation method was used to match LPN values to clinical data for each patient. Hemodynamic data analysis resulted in low correlation between Wall Shear Stress (WSS)/ Particle Residence Time (PRT) and CAA diameter but demonstrates the positive correlation between hemodynamics and adverse patient outcomes. Our results suggest that quantifying WSS and PRT should enable identification of regions at higher risk of thrombosis. We propose a quantitative method to non-invasively assess the abnormal flow in CAA following KD that could potentially improve clinical decision-making regarding anticoagulation therapy.

  19. Cerebral hematocrit decreases with hemodynamic compromise in carotid artery occlusion: a PET study.

    Science.gov (United States)

    Yamauchi, H; Fukuyama, H; Nagahama, Y; Katsumi, Y; Okazawa, H

    1998-01-01

    This study investigated whether in patients with internal carotid artery occlusion the regional cerebral hematocrit correlates with cerebral hemodynamics or metabolic state and, if so, how the regional cerebral hematocrit changes in the hemodynamically compromised region. We used positron emission tomography to study seven patients with unilateral internal carotid artery occlusion and no cortical infarction in the chronic stage. The distributions of red blood cell and plasma volumes were assessed using oxygen-15-labeled carbon monoxide and copper-62-labeled human serum albumin-dithiosemicarbazone tracers, respectively. The calculated hematocrit value was compared with the hemodynamic and metabolic parameters measured with the oxygen-15 steady-state technique. In the cerebral cortex, the value of the cerebral hematocrit varied but was correlated with the hemodynamic and metabolic status. Stepwise regression analysis revealed that the large vessel hematocrit, the cerebral metabolic rate of oxygen, and the cerebral blood flow or the oxygen extraction fraction accounted for a significant proportion of variance of the cerebral hematocrit. The oxygen extraction fraction and the cerebral metabolic rate of oxygen negatively correlated with the cerebral hematocrit, whereas the cerebral blood flow correlated positively: patients with reduced blood supply relative to metabolic demand (decreased blood flow with increased oxygen extraction fraction) showed low hematocrit values. In carotid artery occlusion in the chronic stage, regional cerebral hematocrit may vary according to cerebral hemodynamics and metabolic status. Regional cerebral hematocrit may decrease with hemodynamic compromise unless oxygen metabolism concomitantly decreases.

  20. Lagrangian postprocessing of computational hemodynamics.

    Science.gov (United States)

    Shadden, Shawn C; Arzani, Amirhossein

    2015-01-01

    Recent advances in imaging, modeling, and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries, and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows.

  1. Adolescent habitual caffeine consumption and hemodynamic reactivity during rest, psychosocial stress, and recovery.

    Science.gov (United States)

    James, Jack E; Baldursdottir, Birna; Johannsdottir, Kamilla R; Valdimarsdottir, Heiddis B; Sigfusdottir, Inga Dora

    2018-07-01

    Most adolescents regularly consume caffeine. Whereas observational studies have suggested that coffee may be cardio-protective, pharmacological experimentation with adults shows that caffeine at dietary doses increases blood pressure, thereby implicating regular caffeine consumption as a potential source of harm for cardiovascular health. The present study was in response to the dearth of caffeine research among younger consumers. It was hypothesised that compared to the consumption of little or no caffeine, adolescents who habitually consume caffeine have overall higher blood pressure and increased vascular resistance. Using a quasi-experimental design, continuous measurements of blood pressure, cardiac output, and total peripheral resistance were taken non-invasively from adolescents (n = 333) aged 14-15 years and 18-19 years who reported "low", "moderate", or "high" levels of caffeine intake. Measurements were conducted when participants generally had negligible or low systematic caffeine levels while at rest, during stress, and during recovery from stress. Whereas habitual caffeine consumption did not predict blood pressure level, higher caffeine intake was associated with modestly increased vascular resistance during all phases of the experiment (i.e., at rest, during stress, and during recovery from stress). Present findings are important because they suggest that early exposure to caffeine may lead to persistent increases in vascular resistance, which in turn is an acknowledged risk factor for the development of hypertension. These results highlight the need for further studies of adolescents to determine the robustness of any persistent caffeine-related hemodynamic effects, and the implications such effects could have for long-term cardiovascular health. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. [Effect of cupping on hemodynamic levels in the regional sucked tissues in patients with lumbago].

    Science.gov (United States)

    Tang, Xiao; Xiao, Xue-Hua; Zhang, Guo-Qing

    2012-10-01

    To observe hemodynamic changes in the local sucked tissue of lower back undergoing negative pressure after cupping in patients with lumbago. Twenty-two lumbago outpatients were recruited in the present study and 32 sucked tissues accepted measurements. The cupping was applied to the tenderpoint of the patients' lower back for 10 min by using a glass-mug (5 cm in diameter). Hemodynamic indexes [peak systolic velocity (PSV), end-diastolic velocity (EDV) and resistance index (RI)] of the sucked skin and subcutaneous tissues at the lower back were detected before and after cupping by using a color Doppler flow imaging. After cupping intervention at the lower back, the PSV [(14.2 +/- 1.8) cm/s] and EDV [(5.5 +/- 0.7) cm/s] levels were increased significantly in comparison with those [(5.9 +/- 0.9) and (1.9 +/- 0.3) cm/s] before cupping (P cupping (0.61 +/- 0.05 vs 0.68 +/- 0.06, P Cupping therapy can increase the peak systolic velocity and end-diastolic velocity and lower vascular resistance of the subcutaneous arterioles in the regional tissue, which may contribute to its effect in relieving lumbago.

  3. Influence of different anesthesia methods on stress reaction and hemodynamics for elderly orthopedics patients during operations

    Directory of Open Access Journals (Sweden)

    Lin Li

    2017-07-01

    Full Text Available Objective: To study the influence of general anesthesia, epidural anesthesia and combined spinal and epidural anesthesia method on stress reaction and hemodynamics for elderly orthopedics patients during operations. Methods: A total of 90 cases of elder patients who received orthopedic operations were randomly divided to group A, B and C, with 30 cases per group. Three groups of patients were separately given by general anesthesia, epidural anesthesia and combined spinal and epidural anesthesia for operations; The variations of adrenocorticotrophic hormone (ACTH, Cortisol (Cor, β-endorphin (β-EP, Angiotensin- Ⅱ(Ang-Ⅱ, heart rate (HR and blood pressure (SBP, DBP on patients in three groups before anesthesia (T0, during skin incision (T1, after skin incision (T2 and extubation after operation (T3 were compared and analyzed. Results: During T1, T2, ACTH, Cor, β-EP and Ang-Ⅱlevels in 3 groups of patients were significantly higher than those during T0; SBP and DBP were significantly lower than that during T0; HR during T2 was significantly lower than that during T0; During T3, every index in 3 groups were recovered to levels close to that during T0; During T1, T2, ACTH, Cor, β-EP, Ang-Ⅱ levels in group B and C were significantly lower than that in group A. And levels in C was lower than that in B; SBP and DBP in group B and C were significantly higher than A. No HR statistical significance appeared between each group. Conclusions: During clinical anesthesia, we should choose suitable anesthesia method combined with actual situations of patients. Combined spinal and epidural anesthesia had a slight influence on hemodynamics of elder orthopedics patients during operation, and it could effectively alleviate stress reaction during operation.

  4. Endothelial cell impact on smooth muscle cell properties: role of hemodynamic forces

    OpenAIRE

    Killeen, Maria T.

    2009-01-01

    The vascular endothelium is a dynamic cell monolayer located at the interface of the vessel wall and bloodstream, where it regulates the physiological effects of humoral and hemodynamic stimuli on vessel tone and remodelling. Hemodynamic forces are of particular interest and include shear stress, the frictional force generated by blood as it drags against the endothelium, and cyclic strain, transmural pressure due to the pulsatile nature of blood flow. Both forces can profoundly modulate vasc...

  5. The Effect of Inlet Waveforms on Computational Hemodynamics of Patient-Specific Intracranial Aneurysms

    OpenAIRE

    Xiang, J.; Siddiqui, A.H.; Meng, H.

    2014-01-01

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic qu...

  6. Assessment of the hemodynamic changes after EDAS combined with bifrontal EGS in pediatric patients with moyamoya disease

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yoo Sung; Kim, Yu Kyeong; Lee, Jae Sung; Kim, Seung Ki; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2007-07-01

    To assess the effect of encephaloduroarteriosynangiosis (EDAS) with or without bifrontal encephalogaleosynangiosis (EGS) in children with moyamoya disease, we evaluated cerebral hemodynamic changes using brain Tc-99m HMPAO SPECT. Total 34 pediatric patients (M: F=12:22, mean age;93 yrs) enrolled. Bypass surgery for both hemispheres (EDAS with EGS on one side, and EDAS on the other side) in 25 patients, unilateral EDAS with EGS in 7, and unilateral EDAS only in 2 were underwent. Perfusion SPECT before surgery, and 4 to 18 months after final surgery were done. The vascular territories for ICA, MCA and the brain regions for the frontal, parietal, temporal, and the occipital cortices were determined using standard ROls based on K-SPAM. Additionally, medial frontal cortex was selected to assess the effect of EGS. Basal/acetazolamide challenged cerebral blood flow (CBF), and cerebral vascular index (CVRI) were determined using normalized regional brain uptake to the cerebellum. 24 patients became symptom free, and 6 were improved but having some residual symptoms at the last follow up period. The other 3 were worsened after operation. Overall basal/acetazolamide stress CBF and CVRI for each brain region after surgery were increased, however, only the changes of CVRI were significant. Meanwhile, the improvement of CBF or CVRI in the brain regions ipsilateral to the hemisphere having EDAS with EGS was not significantly different when compared with those for the brain regions with EDAS only. Also, the hemodynamic improvement for the mesial frontal cortex in patients after EDAS with EGS was not significant, and showed no difference with those in patient with EDAS only. Quantitative perfusion SPECT demonstrated the hemodynamic improvement after EDAS with or without EGS in pediatric moyamoya disease. Cerebrovascular reserve showed meaningful improvement after surgery, implicating the effect of vascular anastomosis in ischemic areas.

  7. Assessment of the hemodynamic changes after EDAS combined with bifrontal EGS in pediatric patients with moyamoya disease

    International Nuclear Information System (INIS)

    Song, Yoo Sung; Kim, Yu Kyeong; Lee, Jae Sung; Kim, Seung Ki; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul

    2007-01-01

    To assess the effect of encephaloduroarteriosynangiosis (EDAS) with or without bifrontal encephalogaleosynangiosis (EGS) in children with moyamoya disease, we evaluated cerebral hemodynamic changes using brain Tc-99m HMPAO SPECT. Total 34 pediatric patients (M: F=12:22, mean age;93 yrs) enrolled. Bypass surgery for both hemispheres (EDAS with EGS on one side, and EDAS on the other side) in 25 patients, unilateral EDAS with EGS in 7, and unilateral EDAS only in 2 were underwent. Perfusion SPECT before surgery, and 4 to 18 months after final surgery were done. The vascular territories for ICA, MCA and the brain regions for the frontal, parietal, temporal, and the occipital cortices were determined using standard ROls based on K-SPAM. Additionally, medial frontal cortex was selected to assess the effect of EGS. Basal/acetazolamide challenged cerebral blood flow (CBF), and cerebral vascular index (CVRI) were determined using normalized regional brain uptake to the cerebellum. 24 patients became symptom free, and 6 were improved but having some residual symptoms at the last follow up period. The other 3 were worsened after operation. Overall basal/acetazolamide stress CBF and CVRI for each brain region after surgery were increased, however, only the changes of CVRI were significant. Meanwhile, the improvement of CBF or CVRI in the brain regions ipsilateral to the hemisphere having EDAS with EGS was not significantly different when compared with those for the brain regions with EDAS only. Also, the hemodynamic improvement for the mesial frontal cortex in patients after EDAS with EGS was not significant, and showed no difference with those in patient with EDAS only. Quantitative perfusion SPECT demonstrated the hemodynamic improvement after EDAS with or without EGS in pediatric moyamoya disease. Cerebrovascular reserve showed meaningful improvement after surgery, implicating the effect of vascular anastomosis in ischemic areas

  8. Effects of N-acetylcysteine and terbutaline treatment on hemodynamics and regional albumin extravasation in porcine septic shock

    International Nuclear Information System (INIS)

    Groeneveld, A.B.; den Hollander, W.; Straub, J.; Nauta, J.J.; Thijs, L.G.

    1990-01-01

    We studied the therapeutic effects of continuously infused N-acetylcysteine, an O2 radical scavenger (N, n = 6), and terbutaline, a beta 2-agonist (T, n = 6), versus dextrose (controls C, N = 6) on hemodynamics and regional albumin extravasation in porcine septic shock. After instrumentation, injection of 99mTc-labeled red blood cells, and baseline measurements, pigs received a 90 min infusion of 11 +/- 9 X 10(8).kg-1 live Escherichia coli bacteria. Thereafter, therapy was started, and 131I human serum albumin was injected. Images were obtained hourly using a gamma camera and a computer until 5 hours after baseline. Regions of interest were drawn in the 99mTc images, yielding regional 131I/99mTc radioactivity ratios, with blood samples as reference. From these ratios, an albumin leak index, a rate constant of transvascular albumin transport, was calculated. Control pigs developed pulmonary hypertension, arterial hypotension, hemoconcentration, and lactic acidemia. In spite of tachycardia and unchanged filling pressures, cardiac output fell. In arterial blood, white cell count, PO2, albumin level, and colloid osmotic pressure fell. The albumin leak index (X10(-3).min-1) measured 1.56 +/- 0.59 over the lungs and 2.87 +/- 1.19 over the abdomen in C, confirming previously found increased albumin flux in both lung and abdomen, the latter exceeding the former. Neither N nor T significantly affected hemodynamic and biochemical changes. The drugs neither decreased the regional albumin leak index nor attenuated the formation of albumin-rich ascites found at autopsy. However, the lung albumin index obtained at autopsy was significantly reduced with N (P less than .01 vs. C), at similar gravimetrically determined extravascular lung water (EVLW). EVLW positively correlated with pulmonary albumin extravasation in C and T but not in N

  9. Lack of evidence for an association between hemodynamic variables and hematoma growth in spontaneous intracerebral hemorrhage.

    Science.gov (United States)

    Jauch, Edward C; Lindsell, Christopher J; Adeoye, Opeolu; Khoury, Jane; Barsan, William; Broderick, Joseph; Pancioli, Arthur; Brott, Thomas

    2006-08-01

    Early hematoma expansion in spontaneous intracerebral hemorrhage (ICH) is associated with worse clinical outcome. We hypothesized that hemodynamic parameters are associated with the increase in hematoma volume owing to their relationship to blood vessel wall stresses. We performed a post hoc analysis of clinical and computed tomography (CT) data from patients enrolled in a prospective observational study of ICH patients presenting within 3 hours from symptom onset. Hematoma volumes were measured at hospital arrival and at 1 and 20 hours from presentation. Blood pressure and heart rate, recorded at 19 time points between presentation and 20 hours, were used to derive hemodynamic variables. Multivariable logistic-regression models were constructed to assess the relation between hemodynamic parameters and hematoma growth, adjusted for clinical covariates. From the original study, 98 patients underwent baseline and 1-hour CT scans; of these, 65 had 20-hour CT scans. Substantial hematoma growth was observed in 28% within the first hour. Of the 65 patients not undergoing surgery within 20 hours, 37% experienced hematoma growth by 20 hours. Neither baseline or peak hemodynamic parameters nor changes in hemodynamic parameters were significantly associated with hematoma growth at either 1 or 20 hours. We found no blood pressure or heart rate parameters, individually or in combination, that were associated with hematoma growth. Our data suggest the influence of hemodynamic parameters on vessel wall stress to be an unlikely target for intervention in reducing the risk of early hematoma growth in ICH.

  10. Effects of dipyridamole and aminophylline on hemodynamics, regional myocardial blood flow and thallium-201 washout in the setting of a critical coronary stenosis

    International Nuclear Information System (INIS)

    Granato, J.E.; Watson, D.D.; Belardinelli, L.; Cannon, J.M.; Beller, G.A.

    1990-01-01

    Experiments were performed to characterize the interaction of intravenous dipyridamole and aminophylline on thallium-201 transport kinetics, regional myocardial blood flow and systemic hemodynamics in the presence of a critical coronary artery stenosis. In 12 dogs with a critical left anterior descending coronary artery stenosis, arterial pressure decreased from a mean value (+/- SEM) of 107 +/- 6 to 94 +/- 3 mm Hg and distal left anterior descending artery pressure decreased from 70 +/- 7 to 55 +/- 4 mm Hg after intravenous administration of dipyridamole. In the left anterior descending perfusion zone, the endocardial/epicardial flow ratio decreased from 0.70 to 0.36 and the intrinsic thallium washout rate was significantly prolonged. Intravenous aminophylline reversed the dipyridamole-induced systemic hypotension and transmural coronary steal and restored the thallium washout rate to baseline values. In six other dogs, aminophylline alone resulted in no alterations in systemic and coronary hemodynamics or regional myocardial blood flow. As expected, dipyridamole-induced vasodilation and coronary steal were prevented by aminophylline pretreatment. These data show that in a canine model of partial coronary stenosis, systemic hypotension, adverse regional flow effects and prolonged thallium-201 washout consequent to intravenously administered dipyridamole are promptly reversed by intravenous aminophylline administration. Aminophylline alone had no significant hemodynamic and coronary flow effects. This study provides further insight into the altered thallium kinetics occurring as a consequence of dipyridamole-induced vasodilation and suggests that the prompt reversal of symptoms and signs of ischemia with aminophylline in patients receiving intravenous dipyridamole for clinical imaging studies probably reflects the reversal of transmural coronary steal

  11. The central hemodynamics at the newborns from the radionuclide contaminated territories

    International Nuclear Information System (INIS)

    Kalyuzhin, V.G.; Voskresenskaya, T.V.; Deryugina, O.A.; Adas'ko, V.I.; Platonova, O.A.

    1995-01-01

    As known the cardiovascular system has enough high radiosensitivity. The operation features of the central part of a cardiovascular system of newborns living on contaminated territories were studied. The screening research of a cardiovascular system state of 50 newborns from regions with contamination by 137 Cs more than 15 Ci/sq.km were conducted. The obtained data were compared with results of the similar investigation of 30 newborns from a control 'clean' regions. Is revealed that for newborns from a contaminated zone the more stressed in comparison with one from control group the hemodynamics adaptation process of the central link of a cardiovascular system is characteristic, especially in the first days of a life. For newborns with the disadaptation of a cardiovascular system the constant control for the circulatory homeostasis parameters and more sparing mode of a care in the first days of a life is required. 7 refs., 1 tab

  12. Morphological and Hemodynamic Discriminators for Rupture Status in Posterior Communicating Artery Aneurysms.

    Directory of Open Access Journals (Sweden)

    Nan Lv

    Full Text Available The conflicting findings of previous morphological and hemodynamic studies on intracranial aneurysm rupture may be caused by the relatively small sample sizes and the variation in location of the patient-specific aneurysm models. We aimed to determine the discriminators for aneurysm rupture status by focusing on only posterior communicating artery (PCoA aneurysms.In 129 PCoA aneurysms (85 ruptured, 44 unruptured, clinical, morphological and hemodynamic characteristics were compared between the ruptured and unruptured cases. Multivariate logistic regression analysis was performed to determine the discriminators for rupture status of PCoA aneurysms.While univariate analyses showed that the size of aneurysm dome, aspect ratio (AR, size ratio (SR, dome-to-neck ratio (DN, inflow angle (IA, normalized wall shear stress (NWSS and percentage of low wall shear stress area (LSA were significantly associated with PCoA aneurysm rupture status. With multivariate analyses, significance was only retained for higher IA (OR = 1.539, p < 0.001 and LSA (OR = 1.393, p = 0.041.Hemodynamics and morphology were related to rupture status of intracranial aneurysms. Higher IA and LSA were identified as discriminators for rupture status of PCoA aneurysms.

  13. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations.

    Science.gov (United States)

    Tse, Kwong Ming; Chiu, Peixuan; Lee, Heow Pueh; Ho, Pei

    2011-03-15

    Aortic dissecting aneurysm is one of the most catastrophic cardiovascular emergencies that carries high mortality. It was pointed out from clinical observations that the aneurysm development is likely to be related to the hemodynamics condition of the dissected aorta. In order to gain more insight on the formation and progression of dissecting aneurysm, hemodynamic parameters including flow pattern, velocity distribution, aortic wall pressure and shear stress, which are difficult to measure in vivo, are evaluated using numerical simulations. Pulsatile blood flow in patient-specific dissecting aneurismal aortas before and after the formation of lumenal aneurysm (pre-aneurysm and post-aneurysm) is investigated by computational fluid dynamics (CFD) simulations. Realistic time-dependent boundary conditions are prescribed at various arteries of the complete aorta models. This study suggests the helical development of false lumen around true lumen may be related to the helical nature of hemodynamic flow in aorta. Narrowing of the aorta is responsible for the massive recirculation in the poststenosis region in the lumenal aneurysm development. High pressure difference of 0.21 kPa between true and false lumens in the pre-aneurismal aorta infers the possible lumenal aneurysm site in the descending aorta. It is also found that relatively high time-averaged wall shear stress (in the range of 4-8 kPa) may be associated with tear initiation and propagation. CFD modeling assists in medical planning by providing blood flow patterns, wall pressure and wall shear stress. This helps to understand various phenomena in the development of dissecting aneurysm. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli

    Science.gov (United States)

    Green, Daniel J.; Hopman, Maria T. E.; Padilla, Jaume; Laughlin, M. Harold; Thijssen, Dick H. J.

    2017-01-01

    On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on “hemodynamic” forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity. PMID:28151424

  15. Age-related changes in aortic 3D blood flow velocities and wall shear stress: Implications for the identification of altered hemodynamics in patients with aortic valve disease

    NARCIS (Netherlands)

    van Ooij, Pim; Garcia, Julio; Potters, Wouter V.; Malaisrie, S. Chris; Collins, Jeremy D.; Carr, James C.; Markl, Michael; Barker, Alex J.

    2016-01-01

    To investigate age-related changes in peak systolic aortic 3D velocity and wall shear stress (WSS) in healthy controls and to investigate the importance of age-matching for 3D mapping of abnormal aortic hemodynamics in bicuspid aortic valve disease (BAV). 4D flow MRI (fields strengths = 1.5-3T;

  16. Effects of head-down-tilt bed rest on cerebral hemodynamics during orthostatic stress

    Science.gov (United States)

    Zhang, R.; Zuckerman, J. H.; Pawelczyk, J. A.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    1997-01-01

    Our aim was to determine whether the adaptation to simulated microgravity (microG) impairs regulation of cerebral blood flow (CBF) during orthostatic stress and contributes to orthostatic intolerance. Twelve healthy subjects (aged 24 +/- 5 yr) underwent 2 wk of -6 degrees head-down-tilt (HDT) bed rest to simulate hemodynamic changes that occur when humans are exposed to microG. CBF velocity in the middle cerebral artery (transcranial Doppler), blood pressure, cardiac output (acetylene rebreathing), and forearm blood flow were measured at each level of a ramped protocol of lower body negative pressure (LBNP; -15, -30, and -40 mmHg x 5 min, -50 mmHg x 3 min, then -10 mmHg every 3 min to presyncope) before and after bed rest. Orthostatic tolerance was assessed by using the cumulative stress index (CSI; mmHg x minutes) for the LBNP protocol. After bed rest, each individual's orthostatic tolerance was reduced, with the group CSI decreased by 24% associated with greater decreases in cardiac output and greater increases in systemic vascular resistance at each level of LBNP. Before bed rest, mean CBF velocity decreased by 14, 10, and 45% at -40 mmHg, -50 mmHg, and maximal LBNP, respectively. After bed rest, mean velocity decreased by 16% at -30 mmHg and by 21, 35, and 39% at -40 mmHg, -50 mmHg, and maximal LBNP, respectively. Compared with pre-bed rest, post-bed-rest mean velocity was less by 11, 10, and 21% at -30, -40, and -50 mmHg, respectively. However, there was no significant difference at maximal LBNP. We conclude that cerebral autoregulation during orthostatic stress is impaired by adaptation to simulated microG as evidenced by an earlier and greater fall in CBF velocity during LBNP. We speculate that impairment of cerebral autoregulation may contribute to the reduced orthostatic tolerance after bed rest.

  17. Hemodynamic significance of internal carotid artery disease

    DEFF Research Database (Denmark)

    Schroeder, T

    1988-01-01

    Neurologic symptoms in the region of an internal carotid artery stenosis are considered to be embolic in most instances. Only in a subgroup has carotid occlusive disease with impairment of the collateral supply, caused a state of hemodynamic failure with marked reduction of perfusion pressure. Th...

  18. Occupational exposure in hemodynamic

    International Nuclear Information System (INIS)

    Silva, Amanda J.; Fernandes, Ivani M.; Silva, Paula P. Nou; Sordi, Gian Maria A.A.; Carneiro, Janete C.G.G.

    2011-01-01

    This paper has an objective to perform a radiometric survey at a hemodynamic service. Besides, it was intended to evaluate the effective dose of health professionals and to provide data which can contribute with minimization of exposures during the realization of hemodynamic procedure. The radiometric survey was realized in the real environment of work simulating the conditions of a hemodynamic study with a ionization chamber

  19. Closure technique after carotid endarterectomy influences local hemodynamics.

    Science.gov (United States)

    Harrison, Gareth J; How, Thien V; Poole, Robert J; Brennan, John A; Naik, Jagjeeth B; Vallabhaneni, S Rao; Fisher, Robert K

    2014-08-01

    Meta-analysis supports patch angioplasty after carotid endarterectomy (CEA); however, studies indicate considerable variation in practice. The hemodynamic effect of a patch is unclear and this study attempted to elucidate this and guide patch width selection. Four groups were selected: healthy volunteers and patients undergoing CEA with primary closure, trimmed patch (5 mm), or 8-mm patch angioplasty. Computer-generated three-dimensional models of carotid bifurcations were produced from transverse ultrasound images recorded at 1-mm intervals. Rapid prototyping generated models for flow visualization studies. Computational fluid dynamic studies were performed for each model and validated by flow visualization. Mean wall shear stress (WSS) and oscillatory shear index (OSI) maps were created for each model using pulsatile inflow at 300 mL/min. WSS of OSI >0.3 were considered pathological, predisposing to accretion of intimal hyperplasia. The resultant WSS and OSI maps were compared. The four groups comprised 8 normal carotid arteries, 6 primary closures, 6 trimmed patches, and seven 8-mm patches. Flow visualization identified flow separation and recirculation at the bifurcation increased with a patch and was related to the patch width. Computational fluid dynamic identified that primary closure had the fewest areas of low WSS or elevated OSI but did have mild common carotid artery stenoses at the proximal arteriotomy that caused turbulence. Trimmed patches had more regions of abnormal WSS and OSI at the bifurcation, but 8-mm patches had the largest areas of deleteriously low WSS and high OSI. Qualitative comparison among the four groups confirmed that incorporation of a patch increased areas of low WSS and high OSI at the bifurcation and that this was related to patch width. Closure technique after CEA influences the hemodynamic profile. Patching does not appear to generate favorable flow dynamics. However, a trimmed 5-mm patch may offer hemodynamic benefits over an 8

  20. Multivariate analysis of correlation between electrophysiological and hemodynamic responses during cognitive processing

    Science.gov (United States)

    Kujala, Jan; Sudre, Gustavo; Vartiainen, Johanna; Liljeström, Mia; Mitchell, Tom; Salmelin, Riitta

    2014-01-01

    Animal and human studies have frequently shown that in primary sensory and motor regions the BOLD signal correlates positively with high-frequency and negatively with low-frequency neuronal activity. However, recent evidence suggests that this relationship may also vary across cortical areas. Detailed knowledge of the possible spectral diversity between electrophysiological and hemodynamic responses across the human cortex would be essential for neural-level interpretation of fMRI data and for informative multimodal combination of electromagnetic and hemodynamic imaging data, especially in cognitive tasks. We applied multivariate partial least squares correlation analysis to MEG–fMRI data recorded in a reading paradigm to determine the correlation patterns between the data types, at once, across the cortex. Our results revealed heterogeneous patterns of high-frequency correlation between MEG and fMRI responses, with marked dissociation between lower and higher order cortical regions. The low-frequency range showed substantial variance, with negative and positive correlations manifesting at different frequencies across cortical regions. These findings demonstrate the complexity of the neurophysiological counterparts of hemodynamic fluctuations in cognitive processing. PMID:24518260

  1. The Serial Change of Cerebral Hemodynamics by Vascular Territory after Extracranial-Intracranial Bypass Surgery in Patients with Atherosclerosis of Cerebral Arteries

    International Nuclear Information System (INIS)

    Hong, Il Ki; Kim, Jae Seung; Ahn, Jae Sung; Kwon, Sun Uck; Im, Ki Chun; Lee, Jai Hyuen; Moon, Dae Hyuk

    2008-01-01

    To assess the effect of extracranial-intracranial (EC-IC) bypass surgery on hemodynamic improvement, we evaluated serial regional cerebral hemodynamic change of the middle cerebral artery (MCA) in symptomatic patients with atherosclerotic occlusion of the internal carotid artery (ICA) or MCA using 99m Tc-ECD acetazolamide stress brain perfusion SPECT (Acetazolamide SPECT). The patients who had suffered a recent stroke with atherosclerotic ICA or MCA occlusion underwent EC-IC bypass surgery and Acetazolamide SPECT at 1 week before and three to six months after surgery. For image analysis, attenuation corrected images were spatially normalized to SPECT templates with SPM2. Anatomical automated labeling was applied to calculate mean counts of each Volume-Of-Interest (VOI). Seven VOIs of bilateral frontal, parietal, temporal regions of the MCA territory and the ipsilateral cerebellum were defined. Using mean counts of 7 VOIs, cerebral perfusion index and perfusion reserve index were calculated. Seventeen patients (M:F=12:5, mean age: 53±2yr) were finally included in the analysis. The cerebral blood flow of the parietal region increased at 1 week (p=0.003) and decreased to the preoperative level at 3-6 months (p=0.003). The cerebrovascular reserve of the frontal and parietal regions increased significantly at 1 week after surgery (p<0.01) and improved further at 3-6 months. Cerebrovascular reserve of the MCA territory was significantly improved at early postoperative period after EC-IC bypass and kept improved state during long-term follow-up, although cerebral blood flow did not significantly improved. Therefore, cerebrovascular reserve may be a good indicator of postoperative hemodynamic improvement resulted from bypass effect

  2. The Serial Change of Cerebral Hemodynamics by Vascular Territory after Extracranial-Intracranial Bypass Surgery in Patients with Atherosclerosis of Cerebral Arteries

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Il Ki; Kim, Jae Seung; Ahn, Jae Sung; Kwon, Sun Uck; Im, Ki Chun; Lee, Jai Hyuen; Moon, Dae Hyuk [Asan Medial Center, Ulsan University School of Medicine, Seoul (Korea, Republic of)

    2008-02-15

    To assess the effect of extracranial-intracranial (EC-IC) bypass surgery on hemodynamic improvement, we evaluated serial regional cerebral hemodynamic change of the middle cerebral artery (MCA) in symptomatic patients with atherosclerotic occlusion of the internal carotid artery (ICA) or MCA using {sup 99m}Tc-ECD acetazolamide stress brain perfusion SPECT (Acetazolamide SPECT). The patients who had suffered a recent stroke with atherosclerotic ICA or MCA occlusion underwent EC-IC bypass surgery and Acetazolamide SPECT at 1 week before and three to six months after surgery. For image analysis, attenuation corrected images were spatially normalized to SPECT templates with SPM2. Anatomical automated labeling was applied to calculate mean counts of each Volume-Of-Interest (VOI). Seven VOIs of bilateral frontal, parietal, temporal regions of the MCA territory and the ipsilateral cerebellum were defined. Using mean counts of 7 VOIs, cerebral perfusion index and perfusion reserve index were calculated. Seventeen patients (M:F=12:5, mean age: 53{+-}2yr) were finally included in the analysis. The cerebral blood flow of the parietal region increased at 1 week (p=0.003) and decreased to the preoperative level at 3-6 months (p=0.003). The cerebrovascular reserve of the frontal and parietal regions increased significantly at 1 week after surgery (p<0.01) and improved further at 3-6 months. Cerebrovascular reserve of the MCA territory was significantly improved at early postoperative period after EC-IC bypass and kept improved state during long-term follow-up, although cerebral blood flow did not significantly improved. Therefore, cerebrovascular reserve may be a good indicator of postoperative hemodynamic improvement resulted from bypass effect.

  3. Hemodynamic changes induced by preventive exposure to terahertz radiation at a frequency range corresponding to molecular emission and absorption spectrum of nitric oxide in animals under conditions of acute stress.

    Science.gov (United States)

    Kirichuck, V F; Velikanova, T S; Ivanov, A N

    2011-06-01

    We studied the influence of preventive irradiation with terahertz electromagnetic waves at frequencies corresponding to nitric oxide emission and absorption molecular spectrum (150,176-150,664 GHz) on hemodynamic parameters in arteries of albino rats upon acute immobilization stress. We showed that exposure to the specified frequencies can produce adaptogenic effect manifesting in the absence of post-stress changes in the linear, systolic, and diastolic blood flow velocities and pressure gradient in various blood vessels of experimental animals.

  4. Concurrent OCT imaging of stimulus evoked retinal neural activation and hemodynamic responses

    Science.gov (United States)

    Son, Taeyoon; Wang, Benquan; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2017-02-01

    It is well established that major retinal diseases involve distortions of the retinal neural physiology and blood vascular structures. However, the details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood. In this study, a multi-modal optical coherence tomography (OCT) imaging system was developed to enable concurrent imaging of retinal neural activity and vascular hemodynamics. Flicker light stimulation was applied to mouse retinas to evoke retinal neural responses and hemodynamic changes. The OCT images were acquired continuously during the pre-stimulation, light-stimulation, and post-stimulation phases. Stimulus-evoked intrinsic optical signals (IOSs) and hemodynamic changes were observed over time in blood-free and blood regions, respectively. Rapid IOSs change occurred almost immediately after stimulation. Both positive and negative signals were observed in adjacent retinal areas. The hemodynamic changes showed time delays after stimulation. The signal magnitudes induced by light stimulation were observed in blood regions and did not show significant changes in blood-free regions. These differences may arise from different mechanisms in blood vessels and neural tissues in response to light stimulation. These characteristics agreed well with our previous observations in mouse retinas. Further development of the multimodal OCT may provide a new imaging method for studying how retinal structures and metabolic and neural functions are affected by age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), and other diseases, which promises novel noninvasive biomarkers for early disease detection and reliable treatment evaluations of eye diseases.

  5. Successful Retreatment of Recurrent Intracranial Vertebral Artery Dissecting Aneurysms After Stent-Assisted Coil Embolization: A Self-Controlled Hemodynamic Analysis.

    Science.gov (United States)

    Liu, Jian; Jing, Linkai; Zhang, Ying; Song, Ying; Wang, Yang; Li, Chuanhui; Wang, Yanmin; Mu, Shiqing; Paliwal, Nikhil; Meng, Hui; Linfante, Italo; Yang, Xinjian

    2017-01-01

    Intracranial vertebral artery dissecting aneurysms (VADAs) tend to recur despite successful stent-assisted coil embolization (SACE). Hemodynamics is useful in evaluating aneurysmal formation, growth, and rupture. Our aim was to evaluate the hemodynamic patterns of the recurrence of VADA. Between September 2009 and November 2013, all consecutive patients with recurrent VADAs after SACE in our institutions were enrolled. Recurrence was defined as recanalization and/or regrowth. We assessed the hemodynamic alterations in wall shear stress (WSS) and velocity after the initial SACE and subsequently after retreatment of the aneurysms that recurred. Five patients were included. After the initial treatment, 3 patients showed recanalization and 2 showed regrowth. In the 2 patients with regrowth, the 2 original aneurysms maintained complete occlusion; however, de novo aneurysm regrowth was confirmed near the previous site. Compared with 3 recanalized aneurysms, the completely occluded aneurysms showed high mean reductions in velocity and WSS after initial treatment (velocity, 77.6% vs. 57.7%; WSS, 74.2% vs. 52.4%); however, WSS remained high at the region near the previous lesion where the new aneurysm originated. After the second retreatment, there was no recurrence in any patient. Compared with the 3 aneurysms that recanalized, the 4 aneurysms that maintained complete occlusion showed higher reductions in velocity (62.9%) and WSS (71.1%). Our series indicated that hemodynamics might have an important role in recurrence of VADAs. After endovascular treatment, sufficient hemodynamic reduction in aneurysm dome, orifice, and parent vessel may be one of the key factors for preventing recurrence in VADAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Vegetative and hemodynamic responses to stress in adolescents with constitutional-exogenous obesity and vascular dystonia of hypertensive type

    OpenAIRE

    Larina, N.

    2011-01-01

    We studied the characteristics of central hemodynamics and autonomic responses to cold and psycho-emotional test in adolescents with obesity and vascular dystonia of hypertensive type. Various options for the autonomic responses accompanied by changes in central hemodynamics as a function of body weight have been identified.

  7. Central hemodynamics, vegetative status, and 40K excretion in children from regions with radioactive contamination

    International Nuclear Information System (INIS)

    Korovina, N.A.; Korenkov, I.P.; Zaplatnikov, A.A.

    1996-01-01

    Metabolism of potassium and natural radionuclide 40 K in children with functional disorders of circulatory organs, permanently living in areas with radiation contamination as a result of the Chernobyl accident is studied. Health status, cardiovascular function, vegetative homeostasis, and metabolism of stable potassium and 40 K were studied by clinical and instrumental methods in 61 children aged 10 t 14 years living in regions with radionuclide contamination in the Bryansk district (density of radiation contamination with 137 Cs 15 to 40 Ci/km 2 , level of 137 Cs incorporation up to 0.15 mkCi per organism. It was stated that six to seven years after the Chernobyl accident 58.3 to 62.5 % of children permanently living in regions with radionuclide contamination developed functional changes of the bioelectrical activity of the myocardium,, presenting as specific heart rhythm, conductivity, and repolarization process involving no disorders of the central hemodynamics; vegetative dysfunction was observed in 78.3 % children (p 40 K in different groups of children with functional disorders of the circulatory organs. 14 refs.; 3 tabs

  8. Morphological and Hemodynamic Discriminators for Rupture Status in Posterior Communicating Artery Aneurysms.

    Science.gov (United States)

    Lv, Nan; Wang, Chi; Karmonik, Christof; Fang, Yibin; Xu, Jinyu; Yu, Ying; Cao, Wei; Liu, Jianmin; Huang, Qinghai

    2016-01-01

    The conflicting findings of previous morphological and hemodynamic studies on intracranial aneurysm rupture may be caused by the relatively small sample sizes and the variation in location of the patient-specific aneurysm models. We aimed to determine the discriminators for aneurysm rupture status by focusing on only posterior communicating artery (PCoA) aneurysms. In 129 PCoA aneurysms (85 ruptured, 44 unruptured), clinical, morphological and hemodynamic characteristics were compared between the ruptured and unruptured cases. Multivariate logistic regression analysis was performed to determine the discriminators for rupture status of PCoA aneurysms. While univariate analyses showed that the size of aneurysm dome, aspect ratio (AR), size ratio (SR), dome-to-neck ratio (DN), inflow angle (IA), normalized wall shear stress (NWSS) and percentage of low wall shear stress area (LSA) were significantly associated with PCoA aneurysm rupture status. With multivariate analyses, significance was only retained for higher IA (OR = 1.539, p PCoA aneurysms.

  9. Hemodynamic transition driven by stent porosity in sidewall aneurysms.

    Science.gov (United States)

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes

    2015-05-01

    The healing process of intracranial aneurysms (IAs) treated with flow diverter stents (FDSs) depends on the IA flow modifications and on the epithelization process over the neck. In sidewall IA models with straight parent artery, two main hemodynamic regimes with different flow patterns and IA flow magnitude were broadly observed for unstented and high porosity stented IA on one side, and low porosity stented IA on the other side. The hemodynamic transition between these two regimes is potentially involved in thrombosis formation. In the present study, CFD simulations and multi-time lag (MTL) particle imaging velocimetry (PIV) measurements were combined to investigate the physical nature of this transition. Measurable velocity fields and non-measurable shear stress and pressure fields were assessed experimentally and numerically in the aneurysm volume in the presence of stents with various porosities. The two main regimes observed in both PIV and CFD showed typical flow features of shear and pressure driven regimes. In particular, the waveform of the averaged IA velocities was matching both the shear stress waveform at IA neck or the pressure gradient waveform in parent artery. Moreover, the transition between the two regimes was controlled by stent porosity: a decrease of stent porosity leads to an increase (decrease) of pressure differential (shear stress) through IA neck. Finally, a good PIV-CFD agreement was found except in transitional regimes and low motion eddies due to small mismatch of PIV-CFD running conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hemodynamic and morphological characteristics of unruptured posterior communicating artery aneurysms with oculomotor nerve palsy.

    Science.gov (United States)

    Lv, Nan; Yu, Ying; Xu, Jinyu; Karmonik, Christof; Liu, Jianmin; Huang, Qinghai

    2016-08-01

    OBJECT Unruptured posterior communicating artery (PCoA) aneurysms with oculomotor nerve palsy (ONP) have a very high risk of rupture. This study investigated the hemodynamic and morphological characteristics of intracranial aneurysms with high rupture risk by analyzing PCoA aneurysms with ONP. METHODS Fourteen unruptured PCoA aneurysms with ONP, 33 ruptured PCoA aneurysms, and 21 asymptomatic unruptured PCoA aneurysms were included in this study. The clinical, morphological, and hemodynamic characteristics were compared among the different groups. RESULTS The clinical characteristics did not differ among the 3 groups (p > 0.05), whereas the morphological and hemodynamic analyses showed that size, aspect ratio, size ratio, undulation index, nonsphericity index, ellipticity index, normalized wall shear stress (WSS), and percentage of low WSS area differed significantly (p PCoA aneurysms with ONP demonstrated a distinctive morphological-hemodynamic pattern that was significantly different compared with asymptomatic unruptured PCoA aneurysms and was similar to ruptured PCoA aneurysms. The larger size, more irregular shape, and lower WSS might be related to the high rupture risk of PCoA aneurysms.

  11. Physiology of school burnout in medical students: Hemodynamic and autonomic functioning

    Directory of Open Access Journals (Sweden)

    Ross W. May

    2016-09-01

    Full Text Available This study investigated the relationship between burnout and hemodynamic and autonomic functioning in both medical students (N = 55 and premedical undergraduate students (N = 77. Questionnaires screened for health related issues and assessed school burnout and negative affect symptomatology (anxiety and depression. Continuous beat-to-beat blood pressure (BP through finger plethysmography and electrocardiogram (ECG monitoring was conducted during conditions of baseline and cardiac stress induced via the cold pressor task to produce hemodynamic, heart rate variability, and blood pressure variability indices. Independent sample t-tests demonstrated that medical students had significantly higher school burnout scores compared to their undergraduate counterparts. Controlling for age, BMI, anxiety and depressive symptoms, multiple regression analyses indicated that school burnout was a stronger predictor of elevated hemodynamics (blood pressure, decreased heart rate variability, decreased markers of vagal activity and increased markers of sympathetic tone at baseline for medical students than for undergraduates. Analyses of physiological values collected during the cold pressor task indicated greater cardiac hyperactivity for medical students than for undergraduates. The present study supports previous research linking medical school burnout to hemodynamic and autonomic functioning, suggests biomarkers for medical school burnout, and provides evidence that burnout may be implicated as a physiological risk factor in medical students. Study limitations and potential intervention avenues are discussed.

  12. Symptom-Hemodynamic Mismatch and Heart Failure Event Risk

    Science.gov (United States)

    Lee, Christopher S.; Hiatt, Shirin O.; Denfeld, Quin E.; Mudd, James O.; Chien, Christopher; Gelow, Jill M.

    2014-01-01

    Background Heart failure (HF) is a heterogeneous condition of both symptoms and hemodynamics. Objective The goal of this study was to identify distinct profiles among integrated data on physical and psychological symptoms and hemodynamics, and quantify differences in 180-day event-risk among observed profiles. Methods A secondary analysis of data collected during two prospective cohort studies by a single group of investigators was performed. Latent class mixture modeling was used to identify distinct symptom-hemodynamic profiles. Cox proportional hazards modeling was used to quantify difference in event-risk (HF emergency visit, hospitalization or death) among profiles. Results The mean age (n=291) was 57±13 years, 38% were female, and 61% had class III/IV HF. Three distinct symptom-hemodynamic profiles were identified. 17.9% of patients had concordant symptoms and hemodynamics (i.e. moderate physical and psychological symptoms matched the comparatively hemodynamic profile), 17.9% had severe symptoms and average hemodynamics, and 64.2% had poor hemodynamics and mild symptoms. Compared to those in the concordant profile, both profiles of symptom-hemodynamic mismatch were associated with a markedly increased event-risk (severe symptoms hazards ratio = 3.38, p=0.033; poor hemodynamics hazards ratio = 3.48, p=0.016). Conclusions A minority of adults with HF have concordant symptoms and hemodynamics. Either profile of symptom-hemodynamic mismatch in HF is associated with a greater risk of healthcare utilization for HF or death. PMID:24988323

  13. Assessment of shear stress related parameters in the carotid bifurcation using mouse-specific FSI simulations.

    Science.gov (United States)

    De Wilde, David; Trachet, Bram; Debusschere, Nic; Iannaccone, Francesco; Swillens, Abigail; Degroote, Joris; Vierendeels, Jan; De Meyer, Guido R Y; Segers, Patrick

    2016-07-26

    The ApoE(-)(/)(-) mouse is a common small animal model to study atherosclerosis, an inflammatory disease of the large and medium sized arteries such as the carotid artery. It is generally accepted that the wall shear stress, induced by the blood flow, plays a key role in the onset of this disease. Wall shear stress, however, is difficult to derive from direct in vivo measurements, particularly in mice. In this study, we integrated in vivo imaging (micro-Computed Tomography-µCT and ultrasound) and fluid-structure interaction (FSI) modeling for the mouse-specific assessment of carotid hemodynamics and wall shear stress. Results were provided for 8 carotid bifurcations of 4 ApoE(-)(/)(-) mice. We demonstrated that accounting for the carotid elasticity leads to more realistic flow waveforms over the complete domain of the model due to volume buffering capacity in systole. The 8 simulated cases showed fairly consistent spatial distribution maps of time-averaged wall shear stress (TAWSS) and relative residence time (RRT). Zones with reduced TAWSS and elevated RRT, potential indicators of atherosclerosis-prone regions, were located mainly at the outer sinus of the external carotid artery. In contrast to human carotid hemodynamics, no flow recirculation could be observed in the carotid bifurcation region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Comparing the Rates of Dopamine Hemodynamic Effect Onset after Infusion through Peripheral Veins in Three Regions

    Directory of Open Access Journals (Sweden)

    Deokkyu Kim

    2017-02-01

    Full Text Available Background Dopamine is an inotropic agent that is often selected for continuous infusion. For hemodynamic stability, the rate of infusion is controlled in the range of 5-15 μg/kg/min. This study aimed to compare the time intervals from the administration of dopamine to the onset of its hemodynamic effects when dopamine was administered through three different peripheral veins (the cephalic vein [CV], the great saphenous vein [GSV], and the external jugular vein [EJV]. Methods Patients in group 1, group 2, and group 3 received dopamine infusions in the CV, GSV, and EJV, respectively. A noninvasive continuous cardiac output monitor (NICCOMO™, Medis, Ilmenau, Germany was used to assess cardiac output (CO and systemic vascular resistance (SVR. Six minutes after intubation, baseline heart rate (HR, systolic blood pressure (BP, diastolic BP, mean arterial pressure (MAP, CO, and SVR values were recorded and dopamine infusion was initiated at a dose of 10 μg/kg/min. Hemodynamic changes at 0, 4, 8, 12, and 15 minutes postinfusion were recorded. Results No statistically significant differences were observed among the three groups with respect to the rate of hemodynamic change. In all groups, systolic BP, diastolic BP, MAP, and SVR tended to increase after decreasing for the first 4 minutes; in contrast, HR and CO decreased until 8 minutes, after which they tended to reach a plateau. Conclusions For patients under general anesthesia receiving dopamine at 10 μg/kg/min, there were no clinical differences in the effect of dopamine administered through three different peripheral veins.

  15. Central hemodynamic responses during serial exercise tests in heart failure patients using implantable hemodynamic monitors.

    Science.gov (United States)

    Ohlsson, A; Steinhaus, D; Kjellström, B; Ryden, L; Bennett, T

    2003-06-01

    Exercise testing is commonly used in patients with congestive heart failure for diagnostic and prognostic purposes. Such testing may be even more valuable if invasive hemodynamics are acquired. However, this will make the test more complex and expensive and only provides information from isolated moments. We studied serial exercise tests in heart failure patients with implanted hemodynamic monitors allowing recording of central hemodynamics. Twenty-one NYHA Class II-III heart failure patients underwent maximal exercise tests and submaximal bike or 6-min hall walk tests to quantify their hemodynamic responses and to study the feasibility of conducting exercise tests in patients with such devices. Patients were followed for 2-3 years with serial exercise tests. During maximal tests (n=70), heart rate increased by 52+/-19 bpm while S(v)O(2) decreased by 35+/-10% saturation units. RV systolic and diastolic pressure increased 29+/-11 and 11+/-6 mmHg, respectively, while pulmonary artery diastolic pressure increased 21+/-8 mmHg. Submaximal bike (n=196) and hall walk tests (n=172) resulted in S(v)O(2) changes of 80 and 91% of the maximal tests, while RV pressures ranged from 72 to 79% of maximal responses. An added potential value of implantable hemodynamic monitors in heart failure patients may be to quantitatively determine the true hemodynamic profile during standard non-invasive clinical exercise tests and to compare that to hemodynamic effects of regular exercise during daily living. It would be of interest to study whether such information could improve the ability to predict changes in a patient's clinical condition and to improve tailoring patient management.

  16. EFFECTS OF PARENT ARTERY SEGMENTATION AND ANEURISMALWALL ELASTICITY ON PATIENT-SPECIFIC HEMODYNAMIC SIMULATIONS

    Institute of Scientific and Technical Information of China (English)

    CHEN Jia-liang; DING Guang-hong; YANG Xin-jian; LI Hai-yun

    2011-01-01

    It is well known that hemodynamics and wall tension play an important role in the formation,growth and rupture of aneurysms.In the present study,the authors investigated the influence of parent artery segmentation and aneurismal-wall elasticity on patient-specific hemodynamic simulations with two patient-specific eases of cerebral aneurysms.Realistic models of the aneurysms were constructed from 3-D angiography images and blood flow dynamics was studied under physiologically representative waveform of inflow.For each aneurysm three computational models were constructed:Model 1 with more extensive upstream parent artery with the rigid arterial and aneurismal wall,Model 2 with the partial upstream parent artery with the elastic arterial and aneurismal wall,Model 3 with more extensive upstream parent artery with the rigid wall for arterial wall far from the aneurysm and the elastic wall for arterial wall near the aneurysm.The results show that Model 1 could predict complex intra-aneurismal flow patterns and wall shear stress distribution in the aneurysm,but is unable to give aneurismal wall deformation and tension,Model 2 demonstrates aneurismal wall deformation and tension,but fails to properly model inflow pattern contributed by the upstream parent artery,resulting in local misunderstanding Wall Shear Stress (WSS) distribution,Model 3 can overcome limitations of the former two models,and give an overall and accurate analysis on intra-aneurismal flow patterns,wall shear stress distribution,aneurismal-wall deformation and tension.Therefore we suggest that the proper length of extensive upstream parent artery and aneuri-smal-wall elasticity should be considered carefully in establishing computational model to predict the intra-aneurismal hemodynamic and wall tension.

  17. Effects of Nuclear Factor-E2-related factor 2/Heme Oxygenase 1 on splanchnic hemodynamics in experimental cirrhosis with portal hypertension.

    Science.gov (United States)

    Qin, Jun; He, Yue; Duan, Ming; Luo, Meng

    2017-05-01

    We explored the effects of Nuclear Factor-E2-related factor 2 (Nrf2) and Heme Oxygenase 1 (HO-1) on splanchnic hemodynamics in portal hypertensive rats. Experimental cirrhosis with portal hypertension was induced by intraperitoneal injection of carbon tetrachloride. The expression of proteins was examined by immunoblotting. Hemodynamic studies were performed by radioactive microspheres. The vascular perfusion system was used to measure the contractile response of mesentery arterioles in rats. Nrf2 expression in the nucleus and HO-1 expression in cytoplasm was significantly enhanced in portal hypertensive rats. Portal pressure, as well as regional blood flow, increased significantly in portal hypertension and can be blocked by tin protoporphyrin IX. The expression of endogenous nitric oxide synthase and vascular endothelial growth factors increased significantly compared to normal rats, while HO-1 inhibition decreased the expression of these proteins significantly. The contractile response of mesenteric arteries decreased in portal hypertension, but can be partially recovered through tin protoporphyrin IX treatment. The expression of Nrf2/HO-1 increased in mesenteric arteries of portal hypertensive rats, which was related to oxidative stress. HO-1was involved in increased portal pressure and anomaly splanchnic hemodynamics in portal hypertensive rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Venous hemodynamic changes in lower limb venous disease

    DEFF Research Database (Denmark)

    Lee, Byung Boong; Nicolaides, Andrew N; Myers, Kenneth

    2016-01-01

    ). Their aim was to confirm or dispel long-held hemodynamic principles and to provide a comprehensive review of venous hemodynamic concepts underlying the pathophysiology of lower limb venous disorders, their usefulness for investigating patients and the relevant hemodynamic changes associated with various...... forms of treatment. Chapter 1 is devoted to basic hemodynamic concepts and normal venous physiology. Chapter 2 presents the mechanism and magnitude of hemodynamic changes in acute deep vein thrombosis indicating their pathophysiological and clinical significance. Chapter 3 describes the hemodynamic...... changes that occur in different classes of chronic venous disease and their relation to the anatomic extent of disease in the macrocirculation and microcirculation. The next four chapters (Chapters 4-7) describe the hemodynamic changes resulting from treatment by compression using different materials...

  19. Preliminary Study of Hemodynamic Distribution in Patient-Specific Stenotic Carotid Bifurcation by Image-Based Computational Fluid Dynamics

    International Nuclear Information System (INIS)

    Xue, Y.J.; Gao, P.Y.; Duan, Q.; Lin, Y.; Dai, C.B.

    2008-01-01

    Background: Regions prone to atherosclerosis, such as bends and bifurcations, tend to exhibit a certain degree of non-planarity or curvature, and these geometric features are known to strongly influence local flow patterns. Recently, computational fluid dynamics (CFD) has been used as a means of enhancing understanding of the mechanisms involved in atherosclerotic plaque formation and development. Purpose: To analyze flow patterns and hemodynamic distribution in stenotic carotid bifurcation in vivo by combining CFD with magnetic resonance angiography (MRA). Material and Methods: Twenty-one patients with carotid atherosclerosis proved by digital subtraction angiography (DSA) and/or Doppler ultrasound underwent contrast-enhanced MR angiography of the carotid bifurcation by a 3.0T MR scanner. Hemodynamic variables and flow patterns of the carotid bifurcation were calculated and visualized by combining vascular imaging postprocessing with CFD. Results: In mild stenotic cases, there was much more streamlined flow in the bulbs, with reduced or disappeared areas of weakly turbulent flow. Also, the corresponding areas of low wall shear stress (WSS) were reduced or even disappeared. As the extent of stenosis increased, stronger blood jets formed at the portion of narrowing, and more prominent eddy flows and slow back flows were noted in the lee of the stenosis. Regions of elevated WSS were predicted at the portion of stenosis and in the path of the downstream jet. Areas of low WSS were predicted on the leeward side of the stenosis, corresponding with the location of slowly turbulent flows. Conclusion: CFD combined with MRA can simulate flow patterns and calculate hemodynamic variables in stenotic carotid bifurcations as well as normal ones. It provides a new method to investigate the relationship of vascular geometry and flow condition with atherosclerotic pathological changes

  20. Hemodynamics in stented vertebral artery ostial stenosis based on computational fluid dynamics simulations.

    Science.gov (United States)

    Qiao, Aike; Dai, Xuan; Niu, Jing; Jiao, Liqun

    2016-01-01

    Hemodynamic factors may affect the potential occurrence of in-stent restenosis (ISR) after intervention procedure of vertebral artery ostial stenosis (VAOS). The purpose of the present study is to investigate the influence of stent protrusion length in implantation strategy on the local hemodynamics of the VAOS. CTA images of a 58-year-old female patient with posterior circulation transient ischemic attack were used to perform a 3D reconstruction of the vertebral artery. Five models of the vertebral artery before and after the stent implantation were established. Model 1 was without stent implantation, Model 2-5 was with stent protruding into the subclavian artery for 0, 1, 2, 3 mm, respectively. Computational fluid dynamics simulations based on finite element analysis were employed to mimic the blood flow in arteries and to assess hemodynamic conditions, particularly the blood flow velocity and wall shear stress (WSS). The WSS and the blood flow velocity at the vertebral artery ostium were reduced by 85.33 and 35.36% respectively after stents implantation. The phenomenon of helical flow disappeared. Hemodynamics comparison showed that stent struts that protruded 1 mm into the subclavian artery induced the least decrease in blood speed and WSS. The results suggest that stent implantation can improve the hemodynamics of VAOS, while stent struts that had protruded 1 mm into the subclavian artery would result in less thrombogenesis and neointimal hyperplasia and most likely decrease the risk of ISR.

  1. Natriuretic peptides and cerebral hemodynamics

    DEFF Research Database (Denmark)

    Guo, Song; Barringer, Filippa; Zois, Nora Elisabeth

    2014-01-01

    Natriuretic peptides have emerged as important diagnostic and prognostic tools for cardiovascular disease. Plasma measurement of the bioactive peptides as well as precursor-derived fragments is a sensitive tool in assessing heart failure. In heart failure, the peptides are used as treatment...... in decompensated disease. In contrast, their biological effects on the cerebral hemodynamics are poorly understood. In this mini-review, we summarize the hemodynamic effects of the natriuretic peptides with a focus on the cerebral hemodynamics. In addition, we will discuss its potential implications in diseases...... where alteration of the cerebral hemodynamics plays a role such as migraine and acute brain injury including stroke. We conclude that a possible role of the peptides is feasible as evaluated from animal and in vitro studies, but more research is needed in humans to determine the precise response...

  2. Early Cerebral Hemodynamic, Metabolic, and Histological Changes in Hypoxic-Ischemic Fetal Lambs during Postnatal Life.

    Science.gov (United States)

    Rey-Santano, Carmen; Mielgo, Victoria E; Gastiasoro, Elena; Murgia, Xabier; Lafuente, Hector; Ruiz-Del-Yerro, Estibaliz; Valls-I-Soler, Adolf; Hilario, Enrique; Alvarez, Francisco J

    2011-01-01

    The hemodynamic, metabolic, and biochemical changes produced during the transition from fetal to neonatal life may be aggravated if an episode of asphyxia occurs during fetal life. The aim of the study was to examine regional cerebral blood flow (RCBF), histological changes, and cerebral brain metabolism in preterm lambs, and to analyze the role of oxidative stress in the first hours of postnatal life following severe fetal asphyxia. Eighteen chronically instrumented newborn lambs were randomly assigned to either a control group or the hypoxic-ischemic (HI) group, in which case fetal asphyxia was induced just before delivery. All the animals were maintained on intermittent positive pressure ventilation for 3 h after delivery. During the HI insult, the injured group developed acidosis, hypoxia, hypercapnia, lactic acidosis, and tachycardia (relative to the control group), without hypotension. The intermittent positive pressure ventilation transiently improved gas exchange and cardiovascular parameters. After HI injury and during ventilatory support, there continued to be an increased RCBF in inner regions among the HI group, but no significant differences were detected in cortical flow compared to the control group. Also, the magnitude of the increase in TUNEL positive cells (apoptosis) and antioxidant enzymes, and decrease of ATP reserves was significantly greater in the brain regions where the RCBF was not higher. In conclusion, our findings identify early metabolic, histological, and hemodynamic changes involved in brain damage in premature asphyxiated lambs. Such changes have been described in human neonates, so our model could be useful to test the safety and the effectiveness of different neuroprotective or ventilation strategies applied in the first hours after fetal HI injury.

  3. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    Science.gov (United States)

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  4. Hemodynamic significance of internal carotid artery disease

    DEFF Research Database (Denmark)

    Schroeder, T

    1988-01-01

    Neurologic symptoms in the region of an internal carotid artery stenosis are considered to be embolic in most instances. Only in a subgroup has carotid occlusive disease with impairment of the collateral supply, caused a state of hemodynamic failure with marked reduction of perfusion pressure...... stenosis. This is considered a result of chronic low perfusion pressure with subsequent loss of autoregulation, and autoregulatory control is first regained after some days.(ABSTRACT TRUNCATED AT 400 WORDS)...

  5. Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model

    Science.gov (United States)

    Wang, Hong-Yang; Liu, Long-Shan; Cao, Hai-Ming; Li, Jun; Deng, Rong-Hai; Fu, Qian; Zhang, Huan-Xi; Fei, Ji-Guang; Wang, Chang-Xi

    2017-01-01

    Background: Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Methods: Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann–Whitney U-test was used for analysis. Results: Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 [0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P = 0.001; 3.25 [2.67, 3.56] vs. 1.65 [1.18, 1.72] m/s, 281.3 [184.3, 364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P = 0.001) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P = 0.001; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P = 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Conclusions: Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or

  6. Hemodynamics in Transplant Renal Artery Stenosis and its Alteration after Stent Implantation Based on a Patient-specific Computational Fluid Dynamics Model.

    Science.gov (United States)

    Wang, Hong-Yang; Liu, Long-Shan; Cao, Hai-Ming; Li, Jun; Deng, Rong-Hai; Fu, Qian; Zhang, Huan-Xi; Fei, Ji-Guang; Wang, Chang-Xi

    Accumulating studies on computational fluid dynamics (CFD) support the involvement of hemodynamic factors in artery stenosis. Based on a patient-specific CFD model, the present study aimed to investigate the hemodynamic characteristics of transplant renal artery stenosis (TRAS) and its alteration after stent treatment. Computed tomography angiography (CTA) data of kidney transplant recipients in a single transplant center from April 2013 to November 2014 were reviewed. The three-dimensional geometry of transplant renal artery (TRA) was reconstructed from the qualified CTA images and categorized into three groups: the normal, stenotic, and stented groups. Hemodynamic parameters including pressure distribution, velocity, wall shear stress (WSS), and mass flow rate (MFR) were extracted. The data of hemodynamic parameters were expressed as median (interquartile range), and Mann-Whitney U-test was used for analysis. Totally, 6 normal, 12 stenotic, and 6 stented TRAs were included in the analysis. TRAS presented nonuniform pressure distribution, adverse pressure gradient across stenosis throat, flow vortex, and a separation zone at downstream stenosis. Stenotic arteries had higher maximal velocity and maximal WSS (2.94 [2.14, 3.30] vs. 1.06 [0.89, 1.15] m/s, 256.5 [149.8, 349.4] vs. 41.7 [37.8, 45.3] Pa at end diastole, P= 0.001; 3.25 [2.67, 3.56] vs. 1.65 [1.18, 1.72] m/s, 281.3 [184.3, 364.7] vs. 65.8 [61.2, 71.9] Pa at peak systole, P= 0.001) and lower minimal WSS and MFRs (0.07 [0.03, 0.13] vs. 0.52 [0.45, 0.67] Pa, 1.5 [1.0, 3.0] vs. 11.0 [8.0, 11.3] g/s at end diastole, P= 0.001; 0.08 [0.03, 0.19] vs. 0.70 [0.60, 0.81] Pa, 2.0 [1.3, 3.3] vs. 16.5 [13.0, 20.3] g/s at peak systole, P= 0.001) as compared to normal arteries. Stent implantation ameliorated all the alterations of the above hemodynamic factors except low WSS. Hemodynamic factors were significantly changed in severe TRAS. Stent implantation can restore or ameliorate deleterious change of hemodynamic

  7. Hemodynamics before and after bleb formation in cerebral aneurysms

    Science.gov (United States)

    Cebral, Juan R.; Radaelli, Alessandro; Frangi, Alejandro; Putman, Christopher M.

    2007-03-01

    We investigate whether blebs in cerebral aneurysms form in regions of low or high wall shear stress (WSS), and how the intraaneurysmal hemodynamic pattern changes after bleb formation. Seven intracranial aneurysms harboring well defined blebs were selected from our database and subject-specific computational models were constructed from 3D rotational angiography. For each patient, a second anatomical model representing the aneurysm before bleb formation was constructed by smoothing out the bleb. Computational fluid dynamics simulations were performed under pulsatile flow conditions for both models of each aneurysm. In six of the seven aneurysms, the blebs formed in a region of elevated WSS associated to the inflow jet impaction zone. In one, the bleb formed in a region of low WSS associated to the outflow zone. In this case, the inflow jet maintained a fairly concentrated structure all the way to the outflow zone, while in the other six aneurysms it dispersed after impacting the aneurysm wall. In all aneurysms, once the blebs formed, new flow recirculation regions were formed inside the blebs and the blebs progressed to a state of low WSS. Assuming that blebs form due to a focally damaged arterial wall, these results seem to indicate that the localized injury of the vessel wall may be caused by elevated WSS associated with the inflow jet. However, the final shape of the aneurysm is probably also influenced by the peri-aneurysmal environment that can provide extra structural support via contact with structures such as bone or dura matter.

  8. Hemodynamic responses to mental stress during salt loading

    DEFF Research Database (Denmark)

    Goyal, Maria Gefke; Christensen, Niels Juel; Bech, Per

    2017-01-01

    ) during preparation for a medical exam (prolonged stress) and (ii) outside the exam period (low stress). All subjects consumed a controlled diet for 3 days with low- or high-salt content in randomized order. The subjective stress was measured by Spielberger's State-Trait Anxiety Inventory-Scale, SCL......, CO as well as plasma levels of NE, E and PRA remained unchanged by changes in stress level. Day-night reduction in SAP was significantly larger during moderate stress and high-salt intake; however, no significant difference was observed during daytime and night-time. Individual increase in mental...

  9. Hemodynamic responses to seated and supine lower body negative pressure - Comparison with +Gz acceleration

    Science.gov (United States)

    Polese, Alvese; Sandler, Harold; Montgomery, Leslie D.

    1992-01-01

    The hemodynamic responses to LBNP in seated subjects and in subjects in supine body positions were compared and were correlated with hemodynamic changes which occurred during a simulated (by centrifugation) Shuttle reentry acceleration with a slow onset rate of 0.002 G/s and during gradual onset exposures to +3 Gz and +4 Gz. Results demonstrate that seated LBNP at a level of -40 mm Hg can serve as a static simulator for changes in the heart rate and in mean blood pressure induced by gradual onset acceleration stress occurring during Shuttle reentry. The findings also provide a rationale for using LBNP during weightlessness as a means of imposing G-loading on the circulation prior to reentry.

  10. Hemodynamic characterization of chronic bile duct-ligated rats: effect of pentobarbital sodium

    International Nuclear Information System (INIS)

    Lee, S.S.; Girod, C.; Braillon, A.; Hadengue, A.; Lebrec, D.

    1986-01-01

    Systemic and splanchnic hemodynamics of the chronic bile duct-ligated rat were characterized by radioactive microspheres. Conscious and pentobarbital sodium-anesthetized, bile duct-ligated and sham-operated rats had cardiac output and regional organ blood flows determined. The conscious bile duct-ligated rat compared with the sham-operated showed a hyperdynamic circulation with an increased cardiac output and portal tributary blood flow. Pentobarbital sodium anesthesia induced marked hemodynamic changes in both sham-operated and bile duct-ligated rats. The latter group was especially sensitive to its effects; thus, comparison of cardiac output and portal tributary blood flow between anesthetized bile duct-ligated and sham-operated rats showed no significant differences. The authors conclude that the rat with cirrhosis due to chronic bile duct ligation is an excellent model for hemodynamic investigations but should be studied in the conscious state, since pentobarbital sodium anesthesia eliminated the hyperdynamic circulation

  11. Hemodynamic response during aneurysm clipping surgery among experienced neurosurgeons.

    Science.gov (United States)

    Bunevicius, Adomas; Bilskiene, Diana; Macas, Andrius; Tamasauskas, Arimantas

    2016-02-01

    Neurosurgery is a challenging field associated with high levels of mental stress. The goal of this study was to investigate the hemodynamic response of experienced neurosurgeons during aneurysm clipping surgery and to evaluate whether neurosurgeons' hemodynamic responses are associated with patients' clinical statuses. Four vascular neurosurgeons (all male; mean age 51 ± 10 years; post-residency experience ≥7 years) were studied during 42 aneurysm clipping procedures. Blood pressure (BP) and heart rate (HR) were assessed at rest and during seven phases of surgery: before the skin incision, after craniotomy, after dural opening, after aneurysm neck dissection, after aneurysm clipping, after dural closure and after skin closure. HR and BP were significantly greater during surgery relative to the rest situation (p ≤ 0.03). There was a statistically significant increase in neurosurgeons' HR (F [6, 41] = 10.88, p neurosurgeon experience, the difference in BP as a function of aneurysm rupture was not significant (p > 0.08). Aneurysm location, intraoperative aneurysm rupture, admission WFNS score, admission Glasgow Coma Scale scores and Fisher grade were not associated with neurosurgeons' intraoperative HR and BP (all p > 0.07). Aneurysm clipping surgery is associated with significant hemodynamic system activation among experienced neurosurgeons. The greatest HR and BP were after aneurysm neck dissection and clipping. Aneurysm location and patient clinical status were not associated with intraoperative changes of neurosurgeons' HR and BP.

  12. Central and peripheral hemodynamics in exercising humans

    DEFF Research Database (Denmark)

    Calbet, J A L; González-Alonso, J; Helge, J W

    2015-01-01

    In humans, arm exercise is known to elicit larger increases in arterial blood pressure (BP) than leg exercise. However, the precise regulation of regional vascular conductances (VC) for the distribution of cardiac output with exercise intensity remains unknown. Hemodynamic responses were assessed...... perfusion pressure to increase O2 delivery, allowing a similar peak VO2 per kg of muscle mass in both extremities. In summary, despite a lower Qpeak during arm cranking the cardiovascular strain is much higher than during leg pedalling. The adjustments of regional conductances during incremental exercise...... to exhaustion depend mostly on the relative intensity of exercise and are limb-specific....

  13. Hemodynamics of a Patient-Specific Aneurysm Model with Proper Orthogonal Decomposition

    Science.gov (United States)

    Han, Suyue; Chang, Gary Han; Modarres-Sadeghi, Yahya

    2017-11-01

    Wall shear stress (WSS) and oscillatory shear index (OSI) are two of the most-widely studied hemodynamic quantities in cardiovascular systems that have been shown to have the ability to elicit biological responses of the arterial wall, which could be used to predict the aneurysm development and rupture. In this study, a reduced-order model (ROM) of the hemodynamics of a patient-specific cerebral aneurysm is studied. The snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases of the flow using a CFD training set with known inflow parameters. It was shown that the area of low WSS and high OSI is correlated to higher POD modes. The resulting ROM can reproduce both WSS and OSI computationally for future parametric studies with significantly less computational cost. Agreement was observed between the WSS and OSI values obtained using direct CFD results and ROM results.

  14. Hemodynamic disturbances in cerebral ischemia; Correlation between positron emission tomographic and angiographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Tenjin, Hiroshi; Ueda, Satoshi; Mizukawa, Norihiko; Imahori, Yoshio; Hino, Akihiko; Ohmori, Yoshio [Kyoto Prefectural Univ. of Medicine (Japan); Nakahashi, Hisamitsu

    1993-04-01

    Proper treatment of ischemic stroke requires better understanding of cerebral hemodynamic changes. The hemodynamic changes associated with ischemia were measured using positron emission tomography and related to angiographic findings in the subacute and chronic stages of 17 ischemia patients who showed symptoms of main trunk stenosis of the internal carotid artery system. The hemodynamic factors, cerebral blood flow, cerebral blood volume, cerebral metabolic rate for oxygen, oxygen extraction fraction, and flow/volume ratio, were measured in regions of interest determined from the angiographic stenosis (over 50%) and compared in each stage. The cerebral blood flow and flow/volume ratio in the territory downstream of the main trunk stenosis and cerebral metabolic rate for oxygen in the whole cortex were decreased in the subacute stage. In the chronic stage, cerebral blood flow and flow/volume ratio decreased mainly in borderzone areas. (author).

  15. Clinical, morphological, and hemodynamic independent characteristic factors for rupture of posterior communicating artery aneurysms.

    Science.gov (United States)

    Zhang, Ying; Jing, Linkai; Liu, Jian; Li, Chuanhui; Fan, Jixing; Wang, Shengzhang; Li, Haiyun; Yang, Xinjian

    2016-08-01

    To identify clinical, morphological, and hemodynamic independent characteristic factors that discriminate posterior communicating artery (PCoA) aneurysm rupture status. 173 patients with single PCoA aneurysms (108 ruptured, 65 unruptured) between January 2012 and June 2014 were retrospectively collected. Patient-specific models based on their three-dimensional digital subtraction angiography images were constructed and analyzed by a computational fluid dynamic method. All variables were analyzed by univariate analysis and multivariate logistic regression analysis. Two clinical factors (younger age and atherosclerosis), three morphological factors (higher aspect ratio, bifurcation type, and irregular shape), and six hemodynamic factors (lower mean and minimum wall shear stress, higher oscillatory shear index, a greater portion of area under low wall shear stress, unstable and complex flow pattern) were significantly associated with PCoA aneurysm rupture. Independent factors characterizing the rupture status were identified as age (OR 0.956, p=0.015), irregular shape (OR 6.709, pPCoA aneurysm rupture were younger age, irregular shape, and low minimum wall shear stress. This may be useful for guiding risk assessments and subsequent treatment decisions for PCoA aneurysms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Morphological and hemodynamic analysis of mirror posterior communicating artery aneurysms.

    Directory of Open Access Journals (Sweden)

    Jinyu Xu

    Full Text Available BACKGROUND AND PURPOSE: Hemodynamic factors are commonly believed to play an important role in the pathogenesis, progression, and rupture of cerebral aneurysms. In this study, we aimed to identify significant hemodynamic and morphological parameters that discriminate intracranial aneurysm rupture status using 3-dimensional-angiography and computational fluid dynamics technology. MATERIALS AND METHODS: 3D-DSA was performed in 8 patients with mirror posterior communicating artery aneurysms (Pcom-MANs. Each pair was divided into ruptured and unruptured groups. Five morphological and three hemodynamic parameters were evaluated for significance with respect to rupture. RESULTS: The normalized mean wall shear stress (WSS of the aneurysm sac in the ruptured group was significantly lower than that in the unruptured group (0.52±0.20 versus 0.81±0.21, P = .012. The percentage of the low WSS area in the ruptured group was higher than that in the unruptured group (4.11±4.66% versus 0.02±0.06%, P = .018. The AR was 1.04±0.21 in the ruptured group, which was significantly higher than 0.70±0.17 in the unruptured group (P = .012. By contrast, parameters that had no significant differences between the two groups were OSI (P = .674, aneurysm size (P = .327, size ratio (P = .779, vessel angle (P = 1.000 and aneurysm inclination angle (P = 1.000. CONCLUSIONS: Pcom-MANs may be a useful disease model to investigate possible causes of aneurysm rupture. The ruptured aneurysms manifested lower WSS, higher percentage of low WSS area, and higher AR, compared with the unruptured one. And hemodynamics is as important as morphology in discriminating aneurysm rupture status.

  17. Direct cortical hemodynamic mapping of somatotopy of pig nostril sensation by functional near-infrared cortical imaging (fNCI).

    Science.gov (United States)

    Uga, Minako; Saito, Toshiyuki; Sano, Toshifumi; Yokota, Hidenori; Oguro, Keiji; Rizki, Edmi Edison; Mizutani, Tsutomu; Katura, Takusige; Dan, Ippeita; Watanabe, Eiju

    2014-05-01

    Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for the noninvasive monitoring of human brain activation states utilizing the coupling between neural activity and regional cerebral hemodynamics. Illuminators and detectors, together constituting optodes, are placed on the scalp, but due to the presence of head tissues, an inter-optode distance of more than 2.5cm is necessary to detect cortical signals. Although direct cortical monitoring with fNIRS has been pursued, a high-resolution visualization of hemodynamic changes associated with sensory, motor and cognitive neural responses directly from the cortical surface has yet to be realized. To acquire robust information on the hemodynamics of the cortex, devoid of signal complications in transcranial measurement, we devised a functional near-infrared cortical imaging (fNCI) technique. Here we demonstrate the first direct functional measurement of temporal and spatial patterns of cortical hemodynamics using the fNCI technique. For fNCI, inter-optode distance was set at 5mm, and light leakage from illuminators was prevented by a special optode holder made of a light-shielding rubber sheet. fNCI successfully detected the somatotopy of pig nostril sensation, as assessed in comparison with concurrent and sequential somatosensory-evoked potential (SEP) measurements on the same stimulation sites. Accordingly, the fNCI system realized a direct cortical hemodynamic measurement with a spatial resolution comparable to that of SEP mapping on the rostral region of the pig brain. This study provides an important initial step toward realizing functional cortical hemodynamic monitoring during neurosurgery of human brains. Copyright © 2014. Published by Elsevier Inc.

  18. [Hemodynamic changes in hypoglycemic shock].

    Science.gov (United States)

    Gutiérrez, C; Piza, R; Chousleb, A; Hidalgo, M A; Ortigosa, J L

    1977-01-01

    Severe hypoglycemia may be present in seriously ill patients; if it is not corrected opportunely a series of neuroendocrinal mechanisms take place aimed at correcting metabolic alterations. These mechanisms can produce hemodynamic alterations as well. Nine mongrel dogs were studied with continuous registration of: blood pressure, central venous pressure, cardiac frequency, respiratory frequency, electrocardiogram and first derivative (Dp/Dt). Six dogs received crystalline (fast acting) insuline intravenously (group 1). After hemodynamic changes were registered hypoglycemia was corrected with 50 per cent glucose solution. Complementary insuline doses were administered to three dogs (group 2); in this group hypoglycemia was not corrected. In group 1 during hypoglycemia there was an increase in blood pressure, central venous pressure, cardiac frequency, respiratory frequency and Dp/Dt, and changes in QT and T wave on the EKG; these changes were partially reversible after hypoglycemia was corrected. The above mentioned alterations persisted in group 2, breathing became irregular irregular and respiratory arrest supervened. It can be inferred that the hemodynamic response to hypoglycemia is predominantly adrenergic. The role of catecolamines, glucocorticoides, glucagon, insuline, cyclic AMP in metabolic and hemodynamic alterations consecutive to hypoglycemia are discussed.

  19. Childhood moyamoya disease: hemodynamic MRI

    International Nuclear Information System (INIS)

    Tzika, A.A.; Robertson, R.L.; Barnes, P.D.; Vajapeyam, S.; Burrows, P.E.; Treves, S.T.; Scott, R.M. I

    1997-01-01

    Background. Childhood moyamoya disease is a rare progressive cerebrovascular disease. Objective. To evaluate cerebral hemodynamics using dynamic Gd-DTPA-enhanced imaging in children with moyamoya disease. Materials and methods. Eight children (2-11 years of age) with the clinical and angiographic findings typical of moyamoya disease, before and/or after surgical intervention (pial synangiosis), underwent conventional MR imaging (MRI) and hemodynamic MR imaging (HMRI). HMRI used a spoiled gradient-echo with low flip angle (10 deg) and long TE (TR/TE = 24/15 ms) to minimize T 1 effects and emphasize T 2 * weighting. Raw and calculated hemodynamic images were reviewed. Three-dimensional time-of-flight MR angiography (MRA) and perfusion brain single photon emission computed tomography (SPECT) were also performed. Results. Abnormal hemodynamic maps resulting from vascular stenosis or occlusion and basal collaterals were observed in six patient studies. HMRI depicted perfusion dynamics of affected cerebrovascular territories, detected cortical perfusion deficits, and complemented conventional MRI and MRA. HMRI findings were consistent with those of catheter angiography and perfusion SPECT. Conclusion. Our preliminary experience suggests that HMRI may be of value in the preoperative and postoperative evaluation of surgical interventions in moyamoya disease. (orig.). With 4 figs., 3 tabs

  20. Hemodynamic effect of bypass geometry on intracranial aneurysm: A numerical investigation.

    Science.gov (United States)

    Kurşun, Burak; Uğur, Levent; Keskin, Gökhan

    2018-05-01

    Hemodynamic analyzes are used in the clinical investigation and treatment of cardiovascular diseases. In the present study, the effect of bypass geometry on intracranial aneurysm hemodynamics was investigated numerically. Pressure, wall shear stress (WSS) and velocity distribution causing the aneurysm to grow and rupture were investigated and the best conditions were tried to be determined in case of bypassing between basilar (BA) and left/right posterior arteries (LPCA/RPCA) for different values of parameters. The finite volume method was used for numerical solutions and calculations were performed with the ANSYS-Fluent software. The SIMPLE algorithm was used to solve the discretized conservation equations. Second Order Upwind method was preferred for finding intermediate point values in the computational domain. As the blood flow velocity changes with time, the blood viscosity value also changes. For this reason, the Carreu model was used in determining the viscosity depending on the velocity. Numerical study results showed that when bypassed, pressure and wall shear stresses reduced in the range of 40-70% in the aneurysm. Numerical results obtained are presented in graphs including the variation of pressure, wall shear stress and velocity streamlines in the aneurysm. Considering the numerical results for all parameter values, it is seen that the most important factors affecting the pressure and WSS values in bypassing are the bypass position on the basilar artery (L b ) and the diameter of the bypass vessel (d). Pressure and wall shear stress reduced in the range of 40-70% in the aneurysm in the case of bypass for all parameters. This demonstrates that pressure and WSS values can be greatly reduced in aneurysm treatment by bypassing in cases where clipping or coil embolization methods can not be applied. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Social cognition and prefrontal hemodynamic responses during a working memory task in schizophrenia.

    Science.gov (United States)

    Pu, Shenghong; Nakagome, Kazuyuki; Yamada, Takeshi; Itakura, Masashi; Yamanashi, Takehiko; Yamada, Sayaka; Masai, Mieko; Miura, Akihiko; Yamauchi, Takahira; Satake, Takahiro; Iwata, Masaaki; Nagata, Izumi; Roberts, David L; Kaneko, Koichi

    2016-03-01

    Social cognition is an important determinant of functional impairment in schizophrenia, but its relationship with the prefrontal functional abnormalities associated with the condition is still unclear. The present study aimed to explore the relationship between social cognition and prefrontal function in patients with schizophrenia using 52-channel near-infrared spectroscopy (NIRS). Twenty-six patients with schizophrenia and 26 age-, gender-, and intelligence quotient-matched healthy controls (HCs) participated in the study. Hemodynamic responses in the prefrontal and superior temporal cortical regions were assessed during a working memory task using NIRS. Social cognition was assessed using the Social Cognition Screening Questionnaire (SCSQ). The observed hemodynamic responses were significantly reduced in the lateral prefrontal cortex (PFC), the frontopolar cortex, and temporal regions in subjects with schizophrenia compared to HCs. Additionally, lateral PFC hemodynamic responses assessed during the working memory task demonstrated a strong positive correlation with the SCSQ theory of mind (ToM) subscale score even after controlling for working memory performance. These results suggest that ToM integrity is closely related to lateral PFC functional abnormalities found in patients with schizophrenia. In addition, this study provides evidence to suggest that NIRS could be used to identify biomarkers of social cognition function in subjects with schizophrenia.

  2. Early cerebral hemodynamic, metabolic and histological changes in hypoxic-ischemic fetal lambs during postnatal life

    Directory of Open Access Journals (Sweden)

    Carmen eRey-Santano

    2011-09-01

    Full Text Available The hemodynamic, metabolic and biochemical changes produce during transition from fetal to neonatal life could be aggravated if asphyctic event occur during fetal life. The aim of the study was to examine the regional cerebral blood flow (RCBF, histological changes, and cerebral brain metabolism in preterm lambs, and to analyze the role of oxidative stress for the first hours of postnatal life following severe fetal asphyxia. 18 chronically instrumented fetal lambs were assigned to: hypoxic-ischemic group, following fetal asphyxia animals were delivered and maintained on intermittent-positive-pressure-ventilation for 3 hours, and non-injured animals that were managed similarly to the previous group and used as control group. During hypoxic-ischemic insult, injured group developed acidosis, hypoxia, hypercapnia, latacidaemia and tachycardia in comparison to control group, without hypotension. Intermittent-positive-pressure-ventilation transiently improved gas exchange and cardiovascular parameters. After HI injury and during ventilation-support, the increased RCBF in inner zones was maintained for hypoxic-ischemic group, but cortical flow did not exhibit differences compared to the control group. Also, the increase of TUNEL positive cells (apoptosis and antioxidant enzymes, and decrease of ATP reserves was significantly higher in the brain regions where the RCBF were not increased.In conclusion, early metabolic, histological and hemodynamic changes involved in brain damage have been intensively investigated and reported in premature asphyctic lambs for the first 3 hours of postnatal life. Those changes have been described in human neonates, so our model could be useful to test the security and the effectiveness of different neuroprotective or ventilatory strategies when are applied in the first hours after fetal hypoxic-ischemic injury.

  3. Pulsatile flow effects on the hemodynamics of intracranial aneurysms.

    Science.gov (United States)

    Le, Trung B; Borazjani, Iman; Sotiropoulos, Fotis

    2010-11-01

    High-resolution numerical simulations are carried out to systematically investigate the effect of the incoming flow waveform on the hemodynamics and wall shear stress patterns of an anatomic sidewall intracranial aneurysm model. Various wave forms are constructed by appropriately scaling a typical human waveform such that the waveform maximum and time-averaged Reynolds numbers, the Womersley number (α), and the pulsatility index (PI) are systematically varied within the human physiologic range. We show that the waveform PI is the key parameter that governs the vortex dynamics across the aneurysm neck and the flow patterns within the dome. At low PI, the flow in the dome is similar to a driven cavity flow and is characterized by a quasi-stationary shear layer that delineates the parent artery flow from the recirculating flow within the dome. At high PI, on the other hand, the flow is dominated by vortex ring formation, transport across the neck, and impingement and breakdown at the distal wall of the aneurysm dome. We further show that the spatial and temporal characteristics of the wall shear stress field on the aneurysm dome are strongly correlated with the vortex dynamics across the neck. We finally argue that the ratio between the characteristic time scale of transport by the mean flow across the neck and the time scale of vortex ring formation can be used to predict for a given sidewall aneurysm model the critical value of the waveform PI for which the hemodynamics will transition from the cavity mode to the vortex ring mode.

  4. Intraoperative brain hemodynamic response assessment with real-time hyperspectral optical imaging (Conference Presentation)

    Science.gov (United States)

    Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric

    2016-03-01

    Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.

  5. Childhood moyamoya disease: hemodynamic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tzika, A.A. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Robertson, R.L. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Barnes, P.D. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Vajapeyam, S. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Burrows, P.E. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Treves, S.T. [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States); Scott, R.M. l [Department of Radiology, Children`s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (United States)

    1997-09-01

    Background. Childhood moyamoya disease is a rare progressive cerebrovascular disease. Objective. To evaluate cerebral hemodynamics using dynamic Gd-DTPA-enhanced imaging in children with moyamoya disease. Materials and methods. Eight children (2-11 years of age) with the clinical and angiographic findings typical of moyamoya disease, before and/or after surgical intervention (pial synangiosis), underwent conventional MR imaging (MRI) and hemodynamic MR imaging (HMRI). HMRI used a spoiled gradient-echo with low flip angle (10 deg) and long TE (TR/TE = 24/15 ms) to minimize T 1 effects and emphasize T 2{sup *} weighting. Raw and calculated hemodynamic images were reviewed. Three-dimensional time-of-flight MR angiography (MRA) and perfusion brain single photon emission computed tomography (SPECT) were also performed. Results. Abnormal hemodynamic maps resulting from vascular stenosis or occlusion and basal collaterals were observed in six patient studies. HMRI depicted perfusion dynamics of affected cerebrovascular territories, detected cortical perfusion deficits, and complemented conventional MRI and MRA. HMRI findings were consistent with those of catheter angiography and perfusion SPECT. Conclusion. Our preliminary experience suggests that HMRI may be of value in the preoperative and postoperative evaluation of surgical interventions in moyamoya disease. (orig.). With 4 figs., 3 tabs.

  6. Prolonged hemodynamic response during incidental facial emotion processing in inter-episode bipolar I disorder.

    Science.gov (United States)

    Rosenfeld, Ethan S; Pearlson, Godfrey D; Sweeney, John A; Tamminga, Carol A; Keshavan, Matcheri S; Nonterah, Camilla; Stevens, Michael C

    2014-03-01

    This fMRI study examined whether hemodynamic responses to affectively-salient stimuli were abnormally prolonged in remitted bipolar disorder, possibly representing a novel illness biomarker. A group of 18 DSM-IV bipolar I-diagnosed adults in remission and a demographically-matched control group performed an event-related fMRI gender-discrimination task in which face stimuli had task-irrelevant neutral, happy or angry expressions designed to elicit incidental emotional processing. Participants' brain activation was modeled using a "fully informed" SPM5 basis set. Mixed-model ANOVA tested for diagnostic group differences in BOLD response amplitude and shape within brain regions-of-interest selected from ALE meta-analysis of previous comparable fMRI studies. Bipolar-diagnosed patients had a generally longer duration and/or later-peaking hemodynamic response in amygdala and numerous prefrontal cortex brain regions. Data are consistent with existing models of bipolar limbic hyperactivity, but the prolonged frontolimbic response more precisely details abnormalities recognized in previous studies. Prolonged hemodynamic responses were unrelated to stimulus type, task performance, or degree of residual mood symptoms, suggesting an important novel trait vulnerability brain dysfunction in bipolar disorder. Bipolar patients also failed to engage pregenual cingulate and left orbitofrontal cortex-regions important to models of automatic emotion regulation-while engaging a delayed dorsolateral prefrontal cortex response not seen in controls. These results raise questions about whether there are meaningful relationships between bipolar dysfunction of specific ventromedial prefrontal cortex regions believed to automatically regulate emotional reactions and the prolonged responses in more lateral aspects of prefrontal cortex.

  7. Occupational exposure in hemodynamic; Exposicao ocupacional em hemodinamica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Amanda J.; Fernandes, Ivani M.; Silva, Paula P. Nou; Sordi, Gian Maria A.A.; Carneiro, Janete C.G.G., E-mail: ajsilva@ipen.b, E-mail: imfernandes@ipen.b, E-mail: ppsilva@ipen.b, E-mail: gmsordi@ipen.b, E-mail: janetegc@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-10-26

    This paper has an objective to perform a radiometric survey at a hemodynamic service. Besides, it was intended to evaluate the effective dose of health professionals and to provide data which can contribute with minimization of exposures during the realization of hemodynamic procedure. The radiometric survey was realized in the real environment of work simulating the conditions of a hemodynamic study with a ionization chamber

  8. Central Hemodynamics and Microcirculation in Critical Conditions

    Directory of Open Access Journals (Sweden)

    A. A. Kosovskikh

    2013-01-01

    Full Text Available Objective: to compare central hemodynamic and microcirculatory changes in critical conditions caused by different factors and to reveal their possible differences for a further differentiated approach to intensive therapy. Subjects and methods. The study covered 16 subjects with severe concomitant injury (mean age 41.96±2.83 years and 19 patients with general purulent peritonitis (mean age 45.34±2.16 years. Their follow-up was 7 days. The central hemodynamics was estimated by transpulmonary thermodilution using a Pulsion PiCCO Plus system (Pulsion Medical Systems, Germany. The microcirculatory bed was evaluated by cutaneous laser Doppler flowmetry using a LAKK-02 capillary blood flow laser analyzer (LAZMA Research-and-Production Association, Russian Federation. Results. The pattern of central hemodynamic and microcirculatory disorders varies with the trigger that has led to a critical condition. Central hemodynamics should be stabilized to ensure the average level of tissue perfusion in victims with severe concomitant injury. In general purulent peritonitis, microcirculatory disorders may persist even if the macrohemodynamic parameters are normal. Conclusion. The macrohemodynamic and microcirculatory differences obtained during the study suggest that a complex of intensive therapy should be differentiated and, if the latter is used, it is necessary not only to be based on the central hemodynamics, but also to take into consideration functional changes in microcirculation. Key words: severe concomitant injury, general purulent peritonitis, micro-circulation, central hemodynamics, type of circulation.

  9. A framework for the co-registration of hemodynamic forces and atherosclerotic plaque components

    OpenAIRE

    Canton, Gador; Chiu, Bernard; Chen, Huijun; Chen, Yimin; Hatsukami, Thomas S.; Kerwin, William S.; Yuan, Chun

    2013-01-01

    Local hemodynamic forces, such as wall shear stress, are thought to trigger cellular and molecular mechanisms that determine atherosclerotic plaque vulnerability to rupture. Magnetic resonance imaging (MRI) has emerged as a powerful tool to characterize human carotid atherosclerotic plaque composition and morphology, and to identify plaque features shown to be key determinants of plaque vulnerability. Image-based computational fluid dynamics (CFD) has allowed researchers to obtain time-resolv...

  10. Ionizing radiation occupational exposure in the hemodynamics services

    International Nuclear Information System (INIS)

    Gronchi, Claudia Carla

    2004-01-01

    The purpose of this research is to study the ionizing radiation occupational exposure in the hemodynamic services of two large scale hospitals (Hospital A and Hospital B) of the Sao Paulo city. The research looked into annual doses that 279 professionals of the hemodynamic services were exposed to between 1991 and 2002. The data analyzed was collected from the database of the Instituto de Pesquisas Energeticas e Nucleares (IPEN) for Hospital A, and from the Radiological Protection Department of Hospital B. Besides this, measures of hands and crystalline lens equivalent doses were performed during hemodynamic procedures of the physicians, assistant physicians and nursing assistants with TL dosimeters (CaSO 4 :Dy + Teflon R) produced at IPEN. The safety procedures adopted by the hospitals were verified with the aid of a specific questionnaire for the hemodynamic services. Finally, a profile of the professionals that work in cardiac catheterism laboratories of the hemodynamic services was delineated, considering the variables of individual monitoring time, age and sex. This study allowed for observation of the behavior of the professionals' annual doses of these hemodynamic services in relation to the Comissao Nacional de Energia Nuclear and the Secretaria de Vigilancia Sanitaria limits. It showed that the annual doses of the same specialized occupations would vary from one hospital to another. It further showed the need of individual monitoring of the physicians' unprotected body parts (hands and crystalline lens) during the hemodynamic procedures. (author)

  11. Diagnosis of hemodynamic compromise in patients with chronic cerebral ischemia

    International Nuclear Information System (INIS)

    Kuroda, Satoshi; Sakuragi, Mitsugi; Motomiya, Mineo; Nakagawa, Tango; Mitsumori, Kenji; Tsuru, Mitsuo; Takigawa, Shugo; Kamiyama, Hiroyasu; Abe, Hiroshi.

    1990-01-01

    To evaluate the efficacy of tests for selecting patients with hemodynamic compromise, measurement of cerebral blood volume (CBV) with 99m Tc-RBC single photon emission computed tomography (SPECT) was performed in thirteen patients with occlusive cerebrovascular disease, and was compared with results obtained by 133 Xe SPECT and acetazolamide (Diamox) test. All patients in our study suffered TIA, RIND, or minor completed stroke. Cerebral angiography demonstrated severe stenosis or occlusion in the ipsilateral internal carotid artery or middle cerebral artery, although plain CT scan or MRI revealed no or, if any, only localized infarcted lesions. Regional cerebral blood volume (rCBV) was measured with 99m Tc-RBC SPECT and regional cerebral blood flow (rCBF) was measured with 133 Xe SPECT before and after intravenous injection of 10 - 12 mg/kg acetazolamide (Diamox). Our results suggest that the ipsilateral rCBV/rCBF (mean transit time) is a more sensitive index of the cerebral perfusion reserve than the use of only rCBV or rCBF of the ipsilateral hemisphere. Also, the ipsilateral rCBV/rCBF is significantly correlated (r= -0.72) with the Diamox reactivity of rCBF, which is considered to represent the cerebral vasodilatory capacity in patients with chronic cerebral ischemia. Postoperative SPECT study revealed remarkable improvement of ipsilateral rCBV/rCBF and Diamox reactivity in four patients who underwent EC/IC bypass surgery to improve the hemodynamic compromise. In conclusion, our results suggest that the measurement of rCBV/rCBF with 133 Xe SPECT and 99m Tc-RBC SPECT is useful for detecting the hemodynamic compromise in patients with occlusive cerebrovascular disease. (author)

  12. Asiatic Acid Alleviates Hemodynamic and Metabolic Alterations via Restoring eNOS/iNOS Expression, Oxidative Stress, and Inflammation in Diet-Induced Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Poungrat Pakdeechote

    2014-01-01

    Full Text Available Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS induced by a high-carbohydrate, high-fat (HCHF diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α levels (p < 0.05. Plasma nitrate and nitrite (NOx were markedly high with upregulation of inducible nitric oxide synthase (iNOS expression, but dowregulation of endothelial nitric oxide synthase (eNOS expression (p < 0.05. Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p < 0.05. In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.

  13. Hemodynamic Effects of Glucagon - A Literature Review

    DEFF Research Database (Denmark)

    Meidahl Petersen, Kasper; Bøgevig, Søren; Holst, Jens Juul

    2018-01-01

    Context: Glucagon's effects on hemodynamic parameters - most notably heart rate and cardiac contractility - are overlooked. The glucagon receptor is a central target in novel and anticipated type 2 diabetes therapies and hemodynamic consequences of glucagon signaling have therefore become increas...

  14. Hemodynamic Perturbations in Deep Brain Stimulation Surgery: First Detailed Description

    Directory of Open Access Journals (Sweden)

    Tumul Chowdhury

    2017-08-01

    Full Text Available Background: Hemodynamic perturbations can be anticipated in deep brain stimulation (DBS surgery and may be attributed to multiple factors. Acute changes in hemodynamics may produce rare but severe complications such as intracranial bleeding, transient ischemic stroke and myocardium infarction. Therefore, this retrospective study attempts to determine the incidence of hemodynamic perturbances (rate and related risk factors in patients undergoing DBS surgery.Materials and Methods: After institutional approval, all patients undergoing DBS surgery for the past 10 years were recruited for this study. Demographic characteristics, procedural characteristics and intraoperative hemodynamic changes were noted. Event rate was calculated and the effect of all the variables on hemodynamic perturbations was analyzed by regression model.Results: Total hemodynamic adverse events during DBS surgery was 10.8 (0–42 and treated in 57% of cases.Conclusion: Among all the perioperative variables, the baseline blood pressure including systolic, diastolic, and mean arterial pressure was found to have highly significant effect on these intraoperative hemodynamic perturbations.

  15. Hemodynamic and Anatomic Predictors of Renovisceral Stent-Graft Occlusion Following Chimney Endovascular Repair of Juxtarenal Aortic Aneurysms.

    Science.gov (United States)

    Tricarico, Rosamaria; He, Yong; Laquian, Liza; Scali, Salvatore T; Tran-Son-Tay, Roger; Beck, Adam W; Berceli, Scott A

    2017-12-01

    To identify anatomic and hemodynamic changes associated with impending visceral chimney stent-graft occlusion after endovascular aneurysm repair (EVAR) with the chimney technique (chEVAR). A retrospective evaluation was performed of computed tomography scans from 41 patients who underwent juxtarenal chEVAR from 2008 to 2012 to identify stent-grafts demonstrating conformational changes following initial placement. Six subjects (mean age 74 years; 3 men) were selected for detailed reconstruction and computational hemodynamic analysis; 4 had at least 1 occluded chimney stent-graft. This subset of repairs was systematically analyzed to define the anatomic and hemodynamic impact of these changes and identify signature patterns associated with impending renovisceral stent-graft occlusion. Spatial and temporal analyses of cross-sectional area, centerline angle, intraluminal pressure, and wall shear stress (WSS) were performed within the superior mesenteric and renal artery chimney grafts used for repair. Conformational changes in the chimney stent-grafts and associated perturbations, in both local WSS and pressure, were responsible for the 5 occlusions in the 13 stented branches. Anatomic and hemodynamic signatures leading to occlusion were identified within 1 month postoperatively, with a lumen area 25 Pa/mm (p=0.03), and systolic WSS >45 Pa (p=0.03) associated with future chimney stent-graft occlusion. Chimney stent-grafts at increased risk for occlusion demonstrated anatomic and hemodynamic signatures within 1 month of juxtarenal chEVAR. Analysis of these parameters in the early postoperative period may be useful for identifying and remediating these high-risk stent-grafts.

  16. Postural hemodynamic changes after turning to prone position

    Directory of Open Access Journals (Sweden)

    Микола Віталійович Лизогуб

    2015-03-01

    Full Text Available Background of study. Prone position is one of the most complex positions for anesthesiologist as it is accompanied by several physiological changes that can lead to specific complications. Hemodynamic changes are most controversial.Aim of study was to establish hemodynamic changes in non-anaesthetized patients in prone position depending on body mass index.Material and methods. We examined central hemodynamics in 40 patients the day before surgery using thoracic rheography in supine position, in prone position 5 min after turning and in prone position 20 min after turning. Patients were divided into 2 groups according to body mass index (18-25 and 26-35.Results. Patients with normal body weight did not have any hemodynamic changes after turning to prone position. Patients with increased body weight had higher cardiac index. After turning to prone position obese patients’ cardiac output and cardiac index reduced 22% comparing with supine position. After 20 min in prone position these hemodynamic parameters were found to be reduced to the same level.Conclusion. Significant hemodynamic changes after turning from supine to prone position were revealed only in patients with increased body mass index. In these patients cardiac index in prone position was reduced by 22% comparing to supine position

  17. Unraveling the relationship between arterial flow and intra-aneurysmal hemodynamics.

    Science.gov (United States)

    Morales, Hernán G; Bonnefous, Odile

    2015-02-26

    Arterial flow rate affects intra-aneurysmal hemodynamics but it is not clear how their relationship is. This uncertainty hinders the comparison among studies, including clinical evaluations, like a pre- and post-treatment status, since arterial flow rates may differ at each time acquisition. The purposes of this work are as follows: (1) To study how intra-aneurysmal hemodynamics changes within the full physiological range of arterial flow rates. (2) To provide characteristic curves of intra-aneurysmal velocity, wall shear stress (WSS) and pressure as functions of the arterial flow rate. Fifteen image-based aneurysm models were studied using computational fluid dynamics (CFD) simulations. The full range of physiological arterial flow rates reported in the literature was covered by 11 pulsatile simulations. For each aneurysm, the spatiotemporal-averaged blood flow velocity, WSS and pressure were calculated. Spatiotemporal-averaged velocity inside the aneurysm linearly increases as a function of the mean arterial flow (minimum R(2)>0.963). Spatiotemporal-averaged WSS and pressure at the aneurysm wall can be represented by quadratic functions of the arterial flow rate (minimum R(2)>0.996). Quantitative characterizations of spatiotemporal-averaged velocity, WSS and pressure inside cerebral aneurysms can be obtained with respect to the arterial flow rate. These characteristic curves provide more information of the relationship between arterial flow and aneurysm hemodynamics since the full range of arterial flow rates is considered. Having these curves, it is possible to compare experimental studies and clinical evaluations when different flow conditions are used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Hemodynamic stress echocardiography in patients supported with a continuous-flow left ventricular assist device

    DEFF Research Database (Denmark)

    Andersen, Mads Jønsson; Gustafsson, Finn; Madsen, Per Lav

    2010-01-01

    exercise. Exercise induced an increase in cardiac output, systolic pulmonary artery pressure, and diastolic pulmonary artery pressure. Although no changes in left ventricular dimensions or fractional shortening were seen on echocardiography, systolic mitral annular motion (S') increased significantly (in...... parallel with cardiac output) and diastolic E/e' ratio decreased (correlating inversely with diastolic pulmonary artery pressure). These findings emphasize the potential role of exercise echocardiography in studying exercise hemodynamics in LVAD patients....

  19. Cerebral hemodynamics in migraine

    DEFF Research Database (Denmark)

    Hachinski, V C; Olesen, Jes; Norris, J W

    1977-01-01

    Clinical and angiographic findings in migraine are briefly reviewed in relation to cerebral hemodynamic changes shown by regional cerebral blood flow (rCBF) studies. Three cases of migraine studied by the intracarotid xenon 133 method during attacks are reported. In classic migraine, with typical...... prodromal symptoms, a decrease in cerebral blood flow has been demonstrated during the aura. Occasionally, this flow decrease persists during the headache phase. In common migraine, where such prodromata are not seen, a flow decrease has not been demonstrated. During the headache phase of both types...... of migraine, rCBF has usually been found to be normal or in the high range of normal values. The high values may represent postischemic hyperemia, but are probably more frequently secondary to arousal caused by pain. Thus, during the headache phase rCBF may be subnormal, normal or high. These findings do...

  20. A biomedical solicitation examination of nanoparticles as drug agents to minimize the hemodynamics of a stenotic channel

    Science.gov (United States)

    Ijaz, S.; Nadeem, S.

    2017-11-01

    A theoretical examination is presented in this analysis to study the flow of a bio-nanofluid through a curved stenotic channel. The curved channel is considered with an overlapping stenotic region. The effect of convective conditions is incorporated to discuss the heat transfer characteristic. The mathematical problem of a curved stenotic channel is formulated and then solved by using the exact technique. To discuss the hemodynamics of a curved stenotic channel the expression of resistance to blood is evaluated by dividing the channel into pre-stenotic, stenotic and post stenotic region. In this investigation gold, silver and copper nanoparticles are used as drug carriers. The outcomes of the graphical illustration reveal that with an increase in nanoparticle concentration hemodynamics effects of stenosed curved channel are reduced and they also conclude that the drug Au nanoparticles are more effective to minimize hemodynamics when compared to the drug Ag and Cu nanoparticles. This analysis finds valuable theoretical information for nanoparticles used as drug agents in the field of bio-inspired applications.

  1. Cerebral hemodynamic responses to seizure in the mouse brain: simultaneous near-infrared spectroscopy-electroencephalography study

    Science.gov (United States)

    Lee, Seungduk; Lee, Mina; Koh, Dalkwon; Kim, Beop-Min; Choi, Jee Hyun

    2010-05-01

    We applied near-infrared spectroscopy (NIRS) and electroencephalography (EEG) simultaneously on the mouse brain and investigated the hemodynamic response to epileptic episodes under pharmacologically driven seizure. γ-butyrolactone (GBL) and 4-aminopyridine (4-AP) were applied to induce absence and tonic-clonic seizures, respectively. The epileptic episodes were identified from the single-channel EEG, and the corresponding hemodynamic changes in different regions of the brain were characterized by multichannel frequency-domain NIRS. Our results are the following: (i) the oxyhemoglobin level increases in the case of GBL-treated mice but not 4-AP-treated mice compared to the predrug state; (ii) the dominant response to each absence seizure is a decrease in deoxyhemolobin; (iii) the phase shift between oxy- and deoxyhemoglobin reduces in GBL-treated mice but no 4-AP-treated mice; and (iv) the spatial correlation of hemodynamics increased significantly in 4-AP-treated mice but not in GBL-treated mice. Our results shows that spatiotemporal tracking of cerebral hemodynamics using NIRS can be successfully applied to the mouse brain in conjunction with electrophysiological recording, which will support the study of molecular, cellular, and network origin of neurovascular coupling in vivo.

  2. Congenital heart malformations induced by hemodynamic altering surgical interventions

    Directory of Open Access Journals (Sweden)

    Madeline eMidgett

    2014-08-01

    Full Text Available Embryonic heart formation results from a dynamic interplay between genetic and environmental factors. Blood flow during early embryonic stages plays a critical role in heart development, as interactions between flow and cardiac tissues generate biomechanical forces that modulate cardiac growth and remodeling. Normal hemodynamic conditions are essential for proper cardiac development, while altered blood flow induced by surgical manipulations in animal models result in heart defects similar to those seen in humans with congenital heart disease. This review compares the altered hemodynamics, changes in tissue properties, and cardiac defects reported after common surgical interventions that alter hemodynamics in the early chick embryo, and shows that interventions produce a wide spectrum of cardiac defects. Vitelline vein ligation and left atrial ligation decrease blood pressure and flow; and outflow tract banding increases blood pressure and flow velocities. These three surgical interventions result in many of the same cardiac defects, which indicate that the altered hemodynamics interfere with common looping, septation and valve formation processes that occur after intervention and that shape the four-chambered heart. While many similar defects develop after the interventions, the varying degrees of hemodynamic load alteration among the three interventions also result in varying incidence and severity of cardiac defects, indicating that the hemodynamic modulation of cardiac developmental processes is strongly dependent on hemodynamic load.

  3. In vivo measurement of hemodynamic information in stenosed rat blood vessels using X-ray PIV.

    Science.gov (United States)

    Park, Hanwook; Park, Jun Hong; Lee, Sang Joon

    2016-11-28

    Measurements of the hemodynamic information of blood flows, especially wall shear stress (WSS), in animal models with circulatory vascular diseases (CVDs) are important to understand the pathological mechanism of CVDs. In this study, X-ray particle image velocimetry (PIV) with high spatial resolution was applied to obtain velocity field information in stenosed blood vessels with high WSS. 3D clips fabricated with a 3D printer were applied to the abdominal aorta of a rat cadaver to induce artificial stenosis in the real blood vessel of an animal model. The velocity and WSS information of blood flows in the stenosed vessel were obtained and compared at various stenosis severities. In vivo measurement was also conducted by fastening a stenotic clip on a live rat model through surgical intervention to reduce the flow rate to match the limited temporal resolution of the present X-ray PIV system. Further improvement of the temporal resolution of the system might be able to provide in vivo measurements of hemodynamic information from animal disease models under physiological conditions. The present results would be helpful for understanding the relation between hemodynamic characteristics and the pathological mechanism in animal CVD models.

  4. Review: hemodynamic response to carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Penney, D.G.

    1988-04-01

    Historically, and at present, carbon monoxide is a major gaseous poison responsible for widespread morbidity and mortality. From threshold to maximal nonlethal levels, a variety of cardiovascular changes occur, both immediately and in the long term, whose homeostatic function it is to renormalize tissue oxygen delivery. However, notwithstanding numerous studies over the past century, the literature remains equivocal regarding the hemodynamic responses in animals and humans, although CO hypoxia is clearly different in several respects from hypoxic hypoxia. Factors complicating interpretation of experimental findings include species, CO dose level and rate, route of CO delivery, duration, level of exertion, state of consciousness, and anesthetic agent used. Augmented cardiac output usually observed with moderate COHb may be compromised in more sever poisoning for the same reasons, such that regional or global ischemia result. The hypotension usually seen in most animal studies is thought to be a primary cause of CNS damage resulting from acute CO poisoning, yet the exact mechanism(s) remains unproven in both animals and humans, as does the way in which CO produces hypotension. This review briefly summarizes the literature relevant to the short- and long-term hemodynamic responses reported in animals and humans. It concludes by presenting an overview using data from a single species in which the most complete work has been done to date.

  5. A computational evaluation of sedentary lifestyle effects on carotid hemodynamics and atherosclerotic events incidence.

    Science.gov (United States)

    Caruso, Maria Vittoria; Serra, Raffaele; Perri, Paolo; Buffone, Gianluca; Caliò, Francesco Giuseppe; DE Franciscis, Stefano; Fragomeni, Fragomeni

    2017-01-01

    Hemodynamics has a key role in atheropathogenesis. Indeed, atherosclerotic phenomena occur in vessels characterized by complex geometry and flow pattern, like the carotid bifurcation. Moreover, lifestyle is a significant risk factor. The aim of this study is to evaluate the hemodynamic effects due to two sedentary lifestyles - sitting and standing positions - in the carotid bifurcation in order to identify the worst condition and to investigate the atherosclerosis incidence. The computational fluid dynamics (CFD) was chosen to carry out the analysis, in which in vivo non-invasive measurements were used as boundary conditions. Furthermore, to compare the two conditions, one patient-specific 3D model of a carotid bifurcation was reconstructed starting from computer tomography. Different mechanical indicators, correlated with atherosclerosis incidence, were calculated in addition to flow pattern and pressure distribution: the time average wall shear stress (TAWSS), the oscillatory shear index (OSI) and the relative residence time (RRT). The results showed that the bulb and the external carotid artery emergence are the most probable regions in which atherosclerotic events could happen. Indeed, low velocity and WSS values, high OSI and, as a consequence, areas with chaotic-swirling flow, with stasis (high RRT), occur. Moreover, the sitting position is the worst condition: considering a cardiac cycle, TAWSS is less than 17.2% and OSI and RRT are greater than 17.5% and 21.2%, respectively. This study suggests that if a person spends much time in the sitting position, a high risk of plaque formation and, consequently, of stenosis could happen.

  6. Stent implantation influence wall shear stress evolution

    Science.gov (United States)

    Bernad, S. I.; Totorean, A. F.; Bosioc, A. I.; Petre, I.; Bernad, E. S.

    2016-06-01

    Local hemodynamic factors are known affect the natural history of the restenosis critically after coronary stenting of atherosclerosis. Stent-induced flows disturbance magnitude dependent directly on the strut design. The impact of flow alterations around struts vary as the strut geometrical parameters change. Our results provide data regarding the hemodynamic parameters for the blood flow in both stenosed and stented coronary artery under physiological conditions, namely wall shear stress and pressure drop.

  7. B-Type Natriuretic Peptide Reactivity to Mental Stress and Exercise: Role of Obesity and Hemodynamics

    Science.gov (United States)

    2009-08-25

    Clinically, BNP is important in diagnosis/ differential diagnosis in individuals with suspected HF, with a decision cut-point of 100 pg/ml now accepted as...the context of obesity-related disparity in BNP levels or action. Based on the differential hemodynamic reactivity patterns associated with...Arch Intern Med. 2004, 164:2247- 2252. 124 141. Mehra MR, Uber PA, Park MH, et al.: Obesity and suppressed B-type natriuretic peptide levels in

  8. Intracranial Vascular Disease Evaluation With Combined Vessel Wall Imaging And Patient Specific Hemodynamics

    Science.gov (United States)

    Samson, Kurt; Mossa-Basha, Mahmud; Yuan, Chun; Canton, Maria De Gador; Aliseda, Alberto

    2017-11-01

    Intracranial vascular pathologies are evaluated with angiography, conventional digital subtraction angiography or non-invasive (MRI, CT). Current techniques present limitations on the resolution with which the vessel wall characteristics can be measured, presenting a major challenge to differential diagnostic of cerebral vasculopathies. A new combined approach is presented that incorporates patient-specific image-based CFD models with intracranial vessel-wall MRI (VWMRI). Comparisons of the VWMRI measurements, evaluated for the presence of wall enhancement and thin-walled regions, against CFD metrics such as wall shear stress (WSS), and oscillatory shear index (OSI) are used to understand how the new imaging technique developed can predict the influence of hemodynamics on the deterioration of the aneurysmal wall, leading to rupture. Additionally, histology of each resected aneurysm, evaluated for inflammatory infiltration and wall thickness features, is used to validate the analysis from VWMRI and CFD. This data presents a solid foundation on which to build a new framework for combined VWMRI-CFD to predict unstable wall changes in unruptured intracranial aneurysms, and support clinical monitoring and intervention decisions.

  9. Norwood with right ventricle-to-pulmonary artery conduit is more effective than Norwood with Blalock-Taussig shunt for hypoplastic left heart syndrome: mathematic modeling of hemodynamics.

    Science.gov (United States)

    Mroczek, Tomasz; Małota, Zbigniew; Wójcik, Elżbieta; Nawrat, Zbigniew; Skalski, Janusz

    2011-12-01

    The introduction of right ventricle to pulmonary artery (RV-PA) conduit in the Norwood procedure for hypoplastic left heart syndrome resulted in a higher survival rate in many centers. A higher diastolic aortic pressure and a higher mean coronary perfusion pressure were suggested as the hemodynamic advantage of this source of pulmonary blood flow. The main objective of this study was the comparison of two models of Norwood physiology with different types of pulmonary blood flow sources and their hemodynamics. Based on anatomic details obtained from echocardiographic assessment and angiographic studies, two three-dimensional computer models of post-Norwood physiology were developed. The finite-element method was applied for computational hemodynamic simulations. Norwood physiology with RV-PA 5-mm conduit and Blalock-Taussig shunt (BTS) 3.5-mm shunt were compared. Right ventricle work, wall stress, flow velocity, shear rate stress, energy loss and turbulence eddy dissipation were analyzed in both models. The total work of the right ventricle after Norwood procedure with the 5-mm RV-PA conduit was lower in comparison to the 3.5-mm BTS while establishing an identical systemic blood flow. The Qp/Qs ratio was higher in the BTS group. Hemodynamic performance after Norwood with the RV-PA conduit is more effective than after Norwood with BTS. Computer simulations of complicated hemodynamics after the Norwood procedure could be helpful in establishing optimal post-Norwood physiology. Copyright © 2011 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  10. Multivariate spatial Gaussian mixture modeling for statistical clustering of hemodynamic parameters in functional MRI

    International Nuclear Information System (INIS)

    Fouque, A.L.; Ciuciu, Ph.; Risser, L.; Fouque, A.L.; Ciuciu, Ph.; Risser, L.

    2009-01-01

    In this paper, a novel statistical parcellation of intra-subject functional MRI (fMRI) data is proposed. The key idea is to identify functionally homogenous regions of interest from their hemodynamic parameters. To this end, a non-parametric voxel-based estimation of hemodynamic response function is performed as a prerequisite. Then, the extracted hemodynamic features are entered as the input data of a Multivariate Spatial Gaussian Mixture Model (MSGMM) to be fitted. The goal of the spatial aspect is to favor the recovery of connected components in the mixture. Our statistical clustering approach is original in the sense that it extends existing works done on univariate spatially regularized Gaussian mixtures. A specific Gibbs sampler is derived to account for different covariance structures in the feature space. On realistic artificial fMRI datasets, it is shown that our algorithm is helpful for identifying a parsimonious functional parcellation required in the context of joint detection estimation of brain activity. This allows us to overcome the classical assumption of spatial stationarity of the BOLD signal model. (authors)

  11. Time-Series Interactions of Gene Expression, Vascular Growth and Hemodynamics during Early Embryonic Arterial Development.

    Directory of Open Access Journals (Sweden)

    Selda Goktas

    Full Text Available The role of hemodynamic forces within the embryo as biomechanical regulators for cardiovascular morphogenesis, growth, and remodeling is well supported through the experimental studies. Furthermore, clinical experience suggests that perturbed flow disrupts the normal vascular growth process as one etiology for congenital heart diseases (CHD and for fetal adaptation to CHD. However, the relationships between hemodynamics, gene expression and embryonic vascular growth are poorly defined due to the lack of concurrent, sequential in vivo data. In this study, a long-term, time-lapse optical coherence tomography (OCT imaging campaign was conducted to acquire simultaneous blood velocity, pulsatile micro-pressure and morphometric data for 3 consecutive early embryonic stages in the chick embryo. In conjunction with the in vivo growth and hemodynamics data, in vitro reverse transcription polymerase chain reaction (RT-PCR analysis was performed to track changes in transcript expression relevant to histogenesis and remodeling of the embryonic arterial wall. Our non-invasive extended OCT imaging technique for the microstructural data showed continuous vessel growth. OCT data coupled with the PIV technique revealed significant but intermitted increases in wall shear stress (WSS between first and second assigned stages and a noticeable decrease afterwards. Growth rate, however, did not vary significantly throughout the embryonic period. Among all the genes studied, only the MMP-2 and CASP-3 expression levels remained unchanged during the time course. Concurrent relationships were obtained among the transcriptional modulation of the genes, vascular growth and hemodynamics-related changes. Further studies are indicated to determine cause and effect relationships and reversibility between mechanical and molecular regulation of vasculogenesis.

  12. Analysis of hemodynamic characteristics in anastomotic sites of femoral artery implantation

    Energy Technology Data Exchange (ETDEWEB)

    Roh, H.W. [Graduate School, Soongsil University, Seoul (Korea); Suh, S.H. [SoongsSil University, Seoul (Korea); Yoo, S.S. [Hankuk Aviation University, Kyonggi-do (Korea); Kim, D.I.; Lee, B.B. [Samsung Medical Center (Korea)

    1998-11-01

    The objective of the present study is to obtain information on the hemodynamic characteristics in the anastomotic sites of femoral artery through the vascular implantation. Three dimensional steady and physiological blood flows in the femoral artery are simulated using the finite volume method. The geometrical shape of the anastomotic sites is made based on the vascular anatomy of a white rabbit. Wall shear stress distributions in the anastomotic sites for the physiological flow are compared with those for steady flow. Blood flow phenomena in the anastomotic sites of the femoral artery are discussed extensively. (author). 9 refs., 11 figs., 1 tab.

  13. Echocardiographic Evaluation of Hemodynamics in Neonates and Children

    Directory of Open Access Journals (Sweden)

    Yogen Singh

    2017-09-01

    Full Text Available Hemodynamic instability and inadequate cardiac performance are common in critically ill children. The clinical assessment of hemodynamic status is reliant upon physical examination supported by the clinical signs such as heart rate, blood pressure, capillary refill time, and measurement of the urine output and serum lactate. Unfortunately, all of these parameters are surrogate markers of cardiovascular well-being and they provide limited direct information regarding the adequacy of blood flow and tissue perfusion. A bedside point-of-care echocardiography can provide real-time hemodynamic information by assessing cardiac function, loading conditions (preload and afterload and cardiac output. The echocardiography has the ability to provide longitudinal functional assessment in real time, which makes it an ideal tool for monitoring hemodynamic assessment in neonates and children. It is indispensable in the management of patients with shock, pulmonary hypertension, and patent ductus arteriosus. The echocardiography is the gold standard diagnostic tool to assess hemodynamic stability in patients with pericardial effusion, cardiac tamponade, and cardiac abnormalities such as congenital heart defects or valvar disorders. The information from echocardiography can be used to provide targeted treatment in intensive care settings such as need of fluid resuscitation versus inotropic support, choosing appropriate inotrope or vasopressor, and in providing specific interventions such as selective pulmonary vasodilators in pulmonary hypertension. The physiological information gathered from echocardiography may help in making timely, accurate, and appropriate diagnosis and providing specific treatment in sick patients. There is no surprise that use of bedside point-of-care echocardiography is rapidly gaining interest among neonatologists and intensivists, and it is now being used in clinical decision making for patients with hemodynamic instability. Like any

  14. The Effects of a Multiflavonoid Supplement on Vascular and Hemodynamic Parameters following Acute Exercise

    Directory of Open Access Journals (Sweden)

    Rebecca M. Kappus

    2011-01-01

    Full Text Available Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Methods. Twenty young subjects were randomized to placebo (=10 or antioxidant supplementation (=10 for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Results. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP decrease during postexercise hypotension (PEH and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.. Also ferric-reducing ability of plasma (FRAP increased significantly (interaction P = 0.024 after supplementation. Conclusion. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index.

  15. The effects of a multiflavonoid supplement on vascular and hemodynamic parameters following acute exercise.

    Science.gov (United States)

    Kappus, Rebecca M; Curry, Chelsea D; McAnulty, Steve; Welsh, Janice; Morris, David; Nieman, David C; Soukup, Jeffrey; Collier, Scott R

    2011-01-01

    Antioxidants can decrease oxidative stress and combined with acute exercise they may lead to further decreases in blood pressure. The purpose of this study was to investigate the effects of 2 weeks of antioxidant supplementation on vascular distensibility and cardiovascular hemodynamics during postexercise hypotension. Twenty young subjects were randomized to placebo (n = 10) or antioxidant supplementation (n = 10) for two weeks. Antioxidant status, vascular distensibility, and hemodynamics were obtained before, immediately, and 30 minutes after an acute bout of aerobic exercise both before and after supplementation. Two weeks of antioxidant supplementation resulted in a greater systolic blood pressure (SBP) decrease during postexercise hypotension (PEH) and significant decreases in augmentation index versus placebo (12.5% versus 3.5%, resp.). Also ferric-reducing ability of plasma (FRAP) increased significantly (interaction P = 0.024) after supplementation. Supplementation showed an additive effect on PEH associated with increased FRAP values and decreases in systolic blood pressure and augmentation index.

  16. Groundwater development stress: Global-scale indices compared to regional modeling

    Science.gov (United States)

    Alley, William; Clark, Brian R.; Ely, Matt; Faunt, Claudia

    2018-01-01

    The increased availability of global datasets and technologies such as global hydrologic models and the Gravity Recovery and Climate Experiment (GRACE) satellites have resulted in a growing number of global-scale assessments of water availability using simple indices of water stress. Developed initially for surface water, such indices are increasingly used to evaluate global groundwater resources. We compare indices of groundwater development stress for three major agricultural areas of the United States to information available from regional water budgets developed from detailed groundwater modeling. These comparisons illustrate the potential value of regional-scale analyses to supplement global hydrological models and GRACE analyses of groundwater depletion. Regional-scale analyses allow assessments of water stress that better account for scale effects, the dynamics of groundwater flow systems, the complexities of irrigated agricultural systems, and the laws, regulations, engineering, and socioeconomic factors that govern groundwater use. Strategic use of regional-scale models with global-scale analyses would greatly enhance knowledge of the global groundwater depletion problem.

  17. Stresses in transition region of VVER-1000 reactor vessels

    International Nuclear Information System (INIS)

    Namgung, I.; Nguye, T.L.

    2014-01-01

    Most of the western PWR reactor's bottom head is hemi-spherical shape, however for Russian designed VVER family of reactor it is ellipsoidal shape. The transition region from shell side to ellipsoidal head and transition top flange to cylindrical shell develop higher stress concentration than western PWR reactor vessel. This region can be modeled as conical shell with varying thickness. The theoretical derivation of stress in the thick-walled conical cylinder with varying thickness was developed and shown in detail. The results is applied to VVER-1000 reactor vessel of which shell to bottom ellipsoidal shell and shell to upper flange were investigated for stress field. The theoretical calculations were also compared with FEM solutions. An axisymmetric 3D model of VVER-1000 reactor vessel (without closure head) FEM model was created and internal hydrostatic pressure boundary condition was applied. The stress results from FEM and theoretical calculation were compared, and the discrepancies and accuracies of the theoretical results were discussed. (author)

  18. Stresses in transition region of VVER-1000 reactor vessels

    Energy Technology Data Exchange (ETDEWEB)

    Namgung, I. [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of); Nguye, T.L. [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of); National Research Inst. of Mechanical Engineering, Hanoi City, Vietnam (China)

    2014-07-01

    Most of the western PWR reactor's bottom head is hemi-spherical shape, however for Russian designed VVER family of reactor it is ellipsoidal shape. The transition region from shell side to ellipsoidal head and transition top flange to cylindrical shell develop higher stress concentration than western PWR reactor vessel. This region can be modeled as conical shell with varying thickness. The theoretical derivation of stress in the thick-walled conical cylinder with varying thickness was developed and shown in detail. The results is applied to VVER-1000 reactor vessel of which shell to bottom ellipsoidal shell and shell to upper flange were investigated for stress field. The theoretical calculations were also compared with FEM solutions. An axisymmetric 3D model of VVER-1000 reactor vessel (without closure head) FEM model was created and internal hydrostatic pressure boundary condition was applied. The stress results from FEM and theoretical calculation were compared, and the discrepancies and accuracies of the theoretical results were discussed. (author)

  19. The influence of hemodynamic forces on biomarkers in the walls of elastase-induced aneurysms in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Kadirvel, Ramanathan; Ding, Yong-Hong; Dai, Daying; Danielson, Mark A.; Lewis, Debra A.; Cloft, Harry J.; Kallmes, David F. [Mayo Clinic College of Medicine, Department of Radiology, Rochester, MN (United States); Zakaria, Hasballah; Robertson, Anne M. [University of Pittsburgh, Department of Mechanical Engineering, Pittsburgh, PA (United States)

    2007-12-15

    Biological and biophysical factors have been shown to play an important role in the initiation, progression, and rupture of intracranial aneurysms. The purpose of this study was to evaluate the association between hemodynamic forces and markers of vascular remodeling in elastase-induced saccular aneurysms in rabbits. Elastase-induced aneurysms were created at the origin of the right common carotid artery in rabbits. Hemodynamic parameters were estimated using computational fluid dynamic simulations based on 3-D-reconstructed models of the vasculature. Expression of matrix metalloproteinases (MMPs), their inhibitors (TIMPs) and markers of vascular remodeling were measured in different spatial regions within the aneurysms. Altered expression of biological markers relative to controls was correlated with the locations of subnormal time-averaged wall shear stress (WSS) but not with the magnitude of pressure. In the aneurysms, WSS was low and expression of biological markers was significantly altered in a time-dependent fashion. At 2 weeks, an upregulation of active-MMP-2, downregulation of TIMP-1 and TIMP-2, and intact endothelium were found in aneurysm cavities. However, by 12 weeks, endothelial cells were absent or scattered, and levels of pro- and active-MMP-2 were not different from those in control arteries, but pro-MMP-9 and both TIMPs were upregulated. These results reveal a strong, spatially localized correlation between diminished WSS and differential expression of biological markers of vascular remodeling in elastase-induced saccular aneurysms. The ability of the wall to function and maintain a healthy endothelium in a low shear environment appears to be significantly impaired by chronic exposure to low WSS. (orig.)

  20. Hemodynamic Evaluation of a Biological and Mechanical Aortic Valve Prosthesis Using Patient-Specific MRI-Based CFD.

    Science.gov (United States)

    Hellmeier, Florian; Nordmeyer, Sarah; Yevtushenko, Pavlo; Bruening, Jan; Berger, Felix; Kuehne, Titus; Goubergrits, Leonid; Kelm, Marcus

    2018-01-01

    Modeling different treatment options before a procedure is performed is a promising approach for surgical decision making and patient care in heart valve disease. This study investigated the hemodynamic impact of different prostheses through patient-specific MRI-based CFD simulations. Ten time-resolved MRI data sets with and without velocity encoding were obtained to reconstruct the aorta and set hemodynamic boundary conditions for simulations. Aortic hemodynamics after virtual valve replacement with a biological and mechanical valve prosthesis were investigated. Wall shear stress (WSS), secondary flow degree (SFD), transvalvular pressure drop (TPD), turbulent kinetic energy (TKE), and normalized flow displacement (NFD) were evaluated to characterize valve-induced hemodynamics. The biological prostheses induced significantly higher WSS (medians: 9.3 vs. 8.6 Pa, P = 0.027) and SFD (means: 0.78 vs. 0.49, P = 0.002) in the ascending aorta, TPD (medians: 11.4 vs. 2.7 mm Hg, P = 0.002), TKE (means: 400 vs. 283 cm 2 /s 2 , P = 0.037), and NFD (means: 0.0994 vs. 0.0607, P = 0.020) than the mechanical prostheses. The differences between the prosthesis types showed great inter-patient variability, however. Given this variability, a patient-specific evaluation is warranted. In conclusion, MRI-based CFD offers an opportunity to assess the interactions between prosthesis and patient-specific boundary conditions, which may help in optimizing surgical decision making and providing additional guidance to clinicians. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Meta-Analysis of Stress Myocardial Perfusion Imaging

    Science.gov (United States)

    2017-06-06

    Coronary Disease; Echocardiography; Fractional Flow Reserve, Myocardial; Hemodynamics; Humans; Magnetic Resonance Imaging; Myocardial Perfusion Imaging; Perfusion; Predictive Value of Tests; Single Photon Emission Computed Tomography; Positron Emission Tomography; Multidetector Computed Tomography; Echocardiography, Stress; Coronary Angiography

  2. The Sheer Stress of Shear Stress: Responses of the Vascular Wall to a Haemodynamic Force

    NARCIS (Netherlands)

    C. Cheng (Caroline (Ka Lai))

    2006-01-01

    textabstractStudies in the hemodynamic field point to a strong relation between shear stress and the onset to vascular diseases such as atherosclerosis. Data from in vitro studies using sheared endothelial cells have provided insight into the possible mechanisms involved. However, the lack of an

  3. Examining Difference in Immigration Stress, Acculturation Stress and Mental Health Outcomes in Six Hispanic/Latino Nativity and Regional Groups.

    Science.gov (United States)

    Cervantes, Richard C; Gattamorta, Karina A; Berger-Cardoso, Jodi

    2018-02-27

    Little is known about the specific behavioral health impact of acculturation stressors that affect Hispanic/Latino immigrant sub-groups. These immigration-related stressors and traumatic events may have differential impact on depression depending on country/region of origin. Using a measure of immigration and acculturation stress, the current study sought to determine differences in the impact of stress on six sub-groups of Hispanic immigrants. Data on stress and depression were examined using a large, representative adult immigrant sample (N = 641). Controlling for age, gender and years in the US, factorial analysis of covariance revealed significant differences on total Hispanic Stress Inventory 2 (HSI2) stress appraisal scores based on country/region of origin. Pair wise comparisons between country/region of origin groups revealed that Mexicans had higher levels of stress compared to Cuban or Dominican immigrants. Several patterns of differential stress were also found within sub-domains of the HSI2. Using regression models, HSI2 stress appraisals and their interaction with country of origin proved to not be significant predictors of depression (PHQ9), while gender and age were significant. Differences in HSI2 stress that are based on nativity may be moderated by cultural resilience that ultimately serves a protective role to prevent the onset of depression.

  4. Thoracic aorta 3D hemodynamics in pediatric and young adult patients with bicuspid aortic valve.

    Science.gov (United States)

    Allen, Bradley D; van Ooij, Pim; Barker, Alex J; Carr, Maria; Gabbour, Maya; Schnell, Susanne; Jarvis, Kelly B; Carr, James C; Markl, Michael; Rigsby, Cynthia; Robinson, Joshua D

    2015-10-01

    To evaluate the 3D hemodynamics in the thoracic aorta of pediatric and young adult bicuspid aortic valve (BAV) patients. 4D flow MRI was performed in 30 pediatric and young adult BAV patients (age: 13.9 ± 4.4 (range: [3.4, 20.7]) years old, M:F = 17:13) as part of this Institutional Review Board-approved study. Nomogram-based aortic root Z-scores were calculated to assess aortic dilatation and degree of aortic stenosis (AS) severity was assessed on MRI. Data analysis included calculation of time-averaged systolic 3D wall shear stress (WSSsys ) along the entire aorta wall, and regional quantification of maximum and mean WSSsys and peak systolic velocity (velsys ) in the ascending aorta (AAo), arch, and descending aorta (DAo). The 4D flow MRI AAo velsys was also compared with echocardiography peak velocity measurements. There was a positive correlation with both mean and max AAo WSSsys and peak AAo velsys (mean: r = 0.84, P max: r = 0.94, P max: rS  = 0.70, P < 0.001). AAo peak velocity was significantly higher when measured with echo compared with 4D flow MRI (2.1 ± 0.98 m/s versus 1.27 ± 0.49 m/s, P < 0.001). In pediatric and young adult patients with BAV, AS and peak ascending aorta velocity are associated with increased AAo WSS, while aortic dilation, age, and body surface area do not significantly impact AAo hemodynamics. Prospective studies are required to establish the role of WSS as a risk-stratification tool in these patients. © 2015 Wiley Periodicals, Inc.

  5. Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts

    Science.gov (United States)

    Si, Juanning; Zhang, Xin; Li, Yuejun; Zhang, Yujin; Zuo, Nianming; Jiang, Tianzi

    2016-09-01

    Brain functional activity involves complex cellular, metabolic, and vascular chain reactions, making it difficult to comprehend. Electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) have been combined into a multimodal neuroimaging method that captures both electrophysiological and hemodynamic information to explore the spatiotemporal characteristics of brain activity. Because of the significance of visually evoked functional activity in clinical applications, numerous studies have explored the amplitude of the visual evoked potential (VEP) to clarify its relationship with the hemodynamic response. However, relatively few studies have investigated the influence of latency, which has been frequently used to diagnose visual diseases, on the hemodynamic response. Moreover, because the latency and the amplitude of VEPs have different roles in coding visual information, investigating the relationship between latency and the hemodynamic response should be helpful. In this study, checkerboard reversal tasks with graded contrasts were used to evoke visual functional activity. Both EEG and fNIRS were employed to investigate the relationship between neuronal electrophysiological activities and the hemodynamic responses. The VEP amplitudes were linearly correlated with the hemodynamic response, but the VEP latency showed a negative linear correlation with the hemodynamic response.

  6. Immunologic, hemodynamic, and adrenal incompetence in cirrhosis

    DEFF Research Database (Denmark)

    Risør, Louise Madeleine; Bendtsen, Flemming; Møller, Søren

    2015-01-01

    dysfunction, but is not responsive to volume expansion. Recent research indicates that development of hepatic nephropathy represents a continuous spectrum of functional and structural dysfunction and may be precipitated by the inherent immunologic, adrenal, and hemodynamic incompetence in cirrhosis. New...... research explores several new markers of renal dysfunction that may replace serum creatinine in the future and give new insight on the hepatic nephropathy. Our understanding of the pathophysiological mechanisms causing the immunologic, adrenal, and hemodynamic incompetence, and the impact on renal...

  7. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner.

    Science.gov (United States)

    Bollinger, Justin L; Collins, Kaitlyn E; Patel, Rushi; Wellman, Cara L

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  8. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner

    Science.gov (United States)

    Bollinger, Justin L.; Collins, Kaitlyn E.; Patel, Rushi

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  9. Obesity and renal hemodynamics

    NARCIS (Netherlands)

    Bosma, R. J.; Krikken, J. A.; van der Heide, J. J. Homan; de Jong, P. E.; Navis, G. J.

    2006-01-01

    Obesity is a risk factor for renal damage in native kidney disease and in renal transplant recipients. Obesity is associated with several renal risk factors such as hypertension and diabetes that may convey renal risk, but obesity is also associated with an unfavorable renal hemodynamic profile

  10. Comparison of hemodynamics during hyperthermal immersion and exercise testing in apparently healthy females aged 50-60 years.

    Science.gov (United States)

    Lietava, Jan; Vohnout, Branislav; Valent, Denis; Celko, Juraj

    2004-07-01

    Owing to excessive worries regarding adverse cardiac events, hyperthermal balneotherapy for patients with coronary artery disease is underprescribed. However, very few cardiac events occur in similar heat stress during Finnish sauna bathing. Exercise testing has proven to be a safe diagnostic procedure even in survivors of myocardial infarction. We compared the effects of hyperthermal immersion and exercise testing on cardiac hemodynamics in 21 apparently healthy women aged 50-60 years. The maximal symptom-limited bicycle exercise test was performed according to the modified protocol of Wasserman. Hyperthermal immersion was carried out in 40 degrees C water and was completed by increasing the core temperature by about 2 degrees C. The left ventricular function was evaluated using continuous measurement of thoracic electric bioimpedance during both tests. The blood pressure, index of contractility and heart rate were measured directly, whereas the cardiac index, left cardiac work index and systemic vascular resistance index were calculated. The hemodynamic response, as assessed at continuous non-invasive monitoring, showed substantial differences between hyperthermal immersion and exercise testing. Overall, we found a significantly lower hemodynamic load during hyperthermal immersion in comparison with exercise testing. Entering the bath, there was a significant decrease in the left cardiac work, contractility and blood pressure. We recorded a slight increase in the heart rate towards peak hyperthermal immersion. However, other modulators such as the mean arterial pressure, index of contractility, cardiac index and left cardiac work index decreased even below resting values. Excessive hyperthermal immersion induced a lower hemodynamic load in apparently healthy women than standard maximal exercise testing.

  11. Ocular hemodynamics in patients with rhegmatogenous retinal detachment

    Directory of Open Access Journals (Sweden)

    N. H. Zavgorodnya

    2014-10-01

    Full Text Available Aim. In case of retinal detachment atrophic processes lead to irreversible loss of functions within 4–6 days, it happens on underlying low ocular blood flow. In order to evaluate the degree of violation of regional hemodynamics in patients with retinal detachment two groups of patients were examined: the main group (52 patients with rhegmatogenous retinal detachment and the control group (24 myopic patients with lattice form of peripheral chorioretinal dystrophy. Methods and results. Doppler and reography results had been compared, significant decrease of blood flow in patients with retinal detachment was found. No differences between affected and fellow eye in these patients, close negative correlation between the level of ocular blood flow and the degree of myopia in the control group. Conclusion. This demonstrates the feasibility of actions to improve regional blood flow in patients operated on for retinal detachment.

  12. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors

    International Nuclear Information System (INIS)

    Tilton, R.G.; Chang, K.; Pugliese, G.; Eades, D.M.; Province, M.A.; Sherman, W.R.; Kilo, C.; Williamson, J.R.

    1989-01-01

    This study investigated hemodynamic changes in diabetic rats and their relationship to changes in vascular albumin permeation and increased metabolism of glucose to sorbitol. The effects of 6 wk of streptozocin-induced diabetes and three structurally different inhibitors of aldose reductase were examined on (1) regional blood flow (assessed with 15-microns 85Sr-labeled microspheres) and vascular permeation by 125I-labeled bovine serum albumin (BSA) and (2) glomerular filtration rate (assessed by plasma clearance of 57Co-labeled EDTA) and urinary albumin excretion (determined by radial immunodiffusion assay). In diabetic rats, blood flow was significantly increased in ocular tissues (anterior uvea, posterior uvea, retina, and optic nerve), sciatic nerve, kidney, new granulation tissue, cecum, and brain. 125I-BSA permeation was increased in all of these tissues except brain. Glomerular filtration rate and 24-h urinary albumin excretion were increased 2- and 29-fold, respectively, in diabetic rats. All three aldose reductase inhibitors completely prevented or markedly reduced these hemodynamic and vascular filtration changes and increases in tissue sorbitol levels in the anterior uvea, posterior uvea, retina, sciatic nerve, and granulation tissue. These observations indicate that early diabetes-induced hemodynamic changes and increased vascular albumin permeation and urinary albumin excretion are aldose reductase-linked phenomena. Discordant effects of aldose reductase inhibitors on blood flow and vascular albumin permeation in some tissues suggest that increased vascular albumin permeation is not entirely attributable to hemodynamic change

  13. Hemodynamics in Korean Hemorrhagic Fever

    International Nuclear Information System (INIS)

    Han, Ji Young; Lee, Jung Sang; Koh, Chang Soon; Lee, Mun Ho

    1974-01-01

    The author in an attempt to evaluate hemodynamic changes in the clinical stages of Korean hemorrhagic fever measured plasma volume, cardiac output and effective renal plasma flow utilizing radioisoto as during various phases of the disease. Cardiac output was measured by radiocardiography with external monitoring method using RIHSA. Effective renal plasma flow was obtained from blood clearance curve drawn by external monitoring after radiohippuran injection according to the method described by Razzak et al. The study was carried out in thirty-eight cases of Korean hemorrhagic fever and the following conclusions were obtained. 1) Plasma volume was increased in the patients during the oliguric and hypertensive-diuretic phases, while it was normal in the patients during the normotensive-diuretic phase. 2) Cardiac index was increased in the patients during the oliguric phase and was slightly increased in the patients at the hypertensive diuretic phase. It was normal in the other phases. 3) Total peripheral resistance was increased in the hypertensive patients during diuretic phase, while it was normal in the rest of phases. 4) Effective renal plasma flow was significantly reduced in the patients during the oliguric and diuretic phases as well as at one month after the oliguric onset. There was no significant difference between the oliguric and the early diuretic phases. Renal plasma flow in the group of patients at one month after the oliguric onset was about 45% of the normal, however, it returned to normal level at six months after the onset. 5) Clinical syndrome of relative hypervolemia was observed in some patients during the oliguric phase or hypertensive diuretic phase. Characteristic hemodynamic findings were high cardiac output and normal to relatively increased peripheral resistance these cases. Relatively increased circulating blood volumes due to decreased effective vascular space was suggested for the mechanism of relative hypervolemia. 6) Cardiac

  14. Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex.

    Science.gov (United States)

    Vasireddi, Anil K; Vazquez, Alberto L; Whitney, David E; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2016-09-07

    Resting-state functional magnetic resonance imaging has been increasingly used for examining connectivity across brain regions. The spatial scale by which hemodynamic imaging can resolve functional connections at rest remains unknown. To examine this issue, deoxyhemoglobin-weighted intrinsic optical imaging data were acquired from the visual cortex of lightly anesthetized ferrets. The neural activity of orientation domains, which span a distance of 0.7-0.8 mm, has been shown to be correlated during evoked activity and at rest. We performed separate analyses to assess the degree to which the spatial and temporal characteristics of spontaneous hemodynamic signals depend on the known functional organization of orientation columns. As a control, artificial orientation column maps were generated. Spatially, resting hemodynamic patterns showed a higher spatial resemblance to iso-orientation maps than artificially generated maps. Temporally, a correlation analysis was used to establish whether iso-orientation domains are more correlated than orthogonal orientation domains. After accounting for a significant decrease in correlation as a function of distance, a small but significant temporal correlation between iso-orientation domains was found, which decreased with increasing difference in orientation preference. This dependence was abolished when using artificially synthetized orientation maps. Finally, the temporal correlation coefficient as a function of orientation difference at rest showed a correspondence with that calculated during visual stimulation suggesting that the strength of resting connectivity is related to the strength of the visual stimulation response. Our results suggest that temporal coherence of hemodynamic signals measured by optical imaging of intrinsic signals exists at a submillimeter columnar scale in resting state.

  15. Advanced hemodynamic monitoring in intensive care medicine : A German web-based survey study.

    Science.gov (United States)

    Saugel, B; Reese, P C; Wagner, J Y; Buerke, M; Huber, W; Kluge, S; Prondzinsky, R

    2018-04-01

    Advanced hemodynamic monitoring is recommended in patients with complex circulatory shock. To evaluate the current attitudes and beliefs among German intensivists, regarding advanced hemodynamic monitoring, the actual hemodynamic management in clinical practice, and the barriers to using it. Web-based survey among members of the German Society of Medical Intensive Care and Emergency Medicine. Of 284 respondents, 249 (87%) agreed that further hemodynamic assessment is needed to determine the type of circulatory shock if no clear clinical diagnosis can be made. In all, 281 (99%) agreed that echocardiography is helpful for this purpose (transpulmonary thermodilution: 225 [79%]; pulmonary artery catheterization: 126 [45%]). More than 70% of respondents agreed that blood flow variables (cardiac output, stroke volume) should be measured in patients with hemodynamic instability. The parameters most respondents agreed should be assessed in a patient with hemodynamic instability were mean arterial pressure, cardiac output, and serum lactate. Echocardiography is available in 99% of ICUs (transpulmonary thermodilution: 91%; pulmonary artery catheter: 63%). The respondents stated that, in clinical practice, invasive arterial pressure measurements and serum lactate measurements are performed in more than 90% of patients with hemodynamic instability (cardiac output monitoring in about 50%; transpulmonary thermodilution in about 40%). The respondents did not feel strong barriers to the use of advanced hemodynamic monitoring in clinical practice. This survey study shows that German intensivists deem advanced hemodynamic assessment necessary for the differential diagnosis of circulatory shock and to guide therapy with fluids, vasopressors, and inotropes in ICU patients.

  16. Hemodynamic Modeling of Surgically Repaired Coarctation of the Aorta.

    Science.gov (United States)

    Olivieri, Laura J; de Zélicourt, Diane A; Haggerty, Christopher M; Ratnayaka, Kanishka; Cross, Russell R; Yoganathan, Ajit P

    2011-12-01

    PURPOSE: Late morbidity of surgically repaired coarctation of the aorta includes early cardiovascular and cerebrovascular disease, shortened life expectancy, abnormal vasomodulator response, hypertension and exercise-induced hypertension in the absence of recurrent coarctation. Observational studies have linked patterns of arch remodeling (Gothic, Crenel, and Romanesque) to late morbidity, with Gothic arches having the highest incidence. We evaluated flow in native and surgically repaired aortic arches to correlate respective hemodynamic indices with incidence of late morbidity. METHODS: Three dimensional reconstructions of each remodeled arch were created from an anatomic stack of magnetic resonance (MR) images. A structured mesh core with a boundary layer was generated. Computational fluid dynamic (CFD) analysis was performed assuming peak flow conditions with a uniform velocity profile and unsteady turbulent flow. Wall shear stress (WSS), pressure and velocity data were extracted. RESULTS: The region of maximum WSS was located in the mid-transverse arch for the Crenel, Romanesque and Native arches. Peak WSS was located in the isthmus of the Gothic model. Variations in descending aorta flow patterns were also observed among the models. CONCLUSION: The location of peak WSS is a primary difference among the models tested, and may have clinical relevance. Specifically, the Gothic arch had a unique location of peak WSS with flow disorganization in the descending aorta. Our results suggest that varied patterns and locations of WSS resulting from abnormal arch remodeling may exhibit a primary effect on clinical vascular dysfunction.

  17. Hemodynamic study of cervical carotid arteries using DSA

    International Nuclear Information System (INIS)

    Kumashiro, Masayuki; Araki, Osamu; Matsunaga, Morio; Shigeyasu, Makio

    1986-01-01

    Although intravenous digital subtraction angiography (IVDSA) has been widely utilized as a means of morphological examination for the detection of intracranial or extracranial vascular lesions, it has thus for contributed little to quantitative assessment in hemodynamics. In the present study, a fundamental analysis of the hemodynamics on the cervical carotid artery was performed with a relative perfusion efficiency (Rath et al., 1979). This was not related to the measurement of time, such as the mean transit time, but was based on Sapirstein's principle. After the intravenous administration of the contrast material, dynamic DSA was performed using our equipment, Shimadzu DAR-100. After setting the region of interest in common carotid arteries on DSA images by means of a microdensitometer (Sakura PDS-15) combined with a computer (NEC ACOS-460), time-density curves were obtained on both sides. Thereafter, the RPE was calculated as a ratio of two integrals from the zero time to the earlier peak time of the time-density curves with respect to the time. The flow model with the hydro-dynamic system was used to detect the relationship between the RPEs and the ratios of the actual flows in the system. The results of this experiment showed a high correlation between the RPEs and the flows (r = 0.85, p < 0.001). In normal subjects (n = 28), the mean of the RPEs was 1.07 ± 0.27 (S.D.). The RPEs showed significantly lower values in the 5 patients with severe stenosis of the internal carotid artery (0.76 ± 0.15, p < 0.02), as well as even more significantly lower values in the 9 patients with a complete occlusion of the internal carotid artery (0.64 ± 0.19, p < 0.001). The RPE measurement with IVDSA has been shown to be useful for recognizing the cervical hemodynamic changes in patients with occlusive cervicovascular disease. (author)

  18. Invasive hemodynamic characterization of heart failure with preserved ejection fraction

    DEFF Research Database (Denmark)

    Andersen, Mads Jønsson; Borlaug, Barry A

    2014-01-01

    Recent hemodynamic studies have advanced our understanding of heart failure with preserved ejection fraction (HFpEF). Despite improved pathophysiologic insight, clinical trials have failed to identify an effective treatment for HFpEF. Invasive hemodynamic assessment can diagnose or exclude HFp...

  19. Monitoring Detrusor Oxygenation and Hemodynamics Noninvasively during Dysfunctional Voiding

    Science.gov (United States)

    Macnab, Andrew J.; Stothers, Lynn S.; Shadgan, Babak

    2012-01-01

    The current literature indicates that lower urinary tract symptoms (LUTSs) related to benign prostatic hyperplasia (BPH) have a heterogeneous pathophysiology. Pressure flow studies (UDSs) remain the gold standard evaluation methodology for such patients. However, as the function of the detrusor muscle depends on its vasculature and perfusion, the underlying causes of LUTS likely include abnormalities of detrusor oxygenation and hemodynamics, and available treatment options include agents thought to act on the detrusor smooth muscle and/or vasculature. Hence, near infrared spectroscopy (NIRS), an established optical methodology for monitoring changes in tissue oxygenation and hemodynamics, has relevance as a means of expanding knowledge related to the pathophysiology of BPH and potential treatment options. This methodological report describes how to conduct simultaneous NIRS monitoring of detrusor oxygenation and hemodynamics during UDS, outlines the clinical implications and practical applications of NIRS, explains the principles of physiologic interpretation of NIRS voiding data, and proposes an exploratory hypothesis that the pathophysiological causes underlying LUTS include detrusor dysfunction due to an abnormal hemodynamic response or the onset of oxygen debt during voiding. PMID:23019422

  20. Monitoring Detrusor Oxygenation and Hemodynamics Noninvasively during Dysfunctional Voiding

    Directory of Open Access Journals (Sweden)

    Andrew J. Macnab

    2012-01-01

    Full Text Available The current literature indicates that lower urinary tract symptoms (LUTSs related to benign prostatic hyperplasia (BPH have a heterogeneous pathophysiology. Pressure flow studies (UDSs remain the gold standard evaluation methodology for such patients. However, as the function of the detrusor muscle depends on its vasculature and perfusion, the underlying causes of LUTS likely include abnormalities of detrusor oxygenation and hemodynamics, and available treatment options include agents thought to act on the detrusor smooth muscle and/or vasculature. Hence, near infrared spectroscopy (NIRS, an established optical methodology for monitoring changes in tissue oxygenation and hemodynamics, has relevance as a means of expanding knowledge related to the pathophysiology of BPH and potential treatment options. This methodological report describes how to conduct simultaneous NIRS monitoring of detrusor oxygenation and hemodynamics during UDS, outlines the clinical implications and practical applications of NIRS, explains the principles of physiologic interpretation of NIRS voiding data, and proposes an exploratory hypothesis that the pathophysiological causes underlying LUTS include detrusor dysfunction due to an abnormal hemodynamic response or the onset of oxygen debt during voiding.

  1. Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer's disease and cognitively normal Elderly adults at 3-tesla.

    Science.gov (United States)

    Mak, Henry K F; Chan, Queenie; Zhang, Zhipeng; Petersen, Esben T; Qiu, Deqiang; Zhang, Linda; Yau, Kelvin K W; Chu, Leung-Wing; Golay, Xavier

    2012-01-01

    QUASAR arterial spin labeling (ASL) was used to investigate the role of vascular impairment in Alzheimer's disease (AD). We hypothesized that the hemodynamic parameters monitoring cerebrovascular integrity, i.e., cerebral blood flow (CBF), arterial blood volume (aBV), and arterial transit time (aTT), would be affected. 13 AD patients and 15 healthy control (HC) subjects underwent 3T MRI scanning. Two separate blood flow acquisitions were obtained with 1 slice overlap for whole brain coverage. CBF, aBV, and aTT maps were calculated using in-house software. Preprocessing and statistical analyses were performed on SPM5. Region-of-interest (ROI) studies of ten selected cerebral regions were also conducted. There were significant differences in mini mental status exam (MMSE) (AD: 16.3 ± 4.55, HC: 28.5 ± 2.00) and Alzheimer's disease assessment scale-cognitive subscale (ADAS-cog) scores (AD: 25.25 ± 9.64, HC: 5.51 ± 2.62) between the 2 groups (p QUASAR ASL, we found patterns of regional hemodynamic impairment typical of moderate AD, suggesting underlying vascular abnormality. As potential biomarkers, these hemodynamic parameters could differentiate patients from volunteers, and possibly indicate the conversion from healthy aging to mild cognitive impairment to AD.

  2. White-collar workers' hemodynamic responses during working hours.

    Science.gov (United States)

    Liu, Xinxin; Iwakiri, Kazuyuki; Sotoyama, Midori

    2017-08-08

    In the present study, two investigations were conducted at a communication center, to examine white-collar workers' hemodynamic responses during working hours. In investigation I, hemodynamic responses were measured on a working day; and in investigation II, cardiovascular responses were verified on both working and non-working days. In investigation I, blood pressure, cardiac output, heart rate, stroke volume, and total peripheral resistance were measured in 15 workers during working hours (from 9:00 am to 18:00 pm) on one working day. Another 40 workers from the same workplace participated in investigation II, in which blood pressure and heart rate were measured between the time workers arose in the morning until they went to bed on 5 working days and 2 non-working days. The results showed that blood pressure increased and remained at the same level during working hours. The underlying hemodynamics of maintaining blood pressure, however, changed between the morning and the afternoon on working days. Cardiac responses increased in the afternoon, suggesting that cardiac burdens increase in the afternoon on working days. The present study suggested that taking underlying hemodynamic response into consideration is important for managing the work-related cardiovascular burden of white-collar workers.

  3. Neonatal Hemodynamics: From Developmental Physiology to Comprehensive Monitoring

    Directory of Open Access Journals (Sweden)

    Sabine L. Vrancken

    2018-04-01

    Full Text Available Maintenance of neonatal circulatory homeostasis is a real challenge, due to the complex physiology during postnatal transition and the inherent immaturity of the cardiovascular system and other relevant organs. It is known that abnormal cardiovascular function during the neonatal period is associated with increased risk of severe morbidity and mortality. Understanding the functional and structural characteristics of the neonatal circulation is, therefore, essential, as therapeutic hemodynamic interventions should be based on the assumed underlying (pathophysiology. The clinical assessment of systemic blood flow (SBF by indirect parameters, such as blood pressure, capillary refill time, heart rate, urine output, and central-peripheral temperature difference is inaccurate. As blood pressure is no surrogate for SBF, information on cardiac output and systemic vascular resistance should be obtained in combination with an evaluation of end organ perfusion. Accurate and reliable hemodynamic monitoring systems are required to detect inadequate tissue perfusion and oxygenation at an early stage before this result in irreversible damage. Also, the hemodynamic response to the initiated treatment should be re-evaluated regularly as changes in cardiovascular function can occur quickly. New insights in the understanding of neonatal cardiovascular physiology are reviewed and several methods for current and future neonatal hemodynamic monitoring are discussed.

  4. Permanent education that approaches radiation protection in hemodynamic service

    International Nuclear Information System (INIS)

    Flor, Rita de Cassia; Anjos, Djeniffer Valdirene dos

    2011-01-01

    In the hemodynamic services that apply ionizing radiation yet exist the necessity of capacitation of workers for actuation in those areas. So, this qualitative study performed in a hemodynamic service at Sao Jose, Santa Catarina, Brazil, had the objective to analyse how are developed the permanent education programs and the real necessity of workers. The results have shown that the workers are longing for their qualification and formation, as generally they are admitted with not any qualification for those services. So, the workers that realize the on duty hemodynamic service praxis must do it in a conscious manner and the E P is a way for to adopt good practice in radiological protection

  5. Application of near-infrared spectroscopy to measurement of hemodynamic signals accompanying stimulated saliva secretion.

    Science.gov (United States)

    Sato, Hiroki; Obata, Akiko N; Moda, Ichiro; Ozaki, Kazutaka; Yasuhara, Takaomi; Yamamoto, Yukari; Kiguchi, Masashi; Maki, Atsushi; Kubota, Kisou; Koizumi, Hideaki

    2011-04-01

    We aim to test the feasibility of using near-infrared spectroscopy (NIRS) for indirect measurement of human saliva secretion in response to taste stimuli for potential application to organoleptic testing. We use an NIRS system to measure extracranial hemodynamics (Hb-signals around the temples) of healthy participants when taste stimuli are taken in their mouths. First, the Hb-signals and volume of expelled saliva (stimulated by distilled-water or sucrose-solution intake) are simultaneously measured and large Hb-signal changes in response to the taste stimuli (Hb-responses) are found. Statistical analysis show that both the Hb response and saliva volume are larger for the sucrose solution than for the distilled water with a significant correlation between them (r = 0.81). The effects of swallowing on the Hb-signals are investigated. Similar Hb responses, differing from the sucrose solution and distilled water, are obtained even though the participants swallow the mouth contents. Finally, functional magnetic resonance imaging is used to identify possible sources of the Hb signals corresponding to salivation. Statistical analysis indicates similar responses in the extracranial regions, mainly around the middle meningeal artery. In conclusion, the identified correlation between extracranial hemodynamics and the saliva volume suggests that NIRS is applicable to the measurement of hemodynamic signals accompanying stimulated saliva secretion.

  6. Effect of volume expansion on systemic hemodynamics and central and arterial blood volume in cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Bendtsen, F; Henriksen, Jens Henrik Sahl

    1995-01-01

    , and arterial pressure were determined before and during a volume expansion induced by infusion of a hyperosmotic galactose solution. RESULTS: During volume expansion, the central and arterial blood volume increased significantly in patients with class A and controls, whereas no significant change was found...... in patients with either class B or class C. Conversely, the noncentral blood volume increased in patients with class B and C. In both patients and controls, the cardiac output increased and the systemic vascular resistance decreased, whereas the mean arterial blood pressure did not change significantly......BACKGROUND & AIMS: Systemic vasodilatation in cirrhosis may lead to hemodynamic alterations with reduced effective blood volume and decreased arterial blood pressure. This study investigates the response of acute volume expansion on hemodynamics and regional blood volumes in patients with cirrhosis...

  7. Assessment of right ventricular function using gated blood pool single photon emission computed tomography in inferior myocardial infarction with or without hemodynamically significant right ventricular infarction

    International Nuclear Information System (INIS)

    Takahashi, Masaharu

    1992-01-01

    Right ventricular function was assessed using gated blood pool single photon emission computed tomography (GSPECT) in 10 normal subjects and 14 patients with inferior myocardial infarction. Three-dimensional backbround subtraction was achieved by applying an optimal cut off level. The patient group consisted of 6 patients with definite hemodynamic abnormalities indicative of right ventricular infarction (RVI) and 8 other patients with significant obstructive lesion at the proximal portion of right coronary artery without obvious hemodynamic signs of RVI. Right ventricular regional wall motion abnormalities were demonstrated on GSPECT functional images and the indices of right ventricular function (i.e the right ventricular ejection fraction (RVEF), the right ventricular peak ejection rate (RVPER) and the right ventricular peak filling rate (RVPFR)) were significantly reduced in the patient group, not only in the patients with definite RVI but also in those without hemodynamic signs of RVI, even in the absence of definite hemodynamic signs, when the proximal portion of right coronary artery is obstructed. It is concluded that GSPECT is reliable for the assessment of right ventricular function and regional wall motion, and is also useful for the diagnosis of RVI. (author)

  8. Development of BOLD signal hemodynamic responses in the human brain

    NARCIS (Netherlands)

    Arichi, T.; Varela, M.; Melendez-Calderon, A.; Allievi, A.; Merchant, N.; Tusor, N.; Counsell, S.J.; Burdet, E.; Beckmann, Christian; Edwards, A.D.

    2012-01-01

    In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing

  9. Diagnostic performance of dual-energy CT stress myocardial perfusion imaging: direct comparison with cardiovascular MRI.

    Science.gov (United States)

    Ko, Sung Min; Song, Meong Gun; Chee, Hyun Kun; Hwang, Hweung Kon; Feuchtner, Gudrun Maria; Min, James K

    2014-12-01

    The purpose of this study was to assess the diagnostic performance of stress perfusion dual-energy CT (DECT) and its incremental value when used with coronary CT angiography (CTA) for identifying hemodynamically significant coronary artery disease. One hundred patients with suspected or known coronary artery disease without chronic myocardial infarction detected with coronary CTA underwent stress perfusion DECT, stress cardiovascular perfusion MRI, and invasive coronary angiography (ICA). Stress perfusion DECT and cardiovascular stress perfusion MR images were used for detecting perfusion defects. Coronary CTA and ICA were evaluated in the detection of ≥50% coronary stenosis. The diagnostic performance of coronary CTA for detecting hemo-dynamically significant stenosis was assessed before and after stress perfusion DECT on a per-vessel basis with ICA and cardiovascular stress perfusion MRI as the reference standard. The performance of stress perfusion DECT compared with cardiovascular stress perfusion MRI on a per-vessel basis in the detection of perfusion defects was sensitivity, 89%; specificity, 74%; positive predictive value, 73%; negative predictive value, 90%. Per segment, these values were sensitivity, 76%; specificity, 80%; positive predictive value, 63%; and negative predictive value, 88%. Compared with ICA and cardiovascular stress perfusion MRI per vessel territory the sensitivity, specificity, positive predictive value, and negative predictive value of coronary CTA were 95%, 61%, 61%, and 95%. The values for stress perfusion DECT were 92%, 72%, 68%, and 94%. The values for coronary CTA and stress perfusion DECT were 88%, 79%, 73%, and 91%. The ROC AUC increased from 0.78 to 0.84 (p=0.02) with the use of coronary CTA and stress perfusion DECT compared with coronary CTA alone. Stress perfusion DECT plays a complementary role in enhancing the accuracy of coronary CTA for identifying hemodynamically significant coronary stenosis.

  10. A 12-week resistance training program elicits positive changes in hemodynamic responses in the elderly

    Directory of Open Access Journals (Sweden)

    Cinthya Campos Salazar

    2009-03-01

    Full Text Available The aim of the study was to determine the effect of a resistance training program in hemodynamic responses and adaptations in 60 yr. old elderly. Volunteers were 60 healthy-elderly who underwent a training program 3 times/wk. for 12 wk. Participants were randomly assigned to either a control group, an exercise group who trained at 30% intensity of 5 maximal repetitions (5RM (30% of 5RM or an exercise group at an intensity of 70% (70% of 5RM. Hemodynamic variables measured were mean arterial pressure (MAP, calculated before and immediately after the training session, and rate pressure product (RPP, estimated once a month and before and after finishing the program. Results indicated that resistance exercise training at 30% and 70% of 5RM, with a total exercise work of 872.7 and 890.9 kg did not elicited cardiovascular risks for the elderly. A 12-wk resistance exercise training reduced the cardiovascular strain as shown by the RPP (~16% and the MAP (~9%, with no adverse effects throughout the program. Unfortunately, all the hemodynamic benefits were reverted 6 days following completion of the program. In conclusion, a healthy elderly population must perform resistance training exercises to significantly reduce the cardiovascular stress. We suggest to conduct further research that looks into different exercise intensities in longer program duration and to determine the mechanisms responsible for the deleterious effects of the detraining by using physiological, biochemical and biomechanical variables.

  11. Biology and hemodynamics of aneurismal vasculopathies

    International Nuclear Information System (INIS)

    Pereira, Vitor Mendes; Brina, Olivier; Gonzalez, Ana Marcos; Narata, Ana Paula; Ouared, Rafik; Karl-Olof, Lovblad

    2013-01-01

    Aneurysm vasculopathies represents a group of vascular disorders that share a common morphological diagnosis: a vascular dilation, the aneurysm. They can have a same etiology and a different clinical presentation or morphology, or have different etiology and very similar anatomical geometry. The biology of the aneurysm formation is a complex process that will be a result of an endogenous predisposition and epigenetic factors later on including the intracranial hemodynamics. We describe the biology of saccular aneurysms, its growth and rupture, as well as, current concepts of hemodynamics derived from application of computational flow dynamics on patient specific vascular models. Furthermore, we describe different aneurysm phenotypes and its extremely variability on morphological and etiological presentation

  12. Metabolic and hemodynamic evaluation of brain metastases from small cell lung cancer with positron emission tomography

    DEFF Research Database (Denmark)

    Lassen, U; Andersen, P; Daugaard, G

    1998-01-01

    for studies of metabolic and hemodynamic features. This study was performed to determine regional cerebral metabolic rate of glucose (rCMRglu), regional cerebral blood flow (rCBF), and regional cerebral blood volume (rCBV) in brain metastases from small cell lung cancer and the surrounding brain. Tumor r......Brain metastases from small cell lung cancer respond to chemotherapy, but response duration is short and the intracerebral concentration of chemotherapy may be too low because of the characteristics of the blood-brain barrier. Positron emission tomography has been applied in a variety of tumors...

  13. Evaluation of plain radiograph in mitral stenosis related to hemodynamics

    International Nuclear Information System (INIS)

    Choe, Ku Ok; Suh, Jung Ho; Park, Chang Yun; Choi, Byung So

    1973-01-01

    Mitral stenosis, the most frequent heart disease in adult, showed relatively characteristic pulmonary findings in plain chest X-ray. In recent years the knowledge of the altered physiology of hemodynamics could offer considerable amount of hemodynamic barrier in plain chest. But the value of several parameters was still controversial. In this study a variety of roentgen signs were related to physiologic data and those were acquired by the cardiac catheterization in total of 67 cases of mitral stenosis. 1. Correlation of DPA/DHT ratio (Diameter of pulmonary arterial segment/ Diameter of hemithorax X 100) to hemodynamic data; The pulmonary arterial segments was dilated by two factors, the one was pulmonary blood flow and the other the blood pressure within it. In mitral stenosis, the cardiac output was decreased to quite uniform level, hence measurement of pulmonary arterial segment might be valuable. The correlation coefficient of DPA/ DHT ratio to hemodynamic data were as follows: 0.54 to mean pulmonary artery pressure, 0.32 to pulmonary capillary wedge pressure, -0.37 to mitral valvular area and 0.07 to pulmonary vascular resistance. No significant difference was noted in between pure mitral stenosis and mitral stenosis associated with other valvular disease. 2. Correlation of diameter of right descending pulmonary artery to hemodynamic data: The measurement was made near the first bifurcation of right descending pulmonary artery at its widest point. Pulmonary vascular pattern was best correlated (r=0.71). Another had rough correlation: 0.05 to mean pulmonary artery pressure, 0.31 to pulmonary capillary wedge pressure, -0.44 to mitral valvular area in correlation coefficient. No pulmonary arterial hypertension was observed in the cases diameter of less than 12 mm, but all except two cases had pulmonary hypertension in which diameter exceeded 16 mm. According to increase of the mean pulmonary arterial pressure, the same increment in pressure increased change

  14. Evaluation of plain radiograph in mitral stenosis related to hemodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Ku Ok; Suh, Jung Ho; Park, Chang Yun; Choi, Byung So [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1973-04-15

    Mitral stenosis, the most frequent heart disease in adult, showed relatively characteristic pulmonary findings in plain chest X-ray. In recent years the knowledge of the altered physiology of hemodynamics could offer considerable amount of hemodynamic barrier in plain chest. But the value of several parameters was still controversial. In this study a variety of roentgen signs were related to physiologic data and those were acquired by the cardiac catheterization in total of 67 cases of mitral stenosis. 1. Correlation of DPA/DHT ratio (Diameter of pulmonary arterial segment/ Diameter of hemithorax X 100) to hemodynamic data; The pulmonary arterial segments was dilated by two factors, the one was pulmonary blood flow and the other the blood pressure within it. In mitral stenosis, the cardiac output was decreased to quite uniform level, hence measurement of pulmonary arterial segment might be valuable. The correlation coefficient of DPA/ DHT ratio to hemodynamic data were as follows: 0.54 to mean pulmonary artery pressure, 0.32 to pulmonary capillary wedge pressure, -0.37 to mitral valvular area and 0.07 to pulmonary vascular resistance. No significant difference was noted in between pure mitral stenosis and mitral stenosis associated with other valvular disease. 2. Correlation of diameter of right descending pulmonary artery to hemodynamic data: The measurement was made near the first bifurcation of right descending pulmonary artery at its widest point. Pulmonary vascular pattern was best correlated (r=0.71). Another had rough correlation: 0.05 to mean pulmonary artery pressure, 0.31 to pulmonary capillary wedge pressure, -0.44 to mitral valvular area in correlation coefficient. No pulmonary arterial hypertension was observed in the cases diameter of less than 12 mm, but all except two cases had pulmonary hypertension in which diameter exceeded 16 mm. According to increase of the mean pulmonary arterial pressure, the same increment in pressure increased change

  15. Hemodynamic imaging of cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Grond, J. van der; Hendrikse, J.; Osch, M.J.P. van [Dept. of Radiology, University Hospital Utrecht (Netherlands)

    2001-11-01

    MR can provide data on perfusion, oxygen consumption and oxygen metabolism, which can be of great value in stroke research. This article reviews the possibilities and current status of the MR techniques with respect to intracranial hemodynamic changes. (orig.)

  16. Evaluation of cerebral metabolism in patients with unilateral carotid stenosis by proton MR spectroscopy: a correlative study with cerebral hemodynamics by acetazolamide stress brain perfusion SPECT (acz-SPECT)

    International Nuclear Information System (INIS)

    Kim, Jae Seung; Kim, Geun Eun; Lee, Jeong Hee; Kim, Do Gyun; Kim, Sang Tae; Lee, Hee Kyung

    2001-01-01

    Carotid stenosis may lead not only to cerebral hemodynamic compromise but also cerebral metabolic changes without overt infarction. To investigate the brain metabolic changes as a result of hemodynamic compromise in pts with carotid stenosis, we compared the changes in metabolism of the gray and white matter detected by proton MRS with cortical hemodynamics measured by Acz-SPECT. We prospectively studied symptomatic 18 pts (M/F=15/3, mean ages: 64.4y) with unilateral carotid stenosis. All pts underwent Acz-SPECT and MRS with 3 days. rCBF and rCVR of MCA territory were assessed by Acz-SPECT. Hemodynamic compromise was graded as stage 0 (normal rCBF and rCVR), stage 1 (normal rCBF and reduced rCVR), and stage 2( reduced rCBF and rCVR). Brain metabolism was assessed by measuring the peaks of N-acetyl aspartate (NAA), choline (Cho), and the sum of creatine and phosphocreatine (Cr) from noninfarcted white matter in the both centrum semiovales and gray matter in both MCA territories. On Acz-SPECT, 7 pts showed stage 2 were significantly lower than in pts with stage 0 (p<0.01). The asymmetric ratio of NAA/Cr in pts with state 2 was also significantly lower than in pts with stage 1(p<0.05). The asymmetric ratio of Cho/Cr was increased as hemodynamic stage increased but the differences were not statistically significant among 3 stages. In cortical gray matter, the asymmetric ratios of NAA/Cho and NAA/Cr were decreased statistically significant among 3 stages. In cortical gray matter, the asymmetric ratios of NAA/Cho and NAA/Cr were decreased and that of Cho/Cr was increased as hemodynamic stage increased. However, these differences were not statistically significant among 3 stages. The asymmetric ratios of NAA/Cho of centrum semiovale in pts with reduced rCBF and/or reduced rCVR were lower than in pts with normal perfusion. Our results indicate the metabolic changes detected by proton MRS in patients with carotid stenosis reflect a hemodynamic compromised state

  17. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke

    Science.gov (United States)

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  18. New approach to intracardiac hemodynamic measurements in small animals

    DEFF Research Database (Denmark)

    Eskesen, Kristian; Olsen, Niels T; Dimaano, Veronica L

    2012-01-01

    Invasive measurements of intracardiac hemodynamics in animal models have allowed important advances in the understanding of cardiac disease. Currently they are performed either through a carotid arteriotomy or via a thoracotomy and apical insertion. Both of these techniques have disadvantages...... and are not conducive to repeated measurements. Therefore, the purpose of this study was to develop a new technique for measuring intracardiac hemodynamics....

  19. Evaluation of the impact of carotid artery bifurcation angle on hemodynamics by use of computational fluid dynamics: a simulation and volunteer study.

    Science.gov (United States)

    Saho, Tatsunori; Onishi, Hideo

    2016-07-01

    In this study, we evaluated the hemodynamics of carotid artery bifurcation with various geometries using simulated and volunteer models based on magnetic resonance imaging (MRI). Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM. The velocity distribution, streamline, and wall shear stress (WSS) were evaluated in a simulated model with known bifurcation angles (30°, 40°, 50°, 60°, derived from patients' data) and in three-dimensional (3D) healthy volunteer models. Separated flow was observed at the outer side of the bifurcation, and large bifurcation models represented upstream transfer of the point. Local WSS values at the outer bifurcation [both simulated (100 Pa). The bifurcation angle had a significant negative correlation with the WSS value (p<0.05). The results of this study show that the carotid artery bifurcation angle is related to the WSS value. This suggests that hemodynamic stress can be estimated based on the carotid artery geometry. The construction of a clinical database for estimation of developing atherosclerosis is warranted.

  20. Hemodynamic changes after levothyroxine treatment in subclinical hypothyroidism

    DEFF Research Database (Denmark)

    Faber, J; Petersen, L; Wiinberg, N

    2002-01-01

    by LT(4) (p treatment in SH results in changes in hemodynamic parameters of potentially beneficial character. SH and overt hypothyroidism should......In hypothyroidism, lack of thyroid hormones results in reduced cardiac function (cardiac output [CO]), and an increase of systemic vascular resistance (SVR). We speculated whether hemodynamic regulation in subjects with subclinical hypothyroidism (SH) (defined as mildly elevated thyrotropin [TSH......) and T(3) estimates) LT(4) treatment resulted in 6% reduction in supine MAP (p treatment (p

  1. An investigation of patterns in hemodynamic data indicative of impending hypotension in intensive care

    Directory of Open Access Journals (Sweden)

    Lee Joon

    2010-10-01

    Full Text Available Abstract Background In the intensive care unit (ICU, clinical staff must stay vigilant to promptly detect and treat hypotensive episodes (HEs. Given the stressful context of busy ICUs, an automated hypotensive risk stratifier can help ICU clinicians focus care and resources by prospectively identifying patients at increased risk of impending HEs. The objective of this study was to investigate the possible existence of discriminatory patterns in hemodynamic data that can be indicative of future hypotensive risk. Methods Given the complexity and heterogeneity of ICU data, a machine learning approach was used in this study. Time series of minute-by-minute measures of mean arterial blood pressure, heart rate, pulse pressure, and relative cardiac output from 1,311 records from the MIMIC II Database were used. An HE was defined as a 30-minute period during which the mean arterial pressure was below 60 mmHg for at least 90% of the time. Features extracted from the hemodynamic data during an observation period of either 30 or 60 minutes were analyzed to predict the occurrence of HEs 1 or 2 hours into the future. Artificial neural networks (ANNs were trained for binary classification (normotensive vs. hypotensive and regression (estimation of future mean blood pressure. Results The ANNs were successfully trained to discriminate patterns in the multidimensional hemodynamic data that were predictive of future HEs. The best overall binary classification performance resulted in a mean area under ROC curve of 0.918, a sensitivity of 0.826, and a specificity of 0.859. Predicting further into the future resulted in poorer performance, whereas observation duration minimally affected performance. The low prevalence of HEs led to poor positive predictive values. In regression, the best mean absolute error was 9.67%. Conclusions The promising pattern recognition performance demonstrates the existence of discriminatory patterns in hemodynamic data that can indicate

  2. The nursing perspective on monitoring hemodynamics and oxygen transport.

    Science.gov (United States)

    Tucker, Dawn; Hazinski, Mary Fran

    2011-07-01

    Maintenance of adequate systemic oxygen delivery requires careful clinical assessment integrated with hemodynamic measurements and calculations to detect and treat conditions that may compromise oxygen delivery and lead to life-threatening shock, respiratory failure, or cardiac arrest. The bedside nurse constantly performs such assessments and measurements to detect subtle changes and trends in patient condition. The purpose of this editorial is to highlight nursing perspectives about the hemodynamic and oxygen transport monitoring systems summarized in the Pediatric Cardiac Intensive Care Society Evidence- Based Review and Consensus Statement on Monitoring of Hemodynamics and Oxygen Transport Balance. There is no substitute for the observations of a knowledgeable and experienced clinician who understands the patient's condition and potential causes of deterioration and is able to evaluate response to therapy.

  3. Hemodynamics in patients with hypertensive intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Kitahara, Tetsuhiro

    1997-01-01

    Cerebral hemodynamics in 15 patients with hypertensive intracerebral hemorrhage (HICH) were evaluated by measuring cerebral blood flow (CBF) and cerebrovascular reserve capacity, using stable xenon-enhanced computed tomography. Their hematomas were removed by stereotactic aqua stream aspiration. The hemispheric and thalamic CBFs of patients with HICH were lower than those of hypertensive patients without hematomas. However, the hemispheric CBF increased according to how much of the hematoma was removed surgically. Thus, hemodynamics in patients with HICH can be improved by surgical hematoma removal, although some adjunct therapies are necessary in order to prevent secondary edema and the delayed neuronal death. (author)

  4. A sliding mode observer for hemodynamic characterization under modeling uncertainties

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    This paper addresses the case of physiological states reconstruction in a small region of the brain under modeling uncertainties. The misunderstood coupling between the cerebral blood volume and the oxygen extraction fraction has lead to a partial knowledge of the so-called balloon model describing the hemodynamic behavior of the brain. To overcome this difficulty, a High Order Sliding Mode observer is applied to the balloon system, where the unknown coupling is considered as an internal perturbation. The effectiveness of the proposed method is illustrated through a set of synthetic data that mimic fMRI experiments.

  5. Serial cerebral hemodynamic change after extracranial-intracranial (EC-IC) bypass surgery: evaluated by acetazolamide stress brain perfusion SPECT(acz-SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Il Ki; Kim, Jae Seung; Ahn, Jae Sung; Im, Ki Chun; Kim, Euy Nyong; Mun, Dae Hyeog [Asan Medical Center, Seoul (Korea, Republic of)

    2005-07-01

    We evaluated serial cerebral hemodynamic changes after EC-IC bypass surgery in symptomatic pts with atherosclerotic occlusion of internal carotid (lCA) or mid-cerebral artery (MCA) using Acz-SPECT. 25 symptomatic pts (M/F 19/6, 53{+-}10 y) with ICA and MCA occlusion (16 uni - and 9 bilateral) prospectively underwent Acz-SPECT using Tc-99m ECD before and 1 week after EC-IC bypass surgery. Of these, 16 underwent additional f/u Acz-SPECT 5 mo later. Cerebral perfusion and perfusion reserve of MCA territory were evaluated visually and SPECT findings were classified into 4 groups: N/N; R/N; N/R; and R/R (perfusion/perfusion reserve: N = normal, R = reduced). For semiquantitative analysis, all SPECT images were normalized to MNI template and mean counts of MCA territory and cerebellum were obtained by AAL. Cerebral perfusion index (PI =C{sub region}/C{sub cere}) and perfusion reserve index (RI = (PI{sub Acz} - PI{sub basal}) /Pl{sub basal}) were calculated. Preop SPECT findings of ipsilateral MCA in 25 pts were R/N (4%), N/R (12%), and R/R (84% ). Early postop SPECT showed improvement of perfusion (26%) and/or reserve (68%) in ipsilateral MCA. Of 16 pts with 5mo f/u SPECT, 6 (38%) showed further improvement of perfusion or reserve. However, 4 (25%) showed aggravation of perfusion and one of these underwent revision surgery. Preop PI (1.1{+-}0.1) and RI (0.11{+-}0.07) of ipsilateral MCA were significantly lower than those of contralateral hemispheres (p<0.05). After surgery, PIs of bilateral MCA did not change at early postop period but improved in ipsilateral MCA at 5mo. Rls of ipsilateral MCA increased significantly (68%) at early postop period (P<0.001) and then did not changed. Cerebral perfusion and perfusion reserve changed with different manner during 5 mo after bypass surgery and perfusion reserve changed more dramatically than perfusion. Acz-SPECT is a feasible method for evaluating cerebral hemodynamic change after EC-IC bypass surgery.

  6. Radiation protection in hemodynamics work process: the look of the multidisciplinary team

    International Nuclear Information System (INIS)

    Borges, Laurete Medeiros; Klauberg, Daniela; Huhn, Andrea; Melo, Juliana Almeida Coelho de

    2014-01-01

    The study was conducted in a hemodynamics service of a public hospital in Florianopolis, SC, Brazil. Qualitative research with the participation of 13 professionals from a multidisciplinary team: doctors, technicians, technologists in radiology and nurses. The research material was extracted from the observations, semi-structured interviews and documentary analysis. The responses were grouped into three categories relating to: training of hemodynamic professionals and the perception of radiological protection in the work process; occupational exposure and safety of the professionals of Hemodynamics; and continuing education in hemodynamic service. Professionals are daily exposed to ionizing radiation, and for being long procedures, lead to high levels of exposure in workers. In hemodynamic services the risk of biological effects are cumulative, because radiodiagnostic procedures include issuing the higher doses of ionizing radiation in which the personnel exposure is critical. The workforce in the service researched mostly consists of technical professionals who reported little knowledge of radiation protection and ionizing radiation and that this issue was not addressed during their training. However, despite mention little knowledge about radiological protection, participants demonstrated understand the biological effects, especially with regard to pathologies caused by frequent exposure without protection to ionizing radiation. These professionals said they have no knowledge of the proper use of radiological protection equipment and the dosimeter, and that the institution does not provide all individual protective equipment required for the procedures performed in the hemodynamic service. Permanent education in hemodynamic service is very important part in the work process, though, cited by participants as little effectiveness in the institution, even when the professionals show interest in the area. Knowledge of the team providing hemodynamic service calls

  7. Interaction between the Stress Phase Angle (SPA and the Oscillatory Shear Index (OSI Affects Endothelial Cell Gene Expression.

    Directory of Open Access Journals (Sweden)

    Ronny Amaya

    Full Text Available Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS and solid circumferential stress (CS. Due to variations in impedance (global factors and geometric complexities (local factors in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle-SPA. Asynchronous flows (SPA close to -180° that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous

  8. Hemodynamic pattern in myocardial infarction patients at the common stages of rehabilitation

    International Nuclear Information System (INIS)

    Perepech, N.B.

    1986-01-01

    Integrated body rheography, radiocardiography and radionuclide ventriculography were used to investigate hemodynamic changes in 101 myocardial infarction patients during the hospital stage of the disease. Changes in major hemodynamic parameters were demonstrated by the end of the 1st week and when walking was resumed. At the resumed-walking stage, the mechanism of declining stroke and cardiac indices was shown to depend on physical activation rates. Hemodynamic response is mostly conditioned by myocardial insufficiency when walking is resumed rapidly during the 2nd week, and by smaller venous return due to hypovolemia where it is resumed slowly during the 4th week. Expanding motion regimens at slow rates results in persistent hemodynamic disturbances in myocardial infarction patients

  9. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates

    DEFF Research Database (Denmark)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new...

  10. Acute coronary hemodynamic effects of equihypotensive doses of nisoldipine and diltiazem

    NARCIS (Netherlands)

    H. Suryapranata (Harry); P.W.J.C. Serruys (Patrick); A.L. Soward; J. Planellas; G. Vanhaleweyk; P.G. Hugenholtz (Paul)

    1985-01-01

    textabstractThe hemodynamic effects of nisoldipine and diltiazem were investigated in two groups of patients undergoing investigation for suspected coronary artery disease. Emphasis was placed on the coronary hemodynamic changes. Approximately equihypotensive doses of these two calcium channel

  11. Hemodynamic and neuropathological analysis in rats with aluminum trichloride-induced Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Szu-Ming Chen

    Full Text Available BACKGROUND AND AIMS: Hemodynamic normality is crucial to maintaining the integrity of cerebral vessels and, therefore, preserving the cognitive functions of Alzheimer's disease patients. This study investigates the implications of the hemodynamic changes and the neuropathological diversifications of AlCl3-induced AD. METHODS: The experimental animals were 8- to 12-wk-old male Wistar rats. The rats were randomly divided into 2 groups: a control group and a (+control group. Food intake, water intake, and weight changes were recorded daily for 22 wk. Synchronously, the regional cerebral blood flow (rCBF of the rats with AlCl3-induced AD were measured using magnetic resonance imaging (MRI. The hemorheological parameters were analyzed using a computerized auto-rotational rheometer. The brain tissue of the subjects was analyzed using immunohistological chemical (IHC staining to determine the beta-amyloid (Aβ levels. RESULTS: The results of hemodynamic analysis revealed that the whole blood viscosity (WBV, fibrinogen, plasma viscosity and RBC aggregation index (RAI in (+control were significantly higher than that of control group, while erythrocyte electrophoresis (EI of whole blood in (+control were significantly lower than that of control group. The results of acetylcholinesterase-RBC (AChE-RBCin the (+control group was significantly higher than that of the control group. The results also show that the reduction of rCBF in rats with AlCl3-induced AD was approximately 50% to 60% that of normal rats. IHC stain results show that significantly more Aβ plaques accumulated in the hippocampus and cortex of the (+control than in the control group. CONCLUSION: The results accentuate the importance of hemorheology and reinforce the specific association between hemodynamic and neuropathological changes in rats with AlCl3-induced AD. Hemorheological parameters, such as WBV and fibrinogen, and AChE-RBC were ultimately proven to be useful biomarkers of the

  12. Quantifying the abnormal hemodynamics of sickle cell anemia

    Science.gov (United States)

    Lei, Huan; Karniadakis, George

    2012-02-01

    Sickle red blood cells (SS-RBC) exhibit heterogeneous morphologies and abnormal hemodynamics in deoxygenated states. A multi-scale model for SS-RBC is developed based on the Dissipative Particle Dynamics (DPD) method. Different cell morphologies (sickle, granular, elongated shapes) typically observed in deoxygenated states are constructed and quantified by the Asphericity and Elliptical shape factors. The hemodynamics of SS-RBC suspensions is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. Moreover, SS-RBCs exhibit abnormal adhesive interactions with both the vessel endothelium cells and the leukocytes. The effect of the abnormal adhesive interactions on the hemodynamics of sickle blood is investigated using the current model. It is found that both the SS-RBC - endothelium and the SS-RBC - leukocytes interactions, can potentially trigger the vicious ``sickling and entrapment'' cycles, resulting in vaso-occlusion phenomena widely observed in micro-circulation experiments.

  13. [Unit of hemodynamics: the production of the knowledge].

    Science.gov (United States)

    Linch, Graciele Fernanda da Costa; Guido, Laura de Azevedo; Pitthan, Luiza de Oliveira; Umann, Juliane

    2009-12-01

    This study aimed at doing an integrative review that has as objective to investigate what has been published on nursing in hemodynamic in the following data bases: Scientific Electronic Library Online (SciELO), Medical Literature Analysis and Retrieval System Online (MEDLINE), Latin American and Caribbean Health Sciences (LILACS), and Nursing Database (BDENF); with the descriptors: Enfermagem and Hemodinâmica and Nursing and Hemodynamics. The data indicate that the studies in his majority were developed by nurses, and made a list to the presence of nursing, there were still boarded aspects made a list to the reprocess of catheters and health of the professionals of nursing. Nevertheless, it is noticeable that the publication of works connected with the thematic of hemodynamic is limited. However, they demonstrate the predominance of inquiries and reports making a list to the aspects of the presence of nursing in this sector which may represent the necessities and the problems that permeate the work.

  14. Does lower limb exercise worsen renal artery hemodynamics in patients with abdominal aortic aneurysm?

    Science.gov (United States)

    Sun, Anqiang; Tian, Xiaopeng; Zhang, Nan; Xu, Zaipin; Deng, Xiaoyan; Liu, Ming; Liu, Xiao

    2015-01-01

    Renal artery stenosis (RAS) and renal complications emerge in some patients after endovascular aneurysm repair (EVAR) to treat abdominal aorta aneurysm (AAA). The mechanisms for the causes of these problems are not clear. We hypothesized that for EVAR patients, lower limb exercise could negatively influence the physiology of the renal artery and the renal function, by decreasing the blood flow velocity and changing the hemodynamics in the renal arteries. To evaluate this hypothesis, pre- and post-operative models of the abdominal aorta were reconstructed based on CT images. The hemodynamic environment was numerically simulated under rest and lower limb exercise conditions. The results revealed that in the renal arteries, lower limb exercise decreased the wall shear stress (WSS), increased the oscillatory shear index (OSI) and increased the relative residence time (RRT). EVAR further enhanced these effects. Because these parameters are related to artery stenosis and atherosclerosis, this preliminary study concluded that lower limb exercise may increase the potential risk of inducing renal artery stenosis and renal complications for AAA patients. This finding could help elucidate the mechanism of renal artery stenosis and renal complications after EVAR and warn us to reconsider the management and nursing care of AAA patients.

  15. Brain Electrodynamic and Hemodynamic Signatures Against Fatigue During Driving

    Directory of Open Access Journals (Sweden)

    Chun-Hsiang Chuang

    2018-03-01

    Full Text Available Fatigue is likely to be gradually cumulated in a prolonged and attention-demanding task that may adversely affect task performance. To address the brain dynamics during a driving task, this study recruited 16 subjects to participate in an event-related lane-departure driving experiment. Each subject was instructed to maintain attention and task performance throughout an hour-long driving experiment. The subjects' brain electrodynamics and hemodynamics were simultaneously recorded via 32-channel electroencephalography (EEG and 8-source/16-detector functional near-infrared spectroscopy (fNIRS. The behavior performance demonstrated that all subjects were able to promptly respond to lane-deviation events, even if the sign of fatigue arose in the brain, which suggests that the subjects were fighting fatigue during the driving experiment. The EEG event-related analysis showed strengthening alpha suppression in the occipital cortex, a common brain region of fatigue. Furthermore, we noted increasing oxygenated hemoglobin (HbO of the brain to fight driving fatigue in the frontal cortex, primary motor cortex, parieto-occipital cortex and supplementary motor area. In conclusion, the increasing neural activity and cortical activations were aimed at maintaining driving performance when fatigue emerged. The electrodynamic and hemodynamic signatures of fatigue fighting contribute to our understanding of the brain dynamics of driving fatigue and address driving safety issues through the maintenance of attention and behavioral performance.

  16. Cerebral hemodynamics in adult ischemic-type patients with moyamoya disease compared with those of atherothrombotic middle cerebral artery occlusion

    International Nuclear Information System (INIS)

    Idei, Masaru; Yamane, Kanji; Nishida, Masahiro; Manabe, Kazufumi; Yokota, Akira

    2005-01-01

    We measured regional cerebral blood flow (rCBF) in adult ischemic-type patients with moyamoya disease and in patients with atherothrombotic middle cerebral artery occlusion (MCAO) to investigate cerebral hemodynamics in adult ischemic-type of moyamoya disease. In this study we measured rCBF and regional cerebro-vascular response (rCVR) using acetazolamide by Xe-non-enhanced CT. Our subjects consisted of 15 adult ischemic-type patients with moyamoya disease and 27 atherothrombotic stroke patients with proximal occlusion of the middle cerebral artery. The region of inter est was conducted in the anterior cerebral artery, middle cerebral artery and posterior cerebral artery territories as well as basal ganglia regions. rGBF was preserved in all regions of patients with moyamoya disease. However, rCVR severely decreased in the anterior circulation territory in patients with moyamoya disease compared with those of MCAO. These results suggest that rCBF in the anterior circulation territory of adult ischemic-type patients with moyamoya disease is preserved by vasodilation of the cerebral arteries, while cerebral hemodynamic reserve capacity is severely reduced. The results indicated that basal moyamoya vessels are dilated. These findings may be one of the reasons why stroke occurs more frequently in adult than child patients with moyamoya disease. (author)

  17. Fenestrated Stent Graft Repair of Abdominal Aortic Aneurysm: Hemodynamic Analysis of the Effect of Fenestrated Stents on the Renal Arteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhonghua; Chaichana, Thanapong [Curtin University of Technology, Perth (Australia)

    2010-02-15

    We wanted to investigate the hemodynamic effect of fenestrated stents on the renal arteries with using a fluid structure interaction method. Two representative patients who each had abdominal aortic aneurysm that was treated with fenestrated stent grafts were selected for the study. 3D realistic aorta models for the main artery branches and aneurysm were generated based on the multislice CT scans from two patients with different aortic geometries. The simulated fenestrated stents were designed and modelled based on the 3D intraluminal appearance, and these were placed inside the renal artery with an intra-aortic protrusion of 5.0-7.0 mm to reflect the actual patients' treatment. The stent wire thickness was simulated with a diameter of 0.4 mm and hemodynamic analysis was performed at different cardiac cycles. Our results showed that the effect of the fenestrated stent wires on the renal blood flow was minimal because the flow velocity was not significantly affected when compared to that calculated at pre-stent graft implantation, and this was despite the presence of recirculation patterns at the proximal part of the renal arteries. The wall pressure was found to be significantly decreased after fenestration, yet no significant change of the wall shear stress was noticed at post-fenestration, although the wall shear stress was shown to decrease slightly at the proximal aneurysm necks. Our analysis demonstrates that the hemodynamic effect of fenestrated renal stents on the renal arteries is insignificant. Further studies are needed to investigate the effect of different lengths of stent protrusion with variable stent thicknesses on the renal blood flow, and this is valuable for understanding the long-term outcomes of fenestrated repair.

  18. Fenestrated Stent Graft Repair of Abdominal Aortic Aneurysm: Hemodynamic Analysis of the Effect of Fenestrated Stents on the Renal Arteries

    International Nuclear Information System (INIS)

    Sun, Zhonghua; Chaichana, Thanapong

    2010-01-01

    We wanted to investigate the hemodynamic effect of fenestrated stents on the renal arteries with using a fluid structure interaction method. Two representative patients who each had abdominal aortic aneurysm that was treated with fenestrated stent grafts were selected for the study. 3D realistic aorta models for the main artery branches and aneurysm were generated based on the multislice CT scans from two patients with different aortic geometries. The simulated fenestrated stents were designed and modelled based on the 3D intraluminal appearance, and these were placed inside the renal artery with an intra-aortic protrusion of 5.0-7.0 mm to reflect the actual patients' treatment. The stent wire thickness was simulated with a diameter of 0.4 mm and hemodynamic analysis was performed at different cardiac cycles. Our results showed that the effect of the fenestrated stent wires on the renal blood flow was minimal because the flow velocity was not significantly affected when compared to that calculated at pre-stent graft implantation, and this was despite the presence of recirculation patterns at the proximal part of the renal arteries. The wall pressure was found to be significantly decreased after fenestration, yet no significant change of the wall shear stress was noticed at post-fenestration, although the wall shear stress was shown to decrease slightly at the proximal aneurysm necks. Our analysis demonstrates that the hemodynamic effect of fenestrated renal stents on the renal arteries is insignificant. Further studies are needed to investigate the effect of different lengths of stent protrusion with variable stent thicknesses on the renal blood flow, and this is valuable for understanding the long-term outcomes of fenestrated repair

  19. Hemodynamic causes of exercise intolerance in Fontan patients

    DEFF Research Database (Denmark)

    Hebert, Anders; Jensen, Annette S; Mikkelsen, Ulla Ramer

    2014-01-01

    BACKGROUND: Exercise intolerance is frequent among Fontan patients and an important determinant for quality of life. This study investigated the hemodynamic causes of impaired exercise capacity in Fontan patients with particular focus on the influence of stroke volume index (SVI) and heart rate (HR...... patients and controls respectively. CONCLUSION: SVI decreased significantly in Fontan patients near the end of maximal effort exercise. The low SVI at maximal exercise was the most important hemodynamic factor limiting exercise capacity in Fontan patients, whereas chronotropic impairment had a smaller...

  20. [Part II: basic hemodynamic monitoring and the use of pulmonary artery catheter].

    Science.gov (United States)

    Dias, Fernando Suparregui; Rezende, Ederlon; Mendes, Ciro Leite; Réa-Neto, Alvaro; David, Cid Marcos; Schettino, Guilherme; Lobo, Suzana Margareth Ajeje; Barros, Alberto; Silva, Eliézer; Friedman, Gilberto; Amaral, José Luiz Gomes do; Park, Marcelo; Monachini, Maristela; Oliveira, Mirella Cristine de; Assunção, Murillo Santucci César; Akamine, Nelson; Mello, Patrícia Veiga C; Pereira, Renata Andréa Pietro; Costa Filho, Rubens; Araújo, Sebastião; Félix Pinto, Sérgio; Ferreira, Sérgio; Mitushima, Simone Mattoso; Agareno, Sydney; Brilhante, Yuzeth Nóbrega de Assis

    2006-03-01

    Monitoring of vital functions is one of the most important tools in the management of critically ill patients. Nowadays is possible to detect and analyze a great deal of physiologic data using a lot of invasive and non-invasive methods. The intensivist must be able to select and carry out the most appropriate monitoring technique according to the patient requirements and taking into account the benefit/risk ratio. Despite the fast development of non invasive monitoring techniques, invasive hemodynamic monitoring using Pulmonary Artery Catheter still is one of the basic procedures in Critical Care. The aim was to define recommendations about clinical utility of basic hemodynamic monitoring methods and the Use of Pulmonary Artery Catheter. Modified Delphi methodology was used to create and quantify the consensus between the participants. AMIB indicated a coordinator who invited more six experts in the area of monitoring and hemodynamic support to constitute the Consensus Advisory Board. Twenty-five physicians and nurses selected from different regions of the country completed the expert panel, which reviewed the pertinent bibliography listed at the MEDLINE in the period from 1996 to 2004. Recommendations were made based on 55 questions about the use of central venous pressure, invasive arterial pressure, pulmonary artery catheter and its indications in different settings. Evaluation of central venous pressure and invasive arterial pressure, besides variables obtained by the PAC allow the understanding of cardiovascular physiology that is of great value to the care of critically ill patients. However, the correct use of these tools is fundamental to achieve the benefits due to its use.

  1. Prospective evaluation of intraoperative hemodynamics in liver transplantation with whole, partial and DCD grafts

    NARCIS (Netherlands)

    Sainz-Barriga, M; Reyntjens, K; Costa, M G; Scudeller, L; Rogiers, X; Wouters, P; de Hemptinne, B; Troisi, R I

    The interaction of systemic hemodynamics with hepatic flows at the time of liver transplantation (LT) has not been studied in a prospective uniform way for different types of grafts. We prospectively evaluated intraoperative hemodynamics of 103 whole and partial LT. Liver graft hemodynamics were

  2. Perfusion characteristics of Moyamoya disease: an anatomically and clinically oriented analysis and comparison.

    Science.gov (United States)

    Schubert, Gerrit Alexander; Czabanka, Marcus; Seiz, Marcel; Horn, Peter; Vajkoczy, Peter; Thomé, Claudius

    2014-01-01

    Moyamoya disease (MMD) is characterized by unique angiographic features of collateralization. However, a detailed quantification as well as comparative analysis with cerebrovascular atherosclerotic disease (CAD) and healthy controls have not been performed to date. We reviewed 67 patients with MMD undergoing Xenon-enhanced computed tomography, as well as 108 patients with CAD and 5 controls. In addition to cortical, central, and infratentorial regions of interest, particular emphasis was put on regions that are typically involved in MMD (pericallosal territory, basal ganglia). Cerebral blood flow (CBF), cerebrovascular reserve capacity (CVRC), and hemodynamic stress distribution were calculated. MMD is characterized by a significant, ubiquitous decrease in CVRC and a cortical but not pericallosal decrease in CBF when compared with controls. Baseline perfusion is maintained within the basal ganglia, and hemodynamic stress distribution confirmed a relative preservation of central regions of interest in MMD, indicative for its characteristic proximal collateralization pattern. In MMD and CAD, cortical and central CBF decreased significantly with age, whereas CVRC and hemodynamic stress distribution are relatively unaffected by age. No difference in CVRC of comparable regions of interest was seen between MMD and CAD, but stress distribution was significantly higher in MMD, illustrating the functionality of the characteristic rete mirabilis. Our data provide quantitative support for a territory-specific perfusion pattern that is unique for MMD, including central preservation of CBF compared with controls and patients with CAD. This correlates well with its characteristic feature of proximal collateralization. CVRC and hemodynamic stress distribution seem to be more robust parameters than CBF alone for assessment of disease severity.

  3. Comparative study of portal hemodynamics and regional hepatic blood flow before and after hepatic resection by 133Xe-scintiphotosplenoportography

    International Nuclear Information System (INIS)

    Yasuda, Tadashi; Sasaki, Yo; Imaoka, Shingi; Shibata, Takashi; Wada, Hisashi; Nagano, Hiroaki; Iwanaga, Takeshi; Nakano, Shunichi; Hasegawa, Yoshihisa.

    1990-01-01

    Changes in the portal circulatory pattern and regional hepatic blood flow (rHBF) after surgical liver resection were studied by 133 Xe-scintiphotosplenoportography (SSP). The visual patterns of pre- and postoperative portal circulation were compared. Different patterns were observed after the operation in five of 27 patients (porto-systemic shunt formation 3, progression 1, regression 1). The patients with porto-systemic shunt showed postopertive complications (massive ascites, jaundice, cardiopulmonary failure) more frequently than those without it. The ratio of rHBF increase (post-/pre-operative rHBF) was 1.36±0.63 on average. The ratio was higher in patients with good liver function or without liver cirrhosis. The ratio also correlated with the weight of the liver resected. But operation time, blood loss or whether hepatic blood supply was clamped off during the operation did not affect the ratio. Resection in the right lobe, however, caused a greater rHBF increase in the residual liver than the same degree of resection in the left lobe. SSP could be a useful method for investigating the effect of hepatic resection on portal hemodynamics and it is suggested that existence of portosystemic shunt influences the postoperative course. (author)

  4. Hemodynamic deterioration precedes onset of ventricular tachyarrhythmia after Heartmate II implantation.

    Science.gov (United States)

    Yaksh, Ameeta; Kik, Charles; Knops, Paul; Zwiers, Korinne; van Ettinger, Maarten J B; Manintveld, Olivier C; de Wijs, Marcel C J; van der Kemp, Peter; Bogers, Ad J J C; de Groot, Natasja M S

    2016-07-08

    Early postoperative ventricular tachyarrhythmia (PoVT) after left ventricular assist device (LVAD) implantation are common and associated with higher mortality-rates. At present, there is no data on initiation of these PoVT and the role of alterations in cardiac hemodynamics. A LVAD was implanted in a patient with end-stage heart failure due to a ischemic cardiomyopathy. Alterations in cardiac rhythm and hemodynamics preceding PoVT-episodes during the first five postoperative days were examined by using continuous recordings of cardiac rhythm and various hemodynamic parameters. All PoVT (N=120) were monomorphic, most often preceded by short-long-short-sequences or regular SR and initiated by ventricular runs. Prior to PoVT, mean arterial pressure decreased; heart rate and ST-segments deviations increased. PoVT are caused by different underlying electrophysiological mechanisms. Yet, they are all monomorphic and preceded by hemodynamic deterioration due to myocardial ischemia.

  5. Intraosseous anesthesia in hemodynamic studies in children with cardiopathy.

    Science.gov (United States)

    Aliman, Ana Cristina; Piccioni, Marilde de Albuquerque; Piccioni, João Luiz; Oliva, José Luiz; Auler Júnior, José Otávio Costa

    2011-01-01

    Intraosseous (IO) access has been used with good results in emergency situations, when venous access is not available for fluids and drugs infusion. The objective of this study was to evaluate IO a useful technique for anesthesia and fluids infusion during hemodynamic studies and when peripheral intravascular access is unobtainable. The setting was an university hospital hemodynamics unit, and the subjects were twenty one infants with congenital heart disease enrolled for elective hemodynamic study diagnosis. This study compared the effectiveness of IO access in relation to IV access for infusion of anesthetics agents (ketamine, midazolam, and fentanyl) and fluids during hemodynamic studies. The anesthetic induction time, procedure duration, anesthesia recovery time, adequate hydration, and IV and IO puncture complications were compared between groups. The puncture time was significantly smaller in IO group (3.6 min) that in IV group (9.6 min). The anesthetic onset time (56.3 second) for the IV group was faster than IO group (71.3 second). No significant difference between groups were found in relation to hydration (IV group, 315.5 mL vs IO group, 293.2 mL), and anesthesia recovery time (IO group, 65.2 min vs IV group, 55.0 min). The puncture site was reevaluated after 7 and 15 days without signs of infection or other complications. Results showed superiority for IO infusion when considering the puncture time of the procedure. Due to its easy manipulation and efficiency, hydration and anesthesia by IO access was satisfactory for hemodynamic studies without the necessity of other infusion access. Copyright © 2011 Elsevier Editora Ltda. All rights reserved.

  6. An evaluation of the cerebral hemodynamics in moyamoya disease with acetazolamide (Diamox) 99mTc-HMPAO SPECT

    International Nuclear Information System (INIS)

    Qin-Yi, Gao; Kuwabara, Yasuo; Ichiya, Yuichi

    1994-01-01

    We studied the cerebral hemodynamics using Diamox 99m Tc-HMPAO SPECT in 9 patients with moyamoya disease, consisting of 4 children and 5 adults. Diamox 99m Tc-HMPO SPECT studies were performed by the double injection method. Hypoperfusion areas were scored by a visual inspection as follows: ++, definite positive; +, probable positive; -, negative. Diamox test was interpreted as positive when the score increased over one degree. In the resting state, 6 out of 9 patients showed definite or probable positive hypoperfusion, while all of 9 patients showed a similar finding after Diamox injection. The Diamox test was positive in 6 out of 9 patients. It was positive in all 3 patients who showed a negative hypoperfusion in the resting state. The regional cerebrovascular response to Diamox was most severely impaired in the frontal region. However, it was relatively well preserved in the cerebellum and thalamus according to the semiquantiative analysis. Thus, the Diamox HOPAO SPECT was considered to be useful in evaluating the hemodynamics in patients with moyamoya disease. (author)

  7. Hemodynamic signals of mixed messages during a social exchange.

    Science.gov (United States)

    Zucker, Nancy L; Green, Steven; Morris, James P; Kragel, Philip; Pelphrey, Kevin A; Bulik, Cynthia M; LaBar, Kevin S

    2011-06-22

    This study used functional magnetic resonance imaging to characterize hemodynamic activation patterns recruited when the participants viewed mixed social communicative messages during a common interpersonal exchange. Mixed messages were defined as conflicting sequences of biological motion and facial affect signals that are unexpected within a particular social context (e.g. observing the reception of a gift). Across four social vignettes, valenced facial expressions were crossed with rejecting and accepting gestures in a virtual avatar responding to presentation of a gift from the participant. The results indicate that conflicting facial affect and gesture activated superior temporal sulcus, a region implicated in expectancy violations, as well as inferior frontal gyrus and putamen. Scenarios conveying rejection differentially activated the insula and putamen, regions implicated in embodied cognition, and motivated learning, as well as frontoparietal cortex. Characterizing how meaning is inferred from integration of conflicting nonverbal communicative cues is essential to understand nuances and complexities of human exchange.

  8. Comprehensive cognitive and cerebral hemodynamic evaluation after cranioplasty

    Directory of Open Access Journals (Sweden)

    Coelho F

    2014-05-01

    Full Text Available Fernanda Coelho,1 Arthur Maynart Oliveira,2 Wellingson Silva Paiva,2 Fabio Rios Freire,1 Vanessa Tome Calado,1 Robson Luis Amorim,2 Iuri Santana Neville,2 Almir Ferreira de Andrade,2 Edson Bor-Seng-Shu,3 Renato Anghinah,1 Manoel Jacobsen Teixeira21Neurorehabilitation Group, Division of Neurology, 2Division of Neurosurgery, 3Neurosonology and Cerebral Hemodynamics Group, University of São Paulo Medical School, São Paulo, BrazilAbstract: Decompressive craniectomy is an established procedure to lower intracranial pressure and can save patients' lives. However, this procedure is associated with delayed cognitive decline and cerebral hemodynamics complications. Studies show the benefits of cranioplasty beyond cosmetic aspects, including brain protection, and functional and cerebrovascular aspects, but a detailed description of the concrete changes following this procedure are lacking. In this paper, the authors report a patient with trephine syndrome who underwent cranioplasty; comprehensive cognitive and cerebral hemodynamic evaluations were performed prior to and following the cranioplasty. The discussion was based on a critical literature review.Keywords: cranioplasty, decompressive craniotomy, perfusion CT, traumatic brain injury, cognition, neuropsychological test

  9. Occupational exposure to ionizing radiation from the perspective of nursing professionals in hemodynamics

    OpenAIRE

    Adriana Martins Gallo; Fernanda Aparecida Camargo de Lima; Lúcia Margarete dos Reis; Edivaldo Cremer

    2013-01-01

    In order to identify the security measures taken and the control of occupational exposure to ionizing radiation in units of hemodynamic, from the perspective of nursing, this quantitative descriptive study was developed during January and February, 2011. A check-list of binary responses (yes / no) was made based on the legislation and updated literature and it was applied in four hospitals in the northern region of Paraná State. The analysis of the data showed that 29 employees have knowledge...

  10. Some aspects of hemodynamic disorders in patients with severe withdrawal syndrome

    Directory of Open Access Journals (Sweden)

    A. I. Gozhenko

    2017-01-01

    Full Text Available Arterial hypertension - the most common cardiovascular syndrome in many countries of the world. Up to 40-50% of the adult population of economically developed countries has an arterial pressure in excess of 140/90 mm Hg. Art. The author discusses the results of research conducted in 2010 -2012 inthe department of resuscitation and intensive care of theChernivtsiRegionalPsychiatric Hospital. 40 patients were examined: Group 1 - 20 patients diagnosed with withdrawal due to delirium alcohol. The results indicate significant hemodynamic disturbances in patients with withdrawal due to the use of delirium alcohol and patients with threatened delirium during hospitalization.

  11. Evidence for regional nitrogen stress on chlorophyll a in lakes across large landscape and climate gradients

    Science.gov (United States)

    Filstrup, Christopher T.; Wagner, Tyler; Oliver, Samantha K.; Stow, Craig A.; Webster, Katherine E.; Stanley, Emily H.; Downing, John A.

    2018-01-01

    Nitrogen (N) and phosphorus (P) commonly stimulate phytoplankton production in lakes, but recent observations from lakes from an agricultural region suggest that nitrate may have a subsidy‐stress effect on chlorophyll a (Chl a). It is unclear, however, how generalizable this effect might be. Here, we analyzed a large water quality dataset of 2385 lakes spanning 60 regions across 17 states in the Northeastern and Midwestern U.S. to determine if N subsidy‐stress effects on phytoplankton are common and to identify regional landscape characteristics promoting N stress effects in lakes. We used a Bayesian hierarchical modeling framework to test our hypothesis that Chl a–total N (TN) threshold relationships would be common across the central agricultural region of the U.S. (“the Corn Belt”), where lake N and P concentrations are high. Data aggregated across all regions indicated that high TN concentrations had a negative effect on Chl a in lakes with concurrent high total P. This large‐scale pattern was driven by relationships within only a subset of regions, however. Eight regions were identified as having Chl a–TN threshold relationships, but only two of these regions located within the Corn Belt clearly demonstrated this subsidy‐stress relationship. N stress effects were not consistent across other intense agricultural regions, as we hypothesized. These findings suggest that interactions among regional land use and land cover, climate, and hydrogeology may be important in determining the synergistic conditions leading to N subsidy‐stress effects on lake phytoplankton.

  12. Comparison of Hemodynamic Effects and Negative Predictive Value of Normal Adenosine Gated Myocardial Perfusion Scan With or Without Caffeine Abstinence

    International Nuclear Information System (INIS)

    Zaman, Maseeh uz; Fatima, Nosheen; Zaman, Areeba; Zaman, Unaiza; Tahseen, Rabia

    2016-01-01

    For vasodilator stress, myocardial perfusion imaging (MPI) with at least 12-h caffeine abstinence is recommended, as it attenuates cardiovascular hyperemic response of adenosine and dipyridamole. However, many published conflicting results have shown no significant effect upon perfusion abnormalities in MPI performed without caffeine abstinence. The aim of this study was to compare the hemodynamic changes and negative predictive value (NPV) of normal MPIs with adenosine stress performed with or without caffeine abstinence. This was a prospective study that accrued 50 patients from May 2013 till September 2013 and followed till November 2014. These patients had a normal adenosine-gated MPI (GMPI) with technetium-99m methoxy isobutyl isonitrile ( 99m Tc-MIBI) after 12-h caffeine abstinence (no-caffeine). Next day, all patients had a repeat adenosine stress within 60 min after ingestion of a cup of coffee (about 80 mg of caffeine) followed by no MPI in 30 patients due to concern about radiation dose (prior-caffeine adenosine—no MPI; group A). Twenty patients opted for a repeat MPI (prior-caffeine adenosine—MPI; group B). Adenosine-induced hemodynamic response and NPV of the normal MPI with no-caffeine and prior-caffeine protocols were compared. The mean age of the study cohort was 57 ± 9 years with a male-to-female ratio of 76:24% and mean body mass index (BMI) of 26.915 ± 4.121 kg/m 2 . Prevalence of hypertension, diabetes, dyslipidemia, and positive family history were 76%, 20%, 22%, and 17%, respectively. Comparison of group A with group B revealed no significant difference in demographic parameters, hemodynamic or electrocardiography (ECG) parameters, or left ventricular (LV) function parameters during adenosine intervention with prior-caffeine and no-caffeine protocols. During the follow-up, no fatal myocardial infarction (MI) was reported but 6 nonfatal MIs were reported based upon the history of short hospitalization for chest pain but without biochemical

  13. JOB STRESS AMONG SCHOOL TEACHERS OF JAMMU REGION OF JAMMU AND KASHMIR

    OpenAIRE

    Sapana Sharma; Dr. Rajesh Kumar Sharma

    2017-01-01

    Stress is an organism’s total response to environmental demands or pressures. When stress was first studied in 1950’s, the term was used to denote both the causes and the experienced effects of these pressures .Stress may be good or bad. More recently, however, the word stressor has been used for the stimulus that provokes a stress response. The aim of the study was to find out the factor that creates stress among school teachers in Jammu region .The 60 respondents were selected by random s...

  14. Comparison between general anesthesia and spinal anesthesia in attenuation of stress response in laparoscopic cholecystectomy: A randomized prospective trial

    Directory of Open Access Journals (Sweden)

    Writuparna Das

    2015-01-01

    Full Text Available Background: Laparoscopy though minimally invasive produces significant hemodynamic surge and neuroendocrine stress response. Though general anesthesia (GA is the conventional technique, now-a-days, regional anesthesia has been accepted for laparoscopic diagnostic procedures, and its use is also being extended to laparoscopic surgeries. Objective: The aim was to compare the hemodynamic surge and neuroendocrine stress response during laparoscopic cholecystectomy (LC under GA and spinal anesthesia (SA in American Society of Anesthesiologists (ASA PS 1 patients. Materials and Methods: Thirty ASA physical status I patients, aged 18-65 years were randomly allocated into two equal groups of 15 each. Group A received GA with controlled ventilation. Patients were preoxygenated for 5 min with 100/5 oxygen, premedicated with midazolam 0.03 mg/kg intravenous (i.v, fentanyl 2 mcg/kg i.v; induction was done with thiopentone 3-5 mg/kg i.v; intubation was achieved after muscle relaxation with 0.5 mg/kg atracurium besylate i.v. Anesthesia was maintained with 1-2% sevoflurane and N2O:O2 (60:40 and intermittent i.v injection of atracurium besylate. Group B SA with 0.5% hyperbaric bupivacaine and 25 μg fentanyl along with local anesthetic instillation in the subdiaphragmatic space. Mean arterial pressure, heart rate (HR, oxygen saturation, end tidal carbon-dioxide were recorded. Venous blood was collected for cortisol assay before induction and 30 min after pneumoperitoneum. All data were collected in Microsoft excel sheet and statistically analyzed using SPSS software version 16 (SPSS Inc., Chicago, IL, USA. All numerical data were analyzed using Student′s t-test and paired t-test. Any value <0.05 was taken as significant. Results: Mean arterial pressure and mean HR and postpneumoperitoneum cortisol level were lower in group B than group A though the difference was not statistically significant in hemodynamic parameters but significant in case of cortisol

  15. GSK-3α directly regulates β-adrenergic signaling and the response of the heart to hemodynamic stress in mice

    Science.gov (United States)

    Zhou, Jibin; Lal, Hind; Chen, Xiongwen; Shang, Xiying; Song, Jianliang; Li, Yingxin; Kerkela, Risto; Doble, Bradley W.; MacAulay, Katrina; DeCaul, Morgan; Koch, Walter J.; Farber, John; Woodgett, James; Gao, Erhe; Force, Thomas

    2010-01-01

    The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases consists of 2 highly related isoforms, α and β. Although GSK-3β has an important role in cardiac development, much remains unknown about the function of either GSK-3 isoform in the postnatal heart. Herein, we present what we believe to be the first studies defining the role of GSK-3α in the mouse heart using gene targeting. Gsk3a–/– mice over 2 months of age developed progressive cardiomyocyte and cardiac hypertrophy and contractile dysfunction. Following thoracic aortic constriction in young mice, we observed enhanced hypertrophy that rapidly transitioned to ventricular dilatation and contractile dysfunction. Surprisingly, markedly impaired β-adrenergic responsiveness was found at both the organ and cellular level. This phenotype was reproduced by acute treatment of WT cardiomyocytes with a small molecule GSK-3 inhibitor, confirming that the response was not due to a chronic adaptation to LV dysfunction. Thus, GSK-3α appears to be the central regulator of a striking range of essential processes, including acute and direct positive regulation of β-adrenergic responsiveness. In the absence of GSK-3α, the heart cannot respond effectively to hemodynamic stress and rapidly fails. Our findings identify what we believe to be a new paradigm of regulation of β-adrenergic signaling and raise concerns given the rapid expansion of drug development targeting GSK-3. PMID:20516643

  16. Hemodynamics alter arterial low-density lipoprotein metabolism

    International Nuclear Information System (INIS)

    Warty, V.S.; Calvo, W.J.; Berceli, S.A.; Pham, S.M.; Durham, S.J.; Tanksale, S.K.; Klein, E.C.; Herman, I.M.; Borovetz, H.S.

    1989-01-01

    We have investigated the role of hemodynamic factors on low-density lipoprotein transport and metabolism in the intact arterial wall. Freshly excised canine carotid blood vessels were exposed to well-defined pulsatile flow in vitro for continuous periods up to 20 hours. We chose to impose the following hemodynamic conditions on our test carotid arteries: normotension, hypertension (at physiologic flow conditions), and hypertension coupled with elevated flow of canine serum perfusate. In several experiments the effect of endothelial denudation was examined in carotid arteries exposed to normotensive pulsatile flow. A trapped ligand method was used for quantitating low-density lipoprotein uptake and metabolism in the arterial wall. The distribution of both intact and degraded low-density lipoprotein fractions was determined from measurements of radiolabelled low-density lipoprotein activity within thin radial sections of perfused arteries. Our results suggest that both hypertensive hemodynamic simulations exacerbate the uptake of low-density lipoprotein within the arterial wall (by a factor of three to nine). The percentage of low-density lipoprotein that undergoes irreversible degradation falls from 41% under normotensive conditions to below 30% when hypertensive conditions are imposed, indicating that degradative processes are not proportionally elevated with the accelerated influx. A similar pattern is observed for deendothelialized vessels

  17. HEMODYNAMIC EFFECTS OF XENON ANESTHESIA IN CHILDREN

    Directory of Open Access Journals (Sweden)

    M. V. Bykov

    2014-01-01

    Full Text Available The study was aimed at hemodynamic effects of xenon on operative interventions in children. Patients and methods: the study involved 30 5-17-year-old children – 10 (33.3% girls and 20 (66.7% boys with ASA score 1-3 admitted for surgical treatment. The children underwent endotracheal anesthesia with xenon-oxygen mixture (Xe:O2 = 60-65:30% and fentanyl (2.5‑3.5  mcg/kg per hour for the following operations: appendectomy – 10 (33.3% patients, herniotomy – 8 (26.7% patients, Ivanissevich procedure – 6 (20.0% patients, plastic surgery of posttraumatic defects of skin and soft tissues – 4 (13.3% patients, abdominal adhesiotomy – 2 (6.7% patients. Central hemodynamics was studied echocardiographically (Philips HD 11, the Netherlands using the Teichholz technique along the cephalocaudal axis (parasternal access. Results: the anesthesia was notable for hemodynamic stability during the operation: as a result, a statistically significant (p < 0.05 increase in systolic, diastolic and mean arterial pressure by 10, 18 and 17%, respectively, was observed. Conclusion: the analysis demonstrated that xenon anesthesia improves lusitropic myocardial function statistically significantly increasing cardiac output by 12% by way of increasing stroke volume by 30%. 

  18. Evaluation of hemodynamic significance of coronary fistulae. Diagnostic integration between coronary angiography and stress/rest myocardial scintigraphy; Valutazione del significato emodinamico di fistole coronariche artero-venose. Integrazione diagnostica tra angiografia coronarica e scintigrafia miocardica a riposo e sotto sforzo

    Energy Technology Data Exchange (ETDEWEB)

    Rubini, G.; Sebastiani, M. [Bari Univ., Bari (Italy). Cattedra di Medicina Nucleare; Ettorre, G. C. [Foggia Univ., Foggia (Italy). Cattedra di Radiologia; Bovenzi, F. [Ospedale Policlinico, Unita' Operativa di Cardiologia, Bari (Italy)

    2000-12-01

    It is here reported on the importance of the integration of data obtained from digital coronary angiography and stress/rest {sup 99m}Tc sestamibi myocardial perfusion single photon emission tomography in evaluationing the hemodynamic significance of coronary arteriovenous fistulae. Coronary fistulae were detected with coronary angiography in 9 patients. All patients underwent clinical examination, trans thoracic echocardiography, stress electrocardiogram and stress/rest {sup 99m}Tc sestamibi myocardial perfusion single photon emission tomography. Stress/rest {sup 99m}Tc sestamibi myocardial perfusion single photon tomography and stress electrocardiogram showed stress-induced myocardial ischemia in 2 patients. The first patient with familial predisposition and risk factors for ischemic heart disease presented a mesocardic heart murmur on clinical examination. At stress ECG (125 Watt, 153 b/m max frequency 93%, arterial pressure 230 mmHg, max frequency pressure product 35200) ischemic alterations were recorded at the first minute of the second stage of the Bruce protocol. Coronary angiography detected a circumflex artery fistula in the coronary sinus. Stress/rest {sup 99m}Tc sestamibi myocardial perfusion single photon emission tomography for the evaluation of stress/rest perfusion detected a reversible perfusion defect of the proximal portion of the posterolateral and lateral walls, thus confirming the hemodynamic importance of the flow through the fistula during stress cycloergometric testing. In the second patient familial predisposition to ischemic heart disease and previous inferior wall myocardial infarction and non-significant stress ECG, coronary angiography identified a suocclusive stenosis of the right coronary artery and anomaly between the anterior interventricular artery and the left pulmonary artery. The presence of the contrast medium in the left pulmonary artery identified a flow from the left ventricle to the left pulmonary artery. Good angiographic

  19. Transient thermal stresses in multiple connected region exhibiting temperature dependence of material properties

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Maekawa, Toshiya.

    1983-01-01

    The examples of the analysis of thermal stress in multiple connection regions such as heat exchangers, nuclear reactor cores, ingot cases and polygonal region with elliptic holes are not few, but the temperature dependence of material constants was neglected in these researches because of the difficulty of analysis though the industrial problems related to thermal stress are apt to occur in the condition of relatively large temperature gradient. Also, the analysis of heat conduction problems taking the temperature dependence of material constants into account was limited to one-dimensional problems for which Kirchhoff's transmission can be used. The purpose of this study is to derive the equation of condition which assures the one-value property of rotation and displacement, taking the temperature dependence of material constants into account, and to complete the formulation of the plane thermal stress problems in multiple connection regions by stress function method. Also the method of numerical analysis using difference method is shown to examine the effectiveness of various formulated equations and the effect of the temperature dependence of material constants on temperature and thermal stress. The example of numerical calculation on a thin rectangular plate with a rectangular hole is shown. (Kako, I.)

  20. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    Science.gov (United States)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  1. Acute hemodynamic response to vasodilators in primary pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Kulkarni H

    1996-01-01

    Full Text Available Acute hemodynamic effects of high flow oxygen (O2 inhalation, sublingual isosorbide dinitrate (ISDN, intravenous aminophylline (AMN and sublingual nifedipine (NIF were studied in 32 patients with primary pulmonary hypertension (PPH. In 30 out of 32 patients the basal ratio of pulmonary to systemic vascular resistance (Rp/Rs was > 0.5 (mean = 0.77 +/- 0.20. Oxygen caused significant decrease in the mean resistance ratio to 0.68 +/- 0.20 (p = 0.005. ISDN, AMN and NIF caused increase in the resistance ratio to 0.79 +/- 0.26; 0.78 +/- 0.26; and 0.80 +/- 0.23 respectively. O2, ISDN, AMN and NIF caused a fall of Rp/Rs in 21 (65.6%, 10 (31.2%, 10(31.2% and 9(28.1% patients respectively. Thus, of the four drugs tested high flow O2 inhalation resulted in fall of Rp/Rs in two thirds of patients whereas ISDN, AMN and NIF caused a mean rise in Rp/Rs. One third of patients did respond acutely to the latter three drugs. Acute hemodynamic studies are useful before prescribing vasodilators in patients with PPH since more of the commonly used drugs like ISDN, AMN, NIF could have detrimental hemodynamic responses in some patients. However, great caution should be exercised before performing hemodynamic study as the procedure has definite mortality and morbidity.

  2. Quantitative comparison of hemodynamics in simulated and 3D angiography models of cerebral aneurysms by use of computational fluid dynamics.

    Science.gov (United States)

    Saho, Tatsunori; Onishi, Hideo

    2015-07-01

    In this study, we evaluated hemodynamics using simulated models and determined how cerebral aneurysms develop in simulated and patient-specific models based on medical images. Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM software. Flow velocity, stream line, and wall shear stress (WSS) were evaluated in a simulated model aneurysm with known geometry and in a three-dimensional angiographic model. The ratio of WSS at the aneurysm compared with that at the basilar artery was 1:10 in simulated model aneurysms with a diameter of 10 mm and 1:18 in the angiographic model, indicating similar tendencies. Vortex flow occurred in both model aneurysms, and the WSS decreased in larger model aneurysms. The angiographic model provided accurate CFD information, and the tendencies of simulated and angiographic models were similar. These findings indicate that hemodynamic effects are involved in the development of aneurysms.

  3. Preliminary analysis on the tectonic stress level in the source region of Tangshan earthquake

    Science.gov (United States)

    Jian-Tao, Zhao; Cui, Xiao-Feng; Xie, Fu-Ren

    2002-05-01

    The abundant data of focal mechanism solutions in Tangshan region, China, are inverted for the tectonic stress field. Combined with tectonophysical consideration, the magnitude of the three principal stresses, as well as their vertical variation under the average crustal rock property, in the source region of the 1976 Tangshan earthquake is estimated. The relationship between crustal stress and friction μ c, pore pressure P 0 and stress shape factor Φ is studied. The paper draws the conclusion that the vertical increasing rate of the maximum principal stress σ is directly proportional to friction, and inversely to pore pressure P 0 and stress shape factor Φ; while the vertical increasing rate of the minimum principal tress σ is directly proportional to pore pressure P 0, inversely to friction μ c and stress shape factor Φ. This study is a try to invert the data of focal mechanism solutions for the complete stress tensor.

  4. Reliability of oscillometric central hemodynamic responses to an orthostatic challenge

    OpenAIRE

    Stoner, Lee; Bonner, Chantel; Credeur, Daniel; Lambrick, Danielle; Faulkner, James; Wadsworth, Daniel; Williams, Michelle A.

    2015-01-01

    BackgroundMonitoring central hemodynamic responses to an orthostatic challenge may provide important insight into autonomic nervous system function. Oscillometric pulse wave analysis devices have recently emerged, presenting clinically viable options for investigating central hemodynamic properties. The purpose of the current study was to determine whether oscillometric pulse wave analysis can be used to reliably (between-day) assess central blood pressure and central pressure augmentation (a...

  5. ECG Markers of Hemodynamic Improvement in Patients with Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Marcin Waligóra

    2018-01-01

    Full Text Available Introduction. Several diagnostic tests have been recommended for risk assessment in pulmonary hypertension (PH, but the role of electrocardiography (ECG in monitoring of PH patients has not been yet established. Therefore the aim of the study was to evaluate which ECG patterns characteristic for pulmonary hypertension can predict hemodynamic improvement in patients treated with targeted therapies. Methods. Consecutive patients with pulmonary arterial hypertension (PAH or chronic thromboembolic pulmonary hypertension (CTEPH were eligible to be included if they had had performed two consecutive right heart catheterization (RHC procedures before and after starting of targeted therapies. Patients were followed up from June 2009 to July 2017. ECG patterns of right ventricular hypertrophy according to American College of Cardiology Foundation were assessed. Results. We enrolled 80 patients with PAH and 11 patients with inoperable CTEPH. The follow-up RHC was performed within 12.6±10.0 months after starting therapy. Based on median change of pulmonary vascular resistance, we divided our patients into two subgroups: with and without significant hemodynamic improvement. RV1, max⁡RV1,2 + max⁡SI,aVL-SV1, and PII improved along with the improvement of hemodynamic parameters including PVR. They predicted hemodynamic improvement with similarly good accuracy as shown in ROC analysis: RV1 (AUC: 0.75; 95% CI: 0.63–0.84, PII (AUC: 0.67, 95% CI: 0.56–0.77, and max⁡RV1,2+max⁡SI,aVL-SV1 (0.73; 95% CI: 0.63–0.82. In Cox regression only change in RV1 remained significant mortality predictor (HR: 1.12, 95% CI: 1.01–1.24. Conclusion. Electrocardiogram may be useful in predicting hemodynamic effects of targeted therapy in precapillary pulmonary hypertension. Decrease of RV1, max⁡RV1,2+max⁡SI,aVL-SV1, and PII corresponds with hemodynamic improvement after treatment. Of these changes a decrease of R wave amplitude in V1 is associated with better

  6. A fundamental study of dynamic CT for hemodynamics in experimental hepatic tumors

    International Nuclear Information System (INIS)

    Yamakawa, Fumiko

    1991-01-01

    Dynamic CT was performed using iodamide meglumine (2 ml/kg) to investigate hemodynamics in experimental hepatic tumors, tumor margins and in normal hepatic tissue as well in rabbits with VX 2 -induced hepatic tumors. Peak time (PT) and first moment (M1) were calculated from a time density curve prepared by eight consecutive 3-second scans over a period of 55 seconds. PT and M1 in tumors were significantly shorter than those in tumor margins and normal tissue, but were not influenced by tumor size. PT and M1 in tumor margins and normal tissue became longer with enlargement of the tumor. Ligation of the hepatic artery caused (1) no change in PT or M1 in normal tissue and tumor margins and (2) difficulty in measuring PT and M1 in tumors. Ligation of the portal vein caused (1) difficulty in measuring PT and M1 in normal tissue and tumor margins and (2) no change in PT or M1 in tumors. Pathological studies of specimens taken from each region of interest (ROI) showed that hemodynamics in the tumors reflected tumor-specific vascular structures. (author)

  7. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry.

    Science.gov (United States)

    Saikrishnan, Neelakantan; Yap, Choon-Hwai; Milligan, Nicole C; Vasilyev, Nikolay V; Yoganathan, Ajit P

    2012-08-01

    The congenital bicuspid aortic valve (BAV) is associated with increased leaflet calcification, ascending aortic dilatation, aortic stenosis (AS) and regurgitation (AR). Although underlying genetic factors have been primarily implicated for these complications, the altered mechanical environment of BAVs could potentially accelerate these pathologies. The objective of the current study is to characterize BAV hemodynamics in an in vitro system. Two BAV models of varying stenosis and jet eccentricity and a trileaflet AV (TAV) were constructed from excised porcine AVs. Particle Image Velocimetry (PIV) experiments were conducted at physiological flow and pressure conditions to characterize fluid velocity fields in the aorta and sinus regions, and ensemble averaged Reynolds shear stress and 2D turbulent kinetic energy were calculated for all models. The dynamics of the BAV and TAV models matched the characteristics of these valves which are observed clinically. The eccentric and stenotic BAV showed the strongest systolic jet (V = 4.2 m/s), which impinged on the aortic wall on the non-fused leaflet side, causing a strong vortex in the non-fused leaflet sinus. The magnitudes of TKE and Reynolds stresses in both BAV models were almost twice as large as comparable values for TAV, and these maximum values were primarily concentrated around the central jet through the valve orifice. The in vitro model described here enables detailed characterization of BAV flow characteristics, which is currently challenging in clinical practice. This model can prove to be useful in studying the effects of altered BAV geometry on fluid dynamics in the valve and ascending aorta. These altered flows can be potentially linked to increased calcific responses from the valve endothelium in stenotic and eccentric BAVs, independent of concomitant genetic factors.

  8. Optimal hemodynamic response model for functional near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Muhammad Ahmad Kamran

    2015-06-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF is modeled by using two Gamma functions with six unknown parameters. The HRF model is supposed to be linear combination of HRF, baseline and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown. An objective function is developed as a square of the residuals with constraints on twelve free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using ten real and fifteen simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis, i.e., (t-value >tcritical and p-value < 0.05.

  9. Optimal hemodynamic response model for functional near-infrared spectroscopy.

    Science.gov (United States)

    Kamran, Muhammad A; Jeong, Myung Yung; Mannan, Malik M N

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > t critical and p-value < 0.05).

  10. Numerical modeling of regional stress distributions for geothermal exploration

    Science.gov (United States)

    Guillon, Theophile; Peter-Borie, Mariane; Gentier, Sylvie; Blaisonneau, Arnold

    2017-04-01

    Any high-enthalpy unconventional geothermal projectcan be jeopardized by the uncertainty on the presence of the geothermal resource at depth. Indeed, for the majority of such projects the geothermal resource is deeply seated and, with the drilling costs increasing accordingly, must be located as precisely as possible to increase the chance of their economic viability. In order to reduce the "geological risk", i.e., the chance to poorly locate the geothermal resource, a maximum amount of information must be gathered prior to any drilling of exploration and/or operational well. Cross-interpretation from multiple disciplines (e.g., geophysics, hydrology, geomechanics …) should improve locating the geothermal resource and so the position of exploration wells ; this is the objective of the European project IMAGE (grant agreement No. 608553), under which the work presented here was carried out. As far as geomechanics is concerned, in situ stresses can have a great impact on the presence of a geothermal resource since they condition both the regime within the rock mass, and the state of the major fault zones (and hence, the possible flow paths). In this work, we propose a geomechanical model to assess the stress distribution at the regional scale (characteristic length of 100 kilometers). Since they have a substantial impact on the stress distributions and on the possible creation of regional flow paths, the major fault zones are explicitly taken into account. The Distinct Element Method is used, where the medium is modeled as fully deformable blocks representing the rock mass interacting through mechanically active joints depicting the fault zones. The first step of the study is to build the model geometry based on geological and geophysical evidences. Geophysical and structural geology results help positioning the major fault zones in the first place. Then, outcrop observations, structural models and site-specific geological knowledge give information on the fault

  11. CFD and PIV analysis of hemodynamics in a growing intracranial aneurysm.

    Science.gov (United States)

    Raschi, Marcelo; Mut, Fernando; Byrne, Greg; Putman, Christopher M; Tateshima, Satoshi; Viñuela, Fernando; Tanoue, Tetsuya; Tanishita, Kazuo; Cebral, Juan R

    2012-02-01

    Hemodynamics is thought to be a fundamental factor in the formation, progression, and rupture of cerebral aneurysms. Understanding these mechanisms is important to improve their rupture risk assessment and treatment. In this study, we analyze the blood flow field in a growing cerebral aneurysm using experimental particle image velocimetry (PIV) and computational fluid dynamics (CFD) techniques. Patient-specific models were constructed from longitudinal 3D computed tomography angiography images acquired at 1-y intervals. Physical silicone models were constructed from the computed tomography angiography images using rapid prototyping techniques, and pulsatile flow fields were measured with PIV. Corresponding CFD models were created and run under matching flow conditions. Both flow fields were aligned, interpolated, and compared qualitatively by inspection and quantitatively by defining similarity measures between the PIV and CFD vector fields. Results showed that both flow fields were in good agreement. Specifically, both techniques provided consistent representations of the main intra-aneurysmal flow structures and their change during the geometric evolution of the aneurysm. Despite differences observed mainly in the near wall region, and the inherent limitations of each technique, the information derived is consistent and can be used to study the role of hemodynamics in the natural history of intracranial aneurysms.

  12. Ocular hemodynamics and glaucoma: the role of mathematical modeling.

    Science.gov (United States)

    Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A

    2013-01-01

    To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.

  13. Does lower limb exercise worsen renal artery hemodynamics in patients with abdominal aortic aneurysm?

    Directory of Open Access Journals (Sweden)

    Anqiang Sun

    Full Text Available Renal artery stenosis (RAS and renal complications emerge in some patients after endovascular aneurysm repair (EVAR to treat abdominal aorta aneurysm (AAA. The mechanisms for the causes of these problems are not clear. We hypothesized that for EVAR patients, lower limb exercise could negatively influence the physiology of the renal artery and the renal function, by decreasing the blood flow velocity and changing the hemodynamics in the renal arteries. To evaluate this hypothesis, pre- and post-operative models of the abdominal aorta were reconstructed based on CT images. The hemodynamic environment was numerically simulated under rest and lower limb exercise conditions. The results revealed that in the renal arteries, lower limb exercise decreased the wall shear stress (WSS, increased the oscillatory shear index (OSI and increased the relative residence time (RRT. EVAR further enhanced these effects. Because these parameters are related to artery stenosis and atherosclerosis, this preliminary study concluded that lower limb exercise may increase the potential risk of inducing renal artery stenosis and renal complications for AAA patients. This finding could help elucidate the mechanism of renal artery stenosis and renal complications after EVAR and warn us to reconsider the management and nursing care of AAA patients.

  14. Computational medical imaging and hemodynamics framework for functional analysis and assessment of cardiovascular structures.

    Science.gov (United States)

    Wong, Kelvin K L; Wang, Defeng; Ko, Jacky K L; Mazumdar, Jagannath; Le, Thu-Thao; Ghista, Dhanjoo

    2017-03-21

    Cardiac dysfunction constitutes common cardiovascular health issues in the society, and has been an investigation topic of strong focus by researchers in the medical imaging community. Diagnostic modalities based on echocardiography, magnetic resonance imaging, chest radiography and computed tomography are common techniques that provide cardiovascular structural information to diagnose heart defects. However, functional information of cardiovascular flow, which can in fact be used to support the diagnosis of many cardiovascular diseases with a myriad of hemodynamics performance indicators, remains unexplored to its full potential. Some of these indicators constitute important cardiac functional parameters affecting the cardiovascular abnormalities. With the advancement of computer technology that facilitates high speed computational fluid dynamics, the realization of a support diagnostic platform of hemodynamics quantification and analysis can be achieved. This article reviews the state-of-the-art medical imaging and high fidelity multi-physics computational analyses that together enable reconstruction of cardiovascular structures and hemodynamic flow patterns within them, such as of the left ventricle (LV) and carotid bifurcations. The combined medical imaging and hemodynamic analysis enables us to study the mechanisms of cardiovascular disease-causing dysfunctions, such as how (1) cardiomyopathy causes left ventricular remodeling and loss of contractility leading to heart failure, and (2) modeling of LV construction and simulation of intra-LV hemodynamics can enable us to determine the optimum procedure of surgical ventriculation to restore its contractility and health This combined medical imaging and hemodynamics framework can potentially extend medical knowledge of cardiovascular defects and associated hemodynamic behavior and their surgical restoration, by means of an integrated medical image diagnostics and hemodynamic performance analysis framework.

  15. Comparison of the hemodynamic effects of etomidate between hypertensive and normotensive patients

    Directory of Open Access Journals (Sweden)

    Hayrettin Daşkaya

    2014-06-01

    Full Text Available Objective: Comparison of the hemodynamic effect of ethomidate induction in normotensive and hypertensive patients. Methods: Forty ASA 1-2 patients were included. After informed consent were obtained, patients were divided into two group; Group H: Hypertensive patients, Group N: Normotensive patients. Fentanile and midazolam were administrated for premedication. Anesthesia induction was performed by etomidate 0.3 mg/kg and rocuronium 0.6 mg/kg. Arterial pressures and heart rates were measured at certain intervals: control, pre-intubation and 1, 3 and 5 min post-intubation. Myoclonic movements and hemodynamic parameters were noted by an anesthetist who was masked to the groups. Results: Hemodynamic parameters were higher in hypertensive patients but were in clinically tolerable limits. Conclusion: No hemodynamic instability was observed in anesthesia induction with ethomidate in neither hypertensive nor normotensive patients. J Clin Exp Invest 2014; 5 (2: 164-168

  16. Hemodynamic and electrophysiological signals of conflict processing in the Chinese-character Stroop task: a simultaneous near-infrared spectroscopy and event-related potential study.

    Science.gov (United States)

    Zhai, Jiahuan; Li, Ting; Zhang, Zhongxing; Gong, Hui

    2009-01-01

    A dual-modality method combining continuous-wave near-infrared spectroscopy (NIRS) and event-related potentials (ERPs) was developed for the Chinese-character color-word Stroop task, which included congruent, incongruent, and neutral stimuli. Sixteen native Chinese speakers participated in this study. Hemodynamic and electrophysiological signals in the prefrontal cortex (PFC) were monitored simultaneously by NIRS and ERP. The hemodynamic signals were represented by relative changes in oxy-, deoxy-, and total hemoglobin concentration, whereas the electrophysiological signals were characterized by the parameters P450, N500, and P600. Both types of signals measured at four regions of the PFC were analyzed and compared spatially and temporally among the three different stimuli. We found that P600 signals correlated significantly with the hemodynamic parameters, suggesting that the PFC executes conflict-solving function. Additionally, we observed that the change in deoxy-Hb concentration showed higher sensitivity in response to the Stroop task than other hemodynamic signals. Correlation between NIRS and ERP signals revealed that the vascular response reflects the cumulative effect of neural activities. Taken together, our findings demonstrate that this new dual-modality method is a useful approach to obtaining more information during cognitive and physiological studies.

  17. Hemodynamic monitoring in the critically ill.

    Science.gov (United States)

    Voga, G

    1995-06-01

    Monitoring of vital functions is one of the most important and essential tools in the management of critically ill patients in the ICU. Today it is possible to detect and analyze a great variety of physiological signals by various noninvasive and invasive techniques. An intensivist should be able to select and perform the most appropriate monitoring method for the individual patient considering risk-benefit ratio of the particular monitoring technique and the need for immediate therapy, specific diagnosis, continuous monitoring and evaluation of morphology should be included. Despite rapid development of noninvasive monitoring techniques, invasive hemodynamic monitoring in still one of the most basic ICU procedures. It enables monitoring of pressures, flow and saturation, pressures in the systemic and pulmonary circulation, estimation of cardiac performance and judgment of the adequacy of the cardiocirculatory system. Carefully and correctly obtained information are basis for proper hemodynamic assessment which usually effects the therapeutic decisions.

  18. Advanced stress analysis of PWR containments in the region of nozzles

    International Nuclear Information System (INIS)

    Schauer, G.

    1977-01-01

    As an example of the stress analysis of a nozzle in a PWR steel containment, an advanced stress analysis of a personnel lock is presented. Contrary to the calculations by means of numerical shell programs usual till now, this advanced stress analysis was executed with the finite-element-method. Because of their theory, the shell programs compute mathematically exact results, but at the intersection of two shells the notch stresses cannot be analyzed well. A further disadvantage must be seen in the fact that there is a great distance between the real critical region near the intersection line and the calculation point, which lies on the neutral axis of the shell

  19. Relationship between systemic hemodynamics and ambulatory blood pressure level are sex dependent.

    Science.gov (United States)

    Alfie, J; Waisman, G D; Galarza, C R; Magi, M I; Vasvari, F; Mayorga, L M; Cámera, M I

    1995-12-01

    Sex-related differences in systemic hemodynamics were analyzed by means of cardiac index and systemic vascular resistance according to the level of daytime ambulatory blood pressure. In addition, we assessed the relations between ambulatory blood pressure measurements and systemic hemodynamics in male and female patients. We prospectively included 52 women and 53 men referred to our unit for evaluation of arterial hypertension. Women and men were grouped according to the level of daytime mean arterial pressure: or = 110 mm Hg. Patients underwent noninvasive evaluation of resting hemodynamics (impedance cardiography) and 24-hour ambulatory blood pressure monitoring. Compared with women men with lower daytime blood pressure had a 12% higher systemic vascular resistance index (P = NS) and a 14% lower cardiac index (P < .02), whereas men with higher daytime blood pressure had a 25% higher vascular resistance (P < .003) and a 21% lower cardiac index (P < .0004). Furthermore, in men systemic vascular resistance correlated positively with both daytime and nighttime systolic and diastolic blood pressures, whereas cardiac index correlated negatively only with daytime diastolic blood pressure. In contrast, women did not exhibit any significant correlation between hemodynamic parameters and ambulatory blood pressure measurements. In conclusion, sex-related differences in systemic hemodynamics were more pronounced in the group with higher daytime hypertension. The relations between systemic hemodynamics and ambulatory blood pressure level depended on the sex of the patient. In men a progressive circulatory impairment underlies the increasing level of ambulatory blood pressure, but this was not observed in women.

  20. A new sensor for stress measurement based on blood flow fluctuations

    Science.gov (United States)

    Fine, I.; Kaminsky, A. V.; Shenkman, L.

    2016-03-01

    It is widely recognized that effective stress management could have a dramatic impact on health care and preventive medicine. In order to meet this need, efficient and seamless sensing and analytic tools for the non-invasive stress monitoring during daily life are required. The existing sensors still do not meet the needs in terms of specificity and robustness. We utilized a miniaturized dynamic light scattering sensor (mDLS) which is specially adjusted to measure skin blood flow fluctuations and provides multi- parametric capabilities. Based on the measured dynamic light scattering signal from the red blood cells flowing in skin, a new concept of hemodynamic indexes (HI) and oscillatory hemodynamic indexes (OHI) have been developed. This approach was utilized for stress level assessment for a few usecase scenario. The new stress index was generated through the HI and OHI parameters. In order to validate this new non-invasive stress index, a group of 19 healthy volunteers was studied by measuring the mDLS sensor located on the wrist. Mental stress was induced by using the cognitive dissonance test of Stroop. We found that OHIs indexes have high sensitivity to the mental stress response for most of the tested subjects. In addition, we examined the capability of using this new stress index for the individual monitoring of the diurnal stress level. We found that the new stress index exhibits similar trends as reported for to the well-known diurnal behavior of cortisol levels. Finally, we demonstrated that this new marker provides good sensitivity and specificity to the stress response to sound and musical emotional arousal.

  1. Methylene Blue Is Effective to Reverse Refractory Hemodynamic Instability due to Dimethoate Poisoning

    Directory of Open Access Journals (Sweden)

    Nick Youssefi

    2015-09-01

    Conclusion:MB treatment was effective to reverse hypotension and restore hemodynamic instability caused by dimethoate poisoning. This index case may pave way to further investigation of MB therapy for OP-induced hemodynamic instabilities.

  2. Effects of Psychosocial Stress on Subsequent Hemorrhagic Shock and Resuscitation in Male Mice.

    Science.gov (United States)

    Langgartner, Dominik; Wachter, Ulrich; Hartmann, Clair; Gröger, Michael; Vogt, Josef; Merz, Tamara; McCook, Oscar; Fink, Marina; Kress, Sandra; Georgieff, Michael; Kunze, Julia F; Radermacher, Peter L; Reber, Stefan O; Wepler, Martin

    2018-06-08

    Hypoxemia and tissue ischemia during hemorrhage as well as formation of oxygen and nitrogen radicals during resuscitation promote hyperinflammation and, consequently, trigger severe multiple-organ-failure (MOF). Individuals diagnosed with stress-related disorders or reporting a life history of psychosocial stress are characterized by chronic low-grade inflammation and a reduced glucocorticoid (GC) signaling. We hypothesized that exposure to chronic psychosocial stress during adulthood prior to hemorrhagic shock increases oxidative/nitrosative stress and therefore the risk of developing MOF in mice. To induce chronic psychosocial stress linked to mild immune activation and reduced GC signaling in male mice, the chronic subordinate colony housing (CSC) paradigm was employed. Single-housed (SHC) mice were used as controls. Subsequently, CSC and SHC mice were exposed to hemorrhagic shock following resuscitation to investigate the effects of prior psychosocial stress load on survival, organ function, metabolism, oxidative/nitrosative stress, and inflammatory readouts. An increased adrenal weight in CSC mice indicates that the stress paradigm reliably worked. However, no effect of prior psychosocial stress on outcome after subsequent hemorrhage and resuscitation could be detected. Chronic psychosocial stress during adulthood is not sufficient to promote hemodynamic complications, organ dysfunction, metabolic disturbances and did not increase the risk of MOF after subsequent hemorrhage and resuscitation. Intravenous norepinephrine to keep target hemodynamics might have led to a certain level of oxidative stress in both groups and, therefore, disguised potential effects of chronic psychosocial stress on organ function after hemorrhagic shock in the present murine trauma model.

  3. Reliability of oscillometric central hemodynamic responses to an orthostatic challenge.

    Science.gov (United States)

    Stoner, Lee; Bonner, Chantel; Credeur, Daniel; Lambrick, Danielle; Faulkner, James; Wadsworth, Daniel; Williams, Michelle A

    2015-08-01

    Monitoring central hemodynamic responses to an orthostatic challenge may provide important insight into autonomic nervous system function. Oscillometric pulse wave analysis devices have recently emerged, presenting clinically viable options for investigating central hemodynamic properties. The purpose of the current study was to determine whether oscillometric pulse wave analysis can be used to reliably (between-day) assess central blood pressure and central pressure augmentation (augmentation index) responses to a 5 min orthostatic challenge (modified tilt-table). Twenty healthy adults (26.4 y (SD 5.2), 55% F, 24.7 kg/m(2) (SD 3.8)) were tested on 3 different mornings in the fasted state, separated by a maximum of 7 days. Central hemodynamic variables were assessed on the left arm using an oscillometric device. Repeated measures analysis of variance indicated a significant main effect of the modified tilt-table for all central hemodynamic variables (P response to the tilt, central diastolic pressure increased by 4.5 mmHg (CI: 2.6, 6.4), central systolic blood pressure increased by 2.3 (CI: 4.4, 0.16) mmHg, and augmentation index decreased by an absolute - 5.3%, (CI: -2.7, -7.9%). The intra-class correlation coefficient values for central diastolic pressure (0.83-0.86), central systolic blood pressure (0.80-0.87) and AIx (0.79-0.82) were above the 0.75 criterion in both the supine and tilted positions, indicating excellent between-day reliability. Central hemodynamic responses to an orthostatic challenge can be assessed with acceptable between-day reliability using oscillometric pulse wave analysis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Relationship Between Serum Uric Acid Levels and Intrarenal Hemodynamic Parameters

    Directory of Open Access Journals (Sweden)

    Hideki Uedono

    2015-06-01

    Full Text Available Background/Aims: Hyperuricemia has been reported to affect renal hemodynamics in rat models. We evaluate the relationship between serum uric acid and intrarenal hemodynamic parameters in humans, utilizing the plasma clearance of para-aminohippurate (CPAH and inulin (Cin. Methods: Renal and glomerular hemodynamics were assessed by simultaneous measurement of CPAH and Cin in 58 subjects. Of these, 19 subjects were planned to provide a kidney for transplantation; 26 had diabetes without proteinuria; and 13 had mild proteinuria. Renal and glomerular hemodynamics were calculated using Gomez`s formulae. Results: Cin was more than 60 ml/min/1.73m2 in all subjects. Serum uric acid levels correlated significantly with vascular resistance at the afferent arteriole (Ra (r = 0.354, p = 0.006 but not with that of the efferent arteriole (Re. Serum uric acid levels (β = 0.581, p = a after adjustment for several confounders (R2 = 0.518, p = Conclusions: These findings suggest, for the first time in humans, that higher serum uric acid levels are associated significantly with Ra in subjects with Cin > 60 ml/min/1.73m2. The increase in Ra in subjects with higher uric acid levels may be related to dysfunction of glomerular perfusion.

  5. Novel use of a noninvasive hemodynamic monitor in a personalized, active learning simulation.

    Science.gov (United States)

    Zoller, Jonathan K; He, Jianghua; Ballew, Angela T; Orr, Walter N; Flynn, Brigid C

    2017-06-01

    The present study furthered the concept of simulation-based medical education by applying a personalized active learning component. We tested this novel approach utilizing a noninvasive hemodynamic monitor with the capability to measure and display in real time numerous hemodynamic parameters in the exercising participant. Changes in medical knowledge concerning physiology were examined with a pre-and posttest. Simply by observation of one's own hemodynamic variables, the understanding of complex physiological concepts was significantly enhanced. Copyright © 2017 the American Physiological Society.

  6. A theoretical analysis of hemodynamic and biomechanical alterations in intracranial AVMs after radiosurgery

    International Nuclear Information System (INIS)

    Lo, E.H.

    1993-01-01

    Stereotactic radiosurgery is being increasingly used to treat intracranial arteriovenous malformations (AVMs). However, successful radiosurgery may involve latent periods of 1-2 years prior to AVM obliteration. This latent period include states of altered flow patterns that may not influence hemorrhage probabilities. The probability of hemorrhage is likely to be related to the degree of biomechanical stress across the AVM shunt walls. This paper describes a theoretical analysis of the altered hemodynamics and biomechanical stresses within AVM shunts post-radiosurgery. The mathematical model is comprised of linked flow compartments that represent the AVM and adjacent normal vasculature. As obliteration of the irradiated shunts occurs, changes in flow rates and pressure gradients are calculated based on first order fluid dynamics. Stress on the AVM shunt walls is calculated based on tangential forces due to intramural pressure. Two basic models are presented: a distribution of shunts with fixed thin walls subject to step-function obliteration, and a distribution of shunts subject to luminal obliteration from slowly thickening walls. Variations on these models are analyzed, including sequential, selective and random shunt obliteration, and uniform or Poisson distributions of shunt radii. Model I reveals that the range of pressure alterations in the radiosurgically-treated AVM include the possibility of transient increases in the total biomechanical stress within the shunt walls prior to obliteration. Model II demonstrates that uniform luminal narrowing via thickened walls should lead to reduced transmural stresses. The precise temporal pattern of AVM flow decrease and biomechanical stress reduction depends on the selection of shunts that are obliterated. 34 refs., 5 figs., 1 tab

  7. Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia

    Science.gov (United States)

    Nidumolu, Uday; Crimp, Steven; Gobbett, David; Laing, Alison; Howden, Mark; Little, Stephen

    2014-08-01

    The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia's total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12-15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31-42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.

  8. Invasive and noninvasive hemodynamic monitoring of patients with cerebrovascular accidents.

    Science.gov (United States)

    Velmahos, G C; Wo, C C; Demetriades, D; Bishop, M H; Shoemaker, W C

    1998-01-01

    Seventeen patients with hemodynamic instability from acute cerebrovascular accidents were evaluated shortly after arrival at the emergency department of a university-run county hospital with both invasive Swan-Ganz pulmonary artery catheter placement and a new, noninvasive, thoracic electrical bioimpedance device. Values were recorded and temporal patterns of survivors and nonsurvivors were described. Cardiac indices obtained simultaneously by the 2 techniques were compared. Of the 17 patients, 11 (65%) died. Survivors had higher values than nonsurvivors for mean arterial pressure, cardiac index, and oxygen saturation, delivery, and consumption at comparable times. Cardiac index values, as measured by invasive and noninvasive methods, were correlated. We concluded that hemodynamic monitoring in an acute care setting may recognize temporal circulatory patterns associated with outcome. Noninvasive electrical bioimpedance technology offers a new method for early hemodynamic evaluation. Further research in this area is warranted. PMID:9682626

  9. Do mesoscale faults in a young fold belt indicate regional or local stress?

    Science.gov (United States)

    Kokado, Akihiro; Yamaji, Atsushi; Sato, Katsushi

    2017-04-01

    The result of paleostress analyses of mesoscale faults is usually thought of as evidence of a regional stress. On the other hand, the recent advancement of the trishear modeling has enabled us to predict the deformation field around fault-propagation folds without the difficulty of assuming paleo mechanical properties of rocks and sediments. We combined the analysis of observed mesoscale faults and the trishear modeling to understand the significance of regional and local stresses for the formation of mesoscale faults. To this end, we conducted the 2D trishear inverse modeling with a curved thrust fault to predict the subsurface structure and strain field of an anticline, which has a more or less horizontal axis and shows a map-scale plane strain perpendicular to the axis, in the active fold belt of Niigata region, central Japan. The anticline is thought to have been formed by fault-propagation folding under WNW-ESE regional compression. Based on the attitudes of strata and the positions of key tephra beds in Lower Pleistocene soft sediments cropping out at the surface, we obtained (1) a fault-propagation fold with the fault tip at a depth of ca. 4 km as the optimal subsurface structure, and (2) the temporal variation of deformation field during the folding. We assumed that mesoscale faults were activated along the direction of maximum shear strain on the faults to test whether the fault-slip data collected at the surface were consistent with the deformation in some stage(s) of folding. The Wallace-Bott hypothesis was used to estimate the consistence of faults with the regional stress. As a result, the folding and the regional stress explained 27 and 33 of 45 observed faults, respectively, with the 11 faults being consistent with the both. Both the folding and regional one were inconsistent with the remaining 17 faults, which could be explained by transfer faulting and/or the gravitational spreading of the growing anticline. The lesson we learnt from this work was

  10. Hemodynamically significant stenosis of the internal carotid artery treated with endarterectomy. Case report

    DEFF Research Database (Denmark)

    Vorstrup, S; Engell, Hans; Lindewald, H

    1984-01-01

    symptoms. Diamox (acetazolamide, 1 gm) increased CBF by 24% in the unaffected hemisphere, whereas even a slight decrease in flow ("steal") was seen in the maximally affected region. In contrast, theophylline (220 mg) reduced CBF in the unaffected hemisphere and caused a slight increase in the previously...... maximally hypoperfused area ("inverse steal"). After surgery, the flow pattern practically normalized and the TIA's disappeared. The CBF measurements before surgery and also after the injection of the vasoactive drugs indicated that focal hemodynamic insufficiency elicited the TIA's, and pointed at a low...

  11. Investigation of cerebral hemodynamic changes during repeated sit-stand maneuver using functional near-infrared spectroscopy

    Science.gov (United States)

    Niu, Haijing; Li, Lin; Bhave, Gauri S.; Lin, Zi-jing; Tian, Fenghua; Khosrow, Behbehani; Zhang, Rong; Liu, Hanli

    2011-03-01

    The goal for this study is to examine cerebral autoregulation in response to a repeated sit-stand maneuver using both diffuse functional Near Infrared spectroscopy (fNIRS) and Transcranial Doppler sonography (TCD). While fNIRS can provide transient changes in hemodynamic response to such a physical action, TCD is a noninvasive transcranial method to detect the flow velocities in the basal or middle cerebral arteries (MCA). The initial phase of this study was to measure fNIRS signals from the forehead of subjects during the repeated sit-stand protocol and to understand the corresponding meaning of the detected signals. Also, we acquired preliminary data from simultaneous measurements of fNIRS and TCD during the sit-stand protocol so as to explore the technical difficulty of such an approach. Specifically, ten healthy adult subjects were enrolled to perform the planned protocol, and the fNIRS array probes with 4 sources and 10 detectors were placed on the subject's forehead to detect hemodynamic signal changes from the prefrontal cortex. The fNIRS results show that the oscillations of hemoglobin concentration were spatially global and temporally dynamic across the entire region of subject's forehead. The oscillation patterns in both hemoglobin concentrations and blood flow velocity seemed to follow one another; changes in oxy-hemoglobin concentration were much larger than those in deoxyhemoglobin concentration. These preliminary findings provide us with evidence that fNIRS is an appropriate means readily for studying cerebral hemodynamics and autoregulation during sit-stand maneuvers.

  12. Hemodynamic modelling of BOLD fMRI - A machine learning approach

    DEFF Research Database (Denmark)

    Jacobsen, Danjal Jakup

    2007-01-01

    This Ph.D. thesis concerns the application of machine learning methods to hemodynamic models for BOLD fMRI data. Several such models have been proposed by different researchers, and they have in common a basis in physiological knowledge of the hemodynamic processes involved in the generation...... of the BOLD signal. The BOLD signal is modelled as a non-linear function of underlying, hidden (non-measurable) hemodynamic state variables. The focus of this thesis work has been to develop methods for learning the parameters of such models, both in their traditional formulation, and in a state space...... formulation. In the latter, noise enters at the level of the hidden states, as well as in the BOLD measurements themselves. A framework has been developed to allow approximate posterior distributions of model parameters to be learned from real fMRI data. This is accomplished with Markov chain Monte Carlo...

  13. Ex-vivo diffusion MRI reveals microstructural alterations in stress-sensitive brain regions: A chronic mild stress recovery study

    DEFF Research Database (Denmark)

    Khan, Ahmad Raza; Hansen, Brian; Wiborg, Ove

    Depression is a leading cause of disability worldwide and causes significant microstructural alterations in stress-sensitive brain regions. However, the potential recovery of these microstructural alterations has not previously been investigated, which we, therefore, set out to do using diffusion...... MRI (d-MRI) in the chronic mild stress (CMS) rat model of depression. This study reveals significant microstructural alterations after 8 weeks of recovery, in the opposite direction to change induced by stress in the acute phase of the experiment. Such findings may be useful in the prognosis...... of depression or for monitoring treatment response....

  14. Resuscitation of a Polytraumatized Patient with Large Volume Crystalloid-Colloid Infusions – Correlation Between Global and Regional Hemodynamics: Case Report

    OpenAIRE

    Lončarić-Katušin, Mirjana; Belavić, Matija; Žunić, Josip; Gučanin, Snježana; Žilić, Antonio; Korać, Želimir

    2010-01-01

    Aggressive large volume resuscitation is obligatory to achieve necessary tissue oxygenation. An adequate venous preload normalizes global hemodynamics and avoids multiorgan failure (MOF) and death in patients with multiple injuries. Large volume resuscitation is associated with complications in minimally monitored patients. A properly guided resuscitation procedure will finally prevent MOF and patient death. Transpulmonary thermodilution technique and gastric tonometry are used in venous prel...

  15. 3-D flow characterization and shear stress in a stenosed carotid artery bifurcation model using stereoscopic PIV technique.

    Science.gov (United States)

    Kefayati, Sarah; Poepping, Tamie L

    2010-01-01

    The carotid artery bifurcation is a common site of atherosclerosis which is a major leading cause of ischemic stroke. The impact of stenosis in the atherosclerotic carotid artery is to disturb the flow pattern and produce regions with high shear rate, turbulence, and recirculation, which are key hemodynamic factors associated with plaque rupture, clot formation, and embolism. In order to characterize the disturbed flow in the stenosed carotid artery, stereoscopic PIV measurements were performed in a transparent model with 50% stenosis under pulsatile flow conditions. Simulated ECG gating of the flowrate waveform provides external triggering required for volumetric reconstruction of the complex flow patterns. Based on the three-component velocity data in the lumen region, volumetric shear-stress patterns were derived.

  16. Patient-specific 3D hemodynamics modelling of left coronary artery under hyperemic conditions.

    Science.gov (United States)

    Kamangar, Sarfaraz; Badruddin, Irfan Anjum; Govindaraju, Kalimuthu; Nik-Ghazali, N; Badarudin, A; Viswanathan, Girish N; Ahmed, N J Salman; Khan, T M Yunus

    2017-08-01

    The purpose of this study is to investigate the effect of various degrees of percentage stenosis on hemodynamic parameters during the hyperemic flow condition. 3D patient-specific coronary artery models were generated based on the CT scan data using MIMICS-18. Numerical simulation was performed for normal and stenosed coronary artery models of 70, 80 and 90% AS (area stenosis). Pressure, velocity, wall shear stress and fractional flow reserve (FFR) were measured and compared with the normal coronary artery model during the cardiac cycle. The results show that, as the percentage AS increase, the pressure drop increases as compared with the normal coronary artery model. Considerable elevation of velocity was observed as the percentage AS increases. The results also demonstrate a recirculation zone immediate after the stenosis which could lead to further progression of stenosis in the flow-disturbed area. Highest wall shear stress was observed for 90% AS as compared to other models that could result in the rupture of coronary artery. The FFR of 90% AS is found to be considerably low.

  17. Effects of neuromuscular electrical stimulation on arterial hemodynamic properties and body composition in paretic upper extremities of patients with subacute stroke

    Directory of Open Access Journals (Sweden)

    Shu-Chun Huang

    2014-08-01

    Full Text Available Background: Neuromuscular electric stimulation (NMES induces repeated muscular contraction, possibly promoting the perfusion/oxygenation of the regional tissues. It remains unclear how NMES influences vascular hemodynamic property and segmental fluid distribution/composition in paretic extremities of hemiplegic patients. Methods: Eleven hemiplegic patients aged 62.6 ± 12.5 years in the subacute stage of stroke received NMES for paretic wrist extensor and flexor muscles 30 min daily, 5 days per week for 4 weeks. The non-paretic upper extremities (NPUE that did not receive NMES served as control. Distribution of fluid to intra/extracellular milieu and arterial hemodynamic properties were determined by using the multi-frequency bioelectrical impedance and pulse wave analysis, respectively. Results: Compared with NPUE without NMES, paretic upper extremity (PUE with NMES revealed a significantly less decrease in arterial blood flow, impedance quotient, slope quotient, and less increase in crest width and crest time of arterial pulse wave. NMES for 4 weeks increased body cell mass in PUE. Furthermore, NPUE without NMES reduced intracellular water, whereas PUE with NMES retarded loss of intracellular water after stroke. Conclusion: NMES therapy increases body cell mass, attenuates reduction of intracellular water, and alleviates arterial hemodynamic disturbance in PUE in subacute stroke. However, stroke-related physical deconditioning may negatively regulate body composition and impair hemodynamic function in NPUE.

  18. Measurement system for an in-vitro characterization of the biomechanics and hemodynamics of arterial bifurcations

    International Nuclear Information System (INIS)

    Suárez-Bagnasco, D; Balay, G; Negreira, C A; Cymberknop, L; Armentano, R L

    2013-01-01

    Arterial behaviour in-vivo is influenced, amongst other factors, by the interaction between blood flow and the arterial wall endothelium, and the biomechanical properties of the arterial wall. This interaction plays an important role in pathogenic mechanisms of cardiovascular diseases such as atherosclerosis and arteriosclerosis. To quantify these interactions both from biomechanical and hemodynamical standpoints, a complete characterization and modelling of the arterial wall, blood flow, shear wall and circumferential wall stresses are needed. The development of a new multi-parameter measurement system (distances, pressures, flows, velocity profiles, temperature, viscosity) for an in-vitro characterization of the biomechanics and hemodynamics in arterial bifurcations (specially in carotid bifurcations) is described. This set-up represents an improvement relative to previous set-ups developed by the group FCIEN-FMED and is presently under development. Main subsystems interactions and environment-system interactions were identified and compensated to improve system's performance. Several interesting problems related with signal acquisition using a variety of sensors and some experimental results are shown and briefly discussed. Experimental data allow construction of meshes and parameter estimation of the biomechanical properties of the arterial wall, as well as boundary conditions, all suitable to be employed in CFD and FSI numerical simulation.

  19. Assessing regional groundwater stress for nations using multiple data sources with the groundwater footprint

    International Nuclear Information System (INIS)

    Gleeson, Tom; Wada, Yoshihide

    2013-01-01

    Groundwater is a critical resource for agricultural production, ecosystems, drinking water and industry, yet groundwater depletion is accelerating, especially in a number of agriculturally important regions. Assessing the stress of groundwater resources is crucial for science-based policy and management, yet water stress assessments have often neglected groundwater and used single data sources, which may underestimate the uncertainty of the assessment. We consistently analyze and interpret groundwater stress across whole nations using multiple data sources for the first time. We focus on two nations with the highest national groundwater abstraction rates in the world, the United States and India, and use the recently developed groundwater footprint and multiple datasets of groundwater recharge and withdrawal derived from hydrologic models and data synthesis. A minority of aquifers, mostly with known groundwater depletion, show groundwater stress regardless of the input dataset. The majority of aquifers are not stressed with any input data while less than a third are stressed for some input data. In both countries groundwater stress affects agriculturally important regions. In the United States, groundwater stress impacts a lower proportion of the national area and population, and is focused in regions with lower population and water well density compared to India. Importantly, the results indicate that the uncertainty is generally greater between datasets than within datasets and that much of the uncertainty is due to recharge estimates. Assessment of groundwater stress consistently across a nation and assessment of uncertainty using multiple datasets are critical for the development of a science-based rationale for policy and management, especially with regard to where and to what extent to focus limited research and management resources. (letter)

  20. Effects of virtual water flow on regional water resources stress: A case study of grain in China.

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute

    2016-04-15

    Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Hemodynamic and tubular changes induced by contrast media.

    Science.gov (United States)

    Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI.

  2. Advanced stress analysis of PWR containments in the region of nozzles

    International Nuclear Information System (INIS)

    Schauer, G.

    1977-01-01

    As an example of the stress analysis of a nozzle in a PWR steel containment, an advanced stress analysis of a personnel lock is presented. Contrary to the calculations by means of numerical shell programs usual till now, this advanced stress analysis was executed with the finite-element-method. Because of their theory, the shell programs compute mathematically exact results, but at the intersection of two shells the notch stresses cannot be analyzed well. A further disadvantage must be seen in the fact that there is a great distance between the real critical region near the intersection line and the calculation point, which lies on the neutral axis of the shell. The study shows that the results obtained to date which are based on the shell theory and calculate stresses at a fictitious intersection line can be improved and that there is a possibility to get stress values adjacent to the real intersection line. (Auth.)

  3. Pacing stress echocardiography

    Directory of Open Access Journals (Sweden)

    Agrusta Marco

    2005-12-01

    Full Text Available Abstract Background High-rate pacing is a valid stress test to be used in conjunction with echocardiography; it is independent of physical exercise and does not require drug administration. There are two main applications of pacing stress in the echo lab: the noninvasive detection of coronary artery disease through induction of a regional transient dysfunction; and the assessment of contractile reserve through peak systolic pressure/ end-systolic volume relationship at increasing heart rates to assess global left ventricular contractility. Methods The pathophysiologic rationale of pacing stress for noninvasive detection of coronary artery disease is obvious, with the stress determined by a controlled increase in heart rate, which is a major determinant of myocardial oxygen demand, and thereby tachycardia may exceed a fixed coronary flow reserve in the presence of hemodynamically significant coronary artery disease. The use of pacing stress echo to assess left ventricular contractile reserve is less established, but promising. Positive inotropic interventions are mirrored by smaller end-systolic volumes and higher end-systolic pressures. An increased heart rate progressively increases the force of ventricular contraction (Bowditch treppe or staircase phenomenon. To build the force-frequency relationship, the force is determined at different heart rate steps as the ratio of the systolic pressure (cuff sphygmomanometer/end-systolic volume index (biplane Simpson rule. The heart rate is determined from ECG. Conclusion Two-dimensional echocardiography during pacing is a useful tool in the detection of coronary artery disease. Because of its safety and ease of repeatability noninvasive pacing stress echo can be the first-line stress test in patients with permanent pacemaker. The force-frequency can be defined as up- sloping (normal when the peak stress pacing systolic pressure/end-systolic volume index is higher than baseline and intermediate stress

  4. The Value of Quality Improvement Process in the Detection and Correction of Common Errors in Echocardiographic Hemodynamic Parameters in a Busy Echocardiography Laboratory.

    Science.gov (United States)

    Fanari, Zaher; Choudhry, Usman I; Reddy, Vivek K; Eze-Nliam, Chete; Hammami, Sumaya; Kolm, Paul; Weintraub, William S; Marshall, Erik S

    2015-12-01

    Accurate assessment of cardiac structures, ventricular function, and hemodynamics is essential for any echocardiographic laboratory. Quality improvement (QI) processes described by the American Society of Echocardiography (ASE) and the Intersocietal Commission (IAC) should be instrumental in reaching this goal. All patients undergoing transthoracic echocardiogram (TTE) followed by cardiac catheterization within 24 hours at Christiana Care Health System in 2011 and 2012 were identified, with 126 and 133 cases, respectively. Hemodynamic parameters of diastolic function and pulmonary artery systolic pressure (PASP) on TTE correlated poorly with catheterization in 2011. An educational process was developed and implemented at quarterly QI meetings based on ASE and IAC recommendations to target frequently encountered errors and provide methods for improved performance. The hemodynamic parameters were then reexamined in 2012 postintervention. Following the QI process, there was significant improvement in the correlation between invasive and echocardiographic hemodynamic measurements in both systolic and diastolic function, and PASP. This reflected in significant better correlations between echo and cath LVEF [R = 0.88, ICC = 0.87 vs. R = 0.85, ICC = 0.85; P process, as recommended by ASE and IAC, can allow for identification as well as rectification of quality issues in a large regional academic medical center hospital. © 2015, Wiley Periodicals, Inc.

  5. Stressful life events and psychological dysfunction in complex regional pain syndrome type I

    NARCIS (Netherlands)

    Geertzen, JHB; de Bruijn-Kofman, AT; de Bruijn, HP; van de Wiel, HBM; Dijkstra, PU

    Objective: To determine to what extent stressful life events and psychological dysfunction play a role in the pathogenesis of Complex Regional Pain Syndrome type I (CRPS). Design: A comparative study between a CRPS group and a control group. Stressful life events and psychological dysfunction

  6. The numerical simulation study of hemodynamics of the new dense-mesh stent

    Science.gov (United States)

    Ma, Jiali; Yuan, Zhishan; Yu, Xuebao; Feng, Zhaowei; Miao, Weidong; Xu, Xueli; Li, Juntao

    2017-09-01

    The treatment of aortic aneurysm in new dense mesh stent is based on the principle of hemodynamic changes. But the mechanism is not yet very clear. This paper analyzed and calculated the hemodynamic situation before and after the new dense mesh stent implanting by the method of numerical simulation. The results show the dense mesh stent changed and impacted the blood flow in the aortic aneurysm. The changes include significant decrement of blood velocity, pressure and shear forces, while ensuring blood can supply branches, which means the new dense mesh stent's hemodynamic mechanism in the treatment of aortic aneurysm is clearer. It has very important significance in developing new dense mesh stent in order to cure aortic aneurysm.

  7. Systemic Hemodynamic Atherothrombotic Syndrome and Resonance Hypothesis of Blood Pressure Variability: Triggering Cardiovascular Events.

    Science.gov (United States)

    Kario, Kazuomi

    2016-07-01

    Blood pressure (BP) exhibits different variabilities and surges with different time phases, from the shortest beat-by-beat to longest yearly changes. We hypothesized that the synergistic resonance of these BP variabilites generates an extraordinarily large dynamic surge in BP and triggers cardiovascular events (the resonance hypothesis). The power of pulses is transmitted to the peripheral sites without attenuation by the large arteries, in individuals with stiffened arteries. Thus, the effect of a BP surge on cardiovascular risk would be especially exaggerated in high-risk patients with vascular disease. Based on this concept, our group recently proposed a new theory of systemic hemodynamic atherothromboltic syndrome (SHATS), a vicious cycle of hemodynamic stress and vascular disease that advances organ damage and triggers cardiovascular disease. Clinical phenotypes of SHATS are large-artery atherothombotic diseases such as stroke, coronary artery disease, and aortic and pheripheral artery disease; small-artery diseases, and microcirculation-related disease such as vascular cognitive dysfunction, heart failure, and chronic kidney disease. The careful consideration of BP variability and vascular diseases such as SHATS, and the early detection and management of SHATS, will achieve more effective individualized cardiovascular protection. In the near future, information and communication technology-based 'anticipation medicine' predicted by the changes of individual BP values could be a promising approach to achieving zero cardiovascular events.

  8. Impact of Intra-Extracranial Hemodynamics on Cerebral Ischemia by Arterial Hypertension (Part 2

    Directory of Open Access Journals (Sweden)

    Alexander G. Kruglov, PhD, ScD

    2012-06-01

    Full Text Available The association between hemodynamic and biochemical parameters of cerebral blood flow have been studied in man, using mathematical methods of statistics. The values have been obtained through catheterization using a probe jammed at the level of the bulb of the superior jugular vein. Relationships with central hemodynamic parameters have been evaluated, including the right atrium, the right ventricle, and the left ventricle, as well as with pressure and biochemical values of the arterial bed. Data have been acquired in patients with stable arterial hypertension. Analysis of all relationship between hemodynamic and biochemical parameters has shown that the uniform hemodynamic zone: Sin.P. – SJV – SEV – the right atrium, normally participates in regulation of gaseous exchange in the human brain depending on the minimum pressure on the way of outflow from the brain. In stable arterial hypertension, this type of regulation is lost. On the basis of the results of this study, it has been concluded that blood viscosity is normally a primary controlled parameter of homeostasis. In stable arterial hypertension, homeostatic control of factors determining rheological and thrombogenic properties of blood, as well as participating in the development of brain ischemic conditions is lost. This increases risk of disturbances in central hemodynamics.

  9. Fermented ginseng, GBCK25, ameliorates hemodynamic function on experimentally induced myocardial injury

    Directory of Open Access Journals (Sweden)

    Adithan Aravinthan

    2016-10-01

    Full Text Available In the present study, we investigated whether treatment with GBCK25 facilitated the recovery of hemodynamic parameters, left ventricle systolic pressure, left ventricular developed pressure, and electrocardiographic changes. GBCK25 significantly prevented the decrease in hemodynamic parameters and ameliorated the electrocardiographic abnormality. These results indicate that GBCK25 has distinct cardioprotective effects in rat heart.

  10. The effect of stent structure changes on the hemodynamics and the formation of in-stent restenosis

    International Nuclear Information System (INIS)

    Wu Xia; Xu Ke; Xiao Liang; Zhang Xitong; Su Hongying; Feng Bo

    2009-01-01

    Objective: To investigate the effect of stent structure changes on the formation of in-stent restenosis by studying the influence of these changes on the shear force to the vascular wall, on the velocity of flow and on the flow pattern. Methods: Five stent models were established by using Pro/engineer wildfire 3.0. Model A was regarded as control structure. On the base structure of model A, transverse link component was added to form model B, and vertical link component was added to form model C. The thickness of model D was twice than that of model A, and the meshes density of model E was twice than that of model A. Fluid models were built up by importing these stent models into computational fluid dynamics (CFD) software ansys11.0-CFX, then, CFD analysis was proceeded to study the effect of stent structure on hemodynamics. Results: After the stents were implanted, the percentage of low wall shear stress on the surface of model A, B, C, D and E was 7.78%, 6.65%, 1.48%, 16.52% and 12.12%, respectively. The percentage of D and E was obviously larger than that of A, while the percentage of B was markedly smaller than that of A. The velocity vector on the cross-sectional planes showed that the low velocity and eddy areas in D and E were much larger than that in A, while this area in C was smaller than that in A. Conclusion: The stent structure changes can cause obvious changes in hemodynamics in the implanted vessels. The increase in the thickness and meshes density of the stent is the main factor that induces the formation of low wall shear stress, which will precipitate the development of in-stent restenosis. The added vertical link component will reduce the area of low wall shear stress as well as the occurrence of in-stent restenosis. (authors)

  11. Multi-scale computational model of three-dimensional hemodynamics within a deformable full-body arterial network

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Nan [Department of Bioengineering, Stanford University, Stanford, CA 94305 (United States); Department of Biomedical Engineering, King’s College London, London SE1 7EH (United Kingdom); Humphrey, Jay D. [Department of Biomedical Engineering, Yale University, New Haven, CT 06520 (United States); Figueroa, C. Alberto, E-mail: alberto.figueroa@kcl.ac.uk [Department of Biomedical Engineering, King’s College London, London SE1 7EH (United Kingdom)

    2013-07-01

    In this article, we present a computational multi-scale model of fully three-dimensional and unsteady hemodynamics within the primary large arteries in the human. Computed tomography image data from two different patients were used to reconstruct a nearly complete network of the major arteries from head to foot. A linearized coupled-momentum method for fluid–structure-interaction was used to describe vessel wall deformability and a multi-domain method for outflow boundary condition specification was used to account for the distal circulation. We demonstrated that physiologically realistic results can be obtained from the model by comparing simulated quantities such as regional blood flow, pressure and flow waveforms, and pulse wave velocities to known values in the literature. We also simulated the impact of age-related arterial stiffening on wave propagation phenomena by progressively increasing the stiffness of the central arteries and found that the predicted effects on pressure amplification and pulse wave velocity are in agreement with findings in the clinical literature. This work demonstrates the feasibility of three-dimensional techniques for simulating hemodynamics in a full-body compliant arterial network.

  12. Active stress field and seismotectonic features in Intra-Carpathian region of Romania

    Science.gov (United States)

    Oros, Eugen; Popa, Mihaela; Diaconescu, Mihai; Radulian, Mircea

    2017-04-01

    The Romanian Intra-Carpathian Region is located on the eastern half of Tisa-Dacia geodynamic block from the Neogene Carpathian-Pannonian Basin. The distribution of seismicity displays clear clusters and narrower zones with seismogenic potential confirmed by the damaging earthquakes recoded in the region, e.g. July 01, 1829 (Mw=6.2), October 10, 1834 (Mw=5.6), January 26, 1916 (Mw=6.4), July 12, 1991 (Mw=5.7), December 2, 1991 (Mw=5.5). The state of recent stress and deformation appears to be controlled by the interaction of plate-boundary and intraplate forces, which include the counterclockwise rotation and N-NE-directed indentation of the Adria microplate and buoyancy forces associated with differential topography and lithospheric heterogeneities. The stress field and tectonic regime are investigated at regional and local scales by the formal inversion of focal mechamisms. There can be observed short-scale lateral changes of i) tectonic regimes from compressive (reverse and strike-slip faultings) to pure extensive (normal faultings) and ii) variation of stress directions (SHmax) from NE-SW to EW and WNW-ESE towards Southern Carpathians and NS within Easter Carpathians. The changes in stress directions occur over a distance that is comparable to or smaller than the thickness of the lithosphere. A comparative analysis of stress tensor with GPS velocity/displacememt vectors shows variations from paralellism to orthogonality, suggesting different mechanisms of crustal deformations.The major seismic activity (Mw≥5.0) appears to be generally concentrated along the faults systems bordering de Tisa-Dacia Block, intersections of faults of different ages, internal shear zones and with the border of the former structural terrains, old rifts and neostructures.

  13. Induced Hypothermia Does Not Harm Hemodynamics after Polytrauma: A Porcine Model

    Directory of Open Access Journals (Sweden)

    Matthias Weuster

    2015-01-01

    Full Text Available Background. The deterioration of hemodynamics instantly endangers the patients’ life after polytrauma. As accidental hypothermia frequently occurs in polytrauma, therapeutic hypothermia still displays an ambivalent role as the impact on the cardiopulmonary function is not yet fully understood. Methods. We have previously established a porcine polytrauma model including blunt chest trauma, penetrating abdominal trauma, and hemorrhagic shock. Therapeutic hypothermia (34°C was induced for 3 hours. We documented cardiovascular parameters and basic respiratory parameters. Pigs were euthanized after 15.5 hours. Results. Our polytrauma porcine model displayed sufficient trauma impact. Resuscitation showed adequate restoration of hemodynamics. Induced hypothermia had neither harmful nor major positive effects on the animals’ hemodynamics. Though heart rate significantly decreased and mixed venous oxygen saturation significantly increased during therapeutic hypothermia. Mean arterial blood pressure, central venous pressure, pulmonary arterial pressure, and wedge pressure showed no significant differences comparing normothermic trauma and hypothermic trauma pigs during hypothermia. Conclusions. Induced hypothermia after polytrauma is feasible. No major harmful effects on hemodynamics were observed. Therapeutic hypothermia revealed hints for tissue protective impact. But the chosen length for therapeutic hypothermia was too short. Nevertheless, therapeutic hypothermia might be a useful tool for intensive care after polytrauma. Future studies should extend therapeutic hypothermia.

  14. Induced Hypothermia Does Not Harm Hemodynamics after Polytrauma: A Porcine Model

    Science.gov (United States)

    Mommsen, Philipp; Pfeifer, Roman; Mohr, Juliane; Ruchholtz, Steffen; Flohé, Sascha; Fröhlich, Matthias; Keibl, Claudia; Seekamp, Andreas; Witte, Ingo

    2015-01-01

    Background. The deterioration of hemodynamics instantly endangers the patients' life after polytrauma. As accidental hypothermia frequently occurs in polytrauma, therapeutic hypothermia still displays an ambivalent role as the impact on the cardiopulmonary function is not yet fully understood. Methods. We have previously established a porcine polytrauma model including blunt chest trauma, penetrating abdominal trauma, and hemorrhagic shock. Therapeutic hypothermia (34°C) was induced for 3 hours. We documented cardiovascular parameters and basic respiratory parameters. Pigs were euthanized after 15.5 hours. Results. Our polytrauma porcine model displayed sufficient trauma impact. Resuscitation showed adequate restoration of hemodynamics. Induced hypothermia had neither harmful nor major positive effects on the animals' hemodynamics. Though heart rate significantly decreased and mixed venous oxygen saturation significantly increased during therapeutic hypothermia. Mean arterial blood pressure, central venous pressure, pulmonary arterial pressure, and wedge pressure showed no significant differences comparing normothermic trauma and hypothermic trauma pigs during hypothermia. Conclusions. Induced hypothermia after polytrauma is feasible. No major harmful effects on hemodynamics were observed. Therapeutic hypothermia revealed hints for tissue protective impact. But the chosen length for therapeutic hypothermia was too short. Nevertheless, therapeutic hypothermia might be a useful tool for intensive care after polytrauma. Future studies should extend therapeutic hypothermia. PMID:26170533

  15. Effects of radiation, burn and combined radiation-burn injury on hemodynamics

    International Nuclear Information System (INIS)

    Ye Benlan; Cheng Tianming; Xiao Jiasi

    1996-01-01

    Changes in hemodynamics after radiation, burn and combined radiation burn injury within eight hours post injury were studied. The results indicate: (1) Shock of rats in the combined injury group is more severe than that in the burn group. One of the reasons is that the blood volume in the combined injury group is less than that in the burn group. Radiation injury plays an important role in this effect, which enhances the increase in vascular permeability and causes the loss of plasma. (2) Decrease in cardiac output and stroke work and increase in vascular resistance in the combined radiation burn group are more drastic than those in the burn group, which may cause and enhance shock. Replenishing fluid is useful for recovery of hemodynamics. (3) Rb uptake is increased in the radiation group which indicates that compensated increase of myocardial nutritional blood flow may take place before the changes of hemodynamics and shock. Changes of Rb uptake in the combined injury group is different from that in the radiation groups and in the burn group. The results also suggest that changes of ion channel activities may occur to a different extent after injury. (4) Verapamil is helpful to the recovery of hemodynamics post injury. It is better to combine verapamil with replenishing fluid

  16. A review of the hemodynamic effects of external leg and lower body compression.

    Science.gov (United States)

    Helmi, M; Gommers, D; Groeneveld, A B J

    2014-03-01

    External leg and lower body compression (ELC) has been used for decades in the prevention of deep vein thrombosis and the treatment of leg ischemia. Because of systemic effects, the methods have regained interest in anesthesia, surgery and critical care. This review intends to summarize hemodynamic effects and their mechanisms. Compilation of relevant literature published in English as full paper and retrieved from Medline. By compressing veins, venous stasis is diminished and venous return and arterial blood flow are increased. ELC has been suggested to improve systemic hemodynamics, in different clinical settings, such as postural hypotension, anesthesia, surgery, shock, cardiopulmonary resuscitation and mechanical ventilation. However, the hemodynamic alterations depend upon the magnitude, extent, cycle, duration and thus the modality of ELC, when applied in a static or intermittent fashion (by pneumatic inflation), respectively. ELC may help future research and optimizing treatment of hemodynamically unstable, surgical or critically ill patients, independent of plasma volume expansion.

  17. Masticatory-stress hypotheses and the supraorbital region of primates.

    Science.gov (United States)

    Hylander, W L; Picq, P G; Johnson, K R

    1991-09-01

    The purpose of this study is to test various masticatory-stress hypotheses about the evolution and function of well-developed browridges of higher primates. This was done by measuring and analyzing patterns of in vivo bone strain recorded from three-element rosette strain gages bonded to the supraorbital region and to other portions of the bony face of Macaca fascicularis and Papio anubis during mastication and incision. The magnitude and direction of the principal strains recorded support Endo's hypothesis that the supraorbital region during mastication and incision is bent in the frontal plane (Endo, 1966). Our data do not, however, support his hypothesis that the supraorbital region is bent more during incision than during mastication. The data also demonstrate that overall levels of supraorbital strain are not larger in more prognathic subjects. Most importantly, the data indicate that the supraorbital region of nonhuman catarrhines is strained very little during mastication and incision. This indicates that there is much more supraorbital bone than is necessary both to counter masticatory loads and to provide an adequate safety factor to failure for these loads. This in turn suggests that the macaque and baboon browridges can be considerably reduced in size and still maintain these required structural characteristics. Thus, our experiments provide no support whatsoever for those hypotheses that directly link browridge morphology to masticatory stress (cf. Endo, 1966; Russell, 1983, 1985). A recent review of Endo's original work indicates that this latter statement is also true for humans (Picq and Hylander, 1989). We conclude, therefore, that there is no good reason to believe that enlarged browridges in living and/or fossil primates are structural adaptations to counter intense masticatory forces. The evolution of browridge morphology in primates is best explained on the basis of factors related to the position of the brain relative to the orbits (Moss and

  18. Continuous Hemodynamic Monitoring in Acute Stroke: An Exploratory Analysis

    Directory of Open Access Journals (Sweden)

    Ayan Sen

    2014-07-01

    Full Text Available Introduction: Non-invasive, continuous hemodynamic monitoring is entering the clinical arena. The primary objective of this study was to test the feasibility of such monitoring in a pilot sample of Emergency Department (ED stroke patients. Secondary objectives included analysis of hemodynamic variability and correlation of continuous blood pressure measurements with standard measurements. Methods: This study was a secondary analysis of 7 stroke patients from a prospectively collected data set of patients that received 2 hours of hemodynamic monitoring in the ED. Stroke patients were included if hemorrhagic or ischemic stroke was confirmed by neuroimaging, and symptom onset was within 24 hours. They were excluded for the presence of a stroke mimic or transient ischemic attack. Monitoring was performed using the Nexfin device (Edwards Lifesciences, Irvine CA. Results: The mean age of the cohort was 71 ± 17 years, 43% were male, and the mean National Institute of Health Stroke Scale (NIHSS was 6.9 ± 5.5. Two patients had hemorrhagic stroke. We obtained 42,456 hemodynamic data points, including beat-to-beat blood pressure measurements with variability of 18 mmHg and cardiac indices ranging from 1.8 to 3.6 l/min/m2. The correlation coefficient between continuous blood pressure measurements with the Nexfin device and standard ED readings was 0.83. Conclusion: This exploratory investigation revealed that continuous, noninvasive monitoring in the ED is feasible in acute stroke. Further research is currently underway to determine how such monitoring may impact outcomes in stroke or replace the need for invasive monitoring. [West J Emerg Med. 2014;15(4:–0.

  19. Estimating the hemodynamic influence of variable main body-to-iliac limb length ratios in aortic endografts.

    Science.gov (United States)

    Georgakarakos, Efstratios; Xenakis, Antonios; Georgiadis, George S

    2018-02-01

    We conducted a computational study to assess the hemodynamic impact of variant main body-to-iliac limb length (L1/L2) ratios on certain hemodynamic parameters acting on the endograft (EG) either on the normal bifurcated (Bif) or the cross-limb (Cx) fashion. A customary bifurcated 3D model was computationally created and meshed using the commercially available ANSYS ICEM (Ansys Inc., Canonsburg, PA, USA) software. The total length of the EG, was kept constant, while the L1/L2 ratio ranged from 0.3 to 1.5 in the Bif and Cx reconstructed EG models. The compliance of the graft was modeled using a Fluid Structure Interaction method. Important hemodynamic parameters such as pressure drop along EG, wall shear stress (WSS) and helicity were calculated. The greatest pressure decrease across EG was calculated in the peak systolic phase. With increasing L1/L2 it was found that the Pressure Drop was increasing for the Cx configuration, while decreasing for the Bif. The greatest helicity (4.1 m/s2) was seen in peak systole of Cx with ratio of 1.5 whereas its greatest value (2 m/s2) was met in peak systole in the Bif with the shortest L1/L2 ratio (0.3). Similarly, the maximum WSS value was highest (2.74Pa) in the peak systole for the 1.5 L1/L2 of the Cx configuration, while the maximum WSS value equaled 2 Pa for all length ratios of the Bif modification (with the WSS found for L1/L2=0.3 being marginally higher). There was greater discrepancy in the WSS values for all L1/L2 ratios of the Cx bifurcation compared to Bif. Different L1/L2 rations are shown to have an impact on the pressure distribution along the entire EG while the length ratio predisposing to highest helicity or WSS values is also determined by the iliac limbs pattern of the EG. Since current custom-made EG solutions can reproduce variability in main-body/iliac limbs length ratios, further computational as well as clinical research is warranted to delineate and predict the hemodynamic and clinical effect of variable

  20. Patient-Specific Modeling of Interventricular Hemodynamics in Single Ventricle Physiology

    Science.gov (United States)

    Vedula, Vijay; Feinstein, Jeffrey; Marsden, Alison

    2016-11-01

    Single ventricle (SV) congenital heart defects, in which babies are born with only functional ventricle, lead to significant morbidity and mortality with over 30% of patients developing heart failure prior to adulthood. Newborns with SV physiology typically undergo three palliative surgeries, in which the SV becomes the systemic pumping chamber. Depending on which ventricle performs the systemic function, patients are classified as having either a single left ventricle (SLV) or a single right ventricle (SRV), with SRV patients at higher risk of failure. As the native right ventricles are not designed to meet systemic demands, they undergo remodeling leading to abnormal hemodynamics. The hemodynamic characteristics of SLVs compared with SRVs is not well established. We present a validated computational framework for performing patient-specific modeling of ventricular flows, and apply it across 6 SV patients (3SLV + 3SRV), comparing hemodynamic conditions between the two subgroups. Simulations are performed with a stabilized finite element method coupled with an immersed boundary method for modeling heart valves. We discuss identification of hemodynamic biomarkers of ventricular remodeling for early risk assessment of failure. This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and due to U.S. National Institute of Health through NIH NHLBI R01 Grants 5R01HL129727-02 and 5R01HL121754-03.

  1. Effects of L-glutamine supplementation on maternal and fetal hemodynamics in gestating ewes exposed to alcohol

    OpenAIRE

    Sawant, Onkar B.; Ramadoss, Jayanth; Hankins, Gary D.; Wu, Guoyao; Washburn, Shannon E.

    2014-01-01

    Not much is known about effects of gestational alcohol exposure on maternal and fetal cardiovascular adaptations. This study determined whether maternal binge alcohol exposure and L-glutamine supplementation could affect maternal-fetal hemodynamics and fetal regional brain blood flow during the brain growth spurt period. Pregnant sheep were randomly assigned to one of four groups: saline control, alcohol (1.75–2.5 g/kg body weight), glutamine (100 mg/kg body weight) or alcohol + glutamine. A ...

  2. Novel Use of a Noninvasive Hemodynamic Monitor in a Personalized, Active Learning Simulation

    Science.gov (United States)

    Zoller, Jonathan K.; He, Jianghua; Ballew, Angela T.; Orr, Walter N.; Flynn, Brigid C.

    2017-01-01

    The present study furthered the concept of simulation-based medical education by applying a personalized active learning component. We tested this novel approach utilizing a noninvasive hemodynamic monitor with the capability to measure and display in real time numerous hemodynamic parameters in the exercising participant. Changes in medical…

  3. Consenso brasileiro de monitorização e suporte hemodinâmico - Parte V: suporte hemodinâmico Brazilian consensus of monitoring and hemodynamic support - Part V: hemodynamic support

    Directory of Open Access Journals (Sweden)

    Suzana Margareth Ajeje Lobo

    2006-06-01

    not reverted irreversible cellular injury establishes. Shock treatment has as its initial priority the fast and vigorous correction of mean arterial pressure and cardiac output to maintain life and avoid or lessen organic dysfunctions. Fluid challenge and vasoactive drugs are necessary to warrant an adequate tissue perfusion and maintenance of function of different organs and systems, always guided by cardiovascular monitorization. The recommendations built in this consensus are aimed to guide hemodynamic support needed to maintain adequate tisular perfusion. METHODS: Modified Delphi methodology was used to create and quantify the consensus between the participants. AMIB indicated a coordinator who invited more six experts in the area of monitoring and hemodynamic support to constitute the Consensus Advisory Board. Twenty five physician and two nurses selected from different regions of the country completed the expert panel, which reviewed the pertinent bibliography listed at the MEDLINE in the period from 1996 to 2004. RESULTS: Recommendations were made answering 17 questions about hemodynamic support with focus on fluid challenge, red blood cell transfusions, vasoactive drugs and perioperative hemodynamic optimization. CONCLUSIONS: Hemodynamic monitoring by itself does not reduce the mortality of critically ill patients, however, we believe that the correct interpretation of the data obtained by the hemodynamic monitoring and the use of hemodynamic support protocols based on well defined tissue perfusion goals can improve the outcome of these patients.

  4. Quantification of collateral flow in humans: a comparison of angiographic, electrocardiographic and hemodynamic variables

    NARCIS (Netherlands)

    van Liebergen, R. A.; Piek, J. J.; Koch, K. T.; de Winter, R. J.; Schotborgh, C. E.; Lie, K. I.

    1999-01-01

    Evaluation of collateral vascular circulation according to hemodynamic variables and its relation to myocardial ischemia. There is limited information regarding the hemodynamic quantification of recruitable collateral vessels. Angiography of the donor coronary artery was performed before and during

  5. Mining data from hemodynamic simulations via Bayesian emulation

    Directory of Open Access Journals (Sweden)

    Nair Prasanth B

    2007-12-01

    Full Text Available Abstract Background: Arterial geometry variability is inevitable both within and across individuals. To ensure realistic prediction of cardiovascular flows, there is a need for efficient numerical methods that can systematically account for geometric uncertainty. Methods and results: A statistical framework based on Bayesian Gaussian process modeling was proposed for mining data generated from computer simulations. The proposed approach was applied to analyze the influence of geometric parameters on hemodynamics in the human carotid artery bifurcation. A parametric model in conjunction with a design of computer experiments strategy was used for generating a set of observational data that contains the maximum wall shear stress values for a range of probable arterial geometries. The dataset was mined via a Bayesian Gaussian process emulator to estimate: (a the influence of key parameters on the output via sensitivity analysis, (b uncertainty in output as a function of uncertainty in input, and (c which settings of the input parameters result in maximum and minimum values of the output. Finally, potential diagnostic indicators were proposed that can be used to aid the assessment of stroke risk for a given patient's geometry.

  6. The hemodynamic repercussions of the autonomic modulations in ...

    African Journals Online (AJOL)

    Igor Victorovich Lakhno

    2017-01-16

    Jan 16, 2017 ... autonomic balance, arterial and venous hemodynamic Doppler indices and CTG variables in case of nor- mal fetal ... score of decelerations. Results: The .... puter electrocardiographic system ''Cardiolab Baby Card” (Scien-.

  7. Hemodynamics and vasopressor support in therapeutic hypothermia after cardiac arrest

    DEFF Research Database (Denmark)

    Bro-Jeppesen, John; Kjaergaard, Jesper; Søholm, Helle

    2014-01-01

    AIM: Inducing therapeutic hypothermia (TH) in Out-of-Hospital Cardiac Arrest (OHCA) can be challenging due to its impact on central hemodynamics and vasopressors are frequently used to maintain adequate organ perfusion. The aim of this study was to assess the association between level of vasopres......AIM: Inducing therapeutic hypothermia (TH) in Out-of-Hospital Cardiac Arrest (OHCA) can be challenging due to its impact on central hemodynamics and vasopressors are frequently used to maintain adequate organ perfusion. The aim of this study was to assess the association between level...

  8. Reversible Stress Cardiomyopathy Presenting as Acute Coronary Syndrome with Elevated Troponin in the Absence of Regional Wall Motion Abnormalities: A Forme Fruste of Stress Cardiomyopathy?

    Directory of Open Access Journals (Sweden)

    Mahesh Anantha Narayanan

    2014-01-01

    Full Text Available We present a case of reversible stress cardiomyopathy in a surgical patient, described here as a forme fruste due to its atypical features. It is important to recognize such unusual presentation of stress cardiomyopathy that mimics acute coronary syndrome. Stress cardiomyopathy commonly presents as acute coronary syndrome and is characterized by typical or atypical variants of regional wall motion abnormalities. We report a 60-year-old Caucasian male with reversible stress cardiomyopathy following a sternal fracture fixation. Although the patient had several typical features of stress cardiomyopathy including physical stress, ST-segment elevation, elevated cardiac biomarkers and normal epicardial coronaries, there were few features that were atypical, including unusual age, gender, absence of regional wall motion abnormalities, high lateral ST elevation, and high troponin-ejection fraction product. In conclusion, this could represent a forme fruste of stress cardiomyopathy.

  9. Cerebral hemodynamics in patients with moyamoya disease, (2)

    International Nuclear Information System (INIS)

    Takeuchi, Shigekazu

    1983-01-01

    Regional cerebral blood flow (rCBF) was measured by the 133 Xe inhalation method in 19 patients with moyamoya disease aged 5 to 46 and compared with that in 17 healthy volunteers aged 7 to 67. In healthy volunteers, mean hemispheric flow values (mCBF) in the steady state decreased and cerebrovascular resistance (CVR) increased with advancing age. Most young patients showed low values of mCBF in both hemispheres in comparison with healthy volunteers. About half of the young patients showed higher values of CVR than young healthy volunteers. The distribution of rCBF showed a hyperfrontal pattern in healthy volunteers. However, in the patients, regional distribution of hemispheric flow showed a different pattern with low flow in the upper frontal region and mean flow in the posterotemporal and occipital regions. rCBF measurements were carried out during hyperventilation in five healthy volunteers and in one patient, and during 5% CO 2 inhalation in one healthy volunteer and two patients. CO 2 reactivity was uniformly present in the hemispheres of healthy volunteers. rCBF in both hemispheres was reduced by hyperventilation, more markedly in the patient than in healthy volunteers. On the other hand, in two patients, the flow was increased in the temporo-occipital regions and was decreased in the frontal region by 5% CO 2 inhalation, and mCBF was slightly increased. Postoperative rCBF measurements in 21 sides of 12 young patients indicated a gradual increase of mCBF in 14 sides of nine patients from 3 months after surgery. These results indicate that rCBF measurements by the 133 Xe inhalation method are useful in determining cerebral hemodynamics in patients with moyamoya disease, especially in children. (J.P.N.)

  10. Effect of hemodynamics on outcome of subtotally occluded paraclinoid aneurysms after stent-assisted coil embolization.

    Science.gov (United States)

    Liu, Jian; Jing, Linkai; Wang, Chao; Paliwal, Nikhil; Wang, Shengzhang; Zhang, Ying; Xiang, Jianping; Siddiqui, Adnan H; Meng, Hui; Yang, Xinjian

    2016-11-01

    Endovascular treatment of paraclinoid aneurysms is preferred in clinical practice. Flow alterations caused by stents and coils may affect treatment outcome. To assess hemodynamic changes following stent-assisted coil embolization (SACE) in subtotally embolized paraclinoid aneurysms with residual necks that were predisposed to recanalization. We studied 27 paraclinoid aneurysms (seven recanalized and 20 stable) treated with coils and Enterprise stents. Computational fluid dynamic simulations were performed on patient-specific aneurysm geometries using virtual stenting and porous media technology. After stent placement in 27 cases, aneurysm flow velocity decreased significantly, the reduction gradually increasing from the neck plane (11.9%), to the residual neck (12.3%), to the aneurysm dome (16.3%). Subsequent coil embolization was performed after stent placement and the hemodynamic factors decreased further and significantly at all aneurysm regions except the neck plane. In a comparison of recanalized and stable cases, univariate analysis showed no significant differences in any parameter before treatment. After stent-assisted coiling, only the reduction in area-averaged velocity at the neck plane differed significantly between recanalized (8.1%) and stable cases (20.5%) (p=0.016). Aneurysm flow velocity can be significantly decreased by stent placement and coil embolization. However, hemodynamics at the aneurysm neck plane is less sensitive to coils. Significant reduction in flow velocity at the neck plane may be an important factor in preventing recanalization of paraclinoid aneurysms after subtotal SACE. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Principle of cerebral hemodynamic perfusion in SPECT and new evaluation method of hemodynamic reserve capacity using {sup 99m}Tc tracer

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Masaaki; Mukai, Hironobu; Tada, Motoyuki; Miyazaki, Yoshiharu; Takimoto, Masamori; Shiozaki, Jun; Inoue, Hisashi [Noto General Hospital, Nanao, Ishikawa (Japan)

    2002-07-01

    We performed quantitative measurements of cerebral blood flow (CBF) using {sup 99m}Tc tracer by the Patlak Plot method with reference to normal aging and cerebrovascular reserve (CVR) capacity and then investigated a new evaluation method of CVR. Aging and decrease of ADL were significantly associated with reduction of the mean hemispheric CBF. In the acetazolamide (ACZ) stress test, these retrospective data showed some overlap in each ischemic grade on the relationship between rCBF and CVR response for the predictability of EC/IC bypass surgery. In these controversial problems, we must reconfirm the principle of cerebral hemodynamic perfusion in SPECT. First, retention tracer is distributed via the microcirculatory system to brain tissue. Second, therefore, we should understand not only the circulation of major vessels, but also the dynamics and rheology in parenchymal microcirculation to determine brain SPECT and CVR capacity. In the next step, we approached the new evaluation method of CVR capacity using {sup 99m}Tc tracer by a serial dynamic SPECT with a slip-ring rotational gamma camera. These preliminally findings suggest that a serial dynamic SPECT may be more useful for analyzing the pathophysiology on brain circulation and CVR than conventional approaches. (author)

  12. The Influence of Age on Hemodynamic Parameters During Rest and Exercise in Healthy Individuals

    DEFF Research Database (Denmark)

    Wolsk, Emil; Bakkestrøm, Rine; Thomsen, Jacob H

    2017-01-01

    OBJECTIVES: The authors sought to obtain hemodynamic estimates across a wide age span and in both sexes for future reference and compare these estimates with current guideline diagnostic hemodynamic thresholds for abnormal filling pressure and pulmonary hypertension. BACKGROUND: At present....... METHODS: Sixty-two healthy participants, evenly distributed with respect to age (20 to 80 years) and sex (32 women/30 men), were prospectively enrolled in the study. Participants were all deemed healthy by medical history, echocardiography, exercise test, spirometry, blood tests, and electrocardiogram....... Participants had hemodynamic parameters measured using right heart catheterization during rest, passive leg raise, and incremental exercise. RESULTS: During rest, all hemodynamic parameters were similar between age groups, apart from blood pressure. During leg raise and incremental exercise...

  13. Effects of irradiation on the pulmonary hemodynamics and the pulmonary vascular permeability

    International Nuclear Information System (INIS)

    Ohkuda, Kazuhiro; Watanabe, Shinkichi; Okada, Shinichiroh

    1982-01-01

    In 4 sheeps, base lines of hemodynamics and lymph dynamics were observed for 2 hours, and then 1,000 rad of 60 Co was irradiated to the inferior lobes of the lung. Pulmonary hemodynamics and lymph dynamics were continuously observed, and water and protein permeability of the irradiated pulmonary vessels was evaluated. In 4 control sheeps, no change in pulmonary hemodynamics and lymph dynamics was noted. In the irradiated group, there was no remarkable change in pulmonary hemodynamics for 6 to 8 hours after 60 Co irradiation. Pulmonary lymph flow began to increase 2 hours after irradiation to about 1.7 times the base line level after 4 hours. The increase in pulmonary lymph flow was accompanied by decrease in plasma protein concentration and increase in protein concentration of the lung lymph, resulting in an apparent increase in the ratio of lymph/plasma protein concentration. Water and protein leak from the pulmonary vessels increased. A photomicroscopic observation revealed dilatation of the lymphatic vessels in the lung interstice and a mild pulmonary interstitial edema. Vascular damage, especially due to increased water and protein permeability of the lung capillary vessels, occurred immediately after 60 Co irradiation. (Ueda, J.)

  14. Chronologic Evaluation of Cerebral Hemodynamics by Dynamic Susceptibility Contrast Magnetic Resonance Imaging After Indirect Bypass Surgery for Moyamoya Disease.

    Science.gov (United States)

    Ishii, Yosuke; Tanaka, Yoji; Momose, Toshiya; Yamashina, Motoshige; Sato, Akihito; Wakabayashi, Shinichi; Maehara, Taketoshi; Nariai, Tadashi

    2017-12-01

    Although indirect bypass surgery is an effective treatment option for patients with ischemic-onset moyamoya disease (MMD), the time point after surgery at which the patient's hemodynamic status starts to improve and the time point at which the improvement reaches a maximum have not been known. The objective of the present study is to evaluate the hemodynamic status time course after indirect bypass surgery for MMD, using dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI). We retrospectively analyzed the cases of 25 patients with MMD (37 sides; mean age, 14.7 years; range, 3-36 years) who underwent indirect bypass surgery and repeated DSC-MRI measurement within 6 months after the operation. The difference in the mean transit time (MTT) between the target regions and the control region (cerebellum) was termed the MTT delay, and we measured the MTT delay's chronologic changes after surgery. The postoperative MTT delay was 1.81 ± 1.16 seconds within 1 week after surgery, 1.57 ± 1.01 at weeks 1-2, 1.55 ± 0.68 at weeks 2-4, 1.32 ± 0.68 at months 1-2, 0.95 ± 0.32 at months 2-3, and 0.77 ± 0.33 at months 3-6. Compared with the preoperative value (2.11 ± 0.98 seconds), the MTT delay decreased significantly from 2 to 4 weeks after surgery (P surgery began soon after surgery and gradually reached a maximum at 3 months after surgery. DSC-MRI detected small changes in hemodynamic improvement, which are suspected to be caused by the initiation of angiogenesis and arteriogenesis in the early postoperative period. Copyright © 2017. Published by Elsevier Inc.

  15. Myocardial hypertrophy and intracardial hemodynamics in children with bicuspid aortic valve

    Directory of Open Access Journals (Sweden)

    А. V. Kamenshchyk

    2017-08-01

    Full Text Available Bicuspid aortic valve is one of the most common congenital heart diseases with low manifestation in childhood and severe consequences in adults that determines the importance in early diagnostics of myocardial changes in this anomaly. According to the literature the polymorphisms in the genes of NFATC family could result both in impaired embriogenetic valves formation and development of postnatal myocardial hypertrophy. The aim of the study was to detect the early changes of intracardial hemodynamics at aortic valve in children with bicuspid aortic valve (BAV and establish their interrelations to the signs of myocardial hypertrophy in these children. Materials and methods: Dopplerograhphic study of basic intracardiac hemodynamics parameters in 38 children with BAV and in 28 children of control group was conducted. The results were processed statistically by Student’s t-test, correlation analysis and multiple regression. Results: In the result of study the moderate concentric left ventricle myocardial hypertrophy development was detected in 62 % of children with BAV which is accompanying to significant increasing of blood flow velocity and pressure gradient at aortic valve. There were not established significant correlations between the parameters of hemodynamics at valve and left ventricle’s posterior wall depth and septum depth whereas the highest inputs of these values were obtained in the left ventricle systolic dimension and volume and less in the hypertrophic signs. Conclusions: In children with BAV the moderate concentric myocardial hypertrophy with significant changes of intracardial hemodynamics at aortic valve takes place with the highest inputs in left ventricle volumetric values The obtained data serves as a substantiation for the treatment and prevention of it further development. bicuspid aortic valve; children; heart hypertrophy; dopplerechocardiography; hemodynamics; regression analysis

  16. Hemodynamic control of in patients with concomitant hypertensive disease during brain aneurysm clipping

    OpenAIRE

    Dzyuba, D.O.; Melnik, A.F.; Yavorsky, F.A.

    2018-01-01

    The article describes the state of the problem of hemodynamic control during brain aneurysm clipping in concomitant hypertensive disease. Author studies hemodynamic control by using magnesia therapy with the addition of clonidine solution and infusion of urapidil solution. Based on the results of the study, the advantages of urapidil infusion are given.

  17. [Cerebral hemodynamics in patients with neurosensory hearing loss before and after magnetotherapy].

    Science.gov (United States)

    Morenko, V M; Enin, I P

    2001-01-01

    Magnetotherapy effects on cerebral hemodynamics were studied using rheoencephalography (REG). When the treatment results and changes in cerebral hemodynamics were compared it was evident that normalization or improvement of vascular status in vertebrobasilar and carotid territories registered at REG results in better hearing. This confirms the role of vascular factor in pathogenesis of neurosensory hypoacusis of different etiology and effectiveness of magnetotherapy in such patients.

  18. Genome-Wide Linkage Analysis of Hemodynamic Parameters Under Mental and Physical Stress in Extended Omani Arab Pedigrees : The Oman Family Study

    NARCIS (Netherlands)

    Hassan, Mohammed O.; Jaju, Deepali; Voruganti, V. Saroja; Bayoumi, Riad A.; Albarwani, Sulayma; Al-Yahyaee, Saeed; Aslani, Afshin; Snieder, Harold; Lopez-Alvarenga, Juan C.; Al-Anqoudi, Zahir M.; Alizadeh, Behrooz Z.; Comuzzie, Anthony G.

    Background: We performed a genome-wide scan in a homogeneous Arab population to identify genomic regions linked to blood pressure (BP) and its intermediate phenotypes during mental and physical stress tests. Methods: The Oman Family Study subjects (N = 1277) were recruited from five extended

  19. Characterization of Hemodynamics in Patients with Idiopathic and Thromboembolic Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Carmelle V. Remillard

    2008-01-01

    Full Text Available Demographic and hemodynamic data from patients with idiopathic pulmonary arterial hypertension (IPAH and chronic thromboembolic pulmonary hypertension (CTEPH have not been systematically characterized to identify differences related to gender, age, race, disease severity, and drug response. Our goal was to define the distribution and relation of IPAH and CTEPH based on these criteria. Hemodynamic and demographic data from 242 IPAH patients and 90 CTEPH patients were collected and compared. IPAH incidence was greater in women, but men had a higher basal mean pulmonary arterial pressure (mPAP. mPAP was comparable among all IPAH ethnic groups. IPAH patients with no history of fenfluramine-phentermine use had a higher mPAP than users. Exercise-induced IPAH was apparent in 14.5% of IPAH patients. Only 9% of IPAH patients responded to inhaled nitric oxide with a ≥20% decrease in mPAP. Compared to CTEPH patients, mPAP was greater but average age of diagnosis was lower in IPAH patients. mPAP negatively correlated with age of diagnosis in IPAH patients only. These results indicate that elevated CO is not the main determinant of mPAP in both IPAH and CTEPH patients. However, the two patient groups differ in terms of their demographic and hemodynamic distributions, and according to the correlation between mPAP and other clinical hemodynamics and demographics.

  20. Hemodynamic Characteristics Including Pulmonary Hypertension at Rest and During Exercise Before and After Heart Transplantation

    Science.gov (United States)

    Lundgren, Jakob; Rådegran, Göran

    2015-01-01

    Background Little is known about the hemodynamic response to exercise in heart failure patients at various ages before and after heart transplantation (HT). This information is important because postoperative hemodynamics may be a predictor of survival. To investigate the hemodynamic response to HT and exercise, we grouped our patients based on preoperative age and examined their hemodynamics at rest and during exercise before and after HT. Methods and Results Ninety-four patients were evaluated at rest prior to HT with right heart catheterization at our laboratory. Of these patients, 32 were evaluated during slight supine exercise before and 1 year after HT. Postoperative evaluations were performed at rest 1 week after HT and at rest and during exercise at 4 weeks, 3 months, 6 months, and 1 year after HT. The exercise patients were divided into 2 groups based on preoperative age of ≤50 or >50 years. There were no age-dependent differences in the preoperative hemodynamic exercise responses. Hemodynamics markedly improved at rest and during exercise at 1 and 4 weeks, respectively, after HT; however, pulmonary and, in particular, ventricular filling pressures remained high during exercise at 1 year after HT, resulting in normalized pulmonary vascular resistance response but deranged total pulmonary vascular resistance response. Conclusions Our findings suggest that, (1) in patients with heart failure age ≤50 or >50 years may not affect the hemodynamic response to exercise to the same extent as in healthy persons, and (2) total pulmonary vascular resistance may be more adequate than pulmonary vascular resistance for evaluating the exercise response after HT. PMID:26199230

  1. Use of a Combination of Regional and General Anesthesia during Emergency Thoracic Surgery

    Directory of Open Access Journals (Sweden)

    V. Kh. Sharipova

    2015-01-01

    Full Text Available Objective: to elaborate multimodal anesthetic regimens and to evaluate their efficiency during emergency thoracic surgeries for varying injuries. Subjects and methods. A total of 116 patients emergently admitted to the Republican Research Center for Emergency Medical Care for chest traumatic injuries were examined and divided into 3 groups according to the mode of anesthesia. Results. Perioperative multimodal anesthetic regimens for emergency thoracic surgery, which involved all components of the pathogenesis of pain, were elaborated. Conclusion. The combination of regional and general anesthesia contributes to the smooth course of an intra operative period with minimal hemodynamic stress and it is cost effective in decreasing the use of narcotic anal gesics in the intraoperative period. 

  2. Hemodynamic effects of microgravity and their ground-based simulations

    Science.gov (United States)

    Lobachik, V. I.; Abrosimov, S. V.; Zhidkov, V. V.; Endeka, D. K.

    Hemodynamic effects of simulated microgravity were investigated, in various experiments, using radioactive isotopes, in which 40 healthy men, aged 35 to 42 years, took part. Blood shifts were evaluated qualitatively and quantitatively. Simulation studies included bedrest, head-down tilt (-5° and -15°), and vertical water immersion, it was found that none of the methods could entirely simulate hemodynamic effects of microgravity. Subjective sensations varied in a wide range. They cannot be used to identify reliably the effects of real and simulated microgravity. Renal fluid excretion in real and simulated microgravity was different in terms of volume and time. The experiments yielded data about the general pattern of circulation with blood displaced to the upper body.

  3. Some hemodynamic changes in the organism following exposure to X-and gamma-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bliznakov, V; Mikhailov, A [Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya

    1982-01-01

    The hemodynamic response to dosed exercise of 705 physicians, nurses, roentgen technicians and hospital attendants, working with X-ray diagnostic and therapeutic devices, was studied. The doses received on professional irradiation proved to be below the threshold ones. A significantly increased incidence was recorded in cases of atonic hemodynamic response, mainly in medical workers, employed in X-ray departments.

  4. Photoacoustic microscopy of cerebral hemodynamic and oxygen-metabolic responses to anesthetics

    Science.gov (United States)

    Cao, Rui; Li, Jun; Ning, Bo; Sun, Naidi; Wang, Tianxiong; Zuo, Zhiyi; Hu, Song

    2017-02-01

    General anesthetics are known to have profound effects on cerebral hemodynamics and neuronal activities. However, it remains a challenge to directly assess anesthetics-induced hemodynamic and oxygen-metabolic changes from the true baseline under wakefulness at the microscopic level, due to the lack of an enabling technology for high-resolution functional imaging of the awake mouse brain. To address this challenge, we have developed head-restrained photoacoustic microscopy (PAM), which enables simultaneous imaging of the cerebrovascular anatomy, total concentration and oxygen saturation of hemoglobin (CHb and sO2), and blood flow in awake mice. From these hemodynamic measurements, two important metabolic parameters, oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2), can be derived. Side-by-side comparison of the mouse brain under wakefulness and anesthesia revealed multifaceted cerebral responses to isoflurane, a volatile anesthetic widely used in preclinical research and clinical practice. Key observations include elevated cerebral blood flow (CBF) and reduced oxygen extraction and metabolism.

  5. Metabolic and hemodynamic activation of postischemic rat brain by cortical spreading depression.

    Science.gov (United States)

    Kocher, M

    1990-07-01

    Following transient ischemia of the brain, the coupling between somatosensory activation and the hemodynamic-metabolic response is abolished for a certain period despite the partial recovery of somatosensory evoked responses. To determine whether this disturbance is due to alterations of the stimulus-induced neuronal excitation or to a breakdown of the coupling mechanisms, cortical spreading depression was used as a metabolic stimulus in rats before and after ischemia. Adult rats were subjected to 30 min of global forebrain ischemia and 3-6 h of recirculation. EEG, cortical direct current (DC) potential, and laser-Doppler flow were continuously recorded. Local CBF (LCBF), local CMRglc (LCMRglc), regional tissue contents of ATP, glucose, and lactate, and regional pH were determined by quantitative autoradiography, substrate-induced bioluminescence, and fluorometry. Amplitude and frequency of the DC shifts did not differ between groups. In control animals, spreading depression induced a 77% rise in cortical glucose consumption, a 66% rise in lactate content, and a drop in tissue pH of 0.3 unit. ATP and glucose contents were not depleted. During the passage of DC shifts, transient increases (less than 2 min) in laser-Doppler flow were observed, followed by a post-spreading depression hypoperfusion. A comparable although less expressed pattern of hemodynamic and metabolic changes was observed in the postischemic rats. Although baseline LCMRglc was depressed after ischemia, it was activated 47% during spreading depression. Lactate increased by 26%, pH decreased by 0.3 unit, and ATP and glucose remained unchanged. The extent of the transient increase in laser-Doppler flow did not differ from that of the control group, and a post-spreading depression hypoperfusion was also found.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Numerical analysis of the effect of turbulence transition on the hemodynamic parameters in human coronary arteries.

    Science.gov (United States)

    Mahalingam, Arun; Gawandalkar, Udhav Ulhas; Kini, Girish; Buradi, Abdulrajak; Araki, Tadashi; Ikeda, Nobutaka; Nicolaides, Andrew; Laird, John R; Saba, Luca; Suri, Jasjit S

    2016-06-01

    Local hemodynamics plays an important role in atherogenesis and the progression of coronary atherosclerosis disease (CAD). The primary biological effect due to blood turbulence is the change in wall shear stress (WSS) on the endothelial cell membrane, while the local oscillatory nature of the blood flow affects the physiological changes in the coronary artery. In coronary arteries, the blood flow Reynolds number ranges from few tens to several hundreds and hence it is generally assumed to be laminar while calculating the WSS calculations. However, the pulsatile blood flow through coronary arteries under stenotic condition could result in transition from laminar to turbulent flow condition. In the present work, the onset of turbulent transition during pulsatile flow through coronary arteries for varying degree of stenosis (i.e., 0%, 30%, 50% and 70%) is quantitatively analyzed by calculating the turbulent parameters distal to the stenosis. Also, the effect of turbulence transition on hemodynamic parameters such as WSS and oscillatory shear index (OSI) for varying degree of stenosis is quantified. The validated transitional shear stress transport (SST) k-ω model used in the present investigation is the best suited Reynolds averaged Navier-Stokes turbulence model to capture the turbulent transition. The arterial wall is assumed to be rigid and the dynamic curvature effect due to myocardial contraction on the blood flow has been neglected. Our observations shows that for stenosis 50% and above, the WSSavg, WSSmax and OSI calculated using turbulence model deviates from laminar by more than 10% and the flow disturbances seems to significantly increase only after 70% stenosis. Our model shows reliability and completely validated. Blood flow through stenosed coronary arteries seems to be turbulent in nature for area stenosis above 70% and the transition to turbulent flow begins from 50% stenosis.

  7. Comparison of exercise and pharmacologic stress in myocardium perfusion imaging for CHD

    International Nuclear Information System (INIS)

    Li Zebo; Zheng Kangni; Cheng Xiaorui; Liu Hui; Cheng Yihai

    1995-01-01

    In order to provide a proper stress test, exercise, dipyridamole and ATP stress were compared. Three modalities were compared with respect to the detecting rate, methodology, hemodynamic and side effects. There are no significant differences in their ability of detecting coronary heart disease (CHD) (P>0.05). Exercise stress causes an increase in heart rate, blood pressure and myocardium oxygen consumption. Pharmacologic stress cause a slight increase in heart rate, but a decrease in blood pressure (P<0.01). Exercise stress is a basic method with good image quality, but it needs a special equipment. Pharmacologic stress is an easier, cheaper and safer method, particularly useful for patients unable to perform exercise test

  8. Hemodynamic comparison of mild and severe preeclampsia: concept of stroke systemic vascular resistance index.

    Science.gov (United States)

    Scardo, J; Kiser, R; Dillon, A; Brost, B; Newman, R

    1996-01-01

    Our purpose was to compare baseline hemodynamic parameters of mild and severe preeclampsia. Patients admitted to the Medical University Labor and Delivery Unit with the diagnosis of preeclampsia who had not received prior antihypertensive or magnesium sulfate therapy were recruited for noninvasive hemodynamic monitoring with thoracic electrical bioimpedance. After stabilization in the lateral recumbent position, hemodynamic monitoring was begun. Baseline hemodynamic parameters, mean arterial pressure (MAP), heart rate (HR), systemic vascular resistance index (SVRI), cardiac index (CI), and stroke index (SI) were recorded. Stroke systemic vascular resistance index (SSVRI), the resistance imposed by vasculature on each beat of the heart, was calculated for each patient by multiplying SVRI by HR. For statistical analysis, unpaired Student's t-tests (two-tailed) were utilized (P preclampsia appears to be a more intensely vasoconstricted state than mild preeclampsia. Although CI is inversely proportional to SVRI, increased HR in severe preeclampsia prevents this expected decrease in cardiac output.

  9. Measurement of hemodynamics during postural changes using a new wearable cephalic laser blood flowmeter.

    Science.gov (United States)

    Fujikawa, Tetsuya; Tochikubo, Osamu; Kura, Naoki; Kiyokura, Takanori; Shimada, Junichi; Umemura, Satoshi

    2009-10-01

    Patients with orthostatic hypotension have pathologic hemodynamics related to changes in body posture. A new cephalic laser blood flowmeter that can be worn on the tragus to investigate the hemodynamics upon rising from a sitting or squatting posture was developed. The relationship between cephalic hemodynamics and cerebral ischemic symptoms in 63 subjects in a sitting, squatting, and standing positions using the new device was evaluated. Transient decrease in blood pressure within 15 s after rising to an erect position possibly causes dizziness, syncope, and fall. Subjects exhibiting dizziness upon standing showed a significant decrease in the cephalic blood flow (CBF) and indirect beat-to-beat systolic blood pressure, as monitored by the Finometer, and a significant correlation was observed between the drop ratio (drop value on rising/mean value in the squatting position) of CBF and that of systolic blood pressure. This new wearable CBF-meter is potentially useful for estimating cephalic hemodynamics and objectively diagnosing cerebral ischemic symptoms of subjects in a standing posture.

  10. A Novel Stretch Sensor to Measure Venous Hemodynamics

    Directory of Open Access Journals (Sweden)

    Syrpailyne Wankhar

    2018-07-01

    Full Text Available Chronic venous insufficiency is a debilitating condition causing varicose veins and venous ulcers. The pathophysiology includes reflux and venous obstruction. The diagnosis is often made by clinical examination and confirmed by Venous Doppler studies. Plethysmography helps to quantitatively examine the reflux and diagnose the burden of deep venous pathology to better understand venous hemodynamics, which is not elicited by venous duplex examination alone. However, most of these tests are qualitative, expensive, and not easily available. In this paper, we demonstrate the potential use of a novel stretch sensor in the assessment of venous hemodynamics during different maneuvers by measuring the change in calf circumference. We designed the stretch sensor by using semiconductor strain gauges pasted onto a small metal bar to form a load cell. The elastic and Velcro material attached to the load cell form a belt. It converts the change in limb circumference to a proportional tension (force of distension when placed around the calf muscle. We recorded the change in limb circumference from arrays of stretch sensors by using an in-house data acquisition system. We calculated the venous volume (VV, venous filling index (VFI, ejection fraction (EF and residual venous volume (RVV on two normal subjects and on two patients to assess venous hemodynamics. The values (VV > 60 ml, VFI 60%, RVV 2ml/s, EF 35% in patients were comparable to those reported in the literature.

  11. Physical and virtual water transfers for regional water stress alleviation in China.

    Science.gov (United States)

    Zhao, Xu; Liu, Junguo; Liu, Qingying; Tillotson, Martin R; Guan, Dabo; Hubacek, Klaus

    2015-01-27

    Water can be redistributed through, in physical terms, water transfer projects and virtually, embodied water for the production of traded products. Here, we explore whether such water redistributions can help mitigate water stress in China. This study, for the first time to our knowledge, both compiles a full inventory for physical water transfers at a provincial level and maps virtual water flows between Chinese provinces in 2007 and 2030. Our results show that, at the national level, physical water flows because of the major water transfer projects amounted to 4.5% of national water supply, whereas virtual water flows accounted for 35% (varies between 11% and 65% at the provincial level) in 2007. Furthermore, our analysis shows that both physical and virtual water flows do not play a major role in mitigating water stress in the water-receiving regions but exacerbate water stress for the water-exporting regions of China. Future water stress in the main water-exporting provinces is likely to increase further based on our analysis of the historical trajectory of the major governing socioeconomic and technical factors and the full implementation of policy initiatives relating to water use and economic development. Improving water use efficiency is key to mitigating water stress, but the efficiency gains will be largely offset by the water demand increase caused by continued economic development. We conclude that much greater attention needs to be paid to water demand management rather than the current focus on supply-oriented management.

  12. Characteristics of intraoperative abnormal hemodynamics during resection of an intra-fourth ventricular tumor located on the dorsal medulla oblongata.

    Science.gov (United States)

    Ideguchi, Makoto; Kajiwara, Koji; Yoshikawa, Koichi; Sadahiro, Hirokazu; Nomura, Sadahiro; Fujii, Masami; Suzuki, Michiyasu

    2013-01-01

    Abnormal hemodynamics during extirpation of a para-medulla oblongata (MO) tumor is common and may be associated with direct vagal stimulation of the medullary circuit. However, resection of tumors on the dorsal MO may also induce hemodynamic instability without direct vagal stimulus. The objective of this study was to examine the characteristics of hemodynamic instability unrelated to vagal stimulus during dissection of an intra-fourth ventricular tumor with attachment to the dorsal MO. A retrospective analysis was performed in 13 patients. Abnormal hemodynamics were defined as a > 20% change from the means of the intraoperative mean arterial pressure (MAP) and heart rate (HR). Relationships of intraoperative hemodynamics were evaluated with various parameters, including the volume of the MO. Six patients (46.2%) had intraoperative hypertension during separation of the tumor bulk from the dorsal MO. The maximum MAP and HR in these patients were significantly greater than those in patients with normal hemodynamics (116.0 ± 18.0 mmHg versus 85.6 ± 6.5 mmHg; 124.3 ± 22.8 bpm versus 90.5 ± 14.7 bpm). All six cases with abnormal hemodynamics showed hemodynamic fluctuation during separation of the tumor bulk from the dorsal MO. The preoperative volume of the MO in these patients was 1.11 cc less than that in patients with normal hemodynamics, but the volume after tumor resection was similar in the two groups (5.23 cc and 5.12 cc). This suggests that the MO was compressed by the conglutinate tumor bulk, with resultant fluctuation of hemodynamics. Recognition of and preparation for this phenomenon are important for surgery on a tumor located on the dorsal MO.

  13. Differentiation of Constriction and Restriction: Complex Cardiovascular Hemodynamics.

    Science.gov (United States)

    Geske, Jeffrey B; Anavekar, Nandan S; Nishimura, Rick A; Oh, Jae K; Gersh, Bernard J

    2016-11-29

    Differentiation of constrictive pericarditis (CP) from restrictive cardiomyopathy (RCM) is a complex and often challenging process. Because CP is a potentially curable cause of heart failure and therapeutic options for RCM are limited, distinction of these 2 conditions is critical. Although different in regard to etiology, prognosis, and treatment, CP and RCM share a common clinical presentation of predominantly right-sided heart failure, in the absence of significant left ventricular systolic dysfunction or valve disease, due to impaired ventricular diastolic filling. Fundamental to the diagnosis of either condition is a clear understanding of the underlying hemodynamic principles and pathophysiology. We present a contemporary review of the pathophysiology, hemodynamics, diagnostic assessment, and therapeutic approach to patients presenting with CP and RCM. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. A Novel Technique for Identifying Patients with ICU Needs Using Hemodynamic Features

    Directory of Open Access Journals (Sweden)

    A. Jalali

    2012-01-01

    Full Text Available Identification of patients requiring intensive care is a critical issue in clinical treatment. The objective of this study is to develop a novel methodology using hemodynamic features for distinguishing such patients requiring intensive care from a group of healthy subjects. In this study, based on the hemodynamic features, subjects are divided into three groups: healthy, risky and patient. For each of the healthy and patient subjects, the evaluated features are based on the analysis of existing differences between hemodynamic variables: Blood Pressure and Heart Rate. Further, four criteria from the hemodynamic variables are introduced: circle criterion, estimation error criterion, Poincare plot deviation, and autonomic response delay criterion. For each of these criteria, three fuzzy membership functions are defined to distinguish patients from healthy subjects. Furthermore, based on the evaluated criteria, a scoring method is developed. In this scoring method membership degree of each subject is evaluated for the three classifying groups. Then, for each subject, the cumulative sum of membership degree of all four criteria is calculated. Finally, a given subject is classified with the group which has the largest cumulative sum. In summary, the scoring method results in 86% sensitivity, 94.8% positive predictive accuracy and 82.2% total accuracy.

  15. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment.

    Science.gov (United States)

    Xiang, J; Tutino, V M; Snyder, K V; Meng, H

    2014-10-01

    Image-based computational fluid dynamics holds a prominent position in the evaluation of intracranial aneurysms, especially as a promising tool to stratify rupture risk. Current computational fluid dynamics findings correlating both high and low wall shear stress with intracranial aneurysm growth and rupture puzzle researchers and clinicians alike. These conflicting findings may stem from inconsistent parameter definitions, small datasets, and intrinsic complexities in intracranial aneurysm growth and rupture. In Part 1 of this 2-part review, we proposed a unifying hypothesis: both high and low wall shear stress drive intracranial aneurysm growth and rupture through mural cell-mediated and inflammatory cell-mediated destructive remodeling pathways, respectively. In the present report, Part 2, we delineate different wall shear stress parameter definitions and survey recent computational fluid dynamics studies, in light of this mechanistic heterogeneity. In the future, we expect that larger datasets, better analyses, and increased understanding of hemodynamic-biologic mechanisms will lead to more accurate predictive models for intracranial aneurysm risk assessment from computational fluid dynamics. © 2014 by American Journal of Neuroradiology.

  16. Temperature and blood flow distribution in the human leg during passive heat stress.

    Science.gov (United States)

    Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José

    2016-05-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.

  17. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    Science.gov (United States)

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Sequential change of hemodynamic reserve in patients with major cerebral artery occlusion of severe stenosis

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Y.; Yamaguchi, T.; Tsuchiya, T. (National Cardiovascular Center, Osaka (Japan). Cerebrovascular Div.); Minematsu, K. (National Cardiovascular Center, Osaka (Japan). Research Inst.); Nishimura, T. (National Cardiovascular Inst., Osaka (Japan). Dept. of Diagnostic Radiology)

    1992-02-01

    To identify regional vasodilatory capacity and its sequential change, we evaluated prospectively a total of 78 acetazolamide tests in 51 patients with occlusion or greater than 75% stenosis of the carotid or middle cerebral arteries. The relative distribution of cerebral blood flow was determined by single photon emission computed tomography using N-isopropyl-p-({sup 123}I)-iodoamphetamine before and after intravenous injection of acetazolamide. Reduced vasodilatory capacity was demonstrated in 20 patients (38%), including 5 patients with hemodynamic transient ischemic attacks or infarction. Follow-up acetazolamide tests revealed asymptomatic progression of the arterial lesion (from stenosis to occlusion) in 1 patient and almost complete improvement of vasodilatory capacity in 5 patients, including 3 without surgical intervention. During an average follow-up period of 18.5 months, 4 patients died from cardiac causes or neoplasm; no neurovascular events occurred. Much larger numbers of patients with longer observation periods will be necessary to clarify the contribution of chronic hemodynamic failure to subsequent stroke. However, the present data indicate that the acetazolamide test is useful for assessing the course of high grade stenosis or occlusion of major cerebral arteries. (orig.).

  19. Towards the evaluation of the pathological state of ascending thoracic aneurysms: integration of in-vivo measurements and hemodynamic simulations

    Science.gov (United States)

    Boccadifuoco, Alessandro; Mariotti, Alessandro; Celi, Simona; Martini, Nicola; Salvetti, Maria Vittoria

    2016-11-01

    Ascending thoracic aortic aneurysms are cardiovascular diseases consisting in a dilation of the ascending thoracic aorta. Since indicating a weakness of the arterial wall, they can lead to major complications with significant mortality rate. Clinical decisions about surgery are currently based on the maximum aortic diameter, but this single index does not seem a reliable indicator of the pathological state of the aorta. Numerical simulations of the blood flow inside the aneurysm may give supplementary information by quantifying important indices that are difficult to be measured, like the wall shear stress. Our aim is to develop an efficient platform in which in-vivo measurements are used to perform the hemodynamic simulations on a patient-specific basis. In particular, we used real geometries of thoracic aorta and focused on the use of clinical information to impose accurate boundary conditions at the inlet/outlets of the computational model. Stochastic analysis was also performed, to evaluate how uncertainties in the boundary parameters affect the main hemodynamic indicators, by considering both rigid and deformable walls. Stochastic calibration of numerical parameters against clinical data is in progress and results will be possibly shown.

  20. Measurements of coherent hemodynamics to enrich the physiological information provided by near-infrared spectroscopy (NIRS) and functional MRI

    Science.gov (United States)

    Sassaroli, Angelo; Tgavalekos, Kristen; Pham, Thao; Krishnamurthy, Nishanth; Fantini, Sergio

    2018-02-01

    Hemodynamic-based neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) sense hemoglobin concentration in cerebral tissue. The local concentration of hemoglobin, which is differentiated into oxy- and deoxy-hemoglobin by NIRS, features spontaneous oscillations over time scales of 10-100 s in response to a number of local and systemic physiological processes. If one of such processes becomes the dominant source of cerebral hemodynamics, there is a high coherence between this process and the associated hemodynamics. In this work, we report a method to identify such conditions of coherent hemodynamics, which may be exploited to study and quantify microvasculature and microcirculation properties. We discuss how a critical value of significant coherence may depend on the specific data collection scheme (for example, the total acquisition time) and the nature of the hemodynamic data (in particular, oxy- and deoxy-hemoglobin concentrations measured with NIRS show an intrinsic level of correlation that must be taken into account). A frequency-resolved study of coherent hemodynamics is the basis for the new technique of coherent hemodynamics spectroscopy (CHS), which aims to provide measures of cerebral blood flow and cerebral autoregulation. While these concepts apply in principle to both fMRI and NIRS data, in this article we focus on NIRS data.

  1. Non-invasive prediction of hemodynamically significant coronary artery stenoses by contrast density difference in coronary CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Hell, Michaela M., E-mail: michaela.hell@uk-erlangen.de [Department of Cardiology, University of Erlangen (Germany); Dey, Damini [Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Taper Building, Room A238, 8700 Beverly Boulevard, Los Angeles, CA 90048 (United States); Marwan, Mohamed; Achenbach, Stephan; Schmid, Jasmin; Schuhbaeck, Annika [Department of Cardiology, University of Erlangen (Germany)

    2015-08-15

    Highlights: • Overestimation of coronary lesions by coronary computed tomography angiography and subsequent unnecessary invasive coronary angiography and revascularization is a concern. • Differences in plaque characteristics and contrast density difference between hemodynamically significant and non-significant stenoses, as defined by invasive fractional flow reserve, were assessed. • At a threshold of ≥24%, contrast density difference predicted hemodynamically significant lesions with a specificity of 75%, sensitivity of 33%, PPV of 35% and NPV of 73%. • The determination of contrast density difference required less time than transluminal attenuation gradient measurement. - Abstract: Objectives: Coronary computed tomography angiography (CTA) allows the detection of obstructive coronary artery disease. However, its ability to predict the hemodynamic significance of stenoses is limited. We assessed differences in plaque characteristics and contrast density difference between hemodynamically significant and non-significant stenoses, as defined by invasive fractional flow reserve (FFR). Methods: Lesion characteristics of 59 consecutive patients (72 lesions) in whom invasive FFR was performed in at least one coronary artery with moderate to high-grade stenoses in coronary CTA were evaluated by two experienced readers. Coronary CTA data sets were acquired on a second-generation dual-source CT scanner using retrospectively ECG-gated spiral acquisition or prospectively ECG-triggered axial acquisition mode. Plaque volume and composition (non-calcified, calcified), remodeling index as well as contrast density difference (defined as the percentage decline in luminal CT attenuation/cross-sectional area over the lesion) were assessed using a semi-automatic software tool (Autoplaq). Additionally, the transluminal attenuation gradient (defined as the linear regression coefficient between intraluminal CT attenuation and length from the ostium) was determined

  2. Differential hemodynamic effects of exercise and volume expansion in people with and without heart failure

    DEFF Research Database (Denmark)

    Andersen, Mads Jønsson; Olson, Thomas P; Melenovsky, Vojtech

    2015-01-01

    BACKGROUND:Invasive hemodynamic exercise testing is commonly used in the evaluation of patients with suspected heart failure with preserved ejection fraction (HFpEF) or pulmonary hypertension. Saline loading has been suggested as an alternative provocative maneuver, but the hemodynamic changes...

  3. Prognostic utility of sestamibi lung uptake does not require adjustment for stress-related variables: A retrospective cohort study

    International Nuclear Information System (INIS)

    Leslie, William D; Yogendran, Marina S; Ward, Linda M; Nour, Khaled A; Metge, Colleen J

    2006-01-01

    Increased 99m Tc-sestamibi stress lung-to-heart ratio (sLHR) has been shown to predict cardiac outcomes similar to pulmonary uptake of thallium. Peak heart rate and use of pharmacologic stress affect the interpretation of lung thallium uptake. The current study was performed to determine whether 99m Tc-sestamibi sLHR measurements are affected by stress-related variables, and whether this in turn affects prognostic utility. sLHR was determined in 718 patients undergoing 99m Tc-sestamibi SPECT stress imaging. sLHR was assessed in relation to demographics, hemodynamic variables and outcomes (mean follow up 5.6 ± 1.1 years). Mean sLHR was slightly greater in males than in females (P < 0.01) and also showed a weak negative correlation with age (P < 0.01) and systolic blood pressure (P < 0.01), but was unrelated to stress method or heart rate at the time of injection. In patients undergoing treadmill exercise, sLHR was also positively correlated with peak workload (P < 0.05) but inversely with double product (P < 0.05). The combined explanatory effect of sex, age and hemodynamic variables on sLHR was less than 10%. The risk of acute myocardial infarction (AMI) or death increased by a factor of 1.7–1.8 for each SD increase in unadjusted sLHR, and was unaffected by adjustment for sex, age and hemodynamic variables (hazard ratios 1.6–1.7). The area under the ROC curve for the unadjusted sLHR was 0.65 (95% CI 0.59–0.71, P < 0.0001) and was unchanged for the adjusted sLHR (0.65, 95% CI 0.61–0.72, P < 0.0001). Stress-related variables have only a weak effect on measured sLHR. Unadjusted and adjusted sLHR provide equivalent prognostic information for prediction of AMI or death

  4. Hemodynamic stroke: A rare pitfall in cranio cervical junction surgery

    Directory of Open Access Journals (Sweden)

    Jan Frederick Cornelius

    2014-01-01

    Full Text Available Surgical C1C2-stabilization may be complicated by arterial-arterial embolism or arterial injury. Another potential complication is hemodynamic stroke. The latter might be induced in patients with poor posterior fossa collateralization (risk factor 1 when the vertebral artery (VA is compressed during reduction (risk factor 2. We report a clinical case where this rare situation occurred: A 72-year old patient was undergoing C1C2-stabilization for subluxation due to rheumatoid arthritis. Preoperative computed tomography angiography (CTA had shown poor collaterals in the posterior fossa. Furthermore, intraoperative Doppler ultrasound (US detected unilateral VA occlusion during reduction. It appeared to be a high-risk situation for hemodynamic stroke. Surgical inspection of the VA found osteofibrous compressing elements. Arterial decompression was performed resulting in the normal flow as detected by US. Subsequently, C1C2-stabilization could be realized. The clinical and radiological outcome was very favorable. In C1C2-stabilization precise analysis of preoperative CTA and intraoperative US are important to detect risk factors of hemodynamic stroke. Using these data may prevent this rare, but potentially life-threatening complication.

  5. Ionizing radiation occupational exposure in the hemodynamics services; Exposicao ocupacional as radiacoes ionizantes nos servicos de hemodinamica

    Energy Technology Data Exchange (ETDEWEB)

    Gronchi, Claudia Carla

    2004-07-01

    The purpose of this research is to study the ionizing radiation occupational exposure in the hemodynamic services of two large scale hospitals (Hospital A and Hospital B) of the Sao Paulo city. The research looked into annual doses that 279 professionals of the hemodynamic services were exposed to between 1991 and 2002. The data analyzed was collected from the database of the Instituto de Pesquisas Energeticas e Nucleares (IPEN) for Hospital A, and from the Radiological Protection Department of Hospital B. Besides this, measures of hands and crystalline lens equivalent doses were performed during hemodynamic procedures of the physicians, assistant physicians and nursing assistants with TL dosimeters (CaSO{sub 4}:Dy + Teflon R) produced at IPEN. The safety procedures adopted by the hospitals were verified with the aid of a specific questionnaire for the hemodynamic services. Finally, a profile of the professionals that work in cardiac catheterism laboratories of the hemodynamic services was delineated, considering the variables of individual monitoring time, age and sex. This study allowed for observation of the behavior of the professionals' annual doses of these hemodynamic services in relation to the Comissao Nacional de Energia Nuclear and the Secretaria de Vigilancia Sanitaria limits. It showed that the annual doses of the same specialized occupations would vary from one hospital to another. It further showed the need of individual monitoring of the physicians' unprotected body parts (hands and crystalline lens) during the hemodynamic procedures. (author)

  6. Is there a specific hemodynamic effect in reflexology? A systematic review of randomized controlled trials.

    Science.gov (United States)

    Jones, Jenny; Thomson, Patricia; Irvine, Kathleen; Leslie, Stephen J

    2013-04-01

    Reflexology claims that the feet are representative of the body and that massage to specific points of the feet increases blood supply to "mapped" organs in the body. This review provides the first systematic evaluation of existing reflexology randomized controlled trials (RCTs) to determine whether there is any evidence to suggest the existence of a reflexology treatment-related hemodynamic effect; to examine whether reflexology researchers used study designs that systematically controlled for nonspecific effects in order to isolate this specific component; and to highlight some of the methodological challenges that need to be overcome to demonstrate specific and beneficial hemodynamic effects. Fifty-two RCTs of reflexology published from 1990 to September 2011 were initially retrieved. Cardiorespiratory Department, Highland Heartbeat Centre, Raigmore Hospital, Inverness. Adult subjects. Studies using reflexology foot massage techniques as the intervention versus sham reflexology treatment, simple foot massage, conventional treatment, or no treatment as the control were then selected. OUTCOME MEASURES included any hemodynamic parameter potentially involved in the regulation of circulating blood volume and flow, including heart rate and systolic and diastolic arterial blood pressure. Seven RCTs suggested that reflexology has an effect on selected cardiovascular parameters; however, five of these delivered the reflexology intervention as a whole complex treatment, with the data collector often delivering the intervention themselves. This systematic review found that although reflexology has been shown to have an effect on selected hemodynamic variables, the lack of methodological control for nonspecific general massage effects means that there is little convincing evidence at this time to suggest the existence of a specific treatment-related hemodynamic effect. Furthermore, the review found that few studies of reflexology controlled for nonspecific effects in order

  7. Influence of the tilt angle of Percutaneous Aortic Prosthesis on Velocity and Shear Stress Fields

    Directory of Open Access Journals (Sweden)

    Bruno Alvares de Azevedo Gomes

    Full Text Available Abstract Background: Due to the nature of the percutaneous prosthesis deployment process, a variation in its final position is expected. Prosthetic valve placement will define the spatial location of its effective orifice in relation to the aortic annulus. The blood flow pattern in the ascending aorta is related to the aortic remodeling process, and depends on the spatial location of the effective orifice. The hemodynamic effect of small variations in the angle of inclination of the effective orifice has not been studied in detail. Objective: To implement an in vitro simulation to characterize the hydrodynamic blood flow pattern associated with small variations in the effective orifice inclination. Methods: A three-dimensional aortic phantom was constructed, reproducing the anatomy of one patient submitted to percutaneous aortic valve implantation. Flow analysis was performed by use of the Particle Image Velocimetry technique. The flow pattern in the ascending aorta was characterized for six flow rate levels. In addition, six angles of inclination of the effective orifice were assessed. Results: The effective orifice at the -4° and -2° angles directed the main flow towards the anterior wall of the aortic model, inducing asymmetric and high shear stress in that region. However, the effective orifice at the +3° and +5° angles mimics the physiological pattern, centralizing the main flow and promoting a symmetric distribution of shear stress. Conclusion: The measurements performed suggest that small changes in the angle of inclination of the percutaneous prosthesis aid in the generation of a physiological hemodynamic pattern, and can contribute to reduce aortic remodeling.

  8. Impact of Diversity of Morphological Characteristics and Reynolds number on Local Hemodynamics in Basilar Aneurysms

    DEFF Research Database (Denmark)

    Rafat, Marjan; Dabagh, Mahsa; Heller, Martin

    2018-01-01

    management. Existing aneurysm hemodynamics studies generally evaluate limited geometries or Reynolds numbers (Re), which are difficult to apply to a wide range of patient-specific cases. We focused on the association between hemodynamic characteristics and morphology. We assessed several two-dimensional (2D...

  9. Journal of Clinical Monitoring and Computing 2015 end of year summary : cardiovascular and hemodynamic monitoring

    NARCIS (Netherlands)

    Bendjelid, Karim; Rex, Steffen; Scheeren, Thomas; Saugel, Bernd

    Hemodynamic monitoring is essential in critically ill patients. In this regard, the Journal of Clinical Monitoring and Computing (JCMC) has become an ideal platform for publishing cardiovascular and hemodynamic monitoring-related research, as reflected by an increasing number of articles related to

  10. Physiological basis of clinically used coronary hemodynamic indices

    NARCIS (Netherlands)

    Spaan, Jos A. E.; Piek, Jan J.; Hoffman, Julien I. E.; Siebes, Maria

    2006-01-01

    In deriving clinically used hemodynamic indices such as fractional flow reserve and coronary flow velocity reserve, simplified models of the coronary circulation are used. In particular, myocardial resistance is assumed to be independent of factors such as heart contraction and driving pressure.

  11. Disorders of cardiac hemodynamic in attack period of bronchial asthma in children

    Directory of Open Access Journals (Sweden)

    Kondratiev V.А.

    2016-05-01

    Full Text Available By dopplerechocardiography method there was studied functional state of cardiac ventricles and character of hemodynamic disorders in 48 patients aged 5-17 years in attack period of moderately-severe and severe bronchial asthma. Group of comparison included 40 healthy peers. Disorders of central and peripheral hemodynamic in attack period of bronchial asthma in children were accompanied both by systolic and diastolic dysfunction of the left and right heart ventricles, herewith right ventricle was functioning in the mode of hyperdynamic, and left one – in the mode of hypodynamic. Combined systolic-diastolic variant of dysfunction both of right and left ventricles was developing in 58,3% of patients with moderately-severe and in 91,6% of patients with severe bronchial asthma. In the attack period of bronchial asthma in children equal directionality of systolic and diastolic dysfunction of heart ventricles was developing; this was characterized by synchronization of their function. Assessment of functional interaction of the ventricles under conditions of severe asthma attack showed direct and high (r=0,67 correlative interaction between finding of Tei index of the left and right ventricles, which characterize their systolic function; this, under conditions of increased hemodynamic pre-loading testified to compensatory increase of systolic interaction of ventricles. Direct and high (r=0,69 correlative interaction between time indices of isovolumic relaxation of the left and right ventricles, characterizing their diastolic function, testified to compensatory increase of diastolic interaction of ventricles under conditions of increase of hemodynamic post-loading. Imbalance of central and peripheral link of hemodynamic in attack period of bronchial asthma in children testified to development of cardiac insufficiency, which was compensated predominantly at the expense of increase of heart contractions rate.

  12. Re-examine tumor-induced alterations in hemodynamic responses of BOLD fMRI. Implications in presurgical brain mapping

    International Nuclear Information System (INIS)

    Wang, Liya; Ali, Shazia; Fa, Tianning; Mao, Hui; Dandan, Chen; Olson, Jeffrey

    2012-01-01

    Background: Blood oxygenation level dependent (BOLD) fMRI is used for presurgical functional mapping of brain tumor patients. Abnormal tumor blood supply may affect hemodynamic responses and BOLD fMRI signals. Purpose: To perform a multivariate and quantitative investigation of the effect of brain tumors on the hemodynamic responses and its impact on BOLD MRI signal time course, data analysis in order to better understand tumor-induced alterations in hemodynamic responses, and accurately mapping cortical regions in brain tumor patients. Material and Methods: BOLD fMRI data from 42 glioma patients who underwent presurgical mapping of the primary motor cortex (PMC) with a block designed finger tapping paradigm were analyzed, retrospectively. Cases were divided into high grade (n = 24) and low grade (n = 18) groups based on pathology. The tumor volume and distance to the activated PMCs were measured. BOLD signal time courses from selected regions of interest (ROIs) in the PMCs of tumor affected and contralateral unaffected hemispheres were obtained from each patient. Tumor-induced changes of BOLD signal intensity and time to peak (TTP) of BOLD signal time courses were analyzed statistically. Results: The BOLD signal intensity and TTP in the tumor-affected PMCs are altered when compared to that of the unaffected hemisphere. The average BOLD signal level is statistically significant lower in the affected PMCs. The average TTP in the affected PMCs is shorter in the high grade group, but longer in the low grade tumor group compared to the contralateral unaffected hemisphere. Degrees of alterations in BOLD signal time courses are related to both the distance to activated foci and tumor volume with the stronger effect in tumor distance to activated PMC. Conclusion: Alterations in BOLD signal time courses are strongly related to the tumor grade, the tumor volume, and the distance to the activated foci. Such alterations may impair accurate mapping of tumor-affected functional

  13. A dimensionless parameter for classifying hemodynamics in intracranial

    Science.gov (United States)

    Asgharzadeh, Hafez; Borazjani, Iman

    2015-11-01

    Rupture of an intracranial aneurysm (IA) is a disease with high rates of mortality. Given the risk associated with the aneurysm surgery, quantifying the likelihood of aneurysm rupture is essential. There are many risk factors that could be implicated in the rupture of an aneurysm. However, the most important factors correlated to the IA rupture are hemodynamic factors such as wall shear stress (WSS) and oscillatory shear index (OSI) which are affected by the IA flows. Here, we carry out three-dimensional high resolution simulations on representative IA models with simple geometries to test a dimensionless number (first proposed by Le et al., ASME J Biomech Eng, 2010), denoted as An number, to classify the flow mode. An number is defined as the ratio of the time takes the parent artery flow transports across the IA neck to the time required for vortex ring formation. Based on the definition, the flow mode is vortex if An>1 and it is cavity if AnOSI on the human subject IA. This work was supported partly by the NIH grant R03EB014860, and the computational resources were partly provided by CCR at UB. We thank Prof. Hui Meng and Dr. Jianping Xiang for providing us the database of aneurysms and helpful discussions.

  14. Hemodynamics in diabetic orthostatic hypotension

    DEFF Research Database (Denmark)

    Hilsted, J; Parving, H H; Christensen, N J

    1981-01-01

    Hemodynamic variables (blood pressure, cardiac output, heart rate, plasma volume, splanchnic blood flow, and peripheral subcutaneous blood flow) and plasma concentrations of norepinephrine, epinephrine, and renin were measured in the supine position and after 30 min of quiet standing. This was done...... in normal subjects (n = 7) and in juvenile-onset diabetic patients without neuropathy (n = 8), with slight neuropathy (decreased beat-to-beat variation in heart rate during hyperventilation) (n = 8), and with severe neuropathy including orthostatic hypotension (n = 7). Blood pressure decreased precipitously...

  15. Hemodynamic parameters change earlier than tissue oxygen tension in hemorrhage.

    Science.gov (United States)

    Pestel, Gunther J; Fukui, Kimiko; Kimberger, Oliver; Hager, Helmut; Kurz, Andrea; Hiltebrand, Luzius B

    2010-05-15

    Untreated hypovolemia results in impaired outcome. This study tests our hypothesis whether general hemodynamic parameters detect acute blood loss earlier than monitoring parameters of regional tissue beds. Eight pigs (23-25 kg) were anesthetized and mechanically ventilated. A pulmonary artery catheter and an arterial catheter were inserted. Tissue oxygen tension was measured with Clark-type electrodes in the jejunal and colonic wall, in the liver, and subcutaneously. Jejunal microcirculation was assessed by laser Doppler flowmetry (LDF). Intravascular volume was optimized using difference in pulse pressure (dPP) to keep dPP below 13%. Sixty minutes after preparation, baseline measurements were taken. At first, 5% of total blood volume was withdrawn, followed by another 5% increment, and then in 10% increments until death. After withdrawal of 5% of estimated blood volume, dPP increased from 6.1% +/- 3.0% to 20.8% +/- 2.7% (P < 0.01). Mean arterial pressure (MAP), mean pulmonary artery pressure (PAP) and pulmonary artery occlusion pressure (PAOP) decreased with a blood loss of 10% (P < 0.01). Cardiac output (CO) changed after a blood loss of 20% (P < 0.05). Tissue oxygen tension in central organs, and blood flow in the jejunal muscularis decreased (P < 0.05) after a blood loss of 20%. Tissue oxygen tension in the skin, and jejunal mucosa blood flow decreased (P < 0.05) after a blood loss of 40% and 50%, respectively. In this hemorrhagic pig model systemic hemodynamic parameters were more sensitive to detect acute hypovolemia than tissue oxygen tension measurements or jejunal LDF measurements. Acute blood loss was detected first by dPP. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Year in review in journal of clinical monitoring and computing 2014 : cardiovascular and hemodynamic monitoring

    NARCIS (Netherlands)

    Bendjelid, Karim; Rex, Steffen; Scheeren, Thomas; Critchley, Lester

    Hemodynamic instability is a common sign in critically ill patients and its importance has been increasingly recognized during the last 20 years. Indeed, It is now appreciated that an adequate hemodynamic monitoring associated to reactive vigorous therapy is able to decrease the present ominous

  17. Predicting ICU hemodynamic instability using continuous multiparameter trends.

    Science.gov (United States)

    Cao, Hanqing; Eshelman, Larry; Chbat, Nicolas; Nielsen, Larry; Gross, Brian; Saeed, Mohammed

    2008-01-01

    Identifying hemodynamically unstable patients in a timely fashion in intensive care units (ICUs) is crucial because it can lead to earlier interventions and thus to potentially better patient outcomes. Current alert algorithms are typically limited to detecting dangerous conditions only after they have occurred and suffer from high false alert rates. Our objective was to predict hemodynamic instability at least two hours before a major clinical intervention (e.g., vasopressor administration), while maintaining a low false alert rate. From the MIMIC II database, containing ICU minute-by-minute heart rate (HR) and invasive arterial blood pressure (BP) monitoring trend data collected between 2001 and 2005, we identified 132 stable and 104 unstable patients that met our stability-instability criteria and had sufficient data points. We first derived additional physiological parameters of shock index, rate pressure product, heart rate variability, and two measures of trending based on HR and BP. Then we developed 220 statistical features and systematically selected a small set to use for classification. We applied multi-variable logistic regression modeling to do classification and implemented validation via bootstrapping. Area under receiver-operating curve (ROC) 0.83+/-0.03, sensitivity 0.75+/-0.06, and specificity 0.80+/-0.07; if the specificity is targeted at 0.90, then the sensitivity is 0.57+/-0.07. Based on our preliminary results, we conclude that the algorithms we developed using HR and BP trend data may provide a promising perspective toward reliable predictive alerts for hemodynamically unstable patients.

  18. Estimation of equivalent dose on the ends of hemodynamic physicians during neurological procedures

    International Nuclear Information System (INIS)

    Squair, Peterson L.; Souza, Luiz C. de; Oliveira, Paulo Marcio C. de

    2005-01-01

    The estimation of doses in the hands of physicists during hemodynamic procedures is important to verify the application of radiation protection related to the optimization and limit of dose, principles required by the Portaria 453/98 of Ministry of Health/ANVISA, Brazil. It was checked the levels of exposure of the hands of doctors during the use of the equipment in hemodynamic neurological procedures through dosimetric rings with thermoluminescent dosemeters detectors of LiF: Mg, Ti (TLD-100), calibrated in personal Dose equivalent HP (0.07). The average equivalent dose in the end obtained was 41.12. μSv per scan with an expanded uncertainty of 20% for k = 2. This value is relative to the hemodynamic Neurology procedure using radiological protection procedures accessible to minimize the dose

  19. Hemodynamic and clinical onset in patients with hereditary pulmonary arterial hypertension and BMPR2 mutations

    Directory of Open Access Journals (Sweden)

    Tiede Henning

    2011-07-01

    Full Text Available Abstract Background Mutations in the bone morphogenetic protein receptor 2 (BMPR2 gene can lead to idiopathic pulmonary arterial hypertension (IPAH. This study prospectively screened for BMPR2 mutations in a large cohort of PAH-patients and compared clinical features between BMPR2 mutation carriers and non-carriers. Methods Patients have been assessed by right heart catheterization and genetic testing. In all patients a detailed family history and pedigree analysis have been obtained. We compared age at diagnosis and hemodynamic parameters between carriers and non-carriers of BMPR2 mutations. In non-carriers with familial aggregation of PAH further genes/gene regions as the BMPR2 promoter region, the ACVRL1, Endoglin, and SMAD8 genes have been analysed. Results Of the 231 index patients 22 revealed a confirmed familial aggregation of the disease (HPAH, 209 patients had sporadic IPAH. In 49 patients (86.3% of patients with familial aggregation and 14.3% of sporadic IPAH mutations of the BMPR2 gene have been identified. Twelve BMPR2 mutations and 3 unclassified sequence variants have not yet been described before. Mutation carriers were significantly younger at diagnosis than non-carriers (38.53 ± 12.38 vs. 45.78 ± 11.32 years, p Conclusion This study identified in a large prospectively assessed cohort of PAH- patients new BMPR2 mutations, which have not been described before and confirmed previous findings that mutation carriers are younger at diagnosis with a more severe hemodynamic compromise. Thus, screening for BMPR2 mutations may be clinically useful.

  20. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chunfa, E-mail: chunfa.huang@case.edu [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Bruggeman, Leslie A. [Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States); Hydo, Lindsey M. [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Miller, R. Tyler [Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University (United States); Department of Medicine, Case Western Reserve University (United States); Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, OH 44106 (United States)

    2012-06-10

    The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD{sub 1}, and PLD{sub 2} to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD{sub 1} but not PLD{sub 2}. The inhibition of shear stress-induced c-Src phosphorylation by PP{sub 2} (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.

  1. The hemodynamic basis of exercise intolerance in tricuspid regurgitation

    DEFF Research Database (Denmark)

    Andersen, Mads Jønsson; Nishimura, Rick a; Borlaug, Barry A

    2014-01-01

    ≥3 TR underwent high-fidelity invasive hemodynamic exercise testing with simultaneous expired gas analysis and were compared with 13 age- and sex-matched controls. At rest, TR subjects had lower pulmonary blood flow (3.6±0.4 versus 5.1±1.9 L/min; P=0.01), increased right atrial pressure (12±5 versus.......001). TR subjects displayed higher pulmonary capillary wedge pressure with exercise, but this was solely because of RA hypertension (27±9 versus 8±3 mm Hg; P......BACKGROUND:Patients with severe tricuspid regurgitation (TR) frequently present with exertional fatigue and dyspnea, but the hemodynamic basis for exercise limitation in people with TR remains unclear. METHODS AND RESULTS:Twelve subjects with normal left ventricular (LV) ejection fraction and grade...

  2. Patient-Specific Modeling of Intraventricular Hemodynamics

    Science.gov (United States)

    Vedula, Vijay; Marsden, Alison

    2017-11-01

    Heart disease is the one of the leading causes of death in the world. Apart from malfunctions in electrophysiology and myocardial mechanics, abnormal hemodynamics is a major factor attributed to heart disease across all ages. Computer simulations offer an efficient means to accurately reproduce in vivo flow conditions and also make predictions of post-operative outcomes and disease progression. We present an experimentally validated computational framework for performing patient-specific modeling of intraventricular hemodynamics. Our modeling framework employs the SimVascular open source software to build an anatomic model and employs robust image registration methods to extract ventricular motion from the image data. We then employ a stabilized finite element solver to simulate blood flow in the ventricles, solving the Navier-Stokes equations in arbitrary Lagrangian-Eulerian (ALE) coordinates by prescribing the wall motion extracted during registration. We model the fluid-structure interaction effects of the cardiac valves using an immersed boundary method and discuss the potential application of this methodology in single ventricle physiology and trans-catheter aortic valve replacement (TAVR). This research is supported in part by the Stanford Child Health Research Institute and the Stanford NIH-NCATS-CTSA through Grant UL1 TR001085 and partly through NIH NHLBI R01 Grant 5R01HL129727-02.

  3. [System analytical approach of lung function and hemodynamics].

    Science.gov (United States)

    Naszlady, Attila; Kiss, Lajos

    2009-02-15

    The authors critically analyse the traditional views in physiology and complete them with new statements based on computer model simulations of lung function and of hemodynamics. Conclusions are derived for the clinical practice as follows: the four-dimensional function curves are similar in both systems; there is a "waterfall" zone in the pulmonary blood perfusion; the various time constants of pulmonary regions can modify the blood gas values; pulmonary capillary pressure is equal to pulmonary arterial diastole pressure; heart is not a pressure pump, but a flow source; ventricles are loaded by the input impedance of the arterial systems and not by the total vascular (ohmlike) resistance; optimum heart rate in rest depends on the length of the aorta; this law of heart rate, based on the principle of resonance is valid along the mammalian allometric line; tachycardia decreases the input impedance; using positive end expiratory pressure respirators the blood gas of pulmonary artery should be followed; coronary circulation should be assessed in beat per milliliter, the milliliter per minute may be false. These statements are compared to related references.

  4. 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress.

    Science.gov (United States)

    Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming

    2016-07-01

    Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4

  5. Is the antiproteinuric effect of dipyridamole hemodynamically mediated

    NARCIS (Netherlands)

    de Jong, P. E.; van der Meer, J.; van der Hem, G. K.; de Zeeuw, D.

    1988-01-01

    We studied the acute antiproteinuric and renal hemodynamic effect of dipyridamole 30–60 mg intravenously in 13 salt-depleted patients with the nephrotic syndrome of different etiology. Whereas mean arterial pressure did not change, a small fall in glomerular filtration rate with a concomitant fall

  6. Freedom Solo Versus Trifecta Bioprotheses: Clinical and Hemodynamic Evaluation after Propensity Score Matching.

    Science.gov (United States)

    J Cerqueira, Rui; Melo, Renata; Moreira, Soraia; A Saraiva, Francisca; Andrade, Marta; Salgueiro, Elson; Almeida, Jorge; J Amorim, Mário; Pinho, Paulo; Lourenço, André; F Leite-Moreira, Adelino

    2017-01-01

    To compare stentless Freedom Solo and stented Trifecta aortic bioprostheses regarding hemodynamic profile, left ventricular mass regression, early and late postoperative outcomes and survival. Longitudinal cohort study of consecutive patients undergoing aortic valve replacement (from 2009 to 2016) with either Freedom Solo or Trifecta at one centre. Local databases and national records were queried. Postoperative echocardiography (3-6 months) was obtained for hemodynamic profile (mean transprosthetic gradient and effective orifice area) and left ventricle mass determination. After propensity score matching (21 covariates), Kaplan-Meier analysis and cumulative incidence analysis were performed for survival and combined outcome of structural valve deterioration and endocarditis, respectively. Hemodynamics and left ventricle mass regression were assessed by a mixed- -effects model including propensity score as a covariate. From a total sample of 397 Freedom Solo and 525 Trifecta patients with a median follow-up time of 4.0 (2.2- 6.0) and 2.4 (1.4-3.7) years, respectively, a matched sample of 329 pairs was obtained. Well-balanced matched groups showed no difference in survival (hazard ratio=1.04, 95% confidence interval=0.69-1.56) or cumulative hazards of combined outcome (subhazard ratio=0.54, 95% confidence interval=0.21-1.39). Although Trifecta showed improved hemodynamic profile compared to Freedom Solo, no differences were found in left ventricle mass regression. Trifecta has a slightly improved hemodynamic profile compared to Freedom Solo but this does not translate into differences in the extent of mass regression, postoperative outcomes or survival, which were good and comparable for both bioprostheses. Long-term follow-up is needed for comparisons with older models of bioprostheses.

  7. Spontaneous hemodynamic oscillations during human sleep and sleep stage transitions characterized with near-infrared spectroscopy.

    Directory of Open Access Journals (Sweden)

    Tiina Näsi

    Full Text Available Understanding the interaction between the nervous system and cerebral vasculature is fundamental to forming a complete picture of the neurophysiology of sleep and its role in maintaining physiological homeostasis. However, the intrinsic hemodynamics of slow-wave sleep (SWS are still poorly known. We carried out 30 all-night sleep measurements with combined near-infrared spectroscopy (NIRS and polysomnography to investigate spontaneous hemodynamic behavior in SWS compared to light (LS and rapid-eye-movement sleep (REM. In particular, we concentrated on slow oscillations (3-150 mHz in oxy- and deoxyhemoglobin concentrations, heart rate, arterial oxygen saturation, and the pulsation amplitude of the photoplethysmographic signal. We also analyzed the behavior of these variables during sleep stage transitions. The results indicate that slow spontaneous cortical and systemic hemodynamic activity is reduced in SWS compared to LS, REM, and wakefulness. This behavior may be explained by neuronal synchronization observed in electrophysiological studies of SWS and a reduction in autonomic nervous system activity. Also, sleep stage transitions are asymmetric, so that the SWS-to-LS and LS-to-REM transitions, which are associated with an increase in the complexity of cortical electrophysiological activity, are characterized by more dramatic hemodynamic changes than the opposite transitions. Thus, it appears that while the onset of SWS and termination of REM occur only as gradual processes over time, the termination of SWS and onset of REM may be triggered more abruptly by a particular physiological event or condition. The results suggest that scalp hemodynamic changes should be considered alongside cortical hemodynamic changes in NIRS sleep studies to assess the interaction between the autonomic and central nervous systems.

  8. Left Ventricular Myocardial Function in Children With Pulmonary Hypertension: Relation to Right Ventricular Performance and Hemodynamics.

    Science.gov (United States)

    Burkett, Dale A; Slorach, Cameron; Patel, Sonali S; Redington, Andrew N; Ivy, D Dunbar; Mertens, Luc; Younoszai, Adel K; Friedberg, Mark K

    2015-08-01

    Through ventricular interdependence, pulmonary hypertension (PH) induces left ventricular (LV) dysfunction. We hypothesized that LV strain/strain rate, surrogate measures of myocardial contractility, are reduced in pediatric PH and relate to invasive hemodynamics, right ventricular strain, and functional measures of PH. At 2 institutions, echocardiography was prospectively performed in 54 pediatric PH patients during cardiac catheterization, and in 54 matched controls. Patients with PH had reduced LV global longitudinal strain (LS; -18.8 [-17.3 to -20.4]% versus -20.2 [-19.0 to -20.9]%; P=0.0046) predominantly because of reduced basal (-12.9 [-10.8 to -16.3]% versus -17.9 [-14.5 to -20.7]%; Pright ventricular free-wall LS (r=0.64; PBrain natriuretic peptide levels correlated moderately with septal LS (r=0.48; P=0.0038). PH functional class correlated moderately with LV free-wall LS (r=-0.48; P=0.0051). The septum, shared between ventricles and affected by septal shift, was the most affected LV region in PH. Pediatric PH patients demonstrate reduced LV strain/strain rate, predominantly within the septum, with relationships to invasive hemodynamics, right ventricular strain, and functional PH measures. © 2015 American Heart Association, Inc.

  9. Invasive hemodynamic monitoring in the postoperative period of cardiac surgery

    Directory of Open Access Journals (Sweden)

    Desanka Dragosavac

    1999-08-01

    Full Text Available OBJETIVE: To assess the hemodynamic profile of cardiac surgery patients with circulatory instability in the early postoperative period (POP. METHODS: Over a two-year period, 306 patients underwent cardiac surgery. Thirty had hemodynamic instability in the early POP and were monitored with the Swan-Ganz catheter. The following parameters were evaluated: cardiac index (CI, systemic and pulmonary vascular resistance, pulmonary shunt, central venous pressure (CVP, pulmonary capillary wedge pressure (PCWP, oxygen delivery and consumption, use of vasoactive drugs and of circulatory support. RESULTS: Twenty patients had low cardiac index (CI, and 10 had normal or high CI. Systemic vascular resistance was decreased in 11 patients. There was no correlation between oxygen delivery (DO2 and consumption (VO2, p=0.42, and no correlation between CVP and PCWP, p=0.065. Pulmonary vascular resistance was decreased in 15 patients and the pulmonary shunt was increased in 19. Two patients with CI < 2L/min/m² received circulatory support. CONCLUSION: Patients in the POP of cardiac surgery frequently have a mixed shock due to the systemic inflammatory response syndrome (SIRS. Therefore, invasive hemodynamic monitoring is useful in handling blood volume, choice of vasoactive drugs, and indication for circulatory support.

  10. Ultrasound investigation central hemodynamics as a method of assessment effective analgesia in children

    Directory of Open Access Journals (Sweden)

    K. Y. Dmytriieva

    2016-06-01

    Vinnitsa National Medical University M.I. Pirogov   Summary: The study was include in 23 children (12,4±1,2 years operated on for tumors of the retroperitoneal space (14 children, 61%, renal tumors (6 children, 26%, ovarian cancer (3 children, 13% showed that a comprehensive study of the reactions of pain behavior and central hemodynamics by ultrasonography showed that the use of the scheme KSME bupivacaine 0.3-0.4 mg / kg and a continuous infusion of drugs (fentanyl in a dose of 10 mcg/kg/h for postoperative pain relief leads to effective analgesia after traumatic operations and comprehensive ultrasound including color and spectral Doppler studies, is the main tool by enabling timely and accurately assess the condition of the central hemodynamics at different methods of analgesia.   Key words: central hemodynamics, ultrasound, anesthesia.

  11. [Effect of complex sanatorium treatment including magnetotherapy on hemodynamics in patients with arterial hypertension].

    Science.gov (United States)

    Efremushkin, G G; Duruda, N V

    2003-01-01

    Forty nine patients with arterial hypertension of stage I-II received combined sanatorium treatment. Of them, 21 had adjuvant total magnetotherapy. All the patients were examined for parameters of central, cerebral hemodynamics and microcirculation. The adjuvant magnetotherapy produced a beneficial effect on hypertension: clinical symptoms attenuated, arterial pressure became more stable, hemodynamics improved, duration of hospitalization reduced, requirement in hypotensive drugs diminished.

  12. Implications of the Hemodynamic Optimization Approach Guided by Right Heart Catheterization in Patients with Severe Heart Failure

    Directory of Open Access Journals (Sweden)

    Luís E. Rohde

    2002-03-01

    Full Text Available OBJECTIVE: To report the hemodynamic and functional responses obtained with clinical optimization guided by hemodynamic parameters in patients with severe and refractory heart failure. METHODS: Invasive hemodynamic monitoring using right heart catheterization aimed to reach low filling pressures and peripheral resistance. Frequent adjustments of intravenous diuretics and vasodilators were performed according to the hemodynamic measurements. RESULTS: We assessed 19 patients (age = 48±12 years and ejection fraction = 21±5% with severe heart failure. The intravenous use of diuretics and vasodilators reduced by 12 mm Hg (relative reduction of 43% pulmonary artery occlusion pressure (P<0.001, with a concomitant increment of 6 mL per beat in stroke volume (relative increment of 24%, P<0.001. We observed significant associations between pulmonary artery occlusion pressure and mean pulmonary artery pressure (r=0.76; P<0.001 and central venous pressure (r=0.63; P<0.001. After clinical optimization, improvement in functional class occurred (P< 0.001, with a tendency towards improvement in ejection fraction and no impairment to renal function. CONCLUSION: Optimization guided by hemodynamic parameters in patients with refractory heart failure provides a significant improvement in the hemodynamic profile with concomitant improvement in functional class. This study emphasizes that adjustments in blood volume result in imme-diate benefits for patients with severe heart failure.

  13. Hemodynamic analysis of sequential graft from right coronary system to left coronary system.

    Science.gov (United States)

    Wang, Wenxin; Mao, Boyan; Wang, Haoran; Geng, Xueying; Zhao, Xi; Zhang, Huixia; Xie, Jinsheng; Zhao, Zhou; Lian, Bo; Liu, Youjun

    2016-12-28

    Sequential and single grafting are two surgical procedures of coronary artery bypass grafting. However, it remains unclear if the sequential graft can be used between the right and left coronary artery system. The purpose of this paper is to clarify the possibility of right coronary artery system anastomosis to left coronary system. A patient-specific 3D model was first reconstructed based on coronary computed tomography angiography (CCTA) images. Two different grafts, the normal multi-graft (Model 1) and the novel multi-graft (Model 2), were then implemented on this patient-specific model using virtual surgery techniques. In Model 1, the single graft was anastomosed to right coronary artery (RCA) and the sequential graft was adopted to anastomose left anterior descending (LAD) and left circumflex artery (LCX). While in Model 2, the single graft was anastomosed to LAD and the sequential graft was adopted to anastomose RCA and LCX. A zero-dimensional/three-dimensional (0D/3D) coupling method was used to realize the multi-scale simulation of both the pre-operative and two post-operative models. Flow rates in the coronary artery and grafts were obtained. The hemodynamic parameters were also showed, including wall shear stress (WSS) and oscillatory shear index (OSI). The area of low WSS and OSI in Model 1 was much less than that in Model 2. Model 1 shows optimistic hemodynamic modifications which may enhance the long-term patency of grafts. The anterior segments of sequential graft have better long-term patency than the posterior segments. With rational spatial position of the heart vessels, the last anastomosis of sequential graft should be connected to the main branch.

  14. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".

    Science.gov (United States)

    Hewlin, Rodward L; Kizito, John P

    2018-03-01

    The ultimate goal of the present work is to aid in the development of tools to assist in the treatment of cardiovascular disease. Gaining an understanding of hemodynamic parameters for medical implants allow clinicians to have some patient-specific proposals for intervention planning. In the present work an experimental and digital computational fluid dynamics (CFD) arterial model consisting of a number of major arteries (aorta, carotid bifurcation, cranial, femoral, jejunal, and subclavian arteries) were fabricated to study: (1) the effects of local hemodynamics (flow parameters) on global hemodynamics (2) the effects of transition from bedrest to upright position (postural change) on hemodynamics, and (3) diffusion of dye (medical drug diffusion simulation) in the arterial system via experimental and numerical techniques. The experimental and digital arterial models used in the present study are the first 3-D systems reported in literature to incorporate the major arterial vessels that deliver blood from the heart to the cranial and femoral arteries. These models are also the first reported in literature to be used for flow parameter assessment via medical drug delivery and orthostatic postural change studies. The present work addresses the design of the experimental and digital arterial model in addition to the design of measuring tools used to measure hemodynamic parameters. The experimental and digital arterial model analyzed in the present study was developed from patient specific computed tomography angiography (CTA) scans and simplified geometric data. Segments such as the aorta (ascending and descending) and carotid bifurcation arteries of the experimental and digital arterial model was created from online available patient-specific CTA scan data provided by Charite' Clinical and Research Hospital. The cranial and coronary arteries were simplified arterial geometries developed from dimensional specification data used in previous work. For the patient

  15. Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL.

    Science.gov (United States)

    Su, Pan; Mao, Deng; Liu, Peiying; Li, Yang; Pinho, Marco C; Welch, Babu G; Lu, Hanzhang

    2017-11-01

    Assessment of brain hemodynamics without exogenous contrast agents is of increasing importance in clinical applications. This study aims to develop an MR perfusion technique that can provide noncontrast and multiparametric estimation of hemodynamic markers. We devised an arterial spin labeling (ASL) method based on the principle of MR fingerprinting (MRF), referred to as MRF-ASL. By taking advantage of the rich information contained in MRF sequence, up to seven hemodynamic parameters can be estimated concomitantly. Feasibility demonstration, flip angle optimization, comparison with Look-Locker ASL, reproducibility test, sensitivity to hypercapnia challenge, and initial clinical application in an intracranial steno-occlusive process, Moyamoya disease, were performed to evaluate this technique. Magnetic resonance fingerprinting ASL provided estimation of up to seven parameters, including B1+, tissue T 1 , cerebral blood flow (CBF), tissue bolus arrival time (BAT), pass-through arterial BAT, pass-through blood volume, and pass-through blood travel time. Coefficients of variation of the estimated parameters ranged from 0.2 to 9.6%. Hypercapnia resulted in an increase in CBF by 57.7%, and a decrease in BAT by 13.7 and 24.8% in tissue and vessels, respectively. Patients with Moyamoya disease showed diminished CBF and lengthened BAT that could not be detected with regular ASL. Magnetic resonance fingerprinting ASL is a promising technique for noncontrast, multiparametric perfusion assessment. Magn Reson Med 78:1812-1823, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Dynamic cerebral autoregulation measured with coherent hemodynamics spectroscopy (CHS)

    Science.gov (United States)

    Kainerstorfer, Jana M.; Sassaroli, Angelo; Tgavalekos, Kristen T.; Fantini, Sergio

    2015-03-01

    Coherent Hemodynamics Spectroscopy (CHS) is a novel technique for non-invasive measurements of local microcirculation quantities such as the capillary blood transit times and dynamic autoregulation. The basis of CHS is to measure, for instance with near-infrared spectroscopy (NIRS), peripheral coherent hemodynamic changes that are induced by controlled perturbations in the systemic mean arterial pressure (MAP). In this study, the MAP perturbation was induced by the fast release of two pneumatic cuffs placed around the subject's thighs after they were kept inflated (at 200 mmHg) for two minutes. The resulting transient changes in cerebral oxy- (O) and deoxy- (D) hemoglobin concentrations measured with NIRS on the prefrontal cortex are then described by a novel hemodynamic model, from which quantifiable parameters such as the capillary blood transit time and a cutoff frequency for cerebral autoregulation are obtained. We present results on eleven healthy volunteers in a protocol involving measurements during normal breathing and during hyperventilation, which is known to cause a hypocapnia-induced increase in cerebral autoregulation. The measured capillary transit time was unaffected by hyperventilation (normal breathing: 1.1±0.1 s; hyperventilation: 1.1±0.1 s), whereas the cutoff frequency of autoregulation, which increases for higher autoregulation efficiency, was indeed found to be significantly greater during hyperventilation (normal breathing: 0.017±0.002 Hz; hyperventilation: 0.034±0.005 Hz). These results provide a validation of local cerebral autoregulation measurements with the new technique of CHS.

  17. Importance of Collateralization in Patients With Large Artery Intracranial Occlusive Disease: Long-Term Longitudinal Assessment of Cerebral Hemodynamic Function

    Directory of Open Access Journals (Sweden)

    Larissa McKetton

    2018-04-01

    Full Text Available Patients with large artery intracranial occlusive disease (LAICOD are at risk for both acute ischemia and chronic hypoperfusion. Collateral circulation plays an important role in prognosis, and imaging plays an essential role in diagnosis, treatment planning, and prognosis of patients with LAICOD. In addition to standard structural imaging, assessment of cerebral hemodynamic function is important to determine the adequacy of collateral supply. Among the currently available methods of assessment of cerebral hemodynamic function, measurement of cerebrovascular reactivity (CVR using blood oxygen level-dependent (BOLD MRI and precisely controlled CO2 has shown to be a safe, reliable, reproducible, and clinically useful method for long-term assessment of patients. Here, we report a case of long-term follow-up in a 28-year-old Caucasian female presented to the neurology clinic with a history of TIAs and LAICOD of the right middle cerebral artery (MCA. Initial structural MRI showed a right MCA stenosis and a small right coronal radiate lacunar infarct. Her CVR study showed a large area of impaired CVR with a paradoxical decrease in BOLD signal with hypercapnia involving the right MCA territory indicating intracerebral steal. The patient was managed medically with anticoagulant and antiplatelet therapy and was followed-up for over 9 years with both structural and functional imaging. Cortical thickness (CT measures were longitudinally assessed from a region of interest that was applied to subsequent time points in the cortical region exhibiting steal physiology and in the same region of the contralateral healthy hemisphere. In the long-term follow-up, the patient exhibited improvement in her CVR as demonstrated by the development of collaterals with negligible changes to CT. Management of patients with LAICOD remains challenging since no revascularization strategies have shown efficacy except in patients with moyamoya disease. Management is well

  18. Importance of Collateralization in Patients With Large Artery Intracranial Occlusive Disease: Long-Term Longitudinal Assessment of Cerebral Hemodynamic Function.

    Science.gov (United States)

    McKetton, Larissa; Venkatraghavan, Lakshmikumar; Poublanc, Julien; Sobczyk, Olivia; Crawley, Adrian P; Rosen, Casey; Silver, Frank L; Duffin, James; Fisher, Joseph A; Mikulis, David J

    2018-01-01

    Patients with large artery intracranial occlusive disease (LAICOD) are at risk for both acute ischemia and chronic hypoperfusion. Collateral circulation plays an important role in prognosis, and imaging plays an essential role in diagnosis, treatment planning, and prognosis of patients with LAICOD. In addition to standard structural imaging, assessment of cerebral hemodynamic function is important to determine the adequacy of collateral supply. Among the currently available methods of assessment of cerebral hemodynamic function, measurement of cerebrovascular reactivity (CVR) using blood oxygen level-dependent (BOLD) MRI and precisely controlled CO 2 has shown to be a safe, reliable, reproducible, and clinically useful method for long-term assessment of patients. Here, we report a case of long-term follow-up in a 28-year-old Caucasian female presented to the neurology clinic with a history of TIAs and LAICOD of the right middle cerebral artery (MCA). Initial structural MRI showed a right MCA stenosis and a small right coronal radiate lacunar infarct. Her CVR study showed a large area of impaired CVR with a paradoxical decrease in BOLD signal with hypercapnia involving the right MCA territory indicating intracerebral steal. The patient was managed medically with anticoagulant and antiplatelet therapy and was followed-up for over 9 years with both structural and functional imaging. Cortical thickness (CT) measures were longitudinally assessed from a region of interest that was applied to subsequent time points in the cortical region exhibiting steal physiology and in the same region of the contralateral healthy hemisphere. In the long-term follow-up, the patient exhibited improvement in her CVR as demonstrated by the development of collaterals with negligible changes to CT. Management of patients with LAICOD remains challenging since no revascularization strategies have shown efficacy except in patients with moyamoya disease. Management is well defined for acute

  19. Cerebrovascular Hemodynamics in Women.

    Science.gov (United States)

    Duque, Cristina; Feske, Steven K; Sorond, Farzaneh A

    2017-12-01

    Sex and gender, as biological and social factors, significantly influence health outcomes. Among the biological factors, sex differences in vascular physiology may be one specific mechanism contributing to the observed differences in clinical presentation, response to treatment, and clinical outcomes in several vascular disorders. This review focuses on the cerebrovascular bed and summarizes the existing literature on sex differences in cerebrovascular hemodynamics to highlight the knowledge deficit that exists in this domain. The available evidence is used to generate mechanistically plausible and testable hypotheses to underscore the unmet need in understanding sex-specific mechanisms as targets for more effective therapeutic and preventive strategies. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Clinical Implications of Cluster Analysis-Based Classification of Acute Decompensated Heart Failure and Correlation with Bedside Hemodynamic Profiles.

    Directory of Open Access Journals (Sweden)

    Tariq Ahmad

    Full Text Available Classification of acute decompensated heart failure (ADHF is based on subjective criteria that crudely capture disease heterogeneity. Improved phenotyping of the syndrome may help improve therapeutic strategies.To derive cluster analysis-based groupings for patients hospitalized with ADHF, and compare their prognostic performance to hemodynamic classifications derived at the bedside.We performed a cluster analysis on baseline clinical variables and PAC measurements of 172 ADHF patients from the ESCAPE trial. Employing regression techniques, we examined associations between clusters and clinically determined hemodynamic profiles (warm/cold/wet/dry. We assessed association with clinical outcomes using Cox proportional hazards models. Likelihood ratio tests were used to compare the prognostic value of cluster data to that of hemodynamic data.We identified four advanced HF clusters: 1 male Caucasians with ischemic cardiomyopathy, multiple comorbidities, lowest B-type natriuretic peptide (BNP levels; 2 females with non-ischemic cardiomyopathy, few comorbidities, most favorable hemodynamics; 3 young African American males with non-ischemic cardiomyopathy, most adverse hemodynamics, advanced disease; and 4 older Caucasians with ischemic cardiomyopathy, concomitant renal insufficiency, highest BNP levels. There was no association between clusters and bedside-derived hemodynamic profiles (p = 0.70. For all adverse clinical outcomes, Cluster 4 had the highest risk, and Cluster 2, the lowest. Compared to Cluster 4, Clusters 1-3 had 45-70% lower risk of all-cause mortality. Clusters were significantly associated with clinical outcomes, whereas hemodynamic profiles were not.By clustering patients with similar objective variables, we identified four clinically relevant phenotypes of ADHF patients, with no discernable relationship to hemodynamic profiles, but distinct associations with adverse outcomes. Our analysis suggests that ADHF classification using

  1. Novel method to classify hemodynamic response obtained using multi-channel fNIRS measurements into two groups: Exploring the combinations of channels

    Directory of Open Access Journals (Sweden)

    Hiroko eIchikawa

    2014-07-01

    Full Text Available Near-infrared spectroscopy (NIRS in psychiatric studies has widely demonstrated that cerebral hemodynamics differs among psychiatric patients. Recently we found that children with attention attention-deficit / hyperactivity disorder (ADHD and children with autism spectrum disorders (ASD showed different hemodynamic responses to their own mother’s face. Based on this finding, we may be able to classify their hemodynamic data into two those groups and predict which diagnostic group an unknown participant belongs to. In the present study, we proposed a novel statistical method for classifying the hemodynamic data of these two groups. By applying a support vector machine (SVM, we searched the combination of measurement channels at which the hemodynamic response differed between the two groups; ADHD and ASD. The SVM found the optimal subset of channels in each data set and successfully classified the ADHD data from the ASD data. For the 24-dimentional hemodynamic data, two optimal subsets classified the hemodynamic data with 84% classification accuracy while the subset contains all 24 channels classified with 62% classification accuracy. These results indicate the potential application of our novel method for classifying the hemodynamic data into two groups and revealing the combinations of channels that efficiently differentiate the two groups.

  2. Hemodynamic challenge to early mobilization after cardiac surgery: A pilot study

    Directory of Open Access Journals (Sweden)

    Tiziano Cassina

    2016-01-01

    Full Text Available Background: Active mobilization is a key component in fast-track surgical strategies. Following major surgery, clinicians are often reluctant to mobilize patients arguing that circulatory homeostasis would be impaired as a result of myocardial stunning, fluid shift, and autonomic dysfunction. Aims: We examined the feasibility and safety of a mobilization protocol 12-24 h after elective cardiac surgery. Setting and Design: This observational study was performed in a tertiary nonacademic cardiovascular Intensive Care Unit. Materials and Methods: Over a 6-month period, we prospectively evaluated the hemodynamic response to a two-staged mobilization procedure in 53 consecutive patients. Before, during, and after the mobilization, hemodynamics parameters were recorded, including the central venous oxygen saturation (ScvO 2 , lactate concentrations, mean arterial pressure (MAP, heart rate (HR, right atrial pressure (RAP, and arterial oxygen saturation (SpO 2 . Any adverse events were documented. Results: All patients successfully completed the mobilization procedure. Compared with the supine position, mobilization induced significant increases in arterial lactate (34.6% [31.6%, 47.6%], P = 0.0022 along with reduction in RAP (−33% [−21%, −45%], P 10% and nine of them (17% required treatment. Hypotensive patients experienced a greater decrease in ScvO 2 (−18 ± 5% vs. −9 ± 4%, P = 0.004 with similar changes in RAP and HR. All hemodynamic parameters, but arterial lactate, recovered baseline values after resuming the horizontal position. Conclusions: Early mobilization after cardiac surgery appears to be a safe procedure as far as it is performed under close hemodynamic and clinical monitoring in an intensive care setting.

  3. Clofibrate prevents and reverses the hemodynamic manifestations of hyperthyroidism in rats.

    Science.gov (United States)

    Rodríguez-Gómez, Isabel; Cruz, Antonio; Moreno, Juan Manuel; Soler, Agatángelo; Osuna, Antonio; Vargas, Félix

    2008-03-01

    This study analyzed the effects of the chronic administration of clofibrate, a peroxisome proliferator-activated receptor-alpha (PPARalpha) agonist, on the development and established hemodynamic, morphologic, metabolic, and renal manifestations of hyperthyroidism in rats. The prevention study used four groups of male Wistar rats: control, clofibrate (240 mg/kg/day by gavage), T(4)(75 microg thyroxine/rat/day s.c.), and T(4)+clofibrate. All treatments were maintained for 3 weeks. Body weight (BW), tail systolic blood pressure (SBP), and heart rate (HR) were recorded weekly. Finally, temperature, SBP, pulse pressure (PP) and HR were recorded in conscious rats, and morphologic, metabolic, plasma, and renal variables were measured. The reversion study used two groups of rats, T(4)(treated for 6 weeks) and T(4)+clofibrate, measuring their hemodynamic variables and temperature for 3 weeks. T(4) increased BP, HR, PP, and temperature when compared with control rats. Clofibrate prevented and reversed the increase in SBP, HR, PP, and temperature produced by T(4) administration, reduced plasma thyroid hormone levels, and increased plasma thyroid-stimulating hormone values and phenol-uridine diphosphate-glucuronosyl-transferase (UGT) activity. However, clofibrate did not modify the cardiac or renal hypertrophy, polyphagia, polydipsia, or proteinuria of hyperthyroid rats. In normal rats, clofibrate treatment did not significantly change thyroid hormone levels, phenol-UGT activity, or any hemodynamic, morphologic, or renal variables. Chronic clofibrate treatment suppressed the hemodynamic manifestations and increased temperature of hyperthyroidism, an effect that can be produced by direct antithyroid effects. However, clofibrate administration did not modify the morphologic, metabolic, or renal alterations of hyperthyroid rats, indicating specificity in the antithyroid actions of clofibrate.

  4. Endovascular management of renal transplant dysfunction secondary to hemodynamic effects related to ipsilateral femoral arteriovenous graft

    Science.gov (United States)

    Salsamendi, Jason; Pereira, Keith; Quintana, David; Bleicher, Drew; Tabbara, Marwan; Goldstein, Michael; Narayanan, Govindarajan

    2016-01-01

    Hemodialysis access options become complex in long-term treatment for patients with renal disease, while awaiting renal transplantation (RT). Once upper extremity sites are exhausted, lower extremities are used. RT is preferably in the contralateral iliac fossa, rarely ipsilateral. In current literature, RT dysfunction secondary to the hemodynamic effects of an ipsilateral femoral arteriovenous graft (AVG) has been rarely described. To our knowledge, AVG ligation is the only published technique for hemodynamic correction of an ipsilateral AVG. We present a simple, potentially reversible endovascular approach to manage the hemodynamic effects of an AVG, without potentially permanently losing future AVG access. PMID:26899147

  5. Encephalic hemodynamic phases in subarachnoid hemorrhage: how to improve the protective effect in patient prognoses

    Directory of Open Access Journals (Sweden)

    Marcelo de Lima Oliveira

    2015-01-01

    Full Text Available Subarachnoid hemorrhage is frequently associated with poor prognoses. Three different hemodynamic phases were identified during subarachnoid hemorrhage: oligemia, hyperemia, and vasospasm. Each phase is associated with brain metabolic changes. In this review, we correlated the hemodynamic phases with brain metabolism and potential treatment options in the hopes of improving patient prognoses.

  6. Weak correlations between hemodynamic signals and ongoing neural activity during the resting state

    Science.gov (United States)

    Winder, Aaron T.; Echagarruga, Christina; Zhang, Qingguang; Drew, Patrick J.

    2017-01-01

    Spontaneous fluctuations in hemodynamic signals in the absence of a task or overt stimulation are used to infer neural activity. We tested this coupling by simultaneously measuring neural activity and changes in cerebral blood volume (CBV) in the somatosensory cortex of awake, head-fixed mice during periods of true rest, and during whisker stimulation and volitional whisking. Here we show that neurovascular coupling was similar across states, and large spontaneous CBV changes in the absence of sensory input were driven by volitional whisker and body movements. Hemodynamic signals during periods of rest were weakly correlated with neural activity. Spontaneous fluctuations in CBV and vessel diameter persisted when local neural spiking and glutamatergic input was blocked, and during blockade of noradrenergic receptors, suggesting a non-neuronal origin for spontaneous CBV fluctuations. Spontaneous hemodynamic signals reflect a combination of behavior, local neural activity, and putatively non-neural processes. PMID:29184204

  7. Gender-specific hemodynamics in prefrontal cortex during a verbal working memory task by near-infrared spectroscopy.

    Science.gov (United States)

    Li, Ting; Luo, Qingming; Gong, Hui

    2010-05-01

    The presence or absence of gender differences in working memory, localized in the prefrontal cortex (PFC), has been debated in a few fMRI studies. However, the hypothesis of gender differences in PFC function has not been elaborated, and comparisons among hemodynamic parameters designed to test for gender differences are scarce. We utilized near-infrared spectroscopy during verbal N-back tasks on 26 male and 24 female healthy volunteers. Changes in the concentrations of oxy- (Delta[oxy-Hb]), deoxy- (Delta[deoxy-Hb]) and total hemoglobin (Delta[tot-Hb]) were recorded simultaneously. Delta[oxy-Hb] and Delta[tot-Hb] exhibited obvious gender differences, but Delta[deoxy-Hb] did not. Males showed bilateral activation with slight left-side dominance, whereas females showed left activation. The activation in males was more wide-spread and stronger than in females. Furthermore, females required a lower hemodynamic supply than males to obtain comparable performance, and only females exhibited positive correlations between hemodynamic parameters and behavioral performance. The results reinforce the existence of a gender effect in hemodynamic-based functional imaging studies. Our findings suggest that females possess more efficient hemodynamics in the PFC during working memory and emphasize the importance of studying the PFC to further a scientific understanding of gender differences.

  8. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    Science.gov (United States)

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as

  9. Augmentation of sensory-evoked hemodynamic response in an early Alzheimer's disease mouse model.

    Science.gov (United States)

    Kim, Jinho; Jeong, Yong

    2013-01-01

    Based on enlarged blood oxygen level-dependent (BOLD) responses in cognitively normal subjects at risk for Alzheimer's disease (AD), compensatory neuronal hyperactivation has been proposed as an early marker for diagnosis of AD. The BOLD response results from neurovascular coupling, i.e., hemodynamic response induced by neuronal activity. However, there has been no evidence of task-induced increases in hemodynamic response in animal models of AD. Here, we observed an augmented hemodynamic response pattern in a transgenic AβPP(SWE)/PS1ΔE9 mouse model of AD using three in vivo imaging methods: intrinsic optical signal imaging, multi-photon laser scanning microscopy, and laser Doppler flowmetry. Sensory stimulation resulted in augmented and prolonged hemodynamic responses in transgenic mice evidenced by changes in total, oxygenated, and deoxygenated hemoglobin concentration. This difference between transgenic and wild-type mice was significant at 7 months of age when amyloid plaques and cerebral amyloid angiopathy had developed but not at younger or older ages. Correspondingly, sensory stimulation-induced pial arteriole diameter was also augmented and prolonged in transgenic mice at 7 months of age. Cerebral blood flow response in transgenic mice was augmented but not prolonged. These results are consistent with the existence of BOLD signal hyperactivation in non-demented AD-risk human subjects, supporting its potential use as an early diagnostic marker of AD.

  10. Coronary artery bypass grafting hemodynamics and anastomosis design: a biomedical engineering review.

    Science.gov (United States)

    Ghista, Dhanjoo N; Kabinejadian, Foad

    2013-12-13

    In this paper, coronary arterial bypass grafting hemodynamics and anastomosis designs are reviewed. The paper specifically addresses the biomechanical factors for enhancement of the patency of coronary artery bypass grafts (CABGs). Stenosis of distal anastomosis, caused by thrombosis and intimal hyperplasia (IH), is the major cause of failure of CABGs. Strong correlations have been established between the hemodynamics and vessel wall biomechanical factors and the initiation and development of IH and thrombus formation. Accordingly, several investigations have been conducted and numerous anastomotic geometries and devices have been designed to better regulate the blood flow fields and distribution of hemodynamic parameters and biomechanical factors at the distal anastomosis, in order to enhance the patency of CABGs. Enhancement of longevity and patency rate of CABGs can eliminate the need for re-operation and can significantly lower morbidity, and thereby reduces medical costs for patients suffering from coronary stenosis. This invited review focuses on various endeavors made thus far to design a patency-enhancing optimized anastomotic configuration for the distal junction of CABGs.

  11. Hemodynamic differences between continual positive and two types of negative pressure ventilation.

    Science.gov (United States)

    Lockhat, D; Langleben, D; Zidulka, A

    1992-09-01

    In seven anesthetized dogs, ventilated with matching lung volumes, tidal volumes, and respiratory rates, we compared the effects on cardiac output (CO), arterial venous oxygen saturation difference (SaO2 - SVO2), and femoral and inferior vena cava pressure (1) intermittent positive pressure ventilation with positive end-expiratory pressure (CPPV); (2) iron-lung ventilation with negative end-expiratory pressure (ILV-NEEP); (3) grid and wrap ventilation with NEEP applied to the thorax and upper abdomen (G&W-NEEP). The values of CO and SaO2 - SVO2 with ILV-NEEP were similar to those with CPPV. However, with G&W-NEEP as compared with ILV-NEEP, mean CO was greater (2.9 versus 2.6 L/min, p = 0.02) and mean (SaO2 - SVO2) was lower (26.6% versus 28.3%, p = NS). Mean PFEM-IVC was higher with G&W-NEEP than with the other types of ventilation. We conclude that (1) ILV-NEEP is hemodynamically equivalent to CPPV and (2) G&W-NEEP has less adverse hemodynamic consequences. has less adverse hemodynamic consequences.

  12. Renal hemodynamic response to L-dopa during acute renal failure in man

    Energy Technology Data Exchange (ETDEWEB)

    Zech, P; Collard, M; Guey, A; Plantier, J; Bernard, M; Berthoux, F; Pinet, A; Traeger, J [Hopital Edouard-Herriot, 69 - Lyon (France)

    1975-12-20

    Twelve patients with acute renal failure underwent L-dopa infusion into a renal artery and /sup 133/Xenon wash-out recordings before and during the infusion. Urine volume and sodium output were also compared during two 24 hours periods, before and after the procedure. Hemodynamic data were compared with data obtained from a matched group of patients receiving Furosemide (8 patients) in place of L-dopa. Only L-dopa infusion significantly increased outer cortical distribution. No blood flow change could be demonstrated in any component nor did the drug improve unitary excretion or the general course of the disease. Control data shows that reduced cortical distribution is the most consistent feature of acute renal failure, so that L-dopa does partially improve intrarenal hemodynamics in this condition. The failure of the drug to restore kidney function may be explained by the following reasons: inability of the agent to restore a normal wash-out pattern: involvment of non-hemodynamic factors, as suggested by comparing similar wash-out improvements after L-dopa in acute glomerulonephritis and in reversible acute renal failure.

  13. Renal hemodynamic response to L-dopa during acute renal failure in man

    International Nuclear Information System (INIS)

    Zech, P.; Collard, M.; Guey, A.; Plantier, J.; Bernard, M.; Berthoux, F.; Pinet, A.; Traeger, J.

    1975-01-01

    Twelve patients with acute renal failure underwent L.dopa infusion into a renal artery and 133 Xenon wash-out recordings before and during the infusion. Urine volume and sodium output were also compared during two 24 hours periods, before and after the procedure. Hemodynamic data were compared with data obtained from a matched group of patients receiving Furosemide (8 patients) in place of L.dopa. Only L.dopa infusion significantly increased outer cortical distribution. No blood flow change could be demonstrated in any component nor did the drug improve unitary excretion or the general course of the disease. Control data shows that reduced cortical distribution is the most consistent feature of acute renal failure, so that L.dopa does partially improve intrarenal hemodynamics in this condition. The failure of the drug to restore kidney function may be explained by the following reasons: inability of the agent to restore a normal wash-out pattern: involvment of non-hemodynamic factors, as suggested by comparing similar wash-out improvements after L.dopa in acute glomerulonephritis and in reversible acute renal failure [fr

  14. Pulmonary hemodynamics and gas exchange in off pump coronary artery bypass grafting.

    Science.gov (United States)

    Vedin, Jenny; Jensen, Ulf; Ericsson, Anders; Samuelsson, Sten; Vaage, Jarle

    2005-10-01

    To investigate the influence of cardiopulmonary bypass on pulmonary hemodynamics and gas exchange. Low risk patients admitted for elective coronary artery bypass grafting were randomized to either on (n=25) or off pump (n=25) surgery. Central hemodynamics, gas exchange, and venous admixture were studied during and up to 20 h after surgery. There was no difference in pulmonary vascular resistance index (P=0.16), right ventricular stroke work index (P>0.2), mean pulmonary artery pressure (P>0.2) or pulmonary capillary wedge pressure (P>0.2) between groups. Soon after surgery there was a tendency towards higher cardiac index (P=0.07) in the off pump group. Arterial oxygen tension (P>0.2), hematocrit (P>0.2), venous admixture (P>0.2), and arterial-venous oxygen content difference (P=0.12) did not differ between groups. This prospective, randomized study showed no difference in pulmonary hemodynamics, pulmonary gas exchange, and venous admixture, in low risk patients undergoing off pump compared to on pump coronary artery bypass surgery.

  15. Activation of Erk and JNK MAPK pathways by acute swim stress in rat brain regions

    Directory of Open Access Journals (Sweden)

    Salvadore Christopher

    2004-09-01

    Full Text Available Abstract Background The mitogen-activated protein kinases (MAPKs have been shown to participate in a wide array of cellular functions. A role for some MAPKs (e.g., extracellular signal-regulated kinase, Erk1/2 has been documented in response to certain physiological stimuli, such as ischemia, visceral pain and electroconvulsive shock. We recently demonstrated that restraint stress activates the Erk MAPK pathway, but not c-Jun-N-terminal kinase/stress-activated protein kinase (JNK/SAPK or p38MAPK, in several rat brain regions. In the present study, we investigated the effects of a different stressor, acute forced swim stress, on the phosphorylation (P state of these MAPKs in the hippocampus, neocortex, prefrontal cortex, amygdala and striatum. In addition, effects on the phosphorylation state of the upstream activators of the MAPKs, their respective MAPK kinases (MAPKKs; P-MEK1/2, P-MKK4 and P-MKK3/6, were determined. Finally, because the Erk pathway can activate c-AMP response element (CRE binding (CREB protein, and swim stress has recently been reported to enhance CREB phosphorylation, changes in P-CREB were also examined. Results A single 15 min session of forced swimming increased P-Erk2 levels 2–3-fold in the neocortex, prefrontal cortex and striatum, but not in the hippocampus or amygdala. P-JNK levels (P-JNK1 and/or P-JNK2/3 were increased in all brain regions about 2–5-fold, whereas P-p38MAPK levels remained essentially unchanged. Surprisingly, levels of the phosphorylated MAPKKs, P-MEK1/2 and P-MKK4 (activators of the Erk and JNK pathways, respectively were increased in all five brain regions, and much more dramatically (P-MEK1/2, 4.5 to > 100-fold; P-MKK4, 12 to ~300-fold. Consistent with the lack of forced swim on phosphorylation of p38MAPK, there appeared to be no change in levels of its activator, P-MKK3/6. P-CREB was increased in all but cortical (prefrontal, neocortex areas. Conclusions Swim stress specifically and markedly

  16. Time-Resolved Micro PIV in the Pivoting Area of the Triflo Mechanical Heart Valve.

    Science.gov (United States)

    Vennemann, Bernhard M; Rösgen, Thomas; Carrel, Thierry P; Obrist, Dominik

    2016-09-01

    The Lapeyre-Triflo FURTIVA valve aims at combining the favorable hemodynamics of bioprosthetic heart valves with the durability of mechanical heart valves (MHVs). The pivoting region of MHVs is hemodynamically of special interest as it may be a region of high shear stresses, combined with areas of flow stagnation. Here, platelets can be activated and may form a thrombus which in the most severe case can compromise leaflet mobility. In this study we set up an experiment to replicate the pulsatile flow in the aortic root and to study the flow in the pivoting region under physiological hemodynamic conditions (CO = 4.5 L/min / CO = 3.0 L/min, f = 60 BPM). It was found that the flow velocity in the pivoting region could reach values close to that of the bulk flow during systole. At the onset of diastole the three valve leaflets closed in a very synchronous manner within an average closing time of 55 ms which is much slower than what has been measured for traditional bileaflet MHVs. Hot spots for elevated viscous shear stresses were found at the flanges of the housing and the tips of the leaflet ears. Systolic VSS was maximal during mid-systole and reached levels of up to 40 Pa.

  17. Micro-buckling of periodically layered composites in regions of stress concentration

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Niordson, Christian Frithiof

    2016-01-01

    -buckling related failure in regions of stress concentrations. A series of parametric studies show the effect of non-uniform stress distributions due to bending loads and the presence of geometrical features such as notches and holes on the initiation of micro-buckling. The contribution of the bending stiffness...... of the reinforcing layers on the resistance against micro-buckling introduces a dependence on the layer thickness, resulting in size-scale dependent strength limits. Therefore, both the shape and dimensions of the considered geometrical features and the layering thickness of the micro-structure are varied as part...... of the parametric studies. Moreover, the impact of imperfections in the composite micro-structure on the strength of the considered specimens is investigated....

  18. Type D personality is associated with low cardiovascular reactivity to acute mental stress in heart failure patients

    NARCIS (Netherlands)

    Kupper, N.; Denollet, J.; Widdershoven, J.W.M.G.; Kop, W.J.

    2013-01-01

    Background The distressed (Type D) personality is associated with adverse coronary heart disease outcomes, but the mechanisms accounting for this association remain to be elucidated. We examined whether myocardial and hemodynamic responses to mental stress are disrupted in Type D patients with

  19. Determinations of directions of the mean stress field in Sichuan-Yunnan region from a number of focal mechanism solutions

    Science.gov (United States)

    Zhong, Ji-Mao; Cheng, Wan-Zheng

    2006-07-01

    Based on the spatial orientation and slip direction of the fault plane solutions, we present the expression of corresponding mechanical axis tensor in geographic coordinate system, and then put forward a method for calculating average mechanical axis tensor and its eigenvalues, which involves solving the corresponding eigenequation. The method for deducing mean stress field from T, B, and P axes parameters of a number of focal mechanism solutions has been verified by inverting data of mean stress fields in Fuyun region and in Tangshan region with fitting method of slip direction, and both results are consistent. To study regional average stress field, we need to choose a population of focal mechanism solutions of earthquakes in the massifs where there are significant tectonic structures. According to the focal mechanism solutions of 256 moderate-strong earthquakes occurred in 13 seismic zones of Sichuan-Yunnan region, the quantitative analysis results of stress tensor in each seismic zone have been given. The algorithm of such method is simple and convenient, which makes the method for analyzing tectonic stress field with large amount of focal mechanism solution data become quantified.

  20. Long-term occupational stress is associated with regional reductions in brain tissue volumes.

    Directory of Open Access Journals (Sweden)

    Eva Blix

    Full Text Available There are increasing reports of cognitive and psychological declines related to occupational stress in subjects without psychiatric premorbidity or major life trauma. The underlying neurobiology is unknown, and many question the notion that the described disabilities represent a medical condition. Using PET we recently found that persons suffering from chronic occupational stress had limbic reductions in the 5-HT1A receptor binding potential. Here we examine whether chronic work-related stress is also associated with changes in brain structure. We performed MRI-based voxel-based morphometry and structural volumetry in stressed subjects and unstressed controls focusing on gray (GM and white matter (WM volumes, and the volumes of hippocampus, caudate, and putamen - structures known to be susceptible to neurotoxic changes. Stressed subjects exhibited significant reductions in the GM volumes of the anterior cingulate cortex and the dorsolateral prefrontal cortex. Furthermore, their caudate and putamen volumes were reduced, and the volumes correlated inversely to the degree of perceived stress. Our results add to previous data on chronic psychosocial stress, and indicate a morphological involvement of the frontostriatal circuits. The present findings of morphological changes in these regions confirm our previous conclusion that symptoms from occupational stress merit careful investigations and targeted treatment.

  1. Long-Term Occupational Stress Is Associated with Regional Reductions in Brain Tissue Volumes

    Science.gov (United States)

    Blix, Eva; Perski, Aleksander; Berglund, Hans; Savic, Ivanka

    2013-01-01

    There are increasing reports of cognitive and psychological declines related to occupational stress in subjects without psychiatric premorbidity or major life trauma. The underlying neurobiology is unknown, and many question the notion that the described disabilities represent a medical condition. Using PET we recently found that persons suffering from chronic occupational stress had limbic reductions in the 5-HT1A receptor binding potential. Here we examine whether chronic work-related stress is also associated with changes in brain structure. We performed MRI-based voxel-based morphometry and structural volumetry in stressed subjects and unstressed controls focusing on gray (GM) and white matter (WM) volumes, and the volumes of hippocampus, caudate, and putamen – structures known to be susceptible to neurotoxic changes. Stressed subjects exhibited significant reductions in the GM volumes of the anterior cingulate cortex and the dorsolateral prefrontal cortex. Furthermore, their caudate and putamen volumes were reduced, and the volumes correlated inversely to the degree of perceived stress. Our results add to previous data on chronic psychosocial stress, and indicate a morphological involvement of the frontostriatal circuits. The present findings of morphological changes in these regions confirm our previous conclusion that symptoms from occupational stress merit careful investigations and targeted treatment. PMID:23776438

  2. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    Science.gov (United States)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  3. Computational simulation of passive leg-raising effects on hemodynamics during cardiopulmonary resuscitation.

    Science.gov (United States)

    Shin, Dong Ah; Park, Jiheum; Lee, Jung Chan; Shin, Sang Do; Kim, Hee Chan

    2017-03-01

    The passive leg-raising (PLR) maneuver has been used for patients with circulatory failure to improve hemodynamic responsiveness by increasing cardiac output, which should also be beneficial and may exert synergetic effects during cardiopulmonary resuscitation (CPR). However, the impact of the PLR maneuver on CPR remains unclear due to difficulties in monitoring cardiac output in real-time during CPR and a lack of clinical evidence. We developed a computational model that couples hemodynamic behavior during standard CPR and the PLR maneuver, and simulated the model by applying different angles of leg raising from 0° to 90° and compression rates from 80/min to 160/min. The simulation results showed that the PLR maneuver during CPR significantly improves cardiac output (CO), systemic perfusion pressure (SPP) and coronary perfusion pressure (CPP) by ∼40-65% particularly under the recommended range of compression rates between 100/min and 120/min with 45° of leg raise, compared to standard CPR. However, such effects start to wane with further leg lifts, indicating the existence of an optimal angle of leg raise for each person to achieve the best hemodynamic responses. We developed a CPR-PLR model and demonstrated the effects of PLR on hemodynamics by investigating changes in CO, SPP, and CPP under different compression rates and angles of leg raising. Our computational model will facilitate study of PLR effects during CPR and the development of an advanced model combined with circulatory disorders, which will be a valuable asset for further studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Diagnosis of hemodynamic compromise in patients with chronic cerebral ischemia; Measurement of cerebral blood volume (CBV) with sup 99m Tc-RBC SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Satoshi; Sakuragi, Mitsugi; Motomiya, Mineo; Nakagawa, Tango; Mitsumori, Kenji; Tsuru, Mitsuo (Hokkaido Neurosurgical Memorial Hospital (Japan)); Takigawa, Shugo; Kamiyama, Hiroyasu; Abe, Hiroshi

    1990-03-01

    To evaluate the efficacy of tests for selecting patients with hemodynamic compromise, measurement of cerebral blood volume (CBV) with {sup 99m}Tc-RBC single photon emission computed tomography (SPECT) was performed in thirteen patients with occlusive cerebrovascular disease, and was compared with results obtained by {sup 133}Xe SPECT and acetazolamide (Diamox) test. All patients in our study suffered TIA, RIND, or minor completed stroke. Cerebral angiography demonstrated severe stenosis or occlusion in the ipsilateral internal carotid artery or middle cerebral artery, although plain CT scan or MRI revealed no or, if any, only localized infarcted lesions. Regional cerebral blood volume (rCBV) was measured with {sup 99m}Tc-RBC SPECT and regional cerebral blood flow (rCBF) was measured with {sup 133}Xe SPECT before and after intravenous injection of 10 - 12 mg/kg acetazolamide (Diamox). Our results suggest that the ipsilateral rCBV/rCBF (mean transit time) is a more sensitive index of the cerebral perfusion reserve than the use of only rCBV or rCBF of the ipsilateral hemisphere. Also, the ipsilateral rCBV/rCBF is significantly correlated (r= -0.72) with the Diamox reactivity of rCBF, which is considered to represent the cerebral vasodilatory capacity in patients with chronic cerebral ischemia. Postoperative SPECT study revealed remarkable improvement of ipsilateral rCBV/rCBF and Diamox reactivity in four patients who underwent EC/IC bypass surgery to improve the hemodynamic compromise. In conclusion, our results suggest that the measurement of rCBV/rCBF with {sup 133}Xe SPECT and {sup 99m}Tc-RBC SPECT is useful for detecting the hemodynamic compromise in patients with occlusive cerebrovascular disease. (author).

  5. Correction of Hemodynamic Disorders in the Complex Surgical Correction of Acquired Cardiac Valvular Defects

    Directory of Open Access Journals (Sweden)

    A. I. Lenkin

    2011-01-01

    Full Text Available Objective: to compare the efficiency of using the values of transpulmonary (PiCCO and prepulmonary (Swan-Ganz catheter thermodilution as guides to targeted therapy for hemodynamic disorders in the surgical correction of mixed cardiac valvular defects. Subjects and methods. The study enrolled 40 patients operated on for acquired cardiac diseases who were randomized to two matched groups. Hemodynamics was monitored by means of a Swan-Ganz catheter in Group 1 and by transpulmonary thermodilution in Group 2. Anesthesia was maintained with propofol and fentanyl. Infusion therapy was performed using crystalloid and colloid solutions. Continuous intravenous infusion of inotropic agents was used when heart failure was developed. Hemodynamic, clinical, and laboratory parameters were estimated intraoperatively and within 24 hours postoperatively. Results. The groups did not differ in the degree of baseline heart failure, the duration of an operation and myocardial ischemia, and the length of extracorporeal circulation. In the PiCCO group, postoperative infusion volume was 33% higher than that in the Swan-Ganz group, which ensured increases in stroke volume and oxygen delivery in the early postoperative period (p<0.05. Respiratory support was 26% shorter in the PiCCO group (p<0.04. Conclusion. After surgical interventions for mixed cardiac defects, the targeted therapy algorithm based on transpulmonary thermodilution provided more steady-state values of hemodynamics and oxygen transport, which was followed by the increased scope of infusion therapy and the shorter length of postoperative mechanical ventilation than that based on hemodynamics being corrected from the values of prepul-monary thermodilution. Key words: transpulmonary thermodilution, targeted therapy, prepulmonary ther-modilution, acquired heart disease.

  6. Association between hemodynamic modifications and clinical outcome of intracranial aneurysms treated using flow diverters.

    Science.gov (United States)

    Paliwal, Nikhil; Damiano, Robert J; Davies, Jason M; Siddiqui, Adnan H; Meng, Hui

    2017-02-11

    Treatment of intracranial aneurysms (IAs) has been revolutionized by the advent of endovascular Flow Diverters (FDs), which disrupt blood flow within the aneurysm to induce pro-thrombotic conditions, and serves as a scaffold for endothelial ingrowth and arterial remodeling. Despite good clinical success of FDs, complications like incomplete occlusion and post-treatment rupture leading to subarachnoid hemorrhage have been reported. In silico computational fluid dynamic analysis of the pre- and post-treated geometries of IA patients can shed light on the contrasting blood hemodynamics associated with different clinical outcomes. In this study, we analyzed hemodynamic modifications in 15 IA patients treated using a single FD; 10 IAs were completely occluded (successful) and 5 were partially occluded (unsuccessful) at 12-month follow-up. An in-house virtual stenting workflow was used to recapitulate the clinical intervention on these cases, followed by CFD to obtain pre- and post-treatment hemodynamics. Bulk hemodynamic parameters showed comparable reductions in both groups with average inflow rate and aneurysmal velocity reduction of 40.3% and 52.4% in successful cases, and 34.4% and 49.2% in unsuccessful cases. There was a substantial reduction in localized parameter like vortex coreline length and Energy Loss for successful cases, 38.2% and 42.9% compared to 10.1% and 10.5% for unsuccessful cases. This suggest that for successfully treated IAs, the localized complex blood flow is disrupted more prominently by the FD as compared to unsuccessful cases. These localized hemodynamic parameters can be potentially used in prediction of treatment outcome, thus aiding the clinicians in a priori assessment of different treatment strategies.

  7. Low-dose esmolol: hemodynamic response to endotracheal intubation in normotensive patients

    Directory of Open Access Journals (Sweden)

    Suresh Lakshmanappa

    2012-06-01

    Full Text Available Abstract Purpose: Endotracheal intubation is a frequently utilized and highly invasive component of anesthesia that is often accompanied by potentially harmful hemodynamic pressor responses. The purpose of this study was to investigate the efficiency of a single pre-induction 1 mg/kg bolus injection of esmolol for attenuating these hemodynamic responses to endotracheal intubation in normotensive patients. Material and methods: The study was composed of 100 randomly selected male and female patients between the ages of 18 and 60 that were scheduled for elective surgery and belonged to ASA grade I or II. Two minutes prior to intubation the control group received 10 mL of saline (n=50 and the experimental group received an injection of esmolol 1 mg/kg diluted to 10 mL (n=50. Heart rate (HR, systolic blood pressure (SBP, diastolic blood pressure (DBP, mean arterial pressure (MAP, and rate pressure product (RPP were compared to basal values before receiving medication (T-0, during pre-induction (T-1, induction (T-2, intubation (T-3, and post-intubation at 1 (T-4, 3 (T-6, 5 (T-8, and 10 (T-13 minutes. Results: Esmolol significantly attenuated the hemodynamic responses to endotracheal intubation at the majority of measured points. Attenuation of HR (10.8%, SBP (7.04%, DBP (3.99%, MAP (5%, and RPP (16.9% was observed in the esmolol group when compared to the control group values. Conclusions: A single pre-induction 1 mg/kg bolus injection of esmolol successfully attenuated the hemodynamic pressor response in normotensive patients. A significant attenuation of heart rate, systolic blood pressure, diastolic blood pressure and mean arterial pressure was observed at the majority of measured time points in the esmolol administered group compared to the control group. [J Contemp Med 2012; 2(2.000: 69-76

  8. CT perfusion mapping of hemodynamic disturbances associated to acute spontaneous intracerebral hemorrhage

    International Nuclear Information System (INIS)

    Fainardi, Enrico; Borrelli, Massimo; Saletti, Andrea; Ceruti, Stefano; Tamarozzi, Riccardo; Schivalocchi, Roberta; Cavallo, Michele; Azzini, Cristiano; Chieregato, Arturo

    2008-01-01

    We sought to quantify perfusion changes associated to acute spontaneous intracerebral hemorrhage (SICH) by means of computed tomography perfusion (CTP) imaging. We studied 89 patients with supratentorial SICH at admission CT by using CTP scanning obtained within 24 h after symptom onset. Regional cerebral blood flow (rCBF), cerebral blood volume (rCBV) and mean transit time (rMTT) levels were measured in four different regions of interest manually outlined on CT scan: (1) hemorrhagic core; (2) perihematomal low-density area; (3) 1 cm rim of normal-appearing brain tissue surrounding the perilesional area; and (4) a mirrored area, including the clot and the perihematomal region, located in the non-lesioned contralateral hemisphere. rCBF, rCBV, and rMTT mean levels showed a centrifugal distribution with a gradual increase from the core to the periphery (p 20 ml) hematomas (p<0.01 and p <0.02, respectively). Multi-parametric CTP mapping of acute SICH indicates that perfusion values show a progressive improvement from the core to the periphery. In the first 24 h, perihemorrhagic region was hypoperfused with CTP values which were not suggestive of ischemic penumbra destined to survive but more likely indicative of edema formation. These findings also argue for a potential influence of early amounts of bleeding on perihematomal hemodynamic abnormalities. (orig.)

  9. Computational fluid dynamics comparisons of wall shear stress in patient-specific coronary artery bifurcation using coronary angiography and optical coherence tomography

    Science.gov (United States)

    Poon, Eric; Thondapu, Vikas; Chin, Cheng; Scheerlinck, Cedric; Zahtila, Tony; Mamon, Chris; Nguyen, Wilson; Ooi, Andrew; Barlis, Peter

    2016-11-01

    Blood flow dynamics directly influence biology of the arterial wall, and are closely linked with the development of coronary artery disease. Computational fluid dynamics (CFD) solvers may be employed to analyze the hemodynamic environment in patient-specific reconstructions of coronary arteries. Although coronary X-ray angiography (CA) is the most common medical imaging modality for 3D arterial reconstruction, models reconstructed from CA assume a circular or elliptical cross-sectional area. This limitation can be overcome with a reconstruction technique fusing CA with intravascular optical coherence tomography (OCT). OCT scans the interior of an artery using near-infrared light, achieving a 10-micron resolution and providing unprecedented detail of vessel geometry. We compared 3D coronary artery bifurcation models generated using CA alone versus OCT-angiography fusion. The model reconstructed from CA alone is unable to identify the detailed geometrical variations of diseased arteries, and also under-estimates the cross-sectional vessel area compared to OCT-angiography fusion. CFD was performed in both models under pulsatile flow in order to identify and compare regions of low wall shear stress, a hemodynamic parameter directly linked with progression of atherosclerosis. Supported by ARC LP150100233 and VLSCI VR0210.

  10. Systemic and intracardiac hemodynamic disturbance in complicated forms of hepatocirrhosis

    International Nuclear Information System (INIS)

    Mjasnik, B.N.; Chodzibekov, M.C.; Achmedzanova, S.S.

    1990-01-01

    On the base of radionuclide investigation of systemic and intracardiac hemodynamics was shown that the rate of kinetic variants of hemocirculation does not depend on the stage of portal hypertension in complicated forms of hepatocirrhosis. Blood redistribution in these patients creates volumentrical overload of cardiac ventricles and pulmonary circulation, that is conditioned of additional tension of cardiac muscle and especially of right ventricle myocardium, which reserve rapidly ran out. Operations which increase blood shunt from portal system to superior vena cava raise preload of myocardium that makes the high risk in appearance of cardiac insufficiency, especially of right ventricle in early post operative period. The received data indicated on necessity to take into account the state of intracardiac hemodynamics in selection of surgical approach in patients with complicated forms of hepatocirrhosis. (orig.) [de

  11. [Variability of hemodynamic parameters and resistance to stress damage in rats of different strains].

    Science.gov (United States)

    Belkina, L M; Popkova, E V; Lakomkin, V L; Kirillina, T N; Zhukova, A G; Sazontova, T G; Usacheva, M A; Kapel'ko, V I

    2006-02-01

    Total power of heart rate variability and baroreflex sensitivity were significantly smaller in the August rats than in the Wistar rats, but adrenal and plasma catecholamine contents were considerably higher in the former ones. 1 hour after stress (30 min in cold water), plasma catecholamine was increased 2-fold in Wistar rats, while in August rats the adrenaline concentration increased only by 58% and the were no changes in noradrenaline content. At the same time, activation of catecholamine metabolism in the adrenal glands was similar in both groups. The oxidative stress induced by hydrogen peroxide depressed the contractile function of isolated heart in the August rats to a smaller extent as compared to Wistar rats, control ones and after the cold-water stress. This effect correlated with more pronounced stability ofantioxidant enzymes in the August rats. It seems that the greater resistance to stress damage in the August rats is mediated by enhanced power of defense mechanisms both at systemic and cellular levels.

  12. Effects of tilting on central hemodynamics and homeostatic mechanisms in cirrhosis

    DEFF Research Database (Denmark)

    Møller, Søren; Nørgaard, Annette; Henriksen, Jens H

    2004-01-01

    Patients with cirrhosis have a hyperdynamic circulation and an abnormal blood volume distribution with central hypovolemia, an activated sympathetic nervous system (SNS) as well as the renin-angiotensin-aldosterone system (RAAS). As the hyperdynamic circulation in cirrhosis may be present only...... in the supine patient, we studied the humoral and central hemodynamic responses to changes with posture. Twenty-three patients with alcoholic cirrhosis (Child-Turcotte-Pugh classes A/B/C: 2/13/8) and 14 healthy controls were entered. Measurements of central hemodynamics and activation of SNS and RAAS were taken......). Central circulation time increased only in the patients (+30% vs. -1%, P higher in the patients than in the controls (P

  13. The incidence of serious hemodynamic changes in physically-limited patients following oral dipyridamole challenge before thallium-201 scintigraphy

    International Nuclear Information System (INIS)

    Kahn, D.; Argenyi, E.A.; Berbaum, K.; Rezai, K.

    1990-01-01

    Dipyridamole has liberalized referrals for stress TI-201 chloride (thallium) studies at the Iowa City Veterans Administration Medical Center. Seventy-five percent of referrals now receive dipyridamole and, unlike patients who tolerate conventional exercise testing, these patients are often quite debilitated. Therefore, the hemodynamic consequences of dipyridamole were reviewed in 120 consecutive, physically-limited patients referred for thallium scintigraphy following an average oral dose of 5.4 mg/kg. Each patient's blood pressure was measured every 5 minutes for 1 hour after dipyridamole and compared with several clinical factors to determine if blood pressure change was predictable. In all patients, blood pressure changed from 136 +/- 21/83 +/- 15 (mean +/- 1 SD) to 117 +/- 25/72 +/- 15 following dipyridamole administration. One hundred nine of the 120 patients had a blood pressure decline from 137 +/- 21/82 +/- 12 to 113 +/- 21/70 +/- 13. Of the 109, 43% (N = 47) had a systolic blood pressure decline greater than 20 mmHg, 16% (n = 18) greater than 40 mmHg, and 13% (n = 14) greater than 50 mmHg. Thirteen percent (n = 14) required emergent reversal of the dipyridamole with aminophylline. Significant hypotension is relatively common but generally unpredictable after oral dipyridamole. Therefore, patient eligibility criteria should be carefully considered; strict hemodynamic monitoring must be routine in the usual patient undergoing thallium scintigraphy after oral dipyridamole challenge

  14. Stress history of the Tharsis Region, Mars

    Science.gov (United States)

    Francis, Robert A.

    1987-01-01

    The Tharsis topographic rise of Mars is roughly 5000 km wide and 10 km high and is believed to have originated more than 3.5 BY ago. Within its boundaries lie the four largest volcanoes on the planet. It is also the locus of a series of fracture traces which extend over approximately a hemisphere. The events leading to the formation of the Tharsis region continue to generate debate. Three geophysical models of the formation of Tharsis are now in general contention and each of these models has been used to predict a characteristic stress-field. These models are: the volcanic construct model, the isostatic compensation model, and the lithospheric uplift model. Each has been used by its proponents to predict some of the features observed in the Tharsis region but none accurately accounts for all of the fracture features observed. This is due, in part, to the use of fractures too young to be directly related to the origin of Tharsis. To constrain the origin of Tharsis, as opposed to its later history, one should look for the oldest fractures related to Tharsis and compare these to the predictions made by the models. Mapping of old terrains in and around the Tharsis rise has revealed 175 hitherto unknown old fracture features.

  15. Stress history of the Tharsis Region, Mars

    International Nuclear Information System (INIS)

    Francis, R.A.

    1987-01-01

    The Tharsis topographic rise of Mars is roughly 5000 km wide and 10 km high and is believed to have originated more than 3.5 BY ago. Within its boundaries lie the four largest volcanoes on the planet. It is also the locus of a series of fracture traces which extend over approximately a hemisphere. The events leading to the formation of the Tharsis region continue to generate debate. Three geophysical models of the formation of Tharsis are now in general contention and each of these models has been used to predict a characteristic stress-field. These models are: the volcanic construct model, the isostatic compensation model, and the lithospheric uplift model. Each has been used by its proponents to predict some of the features observed in the Tharsis region but none accurately accounts for all of the fracture features observed. This is due, in part, to the use of fractures too young to be directly related to the origin of Tharsis. To constrain the origin of Tharsis, as opposed to its later history, one should look for the oldest fractures related to Tharsis and compare these to the predictions made by the models. Mapping of old terrains in and around the Tharsis rise has revealed 175 hitherto unknown old fracture features

  16. Central Hemodynamics Measured During 5 Repetition Maximum Free Weight Resistance Exercise.

    Science.gov (United States)

    Howard, Jonathan S; McLester, Cherilyn N; Evans, Thomas W; McLester, John R; Calloway, Jimmy P

    2018-01-01

    The PhysioFlow™ is a piece of equipment that uses bioimpedance cardiography to measure central hemodynamics. The purpose of this research was to explore the novel approach of monitoring central hemodynamics during free weight resistance exercise using bioimpedance cardiography throughout a 5 repetition maximum (5RM). Thirty participants ranging from beginner to advanced lifters (16 males and 14 females) completed a 5RM for back squat, seated push press, and bicep curl while connected to the PhysioFlow™ to assess the response of heart rate (HR), stroke volume (SV), cardiac output (Q), and ejection fraction (EF). Participants were cued for form and to breathe normally throughout the lifts. The PhysioFlow™ detected an increase in HR and Q for all lifts between rest and each repetition ( p 0.05) and no changes in EF or SV were detected when all repetitions were compared to each other for all lifts ( p > 0.05). In conclusion, the PhysioFlow™ was able to detect changes in HR and Q during dynamic free weight resistance exercise. This novel approach may provide a mechanism for monitoring central hemodynamics during free weight resistance training. However, more research needs to be conducted as the exercise protocol for this investigation did not allow for a comparison to a reference method.

  17. Automatic Detection and Visualization of Qualitative Hemodynamic Characteristics in Cerebral Aneurysms.

    Science.gov (United States)

    Gasteiger, R; Lehmann, D J; van Pelt, R; Janiga, G; Beuing, O; Vilanova, A; Theisel, H; Preim, B

    2012-12-01

    Cerebral aneurysms are a pathological vessel dilatation that bear a high risk of rupture. For the understanding and evaluation of the risk of rupture, the analysis of hemodynamic information plays an important role. Besides quantitative hemodynamic information, also qualitative flow characteristics, e.g., the inflow jet and impingement zone are correlated with the risk of rupture. However, the assessment of these two characteristics is currently based on an interactive visual investigation of the flow field, obtained by computational fluid dynamics (CFD) or blood flow measurements. We present an automatic and robust detection as well as an expressive visualization of these characteristics. The detection can be used to support a comparison, e.g., of simulation results reflecting different treatment options. Our approach utilizes local streamline properties to formalize the inflow jet and impingement zone. We extract a characteristic seeding curve on the ostium, on which an inflow jet boundary contour is constructed. Based on this boundary contour we identify the impingement zone. Furthermore, we present several visualization techniques to depict both characteristics expressively. Thereby, we consider accuracy and robustness of the extracted characteristics, minimal visual clutter and occlusions. An evaluation with six domain experts confirms that our approach detects both hemodynamic characteristics reasonably.

  18. [The effect of combined treatment with the use of magnetotherapy on the systemic hemodynamics of patients with ischemic heart disease and spinal osteochondrosis].

    Science.gov (United States)

    Dudchenko, M A; Vesel'skiĭ, I Sh; Shtompel', V Iu

    1992-05-01

    The authors examined 66 patients with ischemic heart disease and concomitant cervico-thoracic osteochondrosis and 22 patients without osteochondrosis. Differences were revealed in values of the systemic hemodynamics with prevalence of the hypokinetic type in patients with combined pathology. Inclusion of magnetotherapy in the treatment complex of patients with ischemic heart disease and osteochondrosis favours clinical improvement, normalization of indices of central and regional blood circulation.

  19. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI

    International Nuclear Information System (INIS)

    Isoda, Haruo; Takeda, Hiroyasu; Yamashita, Shuhei; Takehara, Yasuo; Sakahara, Harumi; Ohkura, Yasuhide; Kosugi, Takashi; Hirano, Masaya; Hiramatsu, Hisaya; Namba, Hiroki; Alley, Marcus T.; Bammer, Roland; Pelc, Norbert J.

    2010-01-01

    Hemodynamics is thought to play a very important role in the initiation, growth, and rupture of intracranial aneurysms. The purpose of our study was to perform in vivo hemodynamic analysis of unruptured intracranial aneurysms of magnetic resonance fluid dynamics using time-resolved three-dimensional phase-contrast MRI (4D-Flow) at 1.5 T and to analyze relationships between hemodynamics and wall shear stress (WSS) and oscillatory shear index (OSI). This study included nine subjects with 14 unruptured aneurysms. 4D-Flow was performed by a 1.5-T magnetic resonance scanner with a head coil. We calculated in vivo streamlines, WSS, and OSI of intracranial aneurysms based on 4D-Flow with our software. We evaluated the number of spiral flows in the aneurysms and compared the differences in WSS or OSI between the vessel and aneurysm and between whole aneurysm and the apex of the spiral flow. 3D streamlines, WSS, and OSI distribution maps in arbitrary direction during the cardiac phase were obtained for all intracranial aneurysms. Twelve aneurysms had one spiral flow each, and two aneurysms had two spiral flows each. The WSS was lower and the OSI was higher in the aneurysm compared to the vessel. The apex of the spiral flow had a lower WSS and higher OSI relative to the whole aneurysm. Each intracranial aneurysm in this study had at least one spiral flow. The WSS was lower and OSI was higher at the apex of the spiral flow than the whole aneurysmal wall. (orig.)

  20. In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI.

    Science.gov (United States)

    Isoda, Haruo; Ohkura, Yasuhide; Kosugi, Takashi; Hirano, Masaya; Takeda, Hiroyasu; Hiramatsu, Hisaya; Yamashita, Shuhei; Takehara, Yasuo; Alley, Marcus T; Bammer, Roland; Pelc, Norbert J; Namba, Hiroki; Sakahara, Harumi

    2010-10-01

    Hemodynamics is thought to play a very important role in the initiation, growth, and rupture of intracranial aneurysms. The purpose of our study was to perform in vivo hemodynamic analysis of unruptured intracranial aneurysms of magnetic resonance fluid dynamics using time-resolved three-dimensional phase-contrast MRI (4D-Flow) at 1.5 T and to analyze relationships between hemodynamics and wall shear stress (WSS) and oscillatory shear index (OSI). This study included nine subjects with 14 unruptured aneurysms. 4D-Flow was performed by a 1.5-T magnetic resonance scanner with a head coil. We calculated in vivo streamlines, WSS, and OSI of intracranial aneurysms based on 4D-Flow with our software. We evaluated the number of spiral flows in the aneurysms and compared the differences in WSS or OSI between the vessel and aneurysm and between whole aneurysm and the apex of the spiral flow. 3D streamlines, WSS, and OSI distribution maps in arbitrary direction during the cardiac phase were obtained for all intracranial aneurysms. Twelve aneurysms had one spiral flow each, and two aneurysms had two spiral flows each. The WSS was lower and the OSI was higher in the aneurysm compared to the vessel. The apex of the spiral flow had a lower WSS and higher OSI relative to the whole aneurysm. Each intracranial aneurysm in this study had at least one spiral flow. The WSS was lower and OSI was higher at the apex of the spiral flow than the whole aneurysmal wall.

  1. Evolution of regional stress state based on faulting and folding near the pit river, Shasta county, California

    Science.gov (United States)

    Austin, Lauren Jean

    We investigate the evolution of the regional stress state near the Pit River, northern California, in order to understand the faulting style in a tectonic transition zone and to inform the hazard analysis of Fault 3432 near the Pit 3 Dam. By analyzing faults and folds preserved in and adjacent to a diatomite mine north of the Pit River, we have determined principal stress directions preserved during the past million years. We find that the stress state has evolved from predominantly normal to strike slip and most recently to reverse, which is consistent with regional structures such as the extensional Hat Creek Fault to the south and the compressional folding of Mushroom Rock to the north. South of the Pit River, we still observe normal and strike slip faults, suggesting that changes in stress state are moving from north to south through time.

  2. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  3. Ruptured congenital aneurysm of the right sinus of Valsalva into the right ventricle: with special reference to pathoanatomic and hemodynamic characteristics in symptomless cases.

    Science.gov (United States)

    Chen, J J; Lien, W P; Chang, F Z; Lee, Y S; Hung, C R; Chu, S S; Wu, T L

    1980-02-01

    Clinical features of 19 cases with congenital aneurysm of the right sinus of Valsalva rupturing into the right ventricular outflow region (Type 1) were analysed in relation to their pathoanatomic lesions and hemodynamic alterations. Sixteen cases were operated with one surgical death. All were catheterized together with ascending aortographic study. Rupture of the aneurysm in many cases was silent or symptomless and progressive heart failure was not quite common. Symptomatology of the patients did not seem to be related entirely to status of the pathoanatomical lesions or hemodynamic alterations. Time of the rupture, and inherent right ventricular characteristics, tolerating volume overload rather well, might be, in part, responsible for its better prognosis in some cases. However, all patients with ruptured aneurysm of the sinus of Valsalva should be treated surgically. Bacterial endocarditis is a serious complication leading to death.

  4. Amplitude variability over trials in hemodynamic responses in adolescents with ADHD

    DEFF Research Database (Denmark)

    Sørensen, L; Eichele, T; van Wageningen, H

    2016-01-01

    variable response times. In this study, we asked whether ADHD IIV in reaction time on a commonly-used test of attention might be related to variation in hemodynamic responses (HRs) observed trial-to-trial. Based on previous studies linking IIV to regions within the "default mode" network (DMN), we...... predicted that adolescents with ADHD would have higher HR variability in the DMN compared with controls, and this in turn would be related to behavioral IIV. We also explored the influence of social anxiety on HR variability in ADHD as means to test whether higher arousal associated with high trait anxiety...... would affect the neural abnormalities. We assessed single-trial variability of HRs, estimated from fMRI event-related responses elicited during an auditory oddball paradigm in adolescents with ADHD and healthy controls (11-18 years old; N = 46). Adolescents with ADHD had higher HR variability compared...

  5. Automatd assessment of the state of central hemodynamics using a radiocardioanalyser RCA 3-01

    International Nuclear Information System (INIS)

    Sivachenko, T.P.; Zozulya, A.A.; Sribnaya, A.F.; Ratmanskij, A.Yu.; Tishchenko, F.M.; Kurenya, A.G.; Krupka, I.N.; Kulagin, S.N.; Protsenko, A.S.

    1987-01-01

    The authors presented the results of a clinical use of a new radiocardioanalyzer RCA 3-01 (manufactured in the USSR) providing for automated measurements and computations of indices of the central hemodynamics during studies using a method of dilution of radioactive nuclides. The main technical potentialities of the device designed on the basis of microprocessor technology, were described. The authors also provided the results of automated computation of the circulating blood volume and the main hemodynamic indices in a group of patients. Values of the hemodynamic indices were shown to correspond to actual ones and comparable to control ones and clinical evidence. The comparison of automated processing with a manual method of calculation indicated a significant coincidence of index values. The clinical use of the radiocardioanalyzer RGA 3-01 for automated assessment of the indices of the cardiovascular system was shown to hold promise among various groups of patients

  6. Acute effects of chewing tobacco on coronary microcirculation and hemodynamics in habitual tobacco chewers

    Directory of Open Access Journals (Sweden)

    Vikas Thakran

    2015-01-01

    Full Text Available Background: Long-term adverse cardiovascular effects of smokeless tobacco are well established, however, the effect of chewing tobacco on coronary microcirculation and hemodynamic have not been studied. We intended to analyze the acute effect of chewing tobacco on coronary microcirculation and hemodynamics in habitual tobacco chewers with stable coronary artery disease undergoing elective percutaneous coronary intervention (PCI. Materials and Methods: We prospectively enrolled seven habitual tobacco chewers with stable coronary artery disease with single vessel disease or double vessel disease satisfying the criteria for elective PCI. Patients were instructed to keep 1 g of crushed dried tobacco leaves in the mouth after a successful PCI. Lesion in last stented vessels was evaluated for fractional flow reserve (FFR, coronary flow reserve (CFR, and index of microcirculatory resistance (IMR post-PCI, after 15 min and 30 min of tobacco chewing along with the measurement of serum cotinine levels. Results: Oral tobacco led to high levels of cotinine in the majority of patients. There was an insignificant rise in heart rate, systolic and diastolic blood pressure following tobacco consumption. Baseline CFR (median 1.6, range 1.1–5.5 was low in tobacco chewers after PCI even after optimum FFR (0.9 ± 0.05 in the majority of patients suggesting abnormal microvascular hemodynamics (high IMR in 3 patients, overall median 14.2, range 7–36.2. However, there was no significant change in the estimated CFR or IMR values following tobacco chewing. One patient had bradycardia and hypotension which may be related to vagal reaction or acute nicotine poisoning. Conclusion: Tobacco chewers have abnormal coronary microcirculation hemodynamics even following a successful PCI. However, the coronary micocirculation and hemodynamics do not change acutely following tobacco chewing despite high serum cotinine concentrations.

  7. The Campylobacter jejuni Oxidative Stress Regulator RrpB Is Associated with a Genomic Hypervariable Region and Altered Oxidative Stress Resistance.

    Science.gov (United States)

    Gundogdu, Ozan; da Silva, Daiani T; Mohammad, Banaz; Elmi, Abdi; Wren, Brendan W; van Vliet, Arnoud H M; Dorrell, Nick

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB . In C. jejuni rrpB + strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification ( hsd ) system, whilst this variable genomic region in C. jejuni rrpB - strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB - strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB + strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB + strains, but not in rrpB - strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB - and rrpB + strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes.

  8. Bicuspid aortic valves are associated with increased wall and turbulence shear stress levels compared to trileaflet aortic valves.

    Science.gov (United States)

    Saikrishnan, Neelakantan; Mirabella, Lucia; Yoganathan, Ajit P

    2015-06-01

    Congenital bicuspid aortic valves (BAVs) are associated with accelerated disease progression, such as leaflet calcification and ascending aorta dilatation. Although common underlying genetic factors have been implicated in accelerated disease in BAV patients, several studies have suggested that altered hemodynamics also play a role in this disease process. The present study compares turbulence and wall shear stress (WSS) measurements between various BAV and trileaflet aortic valve (TAV) models to provide information for mechanobiological models of BAV disease. BAV and TAV models were constructed from excised porcine aortic valves to simulate parametric variations in BAV stenosis, hemodynamics and geometry. Particle image velocimetry experiments were conducted at physiological pressure conditions to characterize velocity fields in the ascending aorta. The velocity fields were post-processed to calculate turbulence, viscous and wall shear stresses in the ascending aorta. Stenosed BAV models showed the presence of eccentric systolic jets, causing increased WSS. Lower cardiac output resulted in a narrower jet, lower turbulence and lower viscous shear stress (VSS). The specific severe stenosis BAV model studied here showed reduced WSS due to reduction in non-fused leaflet mobility. Dilation of the aorta did not affect any turbulence or VSS, but reduced the WSS. In comparison with BAVs, TAVs have similar VSS values, but much smaller WSS and turbulence levels. These increased turbulence  and WSS levels in BAVs may play a key role in amplifying the biological responses of the ascending aorta wall and valvular leaflets, and support the hemodynamic underpinnings of BAV disease processes.

  9. The Role of Chronic Psychosocial Stress in Explaining Racial Differences in Stress Reactivity and Pain Sensitivity.

    Science.gov (United States)

    Gordon, Jennifer L; Johnson, Jacqueline; Nau, Samantha; Mechlin, Beth; Girdler, Susan S

    To examine the role of psychosocial factors in mediating the relationship between African American (AA) race and both increased pain sensitivity and blunted stress reactivity. Participants included 133 AA and non-Hispanic white (nHW) individuals (mean [SD] age, 37 [9]) matched for age, sex, and socioeconomic status. Participants underwent mental stress testing (Trier Social Stress Test) while cardiovascular, hemodynamic, and neuroendocrine reactivity were measured. Participants completed questionnaires assessing potential sources of psychosocial stress and were tested for pain responses to cold pain and the temporal summation of heat pulses. Mediation analyses were used to determine the extent to which exposure to psychosocial stress accounted for the observed racial differences in stress reactivity and pain. Chronic stress exposure and reactivity to mental stress was largely similar among AAs and nHWs; however, AAs exhibited heightened pain to both cold (p = .012) and heat (p = .004). Racial differences in the relationship between stress reactivity and pain were also observed: while greater stress reactivity was associated with decreased pain among nHWs, reactivity was either unrelated to or even positively associated with pain among AAs (e.g., r = -.21 among nHWs and r = .41 among AAs for stroke volume reactivity and cold pressor intensity). Adjusting for minor racial differences in chronic psychosocial stress did not change these findings. Accounting for psychosocial factors eliminated racial differences in stress reactivity but not racial differences in sensitivity to experimental pain tasks. Increased exposure to chronic stress may not explain AAs' increased pain sensitivity in laboratory settings.

  10. A new CT-score as index of hemodynamic changes in patients with chronic thromboembolic pulmonary hypertension.

    Science.gov (United States)

    Leone, Maria Barbara; Giannotta, Marica; Palazzini, Massimiliano; Cefarelli, Mariano; Martìn Suàrez, Sofia; Gotti, Enrico; Bacchi Reggiani, Maria Letizia; Zompatori, Maurizio; Galiè, Nazzareno

    2017-07-01

    The aim of this study was to retrospectively assess the relationship between radiological and hemodynamic parameters in patients with chronic thromboembolic pulmonary hypertension (CTEPH). We introduced a new CT-score to evaluate hemodynamic changes, only employing CT-pulmonary angiography (CTPA). 145 patients affected by CTEPH underwent hemodynamic and CTPA evaluation. Among these 145 patients, 69 underwent pulmonary endarterectomy (PEA) and performed a CTPA evaluation even after surgery. Hemodynamic assessment considered the values of mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR), obtained through right heart catheterization (RHC). Radiological evaluation included CTPA signs of pulmonary hypertension. A highly significant statistical correlation was observed between the new CT-score and both mPAP and PVR (p < 0.000) in the whole sample and also in the subgroup who underwent PEA. In addition, mPAP and PVR showed an important association with the severity of mosaic perfusion (p < 0.000). mPAP also correlated with main pulmonary artery diameter (p < 0.01); a significant association was found in both between PVR and tricuspid regurgitation(p < 0.000) and with PVR and presence of unilateral or bilateral pulmonary thromboembolic occlusion (p < 0.05). Our results confirm the diagnostic role of CTPA in evaluating patients with CTEPH and in addition open a new horizon in assessing hemodynamic changes in patients with CTEPH, only employing a CTPA, especially when RHC is contraindicated or not possible.

  11. Ultrasound-Guided Drainage of Supralevator Hematoma in a Hemodynamically Stable Patient.

    Science.gov (United States)

    Mukhopadhyay, Debjani; Jennings, Paul E; Banerjee, Mamta; Gada, Ruta

    2015-12-01

    Paravaginal hematomas can be life-threatening. In patients with intact vaginal walls and perineum, they may pose a diagnostic and therapeutic challenge. Supralevator hematomas are much less common than infralevator hematomas. We present a case of puerperal hemorrhagic shock after a normal vaginal delivery in a low-risk parous woman resulting from an occult supralevator hematoma. Because the woman was hemodynamically unstable initially, she underwent a vaginal surgical drainage. A week later, the supravaginal hematoma reformed. At this time the patient was hemodynamically stable, and ultrasound-guided drainage was performed, which resulted in complete resolution of the hematoma within 10 days. In a clinically stable puerperal patient, ultrasound-guided drainage of a supralevator hematoma resulted in rapid and complete resolution of symptoms.

  12. Computational modeling of local hemodynamics phenomena: methods, tools and clinical applications

    International Nuclear Information System (INIS)

    Ponzini, R.; Rizzo, G.; Vergara, C.; Veneziani, A.; Morbiducci, U.; Montevecchi, F.M.; Redaelli, A.

    2009-01-01

    Local hemodynamics plays a key role in the onset of vessel wall pathophysiology, with peculiar blood flow structures (i.e. spatial velocity profiles, vortices, re-circulating zones, helical patterns and so on) characterizing the behavior of specific vascular districts. Thanks to the evolving technologies on computer sciences, mathematical modeling and hardware performances, the study of local hemodynamics can today afford also the use of a virtual environment to perform hypothesis testing, product development, protocol design and methods validation that just a couple of decades ago would have not been thinkable. Computational fluid dynamics (Cfd) appears to be more than a complementary partner to in vitro modeling and a possible substitute to animal models, furnishing a privileged environment for cheap fast and reproducible data generation.

  13. The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers

    DEFF Research Database (Denmark)

    Birk, Steffen; Sitarz, John Thomas; Petersen, Kenneth Ahrend

    2007-01-01

    .9+/-22.4% (Peffect on rCBF in healthy volunteers. The marked increase in heart rate and the reduction in rCBF caused by decreased P(et)CO(2) are important dose-limiting factors to consider in future clinical studies.......PACAP38 is an endogenous peptide located in trigeminal perivascular nerve fibers in the brain. It reduces neuronal loss and infarct size in animal stroke models and has been proposed a candidate substance for human clinical studies of stroke. The effect on systemic hemodynamics and regional......CBF was measured with SPECT and (133)Xe inhalation and mean blood flow velocity in the middle cerebral artery was measured with transcranial Doppler ultrasonography. End tidal partial pressure of CO(2) (P(et)CO(2)) and vital parameters were recorded throughout the 2 hour study period. PACAP38 decreased rCBF in all...

  14. Dietary melatonin alters uterine artery hemodynamics in pregnant holstein heifers

    Science.gov (United States)

    The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor–mediated responses in steroid metabolism were examined using a bovine endometrial epithelial...

  15. Emotional, Neurohormonal, and Hemodynamic Responses to Mental Stress in Tako-Tsubo Cardiomyopathy

    NARCIS (Netherlands)

    Smeijers, Loes; Szabo, Balazs M.; van Dammen, Lotte; Wonnink, Wally; Jakobs, Bernadette S.; Bosch, Jos A.; Kop, Willem J.

    2015-01-01

    Tako-Tsubo cardiomyopathy (TTC) is characterized by apical ballooning of the left ventricle and symptoms and signs mimicking acute myocardial infarction. The high catecholamine levels int the acute phase of TTC and common emotional triggers suggest a dysregulated stress response system. This study

  16. Emotional, neurohormonal and hemodynamic responses to mental stress in Tako-Tsubo cardiomyopathy

    NARCIS (Netherlands)

    Smeijers, L.; Szabó, B.M.; van Dammen, L.; Wonnink-de Jonge, W.F.; Jacobs, B.S.; Bosch, J.A.; Kop, W.J.

    2015-01-01

    Tako-Tsubo cardiomyopathy (TTC) is characterized by apical ballooning of the left ventricle and symptoms and signs mimicking acute myocardial infarction. The high catecholamine levels in the acute phase of TTC and common emotional triggers suggest a dysregulated stress response system. This study

  17. Diastolic pressure underestimates age-related hemodynamic impairment.

    Science.gov (United States)

    Galarza, C R; Alfie, J; Waisman, G D; Mayorga, L M; Cámera, L A; del Río, M; Vasvari, F; Limansky, R; Farías, J; Tessler, J; Cámera, M I

    1997-10-01

    It has been hypothesized that as large arteries become more rigid with age, the pattern of hypertension changes from diastolic to systolic. Thus, diastolic blood pressure (DBP) may lose its ability to reflect the increase in vascular resistance with age. To assess this, we studied the age-related changes in blood pressure pattern and its steady-state and pulsatile determinants. We performed an epidemiological analysis based on a national survey of 10,462 subjects from Argentina. A hemodynamic analysis (impedance cardiography) was then carried out in 636 consecutive hypertensive patients (age, 25 to 74 years). Whereas the rate of increment in the prevalence of mild to moderate hypertension (MMH) reached a plateau after the sixth decade, isolated and borderline systolic forms of hypertension began a steep and sustained rise. Among patients with MMH, DBP remained stable from the third to the seventh decade, whereas SBP maintained a sustained increase. Despite similar DBP, the systemic vascular resistance index increased 47% (P<.01) and the cardiac index decreased 27% (P<.01), whereas the ratio of stroke volume to pulse pressure, an index of arterial compliance, decreased 45% (P<.01). However, there were no significant differences between older patients with MMH and those with isolated systolic hypertension in the level of SBP, vascular resistance, stroke volume, and cardiac index. Compared with age-matched normotensive control subjects, the ratio of stroke volume to pulse pressure was much more reduced in isolated systolic hypertension (48%) than in MMH (30%). In summary, the present study, carried out in a large sample of hypertensive subjects with a wide age range, showed a simultaneous impairment in vascular resistance and arterial compliance associated with aging in different patterns of hypertension. The magnitude of these changes, with opposite effects on DBP but additive effects on SBP, suggests that a hemodynamic mechanism could determine the transition in the

  18. Is aortopathy in bicuspid aortic valve disease a congenital defect or a result of abnormal hemodynamics? A critical reappraisal of a one-sided argument.

    Science.gov (United States)

    Girdauskas, Evaldas; Borger, Michael A; Secknus, Maria-Anna; Girdauskas, Gracijus; Kuntze, Thomas

    2011-06-01

    Although there is adequate evidence that bicuspid aortic valve (BAV) is an inheritable disorder, there is a great controversy regarding the pathogenesis of dilatation of the proximal aorta. The hemodynamic theory was the first explanation for BAV aortopathy. The genetic theory, however, has become increasingly popular over the last decade and can now be viewed as the clearly dominant one. The widespread belief that BAV disease is a congenital disorder of vascular connective tissue has led to more aggressive treatment recommendations of the proximal aorta in such patients, approaching aortic management recommendations for patients with Marfan syndrome. There is emerging evidence that the 'clinically normal' BAV is associated with abnormal flow patterns and asymmetrically increased wall stress in the proximal aorta. Recent in vitro and in vivo studies on BAV function provide a unique hemodynamic insight into the different phenotypes of BAV disease and asymmetry of corresponding aortopathy even in the presence of a 'clinically normal' BAV. On the other hand, there is a subgroup of young male patients with BAV and a root dilatation phenotype, who may present the predominantly genetic form of BAV disease. In the face of these important findings, we feel that a critical review of this clinical problem is timely and appropriate, as the prevailing BAV-aortopathy theory undoubtedly affects the surgical approach to this common clinical entity. Thorough analysis of the recent literature shows a growing amount of evidence supporting the hemodynamic theory of aortopathy in patients with BAV disease. Data from recent studies requires a reevaluation of our overwhelming support of the genetic theory, and obliges us to acknowledge that hemodynamics plays an important role in the development of this disease process. Given the marked heterogeneity of BAV disease, further studies are required in order to more precisely determine which theory is the 'correct' one for explaining the

  19. Extensional Seismogenic Stress and Tectonic Movement on the Central Region of the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Jiren Xu

    2009-01-01

    Full Text Available Various earthquake fault types, mechanism solutions and stress fields, as well as GPS and geothermal data are analyzed for the study of the crustal movements on the Tibetan plateau and their tectonic implications. The results show that a lot of the normal faulting type-event concentrated at altitudes greater than 4000 m on the central Tibetan plateau. The altitudes concentrating normal faulting type-events can be zoned two parts: the western part, the Lhasa block, and the eastern part, the Qiangtang-Changdu region. The azimuths of T-axes are in a general E-W direction in the Lhasa block and NW-SE or NNW-SSE in the Qiangtang-Changdu region at the altitudes of the Tibetan plateau. The tensional stresses in E-W direction and NW-SE direction predominate normal faulting earthquake occurrence in the Lhasa block and the Qiangtang-Changdu region, respectively. The slipping displacements of the normal-faulting-type events have great components in near E-W direction and NW-SE direction in the Lhasa block and the Qiangtang-Changdu region, respectively. The extensions are probably an eastward or southeastward extensional motion, being mainly tectonic activity phenomena in the plateau altitudes. The extensional motions due to normal-fault earthquakes are important tectonic activity regimes on the high altitudes of the plateau. The easterly crustal extensions on the plateau are attributable to the gravitational collapse of the high plateau and eastward extrusion of hotter mantle materials beneath the eastern boundary of the plateau. Numbers of thrust-fault and strike-slip-fault earthquakes with strong compressive stress in a general NNE-SSW direction occur on the edges of the plateau.

  20. Effects of an interatrial shunt on rest and exercise hemodynamics

    DEFF Research Database (Denmark)

    Kaye, David; Shah, Sanjiv J; Borlaug, Barry A

    2014-01-01

    BACKGROUND: A treatment based on an interatrial shunt device has been proposed for counteracting elevated pulmonary capillary wedge pressure (PCWP) in patients with heart failure and mildly reduced or preserved ejection fraction (HFpEF). We tested the theoretical hemodynamic effects of this appro...

  1. Hemodynamic and neuroendocrine responses to changes in sodium intake in compensated heart failure

    DEFF Research Database (Denmark)

    Damgaard, Morten; Norsk, Peter; Gustafsson, Finn

    2005-01-01

    inhibitors and beta-adrenoreceptor blockers. Therefore, we determined the hemodynamic and neuroendocrine responses to 1 wk of a low-sodium diet (70 mmol/day) and 1 wk of a high-sodium diet (250 mmol/day) in 12 HF patients and 12 age-matched controls in a randomized, balanced fashion. During steady......-state conditions, hemodynamic and neuroendocrine examinations were performed at rest and during bicycle exercise. In seated HF patients, high sodium intake increased body weight (1.6 +/- 0.4%), plasma volume (9 +/- 2%), cardiac index (14 +/- 6%), and stroke volume index (21 +/- 5%), whereas mean arterial pressure...

  2. Functional improvement after carotid endarterectomy: demonstrated by gait analysis and acetazolamide stress brain perfusion SPECT

    International Nuclear Information System (INIS)

    Kim, J. S.; Kim, G. E.; Yoo, J. Y.; Kim, D. G.; Moon, D. H.

    2005-01-01

    Scientific documentation of neurologic improvement following carotid endarterectomy (CEA) has not been established. The purpose of this prospective study is to investigate whether CEA performed for the internal carotid artery flow lesion improves gait and cerebrovascular hemodynamic status in patients with gait disturbance. We prospectively performed pre- and postCEA gait analysis and acetazolamide stress brain perfusion SPECT (Acz-SPECT) with Tc-99m ECD in 91 patients (M/F: 81/10, mean age: 64.1 y) who had gait disturbance before receiving CEA. Gait performance was assessed using a Vicon 370 motion analyzer. The gait improvement after CEA was correlated to cerebrovascular hemodynamic change as well as symptom duration. 12 hemiparetic stroke patients (M/F=9/3, mean age: 51 y) who did not receive CEA as a control underwent gait analysis twice in a week interval to evaluate whether repeat testing of gait performance shows learning effect. Of 91 patients, 73 (80%) patients showed gait improvement (change of gait speed > 10%) and 42 (46%) showed marked improvement (change of gait speed > 20%), but no improvement was observed in control group at repeat test. Post-operative cerebrovascular hemodynamic improvement was noted in 49 (54%) of 91 patients. There was marked gait improvement in patients group with cerebrovascular hemodynamic improvement compared to no change group (p<0.05). Marked gait improvement and cerebrovascular hemodynamic improvement were noted in 53% and 61% of the patient who had less than 3 month history of symptom compared to 31% and 24% of the patients who had longer than 3 months, respectively (p<0.05). Marked gait improvement was obtained in patients who had improvement of cerebrovascular hemodynamic status on Acz-SPECT after CEA. These results suggest functional improvement such as gait can result from the improved perfusion of misery perfusion area, which is viable for a longer period compared to literatures previously reported

  3. Comparison of gabapentin, pregabalin and placebo as premedication for attenuation of hemodynamic response to laryngoscopy and endotracheal intubation

    Directory of Open Access Journals (Sweden)

    Alireza Mahoori

    2017-08-01

    Conclusion: Oral gabapentin premedication is effective for control of hemodynamic pressor response of laryngoscopy and tracheal intubation. The study data showed that the pregabalin have the same effect. Pregabalin and gabapentin are both useful and safe for control of hemodynamic pressor response as premedication.

  4. Hemodynamics and vasopressor support in therapeutic hypothermia after cardiac arrest: prognostic implications.

    Science.gov (United States)

    Bro-Jeppesen, John; Kjaergaard, Jesper; Søholm, Helle; Wanscher, Michael; Lippert, Freddy K; Møller, Jacob E; Køber, Lars; Hassager, Christian

    2014-05-01

    Inducing therapeutic hypothermia (TH) in Out-of-Hospital Cardiac Arrest (OHCA) can be challenging due to its impact on central hemodynamics and vasopressors are frequently used to maintain adequate organ perfusion. The aim of this study was to assess the association between level of vasopressor support and mortality. In a 6-year period, 310 comatose OHCA patients treated with TH were included. Temperature, hemodynamic parameters and level of vasopressors were registered from admission to 24h after rewarming. Level of vasopressor support was assessed by the cardiovascular sub-score of Sequential Organ Failure Assessment (SOFA). The population was stratified by use of dopamine as first line intervention (D-group) or use of dopamine+norepinephrine/epinephrine (DA-group). Primary endpoint was 30-day mortality and secondary endpoint was in-hospital cause of death. Patients in the DA-group carried a 49% all-cause 30-day mortality rate compared to 23% in the D-group, plog-rank<0.0001, corresponding to an adjusted hazard ratio (HR) of 2.0 (95% CI: 1.3-3.0), p=0.001). The DA-group had an increased 30-day mortality due to neurological injury (HR=1.7 (95% CI: 1.1-2.7), p=0.02). Cause of death was anoxic brain injury in 78%, cardiovascular failure in 18% and multi-organ failure in 4%. The hemodynamic changes of TH reversed at normothermia, although the requirement for vasopressor support (cardiovascular SOFA≥3) persisted in 80% of patients. In survivors after OHCA treated with TH the induced hemodynamic changes reversed after normothermia, while the need for vasopressor support persisted. Patients requiring addition of norepinephrine/epinephrine on top of dopamine had an increased 30-day all-cause mortality, as well as death from neurological injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Use of active dosemeters as a optimization tool in hemodynamics

    International Nuclear Information System (INIS)

    Nunes, Rafael; Pereira, Dirceu D.; Rodrigues, Barbara B.D.; Ferreira, Esmeralci

    2016-01-01

    Interventional cardiology procedures are, in general, associated with high doses in patients and professionals. The objective of this study is to measure the radiation levels received by professionals .The professional dosimetry was performed in a department of Hemodynamics of University Hospital in Rio de Janeiro. were followed 331 coronary angiography (CA) and 26 percutaneous transluminal coronary angioplasty (PTCA) procedures. For this, were used active dosemeters to measure the radiation levels at the chest of interventional professionals. The results show that average personal equivalent dose of doctors, per procedure was 100 e 154 μSv. On average, nursing technicians and radiologist receive 12 and 10% of doses of physicians, respectively, during CA procedures. From the results, it appears that the doses of hemodynamics exceed the annual dose limit of the standards. The use of lead shielding is presented as an effective action to reduce doses in these workers. (author)

  6. Central Hemodynamic Features in Elderly Patients During General Anesthesia with Sevoflurane

    Directory of Open Access Journals (Sweden)

    O.I. Petrov

    2011-01-01

    Full Text Available Objective: to reduce the number of perioperative cardiovascular events in elderly patients during traditional cholecystectomy, by using anesthesia based on sevoflurane (SF and fentanyl (FL. Subjects and methods. Forty-eight patients aged 60 to 75 years, who were divided into 2 groups, operated on by a classical surgical technique for chronic calculous cholecystitis in the presence of concomitant coronary heart disease and essential hypertension, and had grade 3 surgical risk according to the classification of the Moscow Research Society of Anesthesiologists and Reanimatologists, were examined. Premedicaton was routine. The induction of anesthesia was as follows: intravenous propofol (PF (1.8±0.2 mg/kg and FL (2.2±0.4 mg/kg in Groups 1 and 2. General anesthesia (GA was maintained by SF (1.1±0.2 MAC and FL (2.4±0.4 jBg/kg/hr in Group 1 (n=25 and by PF (2.0—4.0 mg/kg/hr and FL (3.5±0.7 ^Bg/kg/hr in Group 2 (n=23. In both groups, mechanical ventilation was as follows: N2O:O2 = 2:1; air flow, 6 l/min. Myoplegia was rocuronium bromide (RB (0.075—0.1 mg/kg in Group 1 and RB (0.15 mg/kg in Group 2. Hemodynamics was studied during 5 stages of surgery. Results. Central hemodynamics (CH was rather stable in patients after GA with SF. Significant CH changes were noted only during the traumatic stage of surgery, which were less pronounced than those in patients following GA with PF. CH parameters returned gradually to the baseline values at the end of surgery and virtually to the background values after tracheal extubation. The patients under GA with PF showed significant CH changes at all stages of the study. Conclusion. Analysis of the systemic hemodynamic changes induced by the use of SF and PF suggests that GA with SF in elderly patients is more preferable than that in those with PF. Key words: sevoflurane, hemodynamics, elderly.

  7. Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation.

    Science.gov (United States)

    Lu, G; Huang, L; Zhang, X L; Wang, S Z; Hong, Y; Hu, Z; Geng, D Y

    2011-08-01

    Hemodynamics factors play an important role in the rupture of cerebral aneurysms. The purpose of this study was to evaluate the impact of hemodynamic factors on the rupture of the MANs with 3D reconstruction model CFD simulation. RDSA was performed in 9 pairs of intracranial MANs. Each pair was divided into ruptured and unruptured groups. The hemodynamic factors of the aneurysms and their parent arteries were compared. There was a significant difference in the WSS at peak systole between the regions of the aneurysms and their parent arteries in the ruptured group (ie, 6.49 ± 3.48 Pa versus 8.78 ± 3.57 Pa, P =.015) but not in the unruptured group (ie, 9.80 ± 4.12 Pa versus 10.17 ± 7.48 Pa, P =.678). The proportion of the low WSS area to the whole area of the aneurysms was 12.20 ± 18.08% in the ruptured group and 3.96 ± 6.91% in the unruptured group; the difference between the 2 groups was statistically significant (P =.015). The OSI was 0.0879 ± 0.0764 in the ruptured group, which was significantly higher than that of the unruptured group (ie, 0.0183 ± 0.0191, P =.008). MANs may be a useful disease model to investigate possible causes linked to ruptured aneurysms. The ruptured aneurysms manifested lower WSS compared with their parent arteries, a higher proportion of the low WSS area to the whole area of aneurysm, and higher OSI compared with the unruptured aneurysms.

  8. CCM proteins control endothelial β1 integrin dependent response to shear stress

    Directory of Open Access Journals (Sweden)

    Zuzana Macek Jilkova

    2014-11-01

    Full Text Available Hemodynamic shear stress from blood flow on the endothelium critically regulates vascular function in many physiological and pathological situations. Endothelial cells adapt to shear stress by remodeling their cytoskeletal components and subsequently by changing their shape and orientation. We demonstrate that β1 integrin activation is critically controlled during the mechanoresponse of endothelial cells to shear stress. Indeed, we show that overexpression of the CCM complex, an inhibitor of β1 integrin activation, blocks endothelial actin rearrangement and cell reorientation in response to shear stress similarly to β1 integrin silencing. Conversely, depletion of CCM2 protein leads to an elongated “shear-stress-like” phenotype even in the absence of flow. Taken together, our findings reveal the existence of a balance between positive extracellular and negative intracellular signals, i.e. shear stress and CCM complex, for the control of β1 integrin activation and subsequent adaptation of vascular endothelial cells to mechanostimulation by fluid shear stress.

  9. Comparative Study of the Clonidin and Propranolol Effect in the Prevention of Hemodynamic Changes after Electroconvulsive Therapy

    Directory of Open Access Journals (Sweden)

    A. Moradi

    2009-04-01

    Full Text Available Introduction & Objective: ECT is an inevitable therapy for many of psychiatric patients. During ECT severe hemodynamic changes occur which may cause dangerous cardiovascular complications especially in elderly patients with cardiac disease and may lead to arrhythmia,ischemia and myocardial infarction. The purpose of this study was to show the effect of clonidin and propranolol on the prevention of hemodynamic changes following the ECT.Materials & Methods: This study was a controlled double blind clinical trial which was carried out on 31 patients ASA I, II hospitalized in psychiatry ward of Hamadan Sina hospital who were in need of ECT. In order to increase the accuracy of the study the personal factors on the drug metabolism were omitted and the chosen patients were given ECT three times separately with the interval of 48 hours. Two hours before every ECT clonidin (0.2 mg, propranolol (40 mg and placebo (vitamin c were administered and after each ECT the hemodynamic parameters including systolic blood pressure, diastolic blood pressure, rate pressure product and ECG were measured at certain intervals and recorded on information forms and then analyzed by SPSS 9 soft ware. Results: The result of this study showed that the average changes of hemodynamic parameters in different times occurred in all groups significantly(p<0.001. Following ECT, arrhythmia in control group has been plentiful in comparison with the other two groups, and the changes were statistically meaningful (p=0.001.Conclusion: We concluded that the modifying hemodynamic changes and decrease of arrhythmia taking the drugs in comparison with placebo have been more effective and of the two drugs, propranolol has been more effective on the prevention of hemodynamic changes after ECT.

  10. Role and Effectiveness of Percutaneous Arterial Embolization in Hemodynamically Unstable Patients with Ruptured Splanchnic Artery Pseudoaneurysms

    International Nuclear Information System (INIS)

    Dohan, Anthony; Eveno, Clarisse; Dautry, Raphael; Guerrache, Youcef; Camus, Marine; Boudiaf, Mourad; Gayat, Etienne; Dref, Olivier Le; Sirol, Marc; Soyer, Philippe

    2015-01-01

    PurposeTo assess the role and effectiveness of percutaneous arterial embolization (TAE) in patients with hemodynamic instability due to hypovolemic shock secondary to ruptured splanchnic artery pseudoaneurysms (SAPA).Materials and MethodsSeventeen patients (11 men, 6 women; mean age, 53 years) with hemodynamic instability (systolic blood pressure <90 mmHg) due to hypovolemic shock secondary to ruptured SAPA were treated by TAE. Clinical files, multidetector row computed tomography angiography, and angiographic examinations along with procedure details were reviewed.ResultsSeventeen SAPAs were present, predominantly located on gastroduodenal or pancreatic arteries (9/17; 53 %). Angiography showed extravasation of contrast medium from SAPA in 15/17 patients (88 %). Technical success rate of TAE was 100 %. TAE was performed using metallic coils in all patients (100 %), in association with gelatin sponge in 5/17 patients (29 %). TAE allowed controlling the bleeding and returning to normal hemodynamic status in 16/17 patients (94 %). In 1/17 patient (6 %), surgery was needed to definitively control the bleeding. The mortality and morbidity rate of TAE at 30 days were 0 and 12 %, respectively. Morbidity consisted in coil migration in 1/17 patient (6 %) and transient serum liver enzyme elevation in 1/17 patient (6 %).ConclusionTAE is an effective and safe treatment option for ruptured SAPA in hemodynamically unstable patients, with a success rate of 94 %. Our results suggest that TAE should be the favored option in patients with hemodynamic instability due to ruptured SAPA

  11. Role and Effectiveness of Percutaneous Arterial Embolization in Hemodynamically Unstable Patients with Ruptured Splanchnic Artery Pseudoaneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Dohan, Anthony, E-mail: anthony.dohan@lrb.aphp.fr [Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Department of Abdominal and Interventional Imaging (France); Eveno, Clarisse, E-mail: clarisse.eveno@lrb.aphp.fr [Université Paris-Diderot, Sorbonne Paris Cité (France); Dautry, Raphael, E-mail: raphael.dautry@lrb.aphp.fr; Guerrache, Youcef, E-mail: docyoucef05@yahoo.fr [Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Department of Abdominal and Interventional Imaging (France); Camus, Marine, E-mail: marine.camus@lrb.aphp.fr [Université Paris-Diderot, Sorbonne Paris Cité (France); Boudiaf, Mourad, E-mail: mourad.boudiaf@lrb.aphp.fr [Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Department of Abdominal and Interventional Imaging (France); Gayat, Etienne, E-mail: etienne.gayat@lrb.aphp.fr [Université Paris-Diderot, Sorbonne Paris Cité (France); Dref, Olivier Le, E-mail: olivier.ledref@lrb.aphp.fr; Sirol, Marc, E-mail: marc.sirol@lrb.aphp.fr; Soyer, Philippe, E-mail: philippe.soyer@lrb.aphp.fr [Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Department of Abdominal and Interventional Imaging (France)

    2015-08-15

    PurposeTo assess the role and effectiveness of percutaneous arterial embolization (TAE) in patients with hemodynamic instability due to hypovolemic shock secondary to ruptured splanchnic artery pseudoaneurysms (SAPA).Materials and MethodsSeventeen patients (11 men, 6 women; mean age, 53 years) with hemodynamic instability (systolic blood pressure <90 mmHg) due to hypovolemic shock secondary to ruptured SAPA were treated by TAE. Clinical files, multidetector row computed tomography angiography, and angiographic examinations along with procedure details were reviewed.ResultsSeventeen SAPAs were present, predominantly located on gastroduodenal or pancreatic arteries (9/17; 53 %). Angiography showed extravasation of contrast medium from SAPA in 15/17 patients (88 %). Technical success rate of TAE was 100 %. TAE was performed using metallic coils in all patients (100 %), in association with gelatin sponge in 5/17 patients (29 %). TAE allowed controlling the bleeding and returning to normal hemodynamic status in 16/17 patients (94 %). In 1/17 patient (6 %), surgery was needed to definitively control the bleeding. The mortality and morbidity rate of TAE at 30 days were 0 and 12 %, respectively. Morbidity consisted in coil migration in 1/17 patient (6 %) and transient serum liver enzyme elevation in 1/17 patient (6 %).ConclusionTAE is an effective and safe treatment option for ruptured SAPA in hemodynamically unstable patients, with a success rate of 94 %. Our results suggest that TAE should be the favored option in patients with hemodynamic instability due to ruptured SAPA.

  12. Scalp Nerve Block pada Kraniotomi Evakuasi Pasien Moderate Head Injury dengan Subdural Hemorrhage dan Intracerebral Hemorrhage Frontotemporoparietal Dekstra Mencegah Stress Response Selama dan Pascabedah

    Directory of Open Access Journals (Sweden)

    Mariko Gunadi

    2013-12-01

    Full Text Available Skin incision and craniotomy are recognized as an acute noxious stimulation during intracranial surgery which may result in stress response causing an increase in intracranial pressure. Scalp nerve block may be effective in reducing stress response. It can also be used to provide post-operative analgesia. A twenty two years old male with moderate head injury, subdural hemorrhage, intracerebral hemorrhage at right fronto-temporo-parietal region underwent evacuation craniotomy with combined scalp nerve block and general anesthesia at Dr. Hasan General Sadikin Hospital Bandung on August 14th 2012. After induction and before incision of the skin, a scalp nerve block was performed using 0.5% bupivacaine. Hemodynamic (blood pressure and heart rate changes after incision of the skin and craniotomy were not significant, and so was post-operative blood glucose concentration. Post-operative analgetic was given eight hours after the block. The result demonstrates that scalp nerve block using 0.5% bupivacaine successfully blunts stress response and can be used as post-operative analgesia.

  13. Clinical review: Update on hemodynamic monitoring - a consensus of 16.

    NARCIS (Netherlands)

    Vincent, J.L.; Rhodes, A.; Perel, A.; Martin, G.S.; Rocca, G.D.; Vallet, B.; Pinsky, M.R.; Hofer, C.K.; Teboul, J.L.; Boode, W.P. de; Scolletta, S.; Viellard-Baron, A.; Backer, D. de; Walley, K.R.; Maggiorini, M.; Singer, M.

    2011-01-01

    Hemodynamic monitoring plays a fundamental role in the management of acutely ill patients. With increased concerns about the use of invasive techniques, notably the pulmonary artery catheter, to measure cardiac output, recent years have seen an influx of new, less-invasive means of measuring

  14. Comparison on driving fatigue related hemodynamics activated by auditory and visual stimulus

    Science.gov (United States)

    Deng, Zishan; Gao, Yuan; Li, Ting

    2018-02-01

    As one of the main causes of traffic accidents, driving fatigue deserves researchers' attention and its detection and monitoring during long-term driving require a new technique to realize. Since functional near-infrared spectroscopy (fNIRS) can be applied to detect cerebral hemodynamic responses, we can promisingly expect its application in fatigue level detection. Here, we performed three different kinds of experiments on a driver and recorded his cerebral hemodynamic responses when driving for long hours utilizing our device based on fNIRS. Each experiment lasted for 7 hours and one of the three specific experimental tests, detecting the driver's response to sounds, traffic lights and direction signs respectively, was done every hour. The results showed that visual stimulus was easier to cause fatigue compared with auditory stimulus and visual stimulus induced by traffic lights scenes was easier to cause fatigue compared with visual stimulus induced by direction signs in the first few hours. We also found that fatigue related hemodynamics caused by auditory stimulus increased fastest, then traffic lights scenes, and direction signs scenes slowest. Our study successfully compared audio, visual color, and visual character stimulus in sensitivity to cause driving fatigue, which is meaningful for driving safety management.

  15. Local versus regional active stress field in 5900m San Gregorio Magno 1 well (southern Apennines, Italy).

    Science.gov (United States)

    Pierdominici, S.; Montone, P.; Mariucci, M. T.

    2009-04-01

    The aim of this work is to characterize the local stress field in a peculiar sector of the southern Apennines by analyzing borehole breakouts, fractures and logging data along the San Gregorio Magno 1 deep well, and to compare the achieved stress field with the regional one. The study area is characterized by diffuse low-Magnitude seismicity, although in historical times it has been repeatedly struck by moderate to large earthquakes. We have analyzed in detail the 5900m San Gregorio Magno 1 well drilled in 1996-97 by ENI S.p.A. and located very close (1.3 km away) to the Irpinia Fault. This fault was responsible of the strongest earthquake happened in this area, the 23rd November 1980 M6.9 earthquake that produced the first unequivocal historical surface faulting ever documented in Italy. The mainshock enucleated on a fault 38 km-long with a strike of 308° and 60-70° northeast-dipping, consistent with a NE-SW T-axis and a normal faulting tectonic regime. Borehole breakouts, active faults and focal mechanism solutions have allowed to define the present-day stress along and around the San Gregorio Magno 1 well and other analysis (logging data) to discriminate the presence of fracture zones and/or faults at depth. We have considered data from 1200m to the bottom of San Gregorio Magno 1 well. Our analysis of stress-induced wellbore breakouts shows an inhomogeneous direction of minimum horizontal stress (N359+-31°) orientation along the well. This direction is moderately consistent with the Shmin-trend determined from breakouts in other wells in this region and also with the regional active stress field inferred from active faults and earthquake focal plane solutions (N44 Shmin oriented). For this reason we have computed for each breakout zone the difference between the local trend and the regional one; comparing these breakout rotations with the spikes or changing trend of logs we have identified possible fractures or faults at different depths. We have correlated

  16. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment.

    Science.gov (United States)

    Walker, Andrew M; Johnston, Clifton R; Rival, David E

    2012-11-01

    Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the

  17. Variability of hemodynamic parameters in young healthy subjects with and without hypertensive family history

    International Nuclear Information System (INIS)

    Palombo, C.; Michelassi, C.; Ghione, S.

    1987-01-01

    In order to assess the short-term variability of the hemodynamic pattern in healthy normal subjects, Transcutaneous Aortovelography, a continuous wave Doppler technique, was performed in 17 normotensive males, 11 with and 6 without hypertensive family history and repeated after 30'. Reproducibility of measurements in the whole sample was comparable with previous observation reported in literature, but in the group with a positive family history of hypertension the reproducibility of most parameters was lower than in the other, suggesting the existence of a greater hemodynamic variability in normotensive offspring of hypertensive parents

  18. Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation.

    Science.gov (United States)

    Muthalib, Makii; Besson, Pierre; Rothwell, John; Perrey, Stéphane

    2017-07-17

    High-definition transcranial direct current stimulation (HD-tDCS) using a 4 × 1 electrode montage has been previously shown using modeling and physiological studies to constrain the electric field within the spatial extent of the electrodes. The aim of this proof-of-concept study was to determine if functional near-infrared spectroscopy (fNIRS) neuroimaging can be used to determine a hemodynamic correlate of this 4 × 1 HD-tDCS electric field on the brain. In a three session cross-over study design, 13 healthy males received one sham (2 mA, 30 sec) and two real (HD-tDCS-1 and HD-tDCS-2, 2 mA, 10 min) anodal HD-tDCS targeting the left M1 via a 4 × 1 electrode montage (anode on C3 and 4 return electrodes 3.5 cm from anode). The two real HD-tDCS sessions afforded a within-subject replication of the findings. fNIRS was used to measure changes in brain hemodynamics (oxygenated hemoglobin integral-O 2 Hb int ) during each 10 min session from two regions of interest (ROIs) in the stimulated left hemisphere that corresponded to "within" (L in ) and "outside" (L out ) the spatial extent of the 4 × 1 electrode montage, and two corresponding ROIs (R in and R out ) in the right hemisphere. The ANOVA showed that both real anodal HD-tDCS compared to sham induced a significantly greater O 2 Hb int in the L in than L out ROIs of the stimulated left hemisphere; while there were no significant differences between the real and sham sessions for the right hemisphere ROIs. Intra-class correlation coefficients showed "fair-to-good" reproducibility for the left stimulated hemisphere ROIs. The greater O 2 Hb int "within" than "outside" the spatial extent of the 4 × 1 electrode montage represents a hemodynamic correlate of the electrical field distribution, and thus provides a prospective reliable method to determine the dose of stimulation that is necessary to optimize HD-tDCS parameters in various applications. © 2017 International Neuromodulation Society.

  19. Echocardiographic and hemodynamic determinants of right coronary artery flow reserve and phasic flow pattern in advanced non-ischemic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mady Charles

    2007-09-01

    Full Text Available Abstract Background In patients with advanced non-ischemic cardiomyopathy (NIC, right-sided cardiac disturbances has prognostic implications. Right coronary artery (RCA flow pattern and flow reserve (CFR are not well known in this setting. The purpose of this study was to assess, in human advanced NIC, the RCA phasic flow pattern and CFR, also under right-sided cardiac disturbances, and compare with left coronary circulation. As well as to investigate any correlation between the cardiac structural, mechanical and hemodynamic parameters with RCA phasic flow pattern or CFR. Methods Twenty four patients with dilated severe NIC were evaluated non-invasively, even by echocardiography, and also by cardiac catheterization, inclusive with Swan-Ganz catheter. Intracoronary Doppler (Flowire data was obtained in RCA and left anterior descendent coronary artery (LAD before and after adenosine. Resting RCA phasic pattern (diastolic/systolic was compared between subgroups with and without pulmonary hypertension, and with and without right ventricular (RV dysfunction; and also with LAD. RCA-CFR was compared with LAD, as well as in those subgroups. Pearson's correlation analysis was accomplished among echocardiographic (including LV fractional shortening, mass index, end systolic wall stress more hemodynamic parameters with RCA phasic flow pattern or RCA-CFR. Results LV fractional shortening and end diastolic diameter were 15.3 ± 3.5 % and 69.4 ± 12.2 mm. Resting RCA phasic pattern had no difference comparing subgroups with vs. without pulmonary hypertension (1.45 vs. 1.29, p = NS either with vs. without RV dysfunction (1.47 vs. 1.23, p = NS; RCA vs. LAD was 1.35 vs. 2.85 (p Conclusion In patients with chronic advanced NIC, RCA phasic flow pattern has a mild diastolic predominance, less marked than in LAD, with no effects from pulmonary artery hypertension or RV dysfunction. There is no significant correlation between any cardiac mechanical-structural or

  20. The impact of work-related stress on medication errors in Eastern Region Saudi Arabia.

    Science.gov (United States)

    Salam, Abdul; Segal, David M; Abu-Helalah, Munir Ahmad; Gutierrez, Mary Lou; Joosub, Imran; Ahmed, Wasim; Bibi, Rubina; Clarke, Elizabeth; Qarni, Ali Ahmed Al

    2018-05-07

    To examine the relationship between overall level and source-specific work-related stressors on medication errors rate. A cross-sectional study examined the relationship between overall levels of stress, 25 source-specific work-related stressors and medication error rate based on documented incident reports in Saudi Arabia (SA) hospital, using secondary databases. King Abdulaziz Hospital in Al-Ahsa, Eastern Region, SA. Two hundred and sixty-nine healthcare professionals (HCPs). The odds ratio (OR) and corresponding 95% confidence interval (CI) for HCPs documented incident report medication errors and self-reported sources of Job Stress Survey. Multiple logistic regression analysis identified source-specific work-related stress as significantly associated with HCPs who made at least one medication error per month (P stress were two times more likely to make at least one medication error per month than non-stressed HCPs (OR: 1.95, P = 0.081). This is the first study to use documented incident reports for medication errors rather than self-report to evaluate the level of stress-related medication errors in SA HCPs. Job demands, such as social stressors (home life disruption, difficulties with colleagues), time pressures, structural determinants (compulsory night/weekend call duties) and higher income, were significantly associated with medication errors whereas overall stress revealed a 2-fold higher trend.

  1. Comparison of hemodynamic effects of lidocaine, prilocaine and mepivacaine solutions without vasoconstrictor in hypertensive patients

    Directory of Open Access Journals (Sweden)

    Bahadir Ezmek

    2010-08-01

    Full Text Available OBJECTIVE: Local anesthetic solutions with vasoconstrictors are not contraindicated in hypertensive patients, but due to their hemodynamic effects, local anesthetics without vasoconstrictors are mainly preferred by the clinicians. The aim of this study was to compare hemodynamic effects of three different local anesthetics without vasoconstrictors during tooth extraction in hypertensive patients. MATERIAL AND METHODS: Sixty-five mandibular molars and premolars were extracted in 60 hypertensive patients (29 females and 31 males; mean age: 66.95 ± 10.87 years; range: 38 to 86 years old. Inferior alveolar and buccal nerve blocks were performed with 2% lidocaine hydrochloride (HCl, 2% prilocaine HCl or 3% mepivacaine HCl without vasoconstrictor. Hemodynamic parameters namely systolic blood pressure (SBP, diastolic blood pressure (DBP, mean arterial pressure (MAP, heart rate (HR, saturation rate (SR, rate pressure product (RPP and pressure rate quotient (PRQ were investigated before and at different intervals after anesthetic injection. RESULTS: The hemodynamic effects of the three agents were similar to each other, although some significance was observed for DBP, MAP, RPP and PRQ values in the lidocaine, prilocaine and mepivacaine groups. CONCLUSION: Lidocaine, prilocaine and mepivacaine solutions without vasoconstrictor can be safely used in hypertensive patients. It is advisable that dental practitioners select anesthetic solutions for hypertensive patients considering their cardiovascular effects in order to provide patient comfort and safety.

  2. Jogging Therapy for Hikikomori Social Withdrawal and Increased Cerebral Hemodynamics: A Case Report.

    Science.gov (United States)

    Nishida, Masaki; Kikuchi, Senichiro; Fukuda, Kazuhito; Kato, Satoshi

    2016-01-01

    Severe social withdrawal, called hikikomori, has drawn increased public attention. However, an optimal clinical approach and strategy of treatment has not been well established. Here, we report a case of hikikomori for which an exercise intervention using jogging therapy was effective, showing cerebral hemodynamic improvement. The patient was a 20 year old Japanese male who was hospitalized in order to evaluate and treat severe social withdrawal. Although depressive and anxiety symptoms partially subsided with sertraline alone, social withdrawal persisted due to a lack of self confidence. With his consent, we implemented exercise therapy with 30 minutes of jogging three times a week for three months. We did not change the pharmacotherapy, and his social withdrawal remarkably improved with continuous jogging exercise. Using near infrared spectroscopy to evaluate hemodynamic alteration, bilateral temporal hemodynamics considerably increased after the three-month jogging therapy. Regarding exercise therapy for mental illness, numerous studies have reported the effectiveness of exercise therapy for major depression. This case implied, however, that the applicability of exercise therapy is not limited to major depressive disorder. Jogging therapy may contribute to reinforcing self confidence associated with "resilience" in conjunction with neurophysiological modulation of neural networks.

  3. Complex Coronary Hemodynamics - Simple Analog Modelling as an Educational Tool.

    Science.gov (United States)

    Parikh, Gaurav R; Peter, Elvis; Kakouros, Nikolaos

    2017-01-01

    Invasive coronary angiography remains the cornerstone for evaluation of coronary stenoses despite there being a poor correlation between luminal loss assessment by coronary luminography and myocardial ischemia. This is especially true for coronary lesions deemed moderate by visual assessment. Coronary pressure-derived fractional flow reserve (FFR) has emerged as the gold standard for the evaluation of hemodynamic significance of coronary artery stenosis, which is cost effective and leads to improved patient outcomes. There are, however, several limitations to the use of FFR including the evaluation of serial stenoses. In this article, we discuss the electronic-hydraulic analogy and the utility of simple electrical modelling to mimic the coronary circulation and coronary stenoses. We exemplify the effect of tandem coronary lesions on the FFR by modelling of a patient with sequential disease segments and complex anatomy. We believe that such computational modelling can serve as a powerful educational tool to help clinicians better understand the complexity of coronary hemodynamics and improve patient care.

  4. Cloning and characterization of stress responsive Glp genes and their promotor regions from rice (abstract)

    International Nuclear Information System (INIS)

    Naqvi, S.M.S.; Mahmood, T.

    2005-01-01

    Plants respond to a number of environmental stimuli by modulating expression of genes. One such family of genes is now known as germin/germin-like protein genes (Glps). In order to detect any Glp gene response in rice, a pair of degenerate primers was designed based on consensus region from Glp sequences in Genbank. Using these primers a DNA fragment of about 550 bp was obtained by PCR amplification from genomic template. This 550 bp DNA was used as probe in Northern analysis. These studies provided evidence pointing to differential response of Glp expression to salt stress. RNA obtained from the roots was used for synthesis of cDNA. This cDNA was amplifiable with sense primer (RGLP1) from above mentioned pair and oligo-(dt) yielding a fragment of approx. 800 bp. Restriction analysis revealed that the PCR product was heterogeneous. After establishing that 800 bp fragment was the desired product, it was cloned in pCRII-TOPO. Five clones were picked up and analyzed by restriction analysis and sequencing. Two different Glp cDNAs were represented by these partial clones. Remaining sequence of the 5' end for clone 4 and 16 was obtained by Rapid Amplification of cDNA ends (RACE). The resultant sequences have been submitted to Genbank as Oryza sativa Rice Germin-like Protein 1 and 2 (osRGLP1 and 2). When full length genes corresponding to these sequences were amplified from genomic templates, resulting fragments were nearly 150 by larger than cDNAs. Cloning of structural genes for osRGLP1 revealed presence of a 162 bp intron in the coding region near 3' end. Preliminary evidence shows that expression of both osRGLP1 and 2 is severely reduced during salt stress. Another approach to establish both osRGLP1 and 2 genes involvement in stress tolerance is to study the ability of their promotor regions to drive expression of some reporter gene during stress. Promotor regions of about 1100 bp has been amplified and cloned and has been confirmed by restriction analysis and nested

  5. Severe carotid stenosis and impaired cerebral hemodynamics can influence cognitive deterioration.

    Science.gov (United States)

    Balestrini, Simona; Perozzi, Cecilia; Altamura, Claudia; Vernieri, Fabrizio; Luzzi, Simona; Bartolini, Marco; Provinciali, Leandro; Silvestrini, Mauro

    2013-06-04

    To evaluate whether severe carotid stenosis and related hemodynamics impairment may increase the risk of cognitive deterioration in asymptomatic subjects. A total of 210 subjects with unilateral asymptomatic severe carotid stenosis and 109 healthy controls were included and prospectively evaluated for a 36-month period. At entry, demographics, vascular risk profile, and pharmacologic treatments were defined. Cerebral hemodynamics was assessed by transcranial Doppler-based breath-holding index (BHI) test. Cognitive status was evaluated with the Mini-Mental State Examination (MMSE) at entry and at the end of the follow-up period. Cognitive deterioration was defined as a decrease in the MMSE score of 3 points or more during the overall follow-up period. Subjects with carotid stenosis showed an increased probability of developing cognitive deterioration compared with the group without stenosis (odds ratio [OR] 4.16 [95% confidence interval (CI) 1.89-9.11]; p < 0.001). The presence of an impaired BHI ipsilateral to the stenosis was associated with an increased incidence of reduction in cognitive performance (OR 14.66 [95% CI 7.51-28.59]; p < 0.001). Our findings show that the presence of a severe carotid stenosis influences cognitive deterioration over a 36-month period in asymptomatic subjects. An associated hemodynamic impairment significantly increases the risk. Evaluation of functional consequences of carotid stenosis may offer the opportunity to select a group with an increased risk of developing cognitive impairment from subjects with asymptomatic severe carotid stenosis.

  6. Hemodynamic Changes Caused by Flow Diverters in Rabbit Aneurysm Models: Comparison of Virtual and Realistic FD Deployments Based on Micro-CT Reconstruction

    Science.gov (United States)

    Fang, Yibin; Yu, Ying; Cheng, Jiyong; Wang, Shengzhang; Wang, Kuizhong; Liu, Jian-Min; Huang, Qinghai

    2013-01-01

    Adjusting hemodynamics via flow diverter (FD) implantation is emerging as a novel method of treating cerebral aneurysms. However, most previous FD-related hemodynamic studies were based on virtual FD deployment, which may produce different hemodynamic outcomes than realistic (in vivo) FD deployment. We compared hemodynamics between virtual FD and realistic FD deployments in rabbit aneurysm models using computational fluid dynamics (CFD) simulations. FDs were implanted for aneurysms in 14 rabbits. Vascular models based on rabbit-specific angiograms were reconstructed for CFD studies. Real FD configurations were reconstructed based on micro-CT scans after sacrifice, while virtual FD configurations were constructed with SolidWorks software. Hemodynamic parameters before and after FD deployment were analyzed. According to the metal coverage (MC) of implanted FDs calculated based on micro-CT reconstruction, 14 rabbits were divided into two groups (A, MC >35%; B, MC 0.05). The normalized mean WSS in Group A after realistic FD implantation was significantly lower than that of Group B. All parameters in Group B exhibited no significant difference between realistic and virtual FDs. This study confirmed MC-correlated differences in hemodynamic parameters between realistic and virtual FD deployment. PMID:23823503

  7. Time-resolved magnetic resonance angiography (MRA) at 3.0 Tesla for evaluation of hemodynamic characteristics of vascular malformations: description of distinct subgroups.

    Science.gov (United States)

    Hammer, Simone; Uller, Wibke; Manger, Florentine; Fellner, Claudia; Zeman, Florian; Wohlgemuth, Walter A

    2017-01-01

    Quantitative evaluation of hemodynamic characteristics of arteriovenous and venous malformations using time-resolved magnetic resonance angiography (MRA) at 3.0 Tesla. Time-resolved MRA with interleaved stochastic trajectories (TWIST) at 3.0 Tesla was studied in 83 consecutive patients with venous malformations (VM) and arteriovenous malformations (AVM). Enhancement characteristics were calculated as percentage increase of signal intensity above baseline over time. Maximum percentage signal intensity increase (signal max ), time intervals between onset of arterial enhancement and lesion enhancement (t onset ), and time intervals between beginning of lesion enhancement and maximum percentage of lesion enhancement (t max ) were analyzed. All AVMs showed a high-flow hemodynamic pattern. Two significantly different (p 3.0 Tesla provides hemodynamic characterization of vascular malformations. VMs can be subclassified into two hemodynamic subgroups due to presence or absence of AVFs. • Time-resolved MRA at 3.0 Tesla provides quantitative hemodynamic characterization of vascular malformations. • Malformations significantly differ in time courses of enhancement and signal intensity increase. • AVMs show a distinctive high-flow hemodynamic pattern. • Two significantly different types of VMs emerged: VMs with and without AVFs.

  8. Reconciliation of stress and structural histories of the Tharsis region of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Golombek, Matthew P.; Banerdt, W. B.

    1991-01-01

    New information is presented on the structural and stratigraphic evolution of the Tharsis region of Mars, along with a lithospheric deformation model that can account for the observations. According to this model, the lithosphere beneath Tharsis consists of a thin elastic crustal cap on the rise, which is mechanically detached from the strong upper mantle by a volcanically thickened, hot, weak lower crust; these layers merge into a single cooler strong lithospheric layer around the edges of the rise. It is suggested that the nonuniform distribution of tectonic features and strain around Tharsis is due to the concentration of regional stresses near weaker volcanotectonic centers.

  9. Adaptation of endothelial cells to physiologically-modeled, variable shear stress.

    Directory of Open Access Journals (Sweden)

    Joseph S Uzarski

    Full Text Available Endothelial cell (EC function is mediated by variable hemodynamic shear stress patterns at the vascular wall, where complex shear stress profiles directly correlate with blood flow conditions that vary temporally based on metabolic demand. The interactions of these more complex and variable shear fields with EC have not been represented in hemodynamic flow models. We hypothesized that EC exposed to pulsatile shear stress that changes in magnitude and duration, modeled directly from real-time physiological variations in heart rate, would elicit phenotypic changes as relevant to their critical roles in thrombosis, hemostasis, and inflammation. Here we designed a physiological flow (PF model based on short-term temporal changes in blood flow observed in vivo and compared it to static culture and steady flow (SF at a fixed pulse frequency of 1.3 Hz. Results show significant changes in gene regulation as a function of temporally variable flow, indicating a reduced wound phenotype more representative of quiescence. EC cultured under PF exhibited significantly higher endothelial nitric oxide synthase (eNOS activity (PF: 176.0±11.9 nmol/10(5 EC; SF: 115.0±12.5 nmol/10(5 EC, p = 0.002 and lower TNF-a-induced HL-60 leukocyte adhesion (PF: 37±6 HL-60 cells/mm(2; SF: 111±18 HL-60/mm(2, p = 0.003 than cells cultured under SF which is consistent with a more quiescent anti-inflammatory and anti-thrombotic phenotype. In vitro models have become increasingly adept at mimicking natural physiology and in doing so have clarified the importance of both chemical and physical cues that drive cell function. These data illustrate that the variability in metabolic demand and subsequent changes in perfusion resulting in constantly variable shear stress plays a key role in EC function that has not previously been described.

  10. Plasma ADAMTS-13 protein is not associated with portal hypertension or hemodynamic changes in patients with cirrhosis

    DEFF Research Database (Denmark)

    Wiese, Signe; Timm, Annette; Nielsen, Lars B

    2016-01-01

    BACKGROUND: Activated hepatic stellate cells synthesize the matrix metalloprotease ADAMTS13, which may be involved in the development of liver cirrhosis and portal hypertension. Plasma ADAMTS13 activity has been reported as both increased and decreased in cirrhosis, but ADAMTS13 protein has...... in cirrhosis. However, ADAMTS13 was unrelated to portal hypertension and systemic hemodynamics. In conclusion, ADAMTS13 does not appear to be associated to disease severity or the hemodynamic derangement in patients with cirrhosis....... not previously been examined. AIM: To evaluate ADAMTS13 protein in the hepatic circulation and the relation to disease severity, portal pressure, and systemic hemodynamics in cirrhotic patients. METHODS: Sixty-one cirrhotic patients (Child class: A=22; B=21; C=18) and nine healthy controls underwent a liver vein...

  11. Hemispheric differences in electrical and hemodynamic responses during hemifield visual stimulation with graded contrasts.

    Science.gov (United States)

    Si, Juanning; Zhang, Xin; Zhang, Yujin; Jiang, Tianzi

    2017-04-01

    A multimodal neuroimaging technique based on electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) was used with horizontal hemifield visual stimuli with graded contrasts to investigate the retinotopic mapping more fully as well as to explore hemispheric differences in neuronal activity, the hemodynamic response, and the neurovascular coupling relationship in the visual cortex. The fNIRS results showed the expected activation over the contralateral hemisphere for both the left and right hemifield visual stimulations. However, the EEG results presented a paradoxical lateralization, with the maximal response located over the ipsilateral hemisphere but with the polarity inversed components located over the contralateral hemisphere. Our results suggest that the polarity inversion as well as the latency advantage over the contralateral hemisphere cause the amplitude of the VEP over the contralateral hemisphere to be smaller than that over the ipsilateral hemisphere. Both the neuronal and hemodynamic responses changed logarithmically with the level of contrast in the hemifield visual stimulations. Moreover, the amplitudes and latencies of the visual evoked potentials (VEPs) were linearly correlated with the hemodynamic responses despite differences in the slopes.

  12. I-gel Laryngeal Mask Airway Combined with Tracheal Intubation Attenuate Systemic Stress Response in Patients Undergoing Posterior Fossa Surgery

    Directory of Open Access Journals (Sweden)

    Chaoliang Tang

    2015-01-01

    patients. In this study, we proposed that I-gel combined with tracheal intubation could reduce the stress response of posterior fossa surgery patients. Methods. Sixty-six posterior fossa surgery patients were randomly allocated to receive either tracheal tube intubation (Group TT or I-gel facilitated endotracheal tube intubation (Group TI. Hemodynamic and respiratory variables, stress and inflammatory response, oxidative stress, anesthesia recovery parameters, and adverse events during emergence were compared. Results. Mean arterial pressure and heart rate were lower in Group TI during intubation and extubation (P<0.05 versus Group TT. Respiratory variables including peak airway pressure and end-tidal carbon dioxide tension were similar intraoperative, while plasma β-endorphin, cortisol, interleukin-6, tumor necrosis factor-alpha, malondialdehyde concentrations, and blood glucose were significantly lower in Group TI during emergence relative to Group TT. Postoperative bucking and serious hypertensions were seen in Group TT but not in Group TI. Conclusion. Utilization of I-gel combined with endotracheal tube in posterior fossa surgery patients is safe which can yield more stable hemodynamic profile during intubation and emergence and lower inflammatory and oxidative response, leading to uneventful recovery.

  13. Prognostic value of noninvasive hemodynamic evaluation of the acute effect of levosimendan in advanced heart failure.

    Science.gov (United States)

    Malfatto, Gabriella; Della Rosa, Francesco; Rella, Valeria; Villani, Alessandra; Branzi, Giovanna; Blengino, Simonetta; Giglio, Alessia; Facchini, Mario; Parati, Gianfranco

    2014-04-01

    Optimization of inotropic treatment in worsening heart failure sometimes requires invasive hemodynamic assessment in selected patients. Impedance cardiography (ICG) may be useful for a noninvasive hemodynamic evaluation. ICG was performed in 40 patients (69 ± 8 years; left ventricular ejection fraction 27.5 ± 5.6%; New York Heart Association 3.18 ± 0.34; Interagency Registry for Mechanically Assisted Circulatory Support 5.48 ± 0.96, before and after infusion of Levosimendan (0.1–0.2 µg/kg per min for up to 24 h). Echocardiogram, ICG [measuring cardiac index (CI), total peripheral resistances (TPRs) and thoracic fluid content (TFC)] and plasma levels of brain natriuretic peptide (BNP) were obtained; in nine patients, right heart catheterization was also carried out. When right catheterization and ICG were performed simultaneously, a significant relationship was observed between values of CI and TPR, and between TFC and pulmonary wedge pressure. ICG detected the Levosimendan-induced recovery of the hemodynamic status, associated with improved systolic and diastolic function and reduction in BNP levels. One-year mortality was 4.4%. At multivariate analysis, independent predictors of mortality were: no improvement in the severity of mitral regurgitation, a persistent restrictive filling pattern (E/E’ > 15), a reduction of BNP levels below 30% and a change below 10% in CI, TPR and TFC. When combined, absence of hemodynamic improvement at ICG could predict 1-year mortality with better sensitivity (86%) and specificity (85%) than the combination of echocardiographic and BNP criteria only (sensitivity 80% and specificity 36%). Noninvasive hemodynamic evaluation of heart failure patients during infusion of inodilator drugs is reliable and may help in their prognostic stratification.

  14. Association between percutaneous hemodynamic support device and survival from cardiac arrest in the state of Michigan.

    Science.gov (United States)

    Pressman, Andrew; Sawyer, Kelly N; Devlin, William; Swor, Robert

    2018-05-01

    The role of circulatory support in the post-cardiac arrest period remains controversial. Our objective was to investigate the association between treatment with a percutaneous hemodynamic support device and outcome after admission for cardiac arrest. We performed a retrospective study of adult patients with admission diagnosis of cardiac arrest or ventricular fibrillation (VF) from the Michigan Inpatient Database, treated between July 1, 2010, and June 30, 2013. Patient demographics, clinical characteristics, treatments, and disposition were electronically abstracted based on ICD-9 codes at the hospital level. Mixed-effects logistic regression models were fit to test the effect of percutaneous hemodynamic support device defined as either percutaneous left ventricular assist device (pLVAD) or intra-aortic balloon pump (IABP) on survival. These models controlled for age, sex, VF, myocardial infarction (MI), and cardiogenic shock with hospital modeled as a random effect. A total of 103 hospitals contributed 4393 patients for analysis, predominately male (58.8%) with a mean age of 64.1years (SD 15.5). On univariate analysis, younger age, male sex, VF as the initial rhythm, acute MI, percutaneous coronary intervention, percutaneous hemodynamic support device, and absence of cardiogenic shock were associated with survival to discharge (each p<0.001). Mixed-effects logistic regressions revealed use of percutaneous hemodynamic support device was significantly associated with survival among all patients (OR 1.8 (1.28-2.54)), and especially in those with acute MI (OR 1.95 (1.31-2.93)) or cardiogenic shock (OR 1.96 (1.29-2.98)). Treatment with percutaneous hemodynamic support device in the post-arrest period may provide left ventricular support and improve outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Hemodynamic and glucometabolic factors in the prediction of left ventricular filling pressures

    DEFF Research Database (Denmark)

    Pareek, M; Nielsen, M L; Olesen, T B

    2015-01-01

    OBJECTIVE: To explore possible hemodynamic and glucometabolic determinants of left ventricular filling pressures as assessed by the non-invasive surrogate marker, averaged E/é, in otherwise healthy, middle-aged male survivors from a random population sample. DESIGN AND METHODS: Prospective.......01). We did not find any significant interactions in the prediction of E/é. CONCLUSION: In a prospective population-based cohort study including apparently healthy, middle-aged male subjects, higher age, BMI, and creatinine, but not SBP or HR, were significantly associated with higher left ventricular...... population-based cohort study examining associations between hemodynamic factors [systolic blood pressure (SBP), heart rate (HR)), glucometabolic factors (fasting blood glucose, fasting plasma insulin, Homeostatic Model Assessment (HOMA) derived indices of beta-cell function (HOMA-2B) and insulin sensitivity...

  16. Effect of stress on variability of systemic hemodynamics in rats of various genetic strains.

    Science.gov (United States)

    Belkina, L M; Tarasova, O S; Kirillina, T N; Borovik, A S; Popkova, E V

    2003-09-01

    Power spectral density of heart rate fluctuations in the range of 0.02-5.00 Hz in August rats was lower than in Wistar rats. Changes in mean blood pressure and heart rate during stress (15-min immobilization) were similar in animals of both strains. As differentiated from Wistar rats, power spectral density of fluctuations in August rats considerably decreased after stress. August rats were characterized by low spectral power at rest and high resistance to the arrhythmogenic effect of 10-min acute myocardial ischemia.

  17. Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery

    Science.gov (United States)

    Akbar, Noreen Sher; Tripathi, Dharmendra; Bég, O. Anwar

    2017-07-01

    This paper presents a mathematical model for simulating viscous, incompressible, steady-state blood flow containing copper nanoparticles and coupled heat transfer through a composite stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects are included. The artery is simulated as an isotropic elastic tube, following Joshi et al. (2009), and a variable viscosity formulation is employed for the flowing blood. The equations governing the transport phenomena are non-dimensionalized and the resulting boundary value problem is solved analytically in the steady state subject to physically appropriate boundary conditions. Numerical computations are conducted to quantify the effects of relevant hemodynamic, thermophysical and nanoscale parameters emerging in the model on velocity and temperature profiles, wall shear stress, impedance resistance and also streamline distributions. The model may be applicable to drug fate transport modeling with nanoparticle agents and also to the optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory systems.

  18. Thermal and hemodynamic response to whole-body cryostimulation in healthy subjects.

    Science.gov (United States)

    Zalewski, Pawel; Klawe, Jacek J; Pawlak, Joanna; Tafil-Klawe, Malgorzata; Newton, Julia

    2013-06-01

    Whole-body cryotherapy (WBC) is an increasing applied cryotherapeutic method, that involves application of a cryotherapeutic factor to stimulate the body by the means of intense hypothermia of virtually the body's entire area. This method is still not well recognized in Western Europe. However in recent years it is becoming increasingly popular in sports medicine and also in clinical application. Cryotherapeutic agents used in WBC are considered to be a strong stress stimulus which is associated with a variety of changes in functional parameters, particularly of the cardiovascular and autonomic nervous systems. However, such strong influence upon the entire body could be associated with the risk of unexpected reactions which might be dangerous for homeostasis. The present study evaluated the complex hemodynamic physiological reactions in response to WBC exposure in healthy subjects. Thirty healthy male volunteers participated. Each subject was exposed to WBC (-120°C) for 3-min. None of the participants had been exposed to such conditions previously. The research was conducted with modern and reliable measurements techniques, which assessed complex hemodynamic reactions and skin temperature changes non-invasively. All measurements were performed four times (before WBC, after WBC, WBC+3h and WBC+6h) with a Task Force Monitor (TFM - CNSystems, Medizintechnik, Gratz, Austria). Body superficial temperature was measured by infrared thermographic techniques - infra-red camera Flir P640 (Flir Systems Inc., Sweden). Our results show a significant decrease in heart rate, cardiac output, and increase in stroke volume, total peripheral resistance and baroreceptors reflex sensitivity. These changes were observed just after WBC exposure. At stages WBC+3h and WBC+6h there was observed a significant drop in baroreceptors reflex sensitivity due to increased thermogenesis. In conclusion, the present findings suggest that WBC strongly stimulates the baroreceptor cardiac reflex in

  19. Thermal effect on heart rate and hemodynamics in vitelline arteries of stage 18 chicken embryos.

    Science.gov (United States)

    Lee, Jung Yeop; Lee, Sang Joon

    2010-12-01

    We investigated the thermal effects on heart rate, hemodynamics, and response of vitelline arteries of stage-18 chicken embryos. Heart rate was monitored by a high-speed imaging method, while hemodynamic quantities were evaluated using a particle image velocimetry (PIV) technique. Experiments were carried out at seven different temperatures (36-42 °C with 1 °C interval) after 1h of incubation to stabilize the heart rate. The heart rate increased in a linear manner (r = 0.992). Due to the increased cardiac output (or heart rate), the hemodynamic quantities such as mean velocity (U(mean)), velocity fluctuation (U(fluc)), and peak velocity (U(peak)) also increased with respect to the Womersley number (Ω) in the manner r = 0.599, 0.693, and 0.725, respectively. This indicates that the mechanical force exerting on the vessel walls increases. However, the active response (or regulation) of the vitelline arteries was not observed in this study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. The intraplate Maranhão earthquake of 2017 January 3, northern Brazil: evidence for uniform regional stresses along the Brazilian equatorial margin

    Science.gov (United States)

    Dias, Fábio L.; Assumpção, M.; Bianchi, Marcelo B.; Barros, Lucas V.; Carvalho, Juraci M.

    2018-04-01

    Lithospheric stresses in intraplate regions can be characterized by many different wavelengths. In some areas, stresses vary over short distances of less than ˜100 km, but in other regions uniform stresses can be recognized for more than ˜1000 km or so. However, not all intraplate regions are well sampled with stress measurements to allow a good characterization of the lithospheric stresses. On 2017 January 3, a magnitude mb 4 earthquake occurred near the equatorial coast of the Maranhão State, an aseismic area of northern Brazil. Despite the few permanent stations in northern Brazil, a well-constrained strike-slip mechanism was obtained from regional moment-tensor inversion. A detailed analysis of the backazimuths of aftershocks recorded by the closest station (˜40 km away) allowed the identification of the fault plane to be the NNW-SSE trending nodal plane. An estimate of the rupture length, about 2 km, was also possible. The strike-slip mechanism has coast-parallel P axis and coast-perpendicular T axis, in agreement with most of the focal mechanisms found further to the east. The coast parallel P axis is also similar to the SHmax orientations from breakouts measurements further along the coast. The Maranhão earthquake fills an important gap of stress indicators in northern Brazil and suggests that the intraplate stress field is uniform along the 2000 km long northern coast.

  1. Effect of dialysate temperature on hemodynamic stability among hemodialysis patients

    International Nuclear Information System (INIS)

    Azar, Ahmad Taher

    2009-01-01

    Cooling the dialysate below 36.5 degree C is an important factor that contributes to hemody-namic stability in patients during hemodialysis (HD). In this study, the effect of dialysate tempe-rature on hemodynamic stability, patients' perception of dialysis discomfort and post dialysis fatigue were assessed in a group of patients on HD. A total of 50 patients, all of whom were on 3-times-perweek dialysis regimen, were studied. Patients were assessed during six dialysis sessions; in three sessions, the dialysate temperature was normal (37 degree C) and in three other sessions, the dialysate temperature was low (35 degree C). Specific scale questionnaires were used in each dialysis session, to evaluate the symptoms during the dialysis procedure as well as post-dialysis fatigue, and respective scores were noted. The results showed that usage of low dialysate temperature was associated with the following: higher post dialysis systolic blood pressure (P< 0.05) and lower post dialysis heart rate (P<0.01), with similar ultrafiltration rates, better intra-dialysis symptoms score and post-dialysis fatigue scores (P< 0.001, and P<0.001, respectively), shorter post-dialysis fatigue period (P<0.001) as well as higher urea removal (P< 00001) and Kt/V (P< 0.0001). Patients' perceptions were measured by a questionnaire, which showed that 76% of them felt more energetic after dialysis with cool dialysate and requested to be always dialyzed with cool dialysate. Low temperature dialysate is particularly beneficial for highly symptomatic patients, improves tolerance to dialysis in hypotensive patients and helps increase ultrafiltration while maintaining hemodynamic stability during and after dialysis. (author)

  2. Relationship between pattern of ischemic manifestation and hemodynamics in symptomatic M1 stenosis

    International Nuclear Information System (INIS)

    Tokumitsu, Naoki; Sako, Kazuhiro; Aizawa, Shizuka; Shirai, Wakako

    2002-01-01

    The mechanism through which ischemic manifestations develop in patients with middle cerebral artery (MCA) stenosis is still uncertain. It may cause ischemic symptoms through both embolic and hemodynamic mechanisms. In this study, we compared the findings from cerebral angiograms with single photon emission computed tomography (SPECT) in patients with M1 stenosis to determine the pathogenesis of ischema. At our hospital from 1994 to 2000, 14 patients (12 males and 2 females; mean age, 60.9; range, 31 to 85 years) with angiographically demonstrated symptomatic M1 stenosis were enrolled in this study. In 10, their stenotic lesion was located at the proximal site of the perforating arteries and for the other 4, stenosis was found at the distal site. Nine presented with transient ischemic attack (TIA) and 5 with completed stroke for an initial episode. The discrepancy in regional cerebral blood flow (rCBF) was evaluated in relation to the site and degree of stenosis, type of ischemic presentation, and frequency of ischemic events. There was no significant difference in CBF between the patients with stenosis involving the proximal site and those with distal stenosis; but the cortical CBF decreased significantly in those with severe stenosis compared with moderate stenosis. The cortical CBF of those who had a complete stroke is similar to that of the patients with TIA; but CBF of BGA decreased significantly in those with a complete stroke. The single ischemic event group showed a significant decrease in cortical CBF. On the other hand, the group with multiple ischemic events exhibited normal hemodynamics. We concluded that multiple ischemic events that occurred in M1 stenosis are caused by an embolic mechanism. (author)

  3. Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome

    International Nuclear Information System (INIS)

    Arnold, Raoul; Neu, Marie; Hirtler, Daniel; Gimpel, Charlotte; Markl, Michael; Geiger, Julia

    2017-01-01

    Cardiovascular surveillance is important in Turner syndrome because of the increased risk of aortic dilation and dissection with consecutively increased mortality. To compare 4-D flow MRI for the characterization of aortic 3-D flow patterns, dimensions and vessel wall parameters in pediatric patients with Turner syndrome and age-matched controls. We performed 4-D flow MRI measuring in vivo 3-D blood flow with coverage of the thoracic aorta in 25 patients with Turner syndrome and in 16 female healthy controls (age mean ± standard deviation were 16 ± 5 years and 17 ± 4 years, respectively). Blood flow was visualized by time-resolved 3-D path lines. Visual grading of aortic flow in terms of helices and vortices was performed by two independent observers. Quantitative analysis included measurement of aortic diameters, quantification of peak systolic wall shear stress, pulsatility index and oscillatory shear index at eight defined sites. Patients with Turner syndrome had significantly larger aortic diameters normalized to BSA, increased vortices in the ascending aorta and elevated helix flow in the ascending and descending aorta compared to controls (all P<0.03). Patients with abnormal helical or vortical flow in the ascending aorta had significantly larger diameters of the ascending aorta (P<0.03). Peak systolic wall shear stress, pulsatility index and oscillatory shear index were significantly lower in Turner patients compared to controls (p=0.02, p=0.002 and p=0.01 respectively). Four-dimensional flow MRI provides new insights into the altered aortic hemodynamics and wall shear stress that could have an impact on the development of aortic dissections. (orig.)

  4. Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Raoul [University Medical Center Heidelberg, Department of Congenital Heart Disease and Pediatric Cardiology, Heidelberg (Germany); Neu, Marie [University Medical Center, Department of Pediatric Hematology/Oncology/Hemostaseology, Mainz (Germany); Hirtler, Daniel [University of Freiburg, Department of Congenital Heart Defects and Pediatric Cardiology, Heart Center, Freiburg im Breisgau (Germany); Gimpel, Charlotte [Center for Pediatrics, Medical Center - University of Freiburg, Department of General Pediatrics, Adolescent Medicine and Neonatology, Freiburg im Breisgau (Germany); Markl, Michael [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Chicago, IL (United States); Geiger, Julia [Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); University Children' s Hospital, Department of Radiology, Zuerich (Switzerland)

    2017-04-15

    Cardiovascular surveillance is important in Turner syndrome because of the increased risk of aortic dilation and dissection with consecutively increased mortality. To compare 4-D flow MRI for the characterization of aortic 3-D flow patterns, dimensions and vessel wall parameters in pediatric patients with Turner syndrome and age-matched controls. We performed 4-D flow MRI measuring in vivo 3-D blood flow with coverage of the thoracic aorta in 25 patients with Turner syndrome and in 16 female healthy controls (age mean ± standard deviation were 16 ± 5 years and 17 ± 4 years, respectively). Blood flow was visualized by time-resolved 3-D path lines. Visual grading of aortic flow in terms of helices and vortices was performed by two independent observers. Quantitative analysis included measurement of aortic diameters, quantification of peak systolic wall shear stress, pulsatility index and oscillatory shear index at eight defined sites. Patients with Turner syndrome had significantly larger aortic diameters normalized to BSA, increased vortices in the ascending aorta and elevated helix flow in the ascending and descending aorta compared to controls (all P<0.03). Patients with abnormal helical or vortical flow in the ascending aorta had significantly larger diameters of the ascending aorta (P<0.03). Peak systolic wall shear stress, pulsatility index and oscillatory shear index were significantly lower in Turner patients compared to controls (p=0.02, p=0.002 and p=0.01 respectively). Four-dimensional flow MRI provides new insights into the altered aortic hemodynamics and wall shear stress that could have an impact on the development of aortic dissections. (orig.)

  5. Computational Fluid Dynamics: Hemodynamic Changes in Abdominal Aortic Aneurysm After Stent-Graft Implantation

    International Nuclear Information System (INIS)

    Frauenfelder, Thomas; Lotfey, Mourad; Boehm, Thomas; Wildermuth, Simon

    2006-01-01

    The aim of this study was to demonstrate quantitatively and qualitatively the hemodynamic changes in abdominal aortic aneurysms (AAA) after stent-graft placement based on multidetector CT angiography (MDCT-A) datasets using the possibilities of computational fluid dynamics (CFD). Eleven patients with AAA and one patient with left-side common iliac aneurysm undergoing MDCT-A before and after stent-graft implantation were included. Based on the CT datasets, three-dimensional grid-based models of AAA were built. The minimal size of tetrahedrons was determined for grid-independence simulation. The CFD program was validated by comparing the calculated flow with an experimentally generated flow in an identical, anatomically correct silicon model of an AAA. Based on the results, pulsatile flow was simulated. A laminar, incompressible flow-based inlet condition, zero traction-force outlet boundary, and a no-slip wall boundary condition was applied. The measured flow volume and visualized flow pattern, wall pressure, and wall shear stress before and after stent-graft implantation were compared. The experimentally and numerically generated streamlines are highly congruent. After stenting, the simulation shows a reduction of wall pressure and wall shear stress and a more equal flow through both external iliac arteries after stenting. The postimplantation flow pattern is characterized by a reduction of turbulences. New areas of high pressure and shear stress appear at the stent bifurcation and docking area. CFD is a versatile and noninvasive tool to demonstrate changes of flow rate and flow pattern caused by stent-graft implantation. The desired effect and possible complications of a stent-graft implantation can be visualized. CFD is a highly promising technique and improves our understanding of the local structural and fluid dynamic conditions for abdominal aortic stent placement

  6. Hemodynamic effects of sodium bicarbonate administration.

    Science.gov (United States)

    Katheria, A C; Brown, M K; Hassan, K; Poeltler, D M; Patel, D A; Brown, V K; Sauberan, J B

    2017-05-01

    To describe the hemodynamic changes that occur with sodium bicarbonate (NaHCO 3 ) administration in premature neonates. This retrospective study included premature neonates 23 to 31+6 weeks of gestational age who underwent continuous cardiac and cerebral monitoring as participants in prospective trials at our institution, and who received NaHCO 3 infused over 30 min in the first 24 h of life. Blood pressure (BP), heart rate, cardiac output (CO), SpO 2 and cerebral oximetry (StO 2 ) were captured every 2 s. A baseline was established for all continuous data and averaged over the 10 min before NaHCO 3 administration. Baseline was compared with measurements over 10 min epochs until 80 min after administration. Arterial blood gases before and within 1 h of administration were also compared. Significance was set at P<0.05. A total of 36 subjects received NaHCO 3 (1.3±0.3 mEq kg -1 ) in the first 24 h (14±8.5 h) of life. NaHCO 3 administration increased pH (7.23 vs 7.28, P<0.01) and decreased base deficit (-8.9 vs -6.8, P<0.01) and PaCO 2 (45 vs 43 mm Hg, P<0.05). There was a transient but significant (P<0.05) decrease in systemic BP coinciding with an increase in cerebral oxygenation without an increase in oxygen extraction. CO did not change. Early postnatal NaHCO 3 administration does not acutely improve CO but does cause transient fluctuations in cerebral and cardiovascular hemodynamics in extremely premature infants.

  7. Baseline Hemodynamics and Response to Contrast Media During Diagnostic Cardiac Catheterization Predict Adverse Events in Heart Failure Patients.

    Science.gov (United States)

    Denardo, Scott J; Vock, David M; Schmalfuss, Carsten M; Young, Gregory D; Tcheng, James E; O'Connor, Christopher M

    2016-07-01

    Contrast media administered during cardiac catheterization can affect hemodynamic variables. However, little is documented about the effects of contrast on hemodynamics in heart failure patients or the prognostic value of baseline and changes in hemodynamics for predicting subsequent adverse events. In this prospective study of 150 heart failure patients, we measured hemodynamics at baseline and after administration of iodixanol or iopamidol contrast. One-year Kaplan-Meier estimates of adverse event-free survival (death, heart failure hospitalization, and rehospitalization) were generated, grouping patients by baseline measures of pulmonary capillary wedge pressure (PCWP) and cardiac index (CI), and by changes in those measures after contrast administration. We used Cox proportional hazards modeling to assess sequentially adding baseline PCWP and change in CI to 5 validated risk models (Seattle Heart Failure Score, ESCAPE [Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness], CHARM [Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity], CORONA [Controlled Rosuvastatin Multinational Trial in Heart Failure], and MAGGIC [Meta-Analysis Global Group in Chronic Heart Failure]). Median contrast volume was 109 mL. Both contrast media caused similarly small but statistically significant changes in most hemodynamic variables. There were 39 adverse events (26.0%). Adverse event rates increased using the composite metric of baseline PCWP and change in CI (Pcontrast correlated with the poorest prognosis. Adding both baseline PCWP and change in CI to the 5 risk models universally improved their predictive value (P≤0.02). In heart failure patients, the administration of contrast causes small but significant changes in hemodynamics. Calculating baseline PCWP with change in CI after contrast predicts adverse events and increases the predictive value of existing models. Patients with elevated baseline PCWP and

  8. Psychological distress and stressful life events in pediatric complex regional pain syndrome

    Science.gov (United States)

    Wager, Julia; Brehmer, Hannah; Hirschfeld, Gerrit; Zernikow, Boris

    2015-01-01

    BACKGROUND: There is little knowledge regarding the association between psychological factors and complex regional pain syndrome (CRPS) in children. Specifically, it is not known which factors precipitate CRPS and which result from the ongoing painful disease. OBJECTIVES: To examine symptoms of depression and anxiety as well as the experience of stressful life events in children with CRPS compared with children with chronic primary headaches and functional abdominal pain. METHODS: A retrospective chart study examined children with CRPS (n=37) who received intensive inpatient pain treatment between 2004 and 2010. They were compared with two control groups (chronic primary headaches and functional abdominal pain; each n=37), who also received intensive inpatient pain treatment. Control groups were matched with the CRPS group with regard to admission date, age and sex. Groups were compared on symptoms of depression and anxiety as well as stressful life events. RESULTS: Children with CRPS reported lower anxiety and depression scores compared with children with abdominal pain. A higher number of stressful life events before and after the onset of the pain condition was observed for children with CRPS. CONCLUSIONS: Children with CRPS are not particularly prone to symptoms of anxiety or depression. Importantly, children with CRPS experienced more stressful life events than children with chronic headaches or abdominal pain. Prospective long-term studies are needed to further explore the potential role of stressful life events in the etiology of CRPS. PMID:26035287

  9. Cerebral hemodynamics and functional prognosis in hydrocephalus

    International Nuclear Information System (INIS)

    Hirai, Osamu; Nishikawa, Michio; Watanabe, Shu; Yamakawa, Hiroyasu; Kinoshita, Yoshimasa; Uno, Akira; Handa, Hajime

    1989-01-01

    The functional outcome of cerebral hemodynamics in the chronic stage of juvenile hydrocephalus was determined using single photon emission computed tomography (SPECT). Five patients including three with aqueductal stenosis, one with post-meningitic hydrocephalus, and one case with hydrocephalus having developed after repair of a huge occipital encephalocele. Early images of cerebral blood flow (CBF) were obtained 25 minutes after intravenous injection of 123-I-iodoamphetamine (IMP), and late images were scanned 3 hours later. Cerebral blood volume (CBV) was also measured using 99m Tc in three patients. Twenty cases with adult communicating hydrocephalus were also investigated from the point of view of shunt effectiveness. Although there was no remarkable change in the cerebrovascular bed in the juvenile cases, CBF of the remnant brain parenchyma was good irrespective of the degree of ventricular dilatation. There was a periventricular-related IMP uptake in each case; however, it somehow matched the ventricular span. Functional outcome one to 23 years after the initial shunt operation was good in every case, despite multiple shunt revisions. Redistribution on late images had no bearing on clinical states. In adult cases, 8 patients with effective shunting demonstrated a relatively localized periventricular low perfusion, with preoperative increased cerebrospinal fluid (CSF) pressure. On the contrary, 12 patients with no improvement with or without ventricular-reduced IMP uptake, despite low CSF pressure. The present study indicates that periventricular hemodynamics may play an important role in cerebral function compromised by hydrocephalus. (J.P.N.)

  10. Cerebral hemodynamics and functional prognosis in hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Osamu; Nishikawa, Michio; Watanabe, Shu; Yamakawa, Hiroyasu; Kinoshita, Yoshimasa; Uno, Akira; Handa, Hajime (Hamamatsu Rosai Hospital, Shizuoka (Japan))

    1989-11-01

    The functional outcome of cerebral hemodynamics in the chronic stage of juvenile hydrocephalus was determined using single photon emission computed tomography (SPECT). Five patients including three with aqueductal stenosis, one with post-meningitic hydrocephalus, and one case with hydrocephalus having developed after repair of a huge occipital encephalocele. Early images of cerebral blood flow (CBF) were obtained 25 minutes after intravenous injection of 123-I-iodoamphetamine (IMP), and late images were scanned 3 hours later. Cerebral blood volume (CBV) was also measured using {sup 99m}Tc in three patients. Twenty cases with adult communicating hydrocephalus were also investigated from the point of view of shunt effectiveness. Although there was no remarkable change in the cerebrovascular bed in the juvenile cases, CBF of the remnant brain parenchyma was good irrespective of the degree of ventricular dilatation. There was a periventricular-related IMP uptake in each case; however, it somehow matched the ventricular span. Functional outcome one to 23 years after the initial shunt operation was good in every case, despite multiple shunt revisions. Redistribution on late images had no bearing on clinical states. In adult cases, 8 patients with effective shunting demonstrated a relatively localized periventricular low perfusion, with preoperative increased cerebrospinal fluid (CSF) pressure. On the contrary, 12 patients with no improvement with or without ventricular-reduced IMP uptake, despite low CSF pressure. The present study indicates that periventricular hemodynamics may play an important role in cerebral function compromised by hydrocephalus. (J.P.N.).

  11. Regional homogeneity and resting state functional connectivity: associations with exposure to early life stress.

    Science.gov (United States)

    Philip, Noah S; Kuras, Yuliya I; Valentine, Thomas R; Sweet, Lawrence H; Tyrka, Audrey R; Price, Lawrence H; Carpenter, Linda L

    2013-12-30

    Early life stress (ELS) confers risk for psychiatric illness. Previous literature suggests ELS is associated with decreased resting-state functional connectivity (rs-FC) in adulthood, but there are no studies of resting-state neuronal activity in this population. This study investigated whether ELS-exposed individuals demonstrate resting-state activity patterns similar to those found in PTSD. Twenty-seven adults (14 with at least moderate ELS), who were medication-free and without psychiatric or medical illness, underwent MRI scans during two 4-minute rest periods. Resting-state activity was examined using regional homogeneity (ReHo), which estimates regional activation patterns through indices of localized concordance. ReHo values were compared between groups, followed by rs-FC analyses utilizing ReHo-localized areas as seeds to identify other involved regions. Relative to controls, ELS subjects demonstrated diminished ReHo in the inferior parietal lobule (IPL) and superior temporal gyrus (STG). ReHo values were inversely correlated with ELS severity. Secondary analyses revealed decreased rs-FC between the IPL and right precuneus/posterior cingulate, left fusiform gyrus, cerebellum and caudate in ELS subjects. These findings indicate that ELS is associated with altered resting-state activity and connectivity in brain regions involved in trauma-related psychiatric disorders. Future studies are needed to evaluate whether these associations represent potential imaging biomarkers of stress exposure. Published by Elsevier Ireland Ltd.

  12. Permanent education that approaches radiation protection in hemodynamic service; Educacao permanente que aborde radioprotecao em servico de hemodinamica

    Energy Technology Data Exchange (ETDEWEB)

    Flor, Rita de Cassia; Anjos, Djeniffer Valdirene dos, E-mail: flor@ifsc.edu.b [Instituto Federal de Santa Catarina (IF-SC), Florianopolis, SC (Brazil)

    2011-10-26

    In the hemodynamic services that apply ionizing radiation yet exist the necessity of capacitation of workers for actuation in those areas. So, this qualitative study performed in a hemodynamic service at Sao Jose, Santa Catarina, Brazil, had the objective to analyse how are developed the permanent education programs and the real necessity of workers. The results have shown that the workers are longing for their qualification and formation, as generally they are admitted with not any qualification for those services. So, the workers that realize the on duty hemodynamic service praxis must do it in a conscious manner and the E P is a way for to adopt good practice in radiological protection

  13. Cerebral Hemodynamics Patterns by Transcranial Doppler in Patients With Acute Liver Failure.

    Science.gov (United States)

    Abdo, A; Pérez-Bernal, J; Hinojosa, R; Porras, F; Castellanos, R; Gómez, F; Gutiérrez, J; Castellanos, A; Leal, G; Espinosa, N; Gómez-Bravo, M

    2015-11-01

    About half of patients with acute liver failure (ALF) show clinical signs of cerebral edema and intracranial hypertension. Neuroimaging diagnostics and electroencephalography have poor correlation with intracranial pressure measurement. The objective of this study was to characterize the cerebral hemodynamics patterns with transcranial Doppler (TCD) sonography in patients with ALF. We studied 21 patients diagnosed with ALF, admitted to the intensive care unit (ICU) at the Centro de Investigaciones Médico Quirúrgicas of Cuba. All of these patients had a TCD performed on arrival at ICU, evaluating the following: systolic (SV), diastolic (DV), and medium (MV) flows velocities and pulsatility index (PI) in right middle cerebral artery (RMCA) via temporal windows. The sonographic patterns of cerebral hemodynamics were as follows: low-flow, 12 patients (57.1%); high resistance, 5 patients (23.8%); and hyperemic, 4 patients (19%). Patients who died while waiting had lower MV RMCA (56.1 vs 58.1 cm/s) and higher PI (1.71 vs 1.41) than patients who could undergo transplantation (P = .800 and P = .787, respectively). In patients diagnosed with ALF admitted to the ICU the predominating cerebral hemodynamic pattern was low-flow with resistance increase. The TCD was shown to be a useful tool in the initial evaluation for prognosis and treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Portal hemodynamics in chronic portal-systemic encephalopathy

    International Nuclear Information System (INIS)

    Takashi, Motohide; Igarashi, Masahiko; Hino, Shinichi; Takayasu, Kenichi; Goto, Nobuaki; Musha, Hirotaka; Ohnishi, Kunihiko; Okuda, Kunio

    1985-01-01

    A portal hemodynamic study was made in 7 consecutive patients with chronic portal-systemic encephalopathy by percutaneous transhepatic catheterization of the portal vein and injecting contrast medium into the superior mesenteric vein or by superior mesenteric arterial portography in comparison with patients without encephalopathy studied by percutaneous catheterization of these veins. It is suggested that chronic portal-systemic encephalopathy is a result of a large collateral route shunting a large proportion of the superior mesenteric venous blood into systemic circulation, and that development of such collaterals precludes formation of large esophageal varices. (Auth.)

  15. Toward compression of small cell population: harnessing stress in passive regions of dielectric elastomer actuators

    Science.gov (United States)

    Poulin, Alexandre; Rosset, Samuel; Shea, Herbert

    2014-03-01

    We present a dielectric elastomer actuator (DEA) for in vitro analysis of mm2 biological samples under periodic compressive stress. Understanding how mechanical stimuli affect cell functions could lead to significant advances in diseases diagnosis and drugs development. We previously reported an array of 72 micro-DEAs on a chip to apply a periodic stretch to cells. To diversify our cell mechanotransduction toolkit we have developed an actuator for periodic compression of small cell populations. The device is based on a novel design which exploits the effects of non-equibiaxial pre-stretch and takes advantage of the stress induced in passive regions of DEAs. The device consists of two active regions separated by a 2mm x 2mm passive area. When connected to an AC high-voltage source, the two active regions periodically compress the passive region. Due to the non-equibiaxial pre-stretch it induces uniaxial compressive strain greater than 10%. Cells adsorbed on top of this passive gap would experience the same uniaxial compressive stain. The electrodes configuration confines the electric field and prevents it from reaching the biological sample. A thin layer of silicone is casted on top of the device to ensure a biocompatible environment. This design provides several advantages over alternative technologies such as high optical transparency of the area of interest (passive region under compression) and its potential for miniaturization and parallelization.

  16. Serial hemodynamic measurement in normal pregnancy, preeclampsia, and intrauterine growth restriction

    NARCIS (Netherlands)

    Rang, Saskia; van Montfrans, Gert A.; Wolf, Hans

    2008-01-01

    OBJECTIVE: The study hypothesis was that hemodynamic measurements in conjunction with uterine artery Doppler could enable selection of women at risk for the development of preeclampsia or fetal growth restriction. STUDY DESIGN: Systolic (SBP) and diastolic blood pressure, heart rate (RR), cardiac

  17. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere-wave-coupled...... regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress...

  18. Cardiac Hemodynamics in the Pathogenesis of Congenital Heart Disease and Aortic Valve Calcification

    Science.gov (United States)

    Nigam, Vishal

    2011-11-01

    An improved understanding of the roles of hemodynamic forces play in cardiac development and the pathogenesis of cardiac disease will have significant scientific and clinical impact. I will focus on the role of fluid dynamics in congenital heart disease and aortic valve calcification. Congenital heart defects are the most common form of birth defect. Aortic valve calcification/stenosis is the third leading cause of adult heart disease and the most common form of acquired valvular disease in developed countries. Given the high incidence of these diseases and their associated morbidity and mortality, the potential translational impact of an improved understanding of cardiac hemodynamic forces is very large. Division of Pediatric Cardiology, Rady Children's Hospital, San Diego

  19. Initial approach to hypertension in the hemodynamics unit: review article

    Directory of Open Access Journals (Sweden)

    Gustavo Teixeira Fulton Schimit

    2013-06-01

    Full Text Available Correct identification and early management of hypertensive disorders should be a part of the therapeutic repertoire of every professional working in hemodynamics units. Based on recent publications, this study aims to propose a practical approach to the identification and early management of these disorders in this type of service.

  20. Longitudinal Hemodynamics of Transcatheter and Surgical Aortic Valves in the PARTNER Trial.

    Science.gov (United States)

    Douglas, Pamela S; Leon, Martin B; Mack, Michael J; Svensson, Lars G; Webb, John G; Hahn, Rebecca T; Pibarot, Philippe; Weissman, Neil J; Miller, D Craig; Kapadia, Samir; Herrmann, Howard C; Kodali, Susheel K; Makkar, Raj R; Thourani, Vinod H; Lerakis, Stamatios; Lowry, Ashley M; Rajeswaran, Jeevanantham; Finn, Matthew T; Alu, Maria C; Smith, Craig R; Blackstone, Eugene H

    2017-11-01

    Use of transcatheter aortic valve replacement (TAVR) for severe aortic stenosis is growing rapidly. However, to our knowledge, the durability of these prostheses is incompletely defined. To determine the midterm hemodynamic performance of balloon-expandable transcatheter heart valves. In this study, we analyzed core laboratory-generated data from echocardiograms of all patients enrolled in the Placement of Aortic Transcatheter Valves (PARTNER) 1 Trial with successful TAVR or surgical AVR (SAVR) obtained preimplantation and at 7 days, 1 and 6 months, and 1, 2, 3, 4, and 5 years postimplantation. Patients from continued access observational studies were included for comparison. Successful implantation after randomization to TAVR vs SAVR (PARTNER 1A; TAVR, n = 321; SAVR, n = 313), TAVR vs medical treatment (PARTNER 1B; TAVR, n = 165), and continued access (TAVR, n = 1996). Five-year echocardiogram data were available for 424 patients after TAVR and 49 after SAVR. Death or reintervention for aortic valve structural indications, measured using aortic valve mean gradient, effective orifice area, Doppler velocity index, and evidence of hemodynamic deterioration by reintervention, adverse hemodynamics, or transvalvular regurgitation. Of 2795 included patients, the mean (SD) age was 84.5 (7.1) years, and 1313 (47.0%) were female. Population hemodynamic trends derived from nonlinear mixed-effects models showed small early favorable changes in the first few months post-TAVR, with a decrease of -2.9 mm Hg in aortic valve mean gradient, an increase of 0.028 in Doppler velocity index, and an increase of 0.09 cm2 in effective orifice area. There was relative stability at a median follow-up of 3.1 (maximum, 5) years. Moderate/severe transvalvular regurgitation was noted in 89 patients (3.7%) after TAVR and increased over time. Patients with SAVR showed no significant changes. In TAVR, death/reintervention was associated with lower ejection fraction, stroke volume

  1. Improving Perioperative Outcomes Through Minimally Invasive and Non-invasive Hemodynamic Monitoring Techniques

    Directory of Open Access Journals (Sweden)

    Takashige Yamada

    2018-05-01

    Full Text Available An increasing number of patients require precise intraoperative hemodynamic monitoring due to aging and comorbidities. To prevent undesirable outcomes from intraoperative hypotension or hypoperfusion, appropriate threshold settings are required. These setting can vary widely from patient to patient. Goal-directed therapy techniques allow for flow monitoring as the standard for perioperative fluid management. Based on the concept of personalized medicine, individual assessment and treatment are more advantageous than conventional or uniform interventions. The recent development of minimally and noninvasive monitoring devices make it possible to apply detailed control, tracking, and observation of broad patient populations, all while reducing adverse complications. In this manuscript, we review the monitoring features of each device, together with possible advantages and disadvantages of their use in optimizing patient hemodynamic management.

  2. Geodynamics and Stress State of the Earth's Crust in the Greater and Lesser Caucasus (Azerbaijan) collision region

    Science.gov (United States)

    Babayev, Gulam; Akhmedova, Elnare; Babayev, Elvin

    2017-04-01

    The current study researches the present-day stress state of the Earth's crust within the territory of Azerbaijan by using the database of the international research project "World Stress Map" (WSM). The present stress state was also assessed by exploring the effects of the contemporary topographic properties of Caucasus in three-dimensional frame. Aiming to explore the relative roles of regional tectonic conditions in the definition of stress state of Greater and Lesser Caucasus, stress distribution model was developed by the earthquake data (1998-2016) and by the standard techniques of stress field calculation. The results show that the stress orientations are influenced also by the combination of topography and crust thickness distribution even at very large depth. Stress data and earthquake focal mechanisms indicate that the stress state of the Earth's crust of the Greater and Lesser Caucasus is characterized by the compression predominantly oriented across the regional strike. The model results suggest that the Lesser Caucasus and Kur depression are rotating coherently, with little or no internal deformation in a counter-clockwise rotation located near the north-eastern corner of the Black Sea. Orientation of stress axes well consistent with earthquake focal mechanisms revealed that within Upper and Lower Crusts, earthquakes are predominantly thrust-faulting with a number of normal-faulting and some strike-slip faulting. The map of the focal mechanisms and stress distribution suggests that the research area is characterized by the thrust of horizontal compression trending north-north-east in the western part of the southern Caucasus. In the western part of Azerbaijan, the compression takes place between the Main Caucasus Fault and the Kur depression, which strikes south along the northern margin of the mountain range. In addition, a clear transition from the left-lateral strike slip to the predominantly right-lateral strike slip is observed in the southern of

  3. Pulmonary artery radiocardiography and rheography in the diagnosis of hemodynamic and contractile function impairments of the right ventricle in patients with obstructive bronchitis

    International Nuclear Information System (INIS)

    Paleev, N.P.; Cherejskaya, N.K.; Tsar'kova, L.N.; Baklykova, S.N.; Novoderezhkina, L.B.; Oblovatskaya, O.G.; Dubinina, E.B.

    1990-01-01

    Radiocardiography and rheography of the pulmonary artery were used to examine impairments in hemodynamics and contractile function of the right ventricle in 40 patients with chronic obstructive bronchitis complicated with persistent hypertension. Right ventricular hemodynamic and contractile impairments were shown to be not equivalent with similar clinical and functional signs of pulmonary hypertension. This fact indicates that the use of special techiques is of practical value in the determination of right ventricular hemodynamics and myocardial contractility in patients with chronic obstructive bronchitis. Radiocardiography and rheography of the pulmonary artery are sufficiently reliable noninvasive techniques for examining the hemodynamics and contractile function of the right ventricular myocardium

  4. Can regional strain and strain rate measurement be performed during both dobutamine and exercise echocardiography, and do regional deformation responses differ with different forms of stress testing?

    Science.gov (United States)

    Davidavicius, Giedrius; Kowalski, Miroslaw; Williams, R Ian; D'hooge, Jan; Di Salvo, Giovanni; Pierre-Justin, Gilbert; Claus, Piet; Rademakers, Frank; Herregods, Marie-Christine; Fraser, Alan G; Pierard, Luc A; Bijnens, Bart; Sutherland, George R

    2003-04-01

    Regional strain (epsilon) and strain rate (SR) measurement could be the optimal approach to quantifying stress echocardiography images. However, signal noise could preclude their use. Study aims Our aim was to compare the feasibility of regional peak systolic (p) velocity (Vel), pSR/epsilon measurement, and their normal responses during upright (group 1, n = 10) and supine (group 2, n = 10) bicycle exercise and (group 3, n = 10) dobutamine stress. For each type of stress study, pVel/pSR/epsilon data were acquired at baseline, low (100-120 bpm), and peak (140-160 bpm) heart rate (HR); and during recovery. During dobutamine pVel/pSR/epsilon were interpretable in >95% of segments at every stress stage, whereas in groups 1 and 2 pSR/epsilon responses were noninterpretable in >36% of segments (P pVel and SR values increased linearly and reached maximal value at peak HR (P pVel increased linearly, whereas pepsilon response was biphasic as a result of the reduced filling at higher HRs.

  5. Hemodynamic Effects of Noninvasive Ventilation in Patients with Venocapillary Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    André Moreira Bento

    2014-11-01

    Full Text Available Background: The hemodynamic effects of noninvasive ventilation with positive pressure in patients with pulmonary hypertension without left ventricular dysfunction are not clearly established. Objectives: Analyze the impact of increasing airway pressure with continuous positive airway pressure on hemodynamic parameters and, in particular, on cardiac output in patients with variable degrees of pulmonary hypertension. Methods: The study included 38 patients with pulmonary hypertension caused by mitral stenosis without left ventricular dysfunction or other significant valvulopathy. The hemodynamic state of these patients was analyzed in three conditions: baseline, after continuous positive pressure of 7 cmH2O and, finally, after pressure of 14 cmH2O. Results: The population was composed of predominantly young and female individuals with significant elevation in pulmonary arterial pressure (mean systolic pressure of 57 mmHg. Of all variables analyzed, only the right atrial pressure changed across the analyzed moments (from the baseline condition to the pressure of 14 cmH2O there was a change from 8 ± 4 mmHg to 11 ± 3 mmHg, respectively, p = 0.031. Even though there was no variation in mean cardiac output, increased values in pulmonary artery pressure were associated with increased cardiac output. There was no harmful effect or other clinical instability associated with use application of airway pressure. Conclusion: In patients with venocapillary pulmonary hypertension without left ventricular dysfunction, cardiac output response was directly associated with the degree of pulmonary hypertension. The application of noninvasive ventilation did not cause complications directly related to the ventilation systems.

  6. Regional blood flow distribution and oxygen metabolism during mesenteric ischemia and congestion.

    Science.gov (United States)

    Cruz, Ruy J; Garrido, Alejandra G; Ribeiro, Cristiane M F; Harada, Tomoyuki; Rocha-e-Silva, Mauricio

    2010-06-01

    Acute mesenteric ischemia is a potentially fatal vascular emergency with mortality rates ranging between 60% and 80%. Several studies have extensively examined the hemodynamic and metabolic effects of superior mesenteric artery occlusion. On the other hand, the cardiocirculatory derangement and the tissue damage induced by intestinal outflow obstruction have not been investigated systematically. For these reasons we decided to assess the initial impact of venous mesenteric occlusion on intestinal blood flow distribution, and correlate these findings with other systemic and regional perfusion markers. Fourteen mongrel dogs were subjected to 45 min of superior mesenteric artery (SMAO) or vein occlusion (SMVO), and observed for 120 min after reperfusion. Systemic hemodynamics were evaluated using Swan-Ganz and arterial catheters. Regional blood flow (ultrasonic flow probes), intestinal O(2)-derived variables, and mesenteric-arterial and tonometric-arterial pCO(2) gradients (D(mv-a)pCO(2) and D(t-a)pCO(2)) were also calculated. SMVO was associated with hypotension and low cardiac output. A significant increase in the regional pCO(2) gradients was also observed in both groups during the ischemic period. After reperfusion, a progressive reduction in D(mv-a)pCO(2) occurred in the SMVO group; however, no improvement in D(t-a)pCO(2) was observed. The histopathologic injury scores were 2.7 +/- 0.5 and 4.8 +/- 0.2 for SMAO and SMVO, respectively. SMV occlusion promoted early and significant hemodynamic and metabolic derangement at systemic and regional levels. Additionally, systemic pCO(2) gradient is not a reliable parameter to evaluate the local intestinal oxygenation. Finally, the D(t-a)pCO(2) correlates with histologic changes during intestinal congestion or ischemia. However, minor histologic changes cannot be detected using this methodology. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Perceived Time Progression and Vigilance: Implications for Workload, Stress, and Cerebral Hemodynamics

    Science.gov (United States)

    2013-04-01

    Lazarus , R. S., & Folkman , S. (1984). Stress, appraisal, and coping. New York, NY: Springer- Verlag. Liu, Y ., & Wickens, C. D. (1994). Mental...her resources or endangering his or her well-being ( Lazarus & Folkman , 1984). As Warm, Matthews, et al. (2008) have pointed out, the transactional...including the tasks that confront them, in terms of their physical and psychological well-being and their ability to cope with those events ( Lazarus

  8. Modeling the hemodynamic response in fMRI using smooth FIR filters

    DEFF Research Database (Denmark)

    Goutte, Cyril; Nielsen, Finn Årup; Hansen, Lars Kai

    2000-01-01

    Modeling the hemodynamic response in functional magnetic resonance (fMRI) experiments is an important aspect of the analysis of functional neuroimages. This has been done in the past using parametric response function, from a limited family. In this contribution, the authors adopt a semi...

  9. Contribution of social isolation, restraint, and hindlimb unloading to changes in hemodynamic parameters and motion activity in rats.

    Directory of Open Access Journals (Sweden)

    Darya Tsvirkun

    Full Text Available The most accepted animal model for simulation of the physiological and morphological consequences of microgravity on the cardiovascular system is one of head-down hindlimb unloading. Experimental conditions surrounding this model include not only head-down tilting of rats, but also social and restraint stresses that have their own influences on cardiovascular system function. Here, we studied levels of spontaneous locomotor activity, blood pressure, and heart rate during 14 days under the following experimental conditions: cage control, social isolation in standard rat housing, social isolation in special cages for hindlimb unloading, horizontal attachment (restraint, and head-down hindlimb unloading. General activity and hemodynamic parameters were continuously monitored in conscious rats by telemetry. Heart rate and blood pressure were both evaluated during treadmill running to reveal cardiovascular deconditioning development as a result of unloading. The main findings of our work are that: social isolation and restraint induced persistent physical inactivity, while unloading in rats resulted in initial inactivity followed by normalization and increased locomotion after one week. Moreover, 14 days of hindlimb unloading showed significant elevation of blood pressure and slight elevation of heart rate. Hemodynamic changes in isolated and restrained rats largely reproduced the trends observed during unloading. Finally, we detected no augmentation of tachycardia during moderate exercise in rats after 14 days of unloading. Thus, we concluded that both social isolation and restraint, as an integral part of the model conditions, contribute essentially to cardiovascular reactions during head-down hindlimb unloading, compared to the little changes in the hydrostatic gradient.

  10. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos.

    Science.gov (United States)

    Jones, Elizabeth A V; Yuan, Li; Breant, Christine; Watts, Ryan J; Eichmann, Anne

    2008-08-01

    Targeted inactivation of genes involved in murine cardiovascular development frequently leads to abnormalities in blood flow. As blood fluid dynamics play a crucial role in shaping vessel morphology, the presence of flow defects generally prohibits the precise assignment of the role of the mutated gene product in the vasculature. In this study, we show how to distinguish between genetic defects caused by targeted inactivation of the neuropilin 1 (Nrp1) receptor and hemodynamic defects occurring in homozygous knockout embryos. Our analysis of a Nrp1 null allele bred onto a C57BL/6 background shows that vessel remodeling defects occur concomitantly with the onset of blood flow and cause death of homozygous mutants at E10.5. Using mouse embryo culture, we establish that hemodynamic defects are already present at E8.5 and continuous circulation is never established in homozygous mutants. The geometry of yolk sac blood vessels is altered and remodeling into yolk sac arteries and veins does not occur. To separate flow-induced deficiencies from those caused by the Nrp1 mutation, we arrested blood flow in cultured wild-type and mutant embryos and followed their vascular development. We find that loss of Nrp1 function rather than flow induces the altered geometry of the capillary plexus. Endothelial cell migration, but not replication, is altered in Nrp1 mutants. Gene expression analysis of endothelial cells isolated from freshly dissected wild-type and mutants and after culture in no-flow conditions showed down-regulation of the arterial marker genes connexin 40 and ephrin B2 related to the loss of Nrp1 function. This method allows genetic defects caused by loss-of-function of a gene important for cardiovascular development to be isolated even in the presence of hemodynamic defects.

  11. Estimating Hemodynamic Responses to the Wingate Test Using Thoracic Impedance

    Directory of Open Access Journals (Sweden)

    Todd A. Astorino, Curtis Bovee, Ashley DeBoe

    2015-12-01

    Full Text Available Techniques including direct Fick and Doppler echocardiography are frequently used to assess hemodynamic responses to exercise. Thoracic impedance has been shown to be a noninvasive alternative to these methods for assessing these responses during graded exercise to exhaustion, yet its feasibility during supramaximal bouts of exercise is relatively unknown. We used thoracic impedance to estimate stroke volume (SV and cardiac output (CO during the Wingate test (WAnT and compared these values to those from graded exercise testing (GXT. Active men (n = 9 and women (n = 7 (mean age = 24.8 ± 5.9 yr completed two Wingate tests and two graded exercise tests on a cycle ergometer. During exercise, heart rate (HR, SV, and CO were continuously estimated using thoracic impedance. Repeated measures analysis of variance was used to identify potential differences in hemodynamic responses across protocols. Results: Maximal SV (138.6 ± 37.4 mL vs. 135.6 ± 26.9 mL and CO (24.5 ± 6.1 L·min-1 vs. 23.7 ± 5.1 L·min-1 were similar (p > 0.05 between repeated Wingate tests. Mean maximal HR was higher (p < 0.01 for GXT (185 ± 7 b·min-1 versus WAnT (177 ± 11 b·min-1, and mean SV was higher in response to WAnT (137.1 ± 32.1 mL versus GXT (123.0 ± 32.0 mL, leading to similar maximal cardiac output between WAnT and GXT (23.9 ± 5.6 L·min-1 vs. 22.5 ± 6.0 L·min-1. Our data show no difference in hemodynamic responses in response to repeated administrations of the Wingate test. In addition, the Wingate test elicits similar cardiac output compared to progressive cycling to VO2max.

  12. Occupational exposure to ionizing radiation from the perspective of nursing professionals in hemodynamics

    Directory of Open Access Journals (Sweden)

    Adriana Martins Gallo

    2013-05-01

    Full Text Available In order to identify the security measures taken and the control of occupational exposure to ionizing radiation in units of hemodynamic, from the perspective of nursing, this quantitative descriptive study was developed during January and February, 2011. A check-list of binary responses (yes / no was made based on the legislation and updated literature and it was applied in four hospitals in the northern region of Paraná State. The analysis of the data showed that 29 employees have knowledge about occupational exposure and apply barrier methods effectively to minimize doses of ionizing radiation. The data also showed that employees are participating in ongoing updating on the subject, and that they claim that this participation has a positive effect so that the occupational exposure occurs consciously, and also, the workers did not refuse to participate in any action facing their individual protection.

  13. EVALUATION OF DEXMEDETOMIDINE ON HEMODYNAMICS IN PATIENTS UNDERGOING LAPAROSCOPIC CHOLECYSTECTOMY

    Directory of Open Access Journals (Sweden)

    Penchalaiah

    2015-09-01

    Full Text Available BACKGROUND: Dexmedetomidine a newer generation highly selective alpha - 2 adrenergic agonist are well known to inhibit catecholamine release. The present study compares the effects of intravenously administered dexmedetomidine to attenuate hemodynamic response to pneumoperitoneum to laparoscopic cholecystectomy under general anaesthesia. METHODOLOGY: 60 patients ASA Physical status I and II, aged between 18 and 50 years of either sex, scheduled for elective laparoscopic cholecy stectomy were randomized in to 2 groups ( group D and S inn a double blind fashion to receive either Dexmedetomidine ( 1microgram/kg in 100ml of 0.9% normal saline or only 0.9%plain normal saline respectively. It is given 30 min prior to induction. Patient vitals like HR, SBP, DBP, MAP were monitored during the study at various time intervals. RESULTS: Following intubation and pneumoperitoneum there significant rise in HR, MAP, SBP, DBP in group S but no significant rise in Group D. CONCLUSION: Dexmedetomid ine given in a dose of 1microgram/kg as a premedication is e ffective in attenuating the hemodynamic responses in laparoscopic surgery

  14. Study of retrobulbar hemodynamics in diabetes via color doppler ultrasound

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2014-09-01

    Full Text Available AIM: To explore the changes of retrobulbar hemodynamics in diabetes via color doppler ultrasound. METHODS: Totally 80 patients(160 eyeswith eye diseases in type 2 diabetes from June 2010 to May 2013 in our hospital were enrolled as research group. By fundus photography and direct ophthalmoscopy, patients were assigned to diabetes without retinopathy group(DNR subgroup, non-proliferative diabetic retinopathy group(NPDR subgroupand proliferative diabetic retinopathy group(PDR subgroup. Of 60 healthy patients(120 eyesover the same period were chosen as control group. The doppler parameters of central retinal artery(CRA, posterior ciliary artery(PCAand ophthalmic artery(OAwere measured.RESULTS: There were significant differences on circulatory parameters of CRA, PCA and OA between both groups(PPPCONCLUSION: The monitoring of retinal blood flow and analysis of blood spectrum morphology via color doppler ultrasound can effectively evaluate the degree of diabetic retinopathy lesions, especially before DR vascular disease. Early detection can reveal the hemodynamic change pattern of DR, facilitating the prevention of diabetic eye complications and improvement of the quality of life.

  15. Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system.

    Science.gov (United States)

    Adamson, Philip B; Magalski, Anthony; Braunschweig, Frieder; Böhm, Michael; Reynolds, Dwight; Steinhaus, David; Luby, Allyson; Linde, Cecilia; Ryden, Lars; Cremers, Bodo; Takle, Teri; Bennett, Tom

    2003-02-19

    This study examined the characteristics of continuously measured right ventricular (RV) hemodynamic information derived from an implantable hemodynamic monitor (IHM) in heart failure patients. Hemodynamic monitoring might improve the day-to-day management of patients with chronic heart failure (CHF). Little is known about the characteristics of long-term hemodynamic information in patients with CHF or how such information relates to meaningful clinical events. Thirty-two patients with CHF received a permanent RV IHM system similar to a single-lead pacemaker. Right ventricular systolic and diastolic pressures, heart rate, and pressure derivatives were continuously measured for nine months without using the data for clinical decision-making or management of patients. Data were then made available to clinical providers, and the patients were followed up for 17 months. Pressure characteristics during optimal volume, clinically determined volume-overload exacerbations, and volume depletion events were examined. The effect of IHM on hospitalizations was examined using the patients' historical controls. Long-term RV pressure measurements had either marked variability or minimal time-related changes. During 36 volume-overload events, RV systolic pressures increased by 25 +/- 4% (p < 0.05) and heart rate increased by 11 +/- 2% (p < 0.05). Pressure increases occurred in 9 of 12 events 4 +/- 2 days before the exacerbations requiring hospitalization. Hospitalizations before using IHM data for clinical management averaged 1.08 per patient year and decreased to 0.47 per patient-year (57% reduction, p < 0.01) after hemodynamic data were used. Long-term ambulatory pressure measurements from an IHM may be helpful in guiding day-to-day clinical management, with a potentially favorable impact on CHF hospitalizations.

  16. Numerical reproduction of hemodynamics change by acupuncture on Taichong (LR-3 based on the lumped-parameter approximation model of the systemic arteries

    Directory of Open Access Journals (Sweden)

    Atsushi Shirai

    2015-09-01

    Conclusion: The present model has a potential to emulate hemodynamic change by acupuncture therapy by incorporating physiological correlation of stimulation of an acupoint and regulation of parameters that affect the hemodynamics.

  17. Effects of race and sex on cerebral hemodynamics, oxygen delivery and blood flow distribution in response to high altitude

    Science.gov (United States)

    Liu, Jie; Liu, Yang; Ren, Li-Hua; Li, Li; Wang, Zhen; Liu, Shan-Shan; Li, Su-Zhi; Cao, Tie-Sheng

    2016-08-01

    To assess racial, sexual, and regional differences in cerebral hemodynamic response to high altitude (HA, 3658 m). We performed cross-sectional comparisons on total cerebral blood flow (TCBF = sum of bilateral internal carotid and vertebral arterial blood flows = QICA + QVA), total cerebrovascular resistance (TCVR), total cerebral oxygen delivery (TCOD) and QVA/TCBF (%), among six groups of young healthy subjects: Tibetans (2-year staying) and Han (Han Chinese) at sea level, Han (2-day, 1-year and 5-year) and Tibetans at HA. Bilateral ICA and VA diameters and flow velocities were derived from duplex ultrasonography; and simultaneous measurements of arterial pressure, oxygen saturation, and hemoglobin concentration were conducted. Neither acute (2-day) nor chronic (>1 year) responses showed sex differences in Han, except that women showed lower TCOD compared with men. Tibetans and Han exhibited different chronic responses (percentage alteration relative to the sea-level counterpart value) in TCBF (-17% vs. 0%), TCVR (22% vs. 12%), TCOD (0% vs. 10%) and QVA/TCBF (0% vs. 2.4%, absolute increase), with lower resting TCOD found in SL- and HA-Tibetans. Our findings indicate racial but not sex differences in cerebral hemodynamic adaptations to HA, with Tibetans (but not Han) demonstrating an altitude-related change of CBF distribution.

  18. Magnetic resonance imaging 4-D flow-based analysis of aortic hemodynamics in Turner syndrome.

    Science.gov (United States)

    Arnold, Raoul; Neu, Marie; Hirtler, Daniel; Gimpel, Charlotte; Markl, Michael; Geiger, Julia

    2017-04-01

    Cardiovascular surveillance is important in Turner syndrome because of the increased risk of aortic dilation and dissection with consecutively increased mortality. To compare 4-D flow MRI for the characterization of aortic 3-D flow patterns, dimensions and vessel wall parameters in pediatric patients with Turner syndrome and age-matched controls. We performed 4-D flow MRI measuring in vivo 3-D blood flow with coverage of the thoracic aorta in 25 patients with Turner syndrome and in 16 female healthy controls (age mean ± standard deviation were 16 ± 5 years and 17 ± 4 years, respectively). Blood flow was visualized by time-resolved 3-D path lines. Visual grading of aortic flow in terms of helices and vortices was performed by two independent observers. Quantitative analysis included measurement of aortic diameters, quantification of peak systolic wall shear stress, pulsatility index and oscillatory shear index at eight defined sites. Patients with Turner syndrome had significantly larger aortic diameters normalized to BSA, increased vortices in the ascending aorta and elevated helix flow in the ascending and descending aorta compared to controls (all PTurner patients compared to controls (p=0.02, p=0.002 and p=0.01 respectively). Four-dimensional flow MRI provides new insights into the altered aortic hemodynamics and wall shear stress that could have an impact on the development of aortic dissections.

  19. A computer-based matrix for rapid calculation of pulmonary hemodynamic parameters in congenital heart disease

    International Nuclear Information System (INIS)

    Lopes, Antonio Augusto; Miranda, Rogerio dos Anjos; Goncalves, Rilvani Cavalcante; Thomaz, Ana Maria

    2009-01-01

    In patients with congenital heart disease undergoing cardiac catheterization for hemodynamic purposes, parameter estimation by the indirect Fick method using a single predicted value of oxygen consumption has been a matter of criticism. We developed a computer-based routine for rapid estimation of replicate hemodynamic parameters using multiple predicted values of oxygen consumption. Using Microsoft Excel facilities, we constructed a matrix containing 5 models (equations) for prediction of oxygen consumption, and all additional formulas needed to obtain replicate estimates of hemodynamic parameters. By entering data from 65 patients with ventricular septal defects, aged 1 month to 8 years, it was possible to obtain multiple predictions for oxygen consumption, with clear between-age groups ( P <.001) and between-methods ( P <.001) differences. Using these predictions in the individual patient, it was possible to obtain the upper and lower limits of a likely range for any given parameter, which made estimation more realistic. The organized matrix allows for rapid obtainment of replicate parameter estimates, without error due to exhaustive calculations. (author)

  20. Interactions of early adversity with stress-related gene polymorphisms impact regional brain structure in females.

    Science.gov (United States)

    Gupta, Arpana; Labus, Jennifer; Kilpatrick, Lisa A; Bonyadi, Mariam; Ashe-McNalley, Cody; Heendeniya, Nuwanthi; Bradesi, Sylvie; Chang, Lin; Mayer, Emeran A

    2016-04-01

    Early adverse life events (EALs) have been associated with regional thinning of the subgenual cingulate cortex (sgACC), a brain region implicated in the development of disorders of mood and affect, and often comorbid functional pain disorders, such as irritable bowel syndrome (IBS). Regional neuroinflammation related to chronic stress system activation has been suggested as a possible mechanism underlying these neuroplastic changes. However, the interaction of genetic and environmental factors in these changes is poorly understood. The current study aimed to evaluate the interactions of EALs and candidate gene polymorphisms in influencing thickness of the sgACC. 210 female subjects (137 healthy controls; 73 IBS) were genotyped for stress and inflammation-related gene polymorphisms. Genetic variation with EALs, and diagnosis on sgACC thickness was examined, while controlling for race, age, and total brain volume. Compared to HCs, IBS had significantly reduced sgACC thickness (p = 0.03). Regardless of disease group (IBS vs. HC), thinning of the left sgACC was associated with a significant gene-gene environment interaction between the IL-1β genotype, the NR3C1 haplotype, and a history of EALs (p = 0.05). Reduced sgACC thickness in women with the minor IL-1β allele, was associated with EAL total scores regardless of NR3C1 haplotype status (p = 0.02). In subjects homozygous for the major IL-1β allele, reduced sgACC with increasing levels of EALs was seen only with the less common NR3C1 haplotype (p = 0.02). These findings support an interaction between polymorphisms related to stress and inflammation and early adverse life events in modulating a key region of the emotion arousal circuit.