WorldWideScience

Sample records for hemocyte-mediated immune response

  1. Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria.

    Science.gov (United States)

    Hillyer, Julián F; Schmidt, Shelley L; Christensen, Bruce M

    2003-07-01

    Mosquitoes are important vectors of disease. These insects respond to invading organisms with strong cellular and humoral immune responses that share many similarities with vertebrate immune systems. The strength and specificity of these responses are directly correlated to a mosquito's ability to transmit disease. In the current study, we characterized the hemocytes (blood cells) of Armigeres subalbatus by morphology (ultrastructure), lectin binding, enzyme activity, immunocytochemistry, and function. We found four hemocyte types: granulocytes, oenocytoids, adipohemocytes, and thrombocytoids. Granulocytes contained acid phosphatase activity and bound the exogenous lectins Helix pomatia agglutinin, Galanthus nivalis lectin, and wheat germ agglutinin. Following bacteria inoculation, granulocytes mounted a strong phagocytic response as early as 5 min postexposure. Bacteria also elicited a hemocyte-mediated melanization response. Phenoloxidase, the rate-limiting enzyme in the melanization pathway, was present exclusively in oenocytoids and in many of the melanotic capsules enveloping bacteria. The immune responses mounted against different bacteria were not identical; gram(-) Escherichia coli were predominantly phagocytosed and gram(+) Micrococcus luteus were melanized. These studies implicate hemocytes as the primary line of defense against bacteria.

  2. Effect of gamma irradiation on the hemocyte-mediated immune response of Aedes aegypti against microfilariae

    International Nuclear Information System (INIS)

    Christensen, B.M.; Huff, B.M.; Li, J.

    1990-01-01

    The effect of gamma irradiation on the melanotic encapsulation response of Aedes aegypti black eye Liverpool strain against inoculated Dirofilaria immitis microfilariae (mff) was assessed at 1, 2, 3, and 6 days postinoculation (PI). Mosquitoes received 6000 rad from a 137Cs source (Shepard Mark I irradiator) at 3 days postemergence and were inoculated with 15-20 mff 24 hr later. These mosquitoes were compared to nonirradiated controls that also were inoculated with 15-20 mff at 3 days postemergence. The immune response was significantly reduced in irradiated mosquitoes as compared with controls at all days PI. Although the response was significantly inhibited compared with controls, irradiated mosquitoes were still capable of eliciting a response against 69% of recovered mff at 6 days PI. External gamma irradiation did not significantly affect the proliferation of hemocytes associated with the melanotic encapsulation response of A. aegypti. The number of circulating hemocytes increased in irradiated mosquitoes in response to inoculated mff in a manner similar to nonirradiated, inoculated controls. Hemocyte monophenol oxidase activity, however, was significantly reduced in gamma-irradiated mosquitoes at 12 hr PI as compared with controls. The reduced immunological capacity of irradiated mosquitoes might be related to an interference with gene activity required for the synthesis or activation of enzymes that are directly or indirectly involved in the biochemical processes associated with the production of melanotic substances that sequester mff

  3. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera) worker castes.

    Science.gov (United States)

    Hystad, Eva Marit; Salmela, Heli; Amdam, Gro Vang; Münch, Daniel

    2017-01-01

    Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells) that clear pathogens from hemolymph (blood) by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees), and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which-together with confocal microscopy and flow cytometry-allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity.

  4. Hemocyte-mediated phagocytosis differs between honey bee (Apis mellifera worker castes.

    Directory of Open Access Journals (Sweden)

    Eva Marit Hystad

    Full Text Available Honey bees as other insects rely on the innate immune system for protection against diseases. The innate immune system includes the circulating hemocytes (immune cells that clear pathogens from hemolymph (blood by phagocytosis, nodulation or encapsulation. Honey bee hemocyte numbers have been linked to hemolymph levels of vitellogenin. Vitellogenin is a multifunctional protein with immune-supportive functions identified in a range of species, including the honey bee. Hemocyte numbers can increase via mitosis, and this recruitment process can be important for immune system function and maintenance. Here, we tested if hemocyte mediated phagocytosis differs among the physiologically different honey bee worker castes (nurses, foragers and winter bees, and study possible interactions with vitellogenin and hemocyte recruitment. To this end, we adapted phagocytosis assays, which-together with confocal microscopy and flow cytometry-allow qualitative and quantitative assessment of hemocyte performance. We found that nurses are more efficient in phagocytic uptake than both foragers and winter bees. We detected vitellogenin within the hemocytes, and found that winter bees have the highest numbers of vitellogenin-positive hemocytes. Connections between phagocytosis, hemocyte-vitellogenin and mitosis were worker caste dependent. Our results demonstrate that the phagocytic performance of immune cells differs significantly between honey bee worker castes, and support increased immune competence in nurses as compared to forager bees. Our data, moreover, provides support for roles of vitellogenin in hemocyte activity.

  5. The immune response of hemocytes of the insect Oncopeltus fasciatus against the flagellate Phytomonas serpens.

    Directory of Open Access Journals (Sweden)

    Thiago L Alves e Silva

    Full Text Available The genus Phytomonas includes parasites that are etiological agents of important plant diseases, especially in Central and South America. These parasites are transmitted to plants via the bite of an infected phytophagous hemipteran. Despite the economic impact of these parasites, many basic questions regarding the genus Phytomonas remain unanswered, such as the mechanism by which the parasites cope with the immune response of the insect vector. In this report, using a model of systemic infection, we describe the function of Oncopeltus fasciatus hemocytes in the immune response towards the tomato parasite Phytomonas serpens. Hemocytes respond to infection by trapping parasites in nodular structures and phagocytizing the parasites. In electron microscopy of hemocytes, parasites were located inside vacuoles, which appear fused with lysosomes. The parasites reached the O. fasciatus salivary glands at least six hours post-infection. After 72 hours post-infection, many parasites were attached to the salivary gland outer surface. Thus, the cellular responses did not kill all the parasites.

  6. Immune responses and ultrastructural changes of hemocytes in freshwater crab Sinopotamon henanense exposed to elevated cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Qin Qin [College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006 (China); Central Laboratory, Shanxi Provincial People' s Hospital, Taiyuan, Shanxi, 030012 (China); Qin Shengjuan [College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006 (China); Wang Lan, E-mail: lanwang@sxu.edu.cn [College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006 (China); Lei Wenwen [College of Life Science, Shanxi University, Taiyuan, Shanxi, 030006 (China)

    2012-01-15

    Cadmium (Cd) is one of the most toxic heavy metals that can impact immunological parameters in aquatic animals. To investigate the immunotoxicity and ultrastructural changes of hemocytes, specimens of Sinopotamon henanense were exposed to different concentrations of cadmium and the differences in immunologic parameters between Cd exposure groups and control groups were investigated. Total hemocyte count (THC) in Cd-exposure groups were decreased significantly when compared with the control groups, especially in the groups treated with higher Cd concentrations and longer exposure time, while no significant differences were observed in the proportions of the three types of hemocytes. Phenoloxidase (PO) activities were significantly higher in Cd-exposure groups than the control groups. Superoxide dismutase (SOD) activities gradually increased in 7.25 and 14.5 mg L{sup -1} Cd groups, but in other higher Cd groups, they showed first increase and following decrease with the exposure time prolonged. Acid phosphatase (ACP) activities were induced at 48 h, and then decreased, while alkaline phosphatase (AKP) activities increased gradually until 96 h. Electron microscopic results showed that nucleus, mitochondria and rough endoplasm recutulum (rER) of three types of hemocytes were sensitive to acute Cd toxicity. In Cd-exposed groups, chromatin condensation, nucleus deformation and nucleus envelope rupture were noted. Additionally, mitochondrial dilation and rER degranulation were observed in Cd-treated crabs. These results suggested that immune response and organelles of hemocyte of S. henanense were impacted by Cd exposure, and the changes of these immunologic parameters reflect changes in crab immune response capability consequent to Cd exposure.

  7. Immune responses and ultrastructural changes of hemocytes in freshwater crab Sinopotamon henanense exposed to elevated cadmium

    International Nuclear Information System (INIS)

    Qin Qin; Qin Shengjuan; Wang Lan; Lei Wenwen

    2012-01-01

    Cadmium (Cd) is one of the most toxic heavy metals that can impact immunological parameters in aquatic animals. To investigate the immunotoxicity and ultrastructural changes of hemocytes, specimens of Sinopotamon henanense were exposed to different concentrations of cadmium and the differences in immunologic parameters between Cd exposure groups and control groups were investigated. Total hemocyte count (THC) in Cd-exposure groups were decreased significantly when compared with the control groups, especially in the groups treated with higher Cd concentrations and longer exposure time, while no significant differences were observed in the proportions of the three types of hemocytes. Phenoloxidase (PO) activities were significantly higher in Cd-exposure groups than the control groups. Superoxide dismutase (SOD) activities gradually increased in 7.25 and 14.5 mg L −1 Cd groups, but in other higher Cd groups, they showed first increase and following decrease with the exposure time prolonged. Acid phosphatase (ACP) activities were induced at 48 h, and then decreased, while alkaline phosphatase (AKP) activities increased gradually until 96 h. Electron microscopic results showed that nucleus, mitochondria and rough endoplasm recutulum (rER) of three types of hemocytes were sensitive to acute Cd toxicity. In Cd-exposed groups, chromatin condensation, nucleus deformation and nucleus envelope rupture were noted. Additionally, mitochondrial dilation and rER degranulation were observed in Cd-treated crabs. These results suggested that immune response and organelles of hemocyte of S. henanense were impacted by Cd exposure, and the changes of these immunologic parameters reflect changes in crab immune response capability consequent to Cd exposure.

  8. Rac1 mediates cytokine-stimulated hemocyte spreading via prostaglandin biosynthesis in the beet armyworm, Spodoptera exigua

    Science.gov (United States)

    Cell spreading is an integral component of insect hemocytic immune reactions to infections and invasions. Cell spreading is accomplished by cytoskeleton rearrangement, which is activated by three major immune mediators, biogenic monoamines, plasmatocyte-spreading peptide (PSP), and eicosanoids, part...

  9. Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: Cell types and their role in the innate immunity.

    Science.gov (United States)

    Wu, Gongqing; Liu, Yi; Ding, Ying; Yi, Yunhong

    2016-08-01

    Galleria mellonella larvae have been widely used as a model to study the virulence of various human pathogens. Hemocytes play important roles in the innate immune response of G. mellonella. In this study, the hemocytes of G. mellonella larvae were analyzed by transmission electron microscope, light microscope, and cytochemistry. The cytological and morphological analyses revealed four types of hemocytes; Plasmatocytes, granular cells, spherule cells and oenocytoids. Differential hemocyte counts showed that under our conditions plasmatocytes and granular cells were the most abundant circulating cell types in the hemolymph. We also investigated the role of different types of hemocytes in the cellular and humoral immune defenses. The in-vivo experiment showed that plasmatocytes, granular cells and oenocytoids phagocytized FITC-labelled Escherichia coli bacteria in larvae of G. mellonella, whereas the granular cells exhibited the strongest phagocytic ability against these microbial cells. After incubation with L-DOPA, plasmatocytes, granular cells and oenocytoids are stained brown, indicating the presence of phenoloxidase activity. These results shed new light on our understanding of the immune function of G. mellonella hemocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation.

    Science.gov (United States)

    Honti, Viktor; Csordás, Gábor; Kurucz, Éva; Márkus, Róbert; Andó, István

    2014-01-01

    In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. RNA-Seq Study of Microbially Induced Hemocyte Transcripts from Larval Heliothis virescens (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Kent S. Shelby

    2012-08-01

    Full Text Available Larvae of the tobacco budworm are major polyphagous pests throughout the Americas. Development of effective microbial biopesticides for this and related noctuid pests has been stymied by the natural resistance mediated innate immune response. Hemocytes play an early and central role in activating and coordinating immune responses to entomopathogens. To approach this problem we completed RNA-seq expression profiling of hemocytes collected from larvae following an in vivo challenge with bacterial and fungal cell wall components to elicit an immune response. A de novo exome assembly was constructed by combination of sequence tags from all treatments. Sequence tags from each treatment were aligned separately with the assembly to measure expression. The resulting table of differential expression had > 22,000 assemblies each with a distinct combination of annotation and expression. Within these assemblies > 1,400 were upregulated and > 1,500 downregulated by immune activation with bacteria or fungi. Orthologs to innate immune components of other insects were identified including pattern recognition, signal transduction pathways, antimicrobial peptides and enzymes, melanization and coagulation. Additionally orthologs of components regulating hemocytic functions such as autophagy, apoptosis, phagocytosis and nodulation were identified. Associated cellular oxidative defenses and detoxification responses were identified providing a comprehensive snapshot of the early response to elicitation.

  12. The effect of Beauveria bassiana infection on cell mediated and humoral immune response in house fly, Musca domestica L.

    Science.gov (United States)

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree

    2015-10-01

    Entomopathogenic fungi that manifest infections by overcoming insect's immune response could be a successful control agent for the house fly, Musca domestica L. which is a major domestic, medical, and veterinary pest. In this study, the immune response of house fly to Beauveria bassiana infection was investigated to reveal fundamental aspects of house fly hemocyte biology, such as hemocyte numbers and size, which is poorly understood. The total hemocyte counts (THCs) in B. bassiana-infected house fly showed an initial increase (from 6 to 9 h), followed by subsequent decrease (9 to 12 h) with increase in time of infection. The THCs was slightly greater in infected flies than the non-infected ones. Insight into relative hemocyte counts depicted a significant increase in prohemocyte (PR) and decrease in granulocyte (GR) in infected house flies compared to non-infected ones. The relative cell area of hemocyte cells showed a noticeable increase in PR and intermediate cells (ICs), while a considerable reduction was observed for plasmatocyte (PL) and GR. The considerable variation in relative cell number and cell area in the B. bassiana-infected house flies indicated stress development during infection. The present study highlights changes occurring during B. bassiana invasion to house fly leading to establishment of infection along with facilitation in understanding of basic hemocyte biology. The results of the study is expected to help in better understanding of house fly immune response during fungal infection, so as to assist production of more efficient mycoinsecticides for house fly control using B. bassiana.

  13. Nitric oxide mediates insect cellular immunity via phospholipase A2 activation

    Science.gov (United States)

    After infection or invasion is recognized, biochemical mediators act in signaling insect immune functions. These include biogenic amines, insect cytokines, eicosanoids and nitric oxide (NO). Treating insects or isolated hemocyte populations with different mediators often leads to similar results. Se...

  14. The entomopathogenic fungus Nomuraea rileyi impairs cellular immunity of its host Helicoverpa armigera.

    Science.gov (United States)

    Zhong, Ke; Liu, Zhan-Chi; Wang, Jia-Lin; Liu, Xu-Sheng

    2017-09-01

    In this study, we investigated the effect of the entomopathogenic fungus Nomuraea rileyi on Helicoverpa armigera cellular immune responses. Nomuraea rileyi infection had no effect on total hemocyte count (THC), but impaired hemocyte-mediated phagocytosis, nodulation, and encapsulation responses. Nomuraea rileyi infection led to a significant reduction in hemocyte spreading. An in vitro assay revealed that plasma from N. rileyi infected H. armigera larvae suppressed the spreading ability of hemocytes from naïve larvae. We infer that N. rileyi suppresses the cellular immune response of its host, possibly by secreting exogenous, cytotoxic compounds into the host's hemolymph. © 2017 Wiley Periodicals, Inc.

  15. Hemiuroid trematode sporocysts are undetected by hemocytes of their intermediate host, the ark cockle Anadara trapezia: potential role of surface carbohydrates in successful parasitism.

    Science.gov (United States)

    Kawasaki, Minami; Delamare-Deboutteville, Jerome; Dang, Cecile; Barnes, Andrew C

    2013-12-01

    In order to establish a successful relationship with their hosts, parasites must subvert or evade immune defences. Cockle Anadara trapezia and Sydney Rock oyster (SRO) Saccostrea glomerata live in the same location but only ark cockles are infected by sporocysts of hemiuroid trematode. This provides an opportunity to explore differing interactions between the parasite and the immune system of susceptible and refractive hosts. Rapid migration and encapsulation of sporocysts was observed by SRO hemocytes but not by cockle hemocytes. This migration/encapsulation was inhibited by N-acetylglucosamine or N-acetylgalactosamine but not by the other sugars, implicating specific surface carbohydrates in immune detection. Effector responses of hemocytes were investigated in vitro in terms of production of reactive oxygen production (ROS). Hemocytes of both species strongly reacted to Zymosan, but only SRO hemocytes responded to live sporocysts. Neither species' hemocytes produced ROS in the presence of dead/fixed sporocysts, and there was no suppression of Zymosan-induced respiratory burst by sporocysts. This suggests that immune escape is mediated by avoiding encapsulation, perhaps through molecular mimicry. Membrane-shaving with proteases indicated that sporocyst surface proteins are not a key factors in hemocytic detection. Surface carbohydrates of SRO and cockle hemocytes and of sporocysts were profiled with a panel of biotinylated lectins. This revealed substantial differences between cockle and SRO hemocytes, but greater similarity between cockle hemocytes and sporocysts. Results suggest that surface carbohydrates play an integral role in hemocyte immunorecognition and that surface carbohydrate molecular mimicry is a potential strategy for immune evasion in cockles by hemiuroid trematode sporocysts. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Characteristic and functional analysis of toll-like receptors (TLRs in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity.

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    Full Text Available The evolution of TLR-mediated innate immunity is a fundamental question in immunology. Here, we report the characterization and functional analysis of four TLR members in the lophotrochozoans Crassostreagigas (CgTLRs. All CgTLRs bear a conserved domain organization and have a close relationship with TLRs in ancient non-vertebrate chordates. In HEK293 cells, every CgTLR could constitutively activate NF-κB responsive reporter, but none of the PAMPs tested could stimulate CgTLR-activated NF-κB induction. Subcellular localization showed that CgTLR members have similar and dual distribution on late endosomes and plasma membranes. Moreover, CgTLRs and CgMyD88 mRNA show a consistent response to multiple PAMP challenges in oyster hemocytes. As CgTLR-mediated NF-κB activation is dependent on CgMyD88, we designed a blocking peptide for CgTLR signaling that would inhibit CgTLR-CgMyD88 dependent NF-κB activation. This was used to demonstrate that a Vibrio parahaemolyticus infection-induced enhancement of degranulation and increase of cytokines TNF mRNA in hemocytes, could be inhibited by blocking CgTLR signaling. In summary, our study characterized the primitive TLRs in the lophotrocozoan C. gigas and demonstrated a fundamental role of TLR signaling in infection-induced hemocyte activation. This provides further evidence for an ancient origin of TLR-mediated innate immunity.

  17. Bombyx mori and Aedes aegypti form multi-functional immune complexes that integrate pattern recognition, melanization, coagulants, and hemocyte recruitment.

    Science.gov (United States)

    Phillips, Dennis R; Clark, Kevin D

    2017-01-01

    The innate immune system of insects responds to wounding and pathogens by mobilizing multiple pathways that provide both systemic and localized protection. Key localized responses in hemolymph include melanization, coagulation, and hemocyte encapsulation, which synergistically seal wounds and envelop and destroy pathogens. To be effective, these pathways require a targeted deposition of their components to provide protection without compromising the host. Extensive research has identified a large number of the effectors that comprise these responses, but questions remain regarding their post-translational processing, function, and targeting. Here, we used mass spectrometry to demonstrate the integration of pathogen recognition proteins, coagulants, and melanization components into stable, high-mass, multi-functional Immune Complexes (ICs) in Bombyx mori and Aedes aegypti. Essential proteins common to both include phenoloxidases, apolipophorins, serine protease homologs, and a serine protease that promotes hemocyte recruitment through cytokine activation. Pattern recognition proteins included C-type Lectins in B. mori, while A. aegypti contained a protein homologous to Plasmodium-resistant LRIM1 from Anopheles gambiae. We also found that the B. mori IC is stabilized by extensive transglutaminase-catalyzed cross-linking of multiple components. The melanization inhibitor Egf1.0, from the parasitoid wasp Microplitis demolitor, blocked inclusion of specific components into the IC and also inhibited transglutaminase activity. Our results show how coagulants, melanization components, and hemocytes can be recruited to a wound surface or pathogen, provide insight into the mechanism by which a parasitoid evades this immune response, and suggest that insects as diverse as Lepidoptera and Diptera utilize similar defensive mechanisms.

  18. Vibrio cholerae interactions with Mytilus galloprovincialis hemocytes mediated by serum components.

    Directory of Open Access Journals (Sweden)

    Laura eCanesi

    2013-12-01

    Full Text Available Edible bivalves (e.g., mussels, oysters can accumulate large amount of bacteria in their tissues and act as passive carriers of pathogens to humans. Bacterial persistence inside bivalves depends, at least in part, on hemolymph anti-bacterial activity that is exerted by both serum soluble factors and phagocytic cells (i.e., the hemocytes. It was previously shown that Mytilus galloprovincialis hemolymph serum contains opsonins that mediate D-mannose-sensitive interactions between hemocytes and V. cholerae O1 El Tor bacteria that carry the Mannose–Sensitive Hemagglutinin (MSHA. These opsonins enhance phagocytosis and killing of vibrios by facilitating their binding to hemocytes. Since V. cholerae strains not carrying the MSHA ligand (O1 classical, non O1/O139 are present in coastal water and can be entrapped by mussels, we studied whether in mussel serum, in addition to opsonins directed towards MSHA, other components can mediate opsonization of these bacteria. By comparing interactions of O1 classical and non O1/O139 strains with hemocytes in ASW and serum, it was found that M. galloprovincialis serum contains components that increase by at approximately two fold their adhesion to, association with and killing by hemocytes. Experiments conducted with high and low molecular mass fractions obtained by serum ultrafiltration indicated that these compounds have molecular mass higher than 5000 Da. Serum exposure to high temperature (80°C abolished its opsonizing capability suggesting that the involved serum active components are of protein nature. Further studies are needed to define the chemical properties and specificity of both the involved bacterial ligands and hemolymph opsonins. This information will be central not only to better understand V. cholerae ecology, but also to improve current bivalve depuration practices and properly protect human health.

  19. Transient expression of protein tyrosine phosphatases encoded in Cotesia plutellae bracovirus inhibits insect cellular immune responses

    Science.gov (United States)

    Ibrahim, Ahmed M. A.; Kim, Yonggyun

    2008-01-01

    Several immunosuppressive factors are associated with parasitism of an endoparasitoid wasp, Cotesia plutellae, on the diamondback moth, Plutella xylostella. C. plutellae bracovirus (CpBV) encodes a large number of putative protein tyrosine phosphatases (PTPs), which may play a role in inhibiting host cellular immunity. To address this inhibitory hypothesis of CpBV-PTPs, we performed transient expression of individual CpBV-PTPs in hemocytes of the beet armyworm, Spodoptera exigua, and analyzed their cellular immune responses. Two different forms of CpBV-PTPs were chosen and cloned into a eukaryotic expression vector under the control of the p10 promoter of baculovirus: one with the normal cysteine active site (CpBV-PTP1) and the other with a mutated active site (CpBV-PTP5). The hemocytes transfected with CpBV-PTP1 significantly increased in PTP activity compared to control hemocytes, but those with CpBV-PTP5 exhibited a significant decrease in the PTP activity. All transfected hemocytes exhibited a significant reduction in both cell spreading and encapsulation activities compared to control hemocytes. Co-transfection of CpBV-PTP1 together with its double-stranded RNA reduced the messenger RNA (mRNA) level of CpBV-PTP1 and resulted in recovery of both hemocyte behaviors. This is the first report demonstrating that the polydnaviral PTPs can manipulate PTP activity of the hemocytes to interrupt cellular immune responses.

  20. Imidacloprid intensifies its impact on honeybee and bumblebee cellular immune response when challenged with LPS (lippopolysacharide) of Escherichia coli.

    Science.gov (United States)

    Walderdorff, Louise; Laval-Gilly, Philippe; Bonnefoy, Antoine; Falla-Angel, Jaïro

    2018-05-16

    Insect hemocytes play an important role in insects' defense against environmental stressors as they are entirely dependent on their innate immune system for pathogen defense. In recent years a dramatic decline of pollinators has been reported in many countries. The drivers of this declines appear to be associated with pathogen infections like viruses, bacteria or fungi in combination with pesticide exposure. The aim of this study was thus to investigate the impact of imidacloprid, a neonicotinoid insecticide, on the cellular immune response of two pollinators (Apis mellifera and Bombus terrestris) during simultaneous immune activation with LPS (lipopolysaccharide) of Escherichia coli. For this purpose the phagocytosis capacity as well as the production of H 2 O 2 and NO of larval hemocytes, exposed to five different imidacloprid concentrations in vitro, was measured. All used pesticide concentrations showed a weakening effect on phagocytosis with but also without LPS activation. Imidacloprid decreased H 2 O 2 and increased NO production in honeybees. Immune activation by LPS clearly reinforced the effect of imidacloprid on the immune response of hemocytes in all three immune parameters tested. Bumblebee hemocytes appeared more sensitive to imidacloprid during phagocytosis assays while imidacloprid showed a greater impact on honeybee hemocytes during H 2 O 2 and NO production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Immune Defenses of the Invasive Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae: Phagocytic Hemocytes in the Circulation and the Kidney.

    Directory of Open Access Journals (Sweden)

    Juan A Cueto

    Full Text Available Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy and transmission electron microscopy (TEM. Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules. Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes. Extensive hemocyte aggregates ('islets' occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently and may mean that

  2. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  3. Evaluation of the immune responses of the brown mussel Perna perna as indicators of fecal pollution.

    Science.gov (United States)

    Silva Dos Santos, Fernanda; Neves, Raquel Almeida Ferrando; Carvalho, Wanderson Fernandes de; Krepsky, Natascha; Crapez, Mirian Araújo Carlos

    2018-06-01

    The mussel Perna perna is an intertidal bivalve that is widely distributed, cultivated and consumed in South Africa, Brazil and Venezuela. Among marine resources, bivalve mollusks are one of the most impacted by anthropogenic pollution, as they can accumulate pathogenic bacteria and water pollutants. Hemocytes are molluscan defense cells, and their abundance and functions can be affected in response to contaminants, such as bacterial load. However, no previous study has investigated the immune response of P. perna hemocytes. The aim of this study was to evaluate several immune parameters in P. perna as indicators of fecal pollution in mussel hemolymph and in seawater. We collected mussels and adjacent seawater from beaches with different levels of fecal contamination in Rio de Janeiro state (Brazil): Vermelha Beach (VB); Icaraí Beach (IB); Urca Beach (UB); and Jurujuba Beach (JB). Hemocyte parameters (density, morphology, phagocytic activity and production of Reactive Oxygen Species - ROS) were evaluated using flow cytometry. We quantified Fecal Indicator Bacteria (FIB) in seawater by the multiple tubes technique for each beach and for hemolymph by the spread-plate technique. In agreement with historical evaluation of fecal contamination levels, UB presented the highest FIB abundance in seawater (thermotolerant coliforms, TEC = 1600 NMP 100 mL -1 ), whereas VB exhibited the lowest (TEC = 17 NMP 100 mL -1 ). UB mussels had six and eight times higher hemocyte density and phagocytic activity, respectively, than mussels from VB. Mussels from VB and IB presented a significantly lower number of total coliforms in hemolymph and a significantly higher relative internal complexity of hemocytes than those from UB and JB (p ≤ 0.01, PERMANOVA). ROS production by hemocytes was significantly lower in mussels from VB compared to those from JB (p = 0.04, ANOVA). Our results indicate a significant relationship between the level of fecal contamination in

  4. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets.

    Science.gov (United States)

    Bandrick, Meggan; Theis, Kara; Molitor, Thomas W

    2014-06-05

    Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI.

  5. Immune responses of mussel hemocyte subpopulations are differentially regulated by enzymes of the PI 3-K, PKC, and ERK kinase families.

    Science.gov (United States)

    García-García, Erick; Prado-Alvarez, Maria; Novoa, Beatriz; Figueras, Antonio; Rosales, Carlos

    2008-01-01

    Various hemocyte cell types have been described in invertebrates, but for most species a functional characterization of different hemocyte cell types is still lacking. In order to characterize some immunological properties of mussel (Mytilus galloprovincialis) hemocytes, cells were separated by flow cytometry and their capacity for phagocytosis, production of reactive oxygen species (ROS), and production of nitric oxide (NO), was examined. Phosphatidylinositol 3-kinase (PI 3-K), protein kinase C (PKC), and extracellular signal-regulated kinase (ERK) inhibitors were also used to biochemically characterize these cell responses. Four morphologically distinct subpopulations, designated R1-R4, were detected. R1, R2, and R3 cells presented different levels of phagocytosis towards zymosan, latex beads, and two bacteria species. Similarly, R1 to R3, but not R4, cells produced ROS, while all subpopulations produced NO, in response to zymosan. Internalization of all phagocytic targets was blocked by PI 3-K inhibition. In addition, internalization of latex particles, but not of bacteria, was partially blocked by PKC or ERK inhibition. Interestingly, phagocytosis of zymosan was impaired by PKC, or ERK inhibitors, only in R2 cells. Zymosan-induced ROS production was blocked by PI 3-K inhibition, but not by PKC, or ERK inhibition. In addition, zymosan-stimulated NO production was affected by PI 3-K inhibition in R1 and R2, but not in R3 or R4 cells. NO production in all cell types was unaffected by PKC inhibition, but ERK inhibition blocked it in R2 cells. These data reveal the existence of profound functional and biochemical differences in mussel hemocytes and indicate that M. galloprovincialis hemocytes are specialized cells fulfilling specific tasks in the context of host defense.

  6. Immunity in Protochordates: The Tunicate Perspective

    Directory of Open Access Journals (Sweden)

    Nicola Franchi

    2017-06-01

    Full Text Available Tunicates are the closest relatives of vertebrates, and their peculiar phylogenetic position explains the increasing interest toward tunicate immunobiology. They are filter-feeding organisms, and this greatly influences their defense strategies. The majority of the studies on tunicate immunity were carried out in ascidians. The tunic acts as a first barrier against pathogens and parasites. In addition, the oral siphon and the pharynx represent two major, highly vascularized, immune organs, where circulating hemocytes can sense non-self material and trigger immune responses that, usually, lead to inflammation and phagocytosis. Inflammation involves the recruitment of circulating cytotoxic, phenoloxidase (PO-containing cells in the infected area, where they degranulate as a consequence of non-self recognition and release cytokines, complement factors, and the enzyme PO. The latter, acting on polyphenol substrata, produces cytotoxic quinones, which polymerize to melanin, and reactive oxygen species, which induce oxidative stress. Both the alternative and the lectin pathways of complement activation converge to activate C3: C3a and C3b are involved in the recruitment of hemocytes and in the opsonization of foreign materials, respectively. The interaction of circulating professional phagocytes with potentially pathogenic foreign material can be direct or mediated by opsonins, either complement dependent or complement independent. Together with cytotoxic cells, phagocytes are active in the encapsulation of large materials. Cells involved in immune responses, collectively called immunocytes, represent a large fraction of hemocytes, and the presence of a cross talk between cytotoxic cells and phagocytes, mediated by secreted humoral factors, was reported. Lectins play a pivotal role as pattern-recognition receptors and opsonizing agents. In addition, variable region-containing chitin-binding proteins, identified in the solitary ascidian Ciona

  7. Endogenous growth factor stimulation of hemocyte proliferation induces resistance to Schistosoma mansoni challenge in the snail host.

    Science.gov (United States)

    Pila, Emmanuel A; Gordy, Michelle A; Phillips, Valerie K; Kabore, Alethe L; Rudko, Sydney P; Hanington, Patrick C

    2016-05-10

    Digenean trematodes are a large, complex group of parasitic flatworms that infect an incredible diversity of organisms, including humans. Larval development of most digeneans takes place within a snail (Gastropoda). Compatibility between snails and digeneans is often very specific, such that suitable snail hosts define the geographical ranges of diseases caused by these worms. The immune cells (hemocytes) of a snail are sentinels that act as a crucial barrier to infection by larval digeneans. Hemocytes coordinate a robust and specific immunological response, participating directly in parasite killing by encapsulating and clearing the infection. Hemocyte proliferation and differentiation are influenced by unknown digenean-specific exogenous factors. However, we know nothing about the endogenous control of hemocyte development in any gastropod model. Here, we identify and functionally characterize a progranulin [Biomphalaria glabrata granulin (BgGRN)] from the snail B. glabrata, a natural host for the human blood fluke Schistosoma mansoni Granulins are growth factors that drive proliferation of immune cells in organisms, spanning the animal kingdom. We demonstrate that BgGRN induces proliferation of B. glabrata hemocytes, and specifically drives the production of an adherent hemocyte subset that participates centrally in the anti-digenean defense response. Additionally, we demonstrate that susceptible B. glabrata snails can be made resistant to infection with S. mansoni by first inducing hemocyte proliferation with BgGRN. This marks the functional characterization of an endogenous growth factor of a gastropod mollusc, and provides direct evidence of gain of resistance in a snail-digenean infection model using a defined factor to induce snail resistance to infection.

  8. Delicate regulation of the cGAS-MITA-mediated innate immune response.

    Science.gov (United States)

    Luo, Wei-Wei; Shu, Hong-Bing

    2018-02-19

    Although it has long been demonstrated that cytosolic DNA is a potent immune stimulant, it is only in recent years that the molecular mechanisms of DNA-stimulated innate immune responses have emerged. Studies have established critical roles for the DNA sensor cyclic GMP-AMP synthase (cGAS) and the adapter protein MITA/STING in the innate immune response to cytosolic DNA or DNA viruses. Although the regulation of cGAS-MITA/STING-mediated signaling remains to be fully investigated, understanding the processes involved may help to explain the mechanisms of innate immune signaling events and perhaps autoinflammatory diseases and to provide potential therapeutic targets for drug intervention. In this review, we summarize recent progress on the regulation of the cGAS-MITA/STING-mediated innate immune response to DNA viruses at the organelle-trafficking, post-translational and transcriptional levels.Cellular & Molecular Immunology advance online publication, 19 February 2018; doi:10.1038/cmi.2016.51.

  9. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior.

    Science.gov (United States)

    Adamo, Shelley A

    2014-09-01

    Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration

  10. Recognition between symbiotic Vibrio fischeri and the hemocytes of Euprymna scolopes

    Science.gov (United States)

    Nyholm, Spencer V.; Stewart, Jennifer J.; Ruby, Edward G.; McFall-Ngai, Margaret J.

    2008-01-01

    Summary The light-organ crypts of the squid Euprymna scolopes permit colonization exclusively by the luminous bacterium Vibrio fischeri. Because the crypt interior remains in contact with seawater, the squid must not only foster the specific symbiosis but also continue to exclude other bacteria. Investigation of the role of the innate immune system in these processes revealed that macrophage-like hemocytes isolated from E. scolopes recognized and phagocytosed V. fischeri less than other closely related bacterial species common to the host’s environment. Interestingly, phagocytes isolated from hosts that had been cured of their symbionts bound five-times more V. fischeri cells than those from uncured hosts. No such change in the ability to bind other species of bacteria was observed, suggesting that the host adapts specifically to V. fischeri. Deletion of the gene encoding OmpU, the major outer membrane protein of V. fischeri, increased binding by hemocytes from uncured animals to the level observed for hemocytes from cured animals. Co-incubation with wild-type V. fischeri reduced this binding, suggesting they produce a factor that complements the mutant’s defect. Analyses of the phagocytosis of bound cells by fluorescence-activated cell sorting (FACS) indicated that, once binding to hemocytes had occurred, V. fischeri cells are phagocytosed as effectively as other bacteria. Thus, discrimination by this component of the squid immune system occurs at the level of hemocyte binding, and this response: (i) is modified by previous exposure to the symbiont and, (ii) relies on outer membrane and/or secreted components of the symbionts. These data suggest that regulation of host hemocyte binding by the symbiont may be one of many factors that contribute to specificity in this association. PMID:19196278

  11. The virus-like particles of a braconid endoparasitoid wasp, Meteorus pulchricornis, inhibit hemocyte spreading in its noctuid host, Pseudaletia separata.

    Science.gov (United States)

    Suzuki, M; Miura, K; Tanaka, T

    2008-06-01

    We previously reported that the virus-like particles of Meteorus pulchricornis (MpVLPs) are capable of inducing apoptosis by around 6h in the hemocytes of the host, Pseudaletia separata [Suzuki, M., Tanaka, T., 2006. Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis. Journal of Insect Physiology 52, 602-611], thereby protecting the oviposited egg. In the present study, we focused on analyses of the earlier events caused by the MpVLPs upon the host immune response, namely their effects on hemocyte spreading. After recognition and attachment on foreign substance, the granulocytes and plasmatocytes assemble focal complexes and focal adhesions and spread by protruding filopodia/lamellipodia. The well-spread, cultured hemocytes were subjected to MpVLPs exposure, and the morphological changes were observed. The granulocytes lost the focal complexes/adhesions visualized as phosphotyrosine clusters and retracted the filopodia/lamellipodia within 30min after exposure, while the plasmatocytes exhibited similar but distinct responses. The two hemocyte species prepared from either parasitized or MpVLP-injected hosts lost the ability to form both filopodia/lamellipodia and phosphotyrosine clusters. A caspase inhibitor, Z-VAD-FMK, did not affect these MpVLP-induced morphological changes, indicating that these earlier changes found in the hemocytes precede apoptosis. The present study together with our previous data has established that the attenuation of host immune defense by the MpVLPs comprises at least two temporally distinguishable phases: immediate and early inhibition of hemocyte spreading and the eventual induction of hemocyte apoptosis.

  12. Honey bee hemocyte profiling by flow cytometry.

    Science.gov (United States)

    Marringa, William J; Krueger, Michael J; Burritt, Nancy L; Burritt, James B

    2014-01-01

    Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure.

  13. Understanding the Role of Host Hemocytes in a Squid/Vibrio Symbiosis Using Transcriptomics and Proteomics

    Directory of Open Access Journals (Sweden)

    Andrew J. Collins

    2012-05-01

    Full Text Available The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host’s cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/ tandem mass spectrometry (LC-MS/MS proteomic analyses. 454 high-throughput sequencing produced 650,686 reads totaling 279.9 Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial associated molecular patterns (MAMPs were identified. Among these was a complete open reading frame (ORF to a putative peptidoglycan recognition protein (EsPGRP5 that has conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NFκB signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative PCR of complement-related genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes isolated from adult squid with colonized light organs compared to those for which the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of the host.

  14. IL-10 polymorphism and cell-mediated immune response to Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Öhman, H.; Tiitinen, A; Halttunen, M.

    2006-01-01

    background. To study a relationship between interleukin-10 (IL-10) promoter -1082 polymorphism and cell-mediated immune response during C trachomatis infection in vitro, lymphocyte proliferation and cytokine (IL-10, IFN-gamma, TNF-alpha, IL-2, IL-4 and IL-5) secretion were analysed in subjects with different...... IL-10 genotypes. Enhanced IL-10 secretion and reduced antigen-specific lymphocyte proliferative and IFN-gamma responses were found in subjects with IL-10 -1082 GG genotype when compared to those with -1082 AA genotype. CD14+ monocytes were main source of IL-10 indicating that these cells...... are important regulators of the antigen-specific cell-mediated responses during active C trachomatis infection. We conclude that impaired cell-mediated response to C trachomatis is associated with IL-10 genotype in subjects with high IL-10 producing capacity. A comparison of immune markers between subjects...

  15. HIF-mediated innate immune responses: cell signaling and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Harris AJ

    2014-05-01

    Full Text Available Alison J Harris, AA Roger Thompson, Moira KB Whyte, Sarah R Walmsley Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK Abstract: Leukocytes recruited to infected, damaged, or inflamed tissues during an immune response must adapt to oxygen levels much lower than those in the circulation. Hypoxia inducible factors (HIFs are key mediators of cellular responses to hypoxia and, as in other cell types, HIFs are critical for the upregulation of glycolysis, which enables innate immune cells to produce adenosine triphosphate anaerobically. An increasing body of evidence demonstrates that hypoxia also regulates many other innate immunological functions, including cell migration, apoptosis, phagocytosis of pathogens, antigen presentation and production of cytokines, chemokines, and angiogenic and antimicrobial factors. Many of these functions are mediated by HIFs, which are not only stabilized posttranslationally by hypoxia, but also transcriptionally upregulated by inflammatory signals. Here, we review the role of HIFs in the responses of innate immune cells to hypoxia, both in vitro and in vivo, with a particular focus on myeloid cells, on which the majority of studies have so far been carried out. Keywords: hypoxia, neutrophils, monocytes, macrophages

  16. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  17. Anterior Chamber-Associated Immune Deviation (ACAID: An Acute Response to Ocular Insult Protects from Future Immune-Mediated Damage?

    Directory of Open Access Journals (Sweden)

    Robert E. Cone

    2009-01-01

    Full Text Available The “immune privilege” that inhibits immune defense mechanisms that could lead to damage to sensitive ocular tissue is based on the expression of immunosuppressive factors on ocular tissue and in ocular fluids. In addition to this environmental protection, the injection of antigen into the anterior chamber or infection in the anterior chamber induces a systemic suppression of potentially damaging cell-mediated and humoral responses to the antigen. Here we discuss evidence that suggests that Anterior Chamber-Associated Immune Deviation (ACAID a is initiated by an ocular response to moderate inflammation that leads to a systemic immunoregulatory response. Injection into the anterior chamber induces a rise in TNF-α and MCP-1 in aqueous humor and an infiltration of circulating F4/80 + monocytes that home to the iris. The induction of ACAID is dependent on this infiltration of circulating monocytes that eventually emigrate to the thymus and spleen where they induce regulatory T cells that inhibit the inductive or effector phases of a cell-mediated immune response. ACAID therefore protects the eye from the collateral damage of an immune response to infection by suppressing a future potentially damaging response to infection.

  18. Immunomodulation by different types of N-oxides in the hemocytes of the marine bivalve Mytilus galloprovincialis.

    Directory of Open Access Journals (Sweden)

    Caterina Ciacci

    Full Text Available The potential toxicity of engineered nanoparticles (NPs for humans and the environment represents an emerging issue. Since the aquatic environment represents the ultimate sink for NP deposition, the development of suitable assays is needed to evaluate the potential impact of NPs on aquatic biota. The immune system is a sensitive target for NPs, and conservation of innate immunity represents an useful basis for studying common biological responses to NPs. Suspension-feeding invertebrates, such as bivalves, are particularly at risk to NP exposure, since they have extremely developed systems for uptake of nano and microscale particles integral to intracellular digestion and cellular immunity. Evaluation of the effects of NPs on functional parameters of bivalve immunocytes, the hemocytes, may help understanding the major toxic mechanisms and modes of actions that could be relevant for different NP types in aquatic organisms.In this work, a battery of assays was applied to the hemocytes of the marine bivalve Mytilus galloprovincialis to compare the in vitro effects of different n-oxides (n-TiO(2, n-SiO(2, n-ZnO, n-CeO(2 chosen on the basis of their commercial and environmental relevance. Physico-chemical characterization of both primary particles and NP suspensions in artificial sea water-ASW was performed. Hemocyte lysosomal and mitochondrial parameters, oxyradical and nitric oxide production, phagocytic activity, as well as NP uptake, were evaluated. The results show that different n-oxides rapidly elicited differential responses hemocytes in relation to their chemical properties, concentration, behavior in sea water, and interactions with subcellular compartments. These represent the most extensive data so far available on the effects of NPs in the cells of aquatic organisms. The results indicate that Mytilus hemocytes can be utilized as a suitable model for screening the potential effects of NPs in the cells of aquatic invertebrates, and may

  19. MicroRNA-100 is involved in shrimp immune response to white spot syndrome virus (WSSV) and Vibrio alginolyticus infection.

    Science.gov (United States)

    Wang, Zhi; Zhu, Fei

    2017-02-09

    In this study, we discovered that shrimp miR-100 was up-regulated at 24 h after WSSV or Vibrio alginolyticus infection, confirming its participation in the innate immune system of shrimp. The anti-miRNA oligonucleotide (AMO-miR-100) was applied to inhibit the expression of miR-100. After AMO-miR-100 treatment, the shrimp was challenged with WSSV or V. alginolyticus. The knockdown of miR-100 expression decreased the mortality of WSSV-infected shrimp from 24 h to 72 h post-infection and enhanced the mortality of V. alginolyticus-infected shrimp significantly. The knockdown of miR-100 affected phenoloxidase (PO) activity, superoxide dismutase (SOD) activity and total hemocyte count (THC) after the infection with WSSV or V. alginolyticus, indicating a regulative role of miR-100 in the immune potential of shrimp in the response to WSSV or V. alginolyticus infection. The knockdown of miR-100 induced the apoptosis of shrimp hemocytes, and V. alginolyticus + AMO-miR-100 treatment caused more hemocyte apoptosis than V. alginolyticus treatment. The miR-100 influenced also the morphology of shrimp hemocytes and regulated the phagocytosis of WSSV or V. alginolyticus. Thus, we concluded that miR-100 may promote the anti-Vibrio immune response of shrimp through regulating apoptosis, phagocytosis and PO activity and affects the progression of WSSV infection at a certain level.

  20. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    Science.gov (United States)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  1. De novo transcriptome sequencing of the Octopus vulgaris hemocytes using Illumina RNA-Seq technology: response to the infection by the gastrointestinal parasite Aggregata octopiana.

    Science.gov (United States)

    Castellanos-Martínez, Sheila; Arteta, David; Catarino, Susana; Gestal, Camino

    2014-01-01

    Octopus vulgaris is a highly valuable species of great commercial interest and excellent candidate for aquaculture diversification; however, the octopus' well-being is impaired by pathogens, of which the gastrointestinal coccidian parasite Aggregata octopiana is one of the most important. The knowledge of the molecular mechanisms of the immune response in cephalopods, especially in octopus is scarce. The transcriptome of the hemocytes of O. vulgaris was de novo sequenced using the high-throughput paired-end Illumina technology to identify genes involved in immune defense and to understand the molecular basis of octopus tolerance/resistance to coccidiosis. A bi-directional mRNA library was constructed from hemocytes of two groups of octopus according to the infection by A. octopiana, sick octopus, suffering coccidiosis, and healthy octopus, and reads were de novo assembled together. The differential expression of transcripts was analysed using the general assembly as a reference for mapping the reads from each condition. After sequencing, a total of 75,571,280 high quality reads were obtained from the sick octopus group and 74,731,646 from the healthy group. The general transcriptome of the O. vulgaris hemocytes was assembled in 254,506 contigs. A total of 48,225 contigs were successfully identified, and 538 transcripts exhibited differential expression between groups of infection. The general transcriptome revealed genes involved in pathways like NF-kB, TLR and Complement. Differential expression of TLR-2, PGRP, C1q and PRDX genes due to infection was validated using RT-qPCR. In sick octopuses, only TLR-2 was up-regulated in hemocytes, but all of them were up-regulated in caecum and gills. The transcriptome reported here de novo establishes the first molecular clues to understand how the octopus immune system works and interacts with a highly pathogenic coccidian. The data provided here will contribute to identification of biomarkers for octopus resistance against

  2. Immune responses to metastases

    International Nuclear Information System (INIS)

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors

  3. Respiratory and Metabolic Impacts of Crustacean Immunity: Are there Implications for the Insects?

    Science.gov (United States)

    Burnett, Karen G; Burnett, Louis E

    2015-11-01

    Extensive similarities in the molecular architecture of the crustacean immune system to that of insects give credence to the current view that the Hexapoda, including Insecta, arose within the clade Pancrustacea. The crustacean immune system is mediated largely by hemocytes, relying on suites of pattern recognition receptors, effector functions, and signaling pathways that parallel those of insects. In crustaceans, as in insects, the cardiovascular system facilitates movement of hemocytes and delivery of soluble immune factors, thereby supporting immune surveillance and defense along with other physiological functions such as transport of nutrients, wastes, and hormones. Crustaceans also rely heavily on their cardiovascular systems to mediate gas exchange; insects are less reliant on internal circulation for this function. Among the largest crustaceans, the decapods have developed a condensed heart and a highly arteriolized cardiovascular system that supports the metabolic demands of their often large body size. However, recent studies indicate that mounting an immune response can impair gas exchange and metabolism in their highly developed vascular system. When circulating hemocytes detect the presence of potential pathogens, they aggregate rapidly with each other and with the pathogen. These growing aggregates can become trapped in the microvasculature of the gill where they are melanized and may be eliminated at the next molt. Prior to molting, trapped aggregates of hemocytes also can impair hemolymph flow and oxygenation at the gill. Small shifts to anaerobic metabolism only partially compensate for this decrease in oxygen uptake. The resulting metabolic depression is likely to impact other energy-expensive cellular processes and whole-animal performance. For crustaceans that often live in microbially-rich, but oxygen-poor aquatic environments, there appear to be distinct tradeoffs, based on the gill's multiple roles in respiration and immunity. Insects have

  4. Mannose Receptor Mediates the Immune Response to Ganoderma atrum Polysaccharides in Macrophages.

    Science.gov (United States)

    Li, Wen-Juan; Tang, Xiao-Fang; Shuai, Xiao-Xue; Jiang, Cheng-Jia; Liu, Xiang; Wang, Le-Feng; Yao, Yu-Fei; Nie, Shao-Ping; Xie, Ming-Yong

    2017-01-18

    The ability of mannose receptor (MR) to recognize the carbohydrate structures is well-established. Here, we reported that MR was crucial for the immune response to a Ganoderma atrum polysaccharide (PSG-1), as evidenced by elevation of MR in association with increase of phagocytosis and concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in normal macrophages. Elevation of MR triggered by PSG-1 also led to control lipopolysaccharide (LPS)-triggered inflammatory response via the increase of interleukin-10 (IL-10) and inhibition of phagocytosis and IL-1β. Anti-MR antibody partly attenuated PSG-1-mediated anti-inflammatory responses, while it could not affect TNF-α secretion, suggesting that another receptor was involved in PSG-1-triggered immunomodulatory effects. MR and toll-like receptor (TLR)4 coordinated the influences on the TLR4-mediated signaling cascade by the nuclear factor-κB (NF-κB) pathway in LPS-stimulated macrophages subjected to PSG-1. Collectively, immune response to PSG-1 required recognition by MR in macrophages. The NF-κB pathway served as a central role for the coordination of MR and TLR4 to elicit immune response to PSG-1.

  5. Cell-mediated and humoral immune responses in pigs following primary and challenge-exposure to Lawsonia intracellularis

    DEFF Research Database (Denmark)

    Hvass, Henriette Cordes; Riber, Ulla; Jensen, Tim Kåre

    2012-01-01

    not boosted by the re-inoculation, since identical intestinal IgA responses developed in response to the inoculation in both the susceptible CC pigs and the protected RE pigs. A memory recall cell-mediated immune response developed in RE pigs which was significantly stronger compared to the primary response...... responses are likely mediators of protective immunity against L. intracellularis, with CD8+ effector cells and CD4+CD8+ double positive memory T cells as main contributors to the antigen-specific IFN-γ production....

  6. Sporothrix schenckii Immunization, but Not Infection, Induces Protective Th17 Responses Mediated by Circulating Memory CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Alberto García-Lozano

    2018-06-01

    Full Text Available Sporotrichosis is a chronic subcutaneous mycosis caused by the Sporothrix schenckii species complex and it is considered an emerging opportunistic infection in countries with tropical and subtropical climates. The host’s immune response has a main role in the development of this disease. However, it is unknown the features of the memory cellular immune response that could protect against the infection. Our results show that i.d. immunization in the ears of mice with inactivated S. schenckii conidia (iC combined with the cholera toxin (CT induces a cellular immune response mediated by circulating memory CD4+ T cells, which mainly produce interleukin 17 (IL-17. These cells mediate a strong delayed-type hypersensitivity (DTH reaction. Systemic and local protection against S. schenckii was mediated by circulating CD4+ T cells. In contrast, the infection induces a potent immune response in the skin mediated by CD4+ T cells, which have an effector phenotype that preferentially produce interferon gamma (IFN-γ and mediate a transitory DTH reaction. Our findings prove the potential value of the CT as a potent skin adjuvant when combined with fungal antigens, and they also have important implications for our better understanding of the differences between the memory immune response induced by the skin immunization and those induced by the infection; this knowledge enhances our understanding of how a protective immune response against a S. schenckii infection is developed.

  7. Effects of tributyltin and benzo[a]pyrene on the immune-associated activities of hemocytes and recovery responses in the gastropod abalone, Haliotis diversicolor.

    Science.gov (United States)

    Gopalakrishnan, Singaram; Huang, Wei-Bin; Wang, Qiang-Wei; Wu, Man-Li; Liu, Jie; Wang, Ke-Jian

    2011-08-01

    Our previous study reports that short-term exposure to sublethal concentrations of benzo[a]pyrene (BaP) induces immunomodulation in the gastropod abalone, Haliotis diversicolor. In the present study, it was further observed that long-term chronic exposure to sublethal concentrations of BaP modulated the immunocompetence of abalones in terms of the change in activity of the antioxidant and immune associated parameters tested. In addition, the effect of tributyltin (TBT), another important genotoxicant in the aquatic environment, was investigated. Exposure of abalones to sublethal concentrations of TBT and BaP for 21 days resulted in significant decrease of total hemocyte count, phagocytosis, membrane stability and lysozyme activity. Conversely induction of extra and intra cellular superoxide generation, nitric oxide, nitric oxide synthase and myeloperoxidase activity was present when the abalones were exposed to TBT and BaP. Most of the immune associated parameters tested showed clear time dependent response to both toxicants. Within 14 days after the 21 day exposure to BaP, recovery was observed as evidenced by most of the parameters returning to their normal level. However, no recovery was observed within 14 days after the 21 day exposure to TBT as evidenced by continued elevation of intra cellular superoxide and nitrite production and decrease in THC, membrane stability and lysozyme activity. This suggested a prolonged TBT-induced impact on the immune reaction and possibly more damage than that caused by BaP. Overall the results suggest that chronic exposure to sublethal concentrations of TBT or BaP causes modulations in the immunocompetence of abalones with most of the immune associated parameters tested being stimulated, and this might be harmful to the host. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Concholepas hemocyanin biosynthesis takes place in the hepatopancreas, with hemocytes being involved in its metabolism.

    Science.gov (United States)

    Manubens, Augusto; Salazar, Fabián; Haussmann, Denise; Figueroa, Jaime; Del Campo, Miguel; Pinto, Jonathan Martínez; Huaquín, Laura; Venegas, Alejandro; Becker, María Inés

    2010-12-01

    Hemocyanins are copper-containing glycoproteins in some molluscs and arthropods, and their best-known function is O(2) transport. We studied the site of their biosynthesis in the gastropod Concholepas concholepas by using immunological and molecular genetic approaches. We performed immunohistochemical staining of various organs, including the mantle, branchia, and hepatopancreas, and detected C. concholepas hemocyanin (CCH) molecules in circulating and tissue-associated hemocytes by electron microscopy. To characterize the hemocytes, we purified them from hemolymph. We identified three types of granular cells. The most abundant type was a phagocyte-like cell with small cytoplasmic granules. The second type contained large electron-dense granules. The third type had vacuoles containing hemocyanin molecules suggesting that synthesis or catabolism occurred inside these cells. Our failure to detect cch-mRNA in hemocytes by reverse transcription with the polymerase chain reaction (RT-PCR) led us to propose that hemocytes instead played a role in CCH metabolism. This hypothesis was supported by colloidal gold staining showing hemocyanin molecules in electron-dense granules inside hemocytes. RT-PCR analysis, complemented by in situ hybridization analyses with single-stranded antisense RNAs as specific probes, demonstrated the presence of cch-mRNA in the hepatopancreas; this was consistent with the specific hybridization signal and confirmed the hepatopancreas as the site of CCH synthesis. Finally, we investigated the possibility that CCH catabolism in hemocytes was involved in the host immune response and in the generation of secondary metabolites such as antimicrobial peptides and phenoloxidase.

  9. Manipulations of the immune response in the chicken

    International Nuclear Information System (INIS)

    Bixler, G.S. Jr.

    1978-01-01

    The chicken with its dissociation of immune responses in cell-mediated immunity, dependent on the thymus, and humoral immunity, dependent on the bursa of Fabricius, provides a unique model for studying the two components of the immune system. While there are methods of obtaining selective, profound deficiency of humoral immunity, in this species, methods for obtaining a consistent, profound selective deficiency of cell-mediated immunity have been lacking. Oxisuran, 2[(methylsulfinyl)acetal] pyridine, has been reported to have the unique ability to differentially suppress cell-mediated immunity in several species of mammals without a concomitant reduction in antibody forming capacity. The effect of this compound on two parameters of cell-mediated immune responses in chickens was investigated. In further attempts to create a deficiency of both cell-mediated and humoral immunity, the effects of a combination of cyclophosphamide treatment and x-irradiation early in life on immune responses were studied

  10. TAT improves in vitro transportation of fortilin through midgut and into hemocytes of white shrimp Litopenaeus vannamei

    Science.gov (United States)

    Zhou, Yi; Zhang, Wenbing; Mai, Kangsen; Xu, Wei; Zhang, Yanjiao; Ai, Qinghui; Wang, Xiaojie

    2012-06-01

    Fortilin is a multifunctional protein implicated in many important cellular processes. Since injection of Pm-fortilin reduces shrimp mortality caused by white spot syndrome virus (WSSV), there is potential application of fortilin in shrimp culture. In the present study, in order to improve trans-membrane transportation efficiency, the protein transduction domain of the transactivator of transcription (TAT) peptide was fused to fortilin. The Pichia pastoris yeast expression system, which is widely accepted in animal feeds, was used for production of recombinant fusion protein. Green fluorescence protein (GFP) was selected as a reporter because of its intrinsic visible fluorescence. The fortilin, TAT and GFP fusion protein were constructed. Their trans-membrane transportation efficiency and effects on immune response of shrimp were analyzed in vitro. Results showed that TAT peptide improved in vitro uptake of fortilin into the hemocytes and midgut of Litopenaeus vannamei. The phenoloxidase (PO) activity of hemocytes incubated with GFP-Fortilin or GFP-Fortilin-TAT was significantly increased compared with that in the control without expressed fortilin. The PO activity of hemocytes incubated with 200 μg mL-1 GFP-Fortilin-TAT was significantly higher than that in the group with the same concentration of GFP-Fortilin. Hemocytes incubated with GFP-Fortilin-TAT at all concentrations showed significantly higher nitric oxide synthase (NOS) activity than those in the control or in the GFP-Fortilin treatment. The present in vitro study indicated that TAT fusion protein improved the immune effect of fortilin.

  11. Evidence of functional cell-mediated immune responses to nontypeable Haemophilus influenzae in otitis-prone children

    Science.gov (United States)

    Seppanen, Elke; Tan, Dino; Corscadden, Karli J.; Currie, Andrew J.; Richmond, Peter C.; Thornton, Ruth B.

    2018-01-01

    Otitis media (OM) remains a common paediatric disease, despite advances in vaccinology. Susceptibility to recurrent acute OM (rAOM) has been postulated to involve defective cell-mediated immune responses to common otopathogenic bacteria. We compared the composition of peripheral blood mononuclear cells (PBMC) from 20 children with a history of rAOM (otitis-prone) and 20 healthy non-otitis-prone controls, and assessed innate and cell-mediated immune responses to the major otopathogen nontypeable Haemophilus influenzae (NTHi). NTHi was a potent stimulator of inflammatory cytokine secretion from PBMC within 4 hours, with no difference in cytokine levels produced between PBMC from cases or controls. In the absence of antigen stimulation, otitis-prone children had more circulating Natural Killer (NK) cells (potitis-prone and non-otitis-prone children (potitis-prone children are functional and respond to NTHi. CD8+ T cells and NK cells from both cases and controls produced IFNγ in response to polyclonal stimulus (Staphylococcal enterotoxin B; SEB), with more IFNγ+ CD8+ T cells present in cases than controls (pOtitis-prone children had more circulating IFNγ-producing NK cells (potitis-prone children mounted innate and T cell-mediated responses to NTHi challenge that were comparable to healthy children. These data provide evidence that otitis-prone children do not have impaired functional cell mediated immunity. PMID:29621281

  12. Osmoregulated Chloride Currents in Hemocytes from Mytilus galloprovincialis.

    Directory of Open Access Journals (Sweden)

    Monica Bregante

    Full Text Available We investigated the biophysical properties of the transport mediated by ion channels in hemocytes from the hemolymph of the bivalve Mytilus galloprovincialis. Besides other transporters, mytilus hemocytes possess a specialized channel sensitive to the osmotic pressure with functional properties similar to those of other transport proteins present in vertebrates. As chloride fluxes may play an important role in the regulation of cell volume in case of modifications of the ionic composition of the external medium, we focused our attention on an inwardly-rectifying voltage-dependent, chloride-selective channel activated by negative membrane potentials and potentiated by the low osmolality of the external solution. The chloride channel was slightly inhibited by micromolar concentrations of zinc chloride in the bath solution, while the antifouling agent zinc pyrithione did not affect the channel conductance at all. This is the first direct electrophysiological characterization of a functional ion channel in ancestral immunocytes of mytilus, which may bring a contribution to the understanding of the response of bivalves to salt and contaminant stresses.

  13. Tsetse immune system maturation requires the presence of obligate symbionts in larvae.

    Directory of Open Access Journals (Sweden)

    Brian L Weiss

    2011-05-01

    Full Text Available Beneficial microbial symbionts serve important functions within their hosts, including dietary supplementation and maintenance of immune system homeostasis. Little is known about the mechanisms that enable these bacteria to induce specific host phenotypes during development and into adulthood. Here we used the tsetse fly, Glossina morsitans, and its obligate mutualist, Wigglesworthia glossinidia, to investigate the co-evolutionary adaptations that influence the development of host physiological processes. Wigglesworthia is maternally transmitted to tsetse's intrauterine larvae through milk gland secretions. We can produce flies that lack Wigglesworthia (Gmm(Wgm- yet retain their other symbiotic microbes. Such offspring give rise to adults that exhibit a largely normal phenotype, with the exception being that they are reproductively sterile. Our results indicate that when reared under normal environmental conditions Gmm(Wgm- adults are also immuno-compromised and highly susceptible to hemocoelic E. coli infections while age-matched wild-type individuals are refractory. Adults that lack Wigglesworthia during larval development exhibit exceptionally compromised cellular and humoral immune responses following microbial challenge, including reduced expression of genes that encode antimicrobial peptides (cecropin and attacin, hemocyte-mediated processes (thioester-containing proteins 2 and 4 and prophenoloxidase, and signal-mediating molecules (inducible nitric oxide synthase. Furthermore, Gmm(Wgm- adults harbor a reduced population of sessile and circulating hemocytes, a phenomenon that likely results from a significant decrease in larval expression of serpent and lozenge, both of which are associated with the process of early hemocyte differentiation. Our results demonstrate that Wigglesworthia must be present during the development of immature progeny in order for the immune system to function properly in adult tsetse. This phenomenon provides

  14. Immune-Mediated Damage Completes the Parabola: Cryptococcus neoformans Pathogenesis Can Reflect the Outcome of a Weak or Strong Immune Response

    Directory of Open Access Journals (Sweden)

    Liise-anne Pirofski

    2017-12-01

    Full Text Available Cryptococcosis occurs most frequently in immunocompromised individuals. This has led to the prevailing view that this disease is the result of weak immune responses that cannot control the fungus. However, increasingly, clinical and experimental studies have revealed that the host immune response can contribute to cryptococcal pathogenesis, including the recent study of L. M. Neal et al. (mBio 8:e01415-17, 2017, https://doi.org/10.1128/mBio.01415-17 that reports that CD4+ T cells mediate tissue damage in experimental murine cryptococcosis. This finding has fundamental implications for our understanding of the pathogenesis of cryptococcal disease; it helps explain why immunotherapy has been largely unsuccessful in treatment and provides insight into the paradoxical observation that HIV-associated cryptococcosis may have a better prognosis than cryptococcosis in those with no known immune impairment. The demonstration that host-mediated damage can drive cryptococcal disease provides proof of concept that the parabola put forth in the damage-response framework has the flexibility to depict complex and changing outcomes of host-microbe interaction.

  15. A novel immune-related gene HDD1 of silkworm Bombyx mori is involved in bacterial response.

    Science.gov (United States)

    Zhang, Kui; Pan, Guangzhao; Zhao, Yuzu; Hao, Xiangwei; Li, Chongyang; Shen, Li; Zhang, Rui; Su, Jingjing; Cui, Hongjuan

    2017-08-01

    Insects have evolved an effective immune system to respond to various challenges. In this study, a novel immune-related gene, called BmHDD1, was first charactered in silkworm, Bombyx mori. BmHDD1 contained an ORF of 837bp and encoding a deduced protein of 278 amino acids. BmHDD1 was specifically expressed in hemocytes, and highly expressed at the molting and metamorphosis stages under normal physiological conditions. Our results suggested that BmHDD1 was mainly generated by hemocytes and secreted into hemolymph. Our results also showed that the expression level of BmHDD1 was significantly increased after 20E injection, which indicated that BmHDD1 might be regulated by ecdysone. More importantly, BmHDD1 was dramatically induced after injected with different types of PAMPs or bacteria, either in hemocytes or fat body. Those results suggested that BmHDD1 plays a role in developing and immunity system in silkworm, Bombyx mori. Copyright © 2017. Published by Elsevier Ltd.

  16. MicroRNA-mediated networks underlie immune response regulation in papillary thyroid carcinoma

    Science.gov (United States)

    Huang, Chen-Tsung; Oyang, Yen-Jen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2014-09-01

    Papillary thyroid carcinoma (PTC) is a common endocrine malignancy with low death rate but increased incidence and recurrence in recent years. MicroRNAs (miRNAs) are small non-coding RNAs with diverse regulatory capacities in eukaryotes and have been frequently implied in human cancer. Despite current progress, however, a panoramic overview concerning miRNA regulatory networks in PTC is still lacking. Here, we analyzed the expression datasets of PTC from The Cancer Genome Atlas (TCGA) Data Portal and demonstrate for the first time that immune responses are significantly enriched and under specific regulation in the direct miRNA-target network among distinctive PTC variants to different extents. Additionally, considering the unconventional properties of miRNAs, we explore the protein-coding competing endogenous RNA (ceRNA) and the modulatory networks in PTC and unexpectedly disclose concerted regulation of immune responses from these networks. Interestingly, miRNAs from these conventional and unconventional networks share general similarities and differences but tend to be disparate as regulatory activities increase, coordinately tuning the immune responses that in part account for PTC tumor biology. Together, our systematic results uncover the intensive regulation of immune responses underlain by miRNA-mediated networks in PTC, opening up new avenues in the management of thyroid cancer.

  17. Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus

    DEFF Research Database (Denmark)

    Utke, Katrin; Kock, Holger; Schuetze, Heike

    2008-01-01

    injection site rather than to injection sites of heterologous vaccines, suggesting the antigen specificity of homing. By demonstrating CMC responses to distinct viral proteins and homing in rainbow trout, these results substantially contribute to the understanding of the teleost immune system.......To identify viral proteins that induce cell-mediated cytotoxicity (CMC) against viral hemorrhagic septicemia virus (VHSV)-infected cells, rainbow trout were immunized with DNA vectors encoding the glycoprotein G or the nucleocapsid protein N of VHSV. The G protein was a more potent trigger...... of cytotoxic cells than the N protein. Peripheral blood leukocytes (PBL) isolated from trout immunized against the G protein killed both VHSV-infected MHC class I matched (RTG-2) and VHSV-infected xenogeneic (EPC) target cells, suggesting the involvement of both cytotoxic T lymphocytes (CTL) and NK cells...

  18. Antimicrobial histones and DNA traps in invertebrate immunity: evidences in Crassostrea gigas.

    Science.gov (United States)

    Poirier, Aurore C; Schmitt, Paulina; Rosa, Rafael D; Vanhove, Audrey S; Kieffer-Jaquinod, Sylvie; Rubio, Tristan P; Charrière, Guillaume M; Destoumieux-Garzón, Delphine

    2014-09-05

    Although antimicrobial histones have been isolated from multiple metazoan species, their role in host defense has long remained unanswered. We found here that the hemocytes of the oyster Crassostrea gigas release antimicrobial H1-like and H5-like histones in response to tissue damage and infection. These antimicrobial histones were shown to be associated with extracellular DNA networks released by hemocytes, the circulating immune cells of invertebrates, in response to immune challenge. The hemocyte-released DNA was found to surround and entangle vibrios. This defense mechanism is reminiscent of the neutrophil extracellular traps (ETs) recently described in vertebrates. Importantly, oyster ETs were evidenced in vivo in hemocyte-infiltrated interstitial tissues surrounding wounds, whereas they were absent from tissues of unchallenged oysters. Consistently, antimicrobial histones were found to accumulate in oyster tissues following injury or infection with vibrios. Finally, oyster ET formation was highly dependent on the production of reactive oxygen species by hemocytes. This shows that ET formation relies on common cellular and molecular mechanisms from vertebrates to invertebrates. Altogether, our data reveal that ET formation is a defense mechanism triggered by infection and tissue damage, which is shared by relatively distant species suggesting either evolutionary conservation or convergent evolution within Bilateria. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Nematocytes: Discovery and characterization of a novel anculeate hemocyte in Drosophila falleni and Drosophila phalerata.

    Directory of Open Access Journals (Sweden)

    Julianna Bozler

    Full Text Available Immune challenges, such as parasitism, can be so pervasive and deleterious that they constitute an existential threat to a species' survival. In response to these ecological pressures, organisms have developed a wide array of novel behavioral, cellular, and molecular adaptations. Research into these immune defenses in model systems has resulted in a revolutionary understanding of evolution and functional biology. As the field has expanded beyond the limited number of model organisms our appreciation of evolutionary innovation and unique biology has widened as well. With this in mind, we have surveyed the hemolymph of several non-model species of Drosophila. Here we identify and describe a novel hemocyte, type-II nematocytes, found in larval stages of numerous Drosophila species. Examined in detail in Drosophila falleni and Drosophila phalerata, we find that these remarkable cells are distinct from previously described hemocytes due to their anucleate state (lacking a nucleus and unusual morphology. Type-II nematocytes are long, narrow cells with spindle-like projections extending from a cell body with high densities of mitochondria and microtubules, and exhibit the ability to synthesize proteins. These properties are unexpected for enucleated cells, and together with our additional characterization, we demonstrate that these type-II nematocytes represent a biological novelty. Surprisingly, despite the absence of a nucleus, we observe through live cell imaging that these cells remain motile with a highly dynamic cellular shape. Furthermore, these cells demonstrate the ability to form multicellular structures, which we suggest may be a component of the innate immune response to macro-parasites. In addition, live cell imaging points to a large nucleated hemocyte, type-I nematocyte, as the progenitor cell, leading to enucleation through a budding or asymmetrical division process rather than nuclear ejection: This study is the first to report such a

  20. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum

    Directory of Open Access Journals (Sweden)

    Fang Qi

    2010-09-01

    Full Text Available Abstract Background The relationships between parasitoids and their insect hosts have attracted attention at two levels. First, the basic biology of host-parasitoid interactions is of fundamental interest. Second, parasitoids are widely used as biological control agents in sustainable agricultural programs. Females of the gregarious endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae inject venom along with eggs into their hosts. P. puparum does not inject polydnaviruses during oviposition. For this reason, P. puparum and its pupal host, the small white butterfly Pieris rapae (Lepidoptera: Pieridae, comprise an excellent model system for studying the influence of an endoparasitoid venom on the biology of the pupal host. P. puparum venom suppresses the immunity of its host, although the suppressive mechanisms are not fully understood. In this study, we tested our hypothesis that P. puparum venom influences host gene expression in the two main immunity-conferring tissues, hemocytes and fat body. Results At 1 h post-venom injection, we recorded significant decreases in transcript levels of 217 EST clones (revealing 113 genes identified in silico, including 62 unknown contigs derived from forward subtractive libraries of host hemocytes and in transcript levels of 288 EST clones (221 genes identified in silico, including 123 unknown contigs from libraries of host fat body. These genes are related to insect immune response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, stress response and transcriptional and translational regulation. We verified the reliability of the suppression subtractive hybridization (SSH data with semi-quantitative RT-PCR analysis of a set of randomly selected genes. This analysis showed that most of the selected genes were down-regulated after venom injection. Conclusions Our findings support our hypothesis that P. puparum venom influences gene expression in host hemocytes and fat body. Specifically

  1. Ocean Acidification Affects Hemocyte Physiology in the Tanner Crab (Chionoecetes bairdi)

    Science.gov (United States)

    Meseck, Shannon L.; Alix, Jennifer H.; Swiney, Katherine M.; Long, W. Christopher; Wikfors, Gary H.; Foy, Robert J.

    2016-01-01

    We used flow cytometry to determine if there would be a difference in hematology, selected immune functions, and hemocyte pH (pHi), under two different, future ocean acidification scenarios (pH = 7.50, 7.80) compared to current conditions (pH = 8.09) for Chionoecetes bairdi, Tanner crab. Hemocytes were analyzed after adult Tanner crabs were held for two years under continuous exposure to acidified ocean water. Total counts of hemocytes did not vary among control and experimental treatments; however, there were significantly greater number of dead, circulating hemocytes in crabs held at the lowest pH treatment. Phagocytosis of fluorescent microbeads by hemocytes was greatest at the lowest pH treatment. These results suggest that hemocytes were dying, likely by apoptosis, at a rate faster than upregulated phagocytosis was able to remove moribund cells from circulation at the lowest pH. Crab hemolymph pH (pHe) averaged 8.09 and did not vary among pH treatments. There was no significant difference in internal pH (pHi) within hyalinocytes among pH treatments and the mean pHi (7.26) was lower than the mean pHe. In contrast, there were significant differences among treatments in pHi of the semi-granular+granular cells. Control crabs had the highest mean semi-granular+granular pHi compared to the lowest pH treatment. As physiological hemocyte functions changed from ambient conditions, interactions with the number of eggs in the second clutch, percentage of viable eggs, and calcium concentration in the adult crab shell was observed. This suggested that the energetic costs of responding to ocean acidification and maintaining defense mechanisms in Tanner crab may divert energy from other physiological processes, such as reproduction. PMID:26859148

  2. Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Imamura, Katsutoshi; Takano, Shinya; Usui, Kimihito; Suzuki, Kazushi; Hamamoto, Hiroshi; Watanabe, Takeshi; Sekimizu, Kazuhisa

    2012-01-01

    Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH2-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity. PMID:22859304

  3. [Functional morphology of blowfly Calliphora vicina hemocytes].

    Science.gov (United States)

    Kind, T V

    2012-01-01

    In the hemolymph of Calliphora seven types of hemocytes were revealed. These are prohemocytes, which are the stem cells, stable and unstable hyaline cells, thrombocytoids, spindle cells, juvenile plasmatocytes and plasmatocytes I-IV, which represent sequential stages of one cell line differentiation were registered. The margin between them is completion of the crop emptying and beginning of wandering stage. In the feeding and crop emptying larvae take place rising of hyaline cells, thrombocytoids and hyaline cells amount with parallel growth of their defense function. The second wave of hemogenesis occur in the end of crop emptying period. It is accompanied by burst of plasmatocyte I production with their subsequent differentiation to plasmatocytes II-IV. Production of stable hyaline cells and respectively prothrombocytoids may be regulated not only by hormonal background but also by inorganic or organic particles invaded into the hemocel. Three types of hemocytes are involved in loosing of hemolymph from alien particles, notably thrombocytoids, juvenile plasmatocytes and plasmatocytes I and II. Thrombocytoids are responsible for parasitic eggs encapsulation. In addition they can phagocytize tiny organic and inorganic particles. Juvenile plasmatocytes respond to alien invasion almost as quickly as thrombocytoids at the onset of invasion. Plasmatocytes I and II start phagocytosis more slowly, hours post invasion, frequently accumulating the particles previously catched by thrombocytoids. Plasmatocytes I can absorb foreign particles and group in morules and can also surround filled thrombocytoids forming distinctive capsules. Both morules and capsules are temporary structures and disintegrate some hours lately. It is supposed the existence of three levels of immune defence: the fast response reaction of thrombocytoids and juvenile plasmatocytes and slow cellular reactions of plasmatocytes I. They are prerequisites for more extensive humoral response.

  4. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    Science.gov (United States)

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  5. Eicosanoid-mediated immunity in insects

    Science.gov (United States)

    Eicosanoid is a collective term for oxygenated metabolites of C20 polyunsaturated fatty acids. As seen in mammals, eicosanoids play crucial roles in mediating various physiological processes, including immune responses, in insects. Upon microbial pathogen infection, non-self recognition signals are ...

  6. New insights from the oyster Crassostrea rhizophorae on bivalve circulating hemocytes.

    Directory of Open Access Journals (Sweden)

    Mauro de Freitas Rebelo

    Full Text Available Hemocytes are the first line of defense of the immune system in invertebrates, but despite their important role and enormous potential for the study of gene-environment relationships, research has been impeded by a lack of consensus on their classification. Here we used flow cytometry combined with histological procedures, histochemical reactions and transmission electron microscopy to characterize the hemocytes from the oyster Crassostrea rhizophorae. Transmission electron microscopy revealed remarkable morphological characteristics, such as the presence of membranous cisternae in all mature cells, regardless of size and granulation. Some granular cells contained many cytoplasmic granules that communicated with each other through a network of channels, a feature never previously described for hemocytes. The positive reactions for esterase and acid phosphatase also indicated the presence of mature cells of all sizes and granule contents. Flow cytometry revealed a clear separation in complexity between agranular and granular populations, which could not be differentiated by size, with cells ranging from 2.5 to 25 µm. Based on this evidence we suggest that, at least in C. rhizophorae, the different subpopulations of hemocytes may in reality be different stages of one type of cell, which accumulates granules and loses complexity (with no reduction in size as it degranulates in the event of an environmental challenge.

  7. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    Science.gov (United States)

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  8. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    Science.gov (United States)

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  9. Arthropod Innate Immune Systems and Vector-Borne Diseases.

    Science.gov (United States)

    Baxter, Richard H G; Contet, Alicia; Krueger, Kathryn

    2017-02-21

    Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins such as antimicrobial peptides, thioester-containing proteins, and transglutaminases effect responses such as lysis, phagocytosis, melanization, and agglutination. Effector responses are initiated by damage signals such as reactive oxygen species signaling from epithelial cells and recognized by cell surface receptors on hemocytes. Antiviral immunity is primarily mediated by siRNA pathways but coupled with interferon-like signaling, antimicrobial peptides, and thioester-containing proteins. Molecular mechanisms of immunity are closely linked to related traits of longevity and fertility, and arthropods have the capacity for innate immunological memory. Advances in understanding vector immunity can be leveraged to develop novel control strategies for reducing the rate of transmission of both ancient and emerging threats to global health.

  10. Helminthic therapy: using worms to treat immune-mediated disease.

    Science.gov (United States)

    Elliott, David E; Weinstock, Joel V

    2009-01-01

    There is an epidemic of immune-mediated disease in highly-developed industrialized countries. Such diseases, like inflammatory bowel disease, multiple sclerosis and asthma increase in prevalence as populations adopt modern hygienic practices. These practices prevent exposure to parasitic worms (helminths). Epidemiologic studies suggest that people who carry helminths have less immune-mediated disease. Mice colonized with helminths are protected from disease in models of colitis, encephalitis, Type 1 diabetes and asthma. Clinical trials show that exposure to helminths reduce disease activity in patients with ulcerative colitis or Crohn's disease. This chapter reviews some of the work showing that colonization with helminths alters immune responses, against dysregulated inflammation. These helminth-host immune interactions have potentially important implications for the treatment of immune-mediated diseases.

  11. Morphologic, cytometric and functional characterization of the common octopus (Octopus vulgaris) hemocytes.

    Science.gov (United States)

    Castellanos-Martínez, S; Prado-Alvarez, M; Lobo-da-Cunha, A; Azevedo, C; Gestal, C

    2014-05-01

    The hemocytes of Octopus vulgaris were morphologically and functionally characterized. Light and electron microscopy (TEM and SEM), and flow cytometry analyses revealed the existence of two hemocyte populations. Large granulocytes showed U-shaped nucleus, a mean of 11.6 μm±1.2 in diameter with basophilic granules, polysaccharide and lysosomic deposits in the cytoplasm. Small granulocytes measured a mean of 8.1 μm±0.7 in diameter, and have a round nucleus occupying almost the entire cell and few or not granules in the cytoplasm. Flow cytometry analysis showed that large granulocytes are the principal cells that develop phagocytosis of latex beads (rising up to 56%) and ROS after zymosan stimulation. Zymosan induced the highest production of both ROS and NO. This study is the first tread towards understanding the O. vulgaris immune system by applying new tools to provide a most comprehensive morpho-functional study of their hemocytes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Cell-mediated immune response: a clinical review of the therapeutic potential of human papillomavirus vaccination.

    Science.gov (United States)

    Meyer, Sonja Izquierdo; Fuglsang, Katrine; Blaakaer, Jan

    2014-12-01

    This clinical review aims to assess the efficacy of human papillomavirus 16/18 (HPV16/18) vaccination on the cell-mediated immune response in women with existing cervical intraepithelial neoplasia or cervical cancer induced by HPV16 or HPV18. A focused and thorough literature search conducted in five different databases found 996 publications. Six relevant articles were chosen for further review. In total, 154 patients (>18 years of age) were enrolled in prospective study trials with 3-15 months of follow up. The vaccine applications were administered two to four times. The vaccines contained different combinations of HPV16 and HPV18 and early proteins, E6 and E7. The primary outcome was the cell-mediated immune response. Correlation to clinical outcome (histopathology) and human leukocyte antigen genes were secondary endpoints. All vaccines triggered a detectable cell-mediated immune response, some of which were statistically significant. Correlations between immunological response and clinical outcome (histopathology) were not significant, so neoplasms may not be susceptible to vaccine-generated cytotoxic T cells (CD8(+)). Prophylactic HPV vaccines have been introduced to reduce the incidence of cervical cancer in young women. Women already infected with HPV could benefit from a therapeutic HPV vaccination. Hence, it is important to continue the development of therapeutic HPV vaccines to lower the rate of HPV-associated malignancies and crucial to evaluate vaccine efficacy clinically. This clinical review represents an attempt to elucidate the theories supporting the development of an HPV vaccine with a therapeutic effect on human papillomavirus-induced malignancies of the cervix. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  13. Arabidopsis ZED1-related kinases mediate the temperature-sensitive intersection of immune response and growth homeostasis.

    Science.gov (United States)

    Wang, Zhicai; Cui, Dayong; Liu, Jing; Zhao, Jingbo; Liu, Cheng; Xin, Wei; Li, Yuan; Liu, Na; Ren, Dongtao; Tang, Dingzhong; Hu, Yuxin

    2017-07-01

    Activation of the immune response in plants antagonizes growth and development in the absence of pathogens, and such an autoimmune phenotype is often suppressed by the elevation of ambient temperature. However, molecular regulation of the ambient temperature-sensitive intersection of immune response and growth is largely elusive. A genetic screen identified an Arabidopsis mutant, zed1-D, by its high temperature-dependent growth retardation. A combination of molecular, cytological and genetic approaches was used to investigate the molecular basis behind the temperature-sensitive growth and immune response in zed1-D. A dominant mutation in HOPZ-ETI-DEFICIENT 1 (ZED1) is responsible for a high temperature-dependent autoimmunity and growth retardation in zed1-D. The autoimmune phenotype in zed1-D is dependent on the HOPZ-ACTIVATED RESISTANCE 1 (ZAR1). ZED1 and some ZED1-related kinases (ZRKs) are induced by elevated temperature and function cooperatively to suppress the immune response by modulating the transcription of SUPPRESSOR OF NPR1-1 CONSTITUTIVE 1 (SNC1) in the absence of pathogens. Our data reveal a previously unidentified role of ZRKs in the ambient temperature-sensitive immune response in the absence of pathogens, and thus reveals a possible molecular mechanism underlying the temperature-mediated intersection of immune response and growth in plants. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Serratia marcescens Suppresses Host Cellular Immunity via the Production of an Adhesion-inhibitory Factor against Immunosurveillance Cells*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-01-01

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis. PMID:24398686

  15. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells.

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-02-28

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.

  16. Ocean Acidification Affects the Cytoskeleton, Lysozymes, and Nitric Oxide of Hemocytes: A Possible Explanation for the Hampered Phagocytosis in Blood Clams, Tegillarca granosa.

    Science.gov (United States)

    Su, Wenhao; Rong, Jiahuan; Zha, Shanjie; Yan, Maocang; Fang, Jun; Liu, Guangxu

    2018-01-01

    An enormous amount of anthropogenic carbon dioxide (CO 2 ) has been dissolved into the ocean, leading to a lower pH and changes in the chemical properties of seawater, which has been termed ocean acidification (OA). The impacts of p CO 2 -driven acidification on immunity have been revealed recently in various marine organisms. However, the mechanism causing the reduction in phagocytosis still remains unclear. Therefore, the impacts of p CO 2 -driven OA at present and near-future levels (pH values of 8.1, 7.8, and 7.4) on the rate of phagocytosis, the abundance of cytoskeleton components, the levels of nitric oxide (NO), and the concentration and activity of lysozymes (LZM) of hemocytes were investigated in a commercial bivalve species, the blood clam ( Tegillarca granosa ). In addition, the effects of OA on the expression of genes regulating actin skeleton and nitric oxide synthesis 2 ( NOS2 ) were also analyzed. The results obtained showed that the phagocytic rate, cytoskeleton component abundance, concentration and activity of LZM of hemocytes were all significantly reduced after a 2-week exposure to the future OA scenario of a pH of 7.4. On the contrary, a remarkable increase in the concentration of NO compared to that of the control was detected in clams exposed to OA. Furthermore, the expression of genes regulating the actin cytoskeleton and NOS were significantly up-regulated after OA exposure. Though the mechanism causing phagocytosis seemed to be complicated based on the results obtained in the present study and those reported previously, our results suggested that OA may reduce the phagocytosis of hemocytes by (1) decreasing the abundance of cytoskeleton components and therefore hampering the cytoskeleton-mediated process of engulfment, (2) reducing the concentration and activity of LZM and therefore constraining the degradation of the engulfed pathogen through an oxygen-independent pathway, and (3) inducing the production of NO, which may negatively

  17. The early stages of the immune response of the European abalone Haliotis tuberculata to a Vibrio harveyi infection.

    Science.gov (United States)

    Cardinaud, Marion; Dheilly, Nolwenn M; Huchette, Sylvain; Moraga, Dario; Paillard, Christine

    2015-08-01

    Vibrio harveyi is a marine bacterial pathogen responsible for episodic abalone mortalities in France, Japan and Australia. In the European abalone, V. harveyi invades the circulatory system in a few hours after exposure and is lethal after 2 days of infection. In this study, we investigated the responses of European abalone immune cells over the first 24 h of infection. Results revealed an initial induction of immune gene expression including Rel/NF-kB, Mpeg and Clathrin. It is rapidly followed by a significant immuno-suppression characterized by reduced cellular hemocyte parameters, immune response gene expressions and enzymatic activities. Interestingly, Ferritin was overexpressed after 24 h of infection suggesting that abalone attempt to counter V. harveyi infection using soluble effectors. Immune function alteration was positively correlated with V. harveyi concentration. This study provides the evidence that V. harveyi has a hemolytic activity and an immuno-suppressive effect in the European abalone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The function of the Mediator complex in plant immunity.

    Science.gov (United States)

    An, Chuanfu; Mou, Zhonglin

    2013-03-01

    Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.

  19. Comparative transcriptomic analysis of shrimp hemocytes in response to acute hepatopancreas necrosis disease (AHPND) causing Vibrio parahemolyticus infection.

    Science.gov (United States)

    Zheng, Zhihong; Wang, Fan; Aweya, Jude Juventus; Li, Ruiwei; Yao, Defu; Zhong, Mingqi; Li, Shengkang; Zhang, Yueling

    2018-03-01

    The recent emergence of acute hepatopancreas necrosis disease (AHPND) in shrimps has posed a major challenge in the shrimp aquaculture industry. The Pir toxin proteins carried by some strains of Vibrio parahaemolyticus are believed to play essential roles in the pathogenesis of AHPND. However, few studies have so far explored how the host immune system responds to these bacteria. In this study, AHPND V. parahaemolyticus (with Pir) and non-AHPND V. parahaemolyticus (without Pir) were injected into two groups of shrimps, and the hemocytes collected for comparative transcriptomic analyses. A total of 1064 differentially expressed genes (DEGs) were identified, of which 910 were up-regulated and 154 were down-regulated. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that many DEGs were involved in a number of biological processes such as cellular process, metabolic process and single-organism process in the AHPND V. parahaemolyticus injected group than the non-AHPND V. parahaemolyticus injected group. Among these, major metabolic processes such as carbohydrate metabolism, lipid metabolism and amino acid metabolism were further identified as the major responsive gene groups. We observed that genes involved in cell growth and anti-apoptosis including src, iap2, cas2, cytochrome P450, gst and cytochromecoxidase were strongly activated in the AHPND V. parahaemolyticus group than in the non-AHPND V. parahaemolyticus group. Collectively, our results unveiled that shrimp hemocytes respond to AHPND related strain of Vibrio parahaemolyticus infection at the transcriptional level, which is useful in furthering our understanding of AHPND. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Rossana C.N., E-mail: rossana.melo@ufjf.edu.br [Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Rua José Lourenço Kelmer, Juiz de Fora, MG 36036-900 (Brazil); Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215 (United States); Weller, Peter F. [Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215 (United States)

    2016-10-01

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles – EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. - Highlights: • Application of EM to understand the complex secretory pathway in human eosinophils. • EM techniques reveal an active vesicular system associated with secretory granules. • Tubular vesicles are involved in the transport of granule-derived immune mediators.

  1. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy

    International Nuclear Information System (INIS)

    Melo, Rossana C.N.; Weller, Peter F.

    2016-01-01

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles – EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. - Highlights: • Application of EM to understand the complex secretory pathway in human eosinophils. • EM techniques reveal an active vesicular system associated with secretory granules. • Tubular vesicles are involved in the transport of granule-derived immune mediators.

  2. Immune-mediated neuropathies our experience over 3 years

    Directory of Open Access Journals (Sweden)

    Sadanandavalli Retnaswami Chandra

    2018-01-01

    Full Text Available Introduction: Immune-mediated peripheral neuropathy is the term applied to a spectrum of peripheral nerve disorders where immune dysregulation plays a role. Therefore, they are treatable. We analyzed the cases seen in the past 3 years by us and evaluated the clinical, laboratory, and outcome parameters in these patients. Patients and Methods: Consecutive patients seen by the authors and diagnosed as immune-mediated neuropathy were analyzed for etiology, pathology, and outcome assessed. Results: A total of sixty patients, 31 acute and 29 chronic neuropathies, were identified. Their subtypes treatment and outcome assessed. Males were significantly more in both acute and chronic cases. Miller Fisher 4, AMAN 1, paraplegic type 1, motor dominant type 19, Sensory-motor 1, MADSAM 3, Bifacial 2. Nonsystemic vasculitis was seen in 16 out of 29 chronic neuropathy and HIV, POEMS, and diabetes mellitus one each. Discussion: There is a spectrum of immune-mediated neuropathy which varies in clinical course, response to treatment, etc., Small percentage of uncommon cases are seen. In this group, mortality was nil and morbidity was minimal. Conclusion: Immune-mediated neuropathies are treatable and hence should be diagnosed early for good quality outcome.

  3. Heavy metal mediated innate immune responses of the Indian green frog, Euphlyctis hexadactylus (Anura: Ranidae): Cellular profiles and associated Th1 skewed cytokine response

    International Nuclear Information System (INIS)

    Jayawardena, Uthpala A.; Ratnasooriya, Wanigasekara D.; Wickramasinghe, Deepthi D.; Udagama, Preethi V.

    2016-01-01

    Immune cell and cytokine profiles in relation to metal exposure though much studied in mammals has not been adequately investigated in amphibians, due mainly to lack of suitable reagents for cytokine profiling in non-model species. However, interspecies cross reactivity of cytokines permitted us to assay levels of IFNγ, TNFα, IL6 and IL10in a common anuran, the Indian green frog (Euphlyctis hexadactylus), exposed to heavy metals (Cd, Cr, Cu, Zn and Pb, at ~ 5 ppm each) under field and laboratory settings in Sri Lanka. Enumeration of immune cells in blood and melanomacrophages in the liver, assay of serum and hepatic cytokines, and Th1/Th2 cytokine polarisation were investigated. Immune cell counts indicated overall immunosuppression with decreasing total WBC and splenocyte counts while neutrophil/lymphocyte ratio increased with metal exposure, indicating metal mediated stress. Serum IL6 levels of metal exposed frogs reported the highest (~ 9360 pg/mL) of all cytokines tested. Significantly elevated IFNγ production (P < 0.05) was evident in heavy metal exposed frogs. Th1/Th2 cytokine ratio in both serum and liver tissue homogenates was Th1 skewed due to significantly higher production of pro-inflammatory cytokines, IFNγ in serum and TNFα in the liver (P < 0.01).Metal mediated aggregations of melanomacrophages in the liver were positively and significantly (P < 0.05) correlated with the hepatic expression of TNFα, IL6 and IL10 activity. Overall, Th1 skewed response may well be due to oxidative stress mediated nuclear factor κ-light chain enhancer of activated B cells (NFκB) which enhances the transcription of pro-inflammatory cytokines. Xenobiotic stress has recently imposed an unprecedented level of threat to wildlife, particularly to sensitive species such as amphibians. Therefore, understanding the interactions between physiological stress and related immune responses is fundamental to conserve these environmental sentinels in the face of emerging eco

  4. Heavy metal mediated innate immune responses of the Indian green frog, Euphlyctis hexadactylus (Anura: Ranidae): Cellular profiles and associated Th1 skewed cytokine response

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, Uthpala A.; Ratnasooriya, Wanigasekara D.; Wickramasinghe, Deepthi D.; Udagama, Preethi V., E-mail: dappvr@yahoo.com

    2016-10-01

    Immune cell and cytokine profiles in relation to metal exposure though much studied in mammals has not been adequately investigated in amphibians, due mainly to lack of suitable reagents for cytokine profiling in non-model species. However, interspecies cross reactivity of cytokines permitted us to assay levels of IFNγ, TNFα, IL6 and IL10in a common anuran, the Indian green frog (Euphlyctis hexadactylus), exposed to heavy metals (Cd, Cr, Cu, Zn and Pb, at ~ 5 ppm each) under field and laboratory settings in Sri Lanka. Enumeration of immune cells in blood and melanomacrophages in the liver, assay of serum and hepatic cytokines, and Th1/Th2 cytokine polarisation were investigated. Immune cell counts indicated overall immunosuppression with decreasing total WBC and splenocyte counts while neutrophil/lymphocyte ratio increased with metal exposure, indicating metal mediated stress. Serum IL6 levels of metal exposed frogs reported the highest (~ 9360 pg/mL) of all cytokines tested. Significantly elevated IFNγ production (P < 0.05) was evident in heavy metal exposed frogs. Th1/Th2 cytokine ratio in both serum and liver tissue homogenates was Th1 skewed due to significantly higher production of pro-inflammatory cytokines, IFNγ in serum and TNFα in the liver (P < 0.01).Metal mediated aggregations of melanomacrophages in the liver were positively and significantly (P < 0.05) correlated with the hepatic expression of TNFα, IL6 and IL10 activity. Overall, Th1 skewed response may well be due to oxidative stress mediated nuclear factor κ-light chain enhancer of activated B cells (NFκB) which enhances the transcription of pro-inflammatory cytokines. Xenobiotic stress has recently imposed an unprecedented level of threat to wildlife, particularly to sensitive species such as amphibians. Therefore, understanding the interactions between physiological stress and related immune responses is fundamental to conserve these environmental sentinels in the face of emerging eco

  5. Cellular Immune Response Against Firefly Luciferase After Sleeping Beauty–Mediated Gene Transfer In Vivo

    Science.gov (United States)

    Podetz-Pedersen, Kelly M.; Vezys, Vaiva; Somia, Nikunj V.; Russell, Stephen J.

    2014-01-01

    Abstract The Sleeping Beauty (SB) transposon system has been shown to mediate new gene sequence integration resulting in long-term expression. Here the effectiveness of hyperactive SB100X transposase was tested, and we found that hydrodynamic co-delivery of a firefly luciferase transposon (pT2/CaL) along with SB100X transposase (pCMV-SB100X) resulted in remarkably sustained, high levels of luciferase expression. However, after 4 weeks there was a rapid, animal-by-animal loss of luciferase expression that was not observed in immunodeficient mice. We hypothesized that this sustained, high-level luciferase expression achieved using the SB100X transposase elicits an immune response in pT2/CaL co-administered mice, which was supported by the rapid loss of luciferase expression upon challenge of previously treated animals and in naive animals adoptively transferred with splenocytes from previously treated animals. Specificity of the immune response to luciferase was demonstrated by increased cytokine expression in splenocytes after exposure to luciferase peptide in parallel with MHC I–luciferase peptide tetramer binding. This anti-luciferase immune response observed following continuous, high-level luciferase expression in vivo clearly impacts its use as an in vivo reporter. As both an immunogen and an extremely sensitive reporter, luciferase is also a useful model system for the study of immune responses following in vivo gene transfer and expression. PMID:25093708

  6. In vivo effects of metaldehyde on Pacific oyster, Crassostrea gigas: comparing hemocyte parameters in two oyster families.

    Science.gov (United States)

    Moreau, Pierrick; Burgeot, Thierry; Renault, Tristan

    2015-06-01

    Pollutants via run-off into the ocean represent a potential threat to marine organisms, especially bivalves such as oysters living in coastal environments. These organisms filter large volumes of seawater and may accumulate contaminants within their tissues. Pesticide contamination in water could have a direct or indirect toxic action on tissues or cells and could induce alteration of immune system. Bivalve immunity is mainly supported by hemocytes and participates directly by phagocytosis to eliminate pathogens. Some studies have shown that pesticides can reduce immune defences and/or modify genomes in vertebrates and invertebrates. Metaldehyde is used to kill slugs, snails and other terrestrial gastropods. Although metaldehyde has been detected in surface waters, its effects on marine bivalves including the Pacific oyster, Crassostrea gigas, have never been studied. Given the mode of action of this molecule and its targets (molluscs), it could be potentially more toxic to oysters than other pesticides (herbicides, fungicides, insecticides, etc.). Effects of metaldehyde on oyster hemocyte parameters were thus monitored through in vivo experiments based on a short-term exposure. In this work, metaldehyde at 0.1 μg/L, which corresponds to an average concentration detected in the environment, modulated hemocyte activities of Pacific oysters after an in vivo short-term contact. Individuals belonging to two families showed different behaviours for some hemocyte activities after contamination by metaldehyde. These results suggested that effects of pollutants on oysters may differ from an individual to another in relation to genetic diversity. Finally, it appears essential to take an interest in the effects of metaldehyde on a wide variety of aquatic invertebrates including those that have a significant economic impact.

  7. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-01-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  8. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  9. Mediated effect of ultrasound treated Diclofenac on mussel hemocytes: First evidence for the involvement of respiratory burst enzymes in the induction of DCF-mediated unspecific mode of action.

    Science.gov (United States)

    Toufexi, Eirini; Dailianis, Stefanos; Vlastos, Dimitris; Manariotis, Ioannis D

    2016-06-01

    The present study investigates the toxic behavior of diclofenac (DCF) before and after its ultrasound (US) treatment, as well as the involvement of intracellular target molecules, such as NADPH oxidase and NO synthase, in the DCF-induced adverse effects on hemocytes of mussel Mytilus galloprovincialis. In this context, appropriate volumes (350 and 500mL) of DCF solutions (at concentrations of 2, 2.5, 5 and 10mgL(-1)) were treated under different ultrasound operating conditions (frequency at 582 and 862kHz, electric power density at 133 and 167W) for assessing US method efficiency. In parallel, DCF and US DCF-mediated cytotoxic (in terms of cell viability measured with the use of neutral red uptake/NRU method), oxidative (in terms of superoxide anions/(.)O2(-), nitric oxides such as NO2(-) and lipid peroxidation products, such as malondialdehyde/MDA content) and genotoxic (DNA damage measured by the use of Comet assay method) effects were investigated in hemocytes exposed for 1h to 5, 10 and 100ngL(-1) and 1, 10 and 20μgL(-1) of DCF. The involvement of NADPH oxidase and NO synthase to the DCF-induced toxicity was further investigated by the use of 10μΜ L-NAME, a NO synthase inhibitor and 10μΜ DPI, a NADPH oxidase inhibitor. According to the results, 350mL of 2mgL(-1) DCF showed higher degradation (>50%) under 167W electric power density and frequency at 862kHz for 120min, compared to degradation in all other cases, followed by a significant elimination of its toxicity. Specifically, US DCF-treated hemocytes showed a significant attenuation of DCF-mediated cytotoxic, oxidative and genotoxic effects, which appeared to be caused by NADPH oxidase and NO synthase activation, since their inhibition was followed by a significant elimination of (.)O2(-) and NO2(-) generation and the concomitant oxidative damage within cells. The results of the present study showed for the first time that unspecific mode of action of DCF, associated with the induction of NADPH oxidase

  10. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against......-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels...... of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination...

  11. Immune mediated liver failure.

    Science.gov (United States)

    Wang, Xiaojing; Ning, Qin

    2014-01-01

    Liver failure is a clinical syndrome of various etiologies, manifesting as jaundice, encephalopathy, coagulopathy and circulatory dysfunction, which result in subsequent multiorgan failure. Clinically, liver failure is classified into four categories: acute, subacute, acute-on-chronic and chronic liver failure. Massive hepatocyte death is considered to be the core event in the development of liver failure, which occurs when the extent of hepatocyte death is beyond the liver regenerative capacity. Direct damage and immune-mediated liver injury are two major factors involved in this process. Increasing evidence has suggested the essential role of immune-mediated liver injury in the pathogenesis of liver failure. Here, we review the evolved concepts concerning the mechanisms of immune-mediated liver injury in liver failure from human and animal studies. Both innate and adaptive immunity, especially the interaction of various immune cells and molecules as well as death receptor signaling system are discussed. In addition, we highlight the concept of "immune coagulation", which has been shown to be related to the disease progression and liver injury exacerbation in HBV related acute-on-chronic liver failure.

  12. Chemokine-mediated immune responses in the female genital tract mucosa.

    Science.gov (United States)

    Deruaz, Maud; Luster, Andrew D

    2015-04-01

    The genital tract mucosa is the site where sexually transmitted infections gain entry to the host. The immune response at this site is thus critical to provide innate protection against pathogens that are seen for the very first time as well as provide long-term pathogen-specific immunity, which would be required for an effective vaccine against sexually transmitted infection. A finely regulated immune response is therefore required to provide an effective barrier against pathogens without compromising the capacity of the genital tract to allow for successful conception and fetal development. We review recent developments in our understanding of the immune response in the female genital tract to infectious pathogens, using herpes simplex virus-2, human immunodeficiency virus-1 and Chlamydia trachomatis as examples, with a particular focus on the role of chemokines in orchestrating immune cell migration necessary to achieve effective innate and adaptive immune responses in the female genital tract.

  13. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    Directory of Open Access Journals (Sweden)

    Franca Citarella

    2013-08-01

    Full Text Available Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.

  14. Genotoxic and immunotoxic potential effects of selected psychotropic drugs and antibiotics on blue mussel (Mytilus edulis) hemocytes

    International Nuclear Information System (INIS)

    Lacaze, Emilie; Pédelucq, Julie; Fortier, Marlène; Brousseau, Pauline; Auffret, Michel; Budzinski, Hélène; Fournier, Michel

    2015-01-01

    The potential toxicity of pharmaceuticals towards aquatic invertebrates is still poorly understood and sometimes controversial. This study aims to document the in vitro genotoxicity and immunotoxicity of psychotropic drugs and antibiotics on Mytilus edulis. Mussel hemocytes were exposed to fluoxetine, paroxetine, venlafaxine, carbamazepine, sulfamethoxazole, trimethoprim and erythromycin, at concentrations ranging from μg/L to mg/L. Paroxetine at 1.5 μg/L led to DNA damage while the same concentration of venlafaxine caused immunomodulation. Fluoxetine exposure resulted in genotoxicity, immunotoxicity and cytotoxicity. In the case of antibiotics, trimethoprim was genotoxic at 200 μg/L and immunotoxic at 20 mg/L whereas erythromycin elicited same detrimental effects at higher concentrations. DNA metabolism seems to be a highly sensitive target for psychotropic drugs and antibiotics. Furthermore, these compounds affect the immune system of bivalves, with varying intensity. This attests the relevance of these endpoints to assess the toxic mode of action of pharmaceuticals in the aquatic environment. - Highlights: • Psychotropic drugs and antibiotics affect the immune system of Mytilus edulis. • Genotoxic and immunotoxic endpoints were relevant to assess pharmaceuticals toxicity. • DNA metabolism is a highly sensitive target for pharmaceuticals. • Fluoxetine and paroxetine were the most toxic compounds on mussel hemocytes. - Psychotropic drugs and antibiotics have the potential to cause immune toxicity and genotoxicity on Mytilus edulis hemocytes

  15. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2014-05-01

    Full Text Available Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  16. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda L; McEwan, Deborah L; Conery, Annie L; Ausubel, Frederick M

    2014-05-01

    Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  17. Circulating Hemocytes from Larvae of the Japanese Rhinoceros Beetle Allomyrina dichotoma (Linnaeus) (Coleoptera: Scarabaeidae) and the Cellular Immune Response to Microorganisms.

    Science.gov (United States)

    Hwang, Sejung; Bang, Kyeongrin; Lee, Jiae; Cho, Saeyoull

    2015-01-01

    Hemocytes of the last larva of the Japanese rhinoceros beetle A. dichotoma (Linnaeus) (Coleoptera: Scarabaeidae) were classified as granulocytes, plasmatocytes, oenocytoids, spherulocytes, prohemocytes, and adipohemocytes. Among these cell types, only the granulocytes became immunologically activated with obvious morphological changes, displaying large amoeba-like, lobopodia-like, and fan-like structures. In addition, their cytoplasmic granules became larger and greatly increased in number. To explore whether these granules could be immunologically generated as phagosomes, total hemocytes were stained with LysoTracker. Greater than 90% of the granulocytes retained the LysoTracker dye at 4 h post-bacterial infection. In flow cytometry analysis, the red fluorescent signal was highly increased at 4 h post-bacterial infection (60.36%) compared to controls (5.08%), as was confirmed by fluorescent microscopy. After 12 h post-infection, these signals returned to basal levels. The uptake of pathogens by granulocytes rapidly triggered the translocation of the microtubule-associated protein 1 light chain 3 alpha (LC3) to the phagosome, which may result in enhanced pathogen killing.

  18. Circulating Hemocytes from Larvae of the Japanese Rhinoceros Beetle Allomyrina dichotoma (Linnaeus (Coleoptera: Scarabaeidae and the Cellular Immune Response to Microorganisms.

    Directory of Open Access Journals (Sweden)

    Sejung Hwang

    Full Text Available Hemocytes of the last larva of the Japanese rhinoceros beetle A. dichotoma (Linnaeus (Coleoptera: Scarabaeidae were classified as granulocytes, plasmatocytes, oenocytoids, spherulocytes, prohemocytes, and adipohemocytes. Among these cell types, only the granulocytes became immunologically activated with obvious morphological changes, displaying large amoeba-like, lobopodia-like, and fan-like structures. In addition, their cytoplasmic granules became larger and greatly increased in number. To explore whether these granules could be immunologically generated as phagosomes, total hemocytes were stained with LysoTracker. Greater than 90% of the granulocytes retained the LysoTracker dye at 4 h post-bacterial infection. In flow cytometry analysis, the red fluorescent signal was highly increased at 4 h post-bacterial infection (60.36% compared to controls (5.08%, as was confirmed by fluorescent microscopy. After 12 h post-infection, these signals returned to basal levels. The uptake of pathogens by granulocytes rapidly triggered the translocation of the microtubule-associated protein 1 light chain 3 alpha (LC3 to the phagosome, which may result in enhanced pathogen killing.

  19. Pacific oyster (Crassostrea gigas) hemocyte are not affected by a mixture of pesticides in short-term in vitro assays.

    Science.gov (United States)

    Moreau, Pierrick; Burgeot, Thierry; Renault, Tristan

    2014-04-01

    Pesticides are frequently detected in estuaries among the pollutants found in estuarine and coastal areas and may have major ecological consequences. They could endanger organism growth, reproduction, or survival. In the context of high-mortality outbreaks affecting Pacific oysters, Crassostrea gigas, in France since 2008, it appears of importance to determine the putative effects of pesticides on oyster susceptibility to infectious agents. Massive mortality outbreaks reported in this species, mainly in spring and summer, may suggest an important role played by the seasonal use of pesticides and freshwater input in estuarine areas where oyster farms are frequently located. To understand the impact of some pesticides detected in French waters, their effects on Pacific oyster hemocytes were studied through short-term in vitro experiments. Bivalve immunity is mainly supported by hemocytes eliminating pathogens by phagocytosis and producing compounds including lysosomal enzymes and antimicrobial molecules. In this study, oyster hemocytes were incubated with a mixture of 14 pesticides and metaldehyde alone, a molecule used to eliminate land mollusks. Hemocyte parameters including dead/alive cells, nonspecific esterase activities, intracytoplasmic calcium, lysosome number and activity, and phagocytosis were monitored by flow cytometry. No significant effect of pesticides tested at different concentrations was reported on oyster hemocytes maintained in vitro for short-term periods in the present study. It could be assumed that these oyster cells were resistant to pesticide exposure in tested conditions and developing in vivo assays appears as necessary to better understand the effects of pollutants on immune system in mollusks.

  20. Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion.

    Science.gov (United States)

    Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J; Wood, Thomas G; Bao, Xiaoyong

    2016-12-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Acne: a new model of immune-mediated chronic inflammatory skin disease.

    Science.gov (United States)

    Antiga, E; Verdelli, A; Bonciani, D; Bonciolini, V; Caproni, M; Fabbri, P

    2015-04-01

    Acne is a chronic inflammatory disease of the sebaceous-pilosebaceous unit. Interestingly, inflammation can be detected by histopathological examination and immuohistochemical analysis even in the apparently non-inflammatory acneic lesions, such as comedones. In the last years, it has been clearly demonstrated that acne development is linked to the combination of predisposing genetic factors and environmental triggers, among which a prominent role is played by the follicular colonization by Propionibacterium acnes (P. acnes). P. acnes displays several activities able to promote the development of acne skin lesions, including the promotion of follicular hyperkeratinisation, the induction of sebogenesis, and the stimulation of an inflammatory response by the secretion of proinflammatory molecules and by the activation of innate immunity, that is followed by a P. acnes-specific adaptive immune response. In addition, P. acnes-independent inflammation mediated by androgens or by a neurogenic activation, followed by the secretion in the skin of pro-inflammatory neuropeptides, can occur in acne lesions. In conclusion, acne can be considered as a model of immune-mediated chronic inflammatory skin disease, characterized by an innate immune response that is not able to control P. acnes followed by a Th1-mediated adaptive immune response, that becomes self-maintaining independently from P. acnes itself.

  2. Apoptosis of hemocytes from lions-paw scallop Nodipecten subnodosus induced with paralyzing shellfish poison from Gymnodinium catenatum.

    Science.gov (United States)

    Estrada, Norma; Ascencio, Felipe; Shoshani, Liora; Contreras, Rubén G

    2014-12-01

    The toxic dinoflagellate Gymnodinium catenatum produces paralyzing shellfish poisons (PSPs) that are consumed and accumulated by bivalves. Previously, we recorded a decrease in hemocytes 24h after injection of PSPs (gonyautoxin 2/3 epimers, GTX2/3) in the adductor muscle in the lions-paw scallop Nodipecten subnodosus. In this work, qualitative and quantitative analyses, in in vivo and in vitro experiments, revealed that the lower count of hemocytes results from cells undergoing typical apoptosis when exposed to GTX 2/3 epimers. This includes visible morphological alterations of the cytoplasmic membrane, damage to the nuclear membrane, condensation of chromatin, DNA fragmentation, and release of DNA fragments into the cytoplasm. Induction of apoptosis was accompanied by phosphatidylserine exposure to the outer cell membrane and activation of cysteine-aspartic proteases, caspase 3 and caspase 8. Addition of an inhibitor of caspase to the medium suppressed activation in hemocytes exposed to the toxins, suggesting that cell death was induced by a caspase-dependent apoptotic pathway. The results are important for future investigation of the scallop's immune system and should provide new insights into apoptotic processes in immune cells of scallops exposed to PSPs. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Hemocyte parameters of the Pacific oyster Crassostrea gigas a year after the Hebei Spirit oil spill off the west coast of Korea

    Science.gov (United States)

    Donaghy, Ludovic; Hong, Hyun-Ki; Lee, Hee-Jung; Jun, Je-Cheon; Park, Young-Je; Choi, Kwang-Sik

    2010-12-01

    In marine bivalves, hemocytes support various physiological functions, including immune defense, nutrient transport, shell repair, and homeostatic maintenance. Although the effects of marine contaminants on the immunological functions of bivalves have been extensively investigated, the impacts of oil spills are not well understood. Therefore, we investigated hemocyte parameters in the Pacific oyster Crassostrea gigas 13 months after the Hebei Spirit oil spill (December 2007) off the west coast of Korea. The parameters studied included hemocyte concentration and mortality, relative proportion of hemocyte populations, and immunological functions such as phagocytosis and oxidative activity using flow cytometry. These immune-related parameters in oysters damaged by the oil spill were also compared to control oysters that were collected from an area unaffected by the spill. The flow cytometry study indicated that granulocyte population, phagocytic capacity, and reactive oxygen species production in oysters exposed to crude oil 13 months prior were depressed compared to the unexposed control oysters. Our data suggest that immunocompetence in oysters affected by the oil spill had not fully recovered 1 year after the accident, although more detailed studies on the physiology and disease resistance should be performed.

  4. Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses.

    Science.gov (United States)

    Wu, Gongqing; Xu, Li; Yi, Yunhong

    2016-06-01

    Larvae of Galleria mellonella are useful models for studying the innate immunity of invertebrates or for evaluating the virulence of microbial pathogens. In this work, we demonstrated that prior exposure of G. mellonella larvae to high doses (1×10(4), 1×10(5) or 1×10(6) cells/larva) of heat-killed Photorhabdus luminescens TT01 increases the resistance of larvae to a lethal dose (50 cells/larva) of viable P. luminescens TT01 infection administered 48h later. We also found that the changes in immune protection level were highly correlated to the changes in levels of cellular and humoral immune parameters when priming the larvae with different doses of heat-killed P. luminescens TT01. Priming the larvae with high doses of heat-killed P. luminescens TT01 resulted in significant increases in the hemocytes activities of phagocytosis and encapsulation. High doses of heat-killed P. luminescens TT01 also induced an increase in total hemocyte count and a reduction in bacterial density within the larval hemocoel. Quantitative real-time PCR analysis showed that genes coding for cecropin and gallerimycin and galiomycin increased in expression after priming G. mellonella with heat-killed P. luminescens TT01. All the immune parameters changed in a dose-dependent manner. These results indicate that the insect immune system is capable of sensing the extent of priming agent and mounting a proportionate immune response. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  5. Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses

    Science.gov (United States)

    Yi, Young-Su; Son, Young-Jin; Ryou, Chongsuk; Sung, Gi-Ho; Kim, Jong-Hoon; Cho, Jae Youl

    2014-01-01

    Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases. PMID:25045209

  6. Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Young-Su Yi

    2014-01-01

    Full Text Available Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases.

  7. Modulation of inflammasome-mediated pulmonary immune activation by type I IFNs protects bone marrow homeostasis during systemic responses to Pneumocystis lung infection.

    Science.gov (United States)

    Searles, Steve; Gauss, Katherine; Wilkison, Michelle; Hoyt, Teri R; Dobrinen, Erin; Meissner, Nicole

    2013-10-01

    Although acquired bone marrow failure (BMF) is considered a T cell-mediated autoimmune disease, possible innate immune defects as a cause for systemic immune deviations in response to otherwise innocuous infections have not been extensively explored. In this regard, we recently demonstrated an important role of type I IFNs in protecting hematopoiesis during systemic stress responses to the opportunistic fungal pathogen Pneumocystis in lymphocyte-deficient mice. Mice deficient in both lymphocytes and type I IFN receptor (IFrag(-/-) mice) develop rapidly progressing BMF due to accelerated bone marrow (BM) cell apoptosis associated with innate immune deviations in the BM in response to Pneumocystis lung infection. However, the communication pathway between lung and BM eliciting the induction of BMF in response to this strictly pulmonary infection has been unclear. In this study, we report that absence of an intact type I IFN system during Pneumocystis lung infection not only causes BMF in lymphocyte-deficient mice but also transient BM stress in lymphocyte-competent mice. This is associated with an exuberant systemic IFN-γ response. IFN-γ neutralization prevented Pneumocystis lung infection-induced BM depression in type I IFN receptor-deficient mice and prolonged neutrophil survival time in BM from IFrag(-/-) mice. IL-1β and upstream regulators of IFN-γ, IL-12, and IL-18 were also upregulated in lung and serum of IFrag(-/-) mice. In conjunction, there was exuberant inflammasome-mediated caspase-1 activation in pulmonary innate immune cells required for processing of IL-18 and IL-1β. Thus, absence of type I IFN signaling during Pneumocystis lung infection may result in deregulation of inflammasome-mediated pulmonary immune activation, causing systemic immune deviations triggering BMF in this model.

  8. Cell-mediated immune responses differentiate infections with Brucella suis from Yersinia enterocolitica serotype O : 9 in pigs

    DEFF Research Database (Denmark)

    Riber, Ulla; Jungersen, Gregers

    2007-01-01

    Due to almost identical lipopolysaccharide (LPS) O-antigens, infections with Yersinia enterocolitica serotype 0:9 (YeO:9) cause false positive serological reactions (FPSR) in tests for Brucella and thus cause problems in National Brucella surveillance programs. As LPS are strong inducers...... of antibody responses it was hypothesized that cell-mediated immune responses to non-LPS antigens of the two bacteria can be used to separate immune responses to these two biologically very different infections. Following subclinical experimental infections with Brucella suis biovar 2, high interferon......-gamma (IFN-gamma) assay responses with a commercial Brucella melitensis antigen preparation (Brucellergene OCB) preceded the development of antibodies. High IFN-gamma responses in the seven B. suis inoculated pigs with serological evidence of infection were consistent throughout a 20-week postinoculation...

  9. Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections.

    Directory of Open Access Journals (Sweden)

    Nadine T Nehme

    2011-03-01

    Full Text Available Two NF-kappaB signaling pathways, Toll and immune deficiency (imd, are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense.In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus, we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival--independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response.Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen.

  10. Short-term heat shock affects the course of immune response in Galleria mellonella naturally infected with the entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Vertyporokh, Lidiia; Taszłow, Paulina; Samorek-Pieróg, Małgorzata; Wojda, Iwona

    2015-09-01

    We aimed to investigate how exposition of infected insects to short-term heat shock affects the biochemical and molecular aspects of their immune response. Galleria mellonella larvae were exposed to 43°C for 15min, at the seventy second hour after natural infection with entomopathogenic fungus Beauveria bassiana. As a result, both qualitative and quantitative changes in hemolymph protein profiles, and among them infection-induced changes in the amount of apolipophorin III (apoLp-III), were observed. Heat shock differently affects the expression of the tested immune-related genes. It transiently inhibits expression of antifungal peptides gallerimycin and galiomicin in both the fat body and hemocytes of infected larvae. The same, although to a lesser extent, concerned apoLp-III gene expression and was observed directly after heat shock. Nevertheless, in larvae that had recovered from heat shock, apoLp-III expression was higher in comparison to unshocked larvae in the fat body but not in hemocytes, which was consistent with the higher amount of this protein detected in the hemolymph of the infected, shocked larvae. Furthermore, lysozyme-type activity was higher directly after heat shock, while antifungal activity was significantly higher also in larvae that had recovered from heat shock, in comparison to the respective values in their non-shocked, infected counterparts. These results show how changes in the external temperature modulate the immune response of G. mellonella suffering from infection with its natural pathogen B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Cell-mediated immune response of synovial fluid lymphocytes to ureaplasma antigen in Reiter's syndrome

    Directory of Open Access Journals (Sweden)

    Pavlica Ljiljana

    2003-01-01

    Full Text Available INTRODUCTION Reiter's syndrome (RS is an seronegative arthritis that occurs after urogenital or enteric infection which in addition with occular and/or mucocutaneous manifestations presents complete form of disease. According to previous understanding arthritis in the RS is the reactive one, which means that it is impossible to isolate its causative agent. However, there are the more and more authors suggesting that arthritis in the urogenital form of disease is caused by the infective agent in the affected joint. This suggestion is based on numerous studies on the presence of Chlmaydia trachomatis and Ureaplasma urealyticum in the inflamed joint by using new diagnostic methods in molecular biology published in the recent literature [1-3]. Besides, numerous studies of the humoral and cell-mediated immune response to "triggering" bacteria in the affected joint have supported previous suggestions [4-7]. Aim of the study was to determine whether synovial fluid T-cells specifically recognize the "triggering" bacteria presumably responsible for the Reiter's syndrome. METHOD The 3H-thymidine uptake procedure for measuring lymphocyte responses was applied to lymphocytes derived concurrently from synovial fluid (SF and from peripheral blood (PB [8]. Ureaplasma antigen and mitogen PHA stimulated lymphocytes in 24 RS patients (24 PB samples, 9 SF samples and the results were compared with those found in 10 patients with rheumatoid arthritis (RA (10 PB samples, 5 SF samples. Preparation of ureaplasma antigen. Ureaplasma was cultured on cell-free liquid medium [9]. Sample of 8 ml was heat-inactivated for 15 minutes at 601C and permanently stirred with magnetic mixer. The sample was centrifuged at 2000 x g for 40 minutes and than deposits carefully carried to other sterile glass tubes (Corex and recentrifuged at 9000 x g for 30 minutes. The deposit was washed 3 times in sterile 0.9% NaCl, and final sediment was resuspended in 1.2 ml sterile 0.9% Na

  12. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Broderick Nichole A

    2010-04-01

    Full Text Available Abstract Background The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects. Results We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate immune response (eicosanoid inhibitors and antioxidants increased the host's survival time following ingestion of B. thuringiensis. Conclusions This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to decipher mechanisms of sepsis associated with bacteria of gut origin.

  13. Insect immunology and hematopoiesis.

    Science.gov (United States)

    Hillyer, Julián F

    2016-05-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Hemocyte characterization of Nasutitermes coxipoensis (Holmgren) (Isoptera: Termitidae) workers and hemocyte evaluation after parasitism by Metarhizium anisopliae

    International Nuclear Information System (INIS)

    Cunha, Franklin M.; Wanderley-Teixeira, Valeria; Albuquerque, Auristela C.; Lima, Elza A.L.A.

    2009-01-01

    We aimed to characterize the morphology and ultrastructure of hemocytes of Nasutitermes coxipoensis (Holmgren) workers and to quantify the cell types 24h, 48h and 72h after inoculation with Metarhizium anisopliae. Six hemocytes types were identified, plasmatocyte, granulocyte, spherulocyte, prohemocyte, adipohemocyte and eonocytoid Hemocytes did not present any morphological alteration at the several observation periods, but they did have a change in their abundance, as observed for spherulocytes, adipohemocytes and eonocytoids at all intervals, and for plasmatocytes and granulocytes at 48h after host inoculation. We argue on the possible reasons and implications of the observed changes. (author)

  15. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  16. Insect immunology and hematopoiesis

    OpenAIRE

    Hillyer, Julián F.

    2015-01-01

    Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and...

  17. Responses to a warming world: Integrating life history, immune investment, and pathogen resistance in a model insect species.

    Science.gov (United States)

    Laughton, Alice M; O'Connor, Cian O; Knell, Robert J

    2017-11-01

    Environmental temperature has important effects on the physiology and life history of ectothermic animals, including investment in the immune system and the infectious capacity of pathogens. Numerous studies have examined individual components of these complex systems, but little is known about how they integrate when animals are exposed to different temperatures. Here, we use the Indian meal moth ( Plodia interpunctella ) to understand how immune investment and disease resistance react and potentially trade-off with other life-history traits. We recorded life-history (development time, survival, fecundity, and body size) and immunity (hemocyte counts, phenoloxidase activity) measures and tested resistance to bacterial ( E. coli ) and viral ( Plodia interpunctella granulosis virus) infection at five temperatures (20-30°C). While development time, lifespan, and size decreased with temperature as expected, moths exhibited different reproductive strategies in response to small changes in temperature. At cooler temperatures, oviposition rates were low but tended to increase toward the end of life, whereas warmer temperatures promoted initially high oviposition rates that rapidly declined after the first few days of adult life. Although warmer temperatures were associated with strong investment in early reproduction, there was no evidence of an associated trade-off with immune investment. Phenoloxidase activity increased most at cooler temperatures before plateauing, while hemocyte counts increased linearly with temperature. Resistance to bacterial challenge displayed a complex pattern, whereas survival after a viral challenge increased with rearing temperature. These results demonstrate that different immune system components and different pathogens can respond in distinct ways to changes in temperature. Overall, these data highlight the scope for significant changes in immunity, disease resistance, and host-parasite population dynamics to arise from small

  18. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization.

    Science.gov (United States)

    Jeon, Yung Jin; Kim, Hyun Jik

    2018-05-01

    Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.

  19. Glycan-mediated modification of the immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Pedersen, Anders E; Wandall, Hans H

    2013-01-01

    Aberrantly glycosylated tumor antigens represent promising targets for the development of anti-cancer vaccines, yet how glycans influence immune responses is poorly understood. Recent studies have demonstrated that GalNAc-glycosylation enhances antigen uptake by dendritic cells as well as CD4(+) T......-cell and humoral responses, but prevents CD8(+) T-cell activation. Here, we briefly discuss the relevance of glycans as candidate targets for anti-cancer vaccines....

  20. Gut immunity in Lepidopteran insects.

    Science.gov (United States)

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Immune Response to Dengue and Zika.

    Science.gov (United States)

    Ngono, Annie Elong; Shresta, Sujan

    2018-04-26

    Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines.

  2. On the origin of the Biomphalaria glabrata hemocytes

    Directory of Open Access Journals (Sweden)

    Samaly dos Santos Souza

    2006-10-01

    Full Text Available A histologic, morphometric and ultrastructural study performed on Biomphalaria glabrata submitted to infection with Schistosoma mansoni miracidia failed to provide significant evidences that the so-called amebocyte-producing organ (APO is really the central organ for hemocyte production. In infected snails no general reactive changes appeared in the APO, the mitoses were seen only occasionally, and the possibility of cellular hyperplasia was ruled out by morphometric measurements. Under the electron microscope the APO cells presented an essentially epithelial structure, without features indicative of transition toward hemocytes. On the other hand, the present findings pointed to a multicentric origin for the mollusck hemocytes, as earlier studies had indicated. Dense foci of hemocyte collections appeared sometimes around disintegrating sporocysts and cercariae in several organs and tissues of the infected snails, including a curious accumulation of such cells inside the ventricular cavity of the heart. In the heart and other sites, features suggestive of transformation of vascular space endothelial lining cells into hemocytes were apparent. To some extent, the postulated multicentric origin for B. glabrata hemocytes recapitulates earlier embryologic findings in vertebrates, when mesenchymal vascular spaces generate the circulating and phagocytic blood cells.

  3. Analysis of Thioester-Containing Proteins during the Innate Immune Response of Drosophila melanogaster

    Science.gov (United States)

    Bou Aoun, Richard; Hetru, Charles; Troxler, Laurent; Doucet, Daniel; Ferrandon, Dominique; Matt, Nicolas

    2010-01-01

    Thioester-containing proteins (TEPs) are conserved proteins among insects that are thought to be involved in innate immunity. In Drosophila, the Tep family is composed of 6 genes named Tep1–Tep6. In this study, we investigated the phylogeny, expression pattern and roles of these genes in the host defense of Drosophila. Protostomian Tep genes are clustered in 3 distinct branches, 1 of which is specific to mosquitoes. Most D. melanogaster Tep genes are expressed in hemocytes, can be induced in the fat body, and are expressed in specific regions of the hypodermis. This expression pattern is consistent with a role in innate immunity. However, we find that TEP1, TEP2, and TEP4 are not strictly required in the body cavity to fight several bacterial and fungal infections. One possibility is that Drosophila TEPs act redundantly or that their absence can be compensated by other components of the immune response. TEPs may thus provide a subtle selective advantage during evolution. Alternatively, they may be required in host defense against specific as yet unidentified natural pathogens of Drosophila. PMID:21063077

  4. Cell-mediated immune responses in the head-associated lymphoid tissues induced to a live attenuated avian coronavirus vaccine.

    Science.gov (United States)

    Gurjar, Rucha S; Gulley, Stephen L; van Ginkel, Frederik W

    2013-12-01

    Humoral immunity is important for controlling viral diseases of poultry, but recent studies have indicated that cytotoxic T cells also play an important role in the immune response to infectious bronchitis virus (IBV). To better understand the cell mediated immune responses to IBV in the mucosal and systemic immune compartments chickens were ocularly vaccinated with IBV. This induced a lymphocyte expansion in head-associated lymphoid tissues (HALT) and to a lesser extent in the spleen, followed by a rapid decline, probably due to homing of lymphocytes out of these organs and contraction of the lymphocyte population. This interpretation was supported by observations that changes in mononuclear cells were mirrored by that in CD3(+)CD44(+) T cell abundance, which presumably represent T effector cells. Increased interferon gamma (IFN-γ) expression was observed in the mucosal immune compartment, i.e., HALT, after primary vaccination, but shifted to the systemic immune compartment after boosting. In contrast, the expression of cytotoxicity-associated genes, i.e., granzyme A (GZMA) and perforin mRNA, remained associated with the HALT after boosting. Thus, an Ark-type IBV ocular vaccine induces a central memory IFN-γ response in the spleen while the cytotoxic effector memory response, as measured by GZMA and perforin mRNA expression, remains associated with CALT after boosting. Copyright © 2013. Published by Elsevier Ltd.

  5. Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel Mytilus galloprovincialis

    Energy Technology Data Exchange (ETDEWEB)

    Katsumiti, A. [CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country (Spain); Gilliland, D. [EU Commission–Joint Research Centre, Institute of Health and Consumer Protection, NSB Unit, Ispra (Italy); Arostegui, I. [Department of Applied Mathematics, Statistics and Operations Research, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa (Spain); Cajaraville, M.P., E-mail: mirenp.cajaraville@ehu.es [CBET Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Basque Country (Spain)

    2014-08-15

    phagocytosis were found in hemocytes exposed to bulk CdS and to CdS QDs at concentrations equal or higher than 1.25 mg Cd/L but not in those exposed to ionic Cd, indicating a particle-specific effect on phagocytosis. In conclusion, cell-mediated immunity and gill cell function represent significant targets for CdS QDs toxicity.

  6. Hemocyte responses of Dreissena polymorpha following a short-term in vivo exposure to titanium dioxide nanoparticles: Preliminary investigations

    Energy Technology Data Exchange (ETDEWEB)

    Couleau, Nicolas; Techer, Didier [Universite de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversite, Ecosystemes (LIEBE), CNRS UMR 7146, IUT Thionville-Yutz, Espace Cormontaigne, Yutz, F-57970 (France); Pagnout, Christophe [Universite de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversite, Ecosystemes (LIEBE), UMR 7146, Campus Bridoux, rue du General Delestraint, Metz, F-57070 (France); International Consortium for the Environmental Implications of Nanotechnology, iCEINT, http://www.i-ceint.org (France); Jomini, Stephane [Universite de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversite, Ecosystemes (LIEBE), UMR 7146, Campus Bridoux, rue du General Delestraint, Metz, F-57070 (France); Foucaud, Laurent; Laval-Gilly, Philippe; Falla, Jairo [Universite de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversite, Ecosystemes (LIEBE), CNRS UMR 7146, IUT Thionville-Yutz, Espace Cormontaigne, Yutz, F-57970 (France); Bennasroune, Amar, E-mail: amar.bennasroune@univ-metz.fr [Universite de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversite, Ecosystemes (LIEBE), CNRS UMR 7146, IUT Thionville-Yutz, Espace Cormontaigne, Yutz, F-57970 (France)

    2012-11-01

    The widespread use of titanium-based nanoparticles and their environmental release may pose a significant risk to aquatic organisms within freshwater ecosystems. Suspension-feeder invertebrates like bivalve molluscs represent a unique target group for nanoparticle toxicology. The aim of this work was to investigate the short-term responses of Dreissena polymorpha hemocytes after in vivo exposure to titanium dioxide nanoparticles (TiO{sub 2} NP). For this purpose, freshwater mussels were exposed to P25 TiO{sub 2} NP at the concentrations of 0.1, 1, 5 and 25 mg/L during 24 h. Viability, phagocytosis activity and mitogen activated protein kinase (MAPK) phosphorylation level of ERK 1/2 and p38 in hemocytes extracted from exposed mussels were compared to those from control specimens. Results demonstrated an inhibition of the phagocytosis activity after exposure to TiO{sub 2} NP at 0.1 and 1 mg/L. Similar trends, albeit less pronounced, were reported for higher concentrations of NP. Transmission electron microscopy showed for the first time the internalization of TiO{sub 2} NP into Dreissena polymorpha hemocytes. Besides, exposure to NP increased the ERK 1/2 phosphorylation levels in all treatments. Concerning the phosphorylation level of p38, only exposures to 5 and 25 mg/L of NP induced significant p38 activation in comparison to that of the control. Finally, these short-term effects observed at environmentally relevant concentrations highlighted the need for further studies concerning ecotoxicological evaluation of nanoparticle release into an aquatic environment. -- Highlights: Black-Right-Pointing-Pointer Phagocytosis inhibition at TiO{sub 2} NP exposure concentrations of 0.1 and 1 mg/L. Black-Right-Pointing-Pointer Internalization of TiO{sub 2} NP in freshwater mussel hemocytes. Black-Right-Pointing-Pointer Increased phosphorylation level of p38 and ERK 1/2 after in vivo exposure to TiO{sub 2} NP.

  7. BgTEP: An Antiprotease Involved in Innate Immune Sensing in Biomphalaria glabrata

    Directory of Open Access Journals (Sweden)

    Anaïs Portet

    2018-05-01

    Full Text Available Insect thioester-containing protein (iTEP is the most recently defined group among the thioester-containing protein (TEP superfamily. TEPs are key components of the immune system, and iTEPs from flies and mosquitoes were shown to be major immune weapons. Initially characterized from insects, TEP genes homologous to iTEP were further described from several other invertebrates including arthropods, cniderians, and mollusks albeit with few functional characterizations. In the freshwater snail Biomphalaria glabrata, a vector of the schistosomiasis disease, the presence of a TEP protein (BgTEP was previously described in a well-defined immune complex involving snail lectins (fibrinogen-related proteins and schistosome parasite mucins (SmPoMuc. To investigate the potential role of BgTEP in the immune response of the snail, we first characterized its genomic organization and its predicted protein structure. A phylogenetic analysis clustered BgTEP in a well-conserved subgroup of mollusk TEP. We then investigated the BgTEP expression profile in different snail tissues and followed immune challenges using different kinds of intruders during infection kinetics. Results revealed that BgTEP is particularly expressed in hemocytes, the immune-specialized cells in invertebrates, and is secreted into the hemolymph. Transcriptomic results further evidenced an intruder-dependent differential expression pattern of BgTEP, while interactome experiments showed that BgTEP is capable of binding to the surface of different microbes and parasite either in its full length form or in processed forms. An immunolocalization approach during snail infection by the Schistosoma mansoni parasite revealed that BgTEP is solely expressed by a subtype of hemocytes, the blast-like cells. This hemocyte subtype is present in the hemocytic capsule surrounding the parasite, suggesting a potential role in the parasite clearance by encapsulation. Through this work, we report the first

  8. Azadirachtin-induced effects on various life history traits and cellular immune reactions of Galleria mellonella (Lepidoptera: Pyralidae

    Directory of Open Access Journals (Sweden)

    Er Aylin

    2017-01-01

    Full Text Available The effects of the botanical insecticide azadirachtin were examined on the life history traits, fecundity and immune parameters of Galleria mellonella L. (Lepidoptera: Pyralidae. We determined that for the topical application of azadirachtin, the LC50 was 16.564 ppm; at 100 ppm the adult emergence time was prolonged, however the longevity of adults remained unchanged above sublethal concentrations. The mean number of healthy eggs and the fecundity of adults decreased, whereas the number of defective eggs increased with azadirachtin treatment. At concentrations >50 ppm female G. mellonella adults laid no eggs. Azadirachtin reduced total hemocyte counts at 24 and 48 h posttreatment, however the alterations in differential hemocyte counts were only significant at 100 ppm. Laminarin-induced nodulation response and the spreading ability of hemocytes were also suppressed with azadirachtin treatment. Our results suggest that azadirachtin, as a good candidate for integrated pest control, has the capability to affect the biological parameters and cellular immunity of the model insect G. mellonella.

  9. CAF01 potentiates immune responses and efficacy of an inactivated influenza vaccine in ferrets

    DEFF Research Database (Denmark)

    Martel, Cyril Jean-Marie; Agger, Else Marie; Poulsen, Julie Juul

    2011-01-01

    response, whereas the induction of cell-mediated immune responses is negligible. Recently, a cationic liposomal adjuvant (dimethyldioctadecylammonium/trehalose 6,6'-dibehenate, CAF01) was developed. CAF01 has proven to enhance both humoral and cell-mediated immune responses to a number of different...

  10. Immunotoxicity in green mussels under perfluoroalkyl substance (PFAS) exposure: Reversible response and response model development.

    Science.gov (United States)

    Liu, Changhui; Gin, Karina Yew-Hoong

    2018-04-01

    The immunotoxicity of 4 commonly detected perfluoroalkyl substances (PFASs), namely, perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) was investigated by measuring biomarkers of the immune profile of green mussels, Perna viridis. The biomarkers included neutral red retention, phagocytosis, and spontaneous cytotoxicity, all of which were tested on mussel hemocytes. Hemocytes are an important component of the invertebrate immune system. We found that exposure to PFASs could lead to reduced hemocyte cell viability and suppress immune function by up to 50% of normal performance within the experimental exposure range. The results indicate that PFASs have an immunotoxic potential and thus could pose severe health risks to aquatic organisms. The reported immunotoxicity is likely to result from the compounds' direct and indirect interactions with the hemocyte membrane, and therefore likely to affect the functionality of these cells. The immunotoxic response was found to be related to the organism's burden of PFASs, and was reversible when the compounds were removed from the test organisms. Based on this relationship, models using an organism's PFAS concentration and bioaccumulation factor (BAF) as the independent variables were established to quantify PFAS-induced immunotoxicity. The models help us to gain a better understanding of the toxic mechanism of PFASs, and provide a tool to evaluate adverse effects for the whole group of compounds with one mathematical equation. Environ Toxicol Chem 2018;37:1138-1145. © 2018 SETAC. © 2018 SETAC.

  11. Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection.

    Science.gov (United States)

    Harris, Nicola L; Loke, P'ng

    2017-12-19

    Type-2-cell-mediated immune responses play a critical role in mediating both host-resistance and disease-tolerance mechanisms during helminth infections. Recently, type 2 cell responses have emerged as major regulators of tissue repair and metabolic homeostasis even under steady-state conditions. In this review, we consider how studies of helminth infection have contributed toward our expanding cellular and molecular understanding of type-2-cell-mediated immunity, as well as new areas such as the microbiome. By studying how these successful parasites form chronic infections without overt pathology, we are gaining additional insights into allergic and inflammatory diseases, as well as normal physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Eosinophils in mucosal immune responses

    Science.gov (United States)

    Travers, J; Rothenberg, M E

    2015-01-01

    Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells. PMID:25807184

  13. BID-dependent release of mitochondrial SMAC dampens XIAP-mediated immunity against Shigella

    Science.gov (United States)

    Andree, Maria; Seeger, Jens M; Schüll, Stephan; Coutelle, Oliver; Wagner-Stippich, Diana; Wiegmann, Katja; Wunderlich, Claudia M; Brinkmann, Kerstin; Broxtermann, Pia; Witt, Axel; Fritsch, Melanie; Martinelli, Paola; Bielig, Harald; Lamkemeyer, Tobias; Rugarli, Elena I; Kaufmann, Thomas; Sterner-Kock, Anja; Wunderlich, F Thomas; Villunger, Andreas; Martins, L Miguel; Krönke, Martin; Kufer, Thomas A; Utermöhlen, Olaf; Kashkar, Hamid

    2014-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti-apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase-mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP-mediated immune response by inducing the BID-dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain-dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization. PMID:25056906

  14. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis

    Science.gov (United States)

    Rovetta, Ana I; Peña, Delfina; Hernández Del Pino, Rodrigo E; Recalde, Gabriela M; Pellegrini, Joaquín; Bigi, Fabiana; Musella, Rosa M; Palmero, Domingo J; Gutierrez, Marisa; Colombo, María I; García, Verónica E

    2015-01-01

    Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen. PMID:25426782

  15. The Role of Innate Lymphoid Cells in Immune-Mediated Liver Diseases

    Science.gov (United States)

    Liu, Meifang; Zhang, Cai

    2017-01-01

    Innate lymphoid cells (ILCs) are a recently identified group of innate immune cells lacking antigen-specific receptors that can mediate immune responses and regulate tissue homeostasis and inflammation. ILCs comprise group 1 ILCs, group 2 ILCs, and group 3 ILCs. These ILCs usually localize at mucosal surfaces and combat pathogens by the rapid release of certain cytokines. However, the uncontrolled activation of ILCs can also lead to damaging inflammation, especially in the gut, lung, and skin. Although the physiological and pathogenic roles of ILCs in liver diseases have been attracting increasing attention recently, there has been no systematic review regarding the roles of ILCs in immune-mediated liver diseases. Here, we review the relationships between the ILC subsets and their functions in immune-mediated liver diseases, and discuss their therapeutic potential based on current knowledge about the functional roles of these cells in liver diseases. PMID:28659927

  16. Cerebral Innate Immunity in Drosophila Melanogaster

    Directory of Open Access Journals (Sweden)

    Brian P. Leung

    2015-03-01

    Full Text Available Modeling innate immunity in Drosophila melanogaster has a rich history that includes ground-breaking discoveries in pathogen detection and signaling. These studies revealed the evolutionary conservation of innate immune pathways and mechanisms of pathogen detection, resulting in an explosion of findings in the innate immunity field. In D. melanogaster, studies have focused primarily on responses driven by the larval fat body and hemocytes, analogs to vertebrate liver and macrophages, respectively. Aside from pathogen detection, many recent mammalian studies associate innate immune pathways with development and disease pathogenesis. Importantly, these studies stress that the innate immune response is integral to maintain central nervous system (CNS health. Microglia, which are the vertebrate CNS mononuclear phagocytes, drive vertebrate cerebral innate immunity. The invertebrate CNS contains microglial-like cells-ensheathing glia and reticular glia-that could be used to answer basic questions regarding the evolutionarily conserved innate immune processes in CNS development and health. A deeper understanding of the relationship between D. melanogaster phagocytic microglial-like cells and vertebrate microglia will be key to answering basic and translational questions related to cerebral innate immunity.

  17. Immune Response to Lipoproteins in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sonia Samson

    2012-01-01

    Full Text Available Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  18. Two Hemocyte Lineages Exist in Silkworm Larval Hematopoietic Organ

    OpenAIRE

    Nakahara, Yuichi; Kanamori, Yasushi; Kiuchi, Makoto; Kamimura, Manabu

    2010-01-01

    BACKGROUND: Insects have multiple hemocyte morphotypes with different functions as do vertebrates, however, their hematopoietic lineages are largely unexplored with the exception of Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: To study the hematopoietic lineage of the silkworm, Bombyx mori, we investigated in vivo and in vitro differentiation of hemocyte precursors in the hematopoietic organ (HPO) into the four mature hemocyte subsets, namely, plasmatocytes, granulocytes, oenocyto...

  19. Cholinergic Modulation of Type 2 Immune Responses

    Directory of Open Access Journals (Sweden)

    Goele Bosmans

    2017-12-01

    Full Text Available In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.

  20. Effect of rosemary (Rosmarinus officinalis extract on weight, hematology and cell-mediated immune response of newborn goat kids

    Directory of Open Access Journals (Sweden)

    Borhan Shokrollahi

    2015-06-01

    Full Text Available This study aimed at evaluating the effects of different levels of rosemary (Rosmarinus officinalis extract on growth rate, hematology and cell-mediated immune response in Markhoz newborn goat kids. Twenty four goat kids (aged 7±3 days were randomly allotted to four groups with six replicates. The groups included: control, T1, T2 and T3 groups which received supplemented-milk with 0, 100, 200 and 400mg aqueous rosemary extract per kg of live body weight per day for 42 days. Body weights of kids were measured weekly until the end of the experiment. On day 42, 10 ml blood samples were collected from each kid through the jugular vein. Cell-mediated immune response was assessed through the double skin thickness after intradermal injection of phyto-hematoglutinin (PHA at day 21 and 42. No significant differences were seen in initial body weight, average daily gain (ADG and total gain. However, significant differences in globulin (P<0.05, and white blood cells (WBC (P<0.001 were observed. There were no significant differences in haemoglobin (Hb, packed cell volume (PCV, red blood cells (RBC, lymphocytes and neutrophils between the treatments. Skin thickness in response to intra dermal injection of PHA significantly increased in the treated groups as compared to the control group at day 42 (P<0.01 with the T3 group showing the highest response to PHA injection. In conclusion, the results indicated that aqueous rosemary extract supplemented-milk had a positive effect on immunity and skin thickness of newborn goat kids.

  1. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    Science.gov (United States)

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. AAV2-mediated in vivo immune gene therapy of solid tumours

    LENUS (Irish Health Repository)

    Collins, Sara A

    2010-12-20

    Abstract Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb\\/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour

  3. Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins

    Science.gov (United States)

    Yano, Junko; Noverr, Mairi C.; Fidel, Paul L.

    2011-01-01

    Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects a significant number of women during their reproductive years. More than two decades of research have been focused on the mechanisms associated with susceptibility or resistance to symptomatic infection. Adaptive immunity by Th1-type CD4+ T cells and downstream cytokine responses are considered the predominant host defense mechanisms against mucosal Candida infections. However, numerous clinical and animal studies have indicated no or limited protective role of cells and cytokines of the Th1 or Th2 lineage against vaginal infection. The role for Th17 is only now begun to be investigated in-depth for VVC with results already showing significant controversy. On the other hand, a clinical live-challenge study and an established animal model have shown that a symptomatic condition is intimately associated with the vaginal infiltration of polymorphonuclear leukocytes (PMNs) but with no effect on vaginal fungal burden. Subsequent studies identified S100A8 and S100A9 Alarmins as key chemotactic mediators of the acute PMN response. These chemotactic danger signals appear to be secreted by vaginal epithelial cells upon interaction and early adherence of Candida. Thus, instead of a putative immunodeficiency against Candida involving classical immune cells and cytokines of the adaptive response, the pathological inflammation in VVC is now considered a consequence of a non-productive innate response initiated by non-classical immune mediators. PMID:22182685

  4. Co-incubation with IL-18 potentiates antigen-specific IFN-γ response in a whole-blood stimulation assay for measurement of cell-mediated immune responses in pigs experimentally infected with Lawsonia intracellularis

    DEFF Research Database (Denmark)

    Riber, Ulla; Boesen, Henriette Toft; Jakobsen, Jeanne Toft

    2011-01-01

    The whole-blood interferon-gamma (IFN-γ) assay is a quantitative in-vitro assay for a direct read out of Ag-specific cell-mediated immune (CMI) responses to infectious diseases. The IFN-γ assay is robust in severe intracellular infections like Brucella or mycobacteria, but more difficult to evalu......The whole-blood interferon-gamma (IFN-γ) assay is a quantitative in-vitro assay for a direct read out of Ag-specific cell-mediated immune (CMI) responses to infectious diseases. The IFN-γ assay is robust in severe intracellular infections like Brucella or mycobacteria, but more difficult...

  5. Gamma-irradiated scrub typhus immunogens: development of cell-mediated immunity after vaccination of inbred mice

    International Nuclear Information System (INIS)

    Jerrells, T.R.; Palmer, B.A.; Osterman, J.V.

    1983-01-01

    Mice immunized with three injections of gamma-irradiated Karp strain of Rickettsia tsutsugamushi were evaluated for the presence of cell-mediated immunity by using delayed-type hypersensitivity, antigen-induced lymphocyte proliferation, and antigen-induced lymphokine production. These animals also were evaluated for levels of circulating antibody after immunization as well as for the presence of rickettsemia after intraperitoneal challenge with viable Karp rickettsiae. After immunization with irradiated Karp rickettsiae, a demonstrable cell-mediated immunity was present as evidenced by delayed-type hypersensitivity responsiveness, lymphocyte proliferation, and production of migration inhibition factor and interferon by immune spleen lymphocytes. Also, a reduction in circulating rickettsiae was seen in mice immunized with irradiated rickettsiae after challenge with 1,000 50% mouse lethal doses of viable, homologous rickettsiae. All responses except antibody titer and reduction of rickettsemia were similar to the responses noted in mice immunized with viable organisms. Antibody levels were lower in mice immunized with irradiated rickettsiae than in mice immunized with viable rickettsiae. Furthermore, mice that were immunized with viable rickettsiae demonstrated markedly lower levels of rickettsemia after intraperitoneal challenge compared with either mice immunized with irradiated rickettsiae or nonimmunized mice

  6. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death

    Science.gov (United States)

    Zhu, Xiaohong; Caplan, Jeffrey; Mamillapalli, Padmavathi; Czymmek, Kirk; Dinesh-Kumar, Savithramma P

    2010-01-01

    Programmed cell death (PCD) initiated at the pathogen-infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER-localized type IIB Ca2+-ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N- and fungal-immune receptor Cf9-mediated PCD, as well as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-induced cell death. The accelerated PCD rescues loss-of-resistance phenotype of Rar1, HSP90-silenced plants, but not SGT1-silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N-immune receptor-mediated PCD. Our results indicate that ER-Ca2+-ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response. PMID:20075858

  7. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  9. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Tucker, Jo A.; Jochems, Caroline; Gulley, James L.; Schlom, Jeffrey; Tsang, Kwong Y.

    2012-01-01

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  10. The crustin-like peptide plays opposite role in shrimp immune response to Vibrio alginolyticus and white spot syndrome virus (WSSV) infection.

    Science.gov (United States)

    Sun, Baozhen; Wang, Zhi; Zhu, Fei

    2017-07-01

    Crustin is an antimicrobial peptide (AMP) that plays a key role in innate immunity of crustaceans. In this study, we cloned the entire 660 bp crustin-like sequence with a 507 bp open reading frame encoding a 168 amino acid from Marsupenaeus japonicus. The crustin-like gene was primarily expressed in gills and over-expressed in shrimp hemocytes after challenge with WSSV or Vibrio alginolyticus. After knockdown crustin-like gene using specific double-stranded RNA (CRU-dsRNA), IMD, Rab7, L-lectin, mitogen-activated protein kinase, p53, prophenoloxidase and Rho were down-regulated and nitric oxide synthase, myosin and tumor necrosis factor-α were up-regulated in hemocytes at 24 h post dsRNA treatment. After WSSV challenge, The mortality, WSSV copy number and expressions of WSSV immediate early genes (IE1, IE2, DNA polymerase, VP28) were both decreased but the apoptosis rate was increased in CRU-dsRNA-treated shrimps, indicating that WSSV may take advantage of crustin-like to benefit its replication. After silenced the crustin-like, the results of phagocytosis showed that the phagocytic rate of shrimp hemocytes on WSSV decreased significantly. In contrast, the absence of crustin-like in shrimps increased the mortality following V. alginolyticus challenge, indicating that crustin-like may play a positive role in the antibacterial process. The phagocytosis experiment showed there was a higher phagocytosis rate of hemocytes after CRU-dsRNA treatment. The result indicated that V. alginolyticus may be able to use crustin-like to avoid phagocytosis of shrimp hemocytes. These results further added to our understanding of the function of crustin-like peptide and also provided its potential role in innate immunity in shrimp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Detection of herpes simplex virus type 2 (HSV-2) -specific cell-mediated immune responses in guinea pigs during latent HSV-2 genital infection.

    Science.gov (United States)

    Perry, Clarice L; Banasik, Brianne N; Gorder, Summer R; Xia, Jingya; Auclair, Sarah; Bourne, Nigel; Milligan, Gregg N

    2016-12-01

    Genital infections with herpes simplex virus type 2 (HSV-2) are a source of considerable morbidity and are a health concern for newborns exposed to virus during vaginal delivery. Additionally, HSV-2 infection diminishes the integrity of the vaginal epithelium resulting in increased susceptibility of individuals to infection with other sexually transmitted pathogens. Understanding immune protection against HSV-2 primary infection and immune modulation of virus shedding events following reactivation of the virus from latency is important for the development of effective prophylactic and therapeutic vaccines. Although the murine model of HSV-2 infection is useful for understanding immunity following immunization, it is limited by the lack of spontaneous reactivation of HSV-2 from latency. Genital infection of guinea pigs with HSV-2 accurately models the disease of humans including the spontaneous reactivation of HSV-2 from latency and provides a unique opportunity to examine virus-host interactions during latency. Although the guinea pig represents an accurate model of many human infections, relatively few reagents are available to study the immunological response to infection. To analyze the cell-mediated immune response of guinea pigs at extended periods of time after establishment of HSV-2 latency, we have modified flow-cytometry based proliferation assays and IFN-γ ELISPOT assays to detect and quantify HSV-specific cell-mediated responses during latent infection of guinea pigs. Here we demonstrate that a combination of proliferation and ELISPOT assays can be used to quantify and characterize effecter function of virus-specific immune memory responses during HSV-latency. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Complement C3 gene: Expression characterization and innate immune response in razor clam Sinonovacula constricta.

    Science.gov (United States)

    Peng, Maoxiao; Niu, Donghong; Wang, Fei; Chen, Zhiyi; Li, Jiale

    2016-08-01

    Complement component 3 (C3) is central to the complement system, playing an important role in immune defense, immune regulation and immune pathology. Several C3 genes have been characterized in invertebrates but very few in shellfish. The C3 gene was identified from the razor clam Sinonovacula constricta, referred to here as Sc-C3. It was found to be highly homologous with the C3 gene of Ruditapes decussatus. All eight model motifs of the C3 gene were found to be included in the thiolester bond and the C345C region. Sc-C3 was widely expressed in all healthy tissues with expression being highest in hemolymph. A significant difference in expression was revealed at the umbo larvae development stage. The expression of Sc-C3 was highly regulated in the hemolymph and liver, with a distinct response pattern being noted after a challenge with Micrococcus lysodeikticus and Vibrio parahemolyticus. It is therefore suggested that a complicated and unique response pathway may be present in S. constricta. Further, serum of S. constricta containing Sc-C3 was extracted. This was activated by LPS or bacterium for verification for function. The more obvious immune function of Sc-C3 was described as an effective membrane rupture in hemocyte cells of rabbit, V. parahemolyticus and Vibrio anguillarum. Thus, Sc-C3 plays an essential role in the immune defense of S. constricta. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The Major Players in Adaptive Immunity-Cell-mediated Immunity

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 6. The Major Players in Adaptive Immunity - Cell-mediated Immunity. Asma Ahmed Banishree Saha Anand Patwardhan Shwetha Shivaprasad Dipankar Nandi. General Article Volume 14 Issue 6 June 2009 pp 610-621 ...

  14. In vitro cell-mediated immunity assay using 125I-iododeoxyuridine

    International Nuclear Information System (INIS)

    Morris, J.E.; Graham, T.M.

    1979-01-01

    We investigated an in vitro cell-mediated immunity assay using incorporation of 125 I-iododeoxyuridine as an indicator of lymphocyte responsiveness to mitogen stimulation. The system permits the use of whole-blood cultures in rats and dogs

  15. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences.

    Science.gov (United States)

    Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis

    2017-02-01

    Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins

    Energy Technology Data Exchange (ETDEWEB)

    Canesi, Laura, E-mail: Laura.Canesi@unige.it [Dept. of Earth, Environmental and Life Sciences – DISTAV, University of Genoa (Italy); Ciacci, Caterina [Dept. of Biomolecular Sciences – DIBS, University of Urbino (Italy); Fabbri, Rita; Balbi, Teresa [Dept. of Earth, Environmental and Life Sciences – DISTAV, University of Genoa (Italy); Salis, Annalisa; Damonte, Gianluca [Centre of Excellence for Biomedical Research – CEBR, University of Genoa (Italy); Cortese, Katia [Department of Experimental Medicine – DIMES, University of Genoa (Italy); Caratto, Valentina [Dept. of Earth, Environmental and Life Sciences – DISTAV, University of Genoa (Italy); Monopoli, Marco P. [Centre for BioNanoInteractions, School of Chemistry and Chemical Biology, University College Dublin (Ireland); Department of Pharmaceutical and Medical Chemistry, Royal College of Surgeons, 123 St. Stephen Green, Dublin (Ireland); Dawson, Kenneth [Centre for BioNanoInteractions, School of Chemistry and Chemical Biology, University College Dublin (Ireland); Bergami, Elisa; Corsi, Ilaria [Dept. of Physical, Earth and Environmental Sciences, University of Siena (Italy)

    2016-10-15

    The bivalve Mytilus galloprovincialis has proven as a suitable model invertebrate for evaluating the potential impact of nanoparticles (NPs) in the marine environment. In particular, in mussels, the immune system represents a sensitive target for different types of NPs. In environmental conditions, both NP intrinsic properties and those of the receiving medium will affect particle behavior and consequent bioavailability/uptake/toxicity. However, the evaluation of the biological effects of NPs requires additional understanding of how, once within the organism, NPs interact at the molecular level with cells in a physiological environment. In mammalian systems, different NPs associate with serum soluble components, organized into a “protein corona”, which affects particle interactions with target cells. However, no information is available so far on the interactions of NPs with biological fluids of aquatic organisms. In this work, the influence of hemolymph serum (HS) on the in vitro effects of amino modified polystyrene NPs (PS-NH{sub 2}) on Mytilus hemocytes was investigated. Hemocytes were incubated with PS-NH{sub 2} suspensions in HS (1, 5 and 50 µg/mL) and the results were compared with those obtained in ASW medium. Cell functional parameters (lysosomal membrane stability, oxyradical production, phagocytosis) were evaluated, and morphological changes were investigated by TEM. The activation state of the signalling components involved in Mytilus immune response (p38 MAPK and PKC) was determined. The results show that in the presence of HS, PS-NH{sub 2} increased cellular damage and ROS production with respect to ASW medium. The effects were apparently mediated by disregulation of p38 MAPK signalling. The formation of a PS-NH{sub 2}-protein corona in HS was investigated by centrifugation, and 1D- gel electrophoresis and nano-HPLC-ESI-MS/MS. The results identified the Putative C1q domain containing protein (MgC1q6) as the only component of the PS-NH{sub 2} hard

  17. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins

    International Nuclear Information System (INIS)

    Canesi, Laura; Ciacci, Caterina; Fabbri, Rita; Balbi, Teresa; Salis, Annalisa; Damonte, Gianluca; Cortese, Katia; Caratto, Valentina; Monopoli, Marco P.; Dawson, Kenneth; Bergami, Elisa; Corsi, Ilaria

    2016-01-01

    The bivalve Mytilus galloprovincialis has proven as a suitable model invertebrate for evaluating the potential impact of nanoparticles (NPs) in the marine environment. In particular, in mussels, the immune system represents a sensitive target for different types of NPs. In environmental conditions, both NP intrinsic properties and those of the receiving medium will affect particle behavior and consequent bioavailability/uptake/toxicity. However, the evaluation of the biological effects of NPs requires additional understanding of how, once within the organism, NPs interact at the molecular level with cells in a physiological environment. In mammalian systems, different NPs associate with serum soluble components, organized into a “protein corona”, which affects particle interactions with target cells. However, no information is available so far on the interactions of NPs with biological fluids of aquatic organisms. In this work, the influence of hemolymph serum (HS) on the in vitro effects of amino modified polystyrene NPs (PS-NH 2 ) on Mytilus hemocytes was investigated. Hemocytes were incubated with PS-NH 2 suspensions in HS (1, 5 and 50 µg/mL) and the results were compared with those obtained in ASW medium. Cell functional parameters (lysosomal membrane stability, oxyradical production, phagocytosis) were evaluated, and morphological changes were investigated by TEM. The activation state of the signalling components involved in Mytilus immune response (p38 MAPK and PKC) was determined. The results show that in the presence of HS, PS-NH 2 increased cellular damage and ROS production with respect to ASW medium. The effects were apparently mediated by disregulation of p38 MAPK signalling. The formation of a PS-NH 2 -protein corona in HS was investigated by centrifugation, and 1D- gel electrophoresis and nano-HPLC-ESI-MS/MS. The results identified the Putative C1q domain containing protein (MgC1q6) as the only component of the PS-NH 2 hard protein corona in

  18. Immune responses in cattle vaccinated with gamma-irradiated Anaplasma marginale

    International Nuclear Information System (INIS)

    Sharma, S.P.; Bansal, G.C.

    1986-01-01

    The infectivity and immunogenecity of gamma-irradiated Anaplasma marginale organisms were studied in bovine calves. The severity of Anaplasma infection based on per cent infected red blood cells, haematological values and mortality was more in animals immunized with blood exposed to 60 kR in comparison to those inoculated with blood irradiated at 70, 80 and 90 kR. The immunizing controls demonstrated a significantly high parasitaemia, marked anaemia and more deaths. Marked and prolonged cell-mediated and humoral immune responses detectable in the first 3 weeks of post-immunization may be responsible for conferring of protective immunity. (author)

  19. Phagocytic activities of hemocytes from the deep-sea symbiotic mussels Bathymodiolus japonicus, B. platifrons, and B. septemdierum.

    Science.gov (United States)

    Tame, Akihiro; Yoshida, Takao; Ohishi, Kazue; Maruyama, Tadashi

    2015-07-01

    Deep-sea mytilid mussels harbor symbiotic bacteria in their gill epithelial cells that are horizontally or environmentally transmitted to the next generation of hosts. To understand the immune defense system in deep-sea symbiotic mussels, we examined the hemocyte populations of the symbiotic Bathymodiolus mussel species Bathymodiolus japonicus, Bathymodiolus platifrons, and Bathymodiolus septemdierum, and characterized three types of hemocytes: agranulocytes (AGs), basophilic granulocytes (BGs), and eosinophilic granulocytes (EGs). Of these, the EG cells were the largest (diameter, 8.4-10.0 μm) and had eosinophilic cytoplasm with numerous eosinophilic granules (diameter, 0.8-1.2 μm). Meanwhile, the BGs were of medium size (diameter, 6.7-8.0 μm) and contained small basophilic granules (diameter, 0.3-0.4 μm) in basophilic cytoplasm, and the AGs, the smallest of the hemocytes (diameter, 4.8-6.0 μm), had basophilic cytoplasm lacking granules. A lectin binding assay revealed that concanavalin A bound to all three hemocyte types, while wheat germ agglutinin bound exclusively to EGs and BGs. The total hemocyte population densities within the hemolymph of all three Bathymodiolus mussel species were similar (8.4-13.3 × 10(5) cells/mL), and the percentages of circulating AGs, BGs, and EGs in the hemolymph of these organisms were 44.7-48.5%, 14.3-17.6%, and 34.3-41.0%, respectively. To analyze the functional differences between these hemocytes, the phagocytic activity and post-phagocytic phagosome-lysosome fusion events were analyzed in each cell type using a fluorescent Alexa Fluor(®) 488-conjugated Escherichia coli bioparticle and a LysoTracker(®) lysosomal marker, respectively. While the AGs exhibited no phagocytic activity, both types of granulocytes were phagocytic. Of the three hemocyte types, the EGs exhibited the highest level of phagocytic activity as well as rapid phagosome-lysosome fusion, which occurred within 2 h of incubation. Meanwhile, the BGs showed

  20. Isotope-based immunological techniques. Their use in assessment of immune competence and the study of immune responses to pathogens

    International Nuclear Information System (INIS)

    Duffus, W.P.H.

    1984-01-01

    The influence of isotope-based techniques on both assessment of immune competence and immune response to pathogens is discussed. Immunodeficiencies acquired as a result of factors like malnutrition and concomitant disease can severely affect not only attempts to intensify and improve production but also successful immune response against important vaccines such as rinderpest and foot-and-mouth disease. Isotope-based techniques, with their accuracy, speed and small sample volume, are ideally suited for assessing immunocompetence. One of the main drawbacks remains antigen purity, an area where research should now be concentrated. Lymphocyte transformation is widely used to assess cell-mediated immuno-competence but techniques to assess biological functions such as phagocytosis and cell-mediated cytotoxicity could more usefully reflect immune status. These latter techniques utilize isotopes such as 3 H, 14 C, 32 P and 125 I. Investigation of specific cell-mediated immune response often requires a labelled target. Suitable isotopes such as 51 Cr, 99 Tcsup(m), 75 Se and 3 H are compared for their capacity to label both mammalian and parasite targets. Suggestions are made on a number of areas of research that might usefully be encouraged and supported in order to improve applied veterinary immunology in tropical countries. (author)

  1. Cell-mediated immunity during syphilis. A review

    Science.gov (United States)

    Pavia, Charles S.; Folds, James D.; Baseman, Joel B.

    1978-01-01

    Evidence is presented which reinforces the complexity of the host-parasite interaction during the course of syphilis. Infection with Treponema pallidum evokes a complicated antibody response and an assortment of cell-mediated immune reactions in the host. It appears that humoral immunity plays a minor role towards the complete elimination of syphilitic infection while the cellular limb of the immune response may be an important host defence mechanism. Information now available indicates that a state of anergy, or immunosuppression, exists in the early stages of human and experimental rabbit syphilis based upon negative skin reactions to T. pallidum antigen(s), the abnormal histological appearance of lymphoid organs, and impaired in vitro lymphocyte reactivity. It is also evident that in the later stages of the disease cellular immunity becomes activated as delayed type skin reactions can normally be elicited in tertiary syphilitics and lymphocyte behaviour in cell culture appears normal. Several mechanisms have been invoked to explain the delay in an effective immune response against syphilitic infection and the duration of the disease: (1) a capsule-like substance on the outer surface of virulant T. pallidum may act as a barrier against treponemicidal antibody; (2) this material and other biological properties of virulent treponemes could enable spirochaetes to escape being engulfed by macrophages and other phagocytic cells; (3) antigenic competition among different treponemal antigens causing partial tolerance; (4) T. pallidum infection may bring about the elaboration of immunosuppressive substances of host or treponemal origin which inhibit the proper function of lymphocytes, macrophages, and other cell types. PMID:350348

  2. Dynamic range of Nef-mediated evasion of HLA class II-restricted immune responses in early HIV-1 infection.

    Science.gov (United States)

    Mahiti, Macdonald; Brumme, Zabrina L; Jessen, Heiko; Brockman, Mark A; Ueno, Takamasa

    2015-07-31

    HLA class II-restricted CD4(+) T lymphocytes play an important role in controlling HIV-1 replication, especially in the acute/early infection stage. But, HIV-1 Nef counteracts this immune response by down-regulating HLA-DR and up-regulating the invariant chain associated with immature HLA-II (Ii). Although functional heterogeneity of various Nef activities, including down-regulation of HLA class I (HLA-I), is well documented, our understanding of Nef-mediated evasion of HLA-II-restricted immune responses during acute/early infection remains limited. Here, we examined the ability of Nef clones from 47 subjects with acute/early progressive infection and 46 subjects with chronic progressive infection to up-regulate Ii and down-regulate HLA-DR and HLA-I from the surface of HIV-infected cells. HLA-I down-regulation function was preserved among acute/early Nef clones, whereas both HLA-DR down-regulation and Ii up-regulation functions displayed relatively broad dynamic ranges. Nef's ability to down-regulate HLA-DR and up-regulate Ii correlated positively at this stage, suggesting they are functionally linked in vivo. Acute/early Nef clones also exhibited higher HLA-DR down-regulation and lower Ii up-regulation functions compared to chronic Nef clones. Taken together, our results support enhanced Nef-mediated HLA class II immune evasion activities in acute/early compared to chronic infection, highlighting the potential importance of these functions following transmission. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The Scaffold Immune Microenvironment: Biomaterial-Mediated Immune Polarization in Traumatic and Nontraumatic Applications.

    Science.gov (United States)

    Sadtler, Kaitlyn; Allen, Brian W; Estrellas, Kenneth; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H

    2017-10-01

    The immune system mediates tissue growth and homeostasis and is the first responder to injury or biomaterial implantation. Recently, it has been appreciated that immune cells play a critical role in wound healing and tissue repair and should thus be considered potentially beneficial, particularly in the context of scaffolds for regenerative medicine. In this study, we present a flow cytometric analysis of cellular recruitment to tissue-derived extracellular matrix scaffolds, where we quantitatively describe the infiltration and polarization of several immune subtypes, including macrophages, dendritic cells, neutrophils, monocytes, T cells, and B cells. We define a specific scaffold-associated macrophage (SAM) that expresses CD11b + F4/80 + CD11c +/- CD206 hi CD86 + MHCII + that are characteristic of an M2-like cell (CD206 hi ) with high antigen presentation capabilities (MHCII + ). Adaptive immune cells tightly regulate the phenotype of a mature SAM. These studies provide a foundation for detailed characterization of the scaffold immune microenvironment of a given biomaterial scaffold to determine the effect of scaffold changes on immune response and subsequent therapeutic outcome of that material.

  4. Immune-mediated rippling muscle disease and myasthenia gravis.

    Science.gov (United States)

    Bettini, Mariela; Gonorazky, Hernan; Chaves, Marcelo; Fulgenzi, Ernesto; Figueredo, Alejandra; Christiansen, Silvia; Cristiano, Edgardo; Bertini, Enrico S; Rugiero, Marcelo

    2016-10-15

    Cases of acquired rippling muscle disease in association with myasthenia gravis have been reported. We present three patients with iRMD (immune-mediated rippling muscle disease) and AChR-antibody positive myasthenia gravis. None of them had thymus pathology. They presented exercise-induced muscle rippling combined with generalized myasthenia gravis. One of them had muscle biopsy showing a myopathic pattern and a patchy immunostaining with caveolin antibodies. They were successfully treated steroids and azathioprine. The immune nature of this association is supported by the response to immunotherapies and the positivity of AChR-antibodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effects of alcohol consumption on the allergen-specific immune response in mice

    DEFF Research Database (Denmark)

    Linneberg, Allan; Roursgaard, Martin; Hersoug, Lars-Georg

    2008-01-01

    There is evidence that chronic alcohol consumption impairs the T-helper 1 (Th1) lymphocyte-regulated cell-mediated immune response possibly favoring a Th2 deviation of the immune response. Moreover, a few epidemiological studies have linked alcohol consumption to allergen-specific IgE sensitization....

  6. dOCRL maintains immune cell quiescence by regulating endosomal traffic.

    Directory of Open Access Journals (Sweden)

    Steven J Del Signore

    2017-10-01

    Full Text Available Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome.

  7. The Impact of Ultraviolet Radiation on Immune Responses (invited paper)

    International Nuclear Information System (INIS)

    Norval, M.

    2000-01-01

    In addition to its genotoxic and mutagenic effects, UV has the capacity to suppress immune responses. The mechanism involved is complex, beginning with chromophores located in the skin which absorb UV, this leading in turn to changes in the production of a range of immune mediators locally and systemically which then induce phenotypic and functional alterations in antigen presentation. The cascade ends with the promotion of a subset of T-cells downregulating cell-mediated immunity. The possible consequences of this immunomodulation for the control of tumours and infectious diseases require careful evaluation from laboratory and human studies. (author)

  8. Recurrent Vulvovaginal Candidiasis: Could It Be Related to Cell-Mediated Immunity Defect in Response to Candida Antigen?

    Directory of Open Access Journals (Sweden)

    Zahra Talaei

    2017-09-01

    Full Text Available Background Recurrent vulvovaginal candidiasis (RVVC is a common cause of morbidity affecting millions of women worldwide. Patients with RVVC are thought to have an underlying immunologic defect. This study has been established to evaluate cell-mediated immunity defect in response to candida antigen in RVVC cases. Materials and Methods Our cross-sectional study was performed in 3 groups of RVVC patients (cases, healthy individuals (control I and known cases of chronic mucocutaneous candidiasis (CMC (control II. Patients who met the inclusion criteria of RVVC were selected consecutively and were allocated in the case group. Peripheral blood mononuclear cells were isolated and labeled with CFSE and proliferation rate was measured in exposure to candida antigen via flow cytometry. Results T lymphocyte proliferation in response to candida was significantly lower in RVVC cases (n=24 and CMC patients (n=7 compared to healthy individuals (n=20, P0.05. Family history of primary immunodeficiency diseases (PID differed significantly among groups (P=0.01, RVVC patients has family history of PID more than control I (29.2 vs. 0%, P=0.008 but not statistically different from CMC patients (29.2 vs. 42.9%, P>0.05. Prevalence of atopy was greater in RVVC cases compared to healthy individuals (41.3 vs. 15%, P=0.054. Lymphoproliferative activity and vaginal symptoms were significantly different among RVVC cases with and without allergy (P=0.01, P=0.02. Conclusion Our findings revealed that T cells do not actively proliferate in response to Candida antigen in some RVVC cases. So it is concluded that patients with cell-mediated immunity defect are more susceptible to recurrent fungal infections of vulva and vagina. Nonetheless, some other cases of RVVC showed normal function of T cells. Further evaluations showed that these patients suffer from atopy. It is hypothesized that higher frequency of VVC in patients with history of atopy might be due to allergic response

  9. Two hemocyte lineages exist in silkworm larval hematopoietic organ.

    Science.gov (United States)

    Nakahara, Yuichi; Kanamori, Yasushi; Kiuchi, Makoto; Kamimura, Manabu

    2010-07-28

    Insects have multiple hemocyte morphotypes with different functions as do vertebrates, however, their hematopoietic lineages are largely unexplored with the exception of Drosophila melanogaster. To study the hematopoietic lineage of the silkworm, Bombyx mori, we investigated in vivo and in vitro differentiation of hemocyte precursors in the hematopoietic organ (HPO) into the four mature hemocyte subsets, namely, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. Five days after implantation of enzymatically-dispersed HPO cells from a GFP-expressing transgenic line into the hemocoel of normal larvae, differentiation into plasmatocytes, granulocytes and oenocytoids, but not spherulocytes, was observed. When the HPO cells were cultured in vitro, plasmatocytes appeared rapidly, and oenocytoids possessing prophenol oxidase activity appeared several days later. HPO cells were also able to differentiate into a small number of granulocytes, but not into spherulocytes. When functionally mature plasmatocytes were cultured in vitro, oenocytoids were observed 10 days later. These results suggest that the hemocyte precursors in HPO first differentiate into plasmatocytes, which further change into oenocytoids. From these results, we propose that B. mori hemocytes can be divided into two major lineages, a granulocyte lineage and a plasmatocyte-oenocytoid lineage. The origins of the spherulocytes could not be determined in this study. We construct a model for the hematopoietic lineages at the larval stage of B. mori.

  10. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.

    Science.gov (United States)

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U

    2016-11-30

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

  11. Differential immune responses to albumin adducts of reactive intermediates of trichloroethene in MRL+/+ mice

    International Nuclear Information System (INIS)

    Cai Ping; Koenig, Rolf; Khan, M. Firoze; Kaphalia, Bhupendra S.; Ansari, G.A.S.

    2007-01-01

    Trichloroethene (TCE) is an industrial degreasing solvent and widespread environmental contaminant. Exposure to TCE is associated with autoimmunity. The mode of action of TCE is via its oxidative metabolism, and most likely, immunotoxicity is mediated via haptenization of macromolecules and subsequent induction of immune responses. To better understand the role of protein haptenization through TCE metabolism, we immunized MRL+/+ mice with albumin adducts of various TCE reactive intermediates. Serum immunoglobulins and cytokine levels were measured to determine immune responses against haptenized albumin. We found antigen-specific IgG responses of the IgG subtypes IgG 1 , IgG 2a , and IgG 2b , with IgG 1 predominating. Serum levels of G-CSF were increased in immunized mice, suggesting macrophage activation. Liver histology revealed lymphocyte infiltration in the lobules and the portal area following immunization with formyl-albumin. Our findings suggest that proteins haptenized by metabolites of TCE may act as neo-antigens that can induce humoral immune responses and T cell-mediated hepatitis

  12. Helminths as governors of immune-mediated inflammation.

    Science.gov (United States)

    Elliott, David E; Summers, Robert W; Weinstock, Joel V

    2007-04-01

    Immune-mediated diseases (e.g. inflammatory bowel disease, asthma, multiple sclerosis and autoimmune diabetes) are increasing in prevalence and emerge as populations adopt meticulously hygienic lifestyles. This change in lifestyles precludes exposure to helminths (parasitic worms). Loss of natural helminth exposure removes a previously universal Th2 and regulatory immune biasing imparted by these organisms. Helminths protect animals from developing immune-mediated diseases (colitis, reactive airway disease, encephalitis and diabetes). Clinical trials show that exposure to helminths can reduce disease activity in patients with ulcerative colitis or Crohn's disease. This paper summarises work by multiple groups demonstrating that colonization with helminths alters immune reactivity and protects against disease from dysregulated inflammation.

  13. Mathematical and Computational Modeling for Tumor Virotherapy with Mediated Immunity.

    Science.gov (United States)

    Timalsina, Asim; Tian, Jianjun Paul; Wang, Jin

    2017-08-01

    We propose a new mathematical modeling framework based on partial differential equations to study tumor virotherapy with mediated immunity. The model incorporates both innate and adaptive immune responses and represents the complex interaction among tumor cells, oncolytic viruses, and immune systems on a domain with a moving boundary. Using carefully designed computational methods, we conduct extensive numerical simulation to the model. The results allow us to examine tumor development under a wide range of settings and provide insight into several important aspects of the virotherapy, including the dependence of the efficacy on a few key parameters and the delay in the adaptive immunity. Our findings also suggest possible ways to improve the virotherapy for tumor treatment.

  14. Immunomodulator-based enhancement of anti smallpox immune responses.

    Directory of Open Access Journals (Sweden)

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  15. Immunomodulator-based enhancement of anti smallpox immune responses.

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  16. Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice.

    Science.gov (United States)

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-04-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy.

  17. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway

    Science.gov (United States)

    Gardner, Thomas J.

    2016-01-01

    SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  18. Two hemocyte lineages exist in silkworm larval hematopoietic organ.

    Directory of Open Access Journals (Sweden)

    Yuichi Nakahara

    Full Text Available BACKGROUND: Insects have multiple hemocyte morphotypes with different functions as do vertebrates, however, their hematopoietic lineages are largely unexplored with the exception of Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: To study the hematopoietic lineage of the silkworm, Bombyx mori, we investigated in vivo and in vitro differentiation of hemocyte precursors in the hematopoietic organ (HPO into the four mature hemocyte subsets, namely, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. Five days after implantation of enzymatically-dispersed HPO cells from a GFP-expressing transgenic line into the hemocoel of normal larvae, differentiation into plasmatocytes, granulocytes and oenocytoids, but not spherulocytes, was observed. When the HPO cells were cultured in vitro, plasmatocytes appeared rapidly, and oenocytoids possessing prophenol oxidase activity appeared several days later. HPO cells were also able to differentiate into a small number of granulocytes, but not into spherulocytes. When functionally mature plasmatocytes were cultured in vitro, oenocytoids were observed 10 days later. These results suggest that the hemocyte precursors in HPO first differentiate into plasmatocytes, which further change into oenocytoids. CONCLUSIONS/SIGNIFICANCE: From these results, we propose that B. mori hemocytes can be divided into two major lineages, a granulocyte lineage and a plasmatocyte-oenocytoid lineage. The origins of the spherulocytes could not be determined in this study. We construct a model for the hematopoietic lineages at the larval stage of B. mori.

  19. Toll mediated infection response is altered by gravity and spaceflight in Drosophila.

    Directory of Open Access Journals (Sweden)

    Katherine Taylor

    Full Text Available Space travel presents unlimited opportunities for exploration and discovery, but requires better understanding of the biological consequences of long-term exposure to spaceflight. Immune function in particular is relevant for space travel. Human immune responses are weakened in space, with increased vulnerability to opportunistic infections and immune-related conditions. In addition, microorganisms can become more virulent in space, causing further challenges to health. To understand these issues better and to contribute to design of effective countermeasures, we used the Drosophila model of innate immunity to study immune responses in both hypergravity and spaceflight. Focusing on infections mediated through the conserved Toll and Imd signaling pathways, we found that hypergravity improves resistance to Toll-mediated fungal infections except in a known gravitaxis mutant of the yuri gagarin gene. These results led to the first spaceflight project on Drosophila immunity, in which flies that developed to adulthood in microgravity were assessed for immune responses by transcription profiling on return to Earth. Spaceflight alone altered transcription, producing activation of the heat shock stress system. Space flies subsequently infected by fungus failed to activate the Toll pathway. In contrast, bacterial infection produced normal activation of the Imd pathway. We speculate on possible linkage between functional Toll signaling and the heat shock chaperone system. Our major findings are that hypergravity and spaceflight have opposing effects, and that spaceflight produces stress-related transcriptional responses and results in a specific inability to mount a Toll-mediated infection response.

  20. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    International Nuclear Information System (INIS)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses

  1. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  2. Feminizing Wolbachia: a transcriptomics approach with insights on the immune response genes in Armadillidium vulgare

    Directory of Open Access Journals (Sweden)

    Chevalier Frédéric

    2012-01-01

    Full Text Available Abstract Background Wolbachia are vertically transmitted bacteria known to be the most widespread endosymbiont in arthropods. They induce various alterations of the reproduction of their host, including feminization of genetic males in isopod crustaceans. In the pill bug Armadillidium vulgare, the presence of Wolbachia is also associated with detrimental effects on host fertility and lifespan. Deleterious effects have been demonstrated on hemocyte density, phenoloxidase activity, and natural hemolymph septicemia, suggesting that infected individuals could have defective immune capacities. Since nothing is known about the molecular mechanisms involved in Wolbachia-A. vulgare interactions and its secondary immunocompetence modulation, we developed a transcriptomics strategy and compared A. vulgare gene expression between Wolbachia-infected animals (i.e., “symbiotic” animals and uninfected ones (i.e., “asymbiotic” animals as well as between animals challenged or not challenged by a pathogenic bacteria. Results Since very little genetic data is available on A. vulgare, we produced several EST libraries and generated a total of 28 606 ESTs. Analyses of these ESTs revealed that immune processes were over-represented in most experimental conditions (responses to a symbiont and to a pathogen. Considering canonical crustacean immune pathways, these genes encode antimicrobial peptides or are involved in pathogen recognition, detoxification, and autophagy. By RT-qPCR, we demonstrated a general trend towards gene under-expression in symbiotic whole animals and ovaries whereas the same gene set tends to be over-expressed in symbiotic immune tissues. Conclusion This study allowed us to generate the first reference transcriptome ever obtained in the Isopoda group and to identify genes involved in the major known crustacean immune pathways encompassing cellular and humoral responses. Expression of immune-related genes revealed a modulation of host

  3. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  4. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...... control or virus-induced T-cell-dependent inflammation. Thus, MIP-1alpha is not mandatory for T-cell-mediated antiviral immunity....

  5. Induction of cell-mediated immunity to Mycobacterium leprae in mice

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.J.; Lefford, M.J.

    1978-01-01

    The immune response of mice to armadillo-derived, irradiation-killed Mycobacterium leprae (I-ML) was investigated. Following injection of 100 microgram of I-ML into the left hind footpads of mice, a state of cell-mediated immunity (CMI) was engendered to antigens of M. leprae. The evidence for CMI was as follows: (1) development of delayed-type hypersensitivity to both human tuberculin purified protein derivative and soluble M. leprae antigens; (2) T-lymphocyte-dependent macrophage activation at the inoculation site; (3) specific systemaic resistance to the cross-reactive species M. tuberculosis; and (4) immunopotentiation of the delayed-type hypersensitivity response to an unrelated antigen. The CMI induced by I-ML in aqueous suspension was greater than that obtained with the same antigen in water-in-oil emulsion, even though the latter generated a more severe reaction at the site of immunization. I-ML also induced a stronger CMI response than the corresponding dose of heat-killed BCG.

  6. In vitro cultivation and cryopreservation of Babesia bigemina sporokinetes in hemocytes of Rhipicephalus microplus.

    Science.gov (United States)

    de Rezende, Jania; Rangel, Charles P; McIntosh, Douglas; Silveira, Júlia A G; Cunha, Nathalie C; Ramos, Carlos A N; Fonseca, Adivaldo H

    2015-09-15

    Cultures of tick hemocytes represent alternative cell lines for the isolation and cultivation of a variety of hemoparasites. The present study reports the development and evaluation of methods for the in vitro culture and maintenance of sporokinetes of Babesia bigemina in association with hemocytes of the tick Rhipicephalus microplus. Hemolymph, from engorged females infected with B. bigemina sporokinetes, was incubated at 28 °C in L15 culture medium supplemented with 40% fetal bovine serum. Adherence of hemocytes to flask surfaces and the development of B. bigemina sporokinetes commenced on the first day of cultivation. The protozoa demonstrated clear motility and the capacity to adhere to hemocyte membranes for up to 25 days, at which time the hemocytes began to show signs of degeneration. Examination of Giemsa stained hemocyte cultures, revealed the presence of pyriformis forms, as well as mature and immature sporokinetes with dark red nuclei, centralized or near the apical extremities. Sporokinetes harvested from culture supernatants were cryopreserved in liquid nitrogen. Inoculation of parasite-free hemocyte cultures with defrosted sporokinetes, demonstrated the viability and interaction of the protozoa with the hemocytes over 21 days. Cultured hemocytes of R. microplus hold potential for development as a tool in the study of host parasite interactions and as a substrate for the in vitro maintenance of B. bigemina sporokinetes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability.

    Science.gov (United States)

    Seo, Gi Won; Jo, Yong Hun; Seong, Jeong Hwan; Park, Ki Beom; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Kim, Sun-Am; Lee, Yong Seok; Kim, Yu Jung; Han, Yeon Soo

    2016-08-20

    The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ) in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES) sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coli Tm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP) into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform.

  8. The Silencing of a 14-3-3ɛ Homolog in Tenebrio molitor Leads to Increased Antimicrobial Activity in Hemocyte and Reduces Larval Survivability

    Directory of Open Access Journals (Sweden)

    Gi Won Seo

    2016-08-01

    Full Text Available The 14-3-3 family of phosphorylated serine-binding proteins acts as signaling molecules in biological processes such as metabolism, division, differentiation, autophagy, and apoptosis. Herein, we report the requirement of 14-3-3ɛ isoform from Tenebrio molitor (Tm14-3-3ɛ in the hemocyte antimicrobial activity. The Tm14-3-3ɛ transcript is 771 nucleotides in length and encodes a polypeptide of 256 amino acid residues. The protein has the typical 14-3-3 domain, the nuclear export signal (NES sequence, and the peptide binding residues. The Tm14-3-3ɛ transcript shows a significant three-fold expression in the hemocyte of T. molitor larvae when infected with Escherichia coli Tm14-3-3ɛ silenced larvae show significantly lower survival rates when infected with E. coli. Under Tm14-3-3ɛ silenced condition, a strong antimicrobial activity is elicited in the hemocyte of the host inoculated with E. coli. This suggests impaired secretion of antimicrobial peptides (AMP into the hemolymph. Furthermore, a reduction in AMP secretion under Tm14-3-3ɛ silenced condition would be responsible for loss in the capacity to kill bacteria and might explain the reduced survivability of the larvae upon E. coli challenge. This shows that Tm14-3-3ɛ is required to maintain innate immunity in T. molitor by enabling antimicrobial secretion into the hemolymph and explains the functional specialization of the isoform.

  9. Interferon-Mediated Innate Immune Responses against Malaria Parasite Liver Stages

    Directory of Open Access Journals (Sweden)

    Jessica L. Miller

    2014-04-01

    Full Text Available Mosquito-transmitted malaria parasites infect hepatocytes and asymptomatically replicate as liver stages. Using RNA sequencing, we show that a rodent malaria liver-stage infection stimulates a robust innate immune response including type I interferon (IFN and IFNγ pathways. Liver-stage infection is suppressed by these infection-engendered innate responses. This suppression was abrogated in mice deficient in IFNγ, the type I IFN α/β receptor (IFNAR, and interferon regulatory factor 3. Natural killer and CD49b+CD3+ natural killer T (NKT cells increased in the liver after a primary infection, and CD1d-restricted NKT cells, which secrete IFNγ, were critical in reducing liver-stage burden of a secondary infection. Lack of IFNAR signaling abrogated the increase in NKT cell numbers in the liver, showing a link between type I IFN signaling, cell recruitment, and subsequent parasite elimination. Our findings demonstrate innate immune sensing of malaria parasite liver-stage infection and that the ensuing innate responses can eliminate the parasite.

  10. Prognosis in canine idiopathic immune-mediated haemolytic anaemia

    NARCIS (Netherlands)

    Piek, C.J.

    2011-01-01

    Canine idiopathic immune-mediated haemolytic anaemia (iIMHA) is one of the most frequently occurring immune-mediated diseases in dogs. A gel-based Coombs' test was shown to perform equally well as a classical Coombs' test. Since the gel-based Coombs' test can be commercially produced and is easy and

  11. Immunomodulator-Based Enhancement of Anti Smallpox Immune Responses

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L.; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    Background The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. Methods We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. Results The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. Conclusion These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform. PMID:25875833

  12. Humoral and cell-mediated immune responses to influenza vaccination in equine metabolic syndrome (EMS) horses.

    Science.gov (United States)

    Elzinga, Sarah; Reedy, Stephanie; Barker, Virginia D; Chambers, Thomas M; Adams, Amanda A

    2018-05-01

    Obesity is an increasing problem in the equine population with recent reports indicating that the percentage of overweight horses may range anywhere from 20.6-51%. Obesity in horses has been linked to more serious health concerns such as equine metabolic syndrome (EMS). EMS is a serious problem in the equine industry given its defining characteristics of insulin dysregualtion and obesity, as well as the involvement of laminitis. Little research however has been conducted to determine the effects of EMS on routine healthcare of these horses, in particular how they respond to vaccination. It has been shown that obese humans and mice have decreased immune responses to vaccination. EMS may have similar effects on vaccine responses in horses. If this is the case, these animals may be more susceptible to disease, acting as unknown disease reservoirs. Therefore, we investigated the effects of EMS on immune responses to routine influenza vaccination. Twenty-five adult horses of mixed-sex and mixed-breed (8-21 years old) horses; 13 EMS and 12 non-EMS were selected. Within each group, 4 horses served as non-vaccinate saline controls and the remaining horses were vaccinated with a commercially available equine influenza vaccine. Vaccination (influenza or saline) was administered on weeks 0 and 3, and peripheral blood samples taken on week 0 prior to vaccination and on weeks 1, 2, 3, 4, and 5 post vaccination. Blood samples were used to measure hemagglutination inhibition (HI) titers and equine influenza specific IgGa, IgGb, and IgGT levels. Blood samples were also used to isolate peripheral blood mononuclear cells (PBMCs) for analysis of cell mediated immune (CMI) responses via real-time polymerase chain reaction (RT-PCR). All horses receiving influenza vaccination responded with significant increases (P equine influenza specific antibodies following vaccination compared to saline controls. EMS did not significantly affect (P > 0.05) humoral immune responses as measured

  13. Combined effect of x irradiation and cell-mediated immune reaction

    International Nuclear Information System (INIS)

    Song, C.W.; Guertin, D.P.

    1978-01-01

    The combined effect of radiation and cell-mediated immune reaction on tumor cells was investigated in vitro. Mastocytoma P815-X2 cells of DBA mice either were irradiated first and subjected to immune lysis by immune splenic lymphocytes of C57Bl mice, or the tumor cells were subjected to immune reaction first and then irradiated. Cell survival was quantitated by colony formation in soft agar medium. It was observed that cellular immune damage to tumor cells did not influence the response of tumor cells to subsequent radiation. Irradiation of tumor cells first, followed by subjection of the cells to cellular immune reaction, slightly enhanced the death of the tumor cells. It appears that this enhanced death might have resulted from a relative increase in the ratio of the number of cytotoxic immune cells to the number of target tumor cells in the incubation mixture as a consequence of the decrease in the number of viable tumor cells by radiation

  14. The Mannose Receptor in Regulation of Helminth-Mediated Host Immunity

    Directory of Open Access Journals (Sweden)

    Irma van Die

    2017-11-01

    Full Text Available Infection with parasitic helminths affects humanity and animal welfare. Parasitic helminths have the capacity to modulate host immune responses to promote their survival in infected hosts, often for a long time leading to chronic infections. In contrast to many infectious microbes, however, the helminths are able to induce immune responses that show positive bystander effects such as the protection to several immune disorders, including multiple sclerosis, inflammatory bowel disease, and allergies. They generally promote the generation of a tolerogenic immune microenvironment including the induction of type 2 (Th2 responses and a sub-population of alternatively activated macrophages. It is proposed that this anti-inflammatory response enables helminths to survive in their hosts and protects the host from excessive pathology arising from infection with these large pathogens. In any case, there is an urgent need to enhance understanding of how helminths beneficially modulate inflammatory reactions, to identify the molecules involved and to promote approaches to exploit this knowledge for future therapeutic interventions. Evidence is increasing that C-type lectins play an important role in driving helminth-mediated immune responses. C-type lectins belong to a large family of calcium-dependent receptors with broad glycan specificity. They are abundantly present on immune cells, such as dendritic cells and macrophages, which are essential in shaping host immune responses. Here, we will focus on the role of the C-type lectin macrophage mannose receptor (MR in helminth–host interactions, which is a critically understudied area in the field of helminth immunobiology. We give an overview of the structural aspects of the MR including its glycan specificity, and the functional implications of the MR in helminth–host interactions focusing on a few selected helminth species.

  15. The Protective Effects of Extra Virgin Olive Oil on Immune-mediated Inflammatory Responses.

    Science.gov (United States)

    Casas, Rosa; Estruch, Ramon; Sacanella, Emilio

    2018-01-01

    The increasing interest in the Mediterranean diet (MeDiet) hinges on the relevant role it plays in inflammatory diseases. Several clinical, epidemiological and experimental evidences suggest that consumption of the MeDiet reduces the incidence of certain pathologies related to oxidative stress, chronic inflammation and immune system diseases such as cancer, atherosclerosis and cardiovascular disease (CVD). These reductions can be partially attributed to extra virgin olive oil (EVOO) consumption which has been described as a key bioactive food because of its high nutritional quality and its particular composition of fatty acids, vitamins and polyphenols. Indeed, the beneficial effects of EVOO have been linked to its fatty acid composition, which is very rich in monounsaturated fatty acids (MUFA), and has moderate saturated and polyunsaturated fatty acids (PUFA). The current knowledge available on the beneficial effects of EVOO and its phenolic compounds, specifically its biological properties and antioxidant capacity against immune-mediated inflammatory responses (atherosclerosis, rheumatoid arthritis, diabetes, obesity, cancer, inflammatory bowel disease or neurodegenerative disease, among others) in addition to its potential clinical applications. The increasing body of studies carried out provides compelling evidence that olive polyphenols are potential candidates to combat chronic inflammatory states. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Wash functions downstream of Rho1 GTPase in a subset of Drosophila immune cell developmental migrations

    Science.gov (United States)

    Verboon, Jeffrey M.; Rahe, Travis K.; Rodriguez-Mesa, Evelyn; Parkhurst, Susan M.

    2015-01-01

    Drosophila immune cells, the hemocytes, undergo four stereotypical developmental migrations to populate the embryo, where they provide immune reconnoitering, as well as a number of non–immune-related functions necessary for proper embryogenesis. Here, we describe a role for Rho1 in one of these developmental migrations in which posteriorly located hemocytes migrate toward the head. This migration requires the interaction of Rho1 with its downstream effector Wash, a Wiskott–Aldrich syndrome family protein. Both Wash knockdown and a Rho1 transgene harboring a mutation that prevents Wash binding exhibit the same developmental migratory defect as Rho1 knockdown. Wash activates the Arp2/3 complex, whose activity is needed for this migration, whereas members of the WASH regulatory complex (SWIP, Strumpellin, and CCDC53) are not. Our results suggest a WASH complex–independent signaling pathway to regulate the cytoskeleton during a subset of hemocyte developmental migrations. PMID:25739458

  17. Consequences of Food Restriction for Immune Defense, Parasite Infection, and Fitness in Monarch Butterflies.

    Science.gov (United States)

    McKay, Alexa Fritzsche; Ezenwa, Vanessa O; Altizer, Sonia

    2016-01-01

    Organisms have a finite pool of resources to allocate toward multiple competing needs, such as development, reproduction, and enemy defense. Abundant resources can support investment in multiple traits simultaneously, but limited resources might promote trade-offs between fitness-related traits and immune defenses. We asked how food restriction at both larval and adult life stages of the monarch butterfly (Danaus plexippus) affected measures of immunity, fitness, and immune-fitness interactions. We experimentally infected a subset of monarchs with a specialist protozoan parasite to determine whether parasitism further affected these relationships and whether food restriction influenced the outcome of infection. Larval food restriction reduced monarch fitness measures both within the same life stage (e.g., pupal mass) as well as later in life (e.g., adult lifespan); adult food restriction further reduced adult lifespan. Larval food restriction lowered both hemocyte concentration and phenoloxidase activity at the larval stage, and the effects of larval food restriction on phenoloxidase activity persisted when immunity was sampled at the adult stage. Adult food restriction reduced only adult phenoloxidase activity but not hemocyte concentration. Parasite spore load decreased with one measure of larval immunity, but food restriction did not increase the probability of parasite infection. Across monarchs, we found a negative relationship between larval hemocyte concentration and pupal mass, and a trade-off between adult hemocyte concentration and adult life span was evident in parasitized female monarchs. Adult life span increased with phenoloxidase activity in some subsets of monarchs. Our results emphasize that food restriction can alter fitness and immunity across multiple life stages. Understanding the consequences of resource limitation for immune defense is therefore important for predicting how increasing constraints on wildlife resources will affect fitness and

  18. Tumor PDT-associated immune response: relevance of sphingolipids

    Science.gov (United States)

    Korbelik, Mladen; Merchant, Soroush; Separovic, Duska M.

    2010-02-01

    Sphingolipids have become recognized as essential effector molecules in signal transduction with involvement in various aspects of cell function and death, immune response and cancer treatment response. Major representatives of sphingolipids family, ceramide, sphingosine and sphingosine-1-phosphate (S1P), have attracted interest in their relevance to tumor response to photodynamic therapy (PDT) because of their roles as enhancers of apoptosis, mediators of cell growth and vasculogenesis, and regulators of immune response. Our recent in vivo studies with mouse tumor models have confirmed that PDT treatment has a pronounced impact on sphingolipid profile in the targeted tumor and that significant advances in therapeutic gain with PDT can be attained by combining this modality with adjuvant treatment with ceramide analog LCL29.

  19. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter

    2009-01-01

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper...

  20. Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection.

    Science.gov (United States)

    Kaewkascholkul, Napol; Somboonviwat, Kulwadee; Asakawa, Shuichi; Hirono, Ikuo; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2016-07-01

    MicroRNAs are short noncoding RNAs of RNA interference pathways that regulate gene expression through partial complementary base-pairing to target mRNAs. In this study, miRNAs that are expressed in white spot syndrome virus (WSSV)-infected Penaeus monodon, were identified using next generation sequencing. Forty-six miRNA homologs were identified from WSSV-infected shrimp hemocyte. Stem-loop real-time RT-PCR analysis showed that 11 out of 16 selected miRNAs were differentially expressed upon WSSV infection. Of those, pmo-miR-315 and pmo-miR-750 were highly responsive miRNAs. miRNA target prediction revealed that the miRNAs were targeted at 5'UTR, ORF, and 3'UTR of several immune-related genes such as genes encoding antimicrobial peptides, signaling transduction proteins, heat shock proteins, oxidative stress proteins, proteinases or proteinase inhibitors, proteins in blood clotting system, apoptosis-related proteins, proteins in prophenoloxidase system, pattern recognition proteins and other immune molecules. The highly conserved miRNA homolog, pmo-bantam, was characterized for its function in shrimp. The pmo-bantam was predicted to target the 3'UTR of Kunitz-type serine protease inhibitor (KuSPI). Binding of pmo-bantam to the target sequence of KuSPI gene was analyzed by luciferase reporter assay. Correlation of pmo-bantam and KuSPI expression was observed in lymphoid organ of WSSV-infected shrimp. These results implied that miRNAs might play roles as immune gene regulators in shrimp antiviral response. Copyright © 2016. Published by Elsevier Ltd.

  1. Oxidative stress and cytotoxicity elicited lipid peroxidation in hemocytes of Bombyx mori larva infested with dipteran parasitoid, Exorista bombycis.

    Science.gov (United States)

    Pooja, Makwana; Pradeep, Appukuttan Nair R; Hungund, Shambhavi P; Sagar, Chandrashekhar; Ponnuvel, Kangayam M; Awasthi, Arvind K; Trivedy, Kanika

    2017-12-20

    Parasitization of silkworm, Bombyx mori by invasive larva of dipteran parasitoid Exorista bombycis caused upto 20% revenue loss in sericulture. The parasitism was successful by suppressing host immune system however mechanism of immune suppression induced by E. bombycis is unknown which is unravelled here. The infestation induced cytotoxic symptoms in host hemocytes, such as vacuolated cytoplasm, porous plasma membrane, indented nuclei with condensed chromatin and dilated RER. One of the markers of necrosis is cell permeabilization, which can be measured as released lactate dehydrogenase (LDH). LDH level showed significantly (Pmori.

  2. Human prealbumin fraction: effects on cell-mediated immunity and tumor rejection

    International Nuclear Information System (INIS)

    Leung, K.H.; Ehrke, M.J.; Bercsenyi, K.; Mihich, E.

    1982-01-01

    The effect of human prealbumin fraction as allogeneic cell-mediated immunity in primary sensitization cultures of murine spleen cells was studied by 3H-thymidine uptake and specific 51Cr release assays. Prealbumin caused a dose-dependent augmentation of these responses. Human serum albumin, bovine serum albumin, and calf-thymosin fraction 5 had little effect. Prealbumin was active when added on day 0 or 1 but not thereafter. Prealbumin added to effector cells from immunized mice did not change their lytic activity. Prealbumin, but not human serum albumin or thymosin fraction 5, augmented secondary cell-mediated immunity in culture after primary immunization in mice. A slow growing mammary tumor line, which originated as a spontaneous mammary tumor in a DBA/2 HaDD breeder mouse, initially grows in 100% of DBA/2J mice but is then rejected in 10 to 20% of them. When prealbumin (59 microgram/day) was given subcutaneously for 2 weeks to DBA/2J mice and the tumor implanted 2 weeks later. 78% of the mice rejected the tumor and were then resistant to a rechallenge

  3. Transcriptional profiling of immune-related genes in Pacific white shrimp (Litopenaeus vannamei) during ontogenesis.

    Science.gov (United States)

    Quispe, Ruth L; Justino, Emily B; Vieira, Felipe N; Jaramillo, Michael L; Rosa, Rafael D; Perazzolo, Luciane M

    2016-11-01

    We have performed here a gene expression analysis to determine the developmental stage at the main genes involved in crustacean immune response begin to be expressed and their changes in mRNA abundance during shrimp development. By using a quantitative PCR-based approach, we have measured the mRNA abundance of 24 immune-related genes from different functional categories in twelve developmental stages ranging from fertilized eggs to larval and postlarval stages and also in juveniles. We showed for the first time that the main genes from the RNAi-based post-transcriptional pathway involved in shrimp antiviral immunity are transcribed in all developmental stages, but exhibit a diverse pattern of gene expression during shrimp ontogenesis. On the other hand, hemocyte-expressed genes mainly involved in antimicrobial defenses appeared to be transcribed in larval stages, indicating that hematopoiesis initiates early in development. Moreover, transcript levels of some genes were early detected in fertilized eggs at 0-4 h post-spawning, suggesting a maternal contribution of immune-related transcripts to shrimp progeny. Altogether, our results provide important clues regarding the ontogenesis of hemocytes as well the establishment of antiviral and antimicrobial defenses in shrimp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Mechanisms Underlying the Immune Response Generated by an Oral Vibrio cholerae Vaccine

    Directory of Open Access Journals (Sweden)

    Danylo Sirskyj

    2016-07-01

    Full Text Available Mechanistic details underlying the resulting protective immune response generated by mucosal vaccines remain largely unknown. We investigated the involvement of Toll-like receptor signaling in the induction of humoral immune responses following oral immunization with Dukoral, comparing wild type mice with TLR-2-, TLR-4-, MyD88- and Trif-deficient mice. Although all groups generated similar levels of IgG antibodies, the proliferation of CD4+ T-cells in response to V. cholerae was shown to be mediated via MyD88/TLR signaling, and independently of Trif signaling. The results demonstrate differential requirements for generation of immune responses. These results also suggest that TLR pathways may be modulators of the quality of immune response elicited by the Dukoral vaccine. Determining the critical signaling pathways involved in the induction of immune response to this vaccine would be beneficial, and could contribute to more precisely-designed versions of other oral vaccines in the future.

  5. IL-10 polymorphism and cell-mediated immune response to Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Öhman, H.; Tiitinen, A; Halttunen, M.

    2006-01-01

    Chlamydia trachomatis infection induces an inflammatory response that is crucial in resolving acute infection but may also play a key role in the pathogenesis of C trachomatis associated infertility. The immune response is linked to cytokine secretion pattern which is influenced by the host genetic...

  6. Characterization of Ixodes ricinus Fibrinogen-Related Proteins (Ixoderins Discloses Their Function in the Tick Innate Immunity

    Directory of Open Access Journals (Sweden)

    Helena Honig Mondekova

    2017-12-01

    Full Text Available Ticks are important vectors of serious human and animal disease-causing organisms, but their innate immunity can fight invading pathogens and may have the ability to reduce or block transmission to mammalian hosts. Lectins, sugar-binding proteins, can distinguish between self and non-self-oligosaccharide motifs on pathogen surfaces. Although tick hemolymph possesses strong lectin activity, and several lectins have already been isolated and characterized, little is known about the implementation of these molecules in tick immunity. Here, we have described and functionally characterized fibrinogen-related protein (FReP lectins in Ixodes ticks. We have shown that the FReP family contains at least 27 genes (ixoderins, ixo that could, based on phylogenetic and expression analyses, be divided into three groups with differing degrees of expansion. By using RNA interference-mediated gene silencing (RNAi we demonstrated that IXO-A was the main lectin in tick hemolymph. Further, we found that ixoderins were important for phagocytosis of Gram-negative bacteria and yeasts by tick hemocytes and that their expression was upregulated upon injection of microbes, wounding, or after blood feeding. However, although the tick hemocytes could swiftly phagocytose Borrelia afzelii spirochetes, their transmission and burst of infection in mice was not altered. Our results demonstrate that tick ixoderins are crucial immune proteins that work as opsonins in the tick hemolymph, targeting microbes for phagocytosis or lysis.

  7. Steroid sparing regimens for management of oral immune-mediated diseases

    Directory of Open Access Journals (Sweden)

    Arti Agrawal

    2014-01-01

    Full Text Available Immune-mediated mucocutaneous disease may present oral symptoms as a first sign of the disease. The primary etiology could be the cellular and/or humoral immune responses directed against epithelial or connective tissue, in a chronic and recurrent pattern. Lichen planus, pemphigus vulgaris and bullous pemphigoid are the most frequent immunologically mediated mucocutaneous diseases. More often than not, patients present with complaints of blisters, oral ulcers, pain, burning sensation, and bleeding from the various oral sites. Steroids, whether topical or systemic, are the treatment of choice as they have both anti-inflammatory and immune-suppressant properties; however, challenges in the treatment of autoimmune diseases are the complexity of symptoms, the need to manage long-term medications for preserving organ function, and the long-term adverse effects of steroids. In such situations steroid sparing agents, such as, tacrolimus, dapsone, azathioprine, cyclosporine, and so on, may be helpful. Here an attempt is made to review various treatment regimens that could be used as alternatives to steroids for management of such diseases.

  8. Immune-mediated animal models of Tourette syndrome

    Science.gov (United States)

    Hornig, Mady; Lipkin, W. Ian

    2014-01-01

    An autoimmune diathesis has been proposed in Tourette syndrome (TS) and related neuropsychiatric disorders such as obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism and anorexia nervosa. Environmental triggers including infection and xenobiotics are hypothesized to lead to the production of brain-directed autoantibodies in a subset of genetically susceptible individuals. Although much work has focused on Group A Streptococcus (GAS), the role of this common childhood infection remains controversial. Animal model studies based on immune and autoantibody findings in TS have demonstrated immunoglobulin (Ig) deposits and stereotypic movements and related behavioral disturbances reminiscent of TS following exposure to GAS and other activators of host anti-microbial responses, soluble immune mediators and anti-GAS or anti-neuronal antibodies. Demonstration of the ability to recreate these abnormalities through passive transfer of serum IgG from GAS-immunized mice into naïve mice and abrogation of this activity through depletion of IgG has provided compelling evidence in support of the autoimmune hypothesis. Immunologically-based animal models of TS are a potent tool for dissecting the pathogenesis of this serious neuropsychiatric syndrome. PMID:23313649

  9. Interleukin-4 Supports the Suppressive Immune Responses Elicited by Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Wei-Cheng Yang

    2017-11-01

    Full Text Available Interleukin-4 (IL-4 has been considered as one of the tolerogenic cytokines in many autoimmune animal models and clinical settings. Despite its role in antagonizing pathogenic Th1 responses, little is known about whether IL-4 possesses functions that affect regulatory T cells (Tregs. Tregs are specialized cells responsible for the maintenance of peripheral tolerance through their immune modulatory capabilities. Interestingly, it has been suggested that IL-4 supplement at a high concentration protects responder T cells (Tresps from Treg-mediated immune suppression. In addition, such supplement also impedes TGF-β-induced Treg differentiation in vitro. However, these phenomena may contradict the tolerogenic role of IL-4, and the effects of IL-4 on Tregs are therefore needed to be further elucidated. In this study, we utilized IL-4 knockout (KO mice to validate the role of IL-4 on Treg-mediated immune suppression. Although IL-4 KO and control animals harbor similar frequencies of Tregs, Tregs from IL-4 KO mice weakly suppressed autologous Tresp activation. In addition, IL-4 deprivation impaired the ability of Tregs to modulate immune response, whereas IL-4 supplementation reinforced IL-4 KO Tregs in their function in suppressing Tresps. Finally, the presence of IL-4 was associated with increased cell survival and granzyme expression of Tregs. These results suggest the essential role of IL-4 in supporting Treg-mediated immune suppression, which may benefit the development of therapeutic strategies for autoimmune diseases.

  10. Quantitating cellular immune responses to cancer vaccines.

    Science.gov (United States)

    Lyerly, H Kim

    2003-06-01

    While the future of immunotherapy in the treatment of cancer is promising, it is difficult to compare the various approaches because monitoring assays have not been standardized in approach or technique. Common assays for measuring the immune response need to be established so that these assays can one day serve as surrogate markers for clinical response. Assays that accurately detect and quantitate T-cell-mediated, antigen-specific immune responses are particularly desired. However, to date, increases in the number of cytotoxic T cells through immunization have not been correlated with clinical tumor regression. Ideally, then, a T-cell assay not only needs to be sensitive, specific, reliable, reproducible, simple, and quick to perform, it must also demonstrate close correlation with clinical outcome. Assays currently used to measure T-cell response are delayed-type hypersensitivity testing, flow cytometry using peptide major histocompatibility complex tetramers, lymphoproliferation assay, enzyme-linked immunosorbant assay, enzyme-linked immunospot assay, cytokine flow cytometry, direct cytotoxicity assay, measurement of cytokine mRNA by quantitative reverse transcriptase polymerase chain reaction, and limiting dilution analysis. The purpose of this review is to describe the attributes of each test and compare their advantages and disadvantages.

  11. Changes in cell-mediated immunity in patients undergoing radiotherapy

    International Nuclear Information System (INIS)

    Rafla, S.; Yang, S.J.; Meleka, F.

    1978-01-01

    The cell-mediated immune status of 147 patients who received radiotherapy was evaluated using in vitro tests (PHA, E-rosette, and spontaneous blastogenesis) both before and 6 weeks after the end of radiation. All patients have verified malignancies, involving the bronchus in 29 cases, breast in 28, female genital system in 26, head and neck in 20 and bladder in 15. Patients suffering from bronchogenic carcinomas or malignancies of the head and neck showed a relative high degree of immune suppression. Our findings indicate a trend towards some improvement in PHA reactivity, as well as in the percentage of E-rosette-forming cells after treatment, which is more noticeable in patients with pelvic or breast tumors. A relationship seems to exist between the tumor load and the immune status, which reverts to a normal pattern when the former is extinguished. Moreover, patients with poor clinical response display a profoundly depressed level of immune status without any improvement after treatment

  12. Reactive oxygen species in unstimulated hemocytes of the pacific oyster Crassostrea gigas: a mitochondrial involvement.

    Directory of Open Access Journals (Sweden)

    Ludovic Donaghy

    Full Text Available The Pacific oyster Crassostrea gigas is a sessile bivalve mollusc whose homeostasis relies, at least partially, upon cells circulating in hemolymph and referred to as hemocytes. Oyster's hemocytes have been reported to produce reactive oxygen species (ROS, even in absence of stimulation. Although ROS production in bivalve molluscs is mostly studied for its defence involvement, ROS may also be involved in cellular and tissue homeostasis. ROS sources have not yet been described in oyster hemocytes. The objective of the present work was to characterize the ROS sources in unstimulated hemocytes. We studied the effects of chemical inhibitors on the ROS production and the mitochondrial membrane potential (Δψ(m of hemocytes. First, this work confirmed the specificity of JC-10 probe to measure Δψ(m in oyster hemocytes, without being affected by ΔpH, as reported in mammalian cells. Second, results show that ROS production in unstimulated hemocytes does not originate from cytoplasmic NADPH-oxidase, nitric oxide synthase or myeloperoxidase, but from mitochondria. In contrast to mammalian cells, incubation of hemocytes with rotenone (complex I inhibitor had no effect on ROS production. Incubation with antimycin A (complex III inhibitor resulted in a dose-dependent ROS production decrease while an over-production is usually reported in vertebrates. In hemocytes of C. gigas, the production of ROS seems similarly dependent on both Δψ(m and ΔpH. These findings point out differences between mammalian models and bivalve cells, which warrant further investigation about the fine characterization of the electron transfer chain and the respective involvement of mitochondrial complexes in ROS production in hemocytes of bivalve molluscs.

  13. CAF01 potentiates immune responses and efficacy of an inactivated influenza vaccine in ferrets.

    Directory of Open Access Journals (Sweden)

    Cyril Jean-Marie Martel

    Full Text Available Trivalent inactivated vaccines (TIV against influenza are given to 350 million people every year. Most of these are non-adjuvanted vaccines whose immunogenicity and protective efficacy are considered suboptimal. Commercially available non-adjuvanted TIV are known to elicit mainly a humoral immune response, whereas the induction of cell-mediated immune responses is negligible. Recently, a cationic liposomal adjuvant (dimethyldioctadecylammonium/trehalose 6,6'-dibehenate, CAF01 was developed. CAF01 has proven to enhance both humoral and cell-mediated immune responses to a number of different experimental vaccine candidates. In this study, we compared the immune responses in ferrets to a commercially available TIV with the responses to the same vaccine mixed with the CAF01 adjuvant. Two recently circulating H1N1 viruses were used as challenge to test the vaccine efficacy. CAF01 improved the immunogenicity of the vaccine, with increased influenza-specific IgA and IgG levels. Additionally, CAF01 promoted cellular-mediated immunity as indicated by interferon-gamma expressing lymphocytes, measured by flow cytometry. CAF01 also enhanced the protection conferred by the vaccine by reducing the viral load measured in nasal washes by RT-PCR. Finally, CAF01 allowed for dose-reduction and led to higher levels of protection compared to TIV adjuvanted with a squalene emulsion. The data obtained in this human-relevant challenge model supports the potential of CAF01 in future influenza vaccines.

  14. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...... on B cells, follicular dendritic cells (FDC) and some T cells. A variety of mechanisms appear to be involved in complement-mediated promotion of the humoral response. These include: enhancement of antigen (Ag) uptake and processing by both Ag-specific and non-specific B cells for presentation...

  15. Condition-Dependent Trade-Off Between Weapon Size and Immunity in Males of the European Earwig.

    Science.gov (United States)

    Körner, Maximilian; Vogelweith, Fanny; Foitzik, Susanne; Meunier, Joël

    2017-08-11

    Investigating the expression of trade-offs between key life-history functions is central to our understanding of how these functions evolved and are maintained. However, detecting trade-offs can be challenging due to variation in resource availability, which masks trade-offs at the population level. Here, we investigated in the European earwig Forficula auricularia whether (1) weapon size trades off with three key immune parameters - hemocyte concentration, phenoloxidase and prophenoloxidase activity - and whether (2) expression and strength of these trade-offs depend on male body condition (body size) and/or change after an immune challenge. Our results partially confirmed condition dependent trade-offs between weapon size and immunity in male earwigs. Specifically, we found that after an immune challenge, weapon size trades off with hemocyte concentrations in low-condition, but not in good-condition males. Contrastingly, weapon size was independent of pre-challenge hemocyte concentration. We also found no trade-off between weapon size and phenoloxidase activity, independent of body condition and immune challenge. Overall, our study reveals that trade-offs with sexual traits may weaken or disappear in good-condition individuals. Given the importance of weapon size for male reproductive success, our results highlight how low-condition individuals may employ alternative life-history investment strategies to cope with resource limitation.

  16. Immune Responses Involved in Mycobacterium Tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Roghayeh Teimourpour

    2016-09-01

    Full Text Available Background and Objectives: Mycobacterium tuberculosis is the causative agent of tuberculosis (TB. Approximately one-third of the world's population is infected with M. tuberculosis. Despite the availability of drug and vaccine, it remains one of the leading causes of death in humans especially in developing countries. Epidemiological studies have indicated that only 10-30% of people exposed to tubercle bacillus are infected with M. tuberculosis, and at least 90% of the infected people finally do not acquire TB. The studies have indicated that the host efficient immune system has essential roles in the control of TB infection such that the highest rate of mortality and morbidity is seen in immunocompromised patients such as people infected with HIV. M. tuberculosis is an obligatory intracellular bacterium. It enters the body mainly through the respiratory tract and alveolar macrophages combat this pathogen most commonly. In addition to alveolar macrophages, various T-cell subpopulations need to be activated to overcome this bacterium's resistance to the host defense systems. CD4+ T cells, through production of several cytokines such as IFN-γ and TNF-α, and CD8+ T cells, through cytotoxic activities and induction of apoptosis in infected cells, play critical roles in inducing appropriate immune responses against M. tuberculosis. Although cell-mediated immunity is the cornerstone of host responses against TB and the recent studies have provided evidence for the importance of humoral and innate immune system in the control of TB, a profound understanding of the immune responses would provide a basis for development of new generations of vaccines and drugs. The present study addresses immune responses involved in M. tuberculosis infection.

  17. Nogo-B Facilitates LPS-Mediated Immune Responses by Up-Regulation of TLR4-Signaling in Macrophage RAW264.7

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2017-01-01

    Full Text Available Background/Aims: Nogo-B, a member of the reticulon family of proteins, is mainly located in the endoplasmic reticulum (ER. Here, we investigate the function and mechanism of Nogo-B in the regulation of TLR4-associated immune responses in the macrophage cell line of RAW264.7. Methods: Nogo-B was up- and down-regulated through the use of appropriate adenoviral vectors or siRNA, and the effects of Nogo-B on macrophages under liposaccharide (LPS stimulation were evaluated via western blotting, immunofluorescence, enzyme-linked immunosorbent assay (ELISA, flow cytometric analysis, and transwell assay. Results: Our data indicates that the protein of Nogo-B was down-regulated in a time- and dose-dependent manner following LPS administration in the macrophage. Nogo-B overexpression increased the production of inflammatory cytokines (MCP-1, TNF-α, IL-1β, and TGF-β, enhanced macrophage migration activities, activated major histocompatibility complex II (MHC II, and elevated the expression of macrophage scavenger receptor 1(MSR1, all of which suggest that Nogo-B is necessary for immune responses and plays an important role in regulating macrophage recruitment. Mechanistically, Nogo-B may enhance TLR4 expression in macrophage surfaces, activate mitogen-activated protein kinase (MAPK pathways, and initiate inflammatory responses. Conclusion: These findings illustrate the key regulatory functions of Nogo-B in facilitating LPS-mediated immune responses through promoting the phosphorylation of MAP kinase.

  18. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Botros B. Shenoda

    2016-01-01

    Full Text Available Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages.

  19. Ornamental comb colour predicts T-cell-mediated immunity in male red grouse Lagopus lagopus scoticus

    Science.gov (United States)

    Mougeot, Francois

    2008-02-01

    Sexual ornaments might reliably indicate the ability to cope with parasites and diseases, and a better ability to mount a primary inflammatory response to a novel challenge. Carotenoid-based ornaments are amongst the commonest sexual signals of birds and often influence mate choice. Because carotenoids are immuno-stimulants, signallers may trade-off allocating these to ornamental colouration or using them for immune responses, so carotenoid-based ornaments might be particularly useful as honest indicators of immuno-compentence. Tetraonid birds, such as the red grouse Lagopus lagopus scoticus, exhibit supra-orbital yellow red combs, a conspicuous ornament which functions in intra- and inter-sexual selection. The colour of combs is due to epidermal pigmentation by carotenoids, while their size is testosterone-dependent. In this study, I investigated whether comb characteristics, and in particular, comb colour, indicated immuno-competence in free-living male red grouse. I assessed T-cell-mediated immunity using a standardised challenge with phytohaemagglutinin. Red grouse combs reflect in the red and in the ultraviolet spectrum of light, which is not visible to humans but that grouse most likely see, so I measured comb colour across the whole bird visible spectrum (300 700 nm) using a reflectance spectrometer. I found that males with bigger and redder combs, but with less ultraviolet reflectance, had greater T-cell-mediated immune response. Comb colour predicted T-cell-mediated immune response better than comb size, indicating that the carotenoid-based colouration of this ornament might reliably signal this aspect of male quality.

  20. Bovine immune response to inoculation with Neospora caninum surface antigen SRS2 lipopeptides mimics immune response to infection with live parasites.

    Science.gov (United States)

    Baszler, Timothy V; Shkap, Varda; Mwangi, Waithaka; Davies, Christopher J; Mathison, Bruce A; Mazuz, Monica; Resnikov, Dror; Fish, Lea; Leibovitch, Benjamin; Staska, Lauren M; Savitsky, Igor

    2008-04-01

    Infection of cattle with Neospora caninum protozoa, the causative agent of bovine protozoal abortion, results in robust cellular and humoral immune responses, particularly CD4(+) T-lymphocyte activation and gamma interferon (IFN-gamma) secretion. In the present study, N. caninum SRS2 (NcSRS2) T-lymphocyte-epitope-bearing subunits were incorporated into DNA and peptide preparations to assess CD4(+) cell proliferation and IFN-gamma T-lymphocyte-secretion immune responses in cattle with predetermined major histocompatibility complex (MHC) genotypes. In order to optimize dendritic-cell processing, NcSRS2 DNA vaccine was delivered with granulocyte macrophage-colony-stimulating factor and Flt3 ligand adjuvant. The synthesized NcSRS2 peptides were coupled with a palmitic acid molecule (lipopeptide) and delivered with Freund's adjuvant. Cattle vaccinated with NcSRS2 DNA vaccine alone did not induce T-lymphocyte activation or IFN-gamma secretion, whereas subsequent booster inoculation with NcSRS2-lipopeptides induced robust NcSRS2-specific immune responses. Compared to the response in control animals, NcSRS2-lipopeptide-immunized cattle had significantly increased NcSRS2-specific T-lymphocyte proliferation, numbers of IFN-gamma-secreting peripheral blood mononuclear cells, and immunoglobulin G1 (IgG1) and IgG2a antibody levels. The findings show that N. caninum NcSRS2 subunits bearing T-lymphocyte epitopes induced cell-mediated immune responses similar to the protective immune responses previously described against live parasite infection, namely T-lymphocyte activation and IFN-gamma secretion. The findings support the investigation of NcSRS2 immunogens for protection against N. caninum-induced fetal infection and abortion in cattle.

  1. Antibody-mediated immunity to the obligate intracellular bacterial pathogen Coxiella burnetii is Fc receptor- and complement-independent

    Directory of Open Access Journals (Sweden)

    Heinzen Robert A

    2009-05-01

    Full Text Available Abstract Background The obligate intracellular bacterial pathogen Coxiella burnetii causes the zoonosis Q fever. The intracellular niche of C. burnetii has led to the assumption that cell-mediated immunity is the most important immune component for protection against this pathogen. However, passive immunization with immune serum can protect naïve animals from challenge with virulent C. burnetii, indicating a role for antibody (Ab in protection. The mechanism of this Ab-mediated protection is unknown. Therefore, we conducted a study to determine whether Fc receptors (FcR or complement contribute to Ab-mediated immunity (AMI to C. burnetii. Results Virulent C. burnetii infects and replicates within human dendritic cells (DC without inducing their maturation or activation. We investigated the effects of Ab opsonized C. burnetii on human monocyte-derived and murine bone marrow-derived DC. Infection of DC with Ab-opsonized C. burnetii resulted in increased expression of maturation markers and inflammatory cytokine production. Bacteria that had been incubated with naïve serum had minimal effect on DC, similar to virulent C. burnetii alone. The effect of Ab opsonized C. burnetii on DC was FcR dependent as evidenced by a reduced response of DC from FcR knockout (FcR k/o compared to C57Bl/6 (B6 mice. To address the potential role of FcR in Ab-mediated protection in vivo, we compared the response of passively immunized FcR k/o mice to the B6 controls. Interestingly, we found that FcR are not essential for AMI to C. burnetii in vivo. We subsequently examined the role of complement in AMI by passively immunizing and challenging several different strains of complement-deficient mice and found that AMI to C. burnetii is also complement-independent. Conclusion Despite our data showing FcR-dependent stimulation of DC in vitro, Ab-mediated immunity to C. burnetii in vivo is FcR-independent. We also found that passive immunity to this pathogen is independent of

  2. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    Science.gov (United States)

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Suppression of immune-mediated liver injury after vaccination with attenuated pathogenic cells.

    Science.gov (United States)

    Mei, Yunhua; Wang, Ying; Xu, Lingyun

    2007-05-15

    Cell vaccination via immunization with attenuated pathogenic cells is an effective preventive method that has been successfully applied in several animal models of inflammatory or autoimmune diseases. Concanavalin A (Con A)-induced hepatitis (CIH) is a commonly used experimental model to study immune-mediated liver injury. Multiple cell types including T lymphocytes, macrophages and neutrophils have been found to be involved in the pathogenesis of CIH. In this study, we used attenuated spleen lymphocytes or peripheral blood lymphocytes as vaccines to investigate whether they could induce protective immune responses to prevent mice from developing CIH. We found that mice receiving such vaccination before CIH induction developed much milder diseases, exhibited a lower level of alanine aminotransferase (ALT) released into their plasma and had less inflammatory lesions in their livers. Such CIH-suppression is dose- and frequency-dependent. The suppressive effect was associated with inhibition of several major inflammatory mediators, pro-inflammatory cytokines and chemokines.

  4. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.

    Science.gov (United States)

    Watson, Alan M; Klimstra, William B

    2017-04-11

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.

  5. Immune Response among Patients Exposed to Molds

    Directory of Open Access Journals (Sweden)

    Jordan N. Fink

    2009-12-01

    Full Text Available Macrocyclic trichothecenes, mycotoxins produced by Stachybotrys chartarum, have been implicated in adverse reactions in individuals exposed to mold-contaminated environments. Cellular and humoral immune responses and the presence of trichothecenes were evaluated in patients with mold-related health complaints. Patients underwent history, physical examination, skin prick/puncture tests with mold extracts, immunological evaluations and their sera were analyzed for trichothecenes. T-cell proliferation, macrocyclic trichothecenes, and mold specific IgG and IgA levels were not significantly different than controls; however 70% of the patients had positive skin tests to molds. Thus, IgE mediated or other non-immune mechanisms could be the cause of their symptoms.

  6. Prostaglandin-mediated recovery from bacteremia delays larval development in fall armyworm, Spodoptera frugiperda.

    Science.gov (United States)

    Zhang, Lei; Ringbauer, Joseph A; Goodman, Cynthia L; Reall, Tamra; Jiang, Xing-Fu; Stanley, David

    2018-04-01

    Insect immunity includes a surveillance system that detects and signals infections, coupled with hemocytic and humoral immune functions. These functions are signaled and coordinated by several biochemicals, including biogenic amines, insect cytokines, peptides, and prostaglandins (PGs). The actions of these mediators are coordinated within cells by various forms of cross-talk among the signaling systems and they result in effective reactions to infection. While this is well understood, we lack information on how immune-mediated recovery influences subsequent juvenile development in surviving insects. We investigated this point by posing the hypothesis that PG signaling is necessary for larval recovery, although the recovery imposes biological costs, registered in developmental delays and failures in surviving individuals. Here, we report that nodulation responses to infections by the bacterium, Serratia marcescens, increased over time up to 5 h postinfection, with no further nodulation; it increased in a linear manner with increasing bacterial dosages. Larval survivorship decreased with increasing bacterial doses. Treating larvae with the PG-biosynthesis inhibitor, indomethacin, led to sharply decreased nodulation reactions to infection, which were rescued in larvae cotreated with indomethacin and the PG-precursor, arachidonic acid. Although nodulation was fully rescued, all bacterial challenged larvae suffered reduced survivorship compared to controls. Bacterial infection led to reduced developmental rates in larvae, but not pupae. Adult emergence from pupae that developed from experimental larvae was also decreased. Taken together, our data potently bolster our hypothesis. © 2018 Wiley Periodicals, Inc.

  7. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins.

    Science.gov (United States)

    Canesi, Laura; Ciacci, Caterina; Fabbri, Rita; Balbi, Teresa; Salis, Annalisa; Damonte, Gianluca; Cortese, Katia; Caratto, Valentina; Monopoli, Marco P; Dawson, Kenneth; Bergami, Elisa; Corsi, Ilaria

    2016-10-01

    The bivalve Mytilus galloprovincialis has proven as a suitable model invertebrate for evaluating the potential impact of nanoparticles (NPs) in the marine environment. In particular, in mussels, the immune system represents a sensitive target for different types of NPs. In environmental conditions, both NP intrinsic properties and those of the receiving medium will affect particle behavior and consequent bioavailability/uptake/toxicity. However, the evaluation of the biological effects of NPs requires additional understanding of how, once within the organism, NPs interact at the molecular level with cells in a physiological environment. In mammalian systems, different NPs associate with serum soluble components, organized into a "protein corona", which affects particle interactions with target cells. However, no information is available so far on the interactions of NPs with biological fluids of aquatic organisms. In this work, the influence of hemolymph serum (HS) on the in vitro effects of amino modified polystyrene NPs (PS-NH2) on Mytilus hemocytes was investigated. Hemocytes were incubated with PS-NH2 suspensions in HS (1, 5 and 50µg/mL) and the results were compared with those obtained in ASW medium. Cell functional parameters (lysosomal membrane stability, oxyradical production, phagocytosis) were evaluated, and morphological changes were investigated by TEM. The activation state of the signalling components involved in Mytilus immune response (p38 MAPK and PKC) was determined. The results show that in the presence of HS, PS-NH2 increased cellular damage and ROS production with respect to ASW medium. The effects were apparently mediated by disregulation of p38 MAPK signalling. The formation of a PS-NH2-protein corona in HS was investigated by centrifugation, and 1D- gel electrophoresis and nano-HPLC-ESI-MS/MS. The results identified the Putative C1q domain containing protein (MgC1q6) as the only component of the PS-NH2 hard protein corona in Mytilus

  8. Early-life inflammation, immune response and ageing.

    Science.gov (United States)

    Khan, Imroze; Agashe, Deepa; Rolff, Jens

    2017-03-15

    Age-related diseases are often attributed to immunopathology, which results in self-damage caused by an inappropriate inflammatory response. Immunopathology associated with early-life inflammation also appears to cause faster ageing, although we lack direct experimental evidence for this association. To understand the interactions between ageing, inflammation and immunopathology, we used the mealworm beetle Tenebrio molitor as a study organism. We hypothesized that phenoloxidase, an important immune effector in insect defence, may impose substantial immunopathological costs by causing tissue damage to Malpighian tubules (MTs; functionally equivalent to the human kidney), in turn accelerating ageing. In support of this hypothesis, we found that RNAi knockdown of phenoloxidase (PO) transcripts in young adults possibly reduced inflammation-induced autoreactive tissue damage to MTs, and increased adult lifespan. Our work thus suggests a causative link between immunopathological costs of early-life inflammation and faster ageing. We also reasoned that if natural selection weakens with age, older individuals should display increased immunopathological costs associated with an immune response. Indeed, we found that while old infected individuals cleared infection faster than young individuals, possibly they also displayed exacerbated immunopathological costs (larger decline in MT function) and higher post-infection mortality. RNAi-mediated knockdown of PO response partially rescued MTs function in older beetles and resulted in increased lifespan after infection. Taken together, our data are consistent with a direct role of immunopathological consequences of immune response during ageing in insects. Our work is also the first report that highlights the pervasive role of tissue damage under diverse contexts of ageing and immune response. © 2017 The Author(s).

  9. Evasion of the Interferon-Mediated Antiviral Response by Filoviruses

    Directory of Open Access Journals (Sweden)

    Washington B. Cárdenas

    2010-01-01

    Full Text Available The members of the filoviruses are recognized as some of the most lethal viruses affecting human and non-human primates. The only two genera of the Filoviridae family, Marburg virus (MARV and Ebola virus (EBOV, comprise the main etiologic agents of severe hemorrhagic fever outbreaks in central Africa, with case fatality rates ranging from 25 to 90%. Fatal outcomes have been associated with a late and dysregulated immune response to infection, very likely due to the virus targeting key host immune cells, such as macrophages and dendritic cells (DCs that are necessary to mediate effective innate and adaptive immune responses. Despite major progress in the development of vaccine candidates for filovirus infections, a licensed vaccine or therapy for human use is still not available. During the last ten years, important progress has been made in understanding the molecular mechanisms of filovirus pathogenesis. Several lines of evidence implicate the impairment of the host interferon (IFN antiviral innate immune response by MARV or EBOV as an important determinant of virulence. In vitro and in vivo experimental infections with recombinant Zaire Ebola virus (ZEBOV, the best characterized filovirus, demonstrated that the viral protein VP35 plays a key role in inhibiting the production of IFN-α/β. Further, the action of VP35 is synergized by the inhibition of cellular responses to IFN-α/β by the minor matrix viral protein VP24. The dual action of these viral proteins may contribute to an efficient initial virus replication and dissemination in the host. Noticeably, the analogous function of these viral proteins in MARV has not been reported. Because the IFN response is a major component of the innate immune response to virus infection, this chapter reviews recent findings on the molecular mechanisms of IFN-mediated antiviral evasion by filovirus infection.

  10. Kazal-type proteinase inhibitor from disk abalone (Haliotis discus discus): molecular characterization and transcriptional response upon immune stimulation.

    Science.gov (United States)

    Wickramaarachchi, W D Niroshana; De Zoysa, Mahanama; Whang, Ilson; Wan, Qiang; Lee, Jehee

    2013-09-01

    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. Proteinase inhibitors play a key role in regulating the activity of the respective proteinases. Among serine proteinase inhibitors, kazal-type proteinase inhibitors (KPIs) are widely found in mammals, avians, and a variety of invertebrates. In this study, we describe the identification of a kazal-type serine proteinase inhibitor (Ab-KPI) from the disk abalone, Haliotis discus discus, which is presumably involved in innate immunity. The full-length cDNA of Ab-KPI includes 600 bp nucleotides with an open reading frame (ORF) encoding a polypeptide of 143 amino acids. The deduced amino acid sequence of Ab-KPI contains a putative 17-amino acid signal peptide and two tandem kazal domains with high similarity to other kazal-type SPIs. Each kazal domain consists of reactive site (P1) residue containing a leucine (L), and a threonine (T) located in the second amino acid position after the second conserved cysteine of each domain. Temporal expression of Ab-KPI was assessed by real time quantitative PCR in hemocytes and mantle tissue following bacterial and viral hemorrhagic septicemia virus (VHSV) challenge, and tissue injury. At 6 h post-bacterial and -VHSV challenge, Ab-KPI expression in hemocytes was increased 14-fold and 4-fold, respectively, compared to control samples. The highest up-regulations upon tissue injury were shown at 9 h and 12 h in hemocytes and mantle, respectively. The transcriptional modulation of Ab-KPI following bacterial and viral challenges and tissue injury indicates that it might be involved in immune defense as well as wound healing process in abalone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Interaction of the tick immune system with transmitted pathogens

    Directory of Open Access Journals (Sweden)

    Ondrej eHajdusek

    2013-07-01

    Full Text Available Ticks are hematophagous arachnids transmitting a wide variety of pathogens including viruses, bacteria, and protozoans to their vertebrate hosts. The tick vector competence has to be intimately linked to the ability of transmitted pathogens to evade tick defense mechanisms encountered on their route through the tick body comprising midgut, hemolymph, salivary glands or ovaries. Tick innate immunity is, like in other invertebrates, based on an orchestrated action of humoral and cellular immune responses. The direct antimicrobial defense in ticks is accomplished by a variety of small molecules such as defensins, lysozymes or by tick-specific antimicrobial compounds such as microplusin/hebraein or 5.3-kDa family proteins. Phagocytosis of the invading microbes by tick hemocytes seems to be mediated by the primordial complement-like system composed of thioester-containing proteins, fibrinogen-related lectins and convertase-like factors. Moreover, an important role in survival of the ingested microbes seems to be played by host proteins and redox balance maintenance in the tick midgut. Here, we summarize recent knowledge about the major components of tick immune system and focus on their interaction with the relevant tick-transmitted pathogens, represented by spirochetes (Borrelia, rickettsiae (Anaplasma, and protozoans (Babesia. Availability of the tick genomic database and feasibility of functional genomics based on RNA interference greatly contribute to the understanding of molecular and cellular interplay at the tick-pathogen interface and may provide new targets for blocking the transmission of tick pathogens.

  12. Lavandula angustifolia Mill. Essential Oil Exerts Antibacterial and Anti-Inflammatory Effect in Macrophage Mediated Immune Response to Staphylococcus aureus.

    Science.gov (United States)

    Giovannini, D; Gismondi, A; Basso, A; Canuti, L; Braglia, R; Canini, A; Mariani, F; Cappelli, G

    2016-01-01

    Different studies described the antibacterial properties of Lavandula angustifolia (Mill.) essential oil and its anti-inflammatory effects. Besides, no data exist on its ability to activate human macrophages during the innate response against Staphylococcus aureus. The discovery of promising regulators of macrophage-mediated inflammatory response, without side effects, could be useful for the prevention of, or as therapeutic remedy for, various inflammation-mediated diseases. This study investigated, by transcriptional analysis, how a L. angustifolia essential oil treatment influences the macrophage response to Staphylococcus aureus infection. The results showed that the treatment increases the phagocytic rate and stimulates the containment of intracellular bacterial replication by macrophages. Our data showed that this stimulation is coupled with expression of genes involved in reactive oxygen species production (i.e., CYBB and NCF4). Moreover, the essential oil treatment balanced the inflammatory signaling induced by S. aureus by repressing the principal pro-inflammatory cytokines and their receptors and inducing the heme oxygenase-1 gene transcription. These data showed that the L. angustifolia essential oil can stimulate the human innate macrophage response to a bacterium which is responsible for one of the most important nosocomial infection and might suggest the potential development of this plant extract as an anti-inflammatory and immune regulatory coadjutant drug.

  13. Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor

    DEFF Research Database (Denmark)

    Palma, K.; Thorgrimsen, S.; Malinovsky, F.G.

    2010-01-01

    Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R) proteins, that trigger strong immune responses including localized host cell death....... The accelerated cell death 11 (acd11) "lesion mimic" mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown......, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity....

  14. Immunization of Mice with a Live Transconjugant Shigella Hybrid Strain Induced Th1 and Th17 Cell-Mediated Immune Responses and Confirmed Passive Protection Against Heterologous Shigellae.

    Science.gov (United States)

    Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R

    2016-02-01

    An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  15. Statin-associated immune-mediated myopathy: biology and clinical implications.

    Science.gov (United States)

    Christopher-Stine, Lisa; Basharat, Pari

    2017-04-01

    In the last 6 years, our understanding of statin-associated myopathy expanded to include not only a toxic myopathy with limited and reversible side-effects but also an autoimmune variety in which statins likely induce an autoimmune myopathy that is both associated with a specific autoantibody and responsive to immunosuppression and immune modulation. This review widens the reader's understanding of statin myopathy to include an autoimmune process. Statin-associated immune-mediated myopathy provides an example of an environmental trigger (statins) directly implicated in an autoimmune disease associated with a genetic predisposition as well as potential risk factors including concomitant diseases and specific statins. Given a median exposure to statins of 38 months, providers should be aware that anti-3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) myopathy may occur even after several years of statin exposure. It is important for the reader to understand the clinical presentation of statin-associated immune-mediated myopathy and the difference in its clinical presentation to that of statins as direct myotoxins. Prompt recognition of such an entity allows the clinician to immediately stop the offending agent if it has not already been discontinued as well as to recognize that statin rechallenge is not a likely option, and that prompt treatment with immunosuppression and/or immunomodulation is usually of enormous benefit to the patient in restoring muscle strength and physical function. VIDEO ABSTRACT.

  16. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models

    Science.gov (United States)

    Watson, Alan M.; Klimstra, William B.

    2017-01-01

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus. PMID:28398253

  17. Immune-mediated diseases and microbial exposure in early life

    DEFF Research Database (Denmark)

    Bisgaard, H; Bønnelykke, K; Stokholm, Jacob

    2014-01-01

    The non-communicable disease pandemic includes immune-mediated diseases such as asthma and allergy, which are likely originating in early life where the immature immune system is prone to alterations caused by the exposome. The timing of exposure seems critical for the developing immune system...

  18. Iron, folacin, vitamin B12 and zinc status and immune response in the elderly

    International Nuclear Information System (INIS)

    Henry-Christian, J.R.; Johnson, A.A.; Walters, C.S.; Greene, E.J.; Lindsey, A.A.

    1986-01-01

    The relationships of iron, folacin, vitamin B 12 and zinc status to cell-mediated immune response were investigated among 125 healthy, elderly persons (60-87 years of age). Plasma ferritin, plasma and red cell folate, and plasma vitamin B 12 levels were assayed immuno-radiometrically. Plasma and hair zinc levels were determined by atomic absorption spectroscopy. Immune response was determined by transformation of peripheral blood lymphocytes after stimulation with phytohemagglutinin (PHA) and concanavalin A (con A), and in mixed lymphocyte reaction. Deficiencies of iron, folacin vitamin B 12 and zinc were each associated (independently) with significantly lower lymphocyte responses to PHA and con A, and mixed lymphocyte reaction (P 12 or zinc. Further, they suggest that deficiencies of these nutrients may play a role in the depression of cell-mediated immunity with age, which in turn may lead to increased susceptibility to infectious diseases and cancer in the elderly

  19. Augmentation of antigen-specific immune responses using DNA-fusogenic liposome vaccine

    International Nuclear Information System (INIS)

    Yoshikawa, Tomoaki; Imazu, Susumu; Gao Jianqing; Hayashi, Kazuyuki; Tsuda, Yasuhiro; Shimokawa, Mariko; Sugita, Toshiki; Niwa, Takako; Oda, Atushi; Akashi, Mitsuru; Tsutsumi, Yasuo; Mayumi, Tadanori; Nakagawa, Shinsaku

    2004-01-01

    In an attempt to enhance the immunological efficacy of genetic immunization, we investigated a new biological means for delivering antigen gene directly to the cytoplasm via membrane fusion. In this context, we investigated fusogenic liposome (FL) encapsulating DNA as a possible genetic immunization vehicle. RT-PCR analysis indicated that a FL could introduce and express encapsulating OVA gene efficiently and rapidly in vitro. Consistent with this observation, an in vitro assay showed that FL-mediated antigen-gene delivery can induce potent presentation of antigen via the MHC class I-dependent pathway. Accordingly, immunization with FL containing the OVA-gene induced potent OVA-specific Th1 and Th2 cytokine production. Additionally, OVA-specific CTL responses and antibody production were also observed in systemic compartments including the spleen, upon immunization with the OVA-gene encapsulating FL. These findings suggest that FL is an effective genetic immunization carrier system for the stimulation of antigen-specific immune responses against its encoding antigen

  20. Immune- and Pollution-mediated DNA Damage in Two Wild Mya arenaria Clam Populations

    Directory of Open Access Journals (Sweden)

    François Gagné

    2009-01-01

    Full Text Available In aquatic environments, genotoxicity results from the effects of pollution combined with the inflammatory response triggered by the immune system. Indeed, the production of nitrosylated DNA and proteins are though to arise from the production of peroxinitrite during phagocytosis and inflammation. The purpose of this study was to examine new DNA biomarkers that differentiate between immune- and pollution-mediated genotoxicity in wild clam populations. Intertidal clam populations were sampled and analyzed for gonadal DNA strand breaks, DNA nitrosylation and xanthine oxidoreductase (XOR activity (purine salvage pathway. The clam weight-to-shell-length ratio, the gonado-somatic index (GSI, age status, lipid peroxidation, xenobiotic conjugation activity (glutathione S-transferase (GST and phagocytic activity were examined to shed light on their relationships with the observed genotoxic endpoints. XOR activity and DNA strand breaks were generally elevated at polluted sites and correlated significantly with clam weight-to-shell-length ratios and DNA nitrosylation. DNA nitrosylation was also higher at some sites and correlated significantly with phagocytic activity and with DNA strand breaks. This study showed that DNA strand breaks were associated with both immune- and pollution-mediated effects. This suggests that there is a loss of DNA repair capacity due to the combined effects of aging, pollution and immune response in wild clam populations that are impacted by anthropogenic activity.

  1. Quantitative PCR evaluation of cellular immune responses in Kenyan children vaccinated with a candidate malaria vaccine.

    Directory of Open Access Journals (Sweden)

    Jedidah Mwacharo

    2009-12-01

    Full Text Available The T-cell mediated immune response plays a central role in the control of malaria after natural infection or vaccination. There is increasing evidence that T-cell responses are heterogeneous and that both the quality of the immune response and the balance between pro-inflammatory and regulatory T-cells determines the outcome of an infection. As Malaria parasites have been shown to induce immunosuppressive responses to the parasite and non-related antigens this study examined T-cell mediated pro-inflammatory and regulatory immune responses induced by malaria vaccination in children in an endemic area to determine if these responses were associated with vaccine immunogenicity.Using real-time RT- PCR we profiled the expression of a panel of key markers of immunogenecity at different time points after vaccination with two viral vector vaccines expressing the malaria TRAP antigen (FP9-TRAP and MVA-TRAP or following rabies vaccination as a control.The vaccine induced modest levels of IFN-gamma mRNA one week after vaccination. There was also an increase in FoxP3 mRNA expression in both TRAP stimulated and media stimulated cells in the FFM ME-TRAP vaccine group; however, this may have been driven by natural exposure to parasite rather than by vaccination.Quantitative PCR is a useful method for evaluating vaccine induced cell mediated immune responses in frozen PBMC from children in a malaria endemic country. Future studies should seek to use vaccine vectors that increase the magnitude and quality of the IFN-gamma immune response in naturally exposed populations and should monitor the induction of a regulatory T cell response.

  2. Immune responses of poultry to Newcastle disease virus.

    Science.gov (United States)

    Kapczynski, Darrell R; Afonso, Claudio L; Miller, Patti J

    2013-11-01

    Newcastle disease (ND) remains a constant threat to poultry producers worldwide, in spite of the availability and global employment of ND vaccinations since the 1950s. Strains of Newcastle disease virus (NDV) belong to the order Mononegavirales, family Paramyxoviridae, and genus Avulavirus, are contained in one serotype and are also known as avian paramyxovirus serotype-1 (APMV-1). They are pleomorphic in shape and are single-stranded, non-segmented, negative sense RNA viruses. The virus has been reported to infect most orders of birds and thus has a wide host range. Isolates are characterized by virulence in chickens and the presence of basic amino acids at the fusion protein cleavage site. Low virulent NDV typically produce subclinical disease with some morbidity, whereas virulent isolates can result in rapid, high mortality of birds. Virulent NDV are listed pathogens that require immediate notification to the Office of International Epizootics and outbreaks typically result in trade embargos. Protection against NDV is through the use of vaccines generated with low virulent NDV strains. Immunity is derived from neutralizing antibodies formed against the viral hemagglutinin and fusion glycoproteins, which are responsible for attachment and spread of the virus. However, new techniques and technologies have also allowed for more in depth analysis of the innate and cell-mediated immunity of poultry to NDV. Gene profiling experiments have led to the discovery of novel host genes modulated immediately after infection. Differences in virus virulence alter host gene response patterns have been demonstrated. Furthermore, the timing and contributions of cell-mediated immune responses appear to decrease disease and transmission potential. In view of recent reports of vaccine failure from many countries on the ability of classical NDV vaccines to stop spread of disease, renewed interest in a more complete understanding of the global immune response of poultry to NDV will be

  3. Immune responses to influenza virus and its correlation to age and inherited factors

    Directory of Open Access Journals (Sweden)

    Azadeh Bahadoran

    2016-11-01

    Full Text Available Influenza viruses belong to the family Orthomyxoviridae of enveloped viruses and are an important cause of respiratory infections worldwide. The influenza virus is able to infect a wide variety species as diverse as poultry, marine, pigs, horses and humans. Upon infection with influenza virus the innate immunity plays a critical role in efficient and rapid control of viral infections as well as in adaptive immunity initiation. The humoral immune system produces antibodies against different influenza antigens, of which the HA-specific antibody is the most important for neutralization of the virus and thus prevention of illness. Cell mediated immunity including CD4+ helper T cells and CD8+ cytotoxic T cells are the other arms of adaptive immunity induced upon influenza virus infection. The complex inherited factors and age related changes are associated with the host immune responses. Here, we review the different components of immune responses against influenza virus. Additionally, the correlation of the immune response to age and inherited factors has been discussed. These determinations lead to a better understanding of the limitations of immune responses for developing improved vaccines to control influenza virus infection.

  4. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  5. Induction of the immune response suppression in mice inoculated with Candida albicans.

    Science.gov (United States)

    Valdez, J C; Mesón, D E; Sirena, A; de Petrino, S F; Eugenia, M; de Jorrat, B B; de Valdex, M G

    1986-03-01

    There is a controversy in respect to the immunological response (humoral or cellular) concerning the defense against Candida albicans. Candidosis would induce sub-populations of suppressor cells in the host cell-immune response. This report tries to show the effect of different doses of C. albicans (alive or heat-killed) on the expression of cell-mediated and humoral immunity. The effect upon cell immunity was determined by inoculating different lots of singeneic mice, doses of varied concentration of C. albicans and checking for delayed-type hipersensitivity (D.T.H.). D.T.H. was also controlled in syngeneic normal mice which had previously been injected with inoculated mice spleen cells. Humoral immunity was assayed by measuring the induced blastogenesis by Pokeweed Mitogen on spleen mononuclear cells with different doses of C. albicans. Results obtained show that the different doses gave origin to: Suppression of humoral and cell response (10(8) alive); Suppression of only humoral response (10(6) alive); Suppression of cell response and increase of humoral response (10(9) dead); Increase of both responses (10(8) dead).

  6. High intravascular tissue factor expression in dogs with idiopathic immune-mediated haemolytic anaemia

    NARCIS (Netherlands)

    Piek, C.J.; Brinkhof, B.; Teske, E.; Rothuizen, J.; Dekker, A.; Penning, L.C.

    2011-01-01

    A high mortality occurs in dogs with idiopathic immune-mediated haemolytic anaemia (IMHA) during the first 2 weeks after the diagnosis. The aim of this study was to investigate the inflammatory response and coagulation abnormalities in dogs with IMHA in relation to the prognosis and to establish the

  7. Th17 cell-mediated immune responses promote mast cell proliferation by triggering stem cell factor in keratinocytes

    International Nuclear Information System (INIS)

    Cho, Kyung-Ah; Park, Minhwa; Kim, Yu-Hee; Woo, So-Youn

    2017-01-01

    Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes, SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL−17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL−17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti−CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF. - Highlights: • Psoriasis-like skin inflammation increase dermal mast cells. • Keratinocyte produce stem cell factor in psoriasis-like skin inflammation. • Keratinocyte promote mast cell proliferation by stem cell factor dependent manner

  8. Vaccine-mediated immune responses to experimental pulmonary Cryptococcus gattii infection in mice.

    Directory of Open Access Journals (Sweden)

    Ashok K Chaturvedi

    Full Text Available Cryptococcus gattii is a fungal pathogen that can cause life-threatening respiratory and disseminated infections in immune-competent and immune-suppressed individuals. Currently, there are no standardized vaccines against cryptococcosis in humans, underlying an urgent need for effective therapies and/or vaccines. In this study, we evaluated the efficacy of intranasal immunization with C. gattii cell wall associated (CW and/or cytoplasmic (CP protein preparations to induce protection against experimental pulmonary C. gattii infection in mice. BALB/c mice immunized with C. gattii CW and/or CP protein preparations exhibited a significant reduction in pulmonary fungal burden and prolonged survival following pulmonary challenge with C. gattii. Protection was associated with significantly increased pro-inflammatory and Th1-type cytokine recall responses, in vitro and increased C. gattii-specific antibody production in immunized mice challenged with C. gattii. A number of immunodominant proteins were identified following immunoblot analysis of C. gattii CW and CP protein preparations using sera from immunized mice. Immunization with a combined CW and CP protein preparation resulted in an early increase in pulmonary T cell infiltrates following challenge with C. gattii. Overall, our studies show that C. gattii CW and CP protein preparations contain antigens that may be included in a subunit vaccine to induce prolonged protection against pulmonary C. gattii infection.

  9. Siblings Promote a Type 1/Type 17-oriented immune response in the airways of asymptomatic neonates

    DEFF Research Database (Denmark)

    Wolsk, Helene Mygind; Chawes, Bo L.; Følsgaard, Nilofar V.

    2016-01-01

    -related mediators. This was supported by the PCA showing a highly significant difference between children with vs. without siblings: p...BACKGROUND: Siblings have been shown to reduce the risk of later asthma and allergy, but the mechanism driving this association is unknown. The objective was to study whether siblings affect the airway immune response in healthy neonates. We hypothesized that siblings exert immune modulatory......-cohort (COPSAC2010). The association between airway mediator levels and presence of siblings was investigated using conventional statistics and principle component analyses (PCA). RESULTS: Neonates with siblings had an up-regulated level of airway immune-mediators, with predominance of Type 1- and Type 17...

  10. A novel soluble immune-type receptor (SITR in teleost fish: carp SITR is involved in the nitric oxide-mediated response to a protozoan parasite.

    Directory of Open Access Journals (Sweden)

    Carla M S Ribeiro

    2011-01-01

    Full Text Available The innate immune system relies upon a wide range of germ-line encoded receptors including a large number of immunoglobulin superfamily (IgSF receptors. Different Ig-like immune receptor families have been reported in mammals, birds, amphibians and fish. Most innate immune receptors of the IgSF are type I transmembrane proteins containing one or more extracellular Ig-like domains and their regulation of effector functions is mediated intracellularly by distinct stimulatory or inhibitory pathways.Carp SITR was found in a substracted cDNA repertoire from carp macrophages, enriched for genes up-regulated in response to the protozoan parasite Trypanoplasma borreli. Carp SITR is a type I protein with two extracellular Ig domains in a unique organisation of a N-proximal V/C2 (or I- type and a C-proximal V-type Ig domain, devoid of a transmembrane domain or any intracytoplasmic signalling motif. The carp SITR C-proximal V-type Ig domain, in particular, has a close sequence similarity and conserved structural characteristics to the mammalian CD300 molecules. By generating an anti-SITR antibody we could show that SITR protein expression was restricted to cells of the myeloid lineage. Carp SITR is abundantly expressed in macrophages and is secreted upon in vitro stimulation with the protozoan parasite T. borreli. Secretion of SITR protein during in vivo T. borreli infection suggests a role for this IgSF receptor in the host response to this protozoan parasite. Overexpression of carp SITR in mouse macrophages and knock-down of SITR protein expression in carp macrophages, using morpholino antisense technology, provided evidence for the involvement of carp SITR in the parasite-induced NO production.We report the structural and functional characterization of a novel soluble immune-type receptor (SITR in a teleost fish and propose a role for carp SITR in the NO-mediated response to a protozoan parasite.

  11. Effect of thoracoscopic esophagus cancer surgery on postoperative incision pain as well as non-specific and specific immune response

    Directory of Open Access Journals (Sweden)

    Jin-Long Wu1

    2017-04-01

    Full Text Available Objective: To explore the effect of thoracoscopic esophagus cancer surgery on postoperative incision pain as well as non-specific and specific immune response. Methods: 56 patients with esophageal cancer who accepted surgical treatment in our hospital between March 2011 and February 2016 were collected, the operation methods and related laboratory tests were reviewed, and then they were divided into the thoracoscope group (n=27 who accepted thoracoscopic surgery and the open surgery group (n=29 who accepted traditional thoracotomy. Before operation and 1 d after operation, immune scatter turbidimetry was used to detect serum levels of pain mediators, and flow cytometer was used to detect the levels of nonspecific immune indexes and specific immune indexes. Results: Before operation, the differences in serum pain mediators as well as nonspecific immune response and specific immune response indexes were not statistically significant between two groups of patients (P>0.05. 1 d after operation, serum pain mediators 5-HT, K+ and NE levels of thoracoscope group were lower than those of open surgery group (P<0.05; nonspecific immune response indexes NK cell as well as C3 and C4 levels in peripheral blood of thoracoscope group were significantly higher than those of open surgery group (P<0.05; specific immune response indexes CD4+, CD4+/CD8+, IgA and IgG levels in peripheral blood of thoracoscope group were significantly higher than those of open surgery group (P<0.05. Conclusion: Thoracoscopic esophagus cancer surgery causes less damage, has lighter inhibition on the immune response system, and is an ideal operation method for patients with early middle esophagus cancer.

  12. Bovine anaplasmosis with emphasis on immune responses and protection

    International Nuclear Information System (INIS)

    Ristic, M.

    1980-01-01

    Anaplasmosis is an infectious and transmissible disease manifested by progressive anaemia and the appearance of other characteristic disease symptoms. It is a world-wide tick-borne disease of cattle and some wild ruminants caused by the rickettsia Anaplasma marginale. By drawing on information obtained from studies of plasmodial cell cultures, a method has recently been developed for short-term in vitro cultivation of A. marginale. An attenuated Anaplasma organism capable of growth in both ovine and bovine erythrocytes was used to demonstrate that the in vitro system provided the necessary requirements for active transfer of the organism from cell to cell. Organismal antigens are found in the erythrocytes of infected animals, whereas soluble antigens are derived from their erythrocytes and serum. Serums from convalescing animals interact with these antigens in agglutination, complement fixation, fluorescent antibody and precipitation tests. Passive transfer of sera from immune to susceptible cattle, however, does not seem to confer protection against the infection and development of the disease. Studies that employed various tests for measuring cell-mediated immune (CMI) responses (leukocyte migration inhibition, blast transformation and cytotoxicity), in association with information collected simultaneously on antibody activity, have shown that both humoral and cellular immune responses are needed for the development of protective immunity in anaplasmosis. It was further shown that an active replication of Anaplasma is essential for induction of these two types of immune responses. Consequently, live virulent and attenuated immunogens fulfil requirements for induction of protective immunity. With the virulent agent, however, development of protective immunity is preceded by induction of auto-immune responses apparently associated with pathogenesis of anaemia in anaplasmosis. Inactivated immunogens derived from blood of infected cattle and used in combination with

  13. The new numerology of immunity mediated by virus-specific CD8(+) T cells.

    Science.gov (United States)

    Doherty, P C

    1998-08-01

    Our understanding of virus-specific CD8(+) T cell responses is currently being revolutionized by peptide-based assay systems that allow flow cytometric analysis of effector and memory cytotoxic T lymphocyte populations. These techniques are, for the first time, putting the analysis of T-cell-mediated immunity on a quantitative basis.

  14. CHARACTERISATION OF CELL-MEDIATED IMMUNE RESPONSE IN PIGS IN A CLINICAL CHALLENGE EXPERIMENT OF A VACCINE AGAINST MYCOPLASMA HYOSYNOVIAE

    DEFF Research Database (Denmark)

    Rasmussen, Josephine Skovgaard; Riber, Ulla; Lauritsen, Klara Tølbøll

    be due to increased systemic infection in the placebo group. Cell-mediated immune response was further characterised by four colour flow cytometry analysis of peripheral blood mononuclear cells (PBMCs) before Mhs challenge (day -1) and at days 6 and 9 after challenge. IFN-γ producing cells were found...... to be CD4 and especially CD4CD8 double positive T-cells simultaneously expressing CD25. Interestingly, the proportion of CD4CD8 double positive T-cells within the total population of CD4 positive cells increased in the vaccine group after challenge, indicating that generation of specific T-cell memory had...

  15. The Role of Histone Demethylase Jmjd3 in Immune-Mediated Aplastic Anemia

    Science.gov (United States)

    2017-03-01

    AWARD NUMBER: W81XWH-16-1-0055 TITLE: The Role of Histone Demethylase Jmjd3 in Immune-Mediated Aplastic Anemia PRINCIPAL INVESTIGATOR: Yi...Immune-Mediated Aplastic Anemia 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0055 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yi Zhang 5d... anemia (AA) is a condition of bone marrow failure (BMF) characterized by blood pancytopenia and BM hypoplasia. In most cases, AA is an immune-mediated

  16. Prostaglandin-mediated recovery from bacteriosemia delays larval development in fall armyworms, Spodoptera frugiperda

    Science.gov (United States)

    Insect immunity includes a surveillance system that detects and signals infections, coupled with hemocytic and humoral immune functions. These functions are signaled and coordinated by several biochemicals, including biogenic amines, insect cytokines, peptides and prostaglandins (PGs). The actions o...

  17. The host immune response to Clostridium difficile infection

    Science.gov (United States)

    2013-01-01

    Clostridium difficile infection (CDI) is the most common infectious cause of healthcare-acquired diarrhoea. Outcomes of C. difficile colonization are varied, from asymptomatic carriage to fulminant colitis and death, due in part to the interplay between the pathogenic virulence factors of the bacterium and the counteractive immune responses of the host. Secreted toxins A and B are the major virulence factors of C. difficile and induce a profound inflammatory response by intoxicating intestinal epithelial cells causing proinflammatory cytokine release. Host cell necrosis, vascular permeability and neutrophil infiltration lead to an elevated white cell count, profuse diarrhoea and in severe cases, dehydration, hypoalbuminaemia and toxic megacolon. Other bacterial virulence factors, including surface layer proteins and flagella proteins, are detected by host cell surface signal molecules that trigger downstream cell-mediated immune pathways. Human studies have identified a role for serum and faecal immunoglobulin levels in protection from disease, but the recent development of a mouse model of CDI has enabled studies into the precise molecular interactions that trigger the immune response during infection. Key effector molecules have been identified that can drive towards a protective anti-inflammatory response or a damaging proinflammatory response. The limitations of current antimicrobial therapies for CDI have led to the development of both active and passive immunotherapies, none of which have, as yet been formally approved for CDI. However, recent advances in our understanding of the molecular basis of host immune protection against CDI may provide an exciting opportunity for novel therapeutic developments in the future. PMID:25165542

  18. FORMATION OF INNATE AND ADAPTIVE IMMUNE RESPONSE UNDER THE INFLUENCE OF DIFFERENT FLAVIVIRUS VACCINES

    Directory of Open Access Journals (Sweden)

    N. V. Krylova

    2015-01-01

    Full Text Available The review examines in a comparative perspective the key moments of formation of innate and adaptive immune responses to different types of current flavivirus vaccines: live attenuated against yellow fever virus and inactivated whole virus against tick-borne encephalitis virus. Particular attention is paid to the ability of these different vaccines, containing exogenous pathogen-associated molecular structures, to stimulate innate immunity. Live attenuated vaccine by infecting several subtypes of dendritic cells activates them through various pattern-recognition receptors, such as Tolland RIG-I-like receptors, which leads to significant production of proinflammatory cytokines, including interferon-α primary mediator of innate antiviral immunity. By simulating natural viral infection, this vaccine quickly spreads over the vascular network, and the dendritic cells, activated by it, migrate to the draining lymph nodes and trigger multiple foci of Tand B-cell activation. Inactivated vaccine stimulates the innate immunity predominantly at the injection site, and for the sufficient activation requires the presence in its composition of an adjuvant (aluminum hydroxide, which effects the formation and activation of inflammasomes, ensuring the formation and secretion of IL-1β and IL-18 that, in turn, trigger a cascade of cellular and humoral innate immune responses. We demonstrated the possibility of involvement in the induction of innate immunity, mediated by the inactivated vaccine, endogenous pathogenassociated molecular patterns (uric acid and host cell DNA, forming at the vaccine injection site. We discuss the triggering of Band T-cell responses by flavivirus vaccines that determine various duration of protection against various pathogens. A single injection of the live vaccine against yellow fever virus induces polyvalent adaptive immune response, including the production of cytotoxic T-lymphocytes, Th1and Th2-cells and neutralizing antibodies

  19. Relations between immune and mediator receptors of mouse lymphocytes

    International Nuclear Information System (INIS)

    Ado, A.D.; Alekseeva, T.A.; Kravchenko, S.A.

    1985-01-01

    This paper examines the action of the specific muscarinic antogonist tritium-quinuclidinyl benzilate (tritium-QNB) on immune rosette formation in mice. It is shown that since the specific muscarini antagonist tritium-QNB inhibits immune rosette formation, this process must be regarded as interconnected with muscarinic receptors of lymphocytes. Interaction of immune (antigen-binding) and mediator receptors, however, is an important factor maintaining immune homeostasis at a certain level

  20. Siblings Promote a Type 1/Type 17-oriented immune response in the airways of asymptomatic neonates.

    Science.gov (United States)

    Wolsk, H M; Chawes, B L; Følsgaard, N V; Rasmussen, M A; Brix, S; Bisgaard, H

    2016-06-01

    Siblings have been shown to reduce the risk of childhood asthma and allergy, but the mechanism driving this association is unknown. The objective was to study whether siblings affect the airway immune response in healthy neonates, which could represent an underlying immune modulatory pathway. We measured 20 immune mediators related to the Type 1, Type 2, Type 17, or regulatory immune pathways in the airway mucosa of 571 one-month-old asymptomatic neonates from the Copenhagen Prospective Studies on Asthma in Childhood2010 birth cohort (COPSAC2010 ). The association between airway mediator levels and presence of siblings was investigated using conventional statistics and principle component analysis (PCA). Neonates with siblings had an upregulated level of airway immune mediators, with predominance of Type 1- and Type 17-related mediators. This was supported by the PCA showing a highly significant difference between children with vs without siblings: P Siblings mediate a Type 1/Type 17-related immune-stimulatory effect in the airways of asymptomatic neonates, also after adjustment for pathogenic bacteria and viruses, indicating that siblings exert a transferable early immune modulatory effect. These findings may represent an in utero immune priming effect of the fetal immune system caused by previous pregnancies as the effect was attenuated with time since last childbirth, or it could relate to the presence of unidentified microbes, but further studies are needed to confirm our findings. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Platelets in Immune Response to Virus and Immunopathology of Viral Infections

    Directory of Open Access Journals (Sweden)

    Eugenio D. Hottz

    2018-04-01

    Full Text Available Platelets are essential effector cells in hemostasis. Aside from their role in coagulation, platelets are now recognized as major inflammatory cells with key roles in the innate and adaptive arms of the immune system. Activated platelets have key thromboinflammatory functions linking coagulation to immune responses in various infections, including in response to virus. Recent studies have revealed that platelets exhibit several pattern recognition receptors (PRR including those from the toll-like receptor, NOD-like receptor, and C-type lectin receptor family and are first-line sentinels in detecting and responding to pathogens in the vasculature. Here, we review the main mechanisms of platelets interaction with viruses, including their ability to sustain viral infection and replication, their expression of specialized PRR, and activation of thromboinflammatory responses against viruses. Finally, we discuss the role of platelet-derived mediators and platelet interaction with vascular and immune cells in protective and pathophysiologic responses to dengue, influenza, and human immunodeficiency virus 1 infections.

  2. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection.

    Science.gov (United States)

    Zhang, Jie; Liu, Huan; Wei, Bin

    Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.

  3. Hemocytes of zebra mussels (Dreissena polymorpha are relevant cells for the monitoring of environmental genotoxicity by the comet assay.

    Directory of Open Access Journals (Sweden)

    Marc Bonnard

    2015-06-01

    Full Text Available The measure of DNA integrity by the single cell gel electrophoresis (SCGE or comet assay is especially recommended for its sensitivity and its capacity for detecting different types of damages. Therefore, it has been applied in environmental genotoxicity in a variety of organisms. It appears today necessary to define both reference and threshold levels of DNA damage, for their application in in situ biomonitoring. However, little is known about the influence of both biological (sex, reproduction status or external (temperature… confounding factors on the measure of DNA damage by the comet assay. These variables need to be taken into account if the robustness of the assay is to be established (Jha, 2008. In the zebra mussel Dreissena polymorpha (recommended as a sentinel species in the evaluation of freshwater quality the measure of DNA damage by the comet assay is mainly performed on hemocytes, which are circulating cells involved in key physiological functions such as immunity, homeostasis, detoxication…. This communication will present and discuss results from an innovative study about the variability of the baseline level of DNA damage in hemocytes of mussels encaged for one year in the canal de l’Aisne à la Marne (Reims, according to their sex and their reproductive status. The sensitivity and the suitability of hemocytes in the evaluation of environmental genotoxicity will also be discussed, referring to observations during a 6 month-exposure of mussels in mesocosms to environmentally realistic concentrations of carbamazepine.

  4. Anopheles gambiae antiviral immune response to systemic O'nyong-nyong infection.

    Directory of Open Access Journals (Sweden)

    Joanna Waldock

    Full Text Available Mosquito-borne viral diseases cause significant burden in much of the developing world. Although host-virus interactions have been studied extensively in the vertebrate host, little is known about mosquito responses to viral infection. In contrast to mosquitoes of the Aedes and Culex genera, Anopheles gambiae, the principal vector of human malaria, naturally transmits very few arboviruses, the most important of which is O'nyong-nyong virus (ONNV. Here we have investigated the A. gambiae immune response to systemic ONNV infection using forward and reverse genetic approaches.We have used DNA microarrays to profile the transcriptional response of A. gambiae inoculated with ONNV and investigate the antiviral function of candidate genes through RNAi gene silencing assays. Our results demonstrate that A. gambiae responses to systemic viral infection involve genes covering all aspects of innate immunity including pathogen recognition, modulation of immune signalling, complement-mediated lysis/opsonisation and other immune effector mechanisms. Patterns of transcriptional regulation and co-infections of A. gambiae with ONNV and the rodent malaria parasite Plasmodium berghei suggest that hemolymph immune responses to viral infection are diverted away from melanisation. We show that four viral responsive genes encoding two putative recognition receptors, a galectin and an MD2-like receptor, and two effector lysozymes, function in limiting viral load.This study is the first step in elucidating the antiviral mechanisms of A. gambiae mosquitoes, and has revealed interesting differences between A. gambiae and other invertebrates. Our data suggest that mechanisms employed by A. gambiae are distinct from described invertebrate antiviral immunity to date, and involve the complement-like branch of the humoral immune response, supressing the melanisation response that is prominent in anti-parasitic immunity. The antiviral immune response in A. gambiae is thus

  5. Identification of a serine proteinase homolog (Sp-SPH) involved in immune defense in the mud crab Scylla paramamosain.

    Science.gov (United States)

    Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian

    2013-01-01

    Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, Pparahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain.

  6. Effect of lipoarabinomannan from Mycobacterium avium subsp avium in Freund's incomplete adjuvant on the immune response of cattle.

    Science.gov (United States)

    Colavecchia, S B; Jolly, A; Fernández, B; Fontanals, A M; Fernández, E; Mundo, S L

    2012-02-01

    The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund's incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis.

  7. PPARγ and the Innate Immune System Mediate the Resolution of Inflammation

    Directory of Open Access Journals (Sweden)

    Amanda Croasdell

    2015-01-01

    Full Text Available The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer’s disease, and obesity in animal models. Finally, novel specialized proresolving mediators—eicosanoids with critical roles in resolution—may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor.

  8. A prospective study of the influence of a thalassaemia on morbidity from malaria and immune responses to defined Plasmodium falciparum antigens in Gambian children

    DEFF Research Database (Denmark)

    Allen, S J; Rowe, P; Allsopp, C E

    1993-01-01

    with the sickle cell trait alone. Specific antibody responses and cell-mediated immune responses in vitro to defined Plasmodium falciparum antigens were measured in children participating in the study. In general, there was no evidence of an increased prevalence or intensity of humoral or cell-mediated immune...

  9. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells

    Science.gov (United States)

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  10. Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin.

    Science.gov (United States)

    Li, Yao; Li, Shengjie; Li, Ruimin; Xu, Jiao; Jin, Ping; Chen, Liming; Ma, Fei

    2017-03-01

    Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Age, pathogen exposure, but not maternal care shape offspring immunity in an insect with facultative family life.

    Science.gov (United States)

    Vogelweith, Fanny; Körner, Maximilian; Foitzik, Susanne; Meunier, Joël

    2017-03-07

    To optimize their resistance against pathogen infection, individuals are expected to find the right balance between investing into the immune system and other life history traits. In vertebrates, several factors were shown to critically affect the direction of this balance, such as the developmental stage of an individual, its current risk of infection and/or its access to external help such as parental care. However, the independent and/or interactive effects of these factors on immunity remain poorly studied in insects. Here, we manipulated maternal presence and pathogen exposure in families of the European earwig Forficula auricularia to measure whether and how the survival rate and investment into two key immune parameters changed during offspring development. The pathogen was the entomopathogenic fungus Metarhizium brunneum and the immune parameters were hemocyte concentration and phenol/pro-phenoloxidase enzyme activity (total-PO). Our results surprisingly showed that maternal presence had no effect on offspring immunity, but reduced offspring survival. Pathogen exposure also lowered the survival of offspring during their early development. The concentration of hemocytes and the total-PO activity increased during development, to be eventually higher in adult females compared to adult males. Finally, pathogen exposure overall increased the concentration of hemocytes-but not the total-PO activity-in adults, while it had no effect on these measures in offspring. Our results show that, independent of their infection risk and developmental stage, maternal presence does not shape immune defense in young earwigs. This reveals that pathogen pressure is not a universal evolutionary driver of the emergence and maintenance of post-hatching maternal care in insects.

  12. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Ole A Andreassen

    Full Text Available Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS to investigate shared single nucleotide polymorphisms (SNPs between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals, applying new False Discovery Rate (FDR methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG, low density lipoproteins (LDL, high density lipoproteins (HDL] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis. We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88, LDL (n = 87 and HDL (n = 52. Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2 and intestinal host-microbe interactions (e.g. ATG16L1. We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.

  13. Short communication: Cytokine profiles from blood mononuclear cells of dairy cows classified with divergent immune response phenotypes.

    Science.gov (United States)

    Martin, C E; Paibomesai, M A; Emam, S M; Gallienne, J; Hine, B C; Thompson-Crispi, K A; Mallard, B A

    2016-03-01

    Genetic selection for enhanced immune response has been shown to decrease disease occurrence in dairy cattle. Cows can be classified as high (H), average, or low responders based on antibody-mediated immune response (AMIR), predominated by type-2 cytokine production, and cell-mediated immune response (CMIR) through estimated breeding values for these traits. The purpose of this study was to identify in vitro tests that correlate with in vivo immune response phenotyping in dairy cattle. Blood mononuclear cells (BMC) isolated from cows classified as H-AMIR and H-CMIR through estimated breeding values for immune response traits were stimulated with concanavalin A (ConA; Sigma Aldrich, St. Louis, MO) and gene expression, cytokine production, and cell proliferation was determined at multiple time points. A repeated measures model, which included the effects of immune response group, parity, and stage of lactation, was used to compare differences between immune response phenotype groups. The H-AMIR cows produced more IL-4 protein than H-CMIR cows at 48 h; however, no difference in gene expression of type-2 transcription factor GATA3 or IL4 was noted. The BMC from H-CMIR cows had increased production of IFN-γ protein at 48, 72, and 96 h compared with H-AMIR animals. Further, H-CMIR cows had increased expression of the IFNG gene at 16, 24, and 48 h post-treatment with ConA, although expression of the type-1 transcription factor gene TBX21 did not differ between immune response groups. Although proliferation of BMC increased from 24 to 72 h after ConA stimulation, no differences were found between the immune response groups. Overall, stimulation of H-AMIR and H-CMIR bovine BMC with ConA resulted in distinct cytokine production profiles according to genetically defined groups. These distinct cytokine profiles could be used to define disease resistance phenotypes in dairy cows according to stimulation in vitro; however, other immune response phenotypes should be assessed

  14. IL-18 potentiated whole blood IFN-γ assay can identify cell-mediated immune responses towards Lawsonia intracellularis in experimentally infected pigs

    DEFF Research Database (Denmark)

    Riber, Ulla; Jakobsen, Jeanne Toft; Hvass, Henriette Cordes

    Lawsonia intracellularis is an obligate intracellular bacteria causing proliferative enteropathy (PE) in pigs. The infection causes diarrhoea, retarded growth and sudden death in pigs and is one of the most economically important diseases in the swine industry worldwide. The infection is one...... indications that cell-mediated immune responses (CMI) are important for the protection against infections with L. intracellularis and in mice models IFN-γ has been shown to play a key role in the host defence against experimental infections . In L. intracellularis infected pigs, IFN-γ is only sparsely...

  15. Hemocyte quantitative changes in Anticarsia gemmatalis (Lepidoptera: Noctuidae larvae infected by AgMNPV

    Directory of Open Access Journals (Sweden)

    Fábio Goulart de Andrade

    2010-04-01

    Full Text Available The initial effects of the infection by AgMNPV in the total and differential counts of the hemocytes in Anticarsia gemmatalis (Lepidoptera: Noctuidae larvae were studied. The total number of the hemocytes did not decrease in infected larvae, as it occurred in non infected larvae. In infected larvae, the hemocyte types showed the following frequencies: plasmatocytes - 47.8%, esferulocytes - 25.9%, granulocytes - 15.8%, oenocytoids - 7.2%, prohemocytes - 2.8%, vermicytes - 0,5%. Only the percentage of the granulocytes was different among infected and non infected larvae, indicating that these cells responded quickly to the initial viral infection. These results showed the effective role of the hemocytes in the response of the A. gemmatalis to the infection by AgMNPV. The comprehension of the immunological mechanisms of this insect is an important tool to understand its biological control.Os efeitos iniciais da infecção por AgMNPV nas contagens total e diferencial dos hemócitos em Anticarsia gemmatalis (Lepidoptera: Noctuidae foram estudados. O número total de hemócitos não diminuiu nas larvas infectadas, como ocorreu nas larvas não infectadas. Nas larvas infectadas, os tipos de hemócitos apresentaram as seguintes freqüências: plasmatócitos - 47,8%, esferulócitos - 25,9%, granulócitos - 15,8%, oenocitóides - 7,2%, prohemócitos - 2,8%, vermiformes - 0,5%. Apenas a porcentagem de granulócitos foi diferente entre larvas infectadas e não infectadas, indicando que estas células responderam rapidamente à infecção viral inicial. Estes resultados mostraram o papel efetivo que dos hemócitos na resposta de A. gemmatalis à infecção por AgMNPV. A compreensão dos mecanismos imunológicos deste inseto é uma ferramenta importante para compreender seu controle biológico.

  16. Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Koutsogiannaki, Sophia [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Franzellitti, Silvia [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); Fabbri, Elena [University of Bologna, Interdepartment Centre for Environmental Science Research, via S. Alberto 163, 48123 Ravenna (Italy); University of Bologna, Department of Biological, Geological, and Environmental Sciences, via Selmi 3, 40100 Bologna (Italy); Kaloyianni, Martha, E-mail: kaloyian@bio.auth.gr [Laboratory of Animal Physiology, Zoology Department, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2014-01-15

    Highlights: •Oxidative parameters in Mytilus galloprovincialis hemocytes were measured. •Comparison between cadmium and 17β-estradiol cytotoxicity is discussed. •NHE, PKC, PI3-K, NADPH oxidase, NO synthase, JNK involvement was observed. •Protective role of cAMP is suggested. •Signaling molecules studied could constitute novel biomarkers. -- Abstract: The aim of the present study was to determine and compare the possible effects of exposure to an estrogen, 17β-estradiol and to a metal, cadmium on oxidative parameters of Mytilus galloprovincialis hemocytes and to elucidate the signaling pathways that probably mediate the studied effects exerted by these two chemicals. In addition, it was of interest to investigate if the studied parameters could constitute biomarkers for aquatic pollution monitoring. Our results suggest that micromolar concentrations of either cadmium or 17β-estradiol affected the redox status of mussels by modulating oxidative parameters and antioxidant enzymes gene expression in mussel M. galloprovincialis hemocytes. In particular, our results showed that treatment of hemocytes with either 5 μM of cadmium chloride or with 25 nM of 17β-estradiol for 30 min caused significant increased ROS production; this led to oxidative damage exemplified by significant increased DNA damage, protein carbonylation and lipid peroxidation, as well as increased mRNA levels of the antioxidant enzymes catalase (CAT), superoxide dismoutase (SOD) and glutathione S-transferase (GST). Furthermore, our results suggest that either cadmium or 17β-estradiol signal is mediated either through one of the already known pathways initiated by photatidyl-inositol 3-kinase (PI3 K) and reaching Na{sup +}/H{sup +} exchanger (NHE) probably through protein kinase C (PKC) or a kinase-mediated signaling pathway that involves in most of the cases NHE, PKC, Ca{sup 2+}-dependent PKC isoforms, PI3-K, NADPH oxidase, nitric oxide (NO) synthase, c-Jun N-terminal kinase (JNK) and

  17. Oxidative stress parameters induced by exposure to either cadmium or 17β-estradiol on Mytilus galloprovincialis hemocytes. The role of signaling molecules

    International Nuclear Information System (INIS)

    Koutsogiannaki, Sophia; Franzellitti, Silvia; Fabbri, Elena; Kaloyianni, Martha

    2014-01-01

    Highlights: •Oxidative parameters in Mytilus galloprovincialis hemocytes were measured. •Comparison between cadmium and 17β-estradiol cytotoxicity is discussed. •NHE, PKC, PI3-K, NADPH oxidase, NO synthase, JNK involvement was observed. •Protective role of cAMP is suggested. •Signaling molecules studied could constitute novel biomarkers. -- Abstract: The aim of the present study was to determine and compare the possible effects of exposure to an estrogen, 17β-estradiol and to a metal, cadmium on oxidative parameters of Mytilus galloprovincialis hemocytes and to elucidate the signaling pathways that probably mediate the studied effects exerted by these two chemicals. In addition, it was of interest to investigate if the studied parameters could constitute biomarkers for aquatic pollution monitoring. Our results suggest that micromolar concentrations of either cadmium or 17β-estradiol affected the redox status of mussels by modulating oxidative parameters and antioxidant enzymes gene expression in mussel M. galloprovincialis hemocytes. In particular, our results showed that treatment of hemocytes with either 5 μM of cadmium chloride or with 25 nM of 17β-estradiol for 30 min caused significant increased ROS production; this led to oxidative damage exemplified by significant increased DNA damage, protein carbonylation and lipid peroxidation, as well as increased mRNA levels of the antioxidant enzymes catalase (CAT), superoxide dismoutase (SOD) and glutathione S-transferase (GST). Furthermore, our results suggest that either cadmium or 17β-estradiol signal is mediated either through one of the already known pathways initiated by photatidyl-inositol 3-kinase (PI3 K) and reaching Na + /H + exchanger (NHE) probably through protein kinase C (PKC) or a kinase-mediated signaling pathway that involves in most of the cases NHE, PKC, Ca 2+ -dependent PKC isoforms, PI3-K, NADPH oxidase, nitric oxide (NO) synthase, c-Jun N-terminal kinase (JNK) and cyclic adenosine

  18. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    Science.gov (United States)

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  19. TOTAL HEMOCYTE COUNT AND HEMOLYMPH GLUCOSE CONCENRATION RESPONSE OF SPINY LOBSTER Panulirus homarus ON RATIO OF SHELTER

    Directory of Open Access Journals (Sweden)

    Suhaiba Djai

    2017-11-01

    Full Text Available This research was conducted to assess the physiological response of the lobster Panulirus homarus for the ratio of the shelters. The method used completely randomized design with two replicates of each treatments with shelter ratio (A 1 : 5, (B 3 : 5, (C 4 : 5, (D 5 : 5. Weight average for 184 lobsters with the stocking density of 23 lobsters for each treatment was 32.64 ± 0.58 g. The experiment was conducted for 60 days. The lobster was fed with trash fish and acclimatized for 7 days before the experiment. Observations on the physiologycal of every 10 days. The physiological responses that observed were total hemocyte count (THC and hemolymph glucose concentration. The results showed that 4:5 was the best lobster shelter ratio because it could reduce stress levels. This is indicated by the stable values of THC and hemolymph glucose level during the experiment and supported by the growth of 57.28 ± 0.15 g and survival rate of 91.31 ± 2.60%. Keywords: lobster, Panulirus homarus, ratio, shelter, THC, glucose

  20. Cell-mediated and humoral immune responses induced by scarification vaccination of human volunteers with a new lot of the live vaccine strain of Francisella tularensis.

    Science.gov (United States)

    Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C

    1992-01-01

    Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic. Images PMID:1400988

  1. Immune mediated disorders in women with a fragile X expansion and FXTAS.

    Science.gov (United States)

    Jalnapurkar, Isha; Rafika, Nuva; Tassone, Flora; Hagerman, Randi

    2015-01-01

    Premutation alleles in fragile X mental retardation 1 (FMR1) can cause the late-onset neurodegenerative disorder, fragile X-associated tremor ataxia syndrome (FXTAS) and/or the fragile X-associated primary ovarian insufficiency in approximately 20% of heterozygotes. Heterozygotes of the FMR1 premutation have a higher incidence of immune mediated disorders such as autoimmune thyroid disorder, especially when accompanied by FXTAS motor signs. We describe the time course of symptoms of immune mediated disorders and the subsequent development of FXTAS in four women with an FMR1 CGG expansion, including three with the premutation and one with a gray zone expansion. These patients developed an immune mediated disorder followed by neurological symptoms that become consistent with FXTAS. In all patients we observed a pattern involving an initial appearance of disease symptoms-often after a period of heightened stress (depression, anxiety, divorce, general surgery) followed by the onset of tremor and/or ataxia. Immune mediated diseases are associated with the manifestations of FXTAS temporally, although further studies are needed to clarify this association. If a cause and effect relationship can be established, treatment of pre-existing immune mediated disorders may benefit patients with pathogenic FMR1 mutations. © 2014 Wiley Periodicals, Inc.

  2. Plasmodium berghei: immunosuppression of the cell-mediated immune response induced by nonviable antigenic preparations

    International Nuclear Information System (INIS)

    Gross, A.; Frankenburg, S.

    1989-01-01

    In this work, plasmodial antigens were examined for their ability to suppress the cellular immune response during lethal Plasmodium berghei infection. Splenic enlargement and the number and function of white spleen cells were assessed after injection of normal mice with irradiated parasitized erythrocytes (IPE) or with parasitized erythrocytes (PE) membranes. Both IPE and PE membranes caused splenomegaly and an increase in the number of splenic white cells with concurrent alteration of the relative proportions of T cells and macrophages. The percentage of T lymphocytes was fractionally diminished, but there was a marked increase in Lyt 2.2 positive (suppressor and cytotoxic) T subsets and in the number of splenic macrophage precursors. The pathological enlargement of the spleen was induced by various plasma membrane-derived antigens containing both proteins and carbohydrates. Splenocytes of mice injected with liposomes containing deoxycholate-treated PE or PE fractions showed both diminished interleukin 2 production and a decreased response to mitogen. It appears that some of the changes in the cellular immune response during P. berghei infection are a consequence of the massive provision of a wide spectrum of antigens, capable of suppressing the immune response. Thus, it may be appropriate to evaluate the possible negative effect of parasite epitopes that are candidates for vaccine

  3. Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice1[C][W][OA

    Science.gov (United States)

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-01-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy. PMID:22353574

  4. Vascular endothelium as a target of immune response in renal transplant rejection

    Directory of Open Access Journals (Sweden)

    Giovanni ePiotti

    2014-10-01

    Full Text Available This review of clinical and experimental studies aims at analysing the interplay between graft endothelium and host immune system in renal transplantation, and how it affects the survival of the graft. Graft endothelium is indeed the first barrier between self and non-self that is encountered by host lymphocytes upon reperfusion of vascularised solid transplants. Endothelial cells express all the major sets of antigens that elicit host immune response, and therefore represent a preferential target in organ rejection.Some of the antigens expressed by endothelial cells are target of the antibody-mediated response, such as the AB0 blood group system, the HLA and MICA systems, and the endothelial cell-restricted antigens; for each of these systems, the mechanisms of interaction and damage of both preformed and de novo donor-specific antibodies are reviewed along with their impact on renal graft survival. Moreover the rejection process can force injured endothelial cells to expose cryptic self-antigens, toward which an auto-immune response mounts, overlapping to the allo-immune response in the damaging of the graft. Not only are endothelial cells a passive target of the host immune response, but also an active player in lymphocyte activation; therefore their interaction with allogenic T-cells is analysed on the basis of experimental in vitro and in vivo studies, according to the patterns of expression of the HLA class I and II and the co-stimulatory molecules specific for cytotoxic and helper T-cells.Finally, as the response that follows transplantation has proven to be not necessarily destructive, the factors that foster graft endothelium functioning in spite of rejection, and how they could be therapeutically harnessed to promote long-term graft acceptance, are described: accommodation that is resistance of endothelial cells to donor-specific antibodies, and endothelial cell ability to induce Foxp3+ Regulatory T-cells, that are crucial mediators of

  5. UBXN1 Interferes with Rig-I-like Receptor-Mediated Antiviral Immune Response by Targeting MAVS

    Directory of Open Access Journals (Sweden)

    Penghua Wang

    2013-04-01

    Full Text Available RNA viruses are sensed by RIG-I-like receptors (RLRs, which signal through a mitochondria-associated adaptor molecule, MAVS, resulting in systemic antiviral immune responses. Although RLR signaling is essential for limiting RNA virus replication, it must be stringently controlled to prevent damage from inflammation. We demonstrate here that among all tested UBX-domain-containing protein family members, UBXN1 exhibits the strongest inhibitory effect on RNA-virus-induced type I interferon response. UBXN1 potently inhibits RLR- and MAVS-induced, but not TLR3-, TLR4-, or DNA-virus-induced innate immune responses. Depletion of UBXN1 enhances virus-induced innate immune responses, including those resulting from RNA viruses such as vesicular stomatitis, Sendai, West Nile, and dengue virus infection, repressing viral replication. Following viral infection, UBXN1 is induced, binds to MAVS, interferes with intracellular MAVS oligomerization, and disrupts the MAVS/TRAF3/TRAF6 signalosome. These findings underscore a critical role of UBXN1 in the modulation of a major antiviral signaling pathway.

  6. PKA/KIN-1 mediates innate immune responses to bacterial pathogens in Caenorhabditis elegans.

    Science.gov (United States)

    Xiao, Yi; Liu, Fang; Zhao, Pei-Ji; Zou, Cheng-Gang; Zhang, Ke-Qin

    2017-11-01

    The genetically tractable organism Caenorhabditis elegans is a powerful model animal for the study of host innate immunity. Although the intestine and the epidermis of C. elegans that is in contact with pathogens are likely to function as sites for the immune function, recent studies indicate that the nervous system could control innate immunity in C. elegans. In this report, we demonstrated that protein kinase A (PKA)/KIN-1 in the neurons contributes to resistance against Salmonella enterica infection in C. elegans. Microarray analysis revealed that PKA/KIN-1 regulates the expression of a set of antimicrobial effectors in the non-neuron tissues, which are required for innate immune responses to S. enterica. Furthermore, PKA/KIN-1 regulated the expression of lysosomal genes during S. enterica infection. Our results suggest that the lysosomal signaling molecules are involved in autophagy by controlling autophagic flux, rather than formation of autophagosomes. As autophagy is crucial for host defense against S. enterica infection in a metazoan, the lysosomal pathway also acts as a downstream effector of the PKA/KIN-1 signaling for innate immunity. Our data indicate that the PKA pathway contributes to innate immunity in C. elegans by signaling from the nervous system to periphery tissues to protect the host against pathogens.

  7. The Pig as a Large Animal Model for Studying Anti-Tumor Immune Responses

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr

    but also generates a selective pressure, which may lead to selection of tumor cell variants with reduced immunogenicity; thereby, increasing the risk of tumor escape. Cancer immunotherapy includes treatment strategies aimed at activating anti-tumor immune responses or inhibiting suppressive and tumor......-favorable immune mechanisms. One of the promising arms of cancer immunotherapy is peptide-based therapeutic vaccines; yet, no such vaccine has been approved for use in human oncology. For many years, mouse models have provided invaluable understanding of complex immunological pathways; however, the majority...... tolerance towards IDO and the establishment of an antigen-specific cell-mediated immune (CMI) response. When comparing the different CAF09-formulated antigen doses, we demonstrate the induction of a CMI-dominant response upon exposure to a low endogenous peptide dose. In contrast, a mixed CMI and humoral...

  8. Comparison of immune responses after intra-typic heterologous and homologous vaccination against foot-and-mouth disease virus infection in pigs

    NARCIS (Netherlands)

    Eble, P.L.; Bruin, de M.G.M.; Bouma, A.; Hemert-Kluitenberg, van F.; Dekker, A.

    2006-01-01

    This study compares the immune responses and protection induced by intra-typic heterologous vaccination with that induced by homologous vaccination against challenge with foot-and-mouth disease virus (FMDV). Humoral and cell-mediated immune responses and protection against challenge with FMDV O

  9. Regulation of stem-cell mediated host immunity by the sphingolipid ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Regulation of stem-cell mediated host immunity by the sphingolipid pathway ... in the generation of mature immune cells and the functioning of the surrounding ... methods with human cells and genetically engineered mice to examine how the ...

  10. Murine immune responses to oral BCG immunization in the presence or absence of prior BCG sensitization.

    Science.gov (United States)

    Cross, Martin L; Lambeth, Matthew R; Aldwell, Frank E

    2010-02-01

    Oral delivery of live Mycobacterium bovis BCG in a lipid matrix invokes cell-mediated immune (CMI) responses in mice and consequent protection against pulmonary challenge with virulent mycobacteria. To investigate the influence of prior BCG sensitization on oral vaccine efficacy, we assessed CMI responses and BCG colonization of the alimentary tract lymphatics 5 months after oral vaccination, in both previously naive mice and in mice that had been sensitized to BCG by injection 6 months previously. CMI responses did not differ significantly between mice that received subcutaneous BCG followed by oral BCG and those that received either injected or oral BCG alone. In vivo BCG colonization was predominant in the mesenteric lymph nodes after oral vaccination; this colonizing ability was not influenced by prior BCG sensitization. From this murine model study, we conclude that although prior parenteral-route BCG sensitization does not detrimentally affect BCG colonization after oral vaccination, there is no significant immune-boosting effect of the oral vaccine either.

  11. Role of IL-12 and IFN-γ in immune response to toxoplasma gondii infection

    International Nuclear Information System (INIS)

    Moawad, M.A.F.; ElGawish, M.A.M.

    2004-01-01

    Interlenkin 12 (IL-12) is a potent immunoregulatory molecule that is critically involved in a wide range of diseases. In several murine models of intracellular infection, endogenous IL-12 has been shown to be crucial for the generation of a protective Th1 response in a primary infection for a intracellular pathogens. Interferon-gamma (IFN-γ) is also an important mediator of cellular immunity against microbial pathogens and tumor cells due to its potent capacity to activate macrophages for enhanced cytotoxicity. The aim of the present study is to evaluate the immune response to toxoplasma gondii after primary inflection (infected groups and secondary infection (re-infected groups for over 19 weeks (the time of the experiment). the evaluation was assessed by measurements of levels of IL-12 and IFN-γ using ELISA technique in the sera of these infected rats. The results demonstrated that the primary immune response induced a fluctuation in the levels of IL-12 in the sera of infected rats, which reached maximum value of 122.6 ±1.4 pg/ml after 15 weeks of primary infection. While, in the challenged groups (secondary immune response, re-infected groups) the levels of IL-12 were generally lower than that of the primary immune response. On the other hand, IFN-γ levels increased significantly in the secondary immune response (re-infected groups) as compared to primary immune response 9 infected groups) In conclusion, the results suggest that IL-12 might have a role in the defense mechanism against intracellular infection with T-gondii especially in primary immune response than in the secondary immune response. This is in contrast to IFN-γ that takes the up-hand in secondary immune response to T-gondii infection

  12. A novel method of modifying immune responses by vaccination with lipiodol-siRNA mixtures

    Directory of Open Access Journals (Sweden)

    Yijian Li

    2006-01-01

    Full Text Available Abstract The dendritic cell (DC possesses the ability to stimulate both T helper 1 (Th1 and Th2 responses depending on activation stimuli. Although it is known that chemically or genetically modified DC can be used therapeutically to steer immune responses towards either Th1 or Th2, cellular therapy with ex vivo manipulated DC is clinically difficult. Here we demonstrate a novel method of switching immune responses from Th1 to Th2 through in vivo immune modulation by administration of siRNA. We demonstrate that siRNA targeting of the IL-12p35 gene leads to a Th2 bias in vitro through an IL-10 dependent mechanism. In vivo administration of siRNA admixed with the oil-based contrast agent lipiodol in the presence of antigen and adjuvant induced a deviation in recall response to reduced production of IFN-γ and augmented IL-4 response using either KLH or ovalbumin. This simple method of in vivo modification of immune response possesses therapeutic potential in Th1-mediated diseases such as multiple sclerosis and autoimmune diabetes.

  13. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths

    Science.gov (United States)

    Gause, William C.; Wynn, Thomas A.; Allen, Judith E.

    2013-01-01

    Helminth-induced type 2 immune responses, which are characterized by the T helper 2 cell-associated cytokines interleukin-4 (IL-4) and IL-13, mediate host protection through enhanced tissue repair, the control of inflammation and worm expulsion. In this Opinion article, we consider type 2 immunity in the context of helminth-mediated tissue damage. We examine the relationship between the control of helminth infection and the mechanisms of wound repair, and we provide a new understanding of the adaptive type 2 immune response and its contribution to both host tolerance and resistance. PMID:23827958

  14. Dietary supplementation of mannan-oligosaccharide enhances neonatal immune responses in chickens during natural exposure to Eimeria spp

    Directory of Open Access Journals (Sweden)

    Nava Gerardo M

    2009-03-01

    Full Text Available Abstract Background Control and eradication of intestinal infections caused by protozoa are important biomedical challenges worldwide. Prophylactic control of coccidiosis has been achieved with the use of anticoccidial drugs; however, the increase in anticoccidial resistance has raised concerns about the need for new alternatives for the control of coccidial infections. In fact, new strategies are needed to induce potent protective immune responses in neonatal individuals. Methods The effects of a dietary supplementation of mannan-oligosaccharide (yeast cell wall; YCW on the local, humoral and cell-mediated immune responses, and intestinal replication of coccidia were evaluated in a neonatal animal model during natural exposure to Eimeria spp. A total of 840 one-day-old chicks were distributed among four dietary regimens: A Control diet (no YCW plus anticoccidial vaccine; B Control diet plus coccidiostat; C YCW diet plus anticoccidial vaccination; and D YCW diet plus coccidiostat. Weight gain, feed consumption and immunological parameters were examined within the first seven weeks of life. Results Dietary supplementation of 0.05% of YCW increased local mucosal IgA secretions, humoral and cell-mediated immune responses, and reduced parasite excretion in feces. Conclusion Dietary supplementation of yeast cell wall in neonatal animals can enhance the immune response against coccidial infections. The present study reveals the potential of YCW as adjuvant for modulating mucosal immune responses.

  15. Cell-mediated immunity against human retinal extract, S-antigen, and interphotoreceptor retinoid binding protein in onchocercal chorioretinopathy

    NARCIS (Netherlands)

    van der Lelij, A.; Rothova, A.; Stilma, J. S.; Hoekzema, R.; Kijlstra, A.

    1990-01-01

    Autoimmune mechanisms are thought to be involved in the pathogenesis of onchocercal chorioretinopathy. Cell-mediated immune responses to human retinal S-antigen, interphotoreceptor retinoid binding protein (IRBP), and crude retinal extract were investigated in patients with onchocerciasis from

  16. The effects of nitric oxide on the immune response during giardiasis

    Directory of Open Access Journals (Sweden)

    Wander Rogério Pavanelli

    Full Text Available Nitric oxide (NO is a free radical synthesized from L-arginine by different isoforms NO-synthases. NO possesses multiple and complex biological functions. NO is an important mediator of homeostasis, and changes in its generation or actions can contribute or not to pathological states. The knowledge of effects of NO has been not only important to our understanding of immune response, but also to new tools for research and treatment of various diseases. Knowing the importance of NO as inflammatory mediator in diverse infectious diseases, we decided to develop a revision that shows the participation/effect of this mediator in immune response induced against Giardia spp. Several studies already demonstrated the participation of NO with microbicidal and microbiostatic activity in giardiasis. On the other hand, some works report that Giardia spp. inhibit NO production by consuming the intermediate metabolite arginine. In fact, studies in vitro showed that G. lamblia infection of human intestinal epithelial cells had reduced NO production. This occurs due to limited offer of the crucial substrate arginine (essential aminoacid for NO production, consequently reducing NO production. Therefore, the balance between giardial arginine consumption and epithelial NO production could contribute to the variability of the duration and severity of infections by this ubiquitous parasite.

  17. Immunological responses of the mangrove oysters Crassostrea gasar naturally infected by Perkinsus sp. in the Mamanguape Estuary, Paraíba state (Northeastern, Brazil).

    Science.gov (United States)

    Queiroga, Fernando Ramos; Marques-Santos, Luis Fernando; Hégaret, Hélène; Soudant, Philippe; Farias, Natanael Dantas; Schlindwein, Aline Daiane; Mirella da Silva, Patricia

    2013-08-01

    Perkinsus genus includes protozoan parasites of marine mollusks, especially bivalves. In the last four years, this parasite has been detected in mangrove oysters Crassostrea rhizophorae and Crassostrea gasar from the Northeastern region of Brazil. Hemocytes are the key cells of the oyster immune system, being responsible for a variety of cellular and humoral reactions, such as phagocytosis, encapsulation and the release of several effector molecules that control the invasion and proliferation of microorganisms. In Brazil, there is little information on perkinsosis and none on the immune responses of native oysters' species against Perkinsus spp. The objective of this study was to determine the effects of natural infection by Perkinsus sp. on the immunological parameters of mangrove oysters C. gasar cultured in the Mamanguape River Estuary (Paraíba, Brazil). Adults oysters (N = 40/month) were sampled in December 2011, March, May, August and October 2012. Gills were removed and used to determine the presence and intensity of the Perkinsus sp. infection, according to a scale of four levels (1-4), using the Ray's fluid thioglycollate medium assay. Immunological parameters were measured in hemolymph samples by flow cytometry, including: total hemocyte count (THC), differential hemocyte count (DHC), cell mortality, phagocytic capacity, and production of Reactive Oxygen Species (ROS). The plasma was used to determine the hemagglutination activity. The results showed the occurrence of Perkinsus sp. with the highest mean prevalence (93.3%) seen so far in oyster populations in Brazil. Despite that, no oyster mortality was associated. In contrast, we observed an increase in hemocyte mortality and a suppression of two of the main defense mechanisms, phagocytosis and ROS production in infected oysters. The increase in the percentage of blast-like cells on the hemolymph, and the increase in THC in oysters heavily infected (at the maximum intensity, 4) suggest an induction of

  18. Immune oncology, immune responsiveness and the theory of everything.

    Science.gov (United States)

    Turan, Tolga; Kannan, Deepti; Patel, Maulik; Matthew Barnes, J; Tanlimco, Sonia G; Lu, Rongze; Halliwill, Kyle; Kongpachith, Sarah; Kline, Douglas E; Hendrickx, Wouter; Cesano, Alessandra; Butterfield, Lisa H; Kaufman, Howard L; Hudson, Thomas J; Bedognetti, Davide; Marincola, Francesco; Samayoa, Josue

    2018-06-05

    Anti-cancer immunotherapy is encountering its own checkpoint. Responses are dramatic and long lasting but occur in a subset of tumors and are largely dependent upon the pre-existing immune contexture of individual cancers. Available data suggest that three landscapes best define the cancer microenvironment: immune-active, immune-deserted and immune-excluded. This trichotomy is observable across most solid tumors (although the frequency of each landscape varies depending on tumor tissue of origin) and is associated with cancer prognosis and response to checkpoint inhibitor therapy (CIT). Various gene signatures (e.g. Immunological Constant of Rejection - ICR and Tumor Inflammation Signature - TIS) that delineate these landscapes have been described by different groups. In an effort to explain the mechanisms of cancer immune responsiveness or resistance to CIT, several models have been proposed that are loosely associated with the three landscapes. Here, we propose a strategy to integrate compelling data from various paradigms into a "Theory of Everything". Founded upon this unified theory, we also propose the creation of a task force led by the Society for Immunotherapy of Cancer (SITC) aimed at systematically addressing salient questions relevant to cancer immune responsiveness and immune evasion. This multidisciplinary effort will encompass aspects of genetics, tumor cell biology, and immunology that are pertinent to the understanding of this multifaceted problem.

  19. Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A

    Energy Technology Data Exchange (ETDEWEB)

    Gambhir, Lokesh; Checker, Rahul; Sharma, Deepak; Thoh, M. [Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai (India); Patil, Anand [Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai (India); Degani, M. [Institute of Chemical Technology, Matunga, Mumbai (India); Gota, Vikram [Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai (India); Sandur, Santosh K., E-mail: sskumar@barc.gov.in [Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai (India)

    2015-12-01

    Withaferin A (WA), a steroidal lactone isolated from ayurvedic medicinal plant Withania somnifera, was shown to inhibit tumor growth by inducing oxidative stress and suppressing NF-κB pathway. However, its effect on T-cell mediated adaptive immune responses and the underlying mechanism has not been investigated. Since both T-cell responses and NF-κB pathway are known to be redox sensitive, the present study was undertaken to elucidate the effect of WA on adaptive immune responses in vitro and in vivo. WA inhibited mitogen induced T-cell and B-cell proliferation in vitro without inducing any cell death. It inhibited upregulation of T-cell (CD25, CD69, CD71 and CD54) and B-cell (CD80, CD86 and MHC-II) activation markers and secretion of Th1 and Th2 cytokines. WA induced oxidative stress by increasing the basal ROS levels and the immunosuppressive effects of WA were abrogated only by thiol anti-oxidants. The redox modulatory effects of WA in T-cells were attributed to its ability to directly interact with free thiols. WA inhibited NF-κB nuclear translocation in lymphocytes and prevented the direct binding of nuclear NF-κB to its consensus sequence. MALDI-TOF analysis using a synthetic NF-κB-p50 peptide containing Cys-62 residue suggested that WA can modify the cysteine residue of NF-κB. The pharmacokinetic studies for WA were also carried out and in vivo efficacy of WA was studied using mouse model of Graft-versus-host disease. In conclusion, WA is a potent inhibitor of T-cell responses and acts via a novel thiol dependent mechanism and inhibition of NF-κB pathway. - Highlights:: • Withaferin A (WA) inhibited T-cell and B-cell mediated immune responses. • WA increased basal ROS levels in lymphocytes. • WA directly interacted with GSH as studied using spectrophotometry and HPLC. • WA inhibited NF-κB nuclear translocation and binding of nuclear NF-κB to DNA. • WA inhibited induction of the graft-versus-host disease in mice.

  20. DMPD: IRAK1: a critical signaling mediator of innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17890055 IRAK1: a critical signaling mediator of innate immunity. Gottipati S, Rao ...IRAK1: a critical signaling mediator of innate immunity. PubmedID 17890055 Title IRAK1: a critical signaling mediator

  1. Dendritic cells in dengue virus infection: Targets of virus replication and mediators of immunity

    Directory of Open Access Journals (Sweden)

    Michael A. Schmid

    2014-12-01

    Full Text Available Dendritic cells (DCs are sentinels of the immune system and detect pathogens at sites of entry, such as the skin. In addition to the ability of DCs to control infections directly via their innate immune functions, DCs help to prime adaptive B and T cell responses via antigen presentation in lymphoid tissues. Infected Aedes aegypti or Ae. albopictus mosquitoes transmit the four dengue virus (DENV serotypes to humans while probing for small blood vessels in the skin. DENV causes the most prevalent arthropod-borne viral disease in humans, yet no vaccine or specific therapeutic is currently approved. Although primary DENV infection confers life-long protective immunity against re-infection with the same DENV serotype, secondary infection with a different DENV serotype can lead to increased disease severity via cross-reactive T cells or enhancing antibodies. This review summarizes recent findings in humans and animal models about DENV infection of DCs, monocytes and macrophages. We discuss the dual role of DCs as both targets of DENV replication and mediators of innate and adaptive immunity, and summarize immune evasion strategies whereby DENV impairs the function of infected DCs. We suggest that DCs play a key role in priming DENV-specific neutralizing or potentially harmful memory B and T cell responses, and that future DC-directed therapies may help induce protective memory responses and reduce dengue pathogenesis.

  2. The role of metalloproteinase ADAM17 in regulating ICOS ligand-mediated humoral immune responses

    DEFF Research Database (Denmark)

    Marczynska, Joanna; Ozga, Aleksandra; Wlodarczyk, Agnieszka

    2014-01-01

    results in spleen and lymph node enlargement, as well as increased levels of Ag-specific class-switched Ig production following immunization with OVA together with anti-CD40 mAbs and polyinosinic-polycytidylic acid. Moreover, we demonstrate that the costimulatory ligand ICOS ligand (ICOSL) is selectively...... downregulated on the surface of B cells in an ADAM17-specific manner, although it is not proteolitically processed by recombinant ADAM17 in vitro. Finally, we show that higher cell surface levels of ICOSL in ADAM17(ex/ex) mice may contribute to the development of excessive Ab responses. Therefore, our data...... suggest a functional link between ADAM17 and ICOSL in controlling adaptive immune responses....

  3. Comparative genomic analysis of buffalo (Bubalus bubalis NOD1 and NOD2 receptors and their functional role in in-vitro cellular immune response.

    Directory of Open Access Journals (Sweden)

    Biswajit Brahma

    Full Text Available Nucleotide binding and oligomerization domain (NOD-like receptors (NLRs are innate immune receptors that recognize bacterial cell wall components and initiate host immune response. Structure and function of NLRs have been well studied in human and mice, but little information exists on genetic composition and role of these receptors in innate immune system of water buffalo--a species known for its exceptional disease resistance. Here, a comparative study on the functional domains of NOD1 and NOD2 was performed across different species. The NOD mediated in-vitro cellular responses were studied in buffalo peripheral blood mononuclear cells, resident macrophages, mammary epithelial, and fibroblast cells. Buffalo NOD1 (buNOD1 and buNOD2 showed conserved domain architectures as found in other mammals. The domains of buNOD1 and buNOD2 showed analogy in secondary and tertiary conformations. Constitutive expressions of NODs were ubiquitous in different tissues. Following treatment with NOD agonists, peripheral lymphocytes showed an IFN-γ response along-with production of pro-inflammatory cytokines. Alveolar macrophages and mammary epithelial cells showed NOD mediated in-vitro immune response through NF-κB dependent pathway. Fibroblasts showed pro-inflammatory cytokine response following agonist treatment. Our study demonstrates that both immune and non-immune cells could generate NOD-mediated responses to pathogens though the type and magnitude of response depend on the cell types. The structural basis of ligand recognition by buffalo NODs and knowledge of immune response by different cell types could be useful for development of non-infective innate immune modulators and next generation anti-inflammatory compounds.

  4. Identification of a Serine Proteinase Homolog (Sp-SPH) Involved in Immune Defense in the Mud Crab Scylla paramamosain

    Science.gov (United States)

    Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian

    2013-01-01

    Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, Pparahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain. PMID:23724001

  5. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo

    Science.gov (United States)

    Chu, Derek K.; Jimenez-Saiz, Rodrigo; Verschoor, Christopher P.; Walker, Tina D.; Goncharova, Susanna; Llop-Guevara, Alba; Shen, Pamela; Gordon, Melissa E.; Barra, Nicole G.; Bassett, Jennifer D.; Kong, Joshua; Fattouh, Ramzi; McCoy, Kathy D.; Bowdish, Dawn M.; Erjefält, Jonas S.; Pabst, Oliver; Humbles, Alison A.; Kolbeck, Roland; Waserman, Susan

    2014-01-01

    Eosinophils natively inhabit the small intestine, but a functional role for them there has remained elusive. Here, we show that eosinophil-deficient mice were protected from induction of Th2-mediated peanut food allergy and anaphylaxis, and Th2 priming was restored by reconstitution with il4+/+ or il4−/− eosinophils. Eosinophils controlled CD103+ dendritic cell (DC) activation and migration from the intestine to draining lymph nodes, events necessary for Th2 priming. Eosinophil activation in vitro and in vivo led to degranulation of eosinophil peroxidase, a granule protein whose enzymatic activity promoted DC activation in mice and humans in vitro, and intestinal and extraintestinal mouse DC activation and mobilization to lymph nodes in vivo. Further, eosinophil peroxidase enhanced responses to ovalbumin seen after immunization. Thus, eosinophils can be critical contributors to the intestinal immune system, and granule-mediated shaping of DC responses can promote both intestinal and extraintestinal adaptive immunity. PMID:25071163

  6. Phleum pratense pollen starch granules induce humoral and cell-mediated immune responses in a rat model of allergy.

    Science.gov (United States)

    Motta, A; Peltre, G; Dormans, J A M A; Withagen, C E T; Lacroix, G; Bois, F; Steerenberg, P A

    2004-02-01

    Timothy grass (Phleum pratense) pollen allergens are an important cause of allergic symptoms. However, pollen grains are too large to penetrate the deeper airways. Grass pollen is known to release allergen-bearing starch granules (SG) upon contact with water. These granules can create an inhalable allergenic aerosol capable of triggering an early asthmatic response and are implicated in thunderstorm-associated asthma. We studied the humoral (IgE) and bronchial lymph node cells reactivities to SG from timothy grass pollen in pollen-sensitized rats. Brown-Norway rats were sensitized (day 0) and challenged (day 21) intratracheally with intact pollen and kept immunized by pollen intranasal instillation by 4 weeks intervals during 3 months. Blood and bronchial lymph nodes were collected 7 days after the last intranasal challenge. SG were purified from fresh timothy grass pollen using 5 microm mesh filters. To determine the humoral response (IgE) to SG, we developed an original ELISA inhibition test, based on competition between pollen allergens and purified SG. The cell-mediated response to SG in the bronchial lymph node cells was determined by measuring the uptake of [3H]thymidine in a proliferation assay. An antibody response to SG was induced, and purified SG were able to inhibit the IgE ELISA absorbance by 45%. Pollen extract and intact pollen gave inhibitions of 55% and 52%, respectively. A cell-mediated response was also found, as pollen extract, intact pollen and SG triggered proliferation of bronchial lymph node cells. It was confirmed that timothy grass pollen contains allergen-loaded SG, which are released upon contact with water. These granules were shown to be recognized by pollen-sensitized rats sera and to trigger lymph node cell proliferation in these rats. These data provide new arguments supporting the implication of grass pollen SG in allergic asthma.

  7. Hemocyte characterization of Nasutitermes coxipoensis (Holmgren) (Isoptera: Termitidae) workers and hemocyte evaluation after parasitism by Metarhizium anisopliae; Caracterizacao dos hemocitos de operarios de Nasutitermes coxipoensis (Holmgren) (Isoptera: Termitidae) e avaliacao hemocitaria apos parasitismo por Metarhizium anisopliae

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Franklin M.; Wanderley-Teixeira, Valeria; Albuquerque, Auristela C. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Programa de Pos-Graduacao em Entomologia Agricola], e-mail: ukento@yahoo.com.br; Teixeira, Alvaro A.C. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Morfologia e Fisiologia Animal], e-mail: valeria@dmfa.ufrpe.br, e-mail: auritermes@yahoo.com.br; Alves, Luiz C. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Lab. de Imunopatologia Keizo Asami (LIKA); Lima, Elza A.L.A. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Micologia. Lab. de Controle Biologico

    2009-03-15

    We aimed to characterize the morphology and ultrastructure of hemocytes of Nasutitermes coxipoensis (Holmgren) workers and to quantify the cell types 24h, 48h and 72h after inoculation with Metarhizium anisopliae. Six hemocytes types were identified, plasmatocyte, granulocyte, spherulocyte, prohemocyte, adipohemocyte and eonocytoid Hemocytes did not present any morphological alteration at the several observation periods, but they did have a change in their abundance, as observed for spherulocytes, adipohemocytes and eonocytoids at all intervals, and for plasmatocytes and granulocytes at 48h after host inoculation. We argue on the possible reasons and implications of the observed changes. (author)

  8. 25-Hydroxyvitamin D and Peripheral Immune Mediators

    DEFF Research Database (Denmark)

    Thorsen, Steffen; Pipper, Christian; Skogstrand, Kristin

    2017-01-01

    Background: We aimed to examine if 25-hydroxyvitamin D (25(OH)D) was related to the peripheral immunological and inflammatory signature both at birth, and in newly diagnosed patients with childhood type 1 diabetes (T1D) and their healthy controls; (2) Methods: The birth cohort consisted of 470...... patients and 500 healthy controls. Dried blood samples were collected from the neonates in the period 1981–1999. The newly diagnosed cohort consisted of 460 patients and 453 siblings. Serum samples were collected in the period 1997–2005. A variety of peripheral immune mediators were measured and compared...... to total 25(OH)D levels (25(OH)D2 + 25(OH)D3). For each immune mediator, the relative change (RC) in the mean level was modeled by robust log-normal regression and correction for multiple testing was performed; (3) Results: Two associations were identified; there was a negative association between 25(OH...

  9. Interplay between immune responses to HLA and non-HLA self-antigens in allograft rejection.

    Science.gov (United States)

    Angaswamy, Nataraju; Tiriveedhi, Venkataswarup; Sarma, Nayan J; Subramanian, Vijay; Klein, Christina; Wellen, Jason; Shenoy, Surendra; Chapman, William C; Mohanakumar, T

    2013-11-01

    Recent studies strongly suggest an increasing role for immune responses against self-antigens (Ags) which are not encoded by the major histocompatibility complex in the immunopathogenesis of allograft rejection. Although, improved surgical techniques coupled with improved methods to detect and avoid sensitization against donor human leukocyte antigen (HLA) have improved the immediate and short term function of transplanted organs. However, acute and chronic rejection still remains a vexing problem for the long term function of the transplanted organ. Immediately following organ transplantation, several factors both immune and non immune mechanisms lead to the development of local inflammatory milieu which sets the stage for allograft rejection. Traditionally, development of antibodies (Abs) against mismatched donor HLA have been implicated in the development of Ab mediated rejection. However, recent studies from our laboratory and others have demonstrated that development of humoral and cellular immune responses against non-HLA self-Ags may contribute in the pathogenesis of allograft rejection. There are reports demonstrating that immune responses to self-Ags especially Abs to the self-Ags as well as cellular immune responses especially through IL17 has significant pro-fibrotic properties leading to chronic allograft failure. This review summarizes recent studies demonstrating the role for immune responses to self-Ags in allograft immunity leading to rejection as well as present recent evidence suggesting there is interplay between allo- and autoimmunity leading to allograft dysfunction. Copyright © 2013 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  10. Immune-Mediated Inner Ear Disease: Diagnostic and therapeutic approaches.

    Science.gov (United States)

    Penêda, José Ferreira; Lima, Nuno Barros; Monteiro, Francisco; Silva, Joana Vilela; Gama, Rita; Condé, Artur

    2018-03-07

    Immune Mediated Inner Ear Disease (IMIED) is a rare form of sensorineural bilateral hearing loss, usually progressing in weeks to months and responsive to immunosuppressive treatment. Despite recent advances, there is no consensus on diagnosis and optimal treatment. A review of articles on IMIED from the last 10 years was conducted using PubMed ® database. IMIED is a rare disease, mostly affecting middle aged women. It may be a primary ear disease or secondary to autoimmune systemic disease. A dual immune response (both cellular and humoral) seems to be involved. Cochlin may be the inner ear protein targeted in this disease. Distinction from other (core common) forms of neurosensory hearing loss is a challenge. Physical examination is mandatory for exclusion of other causes of hearing loss; audiometry identifies characteristic hearing curves. Laboratory and imaging studies are controversial since no diagnostic marker is available. Despite recent research, IMIED diagnosis remains exclusive. Steroids are the mainstay treatment; other therapies need further investigation. For refractory cases, cochlear implantation is an option and with good relative outcome. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Inter-donor variation in cell subset specific immune signaling responses in healthy individuals.

    Science.gov (United States)

    Longo, Diane M; Louie, Brent; Wang, Ena; Pos, Zoltan; Marincola, Francesco M; Hawtin, Rachael E; Cesano, Alessandra

    2012-01-01

    Single cell network profiling (SCNP) is a multi-parameter flow cytometry based approach that allows for the simultaneous interrogation of intracellular signaling pathways in multiple cell subpopulations within heterogeneous tissues, without the need for individual cell subset isolation. Thus, the technology is extremely well-suited for characterizing the multitude of interconnected signaling pathways and immune cell subpopulations that regulate the function of the immune system. Recently, SCNP was applied to generate a functional map of the healthy human immune cell signaling network by profiling immune signaling pathways downstream of 12 immunomodulators in 7 distinct immune cell subsets within peripheral blood mononuclear cells (PBMCs) from 60 healthy donors. In the study reported here, the degree of inter-donor variation in the magnitude of the immune signaling responses was analyzed. The highest inter-donor differences in immune signaling pathway activity occurred following perturbation of the immune signaling network, rather than in basal signaling. When examining the full panel of immune signaling responses, as one may expect, the overall degree of inter-donor variation was positively correlated (r = 0.727) with the magnitude of node response (i.e. a larger median signaling response was associated with greater inter-donor variation). However, when examining the degree of heterogeneity across cell subpopulations for individual signaling nodes, cell subset specificity in the degree of inter-donor variation was observed for several nodes. For such nodes, relatively weak correlations between inter-donor variation and the magnitude of the response were observed. Further, within the phenotypically distinct subpopulations, a fraction of the immune signaling responses had bimodal response profiles in which (a) only a portion of the cells had elevated phospho-protein levels following modulation and (b) the proportion of responsive cells varied by donor. These data

  12. Gene expression profile of Bombyx mori hemocyte under the stress of destruxin A.

    Directory of Open Access Journals (Sweden)

    Liang Gong

    Full Text Available Destruxin A (DA is a cyclo-peptidic mycotoxin from the entomopathogenic fungus Metarhizium anisopliae. To uncover potential genes associated with its molecular mechanisms, a digital gene expression (DGE profiling analysis was used to compare differentially expressed genes in the hemocytes of silkworm larvae treated with DA. Ten DGE libraries were constructed, sequenced, and assembled, and the unigenes with least 2.0-fold difference were further analyzed. The numbers of up-regulated genes were 10, 20, 18, 74 and 8, as well as the numbers of down-regulated genes were 0, 1, 8, 13 and 3 at 1, 4, 8, 12 and 24 h post treatment, respectively. Totally, the expression of 132 genes were significantly changed, among them, 1, 3 and 12 genes were continually up-regulated at 4, 3 and 2 different time points, respectively, while 1 gene was either up or down-regulated continually at 2 different time points. Furthermore, 68 genes were assigned to one or multiple gene ontology (GO terms and 89 genes were assigned to specific Kyoto Encyclopedia of Genes and Genomes (KEGG Orthology. In-depth analysis identified that these genes putatively involved in insecticide resistance, cell apoptosis, and innate immune defense. Finally, twenty differentially expressed genes were randomly chosen and validated by quantitative real-time PCR (qRT-PCR. Our studies provide insights into the toxic effect of this microbial insecticide on silkworm's hemocytes, and are helpful to better understanding of the molecular mechanisms of DA as a biological insecticide.

  13. Effects of Copper on Hemocyte Apoptosis, ROS Production, and Gene Expression in White Shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Guo, Hui; Li, Kexu; Wang, Wei; Wang, Chenggui; Shen, Yuchun

    2017-10-01

    Copper, a common chemical contaminant in aquatic environment, is known to be toxic to aquatic life at high concentrations. In the present study, we evaluated the apoptotic cell ratio and ROS production in hemocytes of the white shrimp Litopenaeus vannamei exposed to 1 or 5 mg L -1 Cu for 0, 3, 6, 12, 24, and 48 h. The expression changes of antioxidant biomarker genes, i.e., copper-zinc superoxide dismutase (Cu-Zn SOD) and catalase (CAT), apoptosis-related genes, i.e., caspase-3 and inhibitor of apoptosis protein (IAP), and a specific biomarker gene of heavy metal pollution, i.e., metallothionein (MT), were also determined in hemocytes. Significant increases in ROS production were observed in both treatment groups at each time points. The apoptotic cell ratios were significantly increased at 6-48 h among shrimp exposed to 1 mg L -1 Cu and at each time points in 5 mg L -1 Cu group. These results indicated that Cu would induce oxidative stress and apoptosis in the hemocyte of L. vannamei. Quantitative real-time PCR analysis revealed that the relative expression levels of Cu-Zn SOD, CAT, caspase-3, IAP, and MT were upregulated in a dose-dependent and time-dependent manner, suggesting the involvement of these genes in stress response against Cu exposure.

  14. Nitric oxide production by hemocytes of larva and pharate prepupa of Galleria mellonella in response to bacterial lipopolysaccharide: cytoprotective or cytotoxic?

    Czech Academy of Sciences Publication Activity Database

    Krishnan, Natraj; Hyršl, P.; Šimek, V.

    2006-01-01

    Roč. 142, 1-2 (2006), s. 103-110 ISSN 1532-0456 Institutional research plan: CEZ:AV0Z50070508 Keywords : nitric oxide * hemocytes * lipopolysaccharide Subject RIV: ED - Physiology Impact factor: 1.991, year: 2006

  15. Reuma.pt contribution to the knowledge of immune-mediated systemic rheumatic diseases.

    Science.gov (United States)

    Santos, Maria José; Canhão, Helena; Mourão, Ana Filipa; Oliveira Ramos, Filipa; Ponte, Cristina; Duarte, Cátia; Barcelos, Anabela; Martins, Fernando; Melo Gomes, José António

    2017-01-01

    Patient registries are key instruments aimed at a better understanding of the natural history of diseases, at assessing the effectiveness of therapeutic interventions, as well as identifying rare events or outcomes that are not captured in clinical trials. However, the potential of registries goes far beyond these aspects. For example, registries promote the standardization of clinical practice, can also provide information on domains that are not routinely collected in clinical practice and can support decision-making. Being aware of the importance of registries, the Portuguese Society of Rheumatology developed the Rheumatic Diseases Portuguese Register- Reuma.pt - which proved to be an innovative instrument essential to a better understanding of systemic immune-mediated rheumatic diseases. To describe the contribution of Reuma.pt to the knowledge of systemic immune-mediated rheumatic diseases. Reuma.pt is widely implemented, with 77 centres actively contributing to the recruitment and follow-up of patients. Reuma.pt follows in a standardized way patients with the following systemic inflammatory rheumatic diseases: rheumatoid arthritis (n=6218), psoriatic arthritis (n=1498), spondyloarthritis (n=2529), juvenile idiopathic arthritis (n =1561), autoinflammatory syndromes (n=122), systemic lupus erythematosus (n =1718), systemic sclerosis (n=180) and vasculitis (n=221). This platform is intended for use as an electronic medical record, provides standardized assessment of patients and support to the clinical decision, thereby contributing to a better quality of care of rheumatic patients. The research based on Reuma.pt identified genetic determinants of susceptibility and response to therapy, characterized in detail systemic rheumatic diseases and their long-term impact, critically appraised the performance of instruments for monitoring the disease activity, established the effectiveness and safety of biologic therapies and identified predictors of response, and

  16. Acquired and innate immunity to polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Yusuf, Nabiha; Timares, Laura; Seibert, Megan D.; Xu Hui; Elmets, Craig A.

    2007-01-01

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8 + T cells are effector cells in the response, whereas CD4 + T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents

  17. Diet-mediated effects of heavy metal pollution on growth and immune response in the geometrid moth Epirrita autumnata

    International Nuclear Information System (INIS)

    Ooik, Tapio van; Rantala, Markus J.; Saloniemi, Irma

    2007-01-01

    The potential capacity of larval growth and immune response traits of the autumnal moth to adapt to heavy metal polluted environment was tested experimentally. Both the relative growth rate (RGR) and pupal weight were significantly higher in control trees than on polluted trees, indicating that metal pollution prevented the insect from achieving maximal growth on birch leaves. Larval growth rates of different broods differed significantly between metal contaminated and control birches. However, pupal weight of broods, which is considered more important for fitness than growth rate, in response to pollution did not differ. Immune response was significantly higher in moths exposed to pollution than in moths that were exposed to control environment suggesting that pollution enhances the immune defense of defoliators. Encapsulation rate tended to differ between broods indicating that the immune function has potential to respond to selection. - Immune function of an insect herbivore increased in heavy metal polluted environment and some insect traits showed potential to adapt to polluted environment

  18. A cascade reaction network mimicking the basic functional steps of acquired immune response

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-01-01

    Biological systems use complex ‘information processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS which we call Adaptive Immune Response Simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system which responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner which is superficially similar to the most basic responses of the vertebrate acquired immune system, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices. PMID:26391084

  19. Genetic polymorphism and immune response to tuberculosis in indigenous populations: a brief review

    Directory of Open Access Journals (Sweden)

    Renata Maronna Praça Longhi

    Full Text Available We systematically reviewed studies of the immune response to tuberculosis and the genetic polymorphisms associated with Th1-or Th2-mediated cytokine expression in indigenous populations. A bibliographic search was performed on the Medline and ISI databases and included studies published between January 1980 and October 2011. The search terms were tuberculosis, American Indians, Amerindian, indigenous, Indians, native people, aboriginal, immun*, host immune, immune response, cytokine*, polymorphism*, and gene. Regardless of their design, studies that evaluated immunoglobulin, cytokine levels and genetic polymorphisms that altered cytokine expression were included. Thirteen studies met the inclusion criteria. The majority of studies were performed in Latin America, and five investigated the Warao ethnic group of Venezuela. Most of the investigations indirectly evaluated the immune response. Higher anergy to the tuberculin skin test, higher IgG4 and IgM levels, higher IL-5 production and lower TNF-a, IL-12p40 and IFN-I production were found in the indigenous populations. The studies also reported a predominantly Th2-type response in these populations and a possibly higher susceptibility to tuberculosis. A better understanding of the relevant genetic polymorphisms and their role in immune regulation would help to clarify the immunogenetic mechanisms of TB infection in these populations. This information would be useful for identifying new treatments and preventing infection and progression to active disease.

  20. Tetranychus urticae mites do not mount an induced immune response against bacteria.

    Science.gov (United States)

    Santos-Matos, Gonçalo; Wybouw, Nicky; Martins, Nelson E; Zélé, Flore; Riga, Maria; Leitão, Alexandre B; Vontas, John; Grbić, Miodrag; Van Leeuwen, Thomas; Magalhães, Sara; Sucena, Élio

    2017-06-14

    The genome of the spider mite Tetranychus urticae , a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae , infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei , a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response. © 2017 The Authors.

  1. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection.

    Directory of Open Access Journals (Sweden)

    Catherine Q Nie

    2009-04-01

    Full Text Available Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis.

  2. Cancer as an immune-mediated disease

    Directory of Open Access Journals (Sweden)

    Shurin MR

    2012-06-01

    Full Text Available Michael R ShurinDepartments of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USAAbstract: The link between oncology and immunology has a long history and its development is forced by the necessity to develop innovative and highly efficient modalities for immunological destruction of malignant cells. The limited efficacy of surgery, chemotherapy and radiation also exemplify these issues, as these treatments do not eliminate all cancerous cells, do not address the immunosuppressive nature of the disease and can further impair the patient's immune response weakening patient's resistance to the cancer. Multidisciplinary analysis of the interaction between the immune system and cancer in preclinical and clinical settings suggests that the immune system is closely intertwined with both cancer pathogenesis and treatment. On the one hand, cancer is a manifestation of malfunctions in immunity, as malignant cells manage to escape recognition and elimination by the immune system. Chronic infections and inflammation associated with limited or polarized immune responses also contribute to carcinogenesis and tumor progression. The tumor immunoenvironment represents specific conditions and elements that support cancerous cell survival, proliferation and spreading. On the other hand, the specificity and strength of antitumor immunity is a powerful and efficient tool that can be used to recognize and destroy neoplastic cells or their supporting microenvironment. Understanding the role of the immune system in controlling and supporting tumor initiation, formation, growth and progression has crucial implications for cancer therapy and will therefore guide the future development of cancer immunotherapy and its combination with conventional therapies to achieve optimal antitumor effects in patients with different types of cancer.Keywords: tumor immunology and immunotherapy, tumor immunoenvironment, cancer, immunosuppression

  3. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses.

    Science.gov (United States)

    Webb, Tonya J; Carey, Gregory B; East, James E; Sun, Wenji; Bollino, Dominique R; Kimball, Amy S; Brutkiewicz, Randy R

    2016-08-01

    Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response

    Directory of Open Access Journals (Sweden)

    Katherine M. Buckley

    2017-10-01

    Full Text Available The gut epithelium is an ancient site of complex communication between the animal immune system and the microbial world. While elements of self-non-self receptors and effector mechanisms differ greatly among animal phyla, some aspects of recognition, regulation, and response are broadly conserved. A gene regulatory network (GRN approach provides a means to investigate the nature of this conservation and divergence even as more peripheral functional details remain incompletely understood. The sea urchin embryo is an unparalleled experimental model for detangling the GRNs that govern embryonic development. By applying this theoretical framework to the free swimming, feeding larval stage of the purple sea urchin, it is possible to delineate the conserved regulatory circuitry that regulates the gut-associated immune response. This model provides a morphologically simple system in which to efficiently unravel regulatory connections that are phylogenetically relevant to immunity in vertebrates. Here, we review the organism-wide cellular and transcriptional immune response of the sea urchin larva. A large set of transcription factors and signal systems, including epithelial expression of interleukin 17 (IL17, are important mediators in the activation of the early gut-associated response. Many of these have homologs that are active in vertebrate immunity, while others are ancient in animals but absent in vertebrates or specific to echinoderms. This larval model provides a means to experimentally characterize immune function encoded in the sea urchin genome and the regulatory interconnections that control immune response and resolution across the tissues of the organism.

  5. Involvement of two microRNAs in the early immune response to DNA vaccination against a fish rhabdovirus

    DEFF Research Database (Denmark)

    Bela-ong, Dennis Berbulla; Schyth, Brian Dall; Zou, Jun

    2015-01-01

    Mechanisms that account for the high protective efficacy in teleost fish of a DNA vaccine expressing the glycoprotein (G) of Viral hemorrhagic septicemia virus (VHSV) are thought to involve early innate immune responses mediated by interferons (IFNs). Microribonucleic acids (miRNAs) are a diverse...... class of small (18–22 nucleotides) endogenous RNAs that potently mediate post-transcriptional silencing of a wide range of genes and are emerging as critical regulators of cellular processes, including immune responses. We have recently reported that miR-462 and miR-731 were strongly induced in rainbow......RNAs using anti-miRNA oligonucleotides was conducted in poly I:C-treated rainbow trout fingerlings. Following VHSV challenge, anti-miRNA-injected fish had faster development of disease and higher mortalities than control fish, indicating that miR-462/731 may be involved in IFN-mediated protection conferred...

  6. The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response

    Directory of Open Access Journals (Sweden)

    Jean Dubuisson

    2011-10-01

    Full Text Available Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review.

  7. A Genetic Screen Identifies a Requirement for Cysteine-Rich-Receptor-Like Kinases in Rice NH1 (OsNPR1-Mediated Immunity.

    Directory of Open Access Journals (Sweden)

    Mawsheng Chern

    2016-05-01

    Full Text Available Systemic acquired resistance, mediated by the Arabidopsis NPR1 gene and the rice NH1 gene, confers broad-spectrum immunity to diverse pathogens. NPR1 and NH1 interact with TGA transcription factors to activate downstream defense genes. Despite the importance of this defense response, the signaling components downstream of NPR1/NH1 and TGA proteins are poorly defined. Here we report the identification of a rice mutant, snim1, which suppresses NH1-mediated immunity and demonstrate that two genes encoding previously uncharacterized cysteine-rich-receptor-like kinases (CRK6 and CRK10, complement the snim1 mutant phenotype. Silencing of CRK6 and CRK10 genes individually in the parental genetic background recreates the snim1 phenotype. We identified a rice mutant in the Kitaake genetic background with a frameshift mutation in crk10; this mutant also displays a compromised immune response highlighting the important role of crk10. We also show that elevated levels of NH1 expression lead to enhanced CRK10 expression and that the rice TGA2.1 protein binds to the CRK10 promoter. These experiments demonstrate a requirement for CRKs in NH1-mediated immunity and establish a molecular link between NH1 and induction of CRK10 expression.

  8. Prostaglandin E and the local immune response in chronic periodontal disease

    International Nuclear Information System (INIS)

    Loening, T.; Albers, H.-K.; Lisboa, B.P.; Burkhardt, A.; Caselitz, J.

    1980-01-01

    The local immune reaction of progressive chronic periodontal disease may be particularly influenced by macrophages and macrophage-derived factors. Among these substances the prostaglandins and lysosomal enzymes may play an important pathogenetic role. Parallel immunohistochemical and radioimmunological studies were done to investigate the relatiships of the immune-competent cells and the inflammatory mediators in gingival tissues. The radioimmunological analysis revealed that prostaglandin E increases markedly in the established gingival lesions. Immunohistochemically prostaglandin E was mainly localized within macrophage-like cells. Cytoplasmic lysozyme could be detected in these cells, too. On the other hand, the B-cell response is the prominent feature in established chronic periodontal disease. However, there is apparently a disturbed B-cell reaction as indicated by the irregular IgG-subclass pattern and by the production of mainly monomeric IgA. The possible interactions of macrophages and especially B-cells via prostaglandin E-mediated mechanisms are discussed. (author)

  9. A T-cell response to a liver-stage Plasmodium antigen is not boosted by repeated sporozoite immunizations

    Science.gov (United States)

    Murphy, Sean C.; Kas, Arnold; Stone, Brad C.; Bevan, Michael J.

    2013-01-01

    Development of an antimalarial subunit vaccine inducing protective cytotoxic T lymphocyte (CTL)-mediated immunity could pave the way for malaria eradication. Experimental immunization with sporozoites induces this type of protective response, but the extremely large number of proteins expressed by Plasmodium parasites has so far prohibited the identification of sufficient discrete T-cell antigens to develop subunit vaccines that produce sterile immunity. Here, using mice singly immunized with Plasmodium yoelii sporozoites and high-throughput screening, we identified a unique CTL response against the parasite ribosomal L3 protein. Unlike CTL responses to the circumsporozoite protein (CSP), the population of L3-specific CTLs was not expanded by multiple sporozoite immunizations. CSP is abundant in the sporozoite itself, whereas L3 expression does not increase until the liver stage. The response induced by a single immunization with sporozoites reduces the parasite load in the liver so greatly during subsequent immunizations that L3-specific responses are only generated during the primary exposure. Functional L3-specific CTLs can, however, be expanded by heterologous prime-boost regimens. Thus, although repeat sporozoite immunization expands responses to preformed antigens like CSP that are present in the sporozoite itself, this immunization strategy may not expand CTLs targeting parasite proteins that are synthesized later. Heterologous strategies may be needed to increase CTL responses across the entire spectrum of Plasmodium liver-stage proteins. PMID:23530242

  10. Danger Signals Activating the Immune Response after Trauma

    Directory of Open Access Journals (Sweden)

    Stefanie Hirsiger

    2012-01-01

    Full Text Available Sterile injury can cause a systemic inflammatory response syndrome (SIRS that resembles the host response during sepsis. The inflammatory response following trauma comprises various systems of the human body which are cross-linked with each other within a highly complex network of inflammation. Endogenous danger signals (danger-associated molecular patterns; DAMPs; alarmins as well as exogenous pathogen-associated molecular patterns (PAMPs play a crucial role in the initiation of the immune response. With popularization of the “danger theory,” numerous DAMPs and PAMPs and their corresponding pathogen-recognition receptors have been identified. In this paper, we highlight the role of the DAMPs high-mobility group box protein 1 (HMGB1, interleukin-1α (IL-1α, and interleukin-33 (IL-33 as unique dual-function mediators as well as mitochondrial danger signals released upon cellular trauma and necrosis.

  11. TLR4 links podocytes with the innate immune system to mediate glomerular injury

    DEFF Research Database (Denmark)

    Banas, Miriam C; Banas, Bernhard; Hudkins, Kelly L

    2008-01-01

    profile of chemokines. In conclusion, it was demonstrated that TLR4 is constitutively expressed by podocytes and is upregulated in MPGN, where it may mediate glomerular injury by modulating expression of chemokines; therefore, TLR4 may link podocytes with the innate immune system to mediate MPGN triggered...... by the deposition of immune complexes....

  12. Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration.

    Science.gov (United States)

    Cloutier, Nathalie; Allaeys, Isabelle; Marcoux, Genevieve; Machlus, Kellie R; Mailhot, Benoit; Zufferey, Anne; Levesque, Tania; Becker, Yann; Tessandier, Nicolas; Melki, Imene; Zhi, Huiying; Poirier, Guy; Rondina, Matthew T; Italiano, Joseph E; Flamand, Louis; McKenzie, Steven E; Cote, Francine; Nieswandt, Bernhard; Khan, Waliul I; Flick, Matthew J; Newman, Peter J; Lacroix, Steve; Fortin, Paul R; Boilard, Eric

    2018-02-13

    There is a growing appreciation for the contribution of platelets to immunity; however, our knowledge mostly relies on platelet functions associated with vascular injury and the prevention of bleeding. Circulating immune complexes (ICs) contribute to both chronic and acute inflammation in a multitude of clinical conditions. Herein, we scrutinized platelet responses to systemic ICs in the absence of tissue and endothelial wall injury. Platelet activation by circulating ICs through a mechanism requiring expression of platelet Fcγ receptor IIA resulted in the induction of systemic shock. IC-driven shock was dependent on release of serotonin from platelet-dense granules secondary to platelet outside-in signaling by αIIbβ3 and its ligand fibrinogen. While activated platelets sequestered in the lungs and leaky vasculature of the blood-brain barrier, platelets also sequestered in the absence of shock in mice lacking peripheral serotonin. Unexpectedly, platelets returned to the blood circulation with emptied granules and were thereby ineffective at promoting subsequent systemic shock, although they still underwent sequestration. We propose that in response to circulating ICs, platelets are a crucial mediator of the inflammatory response highly relevant to sepsis, viremia, and anaphylaxis. In addition, platelets recirculate after degranulation and sequestration, demonstrating that in adaptive immunity implicating antibody responses, activated platelets are longer lived than anticipated and may explain platelet count fluctuations in IC-driven diseases.

  13. Effects of chronic whole-body gamma irradiation on cell mediated immunity

    International Nuclear Information System (INIS)

    Shifrine, M.; Taylor, N.J.; Wilson, F.D.; DeRock, E.W.; Wiger, N.

    1979-01-01

    The whole blood lymphocyte stimulation test has been used to estimate the effects of chronic, whole-body, gamma irradiation in the dog. At lower dose levels, 0.07 and 0.33 R/day to cumulative dose of about 50 and 250 R, there was no change in cell mediated immunity. Dogs at high dose levels were affected. Dogs which succumbed to aplastic anemia at high doses had reduced immunological responses. Dogs which survived these high doses showed a temporary depression. When aplastic anemia was initially noted, there was a differential response to PHA and Con-A stimulation. The response to the former mitogen was profoundly reduced, but Con-A stimulated cells were unaffected, indicative of the development of radioresistant cell lines. As the dogs progressed toward aplastic anemia, all T lympocytes were negatively affected

  14. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  15. Cellular Immune Reactions of the Sunn Pest, Eurygaster integriceps, to the Entomopathogenic Fungus, Beauveria bassiana and Its Secondary Metabolites

    Science.gov (United States)

    Zibaee, Arash; Bandani, Ali Reza; Talaei-Hassanlouei, Reza; Malagoli, Davide

    2011-01-01

    In this study, five morphological types of circulating hemocytes were recognized in the hemolymph of the adult sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), namely prohemocytes, plasmatocytes, granulocytes, adipohemocytes, and oenocytoids. The effects of the secondary metabolites of the entomopathogenic fungus Beauveria bassiana on cellular immune defenses of Eurygaster integriceps were investigated. The results showed that the fungal secondary metabolites inhibited phagocytic activity of E. integriceps hemocytes and hampered nodule formation. A reduction of phenoloxidase activity was also observed. The data suggest that B. bassiana produce secondary metabolites that disable several immune mechanisms allowing the fungus to overcome and then kill its host. This characteristic makes B. bassiana a promising model for biological control of insect pests such as E. integriceps. PMID:22233481

  16. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity.

    Science.gov (United States)

    Chua, Brendon Y; Wong, Chinn Yi; Mifsud, Edin J; Edenborough, Kathryn M; Sekiya, Toshiki; Tan, Amabel C L; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J; Doherty, Peter C; Kelso, Anne; Brown, Lorena E; Jackson, David C

    2015-10-27

    The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8(+) T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8(+) T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of

  17. The ascidian Styela plicata hemocytes as a potential biomarker of marine pollution: In vitro effects of seawater and organic mercury.

    Science.gov (United States)

    Parrinello, D; Bellante, A; Parisi, M G; Sanfratello, M A; Indelicato, S; Piazzese, D; Cammarata, M

    2017-02-01

    Toxic metals, such as mercury, contribute substantially to anthropogenic pollution in many estuarine environments. Animals living in those environments, particularly invertebrate filter feeders like tunicates, can be used as bioindicators. In an attempt to identify cellular markers for revealing pollution, this study examined in vitro the effects of different concentrations of methyl mercury on Styela plicata hemocytes. The harvested hemocytes from S. plicata that were exposed to the metal had a significant mortality, cellular count and morphometric alterations. These findings provided evidence of MeHg immunotoxic effects on S. plicata, resulting in hemocyte death and morphological changes induced by cytoskeleton alterations. Thus, a morphometric cellular parameter, such as spreading ability, was used as a complementary method for differentiation between hemocytes treated with a marine solution (as a negative control) and hemocytes incubated with methylmercury and/or Sicilian seawater samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Leptin as immune mediator: Interaction between neuroendocrine and immune system.

    Science.gov (United States)

    Procaccini, Claudio; La Rocca, Claudia; Carbone, Fortunata; De Rosa, Veronica; Galgani, Mario; Matarese, Giuseppe

    2017-01-01

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Initially described as an anti-obesity hormone, leptin has subsequently been shown to exert pleiotropic effects, being also able to influence haematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect both innate and adaptive immunity, by inducing a pro-inflammatory response and thus playing a key role in the regulation of the pathogenesis of several autoimmune/inflammatory diseases. In this review, we discuss the most recent advances on the role of leptin as immune-modulator in mammals and we also provide an overview on its main functions in non-mammalian vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Fluorescent dye labeled influenza virus mainly infects innate immune cells and activated lymphocytes and can be used in cell-mediated immune response assay

    OpenAIRE

    Xie, Dongxu

    2009-01-01

    Early results have recognized that influenza virus infects the innate and adaptive immune cells. The data presented in this paper demonstrated that influenza virus labeled with fluorescent dye not only retained the ability to infect and replicate in host cells, but also stimulated a similar human immune response as did unlabeled virus. Influenza virus largely infected the innate and activated adaptive immune cells. Influenza B type virus was different from that of A type virus. B type virus w...

  20. Immune Interventions to Eliminate the HIV Reservoir.

    Science.gov (United States)

    Hsu, Denise C; Ananworanich, Jintanat

    2017-10-26

    Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.

  1. Whole transcriptome profiling of successful immune response to Vibrio infections in the oyster Crassostrea gigas by digital gene expression analysis.

    Directory of Open Access Journals (Sweden)

    Julien de Lorgeril

    Full Text Available The cultivated Pacific oyster Crassostrea gigas has suffered for decades large scale summer mortality phenomenon resulting from the interaction between the environment parameters, the oyster physiological and/or genetic status and the presence of pathogenic microorganisms including Vibrio species. To obtain a general picture of the molecular mechanisms implicated in C. gigas immune responsiveness to circumvent Vibrio infections, we have developed the first deep sequencing study of the transcriptome of hemocytes, the immunocompetent cells. Using Digital Gene Expression (DGE, we generated a transcript catalog of up-regulated genes from oysters surviving infection with virulent Vibrio strains (Vibrio splendidus LGP32 and V. aestuarianus LPi 02/41 compared to an avirulent one, V. tasmaniensis LMG 20012(T. For that an original experimental infection protocol was developed in which only animals that were able to survive infections were considered for the DGE approach. We report the identification of cellular and immune functions that characterize the oyster capability to survive pathogenic Vibrio infections. Functional annotations highlight genes related to signal transduction of immune response, cell adhesion and communication as well as cellular processes and defence mechanisms of phagocytosis, actin cytosqueleton reorganization, cell trafficking and autophagy, but also antioxidant and anti-apoptotic reactions. In addition, quantitative PCR analysis reveals the first identification of pathogen-specific signatures in oyster gene regulation, which opens the way for in depth molecular studies of oyster-pathogen interaction and pathogenesis. This work is a prerequisite for the identification of those physiological traits controlling oyster capacity to survive a Vibrio infection and, subsequently, for a better understanding of the phenomenon of summer mortality.

  2. Pattern recognition receptor-mediated cytokine response in infants across 4 continents.

    Science.gov (United States)

    Smolen, Kinga K; Ruck, Candice E; Fortuno, Edgardo S; Ho, Kevin; Dimitriu, Pedro; Mohn, William W; Speert, David P; Cooper, Philip J; Esser, Monika; Goetghebuer, Tessa; Marchant, Arnaud; Kollmann, Tobias R

    2014-03-01

    Susceptibility to infection as well as response to vaccination varies among populations. To date, the underlying mechanisms responsible for these clinical observations have not been fully delineated. Because innate immunity instructs adaptive immunity, we hypothesized that differences between populations in innate immune responses may represent a mechanistic link to variation in susceptibility to infection or response to vaccination. Determine whether differences in innate immune responses exist among infants from different continents of the world. We determined the innate cytokine response following pattern recognition receptor (PRR) stimulation of whole blood from 2-year-old infants across 4 continents (Africa, North America, South America, and Europe). We found that despite the many possible genetic and environmental exposure differences in infants across 4 continents, innate cytokine responses were similar for infants from North America, South America, and Europe. However, cells from South African infants secreted significantly lower levels of cytokines than did cells from infants from the 3 other sites, and did so following stimulation of extracellular and endosomal but not cytosolic PRRs. Substantial differences in innate cytokine responses to PRR stimulation exist among different populations of infants that could not have been predicted. Delineating the underlying mechanism(s) for these differences will not only aid in improving vaccine-mediated protection but possibly also provide clues for the susceptibility to infection in different regions of the world. Copyright © 2013 The Authors. Published by Mosby, Inc. All rights reserved.

  3. Cell-Mediated and Humoral Immune Responses after Immunization of Calves with a Recombinant Multiantigenic Mycobacterium avium subsp. paratuberculosis Subunit Vaccine at Different Ages

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Aagaard, Claus; Stockmarr, Anders

    2013-01-01

    and 12 relative to the first vaccination. Vaccine-induced immune responses, the gamma interferon (IFN-γ) cytokine secretion and antibody responses, were followed for 20 weeks. In general, the specific responses were significantly elevated in all three vaccination groups after the first booster...

  4. TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins.

    Science.gov (United States)

    Tomlinson, Gillian; Chimalapati, Suneeta; Pollard, Tracey; Lapp, Thabo; Cohen, Jonathan; Camberlein, Emilie; Stafford, Sian; Periselneris, Jimstan; Aldridge, Christine; Vollmer, Waldemar; Picard, Capucine; Casanova, Jean-Laurent; Noursadeghi, Mahdad; Brown, Jeremy

    2014-10-01

    Streptococcus pneumoniae infections induce inflammatory responses that contribute toward both disease pathogenesis and immunity, but the host-pathogen interactions that mediate these effects are poorly defined. We used the surface lipoprotein-deficient ∆lgt pneumococcal mutant strain to test the hypothesis that lipoproteins are key determinants of TLR-mediated immune responses to S. pneumoniae. We show using reporter assays that TLR2 signaling is dependent on pneumococcal lipoproteins, and that macrophage NF-κB activation and TNF-α release were reduced in response to the ∆lgt strain. Differences in TNF-α responses between Δlgt and wild-type bacteria were abrogated for macrophages from TLR2- but not TLR4-deficient mice. Transcriptional profiling of human macrophages revealed attenuated TLR2-associated responses to ∆lgt S. pneumoniae, comprising many NF-κB-regulated proinflammatory cytokine and chemokine genes. Importantly, non-TLR2-associated responses were preserved. Experiments using leukocytes from IL-1R-associated kinase-4-deficient patients and a mouse pneumonia model confirmed that proinflammatory responses were lipoprotein dependent. Our data suggest that leukocyte responses to bacterial lipoproteins are required for TLR2- and IL-1R-associated kinase-4-mediated inflammatory responses to S. pneumoniae. Copyright © 2014 The Authors.

  5. Oral candidosis in relation to oral immunity.

    Science.gov (United States)

    Feller, L; Khammissa, R A G; Chandran, R; Altini, M; Lemmer, J

    2014-09-01

    Symptomatic oral infection with Candida albicans is characterized by invasion of the oral epithelium by virulent hyphae that cause tissue damage releasing the inflammatory mediators that initiate and sustain local inflammation. Candida albicans triggers pattern-recognition receptors of keratinocytes, macrophages, monocytes and dendritic cells, stimulating the production of IL-1β, IL-6 and IL-23. These cytokines induce the differentiation of Th17 cells and the generation of IL-17- and/or IL-22-mediated antifungal protective immuno-inflammatory responses in infected mucosa. Some immune cells including NKT cells, γδ T cells and lymphoid cells that are innate to the oral mucosa have the capacity to produce large quantities of IL-17 in response to C. albicans, sufficient to mediate effective protective immunity against C. albicans. On the other hand, molecular structures of commensal C. albicans blastoconidia, although detected by pattern-recognition receptors, are avirulent, do not invade the oral epithelium, do not elicit inflammatory responses in a healthy host, but induce regulatory immune responses that maintain tissue tolerance to the commensal fungi. The type, specificity and sensitivity of the protective immune response towards C. albicans is determined by the outcome of the integrated interactions between the intracellular signalling pathways of specific combinations of activated pattern-recognition receptors (TLR2, TLR4, Dectin-1 and Dectin-2). IL-17-mediated protective immune response is essential for oral mucosal immunity to C. albicans infection. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Approaches Mediating Oxytocin Regulation of the Immune System.

    Science.gov (United States)

    Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng

    2016-01-01

    The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.

  7. Genotoxic and Cytotoxic Effects on the Immune Cells of the Freshwater Bivalve Dreissena polymorpha Exposed to the Environmental Neurotoxin BMAA.

    Science.gov (United States)

    Lepoutre, Alexandra; Milliote, Nadia; Bonnard, Marc; Palos-Ladeiro, Mélissa; Rioult, Damien; Bonnard, Isabelle; Bastien, Fanny; Faassen, Elisabeth; Geffard, Alain; Lance, Emilie

    2018-03-01

    The environmental neurotoxin β- N -Methylamino-l-alanine (BMAA) has been pointed out to be involved in human neurodegenerative diseases. This molecule is known to be bioaccumulated by bivalves. However, little data about its toxic effects on freshwater mussels is available, particularly on the hemolymphatic compartment and its hemocyte cells involved in various physiological processes such as immune defenses, digestion and excretion, tissue repair, and shell production. Here we exposed Dreissena polymorpha to dissolved BMAA, at the environmental concentration of 7.5 µg of /mussel/3 days, during 21 days followed by 14 days of depuration in clear water, with the objective of assessing the BMAA presence in the hemolymphatic compartment, as well as the impact of the hemocyte cells in terms of potential cytotoxicity, immunotoxicity, and genotoxiciy. Data showed that hemocytes were in contact with BMAA. The presence of BMAA in hemolymph did not induce significant effect on hemocytes phagocytosis activity. However, significant DNA damage on hemocytes occurred during the first week (days 3 and 8) of BMAA exposure, followed by an increase of hemocyte mortality after 2 weeks of exposure. Those effects might be an indirect consequence of the BMAA-induced oxidative stress in cells. However, DNA strand breaks and mortality did not persist during the entire exposure, despite the BMAA persistence in the hemolymph, suggesting potential induction of some DNA-repair mechanisms.

  8. Genotoxic and Cytotoxic Effects on the Immune Cells of the Freshwater Bivalve Dreissena polymorpha Exposed to the Environmental Neurotoxin BMAA

    Directory of Open Access Journals (Sweden)

    Alexandra Lepoutre

    2018-03-01

    Full Text Available The environmental neurotoxin β-N-Methylamino-l-alanine (BMAA has been pointed out to be involved in human neurodegenerative diseases. This molecule is known to be bioaccumulated by bivalves. However, little data about its toxic effects on freshwater mussels is available, particularly on the hemolymphatic compartment and its hemocyte cells involved in various physiological processes such as immune defenses, digestion and excretion, tissue repair, and shell production. Here we exposed Dreissena polymorpha to dissolved BMAA, at the environmental concentration of 7.5 µg of /mussel/3 days, during 21 days followed by 14 days of depuration in clear water, with the objective of assessing the BMAA presence in the hemolymphatic compartment, as well as the impact of the hemocyte cells in terms of potential cytotoxicity, immunotoxicity, and genotoxiciy. Data showed that hemocytes were in contact with BMAA. The presence of BMAA in hemolymph did not induce significant effect on hemocytes phagocytosis activity. However, significant DNA damage on hemocytes occurred during the first week (days 3 and 8 of BMAA exposure, followed by an increase of hemocyte mortality after 2 weeks of exposure. Those effects might be an indirect consequence of the BMAA-induced oxidative stress in cells. However, DNA strand breaks and mortality did not persist during the entire exposure, despite the BMAA persistence in the hemolymph, suggesting potential induction of some DNA-repair mechanisms.

  9. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type 1 immunity.

    Science.gov (United States)

    Zaccard, Colleen R; Watkins, Simon C; Kalinski, Pawel; Fecek, Ronald J; Yates, Aarika L; Salter, Russell D; Ayyavoo, Velpandi; Rinaldo, Charles R; Mailliard, Robbie B

    2015-02-01

    The ability of dendritic cells (DC) to mediate CD4(+) T cell help for cellular immunity is guided by instructive signals received during DC maturation, as well as the resulting pattern of DC responsiveness to the Th signal, CD40L. Furthermore, the professional transfer of antigenic information from migratory DC to lymph node-residing DC is critical for the effective induction of cellular immune responses. In this study we report that, in addition to their enhanced IL-12p70 producing capacity, human DC matured in the presence of inflammatory mediators of type 1 immunity are uniquely programmed to form networks of tunneling nanotube-like structures in response to CD40L-expressing Th cells or rCD40L. This immunologic process of DC reticulation facilitates intercellular trafficking of endosome-associated vesicles and Ag, but also pathogens such HIV-1, and is regulated by the opposing roles of IFN-γ and IL-4. The initiation of DC reticulation represents a novel helper function of CD40L and a superior mechanism of intercellular communication possessed by type 1 polarized DC, as well as a target for exploitation by pathogens to enhance direct cell-to-cell spread. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Laurence Madera

    Full Text Available Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated enhanced production of pro-inflammatory cytokines tumor necrosis factor α, interleukin-6, and CCL2 in response to lipopolysaccharide (LPS while production of interleukin-10 remained unchanged. The increased LPS-induced production of pro-inflammatory cytokines was transient and correlated with enhanced cytokine production in response to other Toll-like receptor agonists, including peptidoglycan and flagellin. In addition, 4T1-conditioned BMDMs exhibited strengthened LPS-induced nitric oxide production and enhanced phagocytosis of Escherichia coli. 4T1-mediated augmentation of macrophage responses to LPS was partially dependent on the NFκB pathway, macrophage-colony stimulating factor, and actin polymerization, as well as the presence of 4T1-secreted extracellular vesicles. Furthermore, peritoneal macrophages obtained from 4T1 tumor-bearing mice displayed enhanced pro-inflammatory cytokine production in response to LPS. These results suggest that uptake of 4T1-secreted factors and actin-mediated ingestion of 4T1-secreted exosomes by macrophages cause a transient enhancement of innate inflammatory responses. Mammary carcinoma-mediated regulation of innate immunity may have significant implications for our understanding of host defense and cancer progression.

  11. Antibacterial activity and immune responses of a molluscan macrophage expressed gene-1 from disk abalone, Haliotis discus discus.

    Science.gov (United States)

    Bathige, S D N K; Umasuthan, Navaneethaiyer; Whang, Ilson; Lim, Bong-Soo; Won, Seung Hwan; Lee, Jehee

    2014-08-01

    The membrane-attack complex/perforin (MACPF) domain-containing proteins play an important role in the innate immune response against invading microbial pathogens. In the current study, a member of the MACPF domain-containing proteins, macrophage expressed gene-1 (MPEG1) encoding 730 amino acids with the theoretical molecular mass of 79.6 kDa and an isoelectric point (pI) of 6.49 was characterized from disk abalone Haliotis discus discus (AbMPEG1). We found that the characteristic MACPF domain (Val(131)-Tyr(348)) and transmembrane segment (Ala(669)-Ile(691)) of AbMPEG1 are located in the N- and C-terminal ends of the protein, respectively. Ortholog comparison revealed that AbMPEG1 has the highest sequence identity with its pink abalone counterpart, while sequences identities of greater than 90% were observed with MPEG1 members from other abalone species. Likewise, the furin cleavage site KRRRK was highly conserved in all abalone species, but not in other species investigated. We identified an intron-less genomic sequence within disk abalone AbMPEG1, which was similar to other mammalian, avian, and reptilian counterparts. Transcription factor binding sites, which are important for immune responses, were identified in the 5'-flanking region of AbMPEG1. qPCR revealed AbMPEG1 transcripts are present in every tissues examined, with the highest expression level occurring in mantle tissue. Significant up-regulation of AbMPEG1 transcript levels was observed in hemocytes and gill tissues following challenges with pathogens (Vibrio parahemolyticus, Listeria monocytogenes and viral hemorrhagic septicemia virus) as well as pathogen-associated molecular patterns (PAMPs: lipopolysaccharides and poly I:C immunostimulant). Finally, the antibacterial activity of the MACPF domain was characterized against Gram-negative and -positive bacteria using a recombinant peptide. Taken together, these results indicate that the biological significance of the AbMPEG1 gene includes a role in

  12. Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: Harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation.

    Science.gov (United States)

    Ferris, Robert L; Lenz, Heinz-Josef; Trotta, Anna Maria; García-Foncillas, Jesús; Schulten, Jeltje; Audhuy, François; Merlano, Marco; Milano, Gerard

    2018-02-01

    Immunoglobulin (Ig) G1 antibodies stimulate antibody-dependent cell-mediated cytotoxicity (ADCC). Cetuximab, an IgG1 isotype monoclonal antibody, is a standard-of-care treatment for locally advanced and recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) and metastatic colorectal cancer (CRC). Here we review evidence regarding the clinical relevance of cetuximab-mediated ADCC and other immune functions and provide a biological rationale concerning why this property positions cetuximab as an ideal partner for immune checkpoint inhibitors (ICIs) and other emerging immunotherapies. We performed a nonsystematic review of available preclinical and clinical data involving cetuximab-mediated immune activity and combination approaches of cetuximab with other immunotherapies, including ICIs, in SCCHN and CRC. Indeed, cetuximab mediates ADCC activity in the intratumoral space and primes adaptive and innate cellular immunity. However, counterregulatory mechanisms may lead to immunosuppressive feedback loops. Accordingly, there is a strong rationale for combining ICIs with cetuximab for the treatment of advanced tumors, as targeting CTLA-4, PD-1, and PD-L1 can ostensibly overcome these immunosuppressive counter-mechanisms in the tumor microenvironment. Moreover, combining ICIs (or other immunotherapies) with cetuximab is a promising strategy for boosting immune response and enhancing response rates and durability of response. Cetuximab immune activity-including, but not limited to, ADCC-provides a strong rationale for its combination with ICIs or other immunotherapies to synergistically and fully mobilize the adaptive and innate immunity against tumor cells. Ongoing prospective studies will evaluate the clinical effect of these combination regimens and their immune effect in CRC and SCCHN and in other indications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Molecular cloning and characterization of autophagy-related gene TmATG8 in Listeria-invaded hemocytes of Tenebrio molitor.

    Science.gov (United States)

    Tindwa, Hamisi; Jo, Yong Hun; Patnaik, Bharat Bhusan; Lee, Yong Seok; Kang, Sang Sun; Han, Yeon Soo

    2015-07-01

    Macroautophagy (hereinafter called autophagy) is a highly regulated process used by eukaryotic cells to digest portions of the cytoplasm that remodels and recycles nutrients and disposes of unwanted cytoplasmic constituents. Currently 36 autophagy-related genes (ATG) and their homologs have been characterized in yeast and higher eukaryotes, including insects. In the present study, we identified and functionally characterized the immune function of an ATG8 homolog in a coleopteran insect, Tenebrio molitor (TmATG8). The cDNA of TmATG8 comprises of an ORF of 363 bp that encodes a protein of 120 amino acid residues. TmATG8 transcripts are detected in all the developmental stages analyzed. TmAtg8 protein contains a highly conserved C-terminal glycine residue (Gly116) and shows high amino acid sequence identity (98%) to its Tribolium castaneum homolog, TcAtg8. Loss of function of TmATG8 by RNAi led to a significant increase in the mortality rates of T. molitor larvae against Listeria monocytogenes. Unlike dsEGFP-treated control larvae, TmATG8-silenced larvae failed to turn-on autophagy in hemocytes after injection with L. monocytogenes. These data suggest that TmATG8 play a role in mediating autophagy-based clearance of Listeria in T. molitor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. PF4-HIT antibody (KKO) complexes activate broad innate immune and inflammatory responses.

    Science.gov (United States)

    Haile, Lydia A; Rao, Roshni; Polumuri, Swamy K; Arepally, Gowthami M; Keire, David A; Verthelyi, Daniela; Sommers, Cynthia D

    2017-11-01

    Heparin-induced thrombocytopenia (HIT) is an immune-mediated complication of heparin anticoagulation therapy resulting in thrombocytopenia frequently accompanied by thrombosis. Current evidence suggests that HIT is associated with antibodies developed in response to multi-molecular complexes formed by platelet factor 4 (PF4) bound to heparin or cell surface glycosaminoglycans. These antibody complexes activate platelets and monocytes typically through FcγRIIA receptors increasing the production of PF4, inflammatory mediators, tissue factor and thrombin. The influence of underlying events in HIT including complex-induced pro-inflammatory cell activation and structural determinants leading to local inflammatory responses are not fully understood. The stoichiometry and complex component requirements were determined by incubating fresh peripheral blood mononuclear cells (PBMC) with different concentrations of unfractionated heparin (H), low molecular weight heparin (LMWH), PF4- and anti-PF4-H complex antibodies (KKO). Cytokine mRNA or protein were measured by qRT-PCR or Meso Scale Discovery technology, respectively. Gene expression profile analysis for 594 genes was performed using Nanostring technology and analyzed using Ingenuity Pathway Analysis software. The data show that antibodies magnify immune responses induced in PBMCs by PF4 alone or in complex with heparin or LMWH. We propose that following induction of HIT antibodies by heparin-PF4 complexes, binding of the antibodies to PF4 is sufficient to induce a local pro-inflammatory response which may play a role in the progression of HIT. In vitro assays using PBMCs may be useful in characterizing local inflammatory and innate immune responses induced by HIT antibodies in the presence of PF4 and different sources of heparins. The findings and conclusions in this article are solely the responsibility of the authors and are not being formally disseminated by the Food and Drug Administration. Thus, they should not be

  15. Adaptive and innate immune reactions regulating mast cell activation: from receptor-mediated signaling to responses

    DEFF Research Database (Denmark)

    Tkaczyk, Christine; Jensen, Bettina M; Iwaki, Shoko

    2006-01-01

    differentially activate multiple signaling pathways within the mast cells required for the generation and/or release of inflammatory mediators. Thus, the composition of the suite of mediators released and the physiologic ramifications of these responses are dependent on the stimuli and the microenvironment...

  16. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    Science.gov (United States)

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  17. Whole blood assay to access T cell-immune responses to Mycobacterium tuberculosis antigens in healthy Brazilian individuals

    Directory of Open Access Journals (Sweden)

    Paulo RZ Antas

    2004-02-01

    Full Text Available The production of interferon gamma (IFNgamma guarantees effective T cell-mediated immunity against Mycobacterium tuberculosis infection. In the present study, we simply compare the in vitro immune responses to Mycobacterium antigens in terms of IFNg production in a total of 10 healthy Brazilian volunteers. Whole blood and mononuclear cells were cultivated in parallel with PPD, Ag85B, and M. bovis hsp65, and five-days supernatants were harvested for cytokine detection by ELISA. The inter-assay result was that the overall profile of agreement in response to antigens was highly correlated (r² = 0.9266; p = 0.0102. Potential analysis is in current progress to dictate the usefulness of this method to access the immune responses also in tuberculosis patients and its contacts.

  18. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    Science.gov (United States)

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The effect of doxycycline treatment on the postvaccinal immune response in pigs

    International Nuclear Information System (INIS)

    Pomorska-Mól, Małgorzata; Kwit, Krzysztof; Markowska-Daniel, Iwona; Pejsak, Zygmunt

    2014-01-01

    The effect of a seven-day antibiotic therapy with doxycycline was investigated on the postvaccinal humoral and cellular immune response in pigs. The selected parameters of non-specific immunity were also studied. Fifty pigs were used (control not vaccinated (C, n = 10), control vaccinated (CV, n = 20), and experimental — received doxycycline (DOXY, n = 20)). For vaccination live-attenuated vaccine against pseudorabies (PR) was used. From day − 1 to day 5 pigs from DOXY group received doxycycline orally with drinking water, at the recommended dose. Pigs from DOXY and CV groups were vaccinated at 8 and 10 weeks of age. The results of the present study showed that cell-mediated postvaccinal immune response can be modulated by oral treatment with doxycycline. Significantly lower values of stimulation index were observed after PRV restimulation in doxycycline-treated pigs. Moreover, in the DOXY group a significant decrease in IFN-γ production after PRV restimulation was noted. The significantly lower number of CD4+CD8 + cells was also observed in doxy-treated, vaccinated pigs, 2 weeks after final vaccination. Simultaneously, specific humoral response was not disturbed. This study demonstrated the importance of defining the immune modulatory activity of doxycycline because it may alter the immune responses to vaccines. The exact mechanism of T-cell response suppression by doxycycline remains to be elucidated, however the influence of doxycycline on the secretion of various cytokines, including IFN-γ, may be considered as a possible cause. The present observations should prompt further studies on the practical significance of such phenomena in terms of clinical implications. - Highlights: • We examine the postvaccinal immune response in pigs treated with doxycycline. • Doxycycline negatively influenced the specific proliferation after recall stimulation. • Doxycycline negatively influenced secretion of IFN-γ after recall stimulation. • The lower number of

  20. The effect of doxycycline treatment on the postvaccinal immune response in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Pomorska-Mól, Małgorzata, E-mail: mpomorska@piwet.pulawy.pl; Kwit, Krzysztof; Markowska-Daniel, Iwona; Pejsak, Zygmunt

    2014-07-01

    The effect of a seven-day antibiotic therapy with doxycycline was investigated on the postvaccinal humoral and cellular immune response in pigs. The selected parameters of non-specific immunity were also studied. Fifty pigs were used (control not vaccinated (C, n = 10), control vaccinated (CV, n = 20), and experimental — received doxycycline (DOXY, n = 20)). For vaccination live-attenuated vaccine against pseudorabies (PR) was used. From day − 1 to day 5 pigs from DOXY group received doxycycline orally with drinking water, at the recommended dose. Pigs from DOXY and CV groups were vaccinated at 8 and 10 weeks of age. The results of the present study showed that cell-mediated postvaccinal immune response can be modulated by oral treatment with doxycycline. Significantly lower values of stimulation index were observed after PRV restimulation in doxycycline-treated pigs. Moreover, in the DOXY group a significant decrease in IFN-γ production after PRV restimulation was noted. The significantly lower number of CD4+CD8 + cells was also observed in doxy-treated, vaccinated pigs, 2 weeks after final vaccination. Simultaneously, specific humoral response was not disturbed. This study demonstrated the importance of defining the immune modulatory activity of doxycycline because it may alter the immune responses to vaccines. The exact mechanism of T-cell response suppression by doxycycline remains to be elucidated, however the influence of doxycycline on the secretion of various cytokines, including IFN-γ, may be considered as a possible cause. The present observations should prompt further studies on the practical significance of such phenomena in terms of clinical implications. - Highlights: • We examine the postvaccinal immune response in pigs treated with doxycycline. • Doxycycline negatively influenced the specific proliferation after recall stimulation. • Doxycycline negatively influenced secretion of IFN-γ after recall stimulation. • The lower number of

  1. The Roles of Heat Shock Proteins 70 and 90 in Exopalaemon carinicauda After WSSV and Vibrio anguillarum Challenges

    Science.gov (United States)

    Li, Jitao; Li, Jian; Duan, Yafei; Chen, Ping; Liu, Ping

    2018-04-01

    Heat shock proteins (HSPs), such as HSP70 and HSP90, are a suite of highly conserved proteins produced in all cellular organisms when they are exposed to stresses. In aquatic animals, they have been proved to play important roles in response to environmental pollutants and particularly in the non-specific immune responses to pathogen infections. In the present study, the expression profiles of HSP70 and HSP90 genes in hemocytes and hepatopancreas from the ridgetail white prawn Exopalaemon carinicauda infected with WSSV and Vibrio anguillarum were detected using reverse transcription polymerase chain reaction (RT-PCR). After WSSV challenge, the expression level of HSP 70 gene transcripts in the hemocytes and hepatopancreas increased to peak level at 6 h and 48 h, respectively. HSP90 gene transcripts in hemocytes and hepatopancreas were up-regulated significantly at 12 h and 6 h, respectively. During V. anguillarum challenge, the mRNA content of HSP70 gene in hemocytes and hepatopancreas increased significantly at 12 h and 6 h post-infection, respectively. The expression level of HSP90 gene both in hemocytes and hepatopancreas were up-regulated in the first 3 h. The expression patterns of HSP70 and HSP90 genes in hemocytes and hepatopancreas showed temporal and spatial differences after challenged with WSSV and V. anguillarum. The results suggested that HSPs might be involved in immune responses to pathogens challenge in E. carinicauda.

  2. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  3. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    Directory of Open Access Journals (Sweden)

    Chih-Yun Lai

    2017-08-01

    Full Text Available Ebola virus (EBOV, a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD is currently available, Ebola virus glycoprotein (GP is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs. Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4

  4. Endogenous Tim-1 (Kim-1) promotes T-cell responses and cell-mediated injury in experimental crescentic glomerulonephritis.

    Science.gov (United States)

    Nozaki, Yuji; Nikolic-Paterson, David J; Snelgrove, Sarah L; Akiba, Hisaya; Yagita, Hideo; Holdsworth, Stephen R; Kitching, A Richard

    2012-05-01

    The T-cell immunoglobulin mucin 1 (Tim-1) modulates CD4(+) T-cell responses and is also expressed by damaged proximal tubules in the kidney where it is known as kidney injury molecule-1 (Kim-1). We sought to define the role of endogenous Tim-1 in experimental T-cell-mediated glomerulonephritis induced by sheep anti-mouse glomerular basement membrane globulin acting as a planted foreign antigen. Tim-1 is expressed by infiltrating activated CD4(+) cells in this model, and we studied the effects of an inhibitory anti-Tim-1 antibody (RMT1-10) on immune responses and glomerular disease. Crescentic glomerulonephritis, proliferative injury, and leukocyte accumulation were attenuated following treatment with anti-Tim-1 antibodies, but interstitial foxp3(+) cell accumulation and interleukin-10 mRNA were increased. T-cell proliferation and apoptosis decreased in the immune system along with a selective reduction in Th1 and Th17 cellular responses both in the immune system and within the kidney. The urinary excretion and renal expression of Kim-1 was reduced by anti-Tim-1 antibodies reflecting diminished interstitial injury. The effects of anti-Tim-1 antibodies were not apparent in the early phase of renal injury, when the immune response to sheep globulin was developing. Thus, endogenous Tim-1 promotes Th1 and Th17 nephritogenic immune responses and its neutralization reduces renal injury while limiting inflammation in cell-mediated glomerulonephritis.

  5. Subnormal expression of cell-mediated and humoral immune responses in progeny disposed toward a high incidence of tumors after in utero exposure to benzo[a]pyrene

    International Nuclear Information System (INIS)

    Urso, P.; Gengozian, N.

    1984-01-01

    Pregnant mice were exposed to 150 μg benzol[a]pyrene (BaP) per gram of body weight during fetogenesis (d 11-17 of gestation) and the progeny were assayed for humoral and cell mediated immune responses at different time intervals after birth. Immature offspring (1-4 wk) were severely suppressed in their ability to produce antibody (plaque-) forming cells (PFC) against sheep red blood cells (SRBC) and in the ability of their lymphocytes to undergo a mixed lymphocyte response (MLR). Lymphocytes from these progeny showed a moderate to weak capacity to inhabit production of colony-forming units (CFU) in host spleens following transfer with semiallogeneic bone marrow (BM) cells into lethally x-irradiated recipients syngeneic to the BM (in vivo graft-versus-host response, GVHR). A severe and sustained suppression in the MLR and the PFC response occurred from the fifth month up to 18 mo. The in vivo GVHR, also subnormal later in life, was not as severely suppressed as the other two parameters. Tumor incidence in the BP-exposed progeny was 8- to 10-fold higher than in those encountering corn oil alone from 18 to 24 mo of age. These data show that in utero exposure to the chemical carcinogen BaP alters development of components needed for establishing competent hemoral and cell-mediated functions of the immune apparatus and leads to severe and sustained postnatal suppression of the defense mechanism. The immunodeficiency exhibited, particularly in the T-cell compartment (MLR, GVHR), before and during the increase in tumor frequency, may provide a favorable environment for the growth of nascent neoplasms induced by BaP. 30 references, 4 figures, 2 tables

  6. Immune mechanisms in Babesia-infected animals

    International Nuclear Information System (INIS)

    Phillips, R.S.

    1980-01-01

    The course of a Babesia infection depends on the species of host and parasite involved. Animals infected with virulent babesias may need chemotherapy before acquired immunity develops. Maintenance of immunity is not dependent on the presence of the parasite. Babesia infections are characteristically of long duration. The immune response to babesias includes both humoral and cellular components. Antibody levels detected in serodiagnostic tests do not relate to levels of resistance to the parasite. Some antibodies, however, appear to be protective. Antiparasitic antibodies may damage parasites in or outside the red cell and act as opsonins. T-cell-deficient and anti-lymphocyte-serum-treated rodents are more susceptible to rodent piroplasms indicating a role for T-cells as either helper cells and/or as mediators of cell-mediated immunity (CMI). There is indirect evidence of CMI, but the cell-mediated mechanisms involved in parasite killing are not known. In domestic animals immunity is largely species- and strain-specific. Antigenic variation by babesias occurs. In rodents, however, there is cross-immunity between different species of rodent piroplasms and between rodent piroplasms and some malaria parasites. Prior infection with agents such as BCG, and Corynebacterium parvum, gives mice non-specific resistance to rodent piroplasms possibly mediated through a soluble non-antibody factor. This factor may also be liberated during piroplasm infections and by being toxic to malaria parasites account for heterologous immunity. Active immunization against babesias has been achieved with avirulent strains, irradiated parasites and dead parasites in adjuvant. During Babesia infections the primary and, to a lesser degree, the secondary immune response to heterologous antigens can be depressed. Maximum depression coincides with peak parasitaemia when antigen priming may be abolished completely. Immunosuppression during Babesia infections can prolong or exacerbate concurrent

  7. A chitinase from pacific white shrimp Litopenaeus vannamei involved in immune regulation.

    Science.gov (United States)

    Niu, Shengwen; Yang, Linwei; Zuo, Hongliang; Zheng, Jiefu; Weng, Shaoping; He, Jianguo; Xu, Xiaopeng

    2018-08-01

    Chitinases are a group of hydrolytic enzymes that hydrolyze chitin and widely exist in organisms. Studies in mammals have demonstrated that chitinases play important roles in regulation of humoral and cellular immune responses. In arthropods, although it is well known that chitinases are involved in growth, molting and development, the current knowledge on the role of chitinases in immunity, especially in immune regulation, remains largely unknown. In this study, a chitinase (LvChi5) from Litopenaeus vannamei was representatively selected for studying its immune function. The start codon of LvChi5 was corrected by 5'RACE analysis and its protein sequence was reanalyzed. LvChi5 contains a catalytic domain and a chitin binding domain and shows no inhibitory effect on growth of bacteria in vitro. However, in vivo experiments demonstrated that silencing of LvChi5 increased the mortality of shrimp infected with white spot syndrome virus (WSSV) and Vibro parahaemolyticus and significantly upregulated the load of pathogens in tissues. The expression of various immune related genes, including transcription factors, antimicrobial peptides and other functional proteins with antibacterial and antiviral activities, was widely changed in LvChi5 silencing shrimp. Moreover, the recombinant LvChi5 protein could enhance the phagocytic activity of hemocytes against bacteria. These suggested that shrimp chitinase could play a role in regulation of both humoral and cellular immune responses in shrimp. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Modulations in cell-mediated immunity of Mytilus edulis following the 'Sea Empress' oil spill

    International Nuclear Information System (INIS)

    Dyrynda, E.A.; Dyrynda, P.E.J.; Ratcliffe, N.A.; Pipe, R.K.

    1997-01-01

    The 'Sea Empress' oil tanker grounded outside Milford Haven (Wales, UK) in February 1996, spilling ∼ 70,000 tonnes of crude oil and contaminating over 100 km of coastline, causing mass mortalities and strandings of at least 11 mollusc species. Intensive field monitoring commenced after the spill, examining immunity and hydrocarbon levels in the mussel, Mytilus edulis (Mollusca: Bivalvia), a commercially-harvested species which can accumulate contaminants. Comparisons of mussels from oiled and reference sites revealed significant modulations in cell-mediated immunity. Elevations in blood cell (haemocyte) numbers and decreases in superoxide generation and phagocytosis were identified in contaminated animals. The immune response of contaminated mussels gradually improved and generally showed no significant differences compared with clean mussels after 11 weeks. By then, total hydrocarbon content in contaminated mussels had declined by 70-90%, while polycyclic aromatic hydrocarbon content had decreased by over 90%. (author)

  9. Reliability and responsiveness of a graduated tuning fork in immune mediated polyneuropathies. The Inflammatory Neuropathy Cause and Treatment (INCAT) Group

    NARCIS (Netherlands)

    I.S.J. Merkies (Ingemar); P.I.M. Schmitz (Paul); F.G.A. van der Meché (Frans); P.A. van Doorn (Pieter)

    2000-01-01

    textabstractThe interobserver and intraobserver reliability of the Rydel-Seiffer (RS) graduated tuning fork was evaluated in 113 patients with a clinically stable immune mediated polyneuropathy (83 patients who had had Guillain-Barre syndrome (GBS) in the past, 22 with

  10. Use of Biomphalaria glabrata hemocytes as a biomarker of exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Hianna A.M.F.; Lima, Maira V.; Sa, Jose L.F.; Siqueira, Williams N.; Luna Filho, Ricardo L.C.; Melo, Larissa S.A.; Morais, Vinicius H.T.; Melo, Ana M.M.A., E-mail: hiannaamfs@gmail.com, E-mail: mairavasconceloslima@gmail.com, E-mail: luismuma6@gmail.com, E-mail: williams.wns@gmail.com, E-mail: ricardolclf@hotmail.com, E-mail: larissamelo.pe@gmail.com, E-mail: viniciushtmorais@hotmail.com, E-mail: amdemelo@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Biofisica e Radiobiologia

    2017-11-01

    The increase of the applications of ionizing radiation in several areas and sectors of modern society has given rise to a greater probability of occurrence of accidents. These accidental occurrences have revealed the need for methods that provide quantitative data on the radiation doses absorbed by biological systems. The mollusk Biomphalaria glabrata presents as a good bioindicator in several works referenced in the literature. In this way, the objective of this work was to evaluate the morphological and quantitative alterations of hemocytes of the Biomphalaria glabrata exposed to ionizing radiation. For the experiments, adult mollusks of the species B. glabrata pigmented were used. The selected mollusks were divided into six groups: five submitted to doses of 10, 20, 30, 40, 50 Gy of {sup 60}Co gamma radiation and the control group. After 48 h, the slides were prepared and then read in a microscope. Quantitative analysis showed a decrease in the total number of hemocytes after irradiation. In the cell classification, a higher number of hyalinocytes were observed in relation to the number of granulocytes, except for the animals exposed to a dose of 30 Gy. The presence of micronuclei and binucleations were observed at all doses used. Apoptosis was observed at doses starting at 30 Gy. Therefore, it is possible to conclude that the morphological and quantitative analysis of B. glabrata hemocytes provided significant data for the identification of biological damage caused by ionizing radiation, allowing the beginning of standardization of the morphological alteration counting technique in B. glabrata hemocytes as An environmental biomarker for the action of physical agents. (author)

  11. Use of Biomphalaria glabrata hemocytes as a biomarker of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Silva, Hianna A.M.F.; Lima, Maira V.; Sa, Jose L.F.; Siqueira, Williams N.; Luna Filho, Ricardo L.C.; Melo, Larissa S.A.; Morais, Vinicius H.T.; Melo, Ana M.M.A.

    2017-01-01

    The increase of the applications of ionizing radiation in several areas and sectors of modern society has given rise to a greater probability of occurrence of accidents. These accidental occurrences have revealed the need for methods that provide quantitative data on the radiation doses absorbed by biological systems. The mollusk Biomphalaria glabrata presents as a good bioindicator in several works referenced in the literature. In this way, the objective of this work was to evaluate the morphological and quantitative alterations of hemocytes of the Biomphalaria glabrata exposed to ionizing radiation. For the experiments, adult mollusks of the species B. glabrata pigmented were used. The selected mollusks were divided into six groups: five submitted to doses of 10, 20, 30, 40, 50 Gy of "6"0Co gamma radiation and the control group. After 48 h, the slides were prepared and then read in a microscope. Quantitative analysis showed a decrease in the total number of hemocytes after irradiation. In the cell classification, a higher number of hyalinocytes were observed in relation to the number of granulocytes, except for the animals exposed to a dose of 30 Gy. The presence of micronuclei and binucleations were observed at all doses used. Apoptosis was observed at doses starting at 30 Gy. Therefore, it is possible to conclude that the morphological and quantitative analysis of B. glabrata hemocytes provided significant data for the identification of biological damage caused by ionizing radiation, allowing the beginning of standardization of the morphological alteration counting technique in B. glabrata hemocytes as An environmental biomarker for the action of physical agents. (author)

  12. Immune response to H pylori

    Science.gov (United States)

    Suarez, Giovanni; Reyes, Victor E; Beswick, Ellen J

    2006-01-01

    The gastric mucosa separates the underlying tissue from the vast array of antigens that traffic through the stomach lumen. While the extreme pH of this environment is essential in aiding the activation of enzymes and food digestion, it also renders the gastric epithelium free from bacterial colonization, with the exception of one important human pathogen, H pylori. This bacterium has developed mechanisms to survive the harsh environment of the stomach, actively move through the mucosal layer, attach to the epithelium, evade immune responses, and achieve persistent colonization. While a hallmark of this infection is a marked inflammatory response with the infiltration of various immune cells into the infected gastric mucosa, the host immune response is unable to clear the infection and may actually contribute to the associated pathogenesis. Here, we review the host responses involved during infection with H pylori and how they are influenced by this bacterium. PMID:17007009

  13. Anti-Donor Immune Responses Elicited by Allogeneic Mesenchymal Stem Cells and Their Extracellular Vesicles: Are We Still Learning?

    Directory of Open Access Journals (Sweden)

    Paul Lohan

    2017-11-01

    Full Text Available Mesenchymal stromal cells (MSC have been used to treat a broad range of disease indications such as acute and chronic inflammatory disorders, autoimmune diseases, and transplant rejection due to their potent immunosuppressive/anti-inflammatory properties. The breadth of their usage is due in no small part to the vast quantity of published studies showing their ability to modulate multiple immune cell types of both the innate and adaptive immune response. While patient-derived (autologous MSC may be the safer choice in terms of avoiding unwanted immune responses, factors including donor comorbidities may preclude these cells from use. In these situations, allogeneic MSC derived from genetically unrelated individuals must be used. While allogeneic MSC were initially believed to be immune-privileged, substantial evidence now exists to prove otherwise with multiple studies documenting specific cellular and humoral immune responses against donor antigens following administration of these cells. In this article, we will review recent published studies using non-manipulated, inflammatory molecule-activated (licensed and differentiated allogeneic MSC, as well as MSC extracellular vesicles focusing on the immune responses to these cells and whether or not such responses have an impact on allogeneic MSC-mediated safety and efficacy.

  14. cGAS-mediated control of blood-stage malaria promotes Plasmodium-specific germinal center responses.

    Science.gov (United States)

    Hahn, William O; Butler, Noah S; Lindner, Scott E; Akilesh, Holly M; Sather, D Noah; Kappe, Stefan Hi; Hamerman, Jessica A; Gale, Michael; Liles, W Conrad; Pepper, Marion

    2018-01-25

    Sensing of pathogens by host pattern recognition receptors is essential for activating the immune response during infection. We used a nonlethal murine model of malaria (Plasmodium yoelii 17XNL) to assess the contribution of the pattern recognition receptor cyclic GMP-AMP synthase (cGAS) to the development of humoral immunity. Despite previous reports suggesting a critical, intrinsic role for cGAS in early B cell responses, cGAS-deficient (cGAS-/-) mice had no defect in the early expansion or differentiation of Plasmodium-specific B cells. As the infection proceeded, however, cGAS-/- mice exhibited higher parasite burdens and aberrant germinal center and memory B cell formation when compared with littermate controls. Antimalarial drugs were used to further demonstrate that the disrupted humoral response was not B cell intrinsic but instead was a secondary effect of a loss of parasite control. These findings therefore demonstrate that cGAS-mediated innate-sensing contributes to parasite control but is not intrinsically required for the development of humoral immunity. Our findings highlight the need to consider the indirect effects of pathogen burden in investigations examining how the innate immune system affects the adaptive immune response.

  15. Influencing mucosal homeostasis and immune responsiveness: the impact of nutrition and pharmaceuticals.

    Science.gov (United States)

    van't Land, Belinda; Schijf, Marcel A; Martin, Rocio; Garssen, Johan; van Bleek, Grada M

    2011-09-01

    Both nutrition and orally ingested drugs pass the gastrointestinal mucosa and may affect the balance between the mucosal immune system and microbial community herein, i.e. affecting composition of the microbial community as well as the status of local immune system that controls microbial composition and maintains mucosal integrity. Numerous ways are known by which the microbial community stimulates mammalian host's immune system and vice versa. The communication between microbiota and immune system is principally mediated by interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various local antigen-presenting cells, resulting in activation or modulation of both innate and adaptive immune responses. Current review describes some of the factors influencing development and maintenance of a proper mucosal/immune balance, with special attention to Toll like receptor signaling and regulatory T cell development. It further describes examples (antibiotic use, HIV and asthma will be discussed) showing that disruption of the balance can be linked to immune function failure. The therapeutic potential of nutritional pharmacology herein is the main focus of discussion. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Premalignant lesions skew spleen cell responses to immune modulation by adipocytes.

    Science.gov (United States)

    Vielma, Silvana A; Klein, Richard L; Levingston, Corinne A; Young, M Rita I

    2013-05-01

    . These results suggest that the responsiveness of spleen cells to adipocyte-derived mediators is influenced by mediators from premalignant lesion cells to favor conventional immune cell production of a Th2 and inflammatory cytokines.

  17. Role of levamisole immunotherapy as an adjuvant to radiotherapy in oral cancer - Immune responses

    International Nuclear Information System (INIS)

    Balaram, P.; Remani, P.; Padmanabhan, T.K.

    1988-01-01

    Investigations were carried out to assess the effect of levamisole immunotherapy as an adjuvant to radiotherapy, on the immune response of patients with squamous cell carcinoma of the oral cavity. Parameters assessed were leukocyte migration inhibition, response to PPD and oral cancer extract (OCA), lymphocyte transformation to PHA, circulating antibodies to OCA and circulating immune complexes (CIC). Comparisons were made between groups receiving levamisole, those receiving placebo and normal controls. The results of a thirty-month follow-up are presented. Radiotherapy resulted in a depression of cell-mediated functions, reduction in antibody titre also showed a gradual increase with time of follow-up. Levamisole, however, appeared to reduce the levels of CIC. (author). 2 figs., 1 tab., 38 refs

  18. Macrophages as IL-25/IL-33-responsive cells play an important role in the induction of type 2 immunity.

    Directory of Open Access Journals (Sweden)

    Zhonghan Yang

    Full Text Available Type 2 immunity is essential for host protection against nematode infection but is detrimental in allergic inflammation or asthma. There is a major research focus on the effector molecules and specific cell types involved in the initiation of type 2 immunity. Recent work has implicated an important role of epithelial-derived cytokines, IL-25 and IL-33, acting on innate immune cells that are believed to be the initial sources of type 2 cytokines IL-4/IL-5/IL-13. The identities of the cell types that mediate the effects of IL-25/IL-33, however, remain to be fully elucidated. In the present study, we demonstrate that macrophages as IL-25/IL-33-responsive cells play an important role in inducing type 2 immunity using both in vitro and in vivo approaches. Macrophages produced type 2 cytokines IL-5 and IL-13 in response to the stimulation of IL-25/IL-33 in vitro, or were the IL-13-producing cells in mice administrated with exogenous IL-33 or infected with Heligmosomoides bakeri. In addition, IL-33 induced alternative activation of macrophages primarily through autocrine IL-13 activating the IL-4Rα-STAT6 pathway. Moreover, depletion of macrophages attenuated the IL-25/IL-33-induced type 2 immunity in mice, while adoptive transfer of IL-33-activated macrophages into mice with a chronic Heligmosomoides bakeri infection induced worm expulsion accompanied by a potent type 2 protective immune response. Thus, macrophages represent a unique population of the innate immune cells pivotal to type 2 immunity and a potential therapeutic target in controlling type 2 immunity-mediated inflammatory pathologies.

  19. Cancer Immunotherapy and the Immune Response in Hodgkin Lymphoma

    Directory of Open Access Journals (Sweden)

    Christoph Renner

    2018-06-01

    Full Text Available Patients with classical Hodgkin lymphoma (cHL have an impaired cellular immune response as indicated by an anergic reaction against standard recall antigens and a diminished rejection reaction of allogeneic skin transplant. This clinical observation can be linked to the histopathological feature of cHL since the typical pattern of a cHL manifestation is characterized by sparse large CD30+ tumor-infiltrating Hodgkin–Reed–Sternberg (HRS cells that are surrounded by a dense inflammatory immune microenvironment with mixed cellularity. Despite this extensive polymorphous inflammatory infiltrate, there is only a poor antitumor immune response seen to the neoplastic HRS cells. This is primarily mediated by a high expression of PD-L1 and PD-L2 ligands on the HRS cell surface which in turn antagonizes the activity of programmed death-1 (PD-1 antigen-positive T cells. PD-L1/L2 overexpression is caused by gene amplification at the 9p24.1 locus and/or latent Epstein–Barr virus infection present in around 40% of cHL cases. The blockade of the PD-L1/L2–PD-1 pathway by monoclonal antibodies can restore local T cell activity and leads to impressive tumor responses, some of which are long lasting and eventually curative. Another feature of HRS cells is the high CD30 antigen expression. Monoclonal antibody technology allowed for the successful development of CD30-specific immunotoxins, bispecific antibodies, and reprogrammed autologous T cells with the first one already approved for the treatment of high risk or relapsed cHL. Altogether, the discovery of the described pathomechanism of immune suppression and the identification of preferential target antigens has rendered cHL to be a prime subject for the successful development of new immunotherapeutic approaches.

  20. Immunization Strategies Producing a Humoral IgG Immune Response against Devil Facial Tumor Disease in the Majority of Tasmanian Devils Destined for Wild Release

    Directory of Open Access Journals (Sweden)

    Ruth Pye

    2018-02-01

    Full Text Available Devil facial tumor disease (DFTD is renowned for its successful evasion of the host immune system. Down regulation of the major histocompatabilty complex class I molecule (MHC-I on the DFTD cells is a primary mechanism of immune escape. Immunization trials on captive Tasmanian devils have previously demonstrated that an immune response against DFTD can be induced, and that immune-mediated tumor regression can occur. However, these trials were limited by their small sample sizes. Here, we describe the results of two DFTD immunization trials on cohorts of devils prior to their wild release as part of the Tasmanian Government’s Wild Devil Recovery project. 95% of the devils developed anti-DFTD antibody responses. Given the relatively large sample sizes of the trials (N = 19 and N = 33, these responses are likely to reflect those of the general devil population. DFTD cells manipulated to express MHC-I were used as the antigenic basis of the immunizations in both trials. Although the adjuvant composition and number of immunizations differed between trials, similar anti-DFTD antibody levels were obtained. The first trial comprised DFTD cells and the adjuvant combination of ISCOMATRIX™, polyIC, and CpG with up to four immunizations given at monthly intervals. This compared to the second trial whereby two immunizations comprising DFTD cells and the adjuvant combination ISCOMATRIX™, polyICLC (Hiltonol® and imiquimod were given a month apart, providing a shorter and, therefore, more practical protocol. Both trials incorporated a booster immunization given up to 5 months after the primary course. A key finding was that devils in the second trial responded more quickly and maintained their antibody levels for longer compared to devils in the first trial. The different adjuvant combination incorporating the RNAase resistant polyICLC and imiquimod used in the second trial is likely to be responsible. The seroconversion in the majority of

  1. Immunization Strategies Producing a Humoral IgG Immune Response against Devil Facial Tumor Disease in the Majority of Tasmanian Devils Destined for Wild Release

    Science.gov (United States)

    Pye, Ruth; Patchett, Amanda; McLennan, Elspeth; Thomson, Russell; Carver, Scott; Fox, Samantha; Pemberton, David; Kreiss, Alexandre; Baz Morelli, Adriana; Silva, Anabel; Pearse, Martin J.; Corcoran, Lynn M.; Belov, Katherine; Hogg, Carolyn J.; Woods, Gregory M; Lyons, A. Bruce

    2018-01-01

    Devil facial tumor disease (DFTD) is renowned for its successful evasion of the host immune system. Down regulation of the major histocompatabilty complex class I molecule (MHC-I) on the DFTD cells is a primary mechanism of immune escape. Immunization trials on captive Tasmanian devils have previously demonstrated that an immune response against DFTD can be induced, and that immune-mediated tumor regression can occur. However, these trials were limited by their small sample sizes. Here, we describe the results of two DFTD immunization trials on cohorts of devils prior to their wild release as part of the Tasmanian Government’s Wild Devil Recovery project. 95% of the devils developed anti-DFTD antibody responses. Given the relatively large sample sizes of the trials (N = 19 and N = 33), these responses are likely to reflect those of the general devil population. DFTD cells manipulated to express MHC-I were used as the antigenic basis of the immunizations in both trials. Although the adjuvant composition and number of immunizations differed between trials, similar anti-DFTD antibody levels were obtained. The first trial comprised DFTD cells and the adjuvant combination of ISCOMATRIX™, polyIC, and CpG with up to four immunizations given at monthly intervals. This compared to the second trial whereby two immunizations comprising DFTD cells and the adjuvant combination ISCOMATRIX™, polyICLC (Hiltonol®) and imiquimod were given a month apart, providing a shorter and, therefore, more practical protocol. Both trials incorporated a booster immunization given up to 5 months after the primary course. A key finding was that devils in the second trial responded more quickly and maintained their antibody levels for longer compared to devils in the first trial. The different adjuvant combination incorporating the RNAase resistant polyICLC and imiquimod used in the second trial is likely to be responsible. The seroconversion in the majority of devils in these anti

  2. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    Science.gov (United States)

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  3. Oral treatment with enrofloxacin early in life promotes Th2-mediated immune response in mice.

    Science.gov (United States)

    Strzępa, Anna; Majewska-Szczepanik, Monika; Kowalczyk, Paulina; Woźniak, Dorota; Motyl, Sylwia; Szczepanik, Marian

    2016-02-01

    Th2 lymphocytes play a crucial role in the development of allergy. These pathologies are caused by coordinated production of the cytokines IL-4, IL-5 and IL-13 that regulate the activity of eosinophils, basophils and B cells. According to the 'hygiene hypothesis', the reduced exposure to microorganisms favors allergy occurrence. The advances in medicine in the field of infection therapy promoted an increasing application of antibiotics which, apart from eliminating pathogens, also partially eliminate the microbiota. Epicutaneous (EC) immunization with ovalbumin (OVA) followed by OVA challenge was used to study the influence of partial gut flora depletion by oral treatment with enrofloxacin on type-2 immune response. Current work describes the influence of enrofloxacin application on anti-OVA antibody production and cytokine synthesis in young and adult mice. Immune response in adult mice is less sensitive to modification of natural gut flora. We observed that enrofloxacin treatment of adult mice leads to significant decrease of anti-OVA IgG2a production while synthesis of anti-OVA IgE was not changed. The production of type-1 (IFN-γ), type-2 (IL-4, IL-5, IL-10, IL-13) and Th17-associated (IL-17A) cytokines was inhibited. On the other hand, treatment of young mice with enrofloxacin significantly upregulates the production of anti-OVA IgE and inhibits the secretion of anti-OVA IgG2a antibodies. Additionally, treatment with enrofloxacin early in life prior to OVA immunization results in increased production of type-2 (IL-4, IL-10 and IL-13) cytokines. Our results clearly indicate that the immune system is more vulnerable to decreased bacterial exposure early in life that may promote development of allergy. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. Effects of cadmium on aneuploidy and hemocyte parameters in the Pacific oyster, Crassostrea gigas

    International Nuclear Information System (INIS)

    Bouilly, Karine; Gagnaire, Beatrice; Bonnard, Marc; Thomas-Guyon, Helene; Renault, Tristan; Miramand, Pierre; Lapegue, Sylvie

    2006-01-01

    Pacific oysters, Crassostrea gigas, are commonly reared in estuaries where they are exposed to anthropogenic pollution. Much research has been made on the toxicity of cadmium to aquatic organisms because the compound recurrently contaminates their environment. Our study examined the influence of cadmium on aneuploidy level (lowered chromosome number in a percentage of somatic cells) and hemocyte parameters in C. gigas at different stages of life. Adults and juveniles were exposed to two different concentrations of cadmium. The first concentration applied was equivalent to a peak value found in Marennes-Oleron bay (Charente-Maritime, France; 50 ng L -1 ) and the second was 10 times higher (500 ng L -1 ). Exposure to 50 ng L -1 cadmium caused a significant decrease in the survival time of C. gigas, but exposure to 500 ng L -1 surprisingly affected the survival time positively. Significant differences in aneuploidy level were observed between the cadmium treatments and the control in adults but not in juveniles or the offspring of the adult groups. The effects of cadmium on hemocyte parameters were analyzed by flow cytometry. Several hemocyte parameters increased significantly after 21 days of cadmium exposure and subsequently decreased. Phenoloxidase-like activity, evaluated by spectrophotometry, varied over the time of the experiment and increased after 66 days of contact with 500 ng L -1 cadmium. Taken together, cadmium at environmentally relevant concentrations seems to have only moderate effects on aneuploidy and hemocyte parameters

  5. Dim light at night interferes with the development of the short-day phenotype and impairs cell-mediated immunity in Siberian hamsters (Phodopus sungorus).

    Science.gov (United States)

    Aubrecht, Taryn G; Weil, Zachary M; Nelson, Randy J

    2014-10-01

    Winter is a challenging time to survive and breed outside of the tropics. Animals use day length (photoperiod) to regulate seasonally appropriate adaptations in anticipation of challenging winter conditions. The net result of these photoperiod-mediated adjustments is enhanced immune function and increased survival. Thus, the ability to discriminate day length information is critical for survival and reproduction in small animals. However, during the past century, urban and suburban development has rapidly expanded and filled the night sky with light from various sources, obscuring crucial light-dark signals, which alters physiological interpretation of day lengths. Furthermore, reduced space, increased proximity to people, and the presence of light at night may act as stressors for small animals. Whereas acute stressors typically enhance immune responses, chronic exposure to stressors often impairs immune responses. Therefore, we hypothesized that the combination of dim light at night and chronic stress interferes with enhanced cell-mediated immunity observed during short days. Siberian hamsters (Phodopus sungorus) were assigned to short or long days with dark nights (0 lux) or dim (5 lux) light at night for 10 weeks. Following 2 weeks of chronic restraint (6 hr/day), a model of chronic stress, delayed type hypersensitivity (DTH) responses were assessed. Both dim light at night and restraint reduced the DTH response. Dim light at night during long nights produced an intermediate short day phenotype. These results suggest the constant presence of light at night could negatively affect survival of photoperiodic rodents by disrupting the timing of breeding and immune responses. © 2014 Wiley Periodicals, Inc.

  6. T-cell-independent immune responses do not require CXC ligand 13-mediated B1 cell migration.

    Science.gov (United States)

    Colombo, Matthew J; Sun, Guizhi; Alugupalli, Kishore R

    2010-09-01

    The dynamic movement of B cells increases the probability of encountering specific antigen and facilitates cell-cell interactions required for mounting a rapid antibody response. B1a and B1b cells are enriched in the coelomic cavity, contribute to T-cell-independent (TI) antibody responses, and increase in number upon antigen exposure. B1 cell movement is largely governed by Cxc ligand 13 (Cxcl13), and mice deficient in this chemokine have a severe reduction in peritoneal B1 cells. In this study, we examined the role of Cxcl13-dependent B cell migration using Borrelia hermsii infection or intraperitoneal immunization with pneumococcal polysaccharide or 4-hydroxy-3-nitrophenyl-acetyl (NP)-Ficoll, all of which induce robust antibody responses from B1b cells. Surprisingly, we found that antibody responses to B. hermsii or to FhbA, an antigenic target of B1b cells, and the resolution of bacteremia were indistinguishable between wild-type and Cxcl13-/- mice. Importantly, we did not observe an expansion of peritoneal B1b cell numbers in Cxcl13-/- mice. Nonetheless, mice that had resolved infection were resistant to reinfection, indicating that the peritoneal B1b cell reservoir is not required for controlling B. hermsii. Furthermore, despite a reduced peritoneal B1b compartment, immunization with pneumococcal polysaccharide vaccine yielded comparable antigen-specific antibody responses in wild-type and Cxcl13-/- mice and conferred protection against Streptococcus pneumoniae. Likewise, immunization with NP-Ficoll elicited similar antibody responses in wild-type and Cxcl13-/- mice. These data demonstrate that homing of B1 cells into the coelomic cavity is not a requirement for generating protective TI antibody responses, even when antigen is initially localized to this anatomical compartment.

  7. Immunity to fish rhabdoviruses

    Science.gov (United States)

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  8. Immunity to fish rhabdoviruses.

    Science.gov (United States)

    Purcell, Maureen K; Laing, Kerry J; Winton, James R

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  9. Immunity to Fish Rhabdoviruses

    Directory of Open Access Journals (Sweden)

    Maureen K. Purcell

    2012-01-01

    Full Text Available Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M protein to mediate host-cell shutoff and the non‑virion (NV protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  10. Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses.

    Science.gov (United States)

    Kumar, Sunny; Kesharwani, Siddharth S; Kuppast, Bhimanna; Bakkari, Mohammed Ali; Tummala, Hemachand

    2017-09-10

    New and improved vaccines are needed against challenging diseases such as malaria, tuberculosis, Ebola, influenza, AIDS, and cancer. The majority of existing vaccine adjuvants lack the ability to significantly stimulate the cellular immune response, which is required to prevent the aforementioned diseases. This study designed a novel particulate based pathogen-mimicking vaccine delivery system (PMVDS) to target antigen-presenting-cells (APCs) such as dendritic cells. The uniqueness of PMVDS is that the polymer used to prepare the delivery system, Inulin Acetate (InAc), activates the innate immune system. InAc was synthesized from the plant polysaccharide, inulin. PMVDS provided improved and persistent antigen delivery to APCs as an efficient vaccine delivery system, and simultaneously, activated Toll-Like Receptor-4 (TLR-4) on APCs to release chemokine's/cytokines as an immune-adjuvant. Through this dual mechanism, PMVDS robustly stimulated both the humoral (>32 times of IgG1 levels vs alum) and the cell-mediated immune responses against the encapsulated antigen (ovalbumin) in mice. More importantly, PMVDS stimulated both cytotoxic T cells and natural killer cells of cell-mediated immunity to provide tumor (B16-ova-Melanoma) protection in around 40% of vaccinated mice and significantly delayed tumor progression in rest of the mice. PMVDS is a unique bio-active vaccine delivery technology with broader applications for vaccines against cancer and several intracellular pathogens, where both humoral and cellular immune responses are desired. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. MMP19 is essential for T cell development and T cell-mediated cutaneous immune responses

    Czech Academy of Sciences Publication Activity Database

    Beck, Inken; Ruckert, R.; Brandt, K.; Mueller, M.S.; Sadowski, T.; Brauer, R.; Schirmacher, P.; Mentlein, R.; Sedláček, Radislav

    2008-01-01

    Roč. 3, č. 6 (2008), e2343-e2343 E-ISSN 1932-6203 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701 Keywords : matrix metalloproteinase * T cell * immune response Subject RIV: EB - Genetics ; Molecular Biology

  12. Identification of a serine proteinase homolog (Sp-SPH involved in immune defense in the mud crab Scylla paramamosain.

    Directory of Open Access Journals (Sweden)

    Qiu-xia Zhang

    Full Text Available Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH, originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus, bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN, and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, P<0.05, and increase phenoloxidase activity if triggered by PGN in vitro (paired t-test, P<0.05. Importantly, the Sp-SPH protein was demonstrated to promote the survival rate of the animals after challenge with A. hydrophila or V. parahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain.

  13. Vaccine platforms combining circumsporozoite protein and potent immune modulators, rEA or EAT-2, paradoxically result in opposing immune responses.

    Directory of Open Access Journals (Sweden)

    Nathaniel J Schuldt

    Full Text Available Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI responses.BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA or SLAM receptors adaptor protein (EAT-2. Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo.Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly

  14. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity.

    Directory of Open Access Journals (Sweden)

    Meenu S Padmanabhan

    2013-03-01

    Full Text Available Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5.

  15. Immunobiotic Bifidobacteria Strains Modulate Rotavirus Immune Response in Porcine Intestinal Epitheliocytes via Pattern Recognition Receptor Signaling.

    Directory of Open Access Journals (Sweden)

    Takamasa Ishizuka

    Full Text Available In this work, we aimed to characterize the antiviral response of an originally established porcine intestinal epithelial cell line (PIE cells by evaluating the molecular innate immune response to rotavirus (RVs. In addition, we aimed to select immunomodulatory bacteria with antiviral capabilities. PIE cells were inoculated with RVs isolated from different host species and the infective titers and the molecular innate immune response were evaluated. In addition, the protection against RVs infection and the modulation of immune response by different lactic acid bacteria (LAB strains was studied. The RVs strains OSU (porcine and UK (bovine effectively infected PIE cells. Our results also showed that RVs infection in PIE cells triggered TLR3-, RIG-I- and MDA-5-mediated immune responses with activation of IRF3 and NF-κB, induction of IFN-β and up-regulation of the interferon stimulated genes MxA and RNase L. Among the LAB strains tested, Bifidobacterium infantis MCC12 and B. breve MCC1274 significantly reduced RVs titers in infected PIE cells. The beneficial effects of both bifidobacteria were associated with reduction of A20 expression, and improvements of IRF-3 activation, IFN-β production, and MxA and RNase L expressions. These results indicate the value of PIE cells for studying RVs molecular innate immune response in pigs and for the selection of beneficial bacteria with antiviral capabilities.

  16. Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections.

    Science.gov (United States)

    Hamidon, Nurul Hamizah; Suraiya, Siti; Sarmiento, Maria E; Acosta, Armando; Norazmi, Mohd Nor; Lim, Theam Soon

    2018-03-01

    B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 10 9 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.

  17. Houttuynia cordata modulates oral innate immune mediators: potential role of herbal plant on oral health.

    Science.gov (United States)

    Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W

    2015-05-01

    Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Histological chorioamnionitis shapes the neonatal transcriptomic immune response.

    Science.gov (United States)

    Weitkamp, Jörn-Hendrik; Guthrie, Scott O; Wong, Hector R; Moldawer, Lyle L; Baker, Henry V; Wynn, James L

    2016-07-01

    Histologic chorioamnionitis (HCA) is commonly associated with preterm birth and deleterious post-natal outcomes including sepsis and necrotizing enterocolitis. Transcriptomic analysis has been used to uncover gene signatures that permit diagnosis and prognostication, show new therapeutic targets, and reveal mechanisms that underlie differential outcomes with other complex disease states in neonates such as sepsis. To define the transcriptomic and inflammatory protein response in peripheral blood among infants with exposure to histologic chorioamnionitis. Prospective, observational study. Uninfected preterm neonates retrospectively categorized based on placental pathology with no HCA exposure (n=18) or HCA exposure (n=15). We measured the transcriptomic and inflammatory mediator response in prospectively collected whole blood. We found 488 significant (p<0.001), differentially expressed genes in whole blood samples among uninfected neonates with HCA exposure that collectively represented activated innate and adaptive immune cellular pathways and revealed a potential regulatory role for the pleotropic microRNA molecule miR-155. Differentially secreted plasma cytokines in patients with HCA exposure compared to patients without HCA included MCP-1, MPO, and MMP-9 (p<0.05). Exposure to HCA distinctively activates the neonatal immune system in utero with potentially long-term health consequences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection

    Science.gov (United States)

    Rossoni, Rodnei Dennis; Fuchs, Beth Burgwyn; de Barros, Patrícia Pimentel; Velloso, Marisol dos Santos; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Mylonakis, Eleftherios

    2017-01-01

    Probiotics have been described as a potential strategy to control opportunistic infections due to their ability to stimulate the immune system. Using the non-vertebrate model host Galleria mellonella, we evaluated whether clinical isolates of Lactobacillus spp. are able to provide protection against Candida albicans infection. Among different strains of Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus fermentum, we verified that L. paracasei 28.4 strain had the greatest ability to prolong the survival of larvae infected with a lethal dose of C. albicans. We found that the injection of 107 cells/larvae of L. paracasei into G. mellonella larvae infected by C. albicans increased the survival of these insects compared to the control group (P = 0.0001). After that, we investigated the immune mechanisms involved in the protection against C. albicans infection, evaluating the number of hemocytes and the gene expression of antifungal peptides. We found that L. paracasei increased the hemocyte quantity (2.38 x 106 cells/mL) in relation to the control group (1.29 x 106 cells/mL), indicating that this strain is capable of raising the number of circulating hemocytes into the G. mellonella hemolymph. Further, we found that L. paracasei 28.4 upregulated genes that encode the antifungal peptides galiomicin and gallerymicin. In relation to the control group, L. paracasei 28.4 increased gene expression of galiomicin by 6.67-fold and 17.29-fold for gallerymicin. Finally, we verified that the prophylactic provision of probiotic led to a significant reduction of the number of fungal cells in G. mellonella hemolymph. In conclusion, L. paracasei 28.4 can modulate the immune system of G. mellonella and protect against candidiasis. PMID:28267809

  20. Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection.

    Science.gov (United States)

    Rossoni, Rodnei Dennis; Fuchs, Beth Burgwyn; de Barros, Patrícia Pimentel; Velloso, Marisol Dos Santos; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Mylonakis, Eleftherios

    2017-01-01

    Probiotics have been described as a potential strategy to control opportunistic infections due to their ability to stimulate the immune system. Using the non-vertebrate model host Galleria mellonella, we evaluated whether clinical isolates of Lactobacillus spp. are able to provide protection against Candida albicans infection. Among different strains of Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus fermentum, we verified that L. paracasei 28.4 strain had the greatest ability to prolong the survival of larvae infected with a lethal dose of C. albicans. We found that the injection of 107 cells/larvae of L. paracasei into G. mellonella larvae infected by C. albicans increased the survival of these insects compared to the control group (P = 0.0001). After that, we investigated the immune mechanisms involved in the protection against C. albicans infection, evaluating the number of hemocytes and the gene expression of antifungal peptides. We found that L. paracasei increased the hemocyte quantity (2.38 x 106 cells/mL) in relation to the control group (1.29 x 106 cells/mL), indicating that this strain is capable of raising the number of circulating hemocytes into the G. mellonella hemolymph. Further, we found that L. paracasei 28.4 upregulated genes that encode the antifungal peptides galiomicin and gallerymicin. In relation to the control group, L. paracasei 28.4 increased gene expression of galiomicin by 6.67-fold and 17.29-fold for gallerymicin. Finally, we verified that the prophylactic provision of probiotic led to a significant reduction of the number of fungal cells in G. mellonella hemolymph. In conclusion, L. paracasei 28.4 can modulate the immune system of G. mellonella and protect against candidiasis.

  1. Leptospira surface adhesin (Lsa21) induces Toll like receptor 2 and 4 mediated inflammatory responses in macrophages

    OpenAIRE

    Syed M. Faisal; Vivek P. Varma; M. Subathra; Sarwar Azam; Anil K. Sunkara; Mohd Akif; Mirza. S. Baig; Yung-Fu Chang

    2016-01-01

    Leptospirosis is zoonotic and emerging infectious disease of global importance. Little is understood about Leptospira pathogenesis and host immune response. In the present work we have investigated how Leptospira modulates the host innate immune response mediated by Toll-like receptors (TLRs) via surface exposed proteins. We screened Leptospira outer membrane/surface proteins for their ability to activate/inhibit TLR2/4 signaling in HEK293 cell lines. Of these the 21?kDa Leptospira surface ad...

  2. Virus-like particle vaccine primes immune responses preventing inactivated-virus vaccine-enhanced disease against respiratory syncytial virus.

    Science.gov (United States)

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Youri; Kwon, Young-Man; Kang, Sang-Moo

    2017-11-01

    Formalin inactivated respiratory syncytial virus (FI-RSV) vaccination caused vaccine-enhanced respiratory disease (ERD) upon exposure to RSV in children. Virus-like particles presenting RSV F fusion protein (F VLP) are known to increase T helper type-1 (Th1) immune responses and avoid ERD in animal models. We hypothesized that F VLP would prime immune responses preventing ERD upon subsequent exposure to ERD-prone FI-RSV. Here, we demonstrated that heterologous F VLP priming and FI-RSV boosting of mice prevented FI-RSV vaccine-enhanced lung inflammation and eosinophilia upon RSV challenge. F VLP priming redirected pulmonary T cells toward effector CD8 T cells producing Th1 cytokines and significantly suppressed pulmonary Th2 cytokines. This study suggests that RSV F VLP priming would modulate and shift immune responses to subsequent exposure to ERD-prone FI-RSV vaccine and RSV infection, suppressing Th2 immune-mediated pulmonary histopathology and eosinophilia. Copyright © 2017. Published by Elsevier Inc.

  3. Giardiasis in mice: analysis of humoral and cellular immune responses to Giardia muris.

    Science.gov (United States)

    Anders, R F; Roberts-Thomson, I C; Mitchell, G F

    1982-01-01

    Humoral and cellular immune responses have been evaluated in two inbred strains of mice which differ markedly in their susceptibility to infection with Giardia muris. Serum IgG and IgA antibody levels and IgA levels in intestinal washes were determined by a solid-phase radioimmunoassay using G. muris antigen prepared by sonication of trophozoites, while cell-mediated immunity was assessed by a radiometric ear-assay for delayed-type hypersensitivity. Following infection of BALB/c mice (resistant) and C3H/He mice (susceptible), the IgG and IgA antibody levels in serum progressively increased over the period of study with C3H/He mice having significantly higher titres of IgA antibodies than BALB/c late in the infection. Systemic immunization with G. muris trophozoites resulted in high titres of IgG antibodies in the serum. IgA antibodies were detected in intestinal washes 2 weeks after infection with a subsequent fall in levels in BALB/c mice but a progressive increase levels in C3H/He mice. Prior immunization resulted in IgA antibodies being detected earlier in the intestinal washings after a challenge infection. Delayed-type hypersensitivity to G. muris antigens could not be detected during an infection but a positive response was elicited following antigen priming in mice pretreated with cyclophosphamide. The immune responses evaluated in this study were assessed using a whole G. muris trophozoite sonicate and variations in the quantitative aspects of the responses did not account for observed differences in the course of infection in the two strains of mice.

  4. Scavenger Receptor C Mediates Phagocytosis of White Spot Syndrome Virus and Restricts Virus Proliferation in Shrimp

    Science.gov (United States)

    Yang, Ming-Chong; Shi, Xiu-Zhen; Yang, Hui-Ting; Sun, Jie-Jie; Xu, Ling; Wang, Xian-Wei; Zhao, Xiao-Fan

    2016-01-01

    Scavenger receptors are an important class of pattern recognition receptors that play several important roles in host defense against pathogens. The class C scavenger receptors (SRCs) have only been identified in a few invertebrates, and their role in the immune response against viruses is seldom studied. In this study, we firstly identified an SRC from kuruma shrimp, Marsupenaeus japonicus, designated MjSRC, which was significantly upregulated after white spot syndrome virus (WSSV) challenge at the mRNA and protein levels in hemocytes. The quantity of WSSV increased in shrimp after knockdown of MjSRC, compared with the controls. Furthermore, overexpression of MjSRC led to enhanced WSSV elimination via phagocytosis by hemocytes. Pull-down and co-immunoprecipitation assays demonstrated the interaction between MjSRC and the WSSV envelope protein. Electron microscopy observation indicated that the colloidal gold-labeled extracellular domain of MjSRC was located on the outer surface of WSSV. MjSRC formed a trimer and was internalized into the cytoplasm after WSSV challenge, and the internalization was strongly inhibited after knockdown of Mjβ-arrestin2. Further studies found that Mjβ-arrestin2 interacted with the intracellular domain of MjSRC and induced the internalization of WSSV in a clathrin-dependent manner. WSSV were co-localized with lysosomes in hemocytes and the WSSV quantity in shrimp increased after injection of lysosome inhibitor, chloroquine. Collectively, this study demonstrated that MjSRC recognized WSSV via its extracellular domain and invoked hemocyte phagocytosis to restrict WSSV systemic infection. This is the first study to report an SRC as a pattern recognition receptor promoting phagocytosis of a virus. PMID:28027319

  5. A cascade reaction network mimicking the basic functional steps of adaptive immune response.

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-10-01

    Biological systems use complex 'information-processing cores' composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS that we call an adaptive immune response simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system that responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner that is superficially similar to the most basic responses of the vertebrate AIS, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices.

  6. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism

    Science.gov (United States)

    Gao, Jing; Xu, Kang; Liu, Hongnan; Liu, Gang; Bai, Miaomiao; Peng, Can; Li, Tiejun; Yin, Yulong

    2018-01-01

    The gut microbiota influences the health of the host, especially with regard to gut immune homeostasis and the intestinal immune response. In addition to serving as a nutrient enhancer, L-tryptophan (Trp) plays crucial roles in the balance between intestinal immune tolerance and gut microbiota maintenance. Recent discoveries have underscored that changes in the microbiota modulate the host immune system by modulating Trp metabolism. Moreover, Trp, endogenous Trp metabolites (kynurenines, serotonin, and melatonin), and bacterial Trp metabolites (indole, indolic acid, skatole, and tryptamine) have profound effects on gut microbial composition, microbial metabolism, the host's immune system, the host-microbiome interface, and host immune system–intestinal microbiota interactions. The aryl hydrocarbon receptor (AhR) mediates the regulation of intestinal immunity by Trp metabolites (as ligands of AhR), which is beneficial for immune homeostasis. Among Trp metabolites, AhR ligands consist of endogenous metabolites, including kynurenine, kynurenic acid, xanthurenic acid, and cinnabarinic acid, and bacterial metabolites, including indole, indole propionic acid, indole acetic acid, skatole, and tryptamine. Additional factors, such as aging, stress, probiotics, and diseases (spondyloarthritis, irritable bowel syndrome, inflammatory bowel disease, colorectal cancer), which are associated with variability in Trp metabolism, can influence Trp–microbiome–immune system interactions in the gut and also play roles in regulating gut immunity. This review clarifies how the gut microbiota regulates Trp metabolism and identifies the underlying molecular mechanisms of these interactions. Increased mechanistic insight into how the microbiota modulates the intestinal immune system through Trp metabolism may allow for the identification of innovative microbiota-based diagnostics, as well as appropriate nutritional supplementation of Trp to prevent or alleviate intestinal inflammation

  7. The CD8+ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant

    Science.gov (United States)

    Manfredi, Francesco; di Bonito, Paola; Ridolfi, Barbara; Anticoli, Simona; Arenaccio, Claudia; Chiozzini, Chiara; Baz Morelli, Adriana; Federico, Maurizio

    2016-01-01

    We recently described the induction of an efficient CD8+ T cell-mediated immune response against a tumor-associated antigen (TAA) uploaded in engineered exosomes used as an immunogen delivery tool. This immune response cleared tumor cells inoculated after immunization, and controlled the growth of tumors implanted before immunization. We looked for new protocols aimed at increasing the CD8+ T cell specific response to the antigen uploaded in engineered exosomes, assuming that an optimized CD8+ T cell immune response would correlate with a more effective depletion of tumor cells in the therapeutic setting. By considering HPV-E6 as a model of TAA, we found that the in vitro co-administration of engineered exosomes and ISCOMATRIXTM adjuvant, i.e., an adjuvant composed of purified ISCOPREPTM saponin, cholesterol, and phospholipids, led to a stronger antigen cross-presentation in both B- lymphoblastoid cell lines ( and monocyte-derived immature dendritic cells compared with that induced by the exosomes alone. Consistently, the co-inoculation in mice of ISCOMATRIXTM adjuvant and engineered exosomes induced a significant increase of TAA-specific CD8+ T cells compared to mice immunized with the exosomes alone. This result holds promise for effective usage of exosomes as well as alternative nanovesicles in anti-tumor therapeutic approaches. PMID:27834857

  8. The Immune Response of Maternally Immune Chicks to Vaccination ...

    African Journals Online (AJOL)

    The Immune Response of Maternally Immune Chicks to Vaccination with Newcastle Disease Virus. ... G A El-Tayeb, M Y El-Ttegani, I E Hajer, M A Mohammed ... This study was conducted to determine the persistence of maternally derived antibodies (MDA) to Newcastle disease virus (NDV) in newly hatched chicks and the ...

  9. Effect of inactive yeast cell wall on growth performance, survival rate and immune parameters in Pacific White Shrimp (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Rutchanee Chotikachinda

    2008-10-01

    Full Text Available Effects of dietary inactive yeast cell wall on growth performance, survival rate, and immune parameters in pacific white shrimp (Litopenaeus vannamei was investigated. Three dosages of inactive yeast cell wall (0, 1, and 2 g kg-1 were tested in three replicate groups of juvenile shrimps with an average initial weight of 7.15±0.05 g for four weeks. There was no significant difference in final weight, survival rate, specific growth rate, feed conversion ratio, feed intake, protein efficiency ratio, and apparent net protein utilization of each treatments. However, different levels of inactive yeast cell wall showed an effect on certain immune parameters (p<0.05. Total hemocyte counts, granular hemocyte count, and bacterial clearance were better in shrimp fed diets supplemented with 1 and 2 g kg-1 inactive yeast cell wall as compared with thecontrol group.

  10. Lesion-Specific Immune Response in Granulomas of Patients with Pulmonary Tuberculosis: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Selvakumar Subbian

    Full Text Available The formation and maintenance of granulomas is central to the host response to Mycobacterium tuberculosis (Mtb infection. It is widely accepted that the lungs of patients with tuberculosis (TB usually contain multiple infection foci, and that the granulomas evolve and differentiate independently, resulting in considerable heterogeneity. Although gene expression profiles of human blood cells have been proposed as biomarkers of Mtb infection and/or active disease, the immune profiles of discrete lesion types has not been studied extensively. Using histology, immunopathology and genome-wide transcriptome analysis, we explored the immunological profile of human lung TB granulomas. We show that although the different granulomas share core similarities in their immunological/inflammatory characteristics, they also exhibit significant divergence. Despite similar numbers of CD68+ macrophages in the different lesions, the extent of immune reactivity, as determined by the density of CD3+ T cells in the macrophage rich areas, and the extent of fibrosis, shows considerable variation. Both quantitative and qualitative differences among significantly differentially expressed genes (SDEG were noted in each of the lesion types studied. Further, network/pathway analysis of SDEG revealed differential regulation of inflammatory response, immune cell trafficking, and cell mediated immune response in the different lesions. Our data highlight the formidable challenges facing ongoing efforts to identify peripheral blood biomarkers due to the diversity of lesion types and complexity of local immune responses in the lung.

  11. Gastrointestinal immune responses in HIV infected subjects

    Directory of Open Access Journals (Sweden)

    LRR Castello-Branco

    1996-06-01

    Full Text Available The gut associated lymphoid tissue is responsible for specific responses to intestinal antigens. During HIV infection, mucosal immune deficiency may account for the gastrointestinal infections. In this review we describe the humoral and cellular mucosal immune responses in normal and HIV-infected subjects.

  12. Natural Killer Dendritic Cells Enhance Immune Responses Elicited by α-Galactosylceramide-Stimulated Natural Killer T Cells

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    2013-01-01

    Full Text Available Natural killer dendritic cells (NKDCs possess potent anti-tumor activity, but the cellular effect of NKDC interactions with other innate immune cells is unclear. In this study, we demonstrate that the interaction of NKDCs and natural killer T (NKT cells is required for the anti-tumor immune responses that are elicited by α-galactosylceramide (α-GC in mice. The rapid and strong expression of interferon-γ by NKDCs after α-GC stimulation was dependent on NKT cells. Various NK and DC molecular markers and cytotoxic molecules were up-regulated following α-GC administration. This up-regulation could improve NKDC presentation of tumor antigens and increase cytotoxicity against tumor cells. NKDCs were required for the stimulation of DCs, NK cells, and NKT cells. The strong anti-tumor immune responses elicited by α-GC may be due to the down-regulation of regulatory T cells. Furthermore, the depletion of NKDCs dampened the tumor clearance mediated by α-GC-stimulated NKT cells in vivo. Taken together, these results indicate that complex interactions of innate immune cells might be required to achieve optimal anti-tumor immune responses during the early stages of tumorigenesis.

  13. JAK/STAT signaling pathway-mediated immune response in silkworm (Bombyx mori) challenged by Beauveria bassiana.

    Science.gov (United States)

    Geng, Tao; Lv, Ding-Ding; Huang, Yu-Xia; Hou, Cheng-Xiang; Qin, Guang-Xing; Guo, Xi-Jie

    2016-12-20

    Innate immunity was critical in insects defensive system and able to be induced by Janus kinase/signal transducer and activator of transcription cascade transduction (JAK/STAT) signaling pathway. Currently, it had been identified many JAK/STAT signaling pathway-related genes in silkworm, but little function was known on insect innate immunity. To explore the roles of JAK/STAT pathway in antifungal immune response in silkworm (Bombyx mori) against Beauveria bassiana infection, the expression patterns of B. mori C-type lectin 5 (BmCTL5) and genes encoding 6 components of JAK/STAT signaling pathway in silkworm challenged by B. bassiana were analyzed using quantitative real time PCR. Meanwhile the activation of JAK/STAT signaling pathway by various pathogenic micro-organisms and the affect of JAK/STAT signaling pathway inhibitors on antifungal activity in silkworm hemolymph was also detected. Moreover, RNAi assay of BmCTL5 and the affect on expression levels of signaling factors were also analyzed. We found that JAK/STAT pathway could be obviously activated in silkworm challenged with B. bassiana and had no response to bacteria and B. mori cytoplasmic polyhedrosis virus (BmCPV). However, the temporal expression patterns of JAK/STAT signaling pathway related genes were significantly different. B. mori downstream receptor kinase (BmDRK) might be a positive regulator of JAK/STAT signaling pathway in silkworm against B. bassiana infection. Moreover, antifungal activity assay showed that the suppression of JAK/STAT signaling pathway by inhibitors could significantly inhibit the antifungal activity in hemolymph and resulted in increased sensitivity of silkworm to B. bassiana infection, indicating that JAK/STAT signaling pathway might be involved in the synthesis and secretion of antifungal substances. The results of RNAi assays suggested that BmCTL5 might be one pattern recognition receptors for JAK/STAT signaling pathway in silkworm. These findings yield insights for better

  14. HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin

    Science.gov (United States)

    Amador-Cañizares, Yalena; Martínez-Donato, Gillian; Álvarez-Lajonchere, Liz; Vasallo, Claudia; Dausá, Mariacarla; Aguilar-Noriega, Daylen; Valenzuela, Carmen; Raíces, Ivette; Dubuisson, Jean; Wychowski, Czeslaw; Cinza-Estévez, Zurina; Castellanos, Marlén; Núñez, Magdalys; Armas, Anny; González, Yaimé; Revé, Ismariley; Guerra, Ivis; Pérez Aguiar, Ángel; Dueñas-Carrera, Santiago

    2014-01-01

    AIM: To analyze hepatitis C virus (HCV)-specific immune responses in chronically infected patients under triple therapy with interferon-α (IFN-α) plus ribavirin and CIGB-230. METHODS: CIGB-230 was administered in different schedules with respect to IFN-α plus ribavirin therapy. Paired serum and peripheral blood mononuclear cells (PBMC) samples from baseline and end of treatment were analyzed. The HCV-specific humoral response was tested by enzyme-linked immunosorbent assay, neutralizing antibodies were evaluated by cell culture HCV neutralization assays, PBMC proliferation was assayed by carboxyfluorescein succinimidyl ester staining and IFN-γ secretion was assessed by enzyme-linked immunospot. Data on virological and histological response and their association with immune variables are also provided. RESULTS: From week 12 to week 48, all groups of patients showed a significant reduction in mean leukocyte counts. Statistically significant reductions in antibody titers were frequent, but only individuals immunized with CIGB-230 as early add-on treatment sustained the core-IgG response, and the neutralizing antibody response was enhanced only in patients receiving CIGB-230. Cell-mediated immune responses also tended to decline, but significant reductions in IFN-γ secretion and total absence of core-specific lymphoproliferation were exclusive of the control group. Only CIGB-230-immunized individuals showed de novo induced lymphoproliferative responses against the structural antigens. Importantly, it was demonstrated that the quality of the CIGB-230-induced immune response depended on the number of doses and timing of administration in relation to the antiviral therapy. Specifically, the administration of 6 doses of CIGB-230 as late add-on to therapy increased the neutralizing antibody activity and the de novo core-specific IFN-γ secretion, both of which were associated with the sustained virological response. CONCLUSION: CIGB-230, combined with IFN

  15. Immune responses to mumps vaccine in adults who were vaccinated in childhood.

    Science.gov (United States)

    Hanna-Wakim, Rima; Yasukawa, Linda L; Sung, Phillip; Arvin, Ann M; Gans, Hayley A

    2008-06-15

    In a mumps outbreak in the United States, many infected individuals were adults who had received 2 doses of mumps vaccine. The persistence of cellular immunity to mumps vaccine has not been defined. This was an observational, nonrandomized cohort study evaluating cell-mediated and humoral immunity to mumps in 10 vaccinated and 10 naturally immune adults. Mumps-specific T cell activation and interferon (IFN)-gamma production were measured using lymphoproliferative and flow cytometry assays, and mumps immunoglobulin (Ig) G was measured using enzyme-linked immunosorbent assay. T cell immunity to mumps was high in both groups; 70% of vaccinated and 80% of naturally immune individuals had a positive (> or =3) stimulation index (SI) (P = 1.0). The mean percentages of mumps-specific CD4+ T cells that expressed CD69 and produced IFN-gamma were equivalent in the 2 groups: 0.06% and 0.12%, respectively (P = .11). The mean SIs in the groups were also equivalent, although IFN-gamma concentrations from cultures stimulated with mumps antigen were higher in naturally immune adults than in vaccinated adults (P < or = .01). All adults were positive for mumps IgG. T and B cell immunity to mumps was detected in adults at least 10 years after immunization. Except for IFN-gamma release, responses in vaccinated adults paralleled those observed in naturally immune individuals.

  16. The specificity of immune priming in silkworm, Bombyx mori, is mediated by the phagocytic ability of granular cells.

    Science.gov (United States)

    Wu, Gongqing; Li, Mei; Liu, Yi; Ding, Ying; Yi, Yunhong

    2015-10-01

    In the past decade, the phenomenon of immune priming was documented in many invertebrates in a large number of studies; however, in most of these studies, behavioral evidence was used to identify the immune priming. The underlying mechanism and the degree of specificity of the priming response remain unclear. We studied the mechanism of immune priming in the larvae of the silkworm, Bombyx mori, and analyzed the specificity of the priming response using two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P. luminescens H06) and one Gram-positive pathogenic bacterium (Bacillus thuringiensis HD-1). Primed with heat-killed bacteria, the B. mori larvae were more likely to survive subsequent homologous exposure (the identical bacteria used in the priming and in the subsequent challenge) than heterologous (different bacteria used in the priming and subsequent exposure) exposure to live bacteria. This result indicated that the B. mori larvae possessed a strong immune priming response and revealed a degree of specificity to TT01, H06 and HD-1 bacteria. The degree of enhanced immune protection was positively correlated with the level of phagocytic ability of the granular cells and the antibacterial activity of the cell-free hemolymph. Moreover, the granular cells of the immune-primed larvae increased the phagocytosis of a previously encountered bacterial strain compared with other bacteria. Thus, the enhanced immune protection of the B. mori larvae after priming was mediated by the phagocytic ability of the granular cells and the antibacterial activity of the hemolymph; the specificity of the priming response was primarily attributed to the phagocytosis of bacteria by the granular cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The effect of ghrelin upon the early immune response in lean and obese mice during sepsis.

    Directory of Open Access Journals (Sweden)

    Daniel Siegl

    Full Text Available It is well established that obesity-related hormones can have modulatory effects associated with the immune response. Ghrelin, a hormone mainly derived from endocrine cells of the gastric mucosa, regulates appetite, energy expenditure and body weight counteracting leptin, a hormone mainly derived from adipocytes. Additionally, receptors of both have been detected on immune cells and demonstrated an immune regulatory function during sepsis.In the present study, the effect of peripheral ghrelin administration on early immune response and survival was investigated with lean mice and mice with diet-induced obesity using cecal ligation and puncture to induce sepsis.In the obese group, we found that ghrelin treatment improved survival, ameliorated hypothermia, and increased hyperleptinemia as compared to the lean controls. We also observed that ghrelin treatment divergently regulated serum IL-1ß and TNF-α concentrations in both lean and obese septic mice. Ghrelin treatment initially decreased but later resulted in increased bacteriaemia in lean mice while having no impact upon obese mice. Similarly, ghrelin treatment increased early neutrophil oxidative burst while causing a decrease 48 hours after sepsis inducement.In conclusion, as the immune response to sepsis temporally changes, ghrelin treatment differentially mediates this response. Specifically, we observed that ghrelin conferred protective effects during the early phase of sepsis, but during the later phase deteriorated immune response and outcome. These adverse effects were more pronounced upon lean mice as compared to obese mice.

  18. μ-opioid Receptor-Mediated Alterations of Allergen-Induced Immune Responses of Bronchial Lymph Node Cells in a Murine Model of Stress Asthma

    Directory of Open Access Journals (Sweden)

    Kaori Okuyama

    2012-01-01

    Conclusions: Restraint stress aggravated allergic airway inflammation in association with alterations in local immunity characterized by greater Th2-associated cytokine production and a reduced development of regulatory T cells, mediated by MORs.

  19. Morphological and functional characterization of hemocytes from two deep-sea vesicomyid clams Phreagena okutanii and Abyssogena phaseoliformis.

    Science.gov (United States)

    Tame, Akihiro; Ozawa, Genki; Maruyama, Tadashi; Yoshida, Takao

    2018-03-01

    Deep-sea vesicomyid clams harboring intracellular symbiotic sulfur-oxidizing bacteria are often dominant in chemosynthetic animal communities. Although they are known to have erythrocytes, little is known about other hemocytes. To investigate the types and roles of various hemocytes in vesicomyid clams, we performed morphological, histochemical and functional characterization of the hemocytes in two species, Phreagena okutanii, collected from 873 to 978 m depth, and Abyssogena phaseoliformis, from 5199 to 5355 m. Both were found to have three types of hemocytes: erythrocytes (ERCs), eosinophilic granulocytes (EGs), and basophilic granulocytes (BGs). The ERCs contain hemoglobin in the cytoplasm, with basophilic vacuoles containing acid polysaccharide, neutral lipids, and peroxidase. The EGs were found to contain acid polysaccharides and eosinophilic granules containing lysosomal enzymes, acid and alkaline phosphatases, chloroacetate esterase, and peroxidase. Although BGs had some basophilic granules with alkaline phosphatase, they lacked acid phosphatase and acid polysaccharides. The EGs and BGs were shown to have phagocytic ability, while the ERCs exhibited no phagocytosis. The EGs showed higher phagocytic activity as well as a higher phagosome-lysosome fusion rate than BGs. The hemocytes of the two vesicomyid species differed in the intracellular structures. In A. phaseoliformis, ERCs additionally contained neutral polysaccharides in vacuoles and had vesicles with acinus-like acidic mucus in the cytoplasm, neither of which were observed in P. okutanii. The eosinophilic granules in the EGs had heteromorphically-elongated shapes containing homogeneously electron-dense material in P. okutanii, but were more spherical and composed of fibrous structures in A. phaseoliformis. The difference in hemocytes between the two clams seems to be reflective of phylogenetically differentiated lineages adapting to differing conditions in their respective deep-sea environments

  20. TYPES OF IMMUNE RESPONSE FOR VARIOUS ESTHTEIN-BARR FORMS OF VIRAL INFECTION

    Directory of Open Access Journals (Sweden)

    Lyadova T. I.

    2017-12-01

    Full Text Available In 321 patients with different forms of EBV infection in the age range from 19 to 57 years (mean age 33,1 ± 11,7 years different types of immune response were isolated and studied. All participants in the study were divided into groups of comparable sex and age: patients with infectious mononucleosis (n = 138; patients with various forms of chronic EBV infection (n = 183; clinically healthy volunteers (n = 20. During the study all ethical norms were observed in accordance with international and Ukrainian protocols. Clinical examination of patients and healthy volunteers included examining complaints, an epidemiological history, a history of illness and life, an objective examination, instrumental and laboratory studies in dynamics. Statistical processing of the results of the study was carried out by parametric and nonparametric methods using the program Statistika 6.0, for each variational series, the absolute values (n, the arithmetic mean (M, the mean error of the arithmetic mean (m were calculated. It was found that patients with different forms of EBV infection have a reliable cytokine imbalance. Four main types of immune response were identified: normoreactive, dissociative, hyporeactive and hyperreactive. The revealed types of immune response testify to inadequate cellular-humoral reactivity of the organism in conditions of prolonged persistence of EBV, which is manifested by a tendency to suppress cell-mediated and enhancing humoral mechanisms of the immune response and is reflected in the clinical and biochemical manifestations of the disease and leads to a protracted undulating course of the disease.

  1. The role of hybridization in improving the immune response and thermal tolerance of abalone.

    Science.gov (United States)

    Liang, Shuang; Luo, Xuan; You, Weiwei; Luo, Lianzhong; Ke, Caihuan

    2014-07-01

    Recently, frequent death of cultured abalone drew our attention to the stress tolerance of abalone. Hybridization is an effective way of genetic improvement in aquaculture, which can introduce improved traits to the hybrids. In this study, we challenged the hybrids between Haliotis discus hannai and Haliotis gigantea, and their parents with bacteria (vibrio harveyi, vibrio alginolyticus and vibrio parahemolyticus), then held them at 20 °C and 28 °C, survival rates of the parental populations and hybrid populations were recorded. Then we tested the immune responses and thermal-induced responses of the four populations at different temperatures. Total hemocyte count (THC), respiratory burst, superoxide dismutase activity (SOD), acid phosphatase activity (ACP), alkaline phosphatase activity (AKP), myeloperoxidase activity (MPO), and HSP70 expression were determined on day 1 and day 7 of the temperature exposure. Results showed higher survival rates of the hybrids than their parents against bacteria challenge. For immune parameters, THCs were evaluated at 28 °C, while increased THC was also observed in H. discus hannai ♀ × H. gigantea ♂ (DG) and H. discus hannai ♀ × H. discus hannai ♂ (DD) at 12 °C (day 7); at 28 °C, respiratory burst was activated (day 1 and 7), while SOD activity first rose then fell over 7-days exposure; AKP activity was elevated at 12 °C and 28 °C (day 1), most notably in DG, and an increased level of ACP was observed in DG at 28 °C (day 7); MPO activity was suppressed at 12 °C and 28 °C on day 1, but recovered on day 7. For HSP70, increased HSP70 levels were observed in all populations at 28 °C (day 1), and DD got the lowest HSP70 level after 7-days exposure at 28 °C. Overall, the results suggest that temperature changes could significantly affect the physiological status of abalone, and hybrids may be more resistant to disease and thermal stresses than their parents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Enhancement of Immune Memory Responses to Respiratory Infection

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0360 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Min Chen PhD...5a. CONTRACT NUMBER Enhancement of Immune Memory Responses to Respiratory Infection 5b. GRANT NUMBER W81XWH-16-1-0360 5c. PROGRAM ELEMENT NUMBER...entitled “ENHANCEMENT OF IMMUNE MEMORY RESPONSES TO RESPIRATORY INFECTION: AUTOPHAGY IN MEMORY B-CELLS RESPONSE TO INFLUENZA VACCINE (AMBRIV

  3. FEATURES OF THE IMMUNE RESPONSE DURING INFECTION AND PROSPECTS FOR THE VACCINES CREATION

    Directory of Open Access Journals (Sweden)

    Davidova T.V.

    2015-12-01

    Full Text Available The influenza virus belongs to the family Orthomyxoviridae and is a major cause of respiratory infections in humans. Each year, influenza viruses cause, according to experts, 3-5 million severe course of the disease and 250 000-500 000 deaths. Influenza A viruses are divided into serotypes based on their surface glycoproteins - known currently 17 subtypes of HA and NA subtypes ten. Upon infection with an influenza virus, both innate and adaptive immune responses are inducing. In recent years the annual seasonal epidemics were causing strains of the virus A (H1N1 and H3N2 and virus B. This may be due to their ability to be unrecognizable virus specific antibodies due to antigenic drift (Figure 1. Seasonal flu vaccine, to be effective, must be updated almost annually, according to new epidemic strains. In this work will discuss various strategies used by influenza viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells.The primary targets for influenza viruses are the epithelial cells that line the respiratory tract and which initiate an antiviral immune response upon detection of the virus. The first line of defense is formed by the innate immune system, which is quick but lacks specificity and memory. Innate immunity is formed by physical barriers and innate cellular immune responses. Here, we outline several of the innate defense mechanisms directed against influenza infections. During homeostasis, alveolar macrophages exhibit a relatively quiescent state, producing only low levels of cytokines, and suppress the induction of innate and adaptive immunity. Activated macrophages enhance their pro-inflammatory cytokine response, including IL-6 and TNF-α. Alveolar macrophages have a direct role in limiting viral spread by phagocytosis of apoptotic infected cells and by phagocyte-mediated

  4. GSL-enriched membrane microdomains in innate immune responses.

    Science.gov (United States)

    Nakayama, Hitoshi; Ogawa, Hideoki; Takamori, Kenji; Iwabuchi, Kazuhisa

    2013-06-01

    Many pathogens target glycosphingolipids (GSLs), which, together with cholesterol, GPI-anchored proteins, and various signaling molecules, cluster on host cell membranes to form GSL-enriched membrane microdomains (lipid rafts). These GSL-enriched membrane microdomains may therefore be involved in host-pathogen interactions. Innate immune responses are triggered by the association of pathogens with phagocytes, such as neutrophils, macrophages and dendritic cells. Phagocytes express a diverse array of pattern-recognition receptors (PRRs), which sense invading microorganisms and trigger pathogen-specific signaling. PRRs can recognize highly conserved pathogen-associated molecular patterns expressed on microorganisms. The GSL lactosylceramide (LacCer, CDw17), which binds to various microorganisms, including Candida albicans, is expressed predominantly on the plasma membranes of human mature neutrophils and forms membrane microdomains together with the Src family tyrosine kinase Lyn. These LacCer-enriched membrane microdomains can mediate superoxide generation, migration, and phagocytosis, indicating that LacCer functions as a PRR in innate immunity. Moreover, the interactions of GSL-enriched membrane microdomains with membrane proteins, such as growth factor receptors, are important in mediating the physiological properties of these proteins. Similarly, we recently found that interactions between LacCer-enriched membrane microdomains and CD11b/CD18 (Mac-1, CR3, or αMβ2-integrin) are significant for neutrophil phagocytosis of non-opsonized microorganisms. This review describes the functional role of LacCer-enriched membrane microdomains and their interactions with CD11b/CD18.

  5. INFLUENCE OF SEASONAL FACTORS ON OYSTER HEMOCYTE KILLING OF VIBRIO PARAHEMOLYTICUS

    Science.gov (United States)

    Seasonal variation of cellular defenses of oyster Crassostrea virginica against Vibrio parahaemolyticus were examined from June 1997 to December 1998 using a recently developed bactericidal assay that utilizes a tetrazolium dye. Mean hemocyte numbers, plasma lysozyme, and P. mari...

  6. Transcriptome analysis of the immune reaction of the pearl oyster Pinctada fucata to xenograft from Pinctada maxima.

    Science.gov (United States)

    Wei, Jinfen; Fan, Sigang; Liu, Baosuo; Zhang, Bo; Su, Jiaqi; Yu, Dahui

    2017-08-01

    The pearl oyster Pinctada maxima exhibits great difficulty to culture pearls through nuclear insertion with an allograft, but it is easy for P. fucata to culture pearls after allografting. If P. fucata could be used as a surrogate mother to culture P. maxima pearls, it would benefit the pearl culture industry of P. maxima. However, this is blocked by the immune rejection of P. fucata against P. maxima mantle grafts. In this study, the immune responses of P. fucata hemocyte to allograft and xenograft were investigated after transplantation by transcriptome analysis. In total, 107.93 Gb clean reads were produced and assembled using the reference genome of P. fucata. Gene Ontology Term enrichment and KEGG enrichment analyses indicated that apoptosis, hippo signaling pathway, oxidation-reduction, MAPK signaling pathway, ribosome, protein processing in endoplasmic reticulum, purine metabolism, NF-kappa B signaling pathway, oxidative phosphorylation, Ras signaling pathway, and ubiquitin mediated proteolysis were involved in response to transplantation. Many genes related to oxidation-reduction reactions, the MAPK signaling pathway, and apoptosis were identified by comparison of the allograft group and the xenograft group at 0 h, 6 h, 12 h, 24 h, 48 h, 72 h, and 96 h post-transplantation. Among them, the expression levels of NADH dehydrogenase, succinate dehydrogenase and other dehydrogenases were increased significantly in the xenograft groups compared with allograft groups at 0 h post transplantation, indicating that a respiratory burst of neutrophils occurred immediately after xenograft transplantation. Additionally, HSP70 was highly expressed from 0 h to 96 h in the xenograft groups, indicating an oyster immune response to the xenograft. The genes enriched in the ribosome and hippo-signaling pathways were also identified, and expression patterns of these DEGs were different as compared between transplantation and control groups. Finally, altered

  7. A novel role for adiponectin in regulating the immune responses in chronic hepatitis C virus infection.

    Science.gov (United States)

    Palmer, Clovis; Hampartzoumian, Taline; Lloyd, Andrew; Zekry, Amany

    2008-08-01

    Adipose tissue releases pro-inflammatory and anti-inflammatory mediators, including adiponectin, which elicit a broad range of metabolic and immunological effects. The study aim was to determine in subjects infected with chronic hepatitis C virus (HCV) the effects of total adiponectin and its high-molecular-weight (HMW) and low-molecular-weight isoforms on HCV-specific immune responses. Serum levels of total adiponectin and its isoforms were determined by immunoassay. The ex vivo effect of adiponectin on the HCV-specific T-cell response was examined by interferon gamma (IFN-gamma) enzyme-linked immunosorbent spot and enzyme-linked immunosorbent assay cytokine assays. The role of the mitogen-activated protein kinase (MAPK) signaling pathway in mediating the adiponectin effect on T cells was also evaluated. We found that serum levels of total and HMW adiponectin were significantly decreased in subjects with chronic HCV and increased body mass index (BMI) compared with HCV-infected lean subjects. The presence of an anti-HCV specific immune response was strongly associated with lower BMI (P = 0.004) and higher serum total (P = 0.01) and HMW (P = 0.02) adiponectin. In ex vivo assays, total adiponectin and the HMW adiponectin isoform enhanced HCV-specific IFN-gamma production (P = 0.02 and 0.03, respectively). Adiponectin-R1 receptors were expressed on T cells and monocytes. In depletion experiments, the IFN-gamma response to adiponectin was entirely dependent on the simultaneous presence of both CD4 and CD8 T cells, and to a lesser extent, natural killer cells. Selective inhibition of p38MAPK activity by SB203580 abrogated the IFN-gamma response to adiponectin, whereas extracellular signal-regulated kinase 1/2 inhibition by PD98059 did not affect the response. In chronic HCV, a reciprocal association exists between BMI, adiponectin, and the anti-HCV immune responses, emphasizing the important role played by adiposity in regulating the immune response in HCV infection.

  8. HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon.

    Science.gov (United States)

    Mutz, Pascal; Metz, Philippe; Lempp, Florian A; Bender, Silke; Qu, Bingqian; Schöneweis, Katrin; Seitz, Stefan; Tu, Thomas; Restuccia, Agnese; Frankish, Jamie; Dächert, Christopher; Schusser, Benjamin; Koschny, Ronald; Polychronidis, Georgios; Schemmer, Peter; Hoffmann, Katrin; Baumert, Thomas F; Binder, Marco; Urban, Stephan; Bartenschlager, Ralf

    2018-05-01

    Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Human metapneumovirus M2-2 protein inhibits innate immune response in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Junping Ren

    Full Text Available Human metapneumovirus (hMPV is a leading cause of lower respiratory infection in young children, the elderly and immunocompromised patients. Repeated hMPV infections occur throughout life. However, immune evasion mechanisms of hMPV infection are largely unknown. Recently, our group has demonstrated that hMPV M2-2 protein, an important virulence factor, contributes to immune evasion in airway epithelial cells by targeting the mitochondrial antiviral-signaling protein (MAVS. Whether M2-2 regulates the innate immunity in human dendritic cells (DC, an important family of immune cells controlling antigen presenting, is currently unknown. We found that human DC infected with a virus lacking M2-2 protein expression (rhMPV-ΔM2-2 produced higher levels of cytokines, chemokines and IFNs, compared to cells infected with wild-type virus (rhMPV-WT, suggesting that M2-2 protein inhibits innate immunity in human DC. In parallel, we found that myeloid differentiation primary response gene 88 (MyD88, an essential adaptor for Toll-like receptors (TLRs, plays a critical role in inducing immune response of human DC, as downregulation of MyD88 by siRNA blocked the induction of immune regulatory molecules by hMPV. Since M2-2 is a cytoplasmic protein, we investigated whether M2-2 interferes with MyD88-mediated antiviral signaling. We found that indeed M2-2 protein associated with MyD88 and inhibited MyD88-dependent gene transcription. In this study, we also identified the domains of M2-2 responsible for its immune inhibitory function in human DC. In summary, our results demonstrate that M2-2 contributes to hMPV immune evasion by inhibiting MyD88-dependent cellular responses in human DC.

  10. Filarial parasites develop faster and reproduce earlier in response to host immune effectors that determine filarial life expectancy.

    Science.gov (United States)

    Babayan, Simon A; Read, Andrew F; Lawrence, Rachel A; Bain, Odile; Allen, Judith E

    2010-10-19

    Humans and other mammals mount vigorous immune assaults against helminth parasites, yet there are intriguing reports that the immune response can enhance rather than impair parasite development. It has been hypothesized that helminths, like many free-living organisms, should optimize their development and reproduction in response to cues predicting future life expectancy. However, immune-dependent development by helminth parasites has so far eluded such evolutionary explanation. By manipulating various arms of the immune response of experimental hosts, we show that filarial nematodes, the parasites responsible for debilitating diseases in humans like river blindness and elephantiasis, accelerate their development in response to the IL-5 driven eosinophilia they encounter when infecting a host. Consequently they produce microfilariae, their transmission stages, earlier and in greater numbers. Eosinophilia is a primary host determinant of filarial life expectancy, operating both at larval and at late adult stages in anatomically and temporally separate locations, and is implicated in vaccine-mediated protection. Filarial nematodes are therefore able to adjust their reproductive schedules in response to an environmental predictor of their probability of survival, as proposed by evolutionary theory, thereby mitigating the effects of the immune attack to which helminths are most susceptible. Enhancing protective immunity against filarial nematodes, for example through vaccination, may be less effective at reducing transmission than would be expected and may, at worst, lead to increased transmission and, hence, pathology.

  11. Filarial parasites develop faster and reproduce earlier in response to host immune effectors that determine filarial life expectancy.

    Directory of Open Access Journals (Sweden)

    Simon A Babayan

    Full Text Available Humans and other mammals mount vigorous immune assaults against helminth parasites, yet there are intriguing reports that the immune response can enhance rather than impair parasite development. It has been hypothesized that helminths, like many free-living organisms, should optimize their development and reproduction in response to cues predicting future life expectancy. However, immune-dependent development by helminth parasites has so far eluded such evolutionary explanation. By manipulating various arms of the immune response of experimental hosts, we show that filarial nematodes, the parasites responsible for debilitating diseases in humans like river blindness and elephantiasis, accelerate their development in response to the IL-5 driven eosinophilia they encounter when infecting a host. Consequently they produce microfilariae, their transmission stages, earlier and in greater numbers. Eosinophilia is a primary host determinant of filarial life expectancy, operating both at larval and at late adult stages in anatomically and temporally separate locations, and is implicated in vaccine-mediated protection. Filarial nematodes are therefore able to adjust their reproductive schedules in response to an environmental predictor of their probability of survival, as proposed by evolutionary theory, thereby mitigating the effects of the immune attack to which helminths are most susceptible. Enhancing protective immunity against filarial nematodes, for example through vaccination, may be less effective at reducing transmission than would be expected and may, at worst, lead to increased transmission and, hence, pathology.

  12. Effect of dietary mannanoligosaccharide supplementation on nutrient digestibility, hindgut fermentation, immune response and antioxidant indices in dogs

    Directory of Open Access Journals (Sweden)

    Mahesh M. Pawar

    2017-05-01

    Full Text Available Abstract Background Use of prebiotics in companion animal nutrition is often considered advantageous over probiotics because of the ease of handling, ability to withstand processing and storage etc. While most of the studies on prebiotic use in dogs have been done with processed food as basal diet, the response in relation to homemade diet feeding is not very well explored. Methods The study was conducted to evaluate the effects of dietary mannanoligosaccharide (MOS supplementation on nutrient digestibility, hindgut fermentation, immune response and antioxidant indices in dogs. Ten Spitz pups were divided into two groups: control (CON with no supplementation, and experimental (MOS wherein the basal diet was supplemented with MOS at 15 g/kg diet. All dogs were fed on a home-prepared diet for a period of 150 days. The study protocol included a digestion trial, periodic blood collection and analysis for lipid profile and erythrocytic antioxidants. Immune response of the animals was assessed towards the end of the feeding period. Results Results revealed no significant (P > 0.05 variations in palatability score, intake and apparent digestibility of nutrients between the groups. Faecal score, faeces voided, faecal pH, concentrations of ammonia, lactate and short-chain fatty acids were comparable (P > 0.05 between the two groups. Cell-mediated immune response, assessed as delayed-type of hypersensitivity response, was significantly higher (P  0.05 in both the groups. Supplementation of MOS lowered (P  0.05 between the two groups. Conclusions The results indicated that supplementation of MOS at the rate of 15 g/kg in the diet of dog augmented the cell-mediated immune response and serum lipid profile without any influences on digestibility of nutrients, hindgut fermentation and antioxidants indices.

  13. Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor.

    Directory of Open Access Journals (Sweden)

    Kristoffer Palma

    Full Text Available Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R proteins, that trigger strong immune responses including localized host cell death. The accelerated cell death 11 (acd11 "lesion mimic" mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown. In a screen for lazarus (laz mutants that suppress acd11 death we identified two genes, LAZ2 and LAZ5. LAZ2 encodes the histone lysine methyltransferase SDG8, previously shown to epigenetically regulate flowering time via modification of histone 3 (H3. LAZ5 encodes an RPS4-like R-protein, defined by several dominant negative alleles. Microarray and chromatin immunoprecipitation analyses showed that LAZ2/SDG8 is required for LAZ5 expression and H3 lysine 36 trimethylation at LAZ5 chromatin to maintain a transcriptionally active state. We hypothesize that LAZ5 triggers cell death in the absence of ACD11, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity.

  14. Circumsporozoite Protein-Specific Kd-Restricted CD8+ T Cells Mediate Protective Antimalaria Immunity in Sporozoite-Immunized MHC-I-Kd Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2014-01-01

    Full Text Available Although the roles of CD8+ T cells and a major preerythrocytic antigen, the circumsporozoite (CS protein, in contributing protective antimalaria immunity induced by radiation-attenuated sporozoites, have been shown by a number of studies, the extent to which these players contribute to antimalaria immunity is still unknown. To address this question, we have generated C57BL/6 (B6 transgenic (Tg mice, expressing Kd molecules under the MHC-I promoter, called MHC-I-Kd-Tg mice. In this study, we first determined that a single immunizing dose of IrPySpz induced a significant level of antimalaria protective immunity in MHC-I-Kd-Tg mice but not in B6 mice. Then, by depleting various T-cell subsets in vivo, we determined that CD8+ T cells are the main mediator of the protective immunity induced by IrPySpz. Furthermore, when we immunized (MHC-I-Kd-Tg × CS-Tg F1 mice with IrPySpz after crossing MHC-I-Kd-Tg mice with PyCS-transgenic mice (CS-Tg, which are unable to mount PyCS-specific immunity, we found that IrPySpz immunization failed to induce protective antimalaria immunity in (MHC-I-Kd-Tg × CS-Tg F1 mice, thus indicating the absence of PyCS antigen-dependent immunity in these mice. These results indicate that protective antimalaria immunity induced by IrPySpz in MHC-I-Kd-Tg mice is mediated by CS protein-specific, Kd-restricted CD8+ T cells.

  15. Shared genetics in coeliac disease and other immune-mediated diseases

    NARCIS (Netherlands)

    Gutierrez-Achury, J.; Coutinho de Almeida, R.; Wijmenga, C.

    Gutierrez-Achury J, Coutinho de Almeida R, Wijmenga C (University Medical Centre Groningen and University of Groningen, Groningen, the Netherlands; University of Brasilia School of Health Sciences, Brasilia, DF, Brazil). Shared genetics in coeliac disease and other immune-mediated diseases

  16. Catalog of Differentially Expressed Long Non-Coding RNA following Activation of Human and Mouse Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Benoit T. Roux

    2017-08-01

    Full Text Available Despite increasing evidence to indicate that long non-coding RNAs (lncRNAs are novel regulators of immunity, there has been no systematic attempt to identify and characterize the lncRNAs whose expression is changed following the induction of the innate immune response. To address this issue, we have employed next-generation sequencing data to determine the changes in the lncRNA profile in four human (monocytes, macrophages, epithelium, and chondrocytes and four mouse cell types (RAW 264.7 macrophages, bone marrow-derived macrophages, peritoneal macrophages, and splenic dendritic cells following exposure to the pro-inflammatory mediators, lipopolysaccharides (LPS, or interleukin-1β. We show differential expression of 204 human and 210 mouse lncRNAs, with positional analysis demonstrating correlation with immune-related genes. These lncRNAs are predominantly cell-type specific, composed of large regions of repeat sequences, and show poor evolutionary conservation. Comparison within the human and mouse sequences showed less than 1% sequence conservation, although we identified multiple conserved motifs. Of the 204 human lncRNAs, 21 overlapped with syntenic mouse lncRNAs, of which five were differentially expressed in both species. Among these syntenic lncRNA was IL7-AS (antisense, which was induced in multiple cell types and shown to regulate the production of the pro-inflammatory mediator interleukin-6 in both human and mouse cells. In summary, we have identified and characterized those lncRNAs that are differentially expressed following activation of the human and mouse innate immune responses and believe that these catalogs will provide the foundation for the future analysis of the role of lncRNAs in immune and inflammatory responses.

  17. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Science.gov (United States)

    Kong, Ping; McDowell, John M; Hong, Chuanxue

    2017-01-01

    Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF) and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA) and jasmonic acid (JA): eds16 (enhanced disease susceptibility16), pad4 (phytoalexin deficient4), and npr1 (nonexpressor of pathogenesis-related genes1). Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  18. Anti-thymocyte serum as part of an immunosuppressive regimen in treating haematological immune-mediated diseases in dogs.

    Science.gov (United States)

    Cuq, B; Blois, S L; Mathews, K A

    2017-06-01

    To report the outcomes associated with the use of rabbit anti-dog thymocyte serum in dogs with haematological immune-mediated diseases. Medical records from 2000 to 2016 of patients diagnosed with immune-mediated haemolytic anaemia, immune-mediated thrombocytopenia, pancytopenia and myelofibrosis were reviewed. All dogs had a severe or refractory disease and received rabbit anti-dog thymocyte serum. Lymphocyte counts were used to monitor the immediate anti-thymocyte effect of therapy; long-term patient outcome was recorded. A total of 10 dogs were included. All dogs except one had a notable decrease in their lymphocyte count after rabbit anti-dog thymocyte serum; four of nine had a decrease to less than 10% of the initial lymphocyte count and one dog reached 10·8%. All dogs were discharged from the hospital following their treatment. The dog with no alteration of lymphocyte count following therapy with rabbit anti-dog thymocyte serum had refractory immune mediated haemolytic anemia and was euthanised within two weeks. All other cases achieved clinical remission with immunosuppressive therapy eventually being tapered (3 of 10) or discontinued (6 of 10). Rabbit anti-dog thymocyte serum therapy might be of interest as an adjunctive therapy in refractory immune-mediated diseases and suppressed lymphocyte counts in most dogs. © 2017 British Small Animal Veterinary Association.

  19. Outer Membrane Vesicles From Probiotic and Commensal Escherichia coli Activate NOD1-Mediated Immune Responses in Intestinal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María-Alexandra Cañas

    2018-03-01

    Full Text Available Gut microbiota plays a critical role in maintaining human intestinal homeostasis and host health. Bacterial extracellular vesicles are key players in bacteria–host communication, as they allow delivery of effector molecules into the host cells. Outer membrane vesicles (OMVs released by Gram-negative bacteria carry many ligands of pattern recognition receptors that are key components of innate immunity. NOD1 and NOD2 cytosolic receptors specifically recognize peptidoglycans present within the bacterial cell wall. These intracellular immune receptors are essential in host defense against bacterial infections and in the regulation of inflammatory responses. Recent contributions show that NODs are also fundamental to maintain intestinal homeostasis and microbiota balance. Peptidoglycan from non-invasive pathogens is delivered to cytosolic NODs through OMVs, which are internalized via endocytosis. Whether this pathway could be used by microbiota to activate NOD receptors remains unexplored. Here, we report that OMVs isolated from the probiotic Escherichia coli Nissle 1917 and the commensal ECOR12 activate NOD1 signaling pathways in intestinal epithelial cells. NOD1 silencing and RIP2 inhibition significantly abolished OMV-mediated activation of NF-κB and subsequent IL-6 and IL-8 expression. Confocal fluorescence microscopy analysis confirmed that endocytosed OMVs colocalize with NOD1, trigger the formation of NOD1 aggregates, and promote NOD1 association with early endosomes. This study shows for the first time the activation of NOD1-signaling pathways by extracellular vesicles released by gut microbiota.

  20. Immune-mediated steroid-responsive epileptic spasms and epileptic encephalopathy associated with VGKC-complex antibodies.

    Science.gov (United States)

    Suleiman, Jehan; Brenner, Tanja; Gill, Deepak; Troedson, Christopher; Sinclair, Adriane J; Brilot, Fabienne; Vincent, Angela; Lang, Bethan; Dale, Russell C

    2011-11-01

    Autoantibodies that bind to voltage-gated potassium-channel complex proteins (VGKC-complex antibodies) occur frequently in adults with limbic encephalitis presenting with cognitive impairment and seizures. Recently, VGKC-complex antibodies have been described in a few children with limbic encephalitis, and children with unexplained encephalitis presenting with status epilepticus. We report a case of infantile-onset epileptic spasms and developmental delay compatible with epileptic encephalopathy. Our patient was a female infant, aged 4 months at presentation. She had evidence of immune activation in the central nervous system with elevated cerebrospinal fluid neopterin and mirrored oligoclonal bands, which prompted testing for autoantibodies. VGKC-complex antibodies were elevated (201 pmol/L, normalVGKC-complex antibodies might represent a marker of immune therapy responsiveness in a subgroup of patients with infantile epileptic encephalopathy. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  1. Purinergic signaling modulates the cerebral inflammatory response in experimentally infected fish with Streptococcus agalactiae: an attempt to improve the immune response.

    Science.gov (United States)

    Souza, Carine F; Baldissera, Matheus D; Bottari, Nathiele B; Moreira, Karen L S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; Santos, Roberto C V; Baldisserotto, Bernardo

    2018-06-01

    Appropriate control of the immune response is a critical determinant of fish health, and the purinergic cascade has an important role in the immune and inflammatory responses. This cascade regulates the levels of adenosine triphosphate (ATP), adenosine diphosphate, adenosine monophosphate and adenosine (Ado), molecules involved in physiological or pathological events as inflammatory and anti-inflammatory mediators. Thus, the aim of this study was to evaluate whether purinergic signaling, through the activities of nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase, and adenosine deaminase (ADA), is capable of modulating the cerebral immune and inflammatory responses in silver catfish that is experimentally infected with Streptococcus agalactiae. Cerebral NTPDase (with ATP as substrate) and 5'-nucleotidase activities increased, while ADA activity decreased in silver catfish that is experimentally infected with S. agalactiae, compared to the control group. Moreover, the cerebral levels of ATP and Ado increased in infected animals compared to the uninfected control group. Brain histopathology in infected animals revealed inflammatory demyelination (the presence of occasional bubbly collections), increased cellular density in the area near to pia-mater and intercellular edema. Based on this evidence, the modulation of the purinergic cascade by the enzymes NTPDase, 5'-nucleotidase, and ADA exerts an anti-inflammatory profile due to the regulation of ATP and Ado levels. This suggests involvement of purinergic enzymes on streptococcosis pathogenesis, through regulating cerebral ATP and Ado levels, molecules known to participate in physiological or pathological events as inflammatory and anti-inflammatory mediators, respectively. In summary, the modulation of the cerebral purinergic cascade exerts an anti-inflammatory profile in an attempt to reduce inflammatory damage.

  2. The scavenger endothelial cell: a new player in homeostasis and immunity.

    Science.gov (United States)

    Sørensen, Karen Kristine; McCourt, Peter; Berg, Trond; Crossley, Clive; Le Couteur, David; Wake, Kenjiro; Smedsrød, Bård

    2012-12-15

    To maintain homeostasis, the animal body is equipped with a powerful system to remove circulating waste. This review presents evidence that the scavenger endothelial cell (SEC) is responsible for the clearance of blood-borne waste macromolecules in vertebrates. SECs express pattern-recognition endocytosis receptors (mannose and scavenger receptors), and in mammals, the endocytic Fc gamma-receptor IIb2. This cell type has an endocytic machinery capable of super-efficient uptake and degradation of physiological and foreign waste material, including all major classes of biological macromolecules. In terrestrial vertebrates, most SECs line the wall of the liver sinusoid. In phylogenetically older vertebrates, SECs reside instead in heart, kidney, or gills. SECs, thus, by virtue of their efficient nonphagocytic elimination of physiological and microbial substances, play a critical role in the innate immunity of vertebrates. In major invertebrate phyla, including insects, the same function is carried out by nephrocytes. The concept of a dual-cell principle of waste clearance is introduced to emphasize that professional phagocytes (macrophages in vertebrates; hemocytes in invertebrates) eliminate larger particles (>0.5 μm) by phagocytosis, whereas soluble macromolecules and smaller particles are eliminated efficiently and preferentially by clathrin-mediated endocytosis in nonphagocytic SECs in vertebrates or nephrocytes in invertebrates. Including these cells as important players in immunology and physiology provides an additional basis for understanding host defense and tissue homeostasis.

  3. The Effects Radiation on Cellular Components of the Immune

    International Nuclear Information System (INIS)

    Zubaidah-Alatas

    2001-01-01

    The immune system describes the body's ability to defend itself against various foreign intruders named as antigens by calling on an immune mechanism. Antigens penetration into body activate the body's immune system that may be humoral response, cellular response, or both. The immune response is primarily mediated by two cell types, lymphocyte and macrophage. This paper will discuss the cellular component of immune system and the radiation effects on various cells involved in system. Moreover, the effects of radiation on humoral and cellular responses and the relation among immunity, cancer and radiotherapy are also described. (author)

  4. Synergistic immune responses induced by endogenous retrovirus and herpesvirus antigens result in increased production of inflammatory cytokines in multiple sclerosis patients

    DEFF Research Database (Denmark)

    Brudek, T; Christensen, T; Hansen, H J

    2008-01-01

    Human endogenous retroviruses (HERV) and herpesviruses are increasingly associated with the pathogenesis of the neurological inflammatory disease multiple sclerosis (MS). Herpesviruses are capable of HERV activation and simultaneous presence of HERV and herpesvirus antigens have a synergistic...... effect on cell-mediated immune responses, which tend to be higher in MS patients in comparison with healthy individuals. Here, we investigate whether these synergistic immune responses are reflected in changes in the production of proinflammatory cytokines. Using enzyme-linked immunosorbent assays...

  5. Age-related changes in humoral and cell-mediated immunity in Down syndrome children living at home.

    Science.gov (United States)

    Lockitch, G; Singh, V K; Puterman, M L; Godolphin, W J; Sheps, S; Tingle, A J; Wong, F; Quigley, G

    1987-11-01

    Abnormalities of humoral and cell-mediated immunity have been described in Down syndrome but reported findings have been inconsistent. Confounding factors have included age, institutional versus home life, hepatitis B antigenemia, and zinc deficiency. To clarify this problem, we studied 64 children with Down syndrome (DS) compared with an age-matched control group. All children had always lived at home. All the DS children were negative for hepatitis B surface antigen. Serum zinc concentration in the DS group was on average 12 micrograms/dl lower than age-matched control children. They also had significantly lower levels of immunoglobulin M, total lymphocyte count, T and B lymphocytes, and T helper and suppressor cells. In vitro lymphocyte response to phytohemagglutinin and concanavalin A was significantly reduced at all ages in the DS group. Lymphocyte response to pokeweed mitogen increased with age in control children but decreased in the DS children. By 18 yr, the mean response for DS was 60000 cpm lower than controls. The DS group had significantly higher concentrations of immunoglobulins A and G than controls and the difference increased with age. Complement fractions C3 and C4 were also higher in the DS group at all ages. The number of HNK-1 positive cells was higher in the DS group than controls at all ages. When hepatitis and institutionalization are excluded as confounding factors, DS children still differ in both humoral and cell-mediated immunity from an age-matched control group.

  6. Immune-Mediated Neutropenia and Thrombocytopenia in a Patient with Ulcerative Colitis: An Unusual Hematological Association with IBD

    Directory of Open Access Journals (Sweden)

    Young-In Kim

    1995-01-01

    Full Text Available Hematological manifestations of inflammatory bowel disease (IBD are well described in the literature. However, the combination of immune-mediated neutropenia and thrombocytopenia has only been reported once in association with IBD. A case is reported of immune-mediated neutropenia and thrombocytopenia in a patient with ulcerative colitis during a relapse. No obvious causes of these hematological abnormalities were found in the patient despite an exhaustive search. An immune-mediated process was confirmed by positive antineutrophil antibody and platelet-associated antibody in the patient’s serum, and the demonstration of binding of the patient’s immunoglobulin G to autologous neutrophils. The patient was treated with high-dose steroid, intravenous gamma-globulin and eventually splenectomy. The platelet count subsequently normalized; although the severe neutropenia recurred, it has subsequently improved without further treatment. Although a definitive cause-effect relationship cannot be established, the immune-mediated neutropenia and thrombocytopenia may be an unusual hematological manifestation associated with ulcerative colitis.

  7. Induction of cell-mediated immunity during early stages of infection with intracellular protozoa

    Directory of Open Access Journals (Sweden)

    Gazzinelli R.T.

    1998-01-01

    Full Text Available Toxoplasma gondii and Trypanosoma cruzi are intracellular parasites which, as part of their life cycle, induce a potent cell-mediated immunity (CMI maintained by Th1 lymphocytes and IFN-g. In both cases, induction of a strong CMI is thought to protect the host against rapid parasite multiplication and consequent pathology and lethality during the acute phase of infection. However, the parasitic infection is not eliminated by the immune system and the vertebrate host serves as a parasite reservoir. In contrast, Leishmania sp, which is a slow growing parasite, appears to evade induction of CMI during early stages of infection as a strategy for surviving in a hostile environment (i.e., inside the macrophages which are their obligatory niche in the vertebrate host. Recent reports show that the initiation of IL-12 synthesis by macrophages during these parasitic infections is a key event in regulating CMI and disease outcome. The studies reviewed here indicate that activation/inhibition of distinct signaling pathways and certain macrophage functions by intracellular protozoa are important events in inducing/modulating the immune response of their vertebrate hosts, allowing parasite and host survival and therefore maintaining parasite life cycles.

  8. Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation.

    Science.gov (United States)

    Paula Neto, Heitor A; Ausina, Priscila; Gomez, Lilian S; Leandro, João G B; Zancan, Patricia; Sola-Penna, Mauro

    2017-01-01

    Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of "lean homeostasis" and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.

  9. Complement-mediated solubilization of immune complexes and their interaction with complement C3 receptors

    DEFF Research Database (Denmark)

    Petersen, Ivan; Baatrup, Gunnar; Jepsen, H H

    1985-01-01

    Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components of the me......Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components...... of the cellular localization, expression and structure of the C3 receptors, especially the C3b (CR1) receptor, has been considerably extended in the last few years, whereas our understanding of the physiological role of these receptors is still fragmentary. However, it is becoming increasingly evident...

  10. Protective immune responses with trickle infections of third-stage filarial larvae of Wuchereria bancrofti in mice.

    Science.gov (United States)

    Rajasekariah, G R; Monteiro, Y M; Netto, A; Deshpande, L; Subrahmanyam, D

    1989-01-01

    Groups of inbred BALB/c mice were immunized with trickle doses of 20 live third-stage larvae (L3) of Wuchereria bancrofti each subcutaneously or with 150 microg of sonicated microfilarial antigens emulsified in Freund's adjuvant intramuscularly. An antibody response was distinctly seen after seven trickle doses of L3 and following with the sonicated microfilarial immunization. Due to the non-permissive nature of inbred mice to W. bancrofti infections, a novel immunization approach was adopted using appropriate age- and sex-matched controls. The anti-L3 response in terms of antibody-dependent cell-mediated adhesion and killing was assessed in the immunized animals by implanting live L3 in micropore chambers subcutaneously. About 75% L3 W. bancrofti were affected in animals sensitized with seven trickle doses of L3. When sensitizations were continued, as high as 92% of L3 were seen affected with ten trickle doses compared with 27% in age-matched controls. Immunization with sonicated microfilarial antigen affected about 70% of L3 as opposed to only 12% in controls. A positive correlation was observed in the antibody response with protectivity. This method of induction and assessment of the anti-L3 response involving a small set of animals has not only allowed quantification of affected L3 but has also enabled us to visualize larval conditions in immunologically activated animals. The micropore chamber system, would be useful in monitoring the induction of protective immune response against W. bancrofti in inbred mice. Experimentation on large numbers of animals is required to elucidate further the response of mice towards L3 and also to pinpoint the putative protective antigens. PMID:12412764

  11. Experimental Chagas disease in Balb/c mice previously vaccinated with T. rangeli. II. The innate immune response shows immunological memory: reality or fiction?

    Science.gov (United States)

    Basso, B; Marini, V

    2015-03-01

    Trypanosoma cruzi is a real challenge to the host's immune system, because it requires strong humoral and cellular immune response to remove circulating trypomastigote forms, and to prevent the replication of amastigote forms in tissues, involving many regulator and effector components. This protozoan is responsible for Chagas disease, a major public health problem in Latinamerica. We have developed a model of vaccination with Trypanosoma rangeli, a parasite closely related to T. cruzi, but nonpathogenic to humans, which reduces the infectiousness in three different species of animals, mice, dogs and guinea pigs, against challenge with T. cruzi. In a previous work, we demonstrated that mice vaccinated with T. rangeli showed important soluble mediators that stimulate phagocytic activity versus only infected groups. The aim of this work was to study the innate immune response in mice vaccinated or not with T. rangeli. Different population cells and some soluble mediators (cytokines) in peritoneal fluid and plasma in mice vaccinated-infected and only infected with T. cruzi were studied. In the first hours of challenge vaccinated mice showed an increase of macrophages, NK, granulocytes, and regulation of IL6, IFNγ, TNFα and IL10, with an increase of IL12, with respect to only infected mice. Furthermore an increase was observed of Li T, Li B responsible for adaptative response. Finally the findings showed that the innate immune response plays an important role in vaccinated mice for the early elimination of the parasites, complementary with the adaptative immune response, suggesting that vaccination with T. rangeli modulates the innate response, which develops some kind of immunological memory, recognizing shared antigens with T. cruzi. These results could contribute to the knowledge of new mechanisms which would have an important role in the immune response to Chagas disease. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. A case of non-regenerative immune-mediated anemia treated by ...

    African Journals Online (AJOL)

    A 12-year-old female Shih Tzu dog was referred with diarrhea. Hematological examination indicated severe nonregenerative anemia. Bone marrow aspiration smears and core biopsy specimens revealed normal bone marrow. Based on those results, non-regenerative immune mediated anemia was diagnosed. The dog ...

  13. Sympathetic Nerve Hyperactivity in the Spleen: Causal for Nonpathogenic-Driven Chronic Immune-Mediated Inflammatory Diseases (IMIDs?

    Directory of Open Access Journals (Sweden)

    Denise L. Bellinger

    2018-04-01

    Full Text Available Immune-Mediated Inflammatory Diseases (IMIDs is a descriptive term coined for an eclectic group of diseases or conditions that share common inflammatory pathways, and for which there is no definitive etiology. IMIDs affect the elderly most severely, with many older individuals having two or more IMIDs. These diseases include, but are not limited to, type-1 diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, and autoimmunity, such as rheumatoid arthritis (RA, Sjőgren’s syndrome, systemic lupus erythematosus, psoriasis, psoriatic arthritis, and multiple sclerosis. These diseases are ostensibly unrelated mechanistically, but increase in frequency with age and share chronic systemic inflammation, implicating major roles for the spleen. Chronic systemic and regional inflammation underlies the disease manifestations of IMIDs. Regional inflammation and immune dysfunction promotes targeted end organ tissue damage, whereas systemic inflammation increases morbidity and mortality by affecting multiple organ systems. Chronic inflammation and skewed dysregulated cell-mediated immune responses drive many of these age-related medical disorders. IMIDs are commonly autoimmune-mediated or suspected to be autoimmune diseases. Another shared feature is dysregulation of the autonomic nervous system and hypothalamic pituitary adrenal (HPA axis. Here, we focus on dysautonomia. In many IMIDs, dysautonomia manifests as an imbalance in activity/reactivity of the sympathetic and parasympathetic divisions of the autonomic nervous system (ANS. These major autonomic pathways are essential for allostasis of the immune system, and regulating inflammatory processes and innate and adaptive immunity. Pathology in ANS is a hallmark and causal feature of all IMIDs. Chronic systemic inflammation comorbid with stress pathway dysregulation implicate neural-immune cross-talk in the etiology and pathophysiology of IMIDs

  14. Stress proteins and the immune response.

    Science.gov (United States)

    Moseley, P

    2000-07-25

    The heat shock or stress response is one of the most highly conserved adaptive responses in nature. In single cell organisms, the stress response confers tolerance to a variety of stresses including hyperthermia, hyperoxia, hypoxia, and other perturbations, which alter protein synthesis. This tolerance phenomenon is also extremely important in the multicellular organism, resulting in not only thermal tolerance, but also resistance to stresses of the whole organism such as ischemia-reperfusion injury. Moreover, recent data indicates that these stress proteins have the ability to modulate the cellular immune response. Although the terms heat shock proteins (HSPs) and stress proteins are often used interchangeably, the term stress proteins includes the HSPs, the glucose-regulated proteins (GRPs) and ubiquitin. The stress proteins may be grouped by molecular weight ranging from the large 110 kDa HSP110 to ubiquitin at 8 kDa. These proteins serve as cellular chaperones, participating in protein synthesis and transport through the various cellular compartments. Because these proteins have unique cellular localizations, the chaperone function of the stress proteins often involves a transfer of peptides between stress proteins as the peptide is moved between cellular compartments. For example, HSP70 is a cytosolic and nuclear chaperone, which is critical for the transfer of cellular peptides in the mitochondrion through a hand-off that involves mitochondrial HSP60 at the inner mitochondrial membrane. Similarly, cytosolic proteins are transferred from HSP70 to gp96 as they move into the endoplasmic reticulum. The central role of the stress proteins in the transfer of peptides through the cell may be responsible for the recently recognized importance of the stress proteins in the modulation of the immune system [Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61

  15. IN VITRO KILLING OF PERKINSUS MARINUS BY HEMOCYTES OF OYSTERS CRASSOSTREA VIRGINICA

    Science.gov (United States)

    A colorimetric microbicidal assay was adapted, optimized and applied in experiments to characterize the in vitro capacity of eastern oyster (Crassostrea virginica) hemocytes to kill cultured isolates of Perkinsus marinus, a protozoan parasite causing a highly destructive disease...

  16. Pro-inflammatory cytokine/chemokine production by reovirus treated melanoma cells is PKR/NF-κB mediated and supports innate and adaptive anti-tumour immune priming

    Directory of Open Access Journals (Sweden)

    Coffey Matt

    2011-02-01

    Full Text Available Abstract Background As well as inducing direct oncolysis, reovirus treatment of melanoma is associated with activation of innate and adaptive anti-tumour immune responses. Results Here we characterise the effects of conditioned media from reovirus-infected, dying human melanoma cells (reoTCM, in the absence of live virus, to address the immune bystander potential of reovirus therapy. In addition to RANTES, IL-8, MIP-1α and MIP-1β, reovirus-infected melanoma cells secreted eotaxin, IP-10 and the type 1 interferon IFN-β. To address the mechanisms responsible for the inflammatory composition of reoTCM, we show that IL-8 and IFN-β secretion by reovirus-infected melanoma cells was associated with activation of NF-κB and decreased by pre-treatment with small molecule inhibitors of NF-κB and PKR; specific siRNA-mediated knockdown further confirmed a role for PKR. This pro-inflammatory milieu induced a chemotactic response in isolated natural killer (NK cells, dendritic cells (DC and anti-melanoma cytotoxic T cells (CTL. Following culture in reoTCM, NK cells upregulated CD69 expression and acquired greater lytic potential against tumour targets. Furthermore, melanoma cell-loaded DC cultured in reoTCM were more effective at priming adaptive anti-tumour immunity. Conclusions These data demonstrate that the PKR- and NF-κB-dependent induction of pro-inflammatory molecules that accompanies reovirus-mediated killing can recruit and activate innate and adaptive effector cells, thus potentially altering the tumour microenvironment to support bystander immune-mediated therapy as well as direct viral oncolysis.

  17. Prospects for treatment of Porphyromonas gingivalis-mediated disease – immune-based therapy

    Directory of Open Access Journals (Sweden)

    Eric C. Reynolds

    2015-09-01

    Full Text Available Chronic periodontitis is an inflammatory disease of the supporting tissues of the teeth associated with a polymicrobial biofilm (subgingival plaque accreted to the tooth which results in destruction of the tooth's supporting tissues. A characteristic feature of the disease-associated plaque is the emergence of proteolytic species. One of these species, Porphyromonas gingivalis has recently been described as a keystone pathogen as it dysregulates the host immune response to favour the polymicrobial biofilm disrupting homeostasis to cause dysbiosis and disease. The level of P. gingivalis in subgingival plaque above threshold levels (~10% of total bacterial cell load has been demonstrated to predict imminent clinical attachment loss (disease progression in humans. Porphyromonas gingivalis is found as microcolonies in the superficial layers of subgingival plaque adjacent to the periodontal pocket epithelium which helps explain the strong association with underlying tissue inflammation and disease at relatively low proportions (10% of the total bacterial cell load of the plaque. The mouse periodontitis model has been used to show that inflammation is essential to allow establishment of P. gingivalis at the levels in plaque (10% or greater of total bacterial cell load necessary to produce dysbiosis and disease. The extracellular proteinases “gingipains” (RgpA/B and Kgp of P. gingivalis have been implicated as major virulence factors that are critical for dysbiosis and disease. This has resulted in the strategy of targeting the gingipains by vaccination. We have produced a recombinant immunogen which induces an immune response in mice that neutralises the proteolytic and host/bacterial binding functions of the gingipains. Using this immunogen as a therapeutic vaccine in mice already infected with P. gingivalis, we have shown that inflammation and alveolar bone loss can be substantially reduced. The protection was characterised by a predominant Th2

  18. Immune-mediated changes in actinic keratosis following topical treatment with imiquimod 5% cream

    Directory of Open Access Journals (Sweden)

    Raghavan Shalini

    2007-01-01

    Full Text Available Abstract Background The objective of this study was to identify the molecular processes responsible for the anti-lesional activity of imiquimod in subjects with actinic keratosis using global gene expression profiling. Methods A double-blind, placebo-controlled, randomized study was conducted to evaluate gene expression changes in actinic keratosis treated with imiquimod 5% cream. Male subjects (N = 17 with ≥ 5 actinic keratosis on the scalp applied placebo cream or imiquimod 3 times a week on nonconsecutive days for 4 weeks. To elucidate the molecular processes involved in actinic keratosis lesion regression by imiquimod, gene expression analysis using oligonucleotide arrays and real time reverse transcriptase polymerase chain reaction were performed on shave biopsies of lesions taken before and after treatment. Results Imiquimod modulated the expression of a large number of genes important in both the innate and adaptive immune response, including increased expression of interferon-inducible genes with known antiviral, anti-proliferative and immune modulatory activity, as well as various Toll-like receptors. In addition, imiquimod increased the expression of genes associated with activation of macrophages, dendritic cells, cytotoxic T cells, and natural killer cells, as well as activation of apoptotic pathways. Conclusion Data suggest that topical application of imiquimod stimulates cells in the skin to secrete cytokines and chemokines that lead to inflammatory cell influx into the lesions and subsequent apoptotic and immune cell-mediated destruction of lesions.

  19. Three Pairs of Protease-Serpin Complexes Cooperatively Regulate the Insect Innate Immune Responses*

    OpenAIRE

    Jiang, Rui; Kim, Eun-Hye; Gong, Ji-Hee; Kwon, Hyun-Mi; Kim, Chan-Hee; Ryu, Kyoung-Hwa; Park, Ji-Won; Kurokawa, Kenji; Zhang, Jinghai; Gubb, David; Lee, Bok-Luel

    2009-01-01

    Serpins are known to be necessary for the regulation of several serine protease cascades. However, the mechanisms of how serpins regulate the innate immune responses of invertebrates are not well understood due to the uncertainty of the identity of the serine proteases targeted by the serpins. We recently reported the molecular activation mechanisms of three serine protease-mediated Toll and melanin synthesis cascades in a large beetle, Tenebrio molitor. Here, we purified three novel serpins ...

  20. Induction of mucosal immune responses and protection of cattle against direct-contact challenge by intranasal delivery with foot-and-mouth disease virus antigen mediated by nanoparticles

    Directory of Open Access Journals (Sweden)

    Pan L

    2014-12-01

    Full Text Available Li Pan,1,2 Zhongwang Zhang,1,2 Jianliang Lv,1,2 Peng Zhou,1,2 Wenfa Hu,1,2 Yuzhen Fang,1,2 Haotai Chen,1,2 Xinsheng Liu,1,2 Junjun Shao,1,2 Furong Zhao,1,2 Yaozhong Ding,1,2 Tong Lin,1,2 Huiyun Chang,1,2 Jie Zhang,1,2 Yongguang Zhang,1,2 Yonglu Wang1,2 1State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS, Lanzhou, Gansu, People’s Republic of China; 2Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People’s Republic of China Abstract: The aim of this study was to enhance specific mucosal, systemic, and cell-mediated immunity and to induce earlier onset of protection against direct-contact challenge in cattle by intranasal delivery of a nanoparticle-based nasal vaccine against type A foot-and-mouth disease (FMD. In this study, two kinds of nanoparticle-based nasal vaccines against type A FMD were designed: (1 chitosan-coated poly(lactic-co-glycolic acid (PLGA loaded with plasmid DNA (Chi-PLGA-DNA and (2 chitosan-trehalose and inactivated foot-and-mouth disease virus (FMDV (Chi-Tre-Inactivated. Cattle were immunized by an intranasal route with nanoparticles and then challenged for 48 hours by direct contact with two infected donor cattle per pen. Donors were inoculated intradermally in the tongue 48 hours before challenge, with 0.2 mL cattle-passaged FMDV. Serological and mucosal antibody responses were evaluated, and virus excretion and the number of contact infections were quantified. FMDV-specific secretory immunoglobulin (IgA (sIgA antibodies in nasal washes were initially detected at 4 days postvaccination (dpv with two kinds of nanoparticles. The highest levels of sIgA expression were observed in nasal washes, at 10 dpv, from animals with Chi-PLGA-DNA nanoparticles, followed by animals immunized once by intranasal route with

  1. Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response

    OpenAIRE

    Rasi Guido; Federici Memmo; Mercuri Luana; Zonfrillo Manuela; Andreola Federica; Vallebona Paola; Serafino Annalucia; Garaci Enrico; Pierimarchi Pasquale

    2008-01-01

    Abstract Background Besides few data concerning the antiseptic properties against a range of microbial agents and the anti-inflammatory potential both in vitro and in vivo, little is known about the influence of Eucalyptus oil (EO) extract on the monocytic/macrophagic system, one of the primary cellular effectors of the immune response against pathogen attacks. The activities of this natural extract have mainly been recognized through clinical experience, but there have been relatively little...

  2. Decreased B and T lymphocyte attenuator in Behcet's disease may trigger abnormal Th17 and Th1 immune responses.

    Science.gov (United States)

    Ye, Zi; Deng, Bolin; Wang, Chaokui; Zhang, Dike; Kijlstra, Aize; Yang, Peizeng

    2016-02-04

    Behcet's disease (BD) is a chronic, systemic and recurrent inflammatory disease associated with hyperactive Th17 and Th1 immune responses. Recent studies have shown that B and T lymphocyte attenuator (BTLA) negatively regulates the immune response. In this study, we investigated whether BTLA activation could be exploited to inhibit the development of abnormal immune responses in BD patients. BTLA expression in PBMCs and CD4(+) T cells was significantly decreased in active BD patients. Decreased BTLA level was associated with increased Th17 and Th1 responses. Activation of BTLA inhibited the abnormal Th17 and Th1 responses and IL-22 expression in both patients and controls. Addition of an agonistic anti-BTLA antibody remarkably inhibited DC-induced Th17 and Th1 cell responses, resulted in decreased production of the Th17 and Th1-related cytokines IL-1beta, IL-6, IL-23 and IL-12p70 and reduced CD40 expression in DCs. In conclusion, decreased BTLA expression in ocular BD may lead to inappropriate control of the Th17 and Th1 immune responses and DC functions. Therefore, BTLA may be involved in the development and recurrence of this disease. Agonistic agents of BTLA may represent a potential therapeutic approach for the treatment of BD and other inflammatory diseases mediated by abnormal Th17 and Th1 immune responses.

  3. Experimental studies on possible regulatory role of nitric oxide on the differential effects of chronic predictable and unpredictable stress on adaptive immune responses.

    Science.gov (United States)

    Thakur, Tarun; Gulati, Kavita; Rai, Nishant; Ray, Arunabha

    2017-09-01

    The present study was designed to investigate the effects of chronic predictable stress (CPS) and chronic unpredictable stress (CUS) on immunological responses in KLH-sensitized rats and involvement of NOergic signaling pathways mediating such responses. Male Wistar rats (200-250g) were exposed to either CPS or CUS for 14days and IgG antibody levels and delayed type hypersensitivity (DTH) response was determined to assess changes in adaptive immunity. To evaluate the role of nitric oxide during such immunomodulation, biochemical estimation of stable metabolite of nitric oxide (NOx) and 3-nitrotyrosine (3-NT, a marker of peroxynitrite formation) were done in both blood and brain. Chronic stress exposure resulted in suppression of IgG and DTH response and elevated NOx and 3-NT levels, with a difference in magnitude of response in CPS vs CUS. Pretreatment with aminoguanidine (iNOS inhibitor) caused further reduction of adaptive immune responses and attenuated the increased NOx and 3-NT levels in CPS or CUS exposed rats. On the other hand 7-NI (nNOS inhibitor) did not significantly affect these estimated parameters. The results suggest involvement of iNOS and lesser/no role of nNOS during modulation of adaptive immunity to stress. Thus, the result showed that predictability of stressors results in differential degree of modulation of immune responses and complex NO-mediated signaling mechanisms may be involved during responses. Copyright © 2017. Published by Elsevier B.V.

  4. Effects of ionizing radiation on the immune system

    International Nuclear Information System (INIS)

    Dubois, J.B.

    1986-01-01

    After reviewing the different lymphoid organs and the essential phases of the immune response, we studied the morphological and functional effects of ionizing radiation on the immunological system. Histologic changes in the lymph nodes, spleen, thymus, and different lymphocyte subpopulations were studied in relation with the radiation dose and irradiated volume (whole body irradiation, localized irradiation). Functional changes in the immune system induced by ionizing radiation were also investigated by a study of humoral-mediated immunity (antibody formation) and cell-mediated immunity (behavior of macrophages, B-cells, T suppressor cells, T helper cells, T effector cells, and natural killer cells). A study into the mechanisms of action of ionizing radiation and the immune processes it interferes with suggests several likely hypotheses (direct action on the immune cells, on their precursors, on seric mediators or on cell mediators). The effects on cancer patients' immune reactions of low radiation doses delivered to the various lymphoid organs are discussed, as well as the relationships between the host and the evolution of the tumor [fr

  5. Cutting Edge: Eosinophils Undergo Caspase-1-Mediated Pyroptosis in Response to Necrotic Liver Cells.

    Science.gov (United States)

    Palacios-Macapagal, Daphne; Connor, Jane; Mustelin, Tomas; Ramalingam, Thirumalai R; Wynn, Thomas A; Davidson, Todd S

    2017-08-01

    Many chronic liver disorders are characterized by dysregulated immune responses and hepatocyte death. We used an in vivo model to study the immune response to necrotic liver injury and found that necrotic liver cells induced eosinophil recruitment. Necrotic liver induced eosinophil IL-1β and IL-18 secretion, degranulation, and cell death. Caspase-1 inhibitors blocked all of these responses. Caspase-1-mediated cell death with accompanying cytokine release is the hallmark of a novel form of cell death termed pyroptosis. To confirm this response in a disease model, we isolated eosinophils from the livers of Schistosoma mansoni -infected mice. S. mansoni eggs lodge in the hepatic sinusoids of infected mice, resulting in hepatocyte death, inflammation, and progressive liver fibrosis. This response is typified by massive eosinophilia, and we were able to confirm pyroptosis in the infiltrating eosinophils. This demonstrated that pyroptosis is a cellular pathway used by eosinophils in response to large-scale hepatic cell death. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Maize Prolamins Could Induce a Gluten-Like Cellular Immune Response in Some Celiac Disease Patients

    Science.gov (United States)

    Ortiz-Sánchez, Juan P.; Cabrera-Chávez, Francisco; Calderón de la Barca, Ana M.

    2013-01-01

    Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet. PMID:24152750

  7. Immune response and histology of humoral rejection in kidney transplantation.

    Science.gov (United States)

    González-Molina, Miguel; Ruiz-Esteban, Pedro; Caballero, Abelardo; Burgos, Dolores; Cabello, Mercedes; Leon, Miriam; Fuentes, Laura; Hernandez, Domingo

    2016-01-01

    The adaptive immune response forms the basis of allograft rejection. Its weapons are direct cellular cytotoxicity, identified from the beginning of organ transplantation, and/or antibodies, limited to hyperacute rejection by preformed antibodies and not as an allogenic response. This resulted in allogenic response being thought for decades to have just a cellular origin. But the experimental studies by Gorer demonstrating tissue damage in allografts due to antibodies secreted by B lymphocytes activated against polymorphic molecules were disregarded. The special coexistence of binding and unbinding between antibodies and antigens of the endothelial cell membranes has been the cause of the delay in demonstrating the humoral allogenic response. The endothelium, the target tissue of antibodies, has a high turnover, and antigen-antibody binding is non-covalent. If endothelial cells are attacked by the humoral response, immunoglobulins are rapidly removed from their surface by shedding and/or internalization, as well as degrading the components of the complement system by the action of MCP, DAF and CD59. Thus, the presence of complement proteins in the membrane of endothelial cells is transient. In fact, the acute form of antibody-mediated rejection was not demonstrated until C4d complement fragment deposition was identified, which is the only component that binds covalently to endothelial cells. This review examines the relationship between humoral immune response and the types of acute and chronic histological lesion shown on biopsy of the transplanted organ. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  8. Cell mediated immunity in patients with osteosarcoma

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Henning, C.B.

    1975-01-01

    Because of the difficulty of obtaining suitable material, earlier studies on cell mediated immunity in the radium patients failed to include positive controls. Recently we were fortunate in obtaining samples of lymphocytes from two suitable patients who had had amputations for spontaneous osteosarcoma six months previously. Lymphocytes from both of these patients showed cytotoxicity to cultured cells derived from a human osteogenic sarcoma but not to normal fibroblasts. These results help to validate our test for early detection of osteosarcoma in the radium patients using measurements of cytotoxicity

  9. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  10. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    Science.gov (United States)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  11. Soluble CD14 in human breast milk and its role in innate immune responses.

    Science.gov (United States)

    Vidal, K; Labéta, M O; Schiffrin, E J; Donnet-Hughes, A

    2001-10-01

    Immune factors secreted in milk are important for health in the neonatal gut. We have detected the bacterial pattern recognition receptor, soluble CD14 (sCD14) in human breast milk at different times during lactation. The molecule occurs in a single form in milk, in contrast to human serum, in which there are two isoforms. Produced by mammary epithelial cells, milk sCD14 mediates secretion of innate immune response molecules such as interleukin-8, tumor necrosis factor-alpha, and epithelial neutrophil activator-78 by CD14-negative intestinal epithelial cells exposed to lipopolysaccharide (LPS) or bacteria. Although present at low concentrations in milk, LPS-binding protein may be implicated in the biological effects observed. Our findings support the premise that milk sCD14 acts as a 'sentinel' molecule and immune modulator in homeostasis and in the defense of the neonatal intestine. In so doing, it may prevent the immune and inflammatory conditions of the gut to which non-breastfed infants are predisposed.

  12. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses

    NARCIS (Netherlands)

    Dolen, Y.; Kreutz, M.; Gileadi, U.; Tel, J.; Vasaturo, A.; Dinther, E.A.W. van; Hout-Kuijer, M.A. van; Cerundolo, V.; Figdor, C.G.

    2016-01-01

    Antitumor immunity can be enhanced by the coordinated release and delivery of antigens and immune-stimulating agents to antigen-presenting cells via biodegradable vaccine carriers. So far, encapsulation of TLR ligands and tumor-associated antigens augmented cytotoxic T cell (CTLs) responses. Here,

  13. Dominant effects of the diet on the microbiome and the local and systemic immune response in mice.

    Directory of Open Access Journals (Sweden)

    Jot Hui Ooi

    Full Text Available Outside the nutrition community the effects of diet on immune-mediated diseases and experimental outcomes have not been appreciated. Investigators that study immune-mediated diseases and/or the microbiome have overlooked the potential of diet to impact disease phenotype. We aimed to determine the effects of diet on the bacterial microbiota and immune-mediated diseases. Three different laboratory diets were fed to wild-type mice for 2 weeks and resulted in three distinct susceptibilities to dextran sodium sulfate (DSS-induced colitis. Examination of the fecal microbiota demonstrated a diet-mediated effect on the bacteria found there. Broad-spectrum antibiotics disturbed the gut microbiome and partially eliminated the diet-mediated changes in DSS susceptibility. Dietary changes 2 days after DSS treatment were protective and suggested that the diet-mediated effect occurred quickly. There were no diet-mediated effects on DSS susceptibility in germ-free mice. In addition, the diet-mediated effects were evident in a gastrointestinal infection model (Citrobacter rodentium and in experimental autoimmune encephalomyelitis. Taken together, our study demonstrates a dominant effect of diet on immune-mediated diseases that act rapidly by changing the microbiota. These findings highlight the potential of using dietary manipulation to control the microbiome and prevent/treat immune-mediated disease.

  14. Immune responses to implanted human collagen graft in rats

    International Nuclear Information System (INIS)

    Quteish, D.; Dolby, A.E.

    1991-01-01

    Immunity to collagen implants may be mediated by cellular and humoral immune responses. To examine the possibility of such immunological reactivity and crossreactivity to collagen, 39 Sprague-Dawley rats (female, 10 weeks old, approximately 250 g wt) were implanted subcutaneously at thigh sites with crosslinked, freeze-dried human placental type I collagen grafts (4x4x2 mm) which had been irradiated (520 Gray) or left untreated. Blood was obtained by intracardiac sampling prior to implantation or from normal rats, and at various times afterwards when the animals were sacrificed. The sera from these animals were examined for circulating antibodies to human, bovine and rat tail (type I) collagens by enzyme-linked immunosorbent assay (ELISA). Also, the lymphoblastogenic responses of spleen lymphocytes from the irradiated collagen-implanted animals were assessed in culture by measuring thymidine uptake with autologous and normal rat sera in the presence of human bovine type I collagens. Implantation of the irradiated and non-irradiated collagen graft in rats led to a significant increase in the level of circulating antibodies to human collagen. Also antibody to bovine and rat tail collagens was detectable in the animals implanted with irradiated collagen grafts but at a lower level than the human collagen. There was a raised lymphoblastogenic response to both human and bovine collagens. The antibody level and lymphoblastogenesis to the tested collagens gradually decreased towards the end of the post-implantation period. (author)

  15. Experimental demonstration of a parasite-induced immune response in wild birds: Darwin's finches and introduced nest flies.

    Science.gov (United States)

    Koop, Jennifer A H; Owen, Jeb P; Knutie, Sarah A; Aguilar, Maria A; Clayton, Dale H

    2013-08-01

    Ecological immunology aims to explain variation among hosts in the strength and efficacy of immunological defenses. However, a shortcoming has been the failure to link host immune responses to actual parasites under natural conditions. Here, we present one of the first experimental demonstrations of a parasite-induced immune response in a wild bird population. The recently introduced ectoparasitic nest fly Philornis downsi severely impacts the fitness of Darwin's finches and other land birds in the Galápagos Islands. An earlier study showed that female medium ground finches (Geospiza fortis) had P. downsi-binding antibodies correlating with presumed variation in fly exposure over time. In the current study, we experimentally manipulated fly abundance to test whether the fly does, in fact, cause changes in antibody levels. We manipulated P. downsi abundance in nests and quantified P. downsi-binding antibody levels of medium ground finch mothers, fathers, and nestlings. We also quantified host behaviors, such as preening, which can integrate with antibody-mediated defenses against ectoparasites. Philornis downsi-binding antibody levels were significantly higher among mothers at parasitized nests, compared to mothers at (fumigated) nonparasitized nests. Mothers with higher antibody levels tended to have fewer parasites in their nests, suggesting that antibodies play a role in defense against parasites. Mothers showed no behavioral changes that would enhance the effectiveness of the immune response. Neither adult males, nor nestlings, had P. downsi-induced immunological or behavioral responses that would enhance defense against flies. None of the parasitized nests fledged any offspring, despite the immune response by mothers. Thus, this study shows that, while the immune response of mothers appeared to be defensive, it was not sufficient to rescue current reproductive fitness. This study further shows the importance of testing the fitness consequences of immune

  16. IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans

    Science.gov (United States)

    Conti, Heather R.; Gaffen, Sarah L.

    2015-01-01

    IL-17 (IL-17A) has emerged as a key mediator of protection against extracellular microbes, but this cytokine also drives pathology in various autoimmune diseases. Overwhelming data in both humans and mice reveal a clear and surprisingly specific role for IL-17 in protection against the fungus Candida albicans, a commensal of the human oral cavity, gastrointestinal tract and reproductive mucosa. The IL-17 pathway regulates antifungal immunity through upregulation of pro-inflammatory cytokines including IL-6, neutrophil-recruiting chemokines such as CXCL1 and CXCL5 and antimicrobial peptides such as the defensins, which act in concert to limit fungal overgrowth. This review will focus on diseases caused by C. albicans, the role of IL-17-mediated immunity in candidiasis, and the implications for clinical therapies for both autoimmune conditions and fungal infections. PMID:26188072

  17. Interferon alpha inhibits viral replication of a live-attenuated porcine reproductive and respiratory syndrome virus vaccine preventing development of an adaptive immune response in swine

    Science.gov (United States)

    Type I interferons, such as interferon alpha (IFNa), contribute to innate antiviral immunity by promoting production of antiviral mediators and are also involved in promoting an adaptive immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating and c...

  18. L-3,4-Dihydroxyphenylalanine (l-DOPA) induces neuroendocrinological, physiological, and immunological regulation in white shrimp, Litopenaeus vannamei.

    Science.gov (United States)

    Mapanao, Ratchaneegorn; Kuo, Hsin-Wei; Chang, Chin-Chuan; Liu, Kuan-Fu; Cheng, Winton

    2018-03-01

    L-3,4-Dihydroxyphenylalanine (l-DOPA) is a precursor for dopamine (DA) synthesis. Assessments were conducted to analyze the effects of l-DOPA on mediating regulation of neuroendocrinological, immunological, and physiological parameters in the shrimp, Litopenaeus vannamei when they were individually injected with 0.01 N HCl or l-DOPA at 0.5 or 1.0 μmol shrimp -1 for 60, 120, and 240 min. For catecholamine synthesis evaluation, tyrosine hydroxylase (TH) and DA beta hydroxylase (DBH) activities, l-DOPA, DA, and norepinephrine (NE) levels in hemolymph were determined. The total hemocyte count (THC), differential hemocyte count (DHC), phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) activity, phagocytic activity, and clearance efficiency in response to the pathogen, Vibrio alginolyticus were assessed for immune responses, and plasma glucose and lactate levels were for physiological response. Results showed that the TH activity, THC, hyaline cells (HCs), and semigranular cells (SGCs) at 120 min, DA levels at 60-240 min, PO activity in hemocytes per 50 μL of hemolymph at 60-120 min, and PO activity per granulocyte (granular cells (GCs) + SGCs) at 60 min significantly increased, but TH activity, l-DOPA levels, GCs, SGCs, and respiratory bursts in hemocytes per 10 μL of hemolymph at 60 min, respiratory bursts per hemocyte and SOD activity at 120 min, phagocytic activity at 60-240 min, and the clearance efficiency at 60-120 min significantly decreased in shrimp injected with l-DOPA at 1.0 μmol shrimp -1 . In another experiment, 60 min after shrimp had received l-DOPA at 0.5 or 1.0 μmol shrimp -1 , they were challenged with an injection of V. alginolyticus at 2 × 10 5  colony-forming units (cfu) shrimp -1 . The injection of l-DOPA at 1.0 μmol shrimp -1 also significantly increased the cumulative mortality of shrimp by 16.7%, compared to the HCl-challenged control after 120 h. These results suggest

  19. Alternatives to conventional vaccines--mediators of innate immunity.

    Science.gov (United States)

    Eisen, D P; Liley, H G; Minchinton, R M

    2004-01-01

    Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.

  20. Pleurodeles Waltl Humoral Immune Response under Spaceflight Conditions

    Science.gov (United States)

    Bascove, Matthieu; Touche, Nadege; Frippiat, Jean-Pol

    2008-06-01

    The immune system is an important regulatory mechanism affected by spaceflights. In a previous work, we performed a first study of the humoral immune response induced by the immunization of Pleurodeles waltl during a 5 months stay onboard the Mir space station. This analysis indicated that heavy-chain variable domains of specific IgM are encoded by genes of the VHII and VHVI families. However, the contributions of these two families to IgM heavy-chains are different in flown animals [1]. To better understand this immune response modification, we have now determined how individual VH genes have been used to build specific IgM binding sites in animals immunized on earth or in space. This new study revealed quantitative and qualitative modifications in VH genes expression. These data confirm that a spaceflight might affect the humoral response.

  1. Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation

    Directory of Open Access Journals (Sweden)

    Heitor A. Paula Neto

    2017-11-01

    Full Text Available Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of “lean homeostasis” and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.

  2. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice.

    Directory of Open Access Journals (Sweden)

    Maria A Croyle

    Full Text Available Pre-existing immunity to human adenovirus serotype 5 (Ad5 is common in the general population. Bypassing pre-existing immunity could maximize Ad5 vaccine efficacy. Vaccination by the intramuscular (I.M., nasal (I.N. or oral (P.O. route with Ad5 expressing Ebola Zaire glycoprotein (Ad5-ZGP fully protected naïve mice against lethal challenge with Ebola. In the presence of pre-existing immunity, only mice vaccinated I.N. survived. The frequency of IFN-gamma+ CD8+ T cells was reduced by 80% and by 15% in animals vaccinated by the I.M. and P.O. routes respectively. Neutralizing antibodies could not be detected in serum from either treatment group. Pre-existing immunity did not compromise the frequency of IFN-gamma+ CD8+ T cells (3.9+/-1% naïve vs. 3.6+/-1% pre-existing immunity, PEI nor anti-Ebola neutralizing antibody (NAB, 40+/-10 reciprocal dilution, both groups. The number of INF-gamma+ CD8+ cells detected in bronchioalveolar lavage fluid (BAL after I.N. immunization was not compromised by pre-existing immunity to Ad5 (146+/-14, naïve vs. 120+/-16 SFC/million MNCs, PEI. However, pre-existing immunity reduced NAB levels in BAL by approximately 25% in this group. To improve the immune response after oral vaccination, the Ad5-based vaccine was PEGylated. Mice given the modified vaccine did not survive challenge and had reduced levels of IFN-gamma+ CD8+ T cells 10 days after administration (0.3+/-0.3% PEG vs. 1.7+/-0.5% unmodified. PEGylation did increase NAB levels 2-fold. These results provide some insight about the degree of T and B cell mediated immunity necessary for protection against Ebola virus and suggest that modification of the virus capsid can influence the type of immune response elicited by an Ad5-based vaccine.

  3. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models.

    Science.gov (United States)

    Palsson, Sirus; Hickling, Timothy P; Bradshaw-Pierce, Erica L; Zager, Michael; Jooss, Karin; O'Brien, Peter J; Spilker, Mary E; Palsson, Bernhard O; Vicini, Paolo

    2013-09-28

    The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The

  4. Inducible nitric-oxide synthase plays a minimal role in lymphocytic choriomeningitis virus-induced, T cell-mediated protective immunity and immunopathology

    DEFF Research Database (Denmark)

    Bartholdy, C; Nansen, A; Christensen, Jeanette Erbo

    1999-01-01

    -mediated immune response was found to be unaltered in iNOS-deficient mice compared with wild-type C57BL/6 mice, and LCMV- induced general immunosuppression was equally pronounced in both strains. In vivo analysis revealed identical kinetics of virus clearance, as well as unaltered clinical severity of systemic......By using mice with a targetted disruption in the gene encoding inducible nitric-oxide synthase (iNOS), we have studied the role of nitric oxide (NO) in lymphocytic choriomeningitis virus (LCMV)-induced, T cell-mediated protective immunity and immunopathology. The afferent phase of the T cell...... LCMV infection in both strains. Concerning the outcome of intracerebral infection, no significant differences were found between iNOS-deficient and wild-type mice in the number or composition of mononuclear cells found in the cerebrospinal fluid on day 6 post-infection. Likewise, NO did not influence...

  5. Modulation of Caenorhabditis elegans immune response and modification of Shigella endotoxin upon interaction.

    Science.gov (United States)

    Kesika, Periyanaina; Prasanth, Mani Iyer; Balamurugan, Krishnaswamy

    2015-04-01

    To analyze the pathogenesis at both physiological and molecular level using the model organism, Caenorhabditis elegans at different developmental stages in response to Shigella spp. and its pathogen associated molecular patterns such as lipopolysaccharide. The solid plate and liquid culture-based infection assays revealed that Shigella spp. infects C. elegans and had an impact on the brood size and pharyngeal pumping rate. LPS of Shigella spp. was toxic to C. elegans. qPCR analysis revealed that host innate immune genes have been modulated upon Shigella spp. infections and its LPS challenges. Non-destructive analysis was performed to kinetically assess the alterations in LPS during interaction of Shigella spp. with C. elegans. The modulation of innate immune genes attributed the surrendering of host immune system to Shigella spp. by favoring the infection. LPS appeared to have a major role in Shigella-mediated pathogenesis and Shigella employs a tactic behavior of modifying its LPS content to escape from the recognition of host immune system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Mosquito Melanization Response Is Implicated in Defense against the Entomopathogenic Fungus Beauveria bassiana

    Science.gov (United States)

    Osta, Mike A.

    2012-01-01

    Mosquito immunity studies have focused mainly on characterizing immune effector mechanisms elicited against parasites, bacteria and more recently, viruses. However, those elicited against entomopathogenic fungi remain poorly understood, despite the ubiquitous nature of these microorganisms and their unique invasion route that bypasses the midgut epithelium, an important immune tissue and physical barrier. Here, we used the malaria vector Anopheles gambiae as a model to investigate the role of melanization, a potent immune effector mechanism of arthropods, in mosquito defense against the entomopathogenic fungus Beauveria bassiana, using in vivo functional genetic analysis and confocal microscopy. The temporal monitoring of fungal growth in mosquitoes injected with B. bassiana conidia showed that melanin eventually formed on all stages, including conidia, germ tubes and hyphae, except the single cell hyphal bodies. Nevertheless, melanin rarely aborted the growth of any of these stages and the mycelium continued growing despite being melanized. Silencing TEP1 and CLIPA8, key positive regulators of Plasmodium and bacterial melanization in A. gambiae, abolished completely melanin formation on hyphae but not on germinating conidia or germ tubes. The detection of a layer of hemocytes surrounding germinating conidia but not hyphae suggested that melanization of early fungal stages is cell-mediated while that of late stages is a humoral response dependent on TEP1 and CLIPA8. Microscopic analysis revealed specific association of TEP1 with surfaces of hyphae and the requirement of both, TEP1 and CLIPA8, for recruiting phenoloxidase to these surfaces. Finally, fungal proliferation was more rapid in TEP1 and CLIPA8 knockdown mosquitoes which exhibited increased sensitivity to natural B. bassiana infections than controls. In sum, the mosquito melanization response retards significantly B. bassiana growth and dissemination, a finding that may be exploited to design transgenic

  7. Maternal immune response to helminth infection during pregnancy determines offspring susceptibility to allergic airway inflammation.

    Science.gov (United States)

    Straubinger, Kathrin; Paul, Sabine; Prazeres da Costa, Olivia; Ritter, Manuel; Buch, Thorsten; Busch, Dirk H; Layland, Laura E; Prazeres da Costa, Clarissa U

    2014-12-01

    Schistosomiasis, a chronic helminth infection, elicits distinct immune responses within the host, ranging from an initial TH1 and subsequent TH2 phase to a regulatory state, and is associated with dampened allergic reactions within the host. We sought to evaluate whether non-transplacental helminth infection during pregnancy alters the offspring's susceptibility to allergy. Ovalbumin-induced allergic airway inflammation was analyzed in offspring from Schistosoma mansoni-infected mothers mated during the TH1, TH2, or regulatory phase of infection. Embryos derived from in vitro fertilized oocytes of acutely infected females were transferred into uninfected foster mice to determine the role of placental environment. The fetomaternal unit was further characterized by helminth-specific immune responses and microarray analyses. Eventually, IFN-γ-deficient mice were infected to evaluate the role of this predominant cytokine on the offspring's allergy phenotype. We demonstrate that offspring from schistosome-infected mothers that were mated in the TH1 and regulatory phases, but not the TH2 immune phase, are protected against the onset of allergic airway inflammation. Interestingly, these effects were associated with distinctly altered schistosome-specific cytokine and gene expression profiles within the fetomaternal interface. Furthermore, we identified that it is not the transfer of helminth antigens but rather maternally derived IFN-γ during the acute phase of infection that is essential for the progeny's protective immune phenotype. Overall, we present a novel immune phase-dependent coherency between the maternal immune responses during schistosomiasis and the progeny's predisposition to allergy. Therefore, we propose to include helminth-mediated transmaternal immune modulation into the expanded hygiene hypothesis. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  8. In immune defense: redefining the role of the immune system in chronic disease.

    Science.gov (United States)

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  9. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...

  10. Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ping Kong

    Full Text Available Zoospore exudates play important roles in promoting zoospore communication, homing and germination during plant infection by Phytophthora. However, it is not clear whether exudates affect plant immunity. Zoospore-free fluid (ZFF and zoospores of P. nicotianae were investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and mutants that affect signaling mediated by salicylic acid (SA and jasmonic acid (JA: eds16 (enhanced disease susceptibility16, pad4 (phytoalexin deficient4, and npr1 (nonexpressor of pathogenesis-related genes1. Col-0 attracted more zoospores and had severe tissue damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone developed disease symptoms similar to those inoculated with zoospores and requirements of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoospore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling, down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nicotianae zoospores. These results suggest that zoospore exudates can function as virulence factors and inducers of plant immune responses during plant infection by Phytophthora.

  11. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing.

    Directory of Open Access Journals (Sweden)

    Caroline B Madsen

    Full Text Available Membrane bound mucins are up-regulated and aberrantly glycosylated during malignant transformation in many cancer cells. This results in a negatively charged glycoprotein coat which may protect cancer cells from immune surveillance. However, only limited data have so far demonstrated the critical steps in glycan elongation that make aberrantly glycosylated mucins affect the interaction between cancer cells and cytotoxic effector cells of the immune system. Tn (GalNAc-Ser/Thr, STn (NeuAcα2-6GalNAc-Ser/Thr, T (Galβ1-3GalNAc-Ser/Thr, and ST (NeuAcα2-6Galβ1-3GalNAc-Ser/Thr antigens are recognized as cancer associated truncated glycans, and are expressed in many adenocarcinomas, e.g. breast- and pancreatic cancer cells. To investigate the role of the cancer associated glycan truncations in immune-mediated killing we created glyco-engineered breast- and pancreatic cancer cells expressing only the shortest possible mucin-like glycans (Tn and STn. Glyco-engineering was performed by zinc finger nuclease (ZFN knockout (KO of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast and pancreatic cancer cell lines T47D and Capan-1 increases sensitivity to both NK cell mediated antibody-dependent cellular-cytotoxicity (ADCC and cytotoxic T lymphocyte (CTL-mediated killing. In addition, we investigated the association between total cell surface expression of MUC1/MUC16 and NK or CTL mediated killing, and observed an inverse correlation between MUC16/MUC1 expression and the sensitivity to ADCC and CTL-mediated killing. Together, these data suggest that up-regulation of membrane bound mucins protects cells from immune mediated killing, and that particular glycosylation steps, as demonstrated for glycan elongation beyond Tn and STn, can be important for fine tuning of the immune escape mechanisms in cancer cells.

  12. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Yanyan Yang

    2014-01-01

    Full Text Available Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α and cyclooxygenase-2 (COX-2. p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.

  13. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  14. Mesenchymal Stromal Cells Can Regulate the Immune Response in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Alessandro Poggi

    2016-11-01

    Full Text Available The tumor microenvironment is a good target for therapy in solid tumors and hematological malignancies. Indeed, solid tumor cells’ growth and expansion can influence neighboring cells’ behavior, leading to a modulation of mesenchymal stromal cell (MSC activities and remodeling of extracellular matrix components. This leads to an altered microenvironment, where reparative mechanisms, in the presence of sub-acute inflammation, are not able to reconstitute healthy tissue. Carcinoma cells can undergo epithelial mesenchymal transition (EMT, a key step to generate metastasis; these mesenchymal-like cells display the functional behavior of MSC. Furthermore, MSC can support the survival and growth of leukemic cells within bone marrow participating in the leukemic cell niche. Notably, MSC can inhibit the anti-tumor immune response through either carcinoma-associated fibroblasts or bone marrow stromal cells. Experimental data have indicated their relevance in regulating cytolytic effector lymphocytes of the innate and adaptive arms of the immune system. Herein, we will discuss some of the evidence in hematological malignancies and solid tumors. In particular, we will focus our attention on the means by which it is conceivable to inhibit MSC-mediated immune suppression and trigger anti-tumor innate immunity.

  15. Monitoring Immune Responses in Organ Recipients by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Al-Mukhalafi Zuha

    2001-01-01

    Full Text Available Allograft rejection remains a major barrier to successful organ transplan-tation. Cellular and humoral immune responses play a critical role in mediating graft rejection. During the last few years, monoclonal antibodies have been used as a new specific therapeutic approach in the prevention of allograft rejection. Recently, the technology of flow cytometry has become a useful tool for monitoring immunological responses in transplant recipients. The application of this valuable tool in clinical transplantation at the present time is aimed at, i determining the extent of immuno-suppressive therapy through T-cell receptor analysis of cellular components, ii monitoring levels of alloreactive antibodies to identify high-risk recipients (sensitized patients in the pre-operative period and iii to predict rejection by monitoring their development post-operatively. In future, further development of this technology may demonstrate greater benefit to the field of organ transplantation.

  16. 2,3,7,8-TCDD enhances the sensitivity of mice to concanavalin A immune-mediated liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, Aaron M., E-mail: fuller22@msu.edu [Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane, Room 215, East Lansing, MI 48824 (United States); Roth, Robert A., E-mail: rothr@msu.edu [Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, Food Safety and Toxicology Building, 1129 Farm Lane, Room 221, East Lansing, MI 48824 (United States); Ganey, Patricia E., E-mail: ganey@msu.edu [Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, Food Safety and Toxicology Building, 1129 Farm Lane, Room 214, East Lansing, MI 48824 (United States)

    2013-01-15

    Inflammation plays a major role in immune-mediated liver injury, and exposure to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter the inflammatory response as well as affect immune cell activity. In this study, we tested the hypothesis that TCDD pretreatment exacerbates hepatotoxicity in a murine model of immune-mediated liver injury induced by concanavalin A (Con A) administration. Mice were pretreated with 30 μg/kg TCDD or vehicle control on day zero and then given either Con A or saline intravenously on day four. Mice treated with TCDD did not develop liver injury; however, TCDD pretreatment increased liver injury resulting from moderate doses of Con A (4–10 mg/kg). TCDD-pretreated mice had altered plasma concentrations of inflammatory cytokines, including interferon gamma (IFNγ), and TCDD/Con A-induced hepatotoxicity was attenuated in IFNγ knockout mice. At various times after treatment, intrahepatic immune cells were isolated, and expression of cell activation markers as well as cytolytic proteins was determined. TCDD pretreatment increased the proportion of activated natural killer T (NKT) cells and the percent of cells expressing Fas ligand (FasL) after Con A administration. In addition FasL knockout mice and mice treated with CD18 antiserum were both protected from TCDD/Con A-induced hepatotoxicity, suggesting a requirement for direct cell–cell interaction between effector immune cells and parenchymal cell targets in the development of liver injury from TCDD/Con A treatment. In summary, exposure to TCDD increased NKT cell activation and exacerbated immune-mediated liver injury induced by Con A through a mechanism involving IFNγ and FasL expression. -- Highlights: ► TCDD pretreatment sensitizes mice to Con A-induced hepatotoxicity. ► TCDD pretreatment increased concentration of IFNγ in plasma after Con A. ► Con A-induced activation of NKT cells was increased by TCDD pretreatment. ► Fas

  17. 2,3,7,8-TCDD enhances the sensitivity of mice to concanavalin A immune-mediated liver injury

    International Nuclear Information System (INIS)

    Fullerton, Aaron M.; Roth, Robert A.; Ganey, Patricia E.

    2013-01-01

    Inflammation plays a major role in immune-mediated liver injury, and exposure to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter the inflammatory response as well as affect immune cell activity. In this study, we tested the hypothesis that TCDD pretreatment exacerbates hepatotoxicity in a murine model of immune-mediated liver injury induced by concanavalin A (Con A) administration. Mice were pretreated with 30 μg/kg TCDD or vehicle control on day zero and then given either Con A or saline intravenously on day four. Mice treated with TCDD did not develop liver injury; however, TCDD pretreatment increased liver injury resulting from moderate doses of Con A (4–10 mg/kg). TCDD-pretreated mice had altered plasma concentrations of inflammatory cytokines, including interferon gamma (IFNγ), and TCDD/Con A-induced hepatotoxicity was attenuated in IFNγ knockout mice. At various times after treatment, intrahepatic immune cells were isolated, and expression of cell activation markers as well as cytolytic proteins was determined. TCDD pretreatment increased the proportion of activated natural killer T (NKT) cells and the percent of cells expressing Fas ligand (FasL) after Con A administration. In addition FasL knockout mice and mice treated with CD18 antiserum were both protected from TCDD/Con A-induced hepatotoxicity, suggesting a requirement for direct cell–cell interaction between effector immune cells and parenchymal cell targets in the development of liver injury from TCDD/Con A treatment. In summary, exposure to TCDD increased NKT cell activation and exacerbated immune-mediated liver injury induced by Con A through a mechanism involving IFNγ and FasL expression. -- Highlights: ► TCDD pretreatment sensitizes mice to Con A-induced hepatotoxicity. ► TCDD pretreatment increased concentration of IFNγ in plasma after Con A. ► Con A-induced activation of NKT cells was increased by TCDD pretreatment. ► Fas

  18. Sleep and immune function: glial contributions and consequences of aging.

    Science.gov (United States)

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.

  19. Jaburetox-induced toxic effects on the hemocytes of Rhodnius prolixus (Hemiptera: Reduviidae).

    Science.gov (United States)

    Moyetta, Natalia R; Broll, Valquiria; Perin, Ana Paula A; Uberti, Augusto F; Coste Grahl, Matheus V; Staniscuaski, Fernanda; Carlini, Celia R; Fruttero, Leonardo L

    2017-10-01

    Jaburetox is a recombinant peptide derived from a Canavalia ensiformis urease that presents toxic effects upon several species of insects, phytopathogenic fungi and yeasts of medical importance. So far, no toxicity of Jaburetox to mammals has been shown. Previous reports have identified biochemical targets of this toxic peptide in insect models, although its mechanism of action is not completely understood. In this work, we aimed to characterize the effects of Jaburetox in hemolymphatic insect cells. For this purpose, the model insect and Chagas' disease vector Rhodnius prolixus was used. In vivo and in vitro experiments indicated that Jaburetox interacts with a subset of hemocytes and it can be found in various subcellular compartments. In insects injected with Jaburetox there was an increase in the gene expression of the enzymes UDP-N-acetylglucosamine pyrophosphorylase (UAP), chitin synthase and nitric oxide synthase (NOS). Nevertheless, the expression of NOS protein, the enzyme activities of UAP and acid phosphatase (a possible link between UAP and NOS) as well as the phosphorylation state of proteins remained unchanged upon the in vivo Jaburetox treatment. Nitric oxide (NO) imaging using fluorescent probes showed that Jaburetox augmented NO production in the hemocyte aggregates when compared to controls. Even though Jaburetox activated the hemocytes, as demonstrated by wheat germ agglutinin binding assays, the peptide did not lead to an increase of their phagocytic behavior. Taken together, these findings contribute to our understanding of toxic effects of Jaburetox, a peptide with biotechnological applications and a prospective tool for rational insect control. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis.

    Science.gov (United States)

    Suzuki, M; Tanaka, T

    2006-06-01

    Ultrastructural studies on the reproductive tract and venom apparatus of a female braconid, Meteorus pulchricornis, revealed that the parasitoid lacks the calyx region in its oviduct, but possesses a venom gland with two venom gland filaments and a venom reservoir filled with white and cloudy fluid. Its venom gland cell is concaved and has a lumen filled with numerous granules. Transmisson electron microscopic (TEM) observation revealed that virus-like particles (VLPs) were produced in venom gland cells. The virus-like particle observed in M. pulchricornis (MpVLP) is composed of membranous envelopes with two different parts: a high-density core and a whitish low-density part. The VLPs of M. pulchricornis is also found assembling ultimately in the lumen of venom gland cell. Microvilli were found thrusting into the lumen of the venom gland cell and seem to aid in driving the matured MpVLPs to the common duct of the venom gland filament. Injection of MpVLPs into non-parasitized Pseudaletia separata hosts induced apoptosis in hemocytes, particularly granulocytes (GRs). Rate of apoptosis induced in GRs peaked 48h after VLP injection. While a large part of the GR population collapsed due to apoptosis caused by MpVLPs, the plasmatocyte population was minimally affected. The capacity of MpVLPs to cause apoptosis in host's hemocytes was further demonstrated by a decrease ( approximately 10-fold) in ability of host hemocytes to encapsulate fluorescent latex beads when MpVLPs were present. Apparently, the reduced encapsulation ability was due to a decrease in the GR population resulting from MpVLP-induced apoptosis.