WorldWideScience

Sample records for heme-binding dna aptamers

  1. Structured DNA Aptamer Interactions with Gold Nanoparticles.

    Science.gov (United States)

    Mirau, Peter A; Smith, Joshua E; Chávez, Jorge L; Hagen, Joshua A; Kelley-Loughnane, Nancy; Naik, Rajesh

    2018-02-06

    DNA aptamers that bind biomolecular targets are of interest as the recognition element in colorimetric sensors based on gold nanoparticles (AuNP), where sensor functionality is related to changes in AuNP colloidal stability upon target binding. In order to understand the role of target binding on DNA-AuNP colloidal stability, we have used high-resolution NMR to characterize the interactions of the 36 nucleotide cocaine-binding aptamer (MN4) and related aptamers with AuNPs, cocaine, and cocaine metabolites. Changes in the aptamer imino proton NMR spectra with low (20 nM) concentrations of AuNP show that the aptamers undergo fast-exchange adsorption on the nanoparticle surface. An analysis of the spectral changes and the comparison with modified MN4 aptamers shows that the AuNP binding domain is localized on stem two of the three-stemmed aptamer. The identification of an AuNP recognition domain allows for the incorporation of AuNP binding functionality into a wide variety of aptamers. AuNP-induced spectral changes are not observed for the aptamer-AuNP mixtures in the presence of cocaine, demonstrating that aptamer absorption on the AuNP surface is modulated by aptamer-target interactions. The data also show that the DNA-AuNP interactions and sensor functionality are critically dependent on aptamer folding.

  2. Selection and characterization of DNA aptamers

    NARCIS (Netherlands)

    Ruigrok, V.J.B.

    2013-01-01

    This thesis focusses on the selection and characterisation of DNA aptamers and the various aspects related to their selection from large pools of randomized oligonucleotides. Aptamers are affinity tools that can specifically recognize and bind predefined target molecules; this ability, however, is

  3. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Directory of Open Access Journals (Sweden)

    Nadia Nikolaus

    2014-02-01

    Full Text Available Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  4. ABCs of DNA aptamer and related assay development.

    Science.gov (United States)

    Sharma, Tarun Kumar; Bruno, John G; Dhiman, Abhijeet

    This review is intended to guide the novice in aptamer research and development to understand virtually all of the aptamer development options and currently available assay modalities. Aptamer development topics range from discussions of basic and advanced versions of Systematic Evolution of Ligands by EXponential Enrichment (SELEX) and SELEX variations involving incorporation of exotic unnatural nucleotides to expand library diversity for even greater aptamer affinity and specificity to improved next generation methods of DNA sequencing, screening and tracking aptamer development throughout the SELEX process and characterization of lead aptamer candidates. Aptamer assay development topics include descriptions of various colorimetric and fluorescent assays in microplates or on membranes including homogeneous beacon and multiplexed Fluorescence Resonance Energy Transfer (FRET) assays. Finally, a discussion of the potential for marketing successful aptamer-based assays or test kits is included. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer

    DEFF Research Database (Denmark)

    Álvarez-Martos, Isabel; Ferapontova, Elena

    2017-01-01

    of dopamine is a 57 nucleotides long RNA sequence reported in 1997 (Biochemistry, 1997, 36, 9726). Later, it was suggested that the DNA homologue of the RNA aptamer retains the specificity of dopamine binding (Biochem. Biophys. Res. Commun., 2009, 388, 732). Here, we show that the DNA sequence obtained...... by the replacement of the RNA aptamer bases for their DNA analogues is not able of specific biorecognition of dopamine, in contrast to the original RNA aptamer sequence. This DNA sequence binds dopamine and structurally related catecholamine neurotransmitters non-specifically, as any DNA sequence, and, thus...

  6. DNA module platform for developing colorimetric aptamer sensors.

    Science.gov (United States)

    Tomita, Yasuyuki; Morita, Yuji; Suga, Hiroaki; Fujiwara, Daisuke

    2016-01-01

    Here we present a DNA module platform for developing simple aptamer sensors based on a microarray format combined with secondary structure prediction in silico. The platform comprises four parts: (i) aptamer, (ii) joint module, (iii) terminal stem, and (iv) a DNAzyme that catalyzes a redox reaction controlled by a structural change induced by aptamer/target binding. First, we developed a joint module, capable of sensing a conformational change in the aptamer region, that was linked to the signal transmission activity of a DNAzyme as the reporter in a concentration-dependent manner with the AMP aptamer. This module design was then used to generate an arginine sensor simply by replacing the AMP aptamer region with a previously reported arginine aptamer. Using this DNA module platform, we were also able to customize a microarray containing >10,000 sequences designed by in silico secondary structure prediction and successfully identify a new aptamer against patulin. Our results show that the DNA module platform can be used to readily devise sensors based on known aptamers as well as create new aptamer sensors by array-based screening.

  7. Kinetics of signaling-DNA-aptamer-ATP binding

    Science.gov (United States)

    Nakamura, Issei; Shi, An-Chang; Nutiu, Razvan; Yu, Jasmine M. Y.; Li, Yingfu

    2009-03-01

    DNA aptamers are molecular biosensors consisting of single functionalized DNA molecules, which can bind to specific targets or complementary DNA sequences. The binding kinetics of DNA aptamers is studied by fluorescence quenching at 23°C . A kinetic model for the binding reaction of DNA aptamer, antisense DNA, and ATP target is developed to describe experimental observations. The approach leads to a simple procedure to deduce relevant kinetic reactions and their rate constants. A comparison between theory and experiments indicates that the previously established bimolecular DNA-ATP binding does not provide a complete description of the experimental data. Side reactions such as trimolecular complexation are proposed. Rate constants of the model are determined by comparing the model predictions and experiments. Good agreements between the model and experiments have been obtained. Possible blocking reactions by the misfolded DNA aptamer are also discussed.

  8. Aptamer-targeted DNA nanostructures for therapeutic delivery.

    Science.gov (United States)

    Charoenphol, Phapanin; Bermudez, Harry

    2014-05-05

    DNA-based nanostructures have been widely used in various applications due to their structural diversity, programmability, and uniform structures. Their intrinsic biocompatibility and biodegradability further motivates the investigation of DNA-based nanostructures as delivery vehicles. Incorporating AS1411 aptamers into DNA pyramids leads to enhanced intracellular uptake and selectively inhibits the growth of cancer cells, achieved without the use of transfection reagents. Furthermore, aptamer-displaying pyramids are found to be substantially more resistant to nuclease degradation than single-stranded aptamers. These findings, along with their modularity, reinforce the potential of DNA-based nanostructures for therapeutic applications.

  9. Probing the structure of DNA aptamers with a classic heterocycle.

    Science.gov (United States)

    Wood, Arthur E; Bishop, G Reid

    2004-02-28

    DNA aptamers are synthetic, single-stranded DNA oligonucleotides selected by SELEX methods for their binding with specific ligands. Here we present ethidium binding results for three related DNA aptamers (PDB code: 1OLD, 1DB6, and 2ARG)that bind L-argininamide (L-Arm). The ligand bound form of each aptamer's structure has been reported and each are found to be composed primarily of two domains consisting of a stem helical region and a loop domain that forms a binding pocket for the cognate ligand. Previous thermodynamic experiments demonstrated that the DNA aptamer 1OLD undergoes a large conformational ordering upon binding to L-Arm. Here we extend those linkage binding studies by examining the binding of the heterocyclic intercalator ethidium to each of the three aptamers by fluorescence and absorption spectrophotometric titrations. Our results reveal that ethidium binds to each aptamer with DeltaG degree's in the range of -8.7 to -9.4 kcal/mol. The stoichiometry of binding is 2:1 for each aptamer and is quantitatively diminished in the presence of L-Arm as is the overall fluorescence intensity of ethidium. Together, these results demonstrate that a portion of the bound ethidium is excluded from the aptamer in the presence of a saturating amount of L-Arm. These results demonstrate the utility of ethidium and related compounds for the probing of non-conventional DNA structures and reveal an interesting fundamental thermodynamic linkage in DNA aptamers. Results are discussed in the context of the thermodynamic stability and structure of each of the aptamers examined.

  10. A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer.

    Science.gov (United States)

    Álvarez-Martos, Isabel; Ferapontova, Elena E

    2017-08-05

    A unique specificity of the aptamer-ligand biorecognition and binding facilitates bioanalysis and biosensor development, contributing to discrimination of structurally related molecules, such as dopamine and other catecholamine neurotransmitters. The aptamer sequence capable of specific binding of dopamine is a 57 nucleotides long RNA sequence reported in 1997 (Biochemistry, 1997, 36, 9726). Later, it was suggested that the DNA homologue of the RNA aptamer retains the specificity of dopamine binding (Biochem. Biophys. Res. Commun., 2009, 388, 732). Here, we show that the DNA sequence obtained by the replacement of the RNA aptamer bases for their DNA analogues is not able of specific biorecognition of dopamine, in contrast to the original RNA aptamer sequence. This DNA sequence binds dopamine and structurally related catecholamine neurotransmitters non-specifically, as any DNA sequence, and, thus, is not an aptamer and cannot be used neither for in vivo nor in situ analysis of dopamine in the presence of structurally related neurotransmitters. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures

    DEFF Research Database (Denmark)

    Rangnekar, Abhijit; Zhang, Alex M.; Shiyuan Li, Susan

    2012-01-01

    Control over thrombin activity is much desired to regulate blood clotting in surgical and therapeutic situations. Thrombin-binding RNA and DNA aptamers have been used to inhibit thrombin activity and thus the coagulation cascade. Soluble DNA aptamers, as well as two different aptamers tethered...... by a flexible single-strand linker, have been shown to possess anticoagulant activity. Here, we link multiple aptamers at programmed positions on DNA nanostructures to optimize spacing and orientation of the aptamers and thereby to maximize anticoagulant activity in functional assays. By judicious engineering...... of the DNA nanostructures, we have created a novel, functional DNA nanostructure, which is a multi-aptamer inhibitor with activity eightfold higher than free aptamer. Reversal of the thrombin inhibition was also achieved by the use of single-stranded DNA antidotes, thus enabling significant control over...

  12. High Efficiency Acetylcholinesterase Immobilization on DNA Aptamer Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Orada Chumphukam

    2014-04-01

    Full Text Available We report here the in vitro selection of DNA aptamers for electric eel acetylcholinesterase (AChE. One selected aptamer sequence (R15/19 has a high affinity towards the enzyme (Kd = 157 ± 42 pM. Characterization of the aptamer showed its binding is not affected by low ionic strength (~20 mM, however significant reduction in affinity occurred at high ionic strength (~1.2 M. In addition, this aptamer does not inhibit the catalytic activity of AChE that we exploit through immobilization of the DNA on a streptavidin-coated surface. Subsequent immobilization of AChE by the aptamer results in a 4-fold higher catalytic activity when compared to adsorption directly on to plastic.

  13. Aptamer-Binding Directed DNA Origami Pattern for Logic Gates.

    Science.gov (United States)

    Yang, Jing; Jiang, Shuoxing; Liu, Xiangrong; Pan, Linqiang; Zhang, Cheng

    2016-12-14

    In this study, an aptamer-substrate strategy is introduced to control programmable DNA origami pattern. Combined with DNA aptamer-substrate binding and DNAzyme-cutting, small DNA tiles were specifically controlled to fill into the predesigned DNA origami frame. Here, a set of DNA logic gates (OR, YES, and AND) are performed in response to the stimuli of adenosine triphosphate (ATP) and cocaine. The experimental results are confirmed by AFM imaging and time-dependent fluorescence changes, demonstrating that the geometric patterns are regulated in a controllable and programmable manner. Our approach provides a new platform for engineering programmable origami nanopatterns and constructing complex DNA nanodevices.

  14. Probing the Structure of DNA Aptamers with a Classic Heterocycle.

    Directory of Open Access Journals (Sweden)

    G. Reid Bishop

    2004-02-01

    Full Text Available DNA aptamers are synthetic, single-stranded DNA oligonucleotides selectedby SELEX methods for their binding with specific ligands. Here we present ethidiumbinding results for three related DNA aptamers (PDB code: 1OLD, 1DB6, and 2ARGthat bind L-argininamide (L-Arm. The ligand bound form of each aptamer's structurehas been reported and each are found to be composed primarily of two domainsconsisting of a stem helical region and a loop domain that forms a binding pocket for thecognate ligand. Previous thermodynamic experiments demonstrated that the DNAaptamer 1OLD undergoes a large conformational ordering upon binding to L-Arm. Herewe extend those linkage binding studies by examining the binding of the heterocyclicintercalator ethidium to each of the three aptamers by fluorescence and absorptionspectrophotometric titrations. Our results reveal that ethidium binds to each aptamer with∆Go's in the range of -8.7 to -9.4 kcal/mol. The stoichiometry of binding is 2:1 for eachaptamer and is quantitatively diminished in the presence of L-Arm as is the overallfluorescence intensity of ethidium. Together, these results demonstrate that a portion ofthe bound ethidium is excluded from the aptamer in the presence of a saturating amountof L-Arm. These results demonstrate the utility of ethidium and related compounds forthe probing of non-conventional DNA structures and reveal an interesting fundamentalthermodynamic linkage in DNA aptamers. Results are discussed in the context of thethermodynamic stability and structure of each of the aptamers examined.

  15. In Vitro Selection of DNA Aptamers that Binds Geniposide

    Directory of Open Access Journals (Sweden)

    Aozhe Zhang

    2017-02-01

    Full Text Available Geniposide is a key iridoid glycoside from Gardenia jasminoides fructus widely used in traditional Chinese herbal medicine. However, detection of this small molecule represents a significant challenge mostly due to the lack of specific molecular recognition elements. In this study, we have performed in vitro selection experiments to isolate DNA aptamers that can specifically bind geniposide. Using a stringent selection procedure, we have isolated DNA aptamers that can distinguish geniposide from genipin and glucose, two structural analogs of geniposide. Two top aptamers exhibit low micromolar binding affinity towards geniposide, but show significantly reduced affinity to genipin and glucose. These aptamers have the potential to be further developed into analytical tools for the detection of geniposide.

  16. A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly

    OpenAIRE

    Maia Godonoga; Ting-Yu Lin; Azusa Oshima; Koji Sumitomo; Marco S. L. Tang; Yee-Wai Cheung; Andrew B. Kinghorn; Roderick M. Dirkzwager; Cunshan Zhou; Akinori Kuzuya; Julian A. Tanner; Jonathan G. Heddle

    2016-01-01

    DNA aptamers have potential for disease diagnosis and as therapeutics, particularly when interfaced with programmable molecular technology. Here we have combined DNA aptamers specific for the malaria biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH) with a DNA origami scaffold. Twelve aptamers that recognise PfLDH were integrated into a rectangular DNA origami and atomic force microscopy demonstrated that the incorporated aptamers preserve their ability to specifically bind target...

  17. Salt-Switchable Artificial Cellulase Regulated by a DNA Aptamer.

    Science.gov (United States)

    Takahara, Mari; Budinova, Geisa Aparecida Lopes Gonçalves; Nakazawa, Hikaru; Mori, Yutaro; Umetsu, Mitsuo; Kamiya, Noriho

    2016-10-10

    A novel artificial cellulase was developed by conjugating a DNA aptamer to an endoglucanase catalytic domain, thereby substituting the natural carbohydrate-binding module. Circular dichroism spectroscopy and adsorption isotherm showed the binding motif of cellulose-binding DNA aptamer (CelApt) was G-quadruplex and stem-loop structures stabilized in the presence of salts, and CelApt binding preferred the amorphous region of the solid cellulose. By introducing the revealed salt-switchable cellulose-binding nature of CelApt into a catalytic domain of a cellulase, we created CelApt-catalytic domain conjugate possessing both controllable adsorption on the solid substrates and equal enzymatic activity to the wild-type cellulase. Thus potential use of a responsive DNA aptamer for biocatalysis at a solid surface was demonstrated.

  18. Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production

    Directory of Open Access Journals (Sweden)

    Junji Tominaga4

    2012-04-01

    Full Text Available Aptamers are ssDNA or RNA that binds to wide variety of target molecules with high affinity and specificity producedby systematic evolution of ligands by exponential enrichment (SELEX. Compared to RNA aptamer, DNA aptamer is muchmore stable, favourable to be used in many applications. The most critical step in DNA SELEX experiment is the conversion ofdsDNA to ssDNA. The purpose of this study was to develop an economic and efficient approach of generating ssDNA byusing asymmetric PCR. Our results showed that primer ratio (sense primer:antisense primer of 20:1 and sense primer amountof 10 to 100 pmol, up to 20 PCR cycles using 20 ng of initial template, in combination with polyacrylamide gel electrophoresis,were the optimal conditions for generating good quality and quantity of ssDNA. The generation of ssDNA via this approachcan greatly enhance the success rate of DNA aptamer generation.

  19. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes.

    Science.gov (United States)

    Zhang, Ziping; Tao, Cancan; Yin, Jungang; Wang, Yunhui; Li, Yanshen

    2018-04-30

    Electrochemical aptamer (EA) sensors based on aptamer-cDNA duplex probes (cDNA: complementary DNA) and target induced strand displacement (TISD) recognition are sensitive, selective and capable of detecting a wide variety of target analytes. While substantial research efforts have focused on engineering of new signaling mechanisms for the improvement of sensor sensitivity, little attention was paid to the enhancement of sensor response rate. Typically, the previous TISD based EA sensors exhibited relatively long response times larger than 30min, which mainly resulted from the suboptimal aptamer-cDNA probe structure in which most of aptamer bases were paired to the cDNA bases. In an effort to improve the response rate of this type of sensors, we report here the rational engineering of a quickly responsive and sensitive aptamer-cDNA probe by employing the conception of bivalent interaction in supramolecular chemistry. We design a bivalent cDNA strand through linking two short monovalent cDNA sequences, and it is simultaneously hybridized to two electrode-immobilized aptamer probes to form a bivalent binding (BB) aptamer-cDNA probe. This class of BB probe possesses the advantages of less aptamer bases paired to the cDNA bases for quick response rate and good structural stability for high sensor sensitivity. By use of the rationally designed BB aptamer-cDNA probe, a TISD based EA sensor against ATP with significantly enhanced response rate (with a displacement equilibrium time of 4min) and high sensitivity was successfully constructed. We believe that our BB probe conception will help guide future designs and applications of TISD based EA sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Generation of Aptamers from A Primer-Free Randomized ssDNA Library Using Magnetic-Assisted Rapid Aptamer Selection

    Science.gov (United States)

    Tsao, Shih-Ming; Lai, Ji-Ching; Horng, Horng-Er; Liu, Tu-Chen; Hong, Chin-Yih

    2017-04-01

    Aptamers are oligonucleotides that can bind to specific target molecules. Most aptamers are generated using random libraries in the standard systematic evolution of ligands by exponential enrichment (SELEX). Each random library contains oligonucleotides with a randomized central region and two fixed primer regions at both ends. The fixed primer regions are necessary for amplifying target-bound sequences by PCR. However, these extra-sequences may cause non-specific bindings, which potentially interfere with good binding for random sequences. The Magnetic-Assisted Rapid Aptamer Selection (MARAS) is a newly developed protocol for generating single-strand DNA aptamers. No repeat selection cycle is required in the protocol. This study proposes and demonstrates a method to isolate aptamers for C-reactive proteins (CRP) from a randomized ssDNA library containing no fixed sequences at 5‧ and 3‧ termini using the MARAS platform. Furthermore, the isolated primer-free aptamer was sequenced and binding affinity for CRP was analyzed. The specificity of the obtained aptamer was validated using blind serum samples. The result was consistent with monoclonal antibody-based nephelometry analysis, which indicated that a primer-free aptamer has high specificity toward targets. MARAS is a feasible platform for efficiently generating primer-free aptamers for clinical diagnoses.

  1. Rupture of DNA aptamer: New insights from simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Rakesh Kumar; Nath, Shesh; Kumar, Sanjay [Department of Physics, Banaras Hindu University, Varanasi 221 005 (India)

    2015-10-28

    Base-pockets (non-complementary base-pairs) in a double-stranded DNA play a crucial role in biological processes. Because of thermal fluctuations, it can lower the stability of DNA, whereas, in case of DNA aptamer, small molecules, e.g., adenosinemonophosphate and adenosinetriphosphate, form additional hydrogen bonds with base-pockets termed as “binding-pockets,” which enhance the stability. Using the Langevin dynamics simulations of coarse grained model of DNA followed by atomistic simulations, we investigated the influence of base-pocket and binding-pocket on the stability of DNA aptamer. Striking differences have been reported here for the separation induced by temperature and force, which require further investigation by single molecule experiments.

  2. Selection of DNA aptamers specific for live Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Jennifer Soundy

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen that causes significant morbidity and mortality in immunocompromised patients, particular cystic fibrosis sufferers, burns victims, diabetics and neonates. It thrives in moist places where it forms biofilms that are exceedingly difficult to eradicate on hospital surfaces, in water supplies and implanted biomaterials. Using a live cell SELEX approach we selected DNA aptamers to P. aeruginosa grown as biofilms in microfluidic cells. From a pool of aptamer candidates showing tight binding a stem-loop structure was identified as being important for binding. Enhanced binding and increased specificity was achieved by truncating structures and generating chimeric aptamers from the pool of top candidates. The top candidates have low nanomolar binding constants and high discrimination for P. aeruginosa over other Gram-negative bacteria. The aptamers bind both planktonic grown and biofilm grown cells. They do not have intrinsic bacteriostatic or bactericidal activity, but are ideal candidates for modification for use as aptamer-drug conjugates and in biosensors.

  3. Single-Round Patterned DNA Library Microarray Aptamer Lead Identification

    Directory of Open Access Journals (Sweden)

    Jennifer A. Martin

    2015-01-01

    Full Text Available A method for identifying an aptamer in a single round was developed using custom DNA microarrays containing computationally derived patterned libraries incorporating no information on the sequences of previously reported thrombin binding aptamers. The DNA library was specifically designed to increase the probability of binding by enhancing structural complexity in a sequence-space confined environment, much like generating lead compounds in a combinatorial drug screening library. The sequence demonstrating the highest fluorescence intensity upon target addition was confirmed to bind the target molecule thrombin with specificity by surface plasmon resonance, and a novel imino proton NMR/2D NOESY combination was used to screen the structure for G-quartet formation. We propose that the lack of G-quartet structure in microarray-derived aptamers may highlight differences in binding mechanisms between surface-immobilized and solution based strategies. This proof-of-principle study highlights the use of a computational driven methodology to create a DNA library rather than a SELEX based approach. This work is beneficial to the biosensor field where aptamers selected by solution based evolution have proven challenging to retain binding function when immobilized on a surface.

  4. Selection and Screening of DNA Aptamers for Inorganic Nanomaterials.

    Science.gov (United States)

    Zhou, Yibo; Huang, Zhicheng; Yang, Ronghua; Liu, Juewen

    2018-02-21

    Searching for DNA sequences that can strongly and selectively bind to inorganic surfaces is a long-standing topic in bionanotechnology, analytical chemistry and biointerface research. This can be achieved either by aptamer selection starting with a very large library of ≈10 14 random DNA sequences, or by careful screening of a much smaller library (usually from a few to a few hundred) with rationally designed sequences. Unlike typical molecular targets, inorganic surfaces often have quite strong DNA adsorption affinities due to polyvalent binding and even chemical interactions. This leads to a very high background binding making aptamer selection difficult. Screening, on the other hand, can be designed to compare relative binding affinities of different DNA sequences and could be more appropriate for inorganic surfaces. The resulting sequences have been used for DNA-directed assembly, sorting of carbon nanotubes, and DNA-controlled growth of inorganic nanomaterials. It was recently discovered that poly-cytosine (C) DNA can strongly bind to a diverse range of nanomaterials including nanocarbons (graphene oxide and carbon nanotubes), various metal oxides and transition-metal dichalcogenides. In this Concept article, we articulate the need for screening and potential artifacts associated with traditional aptamer selection methods for inorganic surfaces. Representative examples of application are discussed, and a few future research opportunities are proposed towards the end of this article. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  6. Rapid One-Step Selection Method for Generating Nucleic Acid Aptamers: Development of a DNA Aptamer against alpha-Bungarotoxin

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm; Shamaileh, Hadi A.; Edwards, Stacey L.

    2012-01-01

    Background: Nucleic acids based therapeutic approaches have gained significant interest in recent years towards the development of therapeutics against many diseases. Recently, research on aptamers led to the marketing of Macugen (R), an inhibitor of vascular endothelial growth factor (VEGF......) for the treatment of age related macular degeneration (AMD). Aptamer technology may prove useful as a therapeutic alternative against an array of human maladies. Considering the increased interest in aptamer technology globally that rival antibody mediated therapeutic approaches, a simplified selection, possibly...... in one-step, technique is required for developing aptamers in limited time period. Principal Findings: Herein, we present a simple one-step selection of DNA aptamers against alpha-bungarotoxin. A toxin immobilized glass coverslip was subjected to nucleic acid pool binding and extensive washing followed...

  7. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method.

    Science.gov (United States)

    Hirao, Ichiro; Kimoto, Michiko; Lee, Kyung Hyun

    2017-09-13

    A novel aptamer generation method to greatly augment the affinity and stability of DNA aptamers was developed by genetic alphabet expansion combined with mini-hairpin DNA technology. The genetic alphabet expansion increases the physicochemical and structural diversities of DNA aptamers by introducing extra components, unnatural bases, as a fifth base, allowing for the enhancement of DNA aptamer affinities. Furthermore, the mini-hairpin DNA technology stabilizes DNA aptamers against nuclease digestion and thermal denaturation, by introducing an extraordinarily stable mini-hairpin DNA containing a GCGAAGC sequence. This novel method provides stabilized high-affinity DNA aptamers for diagnostic and therapeutic applications. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information

    Directory of Open Access Journals (Sweden)

    Hu Jianjun

    2011-05-01

    Full Text Available Abstract Background Accurate prediction of binding residues involved in the interactions between proteins and small ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort has been devoted to the development of various generic algorithms for ligand binding site prediction over the last decade, no algorithm has been specifically designed to complement experimental techniques for identification of heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing these important residues. Results Here we introduced an efficient algorithm HemeBIND for predicting heme binding residues by integrating structural and sequence information. We systematically investigated the characteristics of binding interfaces based on a non-redundant dataset of heme-protein complexes. It was found that several sequence and structural attributes such as evolutionary conservation, solvent accessibility, depth and protrusion clearly illustrate the differences between heme binding and non-binding residues. These features can then be separately used or combined to build the structure-based classifiers using support vector machine (SVM. The results showed that the information contained in these features is largely complementary and their combination achieved the best performance. To further improve the performance, an attempt has been made to develop a post-processing procedure to reduce the number of false positives. In addition, we built a sequence-based classifier based on SVM and sequence profile as an alternative when only sequence information can be used. Finally, we employed a voting method to combine the outputs of structure-based and sequence-based classifiers, which demonstrated remarkably better performance than the individual classifier alone

  9. Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer.

    Science.gov (United States)

    Cheung, Yee-Wai; Kwok, Jane; Law, Alan W L; Watt, Rory M; Kotaka, Masayo; Tanner, Julian A

    2013-10-01

    DNA aptamers have significant potential as diagnostic and therapeutic agents, but the paucity of DNA aptamer-target structures limits understanding of their molecular binding mechanisms. Here, we report a distorted hairpin structure of a DNA aptamer in complex with an important diagnostic target for malaria: Plasmodium falciparum lactate dehydrogenase (PfLDH). Aptamers selected from a DNA library were highly specific and discriminatory for Plasmodium as opposed to human lactate dehydrogenase because of a counterselection strategy used during selection. Isothermal titration calorimetry revealed aptamer binding to PfLDH with a dissociation constant of 42 nM and 2:1 protein:aptamer molar stoichiometry. Dissociation constants derived from electrophoretic mobility shift assays and surface plasmon resonance experiments were consistent. The aptamer:protein complex crystal structure was solved at 2.1-Å resolution, revealing two aptamers bind per PfLDH tetramer. The aptamers showed a unique distorted hairpin structure in complex with PfLDH, displaying a Watson-Crick base-paired stem together with two distinct loops each with one base flipped out by specific interactions with PfLDH. Aptamer binding specificity is dictated by extensive interactions of one of the aptamer loops with a PfLDH loop that is absent in human lactate dehydrogenase. We conjugated the aptamer to gold nanoparticles and demonstrated specificity of colorimetric detection of PfLDH over human lactate dehydrogenase. This unique distorted hairpin aptamer complex provides a perspective on aptamer-mediated molecular recognition and may guide rational design of better aptamers for malaria diagnostics.

  10. A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly.

    Science.gov (United States)

    Godonoga, Maia; Lin, Ting-Yu; Oshima, Azusa; Sumitomo, Koji; Tang, Marco S L; Cheung, Yee-Wai; Kinghorn, Andrew B; Dirkzwager, Roderick M; Zhou, Cunshan; Kuzuya, Akinori; Tanner, Julian A; Heddle, Jonathan G

    2016-02-19

    DNA aptamers have potential for disease diagnosis and as therapeutics, particularly when interfaced with programmable molecular technology. Here we have combined DNA aptamers specific for the malaria biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH) with a DNA origami scaffold. Twelve aptamers that recognise PfLDH were integrated into a rectangular DNA origami and atomic force microscopy demonstrated that the incorporated aptamers preserve their ability to specifically bind target protein. Captured PfLDH retained enzymatic activity and protein-aptamer binding was observed dynamically using high-speed AFM. This work demonstrates the ability of DNA aptamers to recognise a malaria biomarker whilst being integrated within a supramolecular DNA scaffold, opening new possibilities for malaria diagnostic approaches based on DNA nanotechnology.

  11. DNA Aptamers against Taiwan Banded Krait α-Bungarotoxin Recognize Taiwan Cobra Cardiotoxins

    Directory of Open Access Journals (Sweden)

    Ying-Jung Chen

    2016-03-01

    Full Text Available Bungarus multicinctus α-bungarotoxin (α-Bgt and Naja atra cardiotoxins (CTXs share a common structural scaffold, and their tertiary structures adopt three-fingered loop motifs. Four DNA aptamers against α-Bgt have been reported previously. Given that the binding of aptamers with targeted proteins depends on structural complementarity, in this study, we investigated whether DNA aptamers against α-Bgt could also recognize CTXs. It was found that N. atra cardiotoxin 3 (CTX3 reduced the electrophoretic mobility of aptamers against α-Bgt. Analysis of the changes in the fluorescence intensity of carboxyfluorescein-labeled aptamers upon binding toxin molecules revealed that CTX3 and α-Bgt could bind the tested aptamers. Moreover, the aptamers inhibited the membrane-damaging activity and cytotoxicity of CTX3. In addition to CTX3, other N. atra CTX isotoxins also bound to the aptamer against α-Bgt. Taken together, our data indicate that aptamers against α-Bgt show cross-reactivity with CTXs. The findings that aptamers against α-Bgt also suppress the biological activities of CTX3 highlight the potential utility of aptamers in regard to the broad inhibition of snake venom three-fingered proteins.

  12. Inhibition of DNA replication by an anti-PCNA aptamer/PCNA complex.

    Science.gov (United States)

    Kowalska, Ewa; Bartnicki, Filip; Fujisawa, Ryo; Bonarek, Piotr; Hermanowicz, Pawel; Tsurimoto, Toshiki; Muszynska, Klaudia; Strzalka, Wojciech

    2018-01-09

    Proliferating cell nuclear antigen (PCNA) is a multifunctional protein present in the nuclei of eukaryotic cells that plays an important role as a component of the DNA replication machinery, as well as DNA repair systems. PCNA was recently proposed as a potential non-oncogenic target for anti-cancer therapy. In this study, using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) method, we developed a short DNA aptamer that binds human PCNA. In the presence of PCNA, the anti-PCNA aptamer inhibited the activity of human DNA polymerase δ and ϵ at nM concentrations. Moreover, PCNA protected the anti-PCNA aptamer against the exonucleolytic activity of these DNA polymerases. Investigation of the mechanism of anti-PCNA aptamer-dependent inhibition of DNA replication revealed that the aptamer did not block formation, but was a component of PCNA/DNA polymerase δ or ϵ complexes. Additionally, the anti-PCNA aptamer competed with the primer-template DNA for binding to the PCNA/DNA polymerase δ or ϵ complex. Based on the observations, a model of anti-PCNA aptamer/PCNA complex-dependent inhibition of DNA replication was proposed. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Elisa-Like Format for Comparing DNA Capture Elements (Aptamers) to Antibody in Diagnostic Efficacy

    National Research Council Canada - National Science Library

    Kiel, Johnathan L; Holwitt, Eric A; Vivekananda, Jeevalatha; Franz, Veronica

    2004-01-01

    DNA Capture Elements (DCEs), or aptamers, are small pieces of artificial DNA (30-60 base pairs) that are selected by increasing stringency for binding to ligand targets varying from pure proteins, lipids, carbohydrates to whole microbes...

  14. A DNA nanocapsule with aptamer-controlled open-closure function for targeted delivery

    DEFF Research Database (Denmark)

    Bentin, Thomas

    2012-01-01

    A DNA capsule fitted with aptamer controlled target sensing has been "woven" using a 7308-base single-stranded DNA "thread" and 196 staple oligonucleotides. The capsule enables logic-gated molecular cargo delivery to targeted cell surfaces.......A DNA capsule fitted with aptamer controlled target sensing has been "woven" using a 7308-base single-stranded DNA "thread" and 196 staple oligonucleotides. The capsule enables logic-gated molecular cargo delivery to targeted cell surfaces....

  15. Metallated DNA Aptamers for Prostate Cancer Treatment

    Science.gov (United States)

    2013-03-01

    specific complexes with FdU-substituted DNA(Lee, Latimer & Reid 1993) and coordination of Zn 2+ by deprotonated FdU was proposed as the basis for...tissues: roles in the pancreas, prostate, and mammary gland. Adv Nutr 2: 101- 111. Lee, J. S., Latimer , L. J. & Reid, R. S. (1993). A cooperative

  16. DNA aptamers binding to multiple prevalent M-types of Streptococcus pyogenes.

    Science.gov (United States)

    Hamula, Camille L A; Le, X Chris; Li, Xing-Fang

    2011-05-15

    This paper describes the selection of high affinity DNA aptamers binding to multiple M-types of the pathogenic species Streptococcus pyogenes (Group A Streptococcus or GAS). Unlike common aptamer selection techniques that use purified molecules of a monoclonal cell population as targets, this work has achieved the selection of aptamers against the various M-types of S. pyogenes. Cell mixtures containing equal numbers of the 10 most prevalent S. pyogenes M-types were incubated with 80-nucleotide DNA libraries, centrifuged, and washed to separate cell-bound from unbound DNA sequences. The DNA bound to the cells was amplified using the polymerase chain reaction, and the amplicons were tested for their binding to the target cells. The amplicons were also used as new DNA libraries for subsequent rounds of selection. Cloning, sequencing, and subsequent analysis of selected aptamers showed that they bind preferentially to GAS over other common and related bacteria. Resultant DNA aptamers showed strong and preferential binding to GAS, including the 10 most prevalent GAS M-types and another 10 minor M-types tested. Estimated K(d) values were in the range of 4 to 86 nM. Two aptamers, 20A24P and 15A3P (with estimated binding dissociation constants of 9 and 10 nM, respectively), are particularly promising. These aptamers could potentially be used to improve the detection of GAS, a pathogen that is the causative agent of many infectious diseases, most notably strep throat.

  17. Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications

    Science.gov (United States)

    Hong, Ka Lok

    2015-01-01

    Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by the Gold and Szostak laboratories. A large number of target specific nucleic acids MREs and their applications are currently in the literature. This review first describes the general methodologies used in identifying single-stranded DNA (ssDNA) aptamers. It then summarizes advancements in the identification and biosensing application of ssDNA aptamers specific for bacteria, viruses, their associated molecules, and selected chemical toxins. Lastly, an overview of the basic principles of ssDNA aptamer-based biosensors is discussed. PMID:26199940

  18. DNA Aptamer Raised Against AGEs Blocks the Progression of Experimental Diabetic Nephropathy

    Science.gov (United States)

    Kaida, Yusuke; Fukami, Kei; Matsui, Takanori; Higashimoto, Yuichiro; Nishino, Yuri; Obara, Nana; Nakayama, Yosuke; Ando, Ryotaro; Toyonaga, Maki; Ueda, Seiji; Takeuchi, Masayoshi; Inoue, Hiroyoshi; Okuda, Seiya

    2013-01-01

    Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. We screened DNA aptamer directed against AGEs (AGEs-aptamer) in vitro and examined its effects on renal injury in KKAy/Ta mice, an animal model of type 2 diabetes. Eight-week-old male KKAy/Ta or C57BL/6J mice received continuous intraperitoneal infusion of AGEs- or control-aptamer for 8 weeks. AGEs-aptamer was detected and its level was increased in the kidney for at least 7 days. The elimination half-lives of AGEs-aptamer in the kidney were about 7 days. Compared with those in C57BL/6J mice, glomerular AGEs levels were significantly increased in KKAy/Ta mice, which were blocked by AGEs-aptamer. Urinary albumin and 8-hydroxy-2′-deoxy-guanosine levels were increased, and glomerular hypertrophy and enhanced extracellular matrix accumulation were observed in KKAy/Ta mice, all of which were prevented by AGEs-aptamer. Moreover, AGEs-aptamer significantly reduced gene expression of RAGE, monocyte chemoattractant protein-1, connective tissue growth factor, and type IV collagen both in the kidney of KKAy/Ta mice and in AGE-exposed human cultured mesangial cells. Our present data suggest that continuous administration of AGEs-aptamer could protect against experimental diabetic nephropathy by blocking the AGEs-RAGE axis and may be a feasible and promising therapeutic strategy for the treatment of diabetic nephropathy. PMID:23630304

  19. Molecular modeling and SPRi investigations of interleukin 6 (IL6) protein and DNA aptamers.

    Science.gov (United States)

    Rhinehardt, Kristen L; Vance, Stephen A; Mohan, Ram V; Sandros, Marinella; Srinivas, Goundla

    2017-06-22

    Interleukin 6 (IL6), an inflammatory response protein has major implications in immune-related inflammatory diseases. Identification of aptamers for the IL6 protein aids in diagnostic, therapeutic, and theranostic applications. Three different DNA aptamers and their interactions with IL6 protein were extensively investigated in a phosphate buffed saline (PBS) solution. Molecular-level modeling through molecular dynamics provided insights of structural, conformational changes and specific binding domains of these protein-aptamer complexes. Multiple simulations reveal consistent binding region for all protein-aptamer complexes. Conformational changes coupled with quantitative analysis of center of mass (COM) distance, radius of gyration (Rg), and number of intermolecular hydrogen bonds in each IL6 protein-aptamer complex was used to determine their binding performance strength and obtain molecular configurations with strong binding. A similarity comparison of the molecular configurations with strong binding from molecular-level modeling concurred with Surface Plasmon Resonance imaging (SPRi) for these three aptamer complexes, thus corroborating molecular modeling analysis findings. Insights from the natural progression of IL6 protein-aptamer binding modeled in this work has identified key features such as the orientation and location of the aptamer in the binding event. These key features are not readily feasible from wet lab experiments and impact the efficacy of the aptamers in diagnostic and theranostic applications.

  20. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A

    Science.gov (United States)

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5’-end including the 5’-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer. PMID:26221730

  1. Amplified Detection of the Aptamer-Vanillin Complex with the Use of Bsm DNA Polymerase.

    Science.gov (United States)

    Andrianova, Mariia; Komarova, Natalia; Grudtsov, Vitaliy; Kuznetsov, Evgeniy; Kuznetsov, Alexander

    2017-12-26

    The electrochemical detection of interactions between aptamers and low-molecular-weight targets often lacks sensitivity. Signal amplification improves the detection of the aptamer-analyte complex; Bsm DNA polymerase was used to amplify the signal from the interaction of vanillin and its aptamer named Van_74 on an ion-sensitive field-effect transistor (ISFET)-based biosensor. The aptamer was immobilized on the ISFET sensitive surface. A short DNA probe was hybridized with the aptamer and dissociated from it upon vanillin addition. A free probe interacted with a special DNA molecular beacon initiated the Bsm DNA polymerase reaction that was detected by ISFET. A buffer solution suitable for both aptamer action and Bsm DNA polymerase activity was determined. The ISFET was shown to detect the Bsm DNA polymerase reaction under the selected conditions. Vanillin at different concentrations (1 × 10 -6 -1 × 10 -8 M) was detected using the biosensor with signal amplification. The developed detection system allowed for the determination of vanillin, starting at a 10 -8 M concentration. Application of the Bsm DNA polymerase resulted in a 15.5 times lower LoD when compared to the biosensor without signal amplification (10.1007/s00604-017-2586-4).

  2. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Science.gov (United States)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-11-01

    Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  3. Structural Disruption of an Adenosine-Binding DNA Aptamer on Graphene: Implications for Aptasensor Design.

    Science.gov (United States)

    Hughes, Zak E; Walsh, Tiffany R

    2017-11-22

    We report on the predicted structural disruption of an adenosine-binding DNA aptamer adsorbed via noncovalent interactions on aqueous graphene. The use of surface-adsorbed biorecognition elements on device substrates is needed for integration in nanofluidic sensing platforms. Upon analyte binding, the conformational change in the adsorbed aptamer may perturb the surface properties, which is essential for the signal generation mechanism in the sensor. However, at present, these graphene-adsorbed aptamer structure(s) are unknown, and are challenging to experimentally elucidate. Here we use molecular dynamics simulations to investigate the structure and analyte-binding properties of this aptamer, in the presence and absence of adenosine, both free in solution and adsorbed at the aqueous graphene interface. We predict this aptamer to support a variety of stable binding modes, with direct base-graphene contact arising from regions located in the terminal bases, the centrally located binding pockets, and the distal loop region. Considerable retention of the in-solution aptamer structure in the adsorbed state indicates that strong intra-aptamer interactions compete with the graphene-aptamer interactions. However, in some adsorbed configurations the analyte adenosines detach from the binding pockets, facilitated by strong adenosine-graphene interactions.

  4. Selection, Characterization and Interaction Studies of a DNA Aptamer for the Detection of Bifidobacterium bifidum.

    Science.gov (United States)

    Hu, Lujun; Wang, Linlin; Lu, Wenwei; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2017-04-25

    A whole-bacterium-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure was adopted in this study for the selection of an ssDNA aptamer that binds to Bifidobacterium bifidum . After 12 rounds of selection targeted against B. bifidum , 30 sequences were obtained and divided into seven families according to primary sequence homology and similarity of secondary structure. Four FAM (fluorescein amidite) labeled aptamer sequences from different families were selected for further characterization by flow cytometric analysis. The results reveal that the aptamer sequence CCFM641-5 demonstrated high-affinity and specificity for B. bifidum compared with the other sequences tested, and the estimated K d value was 10.69 ± 0.89 nM. Additionally, sequence truncation experiments of the aptamer CCFM641-5 led to the conclusion that the 5'-primer and 3'-primer binding sites were essential for aptamer-target binding. In addition, the possible component of the target B. bifidum , bound by the aptamer CCFM641-5, was identified as a membrane protein by treatment with proteinase. Furthermore, to prove the potential application of the aptamer CCFM641-5, a colorimetric bioassay of the sandwich-type structure was used to detect B. bifidum . The assay had a linear range of 10⁴ to 10⁷ cfu/mL ( R ² = 0.9834). Therefore, the colorimetric bioassay appears to be a promising method for the detection of B. bifidum based on the aptamer CCFM641-5.

  5. Screening and Identification of ssDNA Aptamer for Human GP73

    Directory of Open Access Journals (Sweden)

    Jingchun Du

    2015-01-01

    Full Text Available As one tumor marker of HCC, Golgi Protein 73 (GP73 is given more promise in the early diagnosis of HCC, and aptamers have been developed to compete with antibodies as biorecognition probes in different detection system. In this study, we utilized GP73 to screen specific ssDNA aptamers by SELEX technique. First, GP73 proteins were expressed and purified by prokaryotic expression system and Nickle ion affinity chromatography, respectively. At the same time, the immunogenicity of purified GP73 was confirmed by Western blotting. The enriched ssDNA library with high binding capacity for GP73 was obtained after ten rounds of SELEX. Then, thirty ssDNA aptamers were sequenced, in which two ssDNA aptamers with identical DNA sequence were confirmed, based on the alignment results, and designated as A10-2. Furthermore, the specific antibody could block the binding of A10-2 to GP73, and the specific binding of A10-2 to GP73 was also supported by the observation that several tumor cell lines exhibited variable expression level of GP73. Significantly, the identified aptamer A10-2 could distinguish normal and cancerous liver tissues. So, our results indicate that the aptamer A10-2 might be developed into one molecular probe to detect HCC from normal liver specimens.

  6. Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases.

    Science.gov (United States)

    Michalowski, Daniel; Chitima-Matsiga, Rebecca; Held, Daniel M; Burke, Donald H

    2008-12-01

    DNA aptamers RT5, RT6 and RT47 form a group of related sequences that inhibit HIV-1 reverse transcriptase (RT). The essential inhibitory structure is identified here as bimodular, with a 5' stem-loop module physically connected to a 3'-guanosine quadruplex module. The stem-loop tolerates considerable sequence plasticity. Connections between the guanosine triplets in the quadruplex could be simplified to a single nucleotide or a nonnucleic acid linker, such as hexaethylene glycol. All 12 quadruplex guanosines are required in an aptamer retaining most of the original loop sequence from RT6; only 11 are required for aptamer R1T (single T residue in intra-quadruplex loops). Circular dichroism (CD) spectroscopy gave ellipticity minima and maxima at 240 nm and 264 nm, indicating a parallel arrangement of the quadruplex strands. The simplified aptamers displayed increased overall stability. An aptamer carrying the original intra-quadruplex loops from RT6 inhibited RT in K(+) buffers but not in Na(+) buffers and displayed significant CD spectral broadening in Na(+) buffers, while R1T inhibited RT in both buffers and displayed less broadening in Na(+) buffers. The bimodular ssDNA aptamers inhibited RT from diverse primate lentiviruses with low nM IC(50) values. These data provide insight into the requirements for broad-spectrum RT inhibition by nucleic acid aptamers.

  7. Development of an efficient targeted cell-SELEX procedure for DNA aptamer reagents.

    Directory of Open Access Journals (Sweden)

    Susanne Meyer

    Full Text Available DNA aptamers generated by cell-SELEX offer an attractive alternative to antibodies, but generating aptamers to specific, known membrane protein targets has proven challenging, and has severely limited the use of aptamers as affinity reagents for cell identification and purification.We modified the BJAB lymphoblastoma cell line to over-express the murine c-kit cell surface receptor. After six rounds of cell-SELEX, high-throughput sequencing and bioinformatics analysis, we identified aptamers that bound BJAB cells expressing c-kit but not wild-type BJAB controls. One of these aptamers also recognizes c-kit endogenously expressed by a mast cell line or hematopoietic progenitor cells, and specifically blocks binding of the c-kit ligand stem cell factor (SCF. This aptamer enables better separation by fluorescence-activated cell sorting (FACS of c-kit(+ hematopoietic progenitor cells from mixed bone marrow populations than a commercially available antibody, suggesting that this approach may be broadly useful for rapid isolation of affinity reagents suitable for purification of other specific cell types.Here we describe a novel procedure for the efficient generation of DNA aptamers that bind to specific cell membrane proteins and can be used as high affinity reagents. We have named the procedure STACS (Specific TArget Cell-SELEX.

  8. In Vitro Selection and Characterization of DNA Aptamers to a Small Molecule Target.

    Science.gov (United States)

    Ruscito, Annamaria; McConnell, Erin M; Koudrina, Anna; Velu, Ranganathan; Mattice, Christopher; Hunt, Vernon; McKeague, Maureen; DeRosa, Maria C

    2017-12-14

    Aptamers, synthetic oligonucleotide-based molecular recognition probes, have found use in a wide array of biosensing technologies based on their tight and highly selective binding to a variety of molecular targets. However, the inherent challenges associated with the selection and characterization of aptamers for small molecule targets have resulted in their underrepresentation, despite the need for small molecule detection in fields such as medicine, the environment, and agriculture. This protocol describes the steps in the selection, sequencing, affinity characterization, and truncation of DNA aptamers that are specific for small molecule targets. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  9. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.

    Science.gov (United States)

    Pang, Jie; Zhang, Ziping; Jin, Haizhu

    2016-03-15

    Electrochemical aptamer-based (E-AB) sensors employing electrode-immobilized, redox-tagged aptamer probes have emerged as a promising platform for the sensitive and quick detection of target analytes ranging from small molecules to proteins. Signal generation in this class of sensor is linked to change in electron transfer efficiency upon binding-induced change in flexibility/conformation of the aptamer probe. Because of this signaling mechanism, signal gains of these sensors can be improved by employing a displacement-based recognition system, which links target binding with a large-scale flexibility/conformation shift from the aptamer-DNA duplex to the single-stranded DNA or the native aptamer. Despite the relatively large number of displacement-based E-AB sensor samples, little attention has been paid to the structure variation of the aptamer-DNA duplex probe. Here we detail the effects of complementary length and position of the aptamer-DNA duplex probe on the performance of a model displacement-based E-AB sensor for ATP. We find that, greater background suppression and signal gain are observed with longer complementary length of the aptamer-DNA duplex probe. However, sensor equilibration time slows monotonically with increasing complementary length; and with too many target binding sites in aptamer sequence being occupied by the complementary DNA, the aptamer-target binding does not occur and no signal gain observed. We also demonstrate that signal gain of the displacement-based E-AB sensor is strongly dependent on the complementary position of the aptamer-DNA duplex probe, with complementary position located at the electrode-attached or redox-tagged end of the duplex probe, larger background suppression and signal increase than that of the middle position are observed. These results highlight the importance of rational structure design of the aptamer-DNA duplex probe and provide new insights into the optimization of displacement-based E-AB sensors. Copyright

  10. In vitro selection of DNA aptamers binding pesticide fluoroacetamide.

    Science.gov (United States)

    Cao, Fangqi; Lu, Xinwei; Hu, Xiaolong; Zhang, Yurong; Zeng, Libo; Chen, Liankang; Sun, Meiqi

    2016-05-01

    Fluoroacetamide (Mw = 77.06) is a lethal rodenticide to humans and animals which is still frequently abused in food storage somewhere in China. The production of antibodies for fluoroacetamide is difficult due to its high toxicity to animals, which limits the application of immunoassay method in poison detection. In this work, aptamers targeting N-fluoroacetyl glycine as an analog of fluoroacetamide were selected by a specific systematic evolution of ligands by exponential enrichment (SELEX) strategy. The binding ability of the selected aptamers to fluoroacetamide was identified using surface plasmon resonance (SPR)-based assay. The estimated KD values in the low micromolar range showed a good affinity of these aptamers to the target. Our work verified that the SELEX strategy has the potential for developing aptamers targeted to small molecular toxicants and aptamers can be employed as new recognition elements instead of antibodies for poison detection.

  11. Evaluation of antithrombotic activity of thrombin DNA aptamers by a murine thrombosis model.

    Directory of Open Access Journals (Sweden)

    Elena Zavyalova

    Full Text Available Aptamers are nucleic acid based molecular recognition elements with a high potential for the theranostics. Some of the aptamers are under development for therapeutic applications as promising antithrombotic agents; and G-quadruplex DNA aptamers, which directly inhibit the thrombin activity, are among them. RA-36, the 31-meric DNA aptamer, consists of two thrombin binding pharmacophores joined with the thymine linker. It has been shown earlier that RA-36 directly inhibits thrombin in the reaction of fibrinogen hydrolysis, and also it inhibits plasma and blood coagulation. Studies of both inhibitory and anticoagulation effects had indicated rather high species specificity of the aptamer. Further R&D of RA-36 requires exploring its efficiency in vivo. Therefore the development of a robust and adequate animal model for effective physiological studies of aptamers is in high current demand. This work is devoted to in vivo study of the antithrombotic effect of RA-36 aptamer. A murine model of thrombosis has been applied to reveal a lag and even prevention of thrombus formation when RA-36 was intravenous bolus injected in high doses of 1.4-7.1 µmol/kg (14-70 mg/kg. A comparative study of RA-36 aptamer and bivalirudin reveals that both direct thrombin inhibitors have similar antithrombotic effects for the murine model of thrombosis; though in vitro bivalirudin has anticoagulation activity several times higher compared to RA-36. The results indicate that both RA-36 aptamer and bivalirudin are direct thrombin inhibitors of different potency, but possible interactions of the thrombin-inhibitor complex with other components of blood coagulation cascade level the physiological effects for both inhibitors.

  12. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Jin, E-mail: jinxxwang@263.net [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Nan [Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-11-15

    Highlights: • The dopamine/PEI film with controlled amine density was successfully prepared. • The DNA aptamer was assembled onto the film via electrostatic incorporation. • The A@DPfilmscanspecificallyandeffectivelycaptureEPCs. • The A@DP film can support the survival of ECs, control the hyperplasia of SMCs. • The dynamic/co-culture models are useful for studying cells competitive adhesion. - Abstract: Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  13. Detection of Cryptosporidium parvum Oocysts on Fresh Produce Using DNA Aptamers.

    Directory of Open Access Journals (Sweden)

    Asma Iqbal

    Full Text Available There are currently no standard methods for the detection of Cryptosporidium spp., or other protozoan parasites, in foods, and existing methods are often inadequate, with low and variable recovery efficiencies. Food testing is difficult due to the low concentrations of parasites, the difficulty in eluting parasites from some foods, the lack of enrichment methods, and the presence of PCR inhibitors. The main objectives of the present study were to obtain DNA aptamers binding to the oocyst wall of C. parvum, and to use the aptamers to detect the presence of this parasite in foods. DNA aptamers were selected against C. parvum oocysts using SELEX (Systematic Evolution of Ligands by EXponential enrichment. Ten rounds of selection led to the discovery of 14 aptamer clones with high affinities for C. parvum oocysts. For detecting parasite-bound aptamers, a simple electrochemical sensor was employed, which used a gold nanoparticle-modified screen-printed carbon electrode. This aptasensor was fabricated by self-assembling a hybrid of a thiolated ssDNA primer and the anti- C. parvum aptamer. Square wave voltammetry was employed to quantitate C. parvum in the range of 150 to 800 oocysts, with a detection limit of approximately 100 oocysts. The high sensitivity and specificity of the developed aptasensor suggests that this novel method is very promising for the detection and identification of C. parvum oocysts on spiked fresh fruits, as compared to conventional methods such as microscopy and PCR.

  14. In Situ Live Cell Sensing of Multiple Nucleotides Exploiting DNA/RNA Aptamers and Graphene Oxide Nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Li, Zhaohui; Weber, Thomas J.; Hu, Dehong; Lin, Chiann Tso; Li, Jinghong; Lin, Yuehe

    2013-07-23

    Adenosine-5’-triphosphate (ATP) and guanosine-5’-triphosphate (GTP) are primary energy resources and function coordinately for numerous reactions such as microtubule assembly, insulin secretion and ion channel regulation. We have developed a novel DNA/RNA aptamer- graphene oxide nanosheet (GO-nS) sensing platform that can selectively and simultaneously detect ATP and GTP in live cells. A fluorescent tag is covalently attached to aptamers and fluorescence is quenched upon binding of aptamer to the GO-nS. Fluorescently tagged aptamers that selectively bind ATP or GTP were isolated from an aptamer library and were adsorbed onto GO-nS. Upon incubation with targets (ATP and/or GTP), the aptamers readily dissociated from GO-nS and the fluorescent signal was recovered. By covalently attaching fluorophores, both ATP and GTP sensing aptamers could be exploited to simultaneously visualize aptamer dissociation in live cells. In addition, the GO-nS appear to be biocompatible and protect the adsorbed DNA/RNA aptamers from enzymatic cleavage. Our results support the application of aptamer/GO-nS as a sensing platform for nucleotides in living cells and have implications for the development of additional sensor platforms for other bio-molecules that show selective interactions with aptamers and other biomarkers.

  15. Enzymatic conjugation of multiple proteins on a DNA aptamer in a tail-specific manner.

    Science.gov (United States)

    Takahara, Mari; Hayashi, Kounosuke; Goto, Masahiro; Kamiya, Noriho

    2016-06-01

    Conjugation of single-strand DNA aptamers and enzymes has been of great significance in bioanalytical and biomedical applications because of the unlimited functions provided by DNA aptamer direction. Therefore, we developed efficient tailing of a DNA aptamer, with end-specific conjugation of multiple enzymes, through enzymatic catalysis. Terminal deoxynucleotidyl transferase (TdT) added multiple Z-Gln-Gly (Z-QG) moieties to the 3'-end of a DNA aptamer via the addition of Z-QG-modified deoxyuridine triphosphate (Z-QG-dUTP) and deoxynucleoside triphosphates (dNTPs). The resultant (Z-QG)m -(dN)l-aptamer, whose Z-QGs with dN spacers served as stickers for microbial transglutaminase (MTG), were crosslinked between the Z-QGs on the DNA and a substrate peptide sequence containing lysine (K), fused to a recombinant enzyme (i.e. bacterial alkaline phosphatase; BAP) by MTG. The incorporation efficiency of Z-QG moieties on the aptamer tail and the subsequent conjugation efficiency with multiple enzyme molecules were dramatically altered by the presence of dNTPs, revealing that a combination of Z-QG-dUTP/dTTP comprised the best labeling efficiency and corresponding properties during analytical performance. Thus, a novel optimized platform for designing (BAP)n -(dT)l-DNA aptamers was demonstrated for the first time in this article, offering unique opportunities for tailoring new types of covalent protein-nucleic acid conjugates in a controllable way. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Studies of DNA Aptamer OliGreen and PicoGreen Fluorescence Interactions in Buffer and Serum.

    Science.gov (United States)

    Bruno, John G; Sivils, Jeffrey C

    2016-07-01

    Spectrofluorometric and emission peak titration and timed studies of OliGreen (OG) and PicoGreen (PG) were conducted in Tris EDTA (TE) buffer, pooled rat and fetal bovine serum with two different aptamers of 72 and 192 bases in length to determine if OG or PG were suitable for aptamer pharmacokinetic (PK) studies in sera. Results indicated that OG and PG detected the single-stranded (ss) and double-stranded (ds) stem-loop structures of the two aptamers quite well in TE with reliable standard curves having exponential character (or several linear detection regions) up to 1 μg/ml of aptamer DNA with detection limits of ~1 ng/ml. The intensity of OG and PG staining appeared to correlate with the number and percentage of ss and ds bases in each aptamer. OG and PG fluorescence in pooled rat serum or fetal bovine serum (FBS) did not titer as a function of DNA aptamer concentration from 1 μg/ml to 1 ng/ml. This lack of OG or PG aptamer assays in serum is contrary to most published reports of OG or PG assays for ss antisense oligonucleotides, ds PCR amplicons or other types of DNA in serum or plasma. Further studies suggested that the lack of OG and PG assay titration in serum might not be entirely due to aptamer degradation from nucleases in serum since the fluorescence signals in serum appeared relatively stable over time from 30 min to 4 hours. A hypothesis is presented which attributes the inability of OG or PG to assay aptamers in serum to a combination of high blue-green autofluorescence in serum with possible serum nuclease degradation of aptamers over time and the changing aptamer to serum protein ratio coupled to nonspecific binding of serum proteins to aptamers thereby possibly changing aptamer conformations as a function of aptamer concentration during titration experiments.

  17. The Evaluation of Pharmacodynamics and Pharmacokinetics of Anti-thrombin DNA Aptamer RA-36

    Directory of Open Access Journals (Sweden)

    Elena Zavyalova

    2017-12-01

    Full Text Available Anticoagulants are a vital class of drugs, which are applied for short-term surgical procedures, and for long-term treatments for thrombosis prevention in high risk groups. Several anticoagulant drugs are commercially available, but all have intrinsic disadvantages, e.g., bleeding risks, as well as specific ones, e.g., immune response to peptide/protein drugs. Therefore, the search for novel, efficient and safe anticoagulants is essential. Nucleic acid aptamers are an emerging class of contemporary pharmaceuticals which are fully biocompatible and biodegradable; they have low toxicity, and are as efficient as many protein-based drugs. The anti-thrombin DNA aptamer RA-36 has been created using a combination of rational design and molecular dynamics, showing several extra-features over existing aptamers. Aptamer RA-36 has a bimodular structure; the first G-quadruplex binds and inhibits thrombin, whereas the second G-quadruplex varies the properties of the first. This bimodular structure provides a favorable dose-effect dependence allowing the risk of bleeding to be potentially decreased. Here, the results of efficiency trials of the aptamer are presented. The aptamer RA-36 has a distinctive species specificity; therefore, the careful selection of experimental animals was required. The anticoagulant activity was characterized in rats and monkeys in vivo. Antithrombotic activity was evaluated in the live murine model of the induced thrombosis. Pharmacokinetics was estimated by tracking radionuclide labeled aptamer in rats. The aptamer was thoroughly characterized using bivalirudin as a reference drug. Despite the different profiles of anticoagulant activity, these two compounds could refer to each other, and the corresponding doses could be estimated. Bivalirudin turned out to have 10-fold higher anticoagulant and antithrombotic activity. The difference in activity is easy to explain due to the pharmacokinetic profiles of the substances: the aptamer

  18. DNA aptamers as a novel approach to neutralize Staphylococcus aureus α-toxin.

    Science.gov (United States)

    Vivekananda, Jeevalatha; Salgado, Christi; Millenbaugh, Nancy J

    2014-02-14

    Staphylococcus aureus is a versatile pathogen capable of causing a broad spectrum of diseases ranging from superficial skin infections to life threatening conditions such as endocarditis, septicemia, pneumonia and toxic shock syndrome. In vitro and in vivo studies identified an exotoxin, α-toxin, as a major cause of S. aureus toxicity. Because S. aureus has rapidly evolved resistance to a number of antibiotics, including methicillin, it is important to identify new therapeutic strategies, other than antibiotics, for inhibiting the harmful effects of this pathogen. Aptamers are single-stranded DNA or RNA oligonucleotides with three-dimensional folded conformations that bind with high affinity and selectivity to targets and modulate their biological functions. The goal of this study was to isolate DNA aptamers that specifically inhibit the cytotoxic activity of α-toxin. After 10 rounds of Systematic Evolution of Ligands by EXponential Enrichment (SELEX), 49 potential anti-α-toxin aptamers were identified. In vitro neutralization assays demonstrated that 4 of these 49 aptamers, AT-27, AT-33, AT-36, and AT-49, significantly inhibited α-toxin-mediated cell death in Jurkat T cells. Furthermore, RT-PCR analysis revealed that α-toxin increased the transcription of the inflammatory cytokines TNF-α and IL-17 and that anti-α-toxin aptamers AT-33 and AT-36 inhibited the upregulation of these genes. Collectively, the data suggest the feasibility of generating functionally effective aptamers against α-toxin for treatment of S. aureus infections. Published by Elsevier Inc.

  19. Development, screening, and analysis of DNA aptamer libraries potentially useful for diagnosis and passive immunity of arboviruses

    Directory of Open Access Journals (Sweden)

    Bruno John G

    2012-11-01

    Full Text Available Abstract Background Nucleic acid aptamers have long demonstrated the capacity to bind viral envelope proteins and to inhibit the progression of pathogenic virus infections. Here we report on initial efforts to develop and screen DNA aptamers against recombinant envelope proteins or synthetic peptides and whole inactivated viruses from several virulent arboviruses including Chikungunya, Crimean-Congo hemorrhagic fever (CCHF, dengue, tickborne encephalitis and West Nile viruses. We also analyzed sequence data and secondary structures for commonalities that might reveal consensus binding sites among the various aptamers. Some of the highest affinity and most specific aptamers in the down-selected libraries were demonstrated to have diagnostic utility in lateral flow chromatographic assays and in a fluorescent aptamer-magnetic bead sandwich assay. Some of the reported aptamers may also be able to bind viral envelope proteins in vivo and therefore may have antiviral potential in passive immunity or prophylactic applications. Results Several arbovirus DNA aptamer sequences emerged multiple times in the various down selected aptamer libraries thereby suggesting some consensus sequences for binding arbovirus envelope proteins. Screening of aptamers by enzyme-linked aptamer sorbent assay (ELASA was useful for ranking relative aptamer affinities against their cognate viral targets. Additional study of the aptamer sequences and secondary structures of top-ranked anti-arboviral aptamers suggest potential virus binding motifs exist within some of the key aptamers and are highlighted in the supplemental figures for this article. One sequence segment (ACGGGTCCGGACA emerged 60 times in the anti-CCHF aptamer library, but nowhere else in the anti-arbovirus library and only a few other times in a larger library of aptamers known to bind bacteria and rickettsia or other targets. Diagnostic utility of some of the aptamers for arbovirus detection in lateral flow

  20. In vitro selection of a DNA aptamer targeted against Shigella dysenteriae.

    Science.gov (United States)

    Duan, Nuo; Ding, Xiaoying; Wu, Shijia; Xia, Yu; Ma, Xiaoyuan; Wang, Zhouping; Chen, Jie

    2013-09-01

    To identify DNA aptamers demonstrating binding specificity for Shigella dysenteriae, a whole-bacterium Systemic Evolution of Ligands by Exponential enrichment (SELEX) method was applied to a combinatorial library of single-stranded DNA (ssDNA) molecules. After several rounds of selection using S. dysenteriae as the target, the highly enriched oligonucleotide pool was sequenced and then grouped into different families based on primary sequence homologies and similarities in the secondary structures. Aptamer S 1, which showed particularly high binding affinity in preliminary studies, was chosen for further characterisation. This aptamer displayed a dissociation constant (Kd value) of 23.47 ± 2.48 nM. Binding assays to assess the specificity of aptamer S 1 showed high binding affinity for S. dysenteriae and low apparent binding affinity for other bacteria. The ssDNA aptamers generated may serve as a new type of molecular probe for microbial pathogens, as it has the potential to overcome the tedious isolation and purification requirements for complex targets. © 2013.

  1. DNA aptamer identification and characterization for E. coli O157 detection using cell based SELEX method.

    Science.gov (United States)

    Amraee, Masoum; Oloomi, Mana; Yavari, Afsaneh; Bouzari, Saeid

    2017-11-01

    Escherichia coli (E. coli) O157:H7 is a foodborne pathogen that causes symptoms in humans. Its rapid identification should be considered to avoid toxic effects of the pathogen. In this study, systematic evolution of ligands by exponential enrichment using whole cells (Cell-SELEX) method was used for recognizing E. coli strain, O157 by single-stranded DNA library of aptamer. Nine rounds of cell-selex procedure were applied using O157, as a whole-cell target, with O42, K12, Top10, DH5α E. coli cells, Shigella flexneri and Salmonella typhi as counterparts. The specific interaction between selected DNA aptamers and targeted cell was assessed. After applying six rounds of SELEX for selection of DNA aptamers, the candidate sequences were obtained. Finally, specific aptamer was selected as an ideal aptamer for detection and capturing of E. coli O157. Dissociation constant of the selected aptamer were calculated (107.6 ± 67.8 pM). In addition, the secondary structure prediction and cross reactivity assays were performed. The isolated aptamer efficiency was confirmed and it was shown that the new DNA aptamer sequence has the ability to use for detection. This specific O157:H7 aptamer have the potential for application as a diagnostic ligand and could be used for detection of the related food borne diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Selection and Characterization of an α6β4 Integrin blocking DNA Aptamer

    Directory of Open Access Journals (Sweden)

    Katharina Berg

    2016-01-01

    Full Text Available The heterodimeric laminin receptor α6β4 integrin plays a central role in the promotion of tumor cell growth, invasion, and organotropic metastasis. As an overproduction of the integrin is often linked to a poor prognosis, the inhibition of integrin α6β4 binding to laminin is of high therapeutical interest. Here, we report on the combination of a cell-systematic evolution of ligands by exponential enrichment and a bead-based selection resulting in the first aptamer inhibiting the interaction between α6β4 integrin and laminin-332. This Integrin α6β4-specific DNA Aptamer (IDA inhibits the adhesion of prostate cancer cells (PC-3 to laminin-332 with an IC50 value of 149 nmol/l. The Kd value concerning the aptamer's interaction with PC-3 cells amounts to 137 nmol/l. Further characterization showed specificity to α6 integrins and a half-life in murine blood plasma of 6 hours. Two truncated versions of the aptamer retained their binding capacity, but lost their ability to inhibit the interaction between laminin-332 and PC-3 cells. Confocal laser scanning microscope studies revealed that the aptamer was internalized into PC-3-cells. Therefore, in addition to the adhesion-blocking function of this aptamer, IDA could also be applied for the delivery of siRNA, microRNA or toxins to cancer cells presenting the integrin α6β4.

  3. Selection and Characterization of an α6β4 Integrin blocking DNA Aptamer.

    Science.gov (United States)

    Berg, Katharina; Lange, Tobias; Mittelberger, Florian; Schumacher, Udo; Hahn, Ulrich

    2016-03-15

    The heterodimeric laminin receptor α6β4 integrin plays a central role in the promotion of tumor cell growth, invasion, and organotropic metastasis. As an overproduction of the integrin is often linked to a poor prognosis, the inhibition of integrin α6β4 binding to laminin is of high therapeutical interest. Here, we report on the combination of a cell-systematic evolution of ligands by exponential enrichment and a bead-based selection resulting in the first aptamer inhibiting the interaction between α6β4 integrin and laminin-332. This Integrin α6β4-specific DNA Aptamer (IDA) inhibits the adhesion of prostate cancer cells (PC-3) to laminin-332 with an IC50 value of 149 nmol/l. The Kd value concerning the aptamer's interaction with PC-3 cells amounts to 137 nmol/l. Further characterization showed specificity to α6 integrins and a half-life in murine blood plasma of 6 hours. Two truncated versions of the aptamer retained their binding capacity, but lost their ability to inhibit the interaction between laminin-332 and PC-3 cells. Confocal laser scanning microscope studies revealed that the aptamer was internalized into PC-3-cells. Therefore, in addition to the adhesion-blocking function of this aptamer, IDA could also be applied for the delivery of siRNA, microRNA or toxins to cancer cells presenting the integrin α6β4.

  4. Selection, Characterization and Interaction Studies of a DNA Aptamer for the Detection of Bifidobacterium bifidum

    Directory of Open Access Journals (Sweden)

    Lujun Hu

    2017-04-01

    Full Text Available A whole-bacterium-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment procedure was adopted in this study for the selection of an ssDNA aptamer that binds to Bifidobacterium bifidum. After 12 rounds of selection targeted against B. bifidum, 30 sequences were obtained and divided into seven families according to primary sequence homology and similarity of secondary structure. Four FAM (fluorescein amidite labeled aptamer sequences from different families were selected for further characterization by flow cytometric analysis. The results reveal that the aptamer sequence CCFM641-5 demonstrated high-affinity and specificity for B. bifidum compared with the other sequences tested, and the estimated Kd value was 10.69 ± 0.89 nM. Additionally, sequence truncation experiments of the aptamer CCFM641-5 led to the conclusion that the 5′-primer and 3′-primer binding sites were essential for aptamer-target binding. In addition, the possible component of the target B. bifidum, bound by the aptamer CCFM641-5, was identified as a membrane protein by treatment with proteinase. Furthermore, to prove the potential application of the aptamer CCFM641-5, a colorimetric bioassay of the sandwich-type structure was used to detect B. bifidum. The assay had a linear range of 104 to 107 cfu/mL (R2 = 0.9834. Therefore, the colorimetric bioassay appears to be a promising method for the detection of B. bifidum based on the aptamer CCFM641-5.

  5. Ultrafast Capillary Electrophoresis Isolation of DNA Aptamer for the PCR Amplification-Based Small Analyte Sensing

    Directory of Open Access Journals (Sweden)

    Emmanuelle eFiore

    2015-08-01

    Full Text Available Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization of capillary electrophoresis and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s was developed by designing a capillary electrophoresis input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 µM.

  6. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  7. Development of a ssDNA aptamer for detection of residual benzylpenicillin.

    Science.gov (United States)

    Lee, A-Young; Ha, Na-Reum; Jung, In-Pil; Kim, Sang-Heon; Kim, A-Ru; Yoon, Moon-Young

    2017-08-15

    Antibiotics are useful for improving the living conditions of livestock. However, residual antibiotics induce several human diseases such as food-borne illness and infection of carbapenem-resistant Enterobacteriaceae (CRE). In this study, the identification of a benzylpenicillin-specific aptamer was selected by rGO-SELEX (reduced Graphene Oxide-Systematic Evolution of Ligands by EXponential enrichment). A random ssDNA library was incubated with rGO for adsorption and eluted with benzylpenicillin. As a result of the selection process, a DNA aptamer was found that specifically bound to benzylpenicillin with high binding affinity, K d  = 383.4 nM, and had a low limit of detection (LOD) of 9.2 nM. The characterization of the aptamer was performed through the fluorescence recovery signal from rGO surface. In addition, detection of benzylpenicillin was performed in pretreated milk samples, and its detection accuracy was shown to be 100± 10%. This represented that BBA1 was used for fluorescence aptasensor system in real sample. Furthermore, this benzylpenicillin binding aptamer showed high specificity against other antibiotics except for ampicillin. With these advantageous characteristics, we expect that this aptamer could be applied to an on-site detection system for residual benzylpenicillin. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Graphene oxide and DNA aptamer based sub-nanomolar potassium detecting optical nanosensor

    Science.gov (United States)

    Datta, Debopam; Sarkar, Ketaki; Mukherjee, Souvik; Meshik, Xenia; Stroscio, Michael A.; Dutta, Mitra

    2017-08-01

    Quantum-dot (QD) based nanosensors are frequently used by researchers to detect small molecules, ions and different biomolecules. In this article, we present a sensor complex/system comprised of deoxyribonucleic acid (DNA) aptamer, gold nanoparticle and semiconductor QD, attached to a graphene oxide (GO) flake for detection of potassium. As reported herein, it is demonstrated that QD-aptamer-quencher nanosensor functions even when tethered to GO, opening the way to future applications where sensing can be accomplished simultaneously with other previously demonstrated applications of GO such as serving as a nanocarrier for drug delivery. Herein, it is demonstrated that the DNA based thrombin binding aptamer used in this study undergoes the conformational change needed for sensing even when the nanosensor complex is anchored to the GO. Analysis with the Hill equation indicates the interaction between aptamer and potassium follows sigmoidal Hill kinetics. It is found that the quenching efficiency of the optical sensor is linear with the logarithm of concentration from 1 pM to 100 nM and decreases for higher concentration due to unavailability of aptamer binding sites. Such a simple and sensitive optical aptasensor with minimum detection capability of 1.96 pM for potassium ion can also be employed in-vitro detection of different physiological ions, pathogens and disease detection methods.

  9. Screening and development of DNA aptamers as capture probes for colorimetric detection of patulin.

    Science.gov (United States)

    Wu, Shijia; Duan, Nuo; Zhang, Weixiao; Zhao, Sen; Wang, Zhouping

    2016-09-01

    Patulin (PAT) is a kind of mycotoxin that has serious harmful impacts on both food quality and human health. A high-affinity ssDNA aptamer that specifically binds to patulin was generated using systemic evolution of ligands by exponential enrichment (SELEX) assisted by graphene oxide (GO). After 15 rounds of positive and negative selection, a highly enriched ssDNA pool was sequenced and the representative sequences were subjected to binding assays to evaluate their affinity and specificity. Of the eight aptamer candidates tested, the sequence PAT-11 bound to patulin with high affinity and excellent selectivity with a dissociation constant (Kd) of 21.83 ± 5.022 nM. The selected aptamer, PAT-11, was subsequently used as a recognition element to develop a detection method for patulin based on an enzyme-chromogenic substrate system. The colorimetric aptasensor exhibited a linear range from 50 to 2500 pg mL(-1), and the limit of detection was found to be 48 pg mL(-1). The results indicated that GO-SELEX technology was appropriate for the screening of aptamers against small-molecule toxins, offering a promising application for aptamer-based biosensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Molecular and Functional Characterization of ssDNA Aptamers that Specifically Bind Leishmania infantum PABP

    Science.gov (United States)

    Guerra-Pérez, Natalia; Ramos, Edurne; García-Hernández, Marta; Pinto, Celia; Soto, Manuel; Martín, M. Elena; González, Víctor M.

    2015-01-01

    Summary A poly (A)-binding protein from Leishmania infantum (LiPABP) has been recently cloned and characterized in our laboratory. Although this protein shows a very high homology with PABPs from other eukaryotic organisms including mammals and other parasites, exist divergences along the sequence that convert them in potential diagnostic markers and/or therapeutics targets. Aptamers are oligonucleotide ligands that are selected in vitro by their affinity and specificity for the target as a consequence of the particular tertiary structure that they are able to acquire depending on their sequence. Development of high-affinity molecules with the ability to recognize specifically Leishmania proteins is essential for the progress of this kind of study. Results We have selected a ssDNA aptamer population against a recombinant 6xHIS–LiPABP protein (rLiPABP) that is able to recognize the target with a low Kd. Cloning, sequencing and in silico analysis of the aptamers obtained from the population yielded three aptamers (ApPABP#3, ApPABP#7 and ApPABP#11) that significantly bound to PABP with higher affinity than the naïve population. These aptamers were analyzed by ELONA and slot blot to establish affinity and specificity for rLiPABP. Results demonstrated that the three aptamers have high affinity and specificity for the target and that they are able to detect an endogenous LiPABP (eLiPABP) protein amount corresponding to 2500 L. infantum promastigotes in a significant manner. The functional analysis of the aptamers also revealed that ApPABP#11 disrupts the binding of both Myc-LiPABP and eLiPABP to poly (A) in vitro. On the other hand, these aptamers are able to bind and purify LiPABP from complex mixes. Conclusion Results presented here demonstrate that aptamers represent new reagents for characterization of LiPABP and that they can affect LiPABP activity. At this respect, the use of these aptamers as therapeutic tool affecting the physiological role of PABP has to be

  11. Structural and Affinity Analyses of G-Quadruplex DNA Aptamers for Camptothecin Derivatives

    Directory of Open Access Journals (Sweden)

    Naoki Sugimoto

    2013-08-01

    Full Text Available We recently selected DNA aptamers that bind to camptothecin (CPT and CPT derivatives from a 70-mer oligodeoxyribonucleotide (ODN library using the Systematic Evolution of Ligands by EXponential enrichment (SELEX method. The target-binding activity of the obtained 70-mer CPT-binding DNA aptamer, termed CA-70, which contains a 16-mer guanine (G-core motif (G3TG3TG3T2G3 that forms a three-tiered G-quadruplex, was determined using fluorescence titration. In this study, truncated fragments of CA-70 that all have the G-core motif, CA-40, -20, -19, -18A, -18B, -17, and -16, were carefully analyzed. We found that CA-40 retained the target-binding activity, whereas CA-20, -19, and -18B exhibited little or no binding activities. Further, not only CA-18A but also the shorter length fragments CA-17 and -16 clearly retained the binding activity, indicating that tail strands of the G-quadruplex structure can significantly affect the target binding of G-quadruplex DNA aptamers. Further analyses using circular dichroism (CD spectroscopy and fluorescence polarization (FP assay were conducted to investigate the structure and affinity of G-quadruplex DNA aptamers.

  12. Emulsion PCR: a high efficient way of PCR amplification of random DNA libraries in aptamer selection.

    Directory of Open Access Journals (Sweden)

    Keke Shao

    Full Text Available Aptamers are short RNA or DNA oligonucleotides which can bind with different targets. Typically, they are selected from a large number of random DNA sequence libraries. The main strategy to obtain aptamers is systematic evolution of ligands by exponential enrichment (SELEX. Low efficiency is one of the limitations for conventional PCR amplification of random DNA sequence library in aptamer selection because of relative low products and high by-products formation efficiency. Here, we developed emulsion PCR for aptamer selection. With this method, the by-products formation decreased tremendously to an undetectable level, while the products formation increased significantly. Our results indicated that by-products in conventional PCR amplification were from primer-product and product-product hybridization. In emulsion PCR, we can completely avoid the product-product hybridization and avoid the most of primer-product hybridization if the conditions were optimized. In addition, it also showed that the molecule ratio of template to compartment was crucial to by-product formation efficiency in emulsion PCR amplification. Furthermore, the concentration of the Taq DNA polymerase in the emulsion PCR mixture had a significant impact on product formation efficiency. So, the results of our study indicated that emulsion PCR could improve the efficiency of SELEX.

  13. Selection of LNA-containing DNA aptamers against recombinant human CD73

    DEFF Research Database (Denmark)

    Elle, Ida C; Karlsen, Kasper K; Terp, Mikkel G

    2015-01-01

    LNA-containing DNA aptamers against CD73 (human ecto-5'-nucleotidase), a protein frequently overexpressed in solid tumours, were isolated by SELEX. A pre-defined stem-loop library, containing LNA in the forward primer region, was enriched with CD73 binding sequences through six rounds of SELEX wi...

  14. Selection and application of ssDNA aptamers to detect active TB from sputum samples.

    Directory of Open Access Journals (Sweden)

    Lia S Rotherham

    Full Text Available BACKGROUND: Despite the enormous global burden of tuberculosis (TB, conventional approaches to diagnosis continue to rely on tests that have major drawbacks. The improvement of TB diagnostics relies, not only on good biomarkers, but also upon accurate detection methodologies. The 10-kDa culture filtrate protein (CFP-10 and the 6-kDa early secreted antigen target (ESAT-6 are potent T-cell antigens that are recognised by over 70% of TB patients. Aptamers, a novel sensitive and specific class of detection molecules, has hitherto, not been raised to these relatively TB-specific antigens. METHODS: DNA aptamers that bind to the CFP-10.ESAT-6 heterodimer were isolated. To assess their affinity and specificity to the heterodimer, aptamers were screened using an enzyme-linked oligonucleotide assay (ELONA. One suitable aptamer was evaluated by ELONA using sputum samples obtained from 20 TB patients and 48 control patients (those with latent TB infection, symptomatic non TB patients, and healthy laboratory volunteers. Culture positivity for Mycobacterium tuberculosis (Mtb served as the reference standard. Accuracy and cut-points were evaluated using ROC curve analysis. RESULTS: Twenty-four out of the 66 aptamers that were isolated bound significantly (p<0.05 to the CFP-10.ESAT-6 heterodimer and six were further evaluated. Their dissociation constant (K(D values were in the nanomolar range. One aptamer, designated CSIR 2.11, was evaluated using sputum samples. CSIR 2.11 had sensitivity and specificity of 100% and 68.75% using Youden's index and 35% and 95%, respectively, using a rule-in cut-point. CONCLUSION: This preliminary proof-of-concept study suggests that a diagnosis of active TB using anti-CFP-10.ESAT-6 aptamers applied to human sputum samples is feasible.

  15. Selection and Application of ssDNA Aptamers to Detect Active TB from Sputum Samples

    Science.gov (United States)

    Rotherham, Lia S.; Maserumule, Charlotte; Dheda, Keertan; Theron, Jacques; Khati, Makobetsa

    2012-01-01

    Background Despite the enormous global burden of tuberculosis (TB), conventional approaches to diagnosis continue to rely on tests that have major drawbacks. The improvement of TB diagnostics relies, not only on good biomarkers, but also upon accurate detection methodologies. The 10-kDa culture filtrate protein (CFP-10) and the 6-kDa early secreted antigen target (ESAT-6) are potent T-cell antigens that are recognised by over 70% of TB patients. Aptamers, a novel sensitive and specific class of detection molecules, has hitherto, not been raised to these relatively TB-specific antigens. Methods DNA aptamers that bind to the CFP-10.ESAT-6 heterodimer were isolated. To assess their affinity and specificity to the heterodimer, aptamers were screened using an enzyme-linked oligonucleotide assay (ELONA). One suitable aptamer was evaluated by ELONA using sputum samples obtained from 20 TB patients and 48 control patients (those with latent TB infection, symptomatic non TB patients, and healthy laboratory volunteers). Culture positivity for Mycobacterium tuberculosis (Mtb) served as the reference standard. Accuracy and cut-points were evaluated using ROC curve analysis. Results Twenty-four out of the 66 aptamers that were isolated bound significantly (pCFP-10.ESAT-6 heterodimer and six were further evaluated. Their dissociation constant (KD) values were in the nanomolar range. One aptamer, designated CSIR 2.11, was evaluated using sputum samples. CSIR 2.11 had sensitivity and specificity of 100% and 68.75% using Youden’s index and 35% and 95%, respectively, using a rule-in cut-point. Conclusion This preliminary proof-of-concept study suggests that a diagnosis of active TB using anti-CFP-10.ESAT-6 aptamers applied to human sputum samples is feasible. PMID:23056492

  16. Enhancing the Affinity of Anti-Human α-Thrombin 15-mer DNA Aptamer and Anti-Immunoglobulin E Aptamer by PolyT Extension.

    Science.gov (United States)

    Bai, Yunlong; Li, Yapiao; Zhang, Dapeng; Wang, Hailin; Zhao, Qiang

    2017-09-05

    Aptamer affinity capillary electrophoresis-laser-induced fluorescence (CE-LIF) for protein detection takes advantage of aptamers for their ease of synthesis and labeling, small size, and having many negative charges. Its success relies on the high binding affinity of aptamers. One 15-mer DNA aptamer (5'-GGT TGG TGT GGT TGG-3', Apt15) shows desirable specificity for human α-thrombin, an important enzyme with multiple functions in blood. However, Apt15 has weak binding affinity, and the use of Apt15 in affinity CE-LIF analysis remains challenging. Here we reported that extension of Apt15 at the 3'-end with a polyT tail having length of 18 T or longer significantly enhanced its affinity and enabled a well-isolated and stable peak for thrombin-aptamer complex in affinity CE. It was likely that the improvement of binding affinity resulted from double binding, an additional interaction of the polyT tail with thrombin in addition to the Apt15 section binding to thrombin. With dye-labeled Apt15 having a T25 tail, we achieved detection of thrombin at concentrations as low as 0.1 nM by affinity CE-LIF. This aptamer probe specifically bound to human α-thrombin, showing negligible affinity for human β- and γ-thrombin, which are proteolyzed derivatives of human alpha α-thrombin and share similar structure. This strategy of adding a polyT extension also enhanced the binding affinity of anti-immunoglobulin E aptamer in CE-LIF analysis, showing that the affinity enhancement approach is not limited to the thrombin-binding aptamer and has potential for more applications in bioanalysis.

  17. Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: A universal strategy for ratiometric detection of organophosphorus pesticides.

    Science.gov (United States)

    Tang, Tingting; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-01-01

    Based on the highly sensitivity and stable-fluorescence of water-soluble CdTe/CdS core-shell quantum dots (QDs) with broad-specificity DNA aptamers, a novel ratiometric detection strategy was proposed for the sensitive detection of organophosphorus pesticides by capillary electrophoresis with laser-induced fluorescence (CE-LIF). The as-prepared QDs were first conjugated with the amino-modified oligonucleotide (AMO) by amidation reaction, which is partial complementary to the DNA aptamer of organophosphorus pesticides. Then QD-labeled AMO (QD-AMO) was incubated with the DNA aptamer to form QD-AMO-aptamer duplex. When the target organophosphorus pesticides were added, they could specifically bind the DNA aptamer, leading to the cleavage of QD-AMO-aptamer duplex, accompany with the release of QD-AMO. As a result, the ratio of peak height between QD-AMO and QD-AMO-aptamer duplex changed in the detection process of CE-LIF. This strategy was subsequently applied for the detection of phorate, profenofos, isocarbophos, and omethoate with the detection limits of 0.20, 0.10, 0.17, and 0.23μM, respectively. This is the first report about using QDs as the signal indicators for organophosphorus pesticides detection based on broad-specificity DNA aptamers by CE-LIF, thus contributing to extend the scope of application of QDs in different fields. The proposed method has great potential to be a universal strategy for rapid detection of aptamer-specific small molecule targets by simply changing the types of aptamer sequences. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. DNA and RNA aptamers: from tools for basic research towards therapeutic applications.

    Science.gov (United States)

    Ulrich, Henning; Trujillo, Cleber A; Nery, Arthur A; Alves, Janaina M; Majumder, Paromita; Resende, Rodrigo R; Martins, Antonio H

    2006-09-01

    The systematic evolution of ligands by exponential enrichment (SELEX) is a combinatorial oligonucleotide library-based in vitro selection approach in which DNA or RNA molecules are selected by their ability to bind their targets with high affinity and specificity, comparable to those of antibodies. Nucleic acids with high affinity for their targets have been selected against a wide variety of compounds, from small molecules, such as ATP, to membrane proteins and even whole organisms. Recently, the use of the SELEX technique was extended to isolate oligonucleotide ligands, also known as aptamers, for a wide range of proteins of importance for therapy and diagnostics, such as growth factors and cell surface antigens. The number of aptamers generated as inhibitors of various target proteins has increased following automatization of the SELEX process. Their diagnostic and therapeutic efficacy can be enhanced by introducing chemical modifications into the oligonucleotides to provide resistance against enzymatic degradation in body fluids. Several aptamers are currently being tested in preclinical and clinical trials, and aptamers are in the process of becoming a new class of therapeutic agents. Recently, the anti-VEGF aptamer pegaptanib received FDA approval for treatment of human ocular vascular disease.

  19. DNA Microarrays for Aptamer Identification and Structural Characterization

    Science.gov (United States)

    2012-09-01

    Sensing,” Biosensors and Bioelectronics , 26, 2010 pp. 1386-1391. 10) Cho, M., Xiao, Y., Nie, J., Stewart, R., Csordas, A. T., Oh, S. S., Thomson, J. A...high-affinity binders for different target molecules including biomarkers and chemical warfare agents for future applications in biosensors , beginning...small molecule targets and thus pose a challenge for aptamer selection and subsequent biosensor integration. Aside from the abundance of biomarker

  20. Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX.

    Science.gov (United States)

    Dwivedi, Hari P; Smiley, R Derike; Jaykus, Lee-Ann

    2010-08-01

    The need for pre-analytical sample processing prior to the application of rapid molecular-based detection of pathogens in food and environmental samples is well established. Although immunocapture has been applied in this regard, alternative ligands such as nucleic acid aptamers have advantages over antibodies such as low cost, ease of production and modification, and comparable stability. To identify DNA aptamers demonstrating binding specificity to Campylobacter jejuni cells, a whole-cell Systemic Evolution of Ligands by EXponential enrichment (SELEX) method was applied to a combinatorial library of FAM-labeled single-stranded DNA molecules. FAM-labeled aptamer sequences with high binding affinity to C. jejuni A9a as determined by flow cytometric analysis were identified. Aptamer ONS-23, which showed particularly high binding affinity in preliminary studies, was chosen for further characterization. This aptamer displayed a dissociation constant (K(d) value) of 292.8 +/- 53.1 nM with 47.27 +/- 5.58% cells fluorescent (bound) in a 1.48-microM aptamer solution. Binding assays to assess the specificity of aptamer ONS-23 showed high binding affinity (25-36%) for all other C. jejuni strains screened (inclusivity) and low apparent binding affinity (1-5%) with non-C. jejuni strains (exclusivity). Whole-cell SELEX is a promising technique to design aptamer-based molecular probes for microbial pathogens without tedious isolation and purification of complex markers or targets.

  1. Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling.

    Science.gov (United States)

    Ren, Xiaoming; Gelinas, Amy D; von Carlowitz, Ira; Janjic, Nebojsa; Pyle, Anna Marie

    2017-10-09

    IL-1α is an essential cytokine that contributes to inflammatory responses and is implicated in various forms of pathogenesis and cancer. Here we report a naphthyl modified DNA aptamer that specifically binds IL-1α and inhibits its signaling pathway. By solving the crystal structure of the IL-1α/aptamer, we provide a high-resolution structure of this critical cytokine and we reveal its functional interaction interface with high-affinity ligands. The non-helical aptamer, which represents a highly compact nucleic acid structure, contains a wealth of new conformational features, including an unknown form of G-quadruplex. The IL-1α/aptamer interface is composed of unusual polar and hydrophobic elements, along with an elaborate hydrogen bonding network that is mediated by sodium ion. IL-1α uses the same interface to interact with both the aptamer and its cognate receptor IL-1RI, thereby suggesting a novel route to immunomodulatory therapeutics.The cytokine interleukin 1α (IL-1α) plays an important role in inflammatory processes. Here the authors use SELEX to generate a modified DNA aptamer which specifically binds IL-1α, present the structure of the IL-1α/aptamer complex and show that this aptamer inhibits the IL-1α signaling pathway.

  2. A novel gold nanoparticle-DNA aptamer-based plasmonic chip for rapid and sensitive detection of bacterial pathogens

    DEFF Research Database (Denmark)

    Sun, Yi; Phuoc Long, Truong; Wolff, Anders

    2016-01-01

    Gold nanoparticles (AuNPs)-based biosensors are emerging technologies for rapid detection of pathogens. However, it is very challenging to develop chip-based AuNP-biosensors for whole cells. This paper describes a novel AuNPs-DNA aptamer-based plasmonic assay which allows DNA aptamers to be detac......Gold nanoparticles (AuNPs)-based biosensors are emerging technologies for rapid detection of pathogens. However, it is very challenging to develop chip-based AuNP-biosensors for whole cells. This paper describes a novel AuNPs-DNA aptamer-based plasmonic assay which allows DNA aptamers...... to be detached from AuNPs when interacting with bacteria. The new strategy greatly increases the sensitivity and specificity of chip-based whole-cell biosensing....

  3. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Seok; Niazi, Javed H. [School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Gu, Man Bock [School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)], E-mail: mbgu@korea.ac.kr

    2009-02-23

    An electrochemical sensing system for oxytetracycline (OTC) detection was developed using ssDNA aptamer immobilized on gold interdigitated array (IDA) electrode chip. A highly specific ssDNA aptamer that bind to OTC with high affinity was employed to discriminate other tetracyclines (TCs), such as doxycycline (DOX) and tetracycline (TET). The immobilized thiol-modified aptamer on gold electrode chip served as a biorecognition element for the target molecules and the electrochemical signals generated from interactions between the aptamers and the target molecules was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The current decrease due to the interference of bound OTC, DOX or TET was analyzed with the electron flow produced by a redox reaction between ferro- and ferricyanide. The specificity of developed EC-biosensor for OTC was highly distinguishable from the structurally similar antibiotics (DOX and TET). The dynamic range was determined to be 1-100 nM of OTC concentration in semi-logarithmic coordinates.

  4. Selection and analysis of a DNA aptamer binding α-amanitin from Amanita phalloides.

    Science.gov (United States)

    Muszyńska, Klaudia; Ostrowska, Dominika; Bartnicki, Filip; Kowalska, Ewa; Bodaszewska-Lubaś, Małgorzata; Hermanowicz, Paweł; Faulstich, Heinz; Strzałka, Wojciech

    2017-01-01

    Mushroom foraging is very popular in some regions of the world. Sometimes toxic and edible mushrooms are mistaken by mushroom collectors, leading to serious human poisoning. The group of mushrooms highly dangerous for human health includes Amanita phalloides. This mushroom produces a toxic octapeptide called α-amanitin which is an inhibitor of nuclear RNA polymerase II. The inhibition of this polymerase results in the abortion of mRNA synthesis. The ingestion of A. phalloides causes liver failure due to the fact that most of the toxin is uptaken by hepatocytes. The hospitalization of poisoned patients involves the removal of the toxin from the digestive tract, its dilution in the circulatory system and the administration of therapeutic adjuvants. Since there is no effective antidote against amanitin poisoning, in this study we developed a DNA aptamer exhibiting specific binding to α-amanitin. This aptamer was selected using the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) method. Next, its ability of toxin removal from aqueous solution was confirmed by pull-down assay. The aptamer region sufficient for α-amanitin binding was determined. Finally, the dissociation constant of the α-amanitin/DNA aptamer complex was calculated.

  5. Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiaoming; Gelinas, Amy D.; von Carlowitz, Ira; Janjic, Nebojsa; Pyle, Anna Marie (Yale); (SomaLogic)

    2017-10-09

    IL-1α is an essential cytokine that contributes to inflammatory responses and is implicated in various forms of pathogenesis and cancer. Here we report a naphthyl modified DNA aptamer that specifically binds IL-1α and inhibits its signaling pathway. By solving the crystal structure of the IL-1α/aptamer, we provide a high-resolution structure of this critical cytokine and we reveal its functional interaction interface with high-affinity ligands. The non-helical aptamer, which represents a highly compact nucleic acid structure, contains a wealth of new conformational features, including an unknown form of G-quadruplex. The IL-1α/aptamer interface is composed of unusual polar and hydrophobic elements, along with an elaborate hydrogen bonding network that is mediated by sodium ion. IL-1α uses the same interface to interact with both the aptamer and its cognate receptor IL-1RI, thereby suggesting a novel route to immunomodulatory therapeutics.

  6. Use of cell-SELEX to generate DNA aptamers as molecular probes of HPV-associated cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Jessica C Graham

    Full Text Available Disease-specific biomarkers are an important tool for the timely and effective management of pathological conditions, including determination of susceptibility, diagnosis, and monitoring efficacy of preventive or therapeutic strategies. Aptamers, comprising single-stranded or double-stranded DNA or RNA, can serve as biomarkers of disease or biological states. Aptamers can bind to specific epitopes on macromolecules by virtue of their three dimensional structures and, much like antibodies, aptamers can be used to target specific epitopes on the basis of their molecular shape. The Systematic Evolution of Ligands by EXponential enrichment (SELEX is the approach used to select high affinity aptamers for specific macromolecular targets from among the >10(13 oligomers comprising typical random oligomer libraries. In the present study, we used live cell-based SELEX to identify DNA aptamers which recognize cell surface differences between HPV-transformed cervical carcinoma cancer cells and isogenic, nontumorigenic, revertant cell lines.Whole-cell SELEX methodology was adapted for use with adherent cell lines (which we termed Adherent Cell-SELEX (AC-SELEX. Using this approach, we identified high affinity aptamers (nanomolar range K(d to epitopes specific to the cell surface of two nontumorigenic, nontumorigenic revertants derived from the human cervical cancer HeLa cell line, and demonstrated the loss of these epitopes in another human papillomavirus transformed cervical cancer cell line (SiHa. We also performed preliminary investigation of the aptamer epitopes and their binding characteristics.Using AC-SELEX we have generated several aptamers that have high affinity and specificity to the nontumorigenic, revertant of HPV-transformed cervical cancer cells. These aptamers can be used to identify new biomarkers that are related to carcinogenesis. Panels of aptamers, such as these may be useful in predicting the tumorigenic potential and properties of

  7. A label-free electrochemical biosensor based on a DNA aptamer against codeine.

    Science.gov (United States)

    Huang, Liangliang; Yang, Xiaojuan; Qi, Cui; Niu, Xiaofang; Zhao, Chunling; Zhao, Xiaohui; Shangguan, Dihua; Yang, Yunhui

    2013-07-17

    In order to develop a sensor for opium alkaloid codeine detection, DNA aptamers against codeine were generated by SELEX (systematic evolution of ligands by exponential enrichment) technique. An aptamer HL7-14, which is a 37-mer sequence with Kd values of 0.91 μM, was optimized by the truncation-mutation assay. The specificity investigation shows that HL7-14 exhibits high specificity to codeine over morphine, and almost cannot bind to other small molecule. With this new selected aptamer, a novel electrochemical label-free codeine aptamer biosensor based on Au-mesoporous silica nanoparticles (Au-MSN) as immobilized substrate has been proposed using [Fe(CN)6](3-/4-) as electroactive redox probe. The linear range covered from 10 pM to 100 nM with correlation coefficient of 0.9979 and the detection limit was 3 pM. Our study demonstrates that the biosensor has good specificity, stability and well regeneration. It can be used to detect codeine. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Aptamer-conjugated DNA nano-ring as the carrier of drug molecules.

    Science.gov (United States)

    Vellampatti, Srivithya; Heo, Roun; Babu, Mitta Sekhar; Park, Jae Hyung; Park, Sung Ha

    2017-12-22

    Because of predictable self-assembly and structural stability, structural DNA nanotechnology is considered as one of the main interdisciplinary subjects which encompass conventional nanotechnology and biotechnology. Here, we fabricated the mucin aptamer (MUC1) -conjugated DNA nano-ring intercalated with doxorubicin (DNRA-DOX) as the potential therapeutics for breast cancer. DNRA-DOX exhibited significantly higher cytotoxicity to the MCF-7 breast cancer cells than the controls, including DOX alone and aptamer deficient DNA nano-ring (DNR) having doxorubicin. Interactions of DOX to DNRA was studied by spectrophotometric measurements. Dose-dependent cytotoxicity was performed to prove that both DNR/DNRA were non-toxic to the cells. The drug release profile showed a controlled release of DOX at normal physiological pH 7.4 with approximately 61% released but when exposed lysosomal pH 5.5, the corresponding 95% was released within 48 hours. Owing to the presence of the aptamer, DNRA-DOX was effectively taken up by the cancer cells, confirmed by confocal microscopy implying its potential for targeted drug delivery. © 2017 IOP Publishing Ltd.

  9. Aptamer-conjugated DNA nano-ring as the carrier of drug molecules

    Science.gov (United States)

    Srivithya, Vellampatti; Roun, Heo; Sekhar Babu, Mitta; Hyung, Park Jae; Ha, Park Sung

    2018-03-01

    Due to its predictable self-assembly and structural stability, structural DNA nanotechnology is considered one of the main interdisciplinary subjects encompassing conventional nanotechnology and biotechnology. Here we have fabricated the mucin aptamer (MUC1)˗conjugated DNA nano˗ring intercalated with doxorubicin (DNRA˗DOX) as potential therapeutics for breast cancer. DNRA˗DOX exhibited significantly higher cytotoxicity to the MCF˗7 breast cancer cells than the controls, including DOX alone and the aptamer deficient DNA nano˗ring (DNR) with doxorubicin. Interactions between DOX and DNRA were studied using spectrophotometric measurements. Dose-dependent cytotoxicity was performed to prove that both DNR and DNRA were non-toxic to the cells. The drug release profile showed a controlled release of DOX at normal physiological pH 7.4, with approximately 61% released, but when exposed to lysosomal of pH 5.5, the corresponding 95% was released within 48 h. Owing to the presence of the aptamer, DNRA˗DOX was effectively taken up by the cancer cells, as confirmed by confocal microscopy, implying that it has potential for use in targeted drug delivery.

  10. Probing and characterizing the high specific sequences of ssDNA aptamer against SGIV-infected cells.

    Science.gov (United States)

    Li, Pengfei; Yu, Qing; Zhou, Lingli; Dong, Dexin; Wei, Shina; Ya, Hanzheng; Chen, Bo; Qin, Qiwei

    2018-02-15

    As the major viral pathogen of grouper aquaculture, Singapore grouper iridovirus (SGIV) has caused great economic losses in China and Southeast Asia. In the previous study, we have generated highly specific ssDNA aptamers against SGIV-infected grouper spleen cells (GS) by Systematic Evolution of Ligands by Exponential Enrichment technology (SELEX), in which Q2 had the highest binding affinity of 16.43 nM. In this study, we would try to identify the specific sequences in the aptamer Q2 that exhibited the high binding affinity to SGIV-infected cells by truncating the original Q2 into some different specific segments. We first evaluated the specificity and binding affinity of these truncated aptamers to SGIV-infected cells by flow cytometry, fluorescent imaging of cells and aptamer-based enzyme-linked apta-sorbent assay (ELASA). We then performed cytotoxicity analysis, assessment of the inhibitory effects upon SGIV infection and the celluar internalization kinetics of each truncated aptamer. Compared to the initial Q2, one of the truncated aptamer Q2-C5 showed a 3-fold increase in the binding affinity for SGIV-infected cells, and held more effective inhibitory effects, higher internalization kinetics and stability. Hence, the aptamer's truncated methods could be applied in the research of identifying aptamer's key sequences. The shorter, structure optimizing aptamer showed more excellent performance over the originally selected aptamer, which could potentially be applied in developing commercial detection probes for the early and rapid diagnosis of SGIV infection, and highly specific therapeutic drugs against SGIV infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Selection and Application of ssDNA Aptamers against Clenbuterol Hydrochloride Based on ssDNA Library Immobilized SELEX.

    Science.gov (United States)

    Duan, Nuo; Gong, Wenhui; Wu, Shijia; Wang, Zhouping

    2017-03-01

    Clenbuterol hydrochloride (CLB) is often abused as additive feed for livestock to decrease adipose tissue deposition and to increase growth rate. It raises a potential risk to human health through the consumption of animal product. In this study, aptamers with higher affinity and specificity were screened through 16 selection rounds based on the ssDNA library immobilized systematic evolution of ligands by exponential enrichment (SELEX) technique. After cloning and sequencing, five aptamer candidates were picked out for affinity and specificity assays based on a graphene oxide (GO) adsorption method. The results showed that the aptamer CLB-2 binds specifically against CLB with a dissociation constant, Kd, value of 76.61 ± 12.70 nM. In addition, an aptamer-based fluorescence bioassay was established for CLB analysis. The correlation between the CLB concentration and fluorescent signal was found to be linear within the range of 0.10 to 50 ng/mL with a limit of detection of 0.07 ng/mL. It has been further applied for the determination of CLB in pork samples, showing its great potential for sensitive analysis in food safety control.

  12. Gold-Coated Superparamagnetic Nanoparticles for Single Methyl Discrimination in DNA Aptamers

    Directory of Open Access Journals (Sweden)

    Maria Tintoré

    2015-11-01

    Full Text Available Au- and iron-based magnetic nanoparticles (NPs are promising NPs for biomedical applications due to their unique properties. The combination of a gold coating over a magnetic core puts together the benefits from adding the magnetic properties to the robust chemistry provided by the thiol functionalization of gold. Here, the use of Au-coated magnetic NPs for molecular detection of a single methylation in DNA aptamer is described. Binding of α-thrombin to two aptamers conjugated to these NPs causes aggregation, a phenomenon that can be observed by UV, DLS and MRI. These techniques discriminate a single methylation in one of the aptamers, preventing aggregation due to the inability of α-thrombin to recognize it. A parallel study with gold and ferromagnetic NPs is detailed, concluding that the Au coating of FexOy NP does not affect their performance and that they are suitable as complex biosensors. These results prove the high detection potency of Au-coated SPIONs for biomedical applications especially for DNA repair detection.

  13. Simple PEG modification of DNA aptamer based on copper ion coordination for tumor targeting.

    Science.gov (United States)

    Takafuji, Yoshimasa; Jo, Jun-ichiro; Tabata, Yasuhiko

    2011-01-01

    A simple modification of a DNA aptamer with poly(ethylene glycol) (PEG) based on metal coordination was developed. N,N-bis(carboxymethyl)-L-lysine (NTA) of a metal chelate residue was chemically introduced to one terminus of PEG. The NTA-introduced PEG (PEG-NTA) chelated Cu(2+) ions form a Cu(2+)-chelated PEG (PEG-Cu). When PEG-Cu was mixed with a DNA aptamer of anti-tumor activity (AS1411) in aqueous solution, a complex of PEG-Cu and AS1411 based on metal coordination was formed. The complex inhibited in vitro tumor growth in a dose-dependent manner. A body distribution study with tumor-bearing mice revealed that PEG-Cu-AS1411 complexes injected intravenously had a significant longer lifetime in the blood circulation and 1.5-2.0-fold higher accumulation in the tumor tissue than free AS1411. Intravenous injection of complexes suppressed the in vivo growth of tumor mass to a significantly greater extent compared with that of free AS1411. The Cu(2+)-coordinated PEG modification is a simple and promising method to enhance accumulation of the aptamer in the tumor, resulting in the augmented anti-tumor effect.

  14. Smart materials based on DNA aptamers: taking aptasensing to the next level.

    Science.gov (United States)

    Mastronardi, Emily; Foster, Amanda; Zhang, Xueru; DeRosa, Maria C

    2014-02-18

    "Smart" materials are an emerging category of multifunctional materials with physical or chemical properties that can be controllably altered in response to an external stimulus. By combining the standard properties of the advanced material with the unique ability to recognize and adapt in response to a change in their environment, these materials are finding applications in areas such as sensing and drug delivery. While the majority of these materials are responsive to physical or chemical changes, a particularly exciting area of research seeks to develop smart materials that are sensitive to specific molecular or biomolecular stimuli. These systems require the integration of a molecular recognition probe specific to the target molecule of interest. The ease of synthesis and labeling, low cost, and stability of DNA aptamers make them uniquely suited to effectively serve as molecular recognition probes in novel smart material systems. This review will highlight current work in the area of aptamer-based smart materials and prospects for their future applications.

  15. Dual role of the active-center cysteine in human peroxiredoxin 1: Peroxidase activity and heme binding.

    Science.gov (United States)

    Watanabe, Yuta; Ishimori, Koichiro; Uchida, Takeshi

    2017-02-12

    HBP23, a 23-kDa heme-binding protein identified in rats, is a member of the peroxiredoxin (Prx) family, the primary peroxidases involved in hydrogen peroxide catabolism. Although HBP23 has a characteristic Cys-Pro heme-binding motif, the significance of heme binding to Prx family proteins remains to be elucidated. Here, we examined the effect of heme binding to human peroxiredoxin-1 (PRX1), which has 97% amino acid identity to HBP23. PRX1 was expressed in Escherichia coli and purified to homogeneity. Spectroscopic titration demonstrated that PRX1 binds heme with a 1:1 stoichiometry and a dissociation constant of 0.17 μM. UV-vis spectra of heme-PRX1 suggested that Cys52 is the axial ligand of ferric heme. PRX1 peroxidase activity was lost upon heme binding, reflecting the fact that Cys52 is not only the heme-binding site but also the active center of peroxidase activity. Interestingly, heme binding to PRX1 caused a decrease in the toxicity and degradation of heme, significantly suppressing H2O2-dependent heme peroxidase activity and degradation of PRX1-bound heme compared with that of free hemin. By virtue of its cytosolic abundance (∼20 μM), PRX1 thus functions as a scavenger of cytosolic hemin (dual role; Cys-dependent peroxidase activity and cytosolic heme scavenger. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. DNA Aptamer Generation by Genetic Alphabet Expansion SELEX (ExSELEX) Using an Unnatural Base Pair System.

    Science.gov (United States)

    Kimoto, Michiko; Matsunaga, Ken-ichiro; Hirao, Ichiro

    2016-01-01

    Genetic alphabet expansion of DNA using unnatural base pair systems is expected to provide a wide variety of novel tools and methods. Recent rapid progress in this area has enabled the creation of several types of unnatural base pairs that function as a third base pair in polymerase reactions. Presently, a major topic is whether the genetic alphabet expansion system actually increases nucleic acid functionalities. We recently applied our unnatural base pair system to in vitro selection (SELEX), using a DNA library containing four natural bases and an unnatural base, and succeeded in the generation of high-affinity DNA aptamers that specifically bind to target proteins. Only a few hydrophobic unnatural bases greatly augmented the affinity of the aptamers. Here, we describe a new approach (genetic alphabet Expansion SELEX, ExSELEX), using our hydrophobic unnatural base pair system for high affinity DNA aptamer generation.

  17. Evaluation of DNA aptamers directed to thrombin as potential thrombus imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Dougan, Hayes E-mail: dougan@triumf.ca; Weitz, Jeffrey I.; Stafford, Alan R.; Gillespie, Kris D.; Klement, Petr; Hobbs, John B.; Lyster, Donald M

    2003-01-01

    Two DNA aptamers directed against two separate exosites on human {alpha}-thrombin were evaluated for thrombus-imaging potential. Aptamer ODN 1 is directed to the thrombin substrate binding site (exosite 1). Our finding that ODN 1 competes with fibrin for binding to exosite 1 on thrombin suggests that ODN 1 will not be useful for thrombus imaging. Aptamer ODN 2 is directed against the thrombin heparin binding site (exosite 2). ODN 2 bound to model thrombi that were formed either by clotting purified fibrinogen with thrombin, or by recalcifying citrated plasma. As the thrombin content of thrombi was increased the rate of ODN 2 uptake into preformed thrombi increased, whereas the rate of release of ODN 2 out of preformed thrombi decreased. This in vitro data suggested that ODN 2 might be useful for thrombus imaging because it can bind to exosite 2 on fibrin-bound thrombin. However, in a rabbit jugular vein model using thrombus supplemented with human thrombin, ODN 2 uptake was equal to the ovalbumin control, and did not reflect thrombin content. While the in vitro results with ODN 2 were consistent with thrombus imaging, the rapid clearance of ODN 2 from circulation, combined with slow mass transfer in the clot, seem to work against in vivo thrombin-dependent imaging or washout analysis.

  18. Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, Halina [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Wojaczynski, Jacek [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Mariusz [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Kroliczewski, Jaroslaw [Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-148 Wroclaw (Poland); Latos-Grazynski, Lechoslaw [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Teresa, E-mail: Teresa.Olczak@biotech.uni.wroc.pl [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland)

    2009-05-29

    Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and {sup 1}H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136 mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.

  19. Antagonistic effect of disulfide-rich peptide aptamers selected by cDNA display on interleukin-6-dependent cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Naoto, E-mail: nemoto@fms.saitama-u.ac.jp [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Innovation Center for Startups, National Institute of Advanced Industrial Science and Technology, 2-2-2 Marunouchi, Chiyoda-ku, Tokyo 100-0005 (Japan); Janusys Corporation, 508, Saitama Industrial Technology Center, Skip City, 3-12-18 Kami-Aoki, Kawaguchi, Saitama 333-0844 (Japan); Tsutsui, Chihiro [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Yamaguchi, Junichi [Innovation Center for Startups, National Institute of Advanced Industrial Science and Technology, 2-2-2 Marunouchi, Chiyoda-ku, Tokyo 100-0005 (Japan); Applied Gene Technology, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Ueno, Shingo [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Machida, Masayuki [Applied Gene Technology, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Kobayashi, Toshikatsu [Innovation Center for Startups, National Institute of Advanced Industrial Science and Technology, 2-2-2 Marunouchi, Chiyoda-ku, Tokyo 100-0005 (Japan); Janusys Corporation, 508, Saitama Industrial Technology Center, Skip City, 3-12-18 Kami-Aoki, Kawaguchi, Saitama 333-0844 (Japan); Sakai, Takafumi [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Disulfide-rich peptide aptamer inhibits IL-6-dependent cell proliferation. Black-Right-Pointing-Pointer Disulfide bond of peptide aptamer is essential for its affinity to IL-6R. Black-Right-Pointing-Pointer Inhibitory effect of peptide depends on number and pattern of its disulfide bonds. -- Abstract: Several engineered protein scaffolds have been developed recently to circumvent particular disadvantages of antibodies such as their large size and complex composition, low stability, and high production costs. We previously identified peptide aptamers containing one or two disulfide-bonds as an alternative ligand to the interleukin-6 receptor (IL-6R). Peptide aptamers (32 amino acids in length) were screened from a random peptide library by in vitro peptide selection using the evolutionary molecular engineering method 'cDNA display'. In this report, the antagonistic activity of the peptide aptamers were examined by an in vitro competition enzyme-linked immunosorbent assay (ELISA) and an IL-6-dependent cell proliferation assay. The results revealed that a disulfide-rich peptide aptamer inhibited IL-6-dependent cell proliferation with similar efficacy to an anti-IL-6R monoclonal antibody.

  20. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.

    Science.gov (United States)

    Hamula, Camille L A; Peng, Hanyong; Wang, Zhixin; Tyrrell, Gregory J; Li, Xing-Fang; Le, X Chris

    2016-03-15

    Streptococcus pyogenes is a clinically important pathogen consisting of various serotypes determined by different M proteins expressed on the cell surface. The M type is therefore a useful marker to monitor the spread of invasive S. pyogenes in a population. Serotyping and nucleic acid amplification/sequencing methods for the identification of M types are laborious, inconsistent, and usually confined to reference laboratories. The primary objective of this work is to develop a technique that enables generation of aptamers binding to specific M-types of S. pyogenes. We describe here an in vitro technique that directly used live bacterial cells and the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) strategy. Live S. pyogenes cells were incubated with DNA libraries consisting of 40-nucleotides randomized sequences. Those sequences that bound to the cells were separated, amplified using polymerase chain reaction (PCR), purified using gel electrophoresis, and served as the input DNA pool for the next round of SELEX selection. A specially designed forward primer containing extended polyA20/5Sp9 facilitated gel electrophoresis purification of ssDNA after PCR amplification. A counter-selection step using non-target cells was introduced to improve selectivity. DNA libraries of different starting sequence diversity (10(16) and 10(14)) were compared. Aptamer pools from each round of selection were tested for their binding to the target and non-target cells using flow cytometry. Selected aptamer pools were then cloned and sequenced. Individual aptamer sequences were screened on the basis of their binding to the 10 M-types that were used as targets. Aptamer pools obtained from SELEX rounds 5-8 showed high affinity to the target S. pyogenes cells. Tests against non-target Streptococcus bovis, Streptococcus pneumoniae, and Enterococcus species demonstrated selectivity of these aptamers for binding to S. pyogenes. Several aptamer sequences were found to bind

  1. Adenosine Triphosphate-Triggered Release of Macromolecular and Nanoparticle Loads from Aptamer/DNA-Cross-Linked Microcapsules.

    Science.gov (United States)

    Liao, Wei-Ching; Lu, Chun-Hua; Hartmann, Raimo; Wang, Fuan; Sohn, Yang Sung; Parak, Wolfgang J; Willner, Itamar

    2015-09-22

    The synthesis of stimuli-responsive DNA microcapsules acting as carriers for different payloads, and being dissociated through the formation of aptamer-ligand complexes is described. Specifically, stimuli-responsive anti-adenosine triphosphate (ATP) aptamer-cross-linked DNA-stabilized microcapsules loaded with tetramethylrhodamine-modified dextran (TMR-D), CdSe/ZnS quantum dots (QDs), or microperoxidase-11 (MP-11) are presented. In the presence of ATP as trigger, the microcapsules are dissociated through the formation of aptamer-ATP complexes, resulting in the release of the respective loads. Selective unlocking of the capsules is demonstrated, and CTP, GTP, or TTP do not unlock the pores. The ATP-triggered release of MP-11 from the microcapsules enables the MP-11-catalyzed oxidation of Amplex UltraRed by H2O2 to the fluorescent product resorufin.

  2. Selection of DNA Aptamers for Ovarian Cancer Biomarker CA125 Using One-Pot SELEX and High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Delia J. Scoville

    2017-01-01

    Full Text Available CA125 is a mucin glycoprotein whose concentration in serum correlates with a woman’s risk of developing ovarian cancer and also indicates response to therapy in diagnosed patients. Accurate detection of this large, complex protein in patient samples is of great clinical relevance. We suggest that powerful new diagnostic tools may be enabled by the development of nucleic acid aptamers with affinity for CA125. Here, we report on our use of One-Pot SELEX to isolate single-stranded DNA aptamers with affinity for CA125, followed by high-throughput sequencing of the selected oligonucleotides. This data-rich approach, combined with bioinformatics tools, enabled the entire selection process to be characterized. Using fluorescence anisotropy and affinity probe capillary electrophoresis, the binding affinities of four aptamer candidates were evaluated. Two aptamers, CA125_1 and CA125_12, both without primers, were found to bind to clinically relevant concentrations of the protein target. Binding was differently influenced by the presence of Mg2+ ions, being required for binding of CA125_1 and abrogating binding of CA125_12. In conclusion, One-Pot SELEX was found to be a promising selection method that yielded DNA aptamers to a clinically important protein target.

  3. In Vitro Selection of Cell-Internalizing DNA Aptamers in a Model System of Inflammatory Kidney Disease

    Directory of Open Access Journals (Sweden)

    Glory Ranches

    2017-09-01

    Full Text Available Chronic kidney disease (CKD is a progressive pathological condition marked by a gradual loss of kidney function. Treatment of CKD is most effective when diagnosed at an early stage and patients are still asymptomatic. However, current diagnostic biomarkers (e.g., serum creatinine and urine albumin are insufficient for prediction of the pathogenesis of the disease. To address this need, we applied a cell-SELEX (systematic evolution of ligands by exponential enrichment approach and identified a series of DNA aptamers, which exhibit high affinity and selectivity for cytokine-stimulated cells, resembling some aspects of a CKD phenotype. The cell-SELEX approach was driven toward the enrichment of aptamers that internalize via the endosomal pathway by isolating the endosomal fractions in each selection cycle. Indeed, we demonstrated co-localization of selected aptamers with lysosomal-associated membrane protein 1 (LAMP-1, a late endosomal and lysosomal marker protein, by fluorescence in situ hybridization. These findings are consistent with binding and subsequent internalization of the aptamers into cytokine-stimulated cells. Thus, our study sets the stage for applying selected DNA aptamers as theragnostic reagents for the development of targeted therapies to combat CKD.

  4. Development and Characterization of an HPV Type-16 Specific Modified DNA Aptamer for the Improvement of Potency Assays.

    Science.gov (United States)

    Trausch, Jeremiah J; Shank-Retzlaff, Mary; Verch, Thorsten

    2017-03-21

    Measuring vaccine potency is critical for vaccine release and is often accomplished using antibody-based ELISAs. Antibodies can be associated with significant drawbacks that are often overlooked including lot-to-lot variability, problems with cell-line maintenance, limited stability, high cost, and long discovery lead times. Here, we address many of these issues through the development of an aptamer, known as a slow off-rate modified DNA aptamer (SOMAmer), which targets a vaccine antigen in the human papillomavirus (HPV) vaccine Gardasil. The aptamer, termed HPV-07, was selected to bind the Type 16 virus-like-particle (VLP) formed by the self-assembling capsid protein L1. It is capable of binding with high sensitivity (EC50 of 0.1 to 0.4 μg/mL depending on assay format) while strongly discriminating against other VLP types. The aptamer competes for binding with the neutralizing antibody H16.V5, indicating at least partial recognition of a neutralizing and clinically relevant epitope. This makes it a useful reagent for measuring both potency and stability. When used in an ELISA format, the aptamer displays both high precision (intermediate precision of 6.3%) and a large linear range spanning from 25% to 200% of a typical formulation. To further exploit the advantages of aptamers, a simplified mix and read assay was also developed. This assay format offers significant time and resource reductions compared to a traditional ELISA. These results show aptamers are suitable reagents for biological potency assays, and we expect that their implementation could improve upon current assay formats.

  5. SCMHBP: prediction and analysis of heme binding proteins using propensity scores of dipeptides.

    Science.gov (United States)

    Liou, Yi-Fan; Charoenkwan, Phasit; Srinivasulu, Yerukala; Vasylenko, Tamara; Lai, Shih-Chung; Lee, Hua-Chin; Chen, Yi-Hsiung; Huang, Hui-Ling; Ho, Shinn-Ying

    2014-01-01

    Heme binding proteins (HBPs) are metalloproteins that contain a heme ligand (an iron-porphyrin complex) as the prosthetic group. Several computational methods have been proposed to predict heme binding residues and thereby to understand the interactions between heme and its host proteins. However, few in silico methods for identifying HBPs have been proposed. This work proposes a scoring card method (SCM) based method (named SCMHBP) for predicting and analyzing HBPs from sequences. A balanced dataset of 747 HBPs (selected using a Gene Ontology term GO:0020037) and 747 non-HBPs (selected from 91,414 putative non-HBPs) with an identity of 25% was firstly established. Consequently, a set of scores that quantified the propensity of amino acids and dipeptides to be HBPs is estimated using SCM to maximize the predictive accuracy of SCMHBP. Finally, the informative physicochemical properties of 20 amino acids are identified by utilizing the estimated propensity scores to be used to categorize HBPs. The training and mean test accuracies of SCMHBP applied to three independent test datasets are 85.90% and 71.57%, respectively. SCMHBP performs well relative to comparison with such methods as support vector machine (SVM), decision tree J48, and Bayes classifiers. The putative non-HBPs with high sequence propensity scores are potential HBPs, which can be further validated by experimental confirmation. The propensity scores of individual amino acids and dipeptides are examined to elucidate the interactions between heme and its host proteins. The following characteristics of HBPs are derived from the propensity scores: 1) aromatic side chains are important to the effectiveness of specific HBP functions; 2) a hydrophobic environment is important in the interaction between heme and binding sites; and 3) the whole HBP has low flexibility whereas the heme binding residues are relatively flexible. SCMHBP yields knowledge that improves our understanding of HBPs rather than merely

  6. Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection.

    Science.gov (United States)

    Bruno, John G; Phillips, Taylor; Carrillo, Maria P; Crowell, Randy

    2009-05-01

    DNA aptamers were developed against MgCl(2)-extracted surface proteins from Campylobacter jejuni. The two highest affinity aptamers were selected for use in a magnetic bead (MB) and red quantum dot (QD)-based sandwich assay scheme. The assay was evaluated using both heat-killed and live C. jejuni and exhibits detection limits as low as an average of 2.5 colony forming unit (cfu) equivalents in buffer and 10-250 cfu in various food matrices. The assay exhibits low cross-reactivity with bacterial species outside the Campylobacter genus, but exhibits substantial cross-reactivity with C. coli and C. lari. The assay was evaluated with a spectrofluorometer and a commercially available handheld fluorometer, which yielded comparable detection limits and ranges. Remarkably, the sandwich assay components adhere to the inside face of polystyrene cuvettes even in food matrices near neutral pH, thereby enabling a rapid homogeneous assay, because fluorescence is concentrated to a small, thin planar area and background fluorescence from the bulk solution is minimized. The plastic cuvette-adherent technology coupled to a sensitive handheld fluorometer may enable rapid (15-20 min), portable detection of foodborne pathogens from "farm-to-fork" by obviating the slow enrichment culture phase used by other food safety tests.

  7. Identification of ssDNA aptamers specific to clinical isolates of Streptococcus mutans strains with different cariogenicity.

    Science.gov (United States)

    Cui, Wei; Liu, Jiaojiao; Su, Donghua; Hu, Danyang; Hou, Shuai; Hu, Tongnan; Yang, Jiyong; Luo, Yanping; Xi, Qing; Chu, Bingfeng; Wang, Chenglong

    2016-06-01

    Streptococcus mutans, a Gram-positive facultative anaerobic bacterium, is considered to be a major etiological factor for dental caries. In this study, plaques from dental enamel surfaces of caries-active and caries-free individuals were obtained and cultivated for S. mutans isolation. Morphology examination, biochemical characterization, and polymerase chain reaction were performed to identify S. mutans The cariogenicity of S. mutans strains isolated from clinical specimens was evaluated by testing the acidogenicity, aciduricity, extracellular polysaccharide production, and adhesion ability of the bacteria. Finally, subtractive SELEX (systematic evolution of ligands by exponential enrichment) technology targeting whole intact cells was used to screen for ssDNA aptamers specific to the strains with high cariogenicity. After nine rounds of subtractive SELEX, sufficient pool enrichment was achieved as shown by radioactive isotope analysis. The enriched pool was cloned and sequenced randomly, followed by MEME online and RNA structure software analysis of the sequences. Results from the flow cytometry indicated that aptamers H1, H16, H4, L1, L10, and H19 could discriminate highly cariogenic S. mutans strains from poorly cariogenic strains. Among these, Aptamer H19 had the strongest binding capacity with cariogenic S. mutans strains with a dissociation constant of 69.45 ± 38.53 nM. In conclusion, ssDNA aptamers specific to highly cariogenic clinical S. mutans strains were successfully obtained. These ssDNA aptamers might be used for the early diagnosis and treatment of dental caries. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Immobilization of DNA aptamers via plasma polymerized allylamine film to construct an endothelial progenitor cell-capture surface.

    Science.gov (United States)

    Qi, Pengkai; Yan, Wei; Yang, Ying; Li, Yalong; Fan, Yi; Chen, Junying; Yang, Zhilu; Tu, Qiufen; Huang, Nan

    2015-02-01

    The endothelial progenitor cells (EPCs) capture stent has drawn increasing attentions and become one of the most promising concepts for the next generation vascular stent. In this regard, it is of great significance to immobilize a molecule with the ability to bind EPC for rapid in vivo endothelialization with high specificity. In this work, a facile two-step method aimed at constructing a coating with specific EPC capturing aptamers is reported. The processes involves as the first-step deposition of plasma polymerized allylamine (PPAam) on a substrate to introduce amine groups, followed by the electrostatic adsorption of a 34 bases single strand DNA sequence to the PPAam surface as a second step (PPAam-DNA). Grazing incidence attenuated total reflection Fourier transform infrared spectroscopy (GATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the successful immobilization of the aptamers. Quartz crystal microbalance with dissipation (QCM-D) real time monitoring result shows that about 175 ng/cm(2) aptamers were conjugated onto the PPAam surface. The interactions between the modified surfaces and human umbilical vein endothelial cells (ECs), smooth muscle cells (SMCs), and murine induced EPCs derived from mesenchymal stem cells (MSCs) were also investigated. It was demonstrated that PPAam-DNA samples could capture more EPCs, and present a cellular friendly surface for the proliferation of both EPCs and ECs but no effect on the hyperplasia of SMCs. Also, the co-culture results of 3 types of cells confirmed that the aptamer could specifically bond EPCs rather than ECs and SMCs, suggesting the competitive adhesion advantage of EPCs to ECs and SMCs. These data demonstrate that the EPC aptamer has large potential for designing an EPC captured stent and other vascular grafts with targeted in situ endothelialization. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Aptamer Bioinformatics

    Directory of Open Access Journals (Sweden)

    Andrew B. Kinghorn

    2017-11-01

    Full Text Available Aptamers are short nucleic acid sequences capable of specific, high-affinity molecular binding. They are isolated via SELEX (Systematic Evolution of Ligands by Exponential Enrichment, an evolutionary process that involves iterative rounds of selection and amplification before sequencing and aptamer characterization. As aptamers are genetic in nature, bioinformatic approaches have been used to improve both aptamers and their selection. This review will discuss the advancements made in several enclaves of aptamer bioinformatics, including simulation of aptamer selection, fragment-based aptamer design, patterning of libraries, identification of lead aptamers from high-throughput sequencing (HTS data and in silico aptamer optimization.

  10. Aptamer Bioinformatics

    Science.gov (United States)

    Kinghorn, Andrew B.; Liang, Shaolin; Tanner, Julian A.

    2017-01-01

    Aptamers are short nucleic acid sequences capable of specific, high-affinity molecular binding. They are isolated via SELEX (Systematic Evolution of Ligands by Exponential Enrichment), an evolutionary process that involves iterative rounds of selection and amplification before sequencing and aptamer characterization. As aptamers are genetic in nature, bioinformatic approaches have been used to improve both aptamers and their selection. This review will discuss the advancements made in several enclaves of aptamer bioinformatics, including simulation of aptamer selection, fragment-based aptamer design, patterning of libraries, identification of lead aptamers from high-throughput sequencing (HTS) data and in silico aptamer optimization. PMID:29186809

  11. Aptamer Bioinformatics.

    Science.gov (United States)

    Kinghorn, Andrew B; Fraser, Lewis A; Lang, Shaolin; Shiu, Simon Chi-Chin; Tanner, Julian A

    2017-11-24

    Aptamers are short nucleic acid sequences capable of specific, high-affinity molecular binding. They are isolated via SELEX (Systematic Evolution of Ligands by Exponential Enrichment), an evolutionary process that involves iterative rounds of selection and amplification before sequencing and aptamer characterization. As aptamers are genetic in nature, bioinformatic approaches have been used to improve both aptamers and their selection. This review will discuss the advancements made in several enclaves of aptamer bioinformatics, including simulation of aptamer selection, fragment-based aptamer design, patterning of libraries, identification of lead aptamers from high-throughput sequencing (HTS) data and in silico aptamer optimization.

  12. Imidazole-free purification of His3-tagged recombinant proteins using ssDNA aptamer-based affinity chromatography.

    Science.gov (United States)

    Bartnicki, Filip; Kowalska, Ewa; Pels, Katarzyna; Strzalka, Wojciech

    2015-10-30

    Immobilized metal ion affinity chromatography (IMAC) is widely used for the purification of many different His6-tagged recombinant proteins. On the one hand, it is a powerful technique but on the other hand it has its disadvantages. In this report, we present the development of a unique ssDNA aptamer for the purification of His3-tagged recombinant proteins. Our study shows that stability of the His3-tag/H3T aptamer complex can be controlled by the sodium ion concentration. Based on this feature, we demonstrate that H3T aptamer resin was successfully employed for the purification of three out of four tested His3-tagged recombinant proteins from an E. coli total protein extract using imidazole-free buffers. Finally, we show that the purity of His3-tagged proteins is superior when purified with the help of the H3T aptamer in comparison with Ni-NTA resin. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Periostin-Binding DNA Aptamer Treatment Ameliorates Peritoneal Dialysis-Induced Peritoneal Fibrosis

    Directory of Open Access Journals (Sweden)

    Bo Young Nam

    2017-06-01

    Full Text Available Peritoneal fibrosis is a major complication in peritoneal dialysis (PD patients, which leads to dialysis discontinuation. Periostin, increased by transforming growth factor β1 (TGF-β1 stimulation, induces the expression of extracellular matrix (ECM genes. Aberrant periostin expression has been demonstrated to be associated with PD-related peritoneal fibrosis. Therefore, the effect of periostin inhibition by an aptamer-based inhibitor on peritoneal fibrosis was evaluated. In vitro, TGF-β1 treatment upregulated periostin, fibronectin, α-smooth muscle actin (α-SMA, and Snail expression and reduced E-cadherin expression in human peritoneal mesothelial cells (HPMCs. Periostin small interfering RNA (siRNA treatment ameliorated the TGF-β1-induced periostin, fibronectin, α-SMA, and Snail expression and restored E-cadherin expression in HPMCs. Similarly, the periostin-binding DNA aptamer (PA also attenuated fibronectin, α-SMA, and Snail upregulation and E-cadherin downregulation in TGF-β1-stimulated HPMCs. In mice treated with PD solution for 4 weeks, the expression of periostin, fibronectin, α-SMA, and Snail was significantly increased in the peritoneum, whereas E-cadherin expression was significantly decreased. The thickness of the submesothelial layer and the intensity of Masson’s trichrome staining in the PD group were significantly increased compared to the untreated group. These changes were significantly abrogated by the intraperitoneal administration of PA. These findings suggest that PA can be a potential therapeutic strategy for peritoneal fibrosis in PD patients.

  14. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens

    Energy Technology Data Exchange (ETDEWEB)

    Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N. (UW)

    2012-03-15

    functionally characterized. On the basis of prior work, we predicted that cTHAP4 is composed of a heme-binding nitrobindin domain, making THAP4 the only human THAP protein predicted to bind a cofactor. Nitrobindin, a recently characterized protein from Arabidopsis thaliana, is structurally similar and exhibits nitric oxide (NO)-binding properties that resemble the heme-binding nitrophorins. Nitrophorins use a heme moiety to store, transport, and release NO in a pH-specific manner. Although the exact function of nitrobindin is not fully known, the similarities between the well-characterized nitrophorins imply a role in NO transport, sensing, or metabolism. To better elucidate the possible function of THAP4, we solved the hemebound structure of cTHAP4 to a resolution of 1.79 {angstrom}.

  15. Application of DNA Aptamers and Quantum Dots to Lateral Flow Test Strips for Detection of Foodborne Pathogens with Improved Sensitivity versus Colloidal Gold.

    Science.gov (United States)

    Bruno, John G

    2014-04-10

    Preliminary studies aimed at improving the sensitivity of foodborne pathogen detection via lateral flow (LF) test strips by use of high affinity DNA aptamers for capture and reporter functions when coupled to red-emitting quantum dots (Qdot 655) are reported. A variety of DNA aptamers developed against Escherichia coli, Listeria monocytogenes, and Salmonella enterica were paired in capture and reporter combinations to determine which yielded the strongest detection of their cognate bacteria using a colloidal gold screening system. Several promising sandwich combinations were identified for each of the three bacterial LF strip systems. The best E. coli aptamer-LF system was further studied and yielded a visible limit of detection (LOD) of ~3,000 E. coli 8739 and ~6,000 E. coli O157:H7 in buffer. These LODs were reduced to ~300-600 bacterial cells per test respectively by switching to a Qdot 655 aptamer-LF system. Novel aspects of these assays such as the use of high levels of detergents to avoid quantum dot agglutination and enhance migration in analytical membranes, identification of optimal analytical membrane types, UV-immobilization of capture aptamers, and novel dual biotin/digoxigenin-end labeled aptamer streptavidin-colloidal gold or -Qdot 655 conjugates plus anti-digoxigenin antibody control lines are also discussed. In general, this work provides proof-of-principle for highly sensitive aptamer-Qdot LF strip assays for rapid foodborne pathogen detection.

  16. Application of DNA Aptamers and Quantum Dots to Lateral Flow Test Strips for Detection of Foodborne Pathogens with Improved Sensitivity versus Colloidal Gold

    Directory of Open Access Journals (Sweden)

    John G. Bruno

    2014-04-01

    Full Text Available Preliminary studies aimed at improving the sensitivity of foodborne pathogen detection via lateral flow (LF test strips by use of high affinity DNA aptamers for capture and reporter functions when coupled to red-emitting quantum dots (Qdot 655 are reported. A variety of DNA aptamers developed against Escherichia coli, Listeria monocytogenes, and Salmonella enterica were paired in capture and reporter combinations to determine which yielded the strongest detection of their cognate bacteria using a colloidal gold screening system. Several promising sandwich combinations were identified for each of the three bacterial LF strip systems. The best E. coli aptamer-LF system was further studied and yielded a visible limit of detection (LOD of ~3,000 E. coli 8739 and ~6,000 E. coli O157:H7 in buffer. These LODs were reduced to ~300–600 bacterial cells per test respectively by switching to a Qdot 655 aptamer-LF system. Novel aspects of these assays such as the use of high levels of detergents to avoid quantum dot agglutination and enhance migration in analytical membranes, identification of optimal analytical membrane types, UV-immobilization of capture aptamers, and novel dual biotin/digoxigenin-end labeled aptamer streptavidin-colloidal gold or -Qdot 655 conjugates plus anti-digoxigenin antibody control lines are also discussed. In general, this work provides proof-of-principle for highly sensitive aptamer-Qdot LF strip assays for rapid foodborne pathogen detection.

  17. Analytical applications of aptamers

    Science.gov (United States)

    Tombelli, S.; Minunni, M.; Mascini, M.

    2007-05-01

    Aptamers are single stranded DNA or RNA ligands which can be selected for different targets starting from a library of molecules containing randomly created sequences. Aptamers have been selected to bind very different targets, from proteins to small organic dyes. Aptamers are proposed as alternatives to antibodies as biorecognition elements in analytical devices with ever increasing frequency. This in order to satisfy the demand for quick, cheap, simple and highly reproducible analytical devices, especially for protein detection in the medical field or for the detection of smaller molecules in environmental and food analysis. In our recent experience, DNA and RNA aptamers, specific for three different proteins (Tat, IgE and thrombin), have been exploited as bio-recognition elements to develop specific biosensors (aptasensors). These recognition elements have been coupled to piezoelectric quartz crystals and surface plasmon resonance (SPR) devices as transducers where the aptamers have been immobilized on the gold surface of the crystals electrodes or on SPR chips, respectively.

  18. Heme-binding activity of methoxyflavones from Pentzia monodiana Maire (Asteraceae).

    Science.gov (United States)

    Ortiz, Sergio; Dali-Yahia, Kamel; Vasquez-Ocmin, Pedro; Grougnet, Raphaël; Grellier, Philippe; Michel, Sylvie; Maciuk, Alexandre; Boutefnouchet, Sabrina

    2017-04-01

    A heme-binding assay based on mass spectrometry was performed on P. monodiana Maire (Asteraceae) extracts to identify metabolites able to form adducts with heminic part of haemoglobin, as potential antimalarial drugs. Main adducts were characterized and their stability was measured. Isolation of main constituents of P. monodiana Maire lead to identification of the two methoxyflavones 3'-O-methyleupatorin (7) and artemetin (8) involved in the adducts formation. Four seco-tanapartholides (1-4), a guaianolide (5), a germacranolide (6) and two other methoxyflavones (9, 10) were also characterized. Evaluation of isolated compounds on P. falciparum and T. brucei brucei showed a moderate antiprotozoal activity of the two methoxyflavones. Copyright © 2017. Published by Elsevier B.V.

  19. Advancements in Aptamer Discovery Technologies.

    Science.gov (United States)

    Gotrik, Michael R; Feagin, Trevor A; Csordas, Andrew T; Nakamoto, Margaret A; Soh, H Tom

    2016-09-20

    Affinity reagents that specifically bind to their target molecules are invaluable tools in nearly every field of modern biomedicine. Nucleic acid-based aptamers offer many advantages in this domain, because they are chemically synthesized, stable, and economical. Despite these compelling features, aptamers are currently not widely used in comparison to antibodies. This is primarily because conventional aptamer-discovery techniques such as SELEX are time-consuming and labor-intensive and often fail to produce aptamers with comparable binding performance to antibodies. This Account describes a body of work from our laboratory in developing advanced methods for consistently producing high-performance aptamers with higher efficiency, fewer resources, and, most importantly, a greater probability of success. We describe our efforts in systematically transforming each major step of the aptamer discovery process: selection, analysis, and characterization. To improve selection, we have developed microfluidic devices (M-SELEX) that enable discovery of high-affinity aptamers after a minimal number of selection rounds by precisely controlling the target concentration and washing stringency. In terms of improving aptamer pool analysis, our group was the first to use high-throughput sequencing (HTS) for the discovery of new aptamers. We showed that tracking the enrichment trajectory of individual aptamer sequences enables the identification of high-performing aptamers without requiring full convergence of the selected aptamer pool. HTS is now widely used for aptamer discovery, and open-source software has become available to facilitate analysis. To improve binding characterization, we used HTS data to design custom aptamer arrays to measure the affinity and specificity of up to ∼10(4) DNA aptamers in parallel as a means to rapidly discover high-quality aptamers. Most recently, our efforts have culminated in the invention of the "particle display" (PD) screening system, which

  20. Inhibition of adhesion and metastasis of HepG2 hepatocellular carcinoma cells in vitro by DNA aptamer against sialyl Lewis X.

    Science.gov (United States)

    Wang, Xiao-Kang; Peng, Yan; Tao, Hao-Ran; Zhou, Fen-Fang; Zhang, Chi; Su, Fei; Wang, Shi-Pei; Liu, Qing; Xu, Li-Hua; Pan, Xue-Kai; Xie, Wei; Feng, Mao-Hui

    2017-06-01

    The sialyl Lewis X (SLe x ) antigen encoded by the FUT7 gene is the ligand of endotheliam-selectin (E-selectin). The combination of SLe x antigen and E-selectin represents an important way for malignant tumor metastasis. In the present study, the effect of the SLe x -binding DNA aptamer on the adhesion and metastasis of hepatocellular carcinoma HepG2 cells in vitro was investigated. Reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence staining were conducted to detect the expression of FUT7 at both transcriptional and translational levels. The SLe x expression in HepG2 cells treated with different concentrations of SLe x -binding DNA aptamer was detected by flow cytometry. Besides, the adhesion, migration, and invasion of HepG2 cells were measured by cell adhesion assay, and the Transwell migration and invasion assay. The results showed that the FUT7 expression was up-regulated at both mRNA and protein levels in HepG2 cells. SLe x -binding DNA aptamer could significantly decrease the expression of SLe x in HepG2 cells. The cell adhesion assay revealed that the SLe x -binding DNA aptamer could effectively inhibit the interactions between E-selectin and SLe x in the HepG2 cells. Additionally, SLe x -binding DNA aptamers at 20 nmol/L were found to have the similar effect to the monoclonal antibody CSLEX-1. The Transwell migration and invasion assay revealed that the number of penetrating cells on the down-side of Transwell membrane was significantly less in cells treated with 5, 10, 20 nmol/L SLe x -binding DNA aptamer than those in the negative control group (Paptamer could significantly inhibit the in vitro adhesion, migration, and invasion of HepG2 cells, suggesting that the SLe x -binding DNA aptamer may be used as a potential molecular targeted drug against metastatic hepatocellular carcinoma.

  1. A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification.

    Science.gov (United States)

    Li, Shuang; Shang, Xinxin; Liu, Jia; Wang, Yujie; Guo, Yingshu; You, Jinmao

    2017-07-01

    We present a universal amplified-colorimetric for detecting nucleic acid targets or aptamer-specific ligand targets based on gold nanoparticle-DNA (GNP-DNA) hybridization chain reaction (HCR). The universal arrays consisted of capture probe and hairpin DNA-GNP. First, capture probe recognized target specificity and released the initiator sequence. Then dispersed hairpin DNA modified GNPs were cross-linked to form aggregates through HCR events triggered by initiator sequence. As the aggregates accumulate, a significant red-to purple color change can be easily visualized by the naked eye. We used miRNA target sequence (miRNA-203) and aptamer-specific ligand (ATP) as target molecules for this proof-of-concept experiment. Initiator sequence (DNA2) was released from the capture probe (MNP/DNA1/2 conjugates) under the strong competitiveness of miRNA-203. Hairpin DNA (H1 and H2) can be complementary with the help of initiator DNA2 to form GNP-H1/GNP-H2 aggregates. The absorption ratio (A620/A520) values of solutions were a sensitive function of miRNA-203 concentration covering from 1.0 × 10-11 M to 9.0 × 10-10 M, and as low as 1.0 × 10-11 M could be detected. At the same time, the color changed from light wine red to purple and then to light blue have occurred in the solution. For ATP, initiator sequence (5'-end of DNA3) was released from the capture probe (DNA3) under the strong combination of aptamer-ATP. The present colorimetric for specific detection of ATP exhibited good sensitivity and 1.0 × 10-8 M ATP could be detected. The proposed strategy also showed good performances for qualitative analysis and quantitative analysis of intracellular nucleic acids and aptamer-specific ligands. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Structural and biochemical characterization of two heme binding sites on α1-microglobulin using site directed mutagenesis and molecular simulation.

    Science.gov (United States)

    Rutardottir, Sigurbjörg; Karnaukhova, Elena; Nantasenamat, Chanin; Songtawee, Napat; Prachayasittikul, Virapong; Rajabi, Mohsen; Rosenlöf, Lena Wester; Alayash, Abdu I; Åkerström, Bo

    2016-01-01

    α1-Microglobulin (A1M) is a reductase and radical scavenger involved in physiological protection against oxidative damage. These functions were previously shown to be dependent upon cysteinyl-, C34, and lysyl side-chains, K(92, 118,130). A1M binds heme and the crystal structure suggests that C34 and H123 participate in a heme binding site. We have investigated the involvement of these five residues in the interactions with heme. Four A1M-variants were expressed: with cysteine to serine substitution in position 34, lysine to threonine substitutions in positions (92, 118, 130), histidine to serine substitution in position 123 and a wt without mutations. Heme binding was investigated by tryptophan fluorescence quenching, UV-Vis spectrophotometry, circular dichroism, SPR, electrophoretic migration shift, gel filtration, catalase-like activity and molecular simulation. All A1M-variants bound to heme. Mutations in C34, H123 or K(92, 118, 130) resulted in significant absorbance changes, CD spectral changes, and catalase-like activity, suggesting involvement of these side-groups in coordination of the heme-iron. Molecular simulation support a model with two heme-binding sites in A1M involving the mutated residues. Binding of the first heme induces allosteric stabilization of the structure predisposing for a better fit of the second heme. The results suggest that one heme-binding site is located in the lipocalin pocket and a second binding site between loops 1 and 4. Reactions with the hemes involve the side-groups of C34, K(92, 118, 130) and H123. The model provides a structural basis for the functional activities of A1M: heme binding activity of A1M. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. ssDNA aptamer-based column for simultaneous removal of nanogram per liter level of illicit and analgesic pharmaceuticals in drinking water.

    Science.gov (United States)

    Hu, Xiangang; Mu, Li; Zhou, Qixing; Wen, Jianping; Pawliszyn, Janusz

    2011-06-01

    Aptamers are a new class of single-stranded DNA/RNA molecules selected from synthetic nucleic acid libraries for molecular recognition. Our group reports a novel aptamer column for the removal of trace (ng/L) pharmaceuticals in drinking water. In this study, cocaine and diclofenac were chosen as model molecules to test the aptamer column which presented high removal capacity, selectivity, and stability. The removal of pharmaceuticals was as high as 88-95%. The data of adsorption were fitted with Langmuir isotherm and a pseudo-second-order kinetic model. A thermodynamic experiment proved the adsorption processes were exothermic in spontaneity. The kinetics of aptamer was composed of three steps: activation, binding, and hybridization. The first step was the rate-controlling step. The adsorption system was divided into three parts: kinetic, mixed, and thermodynamic zones from 0% to 100% binding fraction of aptamer. Furthermore, the aptamer column was reusable and achieved strong removal efficiency from 4 to 30 °C at normal cation ion concentration (5-100 mg/L) for multipollutants without cross effects and secondary pollution. This work indicates that aptamer, as a new sorbent, can be used in the removal of persistent organic pollutants, biological toxins, and pathogenic bacteria from surface, drinking, and ground water.

  4. [Cell-ELA-based determination of binding affinity of DNA aptamer against U87-EGFRvIII cell].

    Science.gov (United States)

    Tan, Yan; Liang, Huiyu; Wu, Xidong; Gao, Yubo; Zhang, Xingmei

    2013-05-01

    A15, a DNA aptamer with binding specificity for U87 glioma cells stably overexpressing the epidermal growth factor receptor variant III (U87-EGFRvIII), was generated by cell systematic evolution of ligands by exponential enrichment (cell-SELEX) using a random nucleotide library. Subsequently, we established a cell enzyme-linked assay (cell-ELA) to detect the affinity of A15 compared to an EGFR antibody. We used A15 as a detection probe and cultured U87-EGFRvIII cells as targets. Our data indicate that the equilibrium dissociation constants (K(d)) for A15 were below 100 nmol/L and had similar affinity compared to an EGFR antibody for U87-EGFRvIII. We demonstrated that the cell-ELA was a useful method to determine the equilibrium dissociation constants (K(d)) of aptamers generated by cell-SELEX.

  5. Specific and sensitive detection of Plasmodium falciparum lactate dehydrogenase by DNA-scaffolded silver nanoclusters combined with an aptamer.

    Science.gov (United States)

    Wang, Wei-Xian; Cheung, Yee-Wai; Dirkzwager, Roderick M; Wong, Wai-Chung; Tanner, Julian A; Li, Hong-Wei; Wu, Yuqing

    2017-02-27

    Innovative nanomaterials offer significant potential for diagnosis of severe diseases of the developing world such as malaria. Small sized silver nanoclusters have shown promise for diagnostics due to their intense fluorescence emission and photo-stabilities. Here, double-stranded DNA-scaffolded silver nanoclusters (AgNCs-dsDNA) were prepared to detect the established malaria biomarker, Plasmodium falciparum lactate dehydrogenase (PfLDH). Significant luminescence enhancement over a wide concentration range of PfLDH was demonstrated. In addition, a low limit of detection at 0.20 nM (7.4 pg μL-1) was achieved for PfLDH in buffer solution, sensitive enough for practical use correlating with the clinical level of PfLDH in plasma from malaria-infected patients. Unique specificity was observed towards Plasmodium falciparum over Plasmodium vivax and human lactate dehydrogenase, as well as other non-specific proteins, by combining the use of AgNCs-dsDNA with a DNA aptamer against PfLDH. Moreover, the intrinsic mechanism was revealed in detail for the two-step luminescence response. The combination of DNA-scaffolded silver nanoclusters coupled to a selective single-stranded DNA aptamer allows for a highly specific and sensitive detection of PfLDH with significant promise for malaria diagnosis in future.

  6. Aptamer-Modified Tetrahedral DNA Nanostructure for Tumor-Targeted Drug Delivery.

    Science.gov (United States)

    Li, Qianshun; Zhao, Dan; Shao, Xiaoru; Lin, Shiyu; Xie, Xueping; Liu, Mengting; Ma, Wenjuan; Shi, Sirong; Lin, Yunfeng

    2017-10-25

    Tetrahedral DNA nanostructures (TDNs) are considered promising drug delivery carriers because they are able to permeate cellular membrane and are biocompatible and biodegradable. Furthermore, they can be modified by functional groups. To improve the drug-delivering ability of TDNs, we chose anticancer aptamer AS1411 to modify TDNs for tumor-targeted drug delivery. AS1411 can specifically bind to nucleolin, which is overexpressed on the cell membrane of tumor cells. Furthermore, AS1411 can inhibit NF-κB signaling and reduce the expression of bcl-2. In this study, we compared the intracellular localization of AS1411-modified TDNs (Apt-TDNs) with that of TDNs in different cells under hypoxic condition. Furthermore, we compared the effects of Apt-TDNs and TDNs on cell growth and cell cycle under hypoxic condition. A substantial amount of Apt-TDNs entered and accumulated in the nucleus of MCF-7 cells; however, the amount of Apt-TDNs that entered L929 cells was comparatively less. TDNs entered in much lower quantity in MCF-7 cells than Apt-TDNs. Moreover, there was little difference in the amount of TDNs that entered L929 cells and MCF-7 cells. Apt-TDNs can inhibit MCF-7 cell growth and promote L929 cell growth, while TDNs can promote both MCF-7 and L929 cell growth. Thus, the results indicate that Apt-TDNs are more effective tumor-targeted drug delivery vehicles than TDNs, with the ability to specifically inhibit tumor cell growth.

  7. Improved detection of deeply invasive candidiasis with DNA aptamers specific binding to (1→3)-β-D-glucans from Candida albicans.

    Science.gov (United States)

    Tang, X-L; Hua, Y; Guan, Q; Yuan, C-H

    2016-04-01

    Deeply invasive or disseminated candidiasis is a serious and often fatal complication that can occur frequently in immuno-compromised individuals. However, conventional diagnostic methods of Candida albicans display low sensitivity and lack of specificity; the development of rapid and accurate detection methods remains a high priority. Aptamers are single-strand DNA or RNA oligonucleotides that specifically bind to target molecules with high affinity. In this study, we sought to screen high-affinity DNA aptamers that specifically bound to (1→3)-β-D-glucans from cell wall of Candida albicans using a systematic evolution of ligands by exponential enrichment (SELEX) technique, and further evaluate the diagnostic potential for invasive or disseminated candidiasis with selected aptamers. (1→3)-β-D-glucans was purified from Candida albicans, and two single DNA aptamers (designated as AU1 and AD1) were selected. Analysis of dissociation constants and binding domains further revealed that these two selected single DNA aptamers (AU1 and AD1) showed high binding affinity (AD1: Kd = 79.76 nM, AD1: Kd = 103.7 nM) and did not bind to the same domain of (1→3)-β-D-glucans. Next, we further detected (1→3)-β-D-glucans in serum samples from different groups of patients with Candida albicans infection or simple bacterial infection by using a double-aptamer sandwich enzyme-linked oligonucleotide assay (ELONA). The results showed that the sensitivity and specificity of this aptamer-based sandwich ELONA were 92.31 % and 91.94 % respectively. Thus, our study suggests that AU1 and AD1 have potential application for the differentiate diagnosis of deeply invasive candidiasis and provide valuable clues for designing diagnostic agents for the identification of invasive fungal infection.

  8. Modulation of function in a minimalist heme-binding membrane protein.

    Science.gov (United States)

    Shinde, Sandip; Cordova, Jeanine M; Woodrum, Brian W; Ghirlanda, Giovanna

    2012-04-01

    De novo designed heme-binding proteins have been used successfully to recapitulate features of natural hemoproteins. This approach has now been extended to membrane-soluble model proteins. Our group designed a functional hemoprotein, ME1, by engineering a bishistidine binding site into a natural membrane protein, glycophorin A (Cordova et al. in J Am Chem Soc 129:512-518, 2007). ME1 binds iron(III) protoporphyrin IX with submicromolar affinity, has a redox potential of -128 mV, and displays peroxidase activity. Here, we show the effect of aromatic residues in modulating the redox potential in the context of a membrane-soluble model system. We designed aromatic interactions with the heme through a single-point mutant, G25F, in which a phenylalanine is designed to dock against the porphyrin ring. This mutation results in roughly tenfold tighter binding to iron(III) protoporphyrin IX (K(d,app) = 6.5 × 10(-8) M), and lowers the redox potential of the cofactor to -172 mV. This work demonstrates that specific design features aimed at controlling the properties of bound cofactors can be introduced in a minimalist membrane hemoprotein model. The ability to modulate the redox potential of cofactors embedded in artificial membrane proteins is crucial for the design of electron transfer chains across membranes in functional photosynthetic devices. © SBIC 2012

  9. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma.

    Science.gov (United States)

    Rosenberg, Jonathan E; Bambury, Richard M; Van Allen, Eliezer M; Drabkin, Harry A; Lara, Primo N; Harzstark, Andrea L; Wagle, Nikhil; Figlin, Robert A; Smith, Gregory W; Garraway, Levi A; Choueiri, Toni; Erlandsson, Fredrik; Laber, Damian A

    2014-02-01

    DNA aptamers represent a novel strategy in anti-cancer medicine. AS1411, a DNA aptamer targeting nucleolin (a protein which is overexpressed in many tumor types), was evaluated in patients with metastatic, clear-cell, renal cell carcinoma (RCC) who had failed treatment with ≥1 prior tyrosine kinase inhibitor. In this phase II, single-arm study, AS1411 was administered at 40 mg/kg/day by continuous intravenous infusion on days 1-4 of a 28-day cycle, for two cycles. Primary endpoint was overall response rate; progression-free survival (PFS) and safety were secondary endpoints. 35 patients were enrolled and treated. One patient (2.9 %) had a response to treatment. The response was dramatic (84 % reduction in tumor burden by RECIST 1.0 criteria) and durable (patient remains free of progression 2 years after completing therapy). Whole exome sequencing of this patient's tumor revealed missense mutations in the mTOR and FGFR2 genes which is of interest because nucleolin is known to upregulate mTOR pathway activity by enhancing AKT1 mRNA translation. No other responses were seen. Thirty-four percent of patients had an AS1411-related adverse event, all of which were mild or moderate. AS1411 appears to have minimal activity in unselected patients with metastatic RCC. However, rare, dramatic and durable responses can be observed and toxicity is low. One patient in this study had an excellent response and was found to have FGFR2 and mTOR mutations which will be of interest in future efforts to discover and validate predictive biomarkers of response to nucleolin targeted compounds. DNA aptamers represent a novel way to target cancer cells at a molecular level and continue to be developed with a view to improving treatment and imaging in cancer medicine.

  10. A Turn-on Fluorescence Sensor for Heparin Detection Based on a Release of Taiwan Cobra Cardiotoxin from a DNA Aptamer or Adenosine-Based Molecular Beacon.

    Science.gov (United States)

    Shi, Yi-Jun; Wang, Liang-Jun; Lee, Yuan-Chin; Huang, Chia-Hui; Hu, Wan-Ping; Chang, Long-Sen

    2018-02-19

    This study presents two sensitive fluorescent assays for sensing heparin on the basis of the electrostatic interaction between heparin and Naja naja atra cardiotoxin 3 (CTX3). Owing to CTX3-induced folded structure of an adenosine-based molecular beacon (MB) or a DNA aptamer against CTX3, a reduction in the fluorescent signal of the aptamer or MB 5'-end labeled with carboxyfluorescein (FAM) and 3'-end labeled with 4-([4-(dimethylamino)phenyl]azo)-benzoic acid (DABCYL) was observed upon the addition of CTX3. The presence of heparin and formation of the CTX3-heparin complex caused CTX3 detachment from the MB or aptamer, and restoration of FAM fluorescence of the 5'-FAM-and-3'-DABCYL-labeled MB and aptamer was subsequently noted. Moreover, the detection of heparin with these CTX3-aptamer and CTX3-MB sensors showed high sensitivity and selectivity toward heparin over chondroitin sulfate and hyaluronic acid regardless of the presence of plasma. The limit of detection for heparin in plasma was determined to be 16 ng/mL and 15 ng/mL, respectively, at a signal-to-noise ratio of 3. This study validates the practical utility of the CTX3-aptamer and CTX3-MB systems for determining the concentration of heparin in a biological matrix.

  11. Towards HIV detection: Novel Poly(propylene imine) Dendrimer-Streptavidin platform for electrochemical DNA and gp120 aptamer biosensors

    CSIR Research Space (South Africa)

    John, SV

    2014-07-01

    Full Text Available (2014) 5425 - 5437 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Towards HIV Detection: Novel Poly(propylene imine) Dendrimer-Streptavidin Platform for Electrochemical DNA and gp120 Aptamer Biosensors Suru V.... Gray, M. C. Madiga, N. Tumba, K. B. Alexandre, T. Khoza, C. K. Wibmer, P. L. Moore, L. Morris and M. M. Khati, Journal of Virology, 86 (2012) 1 15. G. Li, X. Li, J. Wan and S. Zhang, Biosensors and Bioelectronics, 24 (2009) 3281 16. A. K. H. Cheng...

  12. Aptamer Bioinformatics

    OpenAIRE

    Kinghorn, Andrew B.; Fraser, Lewis A.; Liang, Shaolin; Shiu, Simon Chi-Chin; Tanner, Julian A.

    2017-01-01

    Aptamers are short nucleic acid sequences capable of specific, high-affinity molecular binding. They are isolated via SELEX (Systematic Evolution of Ligands by Exponential Enrichment), an evolutionary process that involves iterative rounds of selection and amplification before sequencing and aptamer characterization. As aptamers are genetic in nature, bioinformatic approaches have been used to improve both aptamers and their selection. This review will discuss the advancements made in several...

  13. High-Affinity DNA Aptamer Generation Targeting von Willebrand Factor A1-Domain by Genetic Alphabet Expansion for Systematic Evolution of Ligands by Exponential Enrichment Using Two Types of Libraries Composed of Five Different Bases.

    Science.gov (United States)

    Matsunaga, Ken-Ichiro; Kimoto, Michiko; Hirao, Ichiro

    2017-01-11

    The novel evolutionary engineering method ExSELEX (genetic alphabet expansion for systematic evolution of ligands by exponential enrichment) provides high-affinity DNA aptamers that specifically bind to target molecules, by introducing an artificial hydrophobic base analogue as a fifth component into DNA aptamers. Here, we present a newer version of ExSELEX, using a library with completely randomized sequences consisting of five components: four natural bases and one unnatural hydrophobic base, 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds). In contrast to the limited number of Ds-containing sequence combinations in our previous library, the increased complexity of the new randomized library could improve the success rates of high-affinity aptamer generation. To this end, we developed a sequencing method for each clone in the enriched library after several rounds of selection. Using the improved library, we generated a Ds-containing DNA aptamer targeting von Willebrand factor A1-domain (vWF) with significantly higher affinity (KD = 75 pM), relative to those generated by the initial version of ExSELEX, as well as that of the known DNA aptamer consisting of only the natural bases. In addition, the Ds-containing DNA aptamer was stabilized by introducing a mini-hairpin DNA resistant to nucleases, without any loss of affinity (KD = 61 pM). This new version is expected to consistently produce high-affinity DNA aptamers.

  14. Label-free SERS detection of Salmonella Typhimurium on DNA aptamer modified AgNR substrates

    Science.gov (United States)

    Salmonella Typhimurium is an important foodborne pathogen which causes gastroenteritis in both humans and animals. Currently available rapid methods have relied on antibodies to offer specific recognition of the pathogen from the background. As a substitute of antibodies, nucleic acid aptamers offer...

  15. Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX.

    Directory of Open Access Journals (Sweden)

    Jiehua Xu

    Full Text Available Most clinical cases of liver cancer cannot be diagnosed until they have evolved to an advanced stage, thus resulting in high mortality. It is well recognized that the implementation of early detection methods and the development of targeted therapies for liver cancer are essential to reducing the high mortality rates associated with this disease. To achieve these goals, molecular probes capable of recognizing liver cancer cell-specific targets are needed. Here we describe a panel of aptamers able to distinguish hepatocarcinoma from normal liver cells. The aptamers, which were selected by cell-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment, have Kd values in the range of 64-349 nM toward the target human hepatoma cell HepG2, and also recognize ovarian cancer cells and lung adenocarcinoma. The proteinase treatment experiment indicated that all aptamers could recognize target HepG2 cells through surface proteins. This outcome suggested that these aptamers could be used as potential probes for further research in cancer studies, such as developing early detection assays, targeted therapies, and imaging agents, as well as for the investigation of common membrane proteins in these distinguishable cancers.

  16. In vitro selection of DNA aptamers against renal cell carcinoma using living cell-SELEX.

    Science.gov (United States)

    Wang, Jine; Zhang, Yajie; Chen, Yang; Hong, Shanni; Sun, Yan; Sun, Na; Pei, Renjun

    2017-12-01

    Renal cell carcinoma (RCC) is the most common form of kidney cancer with poor prognosis. Early diagnosis of RCC would significantly improve patient prognosis and quality of life. In this work, we developed new aptamer probes for RCC by using cell-SELEX (systematic evolution of ligands by exponential enrichment) only after 12 rounds of selection, in which a clear cell renal cell carcinoma (ccRCC) cell line 786-O was used as target cell, and embryonic kidney cell line 293T as negative control cell. The selected aptamers were subjected to flow cytometry and laser confocal fluorescence microscopy to evaluate their binding affinity and selectivity. The dissociation constant Kd values of four selected aptamers are all in the nanomolar range. Aptamer W786-1 with the best binding affinity and a Kd value of 9.4 ± 2.0nM was further optimized and its truncated sequence W786-1S showed considerable affinity to 786-O cells. The proteinase and temperature treatment experiment indicated that W786-1 could recognize the target 786-O cells through surface proteins, and remain good binding affinity and excellent selectivity under physiological conditions. Therefore, on the basis of its excellent targeting properties and functional versatility, W786-1 holds great potential to be used as a molecular probe for identifying and targeting RCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Selection and application of ssDNA aptamers to detect active TB from sputum samples

    CSIR Research Space (South Africa)

    Rotherham, LS

    2012-10-01

    Full Text Available detection methodologies. The 10-kDa culture filtrate protein (CFP-10) and the 6-kDa early secreted antigen target (ESAT-6) are potent T-cell antigens that are recognised by over 70% of TB patients. Aptamers, a novel sensitive and specific class of detection...

  18. Characterization of the paclitaxel loaded chitosan graft Pluronic F127 copolymer micelles conjugate with a DNA aptamer targeting HER-2 overexpressing breast cancer cells

    Science.gov (United States)

    Thach Nguyen, Kim; Nguyen, Thu Ha; Do, Dinh Ho; Huan Le, Quang

    2017-03-01

    In this work we report the isolation of DNA aptamer that is specifically bound to a HER-2 overexpressing SK-BR-3 human breast cancer cell line, using SELEX strategy. Paclitaxel (PTX) loaded chitosan graft Pluronic F127 copolymer micelles conjugate with a DNA aptamer was synthesized and its structure was confirmed by TEM image. This binary mixed system consisting of DNA aptamer modified Pluronic F127 and chitosan could enhance PTX loading capacity and increase micelle stability. Morphology images confirmed the existence of PTX micelles, with an average size of approximately 86.22 ± 1.45 nm diameters. Drug release profile showed that the PTX conjugate maintained a sustained PTX release. From in vitro cell experiment it was shown that 89%-93%, 50%-58%, 55%-62%, 24%-28% and 2%-7% of the SK-BR-3, NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31, respectively, were dead after 6-48 h. These results demonstrated a novel DNA aptamer-micelle assembly for efficient detection and a system for the delivery of PTX targeting specific HER-2 overexpressing. We have also successfully cultivated cancer tissues of explants from Vietnamese patients on a type I collagen substrate. The NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31cell lines were used as cellular model sources for the study of chemotherapy drug in cancer.

  19. A phase II trial of the nucleolin-targeted DNA aptamer AS1411 in metastatic refractory renal cell carcinoma

    Science.gov (United States)

    Rosenberg, Jonathan E.; Bambury, Richard; Drabkin, Harry A.; Lara, Primo N.; Harzstark, Andrea L.; Figlin, Robert A.; Smith, Gregory W.; Choueiri, Toni; Erlandsson, Fredrik; Laber, Damian A.

    2015-01-01

    Background DNA aptamers represent a novel strategy in anti-cancer medicine. These compounds are short sequences of DNA that have protein binding effects via shape specific recognition of a target protein in an interaction which is analogous to antibody-antigen binding. AS1411, a DNA aptamer that targets nucleolin (a protein which is overexpressed in many tumor types), was evaluated in patients with metastatic, predominantly clear-cell, renal cell carcinoma (RCC) who had failed treatment with ≥1 previous tyrosine kinase inhibitor. We present the first manuscript reporting the use of this novel anti-cancer agent in humans. Methods In this phase II, single-arm study, AS1411 was administered at 40 mg/kg/day by continuous intravenous infusion on days 1–4 of a 28-day cycle, for two cycles. Primary endpoint was overall response rate; progression-free survival (PFS) and safety were secondary endpoints. Results 35 patients were enrolled and treated; 33 completed two treatment cycles. Median number of prior therapies was 2 (range 1–7). One patient (2.9%) had a response to treatment. The response was dramatic (84% reduction in the sum of longest diameters of selected target tumor lesions) and durable (the patient remains free of progression 2 years after completing therapy). No responses were seen in the other patients. Median PFS was 4 months. Only 34% of patients had an AS1411-related adverse event, all of which were mild or moderate. Conclusions AS1411 appears to have limited activity in unselected patients with metastatic RCC. However, rare, dramatic and durable responses can be observed and toxicity is low. Further studies with nucleolin targeted compounds may benefit from efforts to discover predictive biomarkers of response. Currently, promising pre-clinical studies are ongoing using AS1411 conjugated to traditional cytotoxic agents to selectively deliver these treatments to tumor cells. DNA aptamers represent a novel way to target cancer cells at a molecular

  20. Ion-dependent conformational switching by a DNA aptamer that induces remyelination in a mouse model of multiple sclerosis

    Science.gov (United States)

    Smestad, John; Maher, L. James

    2013-01-01

    We recently reported that a guanosine-rich 40-mer DNA aptamer (LJM-3064) mediates remyelination in the Theiler’s murine encephalomyelitis virus mouse model of multiple sclerosis. Here, we characterize the G-quadruplex forms of this aptamer in vitro, and demonstrate using circular dichroism spectroscopy that LJM-3064 undergoes a monovalent ion-dependent conformational switch. In the presence of sodium ions and no potassium ions, LJM-3064 adopts an antiparallel-stranded G-quadruplex structure. When presented with low concentrations of potassium ions in a buffer that mimics the composition of interstitial fluid and blood plasma, LJM-3064 rapidly switches to a parallel-stranded G-quadruplex conformation, which is presumably the physiologically active folded form. We characterize these conformational states using dimethyl sulfate reactivity studies and Bal 31 nuclease probing. Our analysis indicates that only the 5′-terminal 26 nucleotides are involved in G-quadruplex formation. Thermodynamic characterization of LJM-3064 at physiologically relevant ion concentrations reveals the G-quadruplex to be metastable at human body temperature. These data provide important structural and thermodynamic insights that may be valuable in optimizing LJM-3064 as a therapeutic remyelinating agent. PMID:23175609

  1. Discovery of Intracellular Heme-binding Protein HrtR, Which Controls Heme Efflux by the Conserved HrtB-HrtA Transporter in Lactococcus lactis*

    Science.gov (United States)

    Lechardeur, Delphine; Cesselin, Bénédicte; Liebl, Ursula; Vos, Marten H.; Fernandez, Annabelle; Brun, Célia; Gruss, Alexandra; Gaudu, Philippe

    2012-01-01

    Most commensal and food bacteria lack heme biosynthesis genes. For several of these, the capture of environmental heme is a means of activating aerobic respiration metabolism. Our previous studies in the Gram-positive bacterium Lactococcus lactis showed that heme exposure strongly induced expression of a single operon, called here hrtRBA, encoding an ortholog of the conserved membrane hrt (heme-regulated transporter) and a unique transcriptional regulator that we named HrtR. We show that HrtR expressed as a fusion protein is a heme-binding protein. Heme iron interaction with HrtR is non-covalent, hexacoordinated, and involves two histidines, His-72 and His-149. HrtR specifically binds a 15-nt palindromic sequence in the hrtRBA promoter region, which is needed for hrtRBA repression. HrtR-DNA binding is abolished by heme addition, which activates expression of the HrtB-HrtA (HrtBA) transporter in vitro and in vivo. The use of HrtR as an intracellular heme sensor appears to be conserved among numerous commensal bacteria, in contrast with numerous Gram-positive pathogens that use an extracellular heme-sensing system, HssRS, to regulate hrt. Finally, we show for the first time that HrtBA permease controls heme toxicity by its direct and specific efflux. The use of an intracellular heme sensor to control heme efflux constitutes a novel paradigm for bacterial heme homeostasis. PMID:22084241

  2. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis.

    Science.gov (United States)

    Lechardeur, Delphine; Cesselin, Bénédicte; Liebl, Ursula; Vos, Marten H; Fernandez, Annabelle; Brun, Célia; Gruss, Alexandra; Gaudu, Philippe

    2012-02-10

    Most commensal and food bacteria lack heme biosynthesis genes. For several of these, the capture of environmental heme is a means of activating aerobic respiration metabolism. Our previous studies in the Gram-positive bacterium Lactococcus lactis showed that heme exposure strongly induced expression of a single operon, called here hrtRBA, encoding an ortholog of the conserved membrane hrt (heme-regulated transporter) and a unique transcriptional regulator that we named HrtR. We show that HrtR expressed as a fusion protein is a heme-binding protein. Heme iron interaction with HrtR is non-covalent, hexacoordinated, and involves two histidines, His-72 and His-149. HrtR specifically binds a 15-nt palindromic sequence in the hrtRBA promoter region, which is needed for hrtRBA repression. HrtR-DNA binding is abolished by heme addition, which activates expression of the HrtB-HrtA (HrtBA) transporter in vitro and in vivo. The use of HrtR as an intracellular heme sensor appears to be conserved among numerous commensal bacteria, in contrast with numerous Gram-positive pathogens that use an extracellular heme-sensing system, HssRS, to regulate hrt. Finally, we show for the first time that HrtBA permease controls heme toxicity by its direct and specific efflux. The use of an intracellular heme sensor to control heme efflux constitutes a novel paradigm for bacterial heme homeostasis.

  3. Membrane Topology and Heme Binding of the Histidine Kinases HrrS and ChrS in Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Marc Keppel

    2018-02-01

    Full Text Available The HrrSA and the ChrSA two-component systems play a central role in the coordination of heme homeostasis in the Gram-positive soil bacterium Corynebacterium glutamicum and the prominent pathogen Corynebacterium diphtheriae, both members of the Corynebacteriaceae. In this study, we have performed a comparative analysis of the membrane topology and heme-binding characteristics of the histidine kinases HrrS and ChrS of C. glutamicum. While the cytoplasmic catalytic domains are highly conserved between HrrS and ChrS, the N-terminal sensing parts share only minor sequence similarity. PhoA and LacZ fusions of the N-terminal sensor domains of HrrS and ChrS revealed that both proteins are embedded into the cytoplasmic membrane via six α-helices. Although the overall membrane topology appeared to be conserved, target gene profiling indicated a higher sensitivity of the ChrS system to low heme levels (< 1 μM. In vitro, solubilized and purified full-length proteins bound heme in a 1:1 stoichiometry per monomer. Alanine-scanning of conserved amino acid residues in the N-terminal sensor domain revealed three aromatic residues (Y112, F115, and F118, which apparently contribute to heme binding of HrrS. Exchange of either one or all three residues resulted in an almost abolished heme binding of HrrS in vitro. In contrast, ChrS mutants only displayed a red shift of the soret band from 406 to 418 nm suggesting an altered set of ligands in the triple mutant. In line with target gene profiling, these in vitro studies suggest distinct differences in the heme-protein interface of HrrS and ChrS. Since the membrane topology mapping displayed no extensive loop regions and alanine-scanning revealed potential heme-binding residues in α-helix number four, we propose an intramembrane sensing mechanism for both proteins. Overall, we present a first comparative analysis of the ChrS and HrrS kinases functioning as transient heme sensors in the Corynebacteriaceae.

  4. DNA aptamer evolved by cell-SELEX for recognition of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Wang

    Full Text Available Morbidity and mortality of prostate cancer (PCa have increased in recent years worldwide. Currently existing methods for diagnosis and treatment do not make the situation improve, especially for hormone refractory prostate cancer (HRPC. The lack of molecular probes for PCa hindered the early diagnosis of metastasis and accurate staging for PCa. In this work, we have developed a new aptamer probe Wy-5a against PCa cell line PC-3 by cell-SELEX technique. Wy-5a shows high specificity to the target cells with dissociation constants in the nanomolar range, and does not recognize other tested PCa cell lines and other tested tumor cell lines. The staining of clinical tissue sections with fluorescent dye labeled Wy-5a shows that sections from high risk group with metastasis exhibited stronger fluorescence and sections from Benign Prostatic Hyperplasia (BPH did not exhibit notable fluorescence, which suggests that aptamer Wy-5a may bind to protein related to the progression of PCa. The high affinity and specificity of Wy-5a makes this aptamer hold potential for application in diagnosis and target therapy of PCa.

  5. Real-time detection of α-thrombin binding to single-strand DNA aptamers by a highly sensitive Si-based waveguide SPR biosensor

    Science.gov (United States)

    Huang, Chi-Chieh; Hsu, Hsin-Feng; Chen, Sz-Hau; Tsai, Kun-Yu; Huang, Yang-Tung; Lin, Chih-Sheng; Hsu, Shih-Hsin

    2012-02-01

    αIn this paper, real-time characterization of α-thrombin binding to single-strand DNA (ssDNA) aptamers by novel Si-based waveguide SPR biosensors has been investigated. The gold nanoparticles (AuNPs) modified with anti-thrombin antibodies were employed to bind with α-thrombin via strong antibody/antigen affinity for SPR signal amplification. The detection limit of 1 pM for -thrombin detection was achieved.

  6. Heme binding in the NEAT domains of IsdA and IsdC of Staphylococcus aureus.

    Science.gov (United States)

    Pluym, Mark; Muryoi, Naomi; Heinrichs, David E; Stillman, Martin J

    2008-03-01

    Absorption, magnetic circular dichroism (MCD), and electrospray mass spectral (ESI-MS) data are reported for the heme binding NEAr iron Transporter (NEAT) domains of IsdA and IsdC, two proteins involved in heme scavenging by Staphylococcus aureus. The mass spectrometry data show that the NEAT domains are globular in structure and efficiently bind a single heme molecule. In this work, the IsdA NEAT domain is referred to as NEAT-A, the IsdC NEAT domain is referred to as NEAT-C, heme-free NEAT-C is NEAT-A and NEAT-C are inaccessible to small anionic ligands. Reduction of the high-spin Fe(III) heme iron to 5-coordinate high-spin Fe(II) in NEAT-A results in coordination by histidine and opens access, allowing for CO axial ligation, yielding 6-coordinate low-spin Fe(II) heme. In contrast, reduction of the high-spin Fe(III) heme iron to 5-coordinate high-spin Fe(II) in NEAT-C results in loss of the heme from the binding site of the protein due to the absence of a proximal histidine. The absorption and MCD data for NEAT-A closely match those previously reported for the whole IsdA protein, providing evidence that heme binding is primarily a property of the NEAT domain.

  7. Structure and heme-binding properties of HemQ (chlorite dismutase-like protein) from Listeria monocytogenes

    Science.gov (United States)

    Hofbauer, Stefan; Hagmüller, Andreas; Schaffner, Irene; Mlynek, Georg; Krutzler, Michael; Stadlmayr, Gerhard; Pirker, Katharina F.; Obinger, Christian; Daims, Holger; Djinović-Carugo, Kristina; Furtmüller, Paul G.

    2015-01-01

    Chlorite dismutase-like proteins are structurally closely related to functional chlorite dismutases which are heme b-dependent oxidoreductases capable of reducing chlorite to chloride with simultaneous production of dioxygen. Chlorite dismutase-like proteins are incapable of performing this reaction and their biological role is still under discussion. Recently, members of this large protein family were shown to be involved in heme biosynthesis in Gram-positive bacteria, and thus the protein was renamed HemQ in these organisms. In the present work the structural and heme binding properties of the chlorite dismutase-like protein from the Gram-positive pathogen Listeria monocytogenes (LmCld) were analyzed in order to evaluate its potential role as a regulatory heme sensing protein. The homopentameric crystal structure (2.0 Å) shows high similarity to chlorite-degrading chlorite dismutases with an important difference in the structure of the putative substrate and heme entrance channel. In solution LmCld is a stable hexamer able to bind the low-spin ligand cyanide. Heme binding is reversible with KD-values determined to be 7.2 μM (circular dichroism spectroscopy) and 16.8 μM (isothermal titration calorimetry) at pH 7.0. Both acidic and alkaline conditions promote heme release. Presented biochemical and structural data reveal that the chlorite dismutase-like protein from L. monocytogenes could act as a potential regulatory heme sensing and storage protein within heme biosynthesis. PMID:25602700

  8. Dimerization and heme binding are conserved in amphibian and starfish homologues of the microRNA processing protein DGCR8.

    Directory of Open Access Journals (Sweden)

    Rachel Senturia

    Full Text Available Human DiGeorge Critical Region 8 (DGCR8 is an essential microRNA (miRNA processing factor that is activated via direct interaction with Fe(III heme. In order for DGCR8 to bind heme, it must dimerize using a dimerization domain embedded within its heme-binding domain (HBD. We previously reported a crystal structure of the dimerization domain from human DGCR8, which demonstrated how dimerization results in the formation of a surface important for association with heme. Here, in an attempt to crystallize the HBD, we search for DGCR8 homologues and show that DGCR8 from Patiria miniata (bat star also binds heme. The extinction coefficients (ε of DGCR8-heme complexes are determined; these values are useful for biochemical analyses and allow us to estimate the heme occupancy of DGCR8 proteins. Additionally, we present the crystal structure of the Xenopus laevis dimerization domain. The structure is very similar to that of human DGCR8. Our results indicate that dimerization and heme binding are evolutionarily conserved properties of DGCR8 homologues not only in vertebrates, but also in at least some invertebrates.

  9. A two-step stimulus-response cell-SELEX method to generate a DNA aptamer to recognize inflamed human aortic endothelial cells as a potential in vivo molecular probe for atherosclerosis plaque detection.

    Science.gov (United States)

    Ji, Kaili; Lim, Wee Siang; Li, Sam Fong Yau; Bhakoo, Kishore

    2013-08-01

    Aptamers are single-stranded oligonucleotides that are capable of binding wide classes of targets with high affinity and specificity. Their unique three-dimensional structures present numerous possibilities for recognizing virtually any class of target molecules, making them a promising alternative to antibodies used as molecular probes in biomedical analysis and clinical diagnosis. In recent years, cell-systematic evolution of ligands by exponential enrichment (SELEX) has been used extensively to select aptamers for various cell targets. However, aptamers that have evolved from cell-SELEX to distinguish the "stimulus-response cell" have not previously been reported. Moreover, a number of cumbersome and time-consuming steps involved in conventional cell-SELEX reduce the efficiency and efficacy of the aptamer selection. Here, we report a "two-step" methodology of cell-SELEX that successfully selected DNA aptamers specifically against "inflamed" endothelial cells. This has been termed as stimulus-response cell-SELEX (SRC-SELEX). The SRC-SELEX enables the selection of aptamers to distinguish the cells activated by stimulus of healthy cells or cells isolated from diseased tissue. We report a promising aptamer, N55, selected by SRC-SELEX, which can bind specifically to inflamed endothelial cells both in cell culture and atherosclerotic plaque tissue. This aptamer probe was demonstrated as a potential molecular probe for magnetic resonance imaging to target inflamed endothelial cells and atherosclerotic plaque detection.

  10. Characterization of the specific interaction between the DNA aptamer sgc8c and protein tyrosine kinase-7 receptors at the surface of T-cells by biosensing AFM.

    Science.gov (United States)

    Leitner, Michael; Poturnayova, Alexandra; Lamprecht, Constanze; Weich, Sabine; Snejdarkova, Maja; Karpisova, Ivana; Hianik, Tibor; Ebner, Andreas

    2017-04-01

    We studied the interaction of the specific DNA aptamer sgc8c immobilized at the AFM tip with its corresponding receptor, the protein tyrosine kinase-7 (PTK7) embedded in the membrane of acute lymphoblastic leukemia (ALL) cells (Jurkat T-cells). Performing single molecule force spectroscopy (SMFS) experiments, we showed that the aptamer sgc8c bound with high probability (38.3 ± 7.48%) and high specificity to PTK7, as demonstrated by receptor blocking experiments and through comparison with the binding behavior of a nonspecific aptamer. The determined kinetic off-rate (koff = 5.16 s-1) indicates low dissociation of the sgc8c-PTK7 complex. In addition to the pulling force experiments, simultaneous topography and recognition imaging (TREC) experiments using AFM tips functionalized with sgc8c aptamers were realized on the outer regions surface of surface-immobilized Jurkat cells for the first time. This allowed determination of the distribution of PTK7 without any labeling and at near physiological conditions. As a result, we could show a homogeneous distribution of PTK7 molecules on the outer regions of ALL cells with a surface density of 325 ± 12 PTK7 receptors (or small receptor clusters) per μm2. Graphical Abstract The specific interaction of the DNA aptamer sgc8c and protein tyrosine kinase-7 (PTK7) on acute lymphoblastic leukemia (ALL) cells was characterized. AFM based single molecule force spectroscopy (SMFS) yielded a kinetic off-rate of 5.16 s-1 of the complex. Simultaneous topography and recognition imaging (TREC) revealed a PTK7 density of 325 ± 12 molecules or clusters per μm2 in the cell membrane.

  11. Targeting Herpes Simplex Virus-1 gD by a DNA Aptamer Can Be an Effective New Strategy to Curb Viral Infection

    Directory of Open Access Journals (Sweden)

    Tejabhiram Yadavalli

    2017-12-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 is an important factor for vision loss in developed countries. A challenging aspect of the ocular infection by HSV-1 is that common treatments, such as acyclovir, fail to provide effective topical remedies. Furthermore, it is not very clear whether the viral glycoproteins, required for HSV-1 entry into the host, can be targeted for an effective therapy against ocular herpes in vivo. Here, we demonstrate that HSV-1 envelope glycoprotein gD, which is essential for viral entry and spread, can be specifically targeted by topical applications of a small DNA aptamer to effectively control ocular infection by the virus. Our 45-nt-long DNA aptamer showed high affinity for HSV-1 gD (binding affinity constant [Kd] = 50 nM, which is strong enough to disrupt the binding of gD to its cognate host receptors. Our studies showed significant restriction of viral entry and replication in both in vitro and ex vivo studies. In vivo experiments in mice also resulted in loss of ocular infection under prophylactic treatment and statistically significant lower infection under therapeutic modality compared to random DNA controls. Thus, our studies validate the possibility that targeting HSV-1 entry glycoproteins, such as gD, can locally reduce the spread of infection and define a novel DNA aptamer-based approach to control HSV-1 infection of the eye.

  12. Aptamer Sensors

    OpenAIRE

    Marrazza, Giovanna

    2017-01-01

    In the last years, great progress has been accomplished in the development of aptamer sensors with different transducers. In order to improve the sensitivity of these biosensors, several methodologies have been employed. In this Special Issue, the state of art and the future trends in the field of aptamer sensors have been explored.

  13. Study on Electrochemical Insulin Sensing Utilizing a DNA Aptamer-Immobilized Gold Electrode

    Directory of Open Access Journals (Sweden)

    Izumi Kubo

    2015-07-01

    Full Text Available We investigated an insulin-sensing method by utilizing an insulin-binding aptamer IGA3, which forms an anti-parallel G-quadruplex with folded single strands. Spectroscopic observation indicates that some anti-parallel G-quadruplex bind hemin and show peroxidase activity. In this study, the peroxidase activity of IGA3 with hemin was confirmed by spectrophotometric measurements, i.e., the activity was three-times higher than hemin itself. IGA3 was then immobilized onto a gold electrode to determine its electrochemical activity. The peroxidase activity of the immobilized IGA3-hemin complex was determined by cyclic voltammetry, and a cathodic peak current of the electrode showed a dependence on the concentration of H2O2. The cathodic peak current of the IGA3-hemin complex decreased by binding it to insulin, and this decrease depended on the concentration of insulin.

  14. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics

    Science.gov (United States)

    Latorre, Alfonso; Posch, Christian; Garcimartín, Yolanda; Celli, Anna; Sanlorenzo, Martina; Vujic, Igor; Ma, Jeffrey; Zekhtser, Mitchell; Rappersberger, Klemens; Ortiz-Urda, Susana; Somoza, Álvaro

    2014-06-01

    Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further reduce toxicity by increasing targeted delivery towards malignant cells.Gold nanoparticles (GNPs) can be used as carriers of a variety of therapeutics. Ideally, drugs are released in the target cells in response to cell specific intracellular triggers. In this study, GNPs are loaded with doxorubicin or AZD8055, using a self-immolative linker which facilitates the release of anticancer therapeutics in malignant cells without modifications of the active compound. An additional modification with the aptamer AS1411 further increases the selectivity of GNPs towards cancer cells. Both modifications increase targeted delivery of therapeutics with GNPs. Whereas GNPs without anticancer drugs do not affect cell viability in all cells tested, AS1411 modified GNPs loaded with doxorubicin or AZD8055 show significant and increased reduction of cell viability in breast cancer and uveal melanoma cell lines. These results highlight that modified GNPs can be functionalized to increase the efficacy of cancer therapeutics and may further

  15. DNAzyme-aptamer or aptamer-DNAzyme paradigm: Biochemical approach for aflatoxin analysis.

    Science.gov (United States)

    Jafari, Marzieh; Rezaei, Mohsen; Kalantari, Heibatullah; Tabarzad, Maryam; Daraei, Bahram

    2017-03-22

    DNAzyme and aptamer conjugations have already been used for sensitive and accurate detection of several molecules. In this study, we tested the relationship between conjugation orientation of DNAzyme and aflatoxin B1 aptamer and their subsequent peroxidase activity. Circular dichroism (CD) spectroscopy and biochemical analysis were used here to differentiate between these two conjugation patterns. Results showed that DNAzyme-aptamer has more catalytic activity and efficiency than aptamer-DNAzyme. Thereby, DNAzyme-aptamer with its superior efficiency can be used for design and development of more sensitive aflatoxin B1 DNA based biosensors. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  16. Unique structure and stability of HmuY, a novel heme-binding protein of Porphyromonas gingivalis.

    Directory of Open Access Journals (Sweden)

    Halina Wójtowicz

    2009-05-01

    Full Text Available Infection, survival, and proliferation of pathogenic bacteria in humans depend on their capacity to impair host responses and acquire nutrients in a hostile environment. Among such nutrients is heme, a co-factor for oxygen storage, electron transport, photosynthesis, and redox biochemistry, which is indispensable for life. Porphyromonas gingivalis is the major human bacterial pathogen responsible for severe periodontitis. It recruits heme through HmuY, which sequesters heme from host carriers and delivers it to its cognate outer-membrane transporter, the TonB-dependent receptor HmuR. Here we report that heme binding does not significantly affect the secondary structure of HmuY. The crystal structure of heme-bound HmuY reveals a new all-beta fold mimicking a right hand. The thumb and fingers pinch heme iron through two apical histidine residues, giving rise to highly symmetric octahedral iron co-ordination. The tetrameric quaternary arrangement of the protein found in the crystal structure is consistent with experiments in solution. It shows that thumbs and fingertips, and, by extension, the bound heme groups, are shielded from competing heme-binding proteins from the host. This may also facilitate heme transport to HmuR for internalization. HmuY, both in its apo- and in its heme-bound forms, is resistant to proteolytic digestion by trypsin and the major secreted proteases of P. gingivalis, gingipains K and R. It is also stable against thermal and chemical denaturation. In conclusion, these studies reveal novel molecular properties of HmuY that are consistent with its role as a putative virulence factor during bacterial infection.

  17. Evolution of DNA aptamers through in vitro metastatic-cell-based systematic evolution of ligands by exponential enrichment for metastatic cancer recognition and imaging.

    Science.gov (United States)

    Li, Xilan; An, Yuan; Jin, Jiang; Zhu, Zhi; Hao, Linlin; Liu, Lu; Shi, Yongquan; Fan, Daiming; Ji, Tianhai; Yang, Chaoyong James

    2015-01-01

    Metastasis, the capability of tumor cells to spread and grow at distant sites, is the primary factor in cancer mortality. Because metastasis in sentinel lymph nodes suggests the original spread of tumors from a primary site, the detection of lymph node involvement with cancer serves as an important prognostic and treatment parameter. Here we have developed a panel of DNA aptamers specifically binding to colon cancer cell SW620 derived from metastatic site lymph node, with high affinity after 14 rounds of selection by the cell-SELEX (systematic evolution of ligands by exponential enrichment) method. The binding affinities of selected aptamers were evaluated by flow cytometry. Aptamer XL-33 with the best binding affinity (0.7 nM) and its truncated sequence XL-33-1 with 45 nt showed excellent selectivity for recognizing target cell SW620. The binding entity of the selected aptamer has been preliminarily determined as a membrane protein on the cell surface. Tissue imaging results showed that XL-33-1 was highly specific to the metastatic tumor tissue or lymph node tissue with corresponding cancer metastasis and displayed an 81.7% detection rate against colon cancer tissue with metastasis in regional lymph nodes. These results suggest that XL-33-1 has great potential to become a molecular imaging agent for early detection of lymph node tissue with colon cancer metastasis. More importantly, this study clearly demonstrates that DNA ligands selectively recognizing metastatic cancer cells can be readily generated by metastatic-cell-based SELEX for potential applications in metastatic cancer diagnosis and treatment.

  18. Aptamer Microarrays

    Science.gov (United States)

    Syrett, Heather Angel; Collett, James R.; Ellington, Andrew D.

    In vitro selection can yield specific, high-affinity aptamers. We and others have devised methods for the automated selection of aptamers and have begun to use these reagents for the construction of arrays. Arrayed aptamers have proven to be almost as sensitive as their solution-phase counterparts and when ganged together can provide both specific and general diagnostic signals for proteins and other ana-lytes. We describe here technical details regarding the production and processing of aptamer microarrays, including blocking, washing, drying, and scanning. We also discuss the challenges involved in developing standardized and reproducible methods for binding and quantitating protein targets. Although signals from fluorescent analytes or sandwiches are typically captured, it has proven possible for immobilized aptamers to be uniquely coupled to amplification methods not available to protein reagents, thus allowing for protein-binding signals to be greatly amplified. Into the future, many of the biosensor methods described in this book can potentially be adapted to array formats, thus further expanding the their utility and applications for aptamer arrays.

  19. An Enzyme-Linked Aptamer Sorbent Assay to Evaluate Aptamer Binding.

    Science.gov (United States)

    Moore, Matthew D; Escudero-Abarca, Blanca I; Jaykus, Lee-Ann

    2017-01-01

    Nucleic acid aptamers are a class of alternative ligands increasingly growing in importance in the face of contemporary detection challenges. Aptamers offer multiple advantages over traditional ligands like antibodies; however, their ability to specifically bind target molecules must first be confirmed after their generation. Use of a plate-based enzyme-linked aptamer sorbent assay (ELASA) is a generally rapid way to screen and characterize aptamer binding to protein targets. ELASA involves directly plating a protein target onto a nonspecific (polystyrene) surface and assessing binding of functionalized (biotinylated) aptamers to those plated proteins using an enzyme conjugate that recognizes the aptamers. Here, we describe an ELASA that was designed and used to evaluate and compare binding of ssDNA aptamers against the capsids of different strains of human norovirus.

  20. Highly Sensitive Detection of Bisphenol A by NanoAptamer Assay with Truncated Aptamer.

    Science.gov (United States)

    Lee, Eun-Hee; Lim, Hyun Jeong; Lee, Sang-Don; Son, Ahjeong

    2017-05-03

    For the sensitive quantification of bisphenol A (BPA), we have developed NanoAptamer assay, which employs aptamer and complementary signaling DNA, a set of quantum dots (QD), and magnetic beads (MBs). Signaling DNA-QD 655 was tethered to MB-QD 565 via the aptamer. The affinity of the aptamer to BPA resulted in the release of the signaling DNA-QD 655 from the complex and hence the corresponding decrease in the QD 655 fluorescence measurement signal. Three new aptamers (23, 58, and 24-mer) were designed via truncation of the reference aptamer (73-mer). The sensitivity and selectivity of each aptamer for BPA detection via NanoAptamer assay were investigated. One of the truncated aptamers (24-mer) has shown a significantly better performance (limit of detection, LOD, 0.17 pg/mL) than the reference 73-mer aptamer (LOD, 570 pg/mL). It has also shown the best selectivity for BPA detection over BPA analogues (i.e., bisphenol B, bisphenol C, and diethylstilbestrol). It corresponded to a normalized fluorescence change of 33.7% at the environmentally relevant concentration of 1 ng/mL (1 ppb) BPA; however, the analogues remained unchanged (2.3-3.9%).

  1. Community Sewage Sensors towards Evaluation of Drug Use Trends: Detection of Cocaine in Wastewater with DNA-Directed Immobilization Aptamer Sensors

    Science.gov (United States)

    Yang, Zhugen; Castrignanò, Erika; Estrela, Pedro; Frost, Christopher G.; Kasprzyk-Hordern, Barbara

    2016-02-01

    Illicit drug use has a global concern and effective monitoring and interventions are highly required to combat drug abuse. Wastewater-based epidemiology (WBE) is an innovative and cost-effective approach to evaluate community-wide drug use trends, compared to traditional population surveys. Here we report for the first time, a novel quantitative community sewage sensor (namely DNA-directed immobilization of aptamer sensors, DDIAS) for rapid and cost-effective estimation of cocaine use trends via WBE. Thiolated single-stranded DNA (ssDNA) probe was hybridized with aptamer ssDNA in solution, followed by co-immobilization with 6-mercapto-hexane onto the gold electrodes to control the surface density to effectively bind with cocaine. DDIAS was optimized to detect cocaine at as low as 10 nM with a dynamic range from 10 nM to 5 μM, which were further employed for the quantification of cocaine in wastewater samples collected from a wastewater treatment plant in seven consecutive days. The concentration pattern of the sampling week is comparable with that from mass spectrometry. Our results demonstrate that the developed DDIAS can be used as community sewage sensors for rapid and cost-effective evaluation of drug use trends, and potentially implemented as a powerful tool for on-site and real-time monitoring of wastewater by un-skilled personnel.

  2. Community Sewage Sensors towards Evaluation of Drug Use Trends: Detection of Cocaine in Wastewater with DNA-Directed Immobilization Aptamer Sensors.

    Science.gov (United States)

    Yang, Zhugen; Castrignanò, Erika; Estrela, Pedro; Frost, Christopher G; Kasprzyk-Hordern, Barbara

    2016-02-15

    Illicit drug use has a global concern and effective monitoring and interventions are highly required to combat drug abuse. Wastewater-based epidemiology (WBE) is an innovative and cost-effective approach to evaluate community-wide drug use trends, compared to traditional population surveys. Here we report for the first time, a novel quantitative community sewage sensor (namely DNA-directed immobilization of aptamer sensors, DDIAS) for rapid and cost-effective estimation of cocaine use trends via WBE. Thiolated single-stranded DNA (ssDNA) probe was hybridized with aptamer ssDNA in solution, followed by co-immobilization with 6-mercapto-hexane onto the gold electrodes to control the surface density to effectively bind with cocaine. DDIAS was optimized to detect cocaine at as low as 10 nM with a dynamic range from 10 nM to 5 μM, which were further employed for the quantification of cocaine in wastewater samples collected from a wastewater treatment plant in seven consecutive days. The concentration pattern of the sampling week is comparable with that from mass spectrometry. Our results demonstrate that the developed DDIAS can be used as community sewage sensors for rapid and cost-effective evaluation of drug use trends, and potentially implemented as a powerful tool for on-site and real-time monitoring of wastewater by un-skilled personnel.

  3. Dissection of the functional structure of aptamer17, which specifically recognizes differentiated PC12 cells.

    Science.gov (United States)

    Liu, Jiao-Jiao; Wang, Cheng-Long; Xi, Qing; Xu, Juan; Deng, Bin; Ding, Hong-Mei; Chu, Bingfeng; Su, Dong-Hua

    2011-06-01

    A specific single-stranded DNA (ssDNA) aptamer (aptamer17) that specifically recognizes differentiated PC12 cells had been previously obtained after 6 rounds of whole cell-based subtractive systematic evolution of ligands by exponential enrichment selection from a random ssDNA library. To further investigate the relationship between the structure and function of this aptamer, 3 truncated ssDNA aptamers were designed according to the predicted secondary structure of aptamer17. Our results show that the stem-loop is the core structure of the aptamers required for specific binding to differentiated PC12 cells, specifically loops I and II. Aptamer17 and the truncated aptamers with this basic structure could bind specifically to differentiated PC12 cells and identify these cells from a mixture of differentiated and undifferentiated PC12 cells. Therefore, truncated forms of aptamer17 may be useful in the clinic to identify undifferentiated and differentiated PC12 cells from a mixture of cells.

  4. Heme Binding Proteins of Bartonella henselae Are Required when Undergoing Oxidative Stress During Cell and Flea Invasion

    Science.gov (United States)

    Liu, MaFeng; Ferrandez, Yann; Bouhsira, Emilie; Monteil, Martine; Franc, Michel; Boulouis, Henri-Jean; Biville, Francis

    2012-01-01

    Bartonella are hemotropic bacteria responsible for emerging zoonoses. These heme auxotroph alphaproteobacteria must import heme for their growth, since they cannot synthesize it. To import exogenous heme, Bartonella genomes encode for a complete heme uptake system enabling transportation of this compound into the cytoplasm and degrading it to release iron. In addition, these bacteria encode for four or five outer membrane heme binding proteins (Hbps). The structural genes of these highly homologous proteins are expressed differently depending on oxygen, temperature and heme concentrations. These proteins were hypothesized as being involved in various cellular processes according to their ability to bind heme and their regulation profile. In this report, we investigated the roles of the four Hbps of Bartonella henselae, responsible for cat scratch disease. We show that Hbps can bind heme in vitro. They are able to enhance the efficiency of heme uptake when co-expressed with a heme transporter in Escherichia coli. Using B. henselae Hbp knockdown mutants, we show that these proteins are involved in defense against the oxidative stress, colonization of human endothelial cell and survival in the flea. PMID:23144761

  5. SpyB, a Small Heme-Binding Protein, Affects the Composition of the Cell Wall in Streptococcus pyogenes.

    Science.gov (United States)

    Edgar, Rebecca J; Chen, Jing; Kant, Sashi; Rechkina, Elena; Rush, Jeffrey S; Forsberg, Lennart S; Jaehrig, Bernhard; Azadi, Parastoo; Tchesnokova, Veronika; Sokurenko, Evgeni V; Zhu, Haining; Korotkov, Konstantin V; Pancholi, Vijay; Korotkova, Natalia

    2016-01-01

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams of the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Thus, our data suggest the possibility that SpyB activity is regulated by heme.

  6. Structure of the heme/hemoglobin outer membrane receptor ShuA from Shigella dysenteriae: heme binding by an induced fit mechanism.

    Science.gov (United States)

    Cobessi, David; Meksem, Ahmed; Brillet, Karl

    2010-02-01

    Shigella dysentriae and other Gram-negative human pathogens are able to use iron from heme bound to hemoglobin for growing. We solved at 2.6 A resolution the 3D structure of the TonB-dependent heme/hemoglobin outer membrane receptor ShuA from S. dysenteriae. ShuA binds to hemoglobin and transports heme across the outer membrane. The structure consists of a C-terminal domain that folds into a 22-stranded transmembrane beta-barrel, which is filled by the N-terminal plug domain. One distal histidine ligand of heme is located at the apex of the plug, exposed to the solvent. His86 is situated 9.86 A apart from His420, the second histidine involved in the heme binding. His420 is in the extracellular loop L7. The heme coordination by His86 and His420 involves conformational changes. The comparisons with the hemophore receptor HasR of Serratia marcescens bound to HasA-Heme suggest an extracellular induced fit mechanism for the heme binding. The loop L7 contains hydrophobic residues which could interact with the hydrophobic porphyring ring of heme. The energy required for the transport by ShuA is derived from the proton motive force after interactions between the periplasmic N-terminal TonB-box of ShuA and the inner membrane protein, TonB. In ShuA, the TonB-box is buried and cannot interact with TonB. The structural comparisons with HasR suggest its conformational change upon the heme binding for interacting with TonB. The signaling of the heme binding could involve a hydrogen bond network going from His86 to the TonB-box. (c) 2009 Wiley-Liss, Inc.

  7. A sensitive fluorescence anisotropy method for detection of lead (II) ion by a G-quadruplex-inducible DNA aptamer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dapeng [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Yin, Lei; Meng, Zihui [School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081 (China); Yu, Anchi [Department of Chemistry, Renmin University of China, Beijing, 100872 (China); Guo, Lianghong [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Wang, Hailin, E-mail: hlwang@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China)

    2014-02-17

    Graphical abstract: -- Highlights: •A fluorescence anisotropy approach for detection of Pb{sup 2+} was developed. •The strategy was based on binding-induced allosteric conformational change of aptamer probe. •The sensing mechanism was established by testing the photoinduced electron transfer interaction. -- Abstract: Sensitive and selective detection of Pb{sup 2+} is of great importance to both human health and environmental protection. Here we propose a novel fluorescence anisotropy (FA) approach for sensing Pb{sup 2+} in homogeneous solution by a G-rich thrombin binding aptamer (TBA). The TBA labeled with 6-carboxytetramethylrhodamine (TMR) at the seventh thymine nucleotide was used as a fluorescent probe for signaling Pb{sup 2+}. It was found that the aptamer probe had a high FA in the absence of Pb{sup 2+}. This is because the rotation of TMR is restricted by intramolecular interaction with the adjacent guanine bases, which results in photoinduced electron transfer (PET). When the aptamer probe binds to Pb{sup 2+} to form G-quadruplex, the intramolecular interaction should be eliminated, resulting in faster rotation of the fluorophore TMR in solution. Therefore, FA of aptamer probe is expected to decrease significantly upon binding to Pb{sup 2+}. Indeed, we observed a decrease in FA of aptamer probe upon Pb{sup 2+} binding. Circular dichroism, fluorescence spectra, and fluorescence lifetime measurement were used to verify the reliability and reasonability of the sensing mechanism. By monitoring the FA change of the aptamer probe, we were able to real-time detect binding between the TBA probe and Pb{sup 2+}. Moreover, the aptamer probe was exploited as a recognition element for quantification of Pb{sup 2+} in homogeneous solution. The change in FA showed a linear response to Pb{sup 2+} from 10 nM to 2.0 μM, with 1.0 nM limit of detection. In addition, this sensing system exhibited good selectivity for Pb{sup 2+} over other metal ions. The method is simple

  8. Crystal Structures of Two Novel Dye-Decolorizing Peroxidases Reveal a Beta-Bar Fold With a Conserved Heme-Binding Motif

    Energy Technology Data Exchange (ETDEWEB)

    Zubieta, C.; Krishna, S.S.; Kapoor, M.; Kozbial, P.; McMullan, D.; Axelrod, H.L.; Miller, M.D.; Abdubek, P.; Ambing, E.; Astakhova, T.; Carlton, D.; Chiu, H.J.; Clayton, T.; Deller, M.C.; Duan, L.; Elsliger, M.A.; Feuerhelm, J.; Grzechnik, S.K.; Hale, J.; Hampton, E.; Han, G.W.; /JCSG /SLAC, SSRL /Burnham Inst. Med. Res. /UC, San Diego /Scripps Res. Inst. /Novartis Res. Found.

    2007-10-31

    BtDyP from Bacteroides thetaiotaomicron (strain VPI-5482) and TyrA from Shewanella oneidensis are dye-decolorizing peroxidases (DyPs), members of a new family of heme-dependent peroxidases recently identified in fungi and bacteria. Here, we report the crystal structures of BtDyP and TyrA at 1.6 and 2.7 Angstroms, respectively. BtDyP assembles into a hexamer, while TyrA assembles into a dimer; the dimerization interface is conserved between the two proteins. Each monomer exhibits a two-domain, {alpha}+{beta} ferredoxin-like fold. A site for heme binding was identified computationally, and modeling of a heme into the proposed active site allowed for identification of residues likely to be functionally important. Structural and sequence comparisons with other DyPs demonstrate a conservation of putative heme-binding residues, including an absolutely conserved histidine. Isothermal titration calorimetry experiments confirm heme binding, but with a stoichiometry of 0.3:1 (heme:protein).

  9. Cell-SELEX based selection and optimization of DNA aptamers for specific recognition of human cholangiocarcinoma QBC-939 cells.

    Science.gov (United States)

    Wan, Jun; Ye, Ling; Yang, Xiaohai; Guo, Qiuping; Wang, Kemin; Huang, Zhixiang; Tan, Yuyu; Yuan, Baoyin; Xie, Qin

    2015-09-07

    Cholangiocarcinoma (CCA) is a very aggressive biliary tract malignancy with no efficient early diagnosis and therapeutics available, so there is a call for effective molecular probes. Herein, we performed cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX) to obtain aptamers for the specific recognition of human cholangiocarcinoma QBC-939 cells. By coordinating sequence homology analysis and secondary structure analysis, we successfully obtained two aptamers with dissociation constants (Kd) in the low nanomolar range. A 23 nt truncated sequence was identified after further analysis on the secondary structure. More importantly, because hepatocellular carcinoma SMMC-7721 cells were employed as the control in the counter selection, the obtained aptamers demonstrated excellent specificity to the target cells, and no binding to several other hepatocellular carcinoma cell lines was observed. Moreover, the aptamers were initially found to recognize membrane proteins, giving them great potential in the field of biomarker discovery. These newly generated aptamers may play a key role in the early diagnosis and clinical treatment of CCA.

  10. Food Targeting: A Real-Time PCR Assay Targeting 16S rDNA for Direct Quantification of Alicyclobacillus spp. Spores after Aptamer-Based Enrichment.

    Science.gov (United States)

    Hünniger, Tim; Felbinger, Christine; Wessels, Hauke; Mast, Sophia; Hoffmann, Antonia; Schefer, Anna; Märtlbauer, Erwin; Paschke-Kratzin, Angelika; Fischer, Markus

    2015-05-06

    Spore-forming Alicyclobacillus spp. are able to form metabolites that induce even in small amounts an antiseptical or medicinal off-flavor in fruit juices. Microbial contaminations could occur by endospores, which overcame the pasteurization process. The current detection method for Alicyclobacillus spp. can take up to 1 week because of microbiological enrichment. In a previous study, DNA aptamers were selected and characterized for an aptamer-driven rapid enrichment of Alicyclobacillus spp. spores from orange juice by magnetic separation. In the present work, a direct quantification assay for Alicyclobacillus spp. spores was developed to complete the two-step approach of enrichment and detection. After mechanical treatment of the spores, the isolated DNA was quantified in a real-time PCR-assay targeting 16S rDNA. The assay was evaluated by the performance requirements of the European Network of Genetically Modified Organisms Laboratories (ENGL). Hence, the presented method is applicable for direct spore detection from orange juice in connection with an enrichment step.

  11. Selection of DNA aptamers for extra cellular domain of human epidermal growth factor receptor 2 to detect HER2 positive carcinomas.

    Science.gov (United States)

    Sett, A; Borthakur, B B; Bora, U

    2017-08-01

    Human epidermal growth factor receptor 2 (Her2, an orphan receptor of ErbB family) is considered as an important biomarker as it plays a key role in the development and progression of aggressive types of breast, ovarian, stomach and gastric cancer. In the present study, we developed novel DNA aptamers against the extra-cellular domain (ECD) of Her2 protein for detection of Her2-positive carcinomas. We cloned and expressed Her2-ECD protein in E. coli system. After purification, the protein was used as a bait for screening of specific DNA aptamer candidate from a pool of 10 14-15 random oligonucleotides through in vitro Systematic Evaluation of Ligands by Exponential Enrichment (SELEX) process. The aptamer-protein binding kinetics was elucidated by isothermal calorimetry. The specificity of FAM-labelled ECD_Apt1 towards Her2-positive cell lines was estimated by FACS and immunofluorescence assay. The specificity of the candidate was also verified with the tissue samples of breast cancer patients by immunohistochemistry process. Among four selected candidates, ECD_Apt1 (having minimum ∆G = -3.24) showed the highest binding affinity (K d  = 6.33 ± 0.86 nM) to Her2-ECD protein. The aptamer-protein sandwich assay showed a linear rise in chemiluminescence (at 490 nm wavelength) in the dynamic range of 100-700 nM ECD_Apt1 with a detection limit of 12.5 ± 2.5 ng/mL. Biotinylated ECD_Apt1 showed stronger cytoplasmic staining in Her2-positive breast cancer cell lines (SKBR3) compared to Her2-negative cells (MDA MB 231, MCF7). In paraffin-embedded breast cancer tissue sections, it showed specific and selective localization in the cytoplasmic niche of malignant duct cancer cells without any cross-reactivity to fibroblasts, inflammatory cells and adipocytes. Binding assays, cytochemical and histochemical studies support ECD_Apt1 as a potential theranostic agent for Her2-positive carcinomas. ECD_Apt1 could be an effective low-cost alternative to conventional anti-Her2

  12. Using Aptamers for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Yun Min Chang

    2013-01-01

    Full Text Available Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment SELEX and cell-based SELEX (cell-SELEX. Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.

  13. Designing anti-influenza aptamers: novel quantitative structure activity relationship approach gives insights into aptamer-virus interaction.

    Directory of Open Access Journals (Sweden)

    Boaz Musafia

    Full Text Available This study describes the development of aptamers as a therapy against influenza virus infection. Aptamers are oligonucleotides (like ssDNA or RNA that are capable of binding to a variety of molecular targets with high affinity and specificity. We have studied the ssDNA aptamer BV02, which was designed to inhibit influenza infection by targeting the hemagglutinin viral protein, a protein that facilitates the first stage of the virus' infection. While testing other aptamers and during lead optimization, we realized that the dominant characteristics that determine the aptamer's binding to the influenza virus may not necessarily be sequence-specific, as with other known aptamers, but rather depend on general 2D structural motifs. We adopted QSAR (quantitative structure activity relationship tool and developed computational algorithm that correlate six calculated structural and physicochemical properties to the aptamers' binding affinity to the virus. The QSAR study provided us with a predictive tool of the binding potential of an aptamer to the influenza virus. The correlation between the calculated and actual binding was R2 = 0.702 for the training set, and R2 = 0.66 for the independent test set. Moreover, in the test set the model's sensitivity was 89%, and the specificity was 87%, in selecting aptamers with enhanced viral binding. The most important properties that positively correlated with the aptamer's binding were the aptamer length, 2D-loops and repeating sequences of C nucleotides. Based on the structure-activity study, we have managed to produce aptamers having viral affinity that was more than 20 times higher than that of the original BV02 aptamer. Further testing of influenza infection in cell culture and animal models yielded aptamers with 10 to 15 times greater anti-viral activity than the BV02 aptamer. Our insights concerning the mechanism of action and the structural and physicochemical properties that govern the interaction

  14. Designing anti-influenza aptamers: novel quantitative structure activity relationship approach gives insights into aptamer-virus interaction.

    Science.gov (United States)

    Musafia, Boaz; Oren-Banaroya, Rony; Noiman, Silvia

    2014-01-01

    This study describes the development of aptamers as a therapy against influenza virus infection. Aptamers are oligonucleotides (like ssDNA or RNA) that are capable of binding to a variety of molecular targets with high affinity and specificity. We have studied the ssDNA aptamer BV02, which was designed to inhibit influenza infection by targeting the hemagglutinin viral protein, a protein that facilitates the first stage of the virus' infection. While testing other aptamers and during lead optimization, we realized that the dominant characteristics that determine the aptamer's binding to the influenza virus may not necessarily be sequence-specific, as with other known aptamers, but rather depend on general 2D structural motifs. We adopted QSAR (quantitative structure activity relationship) tool and developed computational algorithm that correlate six calculated structural and physicochemical properties to the aptamers' binding affinity to the virus. The QSAR study provided us with a predictive tool of the binding potential of an aptamer to the influenza virus. The correlation between the calculated and actual binding was R2 = 0.702 for the training set, and R2 = 0.66 for the independent test set. Moreover, in the test set the model's sensitivity was 89%, and the specificity was 87%, in selecting aptamers with enhanced viral binding. The most important properties that positively correlated with the aptamer's binding were the aptamer length, 2D-loops and repeating sequences of C nucleotides. Based on the structure-activity study, we have managed to produce aptamers having viral affinity that was more than 20 times higher than that of the original BV02 aptamer. Further testing of influenza infection in cell culture and animal models yielded aptamers with 10 to 15 times greater anti-viral activity than the BV02 aptamer. Our insights concerning the mechanism of action and the structural and physicochemical properties that govern the interaction with the influenza

  15. Heme-binding characteristics of the isolated PAS-B domain of mouse Per2, a transcriptional regulatory factor associated with circadian rhythms.

    Science.gov (United States)

    Hayasaka, Koya; Kitanishi, Kenichi; Igarashi, Jotaro; Shimizu, Toru

    2011-02-01

    Mouse period homolog 2 (mPer2), an important transcriptional regulatory factor associated with circadian rhythms, is composed of two N-terminal PAS (PAS-A and PAS-B) domains and a C-terminal domain. The PAS-A domain of mPer2 binds the heme iron via a Cys axial ligand. A corresponding transcriptional regulatory factor, neuronal PAS 2 protein (NPAS2), also contains PAS-A and PAS-B domains at the N-terminus with heme-binding capability. In particular, the PAS-B domain appears important for protein-protein interactions critical for transcriptional regulation. In the present study, we examined the heme-binding characteristics of the isolated PAS-B domain of mPer2. Our experiments show that the Fe(III) heme binds the isolated PAS-B domain with a heme to protein stoichiometry of 1:1. The Fe(III) protein complex is suggested to consist of an admixture of 6-coordinated His-bound high-spin and low-spin complexes. Marked pH-dependent spectral changes were observed, in contrast to the spectrum of the Fe(III) bound PAS-A domain of mPer2, which appeared pH-resistant. Treatment with diethylpyrocarbonate abolished the heme-binding ability of this protein, supporting the proposal that His is the axial ligand. Heme dissociation was composed of two phases with rate constants of 4.3 × 10⁻⁴ s⁻¹ (50%) and 4.0 × 10⁻³ s⁻¹ (50%), which were markedly higher than that (1.5 × 10⁻⁷ s⁻¹) of the prototype heme protein, myoglobin. The Soret CD band of the H454A PAS-B mutant was significantly different from those of wild-type and other His mutant proteins, strongly suggesting that His454 is one of the axial ligands for the Fe(III) complex. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Specific targeting delivery to MUC1 overexpressing tumors by albumin-chitosan nanoparticles conjugated to DNA aptamer.

    Science.gov (United States)

    Esfandyari-Manesh, Mehdi; Mohammadi, Ali; Atyabi, Fatemeh; Nabavi, Seyedeh Maryam; Ebrahimi, Seyedeh Masoumeh; Shahmoradi, Elnaz; Varnamkhasti, Behrang Shiri; Ghahremani, Mohammad Hossein; Dinarvand, Rassoul

    2016-12-30

    Chitosan-coated human serum albumin nanoparticles were functionalized by MUC1 aptamer to obtain a selective drug carrier toward cancers overexpressing MUC1. The negative charges of albumin nanoparticles were shifted to positive charges by surface modification with chitosan, and MUC1 was conjugated through an acrylate spacer. The cytotoxicity of targeted nanoparticles was significantly more than non-aptamer nanoparticles, and also the chitosan-coated nanoparticles had more cytotoxic effects than the negatively charged albumin nanoparticles. The IC50 of targeted nanoparticles was 28 and 26% of free paclitaxel in MCF7 and T47D cells at 48h, respectively. Confocal laser scanning electron microscopy showed that aptamer conjugation and positive charge increase the cellular uptake. 66% of paclitaxel was released within 32h, but 100% of drug was released at pH=5.5 (similar cancer cells). The paclitaxel plasma amount was at a good level of 17.6% at 2h for increasing the chance of cellular uptake. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Selection and characterization of a DNA aptamer that can discriminate between cJun/cJun and cJun/cFos.

    Directory of Open Access Journals (Sweden)

    Ryan D Walters

    Full Text Available The AP-1 family of transcriptional activators plays pivotal roles in regulating a wide range of biological processes from the immune response to tumorigenesis. Determining the roles of specific AP-1 dimers in cells, however, has remained challenging because common molecular biology techniques are unable to distinguish between the role of, for example, cJun/cJun homodimers versus cJun/cFos heterodimers. Here we used SELEX (systematic evolution of ligands by exponential enrichment to identify and characterize DNA aptamers that are >100-fold more specific for binding cJun/cJun compared to cJun/cFos, setting the foundation to investigate the biological functions of different AP-1 dimer compositions.

  18. RNA aptamer inhibitors of a restriction endonuclease.

    Science.gov (United States)

    Mondragón, Estefanía; Maher, L James

    2015-09-03

    Restriction endonucleases (REases) recognize and cleave short palindromic DNA sequences, protecting bacterial cells against bacteriophage infection by attacking foreign DNA. We are interested in the potential of folded RNA to mimic DNA, a concept that might be applied to inhibition of DNA-binding proteins. As a model system, we sought RNA aptamers against the REases BamHI, PacI and KpnI using systematic evolution of ligands by exponential enrichment (SELEX). After 20 rounds of selection under different stringent conditions, we identified the 10 most enriched RNA aptamers for each REase. Aptamers were screened for binding and specificity, and assayed for REase inhibition. We obtained eight high-affinity (Kd ∼12-30 nM) selective competitive inhibitors (IC50 ∼20-150 nM) for KpnI. Predicted RNA secondary structures were confirmed by in-line attack assay and a 38-nt derivative of the best anti-KpnI aptamer was sufficient for inhibition. These competitive inhibitors presumably act as KpnI binding site analogs, but lack the primary consensus KpnI cleavage sequence and are not cleaved by KpnI, making their potential mode of DNA mimicry fascinating. Anti-REase RNA aptamers could have value in studies of REase mechanism and may give clues to a code for designing RNAs that competitively inhibit DNA binding proteins including transcription factors. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Aptamer Selection Express: A Rapid Single-Step Selection of Double Stranded DNA Capture Elements (Briefing Charts)

    Science.gov (United States)

    2009-07-01

    unlimited Bot Tox Aptamers: SELEX and ASExpP Selected by ASExpP against BoTox , type A-light chain (for DCE-1) 1(+). AgTCTAgAgggCCCCAgAATACACCCgACAACTAgAT...ACCCATCAAAAgTCCAgCAAAggATgCAggggT 1(-). ACCCCTgCATCCTTTgCTggACTTTTgATgggTATCTA gTTgTCgggTgTATTCTggggCCCTCTAgACT Selected by ASExpP against BoTox ...ACCCCTgCATCCTTTgCTgggTgAgATgTACTACTTCC CgCTAgTggATAATTCTggggCCCTCTAgACT Selected by SELEX against BoTox , type A-light chain (for DCE-3) 3(+). CATCCgTCACACCTgCTCTggggATgTgTggTgTTggCT

  20. Cationic Surfactant-Based Colorimetric Detection of Plasmodium Lactate Dehydrogenase, a Biomarker for Malaria, Using the Specific DNA Aptamer

    OpenAIRE

    Lee, Seonghwan; Manjunatha, D H; Jeon, Weejeong; Ban, Changill

    2014-01-01

    A simple, sensitive, and selective colorimetric biosensor for the detection of the malarial biomarkers Plasmodium vivax lactate dehydrogenase (PvLDH) and Plasmodium falciparum LDH (PfLDH) was demonstrated using the pL1 aptamer as the recognition element and gold nanoparticles (AuNPs) as probes. The proposed method is based on the aggregation of AuNPs using hexadecyltrimethylammonium bromide (CTAB). The AuNPs exhibited a sensitive color change from red to blue, which could be seen directly wit...

  1. Development of a Novel Fluorescence Assay Based on the Use of the Thrombin-Binding Aptamer for the Detection of O6-Alkylguanine-DNA Alkyltransferase Activity

    Directory of Open Access Journals (Sweden)

    Maria Tintoré

    2010-01-01

    Full Text Available Human O6-alkylguanine-DNA alkyltransferase (hAGT is a DNA repair protein that reverses the effects of alkylating agents by removing DNA adducts from the O6 position of guanine. Here, we developed a real-time fluorescence hAGT activity assay that is based on the detection of conformational changes of the thrombin-binding aptamer (TBA. The quadruplex structure of TBA is disrupted when a central guanine is replaced by an O6-methyl-guanine. The sequence also contains a fluorophore (fluorescein and a quencher (dabsyl attached to the opposite ends. In the unfolded structure, the fluorophore and the quencher are separated. When hAGT removes the methyl group from the central guanine of TBA, it folds back immediately into its quadruplex structure. Consequently, the fluorophore and the quencher come into close proximity, thereby resulting in decreased fluorescence intensity. Here, we developed a new method to quantify the hAGT without using radioactivity. This new fluorescence resonance energy transfer assay has been designed to detect the conformational change of TBA that is induced by the removal of the O6-methyl group.

  2. Cationic surfactant-based colorimetric detection of Plasmodium lactate dehydrogenase, a biomarker for malaria, using the specific DNA aptamer.

    Directory of Open Access Journals (Sweden)

    Seonghwan Lee

    Full Text Available A simple, sensitive, and selective colorimetric biosensor for the detection of the malarial biomarkers Plasmodium vivax lactate dehydrogenase (PvLDH and Plasmodium falciparum LDH (PfLDH was demonstrated using the pL1 aptamer as the recognition element and gold nanoparticles (AuNPs as probes. The proposed method is based on the aggregation of AuNPs using hexadecyltrimethylammonium bromide (CTAB. The AuNPs exhibited a sensitive color change from red to blue, which could be seen directly with the naked eye and was monitored using UV-visible absorption spectroscopy and transmission electron microscopy (TEM. The reaction conditions were optimized to obtain the maximum color intensity. PvLDH and PfLDH were discernible with a detection limit of 1.25 pM and 2.94 pM, respectively. The applicability of the proposed biosensor was also examined in commercially available human serum.

  3. Cationic surfactant-based colorimetric detection of Plasmodium lactate dehydrogenase, a biomarker for malaria, using the specific DNA aptamer.

    Science.gov (United States)

    Lee, Seonghwan; Manjunatha, D H; Jeon, Weejeong; Ban, Changill

    2014-01-01

    A simple, sensitive, and selective colorimetric biosensor for the detection of the malarial biomarkers Plasmodium vivax lactate dehydrogenase (PvLDH) and Plasmodium falciparum LDH (PfLDH) was demonstrated using the pL1 aptamer as the recognition element and gold nanoparticles (AuNPs) as probes. The proposed method is based on the aggregation of AuNPs using hexadecyltrimethylammonium bromide (CTAB). The AuNPs exhibited a sensitive color change from red to blue, which could be seen directly with the naked eye and was monitored using UV-visible absorption spectroscopy and transmission electron microscopy (TEM). The reaction conditions were optimized to obtain the maximum color intensity. PvLDH and PfLDH were discernible with a detection limit of 1.25 pM and 2.94 pM, respectively. The applicability of the proposed biosensor was also examined in commercially available human serum.

  4. Complexes of the ATP-dependent Lon protease and DNA aptamers with G-quadruplexes as a model for developing a nanosensor biomagnetic immunoassay system

    Science.gov (United States)

    Spiridonova, V. A.; Sizov, V. A.; Kuzmenko, E. O.; Melnichuk, A. V.; Oleinichenko, E. A.; Kudzhaev, A. M.; Rotanova, T. V.; Snigirev, O. V.

    2017-07-01

    The binding to Lon protease through biotinylated aptamers whose structures contain G-quadruplex fragments with magnetic nanoparticles (MNPs) functionalized by streptavidin was investigated. The conditions of binding of target aptamers to MNPs are met. The resulting complexes are proposed for detection of Lon protease in different biological sources and for constructing a novel biomagnetic nanosensor immunoassay system.

  5. Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood

    Energy Technology Data Exchange (ETDEWEB)

    Dougan, Hayes E-mail: dougan@triumf.ca; Lyster, Donald M.; Vo, Can V.; Stafford, Alan; Weitz, Jeffrey I.; Hobbs, John B

    2000-04-01

    We have investigated {sup 123}I and {sup 125}I DNA aptamer analogs of anticoagulant DNA aptamers to thrombin exosite 1 and exosite 2 for thrombus imaging potential. Two severe problems are rapid clearance from circulating blood and blood nuclease. With aptamers (unlike antisense) the nucleotide analogs used in polymerase chain reaction-selection cycles also must be used in the radiotracer. We investigated 3'-biotin-streptavidin (SA) bioconjugates of the aptamers to alleviate these problems. Blood nuclease assays and biodistribution analysis were used in the mouse and rabbit. We found that 3'-biotin protected the aptamers significantly from blood nuclease in vitro, but it did not slow in vivo clearance. In contrast, the 3'-biotin-SA bioconjugates were resistant to blood nuclease in vitro and were also longer-lived (10-20 times) in vivo. Bioconjugate aptamers retained affinity for thrombin. Two solutions emerge: 1) In noncirculating blood (within a thrombus) 3'-biotin extends aptamer lifetime, whereas 2) in circulating blood (the transport medium), where more aggressive clearance is encountered, 3'-SA extends aptamer lifetime.

  6. Development of chitosan graft pluronic®F127 copolymer nanoparticles containing DNA aptamer for paclitaxel delivery to treat breast cancer cells

    Science.gov (United States)

    Thach Nguyen, Kim; Le, Duc Vinh; Do, Dinh Ho; Huan Le, Quang

    2016-06-01

    HER-2/ErbB2/Neu(HER-2), a member of the epidermal growth factor receptor family, is specifically overexpressed on the surface of breast cancer cells and serves a therapeutic target for breast cancer. In this study, we aimed to isolate DNA aptamer (Ap) that specifically bind to a HER-2 overexpressing SK-BR-3 human breast cancer cell line, using SELEX strategy. We developed a novel multifunctional composite micelle with surface modification of Ap for targeted delivery of paclitaxel. This binary mixed system consisting of Ap modified pluronic®F127 and chitosan could enhance PTX loading capacity and increase micelle stability. Polymeric micelles had a spherical shape and were self-assemblies of block copolymers of approximately 86.22 ± 1.45 nm diameter. PTX could be loaded with high encapsulation efficiency (83.28 ± 0.13%) and loading capacity (9.12 ± 0.34%). The release profile were 29%-35% in the first 12 h and 85%-93% after 12 d at pH 7.5 of receiving media. The IC50 doses by MTT assay showed the greater activity of nanoparticles loaded paclitaxel over free paclitaxel and killed cells up to 95% after 6 h. These results demonstrated unique assembly with the capacity to function as an efficient detection and delivery vehicle in the biological living system.

  7. A fluorescent aptasensor for analysis of adenosine triphosphate based on aptamer-magnetic nanoparticles and its single-stranded complementary DNA labeled carbon dots.

    Science.gov (United States)

    Saberi, Zeinab; Rezaei, Behzad; Khayamian, Taghi

    2018-01-30

    A new fluorimetric aptasensor was designed for the determination of adenosine triphosphate (ATP) based on magnetic nanoparticles (MNPs) and carbon dots (CDs). In this analytical strategy, an ATP aptamer was conjugated on MNPs and a complementary strand of the aptamer (CS) was labeled with CDs. The aptamer and its CS were hybridized to form a double helical structure. The hybridized aptamers could be used for the specific recognition of ATP in a biological complex matrix using a strong magnetic field to remove the interfering effect. In the absence of ATP, no CDs-CS could be released into the solution and this resulted in a weak fluorescence signal. In the presence of ATP, the target binds to its aptamer and causes the dissociation of the double helical structure and liberation of the CS, such that a strong fluorescence signal was generated. The increased fluorescence signal was proportional to ATP concentration. The limit of detection was estimated to be 1.0 pmol L -1 with a dynamic range of 3.0 pmol L -1 to 5.0 nmol L -1 . The specific aptasensor was applied to detect ATP in human serum samples with satisfactory results. Moreover, molecular dynamic simulation (MDS) studies were used to analyze interactions of the ATP molecule with the aptamer. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Aptamer Microarrays—Current Status and Future Prospects

    Science.gov (United States)

    Witt, Martin; Walter, Johanna-Gabriela; Stahl, Frank

    2015-01-01

    Microarray technologies are state of the art in biological research, which requires fast genome, proteome and transcriptome analysis technologies. Often antibodies are applied in protein microarrays as proteomic tools. Since the generation of antibodies against toxic targets or small molecules including organic compounds remains challenging the use of antibodies may be limited in this context. In contrast to this, aptamer microarrays provide alternative techniques to circumvent these limitations. In this article we review the latest developments in aptamer microarray technology. We discuss similarities and differences between DNA and aptamer microarrays and shed light on the post synthesis immobilization of aptamers including corresponding effects on the microarray performance. Finally, we highlight current limitations and future prospects of aptamer microarray technology. PMID:27600216

  9. Aptamer-guided gene targeting in yeast and human cells

    Science.gov (United States)

    Ruff, Patrick; Koh, Kyung Duk; Keskin, Havva; Pai, Rekha B.; Storici, Francesca

    2014-01-01

    Gene targeting is a genetic technique to modify an endogenous DNA sequence in its genomic location via homologous recombination (HR) and is useful both for functional analysis and gene therapy applications. HR is inefficient in most organisms and cell types, including mammalian cells, often limiting the effectiveness of gene targeting. Therefore, increasing HR efficiency remains a major challenge to DNA editing. Here, we present a new concept for gene correction based on the development of DNA aptamers capable of binding to a site-specific DNA binding protein to facilitate the exchange of homologous genetic information between a donor molecule and the desired target locus (aptamer-guided gene targeting). We selected DNA aptamers to the I-SceI endonuclease. Bifunctional oligonucleotides containing an I-SceI aptamer sequence were designed as part of a longer single-stranded DNA molecule that contained a region with homology to repair an I-SceI generated double-strand break and correct a disrupted gene. The I-SceI aptamer-containing oligonucleotides stimulated gene targeting up to 32-fold in yeast Saccharomyces cerevisiae and up to 16-fold in human cells. This work provides a novel concept and research direction to increase gene targeting efficiency and lays the groundwork for future studies using aptamers for gene targeting. PMID:24500205

  10. DNAzyme footprinting: detecting protein-aptamer complexation on surfaces by blocking DNAzyme cleavage activity.

    Science.gov (United States)

    Chen, Yulin; Corn, Robert M

    2013-02-13

    A novel method to quantitatively measure the binding of proteins to single-stranded DNA (ssDNA) aptamers that employs the inhibition of the DNAzyme hydrolysis of aptamer monolayers is described. A 28-base DNAzyme was designed to specifically bind to and cleave a 29-base ssDNA sequence that can fold into a G-quartet aptamer and bind the protein thrombin. The binding strength of the DNAzyme to the aptamer sequence was designed to be less than the binding strength of the thrombin to the aptamer (ΔG° = -43.1 and -51.8 kJ/mol, respectively). Formation of the thrombin-aptamer complex was found to block DNAzyme cleavage activity both in solution and in an ssDNA aptamer monolayer. We denote this method for detecting protein-aptamer complexation as "DNAzyme footprinting" in analogy to the process of DNase footprinting for the detection of protein-DNA interactions. By attaching a 40-base reporter sequence to the ssDNA aptamer monolayer, the detection of any protein-aptamer complexes remaining on the surface after DNAzyme activity can be greatly enhanced (down to one thrombin-aptamer complex per 10,000 ssDNA molecules corresponding to 100 fM thrombin in solution) by a subsequent surface RNA transcription amplification reaction followed by RNA detection with nanoparticle-enhanced SPR imaging. In addition to RNA transcription, DNAzyme footprinting can be coupled to a wide variety of other nucleic acid surface amplification schemes and thus is a powerful new route for the enzymatically amplified detection of proteins via protein-aptamer complex formation.

  11. In vitro evaluation of radiolabeled aptamers for colon carcinoma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Correa, C.R.; Ferreira, I.M; Santos, S.R.; Faria, L.S.; Andrade, A.S.R., E-mail: crisrcorrea@gmail.com, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Goes, A.M., E-mail: goes@icb.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Imunologia e Bioquimica

    2013-07-01

    Cancer is a leading cause of death worldwide, representing a major public health problem worldwide. Colorectal cancers accounts around 8% of all deaths for cancer in 2008, is the fourth most lethal. Many colorectal cancer markers, such as carcinoembryonic antigen (CEA), A33, and CSA-p, have been studied as the therapeutic targets in preclinical or clinical settings. CEA is a complex intracellular glycoprotein produced by about 90% of colorectal cancers. Since its discovery in 1965, a very large number of studies have been carried out to determine the effectiveness of CEA as clinically useful tumor markers. Aptamers are short single-stranded nucleic acid oligomers (DNA or RNA) that can form specific and complex three-dimensional structures which can bind with high affinity to specific targets, they are functionally equivalent of antibodies. Aptamers have the advantage of being highly specific, relatively small size, and non-immunogenic. The aim of this study was develop anti-CEA aptamers for use as imaging agents. The aptamers are obtained through by SELEX (systematic evolution of ligands by exponential enrichment), in which aptamers are selected from a library of random sequences of synthetic DNA by repetitive binding of the oligonucleotides to target molecule. These aptamers were confirmed to have affinity and specific binding for T84 cell line (target cell), showed by fluorescence microscopic images. Individual aptamers sequences that bound T84 cells were {sup 32}P-radiolabeled and incubated at different concentrations on cell monolayers, to monitor the aptamers affinity binding. The selected aptamers can identify colon cancer cell line. This aptamers could be further developed for early disease detection as radiopharmaceuticals, as well as prognostic markers, of colorectal cancers. (author)

  12. Aptamer-mediated cancer gene therapy.

    Science.gov (United States)

    Xiang, Dongxi; Shigdar, Sarah; Qiao, Greg; Zhou, Shu-Feng; Li, Yong; Wei, Ming Q; Qiao, Liang; Shamaileh, Hadi Al; Zhu, Yimin; Zheng, Conglong; Pu, Chunwen; Duan, Wei

    2015-01-01

    Cancer as a genetic disorder is one of the leading causes of death worldwide. Conventional anticancer options such as chemo- and/or radio-therapy have their own drawbacks and could not provide a cure in most cases at present. More effective therapeutic strategies with less side effects are urgently needed. Aptamers, also known as chemical antibodies, are single strand DNA or RNA molecules that can bind to their target molecules with high affinity and specificity. Such site-specific binding ability of aptamers facilitates the delivery and interaction of exogenous nucleic acids with diseased genes. Thus, aptamer-guided gene therapy has emerged as a promising anticancer strategy in addition to the classic treatment regimen. Aptamers can directly deliver anti-cancer nucleic acids, e.g. small interfering RNA, micro RNA, antimicroRNA and small hairpin RNA, to cancer cells or function as a targeting ligand to guide nanoparticles containing therapeutic nucleic acids. This review focuses on recent progress in aptamer-mediated gene therapy for the treatment of hepatocellular carcinoma and other types of cancers, shedding light on the potential of this novel approach of targeted cancer gene therapy.

  13. Aptamers against prion proteins and prions.

    Science.gov (United States)

    Gilch, Sabine; Schätzl, Hermann M

    2009-08-01

    Prion diseases are fatal neurodegenerative and infectious disorders of humans and animals, characterized by structural transition of the host-encoded cellular prion protein (PrP(c)) into the aberrantly folded pathologic isoform PrP(Sc). RNA, DNA or peptide aptamers are classes of molecules which can be selected from complex combinatorial libraries for high affinity and specific binding to prion proteins and which might therefore be useful in diagnosis and therapy of prion diseases. Nucleic acid aptamers, which can be chemically synthesized, stabilized and immobilized, appear more suitable for diagnostic purposes, allowing use of PrP(Sc) as selection target. Peptide aptamers facilitate appropriate intracellular expression, targeting and re-routing without losing their binding properties to PrP, a requirement for potential therapeutic gene transfer experiments in vivo. Elucidation of structural properties of peptide aptamers might be used as basis for rational drug design, providing another attractive application of peptide aptamers in the search for effective anti-prion strategies.

  14. Characterization of a gene family encoding SEA (sea-urchin sperm protein, enterokinase and agrin-domain proteins with lectin-like and heme-binding properties from Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    Evaristus Chibunna Mbanefo

    Full Text Available BACKGROUND: We previously identified a novel gene family dispersed in the genome of Schistosoma japonicum by retrotransposon-mediated gene duplication mechanism. Although many transcripts were identified, no homolog was readily identifiable from sequence information. METHODOLOGY/PRINCIPAL FINDINGS: Here, we utilized structural homology modeling and biochemical methods to identify remote homologs, and characterized the gene products as SEA (sea-urchin sperm protein, enterokinase and agrin-domain containing proteins. A common extracellular domain in this family was structurally similar to SEA-domain. SEA-domain is primarily a structural domain, known to assist or regulate binding to glycans. Recombinant proteins from three members of this gene family specifically interacted with glycosaminoglycans with high affinity, with potential implication in ligand acquisition and immune evasion. Similar approach was used to identify a heme-binding site on the SEA-domain. The heme-binding mode showed heme molecule inserted into a hydrophobic pocket, with heme iron putatively coordinated to two histidine axial ligands. Heme-binding properties were confirmed using biochemical assays and UV-visible absorption spectroscopy, which showed high affinity heme-binding (K D = 1.605×10(-6 M and cognate spectroscopic attributes of hexa-coordinated heme iron. The native proteins were oligomers, antigenic, and are localized on adult worm teguments and gastrodermis; major host-parasite interfaces and site for heme detoxification and acquisition. CONCLUSIONS: The results suggest potential role, at least in the nucleation step of heme crystallization (hemozoin formation, and as receptors for heme uptake. Survival strategies exploited by parasites, including heme homeostasis mechanism in hemoparasites, are paramount for successful parasitism. Thus, assessing prospects for application in disease intervention is warranted.

  15. Detection of human neutrophil elastase by aptamer affinity capillary electrophoresis coupled with laser-induced fluorescence using specified site fluorescently labeled aptamer.

    Science.gov (United States)

    Bai, Yunlong; Wang, Hailin; Zhao, Qiang

    2017-11-01

    As a multifunctional serine protease, human neutrophil elastase (HNE) plays critical roles in a variety of physiopathological processes, such as acute lung injury, emphysema, atherosclerosis, and arthritis. The quantification of HNE is important in many applications. In this paper, we report an aptamer affinity capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF) assay for detection of HNE using a tetramethylrhodamine (TMR)-labeled DNA aptamer probe. The affinity complex of HNE and DNA aptamer probe was well separated from the unbound aptamer probe in CE separation based on the difference of electrophoretic mobility. Broad complex peaks appeared due to possible multiple binding. The 45-mer aptamer having TMR labeling on the 40th T base was used as affinity probe, as larger complex peaks were obtained. We investigated the effects of various metal cations (Na + , K + , and Mg 2+ ) in sample buffer on the binding of HNE and the aptamer in CE-LIF analysis. The presence of Na + , K + , or Mg 2+ in sample buffer caused a decrease of complex peaks, and Mg 2+ showed a larger effect. Under optimized conditions, this aptamer CE-LIF assay enabled the detection of HNE at 0.5 nM. This assay showed good specificity and allowed for detection of HNE spiked in diluted human serum sample. Graphical abstract The complex of HNE and DNA aptamer probe was isolated from the unbound aptamer probe in CE separation due to difference of electrophoretic mobility, allowing a CE-LIF assay for HNE.

  16. Aptamer-mediated Plasmodium-specific diagnosis of malaria.

    Science.gov (United States)

    Cheung, Yee-Wai; Dirkzwager, Roderick M; Wong, Wai-Chung; Cardoso, Josiane; D'Arc Neves Costa, Joana; Tanner, Julian A

    2018-02-01

    There is a critical need for better malaria rapid diagnostic tests to discriminate Plasmodium falciparum and Plasmodium vivax infection given the recent observation of HRP2 deletions in P. falciparum parasites. We previously identified a DNA aptamer, 2008s, that targets P. falciparum lactate dehydrogenase (PfLDH) and developed a sensitive aptamer-tethered enzyme capture (APTEC) assay. Here, we characterise two different LDH-binding DNA aptamers in their species-specific activities, then integrate within biochemical diagnostic assays and test in clinical samples. An enzyme-linked oligonucleotide assay demonstrated that aptamer pL1 bound with high affinity to both PfLDH and P. vivax lactate dehydrogenase (PvLDH), whereas aptamer 2008s was specific to PfLDH. An aptamer-tethered enzyme capture (APTEC) assay confirmed the specificity of 2008s in binding and capturing the enzyme activity of PfLDH which could be observed colorimetrically. In malaria patient samples, the 2008s APTEC assay was specific for P. falciparum blood samples and could discriminate against P. vivax blood samples. An aptamer for specific detection of falciparum malaria holds promise as a new strategy for species-specific malaria diagnosis rather than the conventional HRP2 immuno-assay. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. Aptamers: active targeting ligands for cancer diagnosis and therapy.

    Science.gov (United States)

    Wu, Xu; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2015-01-01

    Aptamers, including DNA, RNA and peptide aptamers, are a group of promising recognition units that can specifically bind to target molecules and cells. Due to their excellent specificity and high affinity to targets, aptamers have attracted great attention in various fields in which selective recognition units are required. They have been used in biosensing, drug delivery, disease diagnosis and therapy (especially for cancer treatment). In this review, we summarized recent applications of DNA and RNA aptamers in cancer theranostics. The specific binding ability of aptamers to cancer-related markers and cancer cells ensured their high performance for early diagnosis of cancer. Meanwhile, the efficient targeting ability of aptamers to cancer cells and tissues provided a promising way to deliver imaging agents and drugs for cancer imaging and therapy. Furthermore, with the development of nanoscience and nanotechnology, the conjugation of aptamers with functional nanomaterials paved an exciting way for the fabrication of theranostic agents for different types of cancers, which might be a powerful tool for cancer treatment.

  18. CELL-SELEX: Novel Perspectives of Aptamer-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Hans P. Wendel

    2008-04-01

    Full Text Available Aptamers, single stranded DNA or RNA molecules, generated by a method called SELEX (systematic evolution of ligands by exponential enrichment have been widely used in various biomedical applications. The newly developed Cell-SELEX (cell based-SELEX targeting whole living cells has raised great expectations for cancer biology, -therapy and regenerative medicine. Combining nanobiotechnology with aptamers, this technology opens the way to more sophisticated applications in molecular diagnosis. This paper gives a review of recent developments in SELEX technologies and new applications of aptamers.

  19. Aptamer selection and applications for breast cancer diagnostics and therapy

    Directory of Open Access Journals (Sweden)

    Mei Liu

    2017-11-01

    Full Text Available Abstract Aptamers are short non-coding, single-stranded oligonucleotides (RNA or DNA developed through Systematic Evolution of Ligands by Exponential enrichment (SELEX in vitro. Similar to antibodies, aptamers can bind to specific targets with high affinity, and are considered promising therapeutic agents as they have several advantages over antibodies, including high specificity, stability, and non-immunogenicity. Furthermore, aptamers can be produced at a low cost and easily modified, and are, therefore, called “chemical antibodies”. In the past years, a variety of aptamers specifically bound to both breast cancer biomarkers and cells had been selected. Besides, taking advantage of nanomaterials, there were a number of aptamer-nanomaterial conjugates been developed and widely investigated for diagnostics and targeted therapy of breast cancer. In this short review, we first present a systematical review of various aptamer selection methods. Then, various aptamer-based diagnostic and therapeutic strategies of breast cancer were provided. Finally, the current problems, challenges, and future perspectives in the field were thoroughly discussed.

  20. Aptamer-initiated on-particle template-independent enzymatic polymerization (aptamer-OTEP) for electrochemical analysis of tumor biomarkers.

    Science.gov (United States)

    Wang, Pengjuan; Wan, Ying; Deng, Shengyuan; Yang, Shulin; Su, Yan; Fan, Chunhai; Aldalbahi, Ali; Zuo, Xiaolei

    2016-12-15

    Herein, an aptamer-initiated on-particle template-independent enzymatic polymerization (aptamer-OTEP) strategy for electrochemical aptasensor (E-aptasensor) is developed for analysis of cancer biomarker carcino-embryonic antigen (CEA). A pair of DNA aptamers is employed which can be specifically bond with CEA simultaneously. One of the aptamer is thiolated at 3'-terminal and immobilized onto the gold electrode as a capture probe, while the other one has a thiol group at its 5'-terminal and is modified onto the gold nanoparticles surface to form a nanoprobe. In the present of target, the two aptamers can "sandwich" the target, thus the nanoprobe is attached to the electrode. Then terminal deoxynucleotidyl transferase (TdT) is employed to catalyze the incorporation of biotin labeled dNTPs into the 3'-OH terminals of the DNA aptamer on the nanoprobe. The as-generated long DNA oligo tentacles allow specific binding of numerous avidin modified horseradish peroxidase (Av-HRP), resulting in tens of thousands of HRP catalyzed reduction of hydrogen peroxide and sharply increasing electrochemical signals. Taking advantage of the enzyme based nucleic acid amplification and nanoprobe, this strategy is demonstrated to possess the outstanding amplification efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Riboswitch-Mediated Aptamer Binding for Imaging and Therapy (RABIT): A Novel Technique to Selectively Target an Intracelluar Ligand Specific for Ovarian Cancer

    Science.gov (United States)

    2015-12-01

    The aptamers were incubated with either parental or MUC1-expressing cells that were inhibited by sodium azide from undergoing endocytosis , and...aptamers • Selection of candidate antipyrine DNA aptamers • Selection of candidate MUC1 modified RNA aptamers • Determination of binding constants...resulting diminished VICKZ protein required for cell motility. We intend to exploit this novel finding to determine whether this effect can be exploited

  2. Improvement of a streptavidin-binding aptamer by LNA- and α-l-LNA-substitutions

    DEFF Research Database (Denmark)

    Jørgensen, Anna S; Hansen, Lykke H; Vester, Birte

    2014-01-01

    Forty modified versions of a streptavidin-binding aptamer each containing single or multiple LNA or α-l-LNA-substitutions were synthesized and their dissociation constants determined by surface plasmon resonance experiments. Both full-length and truncated versions of the aptamer were studied...... and compared with the unmodified DNA aptamers. A ∼two-fold improvement in binding affinity was achieved by incorporation of LNA nucleotides in the 3'-part of the stems of the streptavidin-binding aptamer whereas LNA- and α-l-LNA-substitutions in the terminal stem increased the serum stability....

  3. Modeling the microscopic electrical properties of thrombin binding aptamer (TBA) for label-free biosensors

    Science.gov (United States)

    Alfinito, Eleonora; Reggiani, Lino; Cataldo, Rosella; De Nunzio, Giorgio; Giotta, Livia; Guascito, Maria Rachele

    2017-02-01

    Aptamers are chemically produced oligonucleotides, able to bind a variety of targets such as drugs, proteins and pathogens with high sensitivity and selectivity. Therefore, aptamers are largely employed for producing label-free biosensors (aptasensors), with significant applications in diagnostics and drug delivery. In particular, the anti-thrombin aptamers are biomolecules of high interest for clinical use, because of their ability to recognize and bind the thrombin enzyme. Among them, the DNA 15-mer aptamer (TBA), has been widely explored around the possibility of using it in aptasensors. This paper proposes a microscopic model of the electrical properties of TBA and of the aptamer-thrombin complex, combining information from both structure and function, following the issues addressed in an emerging branch of electronics known as proteotronics. The theoretical results are compared and validated with measurements reported in the literature. Finally, the model suggests resistance measurements as a novel tool for testing aptamer-target affinity.

  4. Aptamers Binding to c-Met Inhibiting Tumor Cell Migration.

    Directory of Open Access Journals (Sweden)

    Birgit Piater

    Full Text Available The human receptor tyrosine kinase c-Met plays an important role in the control of critical cellular processes. Since c-Met is frequently over expressed or deregulated in human malignancies, blocking its activation is of special interest for therapy. In normal conditions, the c-Met receptor is activated by its bivalent ligand hepatocyte growth factor (HGF. Also bivalent antibodies can activate the receptor by cross linking, limiting therapeutic applications. We report the generation of the RNA aptamer CLN64 containing 2'-fluoro pyrimidine modifications by systematic evolution of ligands by exponential enrichment (SELEX. CLN64 and a previously described single-stranded DNA (ssDNA aptamer CLN3 exhibited high specificities and affinities to recombinant and cellular expressed c-Met. Both aptamers effectively inhibited HGF-dependent c-Met activation, signaling and cell migration. We showed that these aptamers did not induce c-Met activation, revealing an advantage over bivalent therapeutic molecules. Both aptamers were shown to bind overlapping epitopes but only CLN3 competed with HGF binding to cMet. In addition to their therapeutic and diagnostic potential, CLN3 and CLN64 aptamers exhibit valuable tools to further understand the structural and functional basis for c-Met activation or inhibition by synthetic ligands and their interplay with HGF binding.

  5. Selective Aptamers for Detection of Estradiol and Ethynylestradiol in Natural Waters

    KAUST Repository

    Akki, Spurti U.

    2015-08-18

    © 2015 American Chemical Society. We used in vitro selection to identify new DNA aptamers for two endocrine-disrupting compounds often found in treated and natural waters, 17β-estradiol (E2) and 17α-ethynylestradiol (EE). We used equilibrium filtration to determine aptamer sensitivity/selectivity and dimethyl sulfate (DMS) probing to explore aptamer binding sites. The new E2 aptamers are at least 74-fold more sensitive for E2 than is a previously reported DNA aptamer, with dissociation constants (Kd values) of 0.6 μM. Similarly, the EE aptamers are highly sensitive for EE, with Kd of 0.5-1.0 μM. Selectivity values indicate that the E2 aptamers bind E2 and a structural analogue, estrone (E1), equally well and are up to 74-fold selective over EE. One EE aptamer is 53-fold more selective for EE over E2 or E1, but the other binds EE, E2, and E1 with similar affinity. The new aptamers do not lose sensitivity or selectivity in natural water from a local lake, despite the presence of natural organic matter (∼4 mg/L TOC). DMS probing suggests that E2 binding occurs in relatively flexible single-stranded DNA regions, an important finding for rational redesign of aptamers and their incorporation into sensing platforms. This is the first report of aptamers with strong selectivity for E2 and E1 over EE, or with strong selectivity for EE over E2 and E1. Such selectivity is important for achieving the goal of creating practically useful DNA-based sensors that can distinguish structurally similar estrogenic compounds in natural waters.

  6. Characterization of Aptamer-Protein Complexes by X-ray Crystallography and Alternative Approaches

    NARCIS (Netherlands)

    Ruigrok, V.J.B.; Levisson, M.; Hekelaar, J.; Smidt, H.; Dijkstra, B.W.; Oost, van der J.

    2012-01-01

    Aptamers are oligonucleotide ligands, either RNA or ssDNA, selected for high-affinity binding to molecular targets, such as small organic molecules, proteins or whole microorganisms. While reports of new aptamers are numerous, characterization of their specific interaction is often restricted to the

  7. Characterization of Aptamer-Protein Complexes by X-ray Crystallography and Alternative Approaches

    NARCIS (Netherlands)

    Ruigrok, Vincent J. B.; Levisson, Mark; Hekelaar, Johan; Smidt, Hauke; Dijkstra, Bauke W.; van der Oost, John

    Aptamers are oligonucleotide ligands, either RNA or ssDNA, selected for high-affinity binding to molecular targets, such as small organic molecules, proteins or whole microorganisms. While reports of new aptamers are numerous, characterization of their specific interaction is often restricted to the

  8. Modular Assembly of Cell-targeting Devices Based on an Uncommon G-quadruplex Aptamer

    DEFF Research Database (Denmark)

    Opazo, Felipe; Eiden, Laura; Hansen, Line

    2015-01-01

    Aptamers are valuable tools that provide great potential to develop cost-effective diagnostics and therapies in the biomedical field. Here, we report a novel DNA aptamer that folds into an unconventional G-quadruplex structure able to recognize and enter specifically into human Burkitt's lymphoma...

  9. Identification and characterization of the heme-binding proteins SeShp and SeHtsA of Streptococcus equi subspecies equi

    Directory of Open Access Journals (Sweden)

    McClure Michael J

    2006-09-01

    Full Text Available Abstract Background Heme is a preferred iron source of bacterial pathogens. Streptococcus equi subspecies equi is a bacterial pathogen that causes strangles in horses. Whether S. equi has a heme acquisition transporter is unknown. Results An S. equi genome database was blasted with the heme binding proteins Shp and HtsA of Streptococcus pyogenes, and found that S. equi has the homologue of Shp (designated SeShp and HtsA (designated SeHtsA. Tag-free recombinant SeShp and SeHtsA and 6xHis-tagged SeHtsA (SeHtsAHis were prepared and characterized. Purified holoSeShp and holoSeHtsA bind Fe(II-protoporphyrin IX (heme and Fe(III-protoporphyrin IX (hemin in a 1:1 stoichiometry, respectively, and are designated hemoSeShp and hemiSeHtsA. HemiSeShp and hemiSeHtsAHis can be reconstituted from apoSeShp and apoSeHtsAHis and hemin. HemoSeShp is stable in air and can be oxidized to hemiSeShp by ferricyanide. HemiSeHtsA can be reduced into hemoSeHtsA, which autoxidizes readily. HemoSeShp rapidly transfers its heme to apoSeHtsAHis. In addition, hemoSeShp can also transfer its heme to apoHtsA, and hemoShp is able to donate heme to apoSeHtsAHis. Conclusion The primary structures, optical properties, oxidative stability, and in vitro heme transfer reaction of SeShp and SeHtsA are very similar to those of S. pyogenes Shp and HtsA. The data suggest that the putative cell surface protein SeShp and lipoprotein SeHtsA are part of the machinery to acquire heme in S. equi. The results also imply that the structure, function, and functional mechanism of the heme acquisition machinery are conserved in S. equi and S. pyogenes.

  10. Developing trends in aptamer-based biosensor devices and their applications.

    Science.gov (United States)

    MacKay, Scott; Wishart, David; Xing, James Z; Chen, Jie

    2014-02-01

    Aptamers are, in general, easier to produce, easier to store and are able to bind to a wider variety of targets than antibodies. For these reasons, aptamers are gaining increasing popularity in environmental monitoring as well as disease detection and disease management applications. This review article examines the research and design of RNA and DNA aptamer based biosensor systems and applications as well as their potential for integration in effective biosensor devices. As single stranded DNA or RNA molecules that can bind to specific targets, aptamers are well suited for biomolecular recognition and sensing applications. Beyond being able to be designed for a near endless number of specific targets, aptamers can also be made which change their conformation in a predictable and consistent way upon binding. This can lead to many unique and effective detection methods using a variety of optical and electrochemical means.

  11. Galaxy Workflows for Web-based Bioinformatics Analysis of Aptamer High-throughput Sequencing Data

    Directory of Open Access Journals (Sweden)

    William H Thiel

    2016-01-01

    Full Text Available Development of RNA and DNA aptamers for diagnostic and therapeutic applications is a rapidly growing field. Aptamers are identified through iterative rounds of selection in a process termed SELEX (Systematic Evolution of Ligands by EXponential enrichment. High-throughput sequencing (HTS revolutionized the modern SELEX process by identifying millions of aptamer sequences across multiple rounds of aptamer selection. However, these vast aptamer HTS datasets necessitated bioinformatics techniques. Herein, we describe a semiautomated approach to analyze aptamer HTS datasets using the Galaxy Project, a web-based open source collection of bioinformatics tools that were originally developed to analyze genome, exome, and transcriptome HTS data. Using a series of Workflows created in the Galaxy webserver, we demonstrate efficient processing of aptamer HTS data and compilation of a database of unique aptamer sequences. Additional Workflows were created to characterize the abundance and persistence of aptamer sequences within a selection and to filter sequences based on these parameters. A key advantage of this approach is that the online nature of the Galaxy webserver and its graphical interface allow for the analysis of HTS data without the need to compile code or install multiple programs.

  12. Galaxy Workflows for Web-based Bioinformatics Analysis of Aptamer High-throughput Sequencing Data.

    Science.gov (United States)

    Thiel, William H

    2016-01-01

    Development of RNA and DNA aptamers for diagnostic and therapeutic applications is a rapidly growing field. Aptamers are identified through iterative rounds of selection in a process termed SELEX (Systematic Evolution of Ligands by EXponential enrichment). High-throughput sequencing (HTS) revolutionized the modern SELEX process by identifying millions of aptamer sequences across multiple rounds of aptamer selection. However, these vast aptamer HTS datasets necessitated bioinformatics techniques. Herein, we describe a semiautomated approach to analyze aptamer HTS datasets using the Galaxy Project, a web-based open source collection of bioinformatics tools that were originally developed to analyze genome, exome, and transcriptome HTS data. Using a series of Workflows created in the Galaxy webserver, we demonstrate efficient processing of aptamer HTS data and compilation of a database of unique aptamer sequences. Additional Workflows were created to characterize the abundance and persistence of aptamer sequences within a selection and to filter sequences based on these parameters. A key advantage of this approach is that the online nature of the Galaxy webserver and its graphical interface allow for the analysis of HTS data without the need to compile code or install multiple programs. Copyright © 2016 Official journal of the American Society of Gene & Cell Therapy. Published by Elsevier Inc. All rights reserved.

  13. Affinity capillary electrophoresis with laser induced fluorescence detection for thrombin analysis using nuclease-resistant RNA aptamers.

    Science.gov (United States)

    Hao, Lihua; Bai, Yunlong; Wang, Hailin; Zhao, Qiang

    2016-12-09

    Aptamer affinity capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF) combines the advantages of affinity aptamer, rapid CE separation, and high sensitivity detection. Here we reported an affinity CE-LIF assay for thrombin by using a fluorophore-labeled RNA aptamer containing 2'-fluoro modification in sugar rings of pyrimidine nucleotides (C and U) as affinity ligand. This RNA aptamer has high binding affinity, specificity and biostability. Thrombin at 0.2nM was successfully detected. This RNA aptamer allowed for the detection of thrombin spiked in diluted human serum sample due to the nuclease resistance. The RNA aptamer has comparable binding affinity to a 29-mer DNA aptamer for thrombin, and the binding site of the RNA aptamer on thrombin partially overlaps with the binding site of the 29-mer DNA aptamer on thrombin. It shows the nuclease-resistant RNA aptamers are promising in assays for thrombin. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. In vitro selection and characterization of deoxyribonucleic acid aptamers for digoxin.

    Science.gov (United States)

    Kiani, Zahra; Shafiei, Massoumeh; Rahimi-Moghaddam, Parvaneh; Karkhane, Ali Asghar; Ebrahimi, Soltan Ahmed

    2012-10-20

    The low therapeutic index of digoxin necessitates careful monitoring of its serum levels. Most of digoxin immunoassays suffer from interferences with digoxin-like immunoreactive substances. Since aptamers have been shown to be highly specific for their targets, the aim of this study was to develop DNA aptamers for this widely used cardiac glycoside. Digoxin was coated onto the surface of streptavidin magnetic beads. DNA aptamers against digoxin were designed using Systematic Evolution of Ligands by Exponential enrichment method (SELEX) by 11 iterative rounds of incubation of digoxin-coated streptavidin magnetic beads with synthetic DNA library, DNA elution, electrophoresis and PCR amplification. The PCR product was cloned and sequenced. Binding affinity was determined using digoxin-BSA conjugate, coated onto ELISA plate. Inhibitory effect of anti-digoxin aptamer was conducted using isolated guinea-pig atrium. Three aptamers (D1, D2 and D3) were identified. Binding studies of fluorescein-labeled truncated (without primer binding region) D1 and D2 and full length D1 anti-digoxin aptamers were performed and their corresponding dissociation constants values were 8.2×10(-9), 44.0×10(-9) and 17.8×10(-9) M, respectively. This is comparable to what other workers have obtained for interaction of monoclonal antibodies raised against digoxin. There was little difference in binding affinity between full length and truncated anti-digoxin D1 aptamer. D1 anti-digoxin aptamer also inhibited the effects of digoxin on the isolated guinea-pig atrium. D1 anti-digoxin aptamer distinguished between digoxin and ouabain in both tissue study and binding experiments. Our finding indicated that D1 anti-digoxin aptamer can selectively bind to digoxin. Further studies might show its suitability for use in digoxin assays and as a therapeutic agent in life-threatening digoxin toxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Development of a portable NanoAptamer analyzer for the detection of bisphenol A

    Science.gov (United States)

    Son, Ahjeong; Lim, Hyun Jeong; Chua, Beelee

    2017-04-01

    We have demonstrated a portable NanoAptamer analyzer capable of detecting bisphenol A (BPA) at environmentally relevant concentrations (< 1 ng/mL or ppb). It is designed for performing reaction and fluorescence measurement on single cuvette sample. NanoAptamer assay was developed and used as a sensing mechanism where signaling DNA and QD655 was tethered to QD565 and magnetic bead via the aptamer. Aptamer affinity with BPA resulted in the release of the signaling DNA and QD655 from the complex and hence corresponding decrease in QD655 fluorescence measurement signal. Baseline characterization was first performed with empty cuvettes, quantum dots and magnetic beads under near-ideal conditions to establish essential functionality of the NanoAptamer analyzer. Duration of incubation time, number of rinse cycles, and necessity of cuvette vibration were also investigated. In order to demonstrate the capability of the NanoAptamer analyzer to detect BPA, samples with BPA concentrations ranging from 0.0005 to 1.0 ng/mL (ppb) were used. The performance of the NanoAptamer analyzer was further examined by using laboratory protocol and commercial spectrofluorometer as reference. Correlation between NanoAptamer analyzer and laboratory protocol as well as commercial spectrofluorometer was evaluated via correlation plots and correlation coefficients.

  16. New insights into a classic aptamer: binding sites, cooperativity and more sensitive adenosine detection.

    Science.gov (United States)

    Zhang, Zijie; Oni, Olatunji; Liu, Juewen

    2017-07-27

    The DNA aptamer for adenosine (also for AMP and ATP) is a highly conserved sequence that has recurred in a few selections. It it a widely used model aptamer for biosensor development, and its nuclear magnetic resonance structure shows that each aptamer binds two AMP molecules. In this work, each binding site was individually removed by rational sequence design, while the remaining site still retained a similar binding affinity and specificity as confirmed by isothermal titration calorimetry. The thermodynamic parameters of binding are presented, and its biochemical implications are discussed. The number of binding sites can also be increased, and up to four sites are introduced in a single DNA sequence. Finally, the different sequences are made into fluorescent biosensors based on the structure-switching signaling aptamer design. The one-site aptamer has 3.8-fold higher sensitivity at lower adenosine concentration with a limit of detection of 9.1 μM adenosine, but weaker fluorescence signal at higher adenosine concentrations, consistent with a moderate cooperativity in the original aptamer. This work has offered insights into a classic aptamer for the relationship between the number of binding sites and sensitivity, and a shorter aptamer for improved biosensor design. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Discovery and development of anticancer aptamers.

    Science.gov (United States)

    Ireson, Christopher R; Kelland, Lloyd R

    2006-12-01

    Aptamers, also termed as decoys or "chemical antibodies," represent an emerging class of therapeutics. They are short DNA or RNA oligonucleotides or peptides that assume a specific and stable three-dimensional shape in vivo, thereby providing specific tight binding to protein targets. In some cases and as opposed to antisense oligonucleotides, effects can be mediated against extracellular targets, thereby preventing a need for intracellular transportation. The first aptamer approved for use in man is a RNA-based molecule (Macugen, pegaptanib) that is administered locally (intravitreally) to treat age-related macular degeneration by targeting vascular endothelial growth factor. The most advanced aptamer in the cancer setting is AS1411, formerly known as AGRO100, which is being administered systemically in clinical trials. AS1411 is a 26-mer unmodified guanosine-rich oligonucleotide, which induces growth inhibition in vitro, and has shown activity against human tumor xenografts in vivo. The mechanism underlying its antiproliferative effects in cancer cells seems to involve initial binding to cell surface nucleolin and internalization, leading to an inhibition of DNA replication. In contrast to other unmodified oligonucleotides, AS1411 is relatively stable in serum-containing medium, probably as a result of the formation of dimers and a quartet structure. In a dose escalation phase I study in patients with advanced solid tumors, doses up to 10 mg/kg/d (using a four or seven continuous infusion regime) have been studied. Promising signs of activity have been reported (multiple cases of stable disease and one near complete response in a patient with renal cancer) in the absence of any significant adverse effects. Further trials are ongoing in renal and non-small cell lung cancers. In preclinical studies, additional aptamers have been described against several cancer targets, such as tenascin-C, the transcription factor signal transducer and activator of transcription 3

  18. Nucleic Acid Aptamers Against Proteases

    DEFF Research Database (Denmark)

    Dupont, D M; Andersen, L M; Bøtkjær, Kenneth Alrø

    2011-01-01

    Proteases are potential or realized therapeutic targets in a wide variety of pathological conditions. Moreover, proteases are classical subjects for studies of enzymatic and regulatory mechanisms. We here review the literature on nucleic acid aptamers selected with proteases as targets. Designing...... small molecule protease inhibitors of sufficient specificity has proved a daunting task. Aptamers seem to represent a promising alternative. In our review, we concentrate on biochemical mechanisms of aptamer selection, proteinaptamer recognition, protease inhibition, and advantages of aptamers...... for pharmacological intervention with pathophysiological functions of proteases. Aptamers can be selected so that they bind their targets highly specifically and with affinities corresponding to K(D) values in the nM range. Aptamers can be selected so that they recognize their targets conformation...

  19. Aptamers and Their Biological Applications

    Directory of Open Access Journals (Sweden)

    Changill Ban

    2012-01-01

    Full Text Available Recently, aptamers have attracted the attention of many scientists, because they not only have all of the advantages of antibodies, but also have unique merits, such as thermal stability, low cost, and unlimited applications. In this review, we present the reasons why aptamers are known as alternatives to antibodies. Furthermore, several types of in vitro selection processes, including nitrocellulose membrane filtration, affinity chromatography, magnetic bead, and capillary electrophoresis-based selection methods, are explained in detail. We also introduce various applications of aptamers for the diagnosis of diseases and detection of small molecules. Numerous analytical techniques, such as electrochemical, colorimetric, optical, and mass-sensitive methods, can be utilized to detect targets, due to convenient modifications and the stability of aptamers. Finally, several medical and analytical applications of aptamers are presented. In summary, aptamers are promising materials for diverse areas, not just as alternatives to antibodies, but as the core components of medical and analytical equipment.

  20. G-quadruplex aptamer selection using capillary electrophoresis-LED-induced fluorescence and Illumina sequencing.

    Science.gov (United States)

    Ric, Audrey; Ecochard, Vincent; Iacovoni, Jason S; Boutonnet, Audrey; Ginot, Frédéric; Ong-Meang, Varravaddheay; Poinsot, Véréna; Paquereau, Laurent; Couderc, François

    2018-03-01

    One of the major difficulties that arises when selecting aptamers containing a G-quadruplex is the correct amplification of the ssDNA sequence. Can aptamers containing a G-quadruplex be selected from a degenerate library using non-equilibrium capillary electrophoresis (CE) of equilibrium mixtures (NECEEM) along with high-throughput Illumina sequencing? In this article, we present some mismatches of the G-quadruplex T29 aptamer specific to thrombin, which was PCR amplified and sequenced by Illumina sequencing. Then, we show the proportionality between the number of sequenced molecules of T29 added to the library and the number of sequences obtained in Illumina sequencing, and we find that T29 sequences from this aptamer can be detected in a random library of ssDNA after the sample is fractionated by NECEEM, amplified by PCR, and sequenced. Treatment of the data by the counting of double-stranded DNA T29 sequences containing a maximum of two mismatches reveals a good correlation with the enrichment factor (f E ). This factor is the ratio of the number of aptamer sequences found in the collected complex sample divided by the total number of sequencing reads (aptamer and non-aptamer) plus the quantity of T29 molecules (spiked into a DNA library) injected into CE.

  1. Selection of 2'-Fluoro-Modified Aptamers with Optimized Properties.

    Science.gov (United States)

    Thirunavukarasu, Deepak; Chen, Tingjian; Liu, Zhixia; Hongdilokkul, Narupat; Romesberg, Floyd E

    2017-03-01

    RNA or single-stranded DNA aptamers with 2'-F pyrimidines have been pursued to increase resistance to nucleases, and while it seems likely that these and other modifications, including the modification of purines, could be used to optimize additional properties, this has been much less explored because such aptamers are challenging to discover. Using a thermostable DNA polymerase, SFM4-3, which was previously evolved to accept nucleotides with 2'-modifications, we now report the selection of 2'-F purine aptamers that bind human neutrophil elastase (HNE). Two aptamers were identified, 2fHNE-1 and 2fHNE-2, that bind HNE with reasonable affinity. Interestingly, the 2'-F substituents facilitate the selection of specific interactions with HNE and overcome nonspecific electrostatic interactions that can otherwise dominate. The data demonstrate that inclusion of only a few 2'-F substituents can optimize properties far beyond simple nuclease resistance and that SFM4-3 should prove valuable for the further exploration and production of aptamers with properties optimized for various applications.

  2. Future of aptamers in medicine

    CSIR Research Space (South Africa)

    Khati, M

    2010-06-01

    Full Text Available aptamers are typically stable in human plasma for 15e24 h at 378C.63 Conjugation of aptamers to either lipids or polymers such as polyethylene glycol improves their stability and distribution kinetics suf�cient to produce therapeutic effects.64e66... The molecular recognition properties of aptamers are very similar to antibodies, which recognise a target with high af�nity and speci�city and in many cases effectively inhibit its function. Some of the best aptamers form complexes that have disso- ciation...

  3. Aptamer Internalization via Endocytosis Inducing S-Phase Arrest and Priming Maver-1 Lymphoma Cells for Cytarabine Chemotherapy.

    Science.gov (United States)

    Li, Huan; Yang, Shuanghui; Yu, Ge; Shen, Liangfang; Fan, Jia; Xu, Ling; Zhang, Hedong; Zhao, Nianxi; Zeng, Zihua; Hu, Tony; Wen, Jianguo; Zu, Youli

    2017-01-01

    The goal of precision therapy is to efficiently treat cancer without side effects. Aptamers are a class of small ligands composed of single-stranded oligonucleotides that bind to their targets with high affinity and specificity. In this study, we identified an ssDNA aptamer specifically targeting Maver-1 lymphoma cells with high binding affinity (K d = 70±8 pmol/L). Interestingly, cellular cycle studies revealed that exposure of Maver-1 cells to synthetic aptamers triggered S-phase arrest of 40% of the cells (vs. 18% baseline). Confocal microscopy confirmed specific cell binding of aptamers and the resultant endocytosis into Maver-1 cells. Subsequent functional assays validated the fact that aptamer internalization into targeted cells is a prerequisite for Maver-1 cell growth inhibition. Importantly, aptamer-induced S-phase arrest induced enhanced chemotherapeutic results involving cytarabine, which primarily kills lymphoma cells at S-phase. Combination treatments revealed that aptamer re-exposure considerably primed Maver-1 cells for cytarabine chemotherapy, thus achieving a synergistic killing effect by reaching cell death rates as high as 61% (vs. 13% or 14% induced by aptamer or cytarabine treatment alone). These findings demonstrated that aptamers do not only act as molecular ligands but can also function as biotherapeutic agents by inducing S-phase arrest of lymphoma cells. In addition, logical combination of aptamer and cytarabine treatments ushers the way to a unique approach in precision lymphoma chemotherapy.

  4. Development of aptamers for in vivo and in vitro biosensor applications

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm

    is generating new and faster ways of screening and optimizing using biosensors. In this thesis we develop new functional biological recognition modules for biosensors. These DNA- and RNA-based recognition modules are called aptamers and are developed to interact with targets of choice. Aptamers are developed...... through a laborious process; which suffers from high error-rates and, therefore, the process has undergone significant improvements. Here we present two new versions of aptamer development schemes that have been used to identify aptamers against snake venom toxin (with a possible pharmaceutical......-throughput allpolymeric biosensor device at DTU Nanotech and also resulted in extended funding of 3M DKK from the Danish National Innovation Foundation, Biosyntia and The Technical University of Denmark to advance the use of aptamers and biosensors in cell-factory development....

  5. Aptamer-based surface plasmon resonance sensing of glycated human blood proteins

    Science.gov (United States)

    Reaver, Nathan G. F.; Zheng, Rui; Kim, Dong-Shik; Cameron, Brent D.

    2013-02-01

    The concentration ratio of glycated to non-glycated forms of various blood proteins can be used as a diagnostic measure in diabetes to determine a history of glycemic compliance. Depending on a protein's half-life in blood, compliance can be assessed from a few days to several months in the past, which can then be used to provide additional therapeutic guidance. Current glycated protein detection methods are limited in their ability to measure multiple proteins, and are susceptible to interference from other blood pathologies. In this study, we developed and characterized DNA aptamers for use in Surface Plasmon Resonance (SPR) sensors to assess the blood protein hemoglobin. The aptamers were developed by way of a modified Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process which selects DNA sequences that have a high binding affinity to a specific protein. DNA products resulting from this process are sequenced and identified aptamers are then synthesized. The SELEX process was performed to produce aptamers for a glycated form of hemoglobin. Equilibrium dissociation constants for the binding of the identified aptamer to glycated hemoglobin, hemoglobin, and fibrinogen were calculated from fitted Langmuir isotherms obtained through SPR. These constants were determined to be 94 nM, 147 nM, and 244 nM respectively. This aptamer can potentially be used to create a SPR aptamer based biosensor for detection of glycated hemoglobin, a technology that has the potential to deliver low-cost and immediate glycemic compliance assessment in either a clinical or home setting.

  6. Comparison of classifications of aptamers against Vibrio ...

    African Journals Online (AJOL)

    As a novel method to detect the pathogen Vibrio alginolyticus, 45 aptamers were previously selected and tested. In order to better understand the properties of these aptamers, it was essential to classify these aptamers based on appropriate criteria. The primary structure of 45 aptamers against V. alginolyticus was analyzed ...

  7. Selection of an aptamer against Muscovy duck parvovirus for highly sensitive rapid visual detection by label-free aptasensor.

    Science.gov (United States)

    Lu, Taofeng; Ma, Qin; Yan, Wenzhuo; Wang, Yuanzhi; Zhang, Yuanyuan; Zhao, Lili; Chen, Hongyan

    2018-01-01

    Muscovy duck parvovirus (MDPV) causes high mortality and morbidity in ducks. This study investigated a novel aptamer-based, label-free aptasensor detection of MDPV. In this study, we developed an ssDNA aptamer using the filtration partition and lambda exonuclease method with an affinity-based monitor and counter-screening process. After 15 rounds of SELEX (systematic evolution of ligands by exponential enrichment), the ssDNA aptamer Apt-10, which specifically bound to MDPV with high affinity (K d = 467nM) was successfully screened, and the aptamer was also found to be good specific to MDPV. The selected Apt-10 aptamer can be used to distinguish MDPV and goose parvovirus (GPV). Three-dimensional structural analysis of the Apt-10 aptamer indicated that it folded into a compact stem-loop motif, which was related to its high affinity. Finally, a label-free detection method based on unmodified gold nanoparticles and Apt-10 aptamer was developed for MDPV determination. The concentration of Apt-10 aptamer at 5μM was optimal for MDPV determination in the label-free aptasensor. Excellent linearity was acquired and the lowest detection limit was 1.5 or 3 EID 50 (50% egg infection dose) of MDPV, respectively, depending upon spectrophotometry or the naked eye were used. These results show the potential of the aptamer for the rapid detection of MDPV and antiviral research. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Inhibition of Stat5 by a Peptide Aptamer Ligand Specific for the DNA Binding Domain Prevents Target Gene Transactivation and the Growth of Breast and Prostate Tumor Cells

    Directory of Open Access Journals (Sweden)

    Vida Vafaizadeh

    2013-08-01

    Full Text Available The signal transducer and activator of transcription Stat5 is transiently activated by growth factor and cytokine signals in normal cells, but its persistent activation has been observed in a wide range of human tumors. Aberrant Stat5 activity was initially observed in leukemias, but subsequently also found in carcinomas. We investigated the importance of Stat5 in human tumor cell lines. shRNA mediated downregulation of Stat5 revealed the dependence of prostate and breast cancer cells on the expression of this transcription factor. We extended these inhibition studies and derived a peptide aptamer (PA ligand, which directly interacts with the DNA-binding domain of Stat5 in a yeast-two-hybrid screen. The Stat5 specific PA sequence is embedded in a thioredoxin (hTRX scaffold protein. The resulting recombinant protein S5-DBD-PA was expressed in bacteria, purified and introduced into tumor cells by protein transduction. Alternatively, S5-DBD-PA was expressed in the tumor cells after infection with a S5-DBD-PA encoding gene transfer vector. Both strategies impaired the DNA-binding ability of Stat5, suppressed Stat5 dependent transactivation and caused its intracellular degradation. Our experiments describe a peptide based inhibitor of Stat5 protein activity which can serve as a lead for the development of a clinically useful compound for cancer treatment.

  9. Development of a thermal-stable structure-switching cocaine-binding aptamer.

    Science.gov (United States)

    Shoara, Aron A; Reinstein, Oren; Borhani, Okty Abbasi; Martin, Taylor R; Slavkovic, Sladjana; Churcher, Zachary R; Johnson, Philip E

    2018-02-01

    We have developed a new cocaine-binding aptamer variant that has a significantly higher melt temperature when bound to a ligand than the currently used sequence. Retained in this new construct is the ligand-induced structure-switching binding mechanism that is important in biosensing applications of the cocaine-binding aptamer. Isothermal titration calorimetry methods show that the binding affinity of this new sequence is slightly tighter than the existing cocaine-binding aptamer. The improved thermal performance, a T m increase of 4 °C for the cocaine-bound aptamer and 9 °C for the quinine-bound aptamer, was achieved by optimizing the DNA sequence in stem 2 of the aptamer to have the highest stability based on the nearest neighbor thermodynamic parameters and confirmed by UV and fluorescence spectroscopy. The sequences in stem 1 and stem 3 were unchanged in order to retain the structure switching and ligand binding functions. The more favorable thermal stability characteristics of the OR3 aptamer should make it a useful construct for sensing applications employing the cocaine-binding aptamer system. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. An Aptamer-Based Biosensor for the Azole Class of Antifungal Drugs.

    Science.gov (United States)

    Wiedman, Gregory R; Zhao, Yanan; Mustaev, Arkady; Ping, Jinglei; Vishnubhotla, Ramya; Johnson, A T Charlie; Perlin, David S

    2017-01-01

    This technical report describes the development of an aptamer for sensing azole antifungal drugs during therapeutic drug monitoring. Modified synthetic evolution of ligands through exponential enrichment (SELEX) was used to discover a DNA aptamer recognizing azole class antifungal drugs. This aptamer undergoes a secondary structural change upon binding to its target molecule, as shown through fluorescence anisotropy-based binding measurements. Experiments using circular dichroism spectroscopy revealed a unique G-quadruplex structure that was essential and specific for binding to the azole antifungal target. Aptamer-functionalized graphene field effect transistor (GFET) devices were created and used to measure the strength of binding of azole antifungals to this surface. In total, this aptamer and the supporting sensing platform provide a valuable tool for therapeutic drug monitoring of patients with invasive fungal infections. IMPORTANCE We have developed the first aptamer directed toward the azole class of antifungal drugs and a functional biosensor for these drugs. This aptamer has a unique secondary structure that allows it to bind to highly hydrophobic drugs. The aptamer works as a capture component of a graphene field effect transistor device. These devices can provide a quick and easy assay for determining drug concentrations. These will be useful for therapeutic drug monitoring of azole antifungal drugs, which is necessary to deal with the complex drug dosage profiles.

  11. Aptamers as a promising approach for the control of parasitic diseases

    Directory of Open Access Journals (Sweden)

    Juan David Ospina-Villa

    2016-11-01

    Full Text Available Aptamers are short single-stranded RNA or DNA oligonucleotides that are capable of binding various biological targets with high affinity and specificity. Their identification initially relies on a molecular process named SELEX (Systematic Evolution of Ligands by EXponential enrichment that has been later modified in order to improve aptamer sensitivity, minimize duration and cost of the assay, as well as increase target types. Several biochemical modifications can help to enhance aptamer stability without affecting significantly target interaction. As a result, aptamers have generated a large interest as promising tools to compete with monoclonal antibodies for detection and inhibition of specific markers of human diseases. One aptamer-based drug is currently authorized and several others are being clinically evaluated. Despite advances in the knowledge of parasite biology and host–parasite interactions from “omics” data, protozoan parasites still affect millions of people around the world and there is an urgent need for drug target discovery and novel therapeutic concepts. In this context, aptamers represent promising tools for pathogen identification and control. Recent studies have reported the identification of “aptasensors” for parasite diagnosis, and “intramers” targeting intracellular proteins. Here we discuss various strategies that have been employed for intracellular expression of aptamers and expansion of their possible application, and propose that they may be suitable for the clinical use of aptamers in parasitic infections.

  12. Aptamers as a promising approach for the control of parasitic diseases

    Directory of Open Access Journals (Sweden)

    Juan David Ospina-Villa

    Full Text Available ABSTRACT Aptamers are short single-stranded RNA or DNA oligonucleotides that are capable of binding various biological targets with high affinity and specificity. Their identification initially relies on a molecular process named SELEX (Systematic Evolution of Ligands by EXponential enrichment that has been later modified in order to improve aptamer sensitivity, minimize duration and cost of the assay, as well as increase target types. Several biochemical modifications can help to enhance aptamer stability without affecting significantly target interaction. As a result, aptamers have generated a large interest as promising tools to compete with monoclonal antibodies for detection and inhibition of specific markers of human diseases. One aptamer-based drug is currently authorized and several others are being clinically evaluated. Despite advances in the knowledge of parasite biology and host-parasite interactions from "omics" data, protozoan parasites still affect millions of people around the world and there is an urgent need for drug target discovery and novel therapeutic concepts. In this context, aptamers represent promising tools for pathogen identification and control. Recent studies have reported the identification of "aptasensors" for parasite diagnosis, and "intramers" targeting intracellular proteins. Here we discuss various strategies that have been employed for intracellular expression of aptamers and expansion of their possible application, and propose that they may be suitable for the clinical use of aptamers in parasitic infections.

  13. Protein Detection with Aptamer Biosensors

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    2008-07-01

    Full Text Available Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

  14. Aptamer-Based Technologies in Foodborne Pathogen Detection.

    Science.gov (United States)

    Teng, Jun; Yuan, Fang; Ye, Yingwang; Zheng, Lei; Yao, Li; Xue, Feng; Chen, Wei; Li, Baoguang

    2016-01-01

    Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome.

  15. Aptamer-Based Technologies in Foodborne Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Jun Teng

    2016-09-01

    Full Text Available Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX; and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the first and critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make to accurate assessments on the risk of infections (humans and animals or contaminations (foods and other commodities caused by various pathogens. This article reviews the developments in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development of aptamer-based biosensors including optical biosensors for multiple pathogen detection in multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors, and lateral chromatography test strips, and their applications in the pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening, remain to be overcome.

  16. Selective Targeting to Glioma with Nucleic Acid Aptamers.

    Directory of Open Access Journals (Sweden)

    Shraddha Aptekar

    Full Text Available Malignant glioma is characterised by a rapid growth rate and high capacity for invasive infiltration to surrounding brain tissue; hence, diagnosis and treatment is difficult and patient survival is poor. Aptamers contribute a promising and unique technology for the in vitro imaging of live cells and tissues, with a potentially bright future in clinical diagnostics and therapeutics for malignant glioma. The binding selectivity, uptake capacity and binding target of two DNA aptamers, SA43 and SA44, were investigated in glioma cells and patient tissues. The binding assay showed that SA43 and SA44 bound with strong affinity (Kd, 21.56 ± 4.60 nM and Kd, 21.11 ± 3.30 nM respectively to the target U87MG cells. Quantitative analysis by flow cytometry showed that the aptamers were able to actively internalise in U87MG and 1321N1 glioma cells compared to the non-cancerous and non-glioma cell types. Confocal microscopy confirmed staining in the cytoplasm, and co-localisation studies with endoplasmic reticulum, Golgi apparatus and lysosomal markers suggested internalisation and compartmentalisation within the endomembrane system. Both aptamers selectively bound to Ku 70 and Ku 80 DNA repair proteins as determined by aptoprecipitation (AP followed by mass spectrometry analysis and confirmation by Western blot. In addition, aptohistochemical (AHC staining on paraffin embedded, formalin fixed patient tissues revealed that the binding selectivity was significantly higher for SA43 aptamer in glioma tissues (grade I, II, III and IV compared to the non-cancerous tissues, whereas SA44 did not show selectivity towards glioma tissues. The results indicate that SA43 aptamer can differentiate between glioma and non-cancerous cells and tissues and therefore, shows promise for histological diagnosis of glioma.

  17. Charomers—Interleukin-6 Receptor Specific Aptamers for Cellular Internalization and Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ulrich Hahn

    2017-12-01

    Full Text Available Interleukin-6 (IL-6 is a key player in inflammation and the main factor for the induction of acute phase protein biosynthesis. Further to its central role in many aspects of the immune system, IL-6 regulates a variety of homeostatic processes. To interfere with IL-6 dependent diseases, such as various autoimmune diseases or certain cancers like multiple myeloma or hepatocellular carcinoma associated with chronic inflammation, it might be a sensible strategy to target human IL-6 receptor (hIL-6R presenting cells with aptamers. We therefore have selected and characterized different DNA and RNA aptamers specifically binding IL-6R. These IL-6R aptamers, however, do not interfere with the IL-6 signaling pathway but are internalized with the receptor and thus can serve as vehicles for the delivery of different cargo molecules like therapeutics. We succeeded in the construction of a chlorin e6 derivatized aptamer to be delivered for targeted photodynamic therapy (PDT. Furthermore, we were able to synthesize an aptamer intrinsically comprising the cytostatic 5-Fluoro-2′-deoxy-uridine for targeted chemotherapy. The α6β4 integrin specific DNA aptamer IDA, also selected in our laboratory is internalized, too. All these aptamers can serve as vehicles for targeted drug delivery into cells. We call them charomers—in memory of Charon, the ferryman in Greek mythology, who ferried the deceased into the underworld.

  18. Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer

    DEFF Research Database (Denmark)

    Pasternak, Anna; Hernandez, Frank J; Rasmussen, Lars Melholt

    2011-01-01

    A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA...... that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties...

  19. Aptamers and methods for their in vitro selection and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Sharon A [Walnut Creek, CA; Murphy, Michael B [Severna Park, MD

    2012-01-31

    The present method is an improved in vitro selection protocol that relies on magnetic separations for DNA aptamer production that is relatively easy and scalable without the need for expensive robotics. The ability of aptamers selected by this method to recognize and bind their target protein with high affinity and specificity, and detail their uses in a number of assays is also described. Specific TTF1 and His6 aptamers were selected using the method described, and shown to be useful for enzyme-linked assays, Western blots, and affinity purification.

  20. Molecular dynamics simulations of aptamer-binding reveal generalized allostery in thrombin.

    Science.gov (United States)

    Xiao, Jiajie; Salsbury, Freddie R

    2017-11-01

    Thrombin is an attractive target for antithrombotic therapy due to its central role in thrombosis and hemostasis as well as its role in inducing tumor growth, metastasis, and tumor invasion. The thrombin-binding DNA aptamer (TBA), is under investigation for anticoagulant drugs. Although aptamer binding experiments have been revealed various effects on thrombin's enzymatic activities, the detailed picture of the thrombin's allostery from TBA binding is still unclear. To investigate thrombin's response to the aptamer-binding at the molecular level, we compare the mechanical properties and free energy landscapes of the free and aptamer-bound thrombin using microsecond-scale all-atom GPU-based molecular dynamics simulations. Our calculations on residue fluctuations and coupling illustrate the allosteric effects of aptamer-binding at the atomic level, highlighting the exosite II, 60s, γ and the sodium loops, and the alpha helix region in the light chains involved in the allosteric changes. This level of details clarifies the mechanisms of previous experimentally demonstrated phenomena, and provides a prediction of the reduced autolysis rate after aptamer-binding. The shifts in thrombin's ensemble of conformations and free energy surfaces after aptamer-binding demonstrate that the presence of bound-aptamer restricts the conformational freedom of thrombin suggesting that conformational selection, i.e. generalized allostery, is the dominant mechanism of thrombin-aptamer binding. The profound perturbation on thrombin's mechanical and thermodynamic properties due to the aptamer-binding, which was revealed comprehensively as a generalized allostery in this work, may be exploited in further drug discovery and development.

  1. Surface biofunctionalization of β-TCP blocks using aptamer 74 for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Ardjomandi, N.; Huth, J. [Department of Oral and Maxillofacial Surgery, University Hospital Tübingen (Germany); Stamov, D.R. [JPK Instruments AG, Berlin (Germany); Henrich, A. [Department of Oral and Maxillofacial Surgery, University Hospital Tübingen (Germany); Klein, C. [Dental Practice Zahngesundheit Waiblingen, Waiblingen (Germany); Wendel, H.-P. [Department of Thoracic, Cardiac and Vascular Surgery, University Hospital, Tübingen (Germany); Reinert, S. [Department of Oral and Maxillofacial Surgery, University Hospital Tübingen (Germany); Alexander, D., E-mail: dorothea.alexander@med.uni-tuebingen.de [Department of Oral and Maxillofacial Surgery, University Hospital Tübingen (Germany)

    2016-10-01

    Successful bone regeneration following oral and maxillofacial surgeries depends on efficient functionalization strategies that allow the recruitment of osteogenic progenitor cells at the tissue/implant interface. We have previously identified aptamer 74, which exhibited a binding affinity for osteogenically induced jaw periosteal cells (JPCs). In the present study, this aptamer was used for the surface biofunctionalization of β-tricalcium phosphate (β-TCP) blocks. Atomic force microscopy (AFM) measurements showed increased binding activity of aptamer 74 towards osteogenically induced JPCs compared to untreated controls. The immobilization efficiency of aptamer 74 was analyzed using the QuantiFluor ssDNA assay for 2D surfaces and by amino acid analysis for 3D β-TCP constructs. Following the successful immobilization of aptamer 74 in 2D culture wells and on 3D constructs, in vitro assays showed no significant differences in cell proliferation compared to unmodified surfaces. Interestingly, JPC mineralization was significantly higher on the 2D surfaces and higher cell adhesion was detected on the 3D constructs with immobilized aptamer. Herein, we report an established, biocompatible β-TCP matrix with surface immobilization of aptamer 74, which enhances properties such as cell adhesion on 3D constructs and mineralization on 2D surfaces. Further studies need to be performed to improve the immobilization efficiency and to develop a suitable approach for JPC mineralization growing within 3D β-TCP constructs. - Highlights: • Covalent binding of aptamer 74 on PLGA-coated β-tricalcium phosphate constructs. • AFM analysis of rupture forces between aptamer 74 and jaw periosteal cells. • Analysis of jaw periosteal cell functions on aptamer coated β-TCP constructs.

  2. Thrombin-linked aptamer assay for detection of platelet derived growth factor BB on magnetic beads in a sandwich format.

    Science.gov (United States)

    Guo, Limin; Zhao, Qiang

    2016-09-01

    Here we describe a thrombin-linked aptamer assay (TLAA) for protein by using thrombin as an enzyme label, harnessing enzyme activity of thrombin and aptamer affinity binding. TLAA converts detection of specific target proteins to the detection of thrombin by using a DNA sequence that consists of two aptamers with the first aptamer binding to the specific target protein and the second aptamer binding to thrombin. Through the affinity binding, the thrombin enzyme is labeled on the protein target, and thrombin catalyzes the hydrolysis of small peptide substrate into product, generating signals for quantification. As a proof of principle, we show a sandwich TLAA for platelet derived growth factor BB (PDGF-BB) by using anti-PDGF-BB antibody coated on magnetic beads and an oligonucleotide containing the aptamer for PDGF-BB and the aptamer for thrombin. The binding of PDGF-BB to both the antibody and the aptamer results in labeling the complex with thrombin. We achieved detection of PDGF-BB at 16 pM. This TLAA contributes a new application of thrombin and its aptamer in bioanalysis, and shows potentials in assay developments. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Laser ablation-based one-step generation and bio-functionalization of gold nanoparticles conjugated with aptamers

    Directory of Open Access Journals (Sweden)

    Walter Johanna G

    2010-08-01

    Full Text Available Abstract Background Bio-conjugated nanoparticles are important analytical tools with emerging biological and medical applications. In this context, in situ conjugation of nanoparticles with biomolecules via laser ablation in an aqueous media is a highly promising one-step method for the production of functional nanoparticles resulting in highly efficient conjugation. Increased yields are required, particularly considering the conjugation of cost-intensive biomolecules like RNA aptamers. Results Using a DNA aptamer directed against streptavidin, in situ conjugation results in nanoparticles with diameters of approximately 9 nm exhibiting a high aptamer surface density (98 aptamers per nanoparticle and a maximal conjugation efficiency of 40.3%. We have demonstrated the functionality of the aptamer-conjugated nanoparticles using three independent analytical methods, including an agglomeration-based colorimetric assay, and solid-phase assays proving high aptamer activity. To demonstrate the general applicability of the in situ conjugation of gold nanoparticles with aptamers, we have transferred the method to an RNA aptamer directed against prostate-specific membrane antigen (PSMA. Successful detection of PSMA in human prostate cancer tissue was achieved utilizing tissue microarrays. Conclusions In comparison to the conventional generation of bio-conjugated gold nanoparticles using chemical synthesis and subsequent bio-functionalization, the laser-ablation-based in situ conjugation is a rapid, one-step production method. Due to high conjugation efficiency and productivity, in situ conjugation can be easily used for high throughput generation of gold nanoparticles conjugated with valuable biomolecules like aptamers.

  4. The intrinsic flexibility of the aptamer targeting the ribosomal protein S8 is a key factor for the molecular recognition.

    Science.gov (United States)

    Autiero, Ida; Ruvo, Menotti; Improta, Roberto; Vitagliano, Luigi

    2018-04-01

    Aptamers are RNA/DNA biomolecules representing an emerging class of protein interactors and regulators. Despite the growing interest in these molecules, current understanding of chemical-physical basis of their target recognition is limited. Recently, the characterization of the aptamer targeting the protein-S8 has suggested that flexibility plays important functional roles. We investigated the structural versatility of the S8-aptamer by molecular dynamics simulations. Five different simulations have been conducted by varying starting structures and temperatures. The simulation of S8-aptamer complex provides a dynamic view of the contacts occurring at the complex interface. The simulation of the aptamer in ligand-free state indicates that its central region is intrinsically endowed with a remarkable flexibility. Nevertheless, none of the trajectory structures adopts the structure observed in the S8-aptamer complex. The aptamer ligand-bound is very rigid in the simulation carried out at 300 K. A structural transition of this state, providing insights into the aptamer-protein recognition process, is observed in a simulation carried out at 400 K. These data indicate that a key event in the binding is linked to the widening of the central region of the aptamer. Particularly relevant is switch of the A26 base from its ligand-free state to a location that allows the G13-C28 base-pairing. Intrinsic flexibility of the aptamer is essential for partner recognition. Present data indicate that S8 recognizes the aptamer through an induced-fit rather than a population-shift mechanism. The present study provides deeper understanding of the structural basis of the structural versatility of aptamers. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Aptamer-based electrochemical biosensor for interferon gamma detection.

    Science.gov (United States)

    Liu, Ying; Tuleouva, Nazgul; Ramanculov, Erlan; Revzin, Alexander

    2010-10-01

    In this paper, we describe the development of an electrochemical DNA aptamer-based biosensor for detection of interferon (IFN)-γ. A DNA hairpin containing IFN-γ-binding aptamer was thiolated, conjugated with methylene blue (MB) redox tag, and immobilized on a gold electrode by self-assembly. Binding of IFN-γ caused the aptamer hairpin to unfold, pushing MB redox molecules away from the electrode and decreasing electron-transfer efficiency. The change in redox current was quantified using square wave voltammetry (SWV) and was found to be highly sensitive to IFN-γ concentration. The limit of detection for optimized biosensor was 0.06 nM with linear response extending to 10 nM. This aptasensor was specific to IFN-γ in the presence of overabundant serum proteins. Importantly, the same aptasensor could be regenerated by disrupting aptamer-IFN-γ complex in urea buffer and reused multiple times. Unlike standard sandwich immunoassays, the aptasensor described here allowed one to detect IFN-γ binding directly without the need for multiple washing steps and reagents. An electrochemical biosensor for simple and sensitive detection of IFN-γ demonstrated in this paper will have future applications in immunology, cancer research, and infectious disease monitoring.

  6. Massively Parallel Interrogation of Aptamer Sequence, Structure and Function

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N O; Tok, J B; Tarasow, T M

    2008-02-08

    Optimization of high affinity reagents is a significant bottleneck in medicine and the life sciences. The ability to synthetically create thousands of permutations of a lead high-affinity reagent and survey the properties of individual permutations in parallel could potentially relieve this bottleneck. Aptamers are single stranded oligonucleotides affinity reagents isolated by in vitro selection processes and as a class have been shown to bind a wide variety of target molecules. Methodology/Principal Findings. High density DNA microarray technology was used to synthesize, in situ, arrays of approximately 3,900 aptamer sequence permutations in triplicate. These sequences were interrogated on-chip for their ability to bind the fluorescently-labeled cognate target, immunoglobulin E, resulting in the parallel execution of thousands of experiments. Fluorescence intensity at each array feature was well resolved and shown to be a function of the sequence present. The data demonstrated high intra- and interchip correlation between the same features as well as among the sequence triplicates within a single array. Consistent with aptamer mediated IgE binding, fluorescence intensity correlated strongly with specific aptamer sequences and the concentration of IgE applied to the array. The massively parallel sequence-function analyses provided by this approach confirmed the importance of a consensus sequence found in all 21 of the original IgE aptamer sequences and support a common stem:loop structure as being the secondary structure underlying IgE binding. The microarray application, data and results presented illustrate an efficient, high information content approach to optimizing aptamer function. It also provides a foundation from which to better understand and manipulate this important class of high affinity biomolecules.

  7. Aptamer Lateral Flow Assays for Ultrasensitive Detection of β-Conglutin Combining Recombinase Polymerase Amplification and Tailed Primers.

    Science.gov (United States)

    Jauset-Rubio, Miriam; Svobodová, Markéta; Mairal, Teresa; McNeil, Calum; Keegan, Neil; El-Shahawi, Mohammad S; Bashammakh, Abdulaziz S; Alyoubi, Abdulrahman O; O'Sullivan, Ciara K

    2016-11-01

    In this work, different methodologies were evaluated in search of robust, simple, rapid, ultrasensitive, and user-friendly lateral flow aptamer assays. In one approach, we developed a competitive based lateral flow aptamer assay, in which β-conglutin immobilized on the test line of a nitrocellulose membrane and β-conglutin in the test sample compete for binding to AuNP labeled aptamer. The control line exploits an immobilized DNA probe complementary to the labeled aptamer, forcing displacement of the aptamer from the β-conglutin-aptamer complex. In a second approach, the competition for aptamer binding takes place off-strip, and following competition, aptamer bound to the immobilized β-conglutin is eluted and used as a template for isothermal recombinase polymerase amplification, exploiting tailed primers, resulting in an amplicon of a duplex flanked by single stranded DNA tails. The amplicon is rapidly and quantitatively detected using a nucleic acid lateral flow with an immobilized capture probe and a gold nanoparticle labeled reporter probe. The competitive lateral flow is completed in just 5 min, achieving a detection limit of 55 pM (1.1 fmol), and the combined competitive-amplification lateral flow requires just 30 min, with a detection limit of 9 fM (0.17 amol).

  8. RAGE-Aptamer Blocks the Development and Progression of Experimental Diabetic Nephropathy.

    Science.gov (United States)

    Matsui, Takanori; Higashimoto, Yuichiro; Nishino, Yuri; Nakamura, Nobutaka; Fukami, Kei; Yamagishi, Sho-Ichi

    2017-06-01

    The interaction of advanced glycation end products (AGEs) and their receptor (RAGE) plays a central role in diabetic nephropathy. We screened DNA aptamers directed against RAGE (RAGE-aptamers) in vitro and examined the effects on the development and progression of diabetic nephropathy in streptozotocin-induced diabetic rats. RAGE-aptamer bound to RAGE with a K d of 5.68 nmol/L and resultantly blocked the binding of AGEs to RAGE. When diabetic rats received continuous intraperitoneal injection of RAGE-aptamer from week 7 to 11 of diabetes, the increases in renal NADPH oxidase activity, oxidative stress generation, AGE, RAGE, inflammatory and fibrotic gene and protein levels, macrophage and extracellular matrix accumulation, and albuminuria were significantly suppressed, which were associated with improvement of podocyte damage. Two-week infusion of RAGE-aptamer just after the induction of diabetes also inhibited the AGE-RAGE-oxidative stress system and MCP-1 levels in the kidneys of 8-week-old diabetic rats and simultaneously ameliorated podocyte injury and albuminuria. Moreover, RAGE-aptamer significantly suppressed the AGE-induced oxidative stress generation and inflammatory and fibrotic reactions in human cultured mesangial cells. The findings suggest that continuous infusion of RAGE-aptamer could attenuate the development and progression of experimental diabetic nephropathy by blocking the AGE-RAGE axis. © 2017 by the American Diabetes Association.

  9. RAGE-aptamer Attenuates the Growth and Liver Metastasis of Malignant Melanoma in Nude Mice.

    Science.gov (United States)

    Nakamura, Nobutaka; Matsui, Takanori; Ishibashi, Yuji; Sotokawauchi, Ami; Fukami, Kei; Higashimoto, Yuichiro; Yamagishi, Sho-Ichi

    2017-11-06

    Epidemiological studies have suggested the link between cumulative diabetic exposure and cancer. Interaction of advanced glycation end products (AGEs) with their receptor (RAGE) may contribute to the phenomenon. We examined here the effects of DNA aptamer raised against RAGE (RAGE-aptamer) on growth and liver metastasis of G361 melanoma in nude mice. Malignant melanoma cells were intradermally injected into the upper flank region of nude mice, which received continuous administration of RAGE-aptamer (38.4 pmol/day/g body weight) or vehicle intraperitoneally by an osmotic pump up to 42 days. RAGE-aptamer significantly reduced levels of 8-hydroxy-2'-deoxy-guanosine, AGEs, RAGE, proliferating nuclear antigen, cyclin D1, vascular endothelial growth factor (VEGF), monocyte chemoattractant protein-1 (MCP-1), and CD31 and Mac-3, respective markers of endothelial cells and macrophages in tumors of nude mice and suppressed the proliferation and liver metastasis of malignant melanoma. Furthermore, RAGE-aptamer attenuated the AGE-induced oxidative stress generation, proliferation, and VEGF and MCP-1 gene expression in both G361 melanoma cells and endothelial cells. The present findings suggest that RAGE-aptamer could attenuate melanoma growth and liver metastasis in nude mice by suppressing the tumor angiogenesis and macrophage infiltration via inhibition of the AGE-RAGE system. RAGE-aptamer may be a novel therapeutic tool for the treatment of malignant melanoma.

  10. A Review of Therapeutic Aptamer Conjugates with Emphasis on New Approaches

    Directory of Open Access Journals (Sweden)

    John G. Bruno

    2013-03-01

    Full Text Available The potential to emulate or enhance antibodies with nucleic acid aptamers while lowering costs has prompted development of new aptamer-protein, siRNA, drug, and nanoparticle conjugates. Specific focal points of this review discuss DNA aptamers covalently bound at their 3' ends to various proteins for enhanced stability and greater pharmacokinetic lifetimes in vivo. The proteins can include Fc tails of IgG for opsonization, and the first component of complement (C1q to trigger complement-mediated lysis of antibiotic-resistant Gram negative bacteria, cancer cells and possibly some parasites during vulnerable stages. In addition, the 3' protein adduct may be a biotoxin, enzyme, or may simply be human serum albumin (HSA or a drug known to bind HSA, thereby retarding kidney and other organ clearance and inhibiting serum exonucleases. In this review, the author summarizes existing therapeutic aptamer conjugate categories and describes his patented concept for PCR-based amplification of double-stranded aptamers followed by covalent attachment of proteins or other agents to the chemically vulnerable overhanging 3' adenine added by Taq polymerase. PCR amplification of aptamers could dramatically lower the current $2,000/gram cost of parallel chemical oligonucleotide synthesis, thereby enabling mass production of aptamer-3'-protein or drug conjugates to better compete against expensive humanized monoclonal antibodies.

  11. Surface biofunctionalization of β-TCP blocks using aptamer 74 for bone tissue engineering.

    Science.gov (United States)

    Ardjomandi, N; Huth, J; Stamov, D R; Henrich, A; Klein, C; Wendel, H-P; Reinert, S; Alexander, D

    2016-10-01

    Successful bone regeneration following oral and maxillofacial surgeries depends on efficient functionalization strategies that allow the recruitment of osteogenic progenitor cells at the tissue/implant interface. We have previously identified aptamer 74, which exhibited a binding affinity for osteogenically induced jaw periosteal cells (JPCs). In the present study, this aptamer was used for the surface biofunctionalization of β-tricalcium phosphate (β-TCP) blocks. Atomic force microscopy (AFM) measurements showed increased binding activity of aptamer 74 towards osteogenically induced JPCs compared to untreated controls. The immobilization efficiency of aptamer 74 was analyzed using the QuantiFluor ssDNA assay for 2D surfaces and by amino acid analysis for 3D β-TCP constructs. Following the successful immobilization of aptamer 74 in 2D culture wells and on 3D constructs, in vitro assays showed no significant differences in cell proliferation compared to unmodified surfaces. Interestingly, JPC mineralization was significantly higher on the 2D surfaces and higher cell adhesion was detected on the 3D constructs with immobilized aptamer. Herein, we report an established, biocompatible β-TCP matrix with surface immobilization of aptamer 74, which enhances properties such as cell adhesion on 3D constructs and mineralization on 2D surfaces. Further studies need to be performed to improve the immobilization efficiency and to develop a suitable approach for JPC mineralization growing within 3D β-TCP constructs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Aptamers for Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Partha Ray

    2010-05-01

    Full Text Available Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX. SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.

  13. Aptamer contained triple-helix molecular switch for rapid fluorescent sensing of acetamiprid.

    Science.gov (United States)

    Liu, Xin; Li, Ying; Liang, Jing; Zhu, Wenyue; Xu, Jingyue; Su, Ruifang; Yuan, Lei; Sun, Chunyan

    2016-11-01

    In this study, an aptamer-based fluorescent sensing platform using triple-helix molecular switch (THMS) was developed for the pesticide screening represented by acetamiprid. The THMS was composed of two tailored DNA probes: a label-free central target specific aptamer sequence flanked by two arm segments acting as a recognition probe; a hairpin-shaped structure oligonucleotide serving as a signal transduction probe (STP), labeled with a fluorophore and a quencher at the 3' and 5'-end, respectively. In the absence of acetamiprid, complementary bindings of two arm segments of the aptamers with the loop sequence of STP enforce the formation of THMS with the "open" configuration of STP, and the fluorescence of THMS is on. In the presence of target acetamiprid, the aptamer-target binding results in the formation of a structured aptamer/target complex, which disassembles the THMS and releases the STP. The free STP is folded to a stem loop structure, and the fluorescence is quenched. The quenched fluorescence intensity was proportional to the concentration of acetamiprid in the range from 100 to 1200nM, with the limit of detection (LOD) as low as 9.12nM. In addition, this THMS-based method has been successfully used to test and quantify acetamiprid in Chinese cabbage with satisfactory recoveries, and the results were in full agreement with those from LC-MS. The aptamer-based THMS presents distinct advantages, including high stability, remarkable sensitivity, and preservation of the affinity and specificity of the original aptamer. Most importantly, this strategy is convenient and generalizable by virtue of altering the aptamer sequence without changing the triple-helix structure. So, it is expected that this aptamer-based fluorescent assay could be extensively applied in the field of food safety inspection. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Larry Gold

    Full Text Available BACKGROUND: The interrogation of proteomes ("proteomics" in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. METHODOLOGY/PRINCIPAL FINDINGS: We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma. Our current assay measures 813 proteins with low limits of detection (1 pM median, 7 logs of overall dynamic range (~100 fM-1 µM, and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD. We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. CONCLUSIONS/SIGNIFICANCE: We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next

  15. Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-02-01

    Full Text Available Water pollution has become one of the leading causes of human health problems. Low molecular weight pollutants, even at trace concentrations in water sources, have aroused global attention due to their toxicity after long-time exposure. There is an increased demand for appropriate methods to detect these pollutants in aquatic systems. Aptamers, single-stranded DNA or RNA, have high affinity and specificity to each of their target molecule, similar to antigen-antibody interaction. Aptamers can be selected using a method called Systematic Evolution of Ligands by EXponential enrichment (SELEX. Recent years we have witnessed great progress in developing aptamer selection and aptamer-based sensors for low molecular weight pollutants in water sources, such as tap water, seawater, lake water, river water, as well as wastewater and its effluents. This review provides an overview of aptamer-based methods as a novel approach for detecting low molecular weight pollutants in water sources.

  16. Development of an aptamer-conjugated fluorescent nanoprobe for MMP2

    Science.gov (United States)

    2014-01-01

    Matrix metalloproteinase 2 (MMP2) plays critical roles in various diseases, such as atherosclerosis and cancer, and has been suggested to contribute to the instability of atherosclerotic plaque. To visualize MMP2 in pathologic tissues, we developed an aptamer targeting MMP2 protein by performing eight rounds of modified DNA systematic evolution of ligands by exponential enrichment (SELEX). The aptamer showed high affinity for MMP2 (Kd = 5.59 nM), precipitated MMP2, and detected MMP2 protein in pathological tissues such as atherosclerotic plaque and gastric cancer tissues. Furthermore, a MMP2 aptamer-conjugated fluorescent nanoprobe successfully visualized atherosclerotic plaques in apolipoprotein E (ApoE) knockout mice. These results suggest that the devised MMP2 aptamer could be useful for the development of various diagnostic tools. PMID:24589243

  17. Generating Aptamers by Cell-SELEX for Applications in Molecular Medicine

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2012-03-01

    Full Text Available Aptamers are single-stranded oligonucleotides of DNA or RNA that bind to target molecules with high affinity and specificity. Typically, aptamers are generated by an iterative selection process, called systematic evolution of ligands by exponential enrichment (SELEX. Recent advancements in SELEX technology have extended aptamer selection from comparatively simple mixtures of purified proteins to whole living cells, and now cell-based SELEX (or cell-SELEX can isolate aptamers that bind to specific target cells. Combined with nanotechnology, microchips, microfluidic devices, RNAi and other advanced technologies, cell-SELEX represents an integrated platform providing ultrasensitive and highly specific tools for clinical medicine. In this review, we describe the recent progress made in the application of cell-SELEX for diagnosis, therapy and biomarker discovery.

  18. The Combination of Computational and Biosensing Technologies for Selecting Aptamer against Prostate Specific Antigen

    Directory of Open Access Journals (Sweden)

    Pi-Chou Hsieh

    2017-01-01

    Full Text Available Herein, we report a method of combining bioinformatics and biosensing technologies to select aptamers against prostate specific antigen (PSA. The main objective of this study is to select DNA aptamers with higher binding affinity for PSA by using the proposed method. Based on the five known sequences of PSA-binding aptamers, we adopted the functions of reproduction and crossover in the genetic algorithm to produce next-generation sequences for the computational and experimental analysis. RNAfold web server was utilized to analyze the secondary structures, and the 3-dimensional molecular models of aptamer sequences were generated by using RNAComposer web server. ZRANK scoring function was used to rerank the docking predictions from ZDOCK. The biosensors, the quartz crystal microbalance (QCM and a surface plasmon resonance (SPR instrument, were used to verify the binding ability of selected aptamer for PSA. By carrying out the simulations and experiments after two generations, we obtain one aptamer that can have the highest binding affinity with PSA, which generates almost 2-fold and 3-fold greater measured signals than the responses produced by the best known DNA sequence in the QCM and SPR experiments, respectively.

  19. FRET-Aptamer Assays for Bone Marker Assessment, C-Telopeptide, Creatinine, and Vitamin D

    Science.gov (United States)

    Bruno, John G.

    2013-01-01

    Astronauts lose 1.0 to 1.5% of their bone mass per month on long-duration spaceflights. NASA wishes to monitor the bone loss onboard spacecraft to develop nutritional and exercise countermeasures, and make adjustments during long space missions. On Earth, the same technology could be used to monitor osteoporosis and its therapy. Aptamers bind to targets against which they are developed, much like antibodies. However, aptamers do not require animal hosts or cell culture and are therefore easier, faster, and less expensive to produce. In addition, aptamers sometimes exhibit greater affinity and specificity vs. comparable antibodies. In this work, fluorescent dyes and quenchers were added to the aptamers to enable pushbutton, one-step, bind-and-detect fluorescence resonance energy transfer (FRET) assays or tests that can be freeze-dried, rehydrated with body fluids, and used to quantitate bone loss of vitamin D levels with a handheld fluorometer in the spacecraft environment. This work generated specific, rapid, one-step FRET assays for the bone loss marker C-telopeptide (CTx) when extracted from urine, creatinine from urine, and vitamin D congeners in diluted serum. The assays were quantified in nanograms/mL using a handheld fluorometer connected to a laptop computer to convert the raw fluorescence values into concentrations of each analyte according to linear standard curves. DNA aptamers were selected and amplified for several rounds against a 26- amino acid form of CTx, creatinine, and vitamin D. The commonalities between loop structures were studied, and several common loop structures were converted into aptamer beacons with a fluorophore and quencher on each end. In theory, when the aptamer beacon binds its cognate target (CTx bone peptide, creatinine, or vitamin D), it is forced open and no longer quenched, so it gives off fluorescent light (when excited) in proportion to the amount of target present in a sample. This proportional increase in fluorescence is

  20. Altered stoichiometry of an evolved RNA aptamer.

    Science.gov (United States)

    Ohuchi, Shoji; Suess, Beatrix

    2017-12-28

    Inhibitory aptamers against a protein are promising as antagonistic reagents and repressive genetic components. Typically, improvement of such aptamers is achieved by acquiring higher binding affinity. Here, we report an alternative mechanism for the improvement of aptamer activity. Recently, we reported a transcriptional activator based on an inhibitory RNA aptamer against lambda cI repressor. We improved the aptamer through in vitro selection (SELEX) from a randomly mutagenized aptamer pool, followed by in vivo screening and truncation. Biochemical analyses indicated that the activity improvement was achieved by alteration of the complex formation stoichiometry, rather than by higher affinity or expression. Our results suggest an alternative strategy for improving aptamer activity. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  1. Discovering aptamers by cell-SELEX against human soluble growth factors ectopically expressed on yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Hsien-Wei Meng

    Full Text Available SELEX, the process of selecting aptamers, is often hampered by the difficulty of preparing target molecules in their native forms and by a lack of a simple yet quantitative assay for monitoring enrichment and affinity of reactive aptamers. In this study, we sought to discover DNA aptamers against human serum markers for potential therapeutic and diagnostic applications. To circumvent soluble expression and immobilization for performing SELEX, we ectopically expressed soluble growth factors on the surface of yeast cells to enable cell-SELEX and devised a flow cytometry-based method to quantitatively monitor progressive enrichment of specific aptamers. High-throughput sequencing of selected pools revealed that the emergence of highly enriched sequences concurred with the increase in the percentage of reactive aptamers shown by flow cytometry. Particularly, selected DNA aptamers against VEGF were specific and of high affinity (K(D  = ∼ 1 nM and demonstrated a potent inhibition of capillary tube formation of endothelial cells, comparable to the effect of a clinically approved anti-VEGF antibody drug, bevacizumab. Considering the fact that many mammalian secretory proteins have been functionally expressed in yeast, the strategy of implementing cell-SELEX and quantitative binding assay can be extended to discover aptamers against a broad array of soluble antigens.

  2. A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis.

    Science.gov (United States)

    Fraser, Lewis A; Kinghorn, Andrew B; Dirkzwager, Roderick M; Liang, Shaolin; Cheung, Yee-Wai; Lim, Bryce; Shiu, Simon Chi-Chin; Tang, Marco S L; Andrew, Dean; Manitta, Joseph; Richards, Jack S; Tanner, Julian A

    2018-02-15

    There is a critical need for better biosensors for the detection and diagnosis of malaria. We previously developed a DNA aptamer that recognises the Plasmodium falciparum lactate dehydrogenase (PfLDH) enzyme with high sensitivity and specificity. The aptamer was integrated into an Aptamer-Tethered Enzyme Capture (APTEC) assay as a laboratory-based diagnostic approach. However, a portable equipment-free point-of-care aptamer-mediated biosensor could have a significant impact on malaria diagnosis in endemic regions. Here, we present a new concept for a malaria biosensor whereby aptamers are coated onto magnetic microbeads for magnet-guided capture, wash and detection of the biomarker. A biosensor incorporating three separate microfluidic chambers was designed to enable such magnet-guided equipment-free colorimetric detection of PfLDH. A series of microfluidic biosensor prototypes were optimised to lower rates of inter-chamber diffusion, increase sensitivity, and provide a method for point-of-care sample testing. The biosensor showed high sensitivity and specificity when detecting PfLDH using both in vitro cultured parasite samples and using clinical samples from malaria patients. The high performance of the biosensor provides a proof-of-principle for a portable biosensor that could be adaptable for a variety of aptamer-mediated diagnostic scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Aptamer-Based Lateral Flow Test Strip for Rapid Detection of Zearalenone in Corn Samples.

    Science.gov (United States)

    Wu, Shijia; Liu, Lihong; Duan, Nuo; Li, Qian; Zhou, You; Wang, Zhouping

    2018-02-28

    An aptamer-based lateral flow test strip was developed for the detection of zearalenone (ZEN). This assay was based on the competition for the aptamer between ZEN and its complementary sequence. Several experimental conditions that could influence sensitivity have been investigated, including the concentration of aptamer and NaCl used in the probe preparation, the mole ratio of streptavidin and biotinylated DNA used in the preparation of test line and control line, and the loading quantity of gold nanoparticles-aptamer conjugates (AuNPs-Apt). Under the optimal experimental conditions, we successfully detected ZEN within a detection range of 5-200 ng/mL and the visual limit of detection of 20 ng/mL. This aptamer-based strip was successfully applied to the determination of ZEN in spiked corn samples, and the recoveries were from 93.4% to 114.2%. All detections can be achieved within 5 min. The results demonstrated that the developed aptamer-based lateral flow test strip is a potential alternative tool for the rapid and sensitive detection of ZEN.

  4. Electrical Stimulus Controlled Binding/Unbinding of Human Thrombin-Aptamer Complex

    Science.gov (United States)

    Gosai, Agnivo; Ma, Xiao; Balasubramanian, Ganesh; Shrotriya, Pranav

    2016-11-01

    The binding/unbinding of the human thrombin and its 15-mer single stranded DNA aptamer, under the application of external stimulus in the form of electrostatic potential/electric field, is investigated by a combination of continuum analysis and atomistic molecular dynamics simulation. In agreement with the experiments that demonstrate the influence of electrostatic potential on the thrombin/aptamer complex, our computations show that the application of positive electric field successfully unbinds the thrombin from the aptamer. Results from umbrella sampling simulations reveal that there is a decrease in the free energy of binding between the thrombin and aptamer in presence of positive electric fields. Hydrogen bonding and non-bonded interaction energies, and hence the free energy of binding, between the thrombin and its aptamer reduce as the applied electric field is shifted from negative to positive values. Our analyses demonstrate that application of electrical stimulus modifies the molecular interactions within the complex and consequently, electrical field can be used to modulate the association between the thrombin and its aptamer.

  5. Aptamer-Based ELISA Assay for Highly Specific and Sensitive Detection of Zika NS1 Protein.

    Science.gov (United States)

    Lee, Kyung Hyun; Zeng, Huaqiang

    2017-12-05

    We report here a few Zika NS1-binding ssDNA aptamers selected using the conventional SELEX protocol, and their application in an ELISA assay for sensitive diagnosis of Zika NS1 protein. Among the aptamers identified, aptamers 2 and 10 could recognize different binding epitopes of Zika NS1 protein. This complementary in binding site, when coupled with an extraordinarily high binding affinity by 2 (41-nt, KD = 45 pM) and high specificity by 10, was used successfully to construct an ELISA-based assay where 2 and 10 serve as the capture and detection agents, respectively, giving rise to a highly specific detection of Zika NS1 with a detection limit of 100 ng/mL in buffer. Further testing of a few in-house anti-Zika NS1 antibodies show that 2 could also pair with an anti-Zika NS1 antibody. Such aptamer-antibody pairing not only lowers the detection sensitivity by 3 orders of magnitude to 0.1 ng/mL in buffer but also enable highly sensitive detection of as low as 1 and 10 ng/mL of Zika NS1 to be carried out in 10% and 100% human serum, respectively. These results suggest that the selected aptamers would be useful for medical diagnosis of Zika virus infection in various aptamer-based diagnostic devices including ELISA assay.

  6. Selective Delivery of an Anticancer Drug with Aptamer-Functionalized Liposomes to Breast Cancer Cells in Vitro and in Vivo.

    Science.gov (United States)

    Xing, Hang; Tang, Li; Yang, Xujuan; Hwang, Kevin; Wang, Wendan; Yin, Qian; Wong, Ngo Yin; Dobrucki, Lawrence W; Yasui, Norio; Katzenellenbogen, John A; Helferich, William G; Cheng, Jianjun; Lu, Yi

    2013-10-21

    Selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. To address this need, DNA aptamers have attracted significant attention as possible targeting ligands. However, while their use in targeting cancer cells in vitro has been reported, their effectiveness has rarely been established in vivo. Here we report the development of a liposomal drug delivery system for targeted anticancer chemotherapy. Liposomes were prepared containing doxorubicin as a payload, and functionalized with AS1411, a DNA aptamer with strong binding affinity for nucleolin. AS1411 aptamer-functionalized liposomes increased cellular internalization and cytotoxicity to MCF-7 breast cancer cells as compared to non-targeting liposomes. Furthermore, targeted liposomal doxorubicin improved antitumor efficacy against xenograft MCF-7 breast tumors in athymic nude mice, attributable to their enhanced tumor tissue penetration. This study suggests that AS1411 aptamer-functionalized liposomes can recognize nucleolin overexpressed on MCF-7 cell surface, and therefore enable drug delivery with high specificity and selectivity.

  7. Investigating the malleability of RNA aptamers

    Energy Technology Data Exchange (ETDEWEB)

    Ilgu, Muslum; Wang, Tianjiao; Lamm, Monica H.; Nilsen-Hamilton, Marit

    2013-03-25

    Aptamers are short, single-stranded nucleic acids with structures that frequently change upon ligand binding and are sensitive to the ionic environment. To achieve facile application of aptamers in controlling cellular activities, a better understanding is needed of aptamer ligand binding parameters, structures, intramolecular mobilities and how these structures adapt to different ionic environments with consequent effects on their ligand binding characteristics.The paper discusses the integration of biochemical analysis with NMR spectroscopy and computational modeling to explore the relation between ligand binding and structural malleability of some well-studied aptamers. Several methods for determining aptamer binding affinity and specificity are discussed, including isothermal titration calorimetry, steady state fluorescence of 2-aminopurine substituted aptamers, and dye displacement assays. Also considered are aspects of molecular dynamics simulations specific to aptamers including adding ions and simulating aptamer structure in the absence of ligand when NMR spectroscopy or X-ray crystallography structures of the unoccupied aptamer are not available. We focus specifically on RNA aptamers that bind small molecule ligands as would be applied in sensors or integrated into riboswitches such as to measure the products of metabolic activity.

  8. In silico approaches to RNA aptamer design.

    Science.gov (United States)

    Hamada, Michiaki

    2018-02-01

    RNA aptamers are ribonucleic acids that bind to specific target molecules. An RNA aptamer for a disease-related protein has great potential for development into a new drug. However, huge time and cost investments are required to develop an RNA aptamer into a pharmaceutical. Recently, SELEX combined with high-throughput sequencers (i.e., HT-SELEX) has been widely used to select candidate RNA aptamers that bind to a target protein with high affinity and specificity. After candidate selection, further optimizations such as shortening and modifying candidate sequences are performed. In these steps, in silico approaches are expected to reduce the time and cost associated with aptamer drug development. In this article, we review existing in silico approaches to RNA aptamer development, including a method for ranking the candidates of RNA aptamers from HT-SELEX data, clustering a huge number of aptamer sequences, and finding motifs amidst a set of significant RNA aptamers. It is expected that further studies in addition to these methods will be utilized for in silico RNA aptamer design, permitting a minimal number of experiments to be performed through the utilization of sophisticated computational methods. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach.

    Science.gov (United States)

    Fang, Xiaohong; Tan, Weihong

    2010-01-19

    Molecular medicine is an emerging field focused on understanding the molecular basis of diseases and translating this information into strategies for diagnosis and therapy. This approach could lead to personalized medical treatments. Currently, our ability to understand human diseases at the molecular level is limited by the lack of molecular tools to identify and characterize the distinct molecular features of the disease state, especially for diseases such as cancer. Among the new tools being developed by researchers including chemists, engineers, and other scientists is a new class of nucleic acid probes called aptamers, which are ssDNA/RNA molecules selected to target a wide range of molecules and even cells. In this Account, we will focus on the use of aptamers, generated from cell-based selections, as a novel molecular tool for cancer research. Cancers originate from mutations of human genes. These genetic alterations result in molecular changes to diseased cells, which, in turn, lead to changes in cell morphology and physiology. For decades, clinicians have diagnosed cancers primarily based on the morphology of tumor cells or tissues. However, this method does not always give an accurate diagnosis and does not allow clinicians to effectively assess the complex molecular alterations that are predictive of cancer progression. As genomics and proteomics do not yet allow a full access to this molecular knowledge, aptamer probes represent one effective and practical avenue toward this goal. One special feature of aptamers is that we can isolate them by selection against cancer cells without prior knowledge of the number and arrangement of proteins on the cellular surface. These probes can identify molecular differences between normal and tumor cells and can discriminate among tumor cells of different classifications, at different disease stages, or from different patients. This Account summarizes our recent efforts to develop aptamers through cell-SELEX for the

  10. Selection of aptamers for use as radiopharmaceuticals in bacterial infection diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ieda Mendes; Faria, Ligia Santana de; Correa, Cristiane Rodrigues; Andrade, Antero Silva Ribeiro de, E-mail: imendesf@yahoo.com.br, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The difficulty in early detection of specific foci in the bacterial infection caused by bacteria has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy has the advantage that an image of the whole body could be obtained. This study aims to obtain aptamers specific bacteria for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as {sup 99m}Tc, {sup 18}F and {sup 32}P. In this study aptamers anti-peptidoglycan, the main component of the outer cell wall of bacteria, were obtained through SELEX. The SELEX started with a pool of ssDNA that had 10{sup 15}different sequences (library), each oligo has two fixed regions merging a portion of 25 random nucleotides. Initially, the library of ssDNA was incubated with peptidoglycan, for 1h at 37 dec C with stirring. Subsequently, amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reaction). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 rounds of selection the oligonucleotides were cloned using TOPO plasmid and Escherichia coli strain Top10F'. The plasmid DNA from 40 colonies were extracted and quantified. The plasmids were sequenced using the sequencing MegaBase, and two different aptamers sequences were obtained from all clones. The aptamers obtained were synthesized and subsequently labeled with {sup 32}P in the 5' end. The labeled aptamers were incubated

  11. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles

    Science.gov (United States)

    Shiang, Yen-Chun; Ou, Chung-Mao; Chen, Shih-Ju; Ou, Ting-Yu; Lin, Han-Jia; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-03-01

    We have developed aptamer (Apt)-conjugated gold nanoparticles (Apt-Au NPs, 13 nm in diameter) as highly effective inhibitors for human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). Two Apts, RT1t49 (Aptpol) and ODN 93 (AptRH), which recognize the polymerase and RNase H regions of HIV-1 RT, are used to conjugate Au NPs to prepare Aptpol-Au NPs and AptRH-Au NPs, respectively. In addition to DNA sequence, the surface density of the aptamers on Au NPs (nApt-Au NPs; n is the number of aptamer molecules on each Au NP) and the linker length number (Tm; m is the base number of the deoxythymidine linker) between the aptamer and Au NPs play important roles in determining their inhibition activity. A HIV-lentiviral vector-based antiviral assay has been applied to determine the inhibitory effect of aptamers or Apt-Au NPs on the early stages of their replication cycle. The nuclease-stable G-quadruplex structure of 40AptRH-T45-Au NPs shows inhibitory efficiency in the retroviral replication cycle with a decreasing infectivity (40.2%).We have developed aptamer (Apt)-conjugated gold nanoparticles (Apt-Au NPs, 13 nm in diameter) as highly effective inhibitors for human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). Two Apts, RT1t49 (Aptpol) and ODN 93 (AptRH), which recognize the polymerase and RNase H regions of HIV-1 RT, are used to conjugate Au NPs to prepare Aptpol-Au NPs and AptRH-Au NPs, respectively. In addition to DNA sequence, the surface density of the aptamers on Au NPs (nApt-Au NPs; n is the number of aptamer molecules on each Au NP) and the linker length number (Tm; m is the base number of the deoxythymidine linker) between the aptamer and Au NPs play important roles in determining their inhibition activity. A HIV-lentiviral vector-based antiviral assay has been applied to determine the inhibitory effect of aptamers or Apt-Au NPs on the early stages of their replication cycle. The nuclease-stable G-quadruplex structure of 40AptRH-T45

  12. Development of an aptamer-affinity chromatography for efficient single step purification of Concanavalin A from Canavalia ensiformis.

    Science.gov (United States)

    Ahirwar, Rajesh; Nahar, Pradip

    2015-08-01

    Herein, an aptamer-based affinity chromatography method for rapid and single step purification of Concanavalin A is developed and validated. We have used a 41ntssDNA aptamer of Con A (Con A aptabody) as an affinity reagent in the developed aptamer-affinity chromatography. Stationary phase of the method consists of surface functionalized agarose beads carrying covalently immobilized Con A-aptabody. Affinity purification of Con A from jack bean (Canavalia ensiformis) seed using developed aptamer-affinity columns has resulted in ≥66% recovery with 90% purity and 336-fold purification of Con A. The developed aptamer-affinity chromatography has shown efficient scalability and consistent purification when analysed over 13mm, 20mm and 25mm diameter columns having a bed height of 60mm each. Also, the developed aptamer-agarose columns were found to be reusable with recovery decrease of 12.9% in seven sequential cycles of purification. Therefore, the developed aptamer-affinity chromatography provides a novel, efficient and single-step methodology for isolation and purification of Con A. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Cotinine-conjugated aptamer/anti-cotinine antibody complexes as a novel affinity unit for use in biological assays

    Science.gov (United States)

    Park, Sunyoung; Hwang, Dobin

    2012-01-01

    Aptamers are synthetic, relatively short (e.g., 20-80 bases) RNA or ssDNA oligonucleotides that can bind targets with high affinity and specificity, similar to antibodies, because they can fold into unique, three-dimensional shapes. For use in various assays and experiments, aptamers have been conjugated with biotin or digoxigenin to form complexes with avidin or anti-digoxigenin antibodies, respectively. In this study, we developed a method to label the 5' ends of aptamers with cotinine, which allows formation of a stable complex with anti-cotinine antibodies for the purpose of providing another affinity unit for the application in biological assays using aptamers. To demonstrate the functionality of this affinity unit in biological assays, we utilized two well-known aptamers: AS1411, which binds nucleolin, and pegaptanib, which binds vascular endothelial growth factor. Cotinine-conjugated AS1411/anti-cotinine antibody complexes were successfully applied to immunoblot, immunoprecipitation, and flow cytometric analyses, and cotinine-conjugated pegaptanib/anti-cotinine antibody complexes were used successfully in enzyme immunoassays. Our results show that cotinine-conjugated aptamer/anti-cotinine antibody complexes are an effective alternative and complementary technique for aptamer use in multiple assays and experiments. PMID:22809871

  14. Stimulus-response click chemistry based aptamer-functionalized mesoporous silica nanoparticles for fluorescence detection of thrombin.

    Science.gov (United States)

    Chen, Zhonghui; Sun, Mi; Luo, Fang; Xu, Kefeng; Lin, Zhenyu; Zhang, Lan

    2018-02-01

    In most aptamer based stimulus response mesoporous silica nanoparticles (MSN) systems, the aptamer is modified on the MSN via electrostatic interaction, however leakage might exist after a certain time in the system and hence the stability is not good. In this study, the pores of MSN were capped by aptamer through click chemistry reaction for the first time and the system was then employed to develop a fluorescence biosensor. Specifically, the aptamer of the target (thrombin in this study) was hybridized with its complementary DNA (which was initially modified with alkyne at the terminal) to form a double strand DNA (dsDNA) firstly, and then this dsDNA was modified on N 3 modified MSN via Cu(I) catalyzed alkyne-azide cycloaddition reaction. The guest molecules (fluorescein) were blocked in the pores of the MSN with high efficiency and nearly no leakage was detected. Upon the introduction of thrombin, thrombin specifically recognized its aptamer, so aptamer released from the MSN; and the single strand DNA(ssDNA) left could not cap the pores of the MSN efficiently and hence caused the releasing of fluorescein into the solution. The enhanced fluorescence intensity of the system has a good linear relationship with the thrombin concentration in the range of 50-1000ngmL -1 with a detection limit of 28.46ngmL -1 . The proposed biosensor has been successfully applied to detect thrombin in serum samples with high selectivity. The same strategy can be applied to develop biosensors for different targets by changing the adopted aptamer. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Theophylline detection in serum using a self-assembling RNA aptamer-based gold nanoparticle sensor.

    Science.gov (United States)

    Jiang, Hongyan; Ling, Kai; Tao, Xiaojun; Zhang, Qiqing

    2015-08-15

    Recently, DNA aptamer-gold nanoparticle (AuNP) conjugates have emerged as novel biosensing tools. Although RNA aptamers are more advantageous than DNA aptamers, their vulnerable nature during the construction of these conjugates restricts the development of RNA aptasensors. In this study, we developed an RNA aptamer-based AuNP sensor for the detection of theophylline in serum, combining the high binding affinity and selectivity of a theophylline RNA aptamer and the fluorescence quenching ability of AuNPs. In order to prevent nuclease degradation during the experimental process, the single strand of the theophylline RNA aptamer (33-mer) was split at the end loop region into two shorter halves, which were able to reassemble to form the theophylline-binding pocket. One fragment was linked to a DNA sequence that included a 15 thymine (T15) spacer and a polyadenine (polyA, A12) tail. The chimeric RNA/DNA oligonucleotide was attached to AuNPs within a few minutes via adsorption of the polyA tail. The other fragment was labeled with a fluorophore (Cy3). The two individual fragments self-assembled in the presence of theophylline. Upon ligand binding, the fragments came into close proximity, resulting in fluorescence quenching. This sensor exhibited a low detection limit of 0.05 µM, with a linear dynamic range from 0.1 to 10 µM in serum. Moreover, the sensor did not recognize theophylline-related compounds (e.g., caffeine and theobromine), demonstrating its high selectivity. This strategy offers new possibilities for the application of RNA aptasensors in clinical settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer.

    Directory of Open Access Journals (Sweden)

    H Hans Salamanca

    Full Text Available Heat shock factor 1 (HSF1 is a master regulator that coordinates chaperone protein expression to enhance cellular survival in the face of heat stress. In cancer cells, HSF1 drives a transcriptional program distinct from heat shock to promote metastasis and cell survival. Its strong association with the malignant phenotype implies that HSF1 antagonists may have general and effective utilities in cancer therapy. For this purpose, we had identified an avid RNA aptamer for HSF1 that is portable among different model organisms. Extending our previous work in yeast and Drosophila, here we report the activity of this aptamer in human cancer cell lines. When delivered into cells using a synthetic gene and strong promoter, this aptamer was able to prevent HSF1 from binding to its DNA regulation elements. At the cellular level, expression of this aptamer induced apoptosis and abolished the colony-forming capability of cancer cells. At the molecular level, it reduced chaperones and attenuated the activation of the MAPK signaling pathway. Collectively, these data demonstrate the advantage of aptamers in drug target validation and support the hypothesis that HSF1 DNA binding activity is a potential target for controlling oncogenic transformation and neoplastic growth.

  17. Aptamer-based modulation of blood coagulation.

    Science.gov (United States)

    Mayer, G; Rohrbach, F; Pötzsch, B; Müller, J

    2011-11-01

    Nucleic acid based aptamers are single-stranded oligonucleotide ligands isolated from random libraries by an in-vitro selection procedure. Through the formation of unique three-dimensional structures, aptamers are able to selectively interact with a variety of target molecules and are therefore also promising candidates for the development of anticoagulant drugs. While thrombin represents the most prominent enzymatic target in this field, also aptamers directed against other coagulation proteins and proteases have been identified with some currently being tested in clinical trials. In this review, we summarize recent developments in the design and evaluation of aptamers for anticoagulant therapy and research.

  18. An aptamer cocktail-functionalized photocatalyst with enhanced antibacterial efficiency towards target bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Young [Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Jurng, Jongsoo [Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Department of Energy and Environmental Engineering, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Park, Young-Kwon [School of Environmental Engineering, University of Seoul, Seoulsiripdae-ro 163, Dongdaemun-gu, Seoul 02504 (Korea, Republic of); Kim, Byoung Chan, E-mail: bchankim@kist.re.kr [Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Department of Energy and Environmental Engineering, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of)

    2016-11-15

    Highlights: • Aptamer-conjugated TiO{sub 2} was developed for target-specific bacterial inactivation. • TiO{sub 2}-aptamer cocktail can enhance inactivation of target bacteria faster than TiO{sub 2}. • TiO{sub 2}-aptamer cocktail can enhance inactivation of target bacteria in mixed culture. • Efficient ROS transfer to the bacteria is caused by close contact of TiO{sub 2}-aptamer. - Abstract: We developed TiO{sub 2} particles conjugated with an Escherichia coli surface-specific ssDNA aptamer cocktail (composed of three different aptamers isolated from E. coli) for targeted and enhanced disinfection of E. coli. We examined the target-specific and enhanced inactivation of this composite (TiO{sub 2}-Apc), which were compared to those of TiO{sub 2} conjugated with a single aptamer (one of the three different aptamers, TiO{sub 2}-Aps) and non-modified TiO{sub 2}. We found that TiO{sub 2}-Apc enhanced the inactivation of targeted E. coli under UV irradiation compared to both the non-modified TiO{sub 2} and TiO{sub 2}-Aps. A higher number of TiO{sub 2}-Apc than TiO{sub 2}-Aps particles was observed on the surface of E. coli. The amount of TiO{sub 2}-Apc required to inactivate ∼99.9% of E. coli (10{sup 6} CFU/ml) was 10 times lower than that of non-modified TiO{sub 2}. The close proximity of functionalized particles with E. coli resulting from the interaction between the target surface and the aptamer induced the efficient and fast transfer of reactive oxygen species to the cells. In a mixed culture of different bacteria (E. coli and Staphylococcus epidermidis), TiO{sub 2}-Apc enhanced the inactivation of only E. coli. Taken together, these results support the use of aptamer cocktail-conjugated TiO{sub 2} for improvement of the target-specific inactivation of bacteria.

  19. Aptamer-facilitated Protection of Oncolytic Virus from Neutralizing Antibodies.

    Science.gov (United States)

    Muharemagic, Darija; Zamay, Anna; Ghobadloo, Shahrokh M; Evgin, Laura; Savitskaya, Anna; Bell, John C; Berezovski, Maxim V

    2014-06-03

    Oncolytic viruses promise to significantly improve current cancer treatments through their tumor-selective replication and multimodal attack against cancer cells. However, one of the biggest setbacks for oncolytic virus therapy is the intravenous delivery of the virus, as it can be cleared from the bloodstream by neutralizing antibodies before it reaches the tumor cells. We have selected DNA aptamers against an oncolytic virus, vesicular stomatitis virus, using a competitive binding approach, as well as against the antigen binding fragment (Fab) of antivesicular stomatitis virus polyclonal antibodies, in order to shield the virus from nAbs and enhance its in vivo survival. We used flow cytometry to identify these aptamers and evaluated their efficiency to shield vesicular stomatitis virus in a cell-based plaque forming assay. These oligonucleotides were then modified to obtain multivalent binders, which led to a decrease of viral aggregation, an increase in its infectivity and an increase in its stability in serum. The aptamers were also incubated in nondiluted serum, showing their effectiveness under conditions mimicking those in vivo. With this approach, we were able to increase viral infectivity by more than 70% in the presence of neutralizing antibodies. Thus, this method has the potential to enhance the delivery of vesicular stomatitis virus through the bloodstream without compromising the patient's immune system.

  20. Bioactivity of 2′-deoxyinosine-incorporated aptamer AS1411

    Science.gov (United States)

    Fan, Xinmeng; Sun, Lidan; Wu, Yun; Zhang, Lihe; Yang, Zhenjun

    2016-01-01

    Aptamers can be chemically modified to enhance nuclease resistance and increase target affinity. In this study, we performed chemical modification of 2′-deoxyinosine in AS1411, an anti-proliferative G-rich oligodeoxynucleotide aptamer, which binds selectively to the nucleolin protein. Its function was augmented when 2′-deoxyinosine was incorporated at positions 12, 13, 15, and 24 of AS1411, respectively. In addition, double incorporation of 2′-deoxyinosine at positions 12 and 24 (FAN-1224dI), 13 and 24 (FAN-1324dI), and 15 and 24 (FAN-1524dI) promoted G-quartet formation, as well as inhibition of DNA replication and tumor cell growth, and induced S-phase cell cycle arrest. In further animal experiments, FAN-1224dI, FAN-1324dI and FAN-1524dI resulted in enhanced treatment effects than AS1411 alone. These results suggested that the position and number of modification substituents in AS1411 are critical parameters to improve the diagnostic and therapeutic function of the aptamer. Structural investigations of the FAN-1524dI/nucleolin complex structure, using molecular dynamics simulation, revealed the critical interactions involving nucleolin and 2′-dI incorporated AS1411 compared with AS1411 alone. These findings augment understanding of the role of 2′-deoxyinosine moieties in interactive binding processes. PMID:27194215

  1. Bioactivity of 2'-deoxyinosine-incorporated aptamer AS1411.

    Science.gov (United States)

    Fan, Xinmeng; Sun, Lidan; Wu, Yun; Zhang, Lihe; Yang, Zhenjun

    2016-05-19

    Aptamers can be chemically modified to enhance nuclease resistance and increase target affinity. In this study, we performed chemical modification of 2'-deoxyinosine in AS1411, an anti-proliferative G-rich oligodeoxynucleotide aptamer, which binds selectively to the nucleolin protein. Its function was augmented when 2'-deoxyinosine was incorporated at positions 12, 13, 15, and 24 of AS1411, respectively. In addition, double incorporation of 2'-deoxyinosine at positions 12 and 24 (FAN-1224dI), 13 and 24 (FAN-1324dI), and 15 and 24 (FAN-1524dI) promoted G-quartet formation, as well as inhibition of DNA replication and tumor cell growth, and induced S-phase cell cycle arrest. In further animal experiments, FAN-1224dI, FAN-1324dI and FAN-1524dI resulted in enhanced treatment effects than AS1411 alone. These results suggested that the position and number of modification substituents in AS1411 are critical parameters to improve the diagnostic and therapeutic function of the aptamer. Structural investigations of the FAN-1524dI/nucleolin complex structure, using molecular dynamics simulation, revealed the critical interactions involving nucleolin and 2'-dI incorporated AS1411 compared with AS1411 alone. These findings augment understanding of the role of 2'-deoxyinosine moieties in interactive binding processes.

  2. Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains.

    Directory of Open Access Journals (Sweden)

    Blanca I Escudero-Abarca

    Full Text Available Human noroviruses (HuNoV are the leading cause of acute viral gastroenteritis and an important cause of foodborne disease. Despite their public health significance, routine detection of HuNoV in community settings, or food and environmental samples, is limited, and there is a need to develop alternative HuNoV diagnostic reagents to complement existing ones. The purpose of this study was to select and characterize single-stranded (ssDNA aptamers with binding affinity to HuNoV. The utility of these aptamers was demonstrated in their use for capture and detection of HuNoV in outbreak-derived fecal samples and a representative food matrix. SELEX (Systematic Evolution of Ligands by EXponential enrichment was used to isolate ssDNA aptamer sequences with broad reactivity to the prototype GII.2 HuNoV strain, Snow Mountain Virus (SMV. Four aptamer candidates (designated 19, 21, 25 and 26 were identified and screened for binding affinity to 14 different virus-like particles (VLPs corresponding to various GI and GII HuNoV strains using an Enzyme-Linked Aptamer Sorbant Assay (ELASA. Collectively, aptamers 21 and 25 showed affinity to 13 of the 14 VLPs tested, with strongest binding to GII.2 (SMV and GII.4 VLPs. Aptamer 25 was chosen for further study. Its binding affinity to SMV-VLPs was equivalent to that of a commercial antibody within a range of 1 to 5 µg/ml. Aptamer 25 also showed binding to representative HuNoV strains present in stool specimens obtained from naturally infected individuals. Lastly, an aptamer magnetic capture (AMC method using aptamer 25 coupled with RT-qPCR was developed for recovery and detection of HuNoV in artificially contaminated lettuce. The capture efficiency of the AMC was 2.5-36% with an assay detection limit of 10 RNA copies per lettuce sample. These ssDNA aptamer candidates show promise as broadly reactive reagents for use in HuNoV capture and detection assays in various sample types.

  3. An Aptamer-Based Nanobiosensor for Real-Time Measurements of ATP Dynamics

    DEFF Research Database (Denmark)

    Özalp, Cengiz; Nielsen, Lise Junker; Olsen, Lars Folke

    2010-01-01

    A nanosensor based on a new DNA aptamer can show changes in intracellular concentration of ATP of 0.5 to 8 mM and thereby the kinetics of ATP-consuming reactions in real-time. The biosensor was protected against nuclease attack by being buried in a polyacrylamide nanoparticle. This strategy can...

  4. Monitoring Intact Viruses Using Aptamers

    Directory of Open Access Journals (Sweden)

    Penmetcha K. R. Kumar

    2016-08-01

    Full Text Available Viral diagnosis and surveillance are necessary steps in containing the spread of viral diseases, and they help in the deployment of appropriate therapeutic interventions. In the past, the commonly employed viral detection methods were either cell-culture or molecule-level assays. Most of these assays are laborious and expensive, require special facilities, and provide a slow diagnosis. To circumvent these limitations, biosensor-based approaches are becoming attractive, especially after the successful commercialization of glucose and other biosensors. In the present article, I have reviewed the current progress using the biosensor approach for detecting intact viruses. At the time of writing this review, three types of bioreceptor surfaces (antibody-, glycan-, and aptamer-based have been explored on different sensing platforms for detecting intact viruses. Among these bioreceptors, aptamer-based sensors have been increasingly explored for detecting intact viruses using surface plasmon resonance (SPR and other platforms. Special emphasis is placed on the aptamer-based SPR platform in the present review.

  5. Facile and Cost-Effective Detection of Saxitoxin Exploiting Aptamer Structural Switching

    Directory of Open Access Journals (Sweden)

    Karol Alfaro

    2015-01-01

    Full Text Available A simple method to detect saxitoxin (STX, one of the main components of the paralytic shellfish poison from red tide, has been developed. By using a next generation dye for double-stranded DNA we were able to differentiate fluorescence from STX-binding aptamers when exposed to different concentrations of STX, suggesting a change in aptamer folding upon target binding. The developed method is extremely rapid, only requiring small sample volumes, with quantitative results in the concentration range of 15 ng/mL to 3 μg/mL of STX, with a detection limit of 7.5 ng/mL.

  6. RNA Aptamer Delivery through Intact Human Skin.

    Science.gov (United States)

    Lenn, Jon D; Neil, Jessica; Donahue, Christine; Demock, Kellie; Tibbetts, Caitlin Vestal; Cote-Sierra, Javier; Smith, Susan H; Rubenstein, David; Therrien, Jean-Philippe; Pendergrast, P Shannon; Killough, Jason; Brown, Marc B; Williams, Adrian C

    2018-02-01

    It is generally recognized that only relatively small molecular weight (typically aptamer, highly specific to the human IL-23 cytokine, with picomolar activity. Results demonstrate penetration of the aptamer into freshly excised human skin using two different fluorescent labels. A dual hybridization assay quantified aptamer from the epidermis and dermis, giving levels far exceeding the cellular half maximal inhibitory concentration values (>100,000-fold), and aptamer integrity was confirmed using an oligonucleotide precipitation assay. A T helper 17 response was stimulated in freshly excised human skin resulting in significantly upregulated IL-17f, and IL-22; topical application of the IL-23 aptamer decreased both IL-17f and IL-22 by approximately 45% but did not result in significant changes to IL-23 mRNA levels, confirming that the aptamer did not globally suppress mRNA levels. This study demonstrates that very-large-molecular-weight RNA aptamers can permeate across the intact human skin barrier to therapeutically relevant levels into both the epidermis and dermis and that the skin-penetrating aptamer retains its biologically active conformational structure capable of binding to endogenous IL-23. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Aptamers as Valuable Molecular Tools in Neurosciences.

    Science.gov (United States)

    Wolter, Olga; Mayer, Günter

    2017-03-08

    Aptamers are short nucleic acids that interact with a variety of targets with high affinity and specificity. They have been shown to inhibit biological functions of cognate target proteins, and they are identifiable by an in vitro selection process, also termed SELEX (Systematic Evolution of Ligands by EXponential enrichment). Being nucleic acids, aptamers can be synthesized chemically or enzymatically. The latter renders RNA aptamers compatible with the cell's own transcription machinery and, thus, expressable inside cells. The synthesis of aptamers by chemical approaches opens up the possibility of producing aptamers on a large scale and enables a straightforward access to introduce modifications in a site-specific manner (e.g., fluorophores or photo-labile groups). These characteristics make aptamers broadly applicable (e.g., as an analytical, diagnostic, or separation tool). In this TechSight, we provide a brief overview on aptamer technology and the potential of aptamers as valuable research tools in neurosciences. Copyright © 2017 the authors 0270-6474/17/372517-07$15.00/0.

  8. Selection of a new Mycobacterium tuberculosis H37Rv aptamer and its application in the construction of a SWCNT/aptamer/Au-IDE MSPQC H37Rv sensor.

    Science.gov (United States)

    Zhang, XiaoQing; Feng, Ye; Yao, QiongQiong; He, Fengjiao

    2017-12-15

    A rapid and accurate detection method for Mycobacterium tuberculosis (M. tuberculosis) is essential for effectively treating tuberculosis. However, current detection methods cannot meet these clinical requirements because the methods are slow or of low specificity. Consequently, a new highly specific ssDNA aptamer against M. tuberculosis reference strain H37Rv was selected by using the whole-cell systematic evolution of ligands by exponential enrichment technique. The selected aptamer was used to construct a fast and highly specific H37Rv sensor. The probe was produced by immobilizing thiol-modified aptamer on an Au interdigital electrode (Au-IDE) of a multichannel series piezoelectric quartz crystal (MSPQC) through Au-S bonding, and then single-walled carbon nanotubes (SWCNTs) were bonded on the aptamer by π-π stacking. SWCNTs were used as a signal indicator because of their considerable difference in conductivity compared with H37Rv. When H37Rv is present, it replaces the SWCNTs because it binds to the aptamer much more strongly than SWCNTs do. The replacement of SWCNTs by H37Rv resulted in a large change in the electrical properties, and this change was detected by the MSPQC. The proposed sensor is highly selective and can distinguish H37Rv from Mycobacterium smegmatis (M. smegmatis) and Bacillus Calmette-Guerin vaccine (BCG). The detection time was 70min and the detection limit was 100cfu/mL. Compared with conventional methods, this new SWCNT/aptamer/Au-IDE MSPQC H37Rv sensor was specific, rapid, and sensitive, and it holds great potential for the early detection of H37Rv in clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Aptamer-based technology for food analysis.

    Science.gov (United States)

    Liu, Xiaofei; Zhang, Xuewu

    2015-01-01

    Aptamers are short and functional single-stranded oligonucleotide sequences selected from systematic evolution of ligands by exponential enrichment (SELEX) process, which have the capacity to recognize various classes of target molecules with high affinity and specificity. Various analytical aptamers acquired by SELEX are widely used in many research fields, such as medicine, biology, and chemistry. However, the application of this innovative and emerging technology to food safety is just in infant stage. Food safety plays a very important role in our daily lives because varieties of poisonous and harmful substances in food affect human health. Aptamer technique is promising, which can overcome many disadvantages of existing detection methods in food safety, such as long detection time, low sensitivity, difficult, and expensive antibody preparation. This review provides an overview of various aptamer screening technologies and summarizes the recent applications of aptamers in food safety, and future prospects are also discussed.

  10. Effects of Different Buffers on the Construction of Aptamer Sensors

    Science.gov (United States)

    Yu, Quan; Dai, Zhao; Wu, Wenjing; Zhu, Haijia; Ji, Luyu

    2017-12-01

    In this paper, the effect of different buffers, PBS and TBE, on the construction of an aptamer sensor (apt sensor) for ATP was investigated. The apt sensor was based on fluorescence energy resonance transfer (FRET), when the energy donor was 5'-carboxyfluorescein (5'-FAM) and the energy receptor was Au nanoparticles (AuNPs), respectively. Both the donor and acceptor were conjugated with complementary and single stranded DNA (ssDNA). The fluorescent changes of the sensors were measured to investigate the influence of different buffers during the whole preparation and detection process. The results indicated that when the AuNPs and ssDNA (Au-DNA1) were conjugated in PBS buffer, the corresponding apt sensors would obtain a better detection ability of ATP than in TBE buffer.

  11. Intra-accumbens injection of a dopamine aptamer abates MK-801-induced cognitive dysfunction in a model of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Matthew R Holahan

    Full Text Available Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7, tris buffer (n = 6 or a randomized DNA oligonucleotide (n = 7. Animals were then treated systemically with MK-801 (0.1 mg/kg and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.

  12. Aptamer-nanobody based ELASA for specific detection of Acinetobacter baumannii isolates.

    Science.gov (United States)

    Rasoulinejad, Samaneh; Gargari, Seyed Latif Mousavi

    2016-08-10

    Acinetobacter baumannii has turned into an important threat in nosocomial outbreak infections and multidrug resistance leading to high mortality rates in the 21st century. In recent years its mortality has increased by 15% which in part could be due to lack of a rapid and sensitive diagnostic test. In this work we introduced a new detection test for A. baumannii with two highly specific aptamer and nanobody molecules. High binding affinity DNA oligonucleotide aptamers toward A. baumannii were selected through 12 rounds of whole cell System Evolution of Ligands by EXponential enrichment process (SELEX). The SELEX procedures was monitored by flow cytometry. The dissociation constant and binding efficiency of the selected aptamer Aci49 was 7.547±1:353pM and 47.50%, respectively. A sandwich enzyme linked aptamer sorbent assay (ELASA) was designed with the biotinylated Aci49 aptamer and our previously developed nanobody against biofilm associated protein (Bap). The assay system was optimized with A. baumannii (ATCC 19606) and 47 clinical isolates of A. baumannii were tested. The threshold of detection in sandwich ELASA process was10(3) CFU/ml. The sensitivity of test toward the clinical isolates was 95.47%. Our results reveal that the sandwich ELASA is sensitive and specific enough for the rapid detection of A. baumannii from clinical isolates. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Sensitivity and Selectivity on Aptamer-Based Assay: The Determination of Tetracycline Residue in Bovine Milk

    Directory of Open Access Journals (Sweden)

    Sohee Jeong

    2012-01-01

    Full Text Available A competitive enzyme-linked aptamer assay (ELAA to detect tetracycline in milk was performed by using two different aptamers individually; one is 76 mer-DNA aptamer and the other is 57 mer-RNA aptamer. The best optimum condition was obtained without monovalent ion, Na+ and also by adding no Mg2+ ion in the assay buffer, along with RT incubation. The optimized ELAA showed a good sensitivity (LOD of 2.10 × 10−8 M with a wide dynamic range (3.16 × 10−8 M ~ 3.16 × 10−4 M. In addition, the average R.S.D. across all data points of the curve was less than 2.5% with good recoveries (~101.8% from the milk media. Thus, this method provides a good tool to monitor tetracycline in milk from MRLs’ point of view. However, this ELAA method was not superior to the ELISA method in terms of specificity. This paper describes that it does not always give better sensitivity and specificity in assays even though aptamers have several advantages over antibodies and have been known to be good binders for binding assays.

  14. An aptamer assay using rolling circle amplification coupled with thrombin catalysis for protein detection.

    Science.gov (United States)

    Guo, Limin; Hao, Lihua; Zhao, Qiang

    2016-07-01

    We describe a sensitive aptamer-based sandwich assay for protein detection on microplate by using rolling circle amplification (RCA) coupled with thrombin catalysis. This assay takes advantage of RCA generating long DNA oligonucleotides with repeat thrombin-binding aptamer sequence, specific aptamer affinity binding to achieve multiple thrombin labeling, and enzyme activity of thrombin for signal generation. Protein target is specifically captured by antibody-coated microplate. Then, an oligonucleotide containing an aptamer for protein and a primer sequence is added to form a typical sandwich structure. Following a template encoded with complementary sequence of aptamer for thrombin, RCA reaction extends the primer sequence into a long oligonucleotide. Many thrombin molecules bind with the RCA product. Thrombin catalyzes the conversion of its chromogenic or fluorogenic peptide substrates into detectable products for final quantification of protein targets. We applied this strategy to the detection of a model protein target, platelet-derived growth factor-BB (PDGF-BB). Due to double signal amplifications from RCA and thrombin catalysis, this assay enabled the detection of PDGF-BB as low as 3.1 pM when a fluorogenic peptide substrate was used. This assay provides a new way for signal generation in RCA-involved assay through direct thrombin labeling, circumventing time-consuming preparation of enzyme-conjugate and affinity probes. This method has promise for a variety of analytical applications.

  15. Aptamer-Based Carboxyl-Terminated Nanocrystalline Diamond Sensing Arrays for Adenosine Triphosphate Detection

    Directory of Open Access Journals (Sweden)

    Evi Suaebah

    2017-07-01

    Full Text Available Here, we propose simple diamond functionalization by carboxyl termination for adenosine triphosphate (ATP detection by an aptamer. The high-sensitivity label-free aptamer sensor for ATP detection was fabricated on nanocrystalline diamond (NCD. Carboxyl termination of the NCD surface by vacuum ultraviolet excimer laser and fluorine termination of the background region as a passivated layer were investigated by X-ray photoelectron spectroscopy. Single strand DNA (amide modification was used as the supporting biomolecule to immobilize into the diamond surface via carboxyl termination and become a double strand with aptamer. ATP detection by aptamer was observed as a 66% fluorescence signal intensity decrease of the hybridization intensity signal. The sensor operation was also investigated by the field-effect characteristics. The shift of the drain current–drain voltage characteristics was used as the indicator for detection of ATP. From the field-effect characteristics, the shift of the drain current–drain voltage was observed in the negative direction. The negative charge direction shows that the aptamer is capable of detecting ATP. The ability of the sensor to detect ATP was investigated by fabricating a field-effect transistor on the modified NCD surface.

  16. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    Science.gov (United States)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  17. Aptamer-based single-molecule imaging of insulin receptors in living cells

    Science.gov (United States)

    Chang, Minhyeok; Kwon, Mijin; Kim, Sooran; Yunn, Na-Oh; Kim, Daehyung; Ryu, Sung Ho; Lee, Jong-Bong

    2014-05-01

    We present a single-molecule imaging platform that quantitatively explores the spatiotemporal dynamics of individual insulin receptors in living cells. Modified DNA aptamers that specifically recognize insulin receptors (IRs) with a high affinity were selected through the SELEX process. Using quantum dot-labeled aptamers, we successfully imaged and analyzed the diffusive motions of individual IRs in the plasma membranes of a variety of cell lines (HIR, HEK293, HepG2). We further explored the cholesterol-dependent movement of IRs to address whether cholesterol depletion interferes with IRs and found that cholesterol depletion of the plasma membrane by methyl-β-cyclodextrin reduces the mobility of IRs. The aptamer-based single-molecule imaging of IRs will provide better understanding of insulin signal transduction through the dynamics study of IRs in the plasma membrane.

  18. Miniaturized Aptamer-Based Assays for Protein Detection

    Directory of Open Access Journals (Sweden)

    Alessandro Bosco

    2016-09-01

    Full Text Available The availability of devices for cancer biomarker detection at early stages of the disease is one of the most critical issues in biomedicine. Towards this goal, to increase the assay sensitivity, device miniaturization strategies empowered by the employment of high affinity protein binders constitute a valuable approach. In this work we propose two different surface-based miniaturized platforms for biomarker detection in body fluids: the first platform is an atomic force microscopy (AFM-based nanoarray, where AFM is used to generate functional nanoscale areas and to detect biorecognition through careful topographic measurements; the second platform consists of a miniaturized electrochemical cell to detect biomarkers through electrochemical impedance spectroscopy (EIS analysis. Both devices rely on robust and highly-specific protein binders as aptamers, and were tested for thrombin detection. An active layer of DNA-aptamer conjugates was immobilized via DNA directed immobilization on complementary single-stranded DNA self-assembled monolayers confined on a nano/micro area of a gold surface. Results obtained with these devices were compared with the output of surface plasmon resonance (SPR assays used as reference. We succeeded in capturing antigens in concentrations as low as a few nM. We put forward ideas to push the sensitivity further to the pM range, assuring low biosample volume (μL range assay conditions.

  19. An Aptamer Bio-barCode (ABC) assay using SPR, RNase H, and probes with RNA and gold-nanorods for anti-cancer drug screening.

    Science.gov (United States)

    Loo, Jacky Fong-Chuen; Yang, Chengbin; Tsang, Hing Lun; Lau, Pui Man; Yong, Ken-Tye; Ho, Ho Pui; Kong, Siu Kai

    2017-10-07

    With modifications to an ultra-sensitive bio-barcode (BBC) assay, we have developed a next generation aptamer-based bio-barcode (ABC) assay to detect cytochrome-c (Cyto-c), a cell death marker released from cancer cells, for anti-cancer drug screening. An aptamer is a short single-stranded DNA selected from a synthetic DNA library that is capable of binding to its target with high affinity and specificity based on its unique DNA sequence and 3D structure after folding. Similar to the BBC assay, Cyto-c is captured by a micro-magnetic particle (MMP) coated with capturing antibodies (Ab) and an aptamer specifically against Cyto-c to form sandwich structures ([MMP-Ab]-[Cyto-c]-[Aptamer]). After washing and melting, our aptamers, acting as a DNA bio-barcode, are released from the sandwiches and hybridized with the probes specially designed for RNase H for surface plasmon resonance (SPR) sensing. In an aptamer-probe duplex, RNase H digests the RNA in the probe and releases the intact aptamer for another round of hybridization and digestion. With signal enhancement effects from gold-nanorods (Au-NRs) on probes for SPR sensing, the detection limit was found to be 1 nM for the aptamer and 80 pM for Cyto-c. Without the time-consuming DNA amplification steps by PCR, the detection process of this new ABC assay can be completed within three hours. As a proof-of-concept, phenylarsine oxide was found to be a potent agent to kill liver cancer cells with multi-drug resistance at the nano-molar level. This approach thus provides a fast, sensitive and robust tool for anti-cancer drug screening.

  20. Localization of the gene encoding steroid hydroxylase cytochrome P-450 from Rhizopus nigricans inside a HindIII fragment of genomic DNA.

    Science.gov (United States)

    Breskvar, K; Cresnar, B; Plaper, A; Hudnik-Plevnik, T

    1991-08-15

    The gene encoding steroid inducible cytochrome P450 of Rhizopus nigricans ATCC 6227b has been found inside a HindIII fragment of the genomic DNA by hybridization with a partial length cDNA probe. The latter was isolated by immunoscreening a cDNA library prepared in the lambda gt11 expression system and identified on the basis of inducibility and sequence analysis. The nucleotide sequence of the cDNA probe revealed a coding sequence for the heme binding segment characteristic of the P450 gene family.

  1. Competitive fluorescence anisotropy/polarization assay for ATP using aptamer as affinity ligand and dye-labeled ATP as fluorescence tracer.

    Science.gov (United States)

    Li, Yapiao; Sun, Linlin; Zhao, Qiang

    2017-11-01

    We developed an aptamer-based competitive fluorescence anisotropy (FA)/fluorescence polarization (FP) assay for adenosine triphosphate (ATP). Different from the traditional fluorescence polarization immunoassays for small molecules, here DNA aptamer against ATP was used as affinity ligand, and tetramethylrhodamine (TMR) labeled ATP served as fluorescent tracer. The binding between TMR-labeled ATP and aptamer gave large FA due to molecular volume increase and restricted rotation of the dye-labeled ATP. When ATP was added in solution, ATP competitively displaced the TMR-labeled ATP from aptamer affinity complex, causing decrease of FA of TMR-labeled ATP. The buffer containing MgCl 2 and incubation at low temperature were preferred for large FA change in the FA assay. The FA change was further enhanced in this competitive FA assay by increasing the molecular weight of aptamer through extension of aptamer sequences or conjugating streptavidin protein on aptamer. This method allowed for the detection of ATP in the range from 0.5μM to 1mM, generating the maximum FA change about 0.187 (corresponding maximum FP change about 0.242). The detection of ATP spiked in diluted urine or serum sample was achieved, showing capability for analysis in complex sample matrix. This assay also enabled the detection of the analogues of ATP, e.g. adenosine, adenosine monophosphate (AMP), and adenosine diphosphate (ADP) with similar sensitivity. This aptamer-based competitive FA assay takes advantages of aptamer in ease of synthesis, good thermal stability, and facile modulating the molecular mass of aptamer. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Signal amplification aptamer biosensor for thrombin based on a glassy carbon electrode modified with graphene, quantum dots and gold nanoparticles

    Science.gov (United States)

    Xie, Lingling; You, Liqin; Cao, Xiaoyu

    2013-05-01

    A novel electrogenerated chemiluminescence (ECL) assay for sensitive determination of thrombin is designed employing CdSe/ZnS quantum dots served as an ECL label. This ECL sensor is fabricated on graphene modified glassy carbon electrode which is then covered with a low surface coverage of gold nanoparticles (AuNPs). An aptamer is used to selectively recognize the target. The thiol-terminated aptamer is first immobilized on AuNPs/graphene modified electrode, and then thrombin is imported to form the aptamer-thrombin complexes. After blocking the nonspecifically bound oligonucleotides with MCH solution, another CdSe/ZnS quantum dots modified aptamer is hybridized with the free thiol-terminated aptamer to form a DNA complexe. A decreased ECL signal is observed upon recognition of the target thrombin. The integrated ECL intensity versus the concentration of thrombin is linear in the range from 0.01 to 50 nM. The detection limit is 10 fM. The present aptasensor also exhibits excellent selectivity, stability and reusability. This sensing system can provide a promising label-free model for aptamer-based compounds sensitive detection.

  3. Aptamer Selection Express: A Novel Method for Rapid Single-Step Selection and Sensing of Aptamers

    National Research Council Canada - National Science Library

    Fan, Maomian; Roper, Shelly; Andrews, Carrie; Allman, Amity; Bruno, John; Kiel, Jonathan

    2008-01-01

    ...). This process has been used to select aptamers against different types of targets (Bacillus anthracis spores, Bacillus thuringiensis spores, MS-2 bacteriophage, ovalbumin, and botulinum neurotoxin...

  4. Design Strategies for Aptamer-Based Biosensors

    Science.gov (United States)

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications. PMID:22399891

  5. Aptamer-Assisted Detection of the Altered Expression of Estrogen Receptor Alpha in Human Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Rajesh Ahirwar

    Full Text Available An increase in the expression of estrogen receptors (ER and the expanded population of ER-positive cells are two common phenotypes of breast cancer. Detection of the aberrantly expressed ERα in breast cancer is carried out using ERα-antibodies and radiolabelled ligands to make decisions about cancer treatment and targeted therapy. Capitalizing on the beneficial advantages of aptamer over the conventional antibody or radiolabelled ligand, we have identified a DNA aptamer that selectively binds and facilitates the detection of ERα in human breast cancer tissue sections. The aptamer is identified using the high throughput sequencing assisted SELEX screening. Biophysical characterization confirms the binding and formation of a thermodynamically stable complex between the identified DNA aptamer (ERaptD4 and ERα (Ka = 1.55±0.298×108 M(-1; ΔH = 4.32×104±801.1 cal/mol; ΔS = -108 cal/mol/deg. Interestingly, the specificity measurements suggest that the ERaptD4 internalizes into ERα-positive breast cancer cells in a target-selective manner and localizes specifically in the nuclear region. To harness these characteristics of ERaptD4 for detection of ERα expression in breast cancer samples, we performed the aptamer-assisted histochemical analysis of ERα in tissue samples from breast cancer patients. The results were validated by performing the immunohistochemistry on same samples with an ERα-antibody. We found that the two methods agree strongly in assay output (kappa value = 0.930, p-value <0.05 for strong ERα positive and the ERα negative samples; kappa value = 0.823, p-value <0.05 for the weak/moderate ER+ve samples, n = 20. Further, the aptamer stain the ERα-positive cells in breast tissues without cross-reacting to ERα-deficient fibroblasts, adipocytes, or the inflammatory cells. Our results demonstrate a significant consistency in the aptamer-assisted detection of ERα in strong ERα positive, moderate ERα positive and ERα negative

  6. Aptamer-based molecular recognition for biosensor development.

    Science.gov (United States)

    Zhou, Jing; Battig, Mark R; Wang, Yong

    2010-11-01

    Nucleic acid aptamers are an emerging class of synthetic ligands and have recently attracted significant attention in numerous fields. One is in biosensor development. In principle, nucleic acid aptamers can be discovered to recognize any molecule of interest with high affinity and specificity. In addition, unlike most ligands evolved in nature, synthetic nucleic acid aptamers are usually tolerant of harsh chemical, physical, and biological conditions. These distinguished characteristics make aptamers attractive molecular recognition ligands for biosensing applications. This review first concisely introduces methods for aptamer discovery including upstream selection and downstream truncation, then discusses aptamer-based biosensor development from the viewpoint of signal production.

  7. Label-free aptamer biosensor for selective detection of thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Na, Weidan; Liu, Xiaotong; Wang, Lei; Su, Xingguang, E-mail: suxg@jlu.edu.cn

    2015-10-29

    We fabricated a novel fluorescence biosensor for the selective detection of thrombin by using bovine serum albumin-capped CdS quantum dots (BSA-CdS QDs). Two kinds of designed DNA (DNA1 and DNA2) could bind to CdS QDs through the electrostatic interaction between DNA and Cd{sup 2+} on the surface of CdS QDs. The obtained DNA/BSA-CdS QDs kept stable in the solution with the fluorescence intensity obviously enhanced. Hairpin structure of DNA1contained two domains, one is the aptamer sequence of thrombin and the other is the complementary sequence of DNA2. When thrombin was added, it would bind to DNA1 and induce the hairpin structure of DNA1 changed into G-quadplex structure. Meanwhile, DNA2 would transfer from the surface of CdS QDs to DNA1 via hybridization, which resulted in the removal of DNA1 and DNA2 from the surface of CdS QDs, and led to the fluorescence intensity of CdS QDs reduced. Thus, the determination of thrombin could be achieved by monitoring the change of the fluorescence intensity of CdS QDs. The present method is simple and fast, and exhibits good selectivity for thrombin over other proteins. We have successfully detected thrombin in human serum samples with satisfactory results. - Highlights: • A novel strategy for the detection of thrombin was established based on BSA-CdS QDs. • DNA could serve as the co-ligands to stabilize CdS QDs and enhance the fluorescence intensity. • Thrombin could change the structure of DNA1 and quench the fluorescence of CdS QDs. • Thrombin in real sample was detected with satisfactory results.

  8. Fluorescence-based strategies to investigate the structure and dynamics of aptamer-ligand complexes

    Science.gov (United States)

    Perez-Gonzalez, Cibran; Lafontaine, Daniel; Penedo, J.

    2016-08-01

    In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labelling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labelled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these

  9. Fluorescence-based strategies to investigate the structure and dynamics of aptamer-ligand complexes

    Directory of Open Access Journals (Sweden)

    Cibran Perez-Gonzalez

    2016-08-01

    Full Text Available In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labelling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labelled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the

  10. Lysozyme detection on aptamer functionalized graphene-coated SPR interfaces.

    Science.gov (United States)

    Subramanian, Palaniappan; Lesniewski, Adam; Kaminska, Izabela; Vlandas, Alexis; Vasilescu, Alina; Niedziolka-Jonsson, Joanna; Pichonat, Emmanuelle; Happy, Henri; Boukherroub, Rabah; Szunerits, Sabine

    2013-12-15

    The paper reports on a surface plasmon resonance (SPR)-based approach for the sensitive and selective detection of lysozyme. The SPR sensor consists of a 50 nm gold film coated with a thin film of reduced graphene oxide (rGO) functionalized with anti-lysozyme DNA aptamer. The SPR chip coating with rGO matrix was achieved through electrophoretic deposition of graphene oxide (GO) at 150 V. Electrophoretic deposition resulted in partial reduction of GO to rGO with a thickness depending on the deposition time. For very short time pulses of 20 s, the resulting rGO film had a thickness of several nanometers and was appropriate for SPR sensing. The utility of the graphene-based SPR sensor for the selective and sensitive detection of proteins was demonstrated using lysozyme as model protein. Functionalization of rGO matrix with anti-lysozyme DNA aptamer through π-stacking interactions allowed selective SPR detection of lysozyme. The graphene-based SPR biosensor provides a means for the label-free, concentration-dependent and selective detection of lysozymes with a detection limit of 0.5 nM. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Tuning the Aggregation/Disaggregation Behavior of Graphene Quantum Dots by Structure-Switching Aptamer for High-Sensitivity Fluorescent Ochratoxin A Sensor.

    Science.gov (United States)

    Wang, Song; Zhang, Yajun; Pang, Guangsheng; Zhang, Yingwei; Guo, Shaojun

    2017-02-07

    The design of graphene quantum dots (GQDs)-aptamer bioconjugates as the new sensing platform is very important for developing high-sensitivity fluorescent biosensors; however, achieving new bioconjugates is still a great challenge. Herein, we report the development of a new high-sensitivity fluorescent aptasensor for the detection of ochratoxin A (OTA) based on tuning aggregation/disaggregation behavior of GQDs by structure-switching aptamers. The fluorescence sensing process for OTA detection involved two key steps: (1) cDNA-aptamer (cDNA, complementary to part of the OTA aptamer) hybridization induced the aggregation of GQD (fluorescence quenching) after cDNA was added into the GQDs-aptamer bioconjugate solution, and (2) the target of OTA triggered disaggregation of GQD aggregates (fluorescence recovery). Such new fluorescent sensing platform can be used to monitor OTA with a linear range of 0 to 1 ng/mL and very low detection limit of 13 pg/mL, which is among the best in all the developed fluorescent nanoparticles-based sensors. Such sensing strategy is also successful in analyzing OTA in practical red wine sample with 94.4-102.7% of recoveries and relative standard deviation in the range of 2.9-5.8%. The present works open a new way for signaling the target-aptamer binding event by tuning aggregation/disaggregation behavior of GQDs-bioconjugates.

  12. Cell-Specific Aptamers as Emerging Therapeutics

    Directory of Open Access Journals (Sweden)

    Cindy Meyer

    2011-01-01

    Full Text Available Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment. Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have been selected. Their applications range from biosensing and diagnostics to therapy and target-oriented drug delivery. More recently, selections using complex targets such as live cells have become feasible. This paper summarizes progress in cell-SELEX techniques and highlights recent developments, particularly in the field of medically relevant aptamers with a focus on therapeutic and drug-delivery applications.

  13. Aptamers as Emerging Probes for Macromolecular Sensing

    National Research Council Canada - National Science Library

    Cho, Eun

    2004-01-01

    Aptamers, derived from the latin word aptus (meaning, "to fit"), are functional nucleic acid binding species that have been selected from combinatorial oligonucleotide libraries by a process known as in vifro selection...

  14. 5TR1 aptamer-PEGylated liposomal doxorubicin enhances cellular uptake and suppresses tumour growth by targeting MUC1 on the surface of cancer cells.

    Science.gov (United States)

    Moosavian, Seyedeh Alia; Abnous, Khalil; Akhtari, Javad; Arabi, Leila; Gholamzade Dewin, Ali; Jafari, Mahmoudreza

    2017-12-05

    Employing targeting ligands with high affinity to tumour receptors is an important strategy to increase treatment efficacy. The use of aptamers as targeting agent is increasingly prevalent in drug delivery systems. Mucin1 (MUC1) is a glycoprotein that is over-expressed on the surface of several cancer cells and plays an important role in metastasis and invasion. 5TR1-aptamer is a DNA aptamer, which targets MUC1 receptors. The present study investigated the anti-tumour activity and therapeutic effectiveness of 5TR1-aptamer-PEGylated liposomal doxorubicin (PLD) delivery system in C26 tumour-bearing mice. The in vitro experiments demonstrated enhanced cytotoxicity and cellular uptake of PLD at the presence of 5TR1 aptamer into MUC1 + C26 cell line. Biodistribution study indicated that aptamer conjugation increased tumour accumulation of PLDs. Pharmacokinetic analysis showed despite higher clearance rate, selective delivery of doxorubicin to tumour tissue was increased in the 5TR1-Doxil group. In C26-bearing tumour mice, treatment with 5TR1-Doxil exhibited significant deceleration in tumour growth and enhanced survival. The results suggested that 5TR1 aptamer is promising ligand for active targeting which improves therapeutic efficiency of PLD in cancer therapy.

  15. A real-time control system of gene expression using ligand-bound nucleic acid aptamer for metabolic engineering.

    Science.gov (United States)

    Wang, Jing; Cui, Xun; Yang, Le; Zhang, Zhe; Lv, Liping; Wang, Haoyuan; Zhao, Zhenmin; Guan, Ningzi; Dong, Lichun; Chen, Rachel

    2017-07-01

    Artificial control of bio-functions through regulating gene expression is one of the most important and attractive technologies to build novel living systems that are useful in the areas of chemical synthesis, nanotechnology, pharmacology, cell biology. Here, we present a novel real-time control system of gene regulation that includes an enhancement element by introducing duplex DNA aptamers upstream promoter and a repression element by introducing a RNA aptamer upstream ribosome binding site. With the presence of ligands corresponding to the DNA aptamers, the expression of the target gene can be potentially enhanced at the transcriptional level by strengthening the recognition capability of RNAP to the recognition region and speeding up the separation efficiency of the unwinding region due to the induced DNA bubble around the thrombin-bound aptamers; while with the presence of RNA aptamer ligand, the gene expression can be repressed at the translational level by weakening the recognition capability of ribosome to RBS due to the shielding of RBS by the formed aptamer-ligand complex upstream RBS. The effectiveness and potential utility of the developed gene regulation system were demonstrated by regulating the expression of ecaA gene in the cell-free systems. The realistic metabolic engineering application of the system has also tested by regulating the expression of mgtC gene and thrombin cDNA in Escherichia coli JD1021 for controlling metabolic flux and improving thrombin production, verifying that the real-time control system of gene regulation is able to realize the dynamic regulation of gene expression with potential applications in bacterial physiology studies and metabolic engineering. Copyright © 2017. Published by Elsevier Inc.

  16. Comparative investigation of binding interactions with three steroidal derivatives of d(GGGT)4G-quadruplex aptamer.

    Science.gov (United States)

    Huang, Shan; Liang, Yu; Cui, Jianguo; Xie, Jiangning; Liu, Yi; Hu, Baoqing; Xiao, Qi

    2018-02-16

    Steroidal derivatives have attracted tremendous attentions in biological and biomedical areas, due to their variety biological activities. The investigation of structural influences helps in understanding their biological activities. The interactions of steroidal derivatives with DNA may play important roles in biological activities, however only a few investigations were reported on this issue. Herein, the structural influences of three steroidal derivatives were investigated based on their binding interactions with d(GGGT) 4 G-quadruplex aptamer by spectroscopic approaches, nuclear magnetic resonance (NMR), electrochemical methods, and molecular modeling techniques. Three compounds were found to selectively bind with parallel G-quadruplex aptamer to form three complexes through end-stacking binding modes. Three compounds stabilized the G-quadruplex structure of the aptamer at different levels, which enhanced the biological activity of this aptamer to some extent. The space steric hindrance was responsible for differences in the binding interactions between d(GGGT) 4 G-quadruplex aptamer and three compounds. These results provide new information for the molecular understanding of binding interactions of steroidal derivatives with DNA and the strategy for research of structural influences. Copyright © 2018. Published by Elsevier Inc.

  17. A novel label-free cocaine assay based on aptamer-wrapped single-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Sahar Taghavi

    2013-09-01

    Full Text Available   Objective(s: This paper describes a selective and sensitive biosensor based on the dissolution and aggregation of aptamer wrapped single-walled carbon nanotubes. We report on the direct detection of aptamer–cocaine interactions, namely between a DNA aptamer and cocaine molecules based on near-infrared absorption at 807 .   Materials and Methods: First a DNA aptamer recognizing cocaine was non-covalently immobilized on the surface of single walled carbon nanotubes and consequently dissolution of SWNTs was occurred. Vis-NIR absorption (A807nm of dispersed, soluble aptamer-SWNTs hybrid, before and after incubation with cocaine was measured using a CECIL9000 spectrophotometer. Results: This carbon nanotube setup enabled the reliable monitoring of the interaction of cocaine with its cognate aptamer by aggregation of SWNTs in the presence of cocaine. Disscusion: This assay system provides a mean for the label-free, concentration-dependent, and selective detection of cocaine with an observed detection limit of 49.5 nM.

  18. From selection hits to clinical leads: progress in aptamer discovery

    Directory of Open Access Journals (Sweden)

    Keith E Maier

    2016-01-01

    Full Text Available Aptamers were discovered more than 25 years ago, yet only one has been approved by the US Food and Drug Administration to date. With some noteworthy advances in their chemical design and the enzymes we use to make them, aptamers and aptamer-based therapeutics have seen a resurgence in interest. New aptamer drugs are being approved for clinical evaluation, and it is certain that we will see increasingly more aptamers and aptamer-like drugs in the future. In this review, we will discuss the production of aptamers with an emphasis on the advances and modifications that enabled early aptamers to succeed in clinical trials as well as those that are likely to be important for future generations of these drugs.

  19. A label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence

    OpenAIRE

    Xu, Weichen; Lu, Yi

    2010-01-01

    We report a label-free fluorescent aptamer sensor for adenosine based on the regulation of malachite green (MG) fluorescence, with comparable sensitivity and selectivity to other labeled adenosine aptamer-based sensors. The sensor consists of free MG, an aptamer strand containing an adenosine aptamer next to an MG aptamer, and a bridging strand that partially hybridizes to the aptamer strand. Such a hybridization prevents MG from binding to MG aptamer, resulting in low fluorescence of MG in t...

  20. New trends in aptamer-based electrochemical biosensors

    OpenAIRE

    Velasco-Garcia, Maria; Missailidis, Sotiris

    2009-01-01

    The analytical characteristics of aptamers are comparable with those of antibodies for the development of biosensor technology. However, aptamers offer some crucial advantages over antibodies such as selection capability for a variety of targets, easy synthesis, improved reproducibility and stability, simple modification for immobilization to solid supports and enhanced selectivity. This article reviews aptamer technology as well as aptamer-based assay configurations and goes on to explore re...

  1. Kinetic and Stoichiometric Characterisation of Streptavidin-Binding Aptamers

    NARCIS (Netherlands)

    Ruigrok, V.J.B.; Duijn, van E.; Barendregt, A.; Dyer, K.; Tainer, J.A.; Stoltenburg, R.; Strehlitz, B.; Levisson, M.; Smidt, H.; Oost, van der J.

    2012-01-01

    Aptamers are oligonucleotide ligands that are selected for high-affinity binding to molecular targets. Only limited knowledge relating to relations between structural and kinetic properties that define aptamer-target interactions is available. To this end, streptavidin-binding aptamers were isolated

  2. Flow Cytometric Bead Sandwich Assay Based on a Split Aptamer.

    Science.gov (United States)

    Shen, Luyao; Bing, Tao; Liu, Xiangjun; Wang, Junyan; Wang, Linlin; Zhang, Nan; Shangguan, Dihua

    2018-01-24

    A few aptamers still bind their targets after being split into two moieties. Split aptamers have shown great potential in the development of aptameric sensors. However, only a few split aptamers have been generated because of lack of knowledge on the binding structure of their parent aptamers. Here, we report the design of a new split aptamer and a flow cytometric bead sandwich assay using a split aptamer instead of double antibodies. Through DMS footprinting and mutation assay, we figured out the target-binding moiety and the structure-stabilizing moiety of the l-selectin aptamer, Sgc-3b. By separating the duplex strand in the structure-stabilizing moiety, we obtained a split aptamer that bound l-selectin. After optimization of one part of the split sequence to eliminate the nonspecific binding of the split sequence pair, we developed a split-aptamer-based cytometric bead assay (SACBA) for the detection of soluble l-selectin. SACBA showed good sensitivity and selectivity to l-selectin and was successfully applied for the detection of spiked l-selectin in the human serum. The strategies for generating split aptamers and designing the split-aptamer-based sandwich assay are simple and efficient and show good practicability in aptamer engineering.

  3. Development of an Antigen-DNAzyme Based Probe for a Direct Antibody-Antigen Assay Using the Intrinsic DNAzyme Activity of a Daunomycin Aptamer

    Directory of Open Access Journals (Sweden)

    Noorsharmimi Omar

    2013-12-01

    Full Text Available G-Quadruplex (G-4 structures are formed when G-rich DNA sequences fold into intra- or intermolecular four-stranded structures in the presence of metal ions. G-4-hemin complexes are often effective peroxidase-mimicking DNAzymes that are applied in many detection systems. This work reports the application of a G-rich daunomycin-specific aptamer for the development of an antibody-antigen detection assay. We investigated the ability of the daunomycin aptamer to efficiently catalyze the hemin-dependent peroxidase activity independent of daunomycin. A reporter probe consisting of biotinylated antigen and daunomycin aptamer coupled to streptavidin gold nanoparticles was successfully used to generate a colorimetric readout. In conclusion, the daunomycin aptamer can function as a robust alternative DNAzyme for the development of colorimetric assays.

  4. High-resolution single-molecule recognition imaging of the molecular details of ricin-aptamer interaction

    Science.gov (United States)

    The molecular details of DNA aptamer-ricin interactions were investigated. The toxic protein ricin molecules were immobilized on Au(111) surface using N-hydroxysuccinimide (NHS) ester to specifically react with lysine residues located on the ricin B chains. A single ricin molecule was visualized in ...

  5. An RNA Aptamer Targets the PDZ-Binding Motif of the HPV16 E6 Oncoprotein

    Directory of Open Access Journals (Sweden)

    Tamara A. Belyaeva

    2014-07-01

    Full Text Available Human papillomavirus 16 (HPV16 is a high-risk DNA tumour virus which is the primary causative agent of cervical cancer. Cell transformation arises from deregulated expression of the E6 and E7 oncogenes. E6 has been shown to bind a number of cellular proteins, including p53 and proteins containing a PDZ domain. This study reports the first RNA aptamers to E6. These have been employed as molecular tools to further investigate E6-p53 and E6-PDZ interactions. This study is focussed on two aptamers (termed F2 and F4 which induced apoptosis in cells derived from an HPV16-transformed cervical carcinoma. The molecules were able to inhibit the interaction between E6 and PDZ1 from Magi1, with F2 being the most effective inhibitor. Neither of the aptamers inhibited E6-p53 interaction or p53 degradation. This study shows the specificity of this approach and highlights the potential benefits of the E6 aptamers as potential therapeutic or diagnostic agents in the future.

  6. Aptamer/Polydopamine Nanospheres Nanocomplex for in Situ Molecular Sensing in Living Cells.

    Science.gov (United States)

    Qiang, Weibing; Hu, Hongting; Sun, Liang; Li, Hui; Xu, Danke

    2015-12-15

    A nanocomplex was developed for molecular sensing in living cells, based on the fluorophore-labeled aptamer and the polydopamine nanospheres (PDANS). Due to the interaction between ssDNA and PDANS, the aptamer was adsorbed onto the surface of PDANS forming the aptamer/PDANS nanocomplex, and the fluorescence was quenched by PDANS through Förster resonance energy transfer (FRET). In vitro assay, the introduction of adenosine triphosphate (ATP) led to the dissociation of the aptamer from the PDANS and the recovery of the fluorescence. The retained fluorescence of the nanocomplex was found to be linear with the concentration of ATP in the range of 0.01-2 mM, and the nanocomplex was highly selective toward ATP. For the strong protecting capability to nucleic acids from enzymatic cleavage and the excellent biocompatibility of PDANS, the nanocomplex was transported into cells and successfully realized "signal on" sensing of ATP in living cells; moreover, the nanocomplex could be employed for ATP semiquantification. This design provides a strategy to develop biosensors based on the polydopamine nanomaterials for intracellular molecules analysis. For the advantages of polydopamine, it would be an excellent candidate for many biological applications, such as gene and drug delivery, intracellular imaging, and in vivo monitoring.

  7. An RNA Aptamer Targets the PDZ-Binding Motif of the HPV16 E6 Oncoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Belyaeva, Tamara A.; Nicol, Clare; Cesur, Özlem [School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom); Travé, Gilles [UMR 7242 CNRS-Université de Strasbourg, Ecole Supérieure de Biotechnologie, Boulevard Sébastien Brant, Illkirch 67412 (France); Blair, George Eric; Stonehouse, Nicola J., E-mail: n.j.stonehouse@leeds.ac.uk [School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2014-07-24

    Human papillomavirus 16 (HPV16) is a high-risk DNA tumour virus which is the primary causative agent of cervical cancer. Cell transformation arises from deregulated expression of the E6 and E7 oncogenes. E6 has been shown to bind a number of cellular proteins, including p53 and proteins containing a PDZ domain. This study reports the first RNA aptamers to E6. These have been employed as molecular tools to further investigate E6-p53 and E6-PDZ interactions. This study is focussed on two aptamers (termed F2 and F4) which induced apoptosis in cells derived from an HPV16-transformed cervical carcinoma. The molecules were able to inhibit the interaction between E6 and PDZ1 from Magi1, with F2 being the most effective inhibitor. Neither of the aptamers inhibited E6-p53 interaction or p53 degradation. This study shows the specificity of this approach and highlights the potential benefits of the E6 aptamers as potential therapeutic or diagnostic agents in the future.

  8. Aptamer-functionalized nano-biosensors.

    Science.gov (United States)

    Chiu, Tai-Chia; Huang, Chih-Ching

    2009-01-01

    Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs), metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs). We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  9. Aptamer-Functionalized Nano-Biosensors

    Directory of Open Access Journals (Sweden)

    Tai-Chia Chiu

    2009-12-01

    Full Text Available Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs, metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs. We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  10. Aptamer-Mediated Codelivery of Doxorubicin and NF-κB Decoy Enhances Chemosensitivity of Pancreatic Tumor Cells

    Directory of Open Access Journals (Sweden)

    David Porciani

    2015-01-01

    Full Text Available Aptamers able to bind efficiently cell-surface receptors differentially expressed in tumor and in healthy cells are emerging as powerful tools to perform targeted anticancer therapy. Here, we present a novel oligonucleotide chimera, composed by an RNA aptamer and a DNA decoy. Our assembly is able to (i target tumor cells via an antitransferrin receptor RNA aptamer and (ii perform selective codelivery of a chemotherapeutic drug (Doxorubicin and of an inhibitor of a cell-survival factor, the nuclear factor κB decoy oligonucleotide. Both payloads are released under conditions found in endolysosomal compartments (low pH and reductive environment. Targeting and cytotoxicity of the oligonucleotidic chimera were assessed by confocal microscopy, cell viability, and Western blot analysis. These data indicated that the nuclear factor κB decoy does inhibit nuclear factor κB activity and ultimately leads to an increased therapeutic efficacy of Doxorubicin selectively in tumor cells.

  11. Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor

    Science.gov (United States)

    Gu, Huajie; Duan, Nuo; Wu, Shijia; Hao, Liling; Xia, Yu; Ma, Xiaoyuan; Wang, Zhouping

    2016-02-01

    Okadaic acid (OA) is a low-molecular-weight marine toxin from shellfish that causes abdominal pain, vomiting and diarrhea, i.e., diarrheic shellfish poisoning. In this study, a ssDNA aptamer that specifically binds to OA with high affinity was obtained via Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assisted by graphene oxide (GO). This aptamer was then applied to fabricate a novel direct competitive enzyme-linked aptamer assay (ELAA). At the optimized conditions, this ELAA method showed a low detection limit (LOD of 0.01 ng/mL), wide linear range (from 0.025 to 10 ng/mL), good recovery rate (92.86-103.34% in OA-spiked clam samples) and repeatability (RSD of 2.28-4.53%). The proposed method can be used to detect OA in seafood products with high sensitivity and can potentially be adapted for the determination of other small molecular analytes.

  12. Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor.

    Science.gov (United States)

    Gu, Huajie; Duan, Nuo; Wu, Shijia; Hao, Liling; Xia, Yu; Ma, Xiaoyuan; Wang, Zhouping

    2016-02-22

    Okadaic acid (OA) is a low-molecular-weight marine toxin from shellfish that causes abdominal pain, vomiting and diarrhea, i.e., diarrheic shellfish poisoning. In this study, a ssDNA aptamer that specifically binds to OA with high affinity was obtained via Systematic Evolution of Ligands by Exponential Enrichment (SELEX) assisted by graphene oxide (GO). This aptamer was then applied to fabricate a novel direct competitive enzyme-linked aptamer assay (ELAA). At the optimized conditions, this ELAA method showed a low detection limit (LOD of 0.01 ng/mL), wide linear range (from 0.025 to 10 ng/mL), good recovery rate (92.86-103.34% in OA-spiked clam samples) and repeatability (RSD of 2.28-4.53%). The proposed method can be used to detect OA in seafood products with high sensitivity and can potentially be adapted for the determination of other small molecular analytes.

  13. Function and dynamics of aptamers: A case study on the malachite green aptamer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianjiao [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Aptamers are short single-stranded nucleic acids that can bind to their targets with high specificity and high affinity. To study aptamer function and dynamics, the malachite green aptamer was chosen as a model. Malachite green (MG) bleaching, in which an OH- attacks the central carbon (C1) of MG, was inhibited in the presence of the malachite green aptamer (MGA). The inhibition of MG bleaching by MGA could be reversed by an antisense oligonucleotide (AS) complementary to the MGA binding pocket. Computational cavity analysis of the NMR structure of the MGA-MG complex predicted that the OH- is sterically excluded from the C1 of MG. The prediction was confirmed experimentally using variants of the MGA with changes in the MG binding pocket. This work shows that molecular reactivity can be reversibly regulated by an aptamer-AS pair based on steric hindrance. In addition to demonstrate that aptamers could control molecular reactivity, aptamer dynamics was studied with a strategy combining molecular dynamics (MD) simulation and experimental verification. MD simulation predicted that the MG binding pocket of the MGA is largely pre-organized and that binding of MG involves reorganization of the pocket and a simultaneous twisting of the MGA terminal stems around the pocket. MD simulation also provided a 3D-structure model of unoccupied MGA that has not yet been obtained by biophysical measurements. These predictions were consistent with biochemical and biophysical measurements of the MGA-MG interaction including RNase I footprinting, melting curves, thermodynamic and kinetic constants measurement. This work shows that MD simulation can be used to extend our understanding of the dynamics of aptamer-target interaction which is not evident from static 3D-structures. To conclude, I have developed a novel concept to control molecular reactivity by an aptamer based on steric protection and a strategy to study the dynamics of aptamer-target interaction by combining MD

  14. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation.

    Science.gov (United States)

    Lao, Yeh-Hsing; Phua, Kyle K L; Leong, Kam W

    2015-03-24

    Aptamer nanomedicine, including therapeutic aptamers and aptamer nanocomplexes, is beginning to fulfill its potential in both clinical trials and preclinical studies. Especially in oncology, aptamer nanomedicine may perform better than conventional or antibody-based chemotherapeutics due to specificity compared to the former and stability compared to the latter. Many proof-of-concept studies on applying aptamers to drug delivery, gene therapy, and cancer imaging have shown promising efficacy and impressive safety in vivo toward translation. Yet, there remains ample room for improvement and critical barriers to be addressed. In this review, we will first introduce the recent progress in clinical trials of aptamer nanomedicine, followed by a discussion of the barriers at the design and in vivo application stages. We will then highlight recent advances and engineering strategies proposed to tackle these barriers. Aptamer cancer nanomedicine has the potential to address one of the most important healthcare issues of the society.

  15. Recent progresses in biomedical applications of aptamer-functionalized systems.

    Science.gov (United States)

    Ding, Fei; Gao, Yangguang; He, Xianran

    2017-09-15

    Aptamers, known as "chemical antibodies" are screened via a combinational technology of systematic evolution of ligands by exponential enrichment (SELEX). Due to their specific targeting ability, high binding affinity, low immunogenicity and easy modification, aptamer-functionalized systems have been extensively applied in various fields and exhibit favorable results. However, there is still a long way for them to be commercialized, and few aptamer-functionalized systems have yet successfully entered clinical and industrial use. Thus, it is necessary to overview the recent research progresses of aptamer-functionalized systems for the researchers to improve or design novel and better aptamer-functionalized systems. In this review, we first introduce the recent progresses of aptamer-functionalized systems' applications in biosensing, targeted drug delivery, gene therapy and cancer cell imaging, followed by a discussion of the challenges faced with extensive applications of aptamer-functionalized systems and speculation of the future prospects of them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Customised nucleic acid libraries for enhanced aptamer selection and performance.

    Science.gov (United States)

    Pfeiffer, Franziska; Rosenthal, Malte; Siegl, Julia; Ewers, Jörg; Mayer, Günter

    2017-12-01

    Aptamers are short single-stranded oligo(deoxy)nucleotides that are selected to bind to target molecules with high affinity and specificity. Because of their sophisticated characteristics and versatile applicability, aptamers are thought to become universal molecular probes in biotechnological and therapeutic applications. However, the variety of possible interactions with a putative target molecule is limited by the chemical repertoire of the natural nucleobases. Consequently, many desired targets are not addressable by aptamers. This obstacle is overcome by broadening the chemical diversity of aptamers, mainly achieved by nucleobase-modifications and the introduction of novel bases or base pairs. We discuss these achievements and the characteristics of the respective modified aptamers, reflected by SOMAmers (slow off-rate modified aptamers), clickmers, and aptamers bearing an expanded genetic alphabet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Aptamers for CD Antigens: From Cell Profiling to Activity Modulation

    Directory of Open Access Journals (Sweden)

    Amin Nozari

    2017-03-01

    Full Text Available Nucleic acid-based aptamers are considered to be a promising alternative to antibodies because of their strong and specific binding to diverse targets, fast and inexpensive chemical synthesis, and easy labeling with a fluorescent dye or therapeutic agent. Cluster of differentiation (CD proteins are among the most popular antigens for aptamers on the cell surface. These anti-CD aptamers could be used in cell biology and biomedicine, from simple cell phenotyping by flow cytometry or fluorescent microscopy to diagnosis and treatment of HIV/AIDS to cancer and immune therapies. The unique feature of aptamers is that they can act simultaneously as an agonist and antagonist of CD receptors depending on a degree of aptamer oligomerization. Aptamers can also deliver small interfering RNA to silence vital genes in CD-positive cells. In this review, we summarize nucleic acid sequences of anti-CD aptamers and their use, which have been validated in multiple studies.

  18. Aptamer Based Microsphere Biosensor for Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Xudong Fan

    2006-08-01

    Full Text Available We have developed an optical microsphere resonator biosensor using aptamer asreceptor for the measurement of the important biomolecule thrombin. The sphere surface ismodified with anti-thrombin aptamer, which has excellent binding affinity and selectivityfor thrombin. Binding of the thrombin at the sphere surface is monitored by the spectralposition of the microsphere’s whispering gallery mode resonances. A detection limit on theorder of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptameroligonucleotide and BSA are also carried out to confirm the specific binding betweenaptamer and thrombin. We expect that this demonstration will lead to the development ofhighly sensitive biomarker sensors based on aptamer with lower cost and higher throughputthan current technology.

  19. Nucleic Acid Aptamers for Living Cell Analysis

    Science.gov (United States)

    Xiong, Xiangling; Lv, Yifan; Chen, Tao; Zhang, Xiaobing; Wang, Kemin; Tan, Weihong

    2014-06-01

    Cells as the building blocks of life determine the basic functions and properties of a living organism. Understanding the structure and components of a cell aids in the elucidation of its biological functions. Moreover, knowledge of the similarities and differences between diseased and healthy cells is essential to understanding pathological mechanisms, identifying diagnostic markers, and designing therapeutic molecules. However, monitoring the structures and activities of a living cell remains a challenging task in bioanalytical and life science research. To meet the requirements of this task, aptamers, as “chemical antibodies,” have become increasingly powerful tools for cellular analysis. This article reviews recent advances in the development of nucleic acid aptamers in the areas of cell membrane analysis, cell detection and isolation, real-time monitoring of cell secretion, and intracellular delivery and analysis with living cell models. Limitations of aptamers and possible solutions are also discussed.

  20. Generation of aptamer for biosensing applications

    Science.gov (United States)

    Gopinath, Subash C. B.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.

    2016-07-01

    Systematic evolution of ligands by exponential enrichment (SELEX), an in vitro strategy which involves generation of aptamer. Aptamer is an artificial antibody, behave very similar to antibody and several instances reported to be better than antibodies. In this study, an attempt has been made to generate aptamer against factor IX, a potential candidate involve in human blood coagulation cascade. Totally, 10 selection cycles have been performed and molecules from 10th cycle have shown higher binding affinity with factor IX as 56 and 68% against the factor IX concentrations of 100 and 200 nM, respectively. With these higher binding affinities, it is clear that these molecules have higher potential for sensing applications.

  1. Aptamer strategy for ATP detection on nanocrystalline diamond functionalized by a nitrogen and hydrogen radical beam system

    Science.gov (United States)

    Suaebah, E.; Seshimo, Y.; Shibata, M.; Kono, S.; Hasegawa, M.; Kawarada, H.

    2017-01-01

    Here, we report a novel method for micropatterning oligonucleotides on the diamond surface via forming amine groups on the diamond surface by nitrogen/hydrogen radical treatment. The covalent bonding of the supporting oligonucleotide and characterization of an immobilized hybridized oligonucleotide with Cy5 modification were investigated by fluorescence microscopy. To investigate the effectiveness of nitrogen/hydrogen radical treatment for amine termination, two types of radical treatment were used: hydrogen/nitrogen radical treatment and pure nitrogen radical treatment. From the results, hydrogen/nitrogen radical treatment produces amine (NH2) termination on the diamond surface. The effect of amine termination was investigated by immobilization of single-stranded DNA via amide bonding between surface NH2 groups and COOH groups terminating the DNA. The immobilized single-stranded DNA (supporting DNA), which has a complementary relationship with the adenosine triphosphate (ATP) aptamer (DNA), hybridizes with the aptamer with attached fluorescence dye. When ATP molecules approach the double-stranded DNA, the aptamer forms a close relationship with the supporting DNA and combines with ATP. ATP detection was effectively carried out by reduction of fluorescence.

  2. Development of aptamers against unpurified proteins.

    Science.gov (United States)

    Goto, Shinichi; Tsukakoshi, Kaori; Ikebukuro, Kazunori

    2017-12-01

    SELEX (Systematic Evolution of Ligands by EXponential enrichment) has been widely used for the generation of aptamers against target proteins. However, its requirement for pure target proteins remains a major problem in aptamer selection, as procedures for protein purification from crude bio-samples are not only complicated but also time and labor consuming. This is because native proteins can be found in a large number of diverse forms because of posttranslational modifications and their complicated molecular conformations. Moreover, several proteins are difficult to purify owing to their chemical fragility and/or rarity in native samples. An alternative route is the use of recombinant proteins for aptamer selection, because they are homogenous and easily purified. However, aptamers generated against recombinant proteins produced in prokaryotic cells may not interact with the same proteins expressed in eukaryotic cells because of posttranslational modifications. Moreover, to date recombinant proteins have been constructed for only a fraction of proteins expressed in the human body. Therefore, the demand for advanced SELEX methods not relying on complicated purification processes from native samples or recombinant proteins is growing. This review article describes several such techniques that allow researchers to directly develop an aptamer from various unpurified samples, such as whole cells, tissues, serum, and cell lysates. The key advantages of advanced SELEX are that it does not require a purification process from a crude bio-sample, maintains the functional states of target proteins, and facilitates the development of aptamers against unidentified and uncharacterized proteins in unpurified biological samples. © 2017 Wiley Periodicals, Inc.

  3. Use of Capillary Electrophoresis to Study the Binding Interaction of Aptamers with Wild-Type, K103N, and Double Mutant (K103N/Y181C) HIV-1 RT : Studying the Binding Interaction of Wild-Type, K103N, and Double Mutant (K103N/Y181C) HIV-1 RT with Aptamers by Performing the Capillary Electrophoresis.

    Science.gov (United States)

    Aeksiri, Niran; Warakulwit, Chompunuch; Hannongbua, Supa; Unajak, Sasimanas; Choowongkomon, Kiattawee

    2017-06-01

    A number of nucleic acid aptamers with high affinities to human immunodeficiency virus reverse transcriptase (HIV-1 RT) are currently known. They can potentially be developed as broad-spectrum antiviral drugs, but there is little known about their binding interaction with mutant HIV-1 RT. Therefore, we utilized non-equilibrium capillary electrophoresis of equilibrium mixture (NECEEM) to study the interaction of three HIV-1 RTs (wild type, K103N, and double mutant (K103N/Y181C)) with RT1t49 and RT12 aptamers. This approach was used to study and evaluate the K d values of these molecules. The results showed that the K d values of the tested aptamers were lower than that of the DNA substrate. The results also pointed out that RT1t49 could bind with all HIV-1 RTs and compete with the DNA substrate at the active site. Moreover, we studied the binding stoichiometry of HIV-1 RT using aptamers as probes. The findings showed evidence of two binding stoichiometries with HIV-1 RT and the RT12 aptamer but only one binding stoichiometry for RT1t49. In addition, RT1t49 could bind specifically with the wild-type, K103N, and double mutants in Escherichia coli lysate. This result also indicated that the aptamer could detect HIV-1 RT in the presence of E. coli lysate.

  4. Switch-on fluorescence scheme for antibiotics based on a magnetic composite probe with aptamer and hemin/G-quadruplex coimmobilized nano-Pt-luminol as signal tracer.

    Science.gov (United States)

    Miao, Yang-Bao; Gan, Ning; Ren, Hong-Xia; Li, Tianhua; Cao, Yuting; Hu, Futao; Chen, Yinji

    2016-01-15

    A selective and facile fluorescence "switch-on" scheme is developed to detect antibiotics residues in food, using chloramphenicol (CAP) as model, based on a novel magnetic aptamer probe (aptamer-Pt-luminol nanocomposite labeled with hemin/G-quadruplex). Firstly, the composite probe is prepared through the immuno-reactions between the capture beads (anti-dsDNA antibody labeled on magnetic Dynabeads) and the nanotracer (nano-Pt-luminol labeled with double-strand aptamer, as ds-Apt, and hemin/G-quadruplex). When the composite probe is mixed with CAP, the aptamer preferentially reacted with CAP to decompose the double-strand aptamer to ssDNA, which cannot be recognized by the anti-dsDNA antibody on the capture probes. Thus, after magnetic separation, the nanotracer can be released into the supernatant. Because the hemin/G-quadruplex and PtNPs in nanotracer can catalyze luminol-H2O2 system to emit fluorescence. Thus a dual-amplified "switch-on" signal appeared, of which intensity is proportional to the concentration of CAP between 0.001 and 100ng mL(-1) with detection limit of 0.0005ng mL(-1) (S/N=3). Besides, our method has good selectivity and was employed for CAP detection in real milk samples. The results agree well with those from conventional gas chromatograph-mass spectrometer (GC-MS). The switch-on signal is produced by one-step substitution reaction between aptamer in nanotracer and target. When the analyte is changed, the probe can be refabricated only by changing the corresponding aptamer. Thus, all features above prove our strategy to be a facile, feasible and selective method in antibiotics screening for food safety. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Dynamic Control of Aptamer-Ligand Activity Using Strand Displacement Reactions.

    Science.gov (United States)

    Lloyd, Jonathan; Tran, Claire H; Wadhwani, Krishen; Cuba Samaniego, Christian; Subramanian, Hari K K; Franco, Elisa

    2018-01-19

    Nucleic acid aptamers are an expandable toolkit of sensors and regulators. To employ aptamer regulators within nonequilibrium molecular networks, the aptamer-ligand interactions should be tunable over time, so that functions within a given system can be activated or suppressed on demand. This is accomplished through complementary sequences to aptamers, which achieve programmable aptamer-ligand dissociation by displacing the aptamer from the ligand. We demonstrate the effectiveness of our simple approach on light-up aptamers as well as on aptamers inhibiting viral RNA polymerases, dynamically controlling the functionality of the aptamer-ligand complex. Mathematical models allow us to obtain estimates for the aptamer displacement kinetics. Our results suggest that aptamers, paired with their complement, could be used to build dynamic nucleic acid networks with direct control over a variety of aptamer-controllable enzymes and their downstream pathways.

  6. Colorimetric detection with aptamer-gold nanoparticle conjugates: effect of aptamer length on response

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Jorge L. [Wright-Patterson Air Force Base, 711th Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory (United States); MacCuspie, Robert I. [National Institute of Standards and Technology, Ceramics Division (United States); Stone, Morley O.; Kelley-Loughnane, Nancy, E-mail: Nancy.Kelley-Loughnane@wpafb.af.mil [Wright-Patterson Air Force Base, 711th Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory (United States)

    2012-10-15

    A riboflavin binding aptamer (RBA) was used in combination with gold nanoparticles (AuNPs) to detect riboflavin in vitro. The RBA-AuNP conjugates (RBA-AuNPs) responded colorimetrically to the presence of riboflavin and this response could be followed by the naked eye. This system was used as a model to study how modifications on the aptamer sequence affect the RBA-AuNPs' stability and their response to their target. To mimic primers and other sequence modifications typically used in aptamer work, the RBA was extended by adding extra bases to its 5 Prime end. These extra bases were designed to avoid interactions with the RBA binding site. The response of these RBA-AuNPs was evaluated and compared. Dynamic light scattering and UV-aggregation kinetics studies showed that the length of the aptamer significantly affected the RBA-AuNPs' stability and, as a consequence, the magnitude of the detection response to riboflavin. The addition of thymine nucleotides instead of random tails to the RBA showed that the effects observed were not specific to the sequence used. This study shows that modifications of the aptamer sequence provide a means to improve the stability of aptamer-AuNPs conjugates and their sensing response.

  7. Nanopore force spectroscopy of aptamer-ligand complexes.

    Science.gov (United States)

    Arnaut, Vera; Langecker, Martin; Simmel, Friedrich C

    2013-09-03

    The stability of aptamer-ligand complexes is probed in nanopore-based dynamic force spectroscopy experiments. Specifically, the ATP-binding aptamer is investigated using a backward translocation technique, in which the molecules are initially pulled through an α-hemolysin nanopore from the cis to the trans side of a lipid bilayer membrane, allowed to refold and interact with their target, and then translocated back in the trans-cis direction. From these experiments, the distribution of bound and unbound complexes is determined, which in turn allows determination of the dissociation constant Kd ≈ 0.1 mM of the aptamer and of voltage-dependent unfolding rates. The experiments also reveal differences in binding of the aptamer to AMP, ADP, or ATP ligands. Investigation of an aptamer variant with a stabilized ATP-binding site indicates fast conformational switching of the original aptamer before ATP binding. Nanopore force spectroscopy is also used to study binding of the thrombin-binding aptamer to its target. To detect aptamer-target interactions in this case, the stability of the ligand-free aptamer-containing G-quadruplexes-is tuned via the potassium content of the buffer. Although the presence of thrombin was detected, limitations of the method for aptamers with strong secondary structures and complexes with nanomolar Kd were identified. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Rapid Complexation of Aptamers by Their Specific Antidotes

    Directory of Open Access Journals (Sweden)

    Heidi Stoll

    2017-06-01

    Full Text Available Nucleic acid ligands, aptamers, harbor the unique characteristics of small molecules and antibodies. The specificity and high affinity of aptamers enable their binding to different targets, such as small molecules, proteins, or cells. Chemical modifications of aptamers allow increased bioavailability. A further great benefit of aptamers is the antidote (AD-mediated controllability of their effect. In this study, the AD-mediated complexation and neutralization of the thrombin binding aptamer NU172 and Toll-like receptor 9 (TLR9 binding R10-60 aptamer were determined. Thereby, the required time for the generation of aptamer/AD-complexes was analyzed at 37 °C in human serum using gel electrophoresis. Afterwards, the blocking of aptamers’ effects was analyzed by determining the activated clotting time (ACT in the case of the NU172 aptamer, or the expression of immune activation related genes IFN-1β, IL-6, CXCL-10, and IL-1β in the case of the R10-60 aptamer. Gel electrophoresis analyses demonstrated the rapid complexation of the NU172 and R10-60 aptamers by complementary AD binding after just 2 min of incubation in human serum. A rapid neutralization of anticoagulant activity of NU172 was also demonstrated in fresh human whole blood 5 min after addition of AD. Furthermore, the TLR9-mediated activation of PMDC05 cells was interrupted after the addition of the R10-60 AD. Using these two different aptamers, the rapid antagonizability of the aptamers was demonstrated in different environments; whole blood containing numerous proteins, cells, and different small molecules, serum, or cell culture media. Thus, nucleic acid ADs are promising molecules, which offer several possibilities for different in vivo applications, such as antagonizing aptamer-based drugs, immobilization, or delivery of oligonucleotides to defined locations.

  9. Array-Based Discovery of Aptamer Pairs

    Science.gov (United States)

    2014-12-11

    aptamer pairs that bind to human angiopoeitin-2 (Ang2), an important protein mediator of angiogenesis for colon , prostate and breast cancers.22,23 To...Sullenger, B. A. RNA 2009, 15, 2105−2111. (28) Zhou, G.; Huang, X.; Qu, Y. Biochem. Eng. J. 2010, 52, 117−122. (29) Drolet, D. W.; Moon -McDermott, L

  10. Aptamer/Protein Proximity Binding-Triggered Molecular Machine for Amplified Electrochemical Sensing of Thrombin.

    Science.gov (United States)

    Yang, Jianmei; Dou, Baoting; Yuan, Ruo; Xiang, Yun

    2017-05-02

    The development of convenient and sensitive methods without involving any enzymes or complex nanomaterials for the monitoring of proteins is of great significance in disease diagnostics. In this work, we describe the validation of a new aptamer/protein proximity binding-triggered molecular machinery amplification strategy for sensitive electrochemical assay of thrombin in complex serum samples. The sensing interface is prepared by self-assembly of three-stranded DNA complexes on the gold electrode. The association of two distinct functional aptamers with different sites of thrombin triggers proximity binding-induced displacement of one of the short single-stranded DNAs (ssDNAs) from the surface-immobilized three-stranded DNA complexes, exposing a prelocked toehold domain to hybridize with a methylene blue (MB)-tagged fuel ssDNA strand (MB-DNA). Subsequent toehold-mediated strand displacement by the MB-DNA leads to the release and recycling of the aptamer/protein complexes and the function of the molecular machine. Eventually, a large number of MB-DNA strands are captured by the sensor surface, generating drastically amplified electrochemical responses from the MB tags for sensitive detection of thrombin. Our signal amplified sensor is completely enzyme-free and shows a dynamic range from 5 pM to 1 nM with a detection limit of 1.7 pM. Such sensor also has a high specificity for thrombin assay in serum samples. By changing the affinity probe pairs, the developed sensor can be readily expanded as a more general platform for sensitive detection of different types of proteins.

  11. Elucidation of the effect of aptamer immobilization strategies on the interaction between cell and its aptamer using atomic force spectroscopy.

    Science.gov (United States)

    Wang, Qing; Luo, Bianxia; Yang, Xiaohai; Wang, Kemin; Liu, Lin; Du, Shasha; Li, Zhiping

    2016-04-01

    The immobilization strategy of cell-specific aptamers is of great importance for studying the interaction between a cell and its aptamer. However, because of the difficulty of studying living cell, there have not been any systematic reports about the effect of immobilization strategies on the binding ability of an immobilized aptamer to its target cell. Because atomic force spectroscopy (AFM) could not only be suitable for the investigation of living cell under physiological conditions but also obtains information reflecting the intrinsic properties of individuals, the effect of immobilization strategies on the interaction of aptamer/human hepatocarcinoma cell Bel-7404 was successively evaluated using AFM here. Two different immobilization methods, including polyethylene glycol immobilization method and glutaraldehyde immobilization method were used, and the factors, such as aptamer orientation, oligodeoxythymidine spacers and dodecyl spacers, were investigated. Binding events measured by AFM showed that a similar unbinding force was obtained regardless of the change of the aptamer orientation, the immobilization method, and spacers, implying that the biophysical characteristics of the aptamer at the molecular level remain undisturbed. However, it showed that the immobilization orientation, immobilization method, and spacers could alter the binding probability of aptamer/Bel-7404 cell. Presumably, these factors may affect the accessibility of the aptamer toward its target cell. These results may provide valuable information for aptamer sensor platforms including ultrasensitive biosensor design. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Aptamer-siRNA Chimeras: Discovery, Progress, and Future Prospects

    Science.gov (United States)

    Kruspe, Sven; Giangrande, Paloma H.

    2017-01-01

    Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery tools for many therapeutic oligonucleotide-based drugs, including small interfering RNAs (siRNAs). In this review, we summarize recent progress in the aptamer selection technology that has made possible the identification of cell-specific, cell-internalizing aptamers for the cell-targeted delivery of therapeutic oligonucleotides. In addition, we review the original, proof-of-concept aptamer-siRNA delivery studies and discuss recent advances in aptamer-siRNA conjugate designs for applications ranging from cancer therapy to the development of targeted antivirals. Challenges and prospects of aptamer-targeted siRNA drugs for clinical development are further highlighted. PMID:28792479

  13. SDA and IDA - Two aptamers to inhibit cancer cell adhesion.

    Science.gov (United States)

    Hahn, Ulrich

    2017-11-02

    Aptamers which bind to proteins involved in cell-cell interactions could have significant value to directly affect cancer cell adhesion or for directed cargo delivery. Here, I discuss two aptamers: aptamer SDA which binds to E- and P-selectin, and aptamer IDA which binds to α6β4 integrin. Both aptamers (SDA 91 nt and IDA 77 nt) bind their target proteins with dissociation constants in the 100-150 nM range and substantially inhibit special cellular adhesion, possibly a first and pivotal step in transendothelial migration during metastasis formation. The aptamers' half-lives in cell culture media are between two and six hours. IDA is internalized by integrin presenting cells within minutes thus possibly serving as vehicle for directed cargo delivery. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  14. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    Science.gov (United States)

    Ruscito, Annamaria; DeRosa, Maria

    2016-05-01

    Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then applied in aptamer-based biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is ultimately needed for the protection and wellbeing of humans and animals. However, issues such as the drastic difference in size of the aptamer and small molecule make it challenging to select, characterize, and apply aptamers for the detection of small molecules. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed

  15. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    Directory of Open Access Journals (Sweden)

    Annamaria eRuscito

    2016-05-01

    Full Text Available Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then applied in aptamer-based biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is ultimately needed for the protection and wellbeing of humans and animals. However, issues such as the drastic difference in size of the aptamer and small molecule make it challenging to select, characterize, and apply aptamers for the detection of small molecules. Thus, recent (since 2012 notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed

  16. Current Progress of RNA Aptamer-Based Therapeutics

    Science.gov (United States)

    Zhou, Jiehua; Bobbin, Maggie L.; Burnett, John C.; Rossi, John J.

    2012-01-01

    Aptamers are single-stranded nucleic acids that specifically recognize and bind tightly to their cognate targets due to their stable three-dimensional structure. Nucleic acid aptamers have been developed for various applications, including diagnostics, molecular imaging, biomarker discovery, target validation, therapeutics, and drug delivery. Due to their high specificity and binding affinity, aptamers directly block or interrupt the functions of target proteins making them promising therapeutic agents for the treatment of human maladies. Additionally, aptamers that bind to cell surface proteins are well suited for the targeted delivery of other therapeutics, such as conjugated small interfering RNAs (siRNA) that induce RNA interference (RNAi). Thus, aptamer-siRNA chimeras may offer dual-functions, in which the aptamer inhibits a receptor function, while the siRNA internalizes into the cell to target a specific mRNA. This review focuses on the current progress and therapeutic potential of RNA aptamers, including the use of cell-internalizing aptamers as cell-type specific delivery vehicles for targeted RNAi. In particular, we discuss emerging aptamer-based therapeutics that provide unique clinical opportunities for the treatment various cancers and neurological diseases. PMID:23130020

  17. A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [College of Food Science and Engineering, Ocean University of China, Qingdao 266003 (China); Zhao, Shiming [Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Mao, Yiping [Yueyang Institute for Food and Drug Control, Yueyang 430198 (China); Fang, Zhiyuan [Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou 510095 (China); Lu, Xuewen [Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Zeng, Lingwen, E-mail: zeng6@yahoo.com [Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China)

    2015-02-25

    Highlights: • Limit of detection as low as 10 CFU mL{sup −1}Escherichia coli O157:H7. • No need of antibodies and substituted with aptamers. • Isothermal strand displacement amplification for signal amplification. • Results observed by the naked eye. • Great potential application in the area of food control. - Abstract: Foodborne diseases caused by pathogens are one of the major problems in food safety. Convenient and sensitive point-of-care rapid diagnostic tests for food-borne pathogens have been a long-felt need of clinicians. Commonly used methods for pathogen detection rely on conventional culture-based tests, antibody-based assays and polymerase chain reaction (PCR)-based techniques. These methods are costly, laborious and time-consuming. Herein, we present a simple and sensitive aptamer based biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7). In this assay, two different aptamers specific for the outmembrane of E. coli O157:H7 were used. One of the aptamers was used for magnetic bead enrichment, and the other was used as a signal reporter for this pathogen, which was amplified by isothermal strand displacement amplification (SDA) and further detected by a lateral flow biosensor. Only the captured aptamers on cell membrane were amplified, limitations of conventional DNA amplification based method such as false-positive can be largely reduced. The generated signals (red bands on the test zone of a lateral flow strip) can be unambiguously read out by the naked eye. As low as 10 colony forming units (CFU) of E. coli O157:H7 were detected in this study. Without DNA extraction, the reduced handling and simpler equipment requirement render this assay a simple and rapid alternative to conventional methods.

  18. Facile conversion of ATP-binding RNA aptamer to quencher-free molecular aptamer beacon.

    Science.gov (United States)

    Park, Yoojin; Nim-Anussornkul, Duangrat; Vilaivan, Tirayut; Morii, Takashi; Kim, Byeang Hyean

    2018-01-15

    We have developed RNA-based quencher-free molecular aptamer beacons (RNA-based QF-MABs) for the detection of ATP, taking advantage of the conformational changes associated with ATP binding to the ATP-binding RNA aptamer. The RNA aptamer, with its well-defined structure, was readily converted to the fluorescence sensors by incorporating a fluorophore into the loop region of the hairpin structure. These RNA-based QF-MABs exhibited fluorescence signals in the presence of ATP relative to their low background signals in the absence of ATP. The fluorescence emission intensity increased upon formation of a RNA-based QF-MAB·ATP complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Development of anti β glucan aptamers for use as radiopharmaceutical in the identification of fungal Infections

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Camila Maria de Sousa; Reis, Mariana Flister; Correa, Cristiane Rodrigues; Andrade, Antero S.R., E-mail: cmsl@cdtn.br, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEM-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Invasive fungal infections caused by Candida albicans, are recognized as a major cause of morbidity and mortality in immuno compromised individuals. Patients may not show obvious clinical signs or symptoms, making it difficult to detect its origin or new focus that developed through hematogenous spread. Nuclear medicine could contribute to an early diagnosis of fungal infections, since specific markers are available. The aim of this study was to develop, through SELEX technique (Systematic Evolution of Ligands by Exponential Enrichment), aptamers for beta glucan for subsequent labeling with {sup 99}mTc and evaluation of this radiopharmaceutical in the diagnosis of invasive fungal infections, scintigraphy. To obtain aptamers were performed 15 cycles of SELEX technique, using centrifugation as separation method of oligonuclotideos linked to the beta-glucan is not connected. The DNA bands were observed in all 15 cycles. The oligonucleotides obtained after cycles were cloned using the standard protocol kit-Topo TA vector (Invitrogen), and subjected to sequencing Megabase. Three aptamers for yeast cells were selected for this study. Further, other studies should be performed to assess the specificity and affinity thereof for later use in the diagnosis of fungal infections. (author)

  20. Replacing antibodies with aptamers in lateral flow immunoassay.

    Science.gov (United States)

    Chen, Ailiang; Yang, Shuming

    2015-09-15

    Aptamers have been identified against various targets as a type of chemical or nucleic acid ligand by systematic evolution of ligands by exponential enrichment (SELEX) with high sensitivity and specificity. Aptamers show remarkable advantages over antibodies due to the nucleic acid nature and target-induced structure-switching properties and are widely used to design various fluorescent, electrochemical, or colorimetric biosensors. However, the practical applications of aptamer-based sensing and diagnostics are still lagging behind those of antibody-based tests. Lateral flow immunoassay (LFIA) represents a well established and appropriate technology among rapid assays because of its low cost and user-friendliness. The antibody-based platform is utilized to detect numerous targets, but it is always hampered by the antibody preparation time, antibody stability, and effect of modification on the antibody. Seeking alternatives to antibodies is an area of active research and is of tremendous importance. Aptamers are receiving increasing attention in lateral flow applications because of a number of important potential performance advantages. We speculate that aptamer-based LFIA may be one of the first platforms for commercial use of aptamer-based diagnosis. This review first gives an introduction to aptamer including the selection process SELEX with its focus on aptamer advantages over antibodies, and then depicts LFIA with its focus on aptamer opportunities in LFIA over antibodies. Furthermore, we summarize the recent advances in the development of aptamer-based lateral flow biosensing assays with the aim to provide a general guide for the design of aptamer-based lateral flow biosensing assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Thermodynamic and biological evaluation of a thrombin binding aptamer modified with several unlocked nucleic acid (UNA) monomers and a 2′-C-piperazino-UNA monomer

    DEFF Research Database (Denmark)

    Jensen, Troels B.; Henriksen, Jonas Rosager; Rasmussen, Bjarne E.

    2011-01-01

    Thrombin binding aptamer is a DNA 15-mer which forms a G-quadruplex structure and possess promising anticoagulant properties due to specific interactions with thrombin. Herein we present the influence of a single 2′-C-piperazino-UNA residue and UNA residues incorporated in several positions on th...

  2. Solution-phase vs surface-phase aptamer-protein affinity from a label-free kinetic biosensor.

    Directory of Open Access Journals (Sweden)

    Camille Daniel

    Full Text Available Aptamers are selected DNA ligands that target biomolecules such as proteins. In recent years, they are showing an increasing interest as potential therapeutic agents or recognition elements in biosensor applications. In both cases, the need for characterizing the mating between the target and the aptamer either in solution or immobilized on a surface, is pressing. In this context, we have developed a kinetic biosensor made of micro-arrayed anti-thrombin aptamers to assess the kinetic parameters of this interaction. The binding of label-free thrombin on the biosensor was monitored in real-time by Surface Plasmon Resonance imaging. Remarkable performances were obtained for the quantification of thrombin without amplification (sub-nanomolar limit of detection and linear range of quantification to two orders of magnitude. The independent determinations of both the solution- and surface-phase affinities, respectively KD(Sol and KD(Surf, revealed distinct values illustrating the importance of probes, targets or surface interactions in biosensors. Interestingly, KD(Surf values depend on the aptamer grafting density and linearly extrapolate towards KD(Sol for highly diluted probes. This suggests a lesser impact of the surface compared to the probe or target cooperativity interactions since the latter decrease with a reduced grafting density.

  3. Metal-enhanced fluorescence-based core-shell Ag@SiO₂ nanoflares for affinity biosensing via target-induced structure switching of aptamer.

    Science.gov (United States)

    Lu, Lu; Qian, Yunxia; Wang, Lihui; Ma, Keke; Zhang, Yaodong

    2014-02-12

    One of the great challenges in metal-enhanced fluorescence (MEF) technology is the achievement of distance modulation with nanometer accuracy between the fluorophore and metal surface to obtain maximum enhancement. We propose an MEF-based core-shell Ag@SiO2 nanoflare for distance control via the thickness of silica shell with cooperation of DNA hybridization. The nanoflare contains a 50 nm spherical silver nanoparticle (Ag NP) core, a 8 nm silica shell, and cyanine (Cy5)-labeled aptamer hybridized with a complementary DNA (cDNA) immobilized onto the shell surface. The formation of the Cy5-labeled aptamer/cDNA duplex on the Ag@SiO2 NP surface results in the confinement of Cy5 to the shell surface and an increase in the fluorescence of Cy5 with a 32-fold enhancement factor in bulk solution (signal-on). In the presence of affinity-binding targets, the Cy5-labeled aptamers confined onto the Ag@SiO2 NP surface dissociate from their cDNA into the solution because of structure switching. The target-induced release of aptamer leads to a reduction in the enhanced fluorescence signal of the labeled Cy5 moiety (signal-off). Thus, the nanoflare can be used as a sensor for target recognition. Using adenosine-5'-triphosphate (ATP) aptamer, detection of ATP has a linear response from 0 to 0.5 mM and a detection limit of 8 μM. With various types of DNA probes immobilized onto the core-shell Ag@SiO2 NPs, the MEF-based nanoflare has provided an effective platform for the detection and quantification of a broad range of analytes, such as mRNA regulation and detection, cell sorting, and gene profiling.

  4. Development of aptamers for use as radiopharmaceuticals in the bacterial infection identification; Desenvolvimento de aptameros especificos para aplicacao como radiofarmacos na identificacao de bacterias

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ieda Mendes

    2013-08-01

    The difficulty in early detection of specific foci caused by bacteria in the bacterial infection has raised the need to search for new techniques for this purpose, since these foci require prolonged treatment with antibiotics and in some cases even drainage or, if applicable, removal of prostheses or grafts. Detection of bacterial infections by scintigraphy had the advantage that a whole body image could be obtained, since specific tracers were available. This study aims to obtain aptamers specific for bacteria identification for future use as radiopharmaceutical. The SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology can generate oligonucleotides (aptamers) that are able to bind with high affinity and specificity to a specific target, from small molecules to complex proteins, by using rounds of enrichment and amplification. Aptamers can be labeled with different radionucleotides such as {sup 99}mTc, {sup 18}F and {sup 32}P. In this study, aptamers anti-peptidoglycan, the main component of the bacterial outer cell wall, were obtained through SELEX. Whole cells of Staphylococcus aureus were also used to perform the SELEX to cells (cell-SELEX). The selection of aptamers was performed by two different procedures (A and B). The A process has been accomplished by 15 SELEX rounds in which the separation of the oligonucleotides bound to the peptidoglycan of unbound ones was performed by filtration. In the B process 15 SELEX rounds were performed using the centrifugation for this separation, followed by 5 rounds cell-SELEX. The SELEX started with a pool of ssDNA (single stranded DNA). For A process, initially a library of ssDNA was incubated with peptidoglycan and the amplification of oligonucleotides that were able to bind to peptidoglycan was performed by PCR (Polymerase Chain Reation). The amplified oligonucleotides were again incubated with peptidoglycan, amplified and purified. At the end of 15 selection rounds the selected oligonucleotides

  5. Rapid identification of cell-specific, internalizing RNA aptamers with bioinformatics analyses of a cell-based aptamer selection.

    Directory of Open Access Journals (Sweden)

    William H Thiel

    Full Text Available The broad applicability of RNA aptamers as cell-specific delivery tools for therapeutic reagents depends on the ability to identify aptamer sequences that selectively access the cytoplasm of distinct cell types. Towards this end, we have developed a novel approach that combines a cell-based selection method (cell-internalization SELEX with high-throughput sequencing (HTS and bioinformatics analyses to rapidly identify cell-specific, internalization-competent RNA aptamers.We demonstrate the utility of this approach by enriching for RNA aptamers capable of selective internalization into vascular smooth muscle cells (VSMCs. Several rounds of positive (VSMCs and negative (endothelial cells; ECs selection were performed to enrich for aptamer sequences that preferentially internalize into VSMCs. To identify candidate RNA aptamer sequences, HTS data from each round of selection were analyzed using bioinformatics methods: (1 metrics of selection enrichment; and (2 pairwise comparisons of sequence and structural similarity, termed edit and tree distance, respectively. Correlation analyses of experimentally validated aptamers or rounds revealed that the best cell-specific, internalizing aptamers are enriched as a result of the negative selection step performed against ECs.We describe a novel approach that combines cell-internalization SELEX with HTS and bioinformatics analysis to identify cell-specific, cell-internalizing RNA aptamers. Our data highlight the importance of performing a pre-clear step against a non-target cell in order to select for cell-specific aptamers. We expect the extended use of this approach to enable the identification of aptamers to a multitude of different cell types, thereby facilitating the broad development of targeted cell therapies.

  6. Rapid identification of cell-specific, internalizing RNA aptamers with bioinformatics analyses of a cell-based aptamer selection.

    Science.gov (United States)

    Thiel, William H; Bair, Thomas; Peek, Andrew S; Liu, Xiuying; Dassie, Justin; Stockdale, Katie R; Behlke, Mark A; Miller, Francis J; Giangrande, Paloma H

    2012-01-01

    The broad applicability of RNA aptamers as cell-specific delivery tools for therapeutic reagents depends on the ability to identify aptamer sequences that selectively access the cytoplasm of distinct cell types. Towards this end, we have developed a novel approach that combines a cell-based selection method (cell-internalization SELEX) with high-throughput sequencing (HTS) and bioinformatics analyses to rapidly identify cell-specific, internalization-competent RNA aptamers. We demonstrate the utility of this approach by enriching for RNA aptamers capable of selective internalization into vascular smooth muscle cells (VSMCs). Several rounds of positive (VSMCs) and negative (endothelial cells; ECs) selection were performed to enrich for aptamer sequences that preferentially internalize into VSMCs. To identify candidate RNA aptamer sequences, HTS data from each round of selection were analyzed using bioinformatics methods: (1) metrics of selection enrichment; and (2) pairwise comparisons of sequence and structural similarity, termed edit and tree distance, respectively. Correlation analyses of experimentally validated aptamers or rounds revealed that the best cell-specific, internalizing aptamers are enriched as a result of the negative selection step performed against ECs. We describe a novel approach that combines cell-internalization SELEX with HTS and bioinformatics analysis to identify cell-specific, cell-internalizing RNA aptamers. Our data highlight the importance of performing a pre-clear step against a non-target cell in order to select for cell-specific aptamers. We expect the extended use of this approach to enable the identification of aptamers to a multitude of different cell types, thereby facilitating the broad development of targeted cell therapies.

  7. A label-free fluorescence assay for thrombin based on aptamer exonuclease protection and exonuclease III-assisted recycling amplification-responsive cascade zinc(II)-protoporphyrin IX/G-quadruplex supramolecular fluorescent labels.

    Science.gov (United States)

    Lv, Yanqin; Xue, Qingwang; Gu, Xiaohong; Zhang, Shuqiu; Liu, Jifeng

    2014-05-21

    A simple, label-free and sensitive fluorescence protein assay has been developed on the basis of aptamer exonuclease protection and exonuclease III (Exo III)-assisted recycling amplification-responsive cascade ZnPPIX/G-quadruplex supramolecular fluorescent labels. In the sensing system, a special aptamer probe containing the aptamer sequence at the 3'-terminus and the DNAzyme sequence at the 5'-terminus was applied, which has the capacity to recognize a protein target with high affinity and specificity. Exonuclease I (Exo I) can efficiently catalyze the degradation of free single stranded DNA probes in the 3' to 5' direction. In the presence of the target protein, the strong binding between the target protein and its aptamer can protect aptamer probes from degradation. Subsequently, the protected aptamer probes act as catalysators to trigger hybridization with the hairpin DNA probe that contains a partially "caged" G-quadruplex sequence. Upon interaction with the protected aptamer probes, the hairpin opens to yield the active G-quadruplex structure. In the presence of exonuclease III (Exo III), Exo III-assisted recycling amplification occurs generating numerous G-quadruplex supramolecular structures. The zinc(ii)-protoporphyrin IX (ZnPPIX) fluorophore binds to the G-quadruplexes and this results in the enhanced fluorescence of the fluorophore. The resulting fluorescence of the ZnPPIX/G-quadruplex provides the readout signal for the sensing event. Thrombin is used as the model analyte in the current proof-of-concept. The developed method was demonstrated to have very high sensitivity for the detection of proteins with a limit of detection of 0.2 pM without using washes or separations. In addition, this new method for protein detection is simple and inherits all the advantages of aptamers. The mechanism, moreover, may be generalized and used for other forms of protein analysis.

  8. Chemical maturation of a bivalent aptamer by single domain variation

    DEFF Research Database (Denmark)

    Rohrbach, Falk; Fatthalla, Maha I.; Kupper, Tina

    2012-01-01

    Two-pronged attack: We describe the maturation of a bivalent aptamer by a chemically driven two-step process. From an improved monovalent aptamer subdomain that had been modified by polycyclic aromatic hydrocarbons at individual positions, a mature bivalent variant with superior activities to its...

  9. Aptamers as Both Drugs and Drug-Carriers

    Directory of Open Access Journals (Sweden)

    Md. Ashrafuzzaman

    2014-01-01

    Full Text Available Aptamers are short nucleic acid oligos. They may serve as both drugs and drug-carriers. Their use as diagnostic tools is also evident. They can be generated using various experimental, theoretical, and computational techniques. The systematic evolution of ligands by exponential enrichment which uses iterative screening of nucleic acid libraries is a popular experimental technique. Theory inspired methodology entropy-based seed-and-grow strategy that designs aptamer templates to bind specifically to targets is another one. Aptamers are predicted to be highly useful in producing general drugs and theranostic drugs occasionally for certain diseases like cancer, Alzheimer’s disease, and so on. They bind to various targets like lipids, nucleic acids, proteins, small organic compounds, and even entire organisms. Aptamers may also serve as drug-carriers or nanoparticles helping drugs to get released in specific target regions. Due to better target specific physical binding properties aptamers cause less off-target toxicity effects. Therefore, search for aptamer based drugs, drug-carriers, and even diagnostic tools is expanding fast. The biophysical properties in relation to the target specific binding phenomena of aptamers, energetics behind the aptamer transport of drugs, and the consequent biological implications will be discussed. This review will open up avenues leading to novel drug discovery and drug delivery.

  10. Computational Methods for Modeling Aptamers and Designing Riboswitches

    Directory of Open Access Journals (Sweden)

    Sha Gong

    2017-11-01

    Full Text Available Riboswitches, which are located within certain noncoding RNA region perform functions as genetic “switches”, regulating when and where genes are expressed in response to certain ligands. Understanding the numerous functions of riboswitches requires computation models to predict structures and structural changes of the aptamer domains. Although aptamers often form a complex structure, computational approaches, such as RNAComposer and Rosetta, have already been applied to model the tertiary (three-dimensional (3D structure for several aptamers. As structural changes in aptamers must be achieved within the certain time window for effective regulation, kinetics is another key point for understanding aptamer function in riboswitch-mediated gene regulation. The coarse-grained self-organized polymer (SOP model using Langevin dynamics simulation has been successfully developed to investigate folding kinetics of aptamers, while their co-transcriptional folding kinetics can be modeled by the helix-based computational method and BarMap approach. Based on the known aptamers, the web server Riboswitch Calculator and other theoretical methods provide a new tool to design synthetic riboswitches. This review will represent an overview of these computational methods for modeling structure and kinetics of riboswitch aptamers and for designing riboswitches.

  11. Application of aptamers in diagnostics, drug-delivery and imaging

    Indian Academy of Sciences (India)

    Inthis review we will discuss about the latest developments in using aptamers in diagnostics, drug delivery and imaging.We begin with diagnostics, discussing the application of aptamers for the detection of infective agents itself, antigens/toxins (bacteria), biomarkers (cancer), or a combination. The ease of conjugation and ...

  12. Current progress on aptamer-targeted oligonucleotide therapeutics

    Science.gov (United States)

    Dassie, Justin P; Giangrande, Paloma H

    2014-01-01

    Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted. PMID:24304250

  13. Aptamer-assembled nanomaterials for fluorescent sensing and imaging

    Science.gov (United States)

    Lu, Danqing; He, Lei; Zhang, Ge; Lv, Aiping; Wang, Ruowen; Zhang, Xiaobing; Tan, Weihong

    2017-01-01

    Aptamers, which are selected in vitro by a technology known as the systematic evolution of ligands by exponential enrichment (SELEX), represent a crucial recognition element in molecular sensing. With advantages such as good biocompatibility, facile functionalization, and special optical and physical properties, various nanomaterials can protect aptamers from enzymatic degradation and nonspecific binding in living systems and thus provide a preeminent platform for biochemical applications. Coupling aptamers with various nanomaterials offers many opportunities for developing highly sensitive and selective sensing systems. Here, we focus on the recent applications of aptamer-assembled nanomaterials in fluorescent sensing and imaging. Different types of nanomaterials are examined along with their advantages and disadvantages. Finally, we look toward the future of aptamer-assembled nanomaterials.

  14. Direct Optical Detection of Viral Nucleoprotein Binding to an Anti-Influenza Aptamer

    OpenAIRE

    Negri, Pierre; Chen, Guojun; Kage, Andreas; Nitsche, Andreas; Naumann, Dieter; Xu, Bingqian; Dluhy, Richard A.

    2012-01-01

    We have demonstrated label-free optical detection of viral nucleoprotein binding to a polyvalent anti-influenza aptamer by monitoring the surface-enhanced Raman (SERS) spectra of the aptamer-nucleoprotein complex. The SERS spectra demonstrated that selective binding of the aptamer-nucleoprotein complex could be differentiated from that of the aptamer alone based solely on the direct spectral signature for the aptamer-nucleoprotein complex. Multivariate statistical methods, including principal...

  15. Perturbation of discrete sites on a single protein domain with RNA aptamers: targeting of different sides of the TATA-binding protein (TBP).

    Science.gov (United States)

    Hohmura, Ken I; Shi, Hua; Hirayoshi, Kazunori

    2013-01-01

    Control of interactions among proteins is critical in the treatment of diseases, but the specificity required is not easily incorporated into small molecules. Macromolecules could be more suitable as antagonists in this situation, and RNA aptamers have become particularly promising. Here we describe a novel selection procedure for RNA aptamers against a protein that constitutes a single structural domain, the Drosophila TATA-binding protein (TBP). In addition to the conventional filter partitioning method with free TBP as target, we performed another experiment, in which the TATA-bound form of TBP was targeted. Aptamers generated by both selections were able to bind specifically to TBP, but the two groups showed characteristics which were clearly different in terms of their capability to compete with TATA-DNA, their effects on the TATA-bound form of TBP, and their effects on in vitro transcription. The method used to generate these two groups of aptamers can be used with other targets to direct aptamer specificity to discrete sites on the surface of a protein.

  16. Discovery of Aptamer Ligands for Hepatic Stellate Cells Using SELEX.

    Science.gov (United States)

    Chen, Zhijin; Liu, Hao; Jain, Akshay; Zhang, Li; Liu, Chang; Cheng, Kun

    2017-01-01

    Insulin like growth factor II receptor (IGFIIR) is a transmembrane protein overexpressed in activated hepatic stellate cells (HSCs), which are the major target for the treatment of liver fibrosis. In this study, we aim to discover an IGFIIR-specific aptamer that can be potentially used as a targeting ligand for the treatment and diagnosis of liver fibrosis. Systematic evolution of ligands by exponential enrichment (SELEX) was conducted on recombinant human IGFIIR to identify IGFIIR-specific aptamers. The binding affinity and specificity of the discovered aptamers to IGFIIR and hepatic stellate cells were studied using flow cytometry and Surface Plasmon Resonance (SPR). Aptamer-20 showed the highest affinity to recombinant human IGFIIR protein with a K d of 35.5 nM, as determined by SPR. Aptamer-20 also has a high affinity (apparent K d 45.12 nM) to LX-2 human hepatic stellate cells. Binding of aptamer-20 to hepatic stellate cells could be inhibited by knockdown of IGFIIR using siRNA, indicating a high specificity of the aptamer. The aptamer formed a chimera with an anti-fibrotic PCBP2 siRNA and delivered the siRNA to HSC-T6 cells to trigger silencing activity. In Vivo biodistribution study of the siRNA-aptamer chimera also demonstrated a high and specific uptake in the liver of the rats with CCl 4 -induced liver fibrosis. These data suggest that aptamer-20 is a high-affinity ligand for antifibrotic and diagnostic agents for liver fibrosis.

  17. A Synthetic Aptamer-Drug Adduct for Targeted Liver Cancer Therapy

    OpenAIRE

    Thu Le Trinh; Guizhi Zhu; Xilin Xiao; William Puszyk; Kwame Sefah; Qunfeng Wu; Weihong Tan; Chen Liu

    2015-01-01

    AS1411 (previously known as AGRO100) is a 26 nucleotide guanine-rich DNA aptamer which forms a guanine quadruplex structure. AS1411 has shown promising utility as a treatment for cancers in Phase I and Phase II clinical trials without causing major side-effects. AS1411 inhibits tumor cell growth by binding to nucleolin which is aberrantly expressed on the cell membrane of many tumors. In this study, we utilized a simple technique to conjugate a widely-used chemotherapeutic agent, doxorubicin ...

  18. Detection of K(+) Efflux from Stimulated Cortical Neurons by an Aptamer-Modified Silicon Nanowire Field-Effect Transistor.

    Science.gov (United States)

    Anand, Ankur; Liu, Chia-Rung; Chou, Ai-Chuan; Hsu, Wan-Hsuan; Ulaganathan, Rajesh Kumar; Lin, Yi-Cheng; Dai, Chi-An; Tseng, Fan-Gang; Pan, Chien-Yuan; Chen, Yit-Tsong

    2017-01-27

    The concentration gradient of K(+) across the cell membrane of a neuron determines its resting potential and cell excitability. During neurotransmission, the efflux of K(+) from the cell via various channels will not only decrease the intracellular K(+) content but also elevate the extracellular K(+) concentration. However, it is not clear to what extent this change could be. In this study, we developed a multiple-parallel-connected silicon nanowire field-effect transistor (SiNW-FET) modified with K(+)-specific DNA-aptamers (aptamer/SiNW-FET) for the real-time detection of the K(+) efflux from cultured cortical neurons. The aptamer/SiNW-FET showed an association constant of (2.18 ± 0.44) × 10(6) M(-1) against K(+) and an either less or negligible response to other alkali metal ions. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) stimulation induced an outward current and hyperpolarized the membrane potential in a whole-cell patched neuron under a Na(+)/K(+)-free buffer. When neurons were placed atop the aptamer/SiNW-FET in a Na(+)/K(+)-free buffer, AMPA (13 μM) stimulation elevated the extracellular K(+) concentration to ∼800 nM, which is greatly reduced by 6,7-dinitroquinoxaline-2,3-dione, an AMPA receptor antagonist. The EC50 of AMPA in elevating the extracellular K(+) concentration was 10.3 μM. By stimulating the neurons with AMPA under a normal physiological buffer, the K(+) concentration in the isolated cytosolic fraction was decreased by 75%. These experiments demonstrate that the aptamer/SiNW-FET is sensitive for detecting cations and the K(+) concentrations inside and outside the neurons could be greatly changed to modulate the neuron excitability.

  19. Detection of Aβ oligomers based on magnetic-field-assisted separation of aptamer-functionalized Fe3O4 magnetic nanoparticles and BaYF5:Yb,Er nanoparticles as upconversion fluorescence labels.

    Science.gov (United States)

    Jiang, Ling-Feng; Chen, Bo-Cheng; Chen, Ben; Li, Xue-Jian; Liao, Hai-Lin; Huang, Hong-Miao; Guo, Zhan-Jing; Zhang, Wen-Yan; Wu, Lin

    2017-08-01

    A sensitive and stable bioassay for the detection of Aβ oligomer (Aβo), a potentially promising candidate biomarker for Alzheimer's disease (AD) diagnosis, was developed using Fe3O4 magnetic nanoparticles (MNPs) as the recognition and concentration elements and BaYF5:Yb,Er upconversion nanoparticles (UCNPs) as highly sensitive labels, conjugated with the Aβo aptamer (DNA1) and the complementary oligonucleotide of the Aβo aptamer (DNA2), respectively. The DNA1 hybridized with DNA2 to form the duplex structure on the surface of the MNPs/UCNPs nanocomposites probe. When the target Aβo was introduced, the aptamer DNA1 preferentially bound with Aβo and caused the dissociation of some complementary DNA2, liberating some UCNP-labeled complementary DNA2 and leading to a decreased upconversion fluorescent intensity on the surface of MNPs. The decreased fluorescence intensity of UCNPs was related to the concentration of Aβo in the range of 0.2-15nM with a detection limit of 36 pM. The developed method then was successfully applied to measure Aβo in artificial cerebrospinal fluid. Benefiting from the magnetic separation and concentration effect of MNPs, the high sensitivity of UCNPs, as well as the selectivity and stability of the aptamer, the present strategy offered valuable information related to early diagnosis of AD process. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. tPA-binding RNA Aptamers

    DEFF Research Database (Denmark)

    Bjerregaard, Nils

    2015-01-01

    The serine protease Tissue-type Plasminogen Activator (tPA) is the principal initiator of fibrinolysis in mammalian physiology. Recombinant tPA is employed in the pharmacological resolution of vessel occlusions caused by pathological thrombosis, the originating cause of cerebral ischaemic strokes......-density lipoprotein receptor Related Protein-1 (LRP-1). Here, we describe the selection and characterisation of structured RNA ligands (“RNA aptamers”) to tPA, K18 and K32. Both aptamers were truncated to minimal 32-nucleotide constructs (v2) with improved or unchanged activities, and were shown to bind tPA with low...

  1. Aptamer-Gated Nanoparticles for Smart Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huseyin Avni Oktem

    2011-08-01

    Full Text Available Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents at specific disease sites in the body. This is generally achieved by specific targeting of inactivated drug molecules. Aptamers which can bind to various cancer cell types selectively and with high affinity have been exploited in a variety of drug delivery systems for therapeutic purposes. Recent progress in selection of cell-specific aptamers has provided new opportunities in targeted drug delivery. Especially functionalization of nanoparticles with such aptamers has drawn major attention in the biosensor and biomedical areas. Moreover, nucleic acids are recognized as an attractive building materials in nanomachines because of their unique molecular recognition properties and structural features. A active controlled delivery of drugs once targeted to a disease site is a major research challenge. Stimuli-responsive gating is one way of achieving controlled release of nanoparticle cargoes. Recent reports incorporate the structural properties of aptamers in controlled release systems of drug delivering nanoparticles. In this review, the strategies for using functional nucleic acids in creating smart drug delivery devices will be explained. The main focus will be on aptamer-incorporated nanoparticle systems for drug delivery purposes in order to assess the future potential of aptamers in the therapeutic area. Special emphasis will be given to the very recent progress in controlled drug release based on molecular gating achieved with aptamers.

  2. Ligand binding by the tandem glycine riboswitch depends on aptamer dimerization but not double ligand occupancy

    Science.gov (United States)

    Ruff, Karen M.

    2014-01-01

    The glycine riboswitch predominantly exists as a tandem structure, with two adjacent, homologous ligand-binding domains (aptamers), followed by a single expression platform. The recent identification of a leader helix, the inclusion of which eliminates cooperativity between the aptamers, has reopened the debate over the purpose of the tandem structure of the glycine riboswitch. An equilibrium dialysis-based assay was combined with binding-site mutations to monitor glycine binding in each ligand-binding site independently to understand the role of each aptamer in glycine binding and riboswitch tertiary interactions. A series of mutations disrupting the dimer interface was used to probe how dimerization impacts ligand binding by the tandem glycine riboswitch. While the wild-type tandem riboswitch binds two glycine equivalents, one for each aptamer, both individual aptamers are capable of binding glycine when the other aptamer is unoccupied. Intriguingly, glycine binding by aptamer-1 is more sensitive to dimerization than glycine binding by aptamer-2 in the context of the tandem riboswitch. However, monomeric aptamer-2 shows dramatically weakened glycine-binding affinity. In addition, dimerization of the two aptamers in trans is dependent on glycine binding in at least one aptamer. We propose a revised model for tandem riboswitch function that is consistent with these results, wherein ligand binding in aptamer-1 is linked to aptamer dimerization and stabilizes the P1 stem of aptamer-2, which controls the expression platform. PMID:25246650

  3. Optimizing Stem Length To Improve Ligand Selectivity in a Structure-Switching Cocaine-Binding Aptamer.

    Science.gov (United States)

    Neves, Miguel A D; Shoara, Aron A; Reinstein, Oren; Abbasi Borhani, Okty; Martin, Taylor R; Johnson, Philip E

    2017-10-27

    Understanding how aptamer structure and function are related is crucial in the design and development of aptamer-based biosensors. We have analyzed a series of cocaine-binding aptamers with different lengths of their stem 1 in order to understand the role that this stem plays in the ligand-induced structure-switching binding mechanism utilized in many of the sensor applications of this aptamer. In the cocaine-binding aptamer, the length of stem 1 controls whether the structure-switching binding mechanism for this aptamer occurs or not. We varied the length of stem 1 from being one to seven base pairs long and found that the structural transition from unfolded to folded in the unbound aptamer is when the aptamer elongates from 3 to 4 base pairs in stem 1. We then used this knowledge to achieve new binding selectivity of this aptamer for quinine over cocaine by using an aptamer with a stem 1 two base pairs long. This selectivity is achieved by means of the greater affinity quinine has for the aptamer compared with cocaine. Quinine provides enough free energy to both fold and bind the 2-base pair-long aptamer while cocaine does not. This tuning of binding selectivity of an aptamer by reducing its stability is likely a general mechanism that could be used to tune aptamer specificity for tighter binding ligands.

  4. Amplified Detection of the Aptamer–Vanillin Complex with the Use of Bsm DNA Polymerase

    Directory of Open Access Journals (Sweden)

    Mariia Andrianova

    2017-12-01

    Full Text Available The electrochemical detection of interactions between aptamers and low-molecular-weight targets often lacks sensitivity. Signal amplification improves the detection of the aptamer-analyte complex; Bsm DNA polymerase was used to amplify the signal from the interaction of vanillin and its aptamer named Van_74 on an ion-sensitive field-effect transistor (ISFET-based biosensor. The aptamer was immobilized on the ISFET sensitive surface. A short DNA probe was hybridized with the aptamer and dissociated from it upon vanillin addition. A free probe interacted with a special DNA molecular beacon initiated the Bsm DNA polymerase reaction that was detected by ISFET. A buffer solution suitable for both aptamer action and Bsm DNA polymerase activity was determined. The ISFET was shown to detect the Bsm DNA polymerase reaction under the selected conditions. Vanillin at different concentrations (1 × 10−6–1 × 10−8 M was detected using the biosensor with signal amplification. The developed detection system allowed for the determination of vanillin, starting at a 10−8 M concentration. Application of the Bsm DNA polymerase resulted in a 15.5 times lower LoD when compared to the biosensor without signal amplification (10.1007/s00604-017-2586-4.

  5. Biosensor platform based on carbon nanotubes covalently modified with aptamers

    Science.gov (United States)

    Komarov, I. A.; Rubtsova, E. I.; Golovin, A. V.; Bobrinetskiy, I. I.

    2016-12-01

    We developed a new platform for biosensing applications. Aptamers as sensitive agents have a great potential and gives us possibility to have highest possible selectivity among other sensing agents like enzymes or antibodies. We covalently bound aptamers to the functional groups of c-CNTs and then put this system on the surface of polymer substrate. Thus we got high sensitive flexible transparent biological sensors. We also suggest that by varying aptamer type we can make set of biosensors for disease detection which can be integrated into self-healthcare systems and gadgets.

  6. An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples.

    Science.gov (United States)

    Liu, Jing; Zeng, Jingyi; Tian, Yaping; Zhou, Nandi

    2017-12-18

    A lateral flow strip biosensor for fast, sensitive, low-cost and on-site detection of kanamycin was developed by using kanamycin-specific aptamer-modified gold nanoparticles (AuNPs-apt) as a probe and oligonucleotide DNA1-modified silver nanoparticles (AgNPs-DNA1) as a signal amplification element. Through the complementary sequences of DNA1 and the aptamer, the AgNP-DNA1-apt-AuNPs complex can be formed and further captured on the test zone of the strip, where a capture probe DNA2 complementary to the 3'-terminal of DNA1 was immobilized. In the presence of kanamycin, it can competitively bind to the aptamer, and then inhibit the formation of the complex and the accumulation of AuNPs on the test zone. AuNPs-apt can finally be captured on the control zone via the specific binding between biotin and streptavidin. The assay avoids multiple incubation and washing steps and can be completed within 10 min. By observing the color change of the test zone, a qualitative detection for kanamycin can be achieved by the naked eye, with the visual limit of 35 nM. Meanwhile, a linear detection range of 1-30 nM with a low detection limit of 0.0778 nM for quantitative analysis can be achieved by using a scanning reader. The lateral flow strip biosensor exhibited high specificity and stability. Moreover, it was applied to detect kanamycin in various food samples, indicating its great potential in field testing.

  7. Aptamer-Based Electrochemical Sensing of Lysozyme

    Directory of Open Access Journals (Sweden)

    Alina Vasilescu

    2016-06-01

    Full Text Available Protein analysis and quantification are required daily by thousands of laboratories worldwide for activities ranging from protein characterization to clinical diagnostics. Multiple factors have to be considered when selecting the best detection and quantification assay, including the amount of protein available, its concentration, the presence of interfering molecules, as well as costs and rapidity. This is also the case for lysozyme, a 14.3-kDa protein ubiquitously present in many organisms, that has been identified with a variety of functions: antibacterial activity, a biomarker of several serious medical conditions, a potential allergen in foods or a model of amyloid-type protein aggregation. Since the design of the first lysozyme aptamer in 2001, lysozyme became one of the most intensively-investigated biological target analytes for the design of novel biosensing concepts, particularly with regards to electrochemical aptasensors. In this review, we discuss the state of the art of aptamer-based electrochemical sensing of lysozyme, with emphasis on sensing in serum and real samples.

  8. Aptamer based electrochemical sensors for emerging environmental pollutants

    Directory of Open Access Journals (Sweden)

    Akhtar eHAYAT

    2014-06-01

    Full Text Available Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants.

  9. Bioactivity of 2?-deoxyinosine-incorporated aptamer AS1411

    OpenAIRE

    Xinmeng Fan; Lidan Sun; Yun Wu; Lihe Zhang; Zhenjun Yang

    2016-01-01

    Aptamers can be chemically modified to enhance nuclease resistance and increase target affinity. In this study, we performed chemical modification of 2?-deoxyinosine in AS1411, an anti-proliferative G-rich oligodeoxynucleotide aptamer, which binds selectively to the nucleolin protein. Its function was augmented when 2?-deoxyinosine was incorporated at positions 12, 13, 15, and 24 of AS1411, respectively. In addition, double incorporation of 2?-deoxyinosine at positions 12 and 24 (FAN-1224dI),...

  10. Development of HGF-binding aptamers with the combination of G4 promoter-derived aptamer selection and in silico maturation.

    Science.gov (United States)

    Yokoyama, Tomomi; Tsukakoshi, Kaori; Yoshida, Wataru; Saito, Taiki; Teramoto, Kentaro; Savory, Nasa; Abe, Koichi; Ikebukuro, Kazunori

    2017-10-01

    We describe the selection of aptamers based on bioinformatics-based approaches without Systematic Evolution of Ligands by EXponential enrichment (SELEX). SELEX is a potent method; however, it is time intensive and the PCR-amplification step, which is essential step for SELEX, leads to the loss of good aptamers. We have developed an aptamer-screening method, G4 promoter-derived aptamer selection (G4PAS), and an aptamer-improving method, in silico maturation (ISM). They are based on in silico sequence selection and computer assisted directed evolution, respectively. In this study, we succeeded in identifying new aptamers against hepatocyte growth factor (HGF) by G4PAS as well as improving the specificity of the HGF aptamers by ISM. Using ISM improved the specificity of the aptamer for HGF by up to 45-fold in comparison with the original aptamer. These methods enable easy and efficient identification of good aptamers, and the combination of G4PAS with ISM can thus serve as a potent approach for aptamer identification. Biotechnol. Bioeng. 2017;114: 2196-2203. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Methods To Identify Aptamers against Cell Surface Biomarkers

    Directory of Open Access Journals (Sweden)

    Frédéric Ducongé

    2011-09-01

    Full Text Available Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment. During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.

  12. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    Science.gov (United States)

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-01-01

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided. PMID:28788080

  13. CD28 Aptamers as Powerful Immune Response Modulators

    Directory of Open Access Journals (Sweden)

    Fernando Pastor

    2013-01-01

    Full Text Available CD28 is one of the main costimulatory receptors responsible for the proper activation of T lymphocytes. We have isolated two aptamers that bind to the CD28 receptor. As a monomer, one of them interfered with the binding of CD28 to its ligand (B7, precluding the costimulatory signal, whereas the other one was inactive. However, dimerization of any of the anti-CD28 aptamers was sufficient to provide an artificial costimulatory signal. No antibody has featured a dual function (i.e., the ability to work as agonist and antagonist to date. Two different agonistic structures were engineered for each anti-CD28 aptamer. One showed remarkably improved costimulatory properties, surpassing the agonistic effect of an anti-CD28 antibody. Moreover, we showed in vivo that the CD28 agonistic aptamer is capable of enhancing the cellular immune response against a lymphoma idiotype and of prolonging survival of mice which receive the aptamer together with an idiotype vaccine. The CD28 aptamers described in this work could be used to modulate the immune response either blocking the interaction with B7 or enhancing vaccine-induced immune responses in cancer immunotherapy.

  14. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    Science.gov (United States)

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  15. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Lin Wen

    2017-07-01

    Full Text Available Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  16. APTAMER-BASED SERRS SENSOR FOR THROMBIN DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H; Baker, B R; Wachsmann-Hogiu, S; Pagba, C V; Laurence, T A; Lane, S M; Lee, L P; Tok, J B

    2008-07-02

    We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human a-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5{prime}-capped, 3{prime}-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes.

  17. Molecule-binding dependent assembly of split aptamer and γ-cyclodextrin: A sensitive excimer signaling approach for aptamer biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Fen [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Environmental Science and Engineering College, Hubei Polytechnic University, Huangshi 435003 (China); Lian, Yan; Li, Jishan; Zheng, Jing; Hu, Yaping; Liu, Jinhua; Huang, Jin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Yang, Ronghua, E-mail: Yangrh@pku.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2013-10-17

    Graphical abstract: Adenosine-binding aptamer was splitted into two fragments P2 and P3 which labeled pyrene molecules, mainly produce monomer signal. γ-CD cavity brings P2 and P3 in close proximity, allowing for weak excimer emission. In the presence of target, P2 and P3 are expected to bind ATP and form an aptamer/target complex, leads to large increase of the pyrene excimer fluorescence. -- Highlights: •We assembled split aptamer and γ-cyclodextrin fluorescence biosensors for ATP detection. •The biosensor increased quantum yield and emission lifetime of the excimer. •Time-resolved fluorescence is effective for ATP assay in complicated environment. -- Abstract: A highly sensitive and selective fluorescence aptamer biosensors for the determination of adenosine triphosphate (ATP) was developed. Binding of a target with splitting aptamers labeled with pyrene molecules form stable pyrene dimer in the γ-cyclodextrin (γ-CD) cavity, yielding a strong excimer emission. We have found that inclusion of pyrene dimer in γ-cyclodextrin cavity not only exhibits additive increases in quantum yield and emission lifetime of the excimer, but also facilitates target-induced fusion of the splitting aptamers to form the aptamer/target complex. As proof-of-principle, the approach was applied to fluorescence detection of adenosine triphosphate. With an anti-ATP aptamer, the approach exhibits excimer fluorescence response toward ATP with a maximum signal-to-background ratio of 32.1 and remarkably low detection limit of 80 nM ATP in buffer solution. Moreover, due to the additive fluorescence lifetime of excimer induced by γ-cyclodextrin, time-resolved measurements could be conveniently used to detect as low as 0.5 μM ATP in blood serum quantitatively.

  18. (1→3)-β-D-glucan aptamers labeled with technetium-99m: Biodistribution and imaging in experimental models of bacterial and fungal infection.

    Science.gov (United States)

    de Sousa Lacerda, Camila Maria; Ferreira, Iêda Mendes; Dos Santos, Sara Roberta; de Barros, André Luís Branco; Fernandes, Simone Odília; Cardoso, Valbert Nascimento; de Andrade, Antero Silva Ribeiro

    2017-03-01

    Acid nucleic aptamers are RNA or DNA oligonucleotides capable of binding to a target molecule with high affinity and selectivity. These molecules are promising tools in nuclear medicine. Many aptamers have been used as targeting molecule of radiopharmaceuticals in preclinical studies. (1→3)-β-D-glucans are the main structural cell wall components of fungi and some bacteria. In the present study two radiolabeled (1→3)-β-D-glucan aptamers (seq6 and seq30) were evaluated to identity infectious foci caused by fungal or bacterial cells. Aptamer labeling with (99m)Tc was performed by the direct method and biodistribution studies were accomplished in Swiss mice (n=6) infected in the right thigh muscle with Staphylococcus aureus or Candida albicans. A (99m)Tc radiolabeled library consisting of oligonucleotides with random sequences was used as control. There was a higher uptake of (99m)Tc radiolabeled aptamers in the infected thigh than in the left thigh muscle (non-infected) in the S. aureus infected animals. The target/non-target ratios were 3.17±0.22 for seq6 and 2.66±0.10 for seq30. These ratios were statistically higher than the value (1.54±0.05) found for the radiolabeled library (control). With regard to biodistribution, no statistical difference was verified between aptamers and control uptakes in the infection foci in the C. albicans infected animals. The target/non-target ratios were 1.53±0.03, 1.64±0.12 and 1.08±0.02 for radiolabeled library, seq6 and seq30, respectively. Scintigraphic imaging of infected foci using radiolabeled aptamers was possible only for S. aureus infected mice. Seq6 and seq30 aptamers proved to be inefficient for diagnosis of C. albicans infection. Nevertheless, their applicability for diagnosis of S. aureus and other bacterial infections by scintigraphy should be further explored. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A microfluidic surface enhanced Raman spectroscopic biosensor using aptamer functionalized nanopillars

    DEFF Research Database (Denmark)

    Yang, J.; Palla, M.; Bosco, F. G.

    2013-01-01

    This paper presents a microchip incorporating an aptamer-functionalized nanopillar substrate, enabling the specific detection of low-abundance biomolecules using surface enhanced Raman spectroscopy (SERS). In a temperature controlled microchamber, aptamers immobilized on the nanostructure surface...

  20. Development of Aptamer Beacons for Antemortem Diagnosis of Chronic Wasting Disease

    National Research Council Canada - National Science Library

    Clinkenbeard, Kenneth D

    2005-01-01

    .... Once selected, the CWD aptamers will be configured as aptamer beacons that can act as molecular switches to turn "on" a novel and highly sensitive diagnostic technology termed amplifying fluorescing polymer...

  1. Development of Aptamer Beacons for Antemortem Diagnosis of Chronic Wasting Disease

    National Research Council Canada - National Science Library

    Clinkenbeard, Kenneth

    2004-01-01

    .... Once selected, the CWD aptamers will be configured as aptamer beacons that can act as molecular switches to turn on a novel and highly sensitive diagnostic technology termed amplifying fluorescing polymer. Objective...

  2. High-affinity RNA aptamers to C-reactive protein (CRP): newly developed pre-elution methods for aptamer selection

    Science.gov (United States)

    Orito, N.; Umekage, S.; Sato, K.; Kawauchi, S.; Tanaka, H.; Sakai, E.; Tanaka, T.; Kikuchi, Y.

    2012-03-01

    We have developed a modified SELEX (systematic evolution of ligands by exponential enrichment) method to obtain RNA aptamers with high affinity to C-reactive protein (CRP). CRP is a clinical biomarker present in plasma, the level of which increases in response to infections and noninfectious inflammation. The CRP level is also an important prognostic indicator in patients with several syndromes. At present, CRP content in blood is measured immunochemically using antibodies. To develop a more sensitive method using RNA aptamers, we have attempted to obtain high-affinity RNA aptamers to CRP. We succeeded in obtaining an RNA aptamer with high affinity to CRP using a CRP-immobilized Sepharose column and pre-elution procedure. Pre-elution is a method that removes the weak binding portion from a selected RNA population by washing for a short time with buffer containing CRP. By surface plasmon-resonance (SPR) analysis, the affinity constant of this aptamer for CRP was calculated to be KD = 2.25×10-9 (M). The secondary structure, contact sites with CRP protein, and application of this aptamer will be described.

  3. A Synthetic Aptamer-Drug Adduct for Targeted Liver Cancer Therapy.

    Directory of Open Access Journals (Sweden)

    Thu Le Trinh

    Full Text Available AS1411 (previously known as AGRO100 is a 26 nucleotide guanine-rich DNA aptamer which forms a guanine quadruplex structure. AS1411 has shown promising utility as a treatment for cancers in Phase I and Phase II clinical trials without causing major side-effects. AS1411 inhibits tumor cell growth by binding to nucleolin which is aberrantly expressed on the cell membrane of many tumors. In this study, we utilized a simple technique to conjugate a widely-used chemotherapeutic agent, doxorubicin (Dox, to AS1411 to form a synthetic Drug-DNA Adduct (DDA, termed as AS1411-Dox. We demonstrate the utility of AS1411-Dox in the treatment of hepatocellular carcinoma (HCC by evaluating the targeted delivery of Dox to Huh7 cells in vitro and in a murine xenograft model of HCC.

  4. A Synthetic Aptamer-Drug Adduct for Targeted Liver Cancer Therapy.

    Science.gov (United States)

    Trinh, Thu Le; Zhu, Guizhi; Xiao, Xilin; Puszyk, William; Sefah, Kwame; Wu, Qunfeng; Tan, Weihong; Liu, Chen

    2015-01-01

    AS1411 (previously known as AGRO100) is a 26 nucleotide guanine-rich DNA aptamer which forms a guanine quadruplex structure. AS1411 has shown promising utility as a treatment for cancers in Phase I and Phase II clinical trials without causing major side-effects. AS1411 inhibits tumor cell growth by binding to nucleolin which is aberrantly expressed on the cell membrane of many tumors. In this study, we utilized a simple technique to conjugate a widely-used chemotherapeutic agent, doxorubicin (Dox), to AS1411 to form a synthetic Drug-DNA Adduct (DDA), termed as AS1411-Dox. We demonstrate the utility of AS1411-Dox in the treatment of hepatocellular carcinoma (HCC) by evaluating the targeted delivery of Dox to Huh7 cells in vitro and in a murine xenograft model of HCC.

  5. Modified AS1411 Aptamer Suppresses Hepatocellular Carcinoma by Up-Regulating Galectin-14

    OpenAIRE

    Cho, Yuri; Lee, Yun Bin; Lee, Jeong-Hoon; Lee, Dong Hyeon; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Kim, Jong In; Im, Jong Hun; Lee, Jung Hwan; Oh, Eun Ju; Yoon, Jung-Hwan

    2016-01-01

    Aptamers are small synthetic oligonucleotides that bind to target proteins with high specificity and affinity. AS1411 is an aptamer that binds to nucleolin, which is overexpressed in the cytoplasm and occurs on the surface of cancer cells. We investigated the therapeutic potential of aptamers in hepatocellular carcinoma (HCC) by evaluating anti-tumor effects and confirming the affinity and specificity of AS1411- and modified AS1411-aptamers in HCC cells. Cell growth was assessed using the MTS...

  6. Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme-aptamer conjugates in wine.

    Science.gov (United States)

    Yang, Cheng; Lates, Vasilica; Prieto-Simón, Beatriz; Marty, Jean-Louis; Yang, Xiurong

    2013-11-15

    We report a new label-free colorimetric aptasensor based on DNAzyme-aptamer conjugate for rapid and high-throughput detection of Ochratoxin A (OTA, a possible human carcinogen, group 2B) in wine. Two oligonucleotides were designed for this detection. One is N1 for biorecognition, which includes two adjacent sequences: the OTA-specific aptamer sequence and the horseradish peroxidase (HRP)-mimicking DNAzyme sequence. The other is a blocking DNA (B2), which is partially complementary to a part of the OTA aptamer and partially complementary to a part of the DNAzyme. The existence of OTA reduces the hybridization between N1 and B2. Thus, the activity of the non-hybridized DNAzyme is linearly correlated with the concentration of OTA up to 30 nM with a limit of detection of 4 nM (3σ). Meanwhile, a double liquid-liquid extraction (LLE) method is accordingly developed to purify OTA from wine. Compared with the existing HPLC-FD or immunoassay methods, the proposed strategy presents the most appropriate balance between accuracy and facility, resulting in a considerable improvement of real-time quality control, and thereby, preventing chronic poisoning caused by OTA contained red wine. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles.

    Science.gov (United States)

    Li, Xin; Yu, Yang; Ji, Qian; Qiu, Liyan

    2015-01-01

    Aptamers are single-stranded RNA or DNA ligands that can specifically bind to various molecular targets with high affinity. Owing to this unique character, they have become increasingly attractive in the field of drug delivery. In this study, we developed a multifunctional composite micelle (CM) with surface modification of aptamer AS1411 (Ap) for targeted delivery of doxorubicin (DOX) to human breast tumors. This binary mixed system consisting of AS1411 modified Pluronic F127 and beta-cyclodextrin-linked poly(ethylene glycol)-b-polylactide could enhance DOX-loading capacity and increase micelle stability. Cellular uptake of CM-Ap was found to be higher than that of untargeted CM due to the nucleolin-mediated endocytosis effect. In vivo study in MCF-7 tumor-bearing mice demonstrated that the AS1411-functionalized composite micelles showed prolonged circulation time in blood, enhanced accumulation in tumor, improved antitumor activity, and decreased cardiotoxicity. In conclusion, aptamer-conjugated multifunctional composite micelles could be a potential delivery vehicle for cancer therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Predicting the Uncertain Future of Aptamer-Based Diagnostics and Therapeutics.

    Science.gov (United States)

    Bruno, John G

    2015-04-16

    Despite the great promise of nucleic acid aptamers in the areas of diagnostics and therapeutics for their facile in vitro development, lack of immunogenicity and other desirable properties, few truly successful aptamer-based products exist in the clinical or other markets. Core reasons for these commercial deficiencies probably stem from industrial commitment to antibodies including a huge financial investment in humanized monoclonal antibodies and a general ignorance about aptamers and their performance among the research and development community. Given the early failures of some strong commercial efforts to gain government approval and bring aptamer-based products to market, it may seem that aptamers are doomed to take a backseat to antibodies forever. However, the key advantages of aptamers over antibodies coupled with niche market needs that only aptamers can fill and more recent published data still point to a bright commercial future for aptamers in areas such as infectious disease and cancer diagnostics and therapeutics. As more researchers and entrepreneurs become familiar with aptamers, it seems inevitable that aptamers will at least be considered for expanded roles in diagnostics and therapeutics. This review also examines new aptamer modifications and attempts to predict new aptamer applications that could revolutionize biomedical technology in the future and lead to marketed products.

  9. Aptamers Against Pro- and Anti-Inflammatory Cytokines: A Review.

    Science.gov (United States)

    Boshtam, Maryam; Asgary, Seddigheh; Kouhpayeh, Shirin; Shariati, Laleh; Khanahmad, Hossein

    2017-02-01

    Inflammatory disorders result from continuous inflammation in injured sites. Many molecules are involved in this process; the inhibition of which could prevent the inflammation. Chemokines are a group of these biological mediators which are categorized into pro-, anti-, and pro-/anti-inflammatory. Thus, targeting these essential molecules can be an effective way for prevention and control of inflammatory diseases. Various therapeutic agents have been developed for primary and secondary prevention of these disorders, but each of them has its own limitations. Aptamers, as novel therapeutic agents, are a new generation of drugs which could replace other medications even antibodies. Aptamer can bind to its target molecule to trap it and prohibit its function. Among large group of inflammatory cytokines, only 11 aptamers have been selected either against cytokines or their related receptors. These cytokines include interleukin (IL)-2, IL-6, IL-10, IL-11, IL-17, IL-32, TGF-β, TNF-α, IFN-γ, CCL2, and IP-10. Most of the isolated aptamers are against pro-inflammatory or dual function cytokines, and it seems that they could be used for diagnosis, prevention, and treatment of the related inflammatory diseases. Most of the aptamers have been tested in vitro, but so far, none of them has been approved for in vivo use. Given a vast number of inflammatory cytokines, more aptamers against this group of biological molecules will be selected in the near future. The available aptamers will also be tested in clinical trials. Therefore, a significant improvement is expected for the prevention and control of inflammatory disorders.

  10. Metallated DNA Aptamers for Prostate Cancer Treatment. Revision

    Science.gov (United States)

    2013-10-01

    blue), no treatment (black). (C) Histopathological analysis of tumor tissue. Polarization detection as part of histological analysis for PDN in...blue), no treatment (black). (C) Histopathological analysis of tumor tissue. Polarization detection as part of histological analysis for PDN in...sterile blade . A 30-gauge needle was used to flush the line first with heparinized saline, followed by administration of saline or drug, and followed

  11. Unraveling Prion Protein Interactions with Aptamers and Other PrP-Binding Nucleic Acids.

    Science.gov (United States)

    Macedo, Bruno; Cordeiro, Yraima

    2017-05-17

    Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative disorders that affect humans and other mammals. The etiologic agents common to these diseases are misfolded conformations of the prion protein (PrP). The molecular mechanisms that trigger the structural conversion of the normal cellular PrP (PrP(C)) into the pathogenic conformer (PrP(Sc)) are still poorly understood. It is proposed that a molecular cofactor would act as a catalyst, lowering the activation energy of the conversion process, therefore favoring the transition of PrP(C) to PrP(Sc). Several in vitro studies have described physical interactions between PrP and different classes of molecules, which might play a role in either PrP physiology or pathology. Among these molecules, nucleic acids (NAs) are highlighted as potential PrP molecular partners. In this context, the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) methodology has proven extremely valuable to investigate PrP-NA interactions, due to its ability to select small nucleic acids, also termed aptamers, that bind PrP with high affinity and specificity. Aptamers are single-stranded DNA or RNA oligonucleotides that can be folded into a wide range of structures (from harpins to G-quadruplexes). They are selected from a nucleic acid pool containing a large number (10(14)-10(16)) of random sequences of the same size (~20-100 bases). Aptamers stand out because of their potential ability to bind with different affinities to distinct conformations of the same protein target. Therefore, the identification of high-affinity and selective PrP ligands may aid the development of new therapies and diagnostic tools for TSEs. This review will focus on the selection of aptamers targeted against either full-length or truncated forms of PrP, discussing the implications that result from interactions of PrP with NAs, and their potential advances in the studies of prions. We will also provide a critical evaluation

  12. Impedimetric monitoring of apoptosis using cytochrome-aptamer bioconjugated silver nanocluster.

    Science.gov (United States)

    Shamsipur, Mojtaba; Pashabadi, Afshin; Molaabasi, Fatemeh; Hosseinkhani, Saman

    2017-04-15

    It is well known that cytochrome c (Cyt c) is a crucial death regulator that triggers programmed cell death, apoptosis. Here, we report on the successful application of an aptamer bioconjugated nanoclusters for the detection of apoptosis based on release of cytochrome c from mitochondria in lysates human embryonic kidney cells HEK293T. The aptamer-conjugated silver nanoclusters (Apt@AgNCs) were synthesized and immobilized on gold electrode for impedimetric detection of Cyt c over the range of 0.15-375nM. It was found that the presence of Ag(I) ions shell at the surface of prepared NCs could increase their affinity to the donor groups (COO- and some amine groups in its deprotonated form, NH2) of cysteine attached on the gold electrode surface. The use of NCs, which play the role of conductive holders, established a simple immobilization procedure based on a low cost non-functionalized DNA sequence. To diminish the probable nonspecific impedance changes and decrease time of measurement, a rapid single frequency measurements (SFM) was assessed based on recording total impedance |Z| in different individual frequencies. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery.

    Science.gov (United States)

    Alibolandi, Mona; Mohammadi, Marzieh; Taghdisi, Seyed Mohammad; Ramezani, Mohammad; Abnous, Khalil

    2017-01-02

    In the current study, dextran (DEX) was covalently conjugated to the surface of nano-GO sheets, making stable biocompatible dextran coated GO (GO-DEX). The prepared GO-DEX was nontoxic to 4T1 mammary carcinoma cell line at concentrations up to 300μg/mL. AS1411 aptamer, a ssDNA aptamer which can improve the intracellular uptake by nucleolin recognition, also has been introduced to hydroxyl groups of DEX in GO-DEX to produce GO-DEX-Apt. Moreover, curcumin (CUR), a natural polyphenol, found in the rhizomes of Curcuma longa (turmeric) which shows antineoplastic effects, was loaded onto the GO-DEX and GO-DEX-Apt via π-π stacking interactions with a high loading capacity (∼29wt%). The GO-DEX-Apt-CUR could efficiently enter into 4T1 and MCF-7 nucleolin over-expressed cancer cells confirmed by fluorescence microscope and flowcytometry, and it also showed significantly higher cytotoxicity. These types of targeted nanoscale drug delivery vehicles on the basis of DEX coated GO may find potential application in cancer chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Aptamers as the Agent in Decontamination Assays (Apta-Decontamination Assays: From the Environment to the Potential Application In Vivo

    Directory of Open Access Journals (Sweden)

    Mawethu Pascoe Bilibana

    2017-01-01

    Full Text Available The binding specificity and affinity of aptamers have long been harnessed as the key elements in the development of aptamer-based assays, particularly aptasensing application. One promising avenue that is currently explored based on the specificity and affinity of aptamers is the application of aptamers in the decontamination assays. Aptamers have been successfully harnessed as the decontamination agents to remove contaminants from the environment and to decontaminate infectious elements. The reversible denaturation property inherent in aptamers enables the repeated usage of aptamers, which can immensely save the cost of decontamination. Analogous to the point-of-care diagnostics, there is no doubt that aptamers can also be deployed in the point-of-care aptamer-based decontamination assay, whereby decontamination can be performed anywhere and anytime for instantaneous decision-making. It is also prophesied that aptamers can also serve more than as a decontaminant, probably as a tool to capture and kill hazardous elements, particularly pathogenic agents.

  15. Osteomyelitis diagnosis by {sup 99m}Tc radiolabeled aptamers

    Energy Technology Data Exchange (ETDEWEB)

    Santos, S.R.; Ferreira, I.M.; Andrade, A.S.R., E-mail: sararoberta7@hotmail.com, E-mail: imendesf@yahoo.com.br, E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Barros, A.L.B.; Cardoso, V.N.; Diniz, O.F., E-mail: brancodebarros@yahoo.com.br, E-mail: valbertcardoso@yahoo.com.br, E-mail: simoneodilia@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Farmacia. Departamento de Analises Clinicas e Toxicologicas

    2015-07-01

    Osteomyelitis, which is characterized by progressive inflammatory destruction and new opposition of bone, is still a difficult infection to treat. The clinical diagnosis in late stages is achieved easily, but an early diagnosis is more challenging. Staphylococcus aureus is a common agent found in osteomyelitis and bone prostheses infection. Diagnosis by scintigraphy has advantages because it is a non-invasive procedure and is able to perform an early diagnosis even before anatomic changes. Thus, nuclear medicine could contribute to an accurate diagnosis since specific radiopharmaceuticals were developed. In this study, aptamers selected to Staphylococcus aureus were labeled with {sup 99m}Tc and used for bacteria identification in an osteomyelitis experimental model. The aptamers selected to S. aureus were directly labelled with {sup 99m}Tc and were evaluated by biodistribution studies. Wistar rats with intraosseous infection in the right paw were used. A random aptamer labelled with {sup 99m}Tc was as control. Six animals were used in each group. The aptamers labeled with {sup 99m}Tc were able to identify the infection foci caused by S. aureus displaying a target/non-target ratio of 2,23 ± 0,20, after 3 h. The control group presented a target/non-target ratio 1,08 ± 0.23. The results indicated that the radiolabeled aptamers were able to identify specifically the infection foci and they should be further explored for infection diagnosis by scintigraphy. (author)

  16. Development of a Sphingosylphosphorylcholine Detection System Using RNA Aptamers

    Directory of Open Access Journals (Sweden)

    Iwao Waga

    2010-08-01

    Full Text Available Sphingosylphosphorylcholine (SPC is a lysosphingolipid that exerts multiple functions, including acting as a spasmogen, as a mitogenic factor for various types of cells, and sometimes as an inflammatory mediator. Currently, liquid chromatography/tandem mass spectrometry (LC/MS/MS is used for the quantitation of SPC. However, because of the complicated procedures required it may not be cost effective, hampering its regular usage in a routine practical SPC monitoring. In this report, we have generated RNA aptamers that bind to SPC with high affinity using an in vitro selection procedure and developed an enzyme-linked aptamer assay system using the minimized SPC aptamer that can successfully distinguish SPC from the structurally related sphingosine 1-phosphate (S1P. This is the first case of the Systematic Evolution of Ligands by EXponential enrichment (SELEX process being performed with a lysosphingolipid. The SPC aptamers would be valuable tools for the development of aptamer-based medical diagnosis and for elucidating the biological role of SPC.

  17. Aptamer-Mediated Targeted Delivery of Therapeutics: An Update

    Science.gov (United States)

    Catuogno, Silvia; Esposito, Carla L.; de Franciscis, Vittorio

    2016-01-01

    The selective delivery of drugs in a cell- or tissue-specific manner represents the main challenge for medical research; in order to reduce the occurrence of unwanted off-target effects. In this regard, nucleic acid aptamers have emerged as an attractive class of carrier molecules due to their ability to bind with high affinity to specific ligands; their high chemical flexibility; as well as tissue penetration capability. To date, different aptamer-drug systems and aptamer–nanoparticles systems, in which nanoparticles function together with aptamers for the targeted delivery, have been successfully developed for a wide range of therapeutics, including toxins; peptides; chemotherapeutics and oligonucleotides. Therefore, aptamer-mediated drug delivery represents a powerful tool for the safe and effective treatment of different human pathologies, including cancer; neurological diseases; immunological diseases and so on. In this review, we will summarize recent progress in the field of aptamer-mediated drug delivery and we will discuss the advantages, the achieved objectives and the challenges to be still addressed in the near future, in order to improve the effectiveness of therapies. PMID:27827876

  18. Aptamers: Universal capture units for lateral flow applications.

    Science.gov (United States)

    Fischer, Christin; Wessels, Hauke; Paschke-Kratzin, Angelika; Fischer, Markus

    2017-04-01

    The present work demonstrates the implementation of aptamers as capture molecules for a wide range of target classes in lateral flow assay applications. The targets were chosen in order to cover a wide range of target classes (small sized - metabolite, medium sized - protein, and large sized - whole cell/spore). For each target class one target molecule was selected as representative and appropriate aptamers were used for lateral flow assay development. The work points out that the implementation of aptamers as capture molecules in a universal lateral flow test platform was successful independent form target size. Furthermore, the limit of detection for p-aminohippuric acid in urine (200 ppm), lysozyme in white wine (20 ppm), and Alicyclobacillus spores in buffered orange juice (>8 CFU/mL) were determined using aptamers as capture molecules. The whole approach is considered as a proof of concept, regarding the ability of aptamers as an alternative to antibodies (in conjunction with directive 2010/63/EU on the protection of animals used for scientific purposes) in lateral flow applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing

    Directory of Open Access Journals (Sweden)

    Marcus Menger

    2016-07-01

    Full Text Available Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either “evolution in the test tube” of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs. The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the “biological” degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.

  20. Biosensing by Tandem Reactions of Structure Switching, Nucleolytic Digestion, and DNA Amplification of a DNA Assembly.

    Science.gov (United States)

    Liu, Meng; Zhang, Wenqing; Zhang, Qiang; Brennan, John D; Li, Yingfu

    2015-08-10

    ϕ29 DNA polymerase (ϕ29DP) is able to carry out repetitive rounds of DNA synthesis using a circular DNA template by rolling circle amplification (RCA). It also has the ability to execute 3'-5' digestion of single-stranded but not double-stranded DNA. A biosensor engineering strategy is presented that takes advantage of these two properties of ϕ29DP coupled with structure-switching DNA aptamers. The design employs a DNA assembly made of a circular DNA template, a DNA aptamer, and a pre-primer. The DNA assembly is unable to undergo RCA in the absence of cognate target owing to the formation of duplex structures. The presence of the target, however, triggers a structure-switching event that causes nucleolytic conversion of the pre-primer by ϕ29DP into a mature primer to facilitate RCA. This method relays target detection by the aptamer to the production of massive DNA amplicons, giving rise to dramatically enhanced detection sensitivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Superior Performance of Aptamer in Tumor Penetration over Antibody: Implication of Aptamer-Based Theranostics in Solid Tumors

    Science.gov (United States)

    Xiang, Dongxi; Zheng, Conglong; Zhou, Shu-Feng; Qiao, Shuxi; Tran, Phuong Ha-Lien; Pu, Chunwen; Li, Yong; Kong, Lingxue; Kouzani, Abbas Z.; Lin, Jia; Liu, Ke; Li, Lianhong; Shigdar, Sarah; Duan, Wei

    2015-01-01

    Insufficient penetration of therapeutic agents into tumor tissues results in inadequate drug distribution and lower intracellular concentration of drugs, leading to the increase of drug resistance and resultant failure of cancer treatment. Targeted drug delivery to solid tumors followed by complete drug penetration and durable retention will significantly improve clinical outcomes of cancer therapy. Monoclonal antibodies have been commonly used in clinic for cancer treatment, but their limitation of penetrating into tumor tissues still remains because of their large size. Aptamers, as “chemical antibodies”, are 15-20 times smaller than antibodies. To explore whether aptamers are superior to antibodies in terms of tumor penetration, we carried out the first comprehensive study to compare the performance of an EpCAM aptamer with an EpCAM antibody in theranostic applications. Penetration and retention were studied in in vitro three-dimensional tumorspheres, in vivo live animal imaging and mouse colorectal cancer xenograft model. We found that the EpCAM aptamer can not only effectively penetrate into the tumorsphere cores but can also be retained by tumor sphere cells for at least 24 h, while limited tumor penetration by EpCAM antibody was observed after 4 h incubation. As observed from in vivo live animal imaging, EpCAM aptamers displayed a maximum tumor uptake at around 10 min followed by a rapid clearance after 80 min, while the signal of peak uptake and disappearance of antibody appeared at 3 h and 6 h after intravenous injection, respectively. The signal of PEGylated EpCAM aptamers in xenograft tumors was sustained for 26 h, which was 4.3-fold longer than that of the EpCAM antibody. Consistently, there were 1.67-fold and 6.6-fold higher accumulation of PEGylated aptamer in xenograft tumors than that of antibody, at 3 h and 24 h after intravenous administration, respectively. In addition, the aptamer achieved at least a 4-time better tumor penetration in

  2. Superior Performance of Aptamer in Tumor Penetration over Antibody: Implication of Aptamer-Based Theranostics in Solid Tumors.

    Science.gov (United States)

    Xiang, Dongxi; Zheng, Conglong; Zhou, Shu-Feng; Qiao, Shuxi; Tran, Phuong Ha-Lien; Pu, Chunwen; Li, Yong; Kong, Lingxue; Kouzani, Abbas Z; Lin, Jia; Liu, Ke; Li, Lianhong; Shigdar, Sarah; Duan, Wei

    2015-01-01

    Insufficient penetration of therapeutic agents into tumor tissues results in inadequate drug distribution and lower intracellular concentration of drugs, leading to the increase of drug resistance and resultant failure of cancer treatment. Targeted drug delivery to solid tumors followed by complete drug penetration and durable retention will significantly improve clinical outcomes of cancer therapy. Monoclonal antibodies have been commonly used in clinic for cancer treatment, but their limitation of penetrating into tumor tissues still remains because of their large size. Aptamers, as "chemical antibodies", are 15-20 times smaller than antibodies. To explore whether aptamers are superior to antibodies in terms of tumor penetration, we carried out the first comprehensive study to compare the performance of an EpCAM aptamer with an EpCAM antibody in theranostic applications. Penetration and retention were studied in in vitro three-dimensional tumorspheres, in vivo live animal imaging and mouse colorectal cancer xenograft model. We found that the EpCAM aptamer can not only effectively penetrate into the tumorsphere cores but can also be retained by tumor sphere cells for at least 24 h, while limited tumor penetration by EpCAM antibody was observed after 4 h incubation. As observed from in vivo live animal imaging, EpCAM aptamers displayed a maximum tumor uptake at around 10 min followed by a rapid clearance after 80 min, while the signal of peak uptake and disappearance of antibody appeared at 3 h and 6 h after intravenous injection, respectively. The signal of PEGylated EpCAM aptamers in xenograft tumors was sustained for 26 h, which was 4.3-fold longer than that of the EpCAM antibody. Consistently, there were 1.67-fold and 6.6-fold higher accumulation of PEGylated aptamer in xenograft tumors than that of antibody, at 3 h and 24 h after intravenous administration, respectively. In addition, the aptamer achieved at least a 4-time better tumor penetration in xenograft

  3. Direct fluorescence anisotropy assay for cocaine using tetramethylrhodamine-labeled aptamer.

    Science.gov (United States)

    Liu, Yingxiong; Zhao, Qiang

    2017-06-01

    Development of simple, sensitive, and rapid method for cocaine detection is important in medicine and drug abuse monitoring. Taking advantage of fluorescence anisotropy and aptamer, this study reports a direct fluorescence anisotropy (FA) assay for cocaine by employing an aptamer probe with tetramethylrhodamine (TMR) labeled on a specific position. The binding of cocaine and the aptamer causes a structure change of the TMR-labeled aptamer, leading to changes of the interaction between labeled TMR and adjacent G bases in aptamer sequence, so FA of TMR varies with increasing of cocaine. After screening different labeling positions of the aptamer, including thymine (T) bases and terminals of the aptamer, we obtained a favorable aptamer probe with TMR labeled on the 25th base T in the sequence, which exhibited sensitive and significant FA-decreasing responses upon cocaine. Under optimized assay conditions, this TMR-labeled aptamer allowed for direct FA detection of cocaine as low as 5 μM. The maximum FA change reached about 0.086. This FA method also enabled the detection of cocaine spiked in diluted serum and urine samples, showing potential for applications. Graphical Abstract The binding of cocaine to the TMR-labeled aptamer causes conformation change and alteration of the intramolecular interaction between TMR and bases of aptamer, leading to variance of fluorescence anisotropy (FA) of TMR, so direct FA analyis of cocaine is achieved.

  4. Aptamer-Based Therapeutics: New Approaches to Combat Human Viral Diseases

    Directory of Open Access Journals (Sweden)

    Ka-To Shum

    2013-11-01

    Full Text Available Viruses replicate inside the cells of an organism and continuously evolve to contend with an ever-changing environment. Many life-threatening diseases, such as AIDS, SARS, hepatitis and some cancers, are caused by viruses. Because viruses have small genome sizes and high mutability, there is currently a lack of and an urgent need for effective treatment for many viral pathogens. One approach that has recently received much attention is aptamer-based therapeutics. Aptamer technology has high target specificity and versatility, i.e., any viral proteins could potentially be targeted. Consequently, new aptamer-based therapeutics have the potential to lead a revolution in the development of anti-infective drugs. Additionally, aptamers can potentially bind any targets and any pathogen that is theoretically amenable to rapid targeting, making aptamers invaluable tools for treating a wide range of diseases. This review will provide a broad, comprehensive overview of viral therapies that use aptamers. The aptamer selection process will be described, followed by an explanation of the potential for treating virus infection by aptamers. Recent progress and prospective use of aptamers against a large variety of human viruses, such as HIV-1, HCV, HBV, SCoV, Rabies virus, HPV, HSV and influenza virus, with particular focus on clinical development of aptamers will also be described. Finally, we will discuss the challenges of advancing antiviral aptamer therapeutics and prospects for future success.

  5. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    Science.gov (United States)

    Jiang, Feng; Liu, Biao; Lu, Jun; Li, Fangfei; Li, Defang; Liang, Chao; Dang, Lei; Liu, Jin; He, Bing; Atik Badshah, Shaikh; Lu, Cheng; He, Xiaojuan; Guo, Baosheng; Zhang, Xiao-Bing; Tan, Weihong; Lu, Aiping; Zhang, Ge

    2015-01-01

    Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX), are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems. PMID:26473828

  6. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems.

    Science.gov (United States)

    Jiang, Feng; Liu, Biao; Lu, Jun; Li, Fangfei; Li, Defang; Liang, Chao; Dang, Lei; Liu, Jin; He, Bing; Badshah, Shaikh Atik; Lu, Cheng; He, Xiaojuan; Guo, Baosheng; Zhang, Xiao-Bing; Tan, Weihong; Lu, Aiping; Zhang, Ge

    2015-10-09

    Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX), are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.

  7. Development of an aptamer-based affinity purification method for vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Maren Lönne

    2015-12-01

    Full Text Available Since aptamers bind their targets with high affinity and specificity, they are promising alternative ligands in protein affinity purification. As aptamers are chemically synthesized oligonucleotides, they can be easily produced in large quantities regarding GMP conditions allowing their application in protein production for therapeutic purposes. Several advantages of aptamers compared to antibodies are described in general within this paper. Here, an aptamer directed against the human Vascular Endothelial Growth Factor (VEGF was used as affinity ligand for establishing a purification platform for VEGF in small scale. The aptamer was covalently immobilized on magnetic beads in a controlled orientation resulting in a functional active affinity matrix. Target binding was optimized by introduction of spacer molecules and variation of aptamer density. Further, salt-induced target elution was demonstrated as well as VEGF purification from a complex protein mixture proving the specificity of protein-aptamer binding.

  8. Probing the coagulation pathway with aptamers identifies combinations that synergistically inhibit blood clot formation.

    Science.gov (United States)

    Bompiani, Kristin M; Lohrmann, Jens L; Pitoc, George A; Frederiksen, James W; Mackensen, George B; Sullenger, Bruce A

    2014-08-14

    Coordinated enzymatic reactions regulate blood clot generation. To explore the contributions of various coagulation enzymes in this process, we utilized a panel of aptamers against factors VIIa, IXa, Xa, and prothrombin. Each aptamer dose-dependently inhibited clot formation, yet none was able to completely impede this process in highly procoagulant settings. However, several combinations of two aptamers synergistically impaired clot formation. One extremely potent aptamer combination was able to maintain human blood fluidity even during extracorporeal circulation, a highly procoagulant setting encountered during cardiopulmonary bypass surgery. Moreover, this aptamer cocktail could be rapidly reversed with antidotes to restore normal hemostasis, indicating that even highly potent aptamer combinations can be rapidly controlled. These studies highlight the potential utility of using sets of aptamers to probe the functions of proteins in molecular pathways for research and therapeutic ends. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Feng Jiang

    2015-10-01

    Full Text Available Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX, are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.

  10. Application of aptamers in treatment and diagnosis of leukemia.

    Science.gov (United States)

    Yazdian-Robati, Rezvan; Arab, Atefeh; Ramezani, Mohammad; Abnous, Khalil; Taghdisi, Seyed Mohammad

    2017-08-30

    Leukemia is a cancer of blood cells and bone marrow, leading to death in many patients mainly in children. Over the last several years, aptamers generated by SELEX (Systematic evolution of ligands by exponential enrichment) method, have quickly become a new class of targeting ligands for drug delivery applications and recently have been widely exploited in different biomedical applications, due to several potent properties such as high binding affinity and selectivity, low or no immunogenicity and toxicity, low cost and thermal stability. In this review, we presented in details about aptamers involved in targeting, and treatment of leukemia. Moreover, some analytical approaches such as electrochemical and optical aptasensors were introduced for detection and diagnosis of leukemia. Finally, we discussed about the directions and challenges of aptamer application in this field. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Aptamer- Based Label-Free Electrochemical Biosensor Array for the Detection of Total and Glycated Hemoglobin in Human Whole Blood

    OpenAIRE

    Shimaa Eissa; Mohammed Zourob

    2017-01-01

    The increase of the level of glucose in blood leads to an increase in the fraction of glycated hemoglobin (HbA1c). Therefore, the percentage of HbA1c in the blood can serve as a marker for the average glucose level over the past three months and thus, it can be used to diagnose diabetes. Here, we report the selection, identification and characterization of specific DNA aptamers against HbA1c- and total hemoglobin (tHb) and their integration into an electrochemical array sensing platform. High...

  12. Plasma Membrane Nucleolin Is a Receptor for the Anticancer Aptamer AS1411 in MV4-11 Leukemia Cells

    OpenAIRE

    Soundararajan, Sridharan; Wang, Li; Sridharan, Vijayalakshmi; Chen, Weiwei; Courtenay-Luck, Nigel; Jones, David; Spicer, Eleanor K.; Fernandes, Daniel J.

    2009-01-01

    AS1411 is a DNA aptamer that is in phase II clinical trials for relapsed or refractory acute myeloid leukemia and for renal cell carcinoma. AS1411 binds to nucleolin, a protein that is overexpressed in the cytoplasm and on the plasma membrane of some tumor cells compared with normal cells. Studies were performed to determine whether cell surface nucleolin is a receptor for AS1411 in the acute myeloid leukemia cell line MV4-11. Biotinylation of MV4-11 cell surface proteins followed by immunobl...

  13. Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification.

    Science.gov (United States)

    Lee, Cheng-Yu; Wu, Kuan-Ying; Su, Hsiu-Li; Hung, Huan-Yi; Hsieh, You-Zung

    2013-01-15

    In this study, we developed an ultrasensitive label-free aptamer-based electrochemical biosensor, featuring a highly specific anti-human immunoglobulin E (IgE) aptamer as a capture probe, for human IgE detection. Construction of the aptasensor began with the electrodeposition of gold nanoparticles (AuNPs) onto a graphite-based screen-printed electrode (SPE). After immobilizing the thiol-capped anti-human IgE aptamer onto the AuNPs through self-assembly, we treated the electrode with mercaptohexanol (MCH) to ensure that the remaining unoccupied surfaces of the AuNPs would not undergo nonspecific binding. We employed a designed complementary DNA featuring a guanine-rich section in its sequence (cDNA G1) as a detection probe to bind with the unbound anti-human IgE aptamer. We measured the redox current of methylene blue (MB) to determine the concentration of human IgE in the sample. When the aptamer captured human IgE, the binding of cDNA G1 to the aptamer was inhibited. Using cDNA G1 in the assay greatly amplified the redox signal of MB bound to the detection probe. Accordingly, this approach allowed the linear range (coefficient of determination: 0.996) for the analysis of human IgE to extend from 1 to 100,000pM; the limit of detection was 0.16pM. The fabricated aptasensor exhibited good selectivity toward human IgE even when human IgG, thrombin, and human serum albumin were present at 100-fold concentrations. This method should be readily applicable to the detection of other analytes, merely by replacing the anti-human IgE aptamer/cDNA G1 pair with a suitable anti-target molecule aptamer and cDNA. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone.

    Science.gov (United States)

    Lin, Bixia; Yu, Ying; Cao, Yujuan; Guo, Manli; Zhu, Debin; Dai, Jiaxing; Zheng, Minshi

    2018-02-15

    The rapid detection of antibiotic residual in everyday life is very important for food safety. In order to realize the on-site and visual detection of antibiotic, a POCT method was established by using digital image colorimetry based on smartphone. Streptomycin was taken as the analyte model of antibiotics, streptomycin aptamer preferentially recognized analyte, and the excess aptamer hybridized with the complementary DNA to form the dsDNA. SYBR Green I combined with the dsDNA and then emitted obvious green fluorescence, thus the fluorescence intensity decreased with the increasing of streptomycin concentration. Then a smartphone-based device was constructed as the fluorescence readout. The smartphone camera acquired the images of the fluorescence derived from the samples, and the Touch Color APP installed in smartphone read out the RGB values of the images. There was a linear relationship between the G values and the streptomycin concentrations in the range of 0.1-100µM. The detection limit was 94nM, which was lower than the maximum residue limit defined by World Health Organization. The POCT method was applied for determining streptomycin in chicken and milk samples with recoveries in 94.1-110%. This method had the advantages of good selectivity, simple operation and on-site visualization. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Development of 1,1'-oxalyldiimidazole chemiluminescent biosensor using the combination of graphene oxide and hairpin aptamer and its application.

    Science.gov (United States)

    Kwun, Joonsuh; Yun, Soyong; Park, Lucienne; Lee, Ji Hoon

    2014-02-01

    Highly sensitive biosensor with 1,1'-oxalyldiimidazole chemiluminescence (ODI-CL) detection was developed to rapidly quantify Vibrio (V) parahaemolyticus without time-consuming procedures such as multiple long-incubations and washings. When V. parahaemolyticus in Tris-HCl (pH 7) and hairpin DNA aptamer conjugated with TEX615 in DNA free deionized water were consecutively added in PBS buffer (pH 7.4) containing graphene oxides (GOs), V. parahaemolyticus and GOs bind competitively to hairpin DNA aptamer conjugated with TEX615 during 10 min of incubation at room temperature. Brightness of light immediately emitted with the addition of ODI-CL reagents (e.g., ODI, H2O2) after the incubation was dependent on the concentration of V. parahaemolyticus in a sample. The dynamic range of linear calibration curve for the quantification of V. parahaemolyticus in a sample was from 4375 to 70,000 cells/ml. The limit of detection (LOD = background + 3 × standard deviation, 2230 cells/ml) of the biosensor operated with good accuracy, precision, and recovery was lower than those of conventional assay methods such as time-consuming and expensive enzyme-linked immunosorbent assays. © 2013 Published by Elsevier B.V.

  16. An RNA aptamer provides a novel approach for the induction of apoptosis by targeting the HPV16 E7 oncoprotein.

    Directory of Open Access Journals (Sweden)

    Clare Nicol

    Full Text Available BACKGROUND: Human papillomavirus 16 (HPV16 is a high-risk DNA tumour virus, which is a major causative agent of cervical cancer. Cellular transformation is associated with deregulated expression of the E6 and E7 oncogenes. E7 has been shown to bind a number of cellular proteins, including the cell cycle control protein pRb. In this study, RNA aptamers (small, single-stranded oligonucleotides selected for high-affinity binding to HPV16 E7 were employed as molecular tools to further investigate these protein-protein interactions. METHODOLOGY/PRINCIPAL FINDINGS: This study is focused on one aptamer (termed A2. Transfection of this molecule into HPV16-transformed cells resulted in inhibition of cell proliferation (shown using real-time cell electronic sensing and MTT assays due to the induction of apoptosis (as demonstrated by Annexin V/propidium iodide staining. GST-pull down and bead binding assays were used to demonstrate that the binding of A2 required N-terminal residues of E7 known to be involved in interaction with the cell cycle control protein, pRb. Using a similar approach, A2 was shown to disrupt the interaction between E7 and pRb in vitro. Furthermore, transfection of HPV16-transformed cells with A2 appeared to result in the loss of E7 and rise in pRb levels, as observed by immunoblotting. CONCLUSIONS/SIGNIFICANCE: This paper includes the first characterisation of the effects of an E7 RNA aptamer in a cell line derived from a cervical carcinoma. Transfection of cells with A2 was correlated with the loss of E7 and the induction of apoptosis. Aptamers specific for a number of cellular and viral proteins have been documented previously; one aptamer (Macugen is approved for clinical use and several others are in clinical trials. In addition to its role as a molecular tool, A2 could have further applications in the future.

  17. Ultrasensitive electrochemiluminescence detection of thrombin based on aptamer and cystamine modified gold nanoparticle probe

    Science.gov (United States)

    Duan, Ruixue; Zhou, Xiaoming

    2012-03-01

    Recently, our group showed that one can detect specific oligonucleotides at low femtomolar levels with the electrochemiluminescence (ECL) biobarcode approach based on tris-(2, 2'-bipyridyl) ruthenium (TBR)-labeled cysteamine. It would be a significant advance to use the cysteamine assisted ECL biobarcode assay to detect protein targets in addition to DNA targets. Taking advantage of sandwich binding of two affinity aptamers for increased specificity, TBR-cysteamine as biobarcode for signal amplification and magnetic beads based ECL technology for rapid detection, a promising assay for thrombin quantification is developed. The sandwich complex could be selectively captured by micromagnetic particles and then quantified by ECL signals. Current cysteamine-Gold nanoparticle (GNP) conjugates based ECL biobarcode assay is expected to become a powerful tool for protein analysis.

  18. Aptamer-nanoparticle bioconjugates enhance intracellular delivery of vinorelbine to breast cancer cells.

    Science.gov (United States)

    Zhou, Wenhu; Zhou, Yanbin; Wu, Jianping; Liu, Zhenbao; Zhao, Huanzhe; Liu, Juewen; Ding, Jinsong

    2014-01-01

    Targeted uptake of therapeutic nanoparticles in cell- or tissue-specific manner is an attractive technology since they can offer greater efficacy and reduce cytotoxicity on peripheral healthy tissues. In this study, AS1411 (AP), a DNA aptamer specifically binding to nucleolin that is overexpressed on the plasma membrane of breast cancer (BC) cells, was exploited as the targeting ligand of a nanoparticle-based drug delivery system. Vinorelbine (VRL) loaded PLGA-PEG nanoparticles (NP) were formulated by an emulsion/solvent evaporation method, and AP was conjugated to the particle surface using the EDC/NHS technique. The drug-loading efficiency and in vitro drug release studies were measured using HPLC. The resulting AP-NP/VRL formed spherical nanoparticles (AS1411-functionalized nanoparticles are potential carrier candidates for targeted drug delivery towards BC.

  19. Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: application for logic gate operations.

    Science.gov (United States)

    Liu, Xiaoqing; Aizen, Ruth; Freeman, Ronit; Yehezkeli, Omer; Willner, Itamar

    2012-04-24

    Graphene oxide (GO) is implemented as a functional matrix for developing fluorescent sensors for the amplified multiplexed detection of DNA, aptamer-substrate complexes, and for the integration of predesigned DNA constructs that activate logic gate operations. Fluorophore-labeled DNA strands acting as probes for two different DNA targets are adsorbed onto GO, leading to the quenching of the luminescence of the fluorophores. Desorption of the probes from the GO, through hybridization with the target DNAs, leads to the fluorescence of the respective label. By coupling exonuclease III, Exo III, to the system, the recycling of the target DNAs is demonstrated, and this leads to the amplified detection of the DNA targets (detection limit 5 × 10(-12) M). Similarly, adsorption of fluorophore-functionalized aptamers against thrombin or ATP onto the GO leads to the desorption of the aptamer-substrate complexes from GO and to the triggering of the luminescence corresponding to the respective fluorophore, thus, allowing the multiplexed analysis of the aptamer-substrate complexes. By designing functional fluorophore-labeled DNA constructs and their interaction with GO, in the presence (or absence) of nucleic acids, or two different substrates for aptamers, as inputs, the activation of the "OR" and "AND" logic gates is demonstrated.

  20. Identification of an Aptamer Binding to Human Osteogenic-Induced Progenitor Cells

    Science.gov (United States)

    Niederlaender, Jan; Aicher, Wilhelm K.; Reinert, Siegmar; Schweizer, Ernst; Wendel, Hans-Peter; Alexander, Dorothea

    2013-01-01

    The aim of this study was to generate a specific aptamer against human jaw periosteal cells (JPCs) for tissue engineering applications in oral and maxillofacial surgery. This aptamer should serve as a capture molecule to enrich or even purify osteogenic progenitor cells from JPCs or from adult stem cells of other sources. Using systematic evolution of ligands by exponential enrichment (SELEX), we generated the first aptamer to specifically bind to human osteogenically induced JPCs. We did not detect any binding of the aptamer to undifferentiated JPCs, adipogenically and chondrogenically induced JPCs, or to any other cell line tested. However, similar binding patterns of the identified aptamer 74 were detected with mesenchymal stromal cells (MSCs) derived from placental tissue and bone marrow. After cell sorting, we analyzed the expression of osteogenic marker genes in the aptamer 74-positive and aptamer 74-negative fractions and detected no significant differences. Additionally, the analysis of the mineralization capacity revealed a slight tendency for the aptamer positive fraction to have a higher osteogenic potential. In terms of proliferation, JPCs growing in aptamer-coated wells showed increased proliferation rates compared with the controls. Herein, we report the development of an innovative approach for tissue engineering applications. Further studies should be conducted to modify and improve the specificity of the generated aptamer. PMID:23289534

  1. Modified AS1411 Aptamer Suppresses Hepatocellular Carcinoma by Up-Regulating Galectin-14.

    Directory of Open Access Journals (Sweden)

    Yuri Cho

    Full Text Available Aptamers are small synthetic oligonucleotides that bind to target proteins with high specificity and affinity. AS1411 is an aptamer that binds to nucleolin, which is overexpressed in the cytoplasm and occurs on the surface of cancer cells. We investigated the therapeutic potential of aptamers in hepatocellular carcinoma (HCC by evaluating anti-tumor effects and confirming the affinity and specificity of AS1411- and modified AS1411-aptamers in HCC cells. Cell growth was assessed using the MTS assay, and cell death signaling was explored by immunoblot analysis. Fluorescence-activated cell sorting was performed to evaluate the affinity and specificity of AS1411-aptamers in SNU-761 HCC cells. We investigated the in vivo effects of the AS1411-aptamer using BALB/c nude mice in a subcutaneous xenograft model with SNU-761 cells. Treatment with a modified AS1411-aptamer significantly decreased in vitro (under normoxic [P = 0.035] and hypoxic [P = 0.018] conditions and in vivo (under normoxic conditions, P = 0.041 HCC cell proliferation compared to control aptamers. AS1411- and control aptamers failed to control HCC cell proliferation. However, AS1411- and the modified AS1411-aptamer did not induce caspase activation. Decrease in cell growth by AS1411 or modified AS1411 was not prevented by caspase or necrosis inhibitors. In a microarray, AS1411 significantly enhanced galectin-14 expression. Suppression of HCC cell proliferation by the modified AS1411-aptamer was attenuated by galectin-14 siRNA transfection. Modified AS1411-aptamer suppressed HCC cell growth in vitro and in vivo by up-regulating galectin-14 expressions. Modified AS1411-aptamers may have therapeutic potential as a novel targeted therapy for HCC.

  2. Modified AS1411 Aptamer Suppresses Hepatocellular Carcinoma by Up-Regulating Galectin-14.

    Science.gov (United States)

    Cho, Yuri; Lee, Yun Bin; Lee, Jeong-Hoon; Lee, Dong Hyeon; Cho, Eun Ju; Yu, Su Jong; Kim, Yoon Jun; Kim, Jong In; Im, Jong Hun; Lee, Jung Hwan; Oh, Eun Ju; Yoon, Jung-Hwan

    2016-01-01

    Aptamers are small synthetic oligonucleotides that bind to target proteins with high specificity and affinity. AS1411 is an aptamer that binds to nucleolin, which is overexpressed in the cytoplasm and occurs on the surface of cancer cells. We investigated the therapeutic potential of aptamers in hepatocellular carcinoma (HCC) by evaluating anti-tumor effects and confirming the affinity and specificity of AS1411- and modified AS1411-aptamers in HCC cells. Cell growth was assessed using the MTS assay, and cell death signaling was explored by immunoblot analysis. Fluorescence-activated cell sorting was performed to evaluate the affinity and specificity of AS1411-aptamers in SNU-761 HCC cells. We investigated the in vivo effects of the AS1411-aptamer using BALB/c nude mice in a subcutaneous xenograft model with SNU-761 cells. Treatment with a modified AS1411-aptamer significantly decreased in vitro (under normoxic [P = 0.035] and hypoxic [P = 0.018] conditions) and in vivo (under normoxic conditions, P = 0.041) HCC cell proliferation compared to control aptamers. AS1411- and control aptamers failed to control HCC cell proliferation. However, AS1411- and the modified AS1411-aptamer did not induce caspase activation. Decrease in cell growth by AS1411 or modified AS1411 was not prevented by caspase or necrosis inhibitors. In a microarray, AS1411 significantly enhanced galectin-14 expression. Suppression of HCC cell proliferation by the modified AS1411-aptamer was attenuated by galectin-14 siRNA transfection. Modified AS1411-aptamer suppressed HCC cell growth in vitro and in vivo by up-regulating galectin-14 expressions. Modified AS1411-aptamers may have therapeutic potential as a novel targeted therapy for HCC.

  3. Au@Ag/Au nanoparticles assembled with activatable aptamer probes as smart ``nano-doctors'' for image-guided cancer thermotherapy

    Science.gov (United States)

    Shi, Hui; Ye, Xiaosheng; He, Xiaoxiao; Wang, Kemin; Cui, Wensi; He, Dinggeng; Li, Duo; Jia, Xuekun

    2014-07-01

    Although nanomaterial-based theranostics have increased positive expectations from cancer treatment, it remains challenging to develop in vivo ``nano-doctors'' that provide high-contrast image-guided site-specific therapy. Here we designed an activatable theranostic nanoprobe (ATNP) via self-assembly of activatable aptamer probes (AAPs) on Au@Ag/Au nanoparticles (NPs). As both quenchers and heaters, novel Au@Ag/Au NPs were prepared, showing excellent fluorescence quenching and more effective near-infrared photothermal therapy than Au nanorods. The AAP comprised a thiolated aptamer and a fluorophore-labeled complementary DNA; thus, the ATNP with quenched fluorescence in the free state could realize signal activation through target binding-induced conformational change of the AAP, and then achieve on-demand treatment under image-guided irradiation. By using S6 aptamer as the model, in vitro and in vivo studies of A549 lung cancer verified that the ATNP greatly improved imaging contrast and specific destruction, suggesting a robust and versatile theranostic strategy for personalized medicine in future.Although nanomaterial-based theranostics have increased positive expectations from cancer treatment, it remains challenging to develop in vivo ``nano-doctors'' that provide high-contrast image-guided site-specific therapy. Here we designed an activatable theranostic nanoprobe (ATNP) via self-assembly of activatable aptamer probes (AAPs) on Au@Ag/Au nanoparticles (NPs). As both quenchers and heaters, novel Au@Ag/Au NPs were prepared, showing excellent fluorescence quenching and more effective near-infrared photothermal therapy than Au nanorods. The AAP comprised a thiolated aptamer and a fluorophore-labeled complementary DNA; thus, the ATNP with quenched fluorescence in the free state could realize signal activation through target binding-induced conformational change of the AAP, and then achieve on-demand treatment under image-guided irradiation. By using S6 aptamer as

  4. A novel electrochemical aptasensor based on Y-shape structure of dual-aptamer-complementary strand conjugate for ultrasensitive detection of myoglobin.

    Science.gov (United States)

    Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Ramezani, Mohammad; Emrani, Ahmad Sarreshtehdar; Abnous, Khalil

    2016-06-15

    Monitoring of myoglobin (Mb) in human blood serum is highly in demand for early diagnosis of acute myocardial infarction (AMI). Here, a novel electrochemical aptasensor was developed for ultrasensitive and selective detection of Mb, based on Y-shape structure of dual-aptamer (DApt)-complementary strand of aptamer (CS) conjugate, gold electrode and exonuclease I (Exo I). The designed aptasensor obtains features of gold, such as high electrochemical conductivity and large surface area, property of Y-shape structure of DApt-CS conjugate to function as a gate and obstacle for the access of redox probe to the surface of electrode, as well as high specificity and sensitivity of aptamer toward its target and Exo I as an enzyme which specifically degrades the 3'-end of single-stranded DNA (ssDNA). In the absence of Mb, the Y-shape structure remains intact. So, a weak electrochemical signal is observed. Upon addition of target, the DApt leave the CS and bind to Mb, leading to disassembly of Y-shape structure and following the addition of Exo I, a strong electrochemical signal could be recorded. The fabricated aptasensor showed high selectivity toward Mb with a limit of detection (LOD) as low as 27 pM. Besides, the developed aptasensor was effectively applied to detect Mb in human serum. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin.

    Science.gov (United States)

    Mohammad Danesh, Noor; Ramezani, Mohammad; Sarreshtehdar Emrani, Ahmad; Abnous, Khalil; Taghdisi, Seyed Mohammad

    2016-01-15

    Detection and quantitation of antibiotic residues in blood serum and animal foodstuffs are of great significance. In this study, an electrochemical aptasensor was developed for sensitive and selective detection of streptomycin, based on exonuclease I (Exo I), complimentary strand of aptamer (CS), Arch-shape structure of aptamer (Apt)-CS conjugate and gold electrode. The designed aptasensor inherits characteristics of gold including large surface area and high electrochemical conductivity, as well as high sensitivity and selectivity of aptamer toward its target, property of Arch-shape structure of Apt-CS conjugate to act as a gate and barrier for the access of redox probe to the surface of electrode and the function of Exo I as an enzyme which selectively digests the 3'-end of single stranded DNA (ssDNA). In the absence of streptomycin the gate remains closed. Thus, the electrochemical signal is weak. Upon addition of streptomycin, the Apt leaves the CS and binds to streptomycin and the Arch-shape structure is disassembled. Then, Exo I addition leads to a strong electrochemical signal. The designed electrochemical aptasensor exhibited high selectivity toward streptomycin with a limit of detection (LOD) as low as 11.4nM. Moreover, the developed electrochemical aptasensor was successfully used to detect streptomycin in milk and serum with LODs of 14.1 and 15.3nM, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe.

    Science.gov (United States)

    Li, Li; Li, Baoxin; Qi, Yingying; Jin, Yan

    2009-04-01

    We report a simple and sensitive aptamer-based colorimetric detection of mercury ions (Hg(2+)) using unmodified gold nanoparticles as colorimetric probe. It is based on the fact that bare gold nanoparticles interact differently with short single-strand DNA and double-stranded DNA. The anti-Hg(2+) aptamer is rich in thymine (T) and readily forms T-Hg(2+)-T configuration in the presence of Hg(2+). By measuring color change or adsorption ratio, the bare gold nanoparticles can effectively differentiate the Hg(2+)-induced conformational change of the aptamer in the presence of a given salt with high concentration. The assay shows a linear response toward Hg(2+) concentration through a five-decade range of 1 x 10(-4) mol L(-1) to 1 x 10(-9) mol L(-1). Even with the naked eye, we could identify micromolar Hg(2+) concentrations within minutes. By using the spectrometric method, the detection limit was improved to the nanomolar range (0.6 nM). The assay shows excellent selectivity for Hg(2+) over other metal cations including K(+), Ba(2+), Ni(2+), Pb(2+), Cu(2+), Cd(2+), Mg(2+), Ca(2+), Zn(2+), Al(3+), and Fe(3+). The major advantages of this Hg(2+) assay are its water-solubility, simplicity, low cost, visual colorimetry, and high sensitivity. This method provides a potentially useful tool for the Hg(2+) detection.

  7. Application of aptamers in diagnostics, drug-delivery and imaging

    Indian Academy of Sciences (India)

    2016-08-04

    Aug 4, 2016 ... cells. The interaction between an aptamer and its target involves different intermolecular interactions including van der Waal's forces, electrostatic interactions between charged groups ... ary and tertiary structural elements, like stem loops, ... agents. Off-target delivery of drugs during therapeutic treat-.

  8. Regulation of photosensitisation processes by an RNA aptamer

    Science.gov (United States)

    Thoa, Tran Thi Thanh; Minagawa, Noriko; Aigaki, Toshiro; Ito, Yoshihiro; Uzawa, Takanori

    2017-02-01

    One of the most powerful attributes of proteins is their ability to bind to and modulate the chemistry of cofactors and prosthetic groups. Here, we demonstrated the ability of an artificial nucleic acid (an aptamer) to similarly control the functionality of a non-biological element. Specifically, we selected an RNA aptamer that binds tris(bipyridine) ruthenium (II), Ru(bpy)32+, an inorganic complex that has attracted intense interest due to its photoredox chemistry, including its ability to split water by visible light. We found that a newly discovered aptamer strongly and enantioselectively binds Λ-Ru(bpy)32+ (Kd = 65 nM) and, in doing so, selectively suppresses deactivation via energy transfer, thereby elongating the lifetime of its photo-excited state by four-fold. The ability of the aptamer to enhance this important aspect of Ru(bpy)32+ chemistry illustrates a broader point concerning the potential power of combining in vitro-created biomolecules with non-biological reactants to perform enhanced chemical reactions.

  9. Immobilized aptamer paper spray ionization source for ion mobility spectrometry.

    Science.gov (United States)

    Zargar, Tahereh; Khayamian, Taghi; Jafari, Mohammad T

    2017-01-05

    A selective thin-film microextraction based on aptamer immobilized on cellulose paper was used as a paper spray ionization source for ion mobility spectrometry (PSI-IMS), for the first time. In this method, the paper is not only used as an ionization source but also it is utilized for the selective extraction of analyte, based on immobilized aptamer. This combination integrates both sample preparation and analyte ionization in a Whatman paper. To that end, an appropriate sample introduction system with a novel design was constructed for the paper spray ionization source. Using this system, a continuous solvent flow works as an elution and spray solvent simultaneously. In this method, analyte is adsorbed on a triangular paper with immobilized aptamer and then it is desorbed and ionized by elution solvent and applied high voltage on paper, respectively. The effects of different experimental parameters such as applied voltage, angle of paper tip, distance between paper tip and counter electrode, elution solvent type, and solvent flow rate were optimized. The proposed method was exhaustively validated in terms of sensitivity and reproducibility by analyzing the standard solutions of codeine and acetamiprid. The analytical results obtained are promising enough to ensure the use of immobilized aptamer paper-spray as both the extraction and ionization techniques in IMS for direct analysis of biomedicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Aptamer conjugated silver nanoparticles for the detection of interleukin 6

    Science.gov (United States)

    Locke, Andrea K.; Norwood, Nicole; Marks, Haley L.; Schechinger, Monika; Jackson, George W.; Graham, Duncan; Coté, Gerard L.

    2016-03-01

    The controlled assembly of plasmonic nanoparticles by a molecular binding event has emerged as a simple yet sensitive methodology for protein detection. Metallic nanoparticles (NPs) coated with functionalized aptamers can be utilized as biosensors by monitoring changes in particle optical properties, such as the LSPR shift and enhancement of the SERS spectra, in the presence of a target protein. Herein we test this method using two modified aptamers selected for the protein biomarker interleukin 6, an indicator of the dengue fever virus and other diseases including certain types of cancers, diabetes, and even arthritis. IL6 works by inducing an immunological response within the body that can be either anti-inflammatory or pro-inflammatory. The results show that the average hydrodynamic diameter of the NPs as measured by Dynamic Light Scattering was ~42 nm. After conjugation of the aptamers, the peak absorbance of the AgNPs shifted from 404 to 408 nm indicating a surface modification of the NPs due to the presence of the aptamer. Lastly, preliminary results were obtained showing an increase in SERS intensity occurs when the IL-6 protein was introduced to the conjugate solution but the assay will still need to be optimized in order for it to be able to monitor varying concentration changes within and across the desired range.

  11. Duplex Identification of Staphylococcus aureus by Aptamer and Gold Nanoparticles.

    Science.gov (United States)

    Chang, Tianjun; Wang, Libo; Zhao, Kexu; Ge, Yu; He, Meng; Li, Gang

    2016-06-01

    Staphylococcus aureus is the top common pathogen causing infections and food poisoning. Identification of S. aureus is crucial for the disease diagnosis and regulation of food hygiene. Herein, we report an aptamer-AuNPs based method for duplex identification of S. aureus. Using AuNPs as an indicator, SA23, an aptamer against S. aureus, can well identify its target from Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa. Furthermore, we find citrate-coated AuNPs can strongly bind to S. aureus, but not bind to Salmonella enterica and Proteus mirabilis, which leads to different color changes in salt solution. This colorimetric response is capable of distinguishing S. aureus from S. enteritidis and P. mirabilis. Thus, using the aptasensor and AuNPs together, S. aureus can be accurately identified from the common pathogens. This duplex identification system is a promising platform for simple visual identification of S. aureus. Additionally, in the aptasensing process, bacteria are incubated with aptamers and then be removed before the aptamers adding to AuNPs, which may avoid the interactions between bacteria and AuNPs. This strategy can be potentially applied in principle to detect other cells by AuNPs-based aptasensors.

  12. Development of aptamer based HIV-1 entry inhibitor prophylactic drugs

    CSIR Research Space (South Africa)

    London, G

    2013-08-01

    Full Text Available AIDS remains a major public health problem globally, especially in Southern Africa where over 6.4 million people are infected by the most prevalent HIV-1 subtype C. To help stop the spread of HIV-1 subtype C, we isolated 2ʹ-F-RNA aptamers against gp...

  13. Aptamer-loaded Gold Nanoconstructs for Targeted Cancer Therapy

    Science.gov (United States)

    Dam, Duncan Hieu Minh

    Traditional cancer treatments, including chemotherapy, often cause severe side effects in patients. Targeted therapy where tumor cells are targeted via biomarkers overexpressed on the cell surface has been shown to reduce such adverse effects. Monoclonal antibodies (mAbs) are currently the most common chemotherapeutic agents that bind with high affinity to these cancer markers. However, poor intratumoral uptake of mAb and release of drugs from mAb carriers have been the biggest challenge for this delivery method. As a result, recent work has focused on other strategies to improve the efficacy of drug delivery in targeted therapy. Among potential carriers for drug delivery, gold nanoparticles (AuNPs) have emerged as one of the most promising vehicles. This thesis describes the development of a drug delivery nanoconstruct that can both target cancer cells and induce therapeutic effects. The nanoconstructs are composed of gold nanostars (AuNS) as delivery vehicles loaded with the DNA aptamer AS1411 that can target the ubiquitous shuttle protein nucleolin (NCL) in various cancer cell types. The gold nanocarrier stabilizes the oligonucleotides for intracellular delivery and promotes high loading densities of the oligonucleotide drugs. We have investigated the interactions of the nanoconstruct with different subcellular compartments of the cancer cells. This physical phenomenon has shown to correlate with the biological activities such as apoptosis and cell death that happen in the cancer cells after incubation with the nanoconstructs. A thorough screening of the nanoconstructs in 13 different cancer cell lines is conducted to narrow down the potential targets for in vivo study. Before testing the in vivo efficacy, we evaluate the toxicity of the nanoconstructs in non-tumor animals, which confirms its safety for further in vivo applications. The accumulation of the nanoconstructs in two different cancerous tumors, however, suggests that further optimization of the design

  14. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes.

    Science.gov (United States)

    Lee, Sang-Hee; Ahn, Ji-Young; Lee, Kyeong-Ah; Um, Hyun-Ju; Sekhon, Simranjeet Singh; Sun Park, Tae; Min, Jiho; Kim, Yang-Hoon

    2015-06-15

    As a major human pathogen in the Listeria genus, Listeria monocytogenes causes the bacterial disease listeriosis, which is a serious infection caused by eating food contaminated with the bacteria. We have developed an aptamer-based sandwich assay (ABSA) platform that demonstrates a promising potential for use in pathogen detection using aptamers as analytical bioconjugates. The whole-bacteria SELEX (WB-SELEX) strategy was adopted to generate aptamers with high affinity and specificity against live L. monocytogenes. Of the 35 aptamer candidates tested, LMCA2 and LMCA26 reacted to L. monocytogenes with high binding, and were consequently chosen as sensing probes. The ABSA platform can significantly enhance the sensitivity by employing a very specific aptamer pair for the sandwich complex. The ABSA platform exhibited a linear response over a wide concentration range of L. monocytogenes from 20 to 2×10(6) CFU per mL and was closely correlated with the following relationship: y=9533.3x+1542.3 (R(2)=0.99). Our proposed ABSA platform also provided excellent specificity for the tests to distinguish L. monocytogenes from other Listeria species and other bacterial genera (3 Listeria spp., 4 Salmonella spp., 2 Vibrio spp., 3 Escherichia coli and 3 Shigella spp.). Improvements in the sensitivity and specificity have not only facilitated the reliable detection of L. monocytogenes at extremely low concentrations, but also allowed for the development of a 96-well plate-based routine assay platform for multivalent diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites

    DEFF Research Database (Denmark)

    Dupont, Daniel M; Thuesen, Cathrine K; Bøtkjær, Kenneth A

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless......, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic...... potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area...

  16. A Capture-SELEX Strategy for Multiplexed Selection of RNA Aptamers Against Small Molecules

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm; Doessing, Holger B.; Long, Katherine S.

    2018-01-01

    In vitro selection of aptamers that recognize small organic molecules has proven difficult, in part due to the challenge of immobilizing small molecules on solid supports for SELEX (Systematic Evolution of Ligands by Exponential Enrichment). This study describes the implementation of RNA Capture......-SELEX, a selection strategy that uses an RNA library to yield ligand-responsive RNA aptamers targeting small organic molecules in solution. To demonstrate the power of this method we selected several aptamers with specificity towards either the natural sweetener rebaudioside A or the food-coloring agent carminic...... acid. In addition, Bio-layer interferometry is used to screen clonal libraries of aptamer candidates and is used to interrogate aptamer affinity. The RNA-based Capture-SELEX strategy described here simplifies selection of RNA aptamers against small molecules by avoiding ligand immobilization, while...

  17. Nucleic Acid Aptamers Against Biotoxins: A New Paradigm Toward the Treatment and Diagnostic Approach

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm; Veedu, Rakesh N.

    2012-01-01

    to combat these problems. Fully sequestered in vitro, aptamers eliminate the need for a living host. Furthermore, one of the key advantages of using aptamers instead of antibodies is that they can be selected against very weakly immunogenic and cytotoxic substances. In this review, we focus on nucleic acid...... aptamers developed against various biotoxins of plant, microorganism, or animal origin and show how these can be used in diagnostics (e.g., biosensors) and therapy....

  18. Aptamer-drug conjugate: targeted delivery of doxorubicin in a HER3 aptamer-functionalized liposomal delivery system reduces cardiotoxicity.

    Science.gov (United States)

    Dou, Xiao-Qian; Wang, Hua; Zhang, Jing; Wang, Fang; Xu, Gui-Li; Xu, Cheng-Cheng; Xu, Huan-Hua; Xiang, Shen-Si; Fu, Jie; Song, Hai-Feng

    2018-01-01

    The toxic side effects of doxorubicin (DOX) have limited its use in chemotherapy. Neither liposomal DOX nor pegylated liposomal DOX are able to completely resolve this issue. This is a proof-of-concept study testing aptamer-drug conjugate (ApDC) targeted delivery systems for chemotherapeutic drugs. Aptamer library targeting human epidermal growth factor receptor 3 (HER3) was screened and affinity was determined by enzyme-linked immunosorbent assay. Specificity was tested in MCF-7 HER3-high , BT474 HER3-high , and 293T HER3-negative cells using flow cytometry and confocal microscopy. We further developed a HER3 aptamer-functionalized liposome encapsulating DOX and the efficiency of this ApDC was detected by cellular uptake analysis and cell viability assay. In MCF-7 tumor-bearing mice, tumor targeting evaluation, efficacy, toxicity and preliminary pharmocokinetic study was performed. The candidate #13 aptamer had highest affinity (Kd =98±9.7 nM) and specificity. ApDC effectively reduces the half maximal inhibitory concentration of DOX compared with lipsome-DOX and free DOX. In vivo imaging and preliminary distribution studies showed that actively targeted nanoparticles, such as Apt-Lip-DOX molecules, could facilitate the delivery of DOX into tumors in MCF-7-bearing mice. This targeted chemotherapy caused greater tumor suppression than other groups and alleviated side effects such as weight loss, low survival rate, and organ (heart and liver) injury demonstrated by H&E staining. The results indicate that targeted chemotherapy using the aptamer-drug conjugate format could provide better tolerability and efficacy compared with non-targeted delivery in relatively low-dose toxic drugs.

  19. Aptamer-Functionalized Fluorescent Silica Nanoparticles for Highly Sensitive Detection of Leukemia Cells

    Science.gov (United States)

    Tan, Juntao; Yang, Nuo; Hu, Zixi; Su, Jing; Zhong, Jianhong; Yang, Yang; Yu, Yating; Zhu, Jianmeng; Xue, Dabin; Huang, Yingying; Lai, Zongqiang; Huang, Yong; Lu, Xiaoling; Zhao, Yongxiang

    2016-06-01

    A simple, highly sensitive method to detect leukemia cells has been developed based on aptamer-modified fluorescent silica nanoparticles (FSNPs). In this strategy, the amine-labeled Sgc8 aptamer was conjugated to carboxyl-modified FSNPs via amide coupling between amino and carboxyl groups. Sensitivity and specificity of Sgc8-FSNPs were assessed using flow cytometry and fluorescence microscopy. These results showed that Sgc8-FSNPs detected leukemia cells with high sensitivity and specificity. Aptamer-modified FSNPs hold promise for sensitive and specific detection of leukemia cells. Changing the aptamer may allow the FSNPs to detect other types of cancer cells.

  20. Feasibility of Aptamer-Based Sensors for the Real-Time Detection of Protein Targets

    National Research Council Canada - National Science Library

    Stratis-Cullum, Dimitra N

    2006-01-01

    The selective molecular recognition capability and high binding affinity of nucleic acid aptamers is integrated with the signal transduction methodology of molecular beacons for real-time monitoring...

  1. Efficient Reverse Transcription Using Locked Nucleic Acid Nucleotides towards the Evolution of Nuclease Resistant RNA Aptamers

    DEFF Research Database (Denmark)

    Crouzier, Lucile; Dubois, Camille; Edwards, Stacey L

    2012-01-01

    Modified nucleotides are increasingly being utilized in the de novo selection of aptamers for enhancing their drug-like character and abolishing the need for time consuming trial-and-error based post-selection modifications. Locked nucleic acid (LNA) is one of the most prominent and successful...... nucleic acid analogues because of its remarkable properties, and widely explored as building blocks in therapeutic oligonucleotides. Evolution of LNA-modified RNA aptamers requires an efficient reverse transcription method for PCR enrichment of the selected RNA aptamer candidates. Establishing this key...... step is a pre-requisite for performing LNA-modified RNA aptamer selection....

  2. A homogeneous and “off–on” fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yang-Bao [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Ren, Hong-Xia [Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 10049 (China); Gan, Ning, E-mail: ganning@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Zhou, You [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Cao, Yuting, E-mail: caoyuting@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Li, Tianhua [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Chen, Yinji [Faculty of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210000 (China)

    2016-07-27

    In this work, a novel homogeneous and signal “off–on” aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in “off” state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the “off” signal of SSB/L-QD tracer into “on” state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability. - Highlights: • Homogeneous and “off–on” fluorescence aptamer-based assay was developed to detect chloramphenicol (CAP) residues in food. • This probe was fabricated based on a vesicle QDs signal tracer (SSB/L-QD) combining with Au-Aptamer. • The detection mechanism was based on FRET with high specificity. • The results for CAP detection in the milk samples agreed well with those from ELISA, while

  3. Proteomic study of hepatocellular carcinoma using a novel modified aptamer-based array (SOMAscan™) platform.

    Science.gov (United States)

    Qiao, Zhiwei; Pan, Xiaoqing; Parlayan, Cuneyd; Ojima, Hidenori; Kondo, Tadashi

    2017-04-01

    Vascular invasion is a pathological hallmark of hepatocellular carcinoma (HCC), associated with poor prognosis; it is strongly related to the early recurrence and poor survival after curative resection. In order to determine the proteomic backgrounds of HCC carcinogenesis and vascular invasion, we employed a novel modified aptamer-based array (SOMAscan) platform. SOMAscan is based on the Slow Off-rate Modified Aptamers (SOMAmers), which rely on the natural 3D folding of single-stranded DNA-based protein affinity reagents. Currently, the expression level of 1129 proteins can be assessed quantitatively. Correlation matrix analysis showed that the overall proteomic features captured by SOMAscan differ between tumor and non-tumor tissues. Non-tumor tissues were shown to have more homogeneous proteome backgrounds than tumor tissues. A comparative study identified 68 proteins with differential expression between tumor and non-tumor tissues, together with eight proteins associated with vascular invasion. Gene Ontology analysis showed that the extracellular space and extracellular region proteins were predominantly detected. Network analysis revealed the linkage of seven proteins, AKT1, MDM2, PTEN, FGF1, MAPK8, PRKCB, and FN1, which were categorized as the components of "Pathways in cancer" in pathway analysis. The results of SOMAscan analysis were not concordant with those obtained by western blotting; only the determined FN1 levels were concordant between the two platforms. We demonstrated that the proteome captured by SOMAscan includes the proteins relevant to carcinogenesis and vascular invasion in HCC. The identified proteins may serve as candidates for the future studies of disease mechanisms and clinical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Aptamer-functionalized solid phase microextraction-liquid chromatography/tandem mass spectrometry for selective enrichment and determination of thrombin.

    Science.gov (United States)

    Du, Fuyou; Alam, Md Nazmul; Pawliszyn, Janusz

    2014-10-03

    In this publication, a novel solid phase microextraction (SPME) coating functionalized with a DNA aptamer for selective enrichment of a low abundance protein from diluted human plasma is described. This approach is based on the covalent immobilization of an aptamer ligand on electrospun microfibers made with the hydrophilic polymer poly(acrylonitrile-co-maleic acid) (PANCMA) on stainless steel rods. A plasma protein, human α-thrombin, was employed as a model protein for selective extraction by the developed Apt-SPME probe, and the detection was carried out with liquid chromatography/tandem mass spectrometry (LC-MS/MS). The SPME probe exhibited highly selective capture, good binding capacity, high stability and good repeatability for the extraction of thrombin. The protein selective probe was employed for direct extraction of thrombin from 20-fold diluted human plasma samples without any other purification. The Apt-SPME method coupled with LC-MS/MS provided a good linear dynamic range of 0.5-50 nM in diluted human plasma with a good correlation coefficient (R(2)=0.9923), and the detection limit of the proposed method was found to be 0.30 nM. Finally, the Apt-SPME coupled with LC-MS/MS method was successfully utilized for the determination of thrombin in clinical human plasma samples. One shortcoming of the method is its reduced efficiency in undiluted human plasma compared to the standard solution. Nevertheless, this new aptamer affinity-based SPME probe opens up the possibility of selective enrichment of a given targeted protein from complex sample either in vivo or ex vivo. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Renata Rosito Tonelli

    2013-01-01

    Full Text Available Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques.The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen-host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment, were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite-host interaction.In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic

  6. Aptamer- Based Label-Free Electrochemical Biosensor Array for the Detection of Total and Glycated Hemoglobin in Human Whole Blood.

    Science.gov (United States)

    Eissa, Shimaa; Zourob, Mohammed

    2017-04-21

    The increase of the level of glucose in blood leads to an increase in the fraction of glycated hemoglobin (HbA1c). Therefore, the percentage of HbA1c in the blood can serve as a marker for the average glucose level over the past three months and thus, it can be used to diagnose diabetes. Here, we report the selection, identification and characterization of specific DNA aptamers against HbA1c- and total hemoglobin (tHb) and their integration into an electrochemical array sensing platform. High affinity and specificity aptamers were selected in vitro showing dissociation constants of 2.8 and 2.7 nM for HbA1c and tHb, respectively. Thiol-modified forms of the aptamers were then immobilised on gold nanoparticles (AuNPs)-modified array electrodes and used for the label-free detection of HbA1c and tHb using square wave voltammetry. The voltammetric aptasensors showed high sensitivity with detection limits of 0.2 and 0.34 ng/ml for HbA1c and tHb, respectively. This array platform is superior to the currently available immunoassays in terms of simplicity, stability, ease of use, reduction of sample volume and low cost. Moreover, this method enabled the detection of HbA1c % in human whole blood without any pre-treatment, suggesting great promise of this platform for the diagnosis of diabetes.

  7. Aptamer-Functionalized and Backbone Redox-Responsive Hyperbranched Polymer for Targeted Drug Delivery in Cancer Therapy.

    Science.gov (United States)

    Zhuang, Yuanyuan; Deng, Hongping; Su, Yue; He, Lin; Wang, Ruibin; Tong, Gangsheng; He, Dannong; Zhu, Xinyuan

    2016-06-13

    A novel type of backbone redox-responsive hyperbranched poly(2-((2-(acryloyloxy)ethyl)disulfanyl)ethyl 4-cyano-4-(((propylthio)carbonothioyl)-thio)-pentanoate-co-poly(ethylene glycol) methacrylate) (HPAEG) has been designed and prepared successfully via the combination of reversible addition-fragmentation chain-transfer (RAFT) polymerization and self-condensing vinyl polymerization (SCVP). Owing to the existence of surface vinyl groups, HPAEG could be efficiently functionalized by DNA aptamer AS1411 via Michael addition reaction to obtain an active tumor targeting drug delivery carrier (HPAEG-AS1411). The amphiphilic HPAEG-AS1411 could form nanoparticles by macromolecular self-assembly strategy. Cell Counting Kit-8 (CCK-8) assay illustrated that HPAEG-AS1411 nanoparticles had low cytotoxicity to normal cell line. Flow cytometry and confocal laser scanning microscopy (CLSM) results demonstrated that HPAEG-AS1411 nanoparticles could be internalized into tumor cells via aptamer-mediated endocytosis. Compared with pure HPAEG nanoparticles, HPAEG-AS1411 nanoparticles displayed enhanced tumor cell uptake. When the HPAEG-AS1411 nanoparticles loaded with anticancer drug doxorubicin (DOX) were internalized into tumor cells, the disulfide bonds in the backbone of HPAEG-AS1411 were cleaved by glutathione (GSH) in the cytoplasm, so that DOX was released rapidly. Therefore, DOX-loaded HPAEG-AS1411 nanoparticles exhibited a high tumor cellular proliferation inhibition rate and low cytotoxicity to normal cells. This aptamer-functionalized and backbone redox-responsive hyperbranched polymer provides a promising platform for targeted drug delivery in cancer therapy.

  8. Searching for avidity by chemical ligation of combinatorially self-assembled DNA-encoded ligand libraries.

    Science.gov (United States)

    Matysiak, Stefan; Hellmuth, Klaus; El-Sagheer, Afaf H; Shivalingam, Arun; Ariyurek, Yavuz; de Jong, Marco; Hollestelle, Martine J; Out, Ruud; Brown, Tom

    2017-12-19

    DNA encoded ligands are self-assembled into bivalent complexes and chemically ligated to link their identities. To demonstrate their potential as a combinatorial screening platform for avidity interactions, the optimal bivalent aptamer design (examplar ligands) for human alpha-thrombin is determined in a single round of selection and the DNA scaffold replaced with minimal impact on the final design.

  9. Colorimetric Detection of Hg2+Based on the Growth of Aptamer-Coated AuNPs: The Effect of Prolonging Aptamer Strands.

    Science.gov (United States)

    Tan, Lulu; Chen, Zhengbo; Zhang, Chi; Wei, Xiangcong; Lou, Tianhong; Zhao, Yan

    2017-04-01

    Herein, a versatile and sensitive colorimetric sensor for Hg 2+ based on aptamer-target specific binding and target-mediated growth of AuNPs is reported. The 15 T bases are first designed to detect Hg 2+ through T-Hg 2+ -T coordination. Aptamer-target binding results in the desorption of the aptamer from AuNP surface, the remaining aptamers adsorbed on AuNP surface trigger the growth of AuNPs with morphologically varied nanostructures, and then different colored solutions are formed. On this occasion, the limit of detection (LOD) of 9.6 × 10 -9 m is obtained. The other two aptamer strands (25- and 59-mer) are designed by increasing A bases on either side and both sides of 15 T, respectively. The interaction of the binding domain and Hg 2+ makes desorption of 15 T from AuNP surface, whereas excess bases not committed to the binding domain still adsorbed on AuNP surface. These excess bases control the growth of AuNPs, and enhance the sensitivity. The LODs are 4.05 and 3 × 10 -9 m for 25- and 59-mer aptamers, respectively. In addition, the 59-mer aptamer system is applied to identify Hg 2+ in real river samples, the LOD of 6.2 × 10 -9 m is obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Light-up and FRET aptamer reporters; evaluating their applications for imaging transcription in eukaryotic cells.

    Science.gov (United States)

    Ilgu, Muslum; Ray, Judhajeet; Bendickson, Lee; Wang, Tianjiao; Geraskin, Ivan M; Kraus, George A; Nilsen-Hamilton, Marit

    2016-04-01

    The regulation of RNA transcription is central to cellular function. Changes in gene expression drive differentiation and cellular responses to events such as injury. RNA trafficking can also have a large impact on protein expression and its localization. Thus, the ability to image RNA transcription and trafficking in real time and in living cells is a worthwhile goal that has been difficult to achieve. The availability of "light-up" aptamers that cause an increase in fluorescence of their ligands when bound by the