WorldWideScience

Sample records for heme perturbations induced

  1. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death.

    Directory of Open Access Journals (Sweden)

    Lilibeth Lanceta

    Full Text Available Earlier observations indicate that free heme is selectively toxic to cells lacking heme oxygenase-1 (HO-1 but how this enzyme prevents heme toxicity remains unexplained. Here, using A549 (human lung cancer and immortalized human bronchial epithelial cells incubated with exogenous heme, we find knock-down of HO-1 using siRNA does promote the accumulation of cell-associated heme and heme-induced cell death. However, it appears that the toxic effects of heme are exerted by "loose" (probably intralysosomal iron because cytotoxic effects of heme are lessened by pre-incubation of HO-1 deficient cells with desferrioxamine (which localizes preferentially in the lysosomal compartment. Desferrioxamine also decreases lysosomal rupture promoted by intracellularly generated hydrogen peroxide. Supporting the importance of endogenous oxidant production, both chemical and siRNA inhibition of catalase activity predisposes HO-1 deficient cells to heme-mediated killing. Importantly, it appears that HO-1 deficiency somehow blocks the induction of ferritin; control cells exposed to heme show ~10-fold increases in ferritin heavy chain expression whereas in heme-exposed HO-1 deficient cells ferritin expression is unchanged. Finally, overexpression of ferritin H chain in HO-1 deficient cells completely prevents heme-induced cytotoxicity. Although two other products of HO-1 activity--CO and bilirubin--have been invoked to explain HO-1-mediated cytoprotection, we conclude that, at least in this experimental system, HO-1 activity triggers the induction of ferritin and the latter is actually responsible for the cytoprotective effects of HO-1 activity.

  2. Investigations of ultrafast ligand rebinding to heme and heme proteins using temperature and strong magnetic field perturbations

    Science.gov (United States)

    Zhang, Zhenyu

    study the ligand recombination after photolysis. No magnetic field induced rate changes are observed in any of these ligand recombination processes within the experimental detection limit. A magnetic field dependent CO rebinding behavior is observed for the FePPIX-CO sample in 80%glycerol/20%water environment. Careful data analysis indicates that this magnetic field induced change is due to the amplitude difference of a "fast" (Tesla to ˜45% at 10 Tesla). Kinetics of CO rebinding to FePPIX in 80%glycerol at the extremes of the magnetic field intensities (0Tesla vs. 10 Tesla) can be decomposed into a ligand rebinding process plus two 5ps decays heme cooling with different amplitudes. It leads to suggest a magnetic field induced change of a short-lived heme cooling response after photolysis. Also, CO rebinding kinetics to different heme compounds demonstrates a wide range for the Arrhenius pre-factors. This work reveals that the "spin-selection rule" does not play a key role in the recombination process of CO to heme iron. In Appendix 1, the recombination of oxymyoglobin and its mutants is investigated in the temperature range from 275K to 318K, using a home-made cryostat. Quite surprisingly, the O2 molecule rebinds to heme iron inside myoglobin with dramatically different behavior as the temperature is varied, depending on the protein environment. It shows little dependence (Mb), no dependence (V68W Mb mutant) and large dependence (L29W Mb mutant) in this 40K temperature window. To expand this temperature window, since the motor inside the cryostat is capable to work as low as 230K, glycerol is introduced into the protein preparation. It is observed that protein samples in a glycerol/water mixture, even with only 20% glycerol (in weight), the temperature dependences of the O2 rebinding to heme iron are dramatically altered. The O 2 rebinding behavior also shows a high dependence on the glycerol concentration in the solution. In Appendix 2, the absorption spectra of Fe

  3. Dietary heme-mediated PPARα activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon.

    Directory of Open Access Journals (Sweden)

    Noortje Ijssennagger

    Full Text Available Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome analysis of mucosa of heme-fed mice showed, besides stress- and proliferation-related genes, many upregulated lipid metabolism-related PPARα target genes. The aim of this study was to investigate the role of PPARα in heme-induced hyperproliferation and hyperplasia. Male PPARα KO and WT mice received a purified diet with or without heme. As PPARα is proposed to protect against oxidative stress and lipid peroxidation, we hypothesized that the absence of PPARα leads to more surface injury and crypt hyperproliferation in the colon upon heme-feeding. Heme induced luminal cytotoxicity and lipid peroxidation and colonic hyperproliferation and hyperplasia to the same extent in WT and KO mice. Transcriptome analysis of colonic mucosa confirmed similar heme-induced hyperproliferation in WT and KO mice. Stainings for alkaline phosphatase activity and expression levels of Vanin-1 and Nrf2-targets indicated a compromised antioxidant defense in heme-fed KO mice. Our results suggest that the protective role of PPARα in antioxidant defense involves the Nrf2-inhibitor Fosl1, which is upregulated by heme in PPARα KO mice. We conclude that PPARα plays a protective role in colon against oxidative stress, but PPARα does not mediate heme-induced hyperproliferation. This implies that oxidative stress of surface cells is not the main determinant of heme-induced hyperproliferation and hyperplasia.

  4. Effect of a heme oxygenase-1 inducer on NADPH oxidase ...

    African Journals Online (AJOL)

    Purpose: To investigated the effect of hemin, a heme oxygenase-1 (HO-1) inducer, on nicotinamide adenine dinucleotide phosphate oxidase (NOX) expression in rats with alcohol-induced liver injury. Methods: Male Wistar rats were randomly divided into four groups consisting of the control group, the ethanol (EtOH) group, ...

  5. Heme Degradation by Heme Oxygenase Protects Mitochondria but Induces ER Stress via Formed Bilirubin

    Directory of Open Access Journals (Sweden)

    Andrea Müllebner

    2015-04-01

    Full Text Available Heme oxygenase (HO, in conjunction with biliverdin reductase, degrades heme to carbon monoxide, ferrous iron and bilirubin (BR; the latter is a potent antioxidant. The induced isoform HO-1 has evoked intense research interest, especially because it manifests anti-inflammatory and anti-apoptotic effects relieving acute cell stress. The mechanisms by which HO mediates the described effects are not completely clear. However, the degradation of heme, a strong pro-oxidant, and the generation of BR are considered to play key roles. The aim of this study was to determine the effects of BR on vital functions of hepatocytes focusing on mitochondria and the endoplasmic reticulum (ER. The affinity of BR to proteins is a known challenge for its exact quantification. We consider two major consequences of this affinity, namely possible analytical errors in the determination of HO activity, and biological effects of BR due to direct interaction with protein function. In order to overcome analytical bias we applied a polynomial correction accounting for the loss of BR due to its adsorption to proteins. To identify potential intracellular targets of BR we used an in vitro approach involving hepatocytes and isolated mitochondria. After verification that the hepatocytes possess HO activity at a similar level as liver tissue by using our improved post-extraction spectroscopic assay, we elucidated the effects of increased HO activity and the formed BR on mitochondrial function and the ER stress response. Our data show that BR may compromise cellular metabolism and proliferation via induction of ER stress. ER and mitochondria respond differently to elevated levels of BR and HO-activity. Mitochondria are susceptible to hemin, but active HO protects them against hemin-induced toxicity. BR at slightly elevated levels induces a stress response at the ER, resulting in a decreased proliferative and metabolic activity of hepatocytes. However, the proteins that are targeted

  6. Heme Oxygenase-1 and breast cancer resistance protein protect against heme-induced toxicity

    NARCIS (Netherlands)

    Wagener, Frank A D T G; Dankers, Anita C A; van Summeren, Frank; Scharstuhl, Alwin; van den Heuvel, Jeroen J M W; Koenderink, Jan B; Pennings, Sebastiaan W C; Russel, Frans G M; Masereeuw, R.

    2013-01-01

    Heme is the functional group of diverse hemoproteins and crucial for many cellular processes. However, heme is increasingly recognized as a culprit for a wide variety of pathologies, including sepsis, malaria, and kidney failure. Excess of free heme can be detrimental to tissues by mediating

  7. Heme Oxygenase-1 and Breast Cancer Resistance Protein Protect Against Heme-induced Toxicity

    NARCIS (Netherlands)

    Wagener, F.A.D.T.G.; Dankers, A.C.A.; Summeren, F. van; Scharstuhl, A.; Heuvel, J.J. van den; Koenderink, J.B.; Pennings, S.W.C.; Russel, F.G.M.; Masereeuw, R.

    2013-01-01

    Heme is the functional group of diverse hemoproteins and crucial for many cellular processes. However, heme is increasingly recognized as a culprit for a wide variety of pathologies, including sepsis, malaria, and kidney failure. Excess of free heme can be detrimental to tissues by mediating

  8. Dietary Heme Induces Gut Dysbiosis, Aggravates Colitis, and Potentiates the Development of Adenomas in Mice

    Directory of Open Access Journals (Sweden)

    Marco Constante

    2017-09-01

    Full Text Available Dietary heme can be used by colonic bacteria equipped with heme-uptake systems as a growth factor and thereby impact on the microbial community structure. The impact of heme on the gut microbiota composition may be particularly pertinent in chronic inflammation such as in inflammatory bowel disease (IBD, where a strong association with gut dysbiosis has been consistently reported. In this study we investigated the influence of dietary heme on the gut microbiota and inferred metagenomic composition, and on chemically induced colitis and colitis-associated adenoma development in mice. Using 16S rRNA gene sequencing, we found that mice fed a diet supplemented with heme significantly altered their microbiota composition, characterized by a decrease in α-diversity, a reduction of Firmicutes and an increase of Proteobacteria, particularly Enterobacteriaceae. These changes were similar to shifts seen in dextran sodium sulfate (DSS-treated mice to induce colitis. In addition, dietary heme, but not systemically delivered heme, contributed to the exacerbation of DSS-induced colitis and facilitated adenoma formation in the azoxymethane/DSS colorectal cancer (CRC mouse model. Using inferred metagenomics, we found that the microbiota alterations elicited by dietary heme resulted in non-beneficial functional shifts, which were also characteristic of DSS-induced colitis. Furthermore, a reduction in fecal butyrate levels was found in mice fed the heme supplemented diet compared to mice fed the control diet. Iron metabolism genes known to contribute to heme release from red blood cells, heme uptake, and heme exporter proteins, were significantly enriched, indicating a shift toward favoring the growth of bacteria able to uptake heme and protect against its toxicity. In conclusion, our data suggest that luminal heme, originating from dietary components or gastrointestinal bleeding in IBD and, to lesser extent in CRC, directly contributes to microbiota dysbiosis

  9. Natural chlorophyll but not chlorophyllin prevents heme-induced cytotoxic and hyperproliferative effects in rat colon

    NARCIS (Netherlands)

    Vogel, de J.; Jonker-Termont, D.S.M.L.; Katan, M.B.; Meer, van der R.

    2005-01-01

    Diets high in red meat and low in green vegetables are associated with an increased risk of colon cancer. In rats, dietary heme, mimicking red meat, increases colonic cytotoxicity and proliferation of the colonocytes, whereas addition of chlorophyll from green vegetables inhibits these heme-induced

  10. Structure of the heme/hemoglobin outer membrane receptor ShuA from Shigella dysenteriae: heme binding by an induced fit mechanism.

    Science.gov (United States)

    Cobessi, David; Meksem, Ahmed; Brillet, Karl

    2010-02-01

    Shigella dysentriae and other Gram-negative human pathogens are able to use iron from heme bound to hemoglobin for growing. We solved at 2.6 A resolution the 3D structure of the TonB-dependent heme/hemoglobin outer membrane receptor ShuA from S. dysenteriae. ShuA binds to hemoglobin and transports heme across the outer membrane. The structure consists of a C-terminal domain that folds into a 22-stranded transmembrane beta-barrel, which is filled by the N-terminal plug domain. One distal histidine ligand of heme is located at the apex of the plug, exposed to the solvent. His86 is situated 9.86 A apart from His420, the second histidine involved in the heme binding. His420 is in the extracellular loop L7. The heme coordination by His86 and His420 involves conformational changes. The comparisons with the hemophore receptor HasR of Serratia marcescens bound to HasA-Heme suggest an extracellular induced fit mechanism for the heme binding. The loop L7 contains hydrophobic residues which could interact with the hydrophobic porphyring ring of heme. The energy required for the transport by ShuA is derived from the proton motive force after interactions between the periplasmic N-terminal TonB-box of ShuA and the inner membrane protein, TonB. In ShuA, the TonB-box is buried and cannot interact with TonB. The structural comparisons with HasR suggest its conformational change upon the heme binding for interacting with TonB. The signaling of the heme binding could involve a hydrogen bond network going from His86 to the TonB-box. (c) 2009 Wiley-Liss, Inc.

  11. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.F. [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Carneiro, A.B.; Silveira, A.B. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); Laranja, G.A.T. [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); Silva-Neto, M.A.C. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); INCT, Entomologia Molecular (Brazil); Costa, S.C. Goncalves da [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Paes, M.C., E-mail: mcpaes@uerj.br [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); INCT, Entomologia Molecular (Brazil)

    2009-12-18

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  12. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury.

    Science.gov (United States)

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A; Traylor, Amie; Agarwal, Anupam; Matalon, Sadis

    2016-01-10

    Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1-/-) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. This is the first study delineating the role of heme in ALI caused by Br2. The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI.

  13. Rapamycin Induces Heme Oxygenase-1 in Liver but Inhibits Bile Flow Recovery after Ischemia

    NARCIS (Netherlands)

    Kist, Alwine; Wakkie, Joris; Madu, Max; Versteeg, Ruth; ten Berge, Judith; Nikolic, Andrej; Nieuwenhuijs, Vincent B.; Porte, Robert J.; Padbury, Robert T. A.; Barritt, Greg J.

    Background/Aims. Rapamycin, which is employed in the management of patients undergoing liver surgery, induces the synthesis of heme oxygenase-1 (HO-1) in some non-liver cell types. The aim was to investigate whether rapamycin can induce HO-1 expression in the liver, and to test the effects of

  14. Protein oxidation mediated by heme-induced active site conversion specific for heme-regulated transcription factor, iron response regulator.

    Science.gov (United States)

    Kitatsuji, Chihiro; Izumi, Kozue; Nambu, Shusuke; Kurogochi, Masaki; Uchida, Takeshi; Nishimura, Shin-ichiro; Iwai, Kazuhiro; O'Brian, Mark R; Ikeda-Saito, Masao; Ishimori, Koichiro

    2016-01-05

    The Bradyrhizobium japonicum transcriptional regulator Irr (iron response regulator) is a key regulator of the iron homeostasis, which is degraded in response to heme binding via a mechanism that involves oxidative modification of the protein. Here, we show that heme-bound Irr activates O2 to form highly reactive oxygen species (ROS) with the "active site conversion" from heme iron to non-heme iron to degrade itself. In the presence of heme and reductant, the ROS scavenging experiments show that Irr generates H2O2 from O2 as found for other hemoproteins, but H2O2 is less effective in oxidizing the peptide, and further activation of H2O2 is suggested. Interestingly, we find a time-dependent decrease of the intensity of the Soret band and appearance of the characteristic EPR signal at g = 4.3 during the oxidation, showing the heme degradation and the successive formation of a non-heme iron site. Together with the mutational studies, we here propose a novel "two-step self-oxidative modification" mechanism, during which O2 is activated to form H2O2 at the heme regulatory motif (HRM) site and the generated H2O2 is further converted into more reactive species such as ·OH at the non-heme iron site in the His-cluster region formed by the active site conversion.

  15. Plasmodium-infected erythrocytes (pRBC induce endothelial cell apoptosis via a heme-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    Liu M

    2016-03-01

    Full Text Available Mingli Liu, Carmen Dickinson-Copeland, Salifu Hassana, Jonathan K Stiles Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA Abstract: Heme is cytotoxic to the plasmodium parasite, which converts it to an insoluble crystalline form called hemozoin (malaria pigment in erythrocytes during replication. The increased serum levels of free heme cause tissue damage, activation of microvascular endothelial and glial cells, focal inflammation, activation of apoptotic pathways, and neuronal tissue damage. Several hypotheses have been proposed to explain how these causative factors exacerbate fatal malaria. However, none of them fully explain the detailed mechanisms leading to the high morbidity and mortality associated with malaria. We have previously reported that heme-induced brain microvascular endothelial cell (HBVEC apoptosis is a major contributor to severe malaria pathogenesis. Here, we hypothesized that heme (at clinically relevant levels induces inflammation and apoptosis in HBVEC, a process that is mediated by independent proinflammatory and proapoptotic signaling pathways. In this study, we determined the key signaling molecules associated with heme-mediated apoptosis in HBVEC in vitro using RT2 profiler polymerase chain reaction array technology and confirmed results using immunostaining techniques. While several expressed genes in HBVEC were altered upon heme stimulation, we determined that the apoptotic effects of heme were mediated through p73 (tumor protein p73. The results provide an opportunity to target heme-mediated apoptosis therapeutically in malaria-infected individuals. Keywords: heme, endothelial cells, signaling pathways, cerebral malaria

  16. Therapeutic Roles of Heme Oxygenase-1 in Metabolic Diseases: Curcumin and Resveratrol Analogues as Possible Inducers of Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Yong Son

    2013-01-01

    Full Text Available Metabolic diseases, such as insulin resistance, type II diabetes, and obesity, are associated with a low-grade chronic inflammation (inflammatory stress, oxidative stress, and endoplasmic reticulum (ER stress. Because the integration of these stresses is critical to the pathogenesis of metabolic diseases, agents and cellular molecules that can modulate these stress responses are emerging as potential targets for intervention and treatment of metabolic diseases. It has been recognized that heme oxygenase-1 (HO-1 plays an important role in cellular protection. Because HO-1 can reduce inflammatory stress, oxidative stress, and ER stress, in part by exerting antioxidant, anti-inflammatory, and antiapoptotic effects, HO-1 has been suggested to play important roles in pathogenesis of metabolic diseases. In the present review, we will explore our current understanding of the protective mechanisms of HO-1 in metabolic diseases and present some emerging therapeutic options for HO-1 expression in treating metabolic diseases, together with the therapeutic potential of curcumin and resveratrol analogues that have their ability to induce HO-1 expression.

  17. Heme oxygenase suppresses markers of heart failure and ameliorates cardiomyopathy in L-NAME-induced hypertension.

    Science.gov (United States)

    Ndisang, Joseph Fomusi; Chibbar, Rajni; Lane, Nina

    2014-07-05

    Heart failure and related cardiac complications remains a great health challenge. We investigated the effects of upregulating heme-oxygenase (HO) on myocardial histo-pathological lesions, proinflammatory cytokines/chemokines, oxidative mediators and important markers of heart failure such as osteopontin and osteoprotergerin in N(ω)-nitro-l-arginine methyl ester (L-NAME)-induced hypertension. Treatment with the HO-inducer, heme-arginate improved myocardial morphology in L-NAME hypertensive rats by attenuating subendocardial injury, interstitial fibrosis, mononuclear-cell infiltration and cardiomyocyte hypertrophy. These were associated with the reduction of several inflammatory/oxidative mediators including chemokines/cytokines such as macrophage inflammatory protein-1 alpha (MIP-1α), macrophage chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1β, endothelin-1, 8-isoprostane, nitrotyrosine, and aldosterone. Similarly, heme-arginate abated the elevated levels of extracellular matrix/remodeling proteins including transforming-growth factor beta (TGF-β1) and collagen-IV in the myocardium. These were accompanied by significant reduction of proteins of heart failure such as osteopontin and osteoprotegerin. Interestingly, the cardio-protective effects of heme-arginate were associated with the potentiation of adiponectin, atrial-natriuretic peptide (ANP), HO-1, HO-activity, cyclic gnanosine monophosphate (cGMP) and the total-anti-oxidant capacity, whereas the HO-inhibitor, chromium-mesoporphyrin nullified the effects of heme-arginate, exacerbating inflammatory injury and oxidative insults. We conclude that heme-arginate therapy protects myocardial damage by potentiating the HO-adiponectin-ANP axis, which in turn suppressed the elevated levels of aldosterone, pro-inflammatory chemokines/cytokines, mononuclear-cell infiltration and oxidative stress, with concomitant reduction of extracellular matrix/remodeling proteins and

  18. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    Science.gov (United States)

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Dietary heme mediated PPARα activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon

    NARCIS (Netherlands)

    IJssennagger, Noortje; Wit, de Nicole; Muller, Michael; Meer, van der Roelof

    2012-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome

  20. Dietary heme-mediated PPARa activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon

    NARCIS (Netherlands)

    IJssenagger, N.; Wit, de N.J.W.; Muller, M.R.; Meer, van der R.

    2012-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome

  1. Heme oxygenase-1 end-products carbon monoxide and biliverdin ameliorate murine collagen induced arthritis.

    Science.gov (United States)

    Bonelli, M; Savitskaya, A; Steiner, C-W; Rath, E; Bilban, M; Wagner, O; Bach, F H; Smolen, J S; Scheinecker, C

    2012-01-01

    Heme oxygenase-1 (HO-1) which degrades Heme to free iron, biliverdin and carbon monoxide (CO) plays an important role in inflammation. There are, however, conflicting data concerning the role of HO-1 in rheumatoid arthritis (RA) and the therapeutic potential of individual heme degradation products remains to be determined. We therefore investigated the effect of CO and biliverdin upon therapeutic administration in the murine collagen induced arthritis (CIA) model of RA. CIA was induced in DBA/1 mice. Anti-CII antibody levels were determined by ELISA. Mice were scored for paw swelling and grip strength. After the first clinical signs of arthritis one group of animals was treated with biliverdin, the second group was treated with CO. After 60 days all animals were sacrificed and analysed for histomorphological signs of arthritis. All animals immunised with CII developed serum anti-CII antibodies. Antibody levels were decreased in the CO-treated group. Both, Biliverdin and the CO-treated animals, showed an improvement in clinical disease activity. Histological analysis revealed significantly less inflammation, erosion and reduced numbers of osteoclasts in CO-treated animals only, whereas cartilage degradation was prevented in both biliverdin and CO-treated animals. Our data demonstrate a beneficial effect of CO, in particular, and biliverdin, on inflammation and bone destruction in the CIA mouse model.

  2. Effect of a heme oxygenase-1 inducer on NADPH oxidase ...

    African Journals Online (AJOL)

    induced liver injury. Methods: ... macromolecules especially lipids, proteins and .... includes fatty liver, alcoholic hepatitis and cirrhosis, and eventually causes hepatocellular carcinoma. Research including in vitro, in vivo and clinical studies was ...

  3. Auranofin protects against cocaine-induced hepatic injury through induction of heme oxygenase-1.

    Science.gov (United States)

    Ashino, Takashi; Sugiuchi, Jinko; Uehara, Junna; Naito-Yamamoto, Yumiko; Kenmotsu, Sachiyo; Iwakura, Yoichiro; Shioda, Seiji; Numazawa, Satoshi; Yoshida, Takemi

    2011-10-01

    Auranofin, a disease-modifying gold compound, has been empirically applying to the management of rheumatoid arthritis. We investigated a protective effect of auranofin against hepatic injury induced by cocaine. Cocaine (75 mg/kg) markedly increased serum alanine amino transferase (ALT) (4,130 IU/l) and aspartate amino transferase (AST) (1,730 IU/l) activities at 16 hr after treatment, and induced hepatic necrosis surrounding central veins in mice. Concurrently, overexpression of heme oxygenase-1 (HO-1), a rate-limiting enzyme for heme degradation and an oxidative stress marker, was identified at the edges of cocaine-mediated necrotic area. Auranofin (10 mg/ml, i.p.) significantly induced hepatic HO-1 protein in mice from 12 hr after treatment. Interestingly, pretreatment with auranofin resulted in the prevention of the increase of serum ALT and AST activities in a dose-dependent manner. On the other hand, although cocaine increased tumor necrosis factor α (TNFα) gene expression in mouse livers, cocaine-induced liver injury was observed in TNFα deficient mice as well as wild-type mice. Auranofin-inducted HO-1 gene expression was observed in human primary hepatocytes as well as mouse primary hepatocytes. The present findings suggest that auranofin is effective in preventing cocaine-induced hepatic injury, and HO-1 may contribute to protect against chemically-induced cytotoxicity.

  4. G-quadruplex DNAzymes-induced highly selective and sensitive colorimetric sensing of free heme in rat brain.

    Science.gov (United States)

    Li, Ruimin; Jiang, Qin; Cheng, Hanjun; Zhang, Guoqiang; Zhen, Mingming; Chen, Daiqin; Ge, Jiechao; Mao, Lanqun; Wang, Chunru; Shu, Chunying

    2014-04-21

    Direct selective determination of free heme in the cerebral system is of great significance due to the crucial roles of free heme in physiological and pathological processes. In this work, a G-quadruplex DNAzymes-induced highly sensitive and selective colorimetric sensing of free heme in rat brain is established. Initially, the conformation of an 18-base G-rich DNA sequence, PS2.M (5'-GTGGGTAGGGCGGGTTGG-3'), in the presence of K(+), changes from a random coil to a "parallel" G-quadruplex structure, which can bind free heme in the cerebral system with high affinity through π-π stacking. The resulted heme/G-quadruplex complex exhibits high peroxidase-like activity, which can be used to catalyze the oxidation of colorless ABTS(2-) to green ABTS˙(-) by H2O2. The concentration of heme can be evaluated by the naked eye and determined by UV-vis spectroscopy. The signal output showed a linear relationship for heme within the concentration range from 1 to 120 nM with a detection limit of 0.637 nM. The assay demonstrated here was highly selective and free from the interference of physiologically important species such as dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), ascorbate acid (AA), cysteine, uric acid (UA), glucose and lactate in the cerebral system. The basal dialysate level of free heme in the microdialysate from the striatum of adult male Sprague-Dawley rats was determined to be 32.8 ± 19.5 nM (n = 3). The analytic protocol possesses many advantages, including theoretical simplicity, low-cost technical and instrumental demands, and responsible detection of heme in rat brain microdialysate.

  5. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Costa, P.G. [Programa de Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Branco, L.G.S. [Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Leite-Panissi, C.R.A. [Programa de Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-09-19

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress.

  6. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.

    Science.gov (United States)

    Zhang, Tiantian; Bu, Pengli; Zeng, Joey; Vancura, Ales

    2017-10-13

    Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Under aerobic conditions, the budding yeast Saccharomyces cerevisiae metabolizes glucose predominantly by glycolysis and fermentation. We have recently shown that altered chromatin structure in yeast induces respiration by a mechanism that requires transport and metabolism of pyruvate in mitochondria. However, how pyruvate controls the transcriptional responses underlying the metabolic switch from fermentation to respiration is unknown. Here, we report that this pyruvate effect involves heme. We found that heme induces transcription of HAP4, the transcriptional activation subunit of the Hap2/3/4/5p complex, required for growth on nonfermentable carbon sources, in a Hap1p- and Hap2/3/4/5p-dependent manner. Increasing cellular heme levels by inactivating ROX1, which encodes a repressor of many hypoxic genes, or by overexpressing HEM3 or HEM12 induced respiration and elevated ATP levels. Increased heme synthesis, even under conditions of glucose repression, activated Hap1p and the Hap2/3/4/5p complex and induced transcription of HAP4 and genes required for the tricarboxylic acid (TCA) cycle, electron transport chain, and oxidative phosphorylation, leading to a switch from fermentation to respiration. Conversely, inhibiting metabolic flux into the TCA cycle reduced cellular heme levels and HAP4 transcription. Together, our results indicate that the glucose-mediated repression of respiration in budding yeast is at least partly due to the low cellular heme level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Orthodontic forces induce the cytoprotective enzyme heme oxygenase-1 in rats

    Directory of Open Access Journals (Sweden)

    Christiaan M. Suttorp

    2016-07-01

    Full Text Available Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL, and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalization. Heme oxygenase-1 (HO-1 forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Ni-Ti 10 cN coil spring. The contralateral side served as control. After 6, 12, 72, 96 and 120 hrs rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of multinuclear osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in the mononuclear cell population within the PDL at both the apposition- and resorption side. Shortly after appliance placement HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 hours. Some osteoclasts were HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of cytoprotective enzymes as HO-1 in the PDL determines the level of hyalinization and, subsequently, fast and slow tooth movers during orthodontic treatment.

  8. Heme-Oxygenase-1 Expression Contributes to the Immunoregulation Induced by Fasciola hepatica and Promotes Infection

    Directory of Open Access Journals (Sweden)

    Paula Carasi

    2017-07-01

    Full Text Available Fasciola hepatica, also known as the liver fluke, is a trematode that infects livestock and humans causing fasciolosis, a zoonotic disease of increasing importance due to its worldwide distribution and high economic losses. This parasite immunoregulates the host immune system by inducing a strong Th2 and regulatory T immune response by immunomodulating dendritic cell (DC maturation and alternative activation of macrophages. In this paper, we show that F. hepatica infection in mice induces the upregulation of heme-oxygenase-1 (HO-1, the rate-limiting enzyme in the catabolism of free heme that regulates the host inflammatory response. We show and characterize two different populations of antigen presenting cells that express HO-1 during infection in the peritoneum of infected animals. Cells that expressed high levels of HO-1 expressed intermediate levels of F4/80 but high expression of CD11c, CD38, TGFβ, and IL-10 suggesting that they correspond to regulatory DCs. On the other hand, cells expressing intermediate levels of HO-1 expressed high levels of F4/80, CD68, Ly6C, and FIZZ-1, indicating that they might correspond to alternatively activated macrophages. Furthermore, the pharmacological induction of HO-1 with the synthetic metalloporphyrin CoPP promoted F. hepatica infection increasing the clinical signs associated with the disease. In contrast, treatment with the HO-1 inhibitor SnPP protected mice from parasite infection, indicating that HO-1 plays an essential role during F. hepatica infection. Finally, HO-1 expression during F. hepatica infection was associated with TGFβ and IL-10 levels in liver and peritoneum, suggesting that HO-1 controls the expression of these immunoregulatory cytokines during infection favoring parasite survival in the host. These results contribute to the elucidation of the immunoregulatory mechanisms induced by F. hepatica in the host and provide alternative checkpoints to control fasciolosis.

  9. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein.

    Science.gov (United States)

    Charuchinda, Pairpilin; Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Yamada, Daisuke; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-01-01

    Physiological and functional properties of lipid droplet-associated proteins in algae remain scarce. We report here the caleosin gene from Chlorella vulgaris encodes a protein of 279 amino acid residues. Amino acid sequence alignment showed high similarity to the putative caleosins from fungi, but less to plant caleosins. When the C. vulgaris TISTR 8580 cells were treated with salt stress (0.3 M NaCl), the level of triacylglycerol increased significantly. The mRNA contents for caleosin in Chlorella cells significantly increased under salt stress condition. Caleosin gene was expressed in E. coli. Crude extract of E. coli cells exhibited the cumene hydroperoxide-dependent oxidation of aniline. Absorption spectroscopy showed a peak around 415 nm which was decreased upon addition of cumene hydroperoxide. Native polyacrylamide gel electrophoresis suggests caleosin existed as the oligomer. These data indicate that a fresh water C. vulgaris TISTR 8580 contains a salt-induced heme-protein caleosin.

  10. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure.

    Science.gov (United States)

    Yang, Liming; Quan, Shuo; Nasjletti, Alberto; Laniado-Schwartzman, Michal; Abraham, Nader G

    2004-06-01

    The heme-heme oxygenase (HO) system has been implicated in the regulation of vascular reactivity and blood pressure. This study examines the notion that overexpression of HO decreases pressor responsiveness to angiotensin II (Ang II). Five-day-old Sprague-Dawley rats received an intraleft ventricular injection of approximately 5x10(9) cfu/mL of retroviruses containing human HO-1 sense (LSN-HHO-1), rat HO-1 antisense (LSN-RHO-1-AS), or control retrovirus (LXSN). Three months later, rats were instrumented with femoral arterial and venous catheters for mean arterial pressure (MAP) determination and Ang II administration, respectively. Rats injected with LSN-HHO-1, but not with LXSN, expressed human HO-1 mRNA and protein in several tissues. BP increased with administration of Ang II in rats expressing and not expressing human HO-1. However, the Ang II-induced pressor response (mm Hg) in LSN-HHO-1 rats (16+/-3, 27+/-3, and 38+/-3 at 0.5, 2, and 10 ng) was surpassed (PHHO-1 rats with the HO inhibitor tin mesoporphyrin (SnMP) enhanced (P<0.05) the Ang II-induced pressor response to a level not different from that observed in LXSN rats. Rats injected with LSN-RHO-1-AS showed a decrease in renal HO-1 protein expression and HO activity relative to control LXSN rats. Administration of Ang II (0.1 to 2 ng) caused small (4 to 5 mm Hg) but significant increases in MAP in rats injected with LSN-RHO-1-AS (P<0.05) compared with rats injected with LXSN. These data demonstrate that overexpression of HO-1 brings about a reduction in pressor responsiveness to Ang II, which is most likely due to increased generation of an HO-1 product, presumably CO, with the ability to inhibit vascular reactivity to constrictor stimuli.

  11. Negative feedback regulation of lipopolysaccharide-induced inducible nitric oxide synthase gene expression by heme oxygenase-1 induction in macrophages.

    Science.gov (United States)

    Ashino, Takashi; Yamanaka, Rieko; Yamamoto, Masayuki; Shimokawa, Hiroaki; Sekikawa, Kenji; Iwakura, Yoichiro; Shioda, Seiji; Numazawa, Satoshi; Yoshida, Takemi

    2008-04-01

    Heme oxygenase-1 (HO-1) is induced under infectious diseases in macrophages. We performed experiments using various gene deficient mouse-derived macrophages to determine a detailed induction mechanism of HO-1 by lipopolysaccharide (LPS) and the functional role of HO-1 induction in macrophages. LPS (1 microg/mL) maximally induced inducible nitric oxide synthase (iNOS) and HO-1 mRNAs in wild-type (WT) macrophages at 6h and 12h after treatment, respectively, and liberated tumor necrosis factor alpha (TNFalpha) from WT macrophages. LPS also induced iNOS and HO-1 in TNFalpha(-/-) macrophages, but not in iNOS(-/-) macrophages. Interestingly, although LPS strongly induced iNOS, it failed to induce HO-1 almost completely in nuclear-factor erythroid 2-related factor 2 (Nrf2)(-/-) macrophages. The LPS-induced iNOS gene expression was suppressed by pretreatment with HO-1 inducers, hemin and Co-protoporphyrin (CoPP), but not with HO-1 inhibitor, Sn-protoporphyrin in WT macrophages. In the Nrf2(-/-) macrophages, the ability of CoPP to induce HO-1 and its inhibitory effect on the LPS-induced iNOS gene expression were lower than seen in WT macrophages. The present findings suggest that HO-1 is induced via NO-induced nuclear translocation of Nrf2, and the enzymatic function of HO-1 inhibits the overproduction of NO in macrophages.

  12. Brain death induces renal expression of heme oxygenase-1 and heat shock protein 70

    Directory of Open Access Journals (Sweden)

    van Dullemen Leon FA

    2013-01-01

    Full Text Available Abstract Background Kidneys derived from brain dead donors have lower graft survival and higher graft-function loss compared to their living donor counterpart. Heat Shock Proteins (HSP are a large family of stress proteins involved in maintaining cell homeostasis. We studied the role of stress-inducible genes Heme Oxygenase-1 (HO-1, HSP27, HSP40, and HSP70 in the kidney following a 4 hour period of brain death. Methods Brain death was induced in rats (n=6 by inflating a balloon catheter in the epidural space. Kidneys were analysed for HSPs using RT-PCR, Western blotting, and immunohistochemistry. Results RT-PCR data showed a significant increase in gene expression for HO-1 and HSP70 in kidneys of brain dead rats. Western blotting revealed a massive increase in HO-1 protein in brain dead rat kidneys. Immunohistochemistry confirmed these findings, showing extensive HO-1 protein expression in the renal cortical tubules of brain dead rats. HSP70 protein was predominantly increased in renal distal tubules of brain dead rats treated for hypotension. Conclusion Renal stress caused by brain death induces expression of the cytoprotective genes HO-1 and HSP70, but not of HSP27 and HSP40. The upregulation of these cytoprotective genes indicate that renal damage occurs during brain death, and could be part of a protective or recuperative mechanism induced by brain death-associated stress.

  13. Mutations in the FMN domain modulate MCD spectra of the heme site in the oxygenase domain of inducible nitric oxide synthase.

    Science.gov (United States)

    Sempombe, Joseph; Elmore, Bradley O; Sun, Xi; Dupont, Andrea; Ghosh, Dipak K; Guillemette, J Guy; Kirk, Martin L; Feng, Changjian

    2009-05-27

    The nitric oxide synthase (NOS) output state for NO production is a complex of the flavin mononucleotide (FMN)-binding domain and the heme domain, and thereby it facilitates the interdomain electron transfer from the FMN to the catalytic heme site. Emerging evidence suggests that interdomain FMN-heme interactions are important in the formation of the output state because they guide the docking of the FMN domain to the heme domain. In this study, notable effects of mutations in the adjacent FMN domain on the heme structure in a human iNOS bidomain oxygenase/FMN construct have been observed by using low-temperature magnetic circular dichroism (MCD) spectroscopy. The comparative MCD study of wild-type and mutant proteins clearly indicates that a properly docked FMN domain contributes to the observed L-Arg perturbation of the heme MCD spectrum in the wild-type protein and that the conserved surface residues in the FMN domain (E546 and E603) play key roles in facilitating a productive alignment of the FMN and heme domains in iNOS.

  14. Mutations in the FMN Domain Modulate MCD Spectra of the Ferric Heme in the Oxygenase Domain of Inducible Nitric Oxide Synthase

    Science.gov (United States)

    Sempombe, Joseph; Elmore, Bradley O.; Sun, Xi; Dupont, Andrea; Ghosh, Dipak K.; Guillemette, J. Guy; Kirk, Martin L.; Feng, Changjian

    2009-01-01

    The NOS ouput state for NO production is a complex of the FMN-binding domain and heme domain, and thereby it faciltates the interdomain electron transfer from the FMN to the catalytic heme site. Emerging evidence suggests that interdomain FMN/heme interactions are important in formation of the output state by guiding the docking of the FMN domain to the heme domain. In this study, notable effects of mutations in the adjacent FMN domain on the heme structure in a human iNOS bi-domain oxygnease/FMN construct have been observed by using low-temperature MCD spectroscopy. The comparative MCD study of wild type and mutant proteins clearly indicate that a properly docked FMN domain contributes to the observed l-Arg-perturbation of heme MCD spectrum in the wild type protein, and that the conserved surface residues at the FMN domain (E546 and E603) play key roles in facilitating a productive alignment of the FMN and heme domains in iNOS. PMID:19405537

  15. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gui-bo; Sun, Xiao; Wang, Min [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Ye, Jing-xue [Jilin Agricultural University, No.2888, Xincheng Street, Changchun, 130021, Jilin (China); Si, Jian-yong [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Xu, Hui-bo [Academy of Chinese Medical Sciences of Jilin Province, Gongnongda road 1745, Changchun, 130021, Jiblin (China); Meng, Xiang-bao; Qin, Meng; Sun, Jing [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China); Wang, Hong-wei, E-mail: hwang@nju.edu.cn [Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093 (China); Sun, Xiao-bo, E-mail: sunsubmit@163.com [Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 (China)

    2012-12-01

    Luteolin, a flavonoid that exhibits antioxidative properties, exerts myocardial protection effects. However, the underlying molecular mechanisms are not yet fully understood. To investigate the effects of luteolin on myocardial injury protection and its possible mechanisms, a myocardial injury model was established with intragastric administration of 4 mg/kg isoproterenol (ISO) to male Sprague–Dawley rats (200–220 g) daily for 2 days. We found that pretreatment of luteolin (160, 80 and 40 mg/kg, i.g., respectively) daily for 15 days can prevent ISO-induced myocardial damage, including decrease of serum cardiac enzymes, improvement electrocardiography and heart vacuolation. Luteolin also improved the free radical scavenging and antioxidant potential, suggesting one possible mechanism of luteolin-induced cardio-protection is mediated by blocking the oxidative stress. To clarify the mechanisms, we performed the in vitro study by hydrogen peroxide (H{sub 2}O{sub 2})-induced cytotoxicty model in H9c2 cells. We found that luteolin pretreatment prevented apoptosis, increased the expression of heme oxygenase-1 (HO-1), and enhanced the binding of Nrf2 to the antioxidant response element, providing an adaptive survival response against H{sub 2}O{sub 2}-derived oxidative cytotoxicity. The addition of Znpp, a selective HO-1 competitive inhibitor, reduced the cytoprotective ability of luteolin, indicating the vital role of HO-1 on these effects. Luteolin also activated Akt and ERK, whereas the addition of LY294002 and U0126, the pharmacologic inhibitors of PI3K and ERK, attenuated luteolin-induced HO-1 expression and cytoprotective effect. Taken together, the above findings suggest that luteolin protects against myocardial injury and enhances cellular antioxidant defense capacity through the activation of Akt and ERK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction. -- Highlights: ► Luteolin prevents isoproterenol-induced myocardial damage.

  16. Inducible Promoter Systems for Gene Perturbation Experiments in Arabidopsis.

    Science.gov (United States)

    Thomson, Bennett; Graciet, Emmanuelle; Wellmer, Frank

    2017-01-01

    Assessing molecular changes that occur through altering a gene's activity is often hampered by difficulties that arise due to the typically static nature of the introduced perturbation. This is especially problematic when investigating molecular events at specific stages and/or in certain tissues or organs during Arabidopsis development. To circumvent these issues, we have employed chemically inducible artificial microRNAs (amiRNAs) for the specific knockdown of developmental regulators. For our own research, we have combined this gene perturbation approach with a floral induction system, which allows the simultaneous induction of a large number of flowers on the inflorescence of a single plant, and the ability to knock down a gene's activity at any given stage of development. To enable the plant community to avail of the full benefits of these systems, we describe, in this chapter, strategies for amiRNA-mediated gene perturbations and address some common problems that can be encountered when generating inducible amiRNA constructs, growing these plants, and collecting floral buds for analysis.

  17. Heme oxygenase-1 prevents smoke induced B-cell infiltrates: a role for regulatory T cells?

    Directory of Open Access Journals (Sweden)

    Luinge Marjan A

    2008-02-01

    Full Text Available Abstract Background Smoking is the most important cause for the development of COPD. Since not all smokers develop COPD, it is obvious that other factors must be involved in disease development. We hypothesize that heme oxygenase-1 (HO-1, a protective enzyme against oxidative stress and inflammation, is insufficiently upregulated in COPD. The effects of HO-1 modulation on cigarette smoke induced inflammation and emphysema were tested in a smoking mouse model. Methods Mice were either exposed or sham exposed to cigarette smoke exposure for 20 weeks. Cobalt protoporphyrin or tin protoporphyrin was injected during this period to induce or inhibit HO-1 activity, respectively. Afterwards, emphysema development, levels of inflammatory cells and cytokines, and the presence of B-cell infiltrates in lung tissue were analyzed. Results Smoke exposure induced emphysema and increased the numbers of inflammatory cells and numbers of B-cell infiltrates, as well as the levels of inflammatory cytokines in lung tissue. HO-1 modulation had no effects on smoke induced emphysema development, or the increases in neutrophils and macrophages and inflammatory cytokines. Interestingly, HO-1 induction prevented the development of smoke induced B-cell infiltrates and increased the levels of CD4+CD25+ T cells and Foxp3 positive cells in the lungs. Additionally, the CD4+CD25+ T cells correlated positively with the number of Foxp3 positive cells in lung tissue, indicating that these cells were regulatory T cells. Conclusion These results support the concept that HO-1 expression influences regulatory T cells and indicates that this mechanism is involved in the suppression of smoke induced B-cell infiltrates. The translation of this interaction to human COPD should now be pursued.

  18. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase.

    Science.gov (United States)

    Hull, Travis D; Bolisetty, Subhashini; DeAlmeida, Angela C; Litovsky, Silvio H; Prabhu, Sumanth D; Agarwal, Anupam; George, James F

    2013-08-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (myosin heavy chain (MHC)-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice), with mice containing an hHO-1 transgene preceded by a floxed-stop signal. MHC-HO-1 mice overexpress HO-1 mRNA and the enzymatically active protein following TAM administration (40 mg/kg body weight on 2 consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity, and also because inflammation is an important pathological component of many human cardiovascular diseases.

  19. Unconjugated bilirubin mediates heme oxygenase-1-induced vascular benefits in diabetic mice.

    Science.gov (United States)

    Liu, Jian; Wang, Li; Tian, Xiao Yu; Liu, Limei; Wong, Wing Tak; Zhang, Yang; Han, Quan-Bin; Ho, Hing-Man; Wang, Nanping; Wong, Siu Ling; Chen, Zhen-Yu; Yu, Jun; Ng, Chi-Fai; Yao, Xiaoqiang; Huang, Yu

    2015-05-01

    Heme oxygenase-1 (HO-1) exerts vasoprotective effects. Such benefit in diabetic vasculopathy, however, remains unclear. We hypothesize that bilirubin mediates HO-1-induced vascular benefits in diabetes. Diabetic db/db mice were treated with hemin (HO-1 inducer) for 2 weeks, and aortas were isolated for functional and molecular assays. Nitric oxide (NO) production was measured in cultured endothelial cells. Hemin treatment augmented endothelium-dependent relaxations (EDRs) and elevated Akt and endothelial NO synthase (eNOS) phosphorylation in db/db mouse aortas, which were reversed by the HO-1 inhibitor SnMP or HO-1 silencing virus. Hemin treatment increased serum bilirubin, and ex vivo bilirubin treatment improved relaxations in diabetic mouse aortas, which was reversed by the Akt inhibitor. Biliverdin reductase silencing virus attenuated the effect of hemin. Chronic bilirubin treatment improved EDRs in db/db mouse aortas. Hemin and bilirubin reversed high glucose-induced reductions in Akt and eNOS phosphorylation and NO production. The effect of hemin but not bilirubin was inhibited by biliverdin reductase silencing virus. Furthermore, bilirubin augmented EDRs in renal arteries from diabetic patients. In summary, HO-1-induced restoration of endothelial function in diabetic mice is most likely mediated by bilirubin, which preserves NO bioavailability through the Akt/eNOS/NO cascade, suggesting bilirubin as a potential therapeutic target for clinical intervention of diabetic vasculopathy. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Nicotinic receptor activation by epibatidine induces heme oxygenase-1 and protects chromaffin cells against oxidative stress.

    Science.gov (United States)

    Egea, Javier; Rosa, Angelo O; Cuadrado, Antonio; García, Antonio G; López, Manuela G

    2007-09-01

    Activation of neuronal nicotinic acetylcholine receptors (nAChR) provides neuroprotection against different toxic stimuli that often lead to overproduction of reactive oxygen species (ROS) and cell death. ROS production has been related with disease progression in several neurodegenerative pathologies such as Alzheimer's or Parkinson's diseases. In this context, we investigated here if the exposure of bovine chromaffin cells to the potent nAChR agonist epibatidine protected against rotenone (30 micromol/L) plus oligomycin (10 micromol/L) (rot/oligo) toxicity, an in vitro model of mitochondrial ROS production. Epibatidine induced a concentration- and time-dependent protection, which was maximal at 3 mumol/L after 24 h. Pre-incubation with dantrolene (100 micromol/L) (a blocker of the ryanodine receptor channel), chelerythrine (1 micromol/L) (a protein kinase C inhibitor), or PD98059 (50 micromol/L) (a MEK inhibitor), aborted epibatidine-elicited cytoprotection. Mitochondrial depolarization, ROS, and caspase 3 active produced by rot/oligo were also prevented by epibatidine. Epibatidine doubled the amount of heme oxygenase-1 (HO-1), a critical cell defence enzyme against oxidative stress. Furthermore, the HO-1 inhibitor Sn(IV) protoporphyrin IX dichloride reversed the epibatidine protecting effects and HO-1 inducer Co (III) protoporphyrin IX dichloride exhibited neuroprotective effects by itself. The results of this study point to HO-1 as the cytoprotective target of nAChR activation through the following pathway: endoplasmic reticulum Ca(2+)-induced Ca(2+)-release activates the protein kinase C/extracellular regulated kinase/HO-1 axis to mitigate mitochondrial depolarization and ROS production. This study provides a mechanistic insight on how nAChR activation translates into an antioxidant and antiapoptotic signal through up-regulation of HO-1.

  1. Arachidonic Acid Induces ARE/Nrf2-Dependent Heme Oxygenase-1 Transcription in Rat Brain Astrocytes.

    Science.gov (United States)

    Lin, Chih-Chung; Yang, Chien-Chung; Chen, Yu-Wen; Hsiao, Li-Der; Yang, Chuen-Mao

    2017-05-11

    Arachidonic acid (AA) is a major product of phospholipid hydrolysis catalyzed by phospholipase A2 during neurodegenerative diseases. AA exerts as a second messenger to regulate various signaling components which may be involved in different pathophysiological processes. Astrocytes are the main types of CNS resident cells which maintain and support the physiological function of brain. AA has been shown to induce ROS generation through activation of NADPH oxidases (Noxs) which may play a key role in the expression of heme oxygenase-1 (HO-1). Therefore, this study was designed to investigate the mechanisms underlying AA-induced HO-1 expression in rat brain astrocytes (RBA-1). We found that AA induced HO-1 protein and mRNA expression and promoter activity in RBA-1, which was mediated through the synthesis of 15-deoxy-Δ12,14-prostaglandin D2-activated peroxisome proliferator-activated receptor-γ (PPARγ) receptors. This note was confirmed by transfection with PPARγ small interfering RNAs (siRNA) which attenuated the AA-mediated responses. AA-induced HO-1 expression was mediated through Nox/ROS generation, which was inhibited by Nox inhibitors (diphenyleneiodonium and apocynin) and ROS scavengers (N-acetyl cysteine). Moreover, AA-induced HO-1 expression was mediated through phosphorylation of Src, Pyk2, platelet-derived growth factor, PI3K/Akt, and ERK1/2 which were inhibited by the pharmacological inhibitors including PP1, PF431396, AG1296, LY294002, and U0126 or by transfection with respective siRNAs. AA-enhanced Nrf2 expression and HO-1 promoter activity was inhibited by transfection with Nrf2 siRNA or by these pharmacological inhibitors. Furthermore, chromatin immunoprecipitation assay confirmed that Nrf2 and PPARγ were associated with the proximal antioxidant response element (ARE)-binding site on HO-1 promoter, suggesting that Nrf2/PPARγ are key transcription factors modulating HO-1 expression. AA-induced ARE promoter activity was also reduced by these

  2. Ataxia telangiectasia mutated inhibits oxidative stress-induced apoptosis by regulating heme oxygenase-1 expression.

    Science.gov (United States)

    Yu, Ji Hoon; Cho, Soon Ok; Lim, Joo Weon; Kim, Nanhee; Kim, Hyeyoung

    2015-03-01

    Ataxia telangiectasia (AT) is caused by mutational inactivation of the ataxia telangiectasia mutated (Atm) gene, which is involved in DNA repair. Increased oxidative stress has been shown in human AT cells and neuronal tissues of Atm-deficient mice. Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme and protects cells against oxidative stress. The purpose of this study is to determine whether ATM induces antioxidant enzyme HO-1 and protects cells from oxidative stress-mediated apoptosis by driving the activation of PKC-δ and NF-κB, by increasing cell viability, and by downregulating DNA fragmentation and apoptotic indicators (apoptosis-inducing factor and cleaved caspase-3). AT fibroblasts stably transfected with human full-length ATM cDNA (YZ5 cells) or the empty vector (MOCK cells) were treated with H2O2 as a source of reactive oxygen species (ROS). As a result, transfection with ATM inhibited ROS-induced cell death and DNA fragmentation in MOCK cells. Transfection with ATM induced expression of HO-1 which was mediated by PKC-δ and NF-κB in H2O2-treated MOCK cells. ZnPP, an HO-1 inhibitor, and transfection with HO-1 siRNA increased ROS levels and apoptosis, whereas hemin, an HO-1 activator, reduced ROS levels and apoptosis in H2O2-treated YZ5 cells. Rottlerin, a PKC-δ inhibitor, inhibited NF-κB activation and HO-1 expression in H2O2-treated YZ5 cells. MOCK cells showed increased cell death, DNA fragmentation, and apoptotic indicators compared to YZ5 cells exposed to H2O2. In addition, transfection with p65 siRNA increased ROS levels and DNA fragmentation, but decreased HO-1 protein levels in H2O2-treated YZ5 cells. In conclusion, ATM induces HO-1 expression via activation of PKC-δ and NF-κB and inhibits oxidative stress-induced apoptosis. A loss of HO-1 induction may explain why AT patients are vulnerable to oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Remote Ischemic Preconditioning Protects against Liver Ischemia-Reperfusion Injury via Heme Oxygenase-1-Induced Autophagy

    Science.gov (United States)

    Xiong, Xuanxuan; Xu, Yonghua; Zhang, Hai; Huang, Changjun; Tian, Yuan; Jiao, Chengyu; Wang, Xuehao; Li, Xiangcheng

    2014-01-01

    Background Growing evidence has linked autophagy to a protective role of preconditioning in liver ischemia/reperfusion (IR). Heme oxygenase-1 (HO-1) is essential in limiting inflammation and preventing the apoptotic response to IR. We previously demonstrated that HO-1 is up-regulated in liver graft after remote ischemic preconditioning (RIPC). The aim of this study was to confirm that RIPC protects against IR via HO-1-mediated autophagy. Methods RIPC was performed with regional ischemia of limbs before liver ischemia, and HO-1 activity was inhibited pre-operation. Autophagy was assessed by the expression of light chain 3-II (LC3-II). The HO-1/extracellular signal-related kinase (ERK)/p38/mitogen-activated protein kinase (MAPK) pathway was detected in an autophagy model and mineral oil-induced IR in vitro. Results In liver IR, the expression of LC3-II peaked 12–24 h after IR, and the ultrastructure revealed abundant autophagosomes in hepatocytes after IR. Autophagy was inhibited when HO-1 was inactivated, which we believe resulted in the aggravation of liver IR injury (IRI) in vivo. Hemin-induced autophagy also protected rat hepatocytes from IRI in vitro, which was abrogated by HO-1 siRNA. Phosphorylation of p38-MAPK and ERK1/2 was up-regulated in hemin-pretreated liver cells and down-regulated after treatment with HO-1 siRNA. Conclusions RIPC may protect the liver from IRI by induction of HO-1/p38-MAPK-dependent autophagy. PMID:24914543

  4. Heme Oxygenase-1 Mediates Oxidative Stress and Apoptosis in Coxsackievirus B3-Induced Myocarditis

    Directory of Open Access Journals (Sweden)

    Oana N. Ursu

    2014-01-01

    Full Text Available Background: Heme oxygenase-1 (HO-1, which is suggested to play a role in defending the organism against oxidative stress-mediated injuries, can be induced by diverse factors including viruses and iron. As coxsackievirus B3 (CVB3-infected SWR/J mice susceptible for chronic myocarditis were found to have a significant iron incorporation and HO-1 upregulation in the myocardium, we aimed to investigate the molecular interplay between HO-1 expression and iron homeostasis in the outcome of viral myocarditis. Methods and Results: In susceptible SWR/J mice, but not in resistant C57BL/6 mice, we observed at later stages of CVB3 myocarditis significant iron deposits in macrophages and also in cardiomyocytes, which were spatially associated with oxidative stress, upregulation of HO-1 and caspase-3 activation. HO-1, which is also expressed in cultivated RAW 264.7 macrophages upon incubation with iron and/or CVB3, could be downregulated by inhibition of NO/iNOS using L-NAME. Moreover, specific inhibition of HO-1 by tin mesoporphyrin revealed a suppression of superoxide production in iron and/or CVB3-treated macrophages. The molecular relationship of HO-1 and caspase-3 activation was proven by downregulation with HO-1 siRNA in iron- and/or CVB3-treated cultivated cells. Importantly, iron was found to increase viral replication in vitro. Conclusion: These results indicate that HO-1 induces a paracrine signalling in macrophages via reactive oxygen species production, mediating apoptosis of heart muscle cells at later stages of myocarditis. Notably, in genetically susceptible mice iron potentiates the detrimental effects of CVB3 by the NO/HO-1 pathway, thus increasing cardiac pathogenicity.

  5. Regulation of myoblast differentiation by metabolic perturbations induced by metformin.

    Directory of Open Access Journals (Sweden)

    Theodora Pavlidou

    Full Text Available The metabolic perturbation caused by calorie restriction enhances muscle repair by playing a critical role in regulating satellite cell availability and activity in the muscles of young and old mice. To clarify the underlying mechanisms we asked whether myoblast replication and differentiation are affected by metformin, a calorie restriction-mimicking drug. C2C12, a mouse myoblast cell line, readily differentiate in vitro and fuse to form myotubes. However, when incubated with metformin, C2C12 slow their replication and do not differentiate. Interestingly, lower doses of metformin promote myogenic differentiation. We observe that metformin treatment modulates the expression of cyclins and cyclin inhibitors thereby inducing a cell cycle perturbation that causes a delay in the G2/M transition. The effect of metformin treatment is reversible since after drug withdrawal, myoblasts can re-enter the cell cycle and/or differentiate, depending on culture conditions. Myoblasts cultured under metformin treatment fail to up-regulate MyoD and p21cip1, a key step in cell cycle exit and terminal differentiation. Although the details of the molecular mechanisms underlying the effect of the drug on myoblasts still need to be clarified, we propose that metformin negatively affects myogenic differentiation by inhibiting irreversible exit from the cell cycle through reduction of MyoD and p21cip1 levels.

  6. Heme on innate immunity and inflammation

    Directory of Open Access Journals (Sweden)

    Fabianno Ferreira Dutra

    2014-05-01

    Full Text Available Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prostetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion and hemorrhage. The plasma scavanger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavange heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce ROS generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review we will discuss the mechanisms behind heme-induced citotoxicity and inflammation and the consequences of these events on different tissues and diseases.

  7. Protective effect of heme oxygenase-1 gene transfer against oxyhemoglobin-induced endothelial dysfunction.

    Science.gov (United States)

    Eguchi, D; Weiler, D; Alam, J; Nath, K; Katusic, Z S

    2001-10-01

    The current study was designed to determine the effect of recombinant heme oxygenase-1 (HO-1) gene expression on endothelial function in cerebral arteries. Isolated canine basilar arteries were exposed ex vivo (30 minutes at 37 degrees C) to an adenoviral vector (10(10) PFU/mL, total volume 300 microL) encoding either the HO-1 gene (AdCMVHO-1) or the beta-galactosidase (beta-Gal) reporter gene (AdCMVbeta-Gal). Twenty-four hours after transduction, arterial rings were suspended in organ chamber for isometric force recording. Endothelium-dependent relaxations were obtained in response to bradykinin (10(-10) to 10(-6) mol/L) during contraction to uridine-5'-triphosphate (UTP; 3 x 10(-6) to 3 x 10(-5) mol/L). Certain rings were incubated with oxyhemoglobin (OxyHb; 10(-5) mol/L) overnight (16 to 18 hours of 24 hours). Expression and localization of recombinant protein were shown by Western blot analysis and immunohistochemistry. Endothelium-dependent relaxation to bradykinin and endothelium-independent relaxation to forskolin (10(-9) to 10(-5) mol/L) and DEA-NONOate (10(-10) to 10(-5) mol/L) were identical in beta-Gal- and HO-1-transduced arteries. Exposure to OxyHb caused impairment of endothelium-dependent relaxation to bradykinin (P arteries expressing recombinant HO-1 ( P > 0.05). This protective effect of HO-1 was reversed by coincubation with tin protoporphyrin (SnPP9; 10(-5) mol/L), a selective inhibitor of HO-1 (P arteries, and that expression of recombinant HO-1 in cerebral arteries protects vasomotor function against OxyHb-induced injury.

  8. Overexpression of Heme Oxygenase-1 Prevents Renal Interstitial Inflammation and Fibrosis Induced by Unilateral Ureter Obstruction.

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    Full Text Available Renal fibrosis plays an important role in the onset and progression of chronic kidney diseases. Many studies have demonstrated that heme oxygenase-1 (HO-1 is involved in diverse biological processes as a cytoprotective molecule, including anti-inflammatory, anti-oxidant, anti-apoptotic, antiproliferative, and immunomodulatory effects. However, the mechanisms of HO-1 prevention in renal interstitial fibrosis remain unknown. In this study, HO-1 transgenic (TG mice were employed to investigate the effect of HO-1 on renal fibrosis using a unilateral ureter obstruction (UUO model and to explore the potential mechanisms. We found that HO-1 was adaptively upregulated in kidneys of both TG and wild type (WT mice after UUO. The levels of HO-1 mRNA and protein were increased in TG mice compared with WT mice under normal conditions. HO-1 expression was further enhanced after UUO and remained high during the entire experimental process. Renal interstitial fibrosis in the TG group was significantly attenuated compared with that in the WT group after UUO. Moreover, overexpression of HO-1 inhibited the loss of peritubular capillaries. In addition, UUO-induced activation and proliferation of myofibroblasts were suppressed by HO-1 overexpression. Furthermore, HO-1 restrained tubulointerstitial infiltration of macrophages and regulated the secretion of inflammatory cytokines in UUO mice. We also found that high expression of HO-1 inhibited reactivation of Wnt/β-catenin signaling, which could play a crucial role in attenuating renal fibrosis. In conclusion, these data suggest that HO-1 prevents renal tubulointerstitial fibrosis possibly by regulating the inflammatory response and Wnt/β-catenin signaling. This study provides evidence that augmentation of HO-1 levels may be a therapeutic strategy against renal interstitial fibrosis.

  9. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chenglong [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zheng, Haining [Department of Hyperbaric Oxygen, Nanjing General Hospital of Nanjing Military Command, Nanjing (China); Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Ding, Dafa, E-mail: dingdafa2004@aliyun.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China); Lu, Yibing, E-mail: luyibing2004@126.com [Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  10. Dietary heme induces acute oxidative stress, but delayed cytotoxicity and compensatory hyperproliferation in mouse colon

    NARCIS (Netherlands)

    IJssenagger, N.; Rijnierse, A.; Wit, de N.J.W.; Boekschoten, M.V.; Dekker, J.; Schonewille, A.; Müller, M.R.; Meer, van der M.

    2013-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by generating cytotoxic and oxidative stress. Recently, we found that this surface injury is compensated by hyperproliferation and hyperplasia of crypt cells, which

  11. Dry powder inhalation of hemin to induce heme oxygenase expression in the lung

    NARCIS (Netherlands)

    Zijlstra, G.S.; Brandsma, C.; Harpe, M.F.H.; Van Dam, G.M.; Slebos, D.J.; Kerstjens, H.A.M.; de Boer, Anne; Frijlink, H.W.

    2007-01-01

    The purpose of this study was to formulate hemin as a powder for inhalation and to show proof of concept of heme oxygenase 1 (HO-1) expression in the lungs of mice by inhalation of hemin. Hemin was spray dried from a neutralized sodium hydroxide solution. The particle size distribution of the powder

  12. Soyasaponin Bb Protects Rat Hepatocytes from Alcohol-Induced Oxidative Stress by Inducing Heme Oxygenase-1.

    Science.gov (United States)

    Lijie, Zhu; Ranran, Fu; Xiuying, Liu; Yutang, He; Bo, Wang; Tao, Ma

    2016-01-01

    It has been known that oxidative stress induced by alcohol played a crucial role in the formation of alcoholic liver disease. Although the formation mechanisms underlying liver injury induced by alcohol still remained largely unknown, it has been considered that oxidative stress played a core role in the pathogenesis of hepatocyte damage. The aim of this study was to investigate the effects of soyasaponin Bb (Ss-Bb) on oxidative stress in alcohol-induced rat hepatocyte injury. It has been shown that the administration of Ss-Bb could significantly restore antioxidant activity in BRL 3A cells. Moreover, the impaired liver function and morphology changes resulting from ethanol exposure were improved by Ss-Bb treatment. Treatment with a pharmacological inhibitor of haem oxygenase-1 (HO-1) indicated a critical role of HO-1 in mediating the protective role. Finally, we found that pretreatment with Ss-Bb to ethanol exposure cells increased the expression level of HO-1. It was suggested that Ss-Bb may protect against alcohol-induced hepatocyte injury through ameliorating oxidative stress, and the induction of HO-1 was an important protective mechanism. Effects of soyasaponin Bb was investigated on oxidative stress in rat hepatocytesCell viability and antioxidant capacities were evaluated to determine the effectsThe expression level of HO-1 was measured to reveal the proptective mechanisms.

  13. Gastroprotective effect of ghrelin against indomethacin-induced gastric injury in rats: possible role of heme oxygenase-1 pathway.

    Science.gov (United States)

    Allam, Mona M; El-Gohary, Ola A

    2017-07-01

    Ghrelin has been shown to ameliorate gastric injury by several mechanisms in experimental animal models. The present study aimed to investigate the effect of pretreatment with ghrelin on indomethacin-induced gastric injury in rats and the role of heme oxygenase-1(HO-1) pathway as a novel mechanism underlying the gastroprotective effect of ghrelin. In all groups studied, ulcer score (U.S), ulcer index (U.I) and preventive index (P.I) were evaluated and the gastric inflammatory biomarkers including levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and myeloperoxidase (MPO) activity as well as prostaglandin E2 (PGE2), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), HO-1 and bilirubin as an indicator of heme oxygenase activity were measured. Indomethacin induced significant elevation in U.S and U.I as well as the inflammatory and the oxidative markers and reduced the PGE2 in addition to HO-1 level and activity. Pretreatment with ghrelin reversed these results. In order to elucidate the possible role of HO-1 in mediating the protective effects of ghrelin, tin protoporphyrin (SnPP) HO-1 blocker was administrated; it significantly attenuated the gastroprotective effect of ghrelin. In conclusion HO-1 activity significantly contributes toward ghrelin-mediated gastroprotection.

  14. Gravitational perturbation induced by a rotating ring around a Kerr black hole

    CERN Document Server

    Sano, Yasumichi

    2014-01-01

    The linear perturbation of a Kerr black hole induced by a rotating massive circular ring is discussed by using the formalism by Teukolsky, Chrzanowski, Cohen and Kegeles. In these formalism, the perturbed Weyl scalars, $\\psi_0$ and $\\psi_4$, are first obtained from the Teukolsky equation. The perturbed metric is obtained in a radiation gauge via the Hertz potential. The computation can be done in the same way as in our previous paper, in which we considered the perturbation of a Schwarzschild black hole induced by a rotating ring. By adding lower multipole modes such as mass and angular momentum perturbation which are not computed by the Teukolsky equation, and by appropriately setting the parameters which are related to the gauge freedom, we obtain the perturbed gravitational field which is smooth except on the equatorial plane outside the ring.

  15. Induction of Heme Oxygenase-1 with Hemin Reduces Obesity-Induced Adipose Tissue Inflammation via Adipose Macrophage Phenotype Switching

    Directory of Open Access Journals (Sweden)

    Thai Hien Tu

    2014-01-01

    Full Text Available Adipose macrophages with the anti-inflammatory M2 phenotype protect against obesity-induced inflammation and insulin resistance. Heme oxygenase-1 (HO-1, which elicits antioxidant and anti-inflammatory activity, modulates macrophage phenotypes and thus is implicated in various inflammatory diseases. Here, we demonstrate that the HO-1 inducer, hemin, protects against obesity-induced adipose inflammation by inducing macrophages to switch to the M2 phenotype. HO-1 induction by hemin reduced the production of proinflammatory cytokines (TNF-α and IL-6 from cocultured adipocytes and macrophages by inhibiting the activation of inflammatory signaling molecules (JNK and NF-κB in both cell types. Hemin enhanced transcript levels of M2 macrophage marker genes (IL-4, Mrc1, and Clec10a in the cocultures, while reducing transcripts of M1 macrophage markers (CD274 and TNF-α. The protective effects of hemin on adipose inflammation and macrophage phenotype switching were confirmed in mice fed a high-fat diet, and these were associated with PPARγ upregulation and STAT6 activation. These findings suggest that induction of HO-1 with hemin protects against obesity-induced adipose inflammation through M2 macrophage phenotype switching, which is induced by the PPARγ and STAT6 pathway. HO-1 inducers such as hemin may be useful for preventing obesity-induced adipose inflammation.

  16. Simvastatin protects against the development of monocrotaline-induced pulmonary hypertension in rats via a heme oxygenase-1-dependent pathway.

    Science.gov (United States)

    Zhang, Wei-Hua; Zhang, Yun-Jian; Liu, Chun-Ping; Yu, Bing-Xiang; Lu, Wei-Xuan

    2011-10-01

    Heme oxygease-1 (HO-1) is the rate-limiting enzyme in heme catabolism. Induction of HO-1 has been shown to have vasodilatory, anti-inflammatory, and proapoptotic effects. More recently, experimental studies suggested the potential of simvastatin as a novel therapy for pulmonary hypertension (PH); however, the underlying mechanism remains to be investigated. The aim of this study was to evaluate whether HO-1 is required for the pulmonary vascular protective effects of simvastatin. Simvastatin (2 mg/kg/day) was administered once daily to rats for 4 weeks after monocrotaline (MCT) injection. Zn-protoporphyrin (Znpp), a potent inhibitor of HO, was used to confirm the role of HO-1. The hemodynamic changes, right heart hypertrophy, interleukin-6 (IL-6) level, and HO-1 protein expression in lungs were measured at day 28. Simvastatin significantly ameliorated mean pulmonary arterial hypertension (20.6 mm Hg). In addition, perivascular infiltration of inflammatory cells and the level of IL-6 were decreased in simvastatin treatment group. Simvastatin also increased significantly lung HO-1 protein expression. Inhibiting HO-1 using Znpp resulted in a loss of the effect of simvastatin in MCT rats. These results suggest that HO-1 expression is critical for the vascular protective effects of simvastatin in MCT-induced PH rats.

  17. Up-regulation of heme oxygenase-1 contributes to the amelioration of aluminum-induced oxidative stress in Medicago sativa.

    Science.gov (United States)

    Cui, Weiti; Zhang, Jing; Xuan, Wei; Xie, Yanjie

    2013-10-15

    In this report, pharmacological, histochemical and molecular approaches were used to investigate the effect of heme oxygenase-1 (HO-1) up-regulation on the alleviation of aluminum (Al)-induced oxidative stress in Medicago sativa. Exposure of alfalfa to AlCl3 (0-100 μM) resulted in a dose-dependent inhibition of root elongation as well as the enhancement of thiobarbituric acid reactive substances (TBARS) content. 1 and 10 μM (in particular) Al(3+) increased alfalfa HO-1 transcript or its protein level, and HO activity in comparison with the decreased changes in 100 μM Al-treated samples. After recuperation, however, TBARS levels in 1 and 10 μM Al-treated alfalfa roots returned to control values, which were accompanied with the higher levels of HO activity. Subsequently, exogenous CO, a byproduct of HO-1, could substitute for the cytoprotective effects of the up-regulation of HO-1 in alfalfa plants upon Al stress, which was confirmed by the alleviation of TBARS and Al accumulation, as well as the histochemical analysis of lipid peroxidation and loss of plasma membrane integrity. Theses results indicated that endogenous CO generated via heme degradation by HO-1 could contribute in a critical manner to its protective effects. Additionally, the pretreatments of butylated hydroxytoluene (BHT) and hemin, an inducer of HO-1, exhibited the similar cytoprotective roles in the alleviation of oxidative stress, both of which were impaired by the potent inhibitor of HO-1, zinc protoporphyrin IX (ZnPP). However, the Al-induced inhibition of root elongation was not influenced by CO, BHT and hemin, respectively. Together, the present results showed up-regulation of HO-1 expression could act as a mechanism of cell protection against oxidative stress induced by Al treatment. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Thrombin induces heme oxygenase-1 expression in human synovial fibroblasts through protease-activated receptor signaling pathways

    Science.gov (United States)

    2012-01-01

    Introduction Thrombin is a key factor in the stimulation of fibrin deposition, angiogenesis, and proinflammatory processes. Abnormalities in these processes are primary features of osteoarthritis (OA). Heme oxygenase (HO)-1 is a stress-inducible rate-limiting enzyme in heme degradation that confers cytoprotection against oxidative injury. Here, we investigated the intracellular signaling pathways involved in thrombin-induced HO-1 expression in human synovial fibroblasts (SFs). Methods Thrombin-mediated HO-1 expression was assessed with quantitative real-time (q)PCR. The mechanisms of action of thrombin in different signaling pathways were studied by using Western blotting. Knockdown of protease-activated receptor (PAR) proteins was achieved by transfection with siRNA. Chromatin immunoprecipitation assays were used to study in vivo binding of Nrf2 to the HO-1 promoter. Transient transfection was used to examine HO-1 activity. Results Osteoarthritis synovial fibroblasts (OASFs) showed significant expression of thrombin, and expression was higher than in normal SFs. OASFs stimulation with thrombin induced concentration- and time-dependent increases in HO-1 expression. Pharmacologic inhibitors or activators and genetic inhibition by siRNA of protease-activated receptors (PARs) revealed that the PAR1 and PAR3 receptors, but not the PAR4 receptor, are involved in thrombin-mediated upregulation of HO-1. Thrombin-mediated HO-1 expression was attenuated by thrombin inhibitor (PPACK), PKCδ inhibitor (rottlerin), or c-Src inhibitor (PP2). Stimulation of cells with thrombin increased PKCδ, c-Src, and Nrf2 activation. Conclusion Our results suggest that the interaction between thrombin and PAR1/PAR3 increases HO-1 expression in human synovial fibroblasts through the PKCδ, c-Src, and Nrf2 signaling pathways. PMID:22541814

  19. [Genistein attenuates monocrotaline-induced pulmonary arterial hypertension in rats by up-regulating heme oxygenase-1 expression].

    Science.gov (United States)

    Zhang, Yukun; Wang, Daoxin; Zhu, Tao; Li, Changyi

    2012-02-01

    To study the effect of genistein on the expression of heme oxygenase-1 (HO-1) in rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). Sixty male Sprague-Dawley rats were randomly divided into 4 groups (n=15), namely the control group, model group, low-dose (20 µg/kg) genistein group and high-dose (80 µg/kg) genistein group. The hemodynamic parameters were measured and the remodeling of pulmonary small arteries was observed by electron microscope (EM). The expression of HO-1 in the lung tissues were detected by Western blotting. Compared with the model group, genistein treatment significantly reduced the elevated mean pulmonary arterial pressure, improved the right ventricular hypertrophy index, and increased the expression of HO-1 in a dose-dependent manner. Genistein attentuates pulmonary arterial hypertension in MCT-treated rats possibly by up-regulation of HO-1 in the lung tissues.

  20. Heme oxygenase-1 attenuates inflammation and oxidative damage in a rat model of smoke-induced emphysema.

    Science.gov (United States)

    Wei, Jingjing; Fan, Guoquan; Zhao, Hui; Li, Jianqiang

    2015-11-01

    Emphysema is a serious disease of the respiratory system and is associated with inflammation and oxidative stress. Heme oxygenase-1 (HO-1), a rate-limiting enzyme involved in heme biosynthesis, exerts potent anti-inflammatory, antioxidant, anti-apoptotic and anti‑proliferative effects in various diseases. In the present study, we examined the effects of HO-1 on smoke‑induced emphysema, as well as the underlying mechanisms in a rat model of smoke-induced emphysema. Rats were either exposed to cigarette smoke or sham‑exposed for 20 weeks to establish the model of smoke-induced emphysema. The rats were subcutaneously injected with protoporphyrin IX [tin-protoporphyrin IX (SnPP) or ferriprotoporphyrin IX chloride (hemin)] during this period to examine the protective effects of HO-1. Subsequently, the development of emphysema, inflammatory cells, the levels of inflammatory mediators, particularly interleukin (IL)-17, tumor necrosis factor (TNF)‑α, monocyte chemotactic protein‑1 [MCP‑1, also known as chemokine (C-C motif) ligand 2 (CCL2)], IL-8 [also known as chemokine (C-X-C motif) ligand 8 (CXCL8)], macrophage inflammatory protein‑2α [MIP-2α, also known as chemokine (C-X-C motif) ligand 2 (CXCL2)] and IL-10, as well as the malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) content were determined. Exposure to smoke increased the total cell, neutrophil and macrophage counts in the bronchoalveolar lavage fluid (BALF). It also increased the levels of the inflammatory mediators, IL-17, TNF-α, MCP-1, IL-8 and MIP-2α, as well as the MDA content and induced emphysema. Treatment with hemin upregulated HO-1 expression and attenuated the development of smoke-induced emphysema by reducing inflammatory cell infiltration, decreasing the levels of inflammatory mediators and attenuating oxidative damage, to a certain extent. In conclusion, our findings demonstrate that HO-1 exerts anti-inflammatory and antioxidant effects, thus attenuating the

  1. Up-regulation of heme oxygenase-1 protects against cold injury-induced brain damage: a laboratory-based study.

    Science.gov (United States)

    Shih, Ruey-Horng; Cheng, Shin-Ei; Tung, Wei-Hsuan; Yang, Chuen-Mao

    2010-08-01

    Heme oxygenase-1 (HO-1), a kind of stress protein, is critical for the protection against ischemic stroke and cerebrovascular endothelium damage. However, the effects of HO-1 on trauma-induced brain injury are still unknown. Hence, we attempted to use a cold injury-induced brain trauma (CIBT) model in mice, which provides for a well-established approach for assessing brain edema and blood-brain barrier breakdown. Additionally, we explored cultured mouse brain endothelial cells (bEnd.3) to investigate the protective effects of HO-1. HO-1 was induced by infection with a recombinant adenovirus carrying the human HO-1 gene or an inducer of HO-1 activity, cobalt protoporphyrin IX (CoPP). The recombinant adenovirus (3.5 x 10(7) PFU/mouse, i.v.) or CoPP (10 mg/kg, i.v.) significantly increased HO-1 protein expression and HO-1 enzyme activity in the cerebral cortex of the mice. We found that overexpression of HO-1 protected against cold injury-induced secondary damage and behavioral impairment. Up-regulation of HO-1 decreased brain edema and neutrophil infiltration induced by cold injury. These HO-1-dependent protecting effects were abrogated by pretreatment with the HO-1 inhibitor, zinc protoporphyrin IX (ZnPP; 3 mg/kg, i.v.). HO-1 expression in the cerebral endothelium was observed by immunofluorescent staining. CoPP-induced (1 muM, 24 h) HO-1 protein expression was determined by western blotting in bEnd.3 cells. Enhanced HO-1 also protected against cold injury-induced cell loss and damage, which were respectively determined by GAPDH leakage into the cell medium and XTT assay in bEnd.3 cells. In summary, HO-1 overexpression appears to offer an effective neuroprotection against cold-induced secondary brain injury.

  2. Heme Oxygenase-1/CO as protective mediators in cigarette smoke- induced lung cell injury and chronic obstructive pulmonary disease.

    Science.gov (United States)

    Dolinay, Tamás; Choi, Augustine M K; Ryter, Stefan W

    2012-05-01

    Chronic obstructive pulmonary disease (COPD) is a disease involving airways restriction, alveolar destruction, and loss of lung function, primarily due to cigarette smoke (CS) exposure. The inducible stress protein heme oxygenase-1 (HO-1) has been implicated in cytoprotection against the toxic action of many xenobiotics, including CS. HO-1 also protects against elastase-induced emphysema. Differential expression of HO-1 in epithelial cells and macrophages may contribute to COPD susceptibility. Genetic polymorphisms in the HO-1 gene, which may account for variations in HO-1 expression among subpopulations, may be associated with COPD pathogenesis. Carbon monoxide (CO), a primary reaction product of HO-1 has been implicated in cytoprotection in many acute lung injury models, though it's precise role in chronic CS-induced lung injury remains unclear. CO is a potential biomarker of CS exposure and of inflammatory lung conditions. To date, a single clinical trial has addressed the possible therapeutic potential of CO in COPD patients. The implications of the cytoprotective potential of HO-1/CO system in CS-induced lung injury and COPD are discussed.

  3. A phenolic glycoside from Flacourtia indica induces heme mediated oxidative stress in Plasmodium falciparum and attenuates malaria pathogenesis in mice.

    Science.gov (United States)

    Singh, Shiv Vardan; Manhas, Ashan; Singh, Suriya P; Mishra, Sonali; Tiwari, Nimisha; Kumar, Parmanand; Shanker, Karuna; Srivastava, Kumkum; Sashidhara, Koneni V; Pal, Anirban

    2017-07-01

    Flacourtia indica is especially popular among the various communities of many African countries where it is being used traditionally for the treatment of malaria. In our previous report, we have identified some phenolic glycosides from the aerial parts of F. indica as promising antiplasmodial agents under in vitro conditions. Antimalarial bioprospection of F. indica derived phenolic glycoside in Swiss mice (in vivo) with special emphasis on its mode of action. Chloroquine sensitive strain of Plasmodium falciparum was routinely cultured and used for the in vitro studies. The in vivo antimalarial potential of phenolic glycoside was evaluated against P. berghei in Swiss mice through an array of parameters viz., hematological, biochemical, chemo-suppression and mean survival time. 2-(6-benzoyl-β-d-glucopyranosyloxy)-7-(1α, 2α, 6α-trihydroxy-3-oxocyclohex-4-enoyl)-5-hydroxybenzyl alcohol (CPG), a phenolic glycoside isolated from the aerial parts of F. indica was found to exhibit promising antiplasmodial activity by arresting the P. falciparum growth at the trophozoite stage. Spectroscopic investigations reveal that CPG possesses a strong binding affinity with free heme moieties. In addition, these interactions lead to the inhibition of heme polymerization in malaria parasite, augmenting oxidative stress, and delaying the rapid growth of parasite. Under in-vivo condition, CPG exhibited significant antimalarial activity against P. berghei at 50 and 75mg/kg body weight through chemo-suppression of parasitemia and ameliorating the parasite induced inflammatory and oxidative (hepatic) imbalance in the experimental mice. CPG was found to be a potential antimalarial constituent of F. indica with an explored mechanism of action, which also offers the editing choices for developing CPG based antimalarial chemotypes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Ozonation of Human Blood Induces a Remarkable Upregulation of Heme Oxygenase-1 and Heat Stress Protein-70

    Directory of Open Access Journals (Sweden)

    Velio Bocci

    2007-01-01

    Full Text Available Heme oxygenase-I (HO-1 has emerged as one of the most protective enzymes and its pleiotropic activities have been demonstrated in a variety of human pathologies. Unpublished observations have shown that HO-1 is induced after the infusion of ozonated blood into the respective donors, and many other experimental observations have demonstrated the efficacy of oxidizing agents. It appeared worthwhile to evaluate whether we could better define the activity of potential inducers such as hydrogen peroxide and ozonated human plasma. Human vascular endothelial cells at confluence were challenged with different concentrations of these inducers and the simultaneous production of nitric oxide (NO; and HO-1 was measured by either measuring nitrite, or bilirubin formation, or/and the immune reactivity of the protein by Western blot using a rabbit antihuman HO-1 and Hsp-70. The results show that production of both NO and HO-1 is fairly dose dependent but is particularly elevated using human plasma after transient exposure to a medium ozone concentration. At this concentration, there is also induction of Hsp-70. The results clarify another positive effect achievable by the use of ozone therapy.

  5. Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1.

    Directory of Open Access Journals (Sweden)

    André Quincozes-Santos

    Full Text Available Resveratrol, a polyphenol presents in grapes and wine, displays antioxidant and anti-inflammatory properties and cytoprotective effect in brain pathologies associated to oxidative stress and neurodegeneration. In previous work, we demonstrated that resveratrol exerts neuroglial modulation, improving glial functions, mainly related to glutamate metabolism. Astrocytes are a major class of glial cells and regulate neurotransmitter systems, synaptic processing, energy metabolism and defense against oxidative stress. This study sought to determine the protective effect of resveratrol against hydrogen peroxide (H2O2-induced cytotoxicity in C6 astrocyte cell line, an astrocytic lineage, on neurochemical parameters and their cellular and biochemical mechanisms. H2O2 exposure increased oxidative-nitrosative stress, iNOS expression, cytokine proinflammatory release (TNFα levels and mitochondrial membrane potential dysfunction and decreased antioxidant defenses, such as SOD, CAT and creatine kinase activity. Resveratrol strongly prevented C6 cells from H2O2-induced toxicity by modulating glial, oxidative and inflammatory responses. Resveratrol per se increased heme oxygenase 1 (HO1 expression and extracellular GSH content. In addition, HO1 signaling pathway is involved in the protective effect of resveratrol against H2O2-induced oxidative damage in astroglial cells. Taken together, these results show that resveratrol represents an important mechanism for protection of glial cells against oxidative stress.

  6. Roles of oxidative stress, apoptosis, and heme oxygenase-1 in ethylbenzene-induced renal toxicity in NRK-52E cells.

    Science.gov (United States)

    Zhang, Ming; Wang, Yanrang; Wang, Xiaojun; Liu, Jing; Zhang, Jingshu; Gu, Qing

    2016-12-01

    Ethylbenzene is an important industrial chemical, but its potential toxicity is a recent concern. Our previous study investigated the renal toxicity of ethylbenzene in vivo Rat renal epithelial cells (NRK-52E cells) were incubated with 0, 30, 60, and 90 µmol/L of ethylbenzene for 24 h in vitro to investigate ethylbenzene-induced oxidative stress, apoptosis, and the expression of heme oxygenase 1 (HO-1) and nuclear factor (erythroid 2)-related factor 2 (Nrf2). The cell survival rate in the ethylbenzene-treated groups was significantly lower than the control group. Ethylbenzene significantly increased intracellular reactive oxygen species and apoptosis. Malondialdehyde levels were significantly elevated compared with the control group, while glutathione levels and glutathione peroxidase activities were decreased in ethylbenzene-treated groups. The activities of catalase and superoxide dismutase were also markedly reduced. A significant dose-dependent increase in HO-1 and Nrf2 messenger RNA expression levels was observed in ethylbenzene-treated groups compared with the control group. Similarly, ethylbenzene treatment enhanced protein expression of HO-1 and Nrf2 in a dose-dependent manner. Our results indicated that ethylbenzene induced oxidative stress, apoptosis, and upregulation of HO-1 and Nrf2 in NRK-52E cells, which contributes to ethylbenzene-induced renal toxicity. © The Author(s) 2015.

  7. Depression-like behaviors and heme oxygenase-1 are regulated by Lycopene in lipopolysaccharide-induced neuroinflammation.

    Science.gov (United States)

    Zhang, Fang; Fu, Yanyan; Zhou, Xiaoyan; Pan, Wei; Shi, Yue; Wang, Mei; Zhang, Xunbao; Qi, Dashi; Li, Lei; Ma, Kai; Tang, Renxian; Zheng, Kuiyang; Song, Yuanjian

    2016-09-15

    Previous studies have demonstrated that lycopene possesses anti-inflammatory properties in the central nervous system. However, the potential role and the molecular mechanisms of lycopene in lipopolysaccharide (LPS)-challenge inflammation and depression-like behaviors has not been clearly investigated. The present study aimed to assess the effects and the potential mechanisms of lycopene on LPS-induced depression-like behaviors. Lycopene was orally administered (60mg/kg) every day for seven days followed by intraperitoneal LPS injection (1mg/kg). The Forced swim test and tail suspension test were used to detect changes in the depression-like behaviors. ELISA was used to measure the expression of interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α) in the plasma. Immunoblotting was performed to measure the expression of interleukin-1β (IL-1β) and heme oxygenase-1 (HO-1) in the hippocampus. The results showed that pretreatment with lycopene could ameliorate depression-like behaviors. Moreover, lycopene relieved neuronal cell injury in hippocampal CA1 regions. Furthermore, lycopene decreased LPS-induced expression of IL-1β and HO-1 in the hippocampus together with decreasing level of IL-6 and TNF-α in the plasma. Taken together, these results suggest that lycopene can attenuate LPS-induced inflammation and depression-like behaviors, which may be involved in regulating HO-1 in the hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Biliverdin, a natural product of heme catabolism, induces tolerance to cardiac allografts.

    Science.gov (United States)

    Yamashita, Kenichiro; McDaid, James; Ollinger, Robert; Tsui, Tung-Yu; Berberat, Pascal O; Usheva, Anny; Csizmadia, Eva; Smith, R Neal; Soares, Miguel P; Bach, Fritz H

    2004-04-01

    Biliverdin, a product of heme oxygenase-1 (HO-1) enzymatic action, is converted into bilirubin, which has been considered a waste product in the past. We now show that administration of biliverdin has a salutary effect in organ transplantation. A brief course of treatment with biliverdin leads to long-term survival of H-2 incompatible heart allografts. Furthermore, those recipients harboring long-surviving (>100 days) allografts were tolerant to donor antigens indicated by the acceptance of second donor strain hearts but not third-party grafts. Treatment with biliverdin decreased intragraft leukocyte infiltration and inhibited T cell proliferation. Likely related to tolerance induction, biliverdin interferes with T cell signaling by inhibiting activation of nuclear factor of activated T cells (NFAT) and nuclear factor kappaB (NF-kappaB), two transcription factors involved in interleukin-2 (IL-2) transcription and T cell proliferation, as well as suppressing Th1 interferon-gamma (IFN-gamma) production in vitro. These findings support the potential use of biliverdin, a natural product, in transplantation and other T cell mediated immune disorders.

  9. In Premature Newborns Intraventricular Hemorrhage Causes Cerebral Vasospasm and Associated Neurodisability via Heme-Induced Inflammasome-Mediated Interleukin-1 Production and Nitric Oxide Depletion

    Directory of Open Access Journals (Sweden)

    Michael Eisenhut

    2017-08-01

    Full Text Available BackgroundIntraventricular hemorrhage (IVH occurs in 60–70% of neonates weighing 500–750 g and 10–20% of those weighing 1,000–1,500 g. All forms of IVH have been associated with neurocognitive deficits. Both subarachnoid and IVHs have been associated with delayed vasospasm leading to neurological deficits. Pathways linking hemoglobin release from blood clots to vasospasm include heme-induced activation of inflammasomes releasing interleukin-1 (IL-1 that can cause calcium dependent and independent vasospasm. Free hemoglobin is a potent scavenger of nitric oxide (NO. Depletion of NO, a potent endogenous vasodilator, has been associated with features of vasospasm.HypothesisIn premature newborns, IVH causes cerebral vasospasm and associated neurodisability via heme-induced increased inflammasome-mediated IL-1 production and NO depletion.Confirmation of hypothesis and implicationsThis hypothesis could be confirmed in the IVH animal model with visualization of any associated vasospasm by angiography and in newborns with IVH by transcranial Doppler ultrasonography and correlation with cerebrospinal fluid IL-1 and NO metabolite levels. Confirmation of the role of heme in activation of inflammasomes causing IL-1 production and NO binding could be achieved by measuring the effect of heme scavenging interventions on IL-1 levels and levels of NO metabolites. In addition to removal of the accumulated blood of an IVH by drainage, irrigation, and fibrinolytic therapy intrathecal application of vasodilators and heme scavenging agents like haptoglobin and haemopexin and systemic treatment with inhibitors of inflammasomes like telmisartan could be used to prevent and treat cerebral vasospasm, and thus reduce the risk of associated brain injury in premature neonates.

  10. Gastroprotective effect of heme-oxygenase 1/biliverdin/CO pathway in ethanol-induced gastric damage in mice.

    Science.gov (United States)

    Gomes, Antoniella S; Gadelha, Gemima G; Lima, Samara J; Garcia, Joyce A; Medeiros, Jand Venes R; Havt, Alexandre; Lima, Aldo A; Ribeiro, Ronaldo A; Brito, Gerly Anne C; Cunha, Fernando Q; Souza, Marcellus H L P

    2010-09-10

    Our objective was to evaluate the role of heme-oxygenase 1 (HO-1)/biliverdin/CO pathway in gastric defense against ethanol-induced gastric damage in mice. Mice were pre-treated with saline, hemin (HO-1 inducer), biliverdin (HO-1 product), dimanganese decacarbonyl (DMDC, CO donor) or zinc protoporphyrin IX (ZnPP IX, HO-1 antagonist). Another group received soluble guanylate cyclase (sGC) inhibitor (ODQ) 30 min before hemin, biliverdin or DMDC. After 30 min, gastric damage was induced by ethanol. After one hour, rats were sacrificed. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malonylaldehyde (MDA), glutathione (GSH) or bilirubin. HO-1 expression was determined after saline or ethanol administration by polymerase chain reaction (PCR) or immunohistochemistry. Ethanol (25% or 50%) induced gastric damage, increased MDA levels and reduced GSH in the gastric tissue. Ethanol 50% increased HO-1 mRNA transcripts, HO-1 immunoreactivity, and bilirubin concentration in gastric mucosa. Pre-treatment with hemin reduced gastric damage and MDA formation and increased GSH concentration in the gastric mucosa. ZnPP IX amplified the ethanol-induced gastric lesion, increased MDA formation and decreased GSH concentration in gastric mucosa. Biliverdin and DMDC reduced gastric damage and MDA formation and increased GSH concentration in the gastric tissue. ODQ completely abolished the DMDC protective gastric effect. However, effects of hemin or biliverdin did not change with ODQ treatment. Our results suggest that HO-1/biliverdin/CO pathway plays a protective role against ethanol-induced gastric damage through mechanisms that can be dependent (CO) or independent (biliverdin) of sGC activation. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. Solvent Isotope-induced Equilibrium Perturbation for Isocitrate Lyase

    Science.gov (United States)

    Quartararo, Christine E.; Hadi, Timin; Cahill, Sean M.; Blanchard, John S.

    2014-01-01

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacteria’s life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage of D2OV = 2.0 ± 0.1 and D2O[V/Kisocitrate] = 2.2 ± 0.3 arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate and succinate prepared in D2O, would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of NMR spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by 1H NMR spectroscopy shows a clear equilibrium perturbation in D2O. The final equilibrium isotopic composition of reactants in D2O revealed di-deuterated succinate, protiated glyoxylate, and mono-deuterated isocitrate, with the transient appearance and disappearance of mono-deuterated succinate. A model for the equilibrium perturbation of substrate species, and their time-dependent isotopic composition is presented. PMID:24261638

  12. Hemin inhibits NLRP3 inflammasome activation in sepsis-induced acute lung injury, involving heme oxygenase-1.

    Science.gov (United States)

    Luo, Yun-peng; Jiang, Lei; Kang, Kai; Fei, Dong-sheng; Meng, Xiang-lin; Nan, Chuan-chuan; Pan, Shang-ha; Zhao, Ming-ran; Zhao, Ming-yan

    2014-05-01

    NLRP3 inflammasome activation contributes to acute lung injury (ALI), accelerating caspase-1 maturation, and resulting in IL-1β and IL-18 over-production. Heme oxygenase-1 (HO-1) plays a protective role in ALI. This study investigated the effect of hemin (a potent HO-1 inducer) on NLRP3 inflammasome in sepsis-induced ALI. The sepsis model of cecal ligation and puncture (CLP) was used in C57BL6 mice. In vivo induction and suppression of HO-1 were performed by pretreatment with hemin and zinc protoporphyrin IX (ZnPP, a HO-1 competitive inhibitor) respectively. CLP triggered significant pulmonary damage, neutrophil infiltration, increased levels of IL-1β and IL-18, and edema formation in the lung. Hemin pretreatment exerted inhibitory effect on lung injury and attenuated IL-1β and IL-18 secretion in serum and lung tissue. In lung tissues, hemin down-regulated mRNA and protein levels of NLRP3, ASC and caspase-1. Moreover, hemin reduced malondialdehyde and reactive oxygen species production, and inhibited NF-κB and NLRP3 inflammasome activity. Meanwhile, hemin significantly increased HO-1 mRNA and protein expression and HO-1 enzymatic activity. In contrast, no significant differences were observed between the CLP and ZnPP groups. Our study suggests that hemin-inhibited NLRP3 inflammasome activation involved HO-1, reducing IL-1β and IL-18 secretion and limiting the inflammatory response. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Antioxidant activity of wine pigments derived from anthocyanins: hydrogen transfer reactions to the dpph radical and inhibition of the heme-induced peroxidation of linoleic acid.

    Science.gov (United States)

    Goupy, Pascale; Bautista-Ortin, Ana-Belen; Fulcrand, Helene; Dangles, Olivier

    2009-07-08

    The consumption of red wine can provide substantial concentrations of antioxidant polyphenols, in particular grape anthocyanins (e.g., malvidin-3-O-beta-d-glucoside (1)) and specific red wine pigments formed by reaction between anthocyanins and other wine components such as catechin (3), ethanol, and hydroxycinnamic acids. In this work, the antioxidant properties of red wine pigments (RWPs) are evaluated by the DPPH assay and by inhibition of the heme-induced peroxidation of linoleic acid in acidic conditions (a model of antioxidant action in the gastric compartment). RWPs having a 1 and 3 moieties linked via a CH(3)-CH bridge appear more potent than the pigment with a direct 1-3 linkage. Pyranoanthocyanins derived from 1 reduce more DPPH radicals than 1 irrespective of the substitution of their additional aromatic ring. Pyranoanthocyanins are also efficient inhibitors of the heme-induced lipid peroxidation, although the highly hydrophilic pigment derived from pyruvic acid appears less active.

  14. Solar flares induced D-region ionospheric and geomagnetic perturbations

    Science.gov (United States)

    Selvakumaran, R.; Maurya, Ajeet K.; Gokani, Sneha A.; Veenadhari, B.; Kumar, Sushil; Venkatesham, K.; Phanikumar, D. V.; Singh, Abhay K.; Siingh, Devendraa; Singh, Rajesh

    2015-02-01

    The D-region ionospheric perturbations caused by solar flares which occurred during January 2010-February 2011, a low solar activity period of current solar cycle 24, have been examined on NWC transmitter signal (19.8 kHz) recorded at an Indian low latitude station, Allahabad (Geographic lat. 25.75°N, long. 81.85°E). A total of 41 solar flares, including 21 C-class, 19 M-class and 01 X-class, occurred during the daylight part of the NWC-Allahabad transmitter receiver great circle path. The local time dependence of solar flare effects on the change in the VLF amplitude, time delay between VLF peak amplitude and X-ray flux peak have been studied during morning, noon and evening periods of local daytime. Using the Long Wave Propagation Capability code V 2.1 the D-region reference height (H/) and sharpness factor (β) for each class of solar flare (C, M and X) have been estimated. It is found that D-region ionospheric parameters (H/, β) strongly depend on the local time of flare's occurrence and their classes. The flare time electron density estimated by using H/ and β shows maximum increase in the electron density of the order of ~80 times as compared to the normal day values. The electron density was found to increase exponentially with increase in the solar flux intensity. The solar flare effect on horizontal component (H) of the Earth's magnetic field over an equatorial station, Tirunelveli (Geographic lat., 8.7°N, long., 77.8°E, dip lat., 0.4°N), shows a maximum increase in H of ~8.5% for M class solar flares. The increase in H is due to the additional magnetic field produced by the ionospheric electrojet over the equatorial station.

  15. Effects of hyperbaric oxygen therapy on acetaminophen induced nephrotoxicity and hepatotoxicity: the role of heme oxygenase-1

    Directory of Open Access Journals (Sweden)

    Iclal Karatop-Cesur

    2016-09-01

    Full Text Available The aim of this study was to investigate the effects of hyperbaric oxygen (HBO therapy on acetaminophen (APAP induced renal and liver injudr and the role of heme oxygenase-1 (HO-1 activation. Wistar-Albino rats were randomly assigned into four groups. Control group received no treatment. APAP (3gr/kg was administered by gastric lavage in APAP group. Animals in the APAP+HBO and APAP+zinc protoporphyrin (ZnPP+HBO groups received HBO therapy (90 min at 2.5 atm, starting 1 hour after APAP administration, for 2 consecutive days.HO-1 activity was inhibited by ZnPP. APAP+ZnPP+HBO group received intraperitoneal 50 µmol\\kg ZnPP injection 30 minutes after APAP treatment and HBO therapy for 2 days. Serum and tissue samples were taken at 48 hours after APAP treatment. Renal and liver functions were evaluated by serum levels of urea, creatinine and transaminases. Lipid peroxidation and tissue levels of antioxidant enzymes were measure by ELISA. Tissue injury was evaluated by light microscopy.HO-1 level was determined by immunohistochemistry. HO-1 mRNA level was investigated by polymerase chain reaction (PCR. Serum transaminase levels significantly increased after APAP treatment (p [Dis Mol Med 2016; 4(3.000: 37-42

  16. Retinal protection from acute glaucoma-induced ischemia-reperfusion injury through pharmacologic induction of heme oxygenase-1.

    Science.gov (United States)

    Sun, Ming-Hui; Pang, Jong-Hwei Su; Chen, Show-Li; Han, Wen-Hua; Ho, Tsung-Chuan; Chen, Kuan-Jen; Kao, Ling-Yuh; Lin, Ken-Kuo; Tsao, Yeou-Ping

    2010-09-01

    To investigate the protective effects of cobalt protoporphyrin (CoPP), a potent heme oxygenase (HO)-1 inducer, in a rat model of ischemia-reperfusion injury and to document the possible antiapoptotic and anti-inflammatory mechanisms underlying the protection. Rats pretreated with intraperitoneal injection of CoPP (5 mg/kg) were subjected to retinal ischemia by increases in intraocular pressure to 130 mm Hg for 60 minutes. The protective effects of CoPP were evaluated by determining the morphology of the retina, counting the survival of retinal ganglion cells (RGCs), and measuring apoptosis in retinal layers. In addition, expressions of HO-1, caspase-3, p53, Bcl-xL, monocyte chemoattractant protein (MCP)-1, and inducible nitric oxide synthase (iNOS) were documented by Western blot analysis. Detection of HO-1, NF-kappaB, and CD68 protein in the retina was performed by immunohistochemistry or immunofluorescence. Pharmacologic induction of HO-1 by CoPP led to HO-1 expression in the full retinal layer. HO-1 overexpression alleviated apoptosis in the retina, preserved RGCs, and attenuated the reduction of inner retinal thickness after ischemia-reperfusion injury. Concurrently, overexpression of HO-1 was associated with inhibition of caspase-3, p53, NF-kappaB, and iNOS and with increased expression of Bcl-xL. Meanwhile, the anti-inflammatory effect of HO-1 was related to reduction in the recruitment of macrophage infiltration in the retina through the suppression of MCP-1. These beneficial effects of HO-1 induced by CoPP were diminished by the HO-1 inhibitor ZnPP. Overexpression of HO-1 by pharmacologic induction protected the retina from subsequent cellular damage caused by ischemia-reperfusion injury through antiapoptotic and anti-inflammatory effects.

  17. Orthodontic Forces Induce the Cytoprotective Enzyme Heme Oxygenase-1 in Rats

    NARCIS (Netherlands)

    Suttorp, C.M.; Xie, R.; Lundvig, D.M.S.; Kuijpers-Jagtman, A.M.; Uijttenboogaart, J.T.; Rheden, R.E.M. van; Maltha, J.C.; Wagener, F.A.D.T.G.

    2016-01-01

    Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL), and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization) and root

  18. Genome wide transcriptional response of Saccharomyces cerevisiae to stress-induced perturbations

    Directory of Open Access Journals (Sweden)

    Hilal eTaymaz-Nikerel

    2016-02-01

    Full Text Available Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to changing conditions. Genome wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short- and long- term. This review focuses on response of yeast cells to diverse stress inducing perturbations including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, as well as to genetic interventions such as deletion and over-expression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions.

  19. Eff ects of hemin, a heme oxygenase-1 inducer in L-arginine-induced acute pancreatitis and associated lung injury in adult male albino rats.

    Science.gov (United States)

    Aziz, N M; Kamel, M Y; Rifaai, R A

    2017-01-01

    The aim of the current study was to assess the protective outcome of hemin, a heme oxygenase-1 (HO-1) inducer on L-arginine-induced acute pancreatitis in rats. Acute pancreatitis (AP) is considered to be a critical inflammatory disorder with a major impact on the patient health. Various theories have been recommended regarding the pathophysiology of AP and associated pulmonary complications. Twenty-four adult male albino rats were randomly divided into four groups: control group, acute pancreatitis (AP), hemin pre-treated AP group, and hemin post-treated AP group. Administration of hemin before induction of AP significantly attenuated the L-arginine- induced pancreatitis and associated pulmonary complications characterized by the increasing serum levels of amylase, lipase, tumor necrosis factor-α, nitric oxide, and histo-architectural changes in pancreas and lungs as compared to control group. Additionally, pre-treatment with hemin significantly compensated the deficits in total antioxidant capacities and lowered the elevated malondialdehyde levels observed with AP. On the other hand, post-hemin administration did not show any protection against L-arginine-induced AP. The current study indicates that the induction of HO-1 by hemin pre-treatment significantly ameliorated the L-arginine-induced pancreatitis and associated pulmonary complications may be due to its anti-inflammatory and antioxidant properties.

  20. Metabolomic analysis of isonitrosoacetophenone-induced perturbations in phenolic metabolism of Nicotiana tabacum cells

    CSIR Research Space (South Africa)

    Madala, NE

    2013-10-01

    Full Text Available Phytochemistry 94 (2013) 82–90 Metabolomic analysis of isonitrosoacetophenone-induced perturbations in phenolic metabolism of Nicotiana tabacum cells Ntakadzeni E. Madalaa, Paul A. Steenkampa,b, Lizelle A. Piater a, Ian A. Duberya,⇑ a...

  1. Heme oxygenase-1 and inflammation in experimental right ventricular failure on prolonged overcirculation-induced pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Asmae Belhaj

    Full Text Available Heme oxygenase (HO-1 is a stress response enzyme which presents with cardiovascular protective and anti-inflammatory properties. Six-month chronic overcirculation-induced pulmonary arterial hypertension (PAH in piglets has been previously reported as a model of right ventricular (RV failure related to the RV activation of apoptotic and inflammatory processes. We hypothesized that altered HO-1 signalling could be involved in both pulmonary vascular and RV changes. Fifteen growing piglets were assigned to a sham operation (n = 8 or to an anastomosis of the left innominate artery to the pulmonary arterial trunk (n = 7. Six months later, hemodynamics was evaluated after closure of the shunt. After euthanasia of the animals, pulmonary and myocardial tissue was sampled for pathobiological evaluation. Prolonged shunting was associated with a tendency to decreased pulmonary gene and protein expressions of HO-1, while pulmonary gene expressions of interleukin (IL-33, IL-19, intercellular adhesion molecule (ICAM-1 and -2 were increased. Pulmonary expressions of constitutive HO-2 and pro-inflammatory tumor necrosis factor (TNF-α remained unchanged. Pulmonary vascular resistance (evaluated by pressure/flow plots was inversely correlated to pulmonary HO-1 protein and IL-19 gene expressions, and correlated to pulmonary ICAM-1 gene expression. Pulmonary arteriolar medial thickness and PVR were inversely correlated to pulmonary IL-19 expression. RV expression of HO-1 was decreased, while RV gene expressions TNF-α and ICAM-2 were increased. There was a correlation between RV ratio of end-systolic to pulmonary arterial elastances and RV HO-1 expression. These results suggest that downregulation of HO-1 is associated to PAH and RV failure.

  2. [Gene transfer-induced human heme oxygenase-1 over-expression protects kidney from ischemia-reperfusion injury in rats].

    Science.gov (United States)

    Lü, Jin-xing; Yan, Chun-yin; Pu, Jin-xian; Hou, Jian-quan; Yuan, He-xing; Ping, Ji-gen

    2010-12-14

    To study the protection of gene transfer-induced human heme oxygenase-1 over-expression against renal ischemia reperfusion injury in rats. The model of kidney ischemia-reperfusion injury was established with Sprague-Dawley rats. In the therapy group (n=18), the left kidney was perfused and preserved with Ad-hHO-1 at 2.5×10(9) pfu/1.0 ml after flushed with 0-4°C HC-A organ storage solution via donor renal aorta. The rats in control groups were perfused with 0.9% saline solution (n=12) or the vector carrying no interest gene Ad-EGFP 2.5×10(9) pfu/1.0 ml (n=18) instead of Ad-hHO-1. BUN and Cr in serum were measured by slide chemical methods. The kidney samples of rats were harvested for assay of histology, immunohistochemistry and quantification of HO enzymatic activity. Apoptosis cells in the kidney were measured by TUNEL. Ad-hHO-1 via donor renal aorta could transfect renal cells of rats effectively, enzymatic activity of HO in treated group [(1.62±0.07) nmol×mg(-1)×min(-1)] is higher than in control groups treated with saline solution team [(1.27±0.07) nmol×mg(-1)×min(-1)] and vector EGFP team [(1.22±0.06) nmol×mg(-1)×min(-1)] (PhHO-1 expressed hHO-1 in kidneys at a high level. Corresponding to this, the level of BUN and Cr, as well as the number of apoptosis cells, were decreased, and the damage in histology by HE staining was ameliorated. Over-expression of human HO-1 can protect the kidney from ischemia/reperfusion injury in rats.

  3. Biology of Heme in Mammalian Erythroid Cells and Related Disorders

    Directory of Open Access Journals (Sweden)

    Tohru Fujiwara

    2015-01-01

    Full Text Available Heme is a prosthetic group comprising ferrous iron (Fe2+ and protoporphyrin IX and is an essential cofactor in various biological processes such as oxygen transport (hemoglobin and storage (myoglobin and electron transfer (respiratory cytochromes in addition to its role as a structural component of hemoproteins. Heme biosynthesis is induced during erythroid differentiation and is coordinated with the expression of genes involved in globin formation and iron acquisition/transport. However, erythroid and nonerythroid cells exhibit distinct differences in the heme biosynthetic pathway regulation. Defects of heme biosynthesis in developing erythroblasts can have profound medical implications, as represented by sideroblastic anemia. This review will focus on the biology of heme in mammalian erythroid cells, including the heme biosynthetic pathway as well as the regulatory role of heme and human disorders that arise from defective heme synthesis.

  4. Biology of Heme in Mammalian Erythroid Cells and Related Disorders

    Science.gov (United States)

    Fujiwara, Tohru; Harigae, Hideo

    2015-01-01

    Heme is a prosthetic group comprising ferrous iron (Fe2+) and protoporphyrin IX and is an essential cofactor in various biological processes such as oxygen transport (hemoglobin) and storage (myoglobin) and electron transfer (respiratory cytochromes) in addition to its role as a structural component of hemoproteins. Heme biosynthesis is induced during erythroid differentiation and is coordinated with the expression of genes involved in globin formation and iron acquisition/transport. However, erythroid and nonerythroid cells exhibit distinct differences in the heme biosynthetic pathway regulation. Defects of heme biosynthesis in developing erythroblasts can have profound medical implications, as represented by sideroblastic anemia. This review will focus on the biology of heme in mammalian erythroid cells, including the heme biosynthetic pathway as well as the regulatory role of heme and human disorders that arise from defective heme synthesis. PMID:26557657

  5. Perturbative approach in the frequency domain for the intensity correlation spectrum at electromagnetically induced transparency

    CERN Document Server

    Florez, H M; Martinelli, M

    2016-01-01

    Correlation spectroscopy has been proposed as a spectroscopic technique for measuring the coherence between the ground states in electromagnetically induced transparency (EIT). While in time domain the steep dispersion in EIT condition accounts for the robustness of the correlation linewidth against power broadening, such physical insight was not directly established in the frequency domain. We propose a perturbative approach to describe the correlation spectroscopy of two noisy lasers coupled to a $\\Lambda$-transition in cold atoms, leading to EIT. Such approach leads to an analytical expression that maps the intensity correlation directly in terms of the absorption and dispersion of the light fields. Low and high perturbative regimes are investigated and demonstrate that, for coherent light sources, the first oder term in perturbation expansion represents a sufficient description for the correlation. Sidebands resonances are also observed, showing the richness of the frequency domain approach.

  6. Mycoplasma fermentans MALP-2 induces heme oxygenase-1 expression via mitogen-activated protein kinases and Nrf2 pathways to modulate cyclooxygenase 2 expression in human monocytes.

    Science.gov (United States)

    Ma, Xiaohua; You, Xiaoxing; Zeng, Yanhua; He, Jun; Liu, Liangzhuan; Deng, Zhongliang; Jiang, Chuanhao; Wu, Haiying; Zhu, Cuiming; Yu, Minjun; Wu, Yimou

    2013-06-01

    Heme oxygenase-1 (HO-1) is a stress-inducible rate-limiting enzyme in heme degradation that confers cytoprotection against oxidative injury and performs a vital function in the maintenance of cell hemostasis. Increasing numbers of reports have indicated that mycoplasma-derived membrane lipoproteins/lipopeptides, such as macrophage-activating lipopeptide-2 (MALP-2), function as agents that stimulate the immune system by producing various inflammatory mediators, such as cytokines and cyclooxygenase 2 (COX-2), which play roles in the pathogenesis of inflammatory responses during mycoplasma infection. Here, we report that MALP-2 induced HO-1 mRNA and protein expression and upregulated HO-1 enzyme activity in THP-1 cells. Specific inhibitors of mitogen-activated protein kinases (MAPKs), SB203580, PD98059, and SP600125, significantly abolished HO-1 expression. In addition, MALP-2 also induced NF-E2-related factor 2 (Nrf2) translocation, and the silencing of Nrf2 expression in THP-1 cells decreased the levels of MALP-2-mediated HO-1 expression. Furthermore, COX-2 protein expression levels were upregulated in THP-1 cells in response to MALP-2, and transfection with small interfering RNAs of HO-1 significantly increased COX-2 accumulation. These results demonstrate that MALP-2 induces HO-1 expression via MAPKs and Nrf2 pathways and, furthermore, that MALP-2-induced COX-2 expression was modulated by HO-1 in THP-1 cells.

  7. Theoretical estimates of magnitudes of earthquakes induced by pore-pressure perturbations with large aspect ratios

    Science.gov (United States)

    Galis, Martin; Ampuero, Jean-Paul; Mai, P. Martin; Cappa, Frédéric

    2017-04-01

    Being able to reliably and accurately estimate the possible maximum magnitude of fluid-injection-induced earthquakes is of critical importance to quantify the associated seismic hazard and to define operational constraints for geo-reservoirs. In previous studies, we developed theoretical estimates of the magnitude of fluid-injection-induced earthquakes based fracture mechanics, assuming circular pressure perturbations. However, natural reservoirs are typically much wider than thicker. Therefore, here we discuss the application of our model to horizontally elongated pressurized regions with realistic aspect ratios. Assuming circular pressure perturbations, we derived a physical model estimating how large a rupture will grow on a given fault and for a given pore-pressure perturbation. We used two approaches. The first, semi-analytical approach is based on pore pressure evolution obtained by solving the diffusion equation for a cylindrical reservoir with no-flow boundaries. The second approach is an approximation to the first one, based on a point-load approximation of the pres-sure perturbation on the fault, allowing derivation of a complete analytical formula relating the magnitude of the largest arrested rupture, Mmax-arr, to injection and slip-weakening friction parameters. We found that the Mmax-arr scales with cumulative injected fluid volume as a power law with exponent of 3/2. In contrast, the Mmax relation by McGarr (2014) is a linear scaling (exponent of 1). While for the dataset used by McGarr (2014) the difference between our and McGarr's models is relatively small, inclusion of datasets with broad range of injected fluid volumes (from 10-10m3 to 1010m3) suggests better agreement with our model. However, inclusion of extended pressure perturbations into our two models, while maintaining the (semi-)analytical character, is not viable. Therefore, we perform numerical dynamic-rupture simulations to investigate rupture nucleation and arrest for pressure

  8. Heme oxygenase-1 affects generation and spontaneous cardiac differentiation of induced pluripotent stem cells.

    Science.gov (United States)

    Stepniewski, Jacek; Pacholczak, Tomasz; Skrzypczyk, Aniela; Ciesla, Maciej; Szade, Agata; Szade, Krzysztof; Bidanel, Romain; Langrzyk, Agnieszka; Grochowski, Radoslaw; Vandermeeren, Felix; Kachamakova-Trojanowska, Neli; Jez, Mateusz; Drabik, Grazyna; Nakanishi, Mahito; Jozkowicz, Alicja; Dulak, Jozef

    2018-02-01

    Cellular stress can influence efficiency of iPSCs generation and their differentiation. However, the role of intracellular cytoprotective factors in these processes is still not well known. Therefore, we investigated the effect of HO-1 (Hmox1) or Nrf2 (Nfe2l2), two major cytoprotective genes. Hmox1-/- fibroblasts demonstrated decreased reprogramming efficiency in comparison to Hmox1+/+ cells. Reversely, pharmacological enhancement of HO-1 resulted in higher number of iPSCs colonies. Importantly, elevated level of both p53 and p53-regulated miR-34a and 14-3-3σ was observed in HO-1-deficient fibroblasts whereas downregulation of p53 in these cells markedly increased their reprogramming efficiency. In human fibroblasts HO-1 silencing also induced p53 expression and affected reprogramming outcome. Hmox1+/+ and Hmox1-/- iPSCs similarly differentiated in vitro to cells originating from three germ layers, however, lower number of contracting cells was observed during this process in HO-1-deficient cells indicating attenuated cardiac differentiation. Importantly, silencing of Hmox1 in murine ESC using CRISPR/Cas-9 editing also impaired their spontaneous cardiac differentiation. Decreased reprogramming efficiency was also observed in Nrf2-lacking fibroblasts. Reversely, sulforaphane, a Nrf2 activator, increased the number of iPSCs colonies. However, both Nfe2l2+/+ and Nfe2l2-/- iPSCs showed similar pluripotency and differentiation capacity. These results indicate that regulation of HO-1 expression can further optimize generation and cardiac differentiation of iPSCs. © 2018 IUBMB Life, 70(2):129-142, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  9. Ouabain-induced perturbations in intracellular ionic homeostasis regulate death receptor-mediated apoptosis

    Science.gov (United States)

    Panayiotidis, Mihalis I.; Franco, Rodrigo; Bortner, Carl D.; Cidlowski, John A.

    2012-01-01

    Apoptosis is defined by specific morphological and biochemical characteristics including cell shrinkage (termed apoptotic volume decrease), a process that results from the regulation of ion channels and plasma membrane transporter activity. The Na+-K+-ATPase is the predominant pump that controls cell volume and plasma membrane potential in cells and alterations in its function have been suggested to be associated with apoptosis. We report here that the Na+-K+-ATPase inhibitor ouabain, potentiates apoptosis in the human lymphoma Jurkat cells exposed to Fas ligand (FasL) or Tumor necrosis factor--related apoptosis-inducing ligand (TRAIL) but not other apoptotic agents such as H2O2, thapsigargin or UV-C implicating a role for the Na+-K+-ATPase in death receptor-induced apoptosis. Interestingly, ouabain also potentiated perturbations in cell Ca2+ homeostasis only in conjunction with the apoptotic inducer FasL but not TRAIL. Ouabain did not affect alterations in the intracellular Ca2+ levels in response to H2O2, thapsigargin or UV-C. FasL-induced alterations in Ca2+ were not abolished in Ca2+-free medium but incubation of cells with BAPTA-AM inhibited both Ca2+ perturbations and the ouabain-induced potentiation of FasL-induced apoptosis. Our data suggest that the impairment of the Na+-K+-ATPase activity during apoptosis is linked to perturbations in cell Ca2+ homeostasis that modulate apoptosis induced by the activation of Fas by FasL. PMID:20422450

  10. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Solip [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of); Nguyen, Van Thu [College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702 (Korea, Republic of); Tae, Nara; Lee, Suhyun [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of); Ryoo, Sungwoo [Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of); Min, Byung-Sun [College of Pharmacy, Catholic University of Daegu, Gyeongsan 712-702 (Korea, Republic of); Lee, Jeong-Hyung, E-mail: jhlee36@kangwon.ac.kr [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-Do 200-701 (Korea, Republic of)

    2014-11-01

    Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE{sub 2}, butyl lucidenateD{sub 2} (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting the involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these

  11. Measurement of Heme Ruffling Changes in MhuD Using UV-vis Spectroscopy.

    Science.gov (United States)

    Graves, Amanda B; Graves, Max T; Liptak, Matthew D

    2016-04-28

    For decades it has been known that an out-of-plane ruffling distortion of heme perturbs its UV-vis absorption (Abs) spectrum, but whether increased ruffling induces a red or blue shift of the Soret band has remained a topic of debate. This debate has been resolved by the spectroscopic and computational characterization of Mycobacterium tuberculosis MhuD presented here, an enzyme that converts heme, oxygen, and reducing equivalents to nonheme iron and mycobilin. W66F and W66A MhuD have been characterized using (1)H nuclear magnetic resonance, Abs, and magnetic circular dichroism spectroscopies, and the data have been used to develop an experimentally validated theoretical model of ruffled, ferric heme. The PBE density functional theory (DFT) model that has been developed accurately reproduces the observed spectral changes from wild type enzyme, and the underlying quantum mechanical origins of these ruffling-induced changes were revealed by analyzing the PBE DFT description of the electronic structure. Small amounts of heme ruffling have no influence on the energy of the Q-band and blue-shift the Soret band due to symmetry-allowed mixing of the Fe 3dxy and porphyrin a2u orbitals. Larger amounts of ruffling red-shift both the Q and Soret bands due to disruption of π-bonding within the porphyrin ring.

  12. A molecular theory of the structural dynamics of protein induced by a perturbation

    Science.gov (United States)

    Hirata, Fumio

    2016-12-01

    An equation to describe the structural dynamics of protein molecule induced by a perturbation such as a photo-excitation is derived based on the linear response theory, which reads 𝐑α(t ) =𝐑α(t =∞ ) -1/kBT ∑γ ⟨Δ𝐑α(t) Δ 𝐑γ⟩eq (0 )ṡ𝐟γ(0 ) . In the equation, α and γ distinguish atoms in protein, 𝐟γ(0 ) denotes a perturbation at time t = 0, 𝐑α(t ) the average position (or structure) of protein atom α at time t after the perturbation being applied, and 𝐑a(t =∞ ) the position at t =∞ . ⟨Δ𝐑α(t) Δ 𝐑γ⟩e q (0 ) is a response function in which Δ 𝐑α(t ) is the fluctuation of atom α at time t in the equilibrium system. The perturbation is defined in terms of the free energy difference between perturbed and unperturbed equilibrium-states, which includes interactions between solute and solvent as well as those among solvent molecules in a renormalized manner. The response function signifies the time evolution of the variance-covariance matrix of the structural fluctuation for the unperturbed system. A theory to evaluate the response function ⟨Δ𝐑α(t) Δ 𝐑γ ⟩ e q (0 ) is also proposed based on the Kim-Hirata theory for the structural fluctuation of protein [B. Kim and F. Hirata, J. Chem. Phys. 138, 054108 (2013)]. The problem reduces to a simple eigenvalue problem for a matrix which includes the friction and the second derivative of the free energy surface of protein with respect to its atomic coordinates.

  13. Heme oxygenase-1 delays gibberellin-induced programmed cell death of rice aleurone layers subjected to drought stress by interacting with nitric oxide

    Directory of Open Access Journals (Sweden)

    Huangming eWu

    2016-01-01

    Full Text Available Cereal aleurone layers undergo a gibberellin (GA-regulated process of programmed cell death (PCD following germination. Heme oxygenase-1 (HO-1 is known as a rate-liming enzyme in the degradation of heme to biliverdin IXα (BV, carbon monoxide (CO, and free iron ions (Fe2+. It is a critical component in plant development and adaptation to environment stresses. Our previous studies confirmed that HO-1 inducer hematin (Ht promotes the germination of rice seeds in drought (20% polyethylene glycol-6000, PEG conditions, but the corresponding effects of HO-1 on the alleviation of germination-triggered PCD in GA-treated rice aleurone layers remain unknown. The present study has determined that GA co-treated with PEG results in lower HO-1 transcript levels and HO activity, which in turn results in the development of vacuoles in aleurone cells, followed by PCD. The pharmacology approach illustrated that up- or down-regulated HO-1 gene expression and HO activity delayed or accelerated GA-induced PCD. Furthermore, the application of the HO-1 inducer hematin and nitric oxide (NO donor sodium nitroprusside (SNP not only activated HO-1 gene expression, HO activity, and endogenous NO content, but also blocked GA-induced rapid vacuolation and accelerated aleurone layers PCD under drought stress. However, both HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX and NO scavenger 2-(4-carboxyphenyl0-4, 4, 5, 5-tetramethylimidazoline-l-oxyl-3-oxide potassium salt (cPTIO reserved the effects of hematin and SNP on rice aleurone layer PCD under drought stress by down-regulating endogenous HO-1 and NO, respectively. The inducible effects of hematin and SNP on HO-1 gene expression, HO activity, and NO content were blocked by cPTIO. Together, these results clearly suggest that HO-1 is involved in the alleviation of GA-induced PCD of drought-triggered rice aleurone layers by associating with NO.

  14. Osmopriming-induced salt tolerance during seed germination of alfalfa most likely mediates through H2O2 signaling and upregulation of heme oxygenase.

    Science.gov (United States)

    Amooaghaie, Rayhaneh; Tabatabaie, Fatemeh

    2017-07-01

    The present study showed that osmopriming or pretreatment with low H2O2 doses (2 mM) for 6 h alleviated salt-reduced seed germination. The NADPH oxidase activity was the main source, and superoxide dismutase (SOD) activity might be a secondary source of H2O2 generation during osmopriming or H2O2 pretreatment. Hematin pretreatment similar to osmopriming improved salt-reduced seed germination that was coincident with the enhancement of heme oxygenase (HO) activity. The semi-quantitative RT-PCR confirmed that osmopriming or H2O2 pretreatment was able to upregulate heme oxygenase HO-1 transcription, while the application of N,N-dimethyl thiourea (DMTU as trap of endogenous H2O2) and diphenyleneiodonium (DPI as inhibitor of NADPHox) not only blocked the upregulation of HO but also reversed the osmopriming-induced salt attenuation. The addition of CO-saturated aqueous rescued the inhibitory effect of DMTU and DPI on seed germination and α-amylase activity during osmopriming or H2O2 pretreatment, but H2O2 could not reverse the inhibitory effect of ZnPPIX (as HO inhibitor) or Hb (as CO scavenger) that indicates that the CO acts downstream of H2O2 in priming-driven salt acclimation. The antioxidant enzymes and proline synthesis were upregulated in roots of seedlings grown from primed seeds, and these responses were reversed by adding DMTU, ZnPPIX, and Hb during osmopriming. These findings for the first time suggest that H2O2 signaling and upregulation of heme oxygenase play a crucial role in priming-driven salt tolerance.

  15. An assessment of molecular pathways of obesity susceptible to nutrient, toxicant and genetically induced epigenetic perturbation.

    Science.gov (United States)

    Xue, Jing; Ideraabdullah, Folami Y

    2016-04-01

    In recent years, the etiology of human disease has greatly improved with the inclusion of epigenetic mechanisms, in particular as a common link between environment and disease. However, for most diseases we lack a detailed interpretation of the epigenetic regulatory pathways perturbed by environment and causal mechanisms. Here, we focus on recent findings elucidating nutrient-related epigenetic changes linked to obesity. We highlight studies demonstrating that obesity is a complex disease linked to disruption of epigenetically regulated metabolic pathways in the brain, adipose tissue and liver. These pathways regulate (1) homeostatic and hedonic eating behaviors, (2) adipocyte differentiation and fat accumulation, and (3) energy expenditure. By compiling these data, we illustrate that obesity-related phenotypes are repeatedly linked to disruption of critical epigenetic mechanisms that regulate key metabolic genes. These data are supported by genetic mutation of key epigenetic regulators, and many of the diet-induced epigenetic mechanisms of obesity are also perturbed by exposure to environmental toxicants. Identifying similarly perturbed epigenetic mechanisms in multiple experimental models of obesity strengthens the translational applications of these findings. We also discuss many of the ongoing challenges to understanding the role of environmentally induced epigenetic pathways in obesity and suggest future studies to elucidate these roles. This assessment illustrates our current understanding of molecular pathways of obesity that are susceptible to environmental perturbation via epigenetic mechanisms. Thus, it lays the groundwork for dissecting the complex interactions between diet, genes and toxicants that contribute to obesity and obesity-related phenotypes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Perturbations of the flow induced by a microcapsule in a capillary tube

    Science.gov (United States)

    Gubspun, J.; de Loubens, C.; Trozzo, R.; Deschamps, J.; Georgelin, M.; Edwards-Levy, F.; Leonetti, M.

    2017-06-01

    Soft microcapsules moving in a cylindrical capillary deform from quasi-spherical shapes to elongated shapes with an inversion of curvature at the rear. We investigated the perturbation of the flow by particle tracking velocimetry around deformed microcapsules in confined flow. These experiments are completed by numerical simulations. Microcapsules are made of a thin membrane of polymerized human albumin and their shear elastic moduli are previously characterized in a cross flow chamber. Firstly, the velocity of the microcapsule can be calculated by theoretical predictions for rigid spheres, even for large deformations as ‘parachute-like’ shapes, if a relevant definition of the ratio of confinement is chosen. Secondly, at the rear and the front of the microcapsule, the existence of multiple recirculation regions is governed by the local curvature of the membrane. The amplitudes of these perturbations increase with the microcapsule deformation, whereas their axial extents are comparable to the radius of the capillary whatever the confinement and the capillary number. We conclude that whereas the motion of microcapsules in confined flow has quantitative similitudes with rigid spheres in terms of velocity and axial extent of the perturbation, their presence induces variations in the flow field that are related to the local deformation of the membrane as in droplets.

  17. Environmental heme utilization by heme-auxotrophic bacteria.

    Science.gov (United States)

    Gruss, Alexandra; Borezée-Durant, Elise; Lechardeur, Delphine

    2012-01-01

    Heme, an iron-containing porphyrin, is the prosthetic group for numerous key cellular enzymatic and regulatory processes. Many bacteria encode the biosynthetic enzymes needed for autonomous heme production. Remarkably, however, numerous other bacteria lack a complete heme biosynthesis pathway, yet encode heme-requiring functions. For such heme-auxotrophic bacteria (HAB), heme or porphyrins must be captured from the environment. Functional studies, aided by genomic analyses, provide insight into the HAB lifestyle, how they acquire and manage heme, and the uses of heme that make it worthwhile, and sometimes necessary, to capture this bioactive molecule. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Curcumin-Induced Heme Oxygenase-1 Expression Prevents H2O2-Induced Cell Death in Wild Type and Heme Oxygenase-2 Knockout Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Niels A. J. Cremers

    2014-10-01

    Full Text Available Mesenchymal stem cell (MSC administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs from wild type (WT and HO-2 knockout (KO mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2 significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy.

  19. Pulsed Current-Voltage-Induced Perturbations of a Premixed Propane/Air Flame

    Directory of Open Access Journals (Sweden)

    Jacob. B. Schmidt

    2011-01-01

    Full Text Available The effect of millisecond wide sub-breakdown pulsed voltage-current induced flow perturbation has been measured in premixed laminar atmospheric pressure propane/air flame. The flame equivalence ratios were varied from 0.8 to 1.2 with the flow speeds near 1.1 meter/second. Spatio-temporal flame structure changes were observed through collection of CH (A-X and OH (A-X chemiluminescence and simultaneous spontaneous Raman scattering from N2. This optical collection scheme allows us to obtain a strong correlation between the measured gas temperature and the chemiluminescence intensity, verifying that chemiluminescence images provide accurate measurements of flame reaction zone structure modifications. The experimental results suggest that the flame perturbation is caused by ionic wind originating only from the radial positive space-charge distribution in/near the cathode fall. A net momentum transfer acts along the annular space discharge distribution in the reaction zone at or near the cathode fall which modifies the flow field near the cathodic burner head. This radially inward directed body force appears to enhance mixing similar to a swirl induced modification of the flame structure. The flame fluidic response exhibit a strong dependence on the voltage pulse width ≤10 millisecond.

  20. Pulmonary proteases in the cystic fibrosis lung induce interleukin 8 expression from bronchial epithelial cells via a heme/meprin/epidermal growth factor receptor/Toll-like receptor pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2012-02-01

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from DeltaF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, alpha(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  1. Pulmonary Proteases in the Cystic Fibrosis Lung Induce Interleukin 8 Expression from Bronchial Epithelial Cells via a Heme/Meprin/Epidermal Growth Factor Receptor/Toll-like Receptor Pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2011-03-04

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from ΔF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, α(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  2. Curcumin ameliorates TNF-α-induced ICAM-1 expression and subsequent THP-1 adhesiveness via the induction of heme oxygenase-1 in the HaCaT cells

    Directory of Open Access Journals (Sweden)

    Gi Soo Youn

    2013-08-01

    Full Text Available Adhesion molecules such as ICAM-1 are important in theinfiltration of leukocytes into the site of inflammation. In thisstudy, we investigated the inhibitory effects of curcumin onICAM-1 expression and monocyte adhesiveness as well as itsunderlying action mechanism in the TNF-α-stimulated keratinocytes.Curcumin induced expression of heme oxygenase-1(HO-1 in the human keratinocyte cell line HaCaT. In addition,curcumin induced Nrf2 activation in dose- and time-dependentmanners in the HaCaT cells. Curcumin suppressed TNF-α-induced ICAM-1 expression and subsequent monocyte adhesion,which were reversed by the addition of tin protoporphyrinIX (SnPP, a specific inhibitor of HO-1, or HO-1knockdown using siRNA. Furthermore, Nrf2 knockdown usingsiRNA reversed the inhibitory effect of curcumin on theTNF-α-induced ICAM-1 expression and adhesion of monocytesto keratinocytes. These results suggest that curcumin may exertits anti-inflammatory activity by suppressing the TNF-α-inducedICAM-1 expression and subsequent monocyte adhesion viaexpression of HO-1 in the keratinocytes. [BMB Reports 2013;46(8: 410-415

  3. Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW264.7 cells from hydrogen peroxide-induced injury.

    Science.gov (United States)

    Oh, Hwa Min; Kang, Young Jin; Lee, Young Soo; Park, Min Kyu; Kim, Sun Hee; Kim, Hye Jung; Seo, Han Geuk; Lee, Jae Heun; Chang, Ki Churl

    2006-01-16

    It has been proposed that the inducible isoform of heme oxygenase (HO) protects cells against oxidant-mediated injury. Although components of Agastache rugosa showed antioxidant effect, it is unclear this effect is related with HO-1 activity. Thus, we investigated the effects of Agastache rugosa leaf extract (ALE) on HO-1 protein expression and enzyme activity, and its protective effect against H(2)O(2)-induced oxidative damage was also investigated using RAW264.7 macrophage cells. Results showed that ALE concentration dependently increased HO-1 protein and enzyme activity, and protected cells from H(2)O(2)-induced cytotoxicity, with an IC(50) of 0.526 mg/ml. Hemin, a HO-1 inducer, also showed similar effect to ALE. Furthermore, the protective effect of both ALE and hemin was inhibited by a HO inhibitor, zinc protoporphyrin IX. The expression of HO-1 protein by ALE was reduced by pretreatment with LY83583 and ODQ, specific inhibitors of guanylate cyclase, but not by PKA inhibitors, H89 and KT5720, indicating that PKG signaling pathway regulates HO-1 induction by ALE. Taken together, it is concluded that PKG-dependent HO-1 induction is one of the important antioxidant mechanisms by which ALE protects RAW264.7 cells from H(2)O(2). Thus, ALE along with other actions may be beneficial for the treatment of oxidant-induced cellular injuries.

  4. Epigallocatechin Gallate Attenuates Proliferation and Oxidative Stress in Human Vascular Smooth Muscle Cells Induced by Interleukin-1β via Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Po-Len Liu

    2014-01-01

    Full Text Available Proliferation of vascular smooth muscle cells (VSMCs triggered by inflammatory stimuli and oxidative stress contributes importantly to atherogenesis. The association of green tea consumption with cardiovascular protection has been well documented in epidemiological observations, however, the underlying mechanisms remain unclear. This study aimed to elucidate the effects of the most active green tea catechin derivative, (−-epigallocatechin-3-gallate (EGCG, in human aortic smooth muscle cells (HASMCs, focusing particularly on the role of a potent anti-inflammatory and antioxidative enzyme heme oxygenase-1 (HO-1. We found that pretreatment of EGCG dose- and time-dependently induced HO-1 protein levels in HASMCs. EGCG inhibited interleukin- (IL-1β-induced HASMC proliferation and oxidative stress in a dose-dependent manner. The HO-1 inducer CoPPIX decreased IL-1β-induced cell proliferation, whereas the HO-1 enzyme inhibitor ZnPPIX significantly reversed EGCG-caused growth inhibition in IL-1β-treated HASMCs. At the molecular level, EGCG treatment significantly activated nuclear factor erythroid-2-related factor (Nrf2 transcription activities. These results suggest that EGCG might serve as a complementary and alternative medicine in the treatment of these pathologies by inducing HO-1 expression and subsequently decreasing VSMC proliferation.

  5. Epigallocatechin Gallate Attenuates Proliferation and Oxidative Stress in Human Vascular Smooth Muscle Cells Induced by Interleukin-1β via Heme Oxygenase-1

    Science.gov (United States)

    Liu, Po-Len; Kuo, Hsuan-Fu; Hsieh, Chong-Chao

    2014-01-01

    Proliferation of vascular smooth muscle cells (VSMCs) triggered by inflammatory stimuli and oxidative stress contributes importantly to atherogenesis. The association of green tea consumption with cardiovascular protection has been well documented in epidemiological observations, however, the underlying mechanisms remain unclear. This study aimed to elucidate the effects of the most active green tea catechin derivative, (−)-epigallocatechin-3-gallate (EGCG), in human aortic smooth muscle cells (HASMCs), focusing particularly on the role of a potent anti-inflammatory and antioxidative enzyme heme oxygenase-1 (HO-1). We found that pretreatment of EGCG dose- and time-dependently induced HO-1 protein levels in HASMCs. EGCG inhibited interleukin- (IL-)1β-induced HASMC proliferation and oxidative stress in a dose-dependent manner. The HO-1 inducer CoPPIX decreased IL-1β-induced cell proliferation, whereas the HO-1 enzyme inhibitor ZnPPIX significantly reversed EGCG-caused growth inhibition in IL-1β-treated HASMCs. At the molecular level, EGCG treatment significantly activated nuclear factor erythroid-2-related factor (Nrf2) transcription activities. These results suggest that EGCG might serve as a complementary and alternative medicine in the treatment of these pathologies by inducing HO-1 expression and subsequently decreasing VSMC proliferation. PMID:25386047

  6. Red Yeast Rice Protects Circulating Bone Marrow-Derived Proangiogenic Cells against High-Glucose-Induced Senescence and Oxidative Stress: The Role of Heme Oxygenase-1.

    Science.gov (United States)

    Liu, Jung-Tung; Chen, Huey-Yi; Chen, Wen-Chi; Man, Kee-Ming; Chen, Yung-Hsiang

    2017-01-01

    The inflammation and oxidative stress of bone marrow-derived proangiogenic cells (PACs), also named endothelial progenitor cells, triggered by hyperglycemia contributes significantly to vascular dysfunction. There is supporting evidence that the consumption of red yeast rice (RYR; Monascus purpureus-fermented rice) reduces the vascular complications of diabetes; however, the underlying mechanism remains unclear. This study aimed to elucidate the effects of RYR extract in PACs, focusing particularly on the role of a potent antioxidative enzyme, heme oxygenase-1 (HO-1). We found that treatment with RYR extract induced nuclear factor erythroid-2-related factor nuclear translocation and HO-1 mRNA and protein levels in PACs. RYR extract inhibited high-glucose-induced (30 mM) PAC senescence and the development of reactive oxygen species (ROS) in a dose-dependent manner. The HO-1 inducer cobalt protoporphyrin IX also decreased high-glucose-induced cell senescence and oxidative stress, whereas the HO-1 enzyme inhibitor zinc protoporphyrin IX and HO-1 small interfering RNA significantly reversed RYR extract-caused inhibition of senescence and reduction of oxidative stress in high-glucose-treated PACs. These results suggest that RYR extract serves as alternative and complementary medicine in the treatment of these diseases, by inducing HO-1, thereby decreasing the vascular complications of diabetes.

  7. Red Yeast Rice Protects Circulating Bone Marrow-Derived Proangiogenic Cells against High-Glucose-Induced Senescence and Oxidative Stress: The Role of Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Jung-Tung Liu

    2017-01-01

    Full Text Available The inflammation and oxidative stress of bone marrow-derived proangiogenic cells (PACs, also named endothelial progenitor cells, triggered by hyperglycemia contributes significantly to vascular dysfunction. There is supporting evidence that the consumption of red yeast rice (RYR; Monascus purpureus-fermented rice reduces the vascular complications of diabetes; however, the underlying mechanism remains unclear. This study aimed to elucidate the effects of RYR extract in PACs, focusing particularly on the role of a potent antioxidative enzyme, heme oxygenase-1 (HO-1. We found that treatment with RYR extract induced nuclear factor erythroid-2-related factor nuclear translocation and HO-1 mRNA and protein levels in PACs. RYR extract inhibited high-glucose-induced (30 mM PAC senescence and the development of reactive oxygen species (ROS in a dose-dependent manner. The HO-1 inducer cobalt protoporphyrin IX also decreased high-glucose-induced cell senescence and oxidative stress, whereas the HO-1 enzyme inhibitor zinc protoporphyrin IX and HO-1 small interfering RNA significantly reversed RYR extract-caused inhibition of senescence and reduction of oxidative stress in high-glucose-treated PACs. These results suggest that RYR extract serves as alternative and complementary medicine in the treatment of these diseases, by inducing HO-1, thereby decreasing the vascular complications of diabetes.

  8. Differential laser-induced perturbation spectroscopy and fluorescence imaging for biological and materials sensing

    Science.gov (United States)

    Burton, Dallas Jonathan

    The field of laser-based diagnostics has been a topic of research in various fields, more specifically for applications in environmental studies, military defense technologies, and medicine, among many others. In this dissertation, a novel laser-based optical diagnostic method, differential laser-induced perturbation spectroscopy (DLIPS), has been implemented in a spectroscopy mode and expanded into an imaging mode in combination with fluorescence techniques. The DLIPS method takes advantage of deep ultraviolet (UV) laser perturbation at sub-ablative energy fluences to photochemically cleave bonds and alter fluorescence signal response before and after perturbation. The resulting difference spectrum or differential image adds more information about the target specimen, and can be used in combination with traditional fluorescence techniques for detection of certain materials, characterization of many materials and biological specimen, and diagnosis of various human skin conditions. The differential aspect allows for mitigation of patient or sample variation, and has the potential to develop into a powerful, noninvasive optical sensing tool. The studies in this dissertation encompass efforts to continue the fundamental research on DLIPS including expansion of the method to an imaging mode. Five primary studies have been carried out and presented. These include the use of DLIPS in a spectroscopy mode for analysis of nitrogen-based explosives on various substrates, classification of Caribbean fruit flies versus Caribbean fruit flies that have been irradiated with gamma rays, and diagnosis of human skin cancer lesions. The nitrogen-based explosives and Caribbean fruit flies have been analyzed with the DLIPS scheme using the imaging modality, providing complementary information to the spectroscopic scheme. In each study, a comparison between absolute fluorescence signals and DLIPS responses showed that DLIPS statistically outperformed traditional fluorescence techniques

  9. Practical Application of Toxicogenomics for Profiling Toxicant-Induced Biological Perturbations

    Directory of Open Access Journals (Sweden)

    Naoki Kiyosawa

    2010-09-01

    Full Text Available A systems-level understanding of molecular perturbations is crucial for evaluating chemical-induced toxicity risks appropriately, and for this purpose comprehensive gene expression analysis or toxicogenomics investigation is highly advantageous. The recent accumulation of toxicity-associated gene sets (toxicogenomic biomarkers, enrichment in public or commercial large-scale microarray database and availability of open-source software resources facilitate our utilization of the toxicogenomic data. However, toxicologists, who are usually not experts in computational sciences, tend to be overwhelmed by the gigantic amount of data. In this paper we present practical applications of toxicogenomics by utilizing biomarker gene sets and a simple scoring method by which overall gene set-level expression changes can be evaluated efficiently. Results from the gene set-level analysis are not only an easy interpretation of toxicological significance compared with individual gene-level profiling, but also are thought to be suitable for cross-platform or cross-institutional toxicogenomics data analysis. Enrichment in toxicogenomics databases, refinements of biomarker gene sets and scoring algorithms and the development of user-friendly integrative software will lead to better evaluation of toxicant-elicited biological perturbations.

  10. Perturbation of Auxin Homeostasis and Signaling by PINOID Overexpression Induces Stress Responses in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kumud Saini

    2017-08-01

    Full Text Available Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS. However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID, a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology.

  11. Cobalt alleviates GA-induced programmed cell death in wheat aleurone layers via the regulation of H2O2 production and heme oxygenase-1 expression.

    Science.gov (United States)

    Wu, Mingzhu; Li, Jiale; Wang, Fangquan; Li, Feng; Yang, Jun; Shen, Wenbiao

    2014-11-14

    Heme oxygenase-1 (HO-1) and hydrogen peroxide (H2O2) are key signaling molecules that are produced in response to various environmental stimuli. Here, we demonstrate that cobalt is able to delay gibberellic acid (GA)-induced programmed cell death (PCD) in wheat aleurone layers. A similar response was observed when samples were pretreated with carbon monoxide (CO) or bilirubin (BR), two end-products of HO catalysis. We further observed that increased HO-1 expression played a role in the cobalt-induced alleviation of PCD. The application of HO-1-specific inhibitor, zinc protoporphyrin-IX (ZnPPIX), substantially prevented the increases of HO-1 activity and the alleviation of PCD triggered by cobalt. The stimulation of HO-1 expression, and alleviation of PCD might be caused by the initial H2O2 production induced by cobalt. qRT-PCR and enzymatic assays revealed that cobalt-induced gene expression and the corresponding activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), three enzymes that metabolize reactive oxygen species, were consistent with the H2O2 accumulation during GA treatment. These cobalt responses were differentially blocked by co-treatment with ZnPPIX. We therefore suggest that HO-1 functions in the cobalt-triggered alleviation of PCD in wheat aleurone layers, which is also dependent on the enhancement of the activities of antioxidant enzymes.

  12. Discovery of Intracellular Heme-binding Protein HrtR, Which Controls Heme Efflux by the Conserved HrtB-HrtA Transporter in Lactococcus lactis*

    Science.gov (United States)

    Lechardeur, Delphine; Cesselin, Bénédicte; Liebl, Ursula; Vos, Marten H.; Fernandez, Annabelle; Brun, Célia; Gruss, Alexandra; Gaudu, Philippe

    2012-01-01

    Most commensal and food bacteria lack heme biosynthesis genes. For several of these, the capture of environmental heme is a means of activating aerobic respiration metabolism. Our previous studies in the Gram-positive bacterium Lactococcus lactis showed that heme exposure strongly induced expression of a single operon, called here hrtRBA, encoding an ortholog of the conserved membrane hrt (heme-regulated transporter) and a unique transcriptional regulator that we named HrtR. We show that HrtR expressed as a fusion protein is a heme-binding protein. Heme iron interaction with HrtR is non-covalent, hexacoordinated, and involves two histidines, His-72 and His-149. HrtR specifically binds a 15-nt palindromic sequence in the hrtRBA promoter region, which is needed for hrtRBA repression. HrtR-DNA binding is abolished by heme addition, which activates expression of the HrtB-HrtA (HrtBA) transporter in vitro and in vivo. The use of HrtR as an intracellular heme sensor appears to be conserved among numerous commensal bacteria, in contrast with numerous Gram-positive pathogens that use an extracellular heme-sensing system, HssRS, to regulate hrt. Finally, we show for the first time that HrtBA permease controls heme toxicity by its direct and specific efflux. The use of an intracellular heme sensor to control heme efflux constitutes a novel paradigm for bacterial heme homeostasis. PMID:22084241

  13. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis.

    Science.gov (United States)

    Lechardeur, Delphine; Cesselin, Bénédicte; Liebl, Ursula; Vos, Marten H; Fernandez, Annabelle; Brun, Célia; Gruss, Alexandra; Gaudu, Philippe

    2012-02-10

    Most commensal and food bacteria lack heme biosynthesis genes. For several of these, the capture of environmental heme is a means of activating aerobic respiration metabolism. Our previous studies in the Gram-positive bacterium Lactococcus lactis showed that heme exposure strongly induced expression of a single operon, called here hrtRBA, encoding an ortholog of the conserved membrane hrt (heme-regulated transporter) and a unique transcriptional regulator that we named HrtR. We show that HrtR expressed as a fusion protein is a heme-binding protein. Heme iron interaction with HrtR is non-covalent, hexacoordinated, and involves two histidines, His-72 and His-149. HrtR specifically binds a 15-nt palindromic sequence in the hrtRBA promoter region, which is needed for hrtRBA repression. HrtR-DNA binding is abolished by heme addition, which activates expression of the HrtB-HrtA (HrtBA) transporter in vitro and in vivo. The use of HrtR as an intracellular heme sensor appears to be conserved among numerous commensal bacteria, in contrast with numerous Gram-positive pathogens that use an extracellular heme-sensing system, HssRS, to regulate hrt. Finally, we show for the first time that HrtBA permease controls heme toxicity by its direct and specific efflux. The use of an intracellular heme sensor to control heme efflux constitutes a novel paradigm for bacterial heme homeostasis.

  14. Eupatolide inhibits PDGF-induced proliferation and migration of aortic smooth muscle cells through ROS-dependent heme oxygenase-1 induction.

    Science.gov (United States)

    Kim, Namho; Hwangbo, Cheol; Lee, Suhyun; Lee, Jeong-Hyung

    2013-11-01

    The abnormal proliferation and migration of vascular smooth muscle cell (VSMC) contributes importantly to the pathogenesis of atherosclerosis and restenosis. Here, we investigated the effects of eupatolide (EuTL), a sesquiterpene lactone isolated from the medicinal plant Inula britannica, on platelet-derived growth factor (PDGF)-induced proliferation and migration of primary rat aortic smooth muscle cells (RASMCs), as well as its underlying mechanisms. EuTL remarkably inhibited PDGF-induced proliferation and migration of RASMCs. Treatment of RASMCs with EuTL induced both protein and mRNA expression of heme oxygenase-1 (HO-1). SB203580 (a p38 inhibitor), SP600125 (a JNK inhibitor), U0126 (a MEK inhibitor) and LY294002 (a PI3K inhibitor) did not suppress EuTL-induced HO-1 expression; however, N-acetylcysteine (NAC, an antioxidant) blocked EuTL-induced HO-1 expression. Moreover, treatment of RASMCs with EuTL increased reactive oxygen species (ROS) accumulation and nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2); however, this translocation was also inhibited by NAC. NAC or inhibition of HO-1 significantly attenuated the inhibitory effects of EuTL on PDGF-induced proliferation and migration of RASMCs. Taken together, these findings suggest that EuTL could suppress PDGF-induced proliferation and migration of VSMCs through HO-1 induction via ROS-Nrf2 pathway and may be a potential HO-1 inducer for preventing or treating vascular diseases. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Search for Perturbations of Nuclear Decay Rates Induced by Reactor Electron Antineutrinos

    CERN Document Server

    Barnes, V E; Bryan, C D; Cinko, N; Deichert, G G; Gruenwald, J T; Heim, J M; Kaplan, H B; LaZur, R; Neff, D; Nistor, J M; Sahelijo, N; Fischbach, E

    2016-01-01

    We report the results of an experiment conducted near the High Flux Isotope Reactor of Oak Ridge National Laboratory, designed to address the question of whether a flux of reactor-generated electron antineutrinos can alter the rates of weak nuclear interaction-induced decays for Mn-54, Na-22, and Co-60. This experiment, while quite sensitive, cannot exclude perturbations less than one or two parts in $10^4$ in $\\beta$ decay (or electron capture) processes, in the presence of an antineutrino flux of $3\\times 10^{12}$ cm$^{-2}$ s$^{-1}$. The present experimental methods are applicable to a wide range of isotopes. Improved sensitivity in future experiments may be possible if we can understand and reduce the dominant systematic uncertainties.

  16. Relationship between natural and heme-mediated antibody polyreactivity

    Energy Technology Data Exchange (ETDEWEB)

    Hadzhieva, Maya; Vassilev, Tchavdar [Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Bayry, Jagadeesh; Kaveri, Srinivas; Lacroix-Desmazes, Sébastien [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France); Dimitrov, Jordan D., E-mail: jordan.dimitrov@crc.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France)

    2016-03-25

    Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivity of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies. - Highlights: • Exposure of certain monoclonal IgE antibodies to heme results in gain of antigen binding polyreactivity. • Natural polyreactivity of antibodies is dispensable for acquisition of polyreactivity through interaction with heme. • Heme-induced monoclonal IgE antibodies differ in their thermodynamic mechanisms of antigen recognition.

  17. MAPK/JNK1 activation protects cells against cadmium-induced autophagic cell death via differential regulation of catalase and heme oxygenase-1 in oral cancer cells.

    Science.gov (United States)

    So, Keum-Young; Kim, Sang-Hun; Jung, Ki-Tae; Lee, Hyun-Young; Oh, Seon-Hee

    2017-10-01

    Antioxidant enzymes are related to oral diseases. We investigated the roles of heme oxygenase-1 (HO-1) and catalase in cadmium (Cd)-induced oxidative stress and the underlying molecular mechanism in oral cancer cells. Exposing YD8 cells to Cd reduced the expression levels of catalase and superoxide dismutase 1/2 and induced the expression of HO-1 as well as autophagy and apoptosis, which were reversed by N-acetyl-l-cysteine (NAC). Cd-exposed YD10B cells exhibited milder effects than YD8 cells, indicating that Cd sensitivity is associated with antioxidant enzymes and autophagy. Autophagy inhibition via pharmacologic and genetic modulations enhanced Cd-induced HO-1 expression, caspase-3 cleavage, and the production of reactive oxygen species (ROS). Ho-1 knockdown increased autophagy and apoptosis. Hemin treatment partially suppressed Cd-induced ROS production and apoptosis, but enhanced autophagy and CHOP expression, indicating that autophagy induction is associated with cellular stress. Catalase inhibition by pharmacological and genetic modulations increased Cd-induced ROS production, autophagy, and apoptosis, but suppressed HO-1, indicating that catalase is required for HO-1 induction. p38 inhibition upregulated Cd-induced phospho-JNK and catalase, but suppressed HO-1, autophagy, apoptosis. JNK suppression exhibited contrary results, enhancing the expression of phospho-p38. Co-suppression of p38 and JNK1 failed to upregulate catalase and procaspase-3, which were upregulated by JNK1 overexpression. Overall, the balance between the responses of p38 and JNK activation to Cd appears to have an important role in maintaining cellular homeostasis via the regulation of antioxidant enzymes and autophagy induction. In addition, the upregulation of catalase by JNK1 activation can play a critical role in cell protection against Cd-induced oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Heme oxygenase-1 and carbon monoxide in pulmonary medicine

    NARCIS (Netherlands)

    Slebos, DJ; Ryter, SW; Choi, AMK

    2003-01-01

    Heme oxygenase-1 (HO-1), an inducible stress protein, confers cytoprotection against oxidative stress in vitro and in vivo. In addition to its physiological role in heme degradation, HO-1 may influence a number of cellular processes, including growth, inflammation, and apoptosis. By virtue of

  19. Cordyceps sinensis Increases Hypoxia Tolerance by Inducing Heme Oxygenase-1 and Metallothionein via Nrf2 Activation in Human Lung Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Mrinalini Singh

    2013-01-01

    Full Text Available Cordyceps sinensis, an edible mushroom growing in Himalayan regions, is widely recognized in traditional system of medicine. In the present study, we report the efficacy of Cordyceps sinensis in facilitating tolerance to hypoxia using A549 cell line as a model system. Treatment with aqueous extract of Cordyceps sinensis appreciably attenuated hypoxia induced ROS generation, oxidation of lipids and proteins and maintained antioxidant status similar to that of controls via induction of antioxidant gene HO1 (heme oxygenase-1, MT (metallothionein and Nrf2 (nuclear factor erythroid-derived 2-like 2. In contrast, lower level of NFκB (nuclear factor kappaB and tumor necrosis factor-α observed which might be due to higher levels of HO1, MT and transforming growth factor-β. Further, increase in HIF1 (hypoxia inducible factor-1 and its regulated genes; erythropoietin, vascular endothelial growth factor, and glucose transporter-1 was observed. Interestingly, Cordyceps sinensis treatment under normoxia did not regulate the expression HIF1, NFκB and their regulated genes evidencing that Cordyceps sinensis per se did not have an effect on these transcription factors. Overall, Cordyceps sinensis treatment inhibited hypoxia induced oxidative stress by maintaining higher cellular Nrf2, HIF1 and lowering NFκB levels. These findings provide a basis for possible use of Cordyceps sinensis in tolerating hypoxia.

  20. Adiponectin-Mediated Heme Oxygenase-1 Induction Protects Against Iron-Induced Liver Injury via a PPARα-Dependent Mechanism

    Science.gov (United States)

    Lin, Heng; Yu, Chun-Hsien; Jen, Chih-Yu; Cheng, Ching-Feng; Chou, Ying; Chang, Chih-Cheng; Juan, Shu-Hui

    2010-01-01

    Protective effects of adiponectin (APN; an adipocytokine) were shown against various oxidative challenges; however, its therapeutic implications and the mechanisms underlying hepatic iron overload remain unclear. Herein, we show that the deleterious effects of iron dextran on liver function and iron deposition were significantly reversed by adiponectin gene therapy, which was accompanied by AMP-activated protein kinase (AMPK) phosphorylation and heme oxygenase (HO)-1 induction. Furthermore, AMPK-mediated peroxisome proliferator-activated receptor-α (PPARα) activation by APN was ascribable to HO-1 induction. Additionally, we revealed direct transcriptional regulation of HO-1 by the binding of PPARα to a PPAR-responsive element (PPRE) by various experimental assessments. Interestingly, overexpression of HO-1 in hepatocytes mimicked the protective effect of APN in attenuating iron-mediated injury, whereas it was abolished by SnPP and small interfering HO-1. Furthermore, bilirubin, the end-product of the HO-1 reaction, but not CO, protected hepatocytes from iron dextran-mediated caspase activation. Herein, we demonstrate a novel functional PPRE in the promoter regions of HO-1, and APN-mediated HO-1 induction elicited an antiapoptotic effect and a decrease in iron deposition in hepatocytes subjected to iron challenge. PMID:20709802

  1. Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques.

    Science.gov (United States)

    Htun, Nay Min; Chen, Yung Chih; Lim, Bock; Schiller, Tara; Maghzal, Ghassan J; Huang, Alex L; Elgass, Kirstin D; Rivera, Jennifer; Schneider, Hans G; Wood, Bayden R; Stocker, Roland; Peter, Karlheinz

    2017-07-13

    Atherosclerosis is a major cause of mortality and morbidity, which is mainly driven by complications such as myocardial infarction and stroke. These complications are caused by thrombotic arterial occlusion localized at the site of high-risk atherosclerotic plaques, of which early detection and therapeutic stabilization are urgently needed. Here we show that near-infrared autofluorescence is associated with the presence of intraplaque hemorrhage and heme degradation products, particularly bilirubin by using our recently created mouse model, which uniquely reflects plaque instability as seen in humans, and human carotid endarterectomy samples. Fluorescence emission computed tomography detecting near-infrared autofluorescence allows in vivo monitoring of intraplaque hemorrhage, establishing a preclinical technology to assess and monitor plaque instability and thereby test potential plaque-stabilizing drugs. We suggest that near-infrared autofluorescence imaging is a novel technology that allows identification of atherosclerotic plaques with intraplaque hemorrhage and ultimately holds promise for detection of high-risk plaques in patients.Atherosclerosis diagnosis relies primarily on imaging and early detection of high-risk atherosclerotic plaques is important for risk stratification of patients and stabilization therapies. Here Htun et al. demonstrate that vulnerable atherosclerotic plaques generate near-infrared autofluorescence that can be detected via emission computed tomography.

  2. α-Tocopherol protects renal cells from nicotine- or oleic acid-provoked oxidative stress via inducing heme oxygenase-1.

    Science.gov (United States)

    Reed, Dustin K; Hall, Samuel; Arany, Istvan

    2015-03-01

    Smoking and obesity increases renal oxidative stress via nicotine (NIC) or free fatty acid such as oleic acid (OA) but decreases levels of the vitamin E-derivative α-tocopherol (TOC), which has shown to stimulate the antioxidant system such as heme oxygenase-1 (HO-1). Hence, we hypothesized that supplementation of TOC may protect renal proximal tubules from NIC- or OA-mediated oxidative stress by upregulating the HO-1 gene. NIC- or OA-dependent production of reactive oxygen species (ROS) was determined in the presence or absence of various pharmacologic or genetic inhibitors that modulate HO-1 activation and enhancer elements in the HO-1 promoter such as the antioxidant response element (ARE) and the cAMP-response element (CRE) in renal proximal tubule cells (NRK52E). Activity of the HO-1 promoter, the ARE and the CRE was determined in luciferase assays. We found that pre- or posttreatment with TOC attenuated NIC- or OA-dependent ROS production that required HO-1 activation. TOC activated the HO-1 promoter via the CRE but not the ARE enhancer through the extracellular signal-regulated kinase (ERK) and protein kinase A (PKA). Consequently, inhibitors of ERK, PKA, or CRE activation mitigated beneficial effects of TOC on NIC- or OA-mediated ROS production. Hence, vitamin E supplementation-via induction of the cytoprotective HO-1-may help to reduce renal oxidative stress imposed by smoking or obesity.

  3. Chromosomal localization of the human heme oxygenase genes: Heme oxygenase-1 (HMOX1) maps to chromosome 22q12 and heme oxygenase-2 (HMOX2) maps to chromosome 16p13. 3

    Energy Technology Data Exchange (ETDEWEB)

    Kutty, R.K.; Kutty, G.; Rodriguez, I.R.; Chader, G.J.; Wiggert, B. (National Institutes of Health, Bethesda, MD (United States))

    1994-04-01

    Heme oxygenase catalyzes the oxidation of heme to biliverdin, the precursor of the bile pigment bilirubin, and carbon monoxide, a putative neurotransmitter. The authors have employed polymerase chain reaction and fluorescence in situ hybridization to determine the chromosome localization of the genes coding for the two known heme oxygenase isozymes. Heme oxygenase-1 (HMOX1), the inducible form, was localized to human chromosome 22q12, while heme oxygenase-2 (HMOX2), the constitutive form, was localized to chromosome 16p13.3. 14 refs., 3 figs.

  4. Heme Gazing: Illuminating Eukaryotic Heme Trafficking, Dynamics, and Signaling with Fluorescent Heme Sensors.

    Science.gov (United States)

    Hanna, David A; Martinez-Guzman, Osiris; Reddi, Amit R

    2017-04-04

    Heme (iron protoporphyrin IX) is an essential protein prosthetic group and signaling molecule required for most life on Earth. All heme-dependent processes require the dynamic and rapid mobilization of heme from sites of synthesis or uptake to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitate that heme mobilization be carefully controlled to mitigate the deleterious effects of this essential toxin. Indeed, a number of disorders, including certain cancers, cardiovascular diseases, and aging and age-related neurodegenerative diseases, are tied to defects in heme homeostasis. However, the molecules and mechanisms that mediate heme transport and trafficking, and the dynamics of these processes, are poorly understood. This is in large part due to the lack of physical tools for probing cellular heme. Herein, we discuss the recent development of fluorescent probes that can monitor and image kinetically labile heme with respect to its mobilization and role in signaling. In particular, we will highlight how heme gazing with these tools can uncover new heme trafficking factors upon being integrated with genetic screens and illuminate the concentration, subcellular distribution, and dynamics of labile heme in various physiological contexts. Altogether, the monitoring of labile heme, along with recent biochemical and cell biological studies demonstrating the reversible regulation of certain cellular processes by heme, is challenging us to reconceptualize heme from being a static cofactor buried in protein active sites to a dynamic and mobile signaling molecule.

  5. Modifications of sleep structure induced by increasing levels of acoustic perturbation in normal subjects.

    Science.gov (United States)

    Terzano, M G; Parrino, L; Fioriti, G; Orofiamma, B; Depoortere, H

    1990-07-01

    In each non-REM (NREM) sleep stage, the aggregation of the arousal-related phasic events permits identification of periods of arousal fluctuation (cyclic alternating pattern or CAP) and periods of long-lasting arousal stability (non-CAP or NCAP). As the ratio CAP time to NREM sleep time (CAP/NREM) measures the instability of arousal during sleep, any perturbing event determines an increase of CAP/NREM. On the basis of these premises, 6 healthy volunteers underwent 5 sleep recordings at increasing intensities of sound pressure level (basal condition followed by continuous white noise at 45 dBA, 55 dBA, 65 dBA and 75 dBA, respectively). Besides a remarkable enhancement of CAP/NREM (P less than 0.00001), acoustic perturbation induced a significant linear increase of waking time after sleep onset, stage 2, NREM sleep, stage shifts and a significant linear decrease of stage 4, deep sleep, REM sleep and total sleep time. At each step of environmental disturbance, the values of the CAP ratio were consistent with the gradual changes of sleep organization. Although the Multiple Sleep Latency Test was unremarkable during the day following the sleep recording, CAP/NREM was significantly correlated with the personal evaluation of sleep quality (P less than 0.01). Through this model of transient situational insomnia it was possible to outline different degrees of subjective complaint depending on 3 ranges of CAP/NREM. A crucial role of CAP in the pathophysiological mechanisms of clinical insomnia is hypothesized.

  6. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage

    Directory of Open Access Journals (Sweden)

    Peter Belenky

    2015-11-01

    Full Text Available Understanding how antibiotics impact bacterial metabolism may provide insight into their mechanisms of action and could lead to enhanced therapeutic methodologies. Here, we profiled the metabolome of Escherichia coli after treatment with three different classes of bactericidal antibiotics (β-lactams, aminoglycosides, quinolones. These treatments induced a similar set of metabolic changes after 30 min that then diverged into more distinct profiles at later time points. The most striking changes corresponded to elevated concentrations of central carbon metabolites, active breakdown of the nucleotide pool, reduced lipid levels, and evidence of an elevated redox state. We examined potential end-target consequences of these metabolic perturbations and found that antibiotic-treated cells exhibited cytotoxic changes indicative of oxidative stress, including higher levels of protein carbonylation, malondialdehyde adducts, nucleotide oxidation, and double-strand DNA breaks. This work shows that bactericidal antibiotics induce a complex set of metabolic changes that are correlated with the buildup of toxic metabolic by-products.

  7. Mechanical perturbation-induced ethylene releases apical dominance in Pharbitis nil by restricting shoot growth

    Science.gov (United States)

    Prasad, T. K.; Cline, M. G.

    1985-01-01

    Mechanical perturbation (MP, rubbing) or internodes of Pharbitis nil shoots initiates release of lateral buds (LB) from apical dominance within 48 h. Evidence is presented which suggests that MP promotion of LB outgrowth is mediated by ethylene-induced restriction of main shoot growth. Ethylene production in the internodes is stimulated by MP within 2 h. Effects of MP are mimicked by treatments with 1-aminocyclopropane-1-carboxylic acid (ACC) and are negated by the inhibitors of ethylene production or action, aminoethoxy vinylglycine (AVG) and AgNO3. The fact that effects of MP, ACC, and ethylene inhibitors are observed to occur on main shoot growth at least 24 h before they are observed to occur on LB growth suggests a possible cause and effect relationship. MP also causes an increase in internode diameter. MP stimulation of ethylene production appears to be mediated by ACC synthase. The results of this study and our previous studies suggest that apical dominance may be released by any mechanism which induces ethylene restriction of main shoot growth.

  8. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations

    Science.gov (United States)

    Busschaert, Nathalie; Park, Seong-Hyun; Baek, Kyung-Hwa; Choi, Yoon Pyo; Park, Jinhong; Howe, Ethan N. W.; Hiscock, Jennifer R.; Karagiannidis, Louise E.; Marques, Igor; Félix, Vítor; Namkung, Wan; Sessler, Jonathan L.; Gale, Philip A.; Shin, Injae

    2017-07-01

    Perturbations in cellular chloride concentrations can affect cellular pH and autophagy and lead to the onset of apoptosis. With this in mind, synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here, we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in lysosomal pH, which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis.

  9. Gas-phase spectroscopy of ferric heme-NO complexes

    DEFF Research Database (Denmark)

    Wyer, J.A.; Jørgensen, Anders; Pedersen, Bjarke

    2013-01-01

    and significantly blue-shifted compared to ferric heme nitrosyl proteins (maxima between 408 and 422 nm). This is in stark contrast to the Q-band absorption where the protein microenvironment is nearly innocent in perturbing the electronic structure of the porphyrin macrocycle. Photodissociation is primarily...... through loss of NO. In contrast to the Q-band region, two-photon absorption was seen in the Soret band despite NO loss only requiring ∼1 eV. A model based on intersystem crossing to a long-lived triplet state where a barrier has to be surmounted is suggested. Finally, we summarise the measured absorption...... maxima of heme and its complexes with amino acids and NO. Not so innocent: Weakly bound complexes between ferric heme and NO were synthesised in the gas phase, and their absorption measured from photodissociation yields. Opposite absorption trends in the Soret-band are seen upon NO addition to heme ions...

  10. CP violation induced by the double resonance for pure annihilation decay process in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lue, Gang; Li, Sheng-Tao; Wang, Yu-Ting [Henan University of Technology, College of Science, Zhengzhou (China); Lu, Ye [Guangxi Normal University, Department of Physics, Guilin (China)

    2017-08-15

    In a perturbative QCD approach we study the direct CP violation in the pure annihilation decay process of anti B{sup 0}{sub s} → π{sup +}π{sup -}π{sup +}π{sup -} induced by the ρ and ω double resonance effect. Generally, the CP violation is small in the pure annihilation type decay process. However, we find that the CP violation can be enhanced by double ρ-ω interference when the invariant masses of the π{sup +}π{sup -} pairs are in the vicinity of the ω resonance. For the decay process of anti B{sup 0}{sub s} → π{sup +}π{sup -}π{sup +}π{sup -}, the CP violation can reach A{sub CP}(anti B{sup 0}{sub s} → π{sup +}π{sup -}π{sup +}π{sup -}) = 27.20{sup +0.05+0.28+7.13}{sub -0.15-0.31-6.11}%. (orig.)

  11. Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse

    Science.gov (United States)

    Zhang, Shun-Rong; Erickson, Philip J.; Goncharenko, Larisa P.; Coster, Anthea J.; Rideout, William; Vierinen, Juha

    2017-12-01

    During solar eclipses, the Moon's shadow causes a large reduction in atmospheric energy input, including not only the stratosphere but also the thermosphere and ionosphere. The eclipse shadow has a supersonic motion which is theoretically expected to generate atmospheric bow waves, similar to a fast-moving river boat, with waves starting in the lower atmosphere and propagating into the ionosphere. However, previous geographically limited observations have had difficulty detecting these weak waves within the natural background atmospheric variability, and the existence of eclipse-induced ionospheric waves and their evolution in a complex coupling system remain controversial. During the 21 August 2017 eclipse, high fidelity and wide coverage ionospheric observations provided for the first time an oversampled set of eclipse data, using a dense network of Global Navigation Satellite System receivers at ˜2,000 sites in North America. We show the first unambiguous evidence of ionospheric bow waves as electron content disturbances over central/eastern United States, with ˜1 h duration, 300-400 km wavelength and 280 m/s phase speed emanating from and tailing the totality region. We also identify large ionospheric perturbations moving at the supersonic speed of the maximum solar obscuration which are too fast to be associated with known gravity wave or large-scale traveling ionospheric disturbance processes. This study reveals complex interconnections between the Sun, Moon, and Earth's neutral atmosphere and ionosphere and demonstrates persistent coupling processes between different components of the Earth's atmosphere, a topic of significant community interest.

  12. Non-perturbative study of rotationally induced inner-shell excitation

    Science.gov (United States)

    Wille, U.

    1982-03-01

    Within the time-dependent formulation of atomic scattering theory, the exponential representation (“Magnus expansion”) of the quantum mechanical time-evolution matrix is used in a non-perturbative study of rotationally induced inner-shell excitation in slow ion-atom collisions. The impact-parameter dependence of this type of process is shown to represent a transparent example for testing the convergence properties of the Magnus expansion. The specific structure of the Magnus expansion for multi-state rotational coupling in the vicinity of a united-atom ( n, l) shell is investigated, and the analytic solution which this problem admits in the sudden limit is discussed. Explicit calculations within the Magnus approach have been performed for typical two-state and three-state problems relevant to K-shell and L-shell excitation. Their results are compared to the results of the sudden approximation and of coupled-state calculations. Good agreement between the Magnus results and the coupled-state calculations is obtained throughout if terms up to third order are retained in the commutator expansion of the exponent matrix associated with the time-evolution matrix.

  13. The involvement of sirtuin 1 and heme oxygenase 1 in the hepatoprotective effects of quercetin against carbon tetrachloride-induced sub-chronic liver toxicity in rats.

    Science.gov (United States)

    Kemelo, Mighty Kgalalelo; Pierzynová, Aneta; Kutinová Canová, Nikolina; Kučera, Tomáš; Farghali, Hassan

    2017-05-01

    The present study was designed to evaluate the therapeutic potential of quercetin in a sub-chronic model of hepatotoxicity. The roles of putative antioxidant enzymes, sirtuin 1 (SIRT1) and heme oxygenase 1 (HO-1), in hepatoprotection were also addressed. Sub-chronic liver injury was induced in rats by intraperitoneal administration of 0.5 ml/kg carbon tetrachloride (CTC), once every 3 days, for 2 weeks. Some CTC rats were concurrently treated with 100 mg/kg quercetin, intragastrically, once every day, for 2 weeks. The effects of these drugs in the liver were evaluated by biochemical, histological, immunohistochemical and molecular biological studies. CTC triggered oxidative damage to the liver as unanimously shown by altered biochemical parameters and liver morphology. Furthermore, CTC highly upregulated HO-1 and SIRT1 expression levels. Concomitant treatment of rats with quercetin downregulated SIRT1 expression and ameliorated the hepatotoxic effects of CTC. However, quercetin did not have any significant effect on HO-1 expression and bilirubin levels. Collectively, these results suggest that the antioxidant and cytoprotective effects of quercetin in CTC treated rats were SIRT1 mediated and less dependent on HO-1. Thus, pharmacologic modulation of SIRT1 could provide a logic therapeutic approach in sub-chronic hepatotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Taraxacum coreanum protects against glutamate-induced neurotoxicity through heme oxygenase-1 expression in mouse hippocampal HT22 cells.

    Science.gov (United States)

    Yoon, Chi-Su; Ko, Wonmin; Lee, Dong-Sung; Kim, Dong-Cheol; Kim, Jongsu; Choi, Moonbum; Beom, Jin Seon; An, Ren-Bo; Oh, Hyuncheol; Kim, Youn-Chul

    2017-04-01

    Taraxacum coreanum Nakai is a dandelion that is native to Korea, and is widely used as an edible and medicinal herb. The present study revealed the neuroprotective effect of this plant against glutamate-induced oxidative stress in HT22 murine hippocampal neuronal cells. Ethanolic extracts from the aerial (TCAE) and the root parts (TCRE) of T. coreanum were prepared. Both extracts were demonstrated, by high performance liquid chromatography, to contain caffeic acid and ferulic acid as representative constituents. TCAE and TCRE significantly increased cell viability against glutamate-induced oxidative stress in mouse hippocampal HT22 cells. Western blot analysis revealed that treatment of HT22 cells with the extracts induced increased expression of the enzyme heme oxygenase-1 (HO-1), compared with untreated cells, in a concentration-dependent manner. Increased HO-1 enzymatic activity, compared with untreated cells, was also demonstrated following treatment with TCAE and TCRE. In addition, western blot analysis of the nuclear fractions of both TCAE and TCRE-treated HT22 cells revealed increased levels of nuclear factor erythroid 2 like 2 (Nrf2) compared with untreated cells, and decreased Nrf2 levels in the cytoplasmic fraction compared with untreated cells. The present study suggested that the neuroprotective effect of T. coreanum is associated with induction of HO-1 expression and Nrf2 translocation to the nucleus. Therefore, T. coreanum exhibits a promising function in prevention of neurodegeneration. Further studies will be required for the isolation and the full characterization of its active substances.

  15. The reversible opening of water channels in cytochrome c modulates the heme iron reduction potential.

    Science.gov (United States)

    Bortolotti, Carlo Augusto; Amadei, Andrea; Aschi, Massimiliano; Borsari, Marco; Corni, Stefano; Sola, Marco; Daidone, Isabella

    2012-08-22

    Dynamic protein-solvent interactions are fundamental for life processes, but their investigation is still experimentally very demanding. Molecular dynamics simulations up to hundreds of nanoseconds can bring to light unexpected events even for extensively studied biomolecules. This paper reports a combined computational/experimental approach that reveals the reversible opening of two distinct fluctuating cavities in Saccharomyces cerevisiae iso-1-cytochrome c. Both channels allow water access to the heme center. By means of a mixed quantum mechanics/molecular dynamics (QM/MD) theoretical approach, the perturbed matrix method (PMM), that allows to reach long simulation times, changes in the reduction potential of the heme Fe(3+)/Fe(2+) couple induced by the opening of each cavity are calculated. Shifts of the reduction potential upon changes in the hydration of the heme propionates are observed. These variations are relatively small but significant and could therefore represent a tool developed by cytochrome c for the solvent driven, fine-tuning of its redox functionality.

  16. Heme oxygenase-1-mediated apoptosis under cadmium-induced oxidative stress is regulated by autophagy, which is sensitized by tumor suppressor p53.

    Science.gov (United States)

    So, Keum-Young; Oh, Seon-Hee

    2016-10-07

    Heme oxygenase-1 (HO-1) is a stress-inducible cytoprotective enzyme. It is often overexpressed in different types of cancers and promotes cell survival. However, the role of HO-1 and the underlying molecular mechanism of cadmium (Cd)-induced oxidative stress in cancer cells remain undefined. Here we show that the role of HO-1 under Cd-induced oxidative stress is dependent upon autophagy, which is sensitized by the tumor suppressor p53. The sensitivity to Cd was 3.5- and 14-fold higher in p53-expressing YD8 and H460 cells than in p53-null YD10B and H1299 cells, respectively. The levels of p53 in YD8 and H460 cells decreased in a Cd concentration-dependent manner, which was inhibited by pretreatment with N-acetylcysteine. In both cell lines, Cd exposure resulted in caspase-3-mediated PARP-1 cleavage and the induction of CHOP, LC3-II, and HO-1, which were limited in YD10B and H1299 cells exposed to high concentrations of Cd. Cd exposure to p53-overexpressing YD10B cells enhanced Cd-induced HO-1 and LC3-II levels, whereas genetic knockdown of p53 in YD8 cells resulted in the suppression of Cd-induced levels of HO-1 and LC3-II, indicating that p53 is required in the sensing of HO-1 and induction of autophagy. The inhibition of autophagy using small interfering RNA (siRNA) for the autophagy-related gene atg5 enhanced HO-1, CHOP, and PARP-1 cleavage induced by Cd. However, transfection with HO-1 siRNA increased Cd-induced LC3-II, and suppressed the expression of CHOP and cleavage of PARP-1. Collectively, the role of HO-1 in apoptosis could be modulated by autophagy, which is sensitized by p53 expression in human cancer cell lines. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Heme Distortions in Sperm-Whale Carbonmonoxy Myoglobin: Correlations between Rotational Strengths and Heme Distortions in MD-Generated Structures

    Energy Technology Data Exchange (ETDEWEB)

    KIEFL,CHRISTOPH; SCREERAMA,NARASIMHA; LU,YI; QIU,YAN; SHELNUTT,JOHN A.; WOODY,ROBERT W.

    2000-07-13

    The authors have investigated the effects of heme rotational isomerism in sperm-whale carbonmonoxy myoglobin using computational techniques. Several molecular dynamics simulations have been performed for the two rotational isomers A and B, which are related by a 180{degree} rotation around the {alpha}-{gamma} axis of the heme, of sperm-whale carbonmonoxy myoglobin in water. Both neutron diffraction and NMR structures were used as starting structures. In the absence of an experimental structure, the structure of isomer B was generated by rotating the heme in the structure of isomer A. Distortions of the heme from planarity were characterized by normal coordinate structural decomposition and by the angle of twist of the pyrrole rings from the heme plane. The heme distortions of the neutron diffraction structure were conserved in the MD trajectories, but in the NMR-based trajectories, where the heme distortions are less well defined, they differ from the original heme deformations. The protein matrix induced similar distortions on the heroes in orientations A and B. The results suggest that the binding site prefers a particular macrocycle conformation, and a 180{degree} rotation of the heme does not significantly alter the protein's preference for this conformation. The intrinsic rotational strengths of the two Soret transitions, separated according to their polarization in the heme plane, show strong correlations with the ruf-deformation and the average twist angle of the pyrrole rings. The total rotational strength, which includes contributions from the chromophores in the protein, shows a weaker correlation with heme distortions.

  18. Transduction of PEP-1-heme oxygenase-1 into insulin-producing INS-1 cells protects them against cytokine-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Jin; Kang, Hyung Kyung [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Song, Dong Keun [Department of Pharmacology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Eum, Won Sik; Park, Jinseu [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Kwon, Hyeok Yil, E-mail: hykwon@hallym.ac.kr [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2015-06-05

    Pro-inflammatory cytokines play a crucial role in the destruction of pancreatic β-cells, thereby triggering the development of autoimmune diabetes mellitus. We recently developed a cell-permeable fusion protein, PEP-1-heme oxygenase-1 (PEP-1-HO-1) and investigated the anti-inflammatory effects in macrophage cells. In this study, we transduced PEP-1-HO-1 into INS-1 insulinoma cells and examined its protective effect against cytokine-induced cell death. PEP-1-HO-1 was successfully delivered into INS-1 cells in time- and dose-dependent manner and was maintained within the cells for at least 48 h. Pre-treatment with PEP-1-HO-1 increased the survival of INS-1 cells exposed to cytokine mixture (IL-1β, IFN-γ, and TNF-α) in a dose-dependent manner. PEP-1-HO-1 markedly decreased cytokine-induced production of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA). These protective effects of PEP-1-HO-1 against cytokines were correlated with the changes in the levels of signaling mediators of inflammation (iNOS and COX-2) and cell apoptosis/survival (Bcl-2, Bax, caspase-3, PARP, JNK, and Akt). These results showed that the transduced PEP-1-HO-1 efficiently prevented cytokine-induced cell death of INS-1 cells by alleviating oxidative/nitrosative stresses and inflammation. Further, these results suggested that PEP-1-mediated HO-1 transduction may be a potential therapeutic strategy to prevent β-cell destruction in patients with autoimmune diabetes mellitus. - Highlights: • We showed that PEP-1-HO-1 was efficiently delivered into INS-1 cells. • Transduced PEP-1-HO-1 exerted a protective effect against cytokine-induced cell death. • Transduced PEP-1-HO-1 inhibited cytokine-induced ROS and NO accumulation. • PEP-1-HO-1 suppressed cytokine-induced expression of iNOS, COX-2, and Bax. • PEP-1-HO-1 transduction may be an efficient tool to prevent β-cell destruction.

  19. Melaleuca alternifolia Induces Heme Oxygenase-1 Expression in Murine RAW264.7 Cells through Activation of the Nrf2-ARE Pathway.

    Science.gov (United States)

    Lee, Shih-Yu; Chen, Po-Yu; Lin, Jung-Chun; Kirkby, Nicholas S; Ou, Ching-Huei; Chang, Tsu-Chung

    2017-11-09

    Melaleuca alternifolia concentrate (MAC) is the refined essential oil of the Australian native plant Melaleuca alternifolia. MAC has been reported to suppress the production of pro-inflammatory cytokines in both murine RAW264.7 macrophages and human monocytes stimulated with lipopolysaccharide (LPS). However, the mechanisms involved in this effect remain unclear. This study aims to delineate the molecular mechanisms that drive the anti-inflammatory activity of MAC and its active component, terpinen-4-ol, in macrophages. The effects of MAC on RAW264.7 cells were studied using western blotting, real-time PCR, an electrophoretic mobility shift assay (EMSA), and NF-[Formula: see text]B luciferase reporter assays. Our results showed that MAC significantly increased both the mRNA and protein levels of heme oxygenase-1 (HO-1) via p38 and JNK MAPK activation. In addition, we showed that MAC significantly increased the activation and nuclear translocation of NF-E2-related factor 2 (Nrf2), a key transcription factor regulating HO-1 induction. MAC was also associated with significant inhibition of iNOS expression, NO production, and NF-[Formula: see text]B activation. HO-1 was required for these anti-inflammatory effects as tin protoporphyrin IX (SnPPIX), an HO-1 inhibitor, abolished the effects of MAC on LPS-induced iNOS, NO, and NF-[Formula: see text]B activation. Our results indicate that MAC induces HO-1 expression in murine macrophages via the p38 MAPK and JNK pathways and that this induction is required for its anti-inflammatory activity.

  20. Reduction of axial kinetic energy induced perturbations on observed cyclotron frequency.

    Science.gov (United States)

    Kaiser, Nathan K; Weisbrod, Chad R; Webb, Brian N; Bruce, James E

    2008-04-01

    With Fourier transform ion cyclotron resonance (FTICR) mass spectrometry one determines the mass-to-charge ratio of an ion by measuring its cyclotron frequency. However, the need to confine ions to the trapping region of the ion cyclotron resonance (ICR) cell with electric fields induces deviations from the unperturbed cyclotron frequency. Additional perturbations to the observed cyclotron frequency are often attributed to changes in space charge conditions. This study presents a detailed investigation of the observed ion cyclotron frequency as a function of ion z-axis kinetic energy. In a perfect three-dimensional quadrupolar field, cyclotron frequency is independent of position within the trap. However, in most ICR cell designs, this ideality is approximated only near the trap center and deviations arise from this ideal quadrupolar field as the ion moves both radially and axially from the center of the trap. To allow differentiation between deviations in observed cyclotron frequency caused from changes in space charge conditions or differences in oscillation amplitude, ions with identical molecular weights but different axial kinetic energy, and thus amplitude of z-axis motion, were simultaneously trapped within the ICR cell. This allows one to attribute deviations in observed cyclotron frequency to differences in the average force from the radial electric field experienced by ions of different axial amplitude. Experimentally derived magnetron frequency is compared with the magnetron frequency calculated using SIMION 7.0 for ions of different axial amplitude. Electron promoted ion coherence, or EPIC, is used to reduce the differences in radial electric fields at different axial positions. Thus with the application of EPIC, the differences in observed cyclotron frequencies are minimized for ions of different axial oscillation amplitudes.

  1. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva

    Science.gov (United States)

    CH Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-01-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates. PMID:27192936

  2. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva.

    Science.gov (United States)

    Ch Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-10-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.

  3. Protective effects of Cambodian medicinal plants on tert‑butyl hydroperoxide‑induced hepatotoxicity via Nrf2‑mediated heme oxygenase‑1.

    Science.gov (United States)

    Lee, Dong-Sung; Keo, Samell; Cheng, Sun-Kaing; Oh, Hyuncheol; Kim, Youn-Chul

    2017-01-01

    Liver diseases are considered to be primary contributors to morbidity and mortality rates in humans. Oxidative stress is critical in liver injury, and oxidant‑induced liver injury may be caused by toxins, including tert‑butyl hydroperoxide (t‑BHP). The present study investigated the hepatoprotective activities of 64 crude ethanol extracts of Cambodian medicinal plants against t‑BHP‑induced cytotoxicity in human liver‑derived HepG2 cells, and assessed their cytoprotective mechanism pertaining to the expression of heme oxygenase (HO)‑1 and nuclear factor E2‑related factor 2 (Nrf2). Protective effects in HepG2 cells were determined by MTT assay. Protein expression levels of HO‑1 and Nrf2 were determined by western blotting and mRNA expression levels were determined by reverse transcription‑quantitative polymerase chain reaction. Of the 64 extracts, 19 extracts exhibited high hepatoprotective activities: Ampelocissus martini, Bauhinia bracteata, Bombax ceiba, Borassus flabellifer, Cardiospermum halicacabum, Cayratia trifolia, Cinnamomum caryophyllus, Cyperus rotundus, Dasymaschalon lomentaceum, Ficus benjamina, Mangifera duperreana, Morinda citrifolia, Pandanus humilis, Peliosanthes weberi, Phyllanthus emblica, Quisqualis indica, Smilax glabra, Tinospora crispa and Willughbeia cochinchinensis, with half maximal effective concentrations ranging between 59.23 and 157.80 µg/ml. Further investigations revealed that, of these 19 extracts, HO‑1 and Nrf2 were expressed in P. weberi and T. crispa expressed in a dose‑dependent manner. In addition, the activities of reactive oxygen species were suppressed following treatment of these two extracts in t‑BHP‑induced HepG2 cells. These results indicated that, of the 64 Cambodian plants, P. weberi and T. crispa exhibited hepatoprotective effects on t‑BHP‑induced cytotoxicity in HepG2 cells, possibly by the induction of Nrf2‑mediated expression of HO‑1. Taken together, these results suggested

  4. Heme oxygenase-1 (HO-1) protects human lens epithelial cells (SRA01/04) against hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis.

    Science.gov (United States)

    Ma, Tianju; Chen, Tingjun; Li, Peng; Ye, Zi; Zhai, Wei; Jia, Liang; Chen, Wenqian; Sun, Ang; Huang, Yang; Wei, Shihui; Li, Zhaohui

    2016-05-01

    This study aimed to investigate the protective role of heme oxygenase-1 (HO-1) in H2O2-induced oxidative stress and apoptosis in human lens epithelial cells (hLEC; SRA01/04). SRA01/04 cells were exposed to a hydrogen peroxide (H2O2) concentration gradient and inducers of HO-1 such as cobalt protoporphyrin (CoPP) and zinc protoporphyrin (ZnPP), respectively. In addition, an RNA silencing experiment was conducted to investigate the HO-1 function in this study. A Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability. Western blot and ELISA were used to detect the level of HO-1 expression. In our study, hLECs were exposed to 400 μM hydrogen peroxide (H2O2) for 24 h with or without pretreatment with 10μΜ CoPP or 10μΜ ZnPP, respectively. Double immunofluorescence staining was used for cell identification and the qualitative expression of HO-1. Expression of HO-1 was monitored using Western blot and ELISA. Intracellular reactive oxygen species (ROS) were detected by flow cytometry analyses; commercial enzymatic kits were used to measure the levels of glutathione (GSH), as well as superoxide dismutase (SOD). The proportion of cell apoptosis was quantified by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. The expression of caspase family (-8, -3) proteins was measured by Western blot analysis. HO-1 significantly restored the cell viability under H2O2 injury via reducing the generation of ROS and increasing the levels of SOD and GSH activity. Moreover, HO-1 also inhibited H2O2-induced caspase-8 and caspase-3 proteins, thus significantly reducing the apoptosis of SRA01/04. An RNA silencing experiment demonstrated the increased resistance of LECs to oxidative stress specifically for increased levels of HO-1. These findings suggested that HO-1 protects human lens epithelial cells from H2O2-induced oxidant stress by upregulating antioxidant enzyme activity, reducing ROS generation, and thus inhibiting caspase family

  5. Salidroside Reduces High-Glucose-Induced Podocyte Apoptosis and Oxidative Stress via Upregulating Heme Oxygenase-1 (HO-1) Expression.

    Science.gov (United States)

    Lu, Hua; Li, Ying; Zhang, Tao; Liu, Maodong; Chi, Yanqing; Liu, Shuxia; Shi, Yonghong

    2017-08-23

    BACKGROUND Hyperglycemia is one of the most dangerous factors causing diabetic nephropathy. Salidroside is considered to have the effects of reducing oxidative stress damage and improving cell viability. This study was performed to investigate whether and how salidroside reduces high-glucose (HG)-induced apoptosis in mouse podocytes. MATERIAL AND METHODS We examined whether salidroside could decrease HG-induced podocyte oxidative stress and podocyte apoptosis in vitro. The potential signaling pathways were also investigated. Podocytes (immortalized mouse epithelial cells) were treated with normal glucose (5.5 mM) as control or HG (30 mM), and then exposed to salidroside treatment. RESULTS HG enhanced the generation of intracellular reactive oxygen species (ROS) and apoptosis in podocytes. Salidroside reduced HG-induced apoptosis-related consequences via promoting HO-1 expression. Salidroside increased the expression level of phosphorylated Akt (p-Akt) and phosphorylated ILK (p-ILK), p-JNK, and p-ERK and localization of Nrf-2. JNK inhibitor and ILK inhibitor decreased HO-1 expression to different degrees. Moreover, specific siRNAs of ILK, Nrf-2, and HO-1, and inhibitors of HO-1 and ILK significantly increased ROS generation and Caspase9/3 expression in the presence of salidroside and HG. CONCLUSIONS The results suggest that salidroside reduces HG-induced ROS generation and apoptosis and improves podocytes viability by upregulating HO-1 expression. ILK/Akt, JNK, ERK1/2, p38 MAPK, and Nrf-2 are involved in salidroside-decreased podocyte apoptosis in HG condition.

  6. A1M/α1-microglobulin protects from heme-induced placental and renal damage in a pregnant sheep model of preeclampsia.

    Directory of Open Access Journals (Sweden)

    Lena Wester-Rosenlöf

    Full Text Available Preeclampsia (PE is a serious pregnancy complication that manifests as hypertension and proteinuria after the 20(th gestation week. Previously, fetal hemoglobin (HbF has been identified as a plausible causative factor. Cell-free Hb and its degradation products are known to cause oxidative stress and tissue damage, typical of the PE placenta. A1M (α1-microglobulin is an endogenous scavenger of radicals and heme. Here, the usefulness of A1M as a treatment for PE is investigated in the pregnant ewe PE model, in which starvation induces PE symptoms via hemolysis. Eleven ewes, in late pregnancy, were starved for 36 hours and then treated with A1M (n = 5 or placebo (n = 6 injections. After injections, the ewes were re-fed and observed for additional 72 hours. They were monitored for blood pressure, proteinuria, blood cell distribution and clinical and inflammation markers in plasma. Before termination, the utero-placental circulation was analyzed with Doppler velocimetry and the kidney glomerular function was analyzed by Ficoll sieving. At termination, blood, kidney and placenta samples were collected and analyzed for changes in gene expression and tissue structure. The starvation resulted in increased amounts of the hemolysis marker bilirubin in the blood, structural damages to the placenta and kidneys and an increased glomerular sieving coefficient indicating a defect filtration barrier. Treatment with A1M ameliorated these changes without signs of side-effects. In conclusion, A1M displayed positive therapeutic effects in the ewe starvation PE model, and was well tolerated. Therefore, we suggest A1M as a plausible treatment for PE in humans.

  7. Genistein inhibits ox-LDL-induced VCAM-1, ICAM-1 and MCP-1 expression of HUVECs through heme oxygenase-1.

    Science.gov (United States)

    Zhang, Hua-ping; Zheng, Feng-li; Zhao, Jia-hui; Guo, Dong-xing; Chen, Xiao-long

    2013-01-01

    Genistein, a principal component of soybean isoflavones, plays an important role in the prevention of atherosclerosis. However, the detailed mechanisms have not been fully investigated. The aims of this study were to evaluate the anti-atherosclerotic effect and investigate potential pharmacological mechanism of genistein. A model of oxidized low-density lipoprotein (ox-LDL)-induced injury in on human umbilical vein endothelial cells (HUVECs) was established to evaluate the protective role of genistein. Macrophage/monocyte chemoattractant protein-1 (MCP-1), vascular cellular adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) secretion and their messenger RNA transcription were observed via enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase PCR (RT-PCR). Meanwhile, the study investigated the role of Nrf2/HO-1 pathway during the process. Pretreatment with genistein markedly reduced ox-LDL-induced MCP-1, VCAM-1 and ICAM-1 secretion and mRNA transcription, which was further decreased by the inducer of HO and reversed by the inhibitor of HO; additionally, the effects were accompanied with upregulating HO-1 mRNA and protein expression and markedly abolished with Nrf2 siRNA. Anti-inflammatory effect of genistein on endothelial cells may be associated with the activation of Nrf2/HO-1 pathway. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  8. Ferulic acid regulates the Nrf2/heme oxygenase-1 system and counteracts trimethyltin-induced neuronal damage in the human neuroblastoma cell line SH-SY5Y.

    Directory of Open Access Journals (Sweden)

    Stefania eCatino

    2016-01-01

    Full Text Available Over the past years, several lines of evidence have pointed out the efficacy of ferulic acid (FA in counteracting oxidative stress elicited by β-amyloid or free radical initiators, based on the ability of this natural antioxidant to up-regulate the heme oxygenase-1 (HO-1 and biliverdin reductase (BVR system. However, scarce results can be found in literature regarding the cytoprotective effects of FA in case of damage caused by neurotoxicants. The aim of this work is to investigate the mechanisms through which FA exerts neuroprotection in SH-SY5Y neuroblastoma cells exposed to the neurotoxin trimethyltin. Ferulic acid (1-10 μM for 6 h dose-dependently increased both basal and TMT (10 μM for 24 h-induced HO-1 expression in SH-SY5Y cells by fostering the nuclear translocation of the transcriptional activator Nrf2. In particular, the co-treatment of FA (10 μM with TMT was also responsible for the nuclear translocation of HO-1 in an attempt to further increase cell stress response in SH-SY5Y cells. In addition to HO-1, FA (1-10 μM for 6 h dose-dependently increased the basal expression of BVR. The antioxidant and neuroprotective features of FA, through the increase of HO activity, were supported by the evidence that FA inhibited TMT (10 μM-induced lipid peroxidation (evaluated by detecting 4-hydroxy-nonenal and DNA fragmentation in SH-SY5Y cells and that this antioxidant effect was reversed by the HO inhibitor Zinc-protoporphyrin-IX (5 μM. Among the by-products of the HO/BVR system, carbon monoxide (CORM-2, 50 nM and bilirubin (50 nM significantly inhibited TMT-induced superoxide anion formation in SH-SY5Y cells. All together, these results corroborate the neuroprotective effect of FA through the up-regulation of the HO-1/BVR system, via carbon monoxide and bilirubin formation, and provide the first evidence on the role of HO-1/Nrf2 axis in FA-related enhancement of cell stress response in human neurons.

  9. Microsomal prostaglandin E synthase type 2 (mPGES2) is a glutathione-dependent heme protein, and dithiothreitol dissociates the bound heme to produce active prostaglandin E2 synthase in vitro.

    Science.gov (United States)

    Takusagawa, Fusao

    2013-04-05

    An x-ray study indicated that microsomal prostaglandin E synthase type 2 (mPGES2) is a heme-bound protein and catalyzes prostaglandin (PG) H2 degradation, but not PGE2 formation (Yamada, T., and Takusagawa, F. (2007) Biochemistry 46, 8414-8424). In response to the x-ray study, Watanabe et al. claimed that mPGES2 is a heme-free protein and that both the heme-free and heme-bound proteins have PGE2 synthesis activity in the presence of dithiothreitol (Watanabe, K., Ito, S., and Yamamoto, S. (2008) Biochem. Biophys. Res. Commun. 367, 782-786). To resolve the contradictory results, the heme-binding scheme of mPGES2 was further characterized in vivo and in vitro by absorption and fluorescence spectroscopies. A substantial amount of heme-bound mPGES2 was detected in cell extracts. The heme content in mPGES2 was increased along with an increase in Fe(3+) in the culture medium. Heme-free mPGES2 was converted to the heme-bound form by mixing it with pig liver extract, indicating that mPGES2 is capable of forming a complex with heme in mammalian cells. Heme binds to mPGES2 only in the presence of glutathione. The newly determined heme dissociation constant (2.9 nM) supports strongly that mPGES2 is a heme-bound protein in vivo. The bound heme was not dissociated by oxidation by H2O2 or reduction by glutathione or 2-mercaptoethanol. However, reduction by dithiothreitol (an artificial reducing compound) induced the bound heme to dissociate from mPGES2 and released heme-free mPGES2, which exhibited PGE2 synthesis activity in vitro. Imidazole bound to mPGES2 by stacking on the bound heme and inhibited heme oxidation by H2O2 and reduction by dithiothreitol.

  10. Atorvastatin prevents hypoxia-induced inhibition of endothelial nitric oxide synthase expression but does not affect heme oxygenase-1 in human microvascular endothelial cells

    NARCIS (Netherlands)

    Loboda, Agnieszka; Jazwa, Agnieszka; Jozkowicz, Alicj A.; Dorosz, Jerzy; Balla, Jozsef; Molema, Grietje; Dulak, Jozef

    Beneficial cardiovascular effects of statins, the inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are particularly assigned to the modulation of inflammation. Endothelial nitric oxide synthase (eNOS) and heme oxygenase-1 (HO-1) are listed among the crucial protective,

  11. Bacterial Nitric Oxide Synthase Is Required for the Staphylococcus aureus Response to Heme Stress.

    Science.gov (United States)

    Surdel, Matthew C; Dutter, Brendan F; Sulikowski, Gary A; Skaar, Eric P

    2016-08-12

    Staphylococcus aureus is a pathogen that causes significant morbidity and mortality worldwide. Within the vertebrate host, S. aureus requires heme as a nutrient iron source and as a cofactor for multiple cellular processes. Although required for pathogenesis, excess heme is toxic. S. aureus employs a two-component system, the heme sensor system (HssRS), to sense and protect against heme toxicity. Upon activation, HssRS induces the expression of the heme-regulated transporter (HrtAB), an efflux pump that alleviates heme toxicity. The ability to sense and respond to heme is critical for the pathogenesis of numerous Gram-positive organisms, yet the mechanism of heme sensing remains unknown. Compound '3981 was identified in a high-throughput screen as an activator of staphylococcal HssRS that triggers HssRS independently of heme accumulation. '3981 is toxic to S. aureus; however, derivatives of '3981 were synthesized that lack toxicity while retaining HssRS activation, enabling the interrogation of the heme stress response without confounding toxic effects of the parent molecule. Using '3981 derivatives as probes of the heme stress response, numerous genes required for '3981-induced activation of HssRS were uncovered. Specifically, multiple genes involved in the production of nitric oxide were identified, including the gene encoding bacterial nitric oxide synthase (bNOS). bNOS protects S. aureus from oxidative stress imposed by heme. Taken together, this work identifies bNOS as crucial for the S. aureus heme stress response, providing evidence that nitric oxide synthesis and heme sensing are intertwined.

  12. Dynamical instability induced by the zero mode under symmetry breaking external perturbation

    Science.gov (United States)

    Takahashi, J.; Nakamura, Y.; Yamanaka, Y.

    2014-08-01

    A complex eigenvalue in the Bogoliubov-de Gennes equations for a stationary Bose-Einstein condensate in the ultracold atomic system indicates the dynamical instability of the system. We also have the modes with zero eigenvalues for the condensate, called the zero modes, which originate from the spontaneous breakdown of symmetries. Although the zero modes are suppressed in many theoretical analyses, we take account of them in this paper and argue that a zero mode can change into one with a pure imaginary eigenvalue by applying a symmetry breaking external perturbation potential. This emergence of a pure imaginary mode adds a new type of scenario of dynamical instability to that characterized by the complex eigenvalue of the usual excitation modes. For illustration, we deal with two one-dimensional homogeneous Bose-Einstein condensate systems with a single dark soliton under a respective perturbation potential, breaking the invariance under translation, to derive pure imaginary modes.

  13. An assessment of molecular pathways of obesity susceptible to nutrient, toxicant and genetically induced epigenetic perturbation

    OpenAIRE

    Xue, Jing; Ideraabdullah, Folami Y.

    2015-01-01

    In recent years, the etiology of human disease has greatly improved with the inclusion of epigenetic mechanisms, in particular as a common link between environment and disease. However, for most diseases we lack a detailed interpretation of the epigenetic regulatory pathways perturbed by environment and causal mechanisms. Here, we focus on recent findings elucidating nutrient-related epigenetic changes linked to obesity. We highlight studies demonstrating that obesity is a complex disease lin...

  14. Daily exercise prevents diastolic dysfunction and oxidative stress in a female mouse model of western diet induced obesity by maintaining cardiac heme oxygenase-1 levels.

    Science.gov (United States)

    Bostick, Brian; Aroor, Annayya R; Habibi, Javad; Durante, William; Ma, Lixin; DeMarco, Vincent G; Garro, Mona; Hayden, Melvin R; Booth, Frank W; Sowers, James R

    2017-01-01

    Obesity is a global epidemic with profound cardiovascular disease (CVD) complications. Obese women are particularly vulnerable to CVD, suffering higher rates of CVD compared to non-obese females. Diastolic dysfunction is the earliest manifestation of CVD in obese women but remains poorly understood with no evidence-based therapies. We have shown early diastolic dysfunction in obesity is associated with oxidative stress and myocardial fibrosis. Recent evidence suggests exercise may increase levels of the antioxidant heme oxygenase-1 (HO-1). Accordingly, we hypothesized that diastolic dysfunction in female mice consuming a western diet (WD) could be prevented by daily volitional exercise with reductions in oxidative stress, myocardial fibrosis and maintenance of myocardial HO-1 levels. Four-week-old female C57BL/6J mice were fed a high-fat/high-fructose WD for 16weeks (N=8) alongside control diet fed mice (N=8). A separate cohort of WD fed females was allowed a running wheel for the entire study (N=7). Cardiac function was assessed at 20weeks by high-resolution cardiac magnetic resonance imaging (MRI). Functional assessment was followed by immunohistochemistry, transmission electron microscopy (TEM) and Western blotting to identify pathologic mechanisms and assess HO-1 protein levels. There was no significant body weight decrease in exercising mice, normalized body weight 14.3g/mm, compared to sedentary mice, normalized body weight 13.6g/mm (p=0.38). Total body fat was also unchanged in exercising, fat mass of 6.6g, compared to sedentary mice, fat mass 7.4g (p=0.55). Exercise prevented diastolic dysfunction with a significant reduction in left ventricular relaxation time to 23.8ms for exercising group compared to 33.0ms in sedentary group (pstress and myocardial fibrosis with improved mitochondrial architecture. HO-1 protein levels were increased in the hearts of exercising mice compared to sedentary WD fed females. This study provides seminal evidence that exercise

  15. The heme oxygenase-1 inducer THI-56 negatively regulates iNOS expression and HMGB1 release in LPS-activated RAW 264.7 cells and CLP-induced septic mice.

    Science.gov (United States)

    Park, Eun Jung; Jang, Hwa Jin; Tsoyi, Konstantin; Kim, Young Min; Park, Sang Won; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl

    2013-01-01

    The nuclear DNA binding protein high mobility group box 1 (HMGB1) has recently been suggested to act as a late mediator of septic shock. The effect of ((S)-6,7-dihydroxy-1-(4-hydroxynaphthylmethyl)-1,2,3,4-tetrahydroisoquinoline alkaloid, also known as THI-56, in an experimental model of sepsis was investigated. THI-56 exhibited potent anti-inflammatory properties in response to LPS in RAW 264.7 cells. In particular, THI-56 significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and the release of HMGB1 in activated macrophages. THI-56 activated NE-F2-regulated factor 2 (Nrf-2)/heme oxygenase 1 (HO-1). The specific knockdown of the HO-1 gene by HO-1 siRNA significantly reversed the inhibitory effects of THI-56 on iNOS expression and HMGB1 release in LPS-stimulated macrophages. Importantly, THI-56 administration protected animals from death induced by either a lethal dose of LPS or cecal ligation and puncture (CLP). Furthermore, the ALT, AST, BUN, creatinine, and HMGB1 levels in the blood were significantly increased in CLP-induced septic mice, and the administration of THI-56 reduced these levels in a concentration-dependent and zinc protoporphyrin IX (ZnPPIX)-sensitive manner. In addition, the administration of THI-56 significantly ameliorated not only lung damage but also macrophage infiltration in the livers of CLP-induced septic mice, and these effects were also abrogated in the presence of ZnPPIX. Thus, we conclude that THI-56 significantly attenuates the proinflammatory response induced by LPS and reduces organ damage in a CLP-induced sepsis model through the upregulation of Nrf-2/HO-1.

  16. Ibuprofen Impairs Allosterically Peroxynitrite Isomerization by Ferric Human Serum Heme-Albumin*

    Science.gov (United States)

    Ascenzi, Paolo; di Masi, Alessandra; Coletta, Massimo; Ciaccio, Chiara; Fanali, Gabriella; Nicoletti, Francesco P.; Smulevich, Giulietta; Fasano, Mauro

    2009-01-01

    Human serum albumin (HSA) participates in heme scavenging; in turn, heme endows HSA with myoglobin-like reactivity and spectroscopic properties. Here, the allosteric effect of ibuprofen on peroxynitrite isomerization to NO3− catalyzed by ferric human serum heme-albumin (HSA-heme-Fe(III)) is reported. Data were obtained at 22.0 °C. HSA-heme-Fe(III) catalyzes peroxynitrite isomerization in the absence and presence of CO2; the values of the second order catalytic rate constant (kon) are 4.1 × 105 and 4.5 × 105 m−1 s−1, respectively. Moreover, HSA-heme-Fe(III) prevents peroxynitrite-mediated nitration of free added l-tyrosine. The pH dependence of kon (pKa = 6.9) suggests that peroxynitrous acid reacts preferentially with the heme-Fe(III) atom, in the absence and presence of CO2. The HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite has been ascribed to the reactive pentacoordinated heme-Fe(III) atom. In the absence and presence of CO2, ibuprofen impairs dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III) and facilitates the nitration of free added l-tyrosine; the value of the dissociation equilibrium constant for ibuprofen binding to HSA-heme-Fe(III) (L) ranges between 7.7 × 10−4 and 9.7 × 10−4 m. Under conditions where [ibuprofen] is ≫L, the kinetics of HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite is superimposable to that obtained in the absence of HSA-heme-Fe(III) or in the presence of non-catalytic HSA-heme-Fe(III)-cyanide complex and HSA. Ibuprofen binding impairs allosterically peroxynitrite isomerization by HSA-heme-Fe(III), inducing the hexacoordination of the heme-Fe(III) atom. These results represent the first evidence for peroxynitrite isomerization by HSA-heme-Fe(III), highlighting the allosteric modulation of HSA-heme-Fe(III) reactivity by heterotropic interaction(s), and outlining the role of drugs in modulating HSA functions. The present results could be relevant for the drug-dependent protective role

  17. Hemoglobin and heme scavenger receptors

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Møller, Holger Jon; Moestrup, Søren Kragh

    2010-01-01

    Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis...

  18. Hepatic heme catabolism in cultured hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln, B.C.; Bonkovsky, H.L.

    1987-05-01

    Uncertainty persists concerning the role and importance of heme oxygenase in the catabolism of heme by hepatocytes. The products of heme oxygenase catalyzed heme catabolism are equimolar amounts of biliverdin IX..cap alpha.., CO, and iron. Previous reports from studies with rodent hepatocyte cultures have suggested the possibility that non-heme oxygenase pathway(s) predominate in the breakdown of hepatic hemoprotein heme. The authors have studied this question in cultured chick embryo hepatocytes, which retain normal regulation of heme metabolism and levels of cytochromes P-450 as in intact animals. Exogenous heme added to the culture medium with control chick embryo hepatocyte cultures was quantitatively converted to biliverdin IX..cap alpha... To study endogenous heme breakdown, cellular heme was labelled by exposing cultured cells to (5-/sup 14/C) 5-aminolevulinic acid (ALA). The hepatocytes were also treated with mephenytoin that increases cytochrome P-450, total hepatic heme and heme oxygenase. At various times after labelling heme, biliverdin, and CO were isolated and counted. For at least 8 hrs, the increase in CO radioactivity corresponded to the loss of radioactivity in heme. Beyond 1 h biliverdin was unstable in culture medium, but for 1 h after labelling (dpm BVIX..cap alpha.. + dpm CO) ..delta..dpm heme. All BV detected was the ..cap alpha.. isomer. They conclude that heme oxygenase accounts for both endogenous and exogenous heme breakdown by hepatocytes.

  19. Rapid calculations of susceptibility-induced magnetostatic field perturbations for in vivo magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Kevin M; Papademetris, Xenophon; Rothman, Douglas L; Graaf, Robin A de [Yale University, Magnetic Resonance Research Center, New Haven, CT (United States)

    2006-12-21

    Static magnetic field perturbations generated by variations of magnetic susceptibility within samples reduce the quality and integrity of magnetic resonance measurements. These perturbations are difficult to predict in vivo where wide variations of internal magnetic susceptibility distributions are common. Recent developments have provided rapid computational means of estimating static field inhomogeneity within the small susceptibility limits of materials typically studied using magnetic resonance. Such a predictive mechanism could be a valuable tool for sequence simulation, field shimming and post-acquisition image correction. Here, we explore this calculation protocol and demonstrate its predictive power in estimating in vivo inhomogeneity within the human brain. Furthermore, we quantitatively explore the predictive limits of the computation. For in vivo comparison, a method of magnetic susceptibility registration using MRI and CT data is presented and utilized to carry out subject-specific inhomogeneity estimation. Using this algorithm, direct comparisons in human brain and phantoms are made between field map acquisitions and calculated inhomogeneity. Distortion correction in echo-planar images due to static field inhomogeneity is also demonstrated using the computed field maps.

  20. Dynamical instability induced by the zero mode under symmetry breaking external perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J., E-mail: phyco-sevenface@asagi.waseda.jp; Nakamura, Y., E-mail: nakamura@aoni.waseda.jp; Yamanaka, Y., E-mail: yamanaka@waseda.jp

    2014-08-15

    A complex eigenvalue in the Bogoliubov–de Gennes equations for a stationary Bose-Einstein condensate in the ultracold atomic system indicates the dynamical instability of the system. We also have the modes with zero eigenvalues for the condensate, called the zero modes, which originate from the spontaneous breakdown of symmetries. Although the zero modes are suppressed in many theoretical analyses, we take account of them in this paper and argue that a zero mode can change into one with a pure imaginary eigenvalue by applying a symmetry breaking external perturbation potential. This emergence of a pure imaginary mode adds a new type of scenario of dynamical instability to that characterized by the complex eigenvalue of the usual excitation modes. For illustration, we deal with two one-dimensional homogeneous Bose–Einstein condensate systems with a single dark soliton under a respective perturbation potential, breaking the invariance under translation, to derive pure imaginary modes. - Highlights: • Zero modes are important but ignored in many theories for the cold atomic system. • We discuss the zero mode under symmetry breaking potential in this system. • We consider the zero mode of translational invariance for a single dark soliton. • We show that it turns into an anomalous or pure imaginary mode.

  1. Snowmelt induced hydrologic perturbations drive dynamic microbiological and geochemical behaviors across a shallow riparian aquifer

    Directory of Open Access Journals (Sweden)

    Robert eDanczak

    2016-05-01

    Full Text Available Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11 and Parcubacteria (OD1 that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments.

  2. Age-related accumulation of non-heme ferric and ferrous iron in mouse ovarian stroma visualized by sensitive non-heme iron histochemistry.

    Science.gov (United States)

    Asano, Yoshiya

    2012-03-01

    Sensitive non-heme iron histochemistry--namely, the perfusion-Perls method and perfusion-Turnbull method--was applied to study the distribution and age-related accumulation of non-heme ferric iron and ferrous iron in mouse ovary. Light and electron microscopic studies revealed that non-heme ferric iron is distributed predominantly in stromal tissue, especially in macrophages. By contrast, the distribution of non-heme ferrous iron was restricted to a few ovoid macrophages. Aged ovaries exhibited remarkable non-heme iron accumulation in all stromal cells. In particular, non-heme ferrous iron level was increased in stromal tissue, suggestive of increased levels of redox-active iron, which can promote oxidative stress. Moreover, intense localization of both non-heme ferric and ferrous iron was observed in aggregated large stromal cells that were then characterized as ceroid-laden enlarged macrophages with frothy cytoplasm. Intraperitoneal iron overload in adult mice resulted in non-heme iron deposition in the entire stroma and generation of enlarged macrophages, suggesting that excessive iron accumulation induced macrophage morphological changes. The data indicated that non-heme iron accumulation in ovarian stromal tissue may be related to aging of the ovary due to increasing oxidative stress.

  3. Iron-coordinating tyrosine is a key determinant of NEAT domain heme transfer.

    Science.gov (United States)

    Grigg, Jason C; Mao, Cherry X; Murphy, Michael E P

    2011-10-28

    In humans, heme iron is the most abundant iron source, and bacterial pathogens such as Staphylococcus aureus acquire it for growth. IsdB of S. aureus acquires Fe(III)-protoporphyrin IX (heme) from hemoglobin for transfer to IsdC via IsdA. These three cell-wall-anchored Isd (iron-regulated surface determinant) proteins contain conserved NEAT (near iron transport) domains. The purpose of this work was to delineate the mechanism of heme binding and transfer between the NEAT domains of IsdA, IsdB, and IsdC using a combination of structural and spectroscopic studies. X-ray crystal structures of IsdA NEAT domain (IsdA-N1) variants reveal that removing the native heme-iron ligand Tyr166 is compensated for by iron coordination by His83 on the distal side and that no single mutation of distal loop residues is sufficient to perturb the IsdA-heme complex. Also, alternate heme-iron coordination was observed in structures of IsdA-N1 bound to reduced Fe(II)-protoporphyrin IX and Co(III)-protoporphyrin IX. The IsdA-N1 structural data were correlated with heme transfer kinetics from the NEAT domains of IsdB and IsdC. We demonstrated that the NEAT domains transfer heme at rates comparable to full-length proteins. The second-order rate constant for heme transfer from IsdA-N1 was modestly affected (15-fold (to 100-fold excess IsdC). We propose a heme transfer model wherein NEAT domain complexes pass heme iron directly from an iron-coordinating Tyr of the donor protein to the homologous Tyr residues of the acceptor protein. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Heme isomers substantially affect heme's electronic structure and function

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    to similar energy of the isomers but with a sizable (25 kJ mol-1) barrier to interconversion arising from restricted rotation around the conjugated bonds. The four isomers, EE, EZ, ZE, and ZZ, were then investigated as 4-coordinate hemes, as 5-coordinate deoxyhemes, in 6-coordinate O2-adducts of globins.......e. the effects are not method-dependent. Thus, the nature of the isomer state is an important but overlooked feature of heme chemistry and function, and previous and future studies of hemes may be reconsidered in this new context....

  5. Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study

    Science.gov (United States)

    Marsusi, F.; Fedorov, I. A.; Gerivani, S.

    2018-01-01

    Density functional theory and many-body perturbation theory at the G0W0 level are employed to study the electronic properties of polythiophene (PT) adsorbed on the graphene surface. Analysis of the charge density difference shows that substrate-adsorbate interaction leads to a strong physisorption and interfacial electric dipole moment formation. The electrostatic potential displays a  ‑0.19 eV shift in the graphene work function from its initial value of 4.53 eV, as the result of the interaction. The LDA band gap of the polymer does not show any change. However, the band structure exhibits weak orbital hybridizations resulting from slight overlapping between the polymer and graphene states wave functions. The interfacial polarization effects on the band gap and levels alignment are investigated at the G0W0 level and show a notable reduction of PT band gap compared to that of the isolated chain.

  6. Snowmelt Induced Hydrologic Perturbations Drive Dynamic Microbiological and Geochemical Behaviors across a Shallow Riparian Aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Danczak, Robert E.; Yabusaki, Steven B.; Williams, Kenneth H.; Fang, Yilin; Hobson, Chad; Wilkins, Michael J.

    2016-05-11

    Shallow riparian aquifers represent hotspots of biogeochemical activity in the arid western US. While these environments provide extensive ecosystem services, little is known of how natural environmental perturbations influence subsurface microbial communities and associated biogeochemical processes. Over a six-month period we tracked the annual snowmelt-driven incursion of groundwater into the vadose zone of an aquifer adjacent to the Colorado River, leading to increased dissolved oxygen (DO) concentrations in the normally suboxic saturated zone. Strong biogeochemical heterogeneity was measured across the site, with abiotic reactions between DO and sulfide minerals driving rapid DO consumption and mobilization of redox active species in reduced aquifer regions. Conversely, extensive DO increases were detected in less reduced sediments. 16S rRNA gene surveys tracked microbial community composition within the aquifer, revealing strong correlations between increases in putative oxygen-utilizing chemolithoautotrophs and heterotrophs and rising DO concentrations. The gradual return to suboxic aquifer conditions favored increasing abundances of 16S rRNA sequences matching members of the Microgenomates (OP11) and Parcubacteria (OD1) that have been strongly implicated in fermentative processes. Microbial community stability measurements indicated that deeper aquifer locations were relatively less affected by geochemical perturbations, while communities in shallower locations exhibited the greatest change. Reactive transport modeling of the geochemical and microbiological results supported field observations, suggesting that a predictive framework can be applied to develop a greater understanding of such environments. Frontiers in Earth Science Journal Impact & Description - ResearchGate - Impact Rankings ( 2015 and 2016 ). Available from: https://www.researchgate.net/journal/2296-6463_Frontiers_in_Earth_Science [accessed Jul 25, 2016].

  7. Endocrine disruptors induce perturbations in endoplasmic reticulum and mitochondria of human pluripotent stem cell derivatives

    OpenAIRE

    Rajamani, Uthra; Gross, Andrew R.; Ocampo, Camille; Andres, Allen M.; Gottlieb, Roberta A.; Sareen, Dhruv

    2017-01-01

    Persistent exposure to man-made endocrine disrupting chemicals during fetal endocrine development may lead to disruption of metabolic homeostasis contributing to childhood obesity. Limited cellular platforms exist to test endocrine disrupting chemical-induced developmental abnormalities in human endocrine tissues. Here we use an human-induced pluripotent stem cell-based platform to demonstrate adverse impacts of obesogenic endocrine disrupting chemicals in the developing endocrine system. We ...

  8. Dietary heme adversely affects experimental colitis in rats, despite heat-shock protein induction

    NARCIS (Netherlands)

    Schepens, Marloes A. A.; Vink, Carolien; Schonewille, Arjan J.; Dijkstra, Gerard; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M. J.

    Objective: Research on dietary modulation of inflammatory bowel disease is in its infancy. Dietary heme, mimicking red meat, is cytotoxic to colonic epithelium and thus may aggravate colitis. Alternatively, heme-induced colonic stress might also result in potential protective heat-shock proteins

  9. Dietary heme modulates microbiota and mucosa of mouse colon without significant host-microbe cross talk

    NARCIS (Netherlands)

    IJssennagger, Noortje; Rijnierse, A.; Muller, Michael; Meer, van der Roelof

    2013-01-01

    Previously, we showed that dietary heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. In this study we investigated whether bacteria play a role in this changed signaling. Dietary heme increased the Bacteroidetes and decreased the

  10. Developmental Perturbation Induced by Maternal Asthma during Pregnancy: The Short- and Long-Term Impacts on Offspring

    Directory of Open Access Journals (Sweden)

    Vicki L. Clifton

    2012-01-01

    Full Text Available Maternal asthma is a common disease to complicate human pregnancy. Epidemiological studies have identified that asthma during pregnancy increases the risk of a number of poor outcomes for the neonate including growth restriction, lower birthweight, preterm delivery, neonatal resuscitation, and stillbirth. Asthma therefore represents a significant health burden to society and could have an impact on the lifelong health of the children of women with asthma. Our research has identified that maternal asthma in pregnancy induces placental dysfunction and developmental perturbation in the fetus in a sex specific manner. These alterations in development could increase the risk of metabolic disease in adulthood of children of asthmatic mothers, especially females. In this paper, we will discuss the evidence currently available that supports the hypothesis that children of mothers with asthma may be at risk of lifelong health complications which include diabetes and hypertension.

  11. Fisetin inhibits TNF-α-induced inflammatory action and hydrogen peroxide-induced oxidative damage in human keratinocyte HaCaT cells through PI3K/AKT/Nrf-2-mediated heme oxygenase-1 expression.

    Science.gov (United States)

    Seo, Seung-Hee; Jeong, Gil-Saeng

    2015-12-01

    Oxidative skin damage and skin inflammation play key roles in the pathogenesis of skin-related diseases. Fisetin is a naturally occurring flavonoid abundantly found in several vegetables and fruits. Fisetin has been shown to exert various positive biological effects, such as anti-cancer, anti-proliferative, neuroprotective and anti-oxidative effects. In this study, we investigate the skin protective effects and anti-inflammatory properties of fisetin in hydrogen peroxide- and TNF-α-challenged human keratinocyte HaCaT cells. When HaCaT cells were treated with non-cytotoxic concentrations of fisetin (1-20μM), heme oxygenase (HO)-1 mRNA and protein expression increased in a dose-dependent manner. Furthermore, fisetin dose-dependently increased cell viability and reduced ROS production in hydrogen peroxide-treated HaCaT cells. Fisetin also inhibited the production of NO, PGE2 IL-1β, IL-6, expression of iNOS and COX-2, and activation of NF-κB in HaCaT cells treated with TNF-α. Fisetin induced Nrf2 translocation to the nuclei. HO-1 siRNA transient transfection reversed the effects of fisetin on cytoprotection, ROS reduction, NO, PGE2, IL-1β, IL-6, and TNF-α production, and NF-κB DNA-binding activity. Moreover, fisetin increased Akt phosphorylation and a PI3K pathway inhibitor (LY294002) abolished fisetin-induced cytoprotection and NO inhibition. Taken together, these results provide evidence for a beneficial role of fisetin in skin therapy. Copyright © 2015. Published by Elsevier B.V.

  12. Review: Placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer.

    Science.gov (United States)

    Chavatte-Palmer, P; Camous, S; Jammes, H; Le Cleac'h, N; Guillomot, M; Lee, R S F

    2012-02-01

    Since the first success in cloning sheep, the production of viable animals by somatic cell nuclear transfer (SCNT) has developed significantly. Cattle are by far the most successfully cloned species but, despite this, the technique is still associated with a high incidence of pregnancy failure and accompanying placental and fetal pathologies. Pre- and early post-implantation losses can affect up to 70% of the pregnancies. In the surviving pregnancies, placentomegaly and fetal overgrowth are commonly observed, but the incidence varies widely, depending on the genotype of the nuclear donor cell and differences in SCNT procedures. In all cases, the placenta is central to the onset of the pathologies. Although cellular organisation of the SCNT placenta appears normal, placental vascularisation is modified and fetal-to-maternal tissue ratios are slightly increased in the SCNT placentomes. In terms of functionality, steroidogenesis is perturbed and abnormal estrogen production and metabolism probably play an important part in the increased gestation length and lack of preparation for parturition observed in SCNT recipients. Maternal plasma concentrations of pregnancy-associated glycoproteins are increased, mostly due to a reduction in turnover rate rather than increased placental production. Placental glucose transport and fructose synthesis appear to be modified and hyperfructosemia has been observed in neonatal SCNT calves. Gene expression analyses of the bovine SCNT placenta show that multiple pathways and functions are affected. Abnormal epigenetic re-programming appears to be a key component of the observed pathologies, as shown by studies on the expression of imprinted genes in SCNT placenta. Copyright © 2012. Published by Elsevier Ltd.

  13. SILAC-Based Quantitative Proteomic Analysis Unveils Arsenite-Induced Perturbation of Multiple Pathways in Human Skin Fibroblast Cells.

    Science.gov (United States)

    Zhang, Fan; Xiao, Yongsheng; Wang, Yinsheng

    2017-04-17

    Humans are exposed to arsenic species through inhalation, ingestion, and dermal contact, which may lead to skin, liver, and bladder cancers as well as cardiovascular and neurological diseases. The mechanisms underlying the cytotoxic and carcinogenic effects of arsenic species, however, remain incompletely understood. To exploit the mechanisms of toxicity of As(III), we employed stable isotope labeling by amino acids in cell culture (SILAC) together with LC/MS/MS analysis to quantitatively assess the As(III)-induced perturbation of the entire proteome of cultured human skin fibroblast cells. Shotgun proteomic analysis on an LTQ-Orbitrap Velos mass spectrometer facilitated the quantification of 3880 proteins, 130 of which were quantified in both forward and reverse SILAC-labeling experiments and displayed significant alterations (>1.5 fold) upon arsenite treatment. Targeted analysis on a triple-quadrupole mass spectrometer in multiple-reaction monitoring (MRM) mode confirmed the quantification results of some select proteins. Ingenuity pathway analysis revealed the arsenite-induced alteration of more than 10 biological pathways, including the Nrf2-mediated oxidative stress response pathway, which is represented by the upregulation of nine proteins in this pathway. In addition, arsenite induced changes in expression levels of a number of selenoproteins and metallothioneins. Together, the results from the present study painted a more complete picture regarding the biological pathways that are altered in human skin fibroblast cells upon arsenite exposure.

  14. Nucleotide Pool Depletion Induces G-Quadruplex-Dependent Perturbation of Gene Expression

    Directory of Open Access Journals (Sweden)

    Charikleia Papadopoulou

    2015-12-01

    Full Text Available Nucleotide pool imbalance has been proposed to drive genetic instability in cancer. Here, we show that slowing replication forks by depleting nucleotide pools with hydroxyurea (HU can also give rise to both transient and permanent epigenetic instability of a reporter locus, BU-1, in DT40 cells. HU induces stochastic formation of Bu-1low variants in dividing cells, which have lost the H3K4me3 present in untreated cells. This instability is potentiated by an intragenic G quadruplex, which also promotes local H2Ax phosphorylation and transient heterochromatinization. Genome-wide, gene expression changes induced by HU significantly overlap with those resulting from loss of the G4-helicases FANCJ, WRN, and BLM. Thus, the effects of global replication stress induced by nucleotide pool depletion can be focused by local replication impediments caused by G quadruplex formation to induce epigenetic instability and changes in gene expression, a mechanism that may contribute to selectable transcriptional changes in cancer.

  15. Psidium guajava extract inhibits thymus and activation-regulated chemokine (TARC/CCL17) production in human keratinocytes by inducing heme oxygenase-1 and blocking NF-κB and STAT1 activation.

    Science.gov (United States)

    Han, Eun Hee; Hwang, Yong Pil; Choi, Jae Ho; Yang, Ji Hye; Seo, Jong Kwon; Chung, Young Chul; Jeong, Hye Gwang

    2011-09-01

    Psidium guajava (P. guajava) is a food and medicinal plant with antioxidant, anti-inflammatory, and anti-allergic activities that support its traditional uses. The aim of this study was to determine the effects of P. guajava ethyl acetate extract (PGEA) on atopic dermatitis and to investigate the possible mechanisms by which PGEA inhibits cytokine-induced Th2 chemokine expression in HaCaT human keratinocyte cells. We found that PGEA suppressed the IFN-γ/TNF-α-co-induced production of thymus and activation-regulated chemokine (TARC) protein and mRNA in HaCaT cells. Additionally, PGEA inhibited the TNF-α/IFN-γ-co-induced activation of NF-κB and STAT1 and increased the expression of heme oxygenase-1 (HO-1) protein and mRNA. HO-1 inhibitor enhanced the suppressive effects of PGEA on TNF-α/IFN-γ-co-induced TARC production and gene expression. Collectively, these data demonstrate that PGEA inhibits chemokine expression in keratinocytes by inducing HO-1 expression and it suggests a possible therapeutic application in atopic dermatitis and other inflammatory skin diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Structural Characterization of Heme Environmental Mutants of CgHmuT that Shuttles Heme Molecules to Heme Transporters

    Directory of Open Access Journals (Sweden)

    Norifumi Muraki

    2016-05-01

    Full Text Available Corynebacteria contain a heme uptake system encoded in hmuTUV genes, in which HmuT protein acts as a heme binding protein to transport heme to the cognate transporter HmuUV. The crystal structure of HmuT from Corynebacterium glutamicum (CgHmuT reveals that heme is accommodated in the central cleft with His141 and Tyr240 as the axial ligands and that Tyr240 forms a hydrogen bond with Arg242. In this work, the crystal structures of H141A, Y240A, and R242A mutants were determined to understand the role of these residues for the heme binding of CgHmuT. Overall and heme environmental structures of these mutants were similar to those of the wild type, suggesting that there is little conformational change in the heme-binding cleft during heme transport reaction with binding and the dissociation of heme. A loss of one axial ligand or the hydrogen bonding interaction with Tyr240 resulted in an increase in the redox potential of the heme for CgHmuT to be reduced by dithionite, though the wild type was not reduced under physiological conditions. These results suggest that the heme environmental structure stabilizes the ferric heme binding in CgHmuT, which will be responsible for efficient heme uptake under aerobic conditions where Corynebacteria grow.

  17. Thunderstorm-/lightning-induced ionospheric perturbation: An observation from equatorial and low-latitude stations around Hong Kong

    Science.gov (United States)

    Kumar, Sanjay; Chen, Wu; Chen, Mingli; Liu, Zhizhao; Singh, R. P.

    2017-08-01

    Total electron content (TEC) computed from the network of Global Positioning System over Hong Kong area known as Hong Kong Sat-Ref-network has been used to study perturbation in the ionosphere from thunder storm activity. Data for geomagnetic quiet day (Kp lightning activity was measured from Total Lightning sensor LS8000 over/around the Hong Kong region. Deviation in vertical TEC (DTEC) and the rate of change of TEC index (ROTI) have been derived and compared for lightning day of 1 April 2014 and nonlightning day of 7 April 2014. An analysis showed reduction in TEC during evening hour (up to 1245 UT), whereas an enhancement during nighttime hour on the lightning day is observed. The variations in DTEC during nonlightning day are found to be insignificant in comparison to that during the lightning day. The ionospheric perturbation in TEC has been noticed up to a distance around 500 km and more from the lightning center. ROTI is found to vary from 3 to 60 total electron content unit (TECU)/min (1 TECU = 1016 el m-2) on the day of thunderstorm activity, whereas ROTI is insignificant on nonlightning days. Signature of density bubbles in slant TEC data and periodicities (10-100 min) in DTEC data are observed. For the same pseudorandom numbers (1, 10, 13, 23, and 28) strong amplitude scintillations are also observed at a close by station. Amplitude scintillations are proposed to be caused by plasma bubbles. The results are tentatively explained by thunderstorm-induced electric fields and gravity waves.

  18. A numerical approach to calculate the induced voltage in the case of conduced perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Andretzko, J.P.; Hedjiedj, A.; Babouri, A.; Guendouz, L.; Nadi, M. [Nancy-1 Univ. Henri Poincare, Lab. d' Instrumentation Electronique de Nancy, Faculte des Sciences, 54 - Vandoeuvre les Nancy (France)

    2006-07-01

    This paper presents a method of numerical simulation that makes it possible to calculate the induced tension to the terminals of the cardiac pacemaker subjected to conduced disturbances. The physical model used for simulation is an experimental test bed which makes it possible to study the behaviour of pacemaker, in vitro, subjected to electromagnetic disturbances in low frequencies range (50 hz - 500 khz). The test bed in which the pacemaker is implanted is described in this article. The process of calculation uses the admittance method adapted to the case of conducted disturbances. Results obtained by numerical simulation are close to experimental values. (authors)

  19. Protective effects of the dietary supplementation of turmeric (Curcuma longa L.) on sodium arsenite-induced biochemical perturbation in mice.

    Science.gov (United States)

    Karim, Md Rezaul; Haque, Abedul; Islam, Khairul; Ali, Nurshad; Salam, Kazi Abdus; Saud, Zahangir Alam; Hossain, Ekhtear; Fajol, Abul; Akhand, Anwarul Azim; Himeno, Seiichiro; Hossain, Khaled

    2010-12-01

    The present study was undertaken to evaluate the protective effect of turmeric powder on arsenic toxicity through mice model. Swiss albino male mice were divided into four groups. The first group was used as control, while groups 2, 3, and 4 were treated with turmeric powder (T, 50 mg/kg body weight/day), sodium arsenite (Sa, 10 mg/kg body weight/day) and turmeric plus Sa (T+Sa), respectively. Results showed that oral administration of Sa reduced the weight gain of the mice compared to the control group and food supplementation of turmeric prevented the reduction of weight gain. Turmeric abrogated the Sa-induced elevation of serum urea, glucose, triglyceride (TG) level and alanine aminotransferase (ALT) activity except the activity of alkaline phosphatase (ALP). Turmeric also prevented the Sa-induced perturbation of serum butyryl cholinesterase activity (BChE). Therefore, ameliorating effect of turmeric on Sa-treated mice suggested the future application of turmeric to reduce or to prevent arsenic toxicity in human.

  20. Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds.

    Science.gov (United States)

    Berlanga, Jorge; Cibrian, Danay; Guillén, Isabel; Freyre, Freya; Alba, José S; Lopez-Saura, Pedro; Merino, Nelson; Aldama, Alfredo; Quintela, Ana M; Triana, Maria E; Montequin, Jose F; Ajamieh, Hussam; Urquiza, Dioslaida; Ahmed, Naila; Thornalley, Paul J

    2005-07-01

    Increased formation of MG (methylglyoxal) and related protein glycation in diabetes has been linked to the development of diabetic vascular complications. Diabetes is also associated with impaired wound healing. In the present study, we investigated if prolonged exposure of rats to MG (50-75 mg/kg of body weight) induced impairment of wound healing and diabetes-like vascular damage. MG treatment arrested growth, increased serum creatinine, induced hypercholesterolaemia (all P < 0.05) and impaired vasodilation (P < 0.01) compared with saline controls. Degenerative changes in cutaneous microvessels with loss of endothelial cells, basement membrane thickening and luminal occlusion were also detected. Acute granulation appeared immature (P < 0.01) and was associated with an impaired infiltration of regenerative cells with reduced proliferative rates (P < 0.01). Immunohistochemical staining indicated the presence of AGEs (advanced glycation end-products) in vascular structures, cutaneous tissue and peripheral nerve fibres. Expression of RAGE (receptor for AGEs) appeared to be increased in the cutaneous vasculature. There were also pro-inflammatory and profibrotic responses, including increased IL-1beta (interleukin-1beta) expression in intact epidermis, TNF-alpha (tumour necrosis factor-alpha) in regions of angiogenesis, CTGF (connective tissue growth factor) in medial layers of arteries, and TGF-beta (transforming growth factor-beta) in glomerular tufts, tubular epithelial cells and interstitial endothelial cells. We conclude that exposure to increased MG in vivo is associated with the onset of microvascular damage and other diabetes-like complications within a normoglycaemic context.

  1. Shock-induced deformation of Shergottites: Shock-pressures and perturbations of magmatic ages on Mars

    Science.gov (United States)

    El Goresy, Ahmed; Gillet, Ph.; Miyahara, M.; Ohtani, E.; Ozawa, S.; Beck, P.; Montagnac, G.

    2013-01-01

    Shergottites and Chassignites practiced major deformation effects whose nature, magnitude and relevance were controversially evaluated and disputatively debated. Our studies of many shocked shergottites present, contrary to numerous previous reports, ample evidence for pervasive shock-induced melting amounting of at least 23 vol.% of the shergottite consisting of maskelynite and pyrrhotite, partial melting of pyroxene, titanomagnetite, ilmenite and finding of several high-pressure polymorphs and pressure-induced dissociation reactions. Our results cast considerable doubt on using the refractive index (RI) or cathodoluminescence (CL) spectra of maskelynite, in estimating the magnitudes of peak-shock pressure in both shergottites and ordinary chondrites. RI of maskelynite was set after quenching of the feldspar liquid before decompression to maskelynite glass followed by glass relaxation after decompression at the closure temperature of relaxation. The RI procedure widely practiced in the past 38 years revealed unrealistic very high-pressure estimates discrepant with the high-pressure mineral inventory in shocked shergottites and ordinary chondrites and with results obtained by robust laboratory static experiments. Shergottites contain the silica high-pressure polymorphs: the scrutinyite-structured polymorph seifertite, a monoclinic ultra dense polymorph of silica with ZrO2-structure, stishovite, a dense liquidus assemblage consisting of stishovite + Na-hexa-aluminosilicate (Na-CAS) and both K-lingunite and Ca-lingunite. Applying individual high-pressure silica polymorphs alone like stishovite, to estimate the equilibrium shock pressure, is inadequate due to the considerable shift of their nominal upper pressure bounds intrinsically induced by spatially variable absorptions of minor oxides like Al2O3, Na2O, FeO, MgO and TiO2. This practice revealed variable pressure estimates even within the same shergottite subjected to the same peak-shock pressure. Occurrence of Na

  2. Novel Insights into the Vasoprotective Role of Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Emanuela Marcantoni

    2012-01-01

    Full Text Available Cardiovascular risk factors contribute to enhanced oxidative stress which leads to endothelial dysfunction. These events trigger platelet activation and their interaction with leukocytes and endothelial cells, thus contributing to the induction of chronic inflammatory processes at the vascular wall and to the development of atherosclerotic lesions and atherothrombosis. In this scenario, endogenous antioxidant pathways are induced to restrain the development of vascular disease. In the present paper, we will discuss the role of heme oxygenase (HO-1 which is an enzyme of the heme catabolism and cleaves heme to form biliverdin and carbon monoxide (CO. Biliverdin is reduced enzymatically to the potent antioxidant bilirubin. Recent evidence supports the involvement of HO-1 in the antioxidant and antiinflammatory effect of cyclooxygenase(COX-2-dependent prostacyclin in the vasculature. Moreover, the role of HO-1 in estrogen vasoprotection is emerging. Finally, possible strategies to develop novel therapeutics against cardiovascular disease by targeting the induction of HO-1 will be discussed.

  3. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells.

    Science.gov (United States)

    Gao, Xiugong; Sprando, Robert L; Yourick, Jeffrey J

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72h after exposure to 0.25mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. Published by Elsevier Inc.

  4. Insights into the mechanism of X-ray induced structural perturbation of macromolecules

    Science.gov (United States)

    Sutton, Kristin A.

    This dissertation focuses on the structural changes induced by X-rays during macromolecular crystallographic data collection. This damage cannot be prevented and often leads to degradation in the data quality, which can affect the resulting structure and thus the biological interpretation. The aim of this research was to understand the radiation chemistry of the damage process. This includes the protein components most susceptible to damage, the disulfide bond and metal atoms. By providing some insight into the mechanism for disulfide bond cleavage and the role the active site metal and its surrounding environment plays in the extent of the damage that occurs we have proposed an initial, generalized model for radiation damage. The results indicate that this multi-track process is due to the overlap of two one-electron reductions or two one-electron oxidations. A reaction scheme for the most susceptible residues (cystine, cysteine, methionine, aspartate, glutamate and tyrosine) is provided with experimental evidence of the predicted damage from crystallographic data collected on lysozyme and xylose isomerase.

  5. Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice.

    Directory of Open Access Journals (Sweden)

    Sylvain Lengacher

    Full Text Available The monocarboxylate transporter 1 (MCT1 or SLC16A1 is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/- mice developed normally. However, when fed high fat diet (HFD, MCT1 (+/- mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD, as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+ mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/- mice was due to decreased fat accumulation (50.0% less after 9 months of HFD notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks and decreased intestinal energy absorption (9.6% higher stool energy content. Indirect calorimetry measurements showed ∼ 15% increase in O₂ consumption and CO₂ production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+ mice when fed HFD, were reduced in MCT1 (+/- mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+ mice under high fat diet was prevented in the liver of MCT1 (+/- mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.

  6. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiugong, E-mail: xiugong.gao@fda.hhs.gov; Sprando, Robert L.; Yourick, Jeffrey J.

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposure to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds.

  7. Quasi-steady multiple flux tubes induced by localized current perturbation in toroidal plasma

    Science.gov (United States)

    Yun, Gunsu

    2015-11-01

    Quasi-steady helical modes with dual, triple, or more flux tubes are easily produced by localized current drive in the core of sawtoothing plasma on the KSTAR tokamak. Individual flux tubes have m / n = 1 / 1 helicity, co-rotate around the magnetic axis, and later merge into a single m = 1 mode. The merged mode eventually crashes with rapid collapse of the core pressure and the next cycle repeats the same pattern, exhibiting sawtooth-like oscillations in the core pressure. The generation mechanism of multiple flux tubes (MFTs) has been studied in two different approaches to understand the observed trend that the number of flux tubes increases as the current drive location moves away from the magnetic axis up to about the magnetic surface of the safety factor q = 1 at the mode collapse: (1) nonlinear reduced MHD simulation with a localized current source modeling the time-varying interaction between the current source and flux tubes and (2) linear MHD simulation with a prescribed q profile with a radially localized current blip. Both studies show that MFTs can be produced only in plasmas with nearly flat q profile close to unity, suggesting the collapse of the m = 1 mode (i.e., sawtooth crash) is complete. Recent observation of long-lived MFTs induced by localized current drive in non-sawtoothing plasma suggests that q profile evolution toward lower- m instability is required for the merging and crash of MFTs. Work supported by the National Research Foundation of Korea, US D.O.E., and Japan Society for the Promotion of Science.

  8. Glyphosate-Induced Specific and Widespread Perturbations in the Metabolome of Soil Pseudomonas Species

    Directory of Open Access Journals (Sweden)

    Ludmilla Aristilde

    2017-06-01

    dose of glyphosate completely recovered in terms of both growth rate and selected metabolite levels. Collectively, our findings led us to conclude that the glyphosate-induced specific disruption of de novo biosynthesis of aromatic AAs accompanied by widespread metabolic disruptions was responsible for dose-dependent adverse effects of glyphosate on sensitive soil Pseudomonas species.

  9. Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Makoto; Miyake, Manami; Sato, Hiroko; Masutomi, Naoya; Tsutsui, Naohisa [Mitsubishi Tanabe Pharma Corporation, Kisarazu, Chiba 292-0818 (Japan); Adam, Klaus-Peter; Alexander, Danny C.; Lawton, Kay A.; Milburn, Michael V.; Ryals, John A.; Wulff, Jacob E. [Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 (United States); Guo, Lining, E-mail: lguo@metabolon.com [Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 (United States)

    2013-04-01

    Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolites profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers. - Highlights: ► We used metabolomics to gain insights on drug induced liver injury (DILI) in rats. ► We profiled rats treated with thirteen hepatotoxins at two doses and two time points. ► The toxins decreased the

  10. Sleep Fragmentation During Late Gestation Induces Metabolic Perturbations and Epigenetic Changes in Adiponectin Gene Expression in Male Adult Offspring Mice

    Science.gov (United States)

    Khalyfa, Abdelnaby; Mutskov, Vesco; Carreras, Alba; Khalyfa, Ahamed A.; Hakim, Fahed

    2014-01-01

    Sleep fragmentation (SF) is a common condition among pregnant women, particularly during late gestation. Gestational perturbations promote the emergence of adiposity and metabolic disease risk in offspring, most likely through epigenetic modifications. Adiponectin (AdipoQ) expression inversely correlates with obesity and insulin resistance. The effects of SF during late gestation on metabolic function and AdipoQ expression in visceral white adipose tissue (VWAT) of offspring mice are unknown. Male offspring mice were assessed at 24 weeks after dams were exposed to SF or control sleep during late gestation. Increased food intake, body weight, VWAT mass, and insulin resistance, with reductions in AdipoQ expression in VWAT, emerged in SF offspring. Increased DNMT3a and -b and global DNA methylation and reduced histone acetyltransferase activity and TET1, -2, and -3 expression were detected in VWAT of SF offspring. Reductions in 5-hydroxymethylcytosine and H3K4m3 and an increase in DNA 5-methylcytosine and H3K9m2 in the promoter and enhancer regions of AdipoQ emerged in adipocytes from VWAT and correlated with AdipoQ expression. SF during late gestation induces epigenetic modifications in AdipoQ in male offspring mouse VWAT adipocytes along with a metabolic syndrome–like phenotype. Thus, altered gestational environments elicited by SF impose the emergence of adverse, long-lasting metabolic consequences in the next generation. PMID:24812424

  11. Effects of perturbation-based slip training using a virtual reality environment on slip-induced falls.

    Science.gov (United States)

    Parijat, Prakriti; Lockhart, Thurmon E; Liu, Jian

    2015-04-01

    The purpose of the current study was to design and evaluate the effectiveness of virtual reality training in improving recovery reactions and reducing fall frequency in older adults. Twenty-four older adults were recruited and randomly assigned to two groups (virtual reality training and control). Both groups underwent three sessions including baseline slip, training and transfer of training on slippery surface. Both groups experienced two slips, one during baseline and the other during the transfer of training trial. The training group underwent 12 simulated slips using a visual perturbation induced by tilting a virtual reality scene while walking on the treadmill and the control group performed normal walking during the training session. Kinematic and kinetic data were collected during all the sessions. Results demonstrated a reduced incidence of falls in the training group during the transfer of training trial as compared to the control group. The training group was able to transfer reactive control strategies learned during training to the second slip trial. The reactive adjustments included reduced slip distance. Additionally, gait parameters reflective of gait instability (stride length, step width, variability in stride velocity) reduced after walking in the VR environment for 15-20 min. The results indicated a beneficial effect of the virtual reality training in reducing slip severity and recovery kinematics in healthy older adults.

  12. Comparative Metabolomic Analyses of Ipomoea lacunosa Biotypes with Contrasting Glyphosate Tolerance Captures Herbicide-Induced Differential Perturbations in Cellular Physiology.

    Science.gov (United States)

    Maroli, Amith S; Nandula, Vijay K; Duke, Stephen O; Gerard, Patrick; Tharayil, Nishanth

    2018-02-16

    Glyphosate-tolerant Ipomoea lacunosa is emerging as a problematic weed in the southeastern United States. Metabolomic profiling was conducted to examine the innate physiology and the glyphosate induced perturbations in two biotypes of I. lacunosa (WAS and QUI) that had contrasting glyphosate tolerance. Compared to the less tolerant QUI-biotype, the innate metabolism of the more tolerant WAS-biotype was characterized by a higher abundance of amino acids, and pyruvate; whereas the sugar profile of the QUI biotype was dominated by the transport sugar sucrose. Glyphosate application (80 g ae/ha) caused similar shikimate accumulation in both biotypes. Compared to QUI, in WAS, the content of aromatic amino acids was less affected by glyphosate treatment, and the content of Ala, Val, Ile, and Pro increased. However, the total sugars decreased by ∼75% in WAS, compared to ∼50% decrease in QUI. The innate, higher proportional abundance, of the transport-sugar sucrose in QUI coud partly explain the higher translocation and greater sensitivity of this biotype to glyphosate. The decrease in sugars, accompanied by an increase in amino acids could delay feedback regulation of upstream enzymes of the shikimate acid pathway in WAS, which could contribute to a greater glyphosate tolerance. Our study, through a metabolomics approach, provides complementary data that elucidates the cellular physiology of herbicide tolerance in Ipomoea lacunosa biotypes.

  13. Helical modulation of the electrostatic plasma potential due to edge magnetic islands induced by resonant magnetic perturbation fields at TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ciaccio, G., E-mail: giovanni.ciaccio@igi.cnr.it; Spizzo, G. [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Schmitz, O., E-mail: oschmitz@wisc.edu; Frerichs, H. [Department of Engineering Physics, University of Wisconsin–Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Abdullaev, S. S. [Institut für Energieforschung-Plasmaphysik, Association EURATOM-FZJ, Jülich (Germany); Evans, T. E. [General Atomics, P.O. Box 85608, San Diego, California 92121 (United States); White, R. B. [Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2015-10-15

    The electrostatic response of the edge plasma to a magnetic island induced by resonant magnetic perturbations to the plasma edge of the circular limiter tokamak TEXTOR is analyzed. Measurements of plasma potential are interpreted by simulations with the Hamiltonian guiding center code ORBIT. We find a strong correlation between the magnetic field topology and the poloidal modulation of the measured plasma potential. The ion and electron drifts yield a predominantly electron driven radial diffusion when approaching the island X-point while ion diffusivities are generally an order of magnitude smaller. This causes a strong radial electric field structure pointing outward from the island O-point. The good agreement found between measured and modeled plasma potential connected to the enhanced radial particle diffusivities supports that a magnetic island in the edge of a tokamak plasma can act as convective cell. We show in detail that the particular, non-ambipolar drifts of electrons and ions in a 3D magnetic topology account for these effects. An analytical model for the plasma potential is implemented in the code ORBIT, and analyses of ion and electron radial diffusion show that both ion- and electron-dominated transport regimes can exist, which are known as ion and electron root solutions in stellarators. This finding and comparison with reversed field pinch studies and stellarator literature suggest that the role of magnetic islands as convective cells and hence as major radial particle transport drivers could be a generic mechanism in 3D plasma boundary layers.

  14. Heme synthase (ferrochelatase) catalyzes the removal of iron from heme and demetalation of metalloporphyrins.

    Science.gov (United States)

    Taketani, Shigeru; Ishigaki, Mutsumi; Mizutani, Atsushi; Uebayashi, Masashi; Numata, Masahiro; Ohgari, Yoshiko; Kitajima, Sakihito

    2007-12-25

    The red pigments in meat products, including cooked cured ham, arise from the reaction of myoglobin with nitric oxide generated from exogenous nitrite. Since carcinogenic nitrosoamines may be generated by the treatment of meats with nitrite, the production of nitrite-free meat products is an attractive alternative. Raw dry-cured (Parma) hams are produced by the treatment of meats with salts other than nitrite. Analysis of pigments in raw dry-cured hams reveals that the main pigment is zinc protoporphyrin, suggesting that the conversion of heme to zinc protoporphyrin occurs via an iron-removal reaction from myoglobin heme during the processing of raw hams. Purification of the iron-removal enzyme showed that it was identical to ferrochelatase. Recombinant ferrochelatase in combination with NADH-cytochrome b5 reductase catalyzed NADH-dependent iron-removal reaction from hemin and hemoproteins. Metal ions such as zinc and cobalt were also removed from the corresponding metalloporphyrins. The addition of zinc ions led to the formation of zinc protoporphyrin. In cultured cells, the conversion of zinc mesoporphyrin to mesoheme was observed to be dependent on ferrochelatase and could be markedly induced during erythroid differentiation. This is the first demonstration of a new enzyme reaction, the reverse reaction of ferrochelatase, which may contribute to a new route of the recycling of protoporphyrin and heme in cells.

  15. Heme oxygenase-1, oxidation, inflammation and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jesus A Araujo

    2012-07-01

    Full Text Available Atherosclerosis is an inflammatory process of the vascular wall characterized by the infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low density lipoproteins and induction of oxidative stress play a major role in lipid retention in the vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this disorder. The vasculature has a plethora of protective resources against oxidation and inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 (HO-1 is a Nrf2-regulated gene that plays a critical role in the prevention of vascular inflammation. It is the inducible isoform of heme oxygenase, responsible for the oxidative cleavage of heme groups leading to the generation of biliverdin, carbon monoxide and release of ferrous iron. HO-1 has important antioxidant, antiinflammatory, antiapoptotic, antiproliferative and immunomodulatory effects in vascular cells, most of which play a significant role in the protection against atherogenesis. HO-1 may also be an important feature in macrophage differentiation and polarization to certain subtypes. The biological effects of HO-1 are largely attributable to its enzymatic activity, which can be conceived as a system with three arms of action, corresponding to its three enzymatic byproducts. HO-1 mediated vascular protection may be due to a combination of systemic and vascular local effects. It is usually expressed at low levels but can be highly upregulated in the presence of several proatherogenic stimuli. The HO-1 system is amenable for use in the development of new therapies, some of them currently under experimental and clinical trials. Interestingly, in contrast to the HO-1 antiatherogenic actions, the expression of its transcriptional regulator Nrf2 leads to proatherogenic effects instead. This article reviews the evidence that supports the antiatherogenic role of HO-1, potential pathways and mechanisms mediating

  16. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, Johan A., E-mail: johan.westberg@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Jiang, Ji, E-mail: ji.jiang@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Andersson, Leif C., E-mail: leif.andersson@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland)

    2011-06-03

    Highlights: {yields} Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. {yields} Central iron atom of heme and cysteine-114 of STC1 are essential for binding. {yields} STC1 binds Fe{sup 2+} and Fe{sup 3+} heme. {yields} STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys{sup 114} as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H{sub 2}O{sub 2} induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  17. Impact of heme on specific antibody production in mice: promotive, inhibitive or null outcome is determined by its concentration

    Directory of Open Access Journals (Sweden)

    Guofu Li

    2017-05-01

    Full Text Available Free heme is an endogenous danger signal that provokes innate immunity. Active innate immunity provides a precondition of an effective adaptive immune response. However, heme catabolites, CO, biliverdin and bilirubin trigger immunosuppression. Furthermore, free heme induces expression of heme oxygenase-1 to increase production of CO, biliverdin and bilirubin. As such, free heme can play a paradoxical role in adaptive immunity. What is the outcome of the animal immune response to an antigen in the presence of free heme? This question remains to be explored. Here, we report the immunization results of rats and mice after intraperitoneal injection of formulations containing BSA and heme. When the heme concentrations were below 1 μM, between 1 μM and 5 μM and above 5 μM, production of anti-BSA IgG and IgM was unaffected, enhanced and suppressed, respectively. The results suggest that heme can influence adaptive immunity by double concentration-thresholds. If the heme concentrations are less than the first threshold, there is no effect on adaptive immunity; if the concentrations are more than the first but less than the second threshold, there is promotion effect; and if the concentrations are more than the second threshold, there is an inhibitory effect. A hypothesis is also presented here to explain the mechanism.

  18. Lycopene inhibits cyclic strain-induced endothelin-1 expression through the suppression of reactive oxygen species generation and induction of heme oxygenase-1 in human umbilical vein endothelial cells.

    Science.gov (United States)

    Sung, Li-Chin; Chao, Hung-Hsing; Chen, Cheng-Hsien; Tsai, Jen-Chen; Liu, Ju-Chi; Hong, Hong-Jye; Cheng, Tzu-Hurng; Chen, Jin-Jer

    2015-06-01

    Lycopene is the most potent active antioxidant among the major carotenoids, and its use has been associated with a reduced risk for cardiovascular disease (CVD). Endothelin-1 (ET-1) is a powerful vasopressor synthesized by endothelial cells and plays a crucial role in the pathophysiology of CVD. However, the direct effects of lycopene on vascular endothelial cells have not been fully described. This study investigated the effects of lycopene on cyclic strain-induced ET-1 gene expression in human umbilical vein endothelial cells (HUVECs) and identified the signal transduction pathways that are involved in this process. Cultured HUVECs were exposed to cyclic strain (20% in length, 1 Hz) in the presence or absence of lycopene. Lycopene inhibited strain-induced ET-1 expression through the suppression of reactive oxygen species (ROS) generation through attenuation of p22(phox) mRNA expression and NAD(P)H oxidase activity. Furthermore, lycopene inhibited strain-induced ET-1 secretion by reducing ROS-mediated extrace-llular signal-regulated kinase (ERK) phosphorylation. Conversely, lycopene treatment enhanced heme oxygenase-1 (HO-1) gene expression through the activation of phosphoinositide 3-kinase (PI3K)/Akt pathway, followed by induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation; in addition, HO-1 silencing partially inhibited the repressive effects of lycopene on strain-induced ET-1 expression. In summary, our study showed, for the first time, that lycopene inhibits cyclic strain-induced ET-1 gene expression through the suppression of ROS generation and induction of HO-1 in HUVECs. Therefore, this study provides new valuable insight into the molecular pathways that may contribute to the proposed beneficial effects of lycopene on the cardiovascular system. © 2015 Wiley Publishing Asia Pty Ltd.

  19. Characterization of docosahexaenoic acid (DHA)-induced heme oxygenase-1 (HO-1) expression in human cancer cells: the importance of enhanced BTB and CNC homology 1 (Bach1) degradation.

    Science.gov (United States)

    Wang, Shuai; Hannafon, Bethany N; Wolf, Roman F; Zhou, Jundong; Avery, Jori E; Wu, Jinchang; Lind, Stuart E; Ding, Wei-Qun

    2014-05-01

    The effect of docosahexaenoic acid (DHA) on heme oxygenase-1 (HO-1) expression in cancer cells has never been characterized. This study examines DHA-induced HO-1 expression in human cancer cell model systems. DHA enhanced HO-1 gene expression in a time- and concentration-dependent manner, with maximal induction at 21 h of treatment. This induction of HO-1 expression was confirmed in vivo using a xenograft nude mouse model fed a fish-oil-enriched diet. The increase in HO-1 gene transcription induced by DHA was significantly attenuated by the antioxidant N-acetyl cysteine, suggesting the involvement of oxidative stress. This was supported by direct measurement of lipid peroxide levels after DHA treatment. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs) that mediate the DHA-induced increase in HO-1 gene transcription. Knockdown of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression compromised the DHA-induced increase in HO-1 gene transcription, indicating the importance of the Nrf2 pathway in this event. However, the nuclear protein levels of Nrf2 remained unchanged upon DHA treatment. Further studies demonstrated that DHA reduces nuclear Bach1 protein expression by promoting its degradation and attenuates Bach1 binding to the AREs in the HO-1 gene promoter. In contrast, DHA enhanced Nrf2 binding to the AREs without affecting nuclear Nrf2 expression levels, indicating a new cellular mechanism that mediates DHA's induction of HO-1 gene transcription. To our knowledge, this is the first characterization of DHA-induced HO-1 expression in human malignant cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane.

    Science.gov (United States)

    Tang, Chuan-Ho; Lin, Ching-Yu; Lee, Shu-Hui; Wang, Wei-Hsien

    2017-06-01

    Zinc oxide nanoparticles (nZnOs) released from popular sunscreens used during marine recreation apparently endanger corals; however, the known biological effects are very limited. Membrane lipids constitute the basic structural element to create cell a dynamic structure according to the circumstance. Nano-specific effects have been shown to mechanically perturb the physical state of the lipid membrane, and the cells accommodating the actions of nZnOs can be involved in the alteration of the membrane lipid composition. To gain insight into the effects of nanoparticles on coral, glycerophosphocholine (GPC) profiling of the coral Seriatopora caliendrum exposed to nZnOs was performed in this study. Increasing lyso-GPCs, docosapentaenoic acid-possessing GPCs and docosahexaenoic acid-possessing GPCs and decreasing arachidonic acid-possessing GPCs were the predominant changes responded to nZnO exposure in the coral. A backfilling of polyunsaturated plasmanylcholines was observed in the coral exposed to nZnO levels over a threshold. These changes can be logically interpreted as an accommodation to nZnOs-induced mechanical disturbances in the cellular membrane based on the biophysical properties of the lipids. Moreover, the coral demonstrated a difference in the changes in lipid profiles between intra-colonial functionally differentiated polyps, indicating an initial membrane composition-dependent response. Based on the physicochemical properties and physiological functions of these changed lipids, some chronic biological effects can be incubated once the coral receives long-term exposure to nZnOs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sleep fragmentation during late gestation induces metabolic perturbations and epigenetic changes in adiponectin gene expression in male adult offspring mice.

    Science.gov (United States)

    Khalyfa, Abdelnaby; Mutskov, Vesco; Carreras, Alba; Khalyfa, Ahamed A; Hakim, Fahed; Gozal, David

    2014-10-01

    Sleep fragmentation (SF) is a common condition among pregnant women, particularly during late gestation. Gestational perturbations promote the emergence of adiposity and metabolic disease risk in offspring, most likely through epigenetic modifications. Adiponectin (AdipoQ) expression inversely correlates with obesity and insulin resistance. The effects of SF during late gestation on metabolic function and AdipoQ expression in visceral white adipose tissue (VWAT) of offspring mice are unknown. Male offspring mice were assessed at 24 weeks after dams were exposed to SF or control sleep during late gestation. Increased food intake, body weight, VWAT mass, and insulin resistance, with reductions in AdipoQ expression in VWAT, emerged in SF offspring. Increased DNMT3a and -b and global DNA methylation and reduced histone acetyltransferase activity and TET1, -2, and -3 expression were detected in VWAT of SF offspring. Reductions in 5-hydroxymethylcytosine and H3K4m3 and an increase in DNA 5-methylcytosine and H3K9m2 in the promoter and enhancer regions of AdipoQ emerged in adipocytes from VWAT and correlated with AdipoQ expression. SF during late gestation induces epigenetic modifications in AdipoQ in male offspring mouse VWAT adipocytes along with a metabolic syndrome-like phenotype. Thus, altered gestational environments elicited by SF impose the emergence of adverse, long-lasting metabolic consequences in the next generation. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. Resonance Raman and EPR spectroscopic studies on heme-heme oxygenase complexes.

    Science.gov (United States)

    Sun, J; Wilks, A; Ortiz de Montellano, P R; Loehr, T M

    1993-12-28

    The binding of ferrous and ferric hemes and manganese(II)- and manganese(III)-substituted hemes to heme oxygenase has been investigated by optical absorption, resonance Raman, and EPR spectroscopy. The results are consistent with the presence of a six-coordinate heme moiety ligated to an essential histidine ligand and a water molecule. The latter ionizes with a pKa approximately 8.0 to give a mixture of high-spin and low-spin six-coordinate hydroxo adducts. Addition of excess cyanide converts the heme to a hexacoordinate low-spin species. The resonance Raman spectrum of the ferrous heme-heme oxygenase complex and that of the Mn(II)protoporphyrin-heme oxygenase complex shows bands at 216 and 212 cm-1, respectively, that are assigned to the metal-histidine stretching mode. The EPR spectrum of the oxidized heme-heme oxygenase complex has a strongly axial signal with g parallel of approximately 6 and g perpendicular approximately 2. 14NO and 15NO adducts of ferrous heme-heme oxygenase exhibit EPR hyperfine splittings of approximately 20 and approximately 25 Gauss, respectively. In addition, both nitrosyl complexes show additional superhyperfine splittings of approximately 7 Gauss from spin-spin interaction with the proximal histidine nitrogen. The heme environment in the heme-heme oxygenase enzyme-substrate complex has spectroscopic properties similar to those of the heme in myoglobin. Hence, there is neither a strongly electron-donating fifth (proximal) ligand nor an electron-withdrawing network on the distal side of the heme moiety comparable to that for cytochromes P-450 and peroxidases. This observation has profound implications about the nature of the oxygen-activating process in the heme-->biliverdin reaction that are discussed in this paper.

  3. Regulation of human heme oxygenase-1 gene expression under thermal stress.

    Science.gov (United States)

    Okinaga, S; Takahashi, K; Takeda, K; Yoshizawa, M; Fujita, H; Sasaki, H; Shibahara, S

    1996-06-15

    Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1-0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1-0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells.

  4. Proinflammatory Responses of Heme in Alveolar Macrophages: Repercussion in Lung Hemorrhagic Episodes

    Directory of Open Access Journals (Sweden)

    Rafael L. Simões

    2013-01-01

    Full Text Available Clinical and experimental observations have supported the notion that free heme released during hemorrhagic and hemolytic episodes may have a major role in lung inflammation. With alveolar macrophages (AM being the main line of defense in lung environments, the influence of free heme on AM activity and function was investigated. We observed that heme in a concentration range found during hemolytic episodes (3–30 μM elicits AM to present a proinflammatory profile, stimulating reactive oxygen species (ROS and nitric oxide (NO generation and inducing IL-1β, IL-6, and IL-10 secretion. ROS production is NADPH oxidase-dependent, being inhibited by DPI and apocynin, and involves p47 subunit phosphorylation. Furthermore, heme induces NF-κB nuclear translocation, iNOS, and also HO-1 expression. Moreover, AM stimulated with free heme show enhanced phagocytic and bactericidal activities. Taken together, the data support a dual role for heme in the inflammatory response associated with lung hemorrhage, acting as a proinflammatory molecule that can either act as both an adjuvant of the innate immunity and as an amplifier of the inflammatory response, leading tissue injury. The understanding of heme effects on pulmonary inflammatory processes can lead to the development of new strategies to ameliorate tissue damage associated with hemorrhagic episodes.

  5. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Rhim, Hyangshuk [Department of Biomedical Sciences, Department of Medical Life Sciences, College of Medicine, the Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Bae, Yong Soo [Department of Biological Science, College of Natural Sciences, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Choi, Soo Young [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Park, Jinseu, E-mail: jinpark@hallym.ac.kr [Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2014-10-01

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrol induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.

  6. PERTURBATIVE QCD

    OpenAIRE

    I. Hinchliffe

    2010-01-01

    This is the written version of a set of lectures on perturbative QCD that were delivered to a mixed audience of young theorists and experimentalists in the course of the XXII International Meeting on Fundamental Physics. These notes are virtually a verbatim transcription of the lectures. The selection of topics is somewhat arbitrary, but two basic points are emphasized: the rationale behind QCD and how ongoing experiments, such as those taking place in LEP and HERA, contribute to our understa...

  7. Development of a pluripotent stem cell derived neuronal model to identify chemically induced pathway perturbations in relation to neurotoxicity: Effects of CREB pathway inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Pistollato, Francesca; Louisse, Jochem; Scelfo, Bibiana; Mennecozzi, Milena [Institute for Health and Consumer Protection (IHCP), JRC, Ispra (Italy); Accordi, Benedetta; Basso, Giuseppe [Oncohematology Laboratory, Department of Woman and Child Health, University of Padova, Padova (Italy); Gaspar, John Antonydas [Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne (Germany); Zagoura, Dimitra; Barilari, Manuela; Palosaari, Taina [Institute for Health and Consumer Protection (IHCP), JRC, Ispra (Italy); Sachinidis, Agapios [Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne (Germany); Bremer-Hoffmann, Susanne, E-mail: susanne.bremer@jrc.ec.europa.eu [Institute for Health and Consumer Protection (IHCP), JRC, Ispra (Italy)

    2014-10-15

    According to the advocated paradigm shift in toxicology, acquisition of knowledge on the mechanisms underlying the toxicity of chemicals, such as perturbations of biological pathways, is of primary interest. Pluripotent stem cells (PSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer a unique opportunity to derive physiologically relevant human cell types to measure molecular and cellular effects of such pathway modulations. Here we compared the neuronal differentiation propensity of hESCs and hiPSCs with the aim to develop novel hiPSC-based tools for measuring pathway perturbation in relation to molecular and cellular effects in vitro. Among other fundamental pathways, also, the cAMP responsive element binding protein (CREB) pathway was activated in our neuronal models and gave us the opportunity to study time-dependent effects elicited by chemical perturbations of the CREB pathway in relation to cellular effects. We show that the inhibition of the CREB pathway, using 2-naphthol-AS-E-phosphate (KG-501), induced an inhibition of neurite outgrowth and synaptogenesis, as well as a decrease of MAP2{sup +} neuronal cells. These data indicate that a CREB pathway inhibition can be related to molecular and cellular effects that may be relevant for neurotoxicity testing, and, thus, qualify the use of our hiPSC-derived neuronal model for studying chemical-induced neurotoxicity resulting from pathway perturbations. - Highlights: • HESCs derived neuronal cells serve as benchmark for iPSC based neuronal toxicity test development. • Comparisons between hESCs and hiPSCs demonstrated variability of the epigenetic state • CREB pathway modulation have been explored in relation to the neurotoxicant exposure KG-501 • hiPSC might be promising tools to translate theoretical AoPs into toxicological in vitro tests.

  8. Structural and biochemical characterization of two heme binding sites on α1-microglobulin using site directed mutagenesis and molecular simulation.

    Science.gov (United States)

    Rutardottir, Sigurbjörg; Karnaukhova, Elena; Nantasenamat, Chanin; Songtawee, Napat; Prachayasittikul, Virapong; Rajabi, Mohsen; Rosenlöf, Lena Wester; Alayash, Abdu I; Åkerström, Bo

    2016-01-01

    α1-Microglobulin (A1M) is a reductase and radical scavenger involved in physiological protection against oxidative damage. These functions were previously shown to be dependent upon cysteinyl-, C34, and lysyl side-chains, K(92, 118,130). A1M binds heme and the crystal structure suggests that C34 and H123 participate in a heme binding site. We have investigated the involvement of these five residues in the interactions with heme. Four A1M-variants were expressed: with cysteine to serine substitution in position 34, lysine to threonine substitutions in positions (92, 118, 130), histidine to serine substitution in position 123 and a wt without mutations. Heme binding was investigated by tryptophan fluorescence quenching, UV-Vis spectrophotometry, circular dichroism, SPR, electrophoretic migration shift, gel filtration, catalase-like activity and molecular simulation. All A1M-variants bound to heme. Mutations in C34, H123 or K(92, 118, 130) resulted in significant absorbance changes, CD spectral changes, and catalase-like activity, suggesting involvement of these side-groups in coordination of the heme-iron. Molecular simulation support a model with two heme-binding sites in A1M involving the mutated residues. Binding of the first heme induces allosteric stabilization of the structure predisposing for a better fit of the second heme. The results suggest that one heme-binding site is located in the lipocalin pocket and a second binding site between loops 1 and 4. Reactions with the hemes involve the side-groups of C34, K(92, 118, 130) and H123. The model provides a structural basis for the functional activities of A1M: heme binding activity of A1M. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Heme Oxygenase, Inflammation, and Fibrosis: The Good, the Bad, and the Ugly?

    Science.gov (United States)

    Lundvig, Ditte M. S.; Immenschuh, Stephan; Wagener, Frank A. D. T. G.

    2012-01-01

    Upon injury, prolonged inflammation and oxidative stress may cause pathological wound healing and fibrosis, leading to formation of excessive scar tissue. Fibrogenesis can occur in most organs and tissues and may ultimately lead to organ dysfunction and failure. The underlying mechanisms of pathological wound healing still remain unclear, and are considered to be multifactorial, but so far, no efficient anti-fibrotic therapies exist. Extra- and intracellular levels of free heme may be increased in a variety of pathological conditions due to release from hemoproteins. Free heme possesses pro-inflammatory and oxidative properties, and may act as a danger signal. Effects of free heme may be counteracted by heme-binding proteins or by heme degradation. Heme is degraded by heme oxygenase (HO) that exists as two isoforms: inducible HO-1 and constitutively expressed HO-2. HO generates the effector molecules biliverdin/bilirubin, carbon monoxide, and free iron/ferritin. HO deficiency in mouse and man leads to exaggerated inflammation following mild insults, and accumulating epidemiological and preclinical studies support the widely recognized notion of the cytoprotective, anti-oxidative, and anti-inflammatory effects of the activity of the HO system and its effector molecules. In this review, we address the potential effects of targeted HO-1 induction or administration of HO-effector molecules as therapeutic targets in fibrotic conditions to counteract inflammatory and oxidative insults. This is exemplified by various clinically relevant conditions, such as hypertrophic scarring, chronic inflammatory liver disease, chronic pancreatitis, and chronic graft rejection in transplantation. PMID:22586396

  10. Modeling and computations of the intramolecular electron transfer process in the two-heme protein cytochrome c4

    DEFF Research Database (Denmark)

    Natzmutdinov, Renat R.; Bronshtein, Michael D.; Zinkicheva, Tamara T.

    2012-01-01

    performed computational modeling of the intramolecular ET process by a combination of density functional theory (DFT) and quantum mechanical charge transfer theory to disclose reasons for this difference. We first address the electronic structures of the model heme core with histidine and methionine axial...... force were determined using dielectric continuum models. We then calculated the electronic transmission coefficient of the intramolecular ET rate using perturbation theory combined with the electronic wave functions determined by the DFT calculations for different heme group orientations and Fe......The di-heme protein Pseudomonas stutzeri cytochrome c4 (cyt c4) has emerged as a useful model for studying long-range protein electron transfer (ET). Recent experimental observations have shown a dramatically different pattern of intramolecular ET between the two heme groups in different local...

  11. Determination of the stochastic layer properties induced by magnetic perturbations via heat pulse experiments at ASDEX upgrade

    Czech Academy of Sciences Publication Activity Database

    Brida, D.; Lunt, T.; Wischmeier, M.; Birkenmeier, G.; Cahyna, Pavel; Carralero, D.; Faitsch, M.; Feng, Y.; Kurzan, B.; Schubert, M.; Sieglin, B.; Suttrop, W.; Wolfrum, E.

    2017-01-01

    Roč. 12, August (2017), s. 831-837 ISSN 2352-1791 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : ASDEX upgrade * Magnetic perturbations * Divertor heat flux Subject RIV: BL - Plasma and Gas Discharge Physics http://www.sciencedirect.com/science/article/pii/S2352179116302150

  12. Phenylpropanoid glycosides from plant cell cultures induce heme oxygenase 1 gene expression in a human keratinocyte cell line by affecting the balance of NRF2 and BACH1 transcription factors.

    Science.gov (United States)

    Sgarbossa, Anna; Dal Bosco, Martina; Pressi, Giovanna; Cuzzocrea, Salvatore; Dal Toso, Roberto; Menegazzi, Marta

    2012-08-30

    Phenylpropanoids have several highly significant biological properties in both plants and animals. Four phenylpropanoid glycosides (PPGs), verbascoside (VB), forsythoside B (FB), echinacoside (EC) and campneoside I (CP), were purified and tested for their capability to activate NRF2 and induce phase II cytoprotective enzymes in a human keratinocyte cell line (HaCaT). All four substances showed similar strong antioxidant and radical-scavenging activities as determined by diphenylpicrylhydrazyl assay. Furthermore, in HaCaT cells, FB and EC are strong activators of NRF2, the nuclear transcription factor regulating many phase II detoxifying and cytoprotective enzymes, such as heme oxygenase 1 (HMOX1). In HaCaT cells, FB and EC (200 μM) induced nuclear translocation of NRF2 protein after 24 h and reduced nuclear protein levels of BACH1, a repressor of the antioxidant response element. FB and EC greatly HMOX1 mRNA levels by more than 40-fold in 72 h. Cytoplasmic HMOX1 protein levels were also increased at 48 h after treatment. VB was less active compared to FB and EC, and CP was slightly active only at later times of treatment. We suggest that hydroxytyrosol (HYD) could be a potential bioactive metabolite of PPGs since HYD, in equimolar amounts to PGGs, is able to both activate HO-1 transcription and modify Nrf2/Bach1 nuclear protein levels. This is in agreement with the poor activity of CP, which contains a HYD moiety modified by an O-methyl group. In conclusion, FB and EC from plant cell cultures may provide long-lasting skin protection by induction of phase II cytoprotective capabilities. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Exposures involving perturbations of the EM field have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects

    Science.gov (United States)

    Mothersill, Carmel; Seymour, Colin

    2012-07-01

    Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.

  14. Allocation of Heme is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells

    Directory of Open Access Journals (Sweden)

    Nino Asuela Espinas

    2016-08-01

    Full Text Available Heme is involved in various biological processes as a cofactor of hemoproteins located in various organelles. In plant cells, heme is synthesized by two isoforms of plastid-localized ferrochelatase, FC1 and FC2. In this study, by characterizing Arabidopsis T-DNA insertional mutants, we showed that the allocation of heme is differentially regulated by ferrochelatase isoforms in plant cells. Analyses of weak (fc1-1 and null (fc1-2 mutants suggest that FC1-producing heme is required for initial growth of seedling development. In contrast, weak (fc2-1 and null (fc2-2 mutants of FC2 showed pale green leaves and retarded growth, indicating that FC2-producing heme is necessary for chloroplast development. During the initial growth stage, FC2 deficiency caused reduction of plastid cytochromes. In addition, although FC2 deficiency marginally affected the assembly of photosynthetic reaction center complexes, it caused relatively larger but insufficient light-harvesting antenna to reaction centers, resulting in lower efficiency of photosynthesis. In the later vegetative growth, however, fc2-2 recovered photosynthetic growth, showing that FC1-producing heme may complement the FC2 deficiency. On the other hand, reduced level of cytochromes in microsomal fraction was discovered in fc1-1, suggesting that FC1-producing heme is mainly allocated to extraplastidic organelles. Furthermore, the expression of FC1 is induced by the treatment of an elicitor flg22 while that of FC2 was reduced, and fc1-1 abolished the flg22-dependent induction of FC1 expression and peroxidase activity. Consequently, our results clarified that FC2 produces heme for the photosynthetic machinery in the chloroplast, while FC1 is the housekeeping enzyme providing heme cofactor to the entire cell. In addition, FC1 can partly complement FC2 deficiency and is also involved in defense against stressful conditions.

  15. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    Science.gov (United States)

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  16. Curcumin-induced fibroblast apoptosis and in vitro wound contraction are regulated by antioxidants and heme oxygenase: implications for scar formation.

    NARCIS (Netherlands)

    Scharstuhl, A.; Mutsaers, H.A.M.; Pennings, S.W.C.; Szarek, W.A.; Russel, F.G.M.; Wagener, F.A.D.T.G.

    2009-01-01

    Fibroblast apoptosis plays a crucial role in normal and pathological scar formation and therefore we studied whether the putative apoptosis-inducing factor curcumin affects fibroblast apoptosis and may function as a novel therapeutic. We show that 25-microM curcumin causes fibroblast apoptosis and

  17. Perturbation of intracellular acyl-CoA metabolism induces the unfolded protein response pathway and autophagy in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Feddersen, Søren

    2008-01-01

    , a transcription factor regulating the unfolded protein response and membrane biogenesis, as well as Hac1p target genes incl. KAR2 and PDI1. Under similar conditions, we find a massive upregulation of pre-autophagosomal structure (PAS) formation, indicative of upregulation of autophagy. Supplementation....... This and the facts that Acb1p-depleted cells are hypersensitive to the immunosuppressive drug rapamycin and accumulate the transcription factor Msn2p in  the nucleus, indicate that perturbation of intracellular acyl-CoA metabolism leads to  a starvation response that upregulate autophagy, which involves both Ras...... autophagy mainly is a response to the stress of nutrient limitation. In the present study, we demonstrate that perturbation of fatty acid synthesis and transport either through inhibition of fatty acid synthase (FAS) or by depleting cells for the acyl-CoA binding protein, Acb1p, leads to induction of Hac1p...

  18. Exercise‐induced homeostatic perturbations provoked by singles tennis match play with reference to development of fatigue

    OpenAIRE

    Mendez‐Villanueva, Alberto; Fernandez‐Fernandez, Jaime; Bishop, David

    2007-01-01

    This review addresses metabolic, neural, mechanical and thermal alterations during tennis match play with special focus on associations with fatigue. Several studies have provided a link between fatigue and the impairment of tennis skills proficiency. A tennis player's ability to maintain skilled on‐court performance and/or optimal muscle function during a demanding match can be compromised as a result of several homeostatic perturbations, for example hypoglycaemia, muscle damage and hyperthe...

  19. Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact

    Science.gov (United States)

    Hirabayashi, Masatoshi; Schwartz, Stephen R.; Yu, Yang; Davis, Alex B.; Chesley, Steven R.; Fahnestock, Eugene G.; Michel, Patrick; Richardson, Derek C.; Naidu, Shantanu P.; Scheeres, Daniel J.; Cheng, Andrew F.; Rivkin, Andrew S.; Benner, Lance A. M.

    2017-12-01

    Binary near-Earth asteroid (65803) Didymos is the target of the proposed NASA Double Asteroid Redirection Test (DART), part of the Asteroid Impact & Deflection Assessment (AIDA) mission concept. In this mission, the DART spacecraft is planned to impact the secondary body of Didymos, perturbing mutual dynamics of the system. The primary body is currently rotating at a spin period close to the spin barrier of asteroids, and materials ejected from the secondary due to the DART impact are likely to reach the primary. These conditions may cause the primary to reshape, due to landslides or internal deformation, changing the permanent gravity field. Here, we propose that if shape deformation of the primary occurs, the mutual orbit of the system would be perturbed due to a change in the gravity field. We use a numerical simulation technique based on the full two-body problem to investigate the shape effect on the mutual dynamics in Didymos after the DART impact. The results show that under constant volume, shape deformation induces strong perturbation in the mutual motion. We find that the deformation process always causes the orbital period of the system to become shorter. If surface layers with a thickness greater than ˜0.4 m on the poles of the primary move down to the equatorial region due to the DART impact, a change in the orbital period of the system and in the spin period of the primary will be detected by ground-based measurement.

  20. Induction of heme oxygenase I (HMOX1 by HPP-4382: a novel modulator of Bach1 activity.

    Directory of Open Access Journals (Sweden)

    Otis C Attucks

    Full Text Available Oxidative stress is generated by reactive oxygen species (ROS produced in response to metabolic activity and environmental factors. Increased oxidative stress is associated with the pathophysiology of a broad spectrum of inflammatory diseases. Cellular response to excess ROS involves the induction of antioxidant response element (ARE genes under control of the transcriptional activator Nrf2 and the transcriptional repressor Bach1. The development of synthetic small molecules that activate the protective anti-oxidant response network is of major therapeutic interest. Traditional small molecules targeting ARE-regulated gene activation (e.g., bardoxolone, dimethyl fumarate function by alkylating numerous proteins including Keap1, the controlling protein of Nrf2. An alternative is to target the repressor Bach1. Bach1 has an endogenous ligand, heme, that inhibits Bach1 binding to ARE, thus allowing Nrf2-mediated gene expression including that of heme-oxygenase-1 (HMOX1, a well described target of Bach1 repression. In this report, normal human lung fibroblasts were used to screen a collection of synthetic small molecules for their ability to induce HMOX1. A class of HMOX1-inducing compounds, represented by HPP-4382, was discovered. These compounds are not reactive electrophiles, are not suppressed by N-acetyl cysteine, and do not perturb either ROS or cellular glutathione. Using RNAi, we further demonstrate that HPP-4382 induces HMOX1 in an Nrf2-dependent manner. Chromatin immunoprecipitation verified that HPP-4382 treatment of NHLF cells reciprocally coordinated a decrease in binding of Bach1 and an increase of Nrf2 binding to the HMOX1 E2 enhancer. Finally we show that HPP-4382 can inhibit Bach1 activity in a reporter assay that measures transcription driven by the human HMOX1 E2 enhancer. Our results suggest that HPP-4382 is a novel activator of the antioxidant response through the modulation of Bach1 binding to the ARE binding site of target genes.

  1. Induction of heme oxygenase I (HMOX1) by HPP-4382: a novel modulator of Bach1 activity.

    Science.gov (United States)

    Attucks, Otis C; Jasmer, Kimberly J; Hannink, Mark; Kassis, Jareer; Zhong, Zhenping; Gupta, Suparna; Victory, Sam F; Guzel, Mustafa; Polisetti, Dharma Rao; Andrews, Robert; Mjalli, Adnan M M; Kostura, Matthew J

    2014-01-01

    Oxidative stress is generated by reactive oxygen species (ROS) produced in response to metabolic activity and environmental factors. Increased oxidative stress is associated with the pathophysiology of a broad spectrum of inflammatory diseases. Cellular response to excess ROS involves the induction of antioxidant response element (ARE) genes under control of the transcriptional activator Nrf2 and the transcriptional repressor Bach1. The development of synthetic small molecules that activate the protective anti-oxidant response network is of major therapeutic interest. Traditional small molecules targeting ARE-regulated gene activation (e.g., bardoxolone, dimethyl fumarate) function by alkylating numerous proteins including Keap1, the controlling protein of Nrf2. An alternative is to target the repressor Bach1. Bach1 has an endogenous ligand, heme, that inhibits Bach1 binding to ARE, thus allowing Nrf2-mediated gene expression including that of heme-oxygenase-1 (HMOX1), a well described target of Bach1 repression. In this report, normal human lung fibroblasts were used to screen a collection of synthetic small molecules for their ability to induce HMOX1. A class of HMOX1-inducing compounds, represented by HPP-4382, was discovered. These compounds are not reactive electrophiles, are not suppressed by N-acetyl cysteine, and do not perturb either ROS or cellular glutathione. Using RNAi, we further demonstrate that HPP-4382 induces HMOX1 in an Nrf2-dependent manner. Chromatin immunoprecipitation verified that HPP-4382 treatment of NHLF cells reciprocally coordinated a decrease in binding of Bach1 and an increase of Nrf2 binding to the HMOX1 E2 enhancer. Finally we show that HPP-4382 can inhibit Bach1 activity in a reporter assay that measures transcription driven by the human HMOX1 E2 enhancer. Our results suggest that HPP-4382 is a novel activator of the antioxidant response through the modulation of Bach1 binding to the ARE binding site of target genes.

  2. Latrunculin A-Induced Perturbation of the Actin Cytoskeleton Mediates Pap1p-Dependent Induction of the Caf5p Efflux Pump in Schizosaccharomyces pombe.

    Science.gov (United States)

    Asadi, Farzad; Chakraborty, Bidhan; Karagiannis, Jim

    2017-02-09

    As part of an earlier study aimed at uncovering gene products with roles in defending against latrunculin A (LatA)-induced cytoskeletal perturbations, we identified three members of the oxidative stress response pathway: the Pap1p AP-1-like transcription factor, the Imp1p α-importin, and the Caf5p efflux pump. In this report, we characterize the pathway further and show that Pap1p translocates from the cytoplasm to the nucleus in an Imp1p-dependent manner upon LatA treatment. Moreover, preventing this translocation, through the addition of a nuclear export signal (NES), confers the same characteristic LatA-sensitive phenotype exhibited by pap1Δ cells. Lastly, we show that the caf5 gene is induced upon exposure to LatA and that Pap1p is required for this transcriptional upregulation. Importantly, the expression of trr1, a Pap1p target specifically induced in response to oxidative stress, is not significantly altered by LatA treatment. Taken together, these results suggest a model in which LatA-mediated cytoskeletal perturbations are sensed, triggering the Imp1p-dependent translocation of Pap1p to the nucleus and the induction of the caf5 gene (independently of oxidative stress). Copyright © 2017 Asadi et al.

  3. Heme Oxygenase-1/Carbon Monoxide-regulated Mitochondrial Dynamic Equilibrium Contributes to the Attenuation of Endotoxin-induced Acute Lung Injury in Rats and in Lipopolysaccharide-activated Macrophages.

    Science.gov (United States)

    Yu, Jianbo; Shi, Jia; Wang, Dan; Dong, Shuan; Zhang, Yuan; Wang, Man; Gong, Lirong; Fu, Qiang; Liu, Daquan

    2016-12-01

    Sepsis-associated acute lung injury remains the major cause of mortality in critically ill patients and is characterized by marked oxidative stress and mitochondrial dysfunction. Mitochondrial dynamics are indispensable for functional integrity. Additionally, heme oxygenase (HO)-1/carbon monoxide conferred cytoprotection against end-organ damage during endotoxic shock. Herein, we tested the hypothesis that HO-1/carbon monoxide played a critical role in maintaining the dynamic process of mitochondrial fusion/fission to mitigate lung injury in Sprague-Dawley rats or RAW 264.7 macrophages exposed to endotoxin. The production of reactive oxygen species, the respiratory control ratio (RCR), and the expressions of HO-1 and mitochondrial dynamic markers were determined in macrophages. Concurrently, alterations in the pathology of lung tissue, lipid peroxidation, and the expressions of the crucial dynamic proteins were detected in rats. Endotoxin caused a 31% increase in reactive oxygen species and a 41% decrease in RCR levels (n = 5 per group). In parallel, the increased expression of HO-1 was observed in lipopolysaccharide-stimulated macrophages, concomitantly with excessive mitochondrial fission. Furthermore, carbon monoxide-releasing molecule-2 or hemin normalized mitochondrial dynamics, which were abrogated by zinc protoporphyrin IX. Additionally, impaired mitochondrial dynamic balance was shown in Sprague-Dawley rats that received lipopolysaccharide, accompanied by pathologic injury, elevated malondialdehyde contents, decreased manganese superoxide dismutase activities, and lowered RCR levels in rat lung mitochondria. However, the above parameters were augmented by zinc protoporphyrin IX and were in turn reversed by hemin. The HO-1/carbon monoxide system modulated the imbalance of the dynamic mitochondrial fusion/fission process evoked by lipopolysaccharide and efficiently ameliorated endotoxin-induced lung injury in vivo and in vitro.

  4. The use and abuse of heme in apicomplexan parasites.

    Science.gov (United States)

    van Dooren, Giel G; Kennedy, Alexander T; McFadden, Geoffrey I

    2012-08-15

    Heme is an essential prosthetic group for most life on Earth. It functions in numerous cellular redox reactions, including in antioxidant defenses and at several stages of the electron transport chain in prokaryotes and eukaryotic mitochondria. Heme also functions as a sensor and transport molecule for gases such as oxygen. Heme is a complex organic molecule and can only be synthesized through a multienzyme pathway from simpler precursors. Most free-living organisms synthesize their own heme by a broadly conserved metabolic pathway. Parasites are adept at scavenging molecules from their hosts, and heme is no exception. In this review we examine recent advances in understanding heme usage and acquisition in Apicomplexa, a group of parasites that include the causative agents of malaria, toxoplasmosis, and several major parasites of livestock. Heme is critical to the survival of Apicomplexa, although the functions of heme in these organisms remain poorly understood. Some Apicomplexa likely scavenge heme from their host organisms, while others retain the ability to synthesize heme. Surprisingly, some Apicomplexa may be able to both synthesize and scavenge heme. Several Apicomplexa live in intracellular environments that contain high levels of heme. Since heme is toxic at high concentrations, parasites must carefully regulate intracellular heme levels and develop mechanisms to detoxify excess heme. Indeed, drugs interfering with heme detoxification serve as major antimalarials. Understanding heme requirements and regulation in apicomplexan parasites promises to reveal multiple targets for much-needed therapeutic intervention against these parasites.

  5. The Protective Role of Carbon Monoxide (CO Produced by Heme Oxygenases and Derived from the CO-Releasing Molecule CORM-2 in the Pathogenesis of Stress-Induced Gastric Lesions: Evidence for Non-Involvement of Nitric Oxide (NO

    Directory of Open Access Journals (Sweden)

    Katarzyna Magierowska

    2016-03-01

    Full Text Available Carbon monoxide (CO produced by heme oxygenase (HO-1 and HO-2 or released from the CO-donor, tricarbonyldichlororuthenium (II dimer (CORM-2 causes vasodilation, with unknown efficacy against stress-induced gastric lesions. We studied whether pretreatment with CORM-2 (0.1–10 mg/kg oral gavage (i.g., RuCl3 (1 mg/kg i.g., zinc protoporphyrin IX (ZnPP (10 mg/kg intraperitoneally (i.p., hemin (1–10 mg/kg i.g. and CORM-2 (1 mg/kg i.g. combined with NG-nitro-l-arginine (l-NNA, 20 mg/kg i.p., 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 mg/kg i.p., indomethacin (5 mg/kg i.p., SC-560 (5 mg/kg i.g., and celecoxib (10 mg/kg i.g. affects gastric lesions following 3.5 h of water immersion and restraint stress (WRS. Gastric blood flow (GBF, the number of gastric lesions and gastric CO and nitric oxide (NO contents, blood carboxyhemoglobin (COHb level and the gastric expression of HO-1, HO-2, hypoxia inducible factor 1α (HIF-1α, tumor necrosis factor α (TNF-α, cyclooxygenase (COX-2 and inducible NO synthase (iNOS were determined. CORM-2 (1 mg/kg i.g. and hemin (10 mg/kg i.g. significantly decreased WRS lesions while increasing GBF, however, RuCl3 was ineffective. The impact of CORM-2 was reversed by ZnPP, ODQ, indomethacin, SC-560 and celecoxib, but not by l-NNA. CORM-2 decreased NO and increased HO-1 expression and CO and COHb content, downregulated HIF-1α, as well as WRS-elevated COX-2 and iNOS mRNAs. Gastroprotection by CORM-2 and HO depends upon CO’s hyperemic and anti-inflammatory properties, but is independent of NO.

  6. The Protective Role of Carbon Monoxide (CO) Produced by Heme Oxygenases and Derived from the CO-Releasing Molecule CORM-2 in the Pathogenesis of Stress-Induced Gastric Lesions: Evidence for Non-Involvement of Nitric Oxide (NO)

    Science.gov (United States)

    Magierowska, Katarzyna; Magierowski, Marcin; Surmiak, Marcin; Adamski, Juliusz; Mazur-Bialy, Agnieszka Irena; Pajdo, Robert; Sliwowski, Zbigniew; Kwiecien, Slawomir; Brzozowski, Tomasz

    2016-01-01

    Carbon monoxide (CO) produced by heme oxygenase (HO)-1 and HO-2 or released from the CO-donor, tricarbonyldichlororuthenium (II) dimer (CORM-2) causes vasodilation, with unknown efficacy against stress-induced gastric lesions. We studied whether pretreatment with CORM-2 (0.1–10 mg/kg oral gavage (i.g.)), RuCl3 (1 mg/kg i.g.), zinc protoporphyrin IX (ZnPP) (10 mg/kg intraperitoneally (i.p.)), hemin (1–10 mg/kg i.g.) and CORM-2 (1 mg/kg i.g.) combined with NG-nitro-l-arginine (l-NNA, 20 mg/kg i.p.), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 mg/kg i.p.), indomethacin (5 mg/kg i.p.), SC-560 (5 mg/kg i.g.), and celecoxib (10 mg/kg i.g.) affects gastric lesions following 3.5 h of water immersion and restraint stress (WRS). Gastric blood flow (GBF), the number of gastric lesions and gastric CO and nitric oxide (NO) contents, blood carboxyhemoglobin (COHb) level and the gastric expression of HO-1, HO-2, hypoxia inducible factor 1α (HIF-1α), tumor necrosis factor α (TNF-α), cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) were determined. CORM-2 (1 mg/kg i.g.) and hemin (10 mg/kg i.g.) significantly decreased WRS lesions while increasing GBF, however, RuCl3 was ineffective. The impact of CORM-2 was reversed by ZnPP, ODQ, indomethacin, SC-560 and celecoxib, but not by l-NNA. CORM-2 decreased NO and increased HO-1 expression and CO and COHb content, downregulated HIF-1α, as well as WRS-elevated COX-2 and iNOS mRNAs. Gastroprotection by CORM-2 and HO depends upon CO’s hyperemic and anti-inflammatory properties, but is independent of NO. PMID:27023525

  7. A predictive model of the oxygen and heme regulatory network in yeast.

    Directory of Open Access Journals (Sweden)

    Anshul Kundaje

    2008-11-01

    Full Text Available Deciphering gene regulatory mechanisms through the analysis of high-throughput expression data is a challenging computational problem. Previous computational studies have used large expression datasets in order to resolve fine patterns of coexpression, producing clusters or modules of potentially coregulated genes. These methods typically examine promoter sequence information, such as DNA motifs or transcription factor occupancy data, in a separate step after clustering. We needed an alternative and more integrative approach to study the oxygen regulatory network in Saccharomyces cerevisiae using a small dataset of perturbation experiments. Mechanisms of oxygen sensing and regulation underlie many physiological and pathological processes, and only a handful of oxygen regulators have been identified in previous studies. We used a new machine learning algorithm called MEDUSA to uncover detailed information about the oxygen regulatory network using genome-wide expression changes in response to perturbations in the levels of oxygen, heme, Hap1, and Co2+. MEDUSA integrates mRNA expression, promoter sequence, and ChIP-chip occupancy data to learn a model that accurately predicts the differential expression of target genes in held-out data. We used a novel margin-based score to extract significant condition-specific regulators and assemble a global map of the oxygen sensing and regulatory network. This network includes both known oxygen and heme regulators, such as Hap1, Mga2, Hap4, and Upc2, as well as many new candidate regulators. MEDUSA also identified many DNA motifs that are consistent with previous experimentally identified transcription factor binding sites. Because MEDUSA's regulatory program associates regulators to target genes through their promoter sequences, we directly tested the predicted regulators for OLE1, a gene specifically induced under hypoxia, by experimental analysis of the activity of its promoter. In each case, deletion of

  8. Heme Oxygenase-1 Attenuates Hypoxia-Induced sFlt-1 and Oxidative Stress in Placental Villi through Its Metabolic Products CO and Bilirubin

    Directory of Open Access Journals (Sweden)

    Eric M. George

    2012-01-01

    Full Text Available One of the most prevalent complications of pregnancy is preeclampsia, a hypertensive disorder which is a leading cause of maternal and perinatal morbidity and premature birth with no effective pharmacological intervention. While the underlying cause is unclear, it is believed that placental ischemia/hypoxia induces the release of factors into the maternal vasculature and lead to widespread maternal endothelial dysfunction. Recently, HO-1 has been shown to downregulate two of these factors, reactive oxygen species and sFlt-1, and we have reported that HO-1 induction attenuates many of the pathological factors of placental ischemia experimentally. Here, we have examined the direct effect of HO-1 and its bioactive metabolites on hypoxia-induced changes in superoxide and sFlt-1 in placental vascular explants and showed that HO-1 and its metabolites attenuate the production of both factors in this system. These findings suggest that the HO-1 pathway may be a promising therapeutic approach for the treatment of preeclampsia.

  9. Synergistic Effects of Cilostazol and Probucol on ER Stress-Induced Hepatic Steatosis via Heme Oxygenase-1-Dependent Activation of Mitochondrial Biogenesis

    Directory of Open Access Journals (Sweden)

    Yingqing Chen

    2016-01-01

    Full Text Available The selective type-3 phosphodiesterase inhibitor cilostazol and the antihyperlipidemic agent probucol have antioxidative, anti-inflammatory, and antiatherogenic properties. Moreover, cilostazol and probucol can regulate mitochondrial biogenesis. However, the combinatorial effect of cilostazol and probucol on mitochondrial biogenesis remains unknown. Endoplasmic reticulum (ER stress is a well-known causative factor of nonalcoholic fatty liver disease (NAFLD which can impair mitochondrial function in hepatocytes. Here, we investigated the synergistic effects of cilostazol and probucol on mitochondrial biogenesis and ER stress-induced hepatic steatosis. A synergistic effect of cilostazol and probucol on HO-1 and mitochondrial biogenesis gene expression was found in human hepatocellular carcinoma cells (HepG2 and murine primary hepatocytes. Furthermore, in an animal model of ER stress involving tunicamycin, combinatorial treatment with cilostazol and probucol significantly increased the expression of HO-1 and mitochondrial biogenesis-related genes and proteins, whereas it downregulated serum ALT, eIF2 phosphorylation, and CHOP expression, as well as the lipogenesis-related genes SREBP-1c and FAS. Based on these results, we conclude that cilostazol and probucol exhibit a synergistic effect on the activation of mitochondrial biogenesis via upregulation of HO-1, which confers protection against ER stress-induced hepatic steatosis.

  10. Theoretical mechanisms for synthesis of carcinogen-induced embryonic proteins: XX. Embryonic gene perturbations expressed in terms of matrix algebra.

    Science.gov (United States)

    Hancock, R L

    1988-09-01

    Simple matrix expressions can be devised for gene repressor associations that lend themselves to manipulations such as linear transformation matrices. Such transformation matrices act in perturbing representations for given repressed genic states and may be analogous to carcinogens. Although the matrix algebraic expressions are developed by using simple repressor theory, it can equally serve to represent modifications of chromatin domains that may be more consistent with mechanisms of derepression of embryonic genes. In general, it is proposed that the potentially exploitable algebras such as abstract, geometric, matrix, vector and tensor be a subset of mathematical biology termed "Bioalgebraic Field Theory".

  11. Te inclusion-induced electrical field perturbation in CdZnTe single crystals revealed by Kelvin probe force microscopy.

    Science.gov (United States)

    Gu, Yaxu; Jie, Wanqi; Li, Linglong; Xu, Yadong; Yang, Yaodong; Ren, Jie; Zha, Gangqiang; Wang, Tao; Xu, Lingyan; He, Yihui; Xi, Shouzhi

    2016-09-01

    To understand the effects of tellurium (Te) inclusions on the device performance of CdZnTe radiation detectors, the perturbation of the electrical field in and around Te inclusions was studied in CdZnTe single crystals via Kelvin probe force microscopy (KPFM). Te inclusions were proved to act as lower potential centers with respect to surrounding CdZnTe matrix. Based on the KPFM results, the energy band diagram at the Te/CdZnTe interface was established, and the bias-dependent effects of Te inclusion on carrier transportation is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The neuroprotective effect of heme oxygenase (HO) on oxidative stress in HO-1 siRNA-transfected HT22 cells.

    Science.gov (United States)

    Kaizaki, Asuka; Tanaka, Sachiko; Ishige, Kumiko; Numazawa, Satoshi; Yoshida, Takemi

    2006-09-07

    To investigate the role of heme oxygenase (HO) isozymes, we used siRNA technology to suppress HO-1 expression. HO-1 siRNA-transfected HT22 cells were vulnerable to hydrogen peroxide- and 4-hydroxynonenal-induced cytotoxicity. Biliverdin and bilirubin, degradative products of heme catalyzed by HO, protected HT22 cells from the insult of these oxidative stressors. These results suggest that inducible HO-1 plays a protective role against oxidative stress in HT22 cells.

  13. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans.

    Science.gov (United States)

    Weinborn, Valerie; Valenzuela, Carolina; Olivares, Manuel; Arredondo, Miguel; Weill, Ricardo; Pizarro, Fernando

    2017-05-24

    The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used (55)Fe and (59)Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.

  14. The surface protein Shr of Streptococcus pyogenes binds heme and transfers it to the streptococcal heme-binding protein Shp

    Directory of Open Access Journals (Sweden)

    Lei Benfang

    2008-01-01

    Full Text Available Abstract Background The heme acquisition machinery in Streptococcus pyogenes is believed to consist of the surface proteins, Shr and Shp, and heme-specific ATP-binding cassette transporter HtsABC. Shp has been shown to rapidly transfer its heme to the lipoprotein component, HtsA, of HtsABC. The function of Shr and the heme source of Shp have not been established. Results The objective of this study was to determine whether Shr binds heme and is a heme source of Shp. To achieve the objective, recombinant Shr protein was prepared. The purified Shr displays a spectrum typical of hemoproteins, indicating that Shr binds heme and acquires heme from Escherichia coli hemoproteins in vivo. Spectral analysis of Shr and Shp isolated from a mixture of Shr and heme-free Shp (apoShp indicates that Shr and apoShp lost and gained heme, respectively; whereas Shr did not efficiently lose its heme in incubation with apoHtsA under the identical conditions. These results suggest that Shr directly transfers its heme to Shp. In addition, the rates of heme transfer from human hemoglobin to apoShp are close to those of simple ferric heme dissociation from hemoglobin, suggesting that methemoglobin does not directly transfer its heme to apoShp. Conclusion We have demonstrated that recombinant Shr can acquire heme from E. coli hemoproteins in vivo and appears to directly transfer its heme to Shp and that Shp appears not to directly acquire heme from human methemoglobin. These results suggest the possibility that Shr is a source of heme for Shp and that the Shr-to-Shp heme transfer is a step of the heme acquisition process in S. pyogenes. Further characterization of the Shr/Shp/HtsA system would advance our understanding of the mechanism of heme acquisition in S. pyogenes.

  15. Inversion of the perturbation GPS-TEC data induced by tsunamis in order to estimate the sea level anomaly.

    Science.gov (United States)

    Rakoto, Virgile; Lognonné, Philippe; Rolland, Lucie; Coïsson, Pierdavide; Drilleau, Mélanie

    2017-04-01

    Large underwater earthquakes (Mw > 7) can transmit part of their energy to the surrounding ocean through large sea-floor motions, generating tsunamis that propagate over long distances. The forcing effect of tsunami waves on the atmosphere generate internal gravity waves which produce detectable ionospheric perturbations when they reach the upper atmosphere. Theses perturbations are frequently observed in the total electron content (TEC) measured by the multi-frequency Global navigation Satellite systems (GNSS) data (e.g., GPS,GLONASS). In this paper, we performed for the first time an inversion of the sea level anomaly using the GPS TEC data using a least square inversion (LSQ) through a normal modes summation modeling technique. Using the tsunami of the 2012 Haida Gwaii in far field as a test case, we showed that the amplitude peak to peak of the sea level anomaly inverted using this method is below 10 % error. Nevertheless, we cannot invert the second wave arriving 20 minutes later. This second wave is generaly explain by the coastal reflection which the normal modeling does not take into account. Our technique is then applied to two other tsunamis : the 2006 Kuril Islands tsunami in far field, and the 2011 Tohoku tsunami in closer field. This demonstrates that the inversion using a normal mode approach is able to estimate fairly well the amplitude of the first arrivals of the tsunami. In the future, we plan to invert in real the TEC data in order to retrieve the tsunami height.

  16. RF noise induced laser perturbation for improving the performance of non-resonant cavity enhanced absorption spectroscopy.

    Science.gov (United States)

    Ciaffoni, Luca; Couper, John; Hancock, Gus; Peverall, Robert; Robbins, Peter A; Ritchie, Grant A D

    2014-07-14

    We present a novel strategy for suppressing mode structure which often degrades off-axis cavity enhanced absorption spectra. This strategy relies on promoting small, random fluctuations in the optical frequency by perturbing the injection current of the diode laser source with radio frequency (RF) bandwidth-limited white noise. A fast and compact oxygen sensor, constructed from a 764 nm vertical-cavity surface-emitting laser (VCSEL) and an optical cavity with re-entrant configuration, is employed to demonstrate the potential of this scheme for improving the sensitivity and robustness of a field-deployable cavity spectrometer. The RF spectral density of the current noise injected into the VCSEL has been measured, and correlated to the effects on the optical spectral signal-to-noise ratio (SNR) and laser linewidth for a range of re-entrant geometries. A fourfold gain in the SNR has been achieved using the RF noise perturbation for the optimal off-axis alignment, which led to a minimum detectable absorption (MDA) predicted from an Allan variance study as low as 4.3 × 10(-5) at 1 s averaging. For the optically forbidden oxygen transition under investigation, a limit of detection (SNR = 1) of 810 ppm was achieved for a 10 ms acquisition time. This performance level paves the way for a fast, sensitive, in-line oxygen spectrometer that lends itself to a range of applications in respiratory medicine.

  17. Dioxygen reactivity of meso-hydroxylated hemes: intermediates in ...

    Indian Academy of Sciences (India)

    Keywords. Heme oxygenase; heme degradation; coupled oxidation; variable temperature paramagnetic NMR. Abstract. Heme oxygenase (HO) is the only enzyme in mammals known to catalyse the physiological degradation of unwanted heme into biliverdin, Fe ion and CO. The process involves introduction of the hydroxyl ...

  18. Porphyrin and heme metabolism and the porphyrias.

    Science.gov (United States)

    Bonkovsky, Herbert L; Guo, Jun-Tao; Hou, Weihong; Li, Ting; Narang, Tarun; Thapar, Manish

    2013-01-01

    Porphyrins and metalloporphyrins are the key pigments of life on earth as we know it, because they include chlorophyll (a magnesium-containing metalloporphyrin) and heme (iron protoporphyrin). In eukaryotes, porphyrins and heme are synthesized by a multistep pathway that involves eight enzymes. The first and rate-controlling step is the formation of delta-aminolevulinic acid (ALA) from glycine plus succinyl CoA, catalyzed by ALA synthase. Intermediate steps occur in the cytoplasm, with formation of the monopyrrole porphobilinogen and the tetrapyrroles hydroxymethylbilane and a series of porphyrinogens, which are serially decarboxylated. Heme is utilized chiefly for the formation of hemoglobin in erythrocytes, myoglobin in muscle cells, cytochromes P-450 and mitochondrial cytochromes, and other hemoproteins in hepatocytes. The rate-controlling step of heme breakdown is catalyzed by heme oxygenase (HMOX), of which there are two isoforms, called HMOX1 and HMOX2. HMOX breaks down heme to form biliverdin, carbon monoxide, and iron. The porphyrias are a group of disorders, mainly inherited, in which there are defects in normal porphyrin and heme synthesis. The cardinal clinical features are cutaneous (due to the skin-damaging effects of excess deposited porphyrins) or neurovisceral attacks of pain, sometimes with weakness, delirium, seizures, and the like (probably due mainly to neurotoxic effects of ALA). The treatment of choice for the acute hepatic porphyrias is intravenous heme therapy, which repletes a critical regulatory heme pool in hepatocytes and leads to downregulation of hepatic ALA synthase, which is a biochemical hallmark of all forms of acute porphyria in relapse.

  19. Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, Halina [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Wojaczynski, Jacek [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Mariusz [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Kroliczewski, Jaroslaw [Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-148 Wroclaw (Poland); Latos-Grazynski, Lechoslaw [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Teresa, E-mail: Teresa.Olczak@biotech.uni.wroc.pl [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland)

    2009-05-29

    Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and {sup 1}H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136 mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.

  20. Fourier transform infrared characterization of a CuB-nitrosyl complex in cytochrome ba3 from Thermus thermophilus: relevance to NO reductase activity in heme-copper terminal oxidases.

    Science.gov (United States)

    Hayashi, Takahiro; Lin, I-Jin; Chen, Ying; Fee, James A; Moënne-Loccoz, Pierre

    2007-12-05

    The two heme-copper terminal oxidases of Thermus thermophilus have been shown to catalyze the two-electron reduction of nitric oxide (NO) to nitrous oxide (N2O) [Giuffre, A.; Stubauer, G.; Sarti, P.; Brunori, M.; Zumft, W. G.; Buse, G.; Soulimane, T. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14718-14723]. While it is well-established that NO binds to the reduced heme a3 to form a low-spin heme {FeNO}7 species, the role CuB plays in the binding of the second NO remains unclear. Here we present low-temperature FTIR photolysis experiments carried out on the NO complex formed by addition of NO to fully reduced cytochrome ba3. Low-temperature UV-vis, EPR, and RR spectroscopies confirm the binding of NO to the heme a3 and the efficiency of the photolysis at 30 K. The nu(NO) modes from the light-induced FTIR difference spectra are isolated from other perturbed vibrations using 15NO and 15N18O. The nu(N-O)a3 is observed at 1622 cm-1, and upon photolysis, it is replaced by a new nu(N-O) at 1589 cm-1 assigned to a CuB-nitrosyl complex. This N-O stretching frequency is more than 100 cm-1 lower than those reported for Cu-NO models with three N-ligands and for CuB+-NO in bovine aa3. Because the UV-vis and RR data do not support a bridging configuration between CuB and heme a3 for the photolyzed NO, we assign the exceptionally low nu(NO) to an O-bound (eta1-O) or a side-on (eta2-NO) CuB-nitrosyl complex. From this study, we propose that, after binding of a first NO molecule to the heme a3 of fully reduced Tt ba3, the formation of an N-bound {CuNO}11 is prevented, and the addition of a second NO produces an O-bond CuB-hyponitrite species bridging CuB and Fea3. In contrast, bovine cytochrome c oxidase is believed to form an N-bound CuB-NO species; the [{FeNO}7{CuNO}11] complex is suggested here to be an inhibitory complex.

  1. Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury.

    Science.gov (United States)

    Teng, Zhi-Ping; Chen, Jing; Chau, Lee-Young; Galunic, Nicholas; Regan, Raymond F

    2004-11-01

    Heme oxygenase-1 (HO-1) is induced in the CNS after hemorrhage, and may have an effect on injury to surrounding tissue. Hemin, the preferred substrate of HO, is a neurotoxin that is present in intracranial hematomas. In a prior study, we observed that HO inhibitors increased the vulnerability of cultured cortical astrocytes to heme-mediated oxidative injury. To investigate the effect of HO more specifically, we used an adenoviral vector encoding the human HO-1 gene to specifically increase HO-1 expression. Incubation with 100 MOI of the HO-1 adenovirus (Adv-HHO-1) for 24 h increased both HO-1 protein and HO activity; a control adenovirus lacking the HO-1 gene had no effect. Using a DNA probe that was specific for human HO-1, 80.5 +/- 7.2% of astrocytes were observed to be infected by in situ hybridization. The cell death produced by 30-60 microM hemin was significantly reduced by pretreatment with 100 MOI Adv-HHO-1, as assessed by LDH release, propidium iodide exclusion, and MTT reduction assay. The threefold increase in cell protein oxidation produced by hemin was also attenuated in cultures pretreated with Adv-HHO-1. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Specifically increasing astrocytic HO-1 by gene transfer may have a beneficial effect on hemorrhagic CNS injury.

  2. Heme Compounds in Dinosaur Trabecular Bone

    National Research Council Canada - National Science Library

    Mary H. Schweitzer; Mark Marshall; Keith Carron; D. Scott Bohle; Scott C. Busse; Ernst V. Arnold; Darlene Barnard; J. R. Horner; Jean R. Starkey

    1997-01-01

    Six independent lines of evidence point to the existence of heme-containing compounds and/or hemoglobin breakdown products in extracts of trabecular tissues of the large theropod dinosaur Tyrannosaurus rex...

  3. Unsaturated glycerophospholipids mediate heme crystallization: biological implications for hemozoin formation in the kissing bug Rhodnius prolixus.

    Directory of Open Access Journals (Sweden)

    Renata Stiebler

    Full Text Available Hemozoin (Hz is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membranes (PMVM. Here, we investigated the role of commercial glycerophospholipids containing serine, choline and ethanolamine as headgroups and R. prolixus midgut lipids (RML in heme crystallization. All commercial unsaturated forms of phospholipids, as well as RML, mediated fast and efficient β-hematin formation by means of two kinetically distinct mechanisms: an early and fast component, followed by a late and slow one. The fastest reactions observed were induced by unsaturated forms of phosphatidylethanolamine (uPE and phosphatidylcholine (uPC, with half-lives of 0.04 and 0.7 minutes, respectively. β-hematin crystal morphologies were strikingly distinct among groups, with uPE producing homogeneous regular brick-shaped crystals. Interestingly, uPC-mediated reactions resulted in two morphologically distinct crystal populations: one less representative group of regular crystals, resembling those induced by uPE, and the other largely represented by crystals with numerous sharp edges and tapered ends. Heme crystallization reactions induced by RML were efficient, with a heme to β-hematin conversion rate higher than 70%, but clearly slower (t1/2 of 9.9-17.7 minutes than those induced by uPC and uPE. Interestingly, crystals produced by RML were homogeneous in shape and quite similar to those mediated by uPE. Thus, β-hematin formation can be rapidly and efficiently induced by unsaturated glycerophospholipids, particularly uPE and uPC, and may play a role on biological heme crystallization in R. prolixus midgut.

  4. Structural mechanisms of nonplanar hemes in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, J.A.

    1997-05-01

    The objective is to assess the occurrence of nonplanar distortions of hemes and other tetrapyrroles in proteins and to determine the biological function of these distortions. Recently, these distortions were found by us to be conserved among proteins belonging to a functional class. Conservation of the conformation of the heme indicates a possible functional role. Researchers have suggested possible mechanisms by which heme distortions might influence biological properties; however, no heme distortion has yet been shown conclusively to participate in a structural mechanism of hemoprotein function. The specific aims of the proposed work are: (1) to characterize and quantify the distortions of the hemes in all of the more than 300 hemoprotein X-ray crystal structures in terms of displacements along the lowest-frequency normal coordinates, (2) to determine the structural features of the protein component that generate and control these nonplanar distortions by using spectroscopic studies and molecular-mechanics calculations for the native proteins, their mutants and heme-peptide fragments, and model porphyrins, (3) to determine spectroscopic markers for the various types of distortion, and, finally, (4) to discover the functional significance of the nonplanar distortions by correlating function with porphyrin conformation for proteins and model porphyrins.

  5. Heme Oxygenases in Cardiovascular Health and Disease

    Science.gov (United States)

    Ayer, Anita; Zarjou, Abolfazl; Agarwal, Anupam; Stocker, Roland

    2016-01-01

    Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies. PMID:27604527

  6. Traumatic Brain Injury Induces Genome-Wide Transcriptomic, Methylomic, and Network Perturbations in Brain and Blood Predicting Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Qingying Meng

    2017-02-01

    Full Text Available The complexity of the traumatic brain injury (TBI pathology, particularly concussive injury, is a serious obstacle for diagnosis, treatment, and long-term prognosis. Here we utilize modern systems biology in a rodent model of concussive injury to gain a thorough view of the impact of TBI on fundamental aspects of gene regulation, which have the potential to drive or alter the course of the TBI pathology. TBI perturbed epigenomic programming, transcriptional activities (expression level and alternative splicing, and the organization of genes in networks centered around genes such as Anax2, Ogn, and Fmod. Transcriptomic signatures in the hippocampus are involved in neuronal signaling, metabolism, inflammation, and blood function, and they overlap with those in leukocytes from peripheral blood. The homology between genomic signatures from blood and brain elicited by TBI provides proof of concept information for development of biomarkers of TBI based on composite genomic patterns. By intersecting with human genome-wide association studies, many TBI signature genes and network regulators identified in our rodent model were causally associated with brain disorders with relevant link to TBI. The overall results show that concussive brain injury reprograms genes which could lead to predisposition to neurological and psychiatric disorders, and that genomic information from peripheral leukocytes has the potential to predict TBI pathogenesis in the brain.

  7. Determination of the stochastic layer properties induced by magnetic perturbations via heat pulse experiments at ASDEX upgrade

    Directory of Open Access Journals (Sweden)

    D. Brida

    2017-08-01

    Full Text Available A heat pulse experiment was carried out in the tokamak ASDEX Upgrade to estimate the stochastic layer width of a deuterium L-mode discharge with externally applied Magnetic Perturbations. The method relies on the deposition of ECRH pulses in the plasma edge while measuring the divertor target heat flux with high temporal resolution IR thermography and Langmuir probes. The experimental results were compared to simulations of the time dependent heat pulse propagation on a constant plasma background with the EMC3-EIRENE code package, using an ad-hoc screening model. If no screening was taken into account in the simulations a decrease in the characteristic heat pulse propagation time was observed, which shows that the heat transport is enhanced compared to the screened cases. No such enhancement was found in the experiment, indicating strong screening. In further simulations the effect of screening on the target fluxes was investigated for varying densities. For low densities it was found that screening reduces the strike line splitting strongly, while for higher densities no strong strike line splitting was found, independent of the screening degree. For strongly detached L-mode conditions with MPs experiments at AUG indicate that the lobe structures vanish completely.

  8. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis.

    Science.gov (United States)

    Ryu, Moon-Suhn; Zhang, Deliang; Protchenko, Olga; Shakoury-Elizeh, Minoo; Philpott, Caroline C

    2017-05-01

    Developing erythrocytes take up exceptionally large amounts of iron, which must be transferred to mitochondria for incorporation into heme. This massive iron flux must be precisely controlled to permit the coordinated synthesis of heme and hemoglobin while avoiding the toxic effects of chemically reactive iron. In cultured animal cells, iron chaperones poly rC-binding protein 1 (PCBP1) and PCBP2 deliver iron to ferritin, the sole cytosolic iron storage protein, and nuclear receptor coactivator 4 (NCOA4) mediates the autophagic turnover of ferritin. The roles of PCBP, ferritin, and NCOA4 in erythroid development remain unclear. Here, we show that PCBP1, NCOA4, and ferritin are critical for murine red cell development. Using a cultured cell model of erythroid differentiation, depletion of PCBP1 or NCOA4 impaired iron trafficking through ferritin, which resulted in reduced heme synthesis, reduced hemoglobin formation, and perturbation of erythroid regulatory systems. Mice lacking Pcbp1 exhibited microcytic anemia and activation of compensatory erythropoiesis via the regulators erythropoietin and erythroferrone. Ex vivo differentiation of erythroid precursors from Pcbp1-deficient mice confirmed defects in ferritin iron flux and heme synthesis. These studies demonstrate the importance of ferritin for the vectorial transfer of imported iron to mitochondria in developing red cells and of PCBP1 and NCOA4 in mediating iron flux through ferritin.

  9. A novel pulse-chase SILAC strategy measures changes in protein decay and synthesis rates induced by perturbation of proteostasis with an Hsp90 inhibitor.

    Directory of Open Access Journals (Sweden)

    Ivo Fierro-Monti

    Full Text Available Standard proteomics methods allow the relative quantitation of levels of thousands of proteins in two or more samples. While such methods are invaluable for defining the variations in protein concentrations which follow the perturbation of a biological system, they do not offer information on the mechanisms underlying such changes. Expanding on previous work [1], we developed a pulse-chase (pc variant of SILAC (stable isotope labeling by amino acids in cell culture. pcSILAC can quantitate in one experiment and for two conditions the relative levels of proteins newly synthesized in a given time as well as the relative levels of remaining preexisting proteins. We validated the method studying the drug-mediated inhibition of the Hsp90 molecular chaperone, which is known to lead to increased synthesis of stress response proteins as well as the increased decay of Hsp90 "clients". We showed that pcSILAC can give information on changes in global cellular proteostasis induced by treatment with the inhibitor, which are normally not captured by standard relative quantitation techniques. Furthermore, we have developed a mathematical model and computational framework that uses pcSILAC data to determine degradation constants kd and synthesis rates Vs for proteins in both control and drug-treated cells. The results show that Hsp90 inhibition induced a generalized slowdown of protein synthesis and an increase in protein decay. Treatment with the inhibitor also resulted in widespread protein-specific changes in relative synthesis rates, together with variations in protein decay rates. The latter were more restricted to individual proteins or protein families than the variations in synthesis. Our results establish pcSILAC as a viable workflow for the mechanistic dissection of changes in the proteome which follow perturbations. Data are available via ProteomeXchange with identifier PXD000538.

  10. Heme oxygenase-1-generated biliverdin ameliorates experimental murine colitis.

    Science.gov (United States)

    Berberat, Pascal O; A-Rahim, Yousif I; Yamashita, Kenichiro; Warny, Michel M; Csizmadia, Eva; Robson, Simon C; Bach, Fritz H

    2005-04-01

    Heme oxygenase-1 (HO-1) seems to have an important protective role in acute and chronic inflammation. The products of heme catalysis, biliverdin/bilirubin, carbon monoxide (CO), and iron (that induces apoferritin) mediate the beneficial effects of HO-1. Blockade of HO-1 activity results in exacerbation of experimental colitis. We tested whether HO-1 has protective effects in the development of colitis and determined that specific enzymatic products of HO-1 are responsible for these effects. Colitis was induced by oral administration of dextran sodium sulfate (5%) to C57BL/6 mice for 7 days. HO-1 was up-regulated by cobalt-protoporphyrin (5 mg/kg, intraperitoneally). Biliverdin, exogenous CO, or the iron chelator desferrioxamine was administered to other groups. Cobalt-protoporphyrin treatment resulted in significant up-regulation of HO-1 protein in mucosal and submucosal cells. Induction of HO-1 was associated with significantly less loss of body weight in mice with induced colitis (-12% versus -22% in the control animals, P biliverdin administration (50 micromol/kg, 3 times per day, intraperitoneally). We conclude that heightened HO-1 expression or administration of biliverdin ameliorates dextran sodium sulfate-induced experimental colitis. Novel therapeutic strategies based on HO-1 and/or biliverdin administration may have use in inflammatory bowel disease.

  11. Resonance Raman studies of the heme active site of the homodimeric myoglobin from Nassa mutabilis: a peculiar case.

    Science.gov (United States)

    Smulevich, G; Mantini, A R; Paoli, M; Coletta, M; Geraci, G

    1995-06-06

    A spectroscopic investigation by resonance Raman has been carried out at pH 7.0 in 0.1 M phosphate buffer on the cooperative homodimeric myoglobin from Nassa mutabilis. The study has been performed on the unligated ferrous form, as well as on the ligated species MbO2 and MbC, and on the ferric form met-Mb. Two v(C = C) vinyl stretching modes have been observed in all the investigated forms, reflecting different degrees of vinyl conjugation with the porphyrin ring, as a consequence of a strongly asymmetric environment for the two side groups of the heme. Furthermore, the ferric form displays a hexacoordinate low-spin heme, which suggests the presence of an endogenous ligand bound to the Fe atom. The frequency of the v(Fe-Im) stretching mode of Mb from Nassa mutabilis shifts down by 4 cm-1 as compared with that of horse heart myoglobin, reflecting a protein-induced proximal strain as a result of heme-heme interaction due to the close proximity of the two hemes in the dimer. The lower frequency of the v(Fe-Im) stretching mode agrees well with the lower affinity for oxygen binding found for Nassa mutabilis Mb and with the slight heme core expansion with respect to horse heart Mb, suggesting a critical role for the Fe-His bond on the heme's function and structure.

  12. Ameliorative effects of Artemisia pallens in a murine model of ovalbumin-induced allergic asthma via modulation of biochemical perturbations.

    Science.gov (United States)

    Mukherjee, Anwesha A; Kandhare, Amit D; Rojatkar, Supada R; Bodhankar, Subhash L

    2017-10-01

    Asthma is a chronic, heterogeneous airway disorder characterized by airway inflammatory and remodeling. Artemisia pallens has been reported to possess antioxidant, anti-inflammatory and Anti-allergic potential. To evaluate the anti-asthmatic effects of methanolic extract of Artemisia pallens (APME) against ovalbumin (OVA)-induced airway hyperresponsiveness (AHR) in rats. AHR was induced in male Sprague-Dawley rats (180-200g) by intraperitoneal (i.p.) injection of OVA and boosted with an identical OVA solution (s.c.) on day 7. Rats were either treated orally with vehicle (10mg/kg), montelukast (10mg/kg) or APME (100, 200 and 400mg/kg) for next 28days. At the end treatments, various biochemical, molecular (RT-PCR and ELISA analysis) and histological parameters were evaluated. APME (200 and 400mg/kg) significantly attenuated (p400mg/kg) treatment. Histopathological analysis of lung tissue showed that APME treatment reduced OVA-induced inflammatory influx and fibrosis. Artemisia pallens simultaneously orchestrate plethora of mechanisms viz. modulations of IgE, TGF-β, TNF-α, IL's and Nrf-2 levels to exhibit its anti-asthmatic potential in OVA-induced AHR in rats. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells.

    Directory of Open Access Journals (Sweden)

    Flavio Alves Lara

    Full Text Available In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA, a well-known inhibitor of ATP binding cassette (ABC transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may

  14. Heme oxygenase, inflammation, and fibrosis: the good, the bad, and the ugly?

    Directory of Open Access Journals (Sweden)

    Ditte M. S. Lundvig

    2012-05-01

    Full Text Available Upon injury, prolonged inflammation and oxidative stress may cause pathological wound healing and fibrosis, leading to formation of excessive scar tissue. Fibrogenesis can occur in most organs and tissues and may ultimately lead to organ dysfunction and failure. The underlying mechanisms of pathological wound healing still remains unclear, but are considered to have a multifactoral pathogenesis, and so far, no efficient anti-fibrotic therapies exists.Extra- and intracellular levels of free heme may be increased in a variety of pathological conditions due to heme-release from hemoproteins. Free heme possesses pro-inflammatory and oxidative effects, and may act as a danger signal, which counteracted by protein scavenging via various heme-binding proteins and by heme degradation. Heme is degraded by heme oxygenase (HO that exists as two isoforms: inducible HO-1 and constitutively expressed HO-2. This generates the effector molecules biliverdin, carbon monoxide, and free iron. HO deficiency in mouse and man leads to exaggerated inflammation upon insults, and still accumulating epidemiological and preclinical studies support the widely recognized notion of the cytoprotective, anti-oxidative, and anti-inflammatory effects of the activity of the HO system and the generated effector molecules. In this review, we address the potential applications of targeted HO-1 induction or administration of its effector molecules as therapeutic targets in fibrotic and inflammatory conditions to counteract inflammatory and oxidative insults. This is shown in various clinically relevant conditions, such as hypertrophic scarring, chronic inflammatory liver disease, chronic pancreatitis, and chronic graft rejection in transplantation.

  15. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells

    Science.gov (United States)

    Lara, Flavio Alves; Pohl, Paula C.; Gandara, Ana Caroline; Ferreira, Jessica da Silva; Nascimento-Silva, Maria Clara; Bechara, Gervásio Henrique; Sorgine, Marcos H. F.; Almeida, Igor C.; Vaz, Itabajara da Silva; Oliveira, Pedro L.

    2015-01-01

    In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus) microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA), a well-known inhibitor of ATP binding cassette (ABC) transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may represent a new

  16. Expression of galanin and its receptors are perturbed in a rodent model of mild, blast-induced traumatic brain injury.

    Science.gov (United States)

    Kawa, Lizan; Barde, Swapnali; Arborelius, Ulf P; Theodorsson, Elvar; Agoston, Denes; Risling, Mårten; Hökfelt, Tomas

    2016-05-01

    The symptomatology, mood and cognitive disturbances seen in post-traumatic stress disorder (PTSD) and mild blast-induced traumatic brain injury (mbTBI) overlap considerably. However the pathological mechanisms underlying the two conditions are currently unknown. The neuropeptide galanin has been suggested to play a role in the development of stress and mood disorders. Here we applied bio- and histochemical methods with the aim to elucidate the nature of any changes in the expression of galanin and its receptors in a rodent model of mbTBI. In situ hybridization and quantitative polymerase chain reaction studies revealed significant, injury-induced changes, in some cases lasting at least for one week, in the mRNA levels of galanin and/or its three receptors, galanin receptor 1-3 (GalR1-3). Such changes were seen in several forebrain regions, and the locus coeruleus. In the ventral periaqueductal gray GalR1 mRNA levels were increased, while GalR2 were decreased. Analysis of galanin peptide levels using radioimmunoassay demonstrated an increase in several brain regions including the locus coeruleus, dorsal hippocampal formation and amygdala. These findings suggest a role for the galanin system in the endogenous response to mbTBI, and that pharmacological studies of the effects of activation or inhibition of different galanin receptors in combination with functional assays of behavioral recovery may reveal promising targets for new therapeutic strategies in mbTBI. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Gene expression profiling analysis of bisphenol A-induced perturbation in biological processes in ER-negative HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Rong Yin

    Full Text Available Bisphenol A (BPA is an environmental endocrine disruptor which has been detected in human bodies. Many studies have implied that BPA exposure is harmful to human health. Previous studies mainly focused on BPA effects on estrogen receptor (ER-positive cells. Genome-wide impacts of BPA on gene expression in ER-negative cells is unclear. In this study, we performed RNA-seq to characterize BPA-induced cellular and molecular impacts on ER-negative HEK293 cells. The microscopic observation showed that low-dose BPA exposure did not affect cell viability and morphology. Gene expression profiling analysis identified a list of differentially expressed genes in response to BPA exposure in HEK293 cells. These genes were involved in variable important biological processes including ion transport, cysteine metabolic process, apoptosis, DNA damage repair, etc. Notably, BPA up-regulated the expression of ERCC5 encoding a DNA endonuclease for nucleotide-excision repair. Further electrochemical experiment showed that BPA induced significant DNA damage in ER-positive MCF-7 cells but not in ER-negative HEK293 cells. Collectively, our study revealed that ER-negative HEK293 cells employed mechanisms in response to BPA exposure different from ER-positive cells.

  18. The Haptoglobin-CD163-Heme Oxygenase-1 Pathway for Hemoglobin Scavenging

    DEFF Research Database (Denmark)

    Thomsen, Jens Haugbølle; Etzerodt, Anders; Svendsen, Pia

    2013-01-01

    in macrophages followed by lysosomal Hp-Hb breakdown and HO-1-catalyzed conversion of heme into the metabolites carbon monoxide (CO), biliverdin, and iron. The plasma concentration of Hp is a limiting factor as evident during accelerated hemolysis, where the Hp depletion may cause serious Hb-induced toxicity...

  19. Heme oxygenase-1 genotype of the donor is associated with graft survival after liver transplantation

    NARCIS (Netherlands)

    Buis, C. I.; van der Steege, G.; Visser, D. S.; Nolte, I. M.; Hepkema, B. G.; Nijsten, M.; Slooff, M. J. H.; Porte, R. J.

    Heme oxygenase-1 (HO-1) has been suggested as a cytoprotective gene during liver transplantation. Inducibility of HO-1 is modulated by a (GT)(n) polymorphism and a single nucleotide polymorphism (SNP) A(-413)T in the promoter. Both a short (GT)(n) allele and the A-allele have been associated with

  20. Perturbation of estradiol-feedback control of luteinizing hormone secretion by immunoneutralization induces development of follicular cysts in cattle.

    Science.gov (United States)

    Kaneko, H; Todoroki, J; Noguchi, J; Kikuchi, K; Mizoshita, K; Kubota, C; Yamakuchi, H

    2002-12-01

    We used immunoneutralization of endogenous estradiol to investigate deficiencies in the estradiol-feedback regulation of LH secretion as a primary cause of follicular cysts in cattle. Twenty-one cows in the prostaglandin (PG) F(2alpha)-induced follicular phase were assigned to receive either 100 ml of estradiol antiserum produced in a castrated male goat (n = 11, immunized group) or the same amount of castrated male goat serum (n = 10, control group). The time of injection of the sera was designated as 0 h and Day 0. Five cows in each group were assigned to subgroups in which we determined the effects of estradiol immunization on LH secretion and follicular growth during the periovulatory period. The remaining six estradiol-immunized cows were subjected to long-term analyses of follicular growth and hormonal profiles, including evaluation of pulsatile secretion of LH. The remaining five control cows were used to determine pulsatile secretion of LH on Day 0 (follicular phase) and Day 14 (midluteal phase). The control cows exhibited a preovulatory LH surge within 48 h after injection of the control serum, followed by ovulation of the dominant follicle that had developed during the PGF(2alpha)-induced follicular phase. In contrast, the LH surge was not detected after treatment with estradiol antiserum. None of the 11 estradiol-immunized cows had ovulation of the dominant follicle, which had emerged before estradiol immunization and enlarged to more than 20 mm in diameter by Day 10. Long-term observation of the six immunized cows revealed that five had multiple follicular waves, with maximum follicular sizes of 20-45 mm at 10- to 30-day intervals for more than 50 days. The sixth cow experienced twin ovulations of the initial persistent follicles on Day 18. The LH pulse frequency in the five immunized cows that showed the long-term turnover of cystic follicles ranged from 0.81 +/- 0.13 to 0.97 +/- 0.09 pulses/h during the experiment, significantly (P follicular phase of

  1. Effect of methionine80 heme coordination on domain swapping of cytochrome c.

    Science.gov (United States)

    Hirota, Shun; Yamashiro, Nobuhiro; Wang, Zhonghua; Nagao, Satoshi

    2017-07-01

    Cytochrome c (cyt c) forms oligomers by domain swapping. It exchanges the C-terminal α-helical region between protomers, and the Met80‒heme iron bond is perturbed significantly in domain-swapped oligomers. The peroxidase activity of cyt c increases by Met80 dissociation from the heme iron, which may trigger apoptosis. This study elucidates the effect of the Met80 heme coordination on cyt c domain swapping by obtaining oligomers for both wild-type (WT) and M80A human cyt c by an addition of ethanol to their monomers, followed by lyophilization and dissolution to buffer, and investigating their dimer properties. The absorption and circular dichroism spectra of WT and M80A cyt c exhibited similar changes upon dimerization, indicating that Met80 does not affect the oligomerization process significantly. According to differential scanning calorimetric measurements, Met80 coordination to the heme iron had an effect on the stabilization of the monomer (ΔH = 16 kcal/mol), whereas no large difference was observed between the dimer-to-monomer dissociation temperatures of WT and M80A cyt c (61.0 °C). The activation enthalpy values were similar and relatively large for the dissociation of both WT and M80A cyt c dimers (WT, 120 ± 10 kcal/mol; M80A, 110 ± 10 kcal/mol), indicating that the dimers suffered large structural changes upon dissociation to monomers independent of the Met80 coordination to the heme iron. These results indicate that cyt c domain swapping may occur regardless of the Met80 coordination, whereas the monomer is stabilized by Met80 but the domain-swapped dimer structure and stability are less affected by the Met80 coordination.

  2. Molecular hijacking of siroheme for the synthesis of heme and d1 heme

    Science.gov (United States)

    Bali, Shilpa; Lawrence, Andrew D.; Lobo, Susana A.; Saraiva, Lígia M.; Golding, Bernard T.; Palmer, David J.; Howard, Mark J.; Ferguson, Stuart J.; Warren, Martin J.

    2011-01-01

    Modified tetrapyrroles such as chlorophyll, heme, siroheme, vitamin B12, coenzyme F430, and heme d1 underpin a wide range of essential biological functions in all domains of life, and it is therefore surprising that the syntheses of many of these life pigments remain poorly understood. It is known that the construction of the central molecular framework of modified tetrapyrroles is mediated via a common, core pathway. Herein a further branch of the modified tetrapyrrole biosynthesis pathway is described in denitrifying and sulfate-reducing bacteria as well as the Archaea. This process entails the hijacking of siroheme, the prosthetic group of sulfite and nitrite reductase, and its processing into heme and d1 heme. The initial step in these transformations involves the decarboxylation of siroheme to give didecarboxysiroheme. For d1 heme synthesis this intermediate has to undergo the replacement of two propionate side chains with oxygen functionalities and the introduction of a double bond into a further peripheral side chain. For heme synthesis didecarboxysiroheme is converted into Fe-coproporphyrin by oxidative loss of two acetic acid side chains. Fe-coproporphyrin is then transformed into heme by the oxidative decarboxylation of two propionate side chains. The mechanisms of these reactions are discussed and the evolutionary significance of another role for siroheme is examined. PMID:21969545

  3. Supramolecular assembling systems formed by heme-heme pocket interactions in hemoproteins.

    Science.gov (United States)

    Oohora, Koji; Onoda, Akira; Hayashi, Takashi

    2012-12-14

    A native protein in a biological system spontaneously produces large and elegant assemblies via self-assembly or assembly with various biomolecules which provide non-covalent interactions. In this context, the protein plays a key role in construction of a unique supramolecular structure operating as a functional system. Our group has recently highlighted the structure and function of hemoproteins reconstituted with artificially created heme analogs. The heme molecule is a replaceable cofactor of several hemoproteins. Here, we focus on the successive supramolecular protein assemblies driven by heme-heme pocket interactions to afford various examples of protein fibers, networks and three-dimensional clusters in which an artificial heme moiety is introduced onto the surface of a hemoprotein via covalent linkage and the native heme cofactor is removed from the heme pocket. This strategy is found to be useful for constructing hybrid materials with an electrode or with nanoparticles. The new systems described herein are expected to lead to the generation of various biomaterials with functions and characteristic physicochemical properties similar to those of hemoproteins.

  4. Serum metabonomics coupled with Ingenuity Pathway Analysis characterizes metabolic perturbations in response to hypothyroidism induced by propylthiouracil in rats.

    Science.gov (United States)

    Wu, Si; Gao, Yue; Dong, Xin; Tan, Guangguo; Li, Wuhong; Lou, Ziyang; Chai, Yifeng

    2013-01-01

    A serum metabonomic profiling method based on ultra-performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOF-MS) was applied to investigate the metabolic changes in hypothyroid rats induced by propylthiouracil (PTU). With Significance Analysis of Microarray (SAM) for classification and selection of biomarkers, 13 potential biomarkers in rat serum were screened out. Furthermore, Ingenuity Pathway Analysis (IPA) was introduced to deeply analyze unique pathways of hypothyroidism that were primarily involved in sphingolipid metabolism, fatty acid transportation, phospholipid metabolism and phenylalanine metabolism. Our results demonstrated that the metabonomic approach integrating with IPA was a promising tool for providing a novel methodological clue to systemically dissect the underlying molecular mechanism of hypothyroidism. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Dicarbonyl Induced Structural Perturbations Make Histone H1 Highly Immunogenic and Generate an Auto-Immune Response in Cancer.

    Directory of Open Access Journals (Sweden)

    Abdul Rouf Mir

    Full Text Available Increased oxidative stress under hyperglycemic conditions, through the interaction of AGEs with RAGE receptors and via activation of interleukin mediated transcription signalling, has been reported in cancer. Proteins modifications are being explored for their roles in the development and progression of cancer and autoantibody response against them is gaining interest as a probe for early detection of the disease. This study has analysed the changes in histone H1 upon modification by methylglyoxal (MG and its implications in auto-immunopathogenesis of cancer. Modified histone showed modifications in the aromatic residues, changed tyrosine microenvironment, intermolecular cross linking and generation of AGEs. It showed masking of hydrophobic patches and a hypsochromic shift in the in ANS specific fluorescence. MG aggressively oxidized histone H1 leading to the accumulation of reactive carbonyls. Far UV CD measurements showed di-carbonyl induced enhancement of the alpha structure and the induction of beta sheet conformation; and thermal denaturation (Tm studies confirmed the thermal stability of the modified histone. FTIR analysis showed amide I band shift, generation of a carboxyethyl group and N-Cα vibrations in the modified histone. LCMS analysis confirmed the formation of Nε-(carboxyethyllysine and electron microscopic studies revealed the amorphous aggregate formation. The modified histone showed altered cooperative binding with DNA. Modified H1 induced high titre antibodies in rabbits and the IgG isolated form sera of rabbits immunized with modified H1 exhibited specific binding with its immunogen in Western Blot analysis. IgG isolated from the sera of patients with lung cancer, prostate cancer, breast cancer and cancer of head and neck region showed better recognition for neo-epitopes on the modified histone, reflecting the presence of circulating autoantibodies in cancer. Since reports suggest a link between AGE-RAGE axis and

  6. Kidney injury and heme oxygenase-1

    Directory of Open Access Journals (Sweden)

    Hai-xing MAI

    2012-02-01

    Full Text Available     Heme oxygenase-1 (HO-1 is one of the main pathways to degrade heme in mammals, and the main degradation products are free iron (Fe2+, carbon monoxide (CO, and bilirubin. Heme plays an important role in promoting cell survival, circulation of intracellular substrates, and immune regulation. Previous studies suggest that HO-1 pathway is an important internal factor in determining the susceptibility and severity of acute kidney injury (AKI. The induction of HO-1 expression can attenuate the severity of renal ischemia-reperfusion injury (IRI, and the inhibition of HO-1 expression will aggravate IRI. The present article summarizes the latest advances in research abroad and at home on protective mechanism by which HO-1 prevents AKI to further deepen our understanding of the role of HO-1 in the treatment of AKI.   

  7. Heme oxygenase-1 deletion affects stress erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Yu-An Cao

    Full Text Available Homeostatic erythropoiesis leads to the formation of mature red blood cells under non-stress conditions, and the production of new erythrocytes occurs as the need arises. In response to environmental stimuli, such as bone marrow transplantation, myelosuppression, or anemia, erythroid progenitors proliferate rapidly in a process referred to as stress erythropoiesis. We have previously demonstrated that heme oxygenase-1 (HO-1 deficiency leads to disrupted stress hematopoiesis. Here, we describe the specific effects of HO-1 deficiency on stress erythropoiesis.We used a transplant model to induce stress conditions. In irradiated recipients that received hmox(+/- or hmox(+/+ bone marrow cells, we evaluated (i the erythrocyte parameters in the peripheral blood; (ii the staining intensity of CD71-, Ter119-, and CD49d-specific surface markers during erythroblast differentiation; (iii the patterns of histological iron staining; and (iv the number of Mac-1(+-cells expressing TNF-α. In the spleens of mice that received hmox(+/- cells, we show (i decreases in the proerythroblast, basophilic, and polychromatophilic erythroblast populations; (ii increases in the insoluble iron levels and decreases in the soluble iron levels; (iii increased numbers of Mac-1(+-cells expressing TNF-α; and (iv decreased levels of CD49d expression in the basophilic and polychromatophilic erythroblast populations.As reflected by effects on secreted and cell surface proteins, HO-1 deletion likely affects stress erythropoiesis through the retention of erythroblasts in the erythroblastic islands of the spleen. Thus, HO-1 may serve as a therapeutic target for controlling erythropoiesis, and the dysregulation of HO-1 may be a predisposing condition for hematologic diseases.

  8. Ischemic preconditioning protects against liver ischemia/reperfusion injury via heme oxygenase-1-mediated autophagy.

    Science.gov (United States)

    Liu, Anding; Fang, Haoshu; Wei, Weiwei; Dirsch, Olaf; Dahmen, Uta

    2014-12-01

    Ischemic preconditioning exerts a protective effect in hepatic ischemia/reperfusion injury. The exact mechanism of ischemic preconditioning action remains largely unknown. Recent studies suggest that autophagy plays an important role in protecting against ischemia/reperfusion injury. However, the role of autophagy in ischemic preconditioning-afforded protection and its regulatory mechanisms in liver ischemia/reperfusion injury remain poorly understood. This study was designed to determine whether ischemic preconditioning could protect against liver ischemia/reperfusion injury via heme oxygenase-1-mediated autophagy. Laboratory investigation. University animal research laboratory. Male inbred Lewis rats and C57BL/6 mice. Ischemic preconditioning was produced by 10 minutes of ischemia followed by 10 minutes of reperfusion prior to 60 minutes of ischemia. In a rat model of hepatic ischemia/reperfusion injury, rats were pretreated with wortmannin or rapamycin to evaluate the contribution of autophagy to the protective effects of ischemic preconditioning. Heme oxygenase-1 was inhibited with tin protoporphyrin IX. In a mouse model of hepatic ischemia/reperfusion injury, autophagy or heme oxygenase-1 was inhibited with vacuolar protein sorting 34 small interfering RNA or heme oxygenase-1 small interfering RNA, respectively. Ischemic preconditioning ameliorated liver ischemia/reperfusion injury, as indicated by lower serum aminotransferase levels, lower hepatic inflammatory cytokines, and less severe ischemia/reperfusion-associated histopathologic changes. Ischemic preconditioning treatment induced autophagy activation, as indicated by an increase of LC3-II, degradation of p62, and accumulation of autophagic vacuoles in response to ischemia/reperfusion injury. When ischemic preconditioning-induced autophagy was inhibited with wortmannin in rats or vacuolar protein sorting 34-specific small interfering RNA in mice, liver ischemia/reperfusion injury was worsened, whereas

  9. Heme oxygenase-1 comes back to endoplasmic reticulum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo [School of Biological Sciences, Ulsan University (Korea, Republic of); Pae, Hyun-Ock [Department of Immunology, Wonkwang University School of Medicine (Korea, Republic of); Back, Sung Hun; Chung, Su Wol [School of Biological Sciences, Ulsan University (Korea, Republic of); Woo, Je Moon [Department of Opthalmology, Ulasn University Hospital (Korea, Republic of); Son, Yong [Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine (Korea, Republic of); Chung, Hun-Taeg, E-mail: chung@ulsan.ac.kr [School of Biological Sciences, Ulsan University (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  10. Study of monocyte membrane proteome perturbation during lipopolysaccharide-induced tolerance using iTRAQ-based quantitative proteomic approach

    KAUST Repository

    Zhang, Huoming

    2010-07-02

    Human monocytes\\' exposure to low-level lipopolysaccharide (LPS) induces temporary monocytic insensitivity to subsequent LPS challenge. The underlying mechanism of this phenomenon could have important clinical utilities in preventing and/or treating severe infections. In this study, we used an iTRAQ-based quantitative proteomic approach to comprehensively characterize the membrane proteomes of monocytes before and after LPS exposure. We identified a total of 1651 proteins, of which 53.6% were membrane proteins. Ninety-four percent of the proteins were quantified and 255 proteins were shown to be tightly regulated by LPS. Subcellular location analysis revealed organelle-specific response to LPS exposure: more than 90% of identified mitochondrial membrane proteins were significant downregulated, whereas the majority of proteins from other organelles such as ER, Golgi and ribosome were upregulated. Moreover, we found that the expression of most receptors potentially involved in LPS signal pathway (CD14, toll-like receptor 4, CD11/CD18 complex) were substantially decreased, while the expression of molecules involved in LPS neutralization were enhanced after LPS challenge. Together, these findings could be of significance in understanding the mechanism of LPS tolerance and provide values for designing new approaches for regulating monocytic responses in sepsis patients.

  11. Molecular Simulations of Porphyrins and Heme Proteins

    Energy Technology Data Exchange (ETDEWEB)

    SHELNUTT,JOHN A.

    2000-01-18

    An overview of the use of classical mechanical molecular simulations of porphyrins, hydroporphyrins, and heme proteins is given. The topics cover molecular mechanics calculations of structures and conformer energies of porphyrins, energies of barriers for interconversion between stable conformers, molecular dynamics of porphyrins and heme proteins, and normal-coordinate structural analysis of experimental and calculated porphyrin structures. Molecular mechanics and dynamics are currently a fertile area of research on porphyrins. In the future, other computational methods such as Monte Carlo simulations, which have yet to be applied to porphyrins, will come into use and open new avenues of research into molecular simulations of porphyrins.

  12. Identification of the receptor scavenging hemopexin-heme complexes

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Maniecki, Maciej B; Jacobsen, Christian

    2005-01-01

    Heme released from heme-binding proteins on internal hemorrhage, hemolysis, myolysis, or other cell damage is highly toxic due to oxidative and proinflammatory effects. Complex formation with hemopexin, the high-affinity heme-binding protein in plasma and cerebrospinal fluid, dampens these effects...

  13. Red meat and colon cancer : how dietary heme initiates hyperproliferation

    NARCIS (Netherlands)

    IJssennagger, N.

    2012-01-01

    Colorectal cancer is a leading cause of cancer deaths in Western countries. The risk to develop colorectal cancer is associated with the intake of red meat. Red meat contains the porphyrin pigment heme. Heme is an irritant for the colonic wall and it is previously shown that the addition of heme to

  14. Entanglement entropy: a perturbative calculation

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhaus, Vladimir; Smolkin, Michael [Center for Theoretical Physics and Department of Physics,University of California, Berkeley, CA 94720 (United States)

    2014-12-31

    We provide a framework for a perturbative evaluation of the reduced density matrix. The method is based on a path integral in the analytically continued spacetime. It suggests an alternative to the holographic and ‘standard’ replica trick calculations of entanglement entropy. We implement this method within solvable field theory examples to evaluate leading order corrections induced by small perturbations in the geometry of the background and entangling surface. Our findings are in accord with Solodukhin’s formula for the universal term of entanglement entropy for four dimensional CFTs.

  15. Relationships between neck muscle electromyography and three-dimensional head kinematics during centrally induced torsional head perturbations.

    Science.gov (United States)

    Farshadmanesh, Farshad; Byrne, Patrick; Wang, Hongying; Corneil, Brian D; Crawford, J Douglas

    2012-12-01

    The relationship between neck muscle electromyography (EMG) and torsional head rotation (about the nasooccipital axis) is difficult to assess during normal gaze behaviors with the head upright. Here, we induced acute head tilts similar to cervical dystonia (torticollis) in two monkeys by electrically stimulating 20 interstitial nucleus of Cajal (INC) sites or inactivating 19 INC sites by injection of muscimol. Animals engaged in a simple gaze fixation task while we recorded three-dimensional head kinematics and intramuscular EMG from six bilateral neck muscle pairs. We used a cross-validation-based stepwise regression to quantitatively examine the relationships between neck EMG and torsional head kinematics under three conditions: 1) unilateral INC stimulation (where the head rotated torsionally toward the side of stimulation); 2) corrective poststimulation movements (where the head returned toward upright); and 3) unilateral INC inactivation (where the head tilted toward the opposite side of inactivation). Our cross-validated results of corrective movements were slightly better than those obtained during unperturbed gaze movements and showed many more torsional terms, mostly related to velocity, although some orientation and acceleration terms were retained. In addition, several simplifying principles were identified. First, bilateral muscle pairs showed similar, but opposite EMG-torsional coupling terms, i.e., a change in torsional kinematics was associated with increased muscle activity on one side and decreased activity on the other side. s, whenever torsional terms were retained in a given muscle, they were independent of the inputs we tested, i.e., INC stimulation vs. corrective motion vs. INC inactivation, and left vs. right INC data. These findings suggest that, despite the complexity of the head-neck system, the brain can use a single, bilaterally coupled inverse model for torsional head control that is valid across different behaviors and movement

  16. Tokamak Transport Studies Using Perturbation Analysis

    NARCIS (Netherlands)

    Cardozo, N. J. L.; Dehaas, J. C. M.; Hogeweij, G. M. D.; Orourke, J.; Sips, A.C.C.; Tubbing, B. J. D.

    1990-01-01

    Studies of the transport properties of tokamak plasmas using perturbation analysis are discussed. The focus is on experiments with not too large perturbations, such as sawtooth induced heat and density pulse propagation, power modulation and oscillatory gas-puff experiments. The approximations made

  17. 3D-localized, high-resolution, non-perturbing, vectorizable magnetic field diagnostic using two-photon Doppler-free laser-induced fluorescence

    Science.gov (United States)

    Yoon, Young Dae; Bellan, Paul M.

    2017-10-01

    A detailed description of a new plasma magnetic field diagnostic using Doppler-free two-photon laser-induced fluorescence is presented. The diagnostic is based on a method previously developed in the context of rubidium vapor experiments. Two counter-propagating diode laser beams at 394nm are directed into an argon plasma to excite Ar-II ions from the metastable level 3s2 3p4 4 p4D7 / 2 ⟶ 3s2 3p4 4 p4D5/ 2 o ⟶ 3s2 3p4 5 s2P3 / 2 . The levels involve two similar (394.43nm and 393.31nm) transition wavelengths, so the two counter-propagating beams effectively cancel out the Doppler effect. The excited ions then decay to the 3s2 3p4 4 p2D5/ 2 o level, emitting a 410.38nm line which is to be detected by a photomultiplier tube. The Zeeman splitting - normally unobservable because of the large Doppler broadening - of the resultant fluorescence is then to be analyzed, yielding the magnetic field of the particular location. This method is expected to provide 3D localized, non-perturbing vector measurements of the magnetic field. The resolution of the diagnostic is only limited by the cross-section of the laser beam, which can easily be as small as hundreds of microns wide. An experimental implementation is currently in progress.

  18. Correlated behavior of the EPR signal of cytochrome b-559 heme Fe(III) ligated by OH- and the multiline signal of the Mn cluster in PS-II membrane fragments.

    Science.gov (United States)

    Fiege, R; Shuvalov, V A

    1996-05-27

    EPR signals of Cyt b-559 heme Fe(III) ligated by OH- and the multiline signal of the Mn cluster in PS-II membrane fragments have been investigated. In 2,3-dicyano-5,6-dichloro-p-benzoquinone-oxidized PS-II membrane fragments the light-induced decrease of the EPR signal of the heme Fe(III)-OH- is accompanied by the appearance of the EPR multiline signal of the Mn cluster. Addition of F- ions, which act as a stronger ligand for heme Fe(III) than OH-, decreases to the same extent the dark- and light-induced signal of the heme Fe(III)-OH- and the light-induced multiline signal of the Mn cluster. These results are discussed in terms of the light-induced formation of a bound OH' radical shared between the Cyt b-559 heme Fe and the Mn cluster as a first step of water oxidation.

  19. Inhibition of Heme Peroxidases by Melamine

    Directory of Open Access Journals (Sweden)

    Pattaraporn Vanachayangkul

    2012-01-01

    Full Text Available In 2008 melamine-contaminated infant formula and dairy products in China led to over 50,000 hospitalizations of children due to renal injuries. In North America during 2007 and in Asia during 2004, melamine-contaminated pet food products resulted in numerous pet deaths due to renal failure. Animal studies have confirmed the potent renal toxicity of melamine combined with cyanuric acid. We showed previously that the solubility of melamine cyanurate is low at physiologic pH and ionic strength, provoking us to speculate how toxic levels of these compounds could be transported through the circulation without crystallizing until passing into the renal filtrate. We hypothesized that melamine might be sequestered by heme proteins, which could interfere with heme enzyme activity. Four heme peroxidase enzymes were selected for study: horseradish peroxidase (HRP, lactoperoxidase (LPO, and cyclooxygenase-1 and -2 (COX-1 and -2. Melamine exhibited noncompetitive inhibition of HRP (9.5±0.7mM, and LPO showed a mixed model of inhibition (14.5±4.7mM. The inhibition of HRP and LPO was confirmed using a chemiluminescent peroxidase assay. Melamine also exhibited COX-1 inhibition, but inhibition of COX-2 was not detected. Thus, our results demonstrate that melamine inhibits the activity of three heme peroxidases.

  20. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi.

    Science.gov (United States)

    Lechuga, Guilherme Curty; Borges, Júlio Cesar; Calvet, Claudia Magalhães; de Araújo, Humberto Pinheiro; Zuma, Aline Araujo; do Nascimento, Samara Braga; Motta, Maria Cristina Machado; Bernardino, Alice Maria Rolim; Pereira, Mirian Claudia de Souza; Bourguignon, Saulo Cabral

    2016-12-01

    Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies. Copyright © 2016 The Authors. Published by Elsevier

  1. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Guilherme Curty Lechuga

    2016-12-01

    Full Text Available Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM, with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies.

  2. Immunogenicity of heme complexes of peptides designed to mimic the heme environment of myoglobin and hemoglobin.

    Science.gov (United States)

    Atassi, M Zouhair; Childress, Catherine

    2005-01-01

    In the preceding paper (Protein J. 25, pages 37-49, 2005), we reported the preparation and oxygen-binding properties of peptides that form stable complexes with heme mimic. The design of the peptides was based on the natural environment of the heme group in myoglobin (Mb) and in the alpha- and beta-subunits of human adult hemoglobin (Hb). In the present work, the heme-peptides were each administered into mice, either as emulsions in adjuvant (both for injections and boosters) or intravenously as solutions in phosphate-buffered saline. Antibody (Ab) responses, monitored up to 14 weeks after the first administration, showed that when the heme-peptides were injected with adjuvant they stimulated Ab responses against the immunizing peptide, which in most cases bound to the correlate protein (Mb or Hb). However these heme-peptides were non-immunogenic when administered in PBS intravenously. It is concluded that heme-peptides:(a) would not trigger an adverse immune response if used for transfusion purposes.

  3. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vorrink, Sabine U. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Severson, Paul L. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Kulak, Mikhail V. [Department of Surgery, The University of Iowa, Iowa City, IA (United States); Futscher, Bernard W. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Domann, Frederick E., E-mail: frederick-domann@uiowa.edu [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Department of Surgery, The University of Iowa, Iowa City, IA (United States)

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126). Exposure to 1% O{sub 2} prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity. - Highlights: • Significant crosstalk exists between AhR and HIF-1α signaling. • Hypoxia perturbs PCB 126 induced AhR function and

  4. Heme and erythropoieis: more than a structural role

    Science.gov (United States)

    Chiabrando, Deborah; Mercurio, Sonia; Tolosano, Emanuela

    2014-01-01

    Erythropoiesis is the biological process that consumes the highest amount of body iron for heme synthesis. Heme synthesis in erythroid cells is finely coordinated with that of alpha (α) and beta (β)-globin, resulting in the production of hemoglobin, a tetramer of 2α- and 2β-globin chains, and heme as the prosthetic group. Heme is not only the structural component of hemoglobin, but it plays multiple regulatory roles during the differentiation of erythroid precursors since it controls its own synthesis and regulates the expression of several erythroid-specific genes. Heme is synthesized in developing erythroid progenitors by the stage of proerythroblast, through a series of eight enzymatic reactions divided between mitochondria and cytosol. Defects of heme synthesis in the erythroid lineage result in sideroblastic anemias, characterized by microcytic anemia associated to mitochondrial iron overload, or in erythropoietic porphyrias, characterized by porphyrin deposition in erythroid cells. Here, we focus on the heme biosynthetic pathway and on human erythroid disorders due to defective heme synthesis. The regulatory role of heme during erythroid differentiation is discussed as well as the heme-mediated regulatory mechanisms that allow the orchestration of the adaptive cell response to heme deficiency. PMID:24881043

  5. Heme Oxygenase-1 Promotes Delayed Wound Healing in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Qing-Ying Chen

    2016-01-01

    Full Text Available Diabetic ulcers are one of the most serious and costly chronic complications for diabetic patients. Hyperglycemia-induced oxidative stress may play an important role in diabetes and its complications. The aim of the study was to explore the effect of heme oxygenase-1 on wound closure in diabetic rats. Diabetic wound model was prepared by making an incision with full thickness in STZ-induced diabetic rats. Wounds from diabetic rats were treated with 10% hemin ointment for 21 days. Increase of HO-1 protein expression enhanced anti-inflammation and antioxidant in diabetic rats. Furthermore, HO-1 increased the levels of VEGF and ICAM-1 and expressions of CBS and CSE protein. In summary, HO-1 promoted the wound closure by augmenting anti-inflammation, antioxidant, and angiogenesis in diabetic rats.

  6. The Haptoglobin-CD163-Heme Oxygenase-1 Pathway for Hemoglobin Scavenging

    Directory of Open Access Journals (Sweden)

    Jens Haugbølle Thomsen

    2013-01-01

    Full Text Available The haptoglobin- (Hp- CD163-heme oxygenase-1 (HO-1 pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex in macrophages followed by lysosomal Hp-Hb breakdown and HO-1-catalyzed conversion of heme into the metabolites carbon monoxide (CO, biliverdin, and iron. The plasma concentration of Hp is a limiting factor as evident during accelerated hemolysis, where the Hp depletion may cause serious Hb-induced toxicity and put pressure on backup protecting systems such as the hemopexin-CD91-HO pathway. The Hp-CD163-HO-1 pathway proteins are regulated by the acute phase mediator interleukin-6 (IL-6, but other regulatory factors indicate that this upregulation is a counteracting anti-inflammatory response during inflammation. The heme metabolites including bilirubin converted from biliverdin have overall an anti-inflammatory effect and thus reinforce the anti-inflammatory efficacy of the Hp-CD163-HO-1 pathway. Future studies of animal models of inflammation should further define the importance of the pathway in the anti-inflammatory response.

  7. Endogenous Estrogen-Mediated Heme Oxygenase Regulation in Experimental Menopause

    Directory of Open Access Journals (Sweden)

    Anikó Pósa

    2015-01-01

    Full Text Available Estrogen deficiency is one of the main causes of age-associated diseases in the cardiovascular system. Female Wistar rats were divided into four experimental groups: pharmacologically ovariectomized, surgically ovariectomized, and 24-month-old intact aging animals were compared with a control group. The activity and expression of heme oxygenases (HO in the cardiac left ventricle, the concentrations of cardiac interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α, the myeloperoxidase (MPO activity in the cardiac left ventricle, and the effects of heme oxygenase blockade (by 24-hour and 1-hour pretreatment with tin-protoporphyrin IX, SnPP on the epinephrine and phentolamine-induced electrocardiogram ST segment changes in vivo were investigated. The cardiac HO activity and the expression of HO-1 and HO-2 were significantly decreased in the aged rats and after ovariectomy. Estrogen depletion was accompanied by significant increases in the expression of IL-6 and TNF-α. The aged and ovariectomized animals exhibited a significantly elevated MPO activity and a significant ST segment depression. After pretreatment with SnPP augmented ST segment changes were determined. These findings demonstrate that the sensitivity to cardiac ischemia in estrogen depletion models is associated with suppression of the activity and expression of the HO system and increases in the secretion of proinflammatory cytokines and biomarkers.

  8. Endogenous Estrogen-Mediated Heme Oxygenase Regulation in Experimental Menopause

    Science.gov (United States)

    Pósa, Anikó; Veszelka, Médea; Berkó, Anikó Magyariné; Baráth, Zoltán; Ménesi, Rudolf; Pávó, Imre; László, Ferenc; Varga, Csaba

    2015-01-01

    Estrogen deficiency is one of the main causes of age-associated diseases in the cardiovascular system. Female Wistar rats were divided into four experimental groups: pharmacologically ovariectomized, surgically ovariectomized, and 24-month-old intact aging animals were compared with a control group. The activity and expression of heme oxygenases (HO) in the cardiac left ventricle, the concentrations of cardiac interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), the myeloperoxidase (MPO) activity in the cardiac left ventricle, and the effects of heme oxygenase blockade (by 24-hour and 1-hour pretreatment with tin-protoporphyrin IX, SnPP) on the epinephrine and phentolamine-induced electrocardiogram ST segment changes in vivo were investigated. The cardiac HO activity and the expression of HO-1 and HO-2 were significantly decreased in the aged rats and after ovariectomy. Estrogen depletion was accompanied by significant increases in the expression of IL-6 and TNF-α. The aged and ovariectomized animals exhibited a significantly elevated MPO activity and a significant ST segment depression. After pretreatment with SnPP augmented ST segment changes were determined. These findings demonstrate that the sensitivity to cardiac ischemia in estrogen depletion models is associated with suppression of the activity and expression of the HO system and increases in the secretion of proinflammatory cytokines and biomarkers. PMID:26064421

  9. Disrupted postnatal lung development in heme oxygenase-1 deficient mice

    Directory of Open Access Journals (Sweden)

    Zhang Huayan

    2010-10-01

    Full Text Available Abstract Background Heme oxygenase (HO degrades cellular heme to carbon monoxide, iron and biliverdin. The HO-1 isoform is both inducible and cyto-protective during oxidative stress, inflammation and lung injury. However, little is known about its precise role and function in lung development. We hypothesized that HO-1 is required for mouse postnatal lung alveolar development and that vascular expression of HO-1 is essential and protective during postnatal alveolar development. Methods Neonatal lung development in wildtype and HO-1 mutant mice was evaluated by histological and molecular methods. Furthermore, these newborn mice were treated with postnatal dexamethasone (Dex till postnatal 14 days, and evaluated for lung development. Results Compared to wildtype littermates, HO-1 mutant mice exhibited disrupted lung alveolar structure including simplification, disorganization and reduced secondary crest formation. These defects in alveolar development were more pronounced when these mice were challenged with Dex treatment. Expression levels of both vascular endothelial and alveolar epithelial markers were also further decreased in HO-1 mutants after Dex treatment. Conclusions These experiments demonstrate that HO-1 is required in normal lung development and that HO-1 disruption and dexamethasone exposure are additive in the disruption of postnatal lung growth. We speculate that HO-1 is involved in postnatal lung development through modulation of pulmonary vascular development.

  10. A novel and sensitive assay for heme oxygenase activity.

    Science.gov (United States)

    Iwamori, Saki; Sato, Emiko; Saigusa, Daisuke; Yoshinari, Kouichi; Ito, Sadayoshi; Sato, Hiroshi; Takahashi, Nobuyuki

    2015-10-01

    Heme oxygenase (HO) is a renoprotective protein in the microsome that degrades heme and produces biliverdin. Biliverdin is then reduced to a potent antioxidant bilirubin by biliverdin reductase in the cytosol. Because HO activity does not necessarily correlate with HO mRNA or protein levels, a reliable assay is needed to determine HO activity. Spectrophotometric measurement is tedious and requires a relatively large amount of kidney samples. Moreover, bilirubin is unstable and spontaneously oxidized to biliverdin in vitro. We developed a novel and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify biliverdin to measure HO activity in mice. Biliverdin and its internal standard, a deuterated biliverdin-d4, have MS/MS fragments with m/z transitions of 583 to 297 and 587 to 299, respectively. We prepared lysates of mouse kidneys, and added excess hemin, NADPH, and bilirubin oxidase to convert all bilirubin produced to biliverdin. After 30-min incubation at 37 or 4°C, the samples were analyzed by LC-MS/MS. The difference in the amount of biliverdin between the two temperatures is HO activity. Treating mice with cobalt protoporphyrin, which induces the expression of HO, increased HO activity as determined by biliverdin production. Measuring the production of biliverdin using LC-MS/MS is a more sensitive and specific way to determine HO activity than the spectrophotometric method and allows the detection of subtle changes in renal or other HO activity. Copyright © 2015 the American Physiological Society.

  11. Modulation of Na+/K+ ATPase Activity by Hydrogen Peroxide Generated through Heme in L. amazonensis.

    Directory of Open Access Journals (Sweden)

    Nathália Rocco-Machado

    Full Text Available Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2 generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.

  12. Numerical investigation of non-perturbative kinetic effects of energetic particles on toroidicity-induced Alfvén eigenmodes in tokamaks and stellarators

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, Christoph; Könies, Axel; Kleiber, Ralf [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2016-09-15

    The resonant interaction of shear Alfvén waves with energetic particles is investigated numerically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid approach. The focus lies on toroidicity-induced Alfvén eigenmodes (TAEs), which are most easily destabilized by a fast-particle population in fusion plasmas. While the background plasma is treated within the framework of an ideal-MHD theory, the drive of the fast particles, as well as Landau damping of the background plasma, is modelled using the drift-kinetic Vlasov equation without collisions. Building on analytical theory, a fast numerical tool, STAE-K, has been developed to solve the resulting eigenvalue problem using a Riccati shooting method. The code, which can be used for parameter scans, is applied to tokamaks and the stellarator Wendelstein 7-X. High energetic-ion pressure leads to large growth rates of the TAEs and to their conversion into kinetically modified TAEs and kinetic Alfvén waves via continuum interaction. To better understand the physics of this conversion mechanism, the connections between TAEs and the shear Alfvén wave continuum are examined. It is shown that, when energetic particles are present, the continuum deforms substantially and the TAE frequency can leave the continuum gap. The interaction of the TAE with the continuum leads to singularities in the eigenfunctions. To further advance the physical model and also to eliminate the MHD continuum together with the singularities in the eigenfunctions, a fourth-order term connected to radiative damping has been included. The radiative damping term is connected to non-ideal effects of the bulk plasma and introduces higher-order derivatives to the model. Thus, it has the potential to substantially change the nature of the solution. For the first time, the fast-particle drive, Landau damping, continuum damping, and radiative damping have been modelled together in tokamak- as well as in stellarator geometry.

  13. Cell cycle perturbations and genotoxic effects in human primary fibroblasts induced by low-energy protons and X/gamma-rays.

    Science.gov (United States)

    Antoccia, Antonio; Sgura, Antonella; Berardinelli, Francesco; Cavinato, Maria; Cherubini, Roberto; Gerardi, Silvia; Tanzarella, Caterina

    2009-09-01

    The effect of graded doses of high-linear energy transfer (LET) low-energy protons to induce cycle perturbations and genotoxic damage was investigated in normal human fibroblasts. Furthermore, such effects were compared with those produced by low-LET radiations. HFFF2, human primary fibroblasts were exposed to either protons (LET = 28.5 keV/microm) or X/gamma-rays, and endpoints related to cell cycle kinetics and DNA damage analysed. Following both type of irradiations, unsynchronized cells suffered an inhibition to entry into S-phase for doses of 1-4 Gy and remained arrested in the G(1)-phase for several days. The levels of induction of regulator proteins, such as TP53 and CDKN1A showed a clear LET-dependence. DSB induction and repair as measured by scoring for gamma-H2AX foci indicated that protons, with respect to X-rays, yielded a lower number of DSBs per Gy, which showed a slower kinetics of disappearance. Such result was in agreement with the extent of MN induction in binucleated cells after X-irradiation. No significant differences between the two types of radiations were observed with the clonogenic assay, resulting anyway the slope of gamma-ray curve higher than that the proton one. In conclusion, in normal human primary fibroblasts cell cycle arrest at the G(1)/S transition can be triggered shortly after irradiation and maintained for several hours post-irradiation of both protons and X-rays. DNA damage produced by protons appears less amenable to be repaired and could be transformed in cytogenetic damage in the form of MN.

  14. Upregulation of Heme Oxygenase-1 in Response to Wild Thyme Treatment Protects against Hypertension and Oxidative Stress.

    Science.gov (United States)

    Mihailovic-Stanojevic, Nevena; Miloradović, Zoran; Ivanov, Milan; Bugarski, Branko; Jovović, Đurđica; Karanović, Danijela; Vajić, Una-Jovana; Komes, Draženka; Grujić-Milanović, Jelica

    2016-01-01

    High blood pressure is the most powerful contributor to the cardiovascular morbidity and mortality, and inverse correlation between consumption of polyphenol-rich foods or beverages and incidence of cardiovascular diseases gains more importance. Reactive oxygen species plays an important role in the development of hypertension. We found that wild thyme (a spice plant, rich in polyphenolic compounds) induced a significant decrease of blood pressure and vascular resistance in hypertensive rats. The inverse correlation between vascular resistance and plasma heme oxygenase-1 suggests that endogenous vasodilator carbon monoxide generated by heme oxidation could account for this normalization of blood pressure. Next product of heme oxidation, bilirubin (a chain-breaking antioxidant that acts as a lipid peroxyl radical scavenger), becomes significantly increased after wild thyme treatment and induces the reduction of plasma lipid peroxidation in hypertensive, but not in normotensive rats. The obtained results promote wild thyme as useful supplement for cardiovascular interventions.

  15. Upregulation of Heme Oxygenase-1 in Response to Wild Thyme Treatment Protects against Hypertension and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Nevena Mihailovic-Stanojevic

    2016-01-01

    Full Text Available High blood pressure is the most powerful contributor to the cardiovascular morbidity and mortality, and inverse correlation between consumption of polyphenol-rich foods or beverages and incidence of cardiovascular diseases gains more importance. Reactive oxygen species plays an important role in the development of hypertension. We found that wild thyme (a spice plant, rich in polyphenolic compounds induced a significant decrease of blood pressure and vascular resistance in hypertensive rats. The inverse correlation between vascular resistance and plasma heme oxygenase-1 suggests that endogenous vasodilator carbon monoxide generated by heme oxidation could account for this normalization of blood pressure. Next product of heme oxidation, bilirubin (a chain-breaking antioxidant that acts as a lipid peroxyl radical scavenger, becomes significantly increased after wild thyme treatment and induces the reduction of plasma lipid peroxidation in hypertensive, but not in normotensive rats. The obtained results promote wild thyme as useful supplement for cardiovascular interventions.

  16. Automated Lattice Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  17. RED BLOOD CELL, HEMOGLOBIN AND HEME IN THE PROGRESSION OF ATHEROSCLEROSIS

    Directory of Open Access Journals (Sweden)

    Viktória eJeney

    2014-10-01

    Full Text Available For decades plaque neovascularization was considered as an innocent feature of advanced atherosclerotic lesions, but nowadays growing evidence suggest that this process triggers plaque progression and vulnerability. Neovascularization is induced mostly by hypoxia, but the involvement of oxidative stress is also established. Because of inappropriate angiogenesis, neovessels are leaky and prone to rupture, leading to the extravasation of red blood cells (RBCs within the plaque. RBCs, in the highly oxidative environment of the atherosclerotic lesions, tend to lyse quickly. Both RBC membrane and the released hemoglobin (Hb possess atherogenic activities. Cholesterol content of RBC membrane contributes to lipid deposition and lipid core expansion upon intraplaque hemorrhage. Cell-free Hb is prone to oxidation, and the oxidation products possess pro-oxidant and pro-inflammatory activities. Defense and adaptation mechanisms evolved to cope with the deleterious effects of cell free Hb and heme. These rely on plasma proteins haptoglobin (Hp and hemopexin (Hx with the ability to scavenge and eliminate free Hb and heme form the circulation. The protective strategy is completed with the cellular heme oxygenase-1/ferritin system that becomes activated when Hp and Hx fail to control free Hb and heme-mediated stress. These protective molecules have pharmacological potential in diverse pathologies including atherosclerosis.

  18. Structural characterization of human heme oxygenase-1 in complex with azole-based inhibitors.

    Science.gov (United States)

    Rahman, Mona N; Vlahakis, Jason Z; Roman, Gheorghe; Vukomanovic, Dragic; Szarek, Walter A; Nakatsu, Kanji; Jia, Zongchao

    2010-03-01

    The development of inhibitors specific for heme oxygenases (HO) aims to provide powerful tools in understanding the HO system. Based on the lead structure (2S, 4S)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-[((4-aminophenyl)thio)methyl]-1,3-dioxolane (azalanstat, QC-1) we have synthesized structural modifications to develop novel and selective HO inhibitors. The structural study of human HO-1 (hHO-1) in complex with a select group of the inhibitors was initiated using X-ray crystallographic techniques. Comparison of the structures of four such compounds each in complex with hHO-1 revealed a common binding mode, despite having different structural fragments. The compounds bind to the distal side of heme through an azole "anchor" which coordinates with the heme iron. An expansion of the distal pocket, mainly due to distal helix flexibility, allows accommodation of the compounds without displacing heme or the critical Asp140 residue. Rather, binding displaces a catalytically critical water molecule and disrupts an ordered hydrogen-bond network involving Asp140. The presence of a triazole "anchor" may provide further stability via a hydrogen bond with the protein. A hydrophobic pocket acts to stabilize the region occupied by the phenyl or adamantanyl moieties of these compounds. Further, a secondary hydrophobic pocket is formed via "induced fit" to accommodate bulky substituents at the 4-position of the dioxolane ring. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Characterization of the heme synthesis enzyme coproporphyrinogen oxidase (CPO) in zebrafish erythrogenesis.

    Science.gov (United States)

    Hanaoka, Ryuki; Katayama, Shiori; Dawid, Igor B; Kawahara, Atsuo

    2006-03-01

    Hemoglobin consists of heme and globin proteins and is essential for oxygen transport in all vertebrates. Although biochemical features of heme synthesis enzymes have been well characterized, the function of these enzymes in early embryogenesis is not fully understood. We found that the sixth heme synthesis enzyme, coproporphyrinogen oxidase (CPO), is predominantly expressed in the intermediate cell mass (ICM) that is a major site of zebrafish primitive hematopoiesis. Knockdown of zebrafish CPO using anti-sense morpholinos (CPO-MO) leads to a significant suppression of hemoglobin production without apparent reduction of blood cells. Injection of human CPO RNA, but not a mutant CPO RNA that is similar to a mutant responsible for a hereditary coproporphyria (HCP), restores hemoglobin production in the CPO-MO-injected embryos. Furthermore, expression of CPO in the ICM is severely suppressed in both vlad tepes/gata1 mutants and in biklf-MO-injected embryos. In contrast, over-expression of biklf and gata1 significantly induces ectopic CPO expression. The function of CPO in heme biosynthesis is apparently conserved between zebrafish and human, suggesting that CPO-MO-injected zebrafish embryos might be a useful in vivo assay system to measure the biological activity of human CPO mutations.

  20. In vivo genotoxic effects of dietary heme iron on rat colon mucosa and ex vivo effects on colon cells monitored by an optimized alkaline comet assay.

    Directory of Open Access Journals (Sweden)

    Océane, C Martin

    2015-04-01

    In conclusion, our results offer a suitable protocol to evaluate genotoxicity on in vivo cryopreserved colon mucosa and on in vitro murine colonic cells, with a middle throughput capacity. This protocol confirms the increase of genotoxicity in rat colon mucosa after an heme-iron diet. Moreover, this protocol enables the demonstration that aldehydes from heme-induced lipoperoxidation are responsible for this increase of genotoxicity.

  1. Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Karina E. J. Tripodi

    2011-01-01

    Full Text Available Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi, leishmaniasis (Leishmania spp., and African trypanosomiasis (Trypanosoma brucei. Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.

  2. Mimicking Heme Enzymes in the Solid State: Metal-Organic Materials with Selectively Encapsulated Heme

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason; Musselman, Ronald L; Zaworotko, Michael J; Vetromile, Carissa M [USF

    2011-06-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal–organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a “ship-in-a-bottle” fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.

  3. Mimicking heme enzymes in the solid state: metal-organic materials with selectively encapsulated heme.

    Science.gov (United States)

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason; Musselman, Ronald L; Zaworotko, Michael J; Vetromile, Carissa M

    2011-07-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal-organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a "ship-in-a-bottle" fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.

  4. Heme metabolism as an integral part of iron homeostasis

    Directory of Open Access Journals (Sweden)

    Paweł Lipiński

    2014-01-01

    Full Text Available Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways – heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S] – is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  5. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  6. Biliverdin-promoted lateral root formation is mediated through heme oxygenase in rice.

    Science.gov (United States)

    Hsu, Yun Yen; Chao, Yun-Yang; Kao, Ching Huei

    2012-07-01

    In this study, we examined the effect of biliverdin (BV), a product of heme oxygenase (HO) catalyzed reaction, on lateral root (LR) formation in rice. Treatment with BV induced LR formation and HO activity. As well, BV, could induce OsHO1 mRNA expression. Zn protoporphyrin IX (the specific inhibitor of HO) reduced LR number, HO activity and OsHO1 mRNA level induced by BV. Our data suggest that HO is required for BV-induced LR formation in rice.

  7. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys.

    Science.gov (United States)

    Petersen, Björn; Ramackers, Wolf; Lucas-Hahn, Andrea; Lemme, Erika; Hassel, Petra; Queisser, Anna-Lisa; Herrmann, Doris; Barg-Kues, Brigitte; Carnwath, Joseph W; Klose, Johannes; Tiede, Andreas; Friedrich, Lars; Baars, Wiebke; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner

    2011-01-01

    The major immunological hurdle to successful porcine-to-human xenotransplantation is the acute vascular rejection (AVR), characterized by endothelial cell (EC) activation and perturbation of coagulation. Heme oxygenase-1 (HO-1) and its derivatives have anti-apoptotic, anti-inflammatory effects and protect against reactive oxygen species, rendering HO-1 a promising molecule to control AVR. Here, we report the production and characterization of pigs transgenic for human heme oxygenase-1 (hHO-1) and demonstrate significant protection in porcine kidneys against xenograft rejection in ex vivo perfusion with human blood and transgenic porcine aortic endothelial cells (PAEC) in a TNF-α-mediated apoptosis assay. Transgenic and non-transgenic PAEC were tested in a TNF-α-mediated apoptosis assay. Expression of adhesion molecules (ICAM-1, VCAM-1, and E-selectin) was measured by real-time PCR. hHO-1 transgenic porcine kidneys were perfused with pooled and diluted human AB blood in an ex vivo perfusion circuit. MHC class-II up-regulation after induction with IFN-γ was compared between wild-type and hHO-1 transgenic PAEC. Cloned hHO-1 transgenic pigs expressed hHO-1 in heart, kidney, liver, and in cultured ECs and fibroblasts. hHO-1 transgenic PAEC were protected against TNF-α-mediated apoptosis. Real-time PCR revealed reduced expression of adhesion molecules like ICAM-1, VCAM-1, and E-selectin. These effects could be abrogated by the incubation of transgenic PAECs with the specific HO-1 inhibitor zinc protoporphorine IX (Zn(II)PPIX, 20 μm). IFN-γ induced up-regulation of MHC class-II molecules was significantly reduced in PAECs from hHO-1 transgenic pigs. hHO-1 transgenic porcine kidneys could successfully be perfused with diluted human AB-pooled blood for a maximum of 240 min (with and without C1 inh), while in wild-type kidneys, blood flow ceased after ∼60 min. Elevated levels of d-Dimer and TAT were detected, but no significant consumption of fibrinogen and

  8. Primordial magnetic fields from metric perturbations

    CERN Document Server

    Maroto, A L

    2001-01-01

    We study the amplification of electromagnetic vacuum fluctuations induced by the evolution of scalar metric perturbations at the end of inflation. Such perturbations break the conformal invariance of Maxwell equations in Friedmann-Robertson-Walker backgrounds and allow the growth of magnetic fields on super-Hubble scales. We estimate the strength of the fields generated by this mechanism on galactic scales and compare the results with the present bounds on the galactic dynamo seed fields.

  9. Tuning Leaky Nanocavity Resonances - Perturbation Treatment

    OpenAIRE

    Shlafman, Michael; Bayn, Igal; Salzman, Joseph

    2010-01-01

    Adiabatic frequency tuning of finite-lifetime-nanocavity electromagnetic modes affects also their quality-factor (Q). Perturbative Q change resulting from (real) frequency tuning, is a controllable parameter. Here, the influence of dielectric constant modulation (DCM) on cavity resonances is presented, by first order perturbation analysis for a 3D cavity with radiation losses. Semi-analytical expressions for DCM induced cavity mode frequency and Q changes are derived. The obtained results are...

  10. Tuning Leaky Nanocavity Resonances - Perturbation Treatment

    CERN Document Server

    Shlafman, Michael; Salzman, Joseph

    2010-01-01

    Adiabatic frequency tuning of finite-lifetime-nanocavity electromagnetic modes affects also their quality-factor (Q). Perturbative Q change resulting from (real) frequency tuning, is a controllable parameter. Here, the influence of dielectric constant modulation (DCM) on cavity resonances is presented, by first order perturbation analysis for a 3D cavity with radiation losses. Semi-analytical expressions for DCM induced cavity mode frequency and Q changes are derived. The obtained results are in good agreement with numerical calculations.

  11. Inactivation of Dengue and Yellow Fever viruses by heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX.

    Science.gov (United States)

    Assunção-Miranda, I; Cruz-Oliveira, C; Neris, R L S; Figueiredo, C M; Pereira, L P S; Rodrigues, D; Araujo, D F F; Da Poian, A T; Bozza, M T

    2016-03-01

    To investigate the effect of heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX (CoPPIX and SnPPIX), macrocyclic structures composed by a tetrapyrrole ring with a central metallic ion, on Dengue Virus (DENV) and Yellow Fever Virus (YFV) infection. Treatment of HepG2 cells with heme, CoPPIX and SnPPIX after DENV infection reduced infectious particles without affecting viral RNA contents in infected cells. The reduction of viral load occurs only with the direct contact of DENV with porphyrins, suggesting a direct effect on viral particles. Previously incubation of DENV and YFV with heme, CoPPIX and SnPPIX resulted in viral particles inactivation in a dose-dependent manner. Biliverdin, a noncyclical porphyrin, was unable to inactivate the viruses tested. Infection of HepG2 cells with porphyrin-pretreated DENV2 results in a reduced or abolished viral protein synthesis, RNA replication and cell death. Treatment of HepG2 or THP-1 cell lineage with heme or CoPPIX after DENV infection with a very low MOI resulted in a decreased DENV replication and protection from death. Heme, CoPPIX and SnPPIX possess a marked ability to inactivate DENV and YFV, impairing its ability to infect and induce cytopathic effects on target cells. These results open the possibility of therapeutic application of porphyrins or their use as models to design new antiviral drugs against DENV and YFV. © 2016 The Society for Applied Microbiology.

  12. Heme Recognition By a Staphylococcus Aureus IsdE

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, J.C.; Vermeiren, C.L.; Heinrichs, D.E.; Murphy, M.E.P.

    2009-06-03

    Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portion of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single {alpha}-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met{sup 78} and His{sup 229}. Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His{sup 299} is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.

  13. Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.

    NARCIS (Netherlands)

    IJssennagger, Noortje; Rijnierse, A.; Muller, Michael; Meer, van der Roelof

    2012-01-01

    Colon cancer is a major cause of cancer deaths in Western countries and is associated with diets high in red meat. Heme, the iron-porphyrin pigment of red meat, induces cytotoxicity of gut contents which injures surface cells leading to compensatory hyperproliferation of crypt cells. This

  14. Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk

    NARCIS (Netherlands)

    IJssenagger, N.; Derrien, M.; Doorn, van G.M.; Rijnierse, A.; Bogert, van den B.; Muller, M.R.; Dekker, J.; Kleerebezem, M.; Meer, van der R.

    2012-01-01

    Colon cancer is a major cause of cancer deaths in Western countries and is associated with diets high in red meat. Heme, the iron-porphyrin pigment of red meat, induces cytotoxicity of gut contents which injures surface cells leading to compensatory hyperproliferation of crypt cells. This

  15. Heme oxygenase-1 promoter polymorphisms and risk of spina bifida.

    Science.gov (United States)

    Fujioka, Kazumichi; Yang, Wei; Wallenstein, Matthew B; Zhao, Hui; Wong, Ronald J; Stevenson, David K; Shaw, Gary M

    2015-09-01

    Spina bifida is the most common form of neural tube defects (NTDs). Etiologies of NTDs are multifactorial, and oxidative stress is believed to play a key role in NTD development. Heme oxygenase (HO), the rate-limiting enzyme in heme degradation, has multiple protective properties including mediating antioxidant processes, making it an ideal candidate for study. The inducible HO isoform (HO-1) has two functional genetic polymorphisms: (GT)n dinucleotide repeats and A(-413)T SNP (rs2071746), both of which can affect its promoter activity. However, no study has investigated a possible association between HO-1 genetic polymorphisms and risk of NTDs. This case-control study included 152 spina bifida cases (all myelomeningoceles) and 148 non-malformed controls obtained from the California Birth Defects Monitoring Program reflecting births during 1990 to 1999. Genetic polymorphisms were determined by polymerase chain reaction and amplified fragment length polymorphisms/restriction fragment length polymorphisms using genomic DNA extracted from archived newborn blood spots. Genotype and haplotype frequencies of two HO-1 promoter polymorphisms between cases and controls were compared. For (GT)n dinucleotide repeat lengths and the A(-413)T SNP, no significant differences in allele frequencies or genotypes were found. Linkage disequilibrium was observed between the HO-1 polymorphisms (D': 0.833); however, haplotype analyses did not show increased risk of spina bifida overall or by race/ethnicity. Although, an association was not found between HO-1 polymorphisms and risk of spina bifida, we speculate that the combined effect of low HO-1 expression and exposures to known environmental oxidative stressors (low folate status or diabetes), may overwhelm antioxidant defenses and increase risk of NTDs and warrants further study. © 2015 Wiley Periodicals, Inc.

  16. Hydrogen bond donation to the heme distal ligand of Staphylococcus aureus IsdG tunes the electronic structure.

    Science.gov (United States)

    Lockhart, Cheryl L; Conger, Matthew A; Pittman, Dylanger S; Liptak, Matthew D

    2015-07-01

    Staphylococcus aureus IsdG catalyzes the final step of staphylococcal iron acquisition from host hemoglobin, whereby host-derived heme is converted to iron and organic products. The Asn7 distal pocket residue is known to be critical for enzyme activity, but the influence of this residue on the substrate electronic structure was unknown prior to this work. Here, an optical spectroscopic and density functional theory characterization of azide- and cyanide-inhibited wild type and N7A IsdG is presented. Magnetic circular dichroism data demonstrate that Asn7 perturbs the electronic structure of azide-inhibited, but not cyanide-inhibited, IsdG. As the iron-ligating α-atom of azide, but not cyanide, can act as a hydrogen bond acceptor, these data indicate that the terminal amide of Asn7 is a hydrogen bond donor to the α-atom of a distal ligand to heme in IsdG. Circular dichroism characterization of azide- and cyanide-inhibited forms of WT and N7A IsdG strongly suggests that the Asn7···N3 hydrogen bond influences the orientation of a distal azide ligand with respect to the heme substrate. Specifically, density functional theory calculations suggest that Asn7···N3 hydrogen bond donation causes the azide ligand to rotate about an axis perpendicular to the porphyrin plane and weakens the π-donor strength of the azide ligand. This lowers the energies of the Fe 3d xz and 3d yz orbitals, mixes Fe 3d xy and porphyrin a 2u character into the singly-occupied molecular orbital, and results in spin delocalization onto the heme meso carbons. These discoveries have important implications for the mechanism of heme oxygenation catalyzed by IsdG.

  17. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment.

    Science.gov (United States)

    Smalley, J W; Olczak, T

    2017-02-01

    Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.

    Directory of Open Access Journals (Sweden)

    Noortje IJssennagger

    Full Text Available Colon cancer is a major cause of cancer deaths in Western countries and is associated with diets high in red meat. Heme, the iron-porphyrin pigment of red meat, induces cytotoxicity of gut contents which injures surface cells leading to compensatory hyperproliferation of crypt cells. This hyperproliferation results in epithelial hyperplasia which increases the risk of colon cancer. In humans, a high red-meat diet increases Bacteroides spp in feces. Therefore, we simultaneously investigated the effects of dietary heme on colonic microbiota and on the host mucosa of mice. Whole genome microarrays showed that heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. Using 16S rRNA phylogenetic microarrays, we investigated whether bacteria play a role in this changed signaling. Heme increased Bacteroidetes and decreased Firmicutes in colonic contents. This shift was most likely caused by a selective susceptibility of gram-positive bacteria to heme cytotoxic fecal water, which is not observed for gram-negative bacteria, allowing expansion of the gram-negative community. The increased amount of gram-negative bacteria most probably increased LPS exposure to colonocytes, however, there is no appreciable immune response detected in the heme-fed mice. There was no functional change in the sensing of the bacteria by the mucosa, as changes in inflammation pathways and Toll-like receptor signaling were not detected. This unaltered host-microbe cross-talk indicates that the changes in microbiota did not play a causal role in the observed hyperproliferation and hyperplasia.

  19. Dioxygen reactivity of meso-hydroxylated hemes: intermediates in ...

    Indian Academy of Sciences (India)

    464. Scheme 2. in which the HO-bound heme could be converted to verdoheme and biliverdin by ascorbic acid or hydra- zine in the absence of NADPH and cytochrome. P450 reductase via the formation of similar interme- diates observed during the biological oxidation of heme by HO.2–7 The process involves initial meso.

  20. Functional characterization of the Shigella dysenteriae heme ABC transporter.

    Science.gov (United States)

    Burkhard, Kimberly A; Wilks, Angela

    2008-08-05

    The heme ATP binding cassette (ABC) transporter, ShuUV, of Shigella dysenteriae has been incorporated into proteoliposomes. Functional characterization of ShuUV revealed that ATP hydrolysis and transport of heme from the periplasmic binding protein, ShuT, to the cytoplasmic binding protein, ShuS, are coupled. Site-directed mutagenesis of ShuT residues proposed to be required for stabilization of the complex abolished heme transport. Furthermore, residues His-252 and His-262, located in the translocation channel of ShuU, were required for the release of heme from ShuT and translocation to ShuS. The initial functional characterization of an in vitro heme uptake system provides a platform for future spectroscopic studies.

  1. Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand.

    Science.gov (United States)

    Jiang, Yongying; Trnka, Michael J; Medzihradszky, Katalin F; Ouellet, Hugues; Wang, Yongqiang; Ortiz de Montellano, Paul R

    2009-03-01

    To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron [Y. Jiang, P.R. Ortiz de Montellano, Inorg. Chem. 47 (2008) 3480-3482 ], indicate that a selenyl radical is formed in the hHO-1 His25SeCys mutant that adds to a heme vinyl group.

  2. An association study between Heme oxygenase-1 genetic variants and Parkinson´s disease

    Directory of Open Access Journals (Sweden)

    Pedro eAyuso

    2014-09-01

    Full Text Available AbstractThe blood-brain barrier (BBB supplies brain tissues with nutrients, filters harmful compounds from the brain back to the bloodstream, and plays a key role in iron homeostasis in the human brain. Disruptions of the BBB are associated with several neurodegenerative conditions including Parkinson’s disease (PD. Oxidative stress, iron deposition and mitochondrial impaired function are considered as risk factors for degeneration of the central nervous system. Heme oxygenase (HMOX degrades heme ring to biliverdin, free ferrous iron and carbon monoxide being the rate-limiting activity in heme catabolism. The isoform HMOX1 is highly inducible in response to reactive oxygen species which induce an increase in BBB permeability and impair its pathophysiology. Consequently, an over- expression of this enzyme may contribute to the marked iron deposition found in PD. We analyzed common HMOX1 gene variants in 691 patients suffering from PD and 766 healthy control individuals. Copy number variations in the HMOX1 gene exist, but these do not seem to be associated with PD risk. In contrast two polymorphisms that modify the transcriptional activity of the gene, namely a VNTR (GTn and the SNP rs2071746, are strongly associated with PD risk, particularly with the classic PD phenotype and with early onset of the disease.This study indicates that HMOX1 gene variants are associated to the risk of developing some forms of PD, thus adding new information that supports association of HMOX gene variations with PD risk.

  3. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation.

    Science.gov (United States)

    Chiabrando, Deborah; Marro, Samuele; Mercurio, Sonia; Giorgi, Carlotta; Petrillo, Sara; Vinchi, Francesca; Fiorito, Veronica; Fagoonee, Sharmila; Camporeale, Annalisa; Turco, Emilia; Merlo, Giorgio R; Silengo, Lorenzo; Altruda, Fiorella; Pinton, Paolo; Tolosano, Emanuela

    2012-12-01

    Feline leukemia virus subgroup C receptor 1 (FLVCR1) is a cell membrane heme exporter that maintains the balance between heme levels and globin synthesis in erythroid precursors. It was previously shown that Flvcr1-null mice died in utero due to a failure of erythropoiesis. Here, we identify Flvcr1b, a mitochondrial Flvcr1 isoform that promotes heme efflux into the cytoplasm. Flvcr1b overexpression promoted heme synthesis and in vitro erythroid differentiation, whereas silencing of Flvcr1b caused mitochondrial heme accumulation and termination of erythroid differentiation. Furthermore, mice lacking the plasma membrane isoform (Flvcr1a) but expressing Flvcr1b had normal erythropoiesis, but exhibited hemorrhages, edema, and skeletal abnormalities. Thus, FLVCR1b regulates erythropoiesis by controlling mitochondrial heme efflux, whereas FLVCR1a expression is required to prevent hemorrhages and edema. The aberrant expression of Flvcr1 isoforms may play a role in the pathogenesis of disorders characterized by an imbalance between heme and globin synthesis.

  4. Isoporphyrin Intermediate in Heme Oxygenase Catalysis

    Science.gov (United States)

    Evans, John P.; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-01-01

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the α-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin π-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of α-meso-phenylheme-IX, α-meso-(p-methylphenyl)-mesoheme-III, and α-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593–42604), only the α-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced α-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208

  5. Spectroscopic Studies Reveal That the Heme Regulatory Motifs of Heme Oxygenase-2 Are Dynamically Disordered and Exhibit Redox-Dependent Interaction with Heme

    Science.gov (United States)

    2015-01-01

    Heme oxygenase (HO) catalyzes a key step in heme homeostasis: the O2- and NADPH-cytochrome P450 reductase-dependent conversion of heme to biliverdin, Fe, and CO through a process in which the heme participates both as a prosthetic group and as a substrate. Mammals contain two isoforms of this enzyme, HO2 and HO1, which share the same α-helical fold forming the catalytic core and heme binding site, as well as a membrane spanning helix at their C-termini. However, unlike HO1, HO2 has an additional 30-residue N-terminus as well as two cysteine-proline sequences near the C-terminus that reside in heme regulatory motifs (HRMs). While the role of the additional N-terminal residues of HO2 is not yet understood, the HRMs have been proposed to reversibly form a thiol/disulfide redox switch that modulates the affinity of HO2 for ferric heme as a function of cellular redox poise. To further define the roles of the N- and C-terminal regions unique to HO2, we used multiple spectroscopic techniques to characterize these regions of the human HO2. Nuclear magnetic resonance spectroscopic experiments with HO2 demonstrate that, when the HRMs are in the oxidized state (HO2O), both the extra N-terminal and the C-terminal HRM-containing regions are disordered. However, protein NMR experiments illustrate that, under reducing conditions, the C-terminal region gains some structure as the Cys residues in the HRMs undergo reduction (HO2R) and, in experiments employing a diamagnetic protoporphyrin, suggest a redox-dependent interaction between the core and the HRM domains. Further, electron nuclear double resonance and X-ray absorption spectroscopic studies demonstrate that, upon reduction of the HRMs to the sulfhydryl form, a cysteine residue from the HRM region ligates to a ferric heme. Taken together with EPR measurements, which show the appearance of a new low-spin heme signal in reduced HO2, it appears that a cysteine residue(s) in the HRMs directly interacts with a second bound heme

  6. Conformal invariance of curvature perturbation

    CERN Document Server

    Gong, Jinn-Ouk; Park, Wan Il; Sasaki, Misao; Song, Yong-Seon

    2011-01-01

    We show that in the single component situation all perturbation variables in the comoving gauge are conformally invariant to all perturbation orders. Generally we identify a special time slicing, the uniform-conformal transformation slicing, where all perturbations are again conformally invariant to all perturbation orders. We apply this result to the delta N formalism, and show its conformal invariance.

  7. Conformal invariance of curvature perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Theory Division, CERN, CH-1211 Genève 23 (Switzerland); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Park, Wan Il; Sasaki, Misao; Song, Yong-Seon, E-mail: jinn-ouk.gong@cern.ch, E-mail: jchan@knu.ac.kr, E-mail: wipark@kias.re.kr, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: ysong@kias.re.kr [Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of)

    2011-09-01

    We show that in the single component situation all perturbation variables in the comoving gauge are conformally invariant to all perturbation orders. Generally we identify a special time slicing, the uniform-conformal transformation slicing, where all perturbations are again conformally invariant to all perturbation orders. We apply this result to the δN formalism, and show its conformal invariance.

  8. The effect of proteins from animal source foods on heme iron bioavailability in humans.

    Science.gov (United States)

    Pizarro, Fernando; Olivares, Manuel; Valenzuela, Carolina; Brito, Alex; Weinborn, Valerie; Flores, Sebastián; Arredondo, Miguel

    2016-04-01

    Forty-five women (35-45 year) were randomly assigned to three iron (Fe) absorption sub-studies, which measured the effects of dietary animal proteins on the absorption of heme Fe. Study 1 was focused on heme, red blood cell concentrate (RBCC), hemoglobin (Hb), RBCC+beef meat; study 2 on heme, heme+fish, chicken, and beef; and study 3 on heme and heme+purified animal protein (casein, collagen, albumin). Study 1: the bioavailability of heme Fe from Hb was similar to heme only (∼13.0%). RBCC (25.0%) and RBCC+beef (21.3%) were found to be increased 2- and 1.6-fold, respectively, when compared with heme alone (pProteins from animal source foods and their digestion products did not enhance heme Fe absorption. Copyright © 2015. Published by Elsevier Ltd.

  9. Absorption by Isolated Ferric Heme Nitrosyl Cations In Vacuo

    DEFF Research Database (Denmark)

    Wyer, Jean; Nielsen, Steen Brøndsted

    2012-01-01

    Keywords:biophysics;gas-phase spectroscopy;heme proteins;mass spectrometry;nitric oxide Almost innocent: In photobiophysical studies of ferric heme nitrosyl complexes, the absorption spectra of six-coordinate complexes with NO and Met or Cys are similar to that of the five-coordinate complex ion ......(heme)(NO)+. Since the absorption spectra of related proteins with histidine as the proximal ligand are similar to those of the gaseous complexes, the protein microenvironment has little effect on the lowest-energy transition of the porphyrin macrocycle....

  10. [Hereditary porphyrias and heme related disorders].

    Science.gov (United States)

    Puy, Hervé; Gouya, Laurent; Deybach, Jean-charles

    2014-06-01

    Hereditary porphyrias comprise a group of eight metabolic disorders of the haem biosynthesis pathway, characterised by acute neurovisceral symptoms and/or skin lesions. Each porphyria is caused by abnormal functioning of a particular enzymatic step, resulting in specific accumulation of heme precursors. Seven porphyrias are due to a partial enzyme deficiency, while a gain-of-function mechanism has recently been identify in a novel porphyria. Acute porphyrias present with severe abdominal pain, nausea, constipation and confusion, and are sometimes complicated by seizures and severe neurological disorders, which may be life-threatening. Cutaneous porphyrias can also be present, with either acute painful photosensitivity or skin fragility and blisters. Rare recessive porphyrias usually manifest in early childhood with either severe chronic neurological symptoms or chronic haemolysis and severe cutaneous photosensitivity. Porphyrias are still under-diagnosed, but recent advances in the pathogenesis and genetics of human porphyrias are leading to better care of these patients and their families.

  11. YC-1 activation of human soluble guanylyl cyclase has both heme-dependent and heme-independent components

    Science.gov (United States)

    Martin, E.; Lee, Y. C.; Murad, F.

    2001-01-01

    YC-1 [3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole] is an allosteric activator of soluble guanylyl cyclase (sGC). YC-1 increases the catalytic rate of the enzyme and sensitizes the enzyme toward its gaseous activators nitric oxide or carbon monoxide. In other studies the administration of YC-1 to experimental animals resulted in the inhibition of the platelet-rich thrombosis and a decrease of the mean arterial pressure, which correlated with increased cGMP levels. However, details of YC-1 interaction with sGC and enzyme activation are incomplete. Although evidence in the literature indicates that YC-1 activation of sGC is strictly heme-dependent, this report presents evidence for both heme-dependent and heme-independent activation of sGC by YC-1. The oxidation of the sGC heme by 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one completely inhibited the response to NO, but only partially attenuated activation by YC-1. We also observed activation by YC-1 of a mutant sGC, which lacks heme. These findings indicate that YC-1 activation of sGC can occur independently of heme, but that activation is substantially increased when the heme moiety is present in the enzyme.

  12. Decursin Isolated from Angelica gigas Nakai Rescues PC12 Cells from Amyloid β-Protein-Induced Neurotoxicity through Nrf2-Mediated Upregulation of Heme Oxygenase-1: Potential Roles of MAPK

    Directory of Open Access Journals (Sweden)

    Li Li

    2013-01-01

    Full Text Available Decursin (D, purified from Angelica gigas Nakai, has been proven to exert neuroprotective property. Previous study revealed that D reduced Aβ25‒35-induced cytotoxicity in PC12 cells. Our study explored the underlying mechanisms by which D mediates its therapeutic effects in vitro. Pretreatment of cells with D diminished intracellular generation of ROS in response to Aβ25‒35. Western blot revealed that D significantly increased the expression and activity of HO-1, which was correlated with its protection against Aβ25‒35-induced injury. Addition of ZnPP, an HO-1 competitive inhibitor, significantly attenuated its protective effect in Aβ25‒35-treated cells, indicating the vital role of HO-1 resistance to oxidative injury. Moreover, D induced Nrf2 nuclear translocation, the upstream of HO-1 expression. While investigating the signaling pathways responsible for HO-1 induction, D activated ERK and dephosphorylated p38 in PC12 cells. Addition of U0126, a selective inhibitor of ERK, blocked D-induced Nrf2 activation and HO-1 induction and meanwhile reversed the protection of D against Aβ25‒35-induced cell death. These findings suggest D augments cellular antioxidant defense capacity through both intrinsic free radical scavenging activity and activation of MAPK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction, thereby protecting the PC12 cells from Aβ25‒35-induced oxidative cytotoxicity.

  13. Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis

    Science.gov (United States)

    Iolascon, Achille; De Falco, Luigia; Beaumont, Carole

    2009-01-01

    Microcytic anemia is the most commonly encountered anemia in general medical practice. Nutritional iron deficiency and β thalassemia trait are the primary causes in pediatrics, whereas bleeding disorders and anemia of chronic disease are common in adulthood. Microcytic hypochromic anemia can result from a defect in globin genes, in heme synthesis, in iron availability or in iron acquisition by the erythroid precursors. These microcytic anemia can be sideroblastic or not, a trait which reflects the implications of different gene abnormalities. Iron is a trace element that may act as a redox component and therefore is integral to vital biological processes that require the transfer of electrons as in oxygen transport, oxidative phosphorylation, DNA biosynthesis and xenobiotic metabolism. However, it can also be pro-oxidant and to avoid its toxicity, iron metabolism is strictly controlled and failure of these control systems could induce iron overload or iron deficient anemia. During the past few years, several new discoveries mostly arising from human patients or mouse models have highlighted the implication of iron metabolism components in hereditary microcytic anemia, from intestinal absorption to its final inclusion into heme. In this paper we will review the new information available on the iron acquisition pathway by developing erythrocytes and its regulation, and we will consider only inherited microcytosis due to heme synthesis or to iron metabolism defects. This information could be useful in the diagnosis and classification of these microcytic anemias. PMID:19181781

  14. Alterations in the heme biosynthetic pathway as an index of exposure to toxins

    Energy Technology Data Exchange (ETDEWEB)

    Marks, G.S.; Zelt, D.T.; Cole, S.P.

    1982-07-01

    Under normal circumstances the heme biosynthetic pathway is carefully controlled and porphyrins are formed in only trace amounts. When control mechanisms are disturbed by xenobiotics, porphyrins may be formed and serve as a signal of the interaction between a xenobiotic and the heme biosynthetic pathway. For example, porphyrinuria was an early manifestation of a hexachlorobenzene-induced porphyria outbreak in Turkey. In humans exposed to polybrominated biphenyls and to 2,3,7,8-tetrachlorodibenzo-p-dioxin the urinary porphyrin pattern was significantly different from normal in a large number of exposed individuals. The question is raised whether measurement of urinary porphyrin profiles by improved methods will enable an estimate to be made of the extent of exposure to haloaromatic hydrocarbons in the human population. A wide variety of xenobiotics interact with the prosthetic heme of cytochrome P-450 forming novel N-alkylporphyrins. Identification of these N-alkylporphyrins in body fluids might provide a means of assessing exposure to a variety of xenobiotics in human populations.

  15. Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis.

    Science.gov (United States)

    Iolascon, Achille; De Falco, Luigia; Beaumont, Carole

    2009-03-01

    Microcytic anemia is the most commonly encountered anemia in general medical practice. Nutritional iron deficiency and beta thalassemia trait are the primary causes in pediatrics, whereas bleeding disorders and anemia of chronic disease are common in adulthood. Microcytic hypochromic anemia can result from a defect in globin genes, in heme synthesis, in iron availability or in iron acquisition by the erythroid precursors. These microcytic anemia can be sideroblastic or not, a trait which reflects the implications of different gene abnormalities. Iron is a trace element that may act as a redox component and therefore is integral to vital biological processes that require the transfer of electrons as in oxygen transport, oxidative phosphorylation, DNA biosynthesis and xenobiotic metabolism. However, it can also be pro-oxidant and to avoid its toxicity, iron metabolism is strictly controlled and failure of these control systems could induce iron overload or iron deficient anemia. During the past few years, several new discoveries mostly arising from human patients or mouse models have highlighted the implication of iron metabolism components in hereditary microcytic anemia, from intestinal absorption to its final inclusion into heme. In this paper we will review the new information available on the iron acquisition pathway by developing erythrocytes and its regulation, and we will consider only inherited microcytosis due to heme synthesis or to iron metabolism defects. This information could be useful in the diagnosis and classification of these microcytic anemias.

  16. Introduction of a covalent histidine-heme linkage in a hemoglobin: a promising tool for heme protein engineering.

    Science.gov (United States)

    Rice, Selena L; Preimesberger, Matthew R; Johnson, Eric A; Lecomte, Juliette T J

    2014-12-01

    The hemoglobins of the cyanobacteria Synechococcus and Synechocystis (GlbNs) are capable of spontaneous and irreversible attachment of the b heme to the protein matrix. The reaction, which saturates the heme 2-vinyl by addition of a histidine residue, is reproduced in vitro by preparing the recombinant apoprotein, adding ferric heme, and reducing the iron to the ferrous state. Spontaneous covalent attachment of the heme is potentially useful for protein engineering purposes. Thus, to explore whether the histidine-heme linkage can serve in such applications, we attempted to introduce it in a test protein. We selected as our target the heme domain of Chlamydomonas eugametos LI637 (CtrHb), a eukaryotic globin that exhibits less than 50% sequence identity with the cyanobacterial GlbNs. We chose two positions, 75 in the FG corner and 111 in the H helix, to situate a histidine near a vinyl group. We characterized the proteins with gel electrophoresis, absorbance spectroscopy, and NMR analysis. Both T111H and L75H CtrHbs reacted upon reduction of the ferric starting material containing cyanide as the distal ligand to the iron. With L75H CtrHb, nearly complete (>90%) crosslinking was observed to the 4-vinyl as expected from the X-ray structure of wild-type CtrHb. Reaction of T111H CtrHb also occurred at the 4-vinyl, in a 60% yield indicating a preference for the flipped heme orientation in the starting material. The work suggests that the His-heme modification will be applicable to the design of proteins with a non-dissociable heme group. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Implication for using heme methyl hyperfine shifts as indicators of heme seating as related to stereoselectivity in the catabolism of heme by heme oxygenase: in-plane heme versus axial his rotation.

    Science.gov (United States)

    Ogura, Hiroshi; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2008-01-08

    The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.

  18. Cosmological perturbations in antigravity

    Science.gov (United States)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  19. Perturbed S3 neutrinos

    DEFF Research Database (Denmark)

    jora, Renata; Schechter, Joseph; Naeem Shahid, M.

    2009-01-01

    We study the effects of the perturbation which violates the permutation symmetry of three Majorana neutrinos but preserves the well known (23) interchange symmetry. This is done in the presenceof an arbitrary Majorana phase which serves to insure the degeneracy of the three neutrinos...

  20. Fill-tube-induced mass perturbations on x-ray-driven, ignition-scale, inertial-confinement-fusion capsule shells and the implications for ignition experiments.

    Science.gov (United States)

    Bennett, G R; Herrmann, M C; Edwards, M J; Spears, B K; Back, C A; Breden, E W; Christenson, P J; Cuneo, M E; Dannenburg, K L; Frederick, C; Keller, K L; Mulville, T D; Nikroo, A; Peterson, K; Porter, J L; Russell, C O; Sinars, D B; Smith, I C; Stamm, R M; Vesey, R A

    2007-11-16

    On the first inertial-confinement-fusion ignition facility, the target capsule will be DT filled through a long, narrow tube inserted into the shell. microg-scale shell perturbations Delta m' arising from multiple, 10-50 microm-diameter, hollow SiO2 tubes on x-ray-driven, ignition-scale, 1-mg capsules have been measured on a subignition device. Simulations compare well with observation, whence it is corroborated that Delta m' arises from early x-ray shadowing by the tube rather than tube mass coupling to the shell, and inferred that 10-20 microm tubes will negligibly affect fusion yield on a full-ignition facility.

  1. Analysis of superconductivity induced by on-site coulomb repulsion on three-dimensional cubic lattice. Based on third order perturbation theory

    CERN Document Server

    Fukazawa, H; Yamada, K

    2003-01-01

    We evaluate the dominant superconducting pairing symmetry in 3-dimensional cubic lattice structures within the third-order perturbation theory with respect to the on-site coulomb repulsion. We show that the third-order vertex correction term, which has a critical contribution to the p-wave state in the 2-dimensional systems, is also important in the 3-dimensional system. In the three dimensional systems, we obtain the superconducting transition temperature T sub c about one-order lower than that in 2-dimensional systems. This result suggests that magnetic ground states are dominant in the usual 3-dimensional system in accordance with the experimental observation. However there exist heavy fermion systems where the magnetic order is suppressed by the Kondo effect. Thus, our theory can be applied to the heavy fermion system and well explain the superconductivity in the system. (author)

  2. Immunolocalization of heme oxygenase-1 in periodontal diseases

    Directory of Open Access Journals (Sweden)

    G Gayathri

    2014-01-01

    Conclusion: The results of our study is an increasing evidence of involvement of antioxidant enzymes like heme oxygenase-1 in periodontal inflammation and their implication for treatment of chronic periodontitis.

  3. Heme Deficiency in Alzheimer's Disease: A Possible Connection to Porphyria

    Science.gov (United States)

    Dwyer, Barney E.; Stone, Meghan L.; Zhu, Xiongwei; Perry, George; Smith, Mark A.

    2006-01-01

    Mechanisms that cause Alzheimer's disease (AD), an invariably fatal neurodegenerative disease, are unknown. Important recent data indicate that neuronal heme deficiency may contribute to AD pathogenesis. If true, factors that contribute to the intracellular heme deficiency could potentially alter the course of AD. The porphyrias are metabolic disorders characterized by enzyme deficiencies in the heme biosynthetic pathway. We hypothesize that AD may differ significantly in individuals possessing the genetic trait for an acute hepatic porphyria. We elaborate on this hypothesis and briefly review the characteristics of the acute hepatic porphyrias that may be relevant to AD. We note the proximity of genes encoding enzymes of the heme biosynthesis pathway to genetic loci linked to sporadic, late-onset AD. In addition, we suggest that identification of individuals carrying the genetic trait for acute porphyria may provide a unique resource for investigating AD pathogenesis and inform treatment and management decisions. PMID:17047301

  4. Structure of the Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme and enzymatic inactivation by mutation of the heme coordinating residue His-193

    Energy Technology Data Exchange (ETDEWEB)

    Suits,M.; Jaffer, N.; Jia, Z.

    2006-01-01

    Heme oxygenases catalyze the oxidation of heme to biliverdin, CO, and free iron. For pathogenic microorganisms, heme uptake and degradation are critical mechanisms for iron acquisition that enable multiplication and survival within hosts they invade. Here we report the first crystal structure of the pathogenic Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme at 1.45 {angstrom} resolution. When compared with other heme oxygenases, ChuS has a unique fold, including structural repeats and a {beta}-sheet core. Not surprisingly, the mode of heme coordination by ChuS is also distinct, whereby heme is largely stabilized by residues from the C-terminal domain, assisted by a distant arginine from the N-terminal domain. Upon heme binding, there is no large conformational change beyond the fine tuning of a key histidine (His-193) residue. Most intriguingly, in contrast to other heme oxygenases, the propionic side chains of heme are orientated toward the protein core, exposing the {alpha}-meso carbon position where O{sub 2} is added during heme degradation. This unique orientation may facilitate presentation to an electron donor, explaining the significantly reduced concentration of ascorbic acid needed for the reaction. Based on the ChuS-heme structure, we converted the histidine residue responsible for axial coordination of the heme group to an asparagine residue (H193N), as well as converting a second histidine to an alanine residue (H73A) for comparison purposes. We employed spectral analysis and CO measurement by gas chromatography to analyze catalysis by ChuS, H193N, and H73A, demonstrating that His-193 is the key residue for the heme-degrading activity of ChuS.

  5. FORUM: Bioinspired Heme, Heme/non-heme Diiron, Heme/copper and Inorganic NOx Chemistry: ·NO(g) Oxidation, Peroxynitrite-Metal Chemistry and ·NO(g) Reductive Coupling

    Science.gov (United States)

    Schopfer, Mark P.; Wang, Jun; Karlin, Kenneth D.

    2010-01-01

    The focus of this Forum review highlights work from our own laboratories and those of others in the area of biochemical and biologically inspired inorganic chemistry dealing with nitric oxide (nitrogen monoxide, ·NO(g)) and its biological roles and reactions. The latter focus is on (i) oxidation of ·NO(g) to nitrate by nitric oxide dioxygenases (NOD’s), and (ii) reductive coupling of two molecules of ·NO(g) to give N2O(g). In the former case, NOD’s are described and the highlighting of possible peroxynitrite-heme intermediates and consequences of this are given by discussion of recent works with myoglobin and a synthetic heme model system for NOD action. Summaries of recent copper complex chemistries with ·NO(g) and O2(g) leading to peroxynitrite species are given. The coverage of biological reductive coupling of ·NO(g) deals with bacterial nitric oxide reductases (NOR’s) with heme/non-heme diiron active sites, and on heme/Cu oxidases such as cytochrome c oxidase which can mediate the same chemistry. Recent designed protein and synthetic model compound (heme/non-heme diiron or heme/copper) as functional mimics are discussed in some detail. We also highlight examples from the chemical literature, not necessarily involving biologically relevant metal ions, which describe the oxidation of ·NO(g) to nitrate (or nitrite) and possible peroxynitrite intermediates, or reductive coupling of ·NO(g) to give nitrous oxide. PMID:20666386

  6. Isocyanides inhibit human heme oxygenases at the verdoheme stage.

    Science.gov (United States)

    Evans, John P; Kandel, Sylvie; Ortiz de Montellano, Paul R

    2009-09-22

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides, isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 microM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design.

  7. Isocyanides Inhibit Human Heme Oxygenases at the Verdoheme Stage†

    Science.gov (United States)

    Evans, John P.; Kandel, Sylvie; Ortiz de Montellano, Paul R.

    2010-01-01

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides; isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides, and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 μM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design. PMID:19694439

  8. Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Scott Severance

    2010-07-01

    Full Text Available Heme is a cofactor in proteins that function in almost all sub-cellular compartments and in many diverse biological processes. Heme is produced by a conserved biosynthetic pathway that is highly regulated to prevent the accumulation of heme--a cytotoxic, hydrophobic tetrapyrrole. Caenorhabditis elegans and related parasitic nematodes do not synthesize heme, but instead require environmental heme to grow and develop. Heme homeostasis in these auxotrophs is, therefore, regulated in accordance with available dietary heme. We have capitalized on this auxotrophy in C. elegans to study gene expression changes associated with precisely controlled dietary heme concentrations. RNA was isolated from cultures containing 4, 20, or 500 microM heme; derived cDNA probes were hybridized to Affymetrix C. elegans expression arrays. We identified 288 heme-responsive genes (hrgs that were differentially expressed under these conditions. Of these genes, 42% had putative homologs in humans, while genomes of medically relevant heme auxotrophs revealed homologs for 12% in both Trypanosoma and Leishmania and 24% in parasitic nematodes. Depletion of each of the 288 hrgs by RNA-mediated interference (RNAi in a transgenic heme-sensor worm strain identified six genes that regulated heme homeostasis. In addition, seven membrane-spanning transporters involved in heme uptake were identified by RNAi knockdown studies using a toxic heme analog. Comparison of genes that were positive in both of the RNAi screens resulted in the identification of three genes in common that were vital for organismal heme homeostasis in C. elegans. Collectively, our results provide a catalog of genes that are essential for metazoan heme homeostasis and demonstrate the power of C. elegans as a genetic animal model to dissect the regulatory circuits which mediate heme trafficking in both vertebrate hosts and their parasites, which depend on environmental heme for survival.

  9. Characterization of docosahexaenoic acid (DHA)-induced heme oxygenase -1 (HO-1) expression in human cancer cells: the importance of enhanced BTB and CNC homology 1 (Bach1) degradation

    Science.gov (United States)

    Wang, Shuai; Hannafon, Bethany N.; Wolf, Roman F.; Zhou, Jundong; Avery, Jori E.; Wu, Jinchang; Lind, Stuart E.; Ding, Wei-Qun

    2014-01-01

    The effect of DHA on HO-1 expression in cancer cells has never been characterized. This study examines DHA-induced HO-1 expression in human cancer cell model systems. DHA enhanced HO-1 gene expression in a time- and concentration-dependent manner, with maximal induction at 21 hours of treatment. This induction of HO-1 expression was confirmed in vivo using a xenograft nude mouse model fed a fish oil-enriched diet. The increase in HO-1 gene transcription induced by DHA was significantly attenuated by the antioxidant N-Acetyl Cysteine (NAC), suggesting the involvement of oxidative stress. This was supported by direct measurement of lipid peroxide levels after DHA treatment. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs) that mediate the DHA-induced increase in HO-1 gene transcription. Knockdown of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression compromised the DHA-induced increase in HO-1 gene transcription, indicating the importance of the Nrf2 pathway in this event. However, the protein levels of Nrf2 remained unchanged upon DHA treatment. Further studies demonstrated that DHA reduces nuclear Bach1 protein expression by promoting its degradation and attenuates Bach1 binding to the AREs in the HO-1 gene promoter. In contrast, DHA enhanced Nrf2 binding to the AREs without affecting nuclear Nrf2 expression levels, indicating a new cellular mechanism that mediates DHA’s induction of HO-1 gene transcription. To our knowledge, this is the first characterization of DHA induced HO-1 expression in human malignant cells. PMID:24613086

  10. Acquisition of iron from transferrin regulates reticulocyte heme synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ponka, P.; Schulman, H.M.

    1985-11-25

    Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up VZFe from (VZFe)SIH and incorporate it into heme to a much greater extent than from saturating concentrations of (VZFe)transferrin. Also, Fe-SIH stimulates (2- UC)glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate VZFe incorporation into heme from either (VZFe)transferrin or (VZFe)SIH but does reverse the inhibition of VZFe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes.

  11. Shu1 is a cell-surface protein involved in iron acquisition from heme in Schizosaccharomyces pombe.

    Science.gov (United States)

    Mourer, Thierry; Jacques, Jean-François; Brault, Ariane; Bisaillon, Martin; Labbé, Simon

    2015-04-17

    Iron is an essential metal cofactor that is required for many biological processes. Eukaryotic cells have consequently developed different strategies for its acquisition. Until now, Schizosaccharomyces pombe was known to use reductive iron uptake and siderophore-bound iron transport to scavenge iron from the environment. Here, we report the identification of a gene designated shu1(+) that encodes a protein that enables S. pombe to take up extracellular heme for cell growth. When iron levels are low, the transcription of shu1(+) is induced, although its expression is repressed when iron levels rise. The iron-dependent down-regulation of shu1(+) requires the GATA-type transcriptional repressor Fep1, which strongly associates with a proximal promoter region of shu1(+) in vivo in response to iron repletion. HA4-tagged Shu1 localizes to the plasma membrane in cells expressing a functional shu1(+)-HA4 allele. When heme biosynthesis is selectively blocked in mutated S. pombe cells, their ability to acquire exogenous hemin or the fluorescent heme analog zinc mesoporphyrin IX is dependent on the expression of Shu1. Further analysis by absorbance spectroscopy and hemin-agarose pulldown assays showed that Shu1 interacts with hemin, with a KD of ∼2.2 μm. Taken together, results reported here revealed that S. pombe possesses an unexpected pathway for heme assimilation, which may also serve as a source of iron for cell growth. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information

    Directory of Open Access Journals (Sweden)

    Hu Jianjun

    2011-05-01

    Full Text Available Abstract Background Accurate prediction of binding residues involved in the interactions between proteins and small ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort has been devoted to the development of various generic algorithms for ligand binding site prediction over the last decade, no algorithm has been specifically designed to complement experimental techniques for identification of heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing these important residues. Results Here we introduced an efficient algorithm HemeBIND for predicting heme binding residues by integrating structural and sequence information. We systematically investigated the characteristics of binding interfaces based on a non-redundant dataset of heme-protein complexes. It was found that several sequence and structural attributes such as evolutionary conservation, solvent accessibility, depth and protrusion clearly illustrate the differences between heme binding and non-binding residues. These features can then be separately used or combined to build the structure-based classifiers using support vector machine (SVM. The results showed that the information contained in these features is largely complementary and their combination achieved the best performance. To further improve the performance, an attempt has been made to develop a post-processing procedure to reduce the number of false positives. In addition, we built a sequence-based classifier based on SVM and sequence profile as an alternative when only sequence information can be used. Finally, we employed a voting method to combine the outputs of structure-based and sequence-based classifiers, which demonstrated remarkably better performance than the individual classifier alone

  13. Chemical modification of lysine residues in cytochrome P450LM2 (P450IIB4): influence on heme liganding of arylamines.

    Science.gov (United States)

    Golly, I; Hlavica, P

    1992-01-01

    Treatment of cytochrome P450LM2 with fluorescein isothiocyanate to introduce up to two equivalents of fluorophore per polypeptide chain resulted in the selective derivatization of lysine residues. CD-spectral measurements revealed the overall conformation as well as the immediate heme environment of the hemoprotein to remain unaffected by attachment of the label. Modification caused decreased affinity of p-phenylenediamine and other 4-substituted anilines for the heme site, whereas there was a rise in the extent of substrate interaction. Experiments with pigment containing acetylated lysines gave analogous results, suggesting that the observed phenomenon was due to charge neutralization. There was linear correlation between the Hammett sigma P values and both the optical dissociation constants for arylamine binding to intact enzyme and the dipole moments of the anilines, indicating that basicity along with electronic factors controlled heme liganding; lipophilicity appeared to be of minor importance. Introduction of fluorescein isothiocyanate into the oxygenase was found to influence the bond-making process through modulating basicity of the nitrogenous compounds, but perturbation of optimal spacial orientation of the amine nitrogen toward the heme iron also might have been operative. The lysines studied seem to represent metabolically inactive elements of the substrate channel located on the cytosolic surface of the aggregates, as evidenced by steady-state fluorescence measurements. A hydrophilic segment in the cytochrome P450LM2 molecule that would accommodate the critical residues is discussed.

  14. Quantum radiation from superluminal refractive-index perturbations.

    Science.gov (United States)

    Belgiorno, F; Cacciatori, S L; Ortenzi, G; Sala, V G; Faccio, D

    2010-04-09

    We analyze in detail photon production induced by a superluminal refractive-index perturbation in realistic experimental operating conditions. The interaction between the refractive-index perturbation and the quantum vacuum fluctuations of the electromagnetic field leads to the production of photon pairs.

  15. Perturbations in warm inflation

    Energy Technology Data Exchange (ETDEWEB)

    de Oliveira, H. P.; Joras, S. E.

    2001-09-15

    Warm inflation is an interesting possibility to describe the early universe, whose basic feature is the absence, at least in principle, of a preheating or reheating phase. Here we analyze the dynamics of warm inflation generalizing the usual slow-roll parameters that are useful for characterizing the inflationary phase. We study the evolution of entropy and adiabatic perturbations, where the main result is that for a very small amount of dissipation the entropy perturbations can be neglected and the purely adiabatic perturbations will be responsible for the primordial spectrum of inhomogeneities. Taking into account the Cosmic Background Explorer Differential Microwave Radiometer data of the cosmic microwave background anisotropy as well as the fact that the interval of inflation for which the scales of astrophysical interest cross outside the Hubble radius is about 50 e-folds before the end of inflation, we could estimate the magnitude of the dissipation term. It is also possible to show that at the end of inflation the universe is hot enough to provide a smooth transition to the radiation era.

  16. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells

    Directory of Open Access Journals (Sweden)

    Kaori Yama

    2015-04-01

    Full Text Available Epalrestat (EPS is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH in rat Schwann cells. GSH plays a crucial role in protecting endothelial cells from oxidative stress, thereby preventing vascular diseases. Here we show that EPS increases GSH levels in not only Schwann cells but also endothelial cells. Treatment of bovine aortic endothelial cells (BAECs, an in vitro model of the vascular endothelium, with EPS caused a dramatic increase in intracellular GSH levels. This was concomitant with the up-regulation of glutamate cysteine ligase, an enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Moreover, EPS stimulated the expression of thioredoxin and heme oxygenase-1, which have important redox regulatory functions in endothelial cells. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that regulates the expression of antioxidant genes. EPS increased nuclear Nrf2 levels in BAECs. Nrf2 knockdown by siRNA suppressed the EPS-induced glutamate cysteine ligase, thioredoxin-1, and heme oxygenase-1 expression. Interestingly, LY294002, an inhibitor of phosphatidylinositol 3-kinase, abolished the EPS-stimulated GSH synthesis, suggesting that the kinase is associated with Nrf2 activation induced by EPS. Furthermore, EPS reduced the cytotoxicity induced by H2O2 and tert-butylhydroperoxide, indicating that EPS plays a role in protecting cells from oxidative stress. Taken together, the results provide evidence that EPS exerts new beneficial effects on endothelial cells by increasing GSH, thioredoxin, and heme oxygenase-1 levels through the activation of Nrf2. We suggest that EPS has the potential to prevent several vascular diseases caused by oxidative stress.

  17. Ophiobolin A from Bipolaris oryzae Perturbs Motility and Membrane Integrities of Porcine Sperm and Induces Cell Death on Mammalian Somatic Cell Lines

    Directory of Open Access Journals (Sweden)

    Ottó Bencsik

    2014-09-01

    Full Text Available Bipolaris oryzae is a phytopathogenic fungus causing a brown spot disease in rice, and produces substance that strongly perturbs motility and membrane integrities of boar spermatozoa. The substance was isolated from the liquid culture of the fungal strain using extraction and a multi-step semi-preparative HPLC procedures. Based on the results of mass spectrometric and 2D NMR techniques, the bioactive molecule was identified as ophiobolin A, a previously described sesterterpene-type compound. The purified ophiobolin A exhibited strong motility inhibition and viability reduction on boar spermatozoa. Furthermore, it damaged the sperm mitochondria significantly at sublethal concentration by the dissipation of transmembrane potential in the mitochondrial inner membrane, while the plasma membrane permeability barrier remained intact. The study demonstrated that the cytotoxicity of ophiobolin A toward somatic cell lines is higher by 1–2 orders of magnitude compared to other mitochondriotoxic mycotoxins, and towards sperm cells unique by replacing the progressive motility by shivering tail beating at low exposure concentration.

  18. HEME OXYGENASE-1 AND FATTY LIVER DISEASE.

    Directory of Open Access Journals (Sweden)

    Daniela Nicolosi

    2016-04-01

    Full Text Available Fatty liver diseases are a spectrum of liver pathologies characterized by abnormal hepatocellular accumulations of lipids. This condition may occur in both adults and children, particularly those who are obese or have insulin resistance or following abuse of alcohol consumption. They are classified in Non-Alcoholic Fatty Liver Disease (NAFLD and Alcoholic Fatty Liver Disease (AFLD. Steatohepatitis is a specific pattern of injury within the spectrum of NAFLD and this pattern is associated with fibrotic progression and cirrhosis. The role of oxidative stress in liver steatosis production and its progression to inflammation leading to steatohepatitis has been discussed in relation to alterations in metabolic and pro-inflammatory pathway. One of the main enzymes responsible for antioxidant activity in the presence of liver damage is the Heme Oxygenase-1(HO-1.The products of the HO-1-catalyzed reaction, particularly carbon monoxide (CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage in various experimental models. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against fatty liver diseases.

  19. Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury

    OpenAIRE

    Amersi, Farin; Buelow, Roland; Kato, Hirohisa; Ke, Bibo; Coito, Ana J.; Shen, Xiu-Da; Zhao, Delai; Zaky, Joseph; Melinek, Judy; Lassman, Charles R.; Kolls, Jay K.; Alam, J.; Ritter, Thomas; Volk, Hans-Dieter; Farmer, Douglas G.

    1999-01-01

    We examined the effects of upregulation of heme oxygenase-1 (HO-1) in steatotic rat liver models of ex vivo cold ischemia/reperfusion (I/R) injury. In the model of ischemia/isolated perfusion, treatment of genetically obese Zucker rats with the HO-1 inducer cobalt protoporphyrin (CoPP) or with adenoviral HO-1 (Ad-HO-1) significantly improved portal venous blood flow, increased bile production, and decreased hepatocyte injury. Unlike in untreated rats or those pretreated with the HO-1 inhibito...

  20. Stabilization of cytochrome b5 by a conserved tyrosine in the secondary sphere of heme active site: A spectroscopic and computational study

    Science.gov (United States)

    Hu, Shan; He, Bo; Wang, Xiao-Juan; Gao, Shu-Qin; Wen, Ge-Bo; Lin, Ying-Wu

    2017-03-01

    Heme proteins perform a large array of biological functions, with the heme group bound non-covalently or covalently. To probe the stabilization role of conserved tyrosine residue in the secondary sphere of heme site in heme proteins, we herein used cytochrome b5 (Cyt b5) as a model protein, and mutated Tyr30 to Phe or His by removal of Tyr30 associated H-bond network and hydrophobic interaction. We performed thermal-induced unfolding studies for the two mutants, Y30F Cyt b5 and Y30H Cyt b5, as monitored by both UV-Vis and CD spectroscopy, as well as heme transfer studies from these proteins to apo-myoglobin, with wild-type Cyt b5 under the same conditions for comparison. The reduced stability of both mutants indicates that both the H-bonding and hydrophobic interactions associated with Tyr30 contribute to the protein stability. Moreover, we performed molecular modeling studies, which revealed that the hydrophobic interaction in the local region of Y30F Cyt b5 was well-remained, whereas Y30H Cyt b5 formed an H-bond network. These observations suggest that the conserved Tyr30 in Cyt b5 is not replaceable due to the presence of both the H-bond network and hydrophobic interaction in the secondary sphere of the heme active site. As demonstrated here for Cyt b5, it may be of practical importance for design of artificial heme proteins by engineering a Tyr in the secondary sphere with improved properties and functions.

  1. Human heme oxygenase-1 efficiently catabolizes heme in the absence of biliverdin reductase.

    Science.gov (United States)

    Reed, James R; Huber, Warren J; Backes, Wayne L

    2010-11-01

    Heme oxygenase 1 (HO-1) uses molecular oxygen and electrons from NADPH cytochrome P450 reductase to convert heme to CO, ferrous iron, and biliverdin (BV). Enzymatic studies with the purified 30-kDa form of HO-1 routinely use a coupled assay containing biliverdin reductase (BVR), which converts BV to bilirubin (BR). BVR is believed to be required for optimal HO-1 activity. The goal of this study was to determine whether HO-1 activity could be monitored directly by following BV generation or iron release (using the ferrous iron chelator, ferrozine) in the absence of BVR. Using assays for each of the three end products, we found that HO-1 activity was stimulated in the presence of catalase and comparable rates were measured with each assay. Absorbance scans revealed characteristic spectra for BR, BV, and/or the ferrozine-iron complex. The optimal conditions were slightly different for the direct and coupled assays. BSA activated the coupled but inhibited the direct assays, and the assays had different pH optima. By measuring the activity of BVR directly using BV as a substrate, these differences were attributed to different enzymatic properties of BVR and HO-1. Thus, BVR is not needed to measure the activity of HO-1 when catalase is present. In fact, the factors affecting catalysis by HO-1 are better understood using the direct assays because the coupled assay can be influenced by properties of BVR.

  2. Determination of heme in microorganisms using HPLC-MS/MS and cobalt(III) protoporphyrin IX inhibition of heme acquisition in Escherichia coli.

    Science.gov (United States)

    Fyrestam, Jonas; Östman, Conny

    2017-10-17

    One of the main threats to the achievements in modern medicine is antimicrobial resistance. Molecular targeting of bacterial acquisition mechanisms of heme has been suggested to be an alternative to antibiotics. In the present study, HPLC-MS/MS combined with a simple clean-up based on liquid-liquid extraction has been developed and evaluated for simultaneous determination of heme and porphyrin heme precursors in microorganisms. Experimental design was used to optimize the extraction parameters, to obtain a method with high recovery, low matrix effects, and high precision. The effects of additives in the culture medium on the biosynthesis of heme were studied using Escherichia coli as a model microorganism. 5-Aminolaevulinic acid and hemin increased the heme concentration in E. coli by a factor of 1.5 and 4.5, respectively. Addition of 5-aminolaevulinic acid bypassed the E. coli negative feedback control of heme biosynthesis, which led to high amounts of intracellular porphyrins. The high heme concentration obtained when hemin was used as a culture additive shows that E. coli has an uptake of heme from its surroundings. In contrast, addition of cobalt protoporphyrin IX to the growth medium reduced the amount of heme in E. coli, demonstrating this compound's ability to mimic real heme and inhibit the heme acquisition mechanisms.

  3. A finite element perturbation method for computing fluid-induced forces on a certrifugal impeller rotating and whirling in a volute casing

    NARCIS (Netherlands)

    Jonker, Jan B.; van Essen, T.G.; van Essen, T.G.

    1997-01-01

    A finite element based method has been developed for computing time-averaged fluid-induced radial excitation forces and rotor dynamic forces on a two-dimensional centrifugal impeller rotating and whirling in a volute casing. In this method potential flow theory is used, which implies the assumption

  4. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Meseda, Clement A. [Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Srinivasan, Kumar [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Wise, Jasen [Qiagen, Frederick, MD (United States); Catalano, Jennifer [Center for Tobacco Products, Food and Drug Administration, Bethesda, MD (United States); Yamada, Kenneth M. [National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Dhawan, Subhash, E-mail: subhash.dhawan@fda.hhs.gov [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2014-11-07

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection.

  5. Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease.

    Science.gov (United States)

    Krishnamoorthy, Sriram; Pace, Betty; Gupta, Dipti; Sturtevant, Sarah; Li, Biaoru; Makala, Levi; Brittain, Julia; Moore, Nancy; Vieira, Benjamin F; Thullen, Timothy; Stone, Ivan; Li, Huo; Hobbs, William E; Light, David R

    2017-10-19

    Sickle cell disease (SCD) results from a point mutation in the β-globin gene forming hemoglobin S (HbS), which polymerizes in deoxygenated erythrocytes, triggering recurrent painful vaso-occlusive crises and chronic hemolytic anemia. Reactivation of fetal Hb (HbF) expression ameliorates these symptoms of SCD. Nuclear factor (erythroid derived-2)-like 2 (Nrf2) is a transcription factor that triggers cytoprotective and antioxidant pathways to limit oxidative damage and inflammation and increases HbF synthesis in CD34+ stem cell-derived erythroid progenitors. We investigated the ability of dimethyl fumarate (DMF), a small-molecule Nrf2 agonist, to activate γ-globin transcription and enhance HbF in tissue culture and in murine and primate models. DMF recruited Nrf2 to the γ-globin promoters and the locus control region of the β-globin locus in erythroleukemia cells, elevated HbF in SCD donor-derived erythroid progenitors, and reduced hypoxia-induced sickling. Chronic DMF administration in SCD mice induced HbF and increased Nrf2-dependent genes to detoxify heme and limit inflammation. This improved hematological parameters, reduced plasma-free Hb, and attenuated inflammatory markers. Chronic DMF administration to nonanemic primates increased γ-globin mRNA in BM and HbF protein in rbc. DMF represents a potential therapy for SCD to induce HbF and augment vasoprotection and heme detoxification.

  6. Approximation and perturbation methods

    CERN Document Server

    Iyer, B R

    1993-01-01

    Few problems in nature are amenable to an exact solution and hence when one proceeds from elegant problems of theory to messy complicated problems of practice one is forced to recourse to methods of approximation and perturbation. The development of such techniques has been natural in attempts to extract physically verifiable consequences from either exact solutions of general relativity or from specific astrophysical systems for which an exact solution is impossible to find. However, this should not be taken to imply giving up of mathematical rigour and an appeal to only physical intuition.

  7. Perturbative quantum chromodynamics

    CERN Document Server

    1989-01-01

    This book will be of great interest to advanced students and researchers in the area of high energy theoretical physics. Being the most complete and updated review volume on Perturbative QCD, it serves as an extremely useful textbook or reference book. Some of the reviews in this volume are the best that have been written on the subject anywhere. Contents: Factorization of Hard Processes in QCD (J C Collins, D E Soper & G Sterman); Exclusive Processes in Quantum Chromodynamics (S J Brodsky & G P Lepage); Coherence and Physics of QCD Jets (Yu L Dokshitzer, V A Khoze & S I Troyan); Pomeron in Qu

  8. DNA Protecting Activities of Nymphaea nouchali (Burm. f Flower Extract Attenuate t-BHP-Induced Oxidative Stress Cell Death through Nrf2-Mediated Induction of Heme Oxygenase-1 Expression by Activating MAP-Kinases

    Directory of Open Access Journals (Sweden)

    Md Badrul Alam

    2017-09-01

    Full Text Available This study was performed to investigate the antioxidant activities of Nymphaea nouchali flower (NNF extract and the underlying mechanism using RAW 264.7 cells. The presence of gallic acid, catechin, epicatechin, epigallocatechin, epicatechin gallate, caffeic acid, quercetin, and apigenin in the NNF was confirmed by high-performance liquid chromatography (HPLC. The extract had a very potent capacity to scavenge numerous free radicals. NNF extract was also able to prevent DNA damage and quench cellular reactive oxygen species (ROS generation induced by tert-Butyl hydroperoxide (t-BHP with no signs of toxicity. The NNF extract was able to augment the expression of both primary and phase II detoxifying enzyme, resulting in combat the oxidative stress. This is accomplished by phosphorylation of mitogen-activated protein kinase (MAP kinase (p38 kinase and extracellular signal-regulated kinase (ERK followed by enhancing the nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2. This attenuates cellular ROS generation and confers protection from cell death. Altogether, the results of current study revealed that Nymphaea nouchali flower could be a source of natural phytochemicals that could lead to the development of new therapeutic agents for preventing oxidative stress associated diseases and attenuating disease progression.

  9. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Lectin from Abelmoschus esculentus reduces zymosan-induced temporomandibular joint inflammatory hypernociception in rats via heme oxygenase-1 pathway integrity and tnf-α and il-1β suppression.

    Science.gov (United States)

    Freitas, Raul Sousa; do Val, Danielle Rocha; Fernandes, Maria Ester Frota; Gomes, Francisco Isaac Fernandes; de Lacerda, José Thalles Jocelino Gomes; SantiGadelha, Tatiane; de Almeida Gadelha, Carlos Alberto; de Paulo Teixeira Pinto, Vicente; Cristino-Filho, Gerardo; Pereira, Karuza Maria Alves; de Castro Brito, Gerly Anne; Bezerra, Mirna Marques; Chaves, Hellíada Vasconcelos

    2016-09-01

    Temporomandibular joint (TMJ) disorders show inflammatory components, heavily impacting on quality of life. Abelmoschus esculentus is largely cultivated in Northeastern Brazil for medicinal purposes, having it shown anti-inflammatory activity. We evaluated A. esculentus lectin (AEL) efficacy in reducing zymosan-induced temporomandibular joint inflammatory hypernociception in rats along with the mechanism of action through which it exerts anti-inflammatory activity. Animals were pre-treated with AEL (0.01, 0.1 or 1mg/kg) before zymosan (Zy) injection in the TMJ to determine anti-inflammatory activity. To analyse the possible effect of the hemeoxygenase-1 (HO-1) and the nitric oxide (NO) pathways on AEL efficacy, animals were pre-treated with ZnPP-IX (3mg/kg), a specific HO-1 inhibitor, or aminoguanidine (30mg/kg), a selective iNOS inhibitor, before AEL administration. Von Frey test evaluated inflammatory hypernociception, synovial fluid collection was performed to determine leukocyte counting and myeloperoxidase (MPO) activity 6h after Zy injection, and Evans Blue extravasation determined vascular permeability. TMJ tissue was collected for histopathological analysis (H&E) and immunohistochemistry (TNF-α, IL-1β, HO-1). In addition, TMJ tissue and trigeminal ganglion collection was performed for TNF-α and IL-1β dosage (ELISA). AEL increased inflammatory nociceptive threshold, reduced leukocyte influx along with MPO activity, leukocyte influx into the synovial membrane, and Evans Blue extravasation. It promoted HO-1 overexpression whilst decreased TNF-α and IL-1β expression in the TMJ tissue. AEL reduced TNF-α and IL-1β levels in TMJ tissue and trigeminal ganglion. AEL effects, however, were not observed in the presence of ZnPP-IX. These findings suggest that AEL efficacy depends on TNF-α/IL-1β inhibition and HO-1 pathway integrity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Low heme oxygenase-1 levels in patients with systemic sclerosis are associated with an altered Toll-like receptor response: another role for CXCL4?

    NARCIS (Netherlands)

    Bon, L. van; Cossu, M.; Scharstuhl, A.; Pennings, B.W.; Vonk, M.C.; Vreman, H.J.; Lafyatis, R.L.; Berg, W.B. van den; Wagener, F.A.D.T.G.; Radstake, T.R.

    2016-01-01

    OBJECTIVE: SSc is a disease characterized by inflammation and fibrosis. Heme Oxygenase-1 (HO-1) is a haem-degrading enzyme that mediates resolution of inflammation and is induced upon mediators abundantly present in SSc. We aimed to assess whether HO-1 expression/function is disturbed in SSc

  12. Low heme oxygenase-1 levels in patients with systemic sclerosis are associated with an altered Toll-like receptor response : Another role for CXCL4?

    NARCIS (Netherlands)

    van Bon, Lenny; Cossu, Marta; Scharstuhl, Alwin; Pennings, Bas W C; Vonk, Madelon C.; Vreman, Hendrik J.; Lafyatis, Robert L.; van den Berg, Wim; Wagener, Frank A D T G; Radstake, Timothy R D J

    2016-01-01

    Objective. SSc is a disease characterized by inflammation and fibrosis. Heme Oxygenase-1 (HO-1) is a haem-degrading enzyme that mediates resolution of inflammation and is induced upon mediators abundantly present in SSc. We aimed to assess whether HO-1 expression/function is disturbed in SSc

  13. Heme oxygenase activity correlates with serum indices of iron homeostasis in healthy nonsmokers

    Science.gov (United States)

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirm...

  14. Perturbative and Non-Perturbative Aspects of N=8 Supergravity

    CERN Document Server

    Ferrara, Sergio

    2011-01-01

    Some aspects of quantum properties of N=8 supergravity in four dimensions are discussed for non-practitioners. At perturbative level, they include the Weyl trace anomaly as well as composite duality anomalies, the latter being relevant for perturbative finiteness. At non-perturbative level, we briefly review some facts about extremal black holes, their Bekenstein-Hawking entropy and attractor flows for single- and two-centered solutions.

  15. Toll-like receptors 2 and 4 mediate hyperglycemia induced macrovascular aortic endothelial cell inflammation and perturbation of the endothelial glycocalyx.

    Science.gov (United States)

    Pahwa, Roma; Nallasamy, Palanisamy; Jialal, Ishwarlal

    2016-01-01

    Hyperglycemia-induced inflammation is central to the vascular complications in diabetes. Toll-like receptors (TLRs) are key players in regulating inflammatory responses. There are sparse data on the role of TLR2 and TLR4 in regulating human macrovascular aortic endothelial cells (HMAECs) inflammation and glycocalyx dysfunction under hyperglycemia. We examined the role of TLR2/4 in the above dysfunctions in HMAEC under high glucose (HG) conditions. HMAECs were treated with high or normal glucose and TLR-2, TLR-4, MyD88, IRF3, TRIF, nuclear NF-κB p65, IL-8, IL-1β, TNF-α, MCP-1, ICAM-1, sVCAM-1, monocyte adhesion to HMAECs, heparan sulfate and hyaluronic acid were measured. HG upregulated TLR2 and TLR4 mRNA and protein and increased both MyD88 and non-MyD88 pathways, NF-κB p65, inflammatory biomediators, and monocyte adhesion to HMAECs. Heparan sulfate protein expression was reduced and hyaluronic acid secretion was increased on HG exposure. Inhibition of TLR2 and TLR4 signaling by inhibitory peptides and knockdown of TLR-2 and TLR-4 gene expression by siRNA attenuated HG induced inflammation, leukocyte adhesion and glycocalyx dysfunction. An increase in ROS paralleled the increase in TLR-2/4 and antioxidants treatment reduced TLR-2/4 expression and downstream inflammatory biomediators. Thus hyperglycemia induces HMAEC inflammation and glycocalyx dysfunction through TLR-2/4 pathway activation via increased ROS. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    Science.gov (United States)

    Yeom, Hye-Jung; Koo, Ok Jae; Yang, Jaeseok; Cho, Bumrae; Hwang, Jong-Ik; Park, Sol Ji; Hurh, Sunghoon; Kim, Hwajung; Lee, Eun Mi; Ro, Han; Kang, Jung Taek; Kim, Su Jin; Won, Jae-Kyung; O'Connell, Philip J; Kim, Hyunil; Surh, Charles D; Lee, Byeong-Chun; Ahn, Curie

    2012-01-01

    Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1), an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs). Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  17. Generation and characterization of human heme oxygenase-1 transgenic pigs.

    Directory of Open Access Journals (Sweden)

    Hye-Jung Yeom

    Full Text Available Xenotransplantation using transgenic pigs as an organ source is a promising strategy to overcome shortage of human organ for transplantation. Various genetic modifications have been tried to ameliorate xenograft rejection. In the present study we assessed effect of transgenic expression of human heme oxygenase-1 (hHO-1, an inducible protein capable of cytoprotection by scavenging reactive oxygen species and preventing apoptosis caused by cellular stress during inflammatory processes, in neonatal porcine islet-like cluster cells (NPCCs. Transduction of NPCCs with adenovirus containing hHO-1 gene significantly reduced apoptosis compared with the GFP-expressing adenovirus control after treatment with either hydrogen peroxide or hTNF-α and cycloheximide. These protective effects were diminished by co-treatment of hHO-1 antagonist, Zinc protoporphyrin IX. We also generated transgenic pigs expressing hHO-1 and analyzed expression and function of the transgene. Human HO-1 was expressed in most tissues, including the heart, kidney, lung, pancreas, spleen and skin, however, expression levels and patterns of the hHO-1 gene are not consistent in each organ. We isolate fibroblast from transgenic pigs to analyze protective effect of the hHO-1. As expected, fibroblasts derived from the hHO-1 transgenic pigs were significantly resistant to both hydrogen peroxide damage and hTNF-α and cycloheximide-mediated apoptosis when compared with wild-type fibroblasts. Furthermore, induction of RANTES in response to hTNF-α or LPS was significantly decreased in fibroblasts obtained from the hHO-1 transgenic pigs. These findings suggest that transgenic expression of hHO-1 can protect xenografts when exposed to oxidative stresses, especially from ischemia/reperfusion injury, and/or acute rejection mediated by cytokines. Accordingly, hHO-1 could be an important candidate molecule in a multi-transgenic pig strategy for xenotransplantation.

  18. Human heme oxygenase oxidation of 5- and 15-phenylhemes.

    Science.gov (United States)

    Wang, Jinling; Niemevz, Fernando; Lad, Latesh; Huang, Liusheng; Alvarez, Diego E; Buldain, Graciela; Poulos, Thomas L; de Montellano, Paul R Ortiz

    2004-10-08

    Human heme oxygenase-1 (hHO-1) catalyzes the O2-dependent oxidation of heme to biliverdin, CO, and free iron. Previous work indicated that electrophilic addition of the terminal oxygen of the ferric hydroperoxo complex to the alpha-meso-carbon gives 5-hydroxyheme. Earlier efforts to block this reaction with a 5-methyl substituent failed, as the reaction still gave biliverdin IXalpha. Surprisingly, a 15-methyl substituent caused exclusive cleavage at the gamma-meso-rather than at the normal, unsubstituted alpha-meso-carbon. No CO was formed in these reactions, but the fragment cleaved from the porphyrin eluded identification. We report here that hHO-1 cleaves 5-phenylheme to biliverdin IXalpha and oxidizes 15-phenylheme at the alpha-meso position to give 10-phenylbiliverdin IXalpha. The fragment extruded in the oxidation of 5-phenylheme is benzoic acid, one oxygen of which comes from O2 and the other from water. The 2.29- and 2.11-A crystal structures of the hHO-1 complexes with 1- and 15-phenylheme, respectively, show clear electron density for both the 5- and 15-phenyl rings in both molecules of the asymmetric unit. The overall structure of 15-phenylheme-hHO-1 is similar to that of heme-hHO-1 except for small changes in distal residues 141-150 and in the proximal Lys18 and Lys22. In the 5-phenylheme-hHO-1 structure, the phenyl-substituted heme occupies the same position as heme in the heme-HO-1 complex but the 5-phenyl substituent disrupts the rigid hydrophobic wall of residues Met34, Phe214, and residues 26-42 near the alpha-meso carbon. The results provide independent support for an electrophilic oxidation mechanism and support a role for stereochemical control of the reaction regiospecificity.

  19. Giardia intestinalis incorporates heme into cytosolic cytochrome b₅.

    Science.gov (United States)

    Pyrih, Jan; Harant, Karel; Martincová, Eva; Sutak, Robert; Lesuisse, Emmanuel; Hrdý, Ivan; Tachezy, Jan

    2014-02-01

    The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated.

  20. Effect of Phyllanthus amarus Extract on 5-Fluorouracil-Induced Perturbations in Ribonucleotide and Deoxyribonucleotide Pools in HepG2 Cell Line

    Directory of Open Access Journals (Sweden)

    Jian-Ru Guo

    2016-09-01

    Full Text Available The aim of this study was to investigate the antitumor activities of Phyllanthus amarus (PHA and its potential of herb–drug interactions with 5-Fluorouracil (5-FU. Cell viability, ribonucleotides (RNs and deoxyribonucleotides (dRNs levels, cell cycle distribution, and expression of thymidylate synthase (TS and ribonucleotide reductase (RR proteins were measured with 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, high performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS method, flow cytometry and Western blot analysis, respectively. Our standardized PHA extract showed toxicity to HepG2 cells at high concentrations after 72 h exposure and induced G2/M cell cycle arrest. Combined use of 5-FU with PHA resulted in significant decreases in ATP, CTP, GTP, UTP and dTTP levels, while AMP, CMP, GMP and dUMP levels increased significantly compared with use of 5-FU alone. Further, PHA could increase the role of cell cycle arrest at S phase induced by 5-FU. Although PHA alone had no direct impact on TS and RR, PHA could change the levels of RNs and dRNs when combined with 5-FU. This may be due to cell cycle arrest or regulation of key enzyme steps in intracellular RNs and dRNs metabolism.

  1. Antioxidant effects of Etlingera elatior flower extract against lead acetate - induced perturbations in free radical scavenging enzymes and lipid peroxidation in rats

    Directory of Open Access Journals (Sweden)

    Chakravarthi Srikumar

    2011-03-01

    Full Text Available Abstract Background Etlingera elatior or 'pink torch ginger' (Zingiberaceae are widely cultivated in tropical countries and used as spices and food flavoring. The purpose of this study was to evaluate the antioxidant effects of Etlingera elatior against lead - induced changes in serum free radical scavenging enzymes and lipid hydroperoxides in rats. Findings Rats were exposed to lead acetate in drinking water (500 ppm for 14 days alone or plus the ethanol extract of E. elatior (50, 100 and 200 mg/kg. Blood lead levels, lipid hydroperoxides, protein carbonyl contents and oxidative marker enzymes were estimated. Lead acetate in drinking water elicited a significant increase in lipid hydroperoxides (LPO and protein-carbonyl-contents (PCC. There was a significant decrease in total antioxidants, superoxide dismutase, glutathione peroxidase and glutathione S-transferase levels with lead acetate treatment. Supplementation of E. elatior was associated with reduced serum LPO and PCC and a significant increase in total antioxidants and antioxidant enzyme levels. Conclusions The results suggest that flower extract of Etlingera elatior has powerful antioxidant effect against lead - induced oxidative stress and the extract may be useful therapeutic agent against lead toxicity. However, detailed evaluations are required to identify the active antioxidant compounds from this plant extract.

  2. The heme-regulatory motif of nuclear receptor Rev-erbβ is a key mediator of heme and redox signaling in circadian rhythm maintenance and metabolism.

    Science.gov (United States)

    Carter, Eric L; Ramirez, Yanil; Ragsdale, Stephen W

    2017-07-07

    Rev-erbβ is a heme-responsive transcription factor that regulates genes involved in circadian rhythm maintenance and metabolism, effectively bridging these critical cellular processes. Heme binding to Rev-erbβ indirectly facilitates its interaction with the nuclear receptor co-repressor (NCoR1), resulting in repression of Rev-erbβ target genes. Fe 3+ -heme binds in a 6-coordinate complex with axial His and Cys ligands, the latter provided by a heme-regulatory motif (HRM). Rev-erbβ was thought to be a heme sensor based on a weak K d value for the Rev-erbβ·heme complex of 2 μm determined with isothermal titration calorimetry. However, our group demonstrated with UV-visible difference titrations that the K d value is in the low nanomolar range, and the Fe 3+ -heme off-rate is on the order of 10 -6 s -1 making Rev-erbβ ineffective as a sensor of Fe 3+ -heme. In this study, we dissected the kinetics of heme binding to Rev-erbβ and provided a K d for Fe 3+ -heme of ∼0.1 nm Loss of the HRM axial thiolate via redox processes, including oxidation to a disulfide with a neighboring cysteine or dissociation upon reduction of Fe 3+ - to Fe 2+ -heme, decreased binding affinity by >20-fold. Furthermore, as measured in a co-immunoprecipitation assay, substitution of the His or Cys heme ligands in Rev-erbβ was accompanied by a significant loss of NCoR1 binding. These results demonstrate the importance of the Rev-erbβ HRM in regulating interactions with heme and NCoR1 and advance our understanding of how signaling through HRMs affects the major cellular processes of circadian rhythm maintenance and metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Kinetics of heme transfer by the Shr NEAT domains of Group A Streptococcus.

    Science.gov (United States)

    Ouattara, Mahamoudou; Pennati, Andrea; Devlin, Darius J; Huang, Ya-Shu; Gadda, Giovanni; Eichenbaum, Zehava

    2013-10-15

    The hemolytic Group A Streptococcus (GAS) is a notorious human pathogen. Shr protein of GAS participates in iron acquisition by obtaining heme from host hemoglobin and delivering it to the adjacent receptor on the surface, Shp. Heme is then conveyed to the SiaABC proteins for transport across the membrane. Using rapid kinetic studies, we investigated the role of the two heme binding NEAT modules of Shr. Stopped-flow analysis showed that holoNEAT1 quickly delivered heme to apoShp. HoloNEAT2 did not exhibit such activity; only little and slow transfer of heme from NEAT2 to apoShp was seen, suggesting that Shr NEAT domains have distinctive roles in heme transport. HoloNEAT1 also provided heme to apoNEAT2, by a fast and reversible process. To the best of our knowledge this is the first transfer observed between isolated NEAT domains of the same receptor. Sequence alignment revealed that Shr NEAT domains belong to two families of NEAT domains that are conserved in Shr orthologs from several species. Based on the heme transfer kinetics, we propose that Shr proteins modulate heme uptake according to heme availability by a mechanism where NEAT1 facilitates fast heme delivery to Shp, whereas NEAT2 serves as a temporary storage for heme on the bacterial surface. Copyright © 2013. Published by Elsevier Inc.

  4. Perturbed effects at radiation physics

    Science.gov (United States)

    Külahcı, Fatih; Şen, Zekâi

    2013-09-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer-Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables.

  5. Applications Of Chiral Perturbation Theory

    CERN Document Server

    Mohta, V

    2005-01-01

    Effective field theory techniques are used to describe the spectrum and interactions of hadrons. The mathematics of classical field theory and perturbative quantum field theory are reviewed. The physics of effective field theory and, in particular, of chiral perturbation theory and heavy baryon chiral perturbation theory are also reviewed. The geometry underlying heavy baryon chiral perturbation theory is described in detail. Results by Coleman et. al. in the physics literature are stated precisely and proven. A chiral perturbation theory is developed for a multiplet containing the recently- observed exotic baryons. A small coupling expansion is identified that allows the calculation of self-energy corrections to the exotic baryon masses. Opportunities in lattice calculations are discussed. Chiral perturbation theory is used to study the possibility of two multiplets of exotic baryons mixed by quark masses. A new symmetry constraint on reduced partial widths is identified. Predictions in the literature based ...

  6. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics – Revisiting Perturbative Hybrid Kinetic-MHD Theory

    Science.gov (United States)

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-01-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346

  7. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    Science.gov (United States)

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  8. Partial mitochondrial complex I inhibition induces oxidative damage and perturbs glutamate transport in primary retinal cultures. Relevance to Leber Hereditary Optic Neuropathy (LHON).

    Science.gov (United States)

    Beretta, Simone; Wood, John P M; Derham, Barry; Sala, Gessica; Tremolizzo, Lucio; Ferrarese, Carlo; Osborne, Neville N

    2006-11-01

    Leber Hereditary Optic Neuropathy (LHON) is a maternally inherited form of visual loss, due to selective degeneration of retinal ganglion cells. Despite the established aetiological association between LHON and mitochondrial DNA mutations affecting complex I of the electron transport chain, the pathophysiology of this disorder remains obscure. Primary rat retinal cultures were exposed to increasing concentrations of rotenone to titrate complex I inhibition. Neural cells were more sensitive than Müller glial cells to rotenone toxicity. Rotenone induced an increase in mitochondrial-derived free radicals and lipid peroxidation. Sodium-dependent glutamate uptake, which is mostly mediated by the glutamate transporter GLAST expressed by Müller glial cells, was reduced dose-dependently by rotenone with no changes in GLAST expression. Our findings suggest that complex I-derived free radicals and disruption of glutamate transport might represent key elements for explaining the selective retinal ganglion cell death in LHON.

  9. Perturbative Gadgets at Arbitrary Orders

    OpenAIRE

    Jordan, Stephen P.; Farhi, Edward

    2008-01-01

    Adiabatic quantum algorithms are often most easily formulated using many-body interactions. However, experimentally available interactions are generally two-body. In 2004, Kempe, Kitaev, and Regev introduced perturbative gadgets, by which arbitrary three-body effective interactions can be obtained using Hamiltonians consisting only of two-body interactions. These three-body effective interactions arise from the third order in perturbation theory. Since their introduction, perturbative gadgets...

  10. Influence of the covalent heme-protein bonds on the redox thermodynamics of human myeloperoxidase.

    Science.gov (United States)

    Battistuzzi, Gianantonio; Stampler, Johanna; Bellei, Marzia; Vlasits, Jutta; Soudi, Monika; Furtmüller, Paul G; Obinger, Christian

    2011-09-20

    Myeloperoxidase (MPO) is the most abundant neutrophil enzyme and catalyzes predominantly the two-electron oxidation of ubiquitous chloride to generate the potent bleaching hypochlorous acid, thus contributing to pathogen killing as well as inflammatory diseases. Its catalytic properties are closely related with unique posttranslational modifications of its prosthetic group. In MPO, modified heme b is covalently bound to the protein via two ester linkages and one sulfonium ion linkage with a strong impact on its (electronic) structure and biophysical and chemical properties. Here, the thermodynamics of the one-electron reduction of the ferric heme in wild-type recombinant MPO and variants with disrupted heme-protein bonds (M243V, E242Q, and D94V) have been investigated by thin-layer spectroelectrochemistry. It turns out that neither the oligomeric structure nor the N-terminal extension in recombinant MPO modifies the peculiar positive reduction potential (E°' = 0.001 V at 25 °C and pH 7.0) or the enthalpy or entropy of the Fe(III) to Fe(II) reduction. By contrast, upon disruption of the MPO-typical sulfonium ion linkage, the reduction potential is significantly lower (-0.182 V). The M243V mutant has an enthalpically stabilized ferric state, whereas its ferrous form is entropically favored because of the loss of rigidity of the distal H-bonding network. Exchange of an adjacent ester bond (E242Q) induced similar but less pronounced effects (E°' = -0.094 V), whereas in the D94V variant (E°' = -0.060 V), formation of the ferrous state is entropically disfavored. These findings are discussed with respect to the chlorination and bromination activity of the wild-type protein and the mutants. © 2011 American Chemical Society

  11. Time-Dependent, HIV-Tat-Induced Perturbation of Human Neurons In Vitro: Towards a Model for the Molecular Pathology of HIV-Associated Neurocognitive Disorders

    Directory of Open Access Journals (Sweden)

    Kim T. Gurwitz

    2017-05-01

    Full Text Available A significant proportion of human immunodeficiency virus type 1 (HIV-positive individuals are affected by the cognitive, motor and behavioral dysfunction that characterizes HIV-associated neurocognitive disorders (HAND. While the molecular etiology of HAND remains largely uncharacterized, HIV transactivator of transcription (HIV-Tat is thought to be an important etiological cause. Here we have used mass spectrometry (MS-based discovery proteomics to identify the quantitative, cell-wide changes that occur when non-transformed, differentiated human neurons are treated with HIV-Tat over time. We identified over 4000 protein groups (false discovery rate <0.01 in this system with 131, 118 and 45 protein groups differentially expressed at 6, 24 and 48 h post treatment, respectively. Alterations in the expression of proteins involved in gene expression and cytoskeletal maintenance were particularly evident. In tandem with proteomic evidence of cytoskeletal dysregulation we observed HIV-Tat induced functional alterations, including a reduction of neuronal intrinsic excitability as assessed by patch-clamp electrophysiology. Our findings may be relevant for understanding in vivo molecular mechanisms in HAND.

  12. Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. III. The nu(4) and nu(7) modes of nonplanar nickel porphyrin models.

    Science.gov (United States)

    Zhang, Yong; Straub, John E

    2009-06-07

    The time scales and pathways of vibrational energy relaxation (VER) of the nu(4) and nu(7) modes of three nickel porphyrin models, nickel porphine (NiP), nickel protoporphyrin IX (Ni-heme), and nickel octaethylporphyrin (NiOEP), were studied using a non-Markovian time-dependent perturbation theory at the B3LYP/6-31G(d) level. When NiP is calculated with D(4h) symmetry, it has the planar structure and the same VER properties as ferrous iron porphine (FeP). The porphine cores of both Ni-heme and NiOEP were distorted from a planar geometry, assuming a nonplanar structure, similar to that of the heme structure in cytochrome c. The VER time scales of Ni-heme are found to be similar to those predicted for a planar iron heme, but the derived pathways have distinctly different features. In particular, the strong coupling between the nu(7) mode and the overtone of the approximately 350 cm(-1) gamma(7) mode, observed for planar porphyrins, is absent in both nonplanar nickel porphyrins. Direct energy exchange between the nu(4) and nu(7) modes is not observed in NiOEP, but is found to play an essential role in the VER of the nu(4) mode in Ni-heme. The Ni-heme isopropionate groups are involved in the dominant VER pathways of both the nu(4) and nu(7) modes of Ni-heme. However, in contrast with VER pathways derived in planar iron heme, the isopropionate groups are not observed to play an essential role relative to other side chains in spatially directing the vibrational energy flow.

  13. Effect of a heme oxygenase-1 inducer on NADPH oxidase ...

    African Journals Online (AJOL)

    OH), hydrogen peroxide ... quenched in 3 % hydrogen peroxide in distilled water. Subsequently, the sections were incubated with the blocking buffer (normal .... effective generator of ROS [16]. Various endogenous sources such as inflammatory.

  14. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

    Directory of Open Access Journals (Sweden)

    Viswanathan Arun Nagaraj

    Full Text Available Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS, and the last enzyme, ferrochelatase (FC, in the heme-biosynthetic pathway of Plasmodium berghei (Pb. The wild-type and knockout (KO parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14C] aminolevulinic acid (ALA. We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

  15. The 1.5-Å Structure of XplA-heme, an Unusual Cytochrome P450 Heme Domain That Catalyzes Reductive Biotransformation of Royal Demolition Explosive*

    Science.gov (United States)

    Sabbadin, Federico; Jackson, Rosamond; Haider, Kamran; Tampi, Girish; Turkenburg, Johan P.; Hart, Sam; Bruce, Neil C.; Grogan, Gideon

    2009-01-01

    XplA is a cytochrome P450 of unique structural organization, consisting of a heme- domain that is C-terminally fused to its native flavodoxin redox partner. XplA, along with flavodoxin reductase XplB, has been shown to catalyze the breakdown of the nitramine explosive and pollutant hexahydro-1,3,5-trinitro-1,3,5-triazine (royal demolition explosive) by reductive denitration. The structure of the heme domain of XplA (XplA-heme) has been solved in two crystal forms: as a dimer in space group P21 to a resolution of 1.9 Å and as a monomer in space group P21212 to a resolution of 1.5 Å, with the ligand imidazole bound at the heme iron. Although it shares the overall fold of cytochromes P450 of known structure, XplA-heme is unusual in that the kinked I-helix that traverses the distal face of the heme is broken by Met-394 and Ala-395 in place of the well conserved Asp/Glu plus Thr/Ser, important in oxidative P450s for the scission of the dioxygen bond prior to substrate oxygenation. The heme environment of XplA-heme is hydrophobic, featuring a cluster of three methionines above the heme, including Met-394. Imidazole was observed bound to the heme iron and is in close proximity to the side chain of Gln-438, which is situated over the distal face of the heme. Imidazole is also hydrogen-bonded to a water molecule that sits in place of the threonine side-chain hydroxyl exemplified by Thr-252 in Cyt-P450cam. Both Gln-438 → Ala and Ala-395 → Thr mutants of XplA-heme displayed markedly reduced activity compared with the wild type for royal demolition explosive degradation when combined with surrogate electron donors. PMID:19692330

  16. Alteration of the Regiospecificity of Human Heme Oxygenase-1 by Unseating of the Heme but not Disruption of the Distal Hydrogen Bonding Network†

    Science.gov (United States)

    Wang, Jinling; Evans, John P.; Ogura, Hiroshi; La Mar, Gerd N.; Ortiz de Montellano, Paul R.

    2008-01-01

    Heme oxygenase regiospecifically oxidizes heme at the α-meso position to give biliverdin IXα, CO, and iron. The heme orientation within the active site, which is thought to determine the oxidation regiospecificity, is shown here for the human enzyme (hHO1) to be largely determined by interactions between the heme carboxylic acid groups and residues Arg183 and Lys18 but not Tyr134. Mutation of either Arg183 or Lys18 individually does not significantly alter the NADPH-cytochrome P450 reductase-dependent reaction regiochemistry, but partially shifts the oxidation to the β/δ-meso positions in the reaction supported by ascorbic acid. Mutation of Glu29 to a lysine, which places a positive charge where it can interact with a heme carboxyl if the heme rotates by ~90°, causes a slight loss of regiospecificity, but combined with the R183E and K18E mutations results primarily in β/δ-meso oxidation of the heme under all conditions. NMR analysis of heme binding to the triple K18E/E29K/R183E mutant confirms rotation of the heme in the active site. Kinetic studies demonstrate that mutations of Arg183 greatly impair the rate of the P450 reductase-dependent reaction, in accord with the earlier finding that Arg183 is involved in binding of the reductase to hHO1, but have little effect on the ascorbate reaction. Mutations of Asp140 and Tyr58 that disrupt the active site hydrogen bonding network, impair catalytic rates but do not influence the oxidation regiochemistry. The results indicate both that the oxidation regiochemistry is largely controlled by ionic interactions of the heme propionic acid groups with the protein and that shifts in regiospecificity involve rotation of the heme about an axis perpendicular to the heme plane. PMID:16388581

  17. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin.

    Science.gov (United States)

    Wilks, Angela; Ikeda-Saito, Masao

    2014-08-19

    The eukaryotic heme oxygenases (HOs) (E.C. 1.14.99.3) convert heme to biliverdin, iron, and carbon monoxide (CO) in three successive oxygenation steps. Pathogenic bacteria require iron for survival and infection. Extracellular heme uptake from the host plays a critical role in iron acquisition and virulence. In the past decade, several HOs required for the release of iron from extracellular heme have been identified in pathogenic bacteria, including Corynebacterium diphtheriae, Neisseriae meningitides, and Pseudomonas aeruginosa. The bacterial enzymes were shown to be structurally and mechanistically similar to those of the canonical eukaryotic HO enzymes. However, the recent discovery of the structurally and mechanistically distinct noncanonical heme oxygenases of Staphylococcus aureus and Mycobacterium tuberculosis has expanded the reaction manifold of heme degradation. The distinct ferredoxin-like structural fold and extreme heme ruffling are proposed to give rise to the alternate heme degradation products in the S. aureus and M. tuberculosis enzymes. In addition, several "heme-degrading factors" with no structural homology to either class of HOs have recently been reported. The identification of these "heme-degrading proteins" has largely been determined on the basis of in vitro heme degradation assays. Many of these proteins were reported to produce biliverdin, although no extensive characterization of the products was performed. Prior to the characterization of the canonical HO enzymes, the nonenzymatic degradation of heme and heme proteins in the presence of a reductant such as ascorbate or hydrazine, a reaction termed "coupled oxidation", served as a model for biological heme degradation. However, it was recognized that there were important mechanistic differences between the so-called coupled oxidation of heme proteins and enzymatic heme oxygenation. In the coupled oxidation reaction, the final product, verdoheme, can readily be converted to biliverdin

  18. Heme metabolism in stress regulation and protein production: From Cinderella to a key player.

    Science.gov (United States)

    Martínez, J L; Petranovic, D; Nielsen, J

    2016-04-02

    Heme biosynthesis is a highly conserved pathway which is present in all kingdoms, from Archaea to higher organisms such as plants and mammals. The heme molecule acts as a prosthetic group for different proteins and enzymes involved in energy metabolism and reactions involved in electron transfer. Based on our recent findings and other recent reports, we here illustrate that heme is more than a co-factor. We also discuss the necessity to gain more insight into the heme biosynthesis pathway regulation, as this interacts closely with overall stress control. Understanding heme biosynthesis and its regulation could impact our ability to develop more efficient yeast cell factories for heterologous protein production.

  19. Heme and HO-1 inhibition of HCV, HBV, and HIV

    Directory of Open Access Journals (Sweden)

    Warren N Schmidt

    2012-10-01

    Full Text Available Hepatitis C virus, human immunodeficiency virus, and hepatitis B virus are chronic viral infections that cause considerable morbidity and mortality throughout the world. In the decades following the identification and sequencing of these viruses, in vitro experiments demonstrated that heme oxygenase-1, its oxidative products, and related compounds of the heme oxygenase system are virucidal for all three viruses. The purpose of this review is to critically evaluate and summarize the seminal studies that described and characterized this remarkable behavior. It will also discuss more recent work that discovered the antiviral mechanisms and target sites of these unique antiviral agents. In spite of the fact that these viruses are diverse pathogens with quite profound differences in structure and life cycle, it is significant that heme and related compounds show striking similarity for viral target sites across all three species. Collectively, these findings strongly indicate that we should move forward and develop heme and related tetrapyrroles into versatile antiviral agents that could be used therapeutically in patients with single or multiple viral infections.

  20. Heme: From quantum spin crossover to oxygen manager of life

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2016-01-01

    discusses the spectroscopic and computational data that have helped to elucidate the nature of this remarkable molecular system, how it works, and how it is tuned by a range of molecular strategies. This tuning enables heme to carry out the two essential functions required for oxygen management of life, i...

  1. Cysteine-independent activation/inhibition of heme oxygenase-2.

    Science.gov (United States)

    Vukomanovic, Dragic; Rahman, Mona N; Maines, Mahin D; Ozolinš, Terence Rs; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2016-03-01

    Reactive thiols of cysteine (cys) residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2) isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2) and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD) and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  2. Identification of two genes potentially associated in iron-heme ...

    Indian Academy of Sciences (India)

    2013-03-15

    Mar 15, 2013 ... Classic characteristics are poor predictors of the risk of thromboembolism. Thus, better markers for the carotid atheroma plaque formation and symptom causing are needed. Our objective was to study by microarray analysis gene expression of genes involved in homeostasis of iron and heme in carotid ...

  3. Identification of two genes potentially associated in iron-heme ...

    Indian Academy of Sciences (India)

    Classic characteristics are poor predictors of the risk of thromboembolism. Thus, better markers for the carotid atheroma plaque formation and symptom causing are needed. Our objective was to study by microarray analysis gene expression of genes involved in homeostasis of iron and heme in carotid atheroma plaque ...

  4. Cysteine-independent activation/inhibition of heme oxygenase-2

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2016-01-01

    Full Text Available Reactive thiols of cysteine (cys residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2 isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2 and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  5. Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2

    Directory of Open Access Journals (Sweden)

    Hori Osamu

    2011-01-01

    Full Text Available Abstract Background Both resveratrol and vitamin C (ascorbic acid are frequently used in complementary and alternative medicine. However, little is known about the underlying mechanisms for potential health benefits of resveratrol and its interactions with ascorbic acid. Methods The antioxidant enzymes heme oxygenase-1 and paraoxonase-1 were analysed for their mRNA and protein levels in HUH7 liver cells treated with 10 and 25 μmol/l resveratrol in the absence and presence of 100 and 1000 μmol/l ascorbic acid. Additionally the transactivation of the transcription factor Nrf2 and paraoxonase-1 were determined by reporter gene assays. Results Here, we demonstrate that resveratrol induces the antioxidant enzymes heme oxygenase-1 and paraoxonase-1 in cultured hepatocytes. Heme oxygenase-1 induction by resveratrol was accompanied by an increase in Nrf2 transactivation. Resveratrol mediated Nrf2 transactivation as well as heme oxygenase-1 induction were partly antagonized by 1000 μmol/l ascorbic acid. Conclusions Unlike heme oxygenase-1 (which is highly regulated by Nrf2 paraoxonase-1 (which exhibits fewer ARE/Nrf2 binding sites in its promoter induction by resveratrol was not counteracted by ascorbic acid. Addition of resveratrol to the cell culture medium produced relatively low levels of hydrogen peroxide which may be a positive hormetic redox-signal for Nrf2 dependent gene expression thereby driving heme oxygenase-1 induction. However, high concentrations of ascorbic acid manifold increased hydrogen peroxide production in the cell culture medium which may be a stress signal thereby disrupting the Nrf2 signalling pathway.

  6. Perturbative quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1979-12-01

    The application of QCD to hadron dynamics at short distances, where asymptotic freedom allows a systematic perturbative approach, is addressed. The main theme of the approach is to incorporate systematically the effects of the hadronic wave function in large momentum transfer exclusive and inclusive reactions. Although it is conventional to treat the hadron as a classical source of on-shell quarks, there are important dynamical effects due to hadronic constituent structure which lead to a broader testing ground for QCD. QCD predictions are discussed for exclusive processes and form factors at large momentum transfer in which the short-distance behavior and the finite compositeness of the hadronic wave functions play crucial roles. Many of the standard tests of QCD are reviewed including the predictions for R = sigma/sub e/sup +/e/sup -/..-->..had//sigma/sub e/sup +/e/sup -/..--> mu../sup +/..mu../sup -//, the structure functions of hadrons and photons, jet phenomena, and the QCD corrections to deep inelastic processes. The exclusive-inclusive connection in QCD, the effects of power-law scale-breaking contributions, and the important role of the available energy in controlling logarithmic scale violations are also discussed. 150 references, 44 figures. (RWR)

  7. Uranium ({sup 238}U)-induced ROS and cell cycle perturbations, antioxidant responses and erythrocyte nuclear abnormalities in the freshwater iridescent shark fish Pangasius sutchi

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, Sathesh Kumar; Arunachalam, Kantha Deivi, E-mail: kanthad.arunachalam@gmail.com

    2017-05-15

    Highlights: • Exposure to {sup 238}U deteriorated the antioxidant defenses like SOD, CAT and LPO. • Flow cytometric analysis revealed the increase in G2/M phase and S phase. • Micronucleus frequencies increased with Increased {sup 238}U exposure and time. • Exposure to waterborne {sup 238}U induces both chemical and radiotoxicity in P. sutchi. • ROS-mediated {sup 238}U toxic mechanism and the antioxidant responses has been proposed. - Abstract: The strategic plan of this study is to analyze any possible radiological impact on aquatic organisms from forthcoming uranium mining facilities around the Nagarjuna Sagar Dam in the future. The predominantly consumed and dominant fish species Pangasius sutchi, which is available year-round at Nagarjuna Sagar Dam, was selected for the study. To comprehend the outcome and to understand the mode of action of {sup 238}U, the fish species Pangasius sutchi was exposed to ¼ and ½ of the LC{sub 50} doses of waterborne {sup 238}U in a static system in duplicate for 21 days. Blood and organs, including the gills, liver, brain and muscles, were collected at different time periods—0 h, 24 h, 48 h, 72 h, 96 h, 7, days 14 days and 21 days—using ICP-MS to determine the toxic effects of uranium and the accumulation of {sup 238}U concentrations. The bioaccumulation of {sup 238}U in P. sutchi tissues was dependent on exposure time and concentration. The accumulation of uranium was, in order of magnitude, measured as gills > liver > brain > tissue, with the highest accumulation in the gills. It was observed that exposure to {sup 238}U significantly reduced antioxidant enzymes such as superoxide dismutase, catalase, and lipid peroxidase. The analysis of DNA fragmentation by comet assay and cell viability by flow cytometry was performed at different time intervals. DNA histograms by flow cytometry analysis revealed an increase in the G2/M phase and the S phase. The long-term {sup 238}U exposure studies in fish showed increasing

  8. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  9. Inversion of the perturbation series

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima, Colima (Mexico); Fernandez, Francisco M [INIFTA (Conicet, UNLP), Division Quimica Teorica, Diag 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2008-01-18

    We investigate the inversion of the perturbation series and its resummation, and prove that it is related to a recently developed parametric perturbation theory. Results for some illustrative examples show that in some cases series reversion may improve the accuracy of the results.

  10. Path integral for inflationary perturbations

    NARCIS (Netherlands)

    Prokopec, T.; Rigopoulos, G.

    2010-01-01

    The quantum theory of cosmological perturbations in single-field inflation is formulated in terms of a path integral. Starting from a canonical formulation, we show how the free propagators can be obtained from the well-known gauge-invariant quadratic action for scalar and tensor perturbations, and

  11. Perturbative QCD (1/3)

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Perturbative QCD is the general theoretical framework for describing hard scattering processes yielding multiparticle production at hadron colliders. In these lectures, we shall introduce fundamental features of perturbative QCD and describe its application to several high energy collider processes, including jet production in electron-positron annihilation, deep inelastic scattering, Higgs boson and gauge boson production at the LHC.

  12. Identification and characterization of a heme periplasmic-binding protein in Haemophilus ducreyi.

    Science.gov (United States)

    St Denis, Melissa; Sonier, Brigitte; Robinson, Renée; Scott, Fraser W; Cameron, D William; Lee, B Craig

    2011-08-01

    Haemophilus ducreyi, a gram-negative and heme-dependent bacterium, is the causative agent of chancroid, a genital ulcer sexually transmitted infection. Heme acquisition in H. ducreyi proceeds via a receptor mediated process in which the initial event involves binding of hemoglobin and heme to their cognate outer membrane proteins, HgbA and TdhA, respectively. Following this specific interaction, the fate of the periplasmic deposited heme is unclear. Using protein expression profiling of the H. ducreyi periplasmic proteome, a periplasmic-binding protein, termed hHbp, was identified whose expression was enhanced under heme-limited conditions. The gene encoding this protein was situated in a locus displaying genetic characteristics of an ABC transporter. The purified protein bound heme in a dose-dependent and saturable manner and this binding was specifically competitively inhibited by heme. The hhbp gene functionally complemented an Escherichia coli heme uptake mutant. Expression of the heme periplasmic-binding protein was detected in a limited survey of H. ducreyi and H. influenzae clinical strains. These results indicate that the passage of heme into the cytoplasm of H. ducreyi involves a heme dedicated ABC transporter.

  13. Spatially cascading effect of perturbations in experimental meta-ecosystems.

    Science.gov (United States)

    Harvey, Eric; Gounand, Isabelle; Ganesanandamoorthy, Pravin; Altermatt, Florian

    2016-09-14

    Ecosystems are linked to neighbouring ecosystems not only by dispersal, but also by the movement of subsidy. Such subsidy couplings between ecosystems have important landscape-scale implications because perturbations in one ecosystem may affect community structure and functioning in neighbouring ecosystems via increased/decreased subsidies. Here, we combine a general theoretical approach based on harvesting theory and a two-patch protist meta-ecosystem experiment to test the effect of regional perturbations on local community dynamics. We first characterized the relationship between the perturbation regime and local population demography on detritus production using a mathematical model. We then experimentally simulated a perturbation gradient affecting connected ecosystems simultaneously, thus altering cross-ecosystem subsidy exchanges. We demonstrate that the perturbation regime can interact with local population dynamics to trigger unexpected temporal variations in subsidy pulses from one ecosystem to another. High perturbation intensity initially led to the highest level of subsidy flows; however, the level of perturbation interacted with population dynamics to generate a crash in subsidy exchange over time. Both theoretical and experimental results show that a perturbation regime interacting with local community dynamics can induce a collapse in population levels for recipient ecosystems. These results call for integrative management of human-altered landscapes that takes into account regional dynamics of both species and resource flows. © 2016 The Author(s).

  14. Heme oxygenase induction and biliverdin excretion: implications for the bile fluorescence biomarker.

    Science.gov (United States)

    van den Hurk, Peter

    2006-07-01

    The measurement of bile fluorescence has become a popular biomarker to demonstrate the exposure of fish to polycyclic aromatic hydrocarbons. Conflicting data have been published on how to normalize bile fluorescence. To investigate if normalization to biliverdin is a suitable method, experiments were performed to study the mechanisms related to biliverdin excretion in fish. Channel catfish (Ictalurus punctatus) were dosed with mixtures of benzo[a]pyrene and cadmium, chlorinated phenols or borneol. The results showed that under increasing toxicant stress, more biliverdin was excreted per amount of protein. To investigate if the increased biliverdin excretion was related to increased heme degradation, enzymatic activity of heme oxygenase (HO) was measured in liver homogenates. The fish dosed with chemical mixtures had significantly higher HO activity than the control fish, and a significant correlation was observed between HO activity and biliverdin concentration in the bile. It is concluded that chemical mixtures of environmental pollutants can induce HO activity and that this chemical stress leads to increased biliverdin excretion. The elucidation of this mechanistic pathway warrants that bile fluorescence is better expressed per amount of bile protein than per biliverdin absorption.

  15. Bile fluorescence, heme oxygenase induction, and increased biliverdin excretion by mixtures of environmental toxicants

    Energy Technology Data Exchange (ETDEWEB)

    Hurk, Peter van den [Department of Biological Sciences, Institute of Environmental Toxicology, Clemson University, Pendleton, SC (United States)]. E-mail: pvdhurk@clemson.edu

    2006-05-01

    The measurement of bile fluorescence has become a popular biomarker to demonstrate the exposure of fish to polycyclic aromatic hydrocarbons. Conflicting data has been published on how to normalize bile fluorescence. To investigate if normalization to biliverdin is a suitable method, experiments were performed to study the mechanisms related to biliverdin excretion in fish. In two separate experiments channel catfish (Ictalurus punctatus) were dosed with mixtures of benzo[a]pyrene with cadmium, chlorinated phenols or borneol. The results showed linear relationships between bile protein and biliverdin for each treatment group, but the slope of this relationship was significantly increased when fish received more chemical stress. Thus, under increasing toxicant stress, more biliverdin was excreted per amount of protein. To investigate if the increased biliverdin excretion was related to increased heme degradation, enzymatic activity of heme oxygenase (HO) was measured in liver homogenates of the dosed fish. The fish dosed with chemical mixtures had a significantly higher HO activity than the control fish, and in both experiments a significant correlation was observed between HO activity and biliverdin concentration in the bile. It is concluded that mixtures of environmental pollutants can induce HO activity and that this chemical stress leads to increased biliverdin excretion. The elucidation of this mechanistic pathway warrants that bile fluorescence should not be expressed per biliverdin absorption, and that expression per bile protein would be a more reliable method.

  16. Therapeutic Potential of Heme Oxygenase-1/Carbon Monoxide in Lung Disease

    Directory of Open Access Journals (Sweden)

    Myrna Constantin

    2012-01-01

    Full Text Available Heme oxygenase (HO, a catabolic enzyme, provides the rate-limiting step in the oxidative breakdown of heme, to generate carbon monoxide (CO, iron, and biliverdin-IXα. Induction of the inducible form, HO-1, in tissues is generally regarded as a protective mechanism. Over the last decade, considerable progress has been made in defining the therapeutic potential of HO-1 in a number of preclinical models of lung tissue injury and disease. Likewise, tissue-protective effects of CO, when applied at low concentration, have been observed in many of these models. Recent studies have expanded this concept to include chemical CO-releasing molecules (CORMs. Collectively, salutary effects of the HO-1/CO system have been demonstrated in lung inflammation/acute lung injury, lung and vascular transplantation, sepsis, and pulmonary hypertension models. The beneficial effects of HO-1/CO are conveyed in part through the inhibition or modulation of inflammatory, apoptotic, and proliferative processes. Recent advances, however, suggest that the regulation of autophagy and the preservation of mitochondrial homeostasis may serve as additional candidate mechanisms. Further preclinical and clinical trials are needed to ascertain the therapeutic potential of HO-1/CO in human clinical disease.

  17. Bile fluorescence, heme oxygenase induction, and increased biliverdin excretion by mixtures of environmental toxicants.

    Science.gov (United States)

    van den Hurk, Peter

    2006-05-01

    The measurement of bile fluorescence has become a popular biomarker to demonstrate the exposure of fish to polycyclic aromatic hydrocarbons. Conflicting data has been published on how to normalize bile fluorescence. To investigate if normalization to biliverdin is a suitable method, experiments were performed to study the mechanisms related to biliverdin excretion in fish. In two separate experiments channel catfish (Ictalurus punctatus) were dosed with mixtures of benzo[a]pyrene with cadmium, chlorinated phenols or borneol. The results showed linear relationships between bile protein and biliverdin for each treatment group, but the slope of this relationship was significantly increased when fish received more chemical stress. Thus, under increasing toxicant stress, more biliverdin was excreted per amount of protein. To investigate if the increased biliverdin excretion was related to increased heme degradation, enzymatic activity of heme oxygenase (HO) was measured in liver homogenates of the dosed fish. The fish dosed with chemical mixtures had a significantly higher HO activity than the control fish, and in both experiments a significant correlation was observed between HO activity and biliverdin concentration in the bile. It is concluded that mixtures of environmental pollutants can induce HO activity and that this chemical stress leads to increased biliverdin excretion. The elucidation of this mechanistic pathway warrants that bile fluorescence should not be expressed per biliverdin absorption, and that expression per bile protein would be a more reliable method.

  18. Effects of small boundary perturbation on the MHD duct flow

    Directory of Open Access Journals (Sweden)

    Mahabaleshwar Ulavathi Shettar

    2017-01-01

    Full Text Available In this paper, we investigate the effects of small boundary perturbation on the laminar motion of a conducting fluid in a rectangular duct under applied transverse magnetic field. A small boundary perturbation of magnitude Є is applied on cross-section of the duct. Using the asymptotic analysis with respect to Є, we derive the effective model given by the explicit formulae for the velocity and induced magnetic field. Numerical results are provided confirming that the considered perturbation has nonlocal impact on the asymptotic solution.

  19. Perturbations from cosmic strings in cold dark matter

    Science.gov (United States)

    Albrecht, Andreas; Stebbins, Albert

    1992-01-01

    A systematic linear analysis of the perturbations induced by cosmic strings in cold dark matter is presented. The power spectrum is calculated and it is found that the strings produce a great deal of power on small scales. It is shown that the perturbations on interesting scales are the result of many uncorrelated string motions, which indicates a much more Gaussian distribution than was previously supposed.

  20. SpyB, a Small Heme-Binding Protein, Affects the Composition of the Cell Wall in Streptococcus pyogenes.

    Science.gov (United States)

    Edgar, Rebecca J; Chen, Jing; Kant, Sashi; Rechkina, Elena; Rush, Jeffrey S; Forsberg, Lennart S; Jaehrig, Bernhard; Azadi, Parastoo; Tchesnokova, Veronika; Sokurenko, Evgeni V; Zhu, Haining; Korotkov, Konstantin V; Pancholi, Vijay; Korotkova, Natalia

    2016-01-01

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams of the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Thus, our data suggest the possibility that SpyB activity is regulated by heme.

  1. Metabolite-driven Regulation of Heme Uptake by the Biliverdin IXβ/δ-Selective Heme Oxygenase (HemO) of Pseudomonas aeruginosa.

    Science.gov (United States)

    Mouriño, Susana; Giardina, Bennett J; Reyes-Caballero, Hermes; Wilks, Angela

    2016-09-23

    Pseudomonas aeruginosa acquires extracellular heme via the Phu (Pseudomonas heme uptake) and Has (heme assimilation system) systems. We have previously shown the catalytic actions of heme oxygenase (HemO) along with the cytoplasmic heme transport protein PhuS control heme flux into the cell. To further investigate the role of the PhuS-HemO couple in modulating heme uptake, we have characterized two HemO variants, one that is catalytically inactive (HemO H26A/K34A/K132A or HemOin) and one that has altered regioselectivity (HemO N19K/K34A/F117Y/K132A or HemOα), producing biliverdin IXα (BVIXα). HemOα similar to wild type was able to interact and acquire heme from holo-PhuS. In contrast, the HemOin variant did not interact with holo-PhuS and showed no enzymatic activity. Complementation of a hemO deletion strain with the hemOin or hemOα variants in combination with [(13)C]heme isotopic labeling experiments revealed that the absence of BVIXβ and BVIXδ leads to a decrease in extracellular levels of hemophore HasA. We propose BVIXβ and/or BVIXδ transcriptionally or post-transcriptionally regulates HasA. Thus, coupling the PhuS-dependent flux of heme through HemO to feedback regulation of the cell surface signaling system through HasA allows P. aeruginosa to rapidly respond to fluctuating extracellular heme levels independent of the iron status of the cell. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Heme Assimilation in Schizosaccharomyces pombe Requires Cell-surface-anchored Protein Shu1 and Vacuolar Transporter Abc3.

    Science.gov (United States)

    Mourer, Thierry; Normant, Vincent; Labbé, Simon

    2017-03-24

    The Schizosaccharomyces pombe shu1+ gene encodes a cell-surface protein required for assimilation of exogenous heme. In this study, shaving experiments showed that Shu1 is released from membrane preparations when spheroplast lysates are incubated with phosphoinositide-specific phospholipase C (PI-PLC). Shu1 cleavability by PI-PLC and its predicted hydropathy profile strongly suggested that Shu1 is a glycosylphosphatidylinositol-anchored protein. When heme biosynthesis is selectively blocked in hem1Δ mutant cells, the heme analog zinc mesoporphyrin IX (ZnMP) first accumulates into vacuoles and then subsequently, within the cytoplasm in a rapid and Shu1-dependent manner. An HA4-tagged shu1+ allele that retained wild-type function localizes to the cell surface in response to low hemin concentrations, but under high hemin concentrations, Shu1-HA4 re-localizes to the vacuolar membrane. Inactivation of abc3+, encoding a vacuolar membrane transporter, results in hem1Δ abc3Δ mutant cells being unable to grow in the presence of hemin as the sole iron source. In hem1Δ abc3Δ cells, ZnMP accumulates primarily in vacuoles and does not sequentially accumulate in the cytosol. Consistent with a role for Abc3 as vacuolar hemin exporter, results with hemin-agarose pulldown assays showed that Abc3 binds to hemin. In contrast, an Abc3 mutant in which an inverted Cys-Pro motif had been replaced with Ala residues fails to bind hemin with high affinity. Taken together, these results show that Shu1 undergoes rapid hemin-induced internalization from the cell surface to the vacuolar membrane and that the transporter Abc3 participates in the mobilization of stored heme from the vacuole to the cytosol. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Cosmological perturbations beyond linear order

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.

  4. Interaction of nitric oxide with human heme oxygenase-1.

    Science.gov (United States)

    Wang, Jinling; Lu, Shen; Moënne-Loccoz, Pierre; Ortiz de Montellano, Paul R

    2003-01-24

    NO and CO may complement each other as signaling molecules in some physiological situations. We have examined the binding of NO to human heme oxygenase-1 (hHO-1), an enzyme that oxidizes heme to biliverdin, CO, and free iron, to determine whether inhibition of hHO-1 by NO can contribute to the signaling interplay of NO and CO. An Fe(3+)-NO hHO-1-heme complex is formed with NO or the NO donors NOC9 or 2-(N,N-diethylamino)-diazenolate-2-oxide.sodium salt. Resonance Raman spectroscopy shows that ferric hHO-1-heme forms a 6-coordinated, low spin complex with NO. The nu(N-O) vibration of this complex detected by Fourier transform IR is only 4 cm(-1) lower than that of the corresponding metmyoglobin (met-Mb) complex but is broader, suggesting a greater degree of ligand conformational freedom. The Fe(3+)-NO complex of hHO-1 is much more stable than that of met-Mb. Stopped-flow studies indicate that k(on) for formation of the hHO-1-heme Fe(3+)-NO complex is approximately 50-times faster, and k(off) 10 times slower, than for met-Mb, resulting in K(d) = 1.4 microm for NO. NO thus binds 500-fold more tightly to ferric hHO-1-heme than to met-Mb. The hHO-1 mutations E29A, G139A, D140A, S142A, G143A, G143F, and K179A/R183A do not significantly diminish the tight binding of NO, indicating that NO binding is not highly sensitive to mutations of residues that normally stabilize the distal water ligand. As expected from the K(d) value, the enzyme is reversibly inhibited upon exposure to pathologically, and possibly physiologically, relevant concentrations of NO. Inhibition of hHO-1 by NO may contribute to the pleiotropic responses to NO and CO.

  5. Simvastatin ameliorates established pulmonary hypertension through a heme oxygenase-1 dependent pathway in rats

    Directory of Open Access Journals (Sweden)

    Lee Yung-Chie

    2009-05-01

    Full Text Available Abstract Background Simvastatin has been shown to ameliorate pulmonary hypertension by several mechanisms in experimental animal models. In this study, we hypothesized that the major benefits of simvastatin in pulmonary hypertension occur via the heme oxygenase-1 pathway. Methods Simvastatin (10 mg/kgw/day was tested in two rat models of pulmonary hypertension (PH: monocrotaline administration and chronic hypoxia. The hemodynamic changes, right heart hypertrophy, HO-1 protein expression, and heme oxygenase (HO activity in lungs were measured in both models with and without simvastatin treatment. Tin-protoporphyrin (SnPP, 20 μmol/kg w/day, a potent inhibitor of HO activity, was used to confirm the role of HO-1. Results Simvastatin significantly ameliorated pulmonary arterial hypertension from 38.0 ± 2.2 mm Hg to 22.1 ± 1.9 mm Hg in monocrotaline-induced PH (MCT-PH and from 33.3 ± 0.8 mm Hg to 17.5 ± 2.9 mm Hg in chronic hypoxia-induced PH (CH-PH rats. The severity of right ventricular hypertrophy was significantly reduced by simvastatin in MCT-PH and CH-PH rats. Co-administration with SnPP abolished the benefits of simvastatin. Simvastatin significantly increased HO-1 protein expression and HO activity in the lungs of rats with PH; however co-administration of SnPP reduced HO-1 activity only. These observations indicate that the simvastatin-induced amelioration of pulmonary hypertension was directly related to the activity of HO-1, rather than its expression. Conclusion This study demonstrated that simvastatin treatment ameliorates established pulmonary hypertension primarily through an HO-1-dependent pathway.

  6. The dppBCDF gene cluster of Haemophilus influenzae: Role in heme utilization

    Directory of Open Access Journals (Sweden)

    Morton Daniel J

    2009-08-01

    Full Text Available Abstract Background Haemophilus influenzae requires a porphyrin source for aerobic growth and possesses multiple mechanisms to obtain this essential nutrient. This porphyrin requirement may be satisfied by either heme alone, or protoporphyrin IX in the presence of an iron source. One protein involved in heme acquisition by H. influenzae is the periplasmic heme binding protein HbpA. HbpA exhibits significant homology to the dipeptide and heme binding protein DppA of Escherichia coli. DppA is a component of the DppABCDF peptide-heme permease of E. coli. H. influenzae homologs of dppBCDF are located in the genome at a point distant from hbpA. The object of this study was to investigate the potential role of the H. influenzae dppBCDF locus in heme utilization. Findings An insertional mutation in dppC was constructed and the impact of the mutation on the utilization of both free heme and various proteinaceous heme sources as well as utilization of protoporphyrin IX was determined in growth curve studies. The dppC insertion mutant strain was significantly impacted in utilization of all tested heme sources and protoporphyin IX. Complementation of the dppC mutation with an intact dppCBDF gene cluster in trans corrected the growth defects seen in the dppC mutant strain. Conclusion The dppCBDF gene cluster constitutes part of the periplasmic heme-acquisition systems of H. influenzae.

  7. Heme A synthase in bacteria depends on one pair of cysteinyls for activity.

    Science.gov (United States)

    Lewin, Anna; Hederstedt, Lars

    2016-02-01

    Heme A is a prosthetic group unique for cytochrome a-type respiratory oxidases in mammals, plants and many microorganisms. The poorly understood integral membrane protein heme A synthase catalyzes the synthesis of heme A from heme O. In bacteria, but not in mitochondria, this enzyme contains one or two pairs of cysteine residues that are present in predicted hydrophilic polypeptide loops on the extracytoplasmic side of the membrane. We used heme A synthase from the eubacterium Bacillus subtilis and the hyperthermophilic archeon Aeropyrum pernix to investigate the functional role of these cysteine residues. Results with B. subtilis amino acid substituted proteins indicated the pair of cysteine residues in the loop connecting transmembrane segments I and II as being essential for catalysis but not required for binding of the enzyme substrate, heme O. Experiments with isolated A. pernix and B. subtilis heme A synthase demonstrated that a disulfide bond can form between the cysteine residues in the same loop and also between loops showing close proximity of the two loops in the folded enzyme protein. Based on the findings, we propose a classification scheme for the four discrete types of heme A synthase found so far in different organisms and propose that essential cysteinyls mediate transfer of reducing equivalents required for the oxygen-dependent catalysis of heme A synthesis from heme O. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Alteration by irradiation and storage at amount of heme iron in poultry meat; Alteracoes provocadas pela irradiacao e armazenamento nos teores de ferro heme em carne de frango

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Adriana Regia Marques de; Arthur, Valter Arthur [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia; Canniatti-Brazaca, Solange Guidolin [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao]. E-mail: sgcbraza@esalq.usp.br

    2007-04-15

    Studies of irradiation and storage effects in chicken were carried out to discover the influence in iron heme, non-heme amount, color and total pigments. Chicken thighs and chicken breast were studied. These were irradiated to 0, 1 and 2 kGy stored by 14 days to 4 deg C in refrigerator. Determining the heme content and non-heme of meat was done using the colorimeter method and the Ferrozine reagent. The values of iron heme were influenced both by the irradiation and the storage, reducing the amount throughout the course of time. The iron non-heme was also influenced by the doses and the storage time, however the values increased throughout the course of time, because of the conversion of iron heme in non-heme. The color did not show that it was influenced by the studied doses, except for the storage, and the total number of pigments was affected by the irradiation and the time, reducing the values with the increase of storage. Irradiation was shown to be a good method to conserve iron. (author)

  9. Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury.

    Science.gov (United States)

    Sawicki, Konrad Teodor; Shang, Meng; Wu, Rongxue; Chang, Hsiang-Chun; Khechaduri, Arineh; Sato, Tatsuya; Kamide, Christine; Liu, Ting; Naga Prasad, Sathyamangla V; Ardehali, Hossein

    2015-07-31

    Heme is an essential iron-containing molecule for cardiovascular physiology, but in excess it may increase oxidative stress. Failing human hearts have increased heme levels, with upregulation of the rate-limiting enzyme in heme synthesis, δ-aminolevulinic acid synthase 2 (ALAS2), which is normally not expressed in cardiomyocytes. We hypothesized that increased heme accumulation (through cardiac overexpression of ALAS2) leads to increased oxidative stress and cell death in the heart. We first showed that ALAS2 and heme levels are increased in the hearts of mice subjected to coronary ligation. To determine the causative role of increased heme in the development of heart failure, we generated transgenic mice with cardiac-specific overexpression of ALAS2. While ALAS2 transgenic mice have normal cardiac function at baseline, their hearts display increased heme content, higher oxidative stress, exacerbated cell death, and worsened cardiac function after coronary ligation compared to nontransgenic littermates. We confirmed in cultured cardiomyoblasts that the increased oxidative stress and cell death observed with ALAS2 overexpression is mediated by increased heme accumulation. Furthermore, knockdown of ALAS2 in cultured cardiomyoblasts exposed to hypoxia reversed the increases in heme content and cell death. Administration of the mitochondrial antioxidant MitoTempo to ALAS2-overexpressing cardiomyoblasts normalized the elevated oxidative stress and cell death levels to baseline, indicating that the effects of increased ALAS2 and heme are through elevated mitochondrial oxidative stress. The clinical relevance of these findings was supported by the finding of increased ALAS2 induction and heme accumulation in failing human hearts from patients with ischemic cardiomyopathy compared to nonischemic cardiomyopathy. Heme accumulation is detrimental to cardiac function under ischemic conditions, and reducing heme in the heart may be a novel approach for protection against the

  10. Redox and light control the heme-sensing activity of AppA.

    Science.gov (United States)

    Yin, Liang; Dragnea, Vladimira; Feldman, George; Hammad, Loubna A; Karty, Jonathan A; Dann, Charles E; Bauer, Carl E

    2013-08-27

    The DNA binding activity of the photosystem-specific repressor PpsR is known to be repressed by the antirepressor AppA. AppA contains a blue-light-absorbing BLUF domain and a heme-binding SCHIC domain that controls the interaction of AppA with PpsR in response to light and heme availability. In this study, we have solved the structure of the SCHIC domain and identified the histidine residue that is critical for heme binding. We also demonstrate that dark-adapted AppA binds heme better than light-excited AppA does and that heme bound to the SCHIC domain significantly reduces the length of the BLUF photocycle. We further show that heme binding to the SCHIC domain is affected by the redox state of a disulfide bridge located in the Cys-rich carboxyl-terminal region. These results demonstrate that light, redox, and heme are integrated inputs that control AppA's ability to disrupt the DNA binding activity of PpsR. Photosynthetic bacteria must coordinate synthesis of the tetrapyrroles cobalamin, heme, and bacteriochlorophyll, as overproduction of the latter two is toxic to cells. A key regulator controlling tetrapyrrole biosynthesis is PpsR, and the activity of PpsR is controlled by the heme-binding and light-regulated antirepressor AppA. We show that AppA binds heme only under dark conditions and that heme binding significantly affects the length of the AppA photocycle. Since AppA interacts with PpsR only in the dark, bound heme thus stimulates the antirepressor activity of PpsR. This causes the redirection of tetrapyrrole biosynthesis away from heme into the bacteriochlorophyll branch.

  11. Perturbative gadgets at arbitrary orders

    Science.gov (United States)

    Jordan, Stephen P.; Farhi, Edward

    2008-06-01

    Adiabatic quantum algorithms are often most easily formulated using many-body interactions. However, experimentally available interactions are generally two-body. In 2004, Kempe, Kitaev, and Regev introduced perturbative gadgets, by which arbitrary three-body effective interactions can be obtained using Hamiltonians consisting only of two-body interactions. These three-body effective interactions arise from the third order in perturbation theory. Since their introduction, perturbative gadgets have become a standard tool in the theory of quantum computation. Here we construct generalized gadgets so that one can directly obtain arbitrary k -body effective interactions from two-body Hamiltonians. These effective interactions arise from the k th order in perturbation theory.

  12. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  13. Perturbation Theory of Embedded Eigenvalues

    DEFF Research Database (Denmark)

    Engelmann, Matthias

    project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory....

  14. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    Directory of Open Access Journals (Sweden)

    Sam P. de Visser

    2016-04-01

    Full Text Available In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1. This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.

  15. Using heme as an energy boost for lactic acid bacteria.

    Science.gov (United States)

    Lechardeur, Delphine; Cesselin, Bénédicte; Fernandez, Annabelle; Lamberet, Gilles; Garrigues, Christel; Pedersen, Martin; Gaudu, Philippe; Gruss, Alexandra

    2011-04-01

    Lactic acid bacteria (LAB) are a phylogenetically diverse group named for their main attribute in food fermentations, that is, production of lactic acid. However, several LAB are genetically equipped for aerobic respiration metabolism when provided with exogenous sources of heme (and menaquinones for some species). Respiration metabolism is energetically favorable and leads to less oxidative and acid stress during growth. As a consequence, the growth and survival of several LAB can be dramatically improved under respiration-permissive conditions. Respiration metabolism already has industrial applications for the production of dairy starter cultures. In view of the growth and survival advantages conferred by respiration, and the availability of heme and menaquinones in natural environments, we recommend that respiration be accepted as a part of the natural lifestyle of numerous LAB. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    Science.gov (United States)

    de Visser, Sam P.; Stillman, Martin J.

    2016-01-01

    In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties. PMID:27070578

  17. Supersymmetric perturbations of the M5 brane

    Energy Technology Data Exchange (ETDEWEB)

    Niarchos, Vasilis [Crete Center for Theoretical Physics & Crete Center for Quantum Complexity and Nanotechnology,Department of Physics, University of Crete, 71303 (Greece)

    2014-05-07

    We study long-wavelength supersymmetric deformations of brane solutions in supergravity using an extension of previous ideas within the general scheme of the blackfold approach. As a concrete example, we consider long-wavelength perturbations of the planar M2-M5 bound state solution in eleven-dimensional supergravity. We propose a specific ansatz for the first order deformation of the supergravity fields and explore how this deformation perturbs the Killing spinor equations. We find that a special part of these equations gives a projection equation on the Killing spinors that has the same structure as the κ-symmetry condition of the abelian M5 brane theory. Requiring a match between supergravity and gauge theory implies a specific non-linear gauge-gravity map between the bosonic fields of the abelian M5 brane theory and the gravity-induced fluid-like degrees of freedom of the blackfold equations that control the perturbative gravity solution. This observation sheds new light on the SUGRA/DBI correspondence.

  18. Exploration of electrostatic interaction in the hydrophobic pocket of lysozyme: Importance of ligand-induced perturbation of the secondary structure on the mode of binding of exogenous ligand and possible consequences.

    Science.gov (United States)

    Panja, Sudipta; Halder, Mintu

    2016-08-01

    Exogenous ligand binding can be adequate to alter the secondary structure of biomolecules besides other external stimuli. In such cases, structural alterations can complicate on the nature of interaction with the exogenous molecules. In order to accommodate the exogenous ligand, the biomolecule has to unfold resulting in a considerable change to its properties. If the bound ligand can be unbound, the biomolecule gets the opportunity to refold back and return to its native state. Keeping this in mind, we have purposely investigated the interaction of tartrazine (TZ), a well abundant azo food colorant, with two homologous lysozymes, namely, human lysozyme (HLZ) and chicken egg white lysozyme (CEWLZ) in physiological pH condition. The binding of TZ with lysozymes has been identified to accompany a ligand-induced secondary structure alteration as indicated by the circular dichroism spectra, and the reduction of α-helical content is more with HLZ than CEWLZ. Interestingly, the binding is identified to occur in the electronic ground state of TZ with lysozyme in its hydrophobic cavity, containing excess of positive charge, predominantly via electrostatic interaction. With increase of salinity of the medium the protein tends to refold back due to wakening of electrostatic forces and consequent reduction of strength of ligand interaction and unbinding. The entropy enthalpy compensation (EEC) has been probed to understand the binding features and it is found that CEWLZ-TZ shows better compensation than HLZ-TZ complex. This is presumably due to the fact that with CEWLZ the binding does not accompany substantial change in the protein secondary structure and hence ineffective to scramble the EEC. The present study initiates the importance of ligand-perturbed structural alteration of biomolecule in controlling the thermodynamics of binding. If there is a considerable alteration of the protein secondary structure due to binding, it is indicative that such changes should bring in

  19. JNK1 and JNK3 play a significant role in both neuronal apoptosis and necrosis. Evaluation based on in vitro approach using tert-butylhydroperoxide induced oxidative stress in neuro-2A cells and perturbation through 3-aminobenzamide.

    Science.gov (United States)

    Muthaiah, Vijaya Prakash Krishnan; Michael, Felicia Mary; Palaniappan, Tamilselvi; Rajan, Sridhar Skylab; Chandrasekar, Kirubhanand; Venkatachalam, Sankar

    2017-06-01

    In spinal cord injury (SCI), oxidative stress in the penumbra of the injury site is a characteristic feature. The predominance of necrosis over apoptosis in the ensuing delayed cell death results in progressive waves of necrosis affecting neighboring cells and thus exaggerates the severity of the lesion. Necrosis has been classified into subtypes based on the active molecular players and parthanatos is one among them, which is characterized by the over activation of PARP1 as the pre-mitochondrial event that triggers necrosis. Parthanatos being the necrosis mode reported in SCI, we intended to study the molecular players in the elusive pre-mitochondrial events of PARP1 over activation using an in vitro model. tert-Butylhydroperoxide (tBuOOH) was reported to induce oxidative stress in various cell types including Neuro-2A cells. Using a tailored protocol, a predominantly PARP1 mediated necrotic mode of cell death was obtained in Neuro-2A cells using tBuOOH. By perturbing the progress of necrosis using 3-amniobenzamide, a known PARP1 inhibitor, it was found that JNK1 and JNK3 but not JNK2 were involved in pre-mitochondrial stages of PARP1 mediated cell death. Given that JNK1 and JNK3 play a role in apoptosis also, they may serve as common targets to counter both apoptosis and necrosis. The in vitro model used in the present study may be useful in delineating molecular mechanisms in necrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Interaction between the oculomotor and postural systems during a dual-task: Compensatory reductions in head sway following visually-induced postural perturbations promote the production of accurate double-step saccades in standing human adults.

    Directory of Open Access Journals (Sweden)

    Mathieu Boulanger

    Full Text Available Humans routinely scan their environment for useful information using saccadic eye movements and/or coordinated movements of the eyes and other body segments such the head and the torso. Most previous eye movement studies were conducted with seated subject and showed that single saccades and sequences of saccades (e.g. double-step saccades made to briefly flashed stimuli were equally accurate and precise. As one can easily appreciate, most gaze shifts performed daily by a given person are not produced from a seated position, but rather from a standing position either as subjects perform an action from an upright stance or as they walk from one place to another. In the experiments presented here, we developed a new dual-task paradigm in order to study the interaction between the gaze control system and the postural system. Healthy adults (n = 12 were required to both maintain balance and produce accurate single-step and double-step eye saccades from a standing position. Visually-induced changes in head sway were evoked using wide-field background stimuli that either moved in the mediolateral direction or in the anteroposterior direction. We found that, as in the seated condition, single- and double-step saccades were very precise and accurate when made from a standing position, but that a tighter control of head sway was necessary in the more complex double-step saccades condition for equivalent results to be obtained. Our perturbation results support the "common goal" hypothesis that state that if necessary, as was the case during the more complex oculomotor task, context-dependent modulations of the postural system can be triggered to reduced instability and therefore support the accomplishment of a suprapostural goal.

  1. Streamer properties and associated x-rays in perturbed air

    Science.gov (United States)

    Köhn, C.; Chanrion, O.; Babich, L. P.; Neubert, T.

    2018-01-01

    Streamers are ionization waves in electric discharges. One of the key ingredients of streamer propagation is an ambient gas that serves as a source of free electrons. Here, we explore the dependence of streamer dynamics on different spatial distributions of ambient air molecules. We vary the spatial profile of air parallel and perpendicular to the ambient electric field. We consider local sinusoidal perturbations of 5%–100%, as induced from discharge shock waves. We use a cylindrically symmetric particle-in-cell code to simulate the evolution of bidirectional streamers and compare the electron density, electric field, streamer velocity and electron energy of streamers in uniform air and in perturbed air. In all considered cases, the motion is driven along in decreasing air density and damped along increasing air density. Perturbations of at most 5%–10% change the velocity differences by up to approximately 40%. Perturbations perpendicular to the electric field additionally squeeze or branch streamers. Air variations can thus partly explain the difference of velocities and morphologies of streamer discharges. In cases with large perturbations, electrons gain energies of up to 30 keV compared to 100 eV in uniformly distributed air. For such perturbations parallel to the ambient electric field, we see the spontaneous initiation of a negative streamer; for perpendicular perturbations, x-rays with energies of up to 20 keV are emitted within 0.17 ns.

  2. Functional imaging: monitoring heme oxygenase-1 gene expression in vivo

    Science.gov (United States)

    Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

  3. Cyanide binding to human plasma heme-hemopexin: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Laboratorio Interdipartimentale di Microscopia Elettronica, Universita Roma Tre, Roma (Italy); Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Leboffe, Loris [Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Polticelli, Fabio [Dipartimento di Biologia, Universita Roma Tre, Roma (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Cyanide binding to ferric HHPX-heme-Fe. Black-Right-Pointing-Pointer Cyanide binding to ferrous HHPX-heme-Fe. Black-Right-Pointing-Pointer Dithionite-mediated reduction of ferric HHPX-heme-Fe-cyanide. Black-Right-Pointing-Pointer Cyanide binding to HHPX-heme-Fe is limited by ligand deprotonation. Black-Right-Pointing-Pointer Cyanide dissociation from HHPX-heme-Fe-cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme-Fe-hemopexin (HPX-heme-Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX-heme-Fe (HHPX-heme-Fe(III) and HHPX-heme-Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex, at pH 7.4 and 20.0 Degree-Sign C, are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX-heme-Fe(III) and HHPX-heme-Fe(II) are K = (4.1 {+-} 0.4) Multiplication-Sign 10{sup -6} M, k{sub on} = (6.9 {+-} 0.5) Multiplication-Sign 10{sup 1} M{sup -1} s{sup -1}, and k{sub off} = 2.8 Multiplication-Sign 10{sup -4} s{sup -1}; and H = (6 {+-} 1) Multiplication-Sign 10{sup -1} M, h{sub on} = 1.2 Multiplication-Sign 10{sup -1} M{sup -1} s{sup -1}, and h{sub off} = (7.1 {+-} 0.8) Multiplication-Sign 10{sup -2} s{sup -1}, respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex is l = 8.9 {+-} 0.8 M{sup -1/2} s{sup -1}. HHPX-heme-Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.

  4. Nitric oxide heme interactions in nitrophorin from Cimex lectularius

    Energy Technology Data Exchange (ETDEWEB)

    Christmann, R.; Auerbach, H., E-mail: auerbach@physik.uni-kl.de [University of Kaiserslautern, Department of Physics (Germany); Berry, R. E.; Walker, F. A. [The University of Arizona, Department of Chemistry and Biochemistry (United States); Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    The nitrophorin from the bedbug Cimex lectularius (cNP) is a nitric oxide (NO) carrying protein. Like the nitrophorins (rNPs) from the kissing bug Rhodnius prolixus, cNP forms a stable heme Fe(III)-NO complex, where the NO can be stored reversibly for a long period of time. In both cases, the NPs are found in the salivary glands of blood-sucking bugs. The insects use the nitrophorins to transport the NO to the victim’s tissues, resulting in vasodilation and reduced blood coagulation. However, the structure of cNP is significantly different to those of the rNPs from Rhodnius prolixus. Furthermore, the cNP can bind a second NO molecule to the proximal heme cysteine when present at higher concentrations. High field Mössbauer spectroscopy on {sup 57}Fe enriched cNP complexed with NO shows reduction of the heme iron and formation of a ferrous nitric oxide (Fe(II)-NO) complex. Density functional theory calculations reproduce the experimental Mössbauer parameters and confirm this observation.

  5. Dual role of the active-center cysteine in human peroxiredoxin 1: Peroxidase activity and heme binding.

    Science.gov (United States)

    Watanabe, Yuta; Ishimori, Koichiro; Uchida, Takeshi

    2017-02-12

    HBP23, a 23-kDa heme-binding protein identified in rats, is a member of the peroxiredoxin (Prx) family, the primary peroxidases involved in hydrogen peroxide catabolism. Although HBP23 has a characteristic Cys-Pro heme-binding motif, the significance of heme binding to Prx family proteins remains to be elucidated. Here, we examined the effect of heme binding to human peroxiredoxin-1 (PRX1), which has 97% amino acid identity to HBP23. PRX1 was expressed in Escherichia coli and purified to homogeneity. Spectroscopic titration demonstrated that PRX1 binds heme with a 1:1 stoichiometry and a dissociation constant of 0.17 μM. UV-vis spectra of heme-PRX1 suggested that Cys52 is the axial ligand of ferric heme. PRX1 peroxidase activity was lost upon heme binding, reflecting the fact that Cys52 is not only the heme-binding site but also the active center of peroxidase activity. Interestingly, heme binding to PRX1 caused a decrease in the toxicity and degradation of heme, significantly suppressing H2O2-dependent heme peroxidase activity and degradation of PRX1-bound heme compared with that of free hemin. By virtue of its cytosolic abundance (∼20 μM), PRX1 thus functions as a scavenger of cytosolic hemin (dual role; Cys-dependent peroxidase activity and cytosolic heme scavenger. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Heme-mediated cell activation: the inflammatory puzzle of sickle cell anemia.

    Science.gov (United States)

    Guarda, Caroline Conceição da; Santiago, Rayra Pereira; Fiuza, Luciana Magalhães; Aleluia, Milena Magalhães; Ferreira, Júnia Raquel Dutra; Figueiredo, Camylla Vilas Boas; Yahouedehou, Setondji Cocou Modeste Alexandre; Oliveira, Rodrigo Mota de; Lyra, Isa Menezes; Gonçalves, Marilda de Souza

    2017-06-01

    Hemolysis triggers the onset of several clinical manifestations of sickle cell anemia (SCA). During hemolysis, heme, which is derived from hemoglobin (Hb), accumulates due to the inability of detoxification systems to scavenge sufficiently. Heme exerts multiple harmful effects, including leukocyte activation and migration, enhanced adhesion molecule expression by endothelial cells and the production of pro-oxidant molecules. Area covered: In this review, we describe the effects of heme on leukocytes and endothelial cells, as well as the features of vascular endothelial cells related to vaso-occlusion in SCA. Expert commentary: Free Hb, heme and iron, potent cytotoxic intravascular molecules released during hemolysis, can exacerbate, modulate and maintain the inflammatory response, a main feature of SCA. Endothelial cells in the vascular environment, as well as leukocytes, can become activated via the molecular signaling effects of heme. Due to the hemolytic nature of SCA, hemolysis represents an interesting therapeutic target for heme-scavenging purposes.

  7. Human and rodent amyloid-beta peptides differentially bind heme: relevance to the human susceptibility to Alzheimer's disease.

    Science.gov (United States)

    Atamna, Hani; Frey, William H; Ko, Novie

    2009-07-01

    Amyloid-beta (Abeta) peptides are implicated in the neurodegeneration of Alzheimer's disease (AD). We previously investigated the mechanism of neurotoxicity of Abeta and found that human Abeta (huAbeta) binds and depletes heme, forming an Abeta-heme complex with peroxidase activity. Rodent Abeta (roAbeta) is identical to huAbeta, except for three amino acids within the proposed heme-binding motif (Site-H). We studied and compared heme-binding between roAbeta and huAbeta. Unlike roAbeta, huAbeta binds heme tightly (K(d)=140+/-60 nM) and forms a peroxidase. The plot of bound (huAbeta-heme) vs. unbound heme fits best to a two site binding hyperbola, suggesting huAbeta possesses two heme-binding sites. Consistently, a second high affinity heme-binding site was identified in the lipophilic region (site-L) of huAbeta (K(d)=210+/-80 nM). The plot of (roAbeta-heme) vs. unbound heme, on the other hand, was different as it fits best to a sigmoidal binding curve, indicating different binding and lower affinity of roAbeta for heme (K(d)=1 microM). The effect of heme-binding to site-H on heme-binding to site-L in roAbeta and huAbeta is discussed. While both roAbeta and huAbeta form aggregates equally, rodents lack AD-like neuropathology. High huAbeta/heme ratio increases the peroxidase activity. These findings suggest that depletion of regulatory heme and formation of Abeta-heme peroxidase contribute to huAbeta's neurotoxicity in the early stages of AD. Phylogenic variations in the amino acid sequence of Abeta explain tight heme-binding to huAbeta and likely contribute to the increased human susceptibility to AD.

  8. Beneficial effect of prolonged heme oxygenase 1 activation in a rat model of chronic heart failure

    Directory of Open Access Journals (Sweden)

    Massimo Collino

    2013-07-01

    We and others have previously demonstrated that heme oxygenase 1 (HO-1 induction by acute hemin administration exerts cardioprotective effects. Here, we developed a rat model of heart failure to investigate whether a long-term induction of HO-1 by chronic hemin administration exerted protective effects. Sprague Dawley rats that underwent permanent ligation of the left coronary artery were closely monitored for survival rate analysis and sacrificed on day 28 post-operation. Administration of hemin (4 mg/kg body weight every other day for 4 weeks induced a massive increase in HO-1 expression and activity, as shown by the increased levels of the two main metabolic products of heme degradation, bilirubin and carbon monoxide (CO. These effects were associated with significant improvement in survival and reduced the extension of myocardial damage. The ischemic hearts of the hemin-treated animals displayed reduced oxidative stress and apoptosis in comparison with the non-treated rats, as shown by the decreased levels of lipid peroxidation, free-radical-induced DNA damage, caspase-3 activity and Bax expression. Besides, chronic HO-1 activation suppressed the elevated levels of myeloperoxidase (MPO activity, interleukin 1β (IL-1β production and tumor necrosis factor-α (TNFα production that were evoked by the ischemic injury, and increased the plasma level of the anti-inflammatory cytokine IL-10. Interestingly, HO-1 inhibitor zinc protoporphyrin IX (ZnPP-IX; 1 mg/kg lowered bilirubin and CO concentrations to control values, thus abolishing all the cardioprotective effects of hemin. In conclusion, the results demonstrate that chronic HO-1 activation by prolonged administration of hemin improves survival and exerts protective effects in a rat model of myocardial ischemia by exerting a potent antioxidant activity and disrupting multiple levels of the apoptotic and inflammatory cascade.

  9. Heme oxygenase-1 prevents non-alcoholic steatohepatitis through suppressing hepatocyte apoptosis in mice

    Directory of Open Access Journals (Sweden)

    Fu Na

    2010-10-01

    Full Text Available Abstract Objective Heme oxygenase-1 (HO-1, the rate-limiting enzyme in heme catabolism, has been reported to have potential antioxidant properties. However, the role of HO-1 on hepatocyte apoptosis remains unclear. We aim to elucidate the effects of HO-1 on oxidative stress related hepatocellular apoptosis in nutritional steatohepatitis in mice. Methods C57BL/6J mice were fed with methionine-choline deficient (MCD diet for four weeks to induce hepatic steatohepatitis. HO-1 chemical inducer (hemin, HO-1 chemical inhibitor zinc protoporphyrin IX (ZnPP-IX and/or adenovirus carrying HO-1 gene (Ad-HO-1 were administered to mice, respectively. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL assay, the mRNA and protein expression of apoptosis related genes were assayed by quantitative real-time PCR and Western blot. Results Hepatocyte signs of oxidative related apoptotic injury were presented in mice fed with MCD diet for 4 weeks. Induction of HO-1 by hemin or Ad-HO-1 significantly attenuated the severity of liver histology, which was associated with decreased hepatic lipid peroxidation content, reduced number of apoptotic cells by TUNEL staining, down-regulated expression of pro-apoptosis related genes including Fas/FasL, Bax, caspase-3 and caspase-9, reduced expression of cytochrome p4502E1 (CYP2E1, inhibited cytochrome c (Cyt-c release, and up-regulated expression of anti-apoptosis gene Bcl-2. Whereas, inhibition of HO-1 by ZnPP-IX caused oxidative stress related hepatic injury, which concomitant with increased number of TUNEL positive cells and up-regulated expression of pro-apoptosis related genes. Conclusions The present study provided evidences for the protective role of HO-1 in preventing nutritional steatohepatitis through suppressing hepatocyte apoptosis in mice.

  10. Characterization of a Wheat Heme Oxygenase-1 Gene and Its Responses to Different Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Yu-ting Lin

    2011-11-01

    Full Text Available In animals and recently in plants, heme oxygenase-1 (HO1 has been found to confer protection against a variety of oxidant-induced cell and tissue injuries. In this study, a wheat (Triticum aestivum HO1 gene TaHO1 was cloned and sequenced. It encodes a polypeptide of 31.7 kD with a putative N-terminal plastid transit peptide. The amino acid sequence of TaHO1 was found to be 78% similar to that of maize HO1. Phylogenetic analysis revealed that TaHO1 clusters together with the HO1-like sequences in plants. The purified recombinant TaHO1 protein expressed in Escherichia coli was active in the conversion of heme to biliverdin IXa (BV, and showed that the Vmax was 8.8 U·mg−1 protein with an apparent Km value for hemin of 3.04 μM. The optimum Tm and pH were 35 °C and 7.4, respectively. The result of subcellular localization of TaHO1 showed that the putative transit peptide was sufficient for green fluorescent protein (GFP to localize in chloroplast and implied that TaHO1 gene product is at least localized in the chloroplast. Moreover, we found that TaHO1 mRNA could be differentially induced by the well-known nitric oxide (NO donor sodium nitroprusside (SNP, gibberellin acid (GA, abscisic acid (ABA, hydrogen peroxide (H2O2 and NaCl treatments. Therefore, the results suggested that TaHO1 might play an important role in abiotic stress responses.

  11. Role of the heme oxygenases in abnormalities of the mesenteric circulation in cirrhotic rats.

    Science.gov (United States)

    Sacerdoti, David; Abraham, Nader G; Oyekan, Adebayo O; Yang, Liming; Gatta, Angelo; McGiff, John C

    2004-02-01

    Carbon monoxide (CO), a product of heme metabolism by heme-oxygenase (HO), has biological actions similar to those of nitric oxide (NO). The role of CO in decreasing vascular responses to constrictor agents produced by experimental cirrhosis induced by carbon tetrachloride was evaluated before and after inhibition of HO with tin-mesoporphyrin (SnMP) in the perfused superior mesenteric vasculature (SMV) of cirrhotic and normal rats and in normal rats transfected with the human HO-1 (HHO-1) gene. Perfusion pressure and vasoconstrictor responses of the SMV to KCl, phenylephrine (PE), and endothelin-1 (ET-1) were decreased in cirrhotic rats. SnMP increased SMV perfusion pressure and restored the constrictor responses of the SMV to KCl, PE, and ET-1 in cirrhotic rats. The relative roles of NO and CO in producing hyporeactivity of the SMV to PE in cirrhotic rats were examined. Vasoconstrictor responses to PE were successively augmented by stepwise inhibition of CO and NO production, suggesting a complementary role for these gases in the regulation of reactivity of the SMV. Expression of constitutive but not of inducible HO (HO-1) was increased in the SMV of cirrhotic rats as was HO activity. Administration of adenovirus containing HHO-1 gene produced detection of HHO-1 RNA and increased HO activity in the SMV within 7 days. Rats transfected with HO-1 demonstrated reduction in both perfusion pressure and vasoconstrictor responses to PE in the SMV. We propose that HO is an essential component in mechanisms that modulate reactivity of the mesenteric circulation in experimental hepatic cirrhosis in rats.

  12. Pharmacological Induction of Heme Oxygenase-1 Impairs Nuclear Accumulation of Herpes Simplex Virus Capsids upon Infection

    Directory of Open Access Journals (Sweden)

    Francisco J. Ibáñez

    2017-10-01

    Full Text Available Heme oxygenase-1 (HO-1 is an inducible enzyme that is expressed in response to physical and chemical stresses, such as ultraviolet radiation, hyperthermia, hypoxia, reactive oxygen species (ROS, as well as cytokines, among others. Its activity can be positively modulated by cobalt protoporphyrin (CoPP and negatively by tin protoporphirin (SnPP. Once induced, HO-1 degrades iron-containing heme into ferrous iron (Fe2+, carbon monoxide (CO and biliverdin. Importantly, numerous products of HO-1 are cytoprotective with anti-apoptotic, anti-oxidant, anti-inflammatory, and anti-cancer effects. The products of HO-1 also display antiviral properties against several viruses, such as the human immunodeficiency virus (HIV, influenza, hepatitis B, hepatitis C, and Ebola virus. Here, we sought to assess the effect of modulating HO-1 activity over herpes simplex virus type 2 (HSV-2 infection in epithelial cells and neurons. There are no vaccines against HSV-2 and treatment options are scarce in the immunosuppressed, in which drug-resistant variants emerge. By using HSV strains that encode structural and non-structural forms of the green fluorescent protein (GFP, we found that pharmacological induction of HO-1 activity with CoPP significantly decreases virus plaque formation and the expression of virus-encoded genes in epithelial cells as determined by flow cytometry and western blot assays. CoPP treatment did not affect virus binding to the cell surface or entry into the cytoplasm, but rather downstream events in the virus infection cycle. Furthermore, we observed that treating cells with a CO-releasing molecule (CORM-2 recapitulated some of the anti-HSV effects elicited by CoPP. Taken together, these findings indicate that HO-1 activity interferes with the replication cycle of HSV and that its antiviral effects can be recapitulated by CO.

  13. Preheating and entropy perturbations in axion monodromy inflation

    Energy Technology Data Exchange (ETDEWEB)

    McDonough, Evan; Moghaddam, Hossein Bazrafshan [Department of Physics, McGill University,Montréal, QC H3A 2T8 (Canada); Brandenberger, Robert H. [Department of Physics, McGill University,Montréal, QC H3A 2T8 (Canada); Institute for Theoretical Studies, ETH Zürich,CH-8092 Zürich (Switzerland)

    2016-05-04

    We study the preheating of gauge fields in a simple axion monodromy model and compute the induced entropy perturbations and their effect on the curvature fluctuations. We find that the correction to the spectrum of curvature perturbations has a blue spectrum with index n{sub s}=5/2. Hence, these induced modes are harmless for the observed structure of the universe. Since the spectrum is blue, there is the danger of overproduction of primordial black holes. However, we show that the observational constraints are easily satisfied.

  14. Irradiation of bovine meat: effect of heme-iron concentration.; Irradiacao de carne bovina: efeito na concentracao de ferro heme

    Energy Technology Data Exchange (ETDEWEB)

    Mistura, Liliana Perazzini Furtado

    2002-07-01

    The irradiation is often used, nowadays, for meat conservation and it is important to know how much this process interferes with the nutritional quality of the meat. In this study round cut meat, ground and steaks (from a local supermarket) was irradiated with doses of O; 1; 2; 3; 4; 5; 7,5 and 10 kGy (JS-7500 Nordium Inc -Canada) and the interference of irradiation and the process of food preparation on heme-iron (H Fe) content was determined. Half of the sample was kept raw and the other half was grilled in a pre-warmed oven at 250 deg C for 9 min and a controlled humidity of 70%. The chemical composition, the total iron (T Fe) (EM) and the heme iron concentration were determined (Hornsey,1956) and the sensorial quality evaluated. The average T Fe concentration of raw and ground , ground and grilled, raw steaks and grilled steak meat, on dry and degreased basis was 113 mug/g, 121 mug/g , 91 mug/g and 77 mug/g; and the H Fe concentration 105 mug/g (93% of T Fe) , 88 mug/g (73% of T Fe), 90 mug/g (99% of T Fe) and 52 mug/g (68% of T Fe) respectively. Data were evaluated by ANOVA with fixed effects and multiple comparisons. The irradiation neither altered the chemical composition nor the proportion of heme iron of meat. The preparation conditions (temperature, cooking time, environment humidity, meat presentation) of the sample interfered more with the heme iron content than the irradiation. With the sensorial analysis we verified that meats irradiated with doses of 3 kGy were better evaluated in softness and succulency attributes than the others. Meat submitted to irradiation doses up to 3 kGy were accepted by the specialists' panel. (author)

  15. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland); Flueck, Christa E.; Mullis, Primus E. [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland)

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  16. Resonance Raman Spectra of Five-Coordinate Heme-Nitrosyl Cytochromes c': Effect of the Proximal Heme-NO Environment.

    Science.gov (United States)

    Servid, Amy E; McKay, Alison L; Davis, Cherry A; Garton, Elizabeth M; Manole, Andreea; Dobbin, Paul S; Hough, Michael A; Andrew, Colin R

    2015-06-02

    Five-coordinate heme nitrosyl complexes (5cNO) underpin biological heme-NO signal transduction. Bacterial cytochromes c' are some of the few structurally characterized 5cNO proteins, exhibiting a distal to proximal 5cNO transition of relevance to NO sensing. Establishing how 5cNO coordination (distal vs proximal) depends on the heme environment is important for understanding this process. Recent 5cNO crystal structures of Alcaligenes xylosoxidans cytochrome c' (AXCP) and Shewanella frigidimarina cytochrome c' (SFCP) show a basic residue (Arg124 and Lys126, respectively) near the proximal NO binding sites. Using resonance Raman (RR) spectroscopy, we show that structurally characterized 5cNO complexes of AXCP variants and SFCP exhibit a range of ν(NO) (1651-1671 cm(-1)) and ν(FeNO) (519-536 cm(-1)) vibrational frequencies, depending on the nature of the proximal heme pocket and the sample temperature. While the AXCP Arg124 residue appears to have little impact on 5cNO vibrations, the ν(NO) and ν(FeNO) frequencies of the R124K variant are consistent with (electrostatically) enhanced Fe(II) → (NO)π* backbonding. Notably, RR frequencies for SFCP and R124A AXCP are significantly displaced from the backbonding trendline, which in light of recent crystallographic data and density functional theory modeling may reflect changes in the Fe-N-O angle and/or extent